Please handle with EXTREME CARE

This volume is brittle and CANNOT be repaired!

Photocopy only if necessary
Return to library staff, do not in bookdrop GERSTEIN SCIENCE INFORMATION CENTR:

Penny Cyclopaedia off the Society for the Diffusion of Useful Knowledge

S.D
 P4164
 v. 24
 c. 1
 GERSTM

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

$$
\begin{aligned} & \text { S.D } \\ & \text { P4164 } \end{aligned}
$$
 THE
 PENNY CYCLOP压DA

THE SOCIETY

FOR THE

DIFFUSION OF USEFUL KNOWLEDGE.

VOLUME XXIV.
TAI-WAN——TITLARKS.
\qquad

LONDON:
CIIARLES KNIGHT AND Co., 22, LUDGATE STREET. MDCCCXLII.

Chairmen－The R1rit tion LORD nROU＇itIAM．P．R．S．，Nember of the National lootflute of Frouer．
ficm－Chainas－The Ryghtlow．EAHL SPESCER，
Trragrer－dOIIN wool），Eieq．

Whtak Altae．Puq．，F．R，and R．A．S．
Capolmin Reautorg R．N．，P，K，and M．A．s．
firotico Marrima，Nis．
Prubscor I＇arey．A．M．
John f＇woulle．N D．
The Righe Rev，the Eid
The Riplte R－v．the Bishepef St Davidin，D．D． Jo Herve．Heg．．r．at．
Sir Heary lie ta Heche，F．n．s．
the Illgint It mo．Iepil Ifenmen，
ianamel lluckworth，fien
 TF．Fillm Rem A M，F Ki，A．S．
Jabo Blllatenn， 21.11 ．，Y．R．S．
Thonaran Fulernere．E－n
Juhn forbes，M．D，F．R．S．
Sir 1 I．foathlamit，J．uta F．R．aod R．A．S．
Fianci：Heory Goldemid，Eeq．
h．Comperts，F．aga F．R．and R．A．S．

if II lifermeh Fion．．F I and Lo．S．
Sir fidmend lfeed， $13+r 1$ ，$A, B 1$ ．
W．1．Hill．F．an， 4 C゙。
Rowland Hill，Vien．e R．A．
RIsht Hon．Sif J．C．Jloblouse，Bart \rightarrow M．P． Thos Ilowlaklo．N．D
Davld Jasdise，Fiaq．．A，M
Ientr R Sier．Fig．
Sir Dobía Le Mareha al．Iler
Sir Cootele lo Mapeha al，Jlart．

Jemen loch，fieq ． 31 P．，
Gienter loome．Fon．．A．M．
Fiufemer Malifec，A．M．
A．T．Malkla，Eisy－A．M．

Mr．Sercesul Mannink
R．I．Мигеhыно，Ran．．F．R．S．F．tis．
Thie ftteht Hon．Lurit Noyemt．
แi．※．（O＇Ilrien，k．M．a M．\＆．
I＇mitestor Quain．
10．M．ISwert，M．D．Sec．IR．S．．P．IR，A，S．
II．W，Rothmin．F．eg．，A．M
Sir Martin arehef slier，P．1Z，h，F．ll，S

l＇rofestor Tlionsun，M．D．F．I．．S．
Themestar Tiarilung．Fing
Thamine Varlan，E．in．

Jas Walher．Fisul．，ri．R．si．，I＇r．Inat．，Cle．Fiag． H．Wavmanith．Fing．
Thase．Wr－berer，Bigy．A．M．
Bighl ilvo．Loid If rohtesley，A．M，P．R．A．S．
J．A．Jinten，Eing．

工OCAL COMENITTE玉S．

Etrurit－Josian Wedswood，F．ig．
Espefer－J I＇yrrell，Fag．
Jolim Mfirorel，Fing i Conmer．）
Olamorgmasiaire－W．W＇lllames，Fieq．Aluer－ jerewom．
Rabow－K．Finlay．F．g．
Alexander Mitirinor，Raq
Jamim Cusher．Fiog．
A，
7mprasey－F C．Batkla，Faq．
Hitcham．Sjforsh－Rev．Prufesout Henolow， B．A．FF．I．．S \＆B．S．
Ifull－Jae，Buwden，Finq．
Leeds－J Alarshall．Fig．
J．pepi－J．W．Woollear，Fivq．
Ileory Hrowne．Kisn
J．imeniout I ne．As．－J．Binllenend，Eig． Rey．Wim．Sheuliord，IAI，D
Maidsfone－Cliemeni T．Smyth，Eieq． Juhn Cane．Fag
Nancheper loc．Ao，－G．Wi．Wood，Raq． 11 Po ： 4
Sir Henjemin Heywood．BL．Treetaper． SIr liporre Plılıjo．Nari．．M P．
T．N Winatasiow． K_{1} How．Sece．
Berther Tydri，－Eir J．J．Gurnt，Jart，B1．P．
Bfimminhamapon－iolin O．Ball，Fiaq．
senth－Jalin llowland．Fisq．
diememille－Rer W Turnep．
T．Soumifti，Fiq．F．G．S．
dipmpet lik of Hipht－At．Clarke，Fioq．
R G Kirluair
Aenpzurf Papopif－J．Niflar．Fon．
Norment－Jishapil Itacon，Fisq．
Wm．Former．Fan．
（Irtell．Eises－1）Ciplett

Oxfore－Ch．Damieny M D．F． 11 s．rruf Cliem Rev llabeo Potrell，Sav．Puf．
Bev．Jolis Jorilan．II．A
Pesth．Ifwegnry－Count Sxechenyl．

F．Mnope，M．1），F I．．S．，Secrefolly
G．Wlifitwick，F゙om．
Prestengaーiti．Iluo．Sir II．Irydgee，IJurl． A．WV，Ilarin．II．b．
Ripos－llev If．P．Il asal！lon，M．A．F．It，＊，U．S． Rev P Fwart．M．A
Ruthia－Tlie Teq，the Wirden．
Humpliteya Jonew，Fima
Ryde．I．of 18 ïhp－SIr Hil．Simeon，Bl．
Salishury－Rev．J．Harllit．
She昔eld－H．Alsraliwm．Faq．
Sheplan Mrilet－B．F．Ilurouglis，Eeq．
Shrewabwey－II A．Slaney，＇rag．
South Pethertos－John Ni．fivietts，Kag．
Slockinert－H Maruland，Nag．，Therisuier Henrv Coplinck，Vinq－Serrefury．
sudney．Nem Si Water $=\$$ ，M Msuming，iva？
Swemara－Nathew Mogerldge，Fisq．
Twmefoch－ilev，II゚，Xvarm Jolıa Ifunlie．Fwn．M．P．
Trurm－Henry siowell slukey，Buq．
Trunuridge $10^{\circ} \mathrm{L}$ Ls－Mr．Yeals：
floweter－Bnliert Ithartan．Kien．
Tirgiana，I＇．SA．－1＇ruleasor Tweker．
l＇urreifer－Cliae Ilandayw，M．In． C．H．Hebb，Fing．
fresham－＇Thuman Filvwurlh，fieq． Alajur sir Willam liloyn．
Formueh－C F．Rumhould Fisq
Dammut Turner．Fivg．
fork－Rry．S．Kenrick．M．A John Phlllpe，Eeq．，F．R．s．，P．శ．．．．

THE PENNY CYCLOP ADIA

$O F$

THE SOCIETY FOR THE DIFFUSION OF
 USEFUL KNOWLEDGE.

TA I

T A I

TAI-WAN (Tayncan) is the Chinese name of an island which in Europe is known by the name of Formosa, and Hermosa, and, according to the Dutchman Valentyn, is ealled by the aborigines Pekan or Piek-and. It lies between $21^{\circ} 58^{\prime}$ and $25^{\circ} 15^{\prime} \mathrm{N}$. lat., and between 120° and 122° E long., and extends from south by west to north by east about 240 miles. In width it varies much. From its most southern point, where it is only about four miles wide, it inerenses gradually, so that at $23^{\circ} \mathrm{N}$. lat. it is 60 miles wide, and at $24^{\circ} \mathrm{N}$. lat. nearly 100 miles. 1 ts northern portion deereases in width, but very slowly, for near its northern end it is still 60 miles wide. A rough calculation gives the surface an extent of about 14,000 square miles, which is about half the area of Ireland, and 3000 square miles more than that of Sicily.

The north-western point of Taï-wan is only about 80 miles from the coast of the Chinese province of Fukian, or Fokian; but farther south the ehanuel of Fohian, as the sea between Taï-wan and China is called, grows wider. In the parallel of Amoy, $21^{\circ} 40^{\prime} \mathrm{N}$. lat., it is 150 miles aeross, and still wider south of that parallel. This part of the China Sea contains severaI banks, and the soundings are also extremely irregular, especially in the vicinity of the Ponghu or Phenchu Islands, called also Pescatores, or Fisher Islands. The southern extremity of Tai-wan is divided from the Bashee Islands, which are south-cast of it, ly the channel of Formosa, which is nearly 80 miles wide, and has also very irregular soundings.

The broad promontory which terminates the island on the south, and forms the south-east and south-west cape, is a low flat, but at the distance of about two miles the country suddenly rises into mountains, which continue to nun in an unbroken chain northward nearly through the middle of the island to its northern extremity, terminating with high cliffs at the north-east eape. As it is certain that this range of monntains, which is called Ta Shan, or Great Mountain, is nearly the whole year round eovered with snow, its elevation has been estimated by Humboldt at about 12.000 feet above the sea. The declivities of these mountains, with the exception of the crests of the most elevated portion, are covered with fine trees and pasture-grounds, and thus the island, when seen from the sea, presents a very pleasing appearance, whence it was called Hermosa by the Europeans who advaneed thus far into the Indian Sea. These mountains have never been visited by Europeans, but from the accounts of the Chinese geographers, which have been colleeted by Klaproth, it appears that there is more than one volcano on this island. The Tshykang (Red Mountain), south of the town of Funs-shan-hian, was once an active volcano, and there is still a lake of hot water on Slin Mountains. The I'hy-nan-my-shan, south-east of Funs-shan-hian, emits in the night-time a brilliant lustre. The Ho-shan (Fire-Mountain), south-east of Tshu-lo-hian, is said to coutain many wells from which flames issue. There are some other mountains which exlibit traces of voleanic
action, and sulphur constitutes an important article of export.

The mountains have a stecp declivity on both sides, but on the west side they terminate at a considerable distance from the sea, so as to leave a wide tract between them and the shore. This traet has an undulating surface, and terminates on the sea in a low sandy beach. The adjoining sea is full of sand-banks and shoals, and can only he approached in a few places by vessels drawing more than cight feet of water. On the east of the Ta-shan range the mountains seem to occupy nearly the whole space between the erest of the range and the sea, and lingh rocks line the shore. There are no soundings along this coast. This circumstance, united to the strong current which sets along this side from south to north, is probably the reason why this part of Taï-wan has never been visited by Furopean vessels; nor does it appear that Japanese or Chinese vessels lave any intercourse with this part of the island. It is an unknown portion of the globe.

Rivers are numerous on the west side, but as they originate in a very elevated region, from which they deseend in continuous rapids and cataracts, they bring down a considerable quantity of earthy matter, which they deposit at their mouths, forming bars, which have so little water as to admit only small vessels: this however seems to be no great disadvantage, as there are numerous islands along the shore, between which junks of ordinary size (about 200 tons burden) find good anchorage. Some of the rivers howevel are said to be navigable for a considerable distanec inl nd, especially the Tan-shuy-kliy, which falls into the Tan-shuy-kiang Bay, which lics in the narrow part of the channel of Fukian. The rivers also offer the great advantage of an abundant irrigation, though they are sometimes destructive to the crops by their inundations.

No portion of the ocean is suljeet to such violent gales as the sea surrounding Taï-wan on the west and east. Both monsoons, the north-eastern and the south-western, blow in the direction of the channel of Fukian, and as they are confined between two high mountain-ranges, the mountains of Fukian and of Tai-wan, their violence is mueh increased. At the change of the monsoons the most violent gales come on suddenly, and are accompanicd by typhons, whirlwinds, and waterspouts. Many Chinese vessels are annually lost at these seasons. The Japan Sea, which lies north of Tai-wan, is noted for its terrihle tempests. In the vieinity of the island the north-eastern monsoon generally lasts nine months, as it continues to blow to the begiming of June. In other respects the elimate of the island is very temperate, neither the heat nor the cold being execssive on the plains along the western coast. The island is subject to eartliquakes, and they are sometimes very violent. In 1782 the whole lower portion was laid waste, and the sea inundated the country to the base of the mountains for
twelve hours. A great part of the eajital was destrojed, and soine hundreds of junks were lost.

The sonl of the lower tracts and the nore gentle slopes of the mountains is sory fertile, and produces abundanee of corn, which is exported to the harbours of Fukian, of which the island is said to be the granary. It proctuees rice of excellent quality; also wheat, mullet, maize, and several hinds of verctables, muong which are tmfles. The sugar-cane is extensirely cultivated, and the sugar made in the island goes to China, as far as I'cking. Orehards are edrefully attended to. They prodnce oranges, pine-apples, cuavas, cocon-nuts, areca-nuts, jack-init, and other iruils found in the East Indies; also peaches, apricots, figs, grmpes, pomegranates, and chestuuts. Melons are ulso much grown. Only green tea is cultivated, and it is stated that it forms an artiele of export to Chima, where it is nsed as a medicine. The blossoms of the wild jasmine are dried and exported to China, where they are used to sive a seent to the tea. Other articles of export are eamphor, pepper, aloes, and timber. Timber abounds in the large forests in the northem districts of the island. It is also stated that colfee, cotton, and silk are produced to a small amount.

The domestic animals are cattle, buffaloes, horses, asses, and gonls, but sheep and logs are rare. The horses are small, and the Chinese find them unfit for their cavalry. It is said that on the eastern unknown portion of the island there are many beasts of prey, as thgers, leopards, and wolves, but they are not found on the westem side, where wild hors, dece, monkers, pheasants, and game are lery abundaut. Sall is made to a great cxtent, and, torether with sulphur, forms a large article of export.

The population consists of Chinese sellers and of aborifines. The Chinese are only found on the west sitle of the island, where they first seltled a hundred and eighty years agn (1662). Their number many years ago was stated to be about 500,000 indisiduals. They are inostly from Fukian, and have preserved the customs of their original country, and the spirit of industry and enterprise by which their countrouen are distinguished. Λ considerable numher of ahorizines are settled among the Chinese, to whom they are subject, and are obliged to pay a tribute in corn and money. The collectors of the tribute are Chinese, who are required to know the language of the aborigines for the jurpose of explainum to them the orders of the court. It is said that the oppression to which the aborigines are sul)jeet from these interpreters frequently causes them to rise in rebeltion. These aborigines are of a slender make, and in complexion resemble the Malays, but they do not ditler from the Chinese in fentures. Their language shows that they belong to the widely spread race of the Malay nutions ; and it is said that they rreatly resemble the Ilomaforas of the Moluccas. Their religion resembles what is called Slamanism. The Dutch took some steps to convert then to Christianity, but their sway on the island was too limited and of too short a duration to produce any lasting effect. Nothing is known of tho aborigines who inhabit the enst side of the island. They are not subject to the Chincse, and are said to be continually at war with them. Inlabiting a country eovered with lotiy mountains, : hey are said to subsist mostly on the produce of the chase and by finhing.

The Chincse portion of Tai-wan is divided into four districts, which, from south to north, are F'ung-shan-hian, Tai-wan-hian, Tshul-lo-hian, and Thang-hua-hian. The eapital, Tair-wan-fu, is a considerable place, and has a garrison of $10,0 \times 0$ troops. The wall was built in 1725. The streets are straight, and intersect one another at right angles: they are full of shops, which are abundantly provided with all articlen of Chinese industry. The largest louilding is that which was erueted by the Dutch during their short sway in Taj-wan. There is still a mall church built by the Dutch. It is stated that lowo junks can anchor in the harbour; but as the single entranee, at spring-lides, has but from nine to tenfeel of water, only vessels of modlomte oize can enter it. There was formerly another cutrance, which had a greater depth of water, and for the protection of which the Duteh had built the fortress of Zelandia; but it is mid that this entrance has been filled up with sand. The commeree of this place with Chime is considerable. Wu-teaou-kiang, which was visited by lindsay in 1 MOS, has a liarbour, which was then crowded with junks aud numerous coasting vessels whieh brought the pro-
dhee of the country, especially riee and sngar, to this plaee. Tan-shny-kiang, at the embouchure of the river Taneshuykhy, is at the imemost recess of a fine bay, which is lurge enough for n numerons fleet, but has not been visited by Europeans. The best harbour is nent the northern extremity of the island, and is called $k y$-long-shai: the Duteh call it Quelong. It is cagracious chough to contain 30 large vessels, and is the station of the Chinese navy at the island. An active commeree is carried on at this place.

The conmerce of the island is limited to that with the eastern provinces of China, especially. Fukian, to which it sends its agricultural produce, with sulphur and salt, and from which it mports tea, raw silk, woollen and coltun stutfs, and other manufictures. It is sfated that the number of junks that ammally enter the ports amounts to more than 1000 . The navigation of the channel of Fitkian, thourh ditficult on account of the grales and the rotirh sea, is rendered anuch less so by the situation of the l'onglu Islands, which olfer a saferefuge in time of danerer. These roeky islands are thirly-six in number, most of the very smail, and a few somewhat larger. The largest has m excellent harbour, in which vessels of between nine and ten feet draught may anchor in security. The Chinese have erected some fortifieations on them, as they have occasionally been taken possession of by pirates, who frequently infest the adjacent const of China.

Opposite the southern extremity of the eastern coast of Tai-wan is the island of 13otol Tabago-xina. It is clevated, and about ten miles in circumference. It is surrounded by a sea without soundings, and no mavigator has cver lauded on it. It is said to be very populons.

It appears that the island of Tai-wan was known to the Chinese and Japanese at an early period, but they did not seltle on it nor subjeet it to their sway: When the Diteh appeared in these seas, following the imek of the Portuguese, they found no Chinese settlement cither on tha Pongha isfands or on Tai-wan. They erected some fortifieation on the Ponglun lslands, and in 1634 they huitt the fortress of Zelandia at the entrance of the harbour of Thiwan-fin, where there was then a small town. They buit also a small fortress at the harbour of $k \mathfrak{j}$-lone-shait. The protection which was thus offered to emngrants indueed a large number of fanilies foom Fukian to scllle in the islund, and the colony rose rapidly in importance. Meanwhile Chima was lad waste by the wars which terminated in the overthrow of the Ming dynasty and the establishment of the present family on the throne. The adherents of the former dynasty maintained their footing longest in the eastern and southern provinees, Chekiang, loukian, and Quanglum, but being pressed by their enemies, they abandoned the mainland, and continued the war out the sea. One of their chiefs, Tshing-tshing-kung, called by the Europeans Koxinga, sailed, nlter the loss of \mathfrak{a} battle, to the Ponghu lslands, and oceupied them. Hence he proceceded to Tai-wan, and tinding only a very weak garrison in the Dutcl fortress, he took it, after a siege of four months, in 1602 . Thus the Dutch lost the island, ather having been in possession of it for twenty-eight years. Tblumg-ishingkung, the new king of Tail-wan, fa voured the seltling of lis countrymen, the imbabitants of Fukian, and thus the island in a slort time was converted into a Chincse colony. Ile was also favourable to the English, who had, during lis reign, a eommercial establishment on the island, from which they earried on an aetive commeree with Ainoy. The province of liukian, which continucd its opposition in the vietorious Mantehons langer than any other part of China, had been enmpelled to submit to their sway; and as Thling-tshing-kung had died, and the throne of Taï-wan was occupied by a minor, a Chinese flect in 1682 took possession of the Ponghu lslands. The Clinese were also preparing a descent on Tai-wan, when, in 1683, the council which goscrned in the mame of the young prinee thought it inost jundent to surrender the island to the court of l'eking without a war.
(l'Mre du Mailln, Letlres élifuntes et curicuses, 101. xviii. F Klaproth's Description de llsle de Formose, extruite de lizres Chinois, in Mémoires relatifs d l'Asie; La J'erouse, Voyage autour du Mronde; and limdsay" Voyage of the ressel Amherst along the coast of Chinu, in Parliamentury Reports, 1831.)

TAI,Al'OINS is the mame given by the l'ortuguese, and after then by other Europenin nations, to the Buddhist
priests, or rather monks, of Siam, and is supposed to be derived from the fan which they always carry, usually made of a leaf of the palmyra-tree, and hence, says Crawfurd (Journal of Embassy to Siam, p. 358), denominated by the Sanscrit word Tuipat. Tal is the common Indian name for the palmyra; and the older travellers give Talapn as the Siamese word for a fan. In the Pali (or learned tongue) the Talapoins of Siam are said to be called Thaynka ; but in the common language of the country they are spoken of, as well as to, simply by the term Chau-cou, or Chau-ca, which signifies My lord (or literally Lord of me), the first of the two forms being that comnonly used, the other that eniployed to express extraordinary inferiority on the part of the speaker. (La Loubere, Du Royaume de Sian, i. 407.) Mr. Crawfurd states that they are called Phra, which he says is a Pali word signifying Lord, applied also to Gautama or Buddha, to the king, to the white elephant, to the idols of Buddha, \&c. By the Burmese the Talapoins are said to be called Rahans, whence seems to come the name Raulins, given to them by the Mohammedans; as by the Chinese they are called Ho-changi; in Tibet, Lama-sent or Lamas ; and in Japan, Bonzes. (Prevost. Histoire Générale des Voyages, vi. 328 ; and Dr. Fr. Buchanan, 'On the Religion and Literature of the Burmas,' in Asiatic Rescarches, rol. vi.) In Ceylon the name for the ordinary priests is stated to be Tirounnanse ; but, as the novices are said to he styled Saman Eroo Ounnanse, and certain inspectors, exercising a general superintendence over the temples, Nailke Ounnanse and Mahanaike Ounnanse, it would seem that the name for priests of all kinds is Ounnanse. (Joinville, 'On the Religion and Manners of the People of Ceylon,' in Asiatic Researches, vol. vii.) Samana, or Somona, according to Dr. Buchanan, is a title given in Burma both to the priests and to the images of Buddha; whence the Buddhists are often called Samanians. It is derived, he says, from the Sanserit word Saman, signifying gentleness or alfability.

Ample information on the subject of the Talapoins is given by La Loubcre, who visited Siam in 1687-8, in quality of enroy from the French king, in his work entitled - Du Royaume de Siam,' 2 vols. 12mo., Amsterdam, 1691 , vol. i., chaps. 17, 18, 10, 21, pp. 341-368 and 381-426; and by Mr. Crawfurd, in lis ؛ Journal of an Embassy from the Governor-General of India to the Courts of Siain and Cochin China' (in 1821-22), sto., London, 1828 , pp. 350, \&e. They are, as has been stated, a species of monks living in communities of from ten to some hundreds, and employing their time in derotion, religious study, and meditation, and in begying, or rather receiving alms, for they are not permitted actually to solicit charity. Their monastcries, in which each monk has his separate cell, are always adjoining to some temple; but it does not appear that the Talajoins officiate as priests or ministers of religion in our scnse of the term. Neither are they considered as forming or belonging to the literary or learned class: the pursuit of any secular study is looked upon as unsecmly and profanc in a Talapoin; and in fact they are mostly very ignorant. Yet the instruction of youth in the elcments of learning appears to be chiefly or cxclusively in their hands. Every Siamese, we are told, becomes a Talapoin for some time. 'Every male in the kingdom,' says Mr. Crawfurd, - must at one period or another of his life enter the priesthood, for however short a time. Even the king will be a pricst for two or threc days, going about for alms like the rest, and the lighest officers of the government continue in the pricsthood for some months.' Usually, it may be supposed, a man goes through the ceremony of getting himself made a talapoin vithout any intention of permanently forsaking the world; but if he enters one of the sacred communities a second time, he cannot again withdraw from it. The Talapoins are said to be very numerous; but they secm to consist for the greater part of mere temporary members of the order, and of persons who have thins entered it for the second time in advanced life. Its advantages, or teniptations, are, a life of idleness, exemption fromvaxation and from the conscription, security of sulssistence and comfortable raiment, together with the ceremonious marks of respect with which a talapoin is everywhere treated. All the monasteries are endowed by the government, or by wealthy individuals, under whose protecfion they are considered to be. La Loubere has given a drawing of one; and another is described in Finlaysmn's account of 'The Mission to Siam and Huć in 1821-22,'
p. 110. In their dresses of yellow cotton or sillk, which are of the same fashion with those of the Buddhist priests in Ava and Ceylon, the Talapoins of Siam present a highly favourable contrast to the rags and squalidity of the general population. On the other hand, a talapoin is not only separated from society by being condemned to celibacy, and is prohibited from possessing property, but is expected to observe very strictly several of the precepts of the national religion which are very little attended to by anybody else, aspecially the prohibitions against the slaying of animals (although they will eat them when slain), stealing, adultery, lying, and drinking wine. There are different orders of Talapoins, and La Loubere says there are also female Talapoins, whom he calls Talapouines; but these, according to Crawfurd, are only a few old women who are allowed to live in the unoccupied cells of some of the monasteries. The national head of the Talapoins, styled the Sou-krat, is appointed to that dignity by the king, and always resides in the royal palace.
TALAVE'RA DE LA REYNA, or LA REAL, a large town of Spain, formerly in the province of Toledo, but now, since the late division of the Spanish territory, the capital of the province of its name. It is situated on the right bank of the Tagus, at the end of an extensive and well cultivated plain, $38^{\circ} 52^{\prime} \mathrm{N}$. lat., $6^{\circ} 39^{\prime} \mathrm{W}$. long. It was called by the Ronans Ebora Talabriga, as the inscriptions and remains found in its territory show. It has a fine Gothic church, the foundation of the celebrated Rodrigo Ximenez, archbishop of Toledo, the author of a history of the Arabs and a Latin chronicle of Spain, about the beginning of the thirteenth century. The town is badly built, and the streets are narrow and crooked. The population does not exceed 12,000 , who are chiefly occupied in the manufacture of pottery and hardware, for which Talavera is tamous all over Spain. A large silk manufactory, which belongs to the government, employs also many of the population. In July, 1809, Talavera was the scene of a battle between the British under Wellington (then Gencral Wellesley) and the French commanded by Jourdan. The battle was long and obstinately contested, but it ended in the complete defeat of the French. The exhausted condition of the English troops, who were without provisions, prevented them from following up their advantage and pursuing the enemy. There is another town, in La Manclia, called Talavera la Vicja, or 'the old.'

TAICC, a mincral which occurs crystallized and massive, and it is probable that some distinct species of minerals have been so called. Primary form of the crystal a rhom boid, but usnally occurs in the secondary form of hexagonal laminæ, and sometimes in long prisms. Cleavage distinct, perpendicular to the axis. It is easily separable into thin plates, which are flexible, but not elastic. Jt is easily scraped with a knife, and the powder is unctuous to the touch. Colour white, green, greyish, and blackish-green and red. Becomes negatively electrical by friction ; lustre pearly. Transparent; translucent; opaque. S_{3} 3ecific gravity $2 \cdot 713$.
C-ystallized tale is mostly white, or of a light green colour ; is met with in serpentue rocks in small quantity, with carbonate of lime, actinoiite, steatite, and massive tale, \&c. It is found in the mountains of Salzburg and the Tyrol : it occurs in many other parts of the world, as in Cornwall, in Kynau's Cove, where a bed of it underlies serpentine. It also occurs in Scotland, in Glen Tilt, Perthshire; and in Saxony, Silesia, and Piedmont, \&c.
The massive varielies of tale are less flexible than the crystallized : they are principally of an apple-green colour. and sometimes of a radiated stricture. It is met with in considerable quantity in beds in micaceous schistus, gneiss, and serpentine.

Some of the varicties of talc are iufusible; others be come white, and yield a small button of enamcl with borax.

Indurated talc is massive, of a greenish grey colour ; the structure is schistose and curved: it is of a shining and sometimes of a pearly lustre, and somewhat translucent. It is soft and rather unctuous to the touch. Its specific gravity is 2.9 .
It oecurs in primitive mountains in clay slate and serpentine, in several countries on the continent of Europe in Britain, in Perthshire and Banffshire in Scotland, and in the Shetland Islands.

According to Viauquelin, lamellar tale consints of

100°
Steatite, chlorite, and other magnesian minerals are nearly allied to mica, and they are by some mineralogists considered os s aricties of the same stibstance.

TALEGALLA. Mr. G. K. Gmy makes the Megapodiine the third and last subfamily of his Palumederde (Palayedea, Linn.).
The Mrgapodiince eomprise the following geners:Tulegalla, Less. (Alecturu, Lath.; Tulegallus, Less.; Numida, Jaınes; Cutheturus, Sw.); Megaporlius, Quoy et Gaim. [Mreatombe; Cracid.e, vol. viii., p: 132] ; Mesites \% J. Geoffr.; Meaura, Shaw (Parkinsourus, Bechst.; Megapodius, Wagl.) [M.svura]; Alechelia, Less. (nee Swains.) [Cracid.z, vol. viii., p. 133].

We proeed in this artiele to notice the genera Tulegalla, Ieipon, and Megapodius, the natural history of which, especially with recmand to their habits and nidification, lias lately been satisfactorily made out.

And first of

Talegalla.

Generic Character.-Bill very robust, very thick, onethird of the lencth of the head compressed above, with the upper mandible convex ; nostrils hasal, lateral, ovaloblong. piereed in a large membrane; lower mandible less high but wider than the upper, nearly straight below, with smooth edges, the branches widened at the hase, and that width filled up by a feathered menbrane; checks entirely naked; head and neck furnished with feathers with simple barbules. Wings rounded, moderate, the first quill very short, the second rather longer, the third longest of all, the fourth and fith diminishing in length after the thind. Tail rathe: long. rounded; tarsi rather robust, moderately long, furnished with large seutella in front; toes rather long, the middle longest, the external shortest ; the three front toes furnished at their origin with a membranous border, which is widest between the external and middle toes; claws convex, flattened below, slighty curved and noderately robust ; the hind-toe long, resting entirely on the ground, and furnished with an equally robust claw. (l.esson.)

Htead and fool of Tategalla. (Bould.)
Example. Tulegallu Jathami.
Latham, in his Genpral Jlisfory of Birds (vol. i.), deseribed and figured this hird under the name of the Neae Hollund V'ulture; but, correcting lis error, he, in the tenth rolume, plaeed it among the Gallinacrous Birds, with the generie name of Alecfura, which liad been previonsly employed to designate a group of Flyeateliers.
M. Lesson places the genus at the end of the Phasiunidre.

Mr. Swainem, in his Classification of Birls (vol. i., 1836), reating of the fiulturdle, notices this speecies, under the name of the New IIolland Vulture, πs being so like a rasorial bird, that some authors have hesstated (not having seen a specimen) as 10 what order it rently belonged. 'So completely indeed,' may" he, " lins nature disguised this rare and extraodinary vulture in the semblance of that type which it is 10 rejpresent in its own family, that it has even been classed by one writer with the B/enura of the same Continent ; and it must be confessed that if elear coneeptions of the difference between analogy and
affinity are not entertained, such a classification has some plausible reasons to reeommend it. In licel, the fect of ithe two birds are formed nearly on the same principle; but, then, so are those of Oritionyr, in hille mequsorial bird not muelh higger than a robin. All three genera, in short, are remarkable for their large dispropertionahle feet, long and slighty curved claws, and the equality of length, or nearly so, of the outer nal the iniddle toe. It is by instances such as these that we percecive the full extent of those unuatural combinations which result from founding our notions of elnssification from one set of chameters, and forgetting to look at the full consequences of earrying those notions into extended operation. Nor is this the only peenliarity of the New Iolland Vulture ; for, unlike all others of its family, it jossenses eighteen feathers in its anil. 'An examination of the bill.' Mr. Swainson gives a cut of it, 'which is decidedly raptorial, joined with many other considcrations, shows that all these are hut anulogical relations to the Rasores, while the real affinities of the lind are in the eircle of the I'ulturide, of which it forms the rasorial type. A perfect specimen of this very rare vulture, now before us (procmred by Mr. Allan C'unningham in the forests adjoining Van Diemen's Land), enables us to speak of its struelure from personal examination.' In the synopsis to Mr. Swainson's second volume (183), we find it in the fanity Fiulturide, under the name of Catheturus (which eannot be retained), between Neaphrous and Gypaetus, recorded as the rasorial type of the riulturide. And yet it is no bind of prey at all. Latham, in his tenth volume, and Lesson, were right in considering it a rasorial species.

Mr. Gould, to whom we are indebted for a full and satisfactory account of the habits of this extraordinary bird, to which we shall presently advent, modestly says:-- Afer all the facts that have been stated, I trust it will be evident that its natural situation is amoug the Rusores, and that it forms one of a great family of hirds peeuliar to Anstralia and the Indian 1slands, of which Megapmetive forms a part ; and in confirmation of this view I may add, that the sternum has the two deep emarginations so truly characteristie of the Gallinacec; at all events it is in no way allied to the r'ulturide, and is nearly as far removed from Memura.' It seems to us that Tulegalla Lathami may be considered, in a degree, as the representative of the turkey in Australia.

Description.-Adult male: whole of the upper surface, wings, and tail, blackish-brown; the feathers of the under surface blackish-lrown at the base, beconing silvery-grey at the tip; skin of the head and neek deep pink-red, thinly sprinkled with short hair-like blachich-lorown feathers; wattle bright yellow, tinged with red where it unites with the red of the neek; liill black; irides and feet brown.
Female nbout a fourth less than the inale in size, but so closely the sane in colour as to render a separate description unneecssary. She also possesses the wattle, but not to so great an extent. (Gould.)
Size about that of a turkey.
Mr. Gould gives the following synonyms:-Nen Ilolland Fulture, Lath.; genns -llecturu, ibid.; Alechurn Lalhami, J. E. Gray; Neue Ifolland F:ulture, Cutheturus Australis, Sw.; Meleagris Lindesurgii, Jameson; Brush Turkey of the colonists; W'Celah of the aborigines of the Nemoi.
Habits, Nidification, fer. - Mr. Gould deseribes Telcgalla Lathumi, or the IVatted Tulegalla, as a gregarious birl. gencrally inoving about in small companies, much after The manner of the Giallimaeera, and, like sume speeies of that tribe, as very shy and distrustful. When it is disturbed, he stales that it readily eludes pursuit by the facility with which it runs through the tangled hrish. If hard pressed, or where runhed upoo by their great enemy, the native dog, the whole counpany sjring upon the lowerinost bough of some neighbouring free, and, by a suecession of leaps from branch to branch, ascend to the top, and either perch there or fly off 10 another part of the bmash. They resort also to the branches of trees as a shelter from the sun in the middle of the day, a liabit which, Mr. Gould notiees as greaty tending to their destruction; for the sportsman is enabled to take a sure aim, and the birds, like the ruffed grouse of America, with allow a succession of shots to be fired till they are all brought down.
l3ut the mont remarkable cireumbance eonnected with the economy of this bird is its nidification, for it does not
hatch its eggs by ineubation. It colleets together a great heap of decaying vegetables as the place of deposit of its eggs, thus making a hot-bed, arising from the decomposition of the collected matter, by the heat of which the young are hatched. Mr. Gould describes this heap as the result of several weeks' collection by the birds previous to the period of laying, as varying in quantity from two to four cart-loads, and as of a perfectly pyramidical form. This mound, he states, is not the work of a single pair of birds, but is the result of the united labour of many: the same site appeared to Mr. Gould to be resorted to for sevcral years in succession, from the great size and entire decomposition of the lower part, the birds adding a fresh supply of materials on cach occasion previous to laying.
'The mode,' says Mr. Gould in continuation, ' in which the materials composing these mounds are aceumulated is equally singular, the bird never using its bill, but always grasping a quantity in its foot, throwing it baekwards to one common centre, and thus elearing the surface of the ground for a considerable distance so completely, that scarcely a leaf or a blade of grass is left. The heap being accumulated, and time allowed for a sufficient heat to be engendered, the eggs are deposited, not side by side, as is ordinarily the ensc, but planted at the distance of rine or twelve inches from each other, and buried at nearly an arm's depth, perfectly upright, with the large end upwards: they are covered up as they are laid, and allowed to remain until hatehed. I have been eredibly informed, both by natives and settlers living near their haunts, that it is not an unusual event to obtain nearly a bushel of eggs at one time trom a single heap; and as they are delicious ealing, they are cagerly sought aftcr. Some of the natives state that the females are constantly in the neighbourhood of the heap about the time the young are likely to be hatched, and frequently uncover and cover them up again, apparently for the purpose of assisting those that nay have appeared ; while others have informed me that the egas are merely deposited, and thic young allowed to force their way unassisted. In all prohability, as nature has adopted this mode of reproduction, she has also furnished the tender birds with the power of sustaining themselves from the earliest period; and the great size of the ege would equally lcad to this conclusion, since in so large a space it is reasonable to suppose that the bird would be much more developed than is usually found in eggs of smaller dimensions. In firther eonfirmation of this point, I may add, that in searching for eggs in one of the monnds, I discovered the remains of a young bird, apparently just excluded from the shell, and which was clothed with feathers, not with down, as is usually the case: it is to be hopred that those who are resident in Australia, in situations favourable for investigating the subject, will direct their attention to the further clucidation of these interesting peints. The upright position of the eggs tends to strengithen the opinion that they are never disturbed after bein'r deposited, as it is well known that the eggs of birds which sue placed horizontally are frequently turned during incubation. Although, unfortunately, I was almost too late for the breeding-scason, I nevertheless saw several of the heaps, both in the interior and at lllawarra: in every instance they were placed in the most retired and shady glens, and on the slope of a hill, the part above the nest being serat ched clean, whilc all below remained untouehed, as if the birds lad found it more casy to convey the materials down than to throw them up. In one instance only was I fortunatc enough to find a perfect ega, although the shells of many from which the young had been excluded were placed in the manner I have described. At Illawarra they were rather deposited in the light vegetable nuould than among the lcaves, which formed a considerable heap above them. The eggs are perfeetly white, of a long, oval form, three inches and three-quarters long by two inches and a halfin diameter.' (Birds of Australia.)

The same author relates that these birds, while stalking abont the wood, frequently utter a loud clncking noise; and, in various parts of the bush, he observed repressions in the earth, which the natives informed him were made by the birds in dusting themselves. The stomach is stated by Mr. Could to be extremely muscular; and he found the crop of one which he disseeted filled with seeds, berries, and a few insects.

The composure with which these birds sit to be shot at, as above noticed, must, as Mr. Gould observes, lead to an
early extinetion of the race ; an event, he remarks, mueh to be regretted, since, independently of its being an interesting bird for the aviary, its flesh is extremely delicate, tender, and juicy. There is no doubt that this species may be domesticated, and it would make a noble addition to those foreign denizens of the poultry-yard which enrich our homesteads and tables. Mr. Gould saw a living specimen, which was in the possession of Mr. Alexander M‘Leay for many years. 'On my arrival at Sydney,' says Mr. Gould, 'this venerable gentleman took me into his garden and slowed me the bird, which, as if in its native woods, had for two successive years collected an immense mass of materials similar to those above described. The borders, lawn, and shrubbery over which it was allowed to range presented an appearance as if regularly swept, from the bird having scratched to one common centre everything that lay upon the surface : the mound in this case was about three feet and a half high, and ten feet over. Ont plaeing my arm in it, I found the heat to be about 90° or 95° Fahr. The bird itself was strutting about with a proud and majestic air, sometimes parading round the heap, at others perching on the top, and displaying its brilliantly coloured neck and wattle to the greatest adrantage: this wattle it has the power of expanding and contracting at will; at one moment it is searcely visible, while at another it is extremely prominent.'

Before Mr. Gould left New South Wales, this bird, which, during the greater part of the period when it was in Mr. M'Leay's possession, was at large, and usually associated with the fowls in the poultry-yard, was unfortunately drowned in a tank or water-butt. On dissection it was found to be a male, thereby proving, as Mr. Gould remarks, that the sexes are equally employed in forming the mound for the reception of the eggs.

Locality.-Mr. Gould states that the extent of the range of this species over Australia is not yet satisfuctorily ascertained. It is known, he says, to inhabit various parts of New South Wales from Cape Howe on the south to Moreton Bay on the north; but the ecdar-cutters and others, who so frequently hunt through the brushes of Illa warra and Maitland, have nearly extirpated it from those localities, and it is now most plentiful in the dense and little-trodden brushes of the Manning and Clarence. Mr. Gould was at first led to believe that the country between the mountain-ranges and the coast constituted its sole habitat; but he was ayreeably surprised to find it inhabiting the scrubby gullies and sides of the lower hills that branch off from the great range into the interior. He procured specimens on the Brezi range to the north of Liverpool Plains, and ascertained that it was abundant in all the hills on either side of the Namoi. (Ibid.)

Talegalla Lathami. (Gould.)

M. Lesson describes the species from New Guinea, which serves as the type of his genus Tulegalla Cuvieri, figured in the Zoologic de la Coquille, as entircly black, of the size of a common small hen, and recalling to the observer some of the forms of the Porphyriones. [Rallids, vol. xix., p. 281.]

The history of Tulegalla affords a striking instance of the futility oi classification based upon reasoning which has no suffieient data for its foundation: most of the errors
of our zootogical systens may be traced to the same mollroe.

L.eipor. (Gould.)

Gemeric Charncler.-Bili nearly as long as the head. slender, tumescent at the base, tho edges undulated and ineurved at the base, the nostrils anple, oblong, corered with an operculum, and placed in a central hollow. Head

Ilead and Foot of Iecipon.

suberested. Wings ample, rounded, concave; fifth primary quill the longest ; the tertiaries nearly as long as the priniaries. Tuif rounded, tail-feathers fourteen. Tursi moderate, robust, covered with senta anteriorly, and posteriorly with scales which are romeded and uneinal. Toes rather short ; laternl toes nearly equal. (Could.)

Example, Leipna ocelluta, Ocelluted Leivoa. (Gould.)
Descriftion.-Head and crest blackish-brown; neck and shoulders dark ash-grey; the fore part of the neek from the chin to the breast marked by a serles of lanecolate feathers, which are black with a white stripe down the ecentre; back and wings eonspieuonsly marked with three distinet bands of greyish white, brown and black near the tip of each feather, the marks assuming an ocellated form, partieularly on the tips of the secondaries; primaries brown, their outer webs market with two or three zigzag lines near their tip; all the under surface licht tuff. the tips of the flank feathers barred with hlack; tail blackish-brown, broadly tipped with buff; bill black; feet blaekish-brown. (Gould.)
In size this beautiful bird is inferior to Talegalla IAthami, and it is more slender and more elegantly formed. According to Mr. Gould, it is the Ngote of the aborigines of the lowland; Ngorc-no of the mountain districts of Western Australin; and Native Pheasant of the colonists of Western Anstralia.

Habits, Food, Nidification, \&fe.-Mr. Gould, in his BIrds of Austrutia, gives an account, collected by Mr. John Gilhert, from G. Moorc, Es q., advocate-gen eral, Mr. Armstrone, the aboriginal interpreter, and some of the more intelliyent natives of Western Australia. The Ocellated Ioijna is there deseribed as a ground-bird, never taking to a 1 ree except when closely hunted: when hard pursued, it will frequently run its head into a bush, and is then easily 1aken. Food generally consisting of sceds and berries. The note mournful, very like that of a pigeon, but with a more inward tone. Eggs deposited in a monnd of sand, the formation of which is the work of both sexes. Aceording to the natives, the birds seratch up the sand for many yards aroumd, forming a mound about three fect in heighi, the inside of which is constructed of alternate layers of dried leaves, grasses, \&e., amony which twelve eggs and upwards are deposited, and are covered up ly the birds as they are laid; or, as the natives express it, 'the countenanees of the eggs are never visible.' Upon these eggs the hird never sits, but when she has laid out her lay, as the henwives say, the whole are covered up, when the mound of sand resembles nun ant's nest. The egis, which are white, very slightly tinged with red, and about the size of a common forl's ege, are hatehed by the heat of the sun's rays, the vegetahle lining retaining sufficient warmilh during the night; they are deposited in layers, no two eages being suffered to lie without a division. The natives, who are very fond of the cges, rob these hillocks two or three times in a season; and they judre of the number of eges in a nound ly the quantity of feathers lying ahout. If the fenthers be abundant, the hillock is full : and then they imunctiately open and take the whole. The blal will then begin to lay again, naain to be robbed, and will frequently lay a third time. Ijpon questioning one of the inen attached to Mr. Moore's experlition, he gave to Mr. Gibbert a similar account of its habits and mode of incubating; ndding, that in all the monnds they opened, they found ants ahrost as numerous as in an ant-
hill ; and that in many instances that part of the mounc. surrounding the lower portion of the eggs had become so hard, that they were obliged to chip round them with a chisel to get the eggs out ; the insides of the mounds were alway hot.

Captain Grey, of the 83ril regiment, who had just returned from his expedition to the north-west const, informed Mr. Gould that he had never fallen in with the nests but in one description of eountry, viz, where the soil was dry and sandy and so thickly wooded wilh a species of dwarf Ifptospermum. that if the traveller strays from the mative pathe, it is almost impossible for him to force his way through. In these elose serubby woods sinall open glades oecasionally oecur, and there the Ngow-oo constructs its nest,-a large heap of sand, dead grass and bourhs, at lenst nine fect in diameter aud three feet in height; Captain Grey had seen them even larger than this. Upon one wecension only he saw eggs in these nests: they were plaeed some dislance from each other, and buried in the carth. Captain Grey states that he is not sure of the mmber, but the acemunt given by the natives led him to believe that at times large numbers were found.
Locality. - Westeri Australia. Mr. Monre saw a great many of them about sixty miles north of l'erth; but its most favourte country appears to be the barren sandy plains of the interior, 100 miles north and east of lork. The fartlest point nurth at which Captain Grey saw the breedink-places was Gameheaume Bay: Captain Grey states that the natives of King George's Sound say that the same or a nearly allied species exists in that neighbourhood. (Birts of Austratia.)

Lelpoa Oceilata. (Gould.)
 Megapodius.

In the article Cracide (vol. viii., pr. 132) the generic eharacter of Megapootins and an aecount of Megapodius Duperreyi is given. It is there stated that it would seem that the Meganodius of the Philippines leaves its egys to the fostering heat of the sum. Mr. Gould, in the great work from which we have alrendy drawn such interesting accounts of this extraorlinary groun of hirds, has, from the notes of Mr. Gilbert, laid before the publie n most satisfactory statement relative to the habits of Mfegapodius Tumulus.

Head and fool of Megrpolliun. (Gould.)

Deseription.-Head and erest very deep einnamonbrown; back of the neck and all the under surface very dark grey; back and wings cinnamon-brown; inper and under tail-coverls dark chestunt-brown ; Inil hlackishbrown; irides gencrally dark brown, but in some speeimens light reddish-brown; bill reddish-brown, with yellow
edges ; tarsi and feet bright orange, the scales on the front of the tarsi from the fourth downwards, and the seales of the toes, dark reddish-brown. (Gould.)
Size about that of a common fowl.
This is the Ooregoorga of the aborigines of the Cobourg Peninsula ; the Jungle-forl of the colonists of Port Essington.
Habits, Food, Nidification, \&̧c.-On Mr. Gilbert's arrival at Port Essington his attention was attracted to numerous great mounds of earth which were pointed out to him by some of the residents as being the tumuli of the ahorigines. The natives, on the other hand, assured him that they were formed by the Jungle-fowl for the purpose of hatehing its eggs. But this last statement appeared so extraordinary, and so mueh at varianee with the general habits of birls, that no one in the settlement believed them, and the great size of the eggs brought in by them as the produce of this bird strengtlened the doubt of the yeracity of their information. Mr. Gilbert however, knowing the habits of Leipoa, took with him an intelligent native, and uroceeded about the middle of November to Knocker's Bay, a part of Port Essington harbour eomparatively but liftle known, and where he had been informed a nuinber of these birds were to be seen. He landed beside a tlucket, and had not advaneed far from the shore when he came to a mound of sand and shells, with a slight mixture of black soil, the base resting on a sandy beach, only a few feet above high-water mark : it was enveloped in the large yellow-blossomed Hibiscus, was of a coniteal form, twenty feet in cireumference at the base, and about fise feet high. On asking the native what it was, he replied, 'Oreqoorga Rambal' (Jungle-fowl's house or nest). Mr. Gilbert scrambled up the sides of it, and found a young bird in a hole about two feet deep; the nestling, apparently only a few days old, was lying on a few dry withered leaves. The native assured Mr. Gilbert that it would be of no use to look for eggs, as there were no traces of the old birds having lately been there. Mr. Gilbert took the utmost care of the young bird, placed it in a moo-derate-sized box, into which he introduced a large portion of sand, and fed it on bruised Indian corm, which it took rather freely. Its disposition was wild and intractable, and it cffected its estape on the third day. While it remained in captivity, it was incessantly employed in scratching up the santl into heaps, and Mr. Gilbert remarks that the rapidity with which it threw the sancl from one end of the box to the other was quite surrprising for so young and small a lird, its size not being larger than that of a small quail. At night it was so restless that Mr. Gilbert was constantly kept awake by the noise it made in endeavouring to escape. In scratelhing up the sand the bird only employed one foot, and having grasped a handful as it were, threw the sand behind it with but little apparent exertion, and without shifting its standing position on the other leg: this habit, Mr. Gilbert observes, seemed to be the result of an innate restless disposition and a desire to use its powerful feet, and to have but little connection with its feeding; for, although Indian corn was mixed with the sand, Mr. Gilbert never detected the bird in picking any of it up while thus employed.
Mr. Gilbert continued to receive the eggs without any opportunity of seeing them taken from the ground until the beginuing of February, when, on again visiting Knocker's Bay, he saw two taken from a depth of six feet, in one of the largest mounds he had met with. In this instance the holes ran down in an oblique direction from the centre towards the outer slope of the hilloek, so that although the cgs ${ }^{3}$ were six feet deep from the sumnit, they were only two or three feet from the side. 'The birds,' says Mr. Gilbert in continuation, 'are said to lay but a single egg in each hole, and after the egg is deposited the earth is immediately thrown down lightly until the hole is filled up; the upper part of the mound is then smoothed and rounded over. It is easily known when a Jungle-fowl has been reeently exeavating, from the distinet impressions of its feet on the top and sides of the mound, and the earth being so lightitly thrown over, that with a slender stick the direction of the hole is readily detected, the ease or difficulty of thrusting the stick down indicating the length of time that may have elapsed since the bird's operations. Thus far it is easy enough; hut to reach the eggs reruiress
them up with their hands alone, and only make sufficient room to admit their bodies, and to throw out the earth between their legs; by grubbing with their fingers alone they are enabled to follow the direetion of the hole with greater certainty, which will sometimes, at a depth of several feet, turn off abruptly at right angles, its direct eourse being obstrueted by a clump of wood or some other impediment. Their patienee is however often put to severe trials. In the present instance the native dug down six times in succession to a depth of at least six or seven feet without finding an egg, and at the last attempt came up in sueh a state of exhaustion that he refused to try again; but my interest was now too inuch excited to relinquish the opportunity of verifying the native's statements, and by the offer of an additional reward I induced lim to try again : this seventh trial proved suecessful, and my gratification was complete when the native with equal pride and satisfaction held up an egg, and, after two or three more attempts, produced a seeond: thus proving how cautious Europeans slould be of disregarding the narrations of these poor ehildren of nature, beeause they laappen to sound extraordinary or different from anything with which they were previously aequainted.'
Upon another oceasion Mr. Gilbert and lisis native, after an hour's excessive labour, obtaincd an egg from the depth of about five feet. It was in a perpendieular position. The holes in this mound (whieh was fifteen feet ligh and sixty in cireumference at the base, and, like the majority of those that he had seen, so enveloped in thickly foliaged trees as to preelude the possibility of the sun's rays reaching any part of it) commeneed at the outer edge of the summit and ran down obliquely towards the centre: their direetion therefore, Mr. Gilbert obscrves, is not uniform. The mound was quite warm to the hands.
How the young effect their escape does not appear some natives told Mr. Gilbert that the nestlings effeeted their eseape unaided ; but others said that the old birds at the proper time scratched down and released them. The natives sny that only a single pair of birds are ever found at a mound at a time. Our space will not permit a more detailed account of these higlily curious mounds; but the reader should consult Mr. Gould's highly valuable work for other partieulars: we can only spare room for Mr. Gilbert's description of the general habits of this interesting species.

The Jungle-fowl is almost exclusively confined to the dense thickets immediately adjacent to the sea-beach: it appears never to go far infand, except along the banks of creeks. It is always net with in pars or quite solitary, and feeds on the ground, its food consisting of roots which its powerful claws enable it to seratch up with the utmost facility, and also of seeds, berrics, and insects, particularly the larger species of Coleoptera. It is at all times a very difficult bird to procure; for although the rustling noise produced by its stiff pinions when flying away be frequently heard, the bird itself is seldom to be seen. Its flight is heary and unsustained in the extreme ; when first disturbed it invariably flies to a tree, and on alighting streteles out its head and neeck in a straight line with its body, remaining in this position as stationary and motionless as the branch upon whiel it is perched: if however it becomes fairly alarmed, it takes a horizontal but laborious flight for about a hundred yards with its legs hanging down as if broken. I did not myself detect any note or cry, but from the native's description and imitation of it, it much resembles the clucking of the domestic fowl, ending with a scream like that of the peacock. I observed that the birds continued to lay from the latter part of August to March, when I left that part of the country; and, according to the testimony of the natives, there is only an interval of about four or five months, the driest and hottest part of the year, between their seasons of incubation. The composition of the mound appears to influence the colouring of a thin epidermis with which the eggs are covered, and which readily chips off, showing the true shell to be white : those deposited in the black soil are always of a dark reddish-brown ; while those from the sandy hillocks near the beach are of a dirty yellowish white : they differ a good deal in size, but in form they all assimilate, both ends being equal: they are three inches and five lines long by two inches and three lines broad.' (Bircls of Australia.)
Mr. Gould has thus given the history of these three
nearly allicil cenera, forming, as he observes, part of a great famly of birls whowe hume will be found to extend from the Plulippines through the islands of the ludinn Archipelago to Australia. Megapodus Tumulus is, according to lim, rather mmeronsly spread over the whole of the Coboury Peninsula out the north const of the Australinn continent, where the British settlement of Port Essington is now established; and he thinks that future researeh will require $u s$ to assign to it a muels wider range, probably over the whole extent of the north const.

Megaradius Tumulus, Mound-raising Megapole, with neat in the distance. (Prom Gould.)
TALENTT (rálayrov) was the highest denomination of Greek weights and money, and was also commonly used by Greck writers as the translation of words signifying a eertain weight in other languages. It is necessary to observe that the talent is properly only a denomination of uceight. There was no coin of that name; and when used in reference to money, it meant originally a talent-weight of gold or silver, and afterwards a certain quantity of current money, the weight of which (supposing the real and nominal value of the eoin to be the same) amounted to a talent.

3000 shekels, and, according to Mr. Hussey's computation, its weight was 93 lbs . 120 ss avoirdupois, and its value as sileer-money $3061.5 s$. 1thd. [Snekel.] The Hebrews had no gold money of their own.
11. The Greek T'alrext.

The following were the prneipal denominations of weight and money among the Greeks:-ißodós, ipaypi, $\mu \nu \bar{a}$, rádavrov, of which the $\delta \beta 0 \lambda$ ós was the smallest. Their relative proportions are shown in the annexed lable:-

| Obol
 6 Drachma
 600 100
 36,1000 0000 | Mina |
| :---: | :---: | :---: |
| 60 | |

Talent.
This system prevailed throughout Grecec, hut the actual values of the talent raried in diflerent states. Most of these variations may be included under two chief standards, namely, the Attic and the Aeginctan.

1. The Atfic Talent.-The value of the Attie talent before the time of Solon is a matter oll which se possess hardly any historical information, though we may perhaps arrive at a very probable result. Looking then at the system after Solon had remodelled the coinage [Solos:], we find that the Altie silver money was celebrated for its purity; and therefore from the coins of that period which still exist we may determine the value of the standard with tolerable certainty. Now the clief coin was the drachma of silver, the average weight of which, from the time of Solon to that of Alexander the Great, is found to be 665 grains. From this we get the following values in avoirdupois weight:-

This was the standard always used for silver muncy, and was therefore ealled ' the silser standard.'

Besides this there was another standard, the chief weight
 and contuined 138 drachmae, " according to the standard weights in the silver mint ' (see a decrec in Bückh, Corp). Inscrip., i. 123. §4); that is, not that a commercial mina contained 138 commercial drachmae, lnt that this was !uite a different standard from that used for silver money, its unit leing to that of the latter in the ratio of lisis : 100; while the relative proportions of the weights were the same in both systems. The following table slows the value of the Attie commercial standard:-

$$
\begin{aligned}
& \text { Obol } \\
& \text { Drachma } \\
& \text { Mina } \\
& \text { Mina }
\end{aligned}
$$

These weights were used for all eommodities, exeept such as were expressly required by law to be sold by the silver stanclard.
This commercial standard is most probably, as $13 i e \mathrm{ck}$ h has shown, the real antient Altic standard, as it existed before the time of Solon. The purpose of Solon's change was to lower the value of money, in order to relieve debtors. The only direet information we have of the nature of the change is the statement of Plutareli, that - Solon made the minn of 100 drachmae, which had formerly contained 73,' which is probably a mistake made by Plutareh, through not understanding the words of Androtion, whose authority he follows. The true meaniner seems undoubtedly to be, that out of the same quantity of silver which in the antient standard made 73 drachuase, Solon coined 100, or a mina; that is, that he lowered the standard in the ratio of $100: 73$. Now the ratio of the commereial to the silver standard is $138: 100=100: 723$. llence the commercial standard and the old Altie only differed by a sinall fraction.

Still this ratio of $100: 73$ is a very singular one for Solon to have adopted. The most probible explanation is that Solon meant to lower the standard by a quarter, that is, in the ratio of $100: 75$, and that the new coinage (1 y an accident of not uncommon occurrence in minting) was found, when aetually made, to be a little too light, mamely: in the ratio of $72{ }^{2}$: 100 , or, in round numbers, $73: 100$ to the old money, insteal of $75: 100$; and that then, to preserve the purity of the Altic mint, this, its actual value, was adopted as its nominal value.
This siew is strongly confirmed ly a reference to another standard nentioned by Greck writers, namely, the linboic falent. This talent was otien reckoned as equal to the Altie (compare Ilerod., iii. 85), with Pollux, ix. (6); but it is also described with greater precision by Aclian (Vor. Hist., i. 22), as having to the Attic the ratio of 72: 70, which is the same as $70: 72 \mathrm{f}_{2}$. Now if we sulppose that the intended value of Solons talent had to its real value the ratio of 75: 72 器, we have this intended value equal (negleeting a very small fraction) to the Eubnie talent. Hence it is inferred that Solon, proposing to lower the Attic standard, and pereciving the adsautage of assimilating it to that of the neighbouring ishand of Euboea, intended to adopt the latter for his new slandard, but that in fact a slight difference was caused hy aceident.
The Romans reckoned both the Attic and Euhoie talents as equal to so Roman prounds (compare Polyb. xxi. 14 , with xxii . $2(\mathrm{f}$, and Jiv, xxxvii. 45 , with xxx viii . 3 s).
The Attic commercial standard underwent an alteration by the ediet above referred to, which made

$$
\begin{aligned}
\text { its mina } & =150 \text { drachma (silver) } \\
\text { its I) mine } & =6 \text { mina (commercial) } \\
\text { its talent } & =6 \text { mina (commercial) }
\end{aligned}
$$

In this new standard the five-ninae weight was equal to
 $-70.7 \mathrm{grs}$.

The Athenians took the greatest eare of their standards of weight. The priucipal set were lodged in the Aeropolis, and there were other sets in the Prytaneum, at Pirume, and at Elcusis.
The highest coin used ly the Athenians was the tetradrachm, or piece of four ilrachmae; the mina and talent were never coined, hat were paid in drachmae, oboli, \&e. The fellowing table shows the value of all the denomina tions of Atlic silver money, aecording to the computation of Mr. Ilussey :-

be present, or ean be found to serve on such jury, and shall add and annex their names to the former panel, provided that where a special jury shall have been struck for the trial of any issue, the talesman shall be such as shall be empannelled upon the common jury panel to serve at the same court, if a sufficient number of such men can be found; and the king, by any one so authorised or assigned as aforesaid, and all and every the parties aforesaid, shall snd may, in each of the cases aforesaid, have their respective challenges to the jurors so added and annexed, and the court shall proceed to the trial of every such issue with those jurors who were before empannelled, together with the talesmen so newly added and annexed, as if all the said jurors had been returned upon the writ of preeept awarded to try the issue.' (2 Williams's Saunders, 31911. (1).) [Jury.]

TALIACO'TIUS, GASPAR, TAGLIACOZIO, or TAGLIACOZZI, was professor of anatomy and surgery at Bologna, where he died in 1553, at the age of 64 years. His name is now known chiefly through his reputation for restoring lost noses; but during his life he was cqually eelebrated for his knowledge of anatomy and his excellence as a lecturer. These last are indeed the only qualities for which he is praised in a tablet put up after his death in one of the halls of the school at Bologna. A statue erected in the amphitheatre formerly recorded his skill in operating by representing him with a nose in his hand.

Some writers have spoken of the original Taliacotian operation as a mere fable, pretending that it never could have been followed by success. But several credible witnesses have recorded that they cither saw. Taliacotius operating, or saw patients to whom he had restored noses, which very closcly resembled those of natural formation. The truth is that the operation which Taliacotius really performed is not cominonly known; the generally-enterlained notion of it being derived from the accounts of those who had some reason to misrepresent it. It will therefore be worth while to give a somewhat detailed aecount of it.
The work in which it is described was first published forty-four years after Taliaeotius' death, with the title 'Dc curtorum chirurgia per insitionem libri duo, Venctiis, 1597 , folio.' It is divided into two parts, of which the first is chiefly devoted to a disquisition upon the dignity of the nose, lips, and ears, and upon their offices and gencral construction, and the theory of the operation, which he considers to be exactly analogous to that of grafting upon trees. In the seeond book lie describes the mode of operating, dwelliug first at great length upon the necessary number and character of the assistants, the kind of bed to be used, its position with regard to light, \&c., and several other minor matters, on all which he speaks like one thoroughly experienced in surgery. In the operation itse!f he used the following plan:-A part of the skin of the upper arm of the proper size, and bounded by two longitudinal parallel lines, being marked out over the middle of its fore part, was seized between the blades of a very broad pair of nippers. Each blade was about three inches broad, so that it might include the whole length of the portion of skin to be removed, and had a long slit near its edge through which a narrow knife could be passed. The portion of skin of which the new nose was to be formed being raised up by the assistant who held it in the nippers, Taliacotius with a long spear-shaped knife transfixed it through the slits in the blades of the nippers, and cut it through the whole length of the latter from above downwards. Through the aperture thus made, which might be compared to a very broad incision for a seton, a band covered with appropriate medicines was passed, and by bcing drawn a little every day, the wound was kept open like a seton wound. When all the inflamination had passed away, which was usually in about fourteen days, the flap of skin was eut through at its upper end, and thus a piece bounded by three sides of a parallelogram was raised from the arm, and remained attached to it by nothing but its fourth side or lower end. In this state it was allowed to cicatrize all over, till it acquired the character of a loose process of skin. This being, after some days, completed, and the piece of slin having become firm and hard, it was deemed ready for engrafting. The hearl therefore being cleanly shaved, a dress and bandage of singular construction, intended for the maintenance of the arm in its due position, were carefully fitted on. Then

These being lat aside, the seat of the old nose was scarified in a triamgular apace inll it had a smooth bleeding surfaee. A pratern of this surface, being taken on paper, was transferred to the inner surtace of the piece of skin on the ann, and a portion of the latter, of the same form and size, was in the same manner made ravs. Sutures were placed in corresponding parts of the edges of both these wounds, and they were brought together, the arm being held up with its fore part towands the face, nond the palm of the hand upon the head, by the dress and bandage alrendy mentionad. The paits were thus retained in ajposition for about twenty dnys, at the end of which, the surfaces having united, the bandages were trken oll; and the portion of skin which was now affixed to both the fnce and the arm was cut a way from the latter. It almost directly beeame white and cold, but it dicl not slough, and gradually increased in rascularity and heat. In about fourteen dnys it was usunlly firm and secure in its place; and as soon as this was crident, the skin was shaped into the resemblance of a nose by cutting it uecording to enrefullymensured linus and lyy torming the nostrils in it. A tedious succession of operations were performed upon it before the repair was deemed complete; but at length it is said that ingenemal the restoration was truly admimble. Taliacotius himself however admits that it had, even in the best eases, several detects.
Atter this aceount, no one can reasomably doubt that Taliacotius's operation was very oftensurecessful. That it should be supeneded by the Indinn method, as it is ealled, in which the skin for the new nose is taken from the forehead, is due to the latter being a less tedious and less painfinl operation, rather than to its being more certain of success. The number of instances in whieh later nttempts to imitate the Taliacotian operation have failed, are due to its having been performed not according to the original method, but according to some of the plans whieh Taliacotius is erroneously supposed to have followed.
The indecent joke which Butler has made popular in lis 'Hudibras' has little foundation. Taliacotius dues indeed discuss the propriety of taking the skin for a new nose from the arm of another person; and he concludes that fur several reasons it would, if it were possible, be better to do so: but he says he eannot imacine how it would be possible to keep tivo persons fastened together for the necessary time and with the neeessary tranquillity, and that he never hearl of the plan being attempted. The tale of the nose falling of when the original proprictor of the skin died, is founded on an absurd story which Van Helmont relates to prove at how great a distance sympatlyy can act. A gentleman at Brissels, he says, liad a new nose made for him by Taliacotius from the arm of a Bolognese porter; nud about thirteen months afterwards, as he was walking in Brussels, it suddenly beenme cold and dropped olf, at the fery instant at which the porter died at Bologna. Simalar stories are told by Campanelln, Sir Kenelm Dighy, and otbers; but, as already shown, they are not even fair satires, for Taliacotins never attempted to transfer the skin of one man to the body of another.
(Brambilla, Sloria delle Seoperte fulle dugli Vomini Ilustri Italiani, vol, ii.; Sprengel, Cieschichte der Chirurgie, Zwciter Theil,]. 105.)

TALIESSIN. [Welsh Lasguges.]

TALIO'NIS, IEX, the law of retaliation ; the notion of which is that of a punishment which shall be the same in kind and degree as the injury. This punishment was a part of the Mosaic Law: 'breaeli for brench, eje for eye, tooth for tooth: as he hath caused a blemish in a man, so shnll it be done to him again' (Lecit., xxiv, 30). The nnme 'talio' occurs in the provisions of the Twelve Tables: it is not there defined what it means, but the signification of the ternu mny be collected from other plaees. The word contains the same clement as the word talis, 'sueh,' or -hike.'
TALIPAT or TALIPOT PALAM. [CokTpia.]

TAlish. [Georgia.]

TALIS,MA'N an Arabic word, suppored to be derived from the Greck tclesma (riגeras), is a figure cast in metal or cut in stone, and made with certain superstitious ceremonies, when two planels are in conjunetion, or when a sertain star is at its culminating moint. A talisnan thus prepared is supposed to exercise an infuenee over the beaser, preserving him from disease, rendering him invul-
nerable in battle, and no forth. They were pmolably used onyinally to avert discease, for we tind them mentioned in the history of medicine among all antient untions. The Egeptians made use of tigures of sacred animals, sueh as the ibis and the scarabieus, which they wore generally suspended from their necks. The Arabs and the Turks did the same, when they were idoliters; but aner their eonvenion to Isham, they used sentences fiom the Komn, taken chiefly from the surah, or chapter, entitled 'The lucautation.' These they wore inseribed on rolls of vellum or paper, enclosed in a silver box, and suspended from their neek; or else engraven upon a signet ring. Military men used similar sentences from the Koran on the hilt or blade of their swords; on their shields, helmets, and other picces of armour; or woven into their garments. Christian nations even were not exempt from this superstition. In the middle ages, relies of saints, eonseerated candles, and rods, rosarics, \&ce. were cmployed, and still are, in Spain and in some parts of lably. T'he African negrocs have their fetich, nud the American Indians their medicine.
(Reinaud, Monuments MJussulmans du Culinet du Duc de Zllucus, P'aris, 1826.)
TALLAGE is derived, according to Lord Coke, from the law Iatin word tallagium or tailagium, which, as he says, 'cometh of the French word tailer, to shnre or cut out a part, nnd metaphorically is taken when the king or any other hath a share or part of the value of a man's goods or chattels, or a share or part of the annum resenue of his lands, or puts any charge or burthen upon another: so ns tullagiun is a genernl word, and doth include all subsidies, taxes, lenths, fifteenths, or other burthens or charge put or set upou any man.' It was generally however confined in its sense to taxes received by the king. The most important statnte on the subject is entitled 'De Tallagio non coneedendo,' which was pussed in the "3th year of Edwand 111. to quiet the discontent then umisersal throughout the kingdom. It hat axisen among the enmmons in consequence of the king hasing taken a tallage of all cities, horoughs, and towns without the assent of parliament. Ile was embroiled also with the nobles nnd landowness, from hnving attempted, unsuccessfinly however, to compel all frechulders of land above the inlue of twenty pounds to contribute cither men or muney towards lis wars in Flanders. The first ehapter of the statute is the most important: "Nullum tallagnm sel auxilium per nos, vel heredes nostros in regno nostro ponatur, sell levetur sine voluntate, et assensu archicpiscoporum, episcoporum, comitum, baronum, nilitun, burgensium, el aliorun liberorun comnunium de regno nostro' ("No tallage or nid may be set or levied by ns or our hirs in our kingdonl without the good will and assent of the nrehbishops, lishops, counts, barons, kuights, burgesses, and other free men of the commons of our hingdom').
These words, as Lord Colie says, are "plain withont any seruple, absolute without any saving;' and, if there could have been perfeet reliance on their operntion, must have been entirely satisfaetory. But the same king had just violnted almost the same engagements entered into by himself only six years before. (2,) Edwnril I., c. 5, 6, 7, - Confirmationes Chartarum;' 2 In.st., एi;30.) [Si'Baidy.]

TALILEYRAND-PERIGORD, CHARLLS MAURLCE DE. This extraordinary man is, and must long, perhaps for ever, continue a mystery. In the efloge of M. de Reinhard, pronounced by M. de Tnllcyrand, in the Acadraic des Sciences Morales et Politiques, only three months betore his own denth, he sald: 'A mibuster for forcign affairs must possess the faenlty of npplearing open, at the same time that he remains injenetrable; of bemg in reality teserved. althongh perfectly frank in lus manners.' The precept was his own portrait. Ilis power of concealing his opmiome, and his steady adherence to the principle of allowing atincks npon his eharacter to dissipate by time for want of opposition, have had the effect of keepung his contemporaries ignorant of his real chancter. This taciturnity has frequently oceasioned his being sulject to imputntions which he did not deserve; at tiules it has beyond a donbt aequired for him a reputntion for ability greater than he deserved. It is believed that M. de Talleyrand has lelt memoirs of his life, or at least of the most important transo actions in which he was engaged, but with btrict injunctions that they shall not be pubhished until thirty years shall have elapsed from the time of his death. If this be
trie, even when the public shall have been put in possession of the contents of these papers, it will only have acquired anuther statement in addition to those previously in its possession, by the comparison of which it must have to guess at the truth. At present however, whilc these memoirs continue a sealed book, and scarcely any of M. de Tallcyrand's intimate fliends have yet contributed their fragmients of intormation, no resource is left to the biographer but by collating his writings, his ostensible share in the politics of his age, and the incidental communications of huinself or his acquaintances to estimate as near as he can what probable foundation in reality there is for the accounts of M. de Talleyrand, which have been compiled from what may be called public gossip.
Charles Maurice de Talleyrand-Périgord was born on the 13th of February, 1704, the cldest of three brothers. His tamily was antient and distinguished; but he was nezlected by his parents, and placed at nurse in one of the taubourgs of Paris. The effects of a fall when about a year old rendered him lame for life, and being on this account unfit for the military career, he was obliged to renounce lis birthright in favour of his sceond brother, and enter the church. The contempt and aversion for him, which his parents did not attempt to conceal, impressed a gloomy and taciturn character on the boy. From the charge of his nurse he was transferred to the College d'Harcourt, and thence successively to the seminary of St. Sulpice and to the Sorbonne. In all of those institutions he maintained the character of a shy, proud, bookish lad. He showed in after-life a taste for literature, and such an extensive acquaintance with and appreciation of science as sits gracefully on the statesman ; and the taste and knowledge must have been aequired at an early age, for liis turbulent eareer after he was fairly launched into busy life left little leisure for that purpose.
By the time he had attained his twentieth year his reputation for talent and his confirmed health appear to have reconciled the vanity of his parents to the nercsity of acknowledging him. They introduced hini to the society of his equals in rank for the first time at the festivitics with which the coronation of Louis XVI. was celebrated (1774), under the title of the Abbé dc Périgord. His opinions and tastes, and his temperament, combined to render the clerical profession an olject of detestation to liim, but he could not escape from it. He availed himself to the full extent of the indulsence with which his age and country regarded the irregularities of the young and noble among the priestly order; but the pride and reserve with which twenty years of undeserved neglect had ingpired his confident and strong eharacter served him in part ns a moral check. He was a strict observer of the appearances exacted by the conventional morality of society; and this good taste exerted a powerful influence over his whole fiture career. Thrown back upon himself from the leginning, he had nccessarily liccome an egoist; vigorous both in mind and body, he had a healthy relish of pleasure, and he cugaged with eagerness in the pursuits of pleasure; but the enjoyments of the mere voluptuary were insufficient for one of his intellectual character and fastidious tastes.
fn 1766 Voltalre visited Paris. M. de Tallcyrand was introduced to him, and the two interviews he had with him left such a deep impression that he was accustomed to talk of them with a lively pleasure till the close of his life. Voltaire and Fontenclle were M. de Talleyrand's favourite authors; upon whom he formed his written and still more his conversational style. Conversational talent was in great demand at Paris when he entered the world, and both his luve of pleasure and his love of power prompted him to cultivate that which he possessed. That he did so with eminent success the concurrent views of the best judges of his age declare. Exeellence of this kind is like excellence in acting: it is impossible to convey an adequate impression of it to posterity. The reporters of flashes of wit and felicitous turns of conversation unifornly communicate to them something of their own inferiority, and vulgarise them in the telling. Again, superior excellence in converation is an art; the artist is and ought to be judged nut ly his materials, but by the success with which he nises them. Written bon mots are necessarily estimated by their uriginulity, the quantity and quality of thought expressed in them: they are judged as we judge the writines in a poct: whereas the person who introduces them with
effect in conversation ought to be judged as we judge the actor, of whom we do not think less because he merely says what the poet has put into his mouth.

The robust and healthy Epicurean who requires the stimulus of intellectual in addition to physical pleasures, is almost inevitably driven to seek the former in the pursuits of ambition. M. de Talleyrand was no exception to the general rule. And the Abbe de Périgord must have displayed, even when he was apparently, when perhaps he believed himself to be, living only tor pleasure, qualities which inspired a belief in his business capacity; for in 1780, while yet only in his twenty-sixth year, he was appointed general agent of the clergy of France. He discharged the functions of this important office for eight years. The Gallic church was all along the most indcpendent in its relations to the Papal chair of any chureh that remained in communion with Rome. It was also a. powerful church vicwed in its relations to the state, of which it formed an element. Its revenue derived from landed property was large, that derived from other sources perhaps still larger: it had regular assemblies in which it legislated for itself, determined what contributions it orght to pay to the state, and in what proportions its rnembers were to be asscsscd. Here was a wide ficld for cultivating experimentally a talent for administration. Nor was this all: the dignified clergy of France took an active part in secular politics. There is a passage in the éloge of M. de Reinlard already alluded to, which seems an ceho of the impressions received by M. de Talleyrand in this period of his life:-'I will hazard the assertion that his (M. de Rcinhard's) first studies had been an excellent preparation for the diplomatic caseer. The study of theology in particular had endowed him with a power, and at the same time with a dexterity of ratiocination, which claracterisc all the documents which have procecded from his pen. To guard myself against the charge of indulging in paradox, I must here enumerate the names of some of our most distinguished statesmen, all theologians, and all distinguished in history for the suecess with which they conducted the most important political transactions of their times.' And lie follows up the remark with a very respectable list. The general agent of the clergy was their minister of state: and M. de Talleyrand, while he continued to fill the office, was a powerfil subject, and occupied a conspicuous place in the cye of the public. In 1788 he was appointed bishop of Autun.

The commencement of his political career, in the strict acceptation of the term, is synchronous with this promotion. An article upon M. de Talleyrand in an carly number of the 'Edinburgh Review'-the materials for which were furnislied by Dumont,-asserts that he owed his advancement to the see of Autun to a 'Discours sur les Loteries, which he pronounced in his eapacity of agent for the clergy of France, in the Assembly of Notables which met at Versailles, in Febrıary, 1787. As bishop of Autun he was a member of the Etats Géneraux convoked iu May, 1789, which continued to sit as an Λ ssemblée Constituante till it dissolved itselfon the 30th of September, 1791. The interval from the meeting of the Notables till the dissolution of the Asscmbly is an important one in any attempt to solve the problem of M. de Talleyrand's real character.

Previously to the meeting of the States-General, M. de Talleyrand indicated the course he intended to pursue, in a discourse which he addressed to the assembled clergy of his diocese; and in which he advocated the equality of all citizens in the eye of the law, and free discussion. When the three orders, by assenting to meet as one body, had enabled the Assembly to proceed to business, the precise directions given by many of the bailliages to their deputies were found an impediment in the way of practical legislation: M. de Talleyrand moved that they should be entirely disregarded, and carried his motion. A constituent committee was appointed immediately after the capture of the Bastille, and he was the second person nominated a member of it. In this capacity he was called upon to take part in maturing measures which have had a lasting influence upon the progress of affairs in France: the first of these was the re-distribution of the national territory into districts better adapted than the old provinces fur the purposes of government; the second was, the organization of a system of finance. In the financial discussions which took place in the eommittee and Assembly, M. de Talleyrand retained
hls dislike of lotterios. Ife supported all or most of the varions loans proposed ly Necker; and seconded Miraheau's exhortations to keep faith with the national creditor. He suggested practical mensures with a view to this end, and among others the sale of chmeh lands (he had previonsly supported the abolition of tithes), reserving however a competent provision for the priesthood, and even improving the condition of the poorer clerry: II also proposed 'to establish a 'eaisse d'amortissement,' as an additional guarantee to the state's creditors. The task of making arrangements for levging the part of the revenue derival from taxes upon persons exercising professions, and upon transfers of property, devolved upon II. de Talleyrand. Connected with his labours in preparing a new territorial division of France, and a new method of collecting the national revenue, was the motion which he made and carried in the Assembly, in August, 1700, to the eflect that the king should be intreated to write to his Britannic majesty, to engage the parliament of England to conemr with the National Assembly in fixing a natural unit of weights and measures; that, under the anspices of the two nations, an equal number of comnissioners from the Academy of Sciences and the Royal Society of London night unite to determine the length of the pendulum in the latitude of 45°, or in any other latitude that might be thought preferable, and to deduce from thenee an invariable standard of weights and measures. At the same time that he was taking part with his colleagues of the Constituent Committee in these labours he was charged by then with the important task of preparing the report upon national cducation, which was read to the Asscmbly on the loth, 11 th, and 19th of September, 1791. The basis of the system advoented in this report was the secularization of instruction: education was to be the gin of the state, not of the chureh; the state was to provide instruction for those who proposed to enter the church, exactly as it was to provide instruction for those who proposed to enter any of the other learned professions. Equal stress was laid upon the establishment of elementary schools in every canton; and of a higher class of schools, for the bencfit of those who were not destined to cmbrace a learned profession, in the chiet town of every district. Two aets of M. de Talleyrand, which have been much commented upon, appear to be as it were necessary corollaries of the principles avowed in the legislative carcer we have been passing in review:-his appearanee as principal actor in the theatrical celcbration of the anniversary of the crapture of the Bastille; and liis taking upon him the office of conserating the national clergy.

It is absolutely necessary that some estimate be formed of the conduct and character of M. de Talleyrand while a member of the first National Assembly, as a guide to an appreciation of his far more enigmatical subsequent career. M. de Talleyrand entered the Assembly with the reputation of a dexterous negociator, which he had aequired in his discharge of the office of agcut to the elergy. He had then, and he retained in after-life, the character of a self-indulgent man, of a man with a large instinct of self-preservation, but also of a humane man. The disciple of Voltaire and Fontenelle could searecly be a very zealous Christian, but M. de Talleyrand had always been a respeeter of conventional morality: his was precisely that kind of disposition and intelleet that supports a cluirch not fron belief, but as a useful engine for preserving order in society. M. de Talleyrand, like all the literati of his day, had a theoretical belief in the equality of men; at the same tiunc that with regard to the privileges of the nobility, he was inclined to support them in the same way that he did the authority of the chureh-as a useful politieal engine. But involuntarily and perhaps uneonseiously \$1. de Talleyrand was a warmer partisan of the aristoeracy than the elergy: Ite was noble by birth and attached hy taste to the habits of a select socicty, whereas the ecelesiastical character foreed upon him against his will had something repulsive to luin. In short, M. de Talleyrand saw cicariy the rattenness and the alsurdity of many of the old institutions of his country: he was willing, desirous, that govermment should be orghnized and aet in a manner to promote the general happuess; but he had no faith in the capacity of men for self-govermment; and lic had been cducated in a church, many of whose members were at that time obliged to reconcile their consciences to remaining in it by adopting the maxim that they were deeciving
men for their own good. M. de Talleyrand's iden, and he entertained it in common witha considerable number, was, that the Revolution might he guided, eleched, and rendered uscfin by approximating the constitution of the French to that of the English goverminent. He cared litule for the ereed of the ehurch, but he wished to preserve the ehurch, and to render it in Franee what the established church was in England. Henee his care, even white laying hands on the property of the church for the exigencies of the state, to retain an adequate provision for the clergy hence his anxicty to identity the elergy with the nation. His anxicty to establish a constitution modelled npon that of England was always avowed. His views (the views he adopted, it is not meant to attribute originality to thems) regarding territorial divisions and the organization of local government, finance, and edueation, though overborne for a time in the storm of the Revolution, have revived and been adopted by the Empire, the Restoration, and the present dynasty. The reckicssmess as to the means by which he attained his ends which he displayed even at this period of his career is no evidence of insineerity, but mercly of the want of faith in men, which the treatment he had experienced in early life, and his observation of the society he habitually mixed in, had instilled into him. It was his weakness through life to pride himself in the display of his power of refined mockery, regardless of the enemies it created: he gave vent to his spirit of raillery in actions as well as in words; and thus lent a krotesque eolonring to his coups d'elut, which rendered them more startling than if they had been as prosaic as those of other men. The world is perhaps less startled with the atrocity of passion in a statesman, than with a laughing air which shows his eontempt for it. The most startling of his devices is his solemm inauguration of the constitutional monarchy by the religious celcbration of the 141 h of July. But the love of theatrical presentation and the delusive belief that good may be effeeted by it is strong in every man at some period of his life. Talleyrand in all likelihood looked forward at that moment to being the founder and future primate of a church which shonld be to France what the Anglo-Episcopal has been to England. The means to which he was driven to have recourse in order to carry through the installation of the national bishops, undeceived lim, and brought back his carly disgust for the profession with redoubled foree. He not long after resigned his bishopric of Autun, and at the same time renomeed his ecelesiastical character.

The history of M. de Talleyrand from the dissolution of the Constituent Assembly, in September, 1791, till the overthrow of the monarchy, on the 10th of August, 1792, would be instruetive were it merely as a denionstration of the folly of the self-denying ordinanee with which that body lerminated its eareer. Its niembers were deelared ineligible to the next assembly, and also incapable of receiving any appointment from the crown until two years had clapsed from the date of its dissolution. The consegence was, that M. de Talleyrand among others was rendered incapable of any legisfative or ministerial office. It was at that time an object with all who desired that the Revolution should have fair play, to preserve peace with England, which, although still ostensibly neural, was every day presenting additional symptoms of alicnation. The court party hated M. de Talleyrand for having talien part frankly with the Revolution; the republicans hated him for his advoeacy of a limited monarchy; all parties distrusted him on account of his eternal snecr; lut all parties agreed that he was the only man whose talents fitted him for the delieate mission to lingland. And it was impossible to appoint hinn to it. Ife was dispatched however, in January, 1792, withont any ostensible diplomatic character, to sonnd the English ministry, and attempt to commenee negociations. His want of an official charaeter allowed the queen to indulge her feelings of personal dislike to the ex-bishop of Autim ly turning her back upon him when he was presented at St.James's ; and this reception at once ensured his exclusion from general socicty, and rendered him powerless. After the aecession of the Gironde to offiec, the attempt to ensure at least neutrality on the part of lingland was renewed: Chauvelin was sent to England as nominal, and along with him Talleyrand as real ambassador. By this time however the French government had become ns obnoxious to the general public of England as to the court circles: the torrent was probably
too strong to have been stemmed by Talleyrand, even though he had been in a condition to act directly and in person. He could do nothing, forced as he was to act by the instrumentality of a man too jealous and opiniative to conform honestly to the directions of one whose authority necessarily made him feel himself a mere puppet. Talleyrand's good faith at this period in labouring to preserve peace between England and France, as the only means of rendering a constitutional monarchy possible in the other country, and the steadiness with which he pursued his object, undaunted by the most gross personal insults, are satisfactorily established by the narrative of Dumont.
Talleyrand was at Paris when the events of the 10 th of August put an end to the monarchy; and it required all his dexterity to enable him to obtaín passports from Danton, to enable lim to quit Paris. He fled to England, and having saved little of his property, he was obliged to sell his library tlicre to procure himself the means of support. The English government, jealous of his presence, after some time ordered him to leave the country in twenty-four lours; and proscribed in France, he was obliged, with a dilapidated fortune, to seek refuge in America, when he had almost attained his fortieth year.

Madame de Staci has claimed, and apparently with a good titlc, the credit of instigating Chenier to demand the reeall of M. de Talleyrand after the fall of Robespierre and the termination of the reign of terror. The National Institute was founded about this time, and M. de Talleyrand had in his absence been appointed a member of the class of moral and political science. At the first sitting of this society which he attended he was elected secretary, an office which he held for six months. During this period he read two papers, afterwards published in the "Mémoires de la Classe des Sciences Morales et Politiques de l'Institut National,' which are justly considered not only as the most able and original ot his published writings, but as those which are most indisputably his own. The first of these is entitled 'Fssai sur les Avantages à retirer de Colonies Nouvelles dans les Cirennstances présentes;' the sccond, - Mémoircs sur les relations Commerciales des Etats-Unis nvec l'Angleterre.' The latter is, properly speaking, a supplement-perhaps ratlier a "picee justificative' appended to the other. The great object of both is to point out the importance of colonies to a country like France, in which the revolutionary fervour, though beginning to burn dim, was still sufficiently powerful to prolong the reign of anarchy and suffering, unless measures were adopted to neutralize it. There ean be no mistake as to the views being those of M. de Talleyrand himself. They are such as conld only occur to a person entertaining the political opinions lie had advocated in the Constituent Assembly, who having been exiled by the ' reign of terror' whieh decimated his countrymen, was living in a country where a successful revolution had quietly and speedily subsided into a settled form of government; in a country where he felt that 'an Englishman becomes at once a native, and a Frenchman remains for ever a forcigner.' Not sarisfied with pointing out in what manner colonies might be rendered powerful assistants in tranquillising France, the essayist entered deeply into the principles of colonization, explaining the adrantages to be derived from colonies, and the law by which their cconomical advantages might be perpetuated even after their political relations with the mother-country had ceased. In his treatment of his subject he evinces a clear and deep insight into the structurc of society both in France and America, and just and extensive views in political economy.

It was not however so much the political talent displayed in these essays, as M. de Talleyrand's skill in cmploying the reviving influence of the salons of Paris, that obtained him the appointment of foreign minister under the Directory. Here again he was indebted to Madame de Staël, who assisted him through her influence with Barras. M. de Talleyrand accepted office under this unprincipled government with a perfect knowledge of its character and its weakness. Ifis conviction that a lrenchman could never feel at home in America prompted him to grasp at the first upportunity of returning to his native country: his shat. tered fortine and taste for expensive luxuries rendered employment necessary for lim, and political business was the only lucrative employment for which he was qualified. There is nothing in his life to contradict the belief that he
again engaged in politics with a desire to promote what was right and useful as far as he could; but he engaged in them aware that he might be ordered to do what he disapproved of, and prepared to do it, under the plea that his functions were merely ministerial, and that the responsibility rested upon his employers. His position under the Directory was consequently an equivocal one. He was engaged, so long as he occupied it, in intrigues which had for their aim the maintenance of himself in office, even if his employers should be turned out; and he was obliged to do their dirty work. The part which he took in tlie attempt to extort money, as a private gratifieation, from the American envoys who arrived in Paris in October, 1797, was probably forced upon him by the directors: lad it been his own project, it would have been conccived with more judgment, and the Americans would not have been driven to extremes, for he understood their national character. But allowing himself to be used in such a shabby business betrays a want of sclf-respect, or a vulgarity of sentiment, or both. He had his reward; for when public indignation was excited by the statements of the American envoys, the minister of foreign aftiais was sacrificed to the popular resentment.

Having adopted a profession in which success could only be expected under a settled government, believing a monarchical government to be the only one which could give tranquillity to his country, and anxious with many others to run up a make-shift government out of the best materials that offered, he naturally attached himself to the growing power of Bonaparte. When the future emperor returned from Egypt, M. de Talleyrand had been six months in a private station; thougli, had he still retained offiee, he might with equal readiness have conspired to overturn the Directory. Bourrienne is not the best of authorities, but the earlier volumes of the memoirs which pass under his name are less falsified than the later' ; and an anecdote which he rclates of Talleyrand's intervies with the first consul, after being reappointed minister of foreign affairs, is so characteristic, that its truth is higlıy probable :- M. de Talleyrand, appointed successor to M. de Reinhart at the same time that Cambacérès and Lebrın succeeded Sièyes and Roger Ducas as consuls, was admitted to a private audience by the first consul. The speech whieh he addressed to Bonaparte was so gratifying to the person to whom it was addressed, and appeared so striking to mysclf, that the words have remained in my memory:-"Citizen Consul, you have confided to me the department of foreign affairs, and I will justify your confidence ; but I must work under no one but yoursclif. This is not mere arrogance on my part: in order that France be well governed, nnity of action is required: you must be first consul, and the first consul must hold in his hand all the main-springs of the political machine-the ministries of the interior, of internal police, of foreign affais, of war, and the marine. The ministers of these departments must transact husiness with you alone. The ministries of justice and finance have, without doubt, a powerful influence upon politics; but it is more indirect. The second consul is an able jurist, and the third a master of finance: leave these departments to them; it will amuse them; and you, general, having the entire management of the essential parts of government, may pursue without interruption your noble object, the regeneration of France." These words accorded toc closely with the sentiments of Bonaparte to be heard by him otherwise than with pleasurc. He said to me, after M. de Talleyrand had taken his leave, "Do you know, Bourriennc, Talleyrand's adrice is sound. He is a man of sense." Ife then added smilingly:-"Talleyrand is a dexterous fellow: he has seen through me. You know I wish to do what he advises; and he is in the right. Lebrun is an lonest man, but a mere book-maker; Cambaceres is too much identified with the Revolution: my government must be something entirely new.",

Napoleon and Talleyrand may be said to have understood cach other, and that in a sense not discreditable to either. The good sense of both was revolted by the bloodshed and theatrical sentiment, the blended ferocity and coxcombry of the Revolution; both were practical statesmen, men with a taste and talent for administration, not mere constitution-makers. Like most men of action, ncither of them could discern to the full cxtent the advantage an executive government can clerive from having the line of
aelion to a considerable extent preserihed by a constitation: but Talleyrand saw hetter than Napoleon that the laws which proteet sulbjects hy limiting the arbitrary will of the muler, in tum proteet hinn by tenching then legitimate methods of defending their rights. In another respect they rasembled each other-neither was remarkably scruputous as to the menns by which he attained his ends; though this laxity of moral sentiment was kept in eheck by the uatural lumanity of both. Their very points of difference wero ealculated to cement their union. The observant self-centred mind of Talleyrand was lamed by its want of power to set others in motion : it is only through sympathy that the contagious love of a action ean be conveyed. The impassioned and imaginative sout of Napoleon was made to attach others to him and whirl them along with him; and this power was often too strong for itself: Napoleon, though capahle of reflection, was too otten hurried awny by his instinetive impulses. Each of these men felt that the other was a supplement to himself. Talleyrand really admired and appreciated Napoleon. If he flatered him, it was by the delieate method of confirning him in the opinions and intentions which met his approhation. He dared to tell the First Consul truths which others were afraid to utter; and he ventured to arrest at times the impetuosity of Napoleon, by postponing the fulfilment of his orders until he had time to cool. He opposed, as long as there was auy prospeet of success, the divoree trom Josephine; but his virue gave way in the business of the Duke d Enghien, for even though we exculpate him from participation in the exceution of that prinee, to gratify his master he sanctioned the violation of a neutral territory. This was however the only instance, in so far as Bonaparte is concerned, of his sacrificing the duty of a friend to fattery that ean be brought home to him. Napoleon's frequent recurrence, in his conversations at St . Ie Iena, to the subject of Tal leyrand's defecticn, his attempts to solve the question at what time that minister began to betray him, show his appreciation of the services he had received from him.
For a time their alliance continued harmonious, and that was the time of Napoleon's success. The arrangement of the Concordat with the pope was the basis of the future empire, and that negociation was aceomplished by Talleyrand. The treaty of Luneville, becularising the ecclesinstical prineipalities of Germany; the treaty of A miens, recognising on the part of England the connuests of Prance, and the nev formi given to the Continental states by the Revolution; the convention of L yon, whielt gave form to the Cisalp pine republie; all bear the impress of the peculiar views of M. de Talleyrand. And the uinister of foreign affairs was fully aware of his own consequence. In I801, when obliged hy the state of his health to use the waters of Bourbon l'Arehambaud, he wrote to Napoleon:-11 regret heing at a distance from you, for my devotion to your great plans eontributes to their accomplishment. Aner the baitle of Ulm, Talleyrand aiddressed to the einperor a plan for diminishing the power of Austria to interfere with the preponderance of France, by uniting Tyrol to the Helvetian republic, and erecting the Venctian territory into an independent republic interposed between the kingdom of Itaty and the Austrian territories. He proposed to reconcile Anstrin to this arrangenient by ceding to it the whole of Wallachia, Moldavia, Bessambia, and the northern part of Bulkaria. The advantages he anticipated from this arrangenient were that of removing Austria from interfering in the sphere of French influenee without exnsperating it, and that of raising in the East a power better able than Turkey to hold a balance with Russia. Napuleon paid no attention to the proposal. After the vietory of Austerlitz, Talleyrand ngain pressed it upon his notice, but equally without effeet. No ehange in the feelings of the emperor and his minister can positively be traced to this event; but we see on the one hnod a pertiuncious repectition of a favourite proposal, and on the other a silent and rathrr cont tenptuous rejection of it. We find at a .nuch later period Napoleon complaining of the pertinacity with which Tallegrand was accustoned to repeat any adviee which he considered important; and we find Talleyrand speaking of Napolcon as one who could not be served hecause he would not listen to adviee. And we cannot but see in the difference of opinion just mientioned the conmeneement of that coolness whieh induced Talleyrand, on the Oth of August, 1807, to resign the porfolio of
foreign affaiss and accept the nominal diznity of vice-grand-elector of the empire in addition to the tilles of grand-chamberlaun and prinee of Benevento, whieh had presionsly beell conferred upon him. An mupreeedented eareer of vietory hadl rendered Napoleon impatient of success; tho conselousnees of inpportant services had rendered Tallegrand inpatient of neglect; and the alienation Ihus originatell was inereased and conffrmed by the dishling but vulgar soldiers, who fonned sueh an imfluential part of the emperor's court, and their silly and vulyar wives, who could not pardon M. de Talleyrand his superior refinement, and who had all in turn smarted under his insupportable sarcham. Napoleon in exile is said to have represented the resigration of M. de Talleyrand as involuntary, and rendered necessary by his stoek-jobbing propeusities. It is not impossible that the minister inay have spreenlated more deeply in the funds than whas altogether proper; but had there beent no other reason for his dismissill, Napoleon could, and onlen did, wink at more flagrant peeuniary delinquencies. M. de Talleyrand, in his character of grandehamberlain, did the honours of the imperial court at Erfint ; and was on moore than one oceasion privately consulted by the emperor, who one day sid. • We ought not to have parted.' In 1800 however the ex-minister was so loud and unreserved in his condemnation of the Spanish expedition, that Napoleon, on his return from the Peninsula, deprived him of the office of chamberlain. The last five years of the empire elicited many eanstic criticisms from M. de Talleyrand, whieh were duly carried to the ears of the emperor, who retorted by sallies of abuse which irritated the prince without rendering him less powertul. In 1812 MF . de Talleyrand is said to have predicted the overthow of the empire. In 1813 overtures were made to him with a view to his resuming the portfolio of foreign affairs, but without siecess. In $1814^{\text {he }}$ he-appeared on the stage of aetive life on his own aceount.
In 1814, as vice-grand-elector of the empire, he was a member of the regency, but was prevented joining it at Blois hy the national guard refusing to allow lim to quit Paris-not much against his will. When Paris captulated, the emperor Alexander took up his residence in the house of the prince of Benevento. The words attributed by the Memoirs of Bourrienne to Talleyrand, in his conversations with those in whose hands the fortune of war had for the time placed the fortunes of France, are charaeteristie, true, and in keeping with his opinions and subsequent conduct :- There is no other alternative but Napoleon or Louis XVIII. Aner Napoleon there is no one whose personal qualities would ensure him the support of ten men. A prineiple is needed to give consisteney to the new government, whatever it may be : Louis XVIII. represents a prineiple. Anything but Napoteon or Louis λ VIII is an intrigue, and hio intrigue can be strong enouch 10 support him upon whom it might conter power,' This view lends consistency to the conduet of M. de Tafleyrand at the close of Napoleon's eareer. Their alliance had long been dissolved; they stood confronting each other as separate and independent powers. M. de Tralleymand had advocated a limited inonarehy, intil the old throne was violently broken up and overturned; he had lent his aid to construet a new monarehy and a new arist ocracy out of the fragnents of old institutions which the Revolution had leff ; he saw France again without a yovernment, and, with his prineiples, he might have consistently taken office under any government, holding, as he did, the opinion that any governinent is better than none, and that any man inay hold office under it provided he take care to do as much yood and as little hurm as he can. But M. de Talleyrand did more : lie exerted the intluenee he possessed over Alexander to nbtain the combination of constitutional forms with the reeognition of legitimacy. Louis XVIII. saved appearanees by insisting upon bring allowed to grout the eliarter spontaneously, Dut it was M. de Talleyrand's use of the remains of the revolutionary paity that male hins feel the neeessity of this contression. 1 s minister Talleyrand invisled upon its observance with a precision that rendered him ns mueh an olject of annoyanee to the courtiers of the Restonation as ever the pedantie Clarendon was to the kny triters who surrounded Charles II. When he set out for the eongress of Vienna, in Septemher, 1814, the court of France is said to have presented the aspeet of a school at the commencement of the holidays. The powers who had refused to concede to Napoleon at
the head of a victorious army anything beyond the limits of France in .1792 , gave more favourable terms to M. de Talleyrand, the representative of a nation upon which they had just forced a king. He baffled the emperor Alexander, who said angrily, "Talleyrand conducts himself as if he were minister of Louis XIV.' On the 5th of January, 1815, he signed, with Lord Castlereagh and Prinee Metternich, a secret treaty, having previously obliged Prussia to remain contented with a third of Saxony, and Russia to cede a part of the grand-duchy of Warsaw. The imbecility of the Bourbons, by inviling the descent of Napoleon at Frejus, again unsettled everything. M. de Talleyrand dictated the proclamation of Cambray, in wach Louis XVIII. confessed the faults committed in 1814, and promised to make reparation. He suggested the more liberal interpretation of the charter, announced from the same place. He obtained an extension of the democratic principle in the constitution of the Chamber of Deputies, recommended the rendering the peerage liereditary, and induced the king, restored for a second time, to institute a cabinet eouncil, of which he was nominated the first president.
The constitutional monarchy, the object of his earlies wishes, was now definitively established; but the part he was destined to perform in it was that of a leader of opposition. In his note of the 21st of September, 1815, he protested, as prime minister, against the new terms which the allies intended to impose upon Franee. He said they were snch conditions as only conquest could warrant. 'There ean ouly be conquest where the war has been carried on against the possessor of the territory, that is, the sovereign ; possession and sovereignty being identical. But when war is conducted against a usurper in behalf of the legitimate possessor, there can be no eonquest ; there is only the recovery of territory. But the high powers have viewed the enterprise of Bonaparte in the light of an aet of usurpation, and Louis XVIII. as the real sovereign of France: they have acted in support of the king's rights, and ought to respect them. They contracted this engagement by their declaration of the 13th and their treaty of the 25 th of March, to which they admitted Louis XVIII. as an ally against the common enemy. If there can be no conquest from a friend, much more can there be none from an ally. His argument was fruitless: Louis XVIII. bowed to the dictation of his powerful allies; and M. de Talleyrand resigned office two months before the conclusion of the treaty which narrowed the frontiers of France and amerced her in a heary contribution. By this step M. de Talleyrand enabled himself to contribnte essentially to strengthening the constitutional monarehy, to which, if he had any prineiple, he had through life preserved his attachment. Had he been a party to the treaty, he must have shared with the elder branch of the Bourbons the odium which attached to all who had taken part in it; and hence thrown the opposition into the hands of the enemies of the constitution. By resigning office, he obtained a voice potential in the deliherations of the opposition; and no English nobleman born and bred to the protession could have discharged more adroitly the furtetions of an opposition leader. For fourtecn years his salon was a place of resort for the leaders of the liberal party; in socicty he aided it by his conversational talents; in the chamber of peers he lent it the weight of his naine and experience. He defended the liherty of the press in opposition to the censorship; he supported trial by jury in the case of offences of the press; and he protested against the interference of France in the internal affairs of Spain in 1823. By this line of conduct he was materially instrumental in creating a liheral party within the pale of the constitution ; and to the existence of such a party was owing in no small degrec the result of the revolution of 1830, in which, though the dynasty was changed, the constitution survived in its most important outlines. .That revolution also placed Prinee Talleyrand in a condition to realise what had been one of his most earnest wishes at the outset of his political career-an alliance between France and England as constitutional governments. To accomplish this he had laboured strenuously in 1792; to accomplish this was one of the first objects he aimed at when appointed ninister for foreign affairs under the consulate: he accomplished it as representative of Louis Philippe.
M. de 'falleyrand was appointed ambassador extraordinary and minister pleripotentiary to the court of Great

Britain on the 5 th of September, 1830 ; and he held the appointment till the 7 th of January, 1835, when he was succeeded by General Sebastiani. During these four years M. de.Talleyrand, besides obtaining the recognition of the new order of things in France by the European .powers; procured a similar recognition of the independence of Belgium, and concluded the quadruple alliance of England, France, Spain, and Portugal, for the purpose of reestablishing the peace of the Peninsula.
After his return from the mission to England, M. de Talleyrand retired from public life. The only occasion on which he again emerged from domestic retirement. was when he appeared at the Académie des Sciences Morales et Politiques, to pronounce the éloge of Count Reinhard; only three months before his own death. He died on the 201 h of May, 1839, in the eighty-fourth year of his age.
The object of this sketch has been to present, as far as the very imperfeet materials which are attainable would permit, a view of this very extraordinary man undistorted by any partisan feeling either with regard to his person or principles. It must be admitted in favour of M. de Talleyrand that he was warmly beloved by those who were his intimate friends, and by all who were at any time employed under him. It must also be allowed that when his life is contemplated as a whole, it bears the imprint of a unity of purpose animating his efforts throughout. Freedom of thought and expression, the abolition of antiquated and oppressive feudal forms and the most objectionable powers of the church, the promotion of education, the establishment of a national religion, and a constitutional government compounded of popular representation and an hereditary sovereign and aristocraey-these were the objects he proposed for attainment when he entered the arena of politics. He attempted to approach this ideal as far as circumstances would admit at all periods of lis long career; and he ended by being instrumental in establishing it. No act of eruelty has been substantiated againist him; and the only charges of base subserviency that appear to be satisfactorily proved, arc his participation in the attempt to extort a bribe from the American envoys, and in the violation of an independent territory in the seizure of the Duc d'Enghien. His literary was subordinate: to his political character. It is difficult to say how much of the writings published in his name, were really his oivn. Latterly, we are informed upon good authority, he was in the habit of explaining his gencral views on \because r subject to some orie whom he employed to bring this communication into shape; and when the manuscript was presented to lim, he modified and retouched it until it:met:his views; throwing in a good deal of that wit which gave zest to his conversation. The domestic life of $/ \mathrm{M}$. de Talleyrand has not been alluded to; for almost every statement regarding it is poisoned by the small. wit of the coteries of Paris.
The report upon education of 1791 ; a report to the first consul upon the best means of re-establishing the diplomatic service of France; the essays-upon colonization, and the commercial relations of England and America; and the éloge of M. de Reinhard - may all be regarded as his own composition. The first is the most commonplace; the other three are master-pieces in their different ways. They hespeak an elegant and accomplished mind, a shrewd insight into character and the structure of society, and a felicitous and graphic power of expression. The wit of M. de Talleyrand was the wit of intellect, not of temperament.: It was often full of meaning; always suggestive of thought ; most frequently caustic. His reserve, probably constitutional, but heightencd by the eircumstances of his early life, and cultivated upon principle, was impenetrahle. In advanced life it seemed even to have affected his physieal appearance. When at rest, but for his glittering eye, it would have been difficult to feel eertain that it was not a statue that was placed before you. When his sonorous voice broke upon the ear, it was like a possessing spirit speaking from a graven inage. . Even in eomparatively early life, his power of banishing all expression from his countenance, and the soft and heavy appearance of his features was remarked as contrasting startlingly with. the manly energy indicated by his deep powerful voice. Mírabeau in the beginning, Napoleon at the. close of the Revolution, threw him into the shade; but he outlasted both. , The secret of his power was. patience and pertinacity; and lis life has the appearance of being preternaturally lengthened out when we recollect:
the immense number of widely removed characters and events of which lie was the contemporary. It may be said on the one hand that he accomplished nothing which time did not in a manner bring about; but on the other it may be said, with equal plausibility, that scarcely any of the leading events which have oceurred in France in his day would have taken the exnet shape they assumed had not his hand interfered to give them somewhat of a bias or dircetion. Next to Napoleon, he certainly is the most extraordinary man the revolutionary period of France has given birth to.
(Bitudes el Portraits Politiques, par A. Mignet, Bruxelles, 1841, pp. 131-194; Rapport sur l'Instruction Publigue fait an nom du Comits de Constitution d I'Assemblce Nutionale, les 10, 11, el 19 Septembre, 1791, par M. de Talleyrand, Paris, 1791-4; J̇linburgh Revierr, vols. vi. and vii.; Mémoircs par Etienne de Dumont; Correspondence betreen the Enroys of the American States and M. de Talleyrand, Minister for Foreign Affairs in France, London, 1798, 12mo. ; Considírations siur les principaux évènements de la Recolution Frangaise, par Mme. la Baronne de Staèl ; Dix Anvées d'EXxil, par la même; Memoires par A. 1.. F. de Bourrienne, I'arss et Londres, 1831 ; Mémorial de St. Helène; Mémoires pour sercir a llistoire de France sous Napoleon, par MM. les GG. Montholon et Gourgaud; Moge de M. Le Comte de Reinhard prononce ì l'Académie des Sciences Morales et Politiques, par M. le Prince de Talleyrand, dans la Sćance du 3 Mars, 1838, Paris, 1838.)
TALLIS, THOMAS, who is considered the patriareh of English eathedral musie, was born at about the same period as the famous Italian ceclesiastical composer '? alestrina, whose birth took plaee in the year 1529.
It has been stated, but most probably erroneously, that Tallis was organist to Henry VIII, and his successors. He undoubtedly was a gentlenian of the chapel to Edward V1. and Mary; and under Elizabeth the place of organist was added to his other office. Ile seems to have devoted himself wholly to the duties of the church, for his name does not appear to anything in a secular form. His entire Service, including prayers, responses, litany, and nearly all of a musieal kind comprised in our liturgy, and in use in our eathedrals, appears in Dr. Boyce's Collection, together with an anthem which has long been in high repute with the admirers of severe counterpoint. But for the smaller parts of his Service he was indebted to Peter Marbeck, organist of Windsor, who eertainly is entitled to the credit of having added those solemn notes to the suffrages and responses which, under the name of Tallis, are still retained in our choirs, and listened to with reverential pleamire. [Marbeck.]
In 1575 Tallis published, in eonjunction with his pupil, Bird (or Byrde), Cantiones Saerre, master-pieces of their kind; and these are rendered the more remarkable from
having been proteeted for twenty-one years by a patent from Queen Elizaheth, the first of the kind that ever was granted. (Ine of these, 'O sacrum conviviun,' was adapted by Dean Aldrich to the words ' 1 eall and ery;' and is the above-mentioned anthem, which still continues to be frequently perforned in inost of our cathedrals. Two more of his anthems are printed in Dr. Arnold's Collection.
Tallis died in 1585, and was buried in the parish chureh of Greenwich, in the chancel of which Strylue, in his continuation of Stowe's Survey, tells us he saw a brass plate. on which was engraved, in old English letter, an cpitaph. in four stanzas of four lines each, giving a brief history of this renowned composer. The plate was carried away, and most likely sold by weight, by some barbarian, when the chureh was repaired about a century ago. The verses are to be found in Hawkins, Burney, and most other publications relating to English chureh music.

TAlLOW. [FAT.]
TALLOW, MNERAL or MOUNTAIN. [HATCHETLNE.]
TALLOW-TREE. [STILLiNGiA.]
TALLY. This word appears to be derived from the French taille, or tailler, each of which expresses the idea of cutting or noteling.
The use of notched sticks or tallies may be traced to a very remote period, and there is reason to believe that they were among the earliest means devised for keeping accounts. Some writers conceive that the Greek symbohm ($\sigma \dot{v} \mu \beta_{0} \lambda_{0} \nu$) was in some cases a species of tally, whieh was used between contracting parties; being broken in two. and one-half given to each. In the 'Pictorial Bible' (note on Ezck. xxxvii. 20), much curious information is brought together on the sulpject of writing or marking with notches upon sticks. The writer of that note refers to the tablets of wood called arowes, upon which the Athenians inseribed the laws of Solon, and to the practice of the antient Britons, who, he says, 'used to cut their alphabet with a knife upon a stick, which, thus inseribed, wis called Coelbren y Beirdd, "the billet of signs of the bards," or the Bardic alphabet.' 'And not only.' he contimues, 'were the alphabets sueh, but compositious and memorials were registered in the same manner.' These stieks, he adds, were eommonly squared, but were sometimes three-sided; each side, in cither case. containing one line of writing. A eut which aecompanies the note from which wo quote, shows the manner of mounting several such inscribed sticks in a frame, so that they might be read conveniently. Another illustration, of later date, is the clog-almanac deseribed by Dr. Plot, in 1686, as still common in Staffurdslire. Such calendars, which had the various dars marked by notehes of different forms and sizes, were sometimes made small enough to earry in the pocket, and sometintes larger, for hanging up in the house. Sinilar calendass are said to have been formerly used in Sweden. Perhaps the most eurious of the illustrations collected in the note

Kig. 2.
Bxchequer Tally.
referred to is the Saxon Reive-Pole, which either is, or has been down to a recent period, used in the Isle of Portland for collecting the yearly rent paid to the king as lord of the manor. This rent, which amounts to 141 . 14 s . $3 d$. , is collected by the reive, or steward, every Mieliaclmas; t!e sum which cach person has to pay being scored upon a squared pole, a portion of which is represented in the subjoined cut, with figures to mark the amount indicated by each moteh. 'The black eircle at the top,' observes the work from which we quote, 'denotes the parish of

Southwell, and that side of the pole contains the aceount of the tax paid by the parishioners; each person's account being divided from that of his neighbour by the circulas indentations between each. In the present instance the first pays $2 \frac{2}{2} d$, the second $4 s$. $2 d$., the next one farthing, and so on: The other side of the pole which is represented in the cut is appropriated to the parish of Wakem, of which the cross within a circle is the distinctive mark.
The tallies used in the Exehequer (one of which is represented by fig. 2) answered the purpose of receipts
as well as simple records of matters of aceount. They consisted of squared rods of hazel or other wood, upon one side of which was marked, by notehes, the sum for which the tally was an acknowledgment; one lind of notch standing for 1000 l ., another for 100 l ., another for 20 l ., and others for 20 s ., 1 s ., \&e. On two other sides of the tally, opposite io each other, the amount of the sum, the name of the payer, and the date of the transaction, were written by an officer called the writer of the tallies; and, after this was done, the stiek was cleft longitudinally in such a manner that each piece retained one of the written sides, and one-half of every notch cut in the tally. One piece was then delivered to the person who had paid in the money, for which it was a receipt or acquittance, while the other was preserved in the Exeliequer. Madox observes respeeting these rude and primitive reeords, 'The use of them was very antient ; coeval, for aught I know, with the Exchequer itself in England.' They were finally discontinued at the remodelling of the Exchequer in 1831; and it is worthy of reeollection that the fire by which the Houses of Parliament were destroyed was supposed to have originated in the over-heating of the flues in which the discarded tallies were being burnt. Clumsy as the contrivance may appear, tallies were effectual in the prevention of forgery, since no ingenuity eould produce a false tally whieh should perfeetly correspond with the countertally preserved at the Exchequer; and no alteration of the sum expressed by the notehes and the inscription could pass undetected when the two parts of the stick were fitted together. Λ correspondent of the Gentleman's Magazine' for November, 1834 (p. 480), states that forgeries were attempted immediately after the discontinuance of tally receipts. The officers of the Exchequer commonly called tcllers (talliers), as well as several other functionaries, derived their name from the word tally.
Many different kinds of tally are used in gardens and arboretums, to bear either numbers referring to a catalogue, or the names of the plants near which they are placed. Loudon deseribes several sorts, of wood, metal, earthenware, brick, \&c., in his 'Eneyclopedia of Gardening.' Wooden tallies are sometimes marked by notches instead of writing or painting; particular forms or combinations of notches being used to represent either Arabie numerals or the Roman letters commonly employed in nuncration. Tallies formed of briek-earth, with a recess for containing a printed card, which is sheltered by a piece of glass, have been introduced of late years, and are partieularly recommended for use in arboretums. Instead of loing stuck in the ground, like tallies of wood and metal, these brick tallies are formed with a broad base, which rests upon its surface.
(Pictorial Bible, note on Ezek. xxxvii. 20 ; Madox's History of the Exchequer, \&.c. A popular history of tallies is given in vol. xxiv. of the Mirror (pp. 325 and 341, partly condensed from the Timcs newspaper.)

TALMA, FRANGOIS JOSEIPH, an eminent Freneh trayedian, was born in Paris, January 15th, 1763. His father, who was a dentist, weut to Englaud shortly after the birth of his son, and practised his profession for some yeass in London. At nine years of age young Talma returned to France, and was placed in a scllool at Chaillot, which was kept by Monsieur Lamarguićre, a great aulmirer of the drama, who delighted to diseover and eneourase a similar taste in any of his pupils. A year after Talma had joined the seloool he was intrusted with a part in an old tragedy, called 'Simois, Fils de Tamerlane, which Monsieir Lamarguiere had selected for performanee by lus scholars; and so deeply did the future tragedian enter into the feeling of the character, that he burst into a flood of tears at the reeital of the sorrows of the liero, whose brother he represented. At the age of twelve he wrote a little drama, in the composition of which he further developed his knowledge of the stage. He again visited London, and returned a second time to Paris at the latter end of the year 1781, when he commenced the study of logie in the College Mazarin. In 1783 he made a courp dessai at the Théâtre de Doyen, in the character of Seide, in the tragedy of ' Nahoniet.' A council of friends, appointed by himself, to judge of his performanee, pronounced it a failure: 'He had not le feu sacré' 'Talma deferred to this unfavourable opinion, and quietly resumed the study of his father's profession; but a few years afterwards the very same friends were called
P. C., No. 1490.
upon to reverse their judgment and confess their mistake. On the 21st of November, 1787, he made his débût at the Théâtre Françuis, and in 1789 created a great sensation by his performance of Charles IX. At the commencement of the French Revolution he nearly fell a prey to a severe nervous disorder. On his recovery and the retirement of Larive, Talma became the prineipal tragic actor. He reformed the costume of the stage, and first played the part of 'Titus in a Roman toga., Duriug the reign of Napoleon he enjoyed the emperor's friendship; and was no less honoured or esteemed by Louis XVIII. In 1825 he published some 'Reflections' on his favourite art; and on the 11 th of June, 1826, appeared for the last time on the stage in the part of Charles VI. During his last illness the audiences of the Théitre Français every evening called for an official account of the state of his health previously to the commencement of the performances. He died on the 19tll of October following, and was buried in the cemetery of Père la Chaise, in presence of an immense crowd. MM. Arnault, Jouy, and Laduur pronounced orations over lus grave. The Théâtre Francaas remained elosed for three evenings, and the Opéra Comique and Odéon were also elosed on the day of his funeral. The aetors of the Brussels theatre (of which company he was an associate) wore mourning for him for forty days, and a variety of honours were paid to his memory at the principal theatres throughout France and the Netherlands. Taima is said to have ereated seventy-one characters, amongst the most popular of which were those of Orestes, Cedipus, Nero, Manlius, Cæsar, Cinna, Augustus, Coriolanus, Hector, Macbetli, Hamlet, Othello, Leicester, Sylla, Regulus, Danville (in ' L'Ecole des Vieillards'), Leonidas, Charles VI., and Henry VIII. He has been accused, remarks one of his biogra phers, of having spoken the verse of tragedy as though it were prose; but this avoidance of the jingle of rhyme was. one of the greatest improvements which he introduced upon the French stage. In person he was about the middle height, square-built, and with a most expressive and noble eountenance. His voice was exceedingly fine and powerful, his attitudes dignified and graceful. In private lifc he was distinguished for his manly frankness, his kind disposition, and unaffected manners. He spoke English perfectly, and was a great admirer of England and her institutions. He was the friend and guest of John Kemble, and was present in Covent Garden Theatre when that great actor took his leave of the stage.
(Almanach des Spectacles, 1827; Biographie Nouvelle des Contemporains; Ncw Monthly Mag.; Personal Recolleetions.)
TALniUd. [Hebrew Language.]
TALPA. [Talpide.]

- TALPASO'REX, M. Lesson's name for a genus of SoRECIDE, eomprising the Shrev-mole. [Vol. xxii., p. 265.] TA'LPIDE, the family of Moles.
The genus Talpa of Linnæus, as it stands in the 12th edition of the Systema Nature, between the genera Didelphis and Sorex, comprises two species only, Talpa Europrea, the Common Mole, and Talpa Asiatica. [Chrysochloris.]
Cuvier places the Moles, eonfining them to the genus Talpa, between Sorcx [Sorecide] and Condylura.
Mr. Swainson places the genus Tulpa between Chrysochloris and Centenes. [Tenrec.]

Organization.

Shetclon.-The cranium is elongated and pointed, and

there is a peeuliar bone for the support and working of the muzzle. The part which extends from the internal

Vol. XXIV.-D
stde of the jaws terminates in three points, the one in the middle larger and more distant from the exterrial edge than the other two. The very short arm attiched by
means of a long bladebone, and sustained by a vigorons clavicle, 'earries an extremely wide hand, the palm of which is always turned outwards or baekwards. No known

skeleton of Mole. (De Blainvillo.) The unclal bone and mocosory carral malire-shaped bone aro fiere shown.
living form has the compressed phalangeal bones seen in Glyptodon except the mote. The second phalanx of the anterior digits or fingers of the mole is the ouly known living analogue of the similar bone in the hind-foot of Glyptodon. The sternum, like that of the birls and bats, has an clevation or ercst affording room for the large peetoral muscles. The pelvis and hinder extremities are comparatively feeble. The bones of the pubis are not joined.
This bony framework is set in motion by very powerful muscles. Those of the anterior extremities, the chest, and the neck are most vigorous, and in the cervical ligamont a peculiar bone is eyen fornted. The wide hand, which is the great instrument of action, and performs the offices of a plekare and shovel, is sharp-edged on its loiver margin, and, when clothed with the integuments, the fingers are hardly distinguishable, but the terminating claws project lone, strong, flat, and trenchant.
Let us eompare for a moment the bats with the moles with reference to their locomotion. Both are insectivorous, but how widely different in their eonformation. The bat has to prinnowits way through the air: the mole, like the bat, lias to react against a given mediun, a very different one, certainly; and is endowed with a power of moving through that medium by means of a modification of the locomotive organs beautifully adapted to its density. Instead of the lengthened bones of the forearm that so well assist the bat to make its way with outstretehed wing through the air, all in this part of the organization of the mole is short and compaet, to enable it to bore through the dense medium where it is to live and move and have its being. The development is all anterior: the fore part of the mole forms an elongated cone ; the posterior part is narrow and small, and the whole of its proportions are admirably fitted to assist it, so to speak, in flying through the earth. The long and almost round scapula, the expanded humerus, the enormous power, in short, of the anterior extremities, and the great strength and compactness of the fingers, are all fitted for the digging duty they have to do: Add to this a sof short-ent velvety coat, to which no particle of soil ever adheres, and you have the perfcetion of organization for rapid progress ihrough the ground.
Nor is it void of interest to observe the niceties of adaptation according to cireumstances. The Chrysochloris (Talpa aurea of the older authors) is an inhabitant of Africa, and burrows in sand. This medium required a modification of organization different from that required to permeatc the heavier soils, and we have it. Though some of the bones are strong, the general strength is less than in the common Mole. The priucipal burrowing instrument is the great double antcrior toc (ring-finger), and there is an enormous development of the pisiform bone.

In the muselim of the Royal College of Surceons, in London, No. 282 G, of the Physiologiral Series, shows the anterior half of the body of a Mole (Tulpa Europrea, Linn.), in which the diaphragm and principal muscles of the right extremity are dissected and exposed, as illustrative of one of the prineipal structures for burrowing.
Nervous System and Senses.-(Touch.)-The muzzle of the mole is evidently a delicate organ of touch, and that sense is considerably developed in the large and broad hands and feet. Neither is the tail without a considerable share of sensation, to give notice to the animal of the approach of any attack from behind.

Taste and Smell. - The gustatory and olfactory nerves, especially the latter, appear to be very sensitive.
Sight.-Almost rudimentary. The little eye is so hidden in the fur, that its very existence was for a lone tume denied. It appears to be designed for operating only as a warning to the animal on its emerging into the light; and indeed more acute vision would only have been an incumbrance. No. $17 \mathrm{~T}^{2}$ (Mus. Colh. Reg. Chir., Phys. Series) is the anterior part of a mole (Talpa Eiuropien, Linn.), showing the minute circular palpehral orifices defended by the short thick fur.

Hearing.- But if the sight be imperfect, the sense of hearing is very highly developed, and the tympanum very large, though there is no external ear. or rather. no projeeting concha. No. 1608, in the department of the muselim of the Royal College of Surgeons above referted to, cxhibits the anterior part of a mole (Tulpa Eiuroperq, Linn.), from which the hair has been removed, to show the external orifiecs of the ears and eyes, in both of which bristles are placed. No. 1609 is also the anterior part of the same animal with the fur left on. showing the entrance to the meatus auditorius externus unprovided with a projecting coneha, or external car, which would be an impediment in the aet of burrowing, and an unneeessary appendage : the meatus is defended in this aninal, which lives habitually in the soil, by the smallncss of the external opening. John Hunter, in his Manuseript Catalogue, introductory of this part of the serics, observes that an external concha is not to be found in many animals whose life is principally led underground, such as the mole; and perhaps because the earth assists considerably. in vibration.
There is nothing that ealls for any particular notice in the Digestive Sustem of the Mole. The alimentary canal is short, simple, without a ceccum. The voracity of the mole corresponds with the activity and rapidity of its digestive powers.
Generative and Urinary Systems.-No. 2505 of the Physiological Scries in Mus. Coll. Reg. Chir. exlibits a mole with the abdomen laid open to show the tester as they appear in winter. They are lodged in large cremasteric pouches in the perineal recion, making no projection externally. Tho right testis is drawn into the abdomen by the side of the bladder. and its posterior extrenity may be seen attaehod to the inverted cremanter: the left testis has its anterior extremity projecting into the aldominal cavity. The prostatic glands, whieh consist of an aggregate of capeal fubes, are just risible behind the bladder. No. 2306 is a mole killed in Fcbruary, and prepared to show the increased size of the testes, and the commencing sexual development of the proslatic eace. No. 2507 is a mole klled in the beginning of March. and prepared to show a further increase of the testes and accessory prostatic glands: the latter have now advanced forwards on each side of the urinary bladder, so as to encompass its neek: the left testis has been drawn back into the abdomen, and its attachment to the inverted eremasteric pouch displayed. No. 2508 is a mole killed about the latter end of March, nad disseeted to show the complete development of the testes and prostatic glands. The long penis and its two crura, surrounded by the ereetores museles, are also shown. No. 2309 is a mole which was killed in autumn. prepared to show the collapsed state of the testes, and the atrophied condition of the pro-
static glands; but the testes in this elase had not yet returned to the small size whlch they exhibit in winter. No. 2510 is a preparation showing a side view of the male organs of generation ; and No. 2511 exhibits the male organs of Chrysochloris capensis. (Cat., tol. iv.)
The increase and decrease of the testes 1 n Burbs and Frogs arc well shown in preparations in the same noble museum ; the first in Nos. 2557 to 2462 (both inclusive), the second in Nos. 2112 and 2411. John Hunter, in his 'Animal Ceconomy,' observes that these setsonal or periodical changes are conmon to all animals, which have their seasons of copulation. 'In the buck,' says that great physiologist, ' we find the testicles are reduced to a very small size in winter; and ih the land-mouse, mole, \&ce. this diminution is still niore remarkable. Animals; on the contrary, who are not in a state of nature; have ho such change take place in their testicles; ánd not being much affected by scasons, arc consequently always in good conditionj; or in a state to which other animals that are left to themselves can only attain in the warmer season. Therefore in man, isho is in the state we have last described, the zesticles árë nearly of the same size in winter ás in summer; and nearly, though not exactly, the same thing may be obseryed in the horse, ram, \&\&., these aniinals having their seasons in a certain degree. The variation above taken notice of is not confined to the testicles, but also extends to the parts which are connceted with them: for in those animals that have their seasons for propagation the most distinctly marked, as the land-mouse, mole, \&e., the vesicula are hardly discernible in the winter; but in the spring they are very large, varying in size in a manner similar to the testicle. It may however be alleged that the change in these bags might naturally be supposed to take place, even admitting them to be seminal rescrvoirs; but what happens in the prostate gland, which has never been supposed to contain semien, will take off the force of this objection; since in all animals which liave such à gland, and which have their season for propagation, it undergoes a limited change. In the mole the prostate gland is hardly discernible, but in the spring becomes very Iarce, and is filled with mucus?
No. 2807 exhibits the posterior part of a molé (Talpa Europrea), with the female, generative and urinary organs exposed. The uterus is turned to the right side, principally to display the course and attacliments of the ovarian and utcrine ligaments. The ovarian ligament commences anterior and external to the kidney, and carries forward with it a fold of the peritoneum as it advances to the ovarium. The uterine ligament, or ligamentum rotundum, is continued from the extremity of the cornu uteri, and runs along the posterior edge of the preceding fold to the part corresponding to the abdominal ring in the male, where it expands upon the fascia. The left ovary and .oviduet, the cornua and corpus uteri, are also exhibited. , The ovary is tuberculate, and inclosed in an almost complete peritoneal capsule. The oviduct is attached to this capsule, and pursues a wavy coulse to the horn of the uterus. No. 2808 displays the female organs of a mole in situ, the ventral parietes of the abdomen and chylopoietic viscera having been removed. The cornua itteri, cylindrical tubes, describe three abrupt crrves, be fore joining the corpus uteri, with which they form almost a right angle. The body of the uterus is continued without any constriction or interruption into the vagina: the whole canal is sonewhat fattened, and is dispused in two or ihree vertical curves or folds before it leaves the aldomen, No. 2801 is also the posterior half of a mole, with the female orgnns similarly displayed, but minutely injected. The cornua iteri are divaricated; to display the extent of the broad ligaments. No. 2810 is a section of a mole, in which the left ovary, oviduet, and utcrine hom, and the left side of the uterus and varina, have been removed, but exposing the remainder of the generative apparatus in sith, and exhibiting its relative position to the urinary bladder, the rectum, and the pelvis. The contracted area of the uterine cavity, the absence of any os since dividing it from the yagina, and the distinct museular and internal meinblanous tunics of the thattened tortuous utero-vaginal canal; are elearly displayed. Λ bristle is isserted into the right loorn of the nteris, and another is. passed through the elitoris, which is perforated by the urethra. 'Thus,' continues lirofessor Owen, the author of the catalogue, 'the uret lira, vagina, and rectum open by distinct orifices
ont the exterior of the body, and all three canal's he anterior to the pubic bones, and consequitently outside tle pelvis.'
No. 1224 of the same series exhibits the kidney of a mole injiccted and longitudinally divided. The uninjected tubulis may be plainly seen extending through the coitical substance, as is shown in the injections of the kidney op the horse, Nos. 1209 to 1214, both inclusiyc. (Cat., voll ii.) Generic Character-- Body stout and thick, furry; head elongated, pointed; muzzle cartilaginous, strength, ened by the sinout-bone; cyes very'small; no external ears ; anterior feet short and wide, with five united toes armed with trenchant nails proper for digging ; iosterior feet with five toes also, but weak; tail short
Dental Formula:-Inelsors $\frac{6}{8}$; canines $\frac{1-1}{0}$; molars $\frac{7-7}{7-7}:=44$.

Teeth of Mole, consiterably enlargei. (F. Cay.)
Example, Talpa Europica, the common mole.
This well-known animal, so faniliar to all that it would be a needless waste of space to describe it, is $L a$ Taupe of the French, Talpa of the antient and inodern Italians, Topo of the Spanish, Touperia of the Portuguese, Maulwerf of the Germans, Mol of the Dutch, Mruloud and Surk of the Swedes, Muldzarp of the Dances; Mole, Mole-varpi, Moldurarp, and Want of the nodern Bitisish; and Gwadd and Twrch duear of the antient Britisli.
Hubits, Food, Reproduction, \&c.-' A subterraneous Iife;' says Pennant, speaking of the mole, being allotted to it the sceming defcets of several of its parts vanisli; which, instead. of appearing maimed or unfinished, exlibit a most striking proof of the fitness of theii contrivance. The, breadth, strength, and shortness of the fore-feet, which are inclined sideways, answer the use as well as the form of hands, to scoop out the earth, to form its habitation, or to pursue its prey. Hall they been longer, the falling in of the earth would hiave, prevented the quick repetition of its strokes in working, or liayc impeded its course : the oblique position of the forc-feet has also this advantage, that it flings all the loose soil behind the animal.
'The form of the body is not less admirably contriyed for its way of life: the fore-part, is thick and, very muscular, giving great strength to the action of the fore-palt, cnabling it to dig its way with great force and rapidify, cither to pursue its prey or elude the scarch of the most active enemy. The form of its hind parts, which are small and taper, enalles it to pass, with great facility through the carth that the fore-fcet had flung behind; for had each part of the body been of equal thickness, its fight would have been impeded and its secirity precarious.

- The skin is most excessively compact, and so tough, as not to be cut but by a very sharp knife; the hair is, yery short and close-set, and softer than the finest silk, the 1ssual colour is black, not but that there are instances of thesc animals bcing spotted, and a cream-coloured, breed is sometimes found in my lands near Downing.
- The smallness of the eyes (which gave occasion to the antients to deny it the sense of sight ${ }^{\circ}$) is to this animal a peculiar happiness; a small degrece of vision is sufficient for an mimal ever destined to live underground ; had these organs been lareer, they would have been perpetually liable to injuries by the earff falling into them; but nature, 10 prevent that inconvenience, lath not only nade them very snall, but also covered them very elosely with fur. Anatomists inention (besides these) a third very wonderful contrivance for their security, and inform us that each eye is furnished with a ecrtain musele, by which the animal has the power of withdrawing or exerting them, according to its exigencies.

To make amends for the dimness of its sight, the mole is amply recompensed by the great perfection of two other senses, those of hearing and of sinelling: the first gives it notice of the most distant approach of danger; the other, which is equally exquisite, directs it in the midst of darkness to its food: the nose also, being very long and slender, is well formed for thrusting into small holes in searcly of the worms and insects that inhabit them. These gifls may with reason be said to compensate the defect of sight, as they supply in this animal all its wants and all the purposes of that sense.

- It is supposed that the verdant circles so often seen in grass-grounds, ealled by country-pcople foiry rings, are owing to the operations of these animals, who, at certain scasons perform their burrowings by cireungyrations, which, loosening the soil, give the surface a greater fertility and rankness of grass than the other parts within or without the ring.

The mole breeds in the spring, and brings four or five young at a time : it makes its nest of moss, and that always under the largest hillock, a little below the surface of the ground. It is observed to be most active, and to east up most earth, immediately before rain, and in the winter before a thaw, beeause at those times the worms and inseets begin to be in motion and appronch the surface: on the contrary, in very dry weather this animal seldom or never forms any hillocks, as it penetrates deep afler its prey, whieh at such seasons retires far into the ground. During summer it runs in seareh of snails and woms in the night time among the grass, which makes it the prey of ovis. The mole shows great art in skinning a worm, which it always does before it eats it ; stripping the skin from end to end, and squeezing out the contents of the body:

Thus far Pennant: but the most diligent and instruetive historian of the mole is Henri Le Court, who, flying from the terrors that came in the train of the French revolution, buried himself in the country, and, from the attendant on a court, became the hographer of this humble animal. The discoveries of this indetatigable observer have been laid before the public in the work of De Vaux (180.3), and a summary of them by Geoffroy St. Hilaire, in the Cours d'Ilistoire Naturelle des Mammiferes. The latter visited I.e Court for the purpose of testing his obserrations, and appears to have been charmed by the facility and ingenuity with which I.e Court traced and demonstrated the subterrannean labours of this obseure worker in the dark.

One of the experiments which Le Court made afforded ample proof of the rapidity with which the mole will travel along its passages. ITe watehed his opportunity, and when the mole was out on its feed at one of the most distant points from its sanetuary or fortress, to which point the mole's high rond leads, Le Court placed along the course of that road between the mole and the fortress several little enmp-colours, so to speak, the staff of each being a siraw and the flag a bit of paper, at eertain distanees, the siraws pencirating down into the passage. Near the end of the sulstermaneous road he inserted a horn, the month-picee of which slood out of the grome. When all was ready, I.e Court blew a blast loud enough to fright alt the moles within liearing from their propricty, and the little gentleman in velvet, whose presence at the spot he had well aseertained, was affected aceordingly. Down went the little flags in suceession with an astonishing celcrity, as the horrified mole, mishing alone towarls his sanetuary; came in contact with the Har-straws; and such mettle had terror put into the animal's hecls, that the spectators

- 'Aut pculis cagri lolero cutilia Lnlpx.' Virg., Georg. I., 183.
affirmed that its swiftnoss was equal to the epeed of a loorse at a good round trot.

This experiment whe perfectly satisfactory as to the auditory and tmvelling puwers of the mole; but another inade ly le Court equally proved that the amount of vision possessed by the amunal is amply sufficient for its wants, and that, with all the imperfections of this sense, its sight wams it of danfer. Le Court took a spare waterpipe or gutter open at both ends. Into this pipe he introduced several moles, successively: Geoflroy St. Ililaire stood by to wateh the result, at the farlher end of the tube. As long as the spectators stood motionless, the introduced mole made the best of his way through the pipe and eseaped; but if they moved, or even raised a finger, the mole stopped and then retreated. Several repetitions of the experiment produced the same results.

But we must describe the mole's domain. The principal point is the habitation, or, as it has been termed, the fortress, and is construeted under a considerable lillock raised in some кecure place, often at the root of a tree, under a bank, or any shelter that offers protection. The fortress is doned by a cement, so to speak, of carth which has been beaten and compressed by the architect into a compaet and solid state. Within, a cireular gallery is formed at the base, and communicates with a smaller npper gallery by means of five passages, which are nearly at equal distances. Within the lower and under the upper of these galleries is the chamber or dormitory, which has access to the upper gallery by three similar passages. From this habitation, we should here observe, the high road by which the proprictor reaches the opposite end of the eneampment extends, and the various galleries or exeavations open into this road, which the nole is continually earrying out and extending in its search for food, and which has been termed its hunting-ground. But to retum to the chanber. From it another road extends, the dircetion of which is downward at first, and that for several inches, when it again rises to open into the high road of the territory. Some cight or nine other passares open out from the external circular gallery, but the orifices of these never come opposite to the passages which connect the external gallery with the internal and upper gallery. The extent of these passages is greater or less, according to circumstances, and they each retum by an irregular and semicirenlar route, opening at various distanees from the habitation into the high road, which differs considerably from all the other passages and excarations, both in construction and with regard to the use to which it is applied. From the habitation this road is carried out nearly in a straicht line and forms the main passace of communication between the habitation, the different portions of the encampment, and the alleys leading to the hunting-ground which open info it on each side. In diameter it exceeds the body of a mole, but its size will not admit of two moles passing each other. The walls, from the reitcrated pressure of the mole's sides agaiast them, become smooth and compret, and its course is remarkable for the comparative absence of mole-hills, which are frequent in conucetion with the alleys and quarries, as they have been termed, in constructing which the earth is removed out of the wry to the surface. Sometimes a mole will lay out a sceond or even a third road in order to the extension of its operations. Sometimes several indivichals use one rond in common, though they never trespass on each other's hunting-grounds. In the event of common usare, if two moles should happen to meet, one must retreat into the nearest alley, unless both should be pugnacious, in which ease, the weakest is often slain. In forming this funnel, the mole's instinef supplies the place of science, for he drives it at a greater or less deptls, according to the quality of the soil, or concurrent circomatanees. When there is nothing superincumbent threatening a disturbance of its security, it is offen exeavated at a depth of some four or five inches; but if it is earried umber a rond or a stream, a foot and a half of enrth, sometimes more, is len above it. Thus does the little animal carty on the subterrancous works necessary for his support, travelling, and comfort ; and his tunncis never fall in.
The alleys opening ont from the sides of the high road have generally a somewhat downward inclination from their commencement towarls their end. It has been observed that when, on opeuing one of these alleys, a plens
tiful supply of food is found, the mole proceeds to work out branch alleys from its termination, up-heaving new mole-hills as it advances in quest of prey: should howcver the soil be barren of the means of existence, the animal commences another alley at a different part of the high road. The quality and humidity of the soil, which regulate the abundance of earth-worms, determine the greater or less depth of the alleys.

Habitation or fortress of Mole.
The man road being the highway of communication to its different hunting-grounds, it is necessarily passed througla regularly in the course of the day, and it is in this road that the mole-catcher scts his traps or practices his devices to intercept the animal between its habitation and the alley where it is carrying on its labours. Some molecatchers will tell you that the hours when the moles move are nine and four, and others that, near the coast, their movements are influenced by the tides; to which statements the hearer is at liberty to give as much credence as he chooses. Besides the various traps which are set for them, there is, or very lately was, a man who travelled the country with a dog and destroyed then without any trap at all, by the following process: Taking his station at the proper time and place, attended by his dog, and armed with a spear or spud, he waits till the dog indicates the presence of the mole, and then spears or spuds the animal out as it moves in its run. Pointers will stop at moles as steadily as at game, when the latter are straying on the surface.

Besides the excarations already noticed, the moles pursue another mode of hunting in light loose soils, newly sown, when gentle rains have led the earth-worms towards the surface, along which they follow the worms up, rapidly digging a shallow trench in the superficial layer of the soil. The female, when with young, is said to be principally rddicted to this casier method of subsistence.

All the animal passions are strong in the mole, and it is a most voracious animal. It has been supposed that it was a vegetable as well as an animal feeder, and, as a proof of the former, the fragments of roots, \&cc., found in its stomach have been appealed to; but there can be no doubt that these vegetable matters had been conveyed into the stomach with the earth-worms (their favourite food) and the larva of insects. The structure of its teeth indieates that its food should be animal, and indecd mice, lizards, frogs, and even birds have been known to fall victims to its voracity; but it eschews toads even when pressed by hunger, deterred probably ly the acrid secretion of their skin. [Froas, vol. x., p. 493.] All doubts as to the carnivorous nature of the molc have however been removed by the experiments of M. Flourens, who found that moles restricted to carrots, furnips, various kinds of herlos, and vegetable substances which were abundantly supplied to them, died of hunger. The mole inulecl appears to require much nourishment, and a short fast proves fatal to it.

We must not omit to notice the provision of this animal to secure a supply of water, for its voracity makes it a great drinker. If a pond or ditch be at hand in those cases where many noles use the same common highway, a cases where many noles use the same common highway,
distant, the animal sinks little wells in the shape of deep perpendicular shafts, which hold water. These wells have sometimes been seen brim-full.
During the season of love, at which time bloody battles are fought between the males, the male pursues the female with ardour through numerous divaricating superficial runs wrought out with great rapidity, termed 'coupling runs' and 'rutting angles' by our mole-catchers, and ' traces d'amour' by the Frencli. The sexual attachment appears to be very strong in the moles. ${ }^{1}$ Le Court often found a female taken in his trap, and a male lying dead close to her. The period of gestation is two months at least, and the young are generally produced in April, but have been found from that month to August. From four to five is the general number, though from three to six have been recorded, and in one case seven* in one nest. The nest is distinct, usually distant from the habitation, and not always crowned with a hillock; but when a hillock exists, it is much larger than an ordinary mole-hill. It is constructed by enlarging and excavating the point where three or four passages intersect each other; and the bed of the nest is formed of a mass of young grass, root-fibres, and herbage. In one case, Geoffroy St. Hilaire and Le Court counted two hundred and four young wheat-blades.
In the Museum of the Royal College of Surgeons in London, No. 3573 of the Physiological Series is the posterior half of a pregnant mole, with the uterus and three foetuses, each about half an inch in length, exposed in situ: the ovarium is contained in a thin and transparent peritoneal capsule, around which the ovidnct may be observed passing in the form of an opaque, white, narrow band: the uterine dilatation next the left ovarium remains open, and the foetus is exposed inclosed in its membranes; the other uterine dilatations are left entire; they resemble blind ponches developed from one side of the uterine tube. . No. 3574 is the postcrior extremity of the trunk of a pregnant mole, with the uterus and five foetuses displayed in situ; one of the dilated clambers of the left utcrine horn is laid open, and the foetus is exposed with its membranes. The placenta is a spongy, vascular substance, in the form of an oblong flat band, with its long axis parallel to that of the foetus. Onc of the uterine chambers, with the corresponding chorionic sac, is laid open in the right horn of the utcrus, and the foetus is displaced. No. 3575 presents the female organs of a pregmant mole with four foetuses, each one inch and a quarter in length; one of these is cxposed in situ in the uterine sac, two others hang suspended by their membranes and the placentex from the parietes of the uterus: in the lower of these embryos the foetal placenta is partly separated from the maternal portion, showing the fine areolar structure of the latter, which receives the foetal placentary filaments: the maternal placenta is minutely injected, but no portion of injection has passed into those fretal filaments which are here exposed; the capacity of the chorion is very little larger than the foetus which it contains. In the embryo which has been displaced from the chorionic sac, the short umbilical cord, and the characteristic form of the short and strong fossorial anferior extremifies, may be discerned: the external apertures of the eyes and ears are completely closed. The canal leading from the uterine horns to the external opening of the vagina is laid open, showing the absence of any os tince dividing the uterus from the vagina: a bristle is passed into the urethra, which is continued through the clitoris. The author of the catalogue (Professor Owen) obscrves that the peculiar position of the vagina of the mole, on the outsile of the pelvis, is well displayed in No. 2810, albove noticed, and that by this modification the contracted pelvis offers no impedinient to parturition. (Cat.)

Heavy charges have becn brought against the mole by agriculturists and horticulturists, and the more grave accusation of being ancillary to the destruction of dykes has been in some instances proved upon it. Mr. Bell, in his interesting Ifistory of British Quadrupeds, sums up the evidence against it and in its favour thus:- 'In order to arrive at a true solution of the question, it is necessary to divest our minds as well of the prepossessions of the naturalist as of the prejudices of the agriculturist; for we shall probably find, as in most other cases, that the truth lies between the two extremes.' According: to its accusers,

- Loudon's ' Magnzing of Nat. MIsta., vel. vilh.
there is 20 portion of 1 ts labours, no peeullarity of its habits, no function of its organization, that is not the means or the cause of ravage and devastation to our cnltivated grounds. The soil; say they; is rendered dry and sterile by its snbterrancau rouds; the crops are killed ly the cxposure or the destriction of the roots: the plants thenselves are overthrown by the construction of the mole-hills, or they perish from their roots being paten, or they nre dug up and seattered by the superficial furrows which the animal ploughs up either in search of food or in pursuit of its mate; large quantities of young corn too are carried ofl by it to forni its nest; and, finally, its abandoned fortress becomes the resort of the field-mouse and other noxious animals. Thus the field and the meadow, fle garden and tho plantation, are alike the scencs of its ravages; and De Taux calculates that the loss which it oceasions to the spring corn alone may be calenlated at one-eighth of the whole produce. Then, on the other hand, these prejudiced judyes allow nothing for the benefit which arises from the destruction of innumerable worms, and of insects both in the larva and perfect state: this ada antage is in faet denied by De Vaux, who declares that the mole feeds only on the most harmless of those animals, the carth-worm, and that it refuses those whieh are injurious to mankind. Its more henevolent adrocentes, on the other hand, contend not only that the injury which it perpetrates is slight, but that it is more than counterbalanced by the benefit, which it produces by turning up and lightening the soil, and espectally; by its immense dcstruetion of carth-worms and many other noxious animals which inhabit the superficial laycr of the ground, and occasion great injury to the roots of grass, corn, and many other plants. If we examine the real nature and degree of its pujuries on the one side, and its utility on the other, we shall probably find that both parties are erroncous. The fact of its devastations cannot be denied, it is only in the degree and extent of them that, the estimation is incorrect ; and whilst its utility in clearing the ground of worms aid similar causes of injury mist also be allowed, it can seareely be sustained that the lightening of the soil by the turring up of its hillocks is, at most, more than a very equivocal source of advantage.
Thus, we see that 'much may be said on both sides.' We have heard advocates for the, mole declare that in sreat shecp-walks whence they have been rooted out, the wirlole chiaracter or the feed, has been altered, and the exteruinators, have been obliged to introduce them again, and we have heard such stories denied. Too much stress however may be laid ou its serviees as a destroyer of the earth-wornt; for it may be well doubted whether it aids the agiculturint by the destruction of an aninal that does so mulch for the soil. [Lemaricers. vol, xiv., p. 196.]
Whatever may be the nierits of the case, the persccution of these auinals in cultivatced countries amounts almost to a war of extermination. The numbers annually slaughtered are enormous. Mr. Bell states that Mr. Jackson, a iery intelligent inole-cateler, who had followed the crant for thirty-five sears, liad destroyed from forty to. fifty liousand. But all mole-exterminatory must yicld to Le Court, who, in no large district, took, in five monihs, six thousand of thenı.
Moies are good swimmers, and their bite is very sharp: when their blooll is upa their feroeity is great, and they lieep their hold like a pull-log.
As to the question whether the species under considerAlinn is thic aypular (irmídaE) of Aristotle, wlio describes lis animal as blind, see the article Murides, vol. xv., p. 516 . Geographicul Distribution. - The conmon mole is found throughout the greater wnrt of the continent of Europe and ifs larger islands. In Greeece it is snid to lie comparatively rare. We are ov errun with it in most parts of Eng-land nod Wales, but it does not appear to have been found in the northerm extremity of Scolland, though it is freguent enough in the soith. There is no record of its liaving leen seen in the Orkney lsles, Zetland, or Ireland. The Prince of Musigunno lins well figured, in his excellent work, Iconogrefiu della Firuma Itulica, the species under consideration and the Tilpa cecca, which may be the Aepalar of Aristote. In this last species thi uniddle incisive teeth are longer than the rest; in the comiuun mole they are all equal, and Do Vaux states that there is some differenoe, thougll not great, in the habits and arehiteeture of the two speeies. Mr. Bell suggests
that as both species are inhabitants of Europe, the oriminal trivial name laropea should be dropped, nud Brisson's name, vulgaris, be adopted for the common species.
For Dr. Richardson's acconnt of the true inoles brought from America, see the article Sorkcid.e, vol. xxii., p. 205.

Fossil Moles.

The fossil remains of the inole have been found in the bone-caverns; as, for exanple, in the cave at Küstritz and at l'aviland (sec Buckland, Reliquice Dituriane). They have also been found in the bone-eaverns in Belgium (Schmerling).

Bones of moles have been ohtained from the brown clay of Norfolk: they were, we understand, first taken for the remains of lizards.

The questions which arise upon this discovery are:-
lst. Were they true fossils of that formation or nubsequently introduced? and this their condition might determine.
2nd. Are the fossil remains identical with the bones of the common mole?

An inspection of the remains themselves might convey a solution of botla thesc questions, and we are informed that the fossils are, through the kindness of Professor Sedgwick, about to be sent up to Professor Owen.

But throughout this inquiry it will le neeessary to bear in anind that though this quadruped is a denizen of the carth, performing all its functions, with little exception, below the surface, and tliough we might for that reason be led to expect the frequent occurrence of its remains in a fossil slate, true foskil bones of the mole lave not hitherto been deseribed. The danger to be guarded against with regard to those specimens found in the newer and superficial strata is that a burrowing animal may have penetrated into those fossiliferous beds subscquently to their formation and the deposit of their organized contents. We therefore look forward to Professor Owen's opinion upon the condition of these remains and their specifie distinction with inuch interest.
TALUS, or 'TALUT, probably from 'taglio,' Ital., a cut, is a term used chiefly by writers on tortification, in speaking of a rampart or parapet, to signify a surface which is inclined to the horizon. Thus the upper surface of a parapet is called the superior talus or slope; and that surface of a rampat or parapet which is towards the country; or towards the town, is called the exterior, or the interior, talus of the work (fig. 2, Bistiox).
The superior talus of a parapet is usually formed in a plane which, if produced towards the country, would nearly ineet the top of the counterscarp before it, in order that the defenders of the rannpart may be able to fire into the covered way in the event of the latter being oecupied by the enemy, their muskets being laid upon that slope. The exterior or the interior talus of any worla of carth usually forms, with the horizon, an angle of 45 degrees; such being the inclination at which the surface of carth, of medium tenacity, will stand msupported.
TAMAN, a peninsula, or rather a delta-island, is formed by the main branch of the river Kuban, whieh empties itself into the Blacks Sea, and a small branch of the same river, which flows into the Sea of Azof north of the old fortress of Temrult. The western or large part of the island stretehes hetween the sea of Azof on the north aitl the Black Sea on the sonth, and is bounded on the west by the Strsit of Yenikale, the antient Bosporus Cimmerius, and the Bay of Taman. The island resembles the open claws of a lnbster, embracing the Bay of Taman. Its lengtli is 57 miles, and its greafest brendth 22 miles, but the real surface is far from corresponding 10 these dimensions, the middle of the island being occupied by the large Temrukskoi Liman, or Lake of Temruk, and the whole of the remaining part being notehed by creeks and hars in such a manner as to present inther the skeleton of an intund than ar real island. The sonth-western part of Truman, tho antient peninsula of Corocondama (Pompl. Mela, i. 19 ; Strabo, p. 49\%. Casaub.) presents it solid mass traversed by several ranyes of hills from 150 to 180 feet high: they run from west to east. and near the village of Sennaya-Balka form a bifureation. One branela runs between the Kubanskoi Jiman, or the lake formed by the Kuban before it reaches the sea, und the lake of Temruk, and terminates in a slip of land which divides this lake into two unequal parts. The other branch, the direc-
tion of which is north-east, forms the isthmus between the lake of Temruk on the east, and the bay of Taman on the rest, and terminates before it reaches the isthmus between the lake of Temruk and the Sea of Azof.' The northwestern part of Taman, or the peninsula between the Sea of Azof and the bay of Taman, is no less elevated above the sea, but although it is a continuation of the mainland, it is separated from thè eastern hills by a flat sandy isthmus, which seems to have been covered by the sea at "a period not very remote from our own times. All these hills are mere masses of sand and pebbles cemented with clay. The higher part of them is barren, but the slopes, and the low grounds between them and the sea or the lakes, are covered with soil and fit for agriculture. They also make rich pasture-grounds. The isthmus between the Temrukskoi Liman and the bay of Taman, and principally that between the lake of Temruk and the Kubanskoi Liman, have a very pleasant aspect, being covered with the neat farmhouses of the Cossacks; and on the meadows there are numerous flocks of eattle, some of which are sent thither aeross the strait from the neighbouring coast of the Crimca. The eastern part of Taman is formed by two flat and narrow isthmuses, and a somewhat broader traet of lowland between the two branches of the Kuban. The whole of this country is marshy, partly covered with pastures and partly with a luxuriant vegetation of rushes and reeds, which, in the neighbourhood of Kalaus, as Dr. 'Clarke states, attain a height of from sixteen to twenty feet. Everywhere there is a struggle bètween land and water; gulfs become creeks and lakes, creelis are chianged into marshes, and as soon as these get a continental aspect, the waters again swallow them up. In the rainy scason, says Palles, all this country is overflowed by the waters of the Kuban, and the higher part of Tanaan is separated from the continent by an immense lake which extends from one sea to the other; but notwithstanding the apparently overwhelming power of the waters, the solid element makes "constant progress. Thus M. Dureau de la Malle is correct when; in lis 'Géographie Physique de la Mer Noire,' he says that all the lakes on the shore of the Sea of Azof, which are scparated from the sea only by flat and narrow isthmuses? have once been bays and gulfs, and that the barriers between them and the open sea are a deposit formed by the astonishing masses of mud and sand carried into this sca by the Don and its tributary rivers. As to the whole eastern part of the island of Taman, it is also a mere reeent production of the immense quantities of elay and mud which the Sea of Azof and the Kuban have deposited before the month of this river. The western and elevated part however in its whole geognostical structure belongs to the opposite continent of the Crimea, from which it has apparently been separated by the eurrent of the Cimmerian Bosporus. Two characteristic peeuliarities of this latter part are the Sewernaya Kossa, a long but very flat and narrow slip of land which stretehes from the north-west extremity of the northern peninsula in a south-west dircetion to the middle of the mouth of the bay of Taman ; and the eluster of small islands, the principal one of which was known' to the Byzantines by the name of Ateeh, which extend from Point Yunaya north-west till they reach the centre of the strait. These islands vill probably become a' continuous land,' and by joining the opposite Scwernaya Kossa, will separate the whole bay of Taman from the Bosporus. Numerous small craters are situated on the ridge of the hills around the Bay of Taman, as well as along the lake of Temruk. They present all the external appearanees of voleanoes; though the matter whiel they throw out is not lava, but a thiek mud of a déep black eolour, which they discharge at irregular periods. The largest of these eraters is situated on the southern extremity of the northwest peninsula, and a deseription of the most remarkable cruption of it is given by Pallas in the work cited below. This traveller atfributes these phenomena to the burning of an extensive layer of coals, upon which indeed the whole island of Taman seems to repose. The apparition of an island, which, on the 5th of September, 1799, suddenly rose from the Sea of Azof, near the coast of Temruk, a plenomenon which was preceded and accompanied by a kind of earthruake, and all the other symptoms of a volcanic eruption, was undoubtedly the effect of the same subterraneous causc. The new island however soon disappeared in the sea.

The Greeks knew this remarkable island under the name of Eion (Hiciv), and founded sevcral colonies 'in it: The most considerable of them were-Phanagoria, a famous commercial town, which contained a beautiful temple of Aphrodite of Apaturon (Strabo, p. 495. Casaub.); Kepos, or Kepi, a colony of the Milesians; Hermonassa, founded by the Ionians; and Achillejon: some ruins and marbles are the only traces that remain of their antient splendour. The island belonged for a'long period to the kingdom of Bus' porus, and was afterwards conquered by Pharnaces, the son of Mithridates. At the beginning of the middle ages it belonged to the dominion's of the Goths, and afterwards of the Khazars, a Tuirkish people, renowned for their industry and commerec. It was then known under the name of Tamatarkha. In the tenth eentury a Russian prince founded there the petty kingdom of Tmutarakan; the greater part of the inhabitants however were Tsherkessians and Turks,' and, from the fime of the invasion of the Mongols, the Tartars remained the only masters of it. Numerous old tombs still attest their long residence on the island. They were at last driven' out by the Russians, who repeopled the country with Cossacks in order to defend it against the invasions of the Tsherkessians beyond the Kuban. There are now only tivo towns: Tmútarakan, the Tamatarkha of the middle ages and the Phanagoria of the Greeks, and the present town of Phanagoria, which was built by the Russians on the shore of the bay of Tamán, three miles east from Tmútarakán, on' account of its harbour being deeper than that of the latter town.: " (Pallas, Bemerkungen auf einer Reise in den Sïdlichen Provinzen des Russischen Reiches; Dr. Clarke, Travels in Russia. The best map of the island of Taman is contained in the great Atlas of Russia published at'St. Petersburg; the map in Pallas's Bemerkurgen is also good; that of Dr. Clarke has some intercst for lovers of antiquities, but is far from being geographically exact.)
TAMA'NDUA. [ANT-EATER, vol. ii., p. 65.]
TAMARICA'CEÆ, a small natural order, belonging to the syncarpous group of polypetalous Exogens. "The species are either shrubs or herbs, having straight rodlike branches, with alternate entire leaves, resembling seales; the flowers are in dense spikes or racemes. The calyx is $4-5$-parted, persistent; the petals inserted into the calyx, both with imbricate æstivation; stamens hypogynous, distinct or united, equal in number with the petals or twice as many; ovary superior, with a short style and 3 stigmas; fruit a eapsule, 3 -valved, 1 -eelled, with numerou's seeds, which are comose; embryo straight with an inferior radiele.

Tamarix germanica. c, cutting, showing tho straight branches and scale-like leuver; b, single flower; c, flower with ealyx and corclla removed sliowing monalel phous stamens : d, capsulo with comose seeds cscaping.

This order is placed by De Candolle with those which have perigynous stamens, but there is no doubt now that
it has hypogynous stamens, although elosely related to the perigynous order lllecebracea. It has also uflinities with Portulacee, Lythraceas, Onagracese, and Reaunuriасен.
The species are found only in the Old World; the greatest muber being met with in the basin of the Mediterianean. According to Ehrenberg, the order is bounded on the sonth by tlie Sth or 9 th parallel of \mathcal{N}. lat., and on the north by that of 50° and 55°, in Siberia, Germany, and Eneland.
The plants of this order are innocuous, and all are more or less astringent; and their ashes aner burning are remarkable for posecssing a large quantity of sulphate of soda. Myriearia Gennaniea is recommended as a diuretic. [Tamarix.]
TAMARNDD, Medical Properties of. Of the two varieties of the only speceies of this genus the fruit is mueh larger in the East Indian than the Wrest Indian. The shell being removed, there remains the flat square hard seeds, imbedded in a pulp, with membranous fibres ruming through it. In the kast Indies the pulp is dried, either in the sun, and this is used for home consumption, or with salt added, and dried in copper ovens, which kind is sent to Europe. (Crawfurd's Indiun Archipelago.) This sort, called natural tamarinds, is much darker and drier than the West Indian, which are called prepared tamarinds.
The West Indian tamarinds reacl maturity in June, July, and August, when they are colleeted, and the shell being removed, they are put into jars, either with layers of sugar put between them, or boiling syrup poured over them, which penetrates to the bottom. Prepared tamarinds therefore contain much more saecharine matter than the others. According to Vauquelin, prepared tamarinds contain per cent. citrie acid $9 \cdot 40$, tartarie acid $1 \cdot 5 \overline{5}$, malie acid $0 \cdot 45$, bitartrate of potash $3 \cdot 25$, sugar $2 \cdot \overline{3}$, gum 4.7 , vegetable jelly (peeten) $6 \cdot 25$, parenchyma $3+35$, water $2 \pi \overline{j 2}$. This prepared pulp has a pleasnut acid astringent taste, with a somewhat vinous odour.

It presents an example of one of those natural combinations of gummy, saecharine, and aeid principles whieh are of such great utility in hot climates. It is used not only in India, but in Africa, as a cooling artiele of food, and the travellers aeross the deserts earry it with them to quench their thirst. In Nubia it is allowed to stand in the sun till a kind of fermentation takes place : it is then formed into calies, one of which dissolved in water forms a retreshing drink. In India a kind of sherbet is made with it, and by the addition of sngar it becomes a source whenee vinegar is readily obtained. In the fevers and bilious complaints, and even dysenteries of these elimates, it proves highlyserviceable ; in small quantity it aets as an astringent, but in larger it proves laxative. Boiling water poured over tamarinds yields a clrink whieh is very grateful in the inflammatory complaints of our own country, particularly in the bilious fevers of autumn. An agreeable whey nay be made with it, by boiling two ounces of tamarind-pulp with two pints of milk. Tamarinds are frequently given along with senna, but they are stid to lessen its purgative property. They form an ingredient in the confectio senmae and confectio eassiac.

In times of scareity in India the seeds are eaten, being first toasted and then soaked for a few hours in water, vhen the dark skin comes easily off; they are then boiled or dried, and taste like common field-beans.
TAMARINDU'S, the name of a genus of plants belonging to the Rectembryons division of the natural order legnminosae. It possesses the following characters:-ealyx clent, tubular at the base, the three upper lobes are reflexed, the two lower ones joined together, but usually indentate at the apex; petals 3 , altemate with the three upper lobes of the calyx, the middle one encullate and the latemal ones ovate; the stamens are 9 or 10 in number, two or three of which are longer than the others, united at the lase, and bearing anthers, whilst the renainder are sterile; the fruit is a lepume seated on a pedicel, I-celled, compressed, with from 3 to 6 seeds, and the valves filled with pulp between the endocarp and epicarp, their inner and outer lining; the seeds are ovato-quadrate in form, possessing cotyledons unequal at the lase.

There are only two species belonging to this genus, both of which are trees with aloruptly pinnate leaves, bearing many pairs of small leaftets and racemes of flowers.
The Tamarindus Indica, the Fast Indian Tamarind, was the earliesi known species, for a knowledge of wheh, in

Furope, we are indelted to the Arabians. Dr. F. Hami, ton, in his commentary on the 7ortus Malabaricus, remarks on the specifie designation of this phant, that it is ' a vile plcomasm,' the fact of its being Indian being referred to in the gencrie name Tamur-Indus, whence our word Tamarind. The Indian Tamarind is distingnished by its elongated legumes, which are six times or more longer than they are broad. It is a native of varous districts in the Enst Indies and also of the tropical purts of Africa. It forns a handsome tree with spreading branches bearing leaves of a light colour and flowers with a straw-coloured ealyx and yellow petals, streaked with red: the filaments of the stamens are purple and the anthers brown. The timber of this tree is very firm, hard, and heasy, and is applied to many useful purposes in building.
The second species is the Tumarindas Occidentalis, the West Indian Tanarind, whieh is distiuguished from the other by possessing short legumes not more than thrce times longer than they are broad. It is a native of South America and the Wret India Islands, forming also a large spreading tree, with yellowish flowers streaked with red and purplish stamens.

These plants may be grown in this country, by sowing the seeds, which ean be easily obtained, in a hot-bed, and when the young piants abtain a height of two or three inches, planting them out in separate pots. For the medieal and dietetie properties of the tamarind see Tasauivds.
TAMARIX, the name of a genus of plants, the type of the natural order Tamaricaceæ. It has a 4 - or 5 -parted calyx; 4 or 5 petals; 4 or 5 stamens altemating with the pefals, mited at the base; a tapering ovary with 3 stigmas : erect tufted seeds, the tut being composed of a number ot hairs proceeding from the apex of the seed. The species have generally paniculated spikes of small flowers of a red colour.
T. gallica, the French tamarisk, is a glabrous glaucous shrub, with minute acute leaves clasiping the stem, with slender lateral spikes of flowers, five times longer than broad. This species is a native of France, and also along the Mediterranean: it is also a native of the coants of Cornwall, Hampshire, and Sussex, in England. Elirenberg has described a great number of varieties of this species, one of which, the T. g. mannifera, known by its glaucous powdery appearance, he says, produces the manna of Mount Sinal. This manna however does not contain any erystallizable mannite, but, according to Mitseherlich, eonsists of notling more than a mueilaginous sugar. This is one of the speeies of this genus remarkable for the large quantity of sulphate of soda which its ashes contain.
T. Indica, the Indian Tamarisk, is a glabrous greenish plant, with stiff twiggy branches; short ovate acute leaves with white edges; clongated spikes of flowers, with bracts shorter than the flowers and longer than the pedieels, and stanens longer than the corolla. This plant is a native of the East Indies. It is subjeet to the attacks of a eynips, which procluce galls that possess astringent properties, and, aceording to Dr. Royle, they are on this account used in medicine by the native doctors of India. The same property also renders them valuable in dyeing. Other Indian species of the Tamarisk produee galls, which are used for the same purposes as those of T. Indica.
T. Africana, the African Tamarisk, is a glabrous glaucous slirub, with lanecolate imbricated leaves, with dense, scaly, simple, sessile racenmes, with ovate chafly bracts, and a 3 -valved eapsule. This is a native of the sands along the shores of the Mediterranean. It is found in Mauritiana, arond the Bay of Naples, in Fgypl, and in the I.evant. It has very much the appearanee of T. Gellica, but its flowers are larger, and bark darker. Like ' T. Gallica, its aslues yield a large quantity of sulphate of soda. The bark, as in most of the species, is slighty bitter and astringent, and has been used in medicine as a tonic.
T. Oricnfalis, the Eastern Tamarisk, is a tree attuining a height of from 10 to 20 feet: it is glabrous all over, with minnte, distant, sheathing, mueronate leaves, with slender lateral spivies of flowers, and a 4 -valved capsule. This is a native of Arabia, P'ersin, and the Fast Indies, and is one of the largest and most elegant of the species of the Tamarisk. One of the fincst specimens of this tree existing is at Babylon. The T. Chinchsis appears to be a varicty of this plant.
Nearly all the species are elegant and delieate slurubs,
deserving a prominent position in the shrubbery. The hardy species do not require much eare in their cultivation. They will grow in almost any soil or situation, and may be propagated by cuttings planted out in the open sround either in the spring or autunan, where they will jeadily strike root. Those requiring heat and protection thrive best in a soil composed of loam and peat, and may also be propagated by cuttings placed in sand under a band-glass.

TAMA'TIA, Cuvier's name for the Puff-Birds.
Mr. Swainson, in addition to his description in the Zoological Illustrations, speaking of these birds in his Classification, says, that they sit for hours together on a dead or withered branch, from which they dart upon such insects as come sufficiently ncar, and that the Hermit birds (Monassa, Vieill.) have similar habits. [Barbets, vol. iii., p. 434 ; K1NGFISHers, vol. xiii., p. 227.]

TaMAULIPAS. [Mexican States.]
TAMBOW, a province of Great Russia, is situated between $51^{\circ} 30^{\prime}$ and $55^{\circ} 20^{\prime} \mathrm{N}$. lat., and between $39^{\circ} 40^{\prime}$ and $43^{\circ} 40^{\prime} \mathrm{E}$. long. The area is 24,200 square miles, and the population $1,600,000$. It is bounded on the north by Nisehnei-Novgorod, and for a very small distance on the north-west by Wadimir; on the south by Woronesh; on the trest by Riasan, Tula, and Orel (by the two last for a very small distance); and on the east by Penza.

This government is a uniformly level country, without mountains, large rivers, or considerable lakes: on the north there are great forests and on the south extensive steppes. The soil in the northern half is sandy, marshy, and poor: in the southern part it mostly consists of loam or black mould, and is fertile and productive. The steppes produce excellent pasturage, and when they have been brought under cultivation, make good arable land: they are desicnated as steppes only because they are destitute of wood. The river Oka enters the government from Riasan, but passes only througl one eircle, where it is joined hy the Mokseha, a considerable stream of which the Zna is a tributary. The Oka runs northwards to join the Volga. Another great Russian river, the Don, passes throngh a small part of the government. In the forests on the north there are marshes which might easily be drained. The mineral-waters at Lepetzk are celebrated and much frequented. The climate is temperate and healthy, but colder in winter than in Tula and Riasan, which seems to be owing to the slope of the open plains being towards the north.

The northern part of Tambow has a poor soil, but the soutl is very fertile, and this province ought to be a corn country if a better system of cultivation were introduced. In the soutli the land does not require to lie fallow, and needs no manure, but aequires from the feeding of eattle sufficient strength to produce fresh crops, whicli generally yield from five to ten fold. In the north the land is indeed not manured, but after yielding five or six erops must be fallow for some years; and then it produces from three to five fold. All kinds of com usually grown in Kussia are raised, wheat, rye, oats, millet, and buckwheat, poas and other pulse; poppies, great quantities of hemp, but barley, flax, and hemp are cultivated only in some circles. Iorticulture is in a very backward state, for though there are many gardens, only the most ordinary vegetables are cultivated; some hops are grown in the gardens, but there is little fruit, and that of the most ordinary kinds. Though the forests are so extensive, it is only in the northern eireles that there is sufficient wood for fuel and building. 'The erown forests supply timber for the navy: in their vieinity the inhabitants are for the inost part earpenters, coopers, and cartwrights, or employed in making pitch, tar, lanp-black, and chareoal. The breeding of cattle is carried on to a very great extent in the fine pastures and meadows of the steppes. The steppe from Tambow to Nova Khopertskaja-Krepost is covered with immense herds of oxen and horses. Oxen are used for draught, and great numbers are fattened for exportation. Sheep and swine are bred in great numhers, but the wool of the sheep is coarsc: of late years the breed has been improved by the importation of merinos. Domestic poultry suffices for the consumption of the inhabitanty: there is little game, and fish is by no means plentiful. Among the wild animals are the marmot and the hamster. Great quantities of hees are kept. The mineral produets are lime, freestone, iron, and some saltpetre.

The manufactures of this government are unimportant : the peasantry barely make their own elothing: in some parts they manuffecture wooden utensils, and agricultural implements, which they take to the fairs. A great advanee has however been made within the last twenty-five years. The brandy-distilleries are numerous. The export trade in the products of the country is very cousiderable. The pirineipal articles are wheat ($1,200,000$ chetwerts, or 864,000 English quarters), cattle, honey, tallow (400,000 poods, or about 500 English cwt.), butter, cheese, wool, hemp, iron, brandy, hides, coarse cloth, and wooden wares. Properly speaking there is no great comnercial town. Tambow, Selatma, and Morschansk alone have some commerce with foreign countries.
The great majority of the inhabitants are Russians. There are some thousands of converted Tartars and Mordwins, and a few gypsies. These Tartars and Mordwins live in the same nammer as the Russians, but retain their own dialect, and live apart from the Russians, and generally intermarry with their own people. The religion of the Mohammedan Tartars requires a different mode of life. Among these various nations the Tartars are the most civilised, have the most knowledge, and the purest morals, and enjoy the most prosperity.

Education is at a low ebb. Aecording to Sehnitzler, only 1 out of 325 of the population receives any school instruction. The only printing-office belongs to the government.

The Greek chureh is under, the bishop of Tambow and Sehazk, who has in his diocese 739 parishes and 6 monasteries. The Mohammedan Tartars have thelr mosques, inams, and teachers.

TanBow, the eapital of the government, is situated nearly in the centre of the province, on the river Zna, in $52^{\circ} 44^{\prime} \mathrm{N}$. lat. and $41^{\circ} 45^{\prime} \mathrm{E}$. long. It is a large town, with 20,000 inhabitants, and was founded in 1630 , as a bulwark against the Nogay Tartars. Scarcely any traces of the antient fortifications now remain. There is nothing remarkable in the town, which has however been much improved in its appearance since the beginning. of this century. Almost all the houses are built of wood: tne principal buildings are the monastery of Our Lady of Casan, in which there are two churches; seven stone and six wooden churches, the gymnasium, and the eivil hospital. There is a military school; founded and endowed by the nobility in 1802, a seminary for priests, and a district selool. The bishop resides in this city. The inhabitants manufacture shawls, kerse y, sailcloth, cordage, and woollen eloth; and there is an Imperial alum and vitriol manu. factory. The inhabitants carry on some trade, but their chief oecupation is agriculture.
The following are the other chief towns. Jelatma, the most northerly town in the government, situated on the left bank of the Oka, earries on by means of that river a very great trade with Moseow: it has ten churches, eight of which are of stone : the inhabitants, 6000 in number, have some manufactures of woollen eloth, vitriol, and sulphur. Koslow, situated on the Lesnoi Woronesh, has above 8000 inhabitants, who follow various trades and professions: near the town is the eonvent Troitzkoi, where a great annual fair is held. There are eight churches, of which five are of stone: the prineipal trade of the town is in oxen, salt meat, and hides. Lipetsk, on the Woronesh, near the north extremity of the government of that name, a town with 6500 inhabitants, is celebrated for its mineral-waters, which were first used in the reign of Peter the Great. . Morsehansk, a town of 6000 inhabitants, situated on the Zna, has manufactures of linen, sail-cloth, eordage, and tallow, and a brisk trade in corn, cattle, and honey. (Hassel, Geography; Stein; Hörsehelmann; Sehtlbert; Sclınitzler.)
TAMBURINI, PIETRO, born at Brescia, in 1737 , studied in his native town, took holy orders, and was made professor of philosophy, and afterwards of theology, in the episcopal seminary of Brescia. After filling those chairs for twelve years, he was invited to Rome, where Clement XIV. (Ganganelli) made lim director of the studies of the Irish College, in which situation he remained for six years. In 1778 he was recalled to Lombardy by the empress Maria Theresa, and appointed professor of theology in the university of Pavia, and at the same time director of the studies of the German Hungarian college in that city, and also censor of the press. In 1795 he was

Vol. XXIV.-E
minde Profesor Fmeritus, with a pension. In 1507, when the French invaded Lombarly, Tamburini was obliged hy the new goternment to resume active duties at Pavia, as professor of moral philosopliy and of 'jus maturse', an arluons tax in those times of confusion of ideas and of barefaued lieentiousness. Thmburini boldly nulfilled his duties, and effeeted sonte gool hy proclaiming wholesome furneiples from his chair. Shortly afterwards his chair who suppressed, hut he wns appointed rector of the lyecum of his native town, Brescia. When Bonaparte assumed the government in France and North Italy, Tamburini was semt again to l'avla as professor ot moral philosophy and of - Jus nature et gentium,' in which chair he continued for cighteen years, till some years after the Restoration, when the entperor Francis made hin again Professor Emerilus and prowilul of the faculty of law and polities in the university of l'avia. Tumburini was also a knight of the order of the Iron Crown. He dled at Pavia, in March, 1827. at ninety years of nge. a few days after the death of his throther professor, Volta. His remains were buried with the greatest honours, beiner followed to the grave by the whole of the professors and above six hundred students, with marks of sincere respect and deep regret.

The worlt ior which Tamburini is mostly known is - Ider della Santa Sede.' publlshed anonymously at Pavia, in 1784. An extract from the author's preface will convey some idea of the nature of this work: 'It very often happens that to the most common and hacknied expressions a vague and indeterminate meaning is attributed. A word was originally fixed upon to signify a certain thing. The idea of it was perhaps clear and preelse in its origin, but as in the course of time the ideas of men change, the word is still retained, though people attach to it different meanings. Hence obscurity and confusion and interminable disputes arise, and still the sound of the disputed word is kept up, without conveying any distinet idea or what it means.' Numberless examples might be quoted of such an occurrence. For instance, in our own times everybody speaks of the Holy See, the Apostolic See, the chair of St. Peter, the Roman chureh, whlch are so many expressions signifring the same thing, and which in antient times expresied a simple and elear idep, but which now convey in the minds of people the most vague and indeterminate notions. Things the most disparate are identified; preople confound one subject with another, the sce with the incumbent, the chair with the cour of Rome, the conrt with the church; and from this medley arises a confusion of iders through which every decree that proceeds from Ronie becomes invested with the most resprectalle anthority of the chair of St. Peter, of the Apostolie See, of the ehureh of Romi- a confusion followed by the most pernicious consequences not only to local churches, but also to the universal church, and to the Apostolic Sea itself. In order to support certain decretals which emanated from Rome, sonie shortsighted theologians have attributed to the Roman See new prerogatives unknown to the earlier ages of the church, and they have had recouse to a supposed infallibility. . Other men have contested these prerogatives, and in the warmth of the controveroy the real claims of the Holy See have heen overlouked and forgotten. ... One party has maintained that, on the plea of infallibility, every decluion cmanating from Rome ought to be received with blind ohedienee, whllot the other party has imagined that hy overthrowing the privilege of infallibility every atuthority ameribed to it can be boldly denied. . . . Both these extremes proceed from tho want of just and exact notions on the nature, the character, and the properties of the Holy See. The present work is intended to establish these notions. A little French look fell into my liands, entitled - Dissertation Canonique et Mistorique sur l'Autorité du Saint Siége, et les Décrets qu'on lui atribue." In the fisat part the author has हiell explained the idea of the Holy See and of the Congregations sitting at Rome ; and in the second part he has maintained the primaey of that see. 1 have adopted the most important priuciples of this little work, compressing or enlargmy its various parts, and fitting the whole to the wants of our times and country. Thave exphained also the essential rights annexed to the primacy of the Roman sec, and have given some pencral mates in orter to eatenlate the value and inerit of the Koman ciecretals, and to make our own conduot prac-
tically harmonize with the obsdience which we owe to the authority of the see of Rome.

At the appearance of Tamburini's work it was stigmatized as Jusenistical, although the author has nut gone perhaps so far as some of the Freneli Jansenists, or as Kishopi Ricei and lis synod of l'istoia. [JASSESMSTs ; ${ }^{1}$ aus [1.] The reasoning is closely argumentative, and supported by numerous referenees. Siveral refutations of it were published at Rome and other towns of Italy: The other works of Tamburini are-1, 'Introduzione allo Studio della Filosofia Morale,' Milan, 1784 ; , ", Lezioni di Filosofir Morale e di Naturale os Sociale Diritto, 4 vols., Pavia, 1806-12; 3, 'Elementa Juris Natura,' Milan, 1813; ; 4. 'Cenoi sulla l'erfettilriliti dell' Unıana Famiglia,' Milan. 1823 ; in which the author retutes the exacgerated notions of indefinite perfectibility and uuiversal happiness in human societies. The pliilosophy of Tamburini is of the Eclectic kind.
(Defendente Sacchi, Varifta Lelleraric, vol. i.; Naffei, Storia della Lelveraturu linlianu, b. vi., eh. 13 ; Antologíd di Pirenze, Nos. 39, 70.)

TAME, River. [Stahfordshare.]
TAMER, River. [Cornwall.]
TAMERLANE: [TIMUR.]
TA'MIAS. [Squrrkls, vol. xxii., pp. 396, 399, \&e.]
TAMMEAMA. [SANDVICH Islasils.]
Tampico. [Mexican Statfs.]
TAalul. [Hindestan, p. 238.]
TAMUS, the name of a genus of flants belonginy to the natural order Dioseorencere. This genus is digecions, the stamens growing on one plant, and the pistils on another. The flowers are alike in having a perianth, which is 6 -partetl, the calyx and corolla being undistincuishable. In the male flowers there are 6 stunens. In the female flowers the remains are seen of 6 abortive stamens; the ovary is trilocular; the style trifid, with 3 stigmns ; the fruit a berry. This genus is supposed to be the Live T'aminia of Pliny: hence its present name.

Tamus communis, the common Black Briony, has undivided cordate, acuminate leaves, and is a very common plant in hedyes and thickets throughout Europe. It is a frequent plant in Eugland. It has a long twining stem, spreading in all directions, and reaching from branch to branch of hedges and thickets: its flowers are greenishwhite; the fruit is of a red colour, and hangs in bunches from its trailing loranches. The berries are likely to be plucked and eaten by children: they are not however poisonous, although the whole plant contains a bitter acricl principle, whieh renders it unwholesome. This aerid primeiple is clestroyed by heat; and as the roots of this plant contain a great deal of starcle or fecula, a wholesome and nutritious food may be oblained from them by washing and boiling. On the surface of the roots are found blackish tuthercles, which contain a larger quantity of aerid prineiple than the rest of the plant, and these should be removed previous to prepuing the roots for eating. The young shoots of this plant taste, when boiled. like asparagns, and are enten by the Moors with oil and salt.

TAMHORTII, a municipal and parlimentary borough on the border of Statfordshire and Warwiekshire: the municipal borough, which includes the greater part of the town, and the parish, which is far more extensive. having an area of 12,920 acres, ure divided between the two eoumLies: tho parish is partly in the northern and partly in the southern division of Oflow hundred in the county af Siaflord, and partly in Hemlingford hundred in Warw iekshire. The church is in Staffordshire, on which neeount the town is commonly deserited as heing in that county. Tamworth is 102 miles in a direct line northewest of the General Post-office. Loudon, or 129 miles by the London and Birmingham Railway to Hampton in Arden, rind from thence by the Birmingham and Derlhy Junetion Hailway.

The town first comes into notlee in the time of the Heptarehy: several of the Mercinn kings appear, from the date of eliarters granted by them, to have had their residence at Tamworth. In the Danish wars a fort was hullt here in the reign of Fitwarll the Elder (a, D. 013) by his sister Ethelfedn, lady of Merein, who died at 'Tanworth, A.1s. D2n, and Mercia passed under the direct dominion of Edward, who receivell the submlskion of the Tamworth men, A.D. 022. Shaw (Hist. nf Staffordshire) ascribes to

Ethelfleda the mound on which the present ruins of the castle stand, but the ruins themselves are of later date. An old ditch, yet visible, called 'the king's dyke, which surrounds the town on three sides, is supposed by Shaw to be of yet greater antiquity than the time of Edward. In the Saxon 'Chronicle' the town is called Tamaweorthige, Tamewcorthige, Tananweorthe, or Tamweorthe: in other antient writings the orthography is still further varied. The place is not described in 'Jomesday ;' but the 'burgenses' (burgesses) of Tamworth, are mentioned in that record, in the notice of other places.

After the Conquest, the castle and adjacent territory were granted to Robert Marmion, hereditary champion to the dukes of Normandy; and afterwards, on the extinction of the male line of his family in the time of Edward I., passed to the family of Frevile. The castle now belongs to Marquis Townshend. Sir Walter Scott has enumerated
'Tamworth tower and town' among the possessions of his fictitious Marmion: but the family had become extinct long before, as observed by Sir Walter in the Appendix to lis poem.

The town stands on the north bank of the rivers Tame and Anker, just at their junction, and consists of several streets not very regularly laid out. The streets arc paved, but had not been lighted when the Munlcipal Boundary Commissioners' Report was drawn up (Parl. Papers for 1837); the inhabitants were however about to assess themselves for the purpose. "The church is a large and handsome edifice, with a fine tower, and a erypt under part of the church. Some portions are of decorated date, and some perpendicular, and both good: some of the windows have lad very fine tracery. In the tower is a curnous double staircase, one from the inside and one from without, each cotnmunicating with a different set of floors in the tower.' (Rickman's Gothic Architecture.) The remains of the castle are on a mound close to the Tame: they are of various periods, and some modern buildings have been added to adapt the whole to the purposes of a modern residence: the castle commands a tine prospect. There are some Dissenting places of worship; an almshouse, founded by Guy, the founder of Guy's Hospital in Southwark; a town-hall, with a small and inconvenient gaol bencath; and two bridges, one over the Tame, the other over the Anker.

The population of the municipal borough in 1831 was 3537 , that of the whole parish (containing several hamlets and townships) 7182. Some manufactures are carried on; but the whole number of men employed in them in the parish was, in 1831, only 38 . Some coals and brick-earth are dug in the neighbourhood, and bricks and tiles are made. The market is on Saturday: there are three chartercd fairs for eattle and merchandise, and scveral new fairs for cattle only; some of them held at Fazeley in the parislı. The Coventry Canal passes near the town.

Tamworth was a borough by prescription; but the town having deelined and ceascd to be regarded as a corporation, was incorporated anew by letters patent of Qtieen Elizaheth: the governlne charter is one of Charles II. By the Municipal Reform Act the borough has four aldermen and twelve councillors, but is not to have a commission of the peace except on petition and grant. The criminal jurisdiction of the corporation had fallch into disuse before the passing of that act, as well as the court of record: quarter-sessions were held, but for civil purposes ouly.

Tamworth first sent members to parliament in the reign of Elizabeth: it still returns two members. The number of voters on the register in $\mathbf{1 8 3 5 - 6}$ was 531 : in 1830-40, 501.

The living of Tamworth is a perpetual euracy, of the clear yearly value of 1701 ., with a glebe-house. There are in the parisll the perpetual curacies of Fazeley, Wigginton, and Wilnecote, of the clear yearly value of 235%. (with a glebe-house), $02 /$ and $90 l$. respectively: the curatc of Tamwortl presents to Wigginton and Wilnecote. There are also in the parish two chapelrics, Amiagton and Hopwas.

There were in the borough, in 1833 , three endowed and threc unendowed day-schools, with 183 children, namely 142 boys, 21 girls, and 20 children of sex not stated; and three Sunday-schools, with 203 children, viz. 97 boys and 100 girls. In the rest of the parish were one infant-school, partly supported by subseription, with 88 children, namely

41 boys and 47 girls; ten day-sclools of all kinds, with 96 boys, 80 girls , and 80 children of sex not stated, making 256 children \ln all ; and three Sunday-schols, with 288 children, nanicly 150 boys and 138 girls: (Shaw's Staffordshire; Parliamentary Papers.)

TANA-ELF: [TRONDHEIM.]
TANACE/TUM, a genus of plants belonging to the natural order Composita, and the suborder Corymbiferme or Asteracece. The involucre is imbricated and hemispherical: The receptacle is naked; the flowers of the ray arc 3 -toothed, those of the disk b-toothed, tubular, and hermaphrodite. The fruit, an achenium, is crowned with a membranous margin, or pappus. The flowers are yellow.

The most common species is the Tunacetum vulgare, common Tarisy. It has bipinnatifid leavës, with sermated sections or laciniæ. This plant is abitndant in Great Britain and throughout Europe, on the borders of fields and road-sides. It possesses in a high degree tle bitterness of the whole order Composite, which, in the section Corymbiferz, is combined with a resthous principle. It is recommended and has been extensively used ir medlcine as an emmenagogue and antlielinintic. Although the flavour and smell of this plant are both at first disagreeable, a taste for it may be acguired, and it has been used in cookery for the purpose of flavouring puddings and sauces. The young shoots yield a green colouring-matter, and are used by the Finlanders for the purpose of dycing their cloths of that colour. It is said that if meat be mubed with the fresh leaves, it will not be attacked by the flesh-fly.

TA'NAGERS. The genus Tanagra of Limuenis stands, in the 12th edition of the Systetna Natura, between Linberiza and Frimgilla, in the order Passeres.

Cuvier characterises the genus as having a conical bill, triangular at its base, slightly arched at its arête, and notched towards the end: wings and flight short. He observes that they resemble our sparrows in their habits, and seek for seeds as well as berries and insects. The greater patt, he remarks, force themselvesupon the attention of the spectator of an ornithologlcal collection by their vivid colours. He places the genus between the Drongos (Bdolius, Cuv.) and the Thrushes (Turdus, Iinn.), thus subdividing it:-

1. The Euphonous or Bullfinch Tanagers (Euphones, ou Tangaras Bouvreuils).
These have a short bill, presenting, when it is seen vertieally, an enlargement on each side of its basc: tail short in proportion.

Examples, Tunagre violacea, Cayennensis, Sic.
2. The Grosbcak Tanagers.

Bill conic, stout, convex, as wide as it is high; the back of the upper mandible rounded.

Examples, Tunugra magna, atra, \&c.
3. Tanayers, properly so called.

Bill conic, shorter than the head, as wide as it is high, the upper mandible arched and rather pointed.

Exainples, Tunugre Taiao, tricolor, \&c.
4. Oriole Tanagers (Tungaras Loriots).

Bill conic, arched, pointed, notched at the end.
Examples, Tanagre gularis, pileata, \&c.
5. Cardinal Tanagers.

Bill conic, a little convex, witl an obtuse projecting tooth on the side.

Examples, Tanagre cristata, brunhea, \&c.
6. Ramphocele Tanagers.

Bill conic, with the branches of the lower mandible convex, backwards.

Examples, Tanagra Jacapa, Brasilia, \&c.
The views of Mi. Vigors on the subject of this group will be found in the article Frivginlide.

Mr. Swainson remarks that the Tunagrince, or Tanagers, form that group which is probably the most numerous, as it certainly is the most diversified of all those in the comprehensive family bf the Frintrillide. As the dentirostral division of that family, it is; he observes, typieally distinguished from all the others by the bill having a distinct and well-defined notch at the end of the upper mandible, the ridge or culmen of which is much more curved than the gonys; or, in other words; the culmen is nore cutrved downwurds than the gonys is upwards: this incquality, he further states, as in the genus I loceus, very mmeh takes otf from that regular conic form of bill so highly characteristic
of the ereater number of the finches; so that the combination of these two charactens is, he thinks, perhap.s the best distinetion of the whole group. Another peculiarity, he adds, of these birds consists in their geogmphic range; for the whole, as far as has hitherto been ascertained, are natives of the warmer parts of Ameriea, being most abundant in thuse recions nearest to the equinoctial line. They are,' says Mr. Swainson in continuation, "in general small birds, the largest being intermediate between a sparrow and a thrush, while the majority do not exceed the size of a linnet; some few are even smaller. It is quite evident, from the great strength of bill possessed by some, and the noteh which is conspieuous in all, that these birls feed upon seeds and creeping inseets pieked from the branches of trees, for very lew of them are ever seen upon the ground. Their colouns in general are bright; and, in a large number, particularly rieh and beautiful. The little birds forming the genus Aglaia, in fact, are ornamented with the most vivid hues or glossed with rieh refleetions of gold, rendering them inferior only to the Humming Birds. Some possess considerable vocal porrers; and the notes of the subgenus Euphonia, as its mame implies; are said to be particularly musieal. The impossibility however of providing the Tanagers with their native sweet food has prevented them from ever being brought alive to the European menageries, to whieh their beauty would render them the greatest omaments.'
Mr. Swainson then dwells on the obseurity which attends the examination of this group, which he states to be one of the most diffieult to be understood in the whole eirele of ornithology. He points out, for instance, that the comparative strength of the bill is so variable in the same subyenus, that such variation, indicative of genera in other families, is in this no more than a discrimination of sections or speeies. Nothing, according to him, ean illustrate this fact more than the affinity between Pitylus and Turdicola. Looking to the types of each, he observes, we should say that they did not belong even to the same subtamily; for the bill of the first is nearly as large as in the hawtinches (Coccothraustes, Hawrisch), while that of Tardivola is so comparatively slender that it seems more akin to the Larks than to the Tanagers; and yet, he remarks in contimuation, between these two extremes or types, he had, when he wrote, before him sueh a perfeet series of graduated forms, wherein not only the bill, but all the other subordinate characters of the two groups, progress in such a perpetual and almost impereeptible manner, that he w:as aetually at a loss to know where Turdivalu ends and Pityhs begins. The foregoing affinity being admitted, and it should be remembered that some of the best ornithologieal writers have placed it as a genus in a totally different family, Mr. Swainson next proceeds to inquire into the cause of so remarkable a variation in the bill of such eloselyunited species. He first states that nearly the whole of the seed-eating birds of Tropieal Anveriea are composed of the Tanagers, which, in those regions, supply the place of the other finches so abundant $i n$ all parts of Europe. The innumerable small and hard fruits produced in the Anerican forests are, he obseryes, the appointed food of the Tanagers, the parrots living principally upon the larger nuts, and the bill of the former birds is constructed aecordingly. After noticing the displarity of the bills in the finches, taking the common linnet and the hawfinch for example, he remarks how little reliance ean be placed on such diversity in determining genera: but this, he observes, will not explain the great difference which ofen exists in the size and plumage of species which all writers agree in arranging within the limits of the same subgenus; and he takes the restrieted genus Pilylus, Cuv., as an example. Some of the species of that genus are green, some black, others grey; and in size they vary from the dimensions of a sparrow to those of a small thrush.

The doubts which, in Mr. Swainson's opinion, hang over the correetness of the views which he entertained with respeet to the natural affinities of these birds, may, he says, be said to hinge almost entirely upon his not having been able to examme specimens of Fringille Zena, which has certain peculiarities which lead him to expeet that it torms the type of one of the principal divisions amonf the Tanagers, or that it connects his genus Agluia with Pipillo. On the first supposition, F. Zeut would, aecording to Mr. Swainson, consthtute the passage from the true sparrows (Pyrgifa) to the subgenus Tanagra proper; while by the
seeond, Pigillo would stand intermediate between Aglairs and Tanamre, and thus constitute the rasorial genus of theo whole subiamily; and this latter ammerement appeans to hin to be the natural one. He considens that the two typieal groups or genera are Tanasra and Pheenisoma; while those which he thinks aberrant are Nemosia, Ag/uin. and P^{2} ipillo. It was ouly between the two last of thene that he had not as yet diseovered any affinity sufficienty strong to justify the belief that these five genera fom a eirele more or less complete; the diffieulty being how to conneet Aglaita with Pipilln. He then takes a review or the genera, for which we inust refer our readers to the work itself; and, in the Synopsis at the end of the volume. makes the Tunugrimer, which he places between the Ciocenthraustince and the Frinsilline, consist of the followinge genera and subgenera, all of whiels he ehameterizes:-

Taugrinc.

Subfamily Character,-Bill equally conic; the upper mandible more or less arched, and very distinctly notehed. Feet formed for perching. Claws broad and tully eurved. Genera.
Tardicola, Tanagra (with the subgenera Pily/ns, Tunagra, and Ramphopis). Phenisoma (with the subsenera Phenisoma, Tuchyphonus, and Levenpysia). Nemosia. Aglaia (with the subgenera Enphonia and Timengrella). And Pipillo, (with the subgenus Arremon). (Classificutiots of Birds.)

The Prinee of Canino (Bisds of Europe and Nirpth America) places the Tunugrince between the Frintsillimer and the Emberizince. Pyranga is the only genms recorled as belonging to the Tumarince.
Mr. G. R. Gray makes the Tintagrine the third subfumily of the Fringillide, arranging it between the (orcothraustince and Friugillince. The following genera are enumerated by Mr. Gray as belonging to the third sub-family:-

Emberizöldes, Temm.; Pipilo, Vieill. ; Emberuagra, Iess. ; Arremon, Vieill. ; Cissopis, Vieill. : Pitylus, Cuv. ; Tanagra, Linn.; Saltator, Vicill.; Spindulis, Jard and Selby; Rump/hopsis. Vieill. : Lamproles. Sw.; P'yranцa, Vieill.; Lunio, Vieill.; Tuchyohouus, Vieill.'; Nemosior, Vieill. : Taungrella, Sw.; Ěuphonia, Desm. ; Calaspiza. G. 12. Gray ; Stephanophorus, Strickl. ; Cypsnugra, Less-

Mr. Gray, with his usual industry, gives the numerous synonyms of each genus. (List of the Generu of lisds, ind edition, 1841.)
We select Nuttall's deseription of the Scarlet Tunager, or Mlack-vinged Summer Med-Birl, Tanagra rubra, Limn(sulgenus Pyrauga).
The male is searlet-red, with the wings and notehed titil black: the base of the plunnge is ash, then white. The demale, young, and male in autumn, are dull green, inelining to yellow in the latter; yellow beneath: wings and tail dusly. Length about six ínches and a half; alar cxtent ten inches and a half.

- This splendid and tmansient resident,' says Nuttall, - recompanying fine weather in all his wanderings, arrives from his winter station in tropical America from the beginning to the middle of May, and extends his nigrations probably to Nova Scotia as well as Canada. With the slyy, unsocial, and suspicious halits of his saudy fraternity, lie takes up his abode in the deepest recesses of the torest, where, timidly flitting from observation, he darls from tree to tree like a flashing meteor. Λ gaudy sylph, conscious of his brillianee, and the exposure to which it subjects hin, he seems to avoid remark, and is only solieitous to the known to his humble mate. and hid from all beside. He theretore rarely appronehes the habitations of men, unleas perhaps the shirls of the orehard, where he sometines however builds his nest, and takes a tasle of the early and inviting, though torbidden cherries.'
- Among the thiek foliage of the tree in which he seeks support and shelter, from the lofty branches, at times, we hear his almost monotonous fship-critee, ishijs-idee, or tshŭkadee, tshühadee, repeated at short intervals, and in it pensive under-tone, heightened by the solitude in which he delights to dwell. The same note is also uttered by the female when the retreat of hesself and young, is approached; and the male oceasionally utters, in recognition to his mate, ns they perambulate the branches, a low whispering 'otit, in a lone of caution and tenderness. llut besides these calls on the female, he has also, during the period of his incubation, and for a considerable time after,
a more musical strain，resembling somewhat，in the meflow－ ness of its tones，the song of the fifing Baltimore．The syllables to which I have hearkened appear like＇tshoove ＇rait＇wait，＇vehŏwit wait，and＇uait，＇＇vehŏwit rea wait， with other additions of harmony，for which no words are adequate．This pleasing and highly musical meandering ditty is delivered for hours，in a contemplative mood，in the same tree with his busy consort．If surprised，they Hlit together，but soon return to their favourite station in the spreading boughs of the shady oak or hiekory．This song has some resemblance to that of the Red－eyed Vireo in its compass and strain，though much superior，the＇wa⿱夂口 ＇tcait being whistled very sweetly in several tones，and with emphasis；so that，upon the whole，our Pyranga may be considered as duly entitled to various excelleneies，being harmless to the farmer，brilliant in plumage，and harmo－ nious in voice．＇

Nest，Food，£c．The same author describes the nest （which is built about the middle of May，on the horizontal branch of some shady forcst－tree，commonly an oak，but sometimes in an orchard tree）as but slightly put together， and usually framed of broken rigid stalks of dry weeds or slender fir－twigs，loosely interlaced together，and partly tied with narrow strips of Indian hemp（Apocynum），some slender grass－lcaves，and pea－vine runners（Amphicarpa）， or other frail materials；the interior being sometimes lined with the slender，wiry，brown stalks of the Canadian cistus （IIelianthemunt），or with slender pine－leaves；the whole so thinly platted as to admit the light through the inter－ stiees．The three or four eggs are dull blue，spotted with two or three shades of brown or purple，most numerous towards the larger end．As soon as their single brood， whieh is fledged early in July，is reared，they leave for the sonth，generally about the middle or end of August．
＇The female，＇says this interesting author in continuation， ＇shows great solicitude for the safety of her only brood； and，on an approach to the nest，appears to be in great dis－ tress and apprehension．When they are released from her more immediate protection，the male，at first eautious and distant，now attends and feeds them with activity，being altogether indifferent to that eoneealment which his gaudy dress seems to require from his natural enemies．So attached to his now interesting brood is the Scarlet Tana－ ger，that he has been known，at all hazards，to follow for half a mile one of lis young，submitting to feed it atten－ tively through the bars of a cage，and，with a devotion which despair could not damp，roost by it in the branehes of the same tree with its prison．＇

The food of this species ennsists mostly of winged insects，such as wasps，hornets，and wild bees，the smaller kind of beetles，and other Coleoptera．Seeds are supposed to be sometimes resorted to，and they are very fond of whortle and other berries．

It is in August that the moult of the male，when＇he exchanges his nuptial searlet for the greenish－yellow livery of the female，＇commences．（Munual of the Ornithology of the United States and of Canada．）
TANAGRI＇NE：［Tanagers．］

TA＇NAIS．［Don．］

TANARO．［Po．］
TANCRED，of Hauteville in Normandy，was a feudal baron who lived in the latter part of the tenth and begin－ ning of the eleventh century．After doing military service for some years under Richard the Good，duke of Nor－ mandy，he retired to his hereditary mansion，where he lived poor，and reared up a numerous family of twelve sons and three daughters．All his sons were remarkable for their comeliness，their great strength，and their courage． The eldest，Serlon，followed William the Bastard in his conquest of England，and the others went suceessively to seek their fortune in Apulia，where Rainulf，another Nor－ man adventurer，had already obtained the countship of Aversa from Sergius，duke of Naples．William，one of Tancred＇s sons，called＇Fier a bras，＇or strong of arm，becane count of Apulid，and after his death，his brother Robert， called Wiskard，or＇the wise，＇became duke of Apulia and Calahria，and the founder of the Norman dynasty of Sicily． ［Sicilies，Two，History of．］Their father Tancred died at a very great age at Hauteville．Traces of the chatiteau of Tancred，according to old popular tradition，were still seen a few years sinee in a pretty yalley near Hauteville， four miles north of the town of Marigny，in the arrondisse－ ment of Coutances department of La Manehe．（Gaultier
d＇Are，Histoire des Conquetes des Normands en Italie，en Sicile，et en Grèce．）

TANCRED，son of Eudes，a Norman baron，and of Emma，sister of Robert Wiskard，duke of Apulia，ac－ cording to some（Gaultier d＇Arc，Histoire des Conquêtes des Normands en Italie，en Sicile，$\rho^{\rho} c$ ．），and nephew of Bohemund，son of Wiskard，and prinee of Tarentum ac－ eording to others（Giannone and the authorities he quotes）， was serving with Bohemund under Roger，duke of Apulia， son and successor of Wiskard，at the siege of Amalfi，A．D． 1096，when the report of the great crusade which was pre－ paring for the East determined Bohemund，who was not on good terms with Duke Roger，to join the Crusaders． Tancred followed him with a vast number of men from Apulia and Calabria．The exploits，true or fabulous，of Tancred，in Syria and Palestine，have been immortalized by Tasso in his poem of＇La Gerusalemme．＇
TANCRED，king of Sicily．［Sicilaes，Two，History of．）
TANGENT．In the article Contact we have given the first notion on this subject，which we now resume in a somewhat more general manner，annexing the usual de－ tails of formulæ，but without proof．
It is usual to apply the word tangent to the taugent straight line only，on whieh see Direction：generalizing the definition，if will be as follows：－Of all curves of a given speeies，or contained under one equation，that one （B）is the tangent to a given eurve（A）at a given point， which passes through that given point，and is nearest to the curve (A) ：meaning that no curve of the given species ean pass through the given point，so as to pass between （B）and（A），immediately after leaving the point at which the two latter intersect．
To aseertain the degree of contaet of two curves which meet in a point，proeeed as follows．Let $y=\phi x$ and $y=\psi x$ be the equations of the curves，and a the ahscissa at the point of contaet ；so that $\phi a=\psi a$ ．At the point whose abscissa is $a+h$ ，the difference of the ordinates of the eurves is，by Taylor＇s theorem，
$\left(\phi^{\prime} a-\psi^{\prime} u\right) h+\left(\phi^{\prime \prime} a-\psi^{\prime \prime} a\right) \frac{h^{2}}{2}+\left(\phi^{\prime \prime \prime} a-\psi^{\prime \prime \prime} a\right) \frac{h^{8}}{2.3}+\ldots$
as to which，generally speaking，it will be found that h can be taken so small that the series shall be convergent ： if this be not so，the method of arresting the series given in Taylor＇s Theoren must be employed．Now of two series of the form $\mathrm{A} h^{m}+\mathrm{B} h^{m+1}+\ldots$ the，value of that in which m is the greater will diminish without limit as com－ pared with the other，when h diminishes without limit． Consequently，every curve $y=\psi x$ ，which has $\psi^{\prime} a=\phi^{\prime} a$ ，will approach，before the point of contact is attained，nearer to $y=\phi x$ than any other in which $\psi^{\prime} a$ is not $=\phi^{\prime} a$ ．Again， when $\phi^{\prime} a=\psi^{\prime}$ ，those cases of $y=\psi x$ in which $\psi^{\prime \prime} a=\phi^{\prime \prime} a$ ， will approach nearer to $y=\phi x$ than any in which $\phi^{\prime \prime} a$ is not $=\psi^{\prime \prime} a$ ；and so on．Hence，to make $y=\psi x$ lave the elosest possible contact with $y=\phi x$ when $x=a ;-$ give such values to the constants in $y=\psi x$ as will satisfy as many as possible of the equations $\phi a=\psi a, \phi^{\prime} a=\psi^{\prime} a, \phi^{\prime \prime} a=\psi^{\prime \prime} a$ ，\＆c． consecutively from the beginning．This is a briet sketeh， which can be filled up from any elementary work；and the following are the principal results：－

1．When the string of equations is satisfied up to $\phi^{(n)} a=\psi^{(n)} a$ ，the contact is said to be of the nth order．
2．In contaet of the nth order，the deflection $\phi(a+h)-$ $\psi(a+h)$ diminishes with h^{n+1} ，and ranishes in a finite ratio to it．

3．In contact of an even order，the eurves intersect at the point of contaet；in contact of an odd order，they do not intersect at that point．
4．When curves have a contaet of the nth order，no eurve，having with either a contact of an order inferior to the nth at the same point，can pass between the fwo．
5．A straight line，generally speaking，can have only in contaet of the first order with a curve；and the equation to the tangent straight line of the curve $y=\phi x$ ，when $x=a$ ，is $y-\phi a=\phi^{\prime} u(x-a)$ ．But if it should happen that $\phi^{\prime \prime} a=0, \phi^{\prime \prime \prime} a=0$ ，\＆c．，up to $\phi^{(n)} a=0$ ，then for that point the fangent has a contact of the nth order．Thus，at a point of contrary flexure the tangent has a contact of the seeond order，at least，with the curve．
6．A cirele，generally speaking，can be made to have a eontact of the seeond order with a eurve，and the equation
of the most tangent eircle, or eircle of Crrvatuhr, to the curve $y=\phi r$, at the point $r=n$, is
$\left(r-u+\frac{\psi^{\prime} a\left(1+\psi^{\prime} u\right.}{\phi^{\prime \prime},}\right)^{2}+\left(y-\phi a-\frac{1+\bar{\phi}^{\prime}{ }^{2}}{\phi^{\prime \prime} u}\right)=$

$$
\frac{\left(1+{\left.\overline{\phi^{\prime}}{ }^{2}\right)^{3}}_{\bar{\phi}^{\prime \prime} c}{ }^{3}\right.}{}
$$

This circle euts the curve, generally speaking: If not, as for example, at the vertices of all ellipse, it is eridence that the circle has a contact of some higher and odd order. The centre of the circle of curvature is a poinl on the normal, being that at which the normal touches the evolute. [Involusb and Evolite.]
Not only is the term tanient most generally applied to the closest straight line only, but frequently only to that portion of the straight line which falls betiveen the point of contact and the axis of x. Again, the nomnal is a strajght line jerpendicular to the tangent, drawn through the point of contact : but thls term also is frequently applied only to that portion which falls between the point of contact and the axis of x. It is with reference to this limitation that the terms subtangent and subnormal are to be understood: the first meaning the distance from the foot of the tangent to the foot of the ordinate; the second that from the foot of the ordinate to that of the normal. The formula for the subtangent is $\phi\left(\pi \div \phi^{\prime}\right.$; that for the subnormal $\phi a \times \phi^{\prime} a$.

Let β be the angle made by the tangent with the axis of x; usually the angle made by that part of the tangenit which has positive ordinates with the positive side of the avis of x. Then β, at the point whose abscissa is x, Is determined by the equation
$\tan \beta=\frac{d y}{d x}$; and subtangent $=\frac{d x}{d y}$, subnormal $=\frac{d y}{d x}$.
If we take the more general mode of measurement proposed in Sigs, this equation remains equally true. Nour, feeping strictly to that mode, let β be the angle made by The tangent with the axis of x, θ the angle made by the radius sector r with the axis of x, and μ that made by the iangent with the radius veetor. It will be found, then, that in all cases

$$
\mu=\beta-0, \quad \tan \mu=r \frac{d \theta}{d r} .
$$

Unless the mode of attributing signs be earefully attended to, these last equations, though always considered as universally truc, are not so in reality.

We now come to the consideration of a surface. The mode of defining contact ot a given orler resembles that adopted with reference to a curve. This if $z=\phi(a, y)$ and $z=\psi(x, y)$ be the equations of two surfaces coinciding when $x=a, y=b$, so that $\phi(a, b)=\psi(a, b)$, then If the point be taken at which $x=a+h, y=b+k$, the contact of the two surfaces is of the nth order, when the deflection

$$
\phi(a+h, b+k)-\psi(a+h, b+k)
$$

being developed in powers of k and k by Taylor:s Theorem, shows no terms lower chan those of the form $\mathrm{A} h^{n}+\mathrm{B} h^{n-1} k+\ldots+\mathrm{M} k^{n}$. This is tantamount to the fullowing: two surfaces have a contact of the nth order when any plame whatever drawn through the point of contact euts the surfaces in two curves which have a enntact of the nth or a lugher order.
Every surface has at every point a plane which has a complete contact of the first order. If $z=\phi(x, y)$, tud x, y, z be the en-ordinates of the point of contact, and ξ, η, ξ those of any point in the tangent plane, then the equation of the fangent plane is

$$
\zeta-z=\frac{d z}{d x}(\xi-x)+\frac{d z}{d y}(n-y) .
$$

But if the equation be given in the formu $\phi(x, y, z)=0$, it 15

$$
\frac{d \phi}{d x}(\xi-x)+\frac{d \phi}{d y}(\eta-y)+\frac{d \phi}{d z}(\zeta-z)=0
$$

In the fint casc, the equations of the normal, a line drawn through the point of contaet perpendicular to the tangent, are

$$
\xi-x+\frac{d z}{d x}(\xi-z)=0, n-y+\cdot \frac{d z}{d y}(\xi-z)=0 .
$$

In the latter casc, they are

$$
\frac{\xi-x}{\frac{d \phi}{d \varphi}}=\frac{\eta-y}{\frac{d \phi}{d y}}=\frac{\xi-z}{\frac{d \phi}{d z}}
$$

The tangent plane may 1. not cut the surface at all, es in a sphere: 2. coiucite with the surface thronghont is whole line, as In the cone or cylinder: 3. eut the surface, as in the ense of an hyperboloid made by revolution of nu hyperbola about the innor axis (the figine of a comuon dice-box). The criterion of distinction between these cases depends on the value of
at the point of contact. Imagine a plane to pass through the normal, cutting the surface in the curve (($)$) mul the tangent plane in the straight line (I). Then, while the plane revolves about the normal, (L) is always tangent to (C).
I. Jeet U be positive. Then (I) has never more than a contact of the first orter with (C), the surface nowhere passes through the tangent plane, and we have only stuch contact as is seen at any point of a sphere or cllipsond.
2. Let $\mathrm{U}=0$. Then (I_{2}) has never more than a contact of the first order whth (C), except when the plame is in one position, in which there is a cumtact of a hysher order. If $\mathrm{U}=0$ at the point of contact only, and berin to talke value at all adjacent points, nothing, more would appear than in the last ease, except that in one particular direction from the point of contact, and in its opposite, the surface would seem to groir nearer 10 the tangent plane than in auy others. But if $\mathrm{U}=0$ at all points of this surfaee, this approach to the fangent plane in one particular direction becomes more marked: for the surface lies on that plane in a straight line, that is to say, every tangent plane meets the surface in a straight line infinitely extended both ways; and the plane is tangent to the surface at every point of that straight line. Sueh surfaces, namely those in which U is always $=0$, are developable, or can be unrolled without any overlapping, rumpling, or tearing. Cones and cylinders are instances. Again, ir $U=0, n 0 t$ throughout the whole surface, but throughout one jarticular line upon it, that line will be a plane curve, and its plane will be tangent to the surface at every point in which it meets the surface.
3. Let U be negative. Then (L) Has never more than a contact of the first order with (C), except in two different positions, in both of which there is contact of a higher order. Draw lines marking out thete two positiuns of (L, , and consequently dividing the tangent jlane into four parts, with forr angles round the point of eontact. In one pair of the opposite angles, the surface lies on one side of the tangent plane, and in the other on the other.
Again, as the plane which revolves rount the nomal takes its different positions, the eurvature of the section (C) elanges. The two positions of the revolving plane in which the curvatures are greatest and least (alpreb)raicully) are at right augles to one anoller. We shall not enter into the mathematiend formulae conmeeted with this sul)ject, but shall only endeavour to give a popular illustiation of this remarkible point.
Suppose an egryshelf, unbroken, to be placed with either vertex uppermost. The descent will he equally mpid in all directions, or the curvature at the highest point of all the vertical sections will be the sime. But suppose the shell 10 be 60 placed that some point intermediate between the two vertices is uppermost. The descent will not then be equally rapid in all directions, or the eurvatures of the vertical seetions will nut be the same. The direetlon of nosi rapid deseent will be at right angles to that of least rapid deseent. The tangent plane las here a contact of the tist of the three kinds above mentioned. If there be a contact of the second kind, all the cireumstances are the same, exrept that the direetion of least raphl deseent gives, comparatively speaking, no descent at all at the first instant. If we take a cyliuder, or other developable surface, and
make a tangent plane horizontal, there is absolutely no descent in one direction, or, by going along the tangent plane, we can remain entirely on the surface, in one certain direction, as before observed. And the direction of most rapid descent is at right angles to this direction of no descent.
To put a case of the third kind, suppose a saddle placed on a horse, and we take the lowest point of the seat. The tangent plane then cuts through the saddle horizontally. In some directions there is descent, in others ascent, with two directions in which there is, eomparatively speaking. neither ascent nor descent. The direction of most rapid ascent, which is from the lowest point of the seat directly towards the head or tail of the animal, is at right angles to the direction of most rapid descent. Mathematically spyeaking, the curvatures of the vertical sections are sometimes positive, and sometimes negative, and the direction of the greatest negative (or algebraically least) curvature is at right angles to the direction of the greatest positive (or algebraically greatest) curvature.
As to points connected with the apparent plysical character of the tangent, which have been in various places referred to this article, it will be more convenient to consider them under the word V veocits.
TANGHI'NIA, the name of a genus of plants belonging to the natural order Apocynaceere. This name was given by Aubert du Pctit Thnuars to the plant which produces the celebrated Tanghin poison of Madagascar. The genus possesses an infundibuliforin corolla, with a clavate tube, and 5 -toothed throat : the anthers are subsessile; the fruit is a drupe, with a fibrous ligneous putamen or stone, which contains one or two sceds. The specific name T. venenifera was given to the plant which yields the poison. It has dense leaves, with erect branches, and paniculated terminal flowers. At the time Du Petit Thouars deseribed this plant, he stated that it was closely allied to the Cerbera Manghas; and since its cultivation by Mr. Telfair in the Mauritins, there can be no douht of its belonging to the genus Cerbera, and the plant is now ealled C. Tanghin. In its native island this plant attains the size of a tree, and has a lard wood which may be used for many kinds of carpentry. But the part which yields the poison is the kernel of the fruit. Although this kernel is small, not much larger than an nlinond, Mr. Telfair says that it contains enough poison to kill twenty persons. Its great use in Madagascar was as a means of trial, the innocent being sulpposed able to resist its action, whilst the guilty suiffered under its influence. Radama, the late king of Madagascar, was desirous of abolishing its use, but found great difficulty in doing so on account of the prejudices of the natives. Mr. Telfair witnessed a sad instance of its nise, The king Radnnia was taken ill, and got well by the use of nerciry; but this medicine affected his mouth, so that the impression produced upon liis 'skid,', or physician, was that the king had been poisoncd. He therefore insisted that the Tanghin should be administered to himself and all the servants of the household, in order to ascertiiu the guilty party. The king protested against the procedure, hut in vain. The whole household were shut up during the night without food, and in the morning were bronght out for trial. The presiding 'skid,' or 'physician, then pounded the Tanghin bean to a pulp between two stones, and applied a small quantity to the back of the tongue of each individual. The effects varied in different individiuals. In some it produced vomiting, and the poison being ejected from the stomach, they recovered. In others3 convulsions were brought on with violent efforts at vomiting, which soon destroyed life. (Botánical Magazine, fol. 29ㅇ..)
TaNGiel. [Marocco.]
TANGLE. [San-Werds.]
TANGUT is the listorical name of a country in Asia, which occupies the centre of the eastern, more cxtensive, and more efevated table-land of that continent [Λ ss Λ, vol. ii.. p.464], where a nation, which originally inlabited Tibet, and was called Tang, founded an empire in the seventh eentury; which was very powcrful for a long time; and was overthrown ly Genghis khan in 1227. The country still noes by the nanie of Tangut, thougli at present a part of it is inoorporated in the Chincse province of Kansi, whilist another is mostly in possession of two Mongol nations, the (Hith Tshoros and the Torbod Mongols.
Tangut borders on China Proper on the north-west, extending between 33° and $42^{\circ} \mathrm{N}$. lat:, and between 94° and

107 ${ }^{\circ}$ E. long.' To the south of it is Tibet; to the west Chinese Turkistan, or the government of Thian-Shan Nanlu; and to the north Mongolia, of which also a portion is included within the lately erected province of Kansi. As the boundary-lines of the country are not politically determined, it is not possible to give an estimate of the area.
The southern portion of Tangut, or that which lies south of $38^{\circ} \mathrm{N}$. lat., is one of the most mountainous tracts on the globe, and extends over the upper course of the river Hoang-ho and the basin of the lake of Khookhoo-ner: Along its southern border there is a very elevated range, which divides the upper courses of the iivers Hoang-ho and Yan-tse-kiang, and is called the Bayan Khara range. [Bayan Khara Mountaivs.] Another elevated range traverses the country in the same direction from east to west near $38^{\circ} \mathrm{N}$. lat: This range rises at a short distance from the banks of the Hoang-ho north of the town of Lantcheou, and in its eastern part is called Kilian Shan ; buit farther west it takes the name of Nan Shan (or Southern Chain). It rises to a great elevation, especially to wards the west, where many of their summits are covered withsnowand uniteil by extensive glaciers. This mountain-chain is supposed to be connected with the Kuenluen range near $92^{\circ} \mathrm{E}$. long. These two ranges ahove mentioned occupy a great portion of the country between 33° and $38^{\circ} \mathrm{N}$. Iat., and nearly the whole of the remainder of the country is filled up by a third range, which connects these two ranges, and extends from south-east to north-west, being on the north united to the Nan Shan, and on the south to the Bayan Khara Mountians. This chajn bears the name of Siue Shain, or Snowy range, on account of the numerous summits whiel rise alove the snow-line. The river Hoang-ho breaks through this range, but the huge rocky masses compel the river to make a great bend towards the iwest between 34° and 36° N . lat., and the circuit which the river: makes shows the immense extent of these masses of rock. In this part of its course the river is said to be hemmed in by lofty mountains, so that no communication can be established along the banks. Its course above this bend is very imperfectly known, and the fabulous accounts of its sources show that they have never been visited eien by Chinese geographers. The river enters a wide valley by a narrow gorge formed by two very elevated mountains a little above the town of Ho-cheou ($36^{\circ} \mathrm{N}$. lat. and $102^{\circ}{ }^{\circ} \mathrm{E}$. long.). At the opening of this gorge is a fortress, called Tsy-shy-kuan.
Tangut is separated from China Proper by a fourth range, the mountains of Sitan, wlich run south and noith, being connected at their southem extremity witli the Bayan Khara Mountains and the Sive Shan by an extensive mountain-knot, which is in the country formerly called Sifan, whence the clain has obtained its name. Thouglt this range is less elevated than the Siue Shan, it rises in several places above the snow-line, and occupies a considerable width. It is supposed to terminate near the banks of the Hoang-ho, a few miles south of $38^{\circ} \mathrm{N}$. lat. Opposite to it and on the northern banks of the river rises another chain, which may be coisidered as the continuation of the mountains of Sifan ; but this range, which continues along the westerm bank of the river as far north as $42^{\circ} \mathrm{N}$. lat., rises only to a moderate elevation, and is stated to occupy in many places only three or four miles in width: it is called Holang Shan, and slopes on the west down into the steppe of the Olöth Tshoros. This range is distinguished from all the other ranges of Tangut by being thickly wooded on its eastern decilivity.
Only a small portion of the countries enclosed ly these monntain masses is fit for cultivation. It does not appear that there is any cultivation in the upper valley of the Hoang-ho above the fortress of Tsy-shy-kuan. Below that place and as far as Lan-tcheou, the valley is wider, and narrow tracts along the banks of the river ate cultivated and fertile. This part of the valley is compared with that of the Adige in Tyrol. Farther down, and as far as the neighbourboorl of Ning-hia, a town built on the western banks of the Hoang-ho; at the easterm declivity of the Holang Shan ($38^{\circ} 3 y^{\prime} \mathrm{N}$. lat.), the valley has not been visited by Europeans. At this place the river runs in a wide valley which has been rendered fertile by numerous canals, which are fed by the waters of the river, nind in whicln ince is extensively cultivated. There are also numerons plantations of truit-trees. The sail contains much saltpetre. The tuwn of Ning-lia, the antient capital of Tangit, is of considerable extent, being fitteen li (equal to five niles) in cir-
entit. It has some very grod manufactures of carpets and paper, and a considerable commeree with the nomadic tribes who wander about in the eountry west of the Holang Shan. Below the town of Ning-hia the valley of the Hoang-ho grows wider, as the range of the Holang-sihan retires farther west, but its fertility decreases. About eighteen miles from Ning-hin the canals cease and no rice is eultivated. Other grain is sill grown about 30 miles farther north, where the country gradually changes into a sandy, arid desert, interspensed with hills, swampy traets, and pestures.

The lateral valley of Si-ning-teheou opens to the Hoangho from the west above the town of lan-tcheou between the Kilian Shan and the most elevated portion of the Siue Shan. The valley is not extensive, but appears to be fertile : it contains the town of Si-ning-theou, which is not quite as large as Ning-hia, but a ruch nore commercial place, as the road which conneets northern China with Hlasa in Tibet passes through it. This road leads from Si-niurg-tcheou westward over a chain to the lake of Khookhoo-nor, whieh is of great but unknown extent. It is an alpine lake cnelosed by high mountains, and has 10 oullet. The remainder of the road lies partly over numerous large mountain-masses, furrowed only by narrow glens and ravines, and partly over rocky and sandy tablelands, and the whole is deseribed as a desert, in which only a small number of nomadic mountaineers are met with, and where the traveller for forty days' journey finds no other accommodation than the lents of the poor mountaineers. In syite of the diffeulties, the road, as it appears, is much travelled, and the bazars of Si-ning-tcheou are well provided with provisions and artieles of luxury. Even coffee and dates may be got there. This town is also the depôt of the Turkish rhubarb, which grows, as it appears, only on the more elevated parts of the Siue Shan and Kilian Shan, and is sent from Si-ning-tcheou to all parts of the world. Before the commerce between China and Siberia was established, this artiele was brought to Europe through Turkistan, Persia, and Turkey, and therefore is still called Turkey rhubarb, though at present it comes through Kiachta and Kussia. When the Jesuits, who had been sent to these countries by the emperor Kang-hi, were at Si-nine-tcheou, they were astonished at seeing the quantity uf rhubarb whieh, during the months of Oetober and November, was daily brought from the adjacent mountains to the town.
The northern part of Tangul, with the exception of the valley of the Hoang-ho, is oecupied by a wide desert plain, which eonstitutes a portion of the Gobi. [Gobi, vol. xi., p. 286.] The steep deelivities of the Kilian and Nan Shan however do not come close to the desert, but are'separated from it by a hilly tract from 30 to 50 miles wide, which contains some extensive tracts fit for cultivation, and in which some large towns have been built, as the great commereial route which conneets China with the countries of Western Asia runs longitudinally through this hilly tract, and is confined to it by the extensive sandy desert on the north, and the still less practicable mountaindesert whieh bounds it on the south. Aecording to our bent information, the ranges of the Kilian Shan, and especially of the Nan Shan, are covered with eternal snow, and ane would imagine that they give origin to rivers which hring down a great volume of water, but that is not the cease. The volume of water is very moderate: a part of it is consumed in irrigating the adjacent fields, and the remainder is absorbed by the sandy soil, ns soon as it reaches the plain, after having lett the hilly tract. This evidently shows that the watershed of the mountains must be at a very moderate distanee from the Gobi. The surface of the hilly tract consists of an alternation of high lands and of depressions, running from the mountains northward to the border of the desert. The high lands are of eonsiderable extent, their upper surface broken and roeky, and only ocensionally covered with a 1 hin layer of earth unfit for the growth of trees. In general the roeks are bare. The depressions between these high grounds are lese extensive, but exhihit a considerable degree of fertility where they are inignted. Even in those parls whleh are beyond the reaeh of irrigation, they are chicfly cultivated. To protect lhis hilly repion, and the great comnereial road which runs through 11 , against the nomadie tribes of the Gobi, the Chinese have continued the Great Wall along its northern border westward to $98^{\circ} \mathrm{E}$. long., and along the wall are built the fortresses which protect the line and the towns
through which the road runs. The road leaves the valley of the Hoang-ho at the town of Jan-tcheou [Culva, vol. vii., p. $8(0)$, the capuital of Kansi, and ruts in a north-northwest direetion over a stony and hilly country to the town of liang-teleou, a considerable place, of which however nothing is reported, except that the distriet in which it is situated is fertile, and coutains a grent number of villages. From Liang-teheou the road runs north-west to Kan-lchroufoo, a large and well-built town, which has many manufactures of wollen stuff's and felts, which articles are in great demand among the nomadie triles of the Olüth Thhoros, who inhabit the contiguous part of the Gobi, and bring to the place their wool, homes, eattle, and sheep. It receives also large quantities of rhubarb from the Kilian Shan. From Kan-teheou-fno the road contimes in a north-west direction to So-teheou, a large and well fortified town, with numerous bazars, well provided with provisions and manufaetured artieles. The town is divided into two seetions, one of which is oceupied by the Chinese, and the other by the foreign merchants from Boklara and Turkistan. The latter is divided from the former by a separate wall, the gates of which are shut at night: in other respeets foreigners do not experience any different treatment from uatives. As So-teheou is the last large plaee through whieh the exravans pass before they enter the desert between Tangut and Thian-stan-nahr: the commerce is sery great, especially in provisions. About 50 or 60 miles west of So-theou is the most western wate of the Great Wall, ealled Kia-yu-kooan, or the gate of the You-stone (jasper), through which the earavans pass in enter the desert of Han-hai, whieh must be traversed in order to reach Hami in Thian-Shan-Nanlu. The last-mentioned town is 960 li , or 320 miles, from the gate of Kis-yu-kooan, and that is the width of the Gobi at this place, which is considered the narrowest part of it.
The towns hitherto noticed lie along the great caravanroad, but farther west the Chinese geogriphers mention other places of importance. The largest, as it seents, is Ngan-si-foo, a down of the first rank, and the eapital of the whole distriet. North-west of it, and on the horder of the desert, is the town of lu-men-kiang, which is built near a pass between high hills, through which a road leads northward to Hami, of which we have no information. South-west of Ngan-si-foot are the towns of Toong-hooangkiang, and Sha-tcheou. The last-mentioned place, whose name means Sandtown, seems to be the last inhabited place towards the west. It has not been visited by Europeans, except by Marco Polo, who describes it as rather a large place: he says that the inhabitants live on the produce of their fields and orchards, and have litlle commerce. From his accoun, and that of a Chinese traveller, it is evident that two roads run north-west and west from this place. Mareo Polo renched it after traversing the desert of Lop, by a thirty days' joumey, having departed from the town of Lop, which is on the banks of the lake of the same name. The intermediate traet was mostly eovered with sand, but in some places the soil consisted of bare and broken rocks. A Chinese traveller departing from Shateheou, and taking the western route, seems to have traversed in still worse eountry, until he reached the town of Khotan. [Than-Suan-Nanlu.]
That portion of the Gobi which lies north of the Great Wall contains many tracts which are covered with grass, and supply pasture to the Olölh Tshoros, but others have a sandy or stony soil, and are quite barren. In some places there are extensive swamps, especially where the rivers are lost, which descend from the Kilian Stan, among which the Etzina probably runs more than 200 miles. But the IIan Hai, or that portion which lies between the gate of Kia-yu-kooan and Ifami, is uearly uninhabited, as water is rarely met with, fund the grassy tracts are still less freguent. The sand with whieh the surface is covered is very fine, and frequently raised into the air by strong wiads.

Our information respeeting the clinate of Tangut is very scanty. The cold in winter is intense, and lasts for several months. The Jesuits found the Iloang-ho near $40^{\circ} \mathrm{N}$. lat., at the end of November, covered with thick iee, so that the earavan was able to pass orer it, though the river was more than 300 yards wide. At Ning-hia a heavy fall of snow was experieneed in the niddle of Λ pril. In summer the heat is great, but much less than in the low countries of China; the elimate is considered as extremely healthy.
We are no better acquainted with the productions of

Tangut. Every kind of grain is grown in the few traets whose soil is fit for cultivation, and rice is raised where irrigation is practicable. The nomadic nations have numerous herds of camels, horses, and cattle, and large floeks of sheep and goats. In the mountain-region is found the yak or mountain-cow, whose tail gives the chowry. It is used for riding as a saddle-horse. In the desert are numerous wild animals, sueh as wild hogs, deer, the argali, and hares. It is also said that in the woods of the Holang Shan there are wild horses. Wild eattle are found on the deelivity of the Kilian Shan. No mines are worked. In the desert some extensive tracts are covered with agates, cornelians, and other precious stones, which are collected by the nomadic tribes and sent to China.

The inhabitants of Tangut are a very mixed race. Mongol tribes inhabit the Gobi, and oecupy also the mountain-ranges north of Lake Khookoo-nor, but the mountaineers who are in possession of the mountainregion south of Lake Khookoo-nor, derive their origin from Tibet. It is even supposed that in this part there may still exist small tribes of the Miotse and Yuet-shi, who are considered as the aborigines of this region, but have been nearly exterminated by the wars with their neighbours the Miongols and the inhabitants of Tibet. It is not known if that Turkish nation which is called Sobko, and which inhalits the western part of the Kuen-luen mountains [Tuer], extends over the western distriets of Tangut. The avricultural population is mostly composed of Chinese and their descendants, among whom a small number of families of Turkish origin are settled. But in the towns the number of Turkish settlers seems to be considerable. They are Mohammedans, and there are mosques in the larger towns of Tangut, especially in those which lie along the caravan road. All the other inhabitants are Buddhists. In the time of Mareo Polo there were also Nestorian Christians in the towns, but they have disappeared.
The Chinese emperors subjected the eountry of Tangut probably during the dynasty of Han, shortly before the birth of Christ, and maintamed their authority over this and the countries farther west to the eighth century, in spite of their long protracted wars with the Hiongnu, a Turkish nation which then was in possession of the desert north of Tangut. In the middle of the seventh century they extended their dominion even over Western Turkistan to the eastern banks of the Caspian Sea. But in the eighth century Tangut was oceupied by a nation of Tibetan origin, which founded in these parts the empire of Thufan; and though it was overthrown by the Chinese, and some Turkish tribes, their allies, in the ninth century, the Tibetans erected in the following century the empire of Tangut or Hia, whieh maintained its power till it was destroyed by Genghis Khan, in 12:25, and by its overthrow the conqueror opened to his countrymen the road to China, of which they took possession a few years afterwards. With the downtall of the dynasty of the Mongols (1341), the best part of Tangut remained under the sway of the emperors of the dynasty of Ming, though the Mongols after their retreat from China had oceupied the northern and more desert portion of it, where they maintained their independence to the end of the seventeenth century. In the wars of the Galdan of the Olüth [Songaria, vol. xxii., p. 245], a tribe of the Olöth Mongols expelled the Khalkas from the country west of the Hoang-ho, and took possession of it. But aiter the defeat of the Goldan, they submitted to the Chinese emperor in 1690, and since that time the whole of Tangut has been annexed to China. The Chinese government is very assiduous in promoting agrieulture in Tangut, and in inereasing the agrieultural and commercial population, this being considered the most effieacious mode of restraining the nomadie tribes which inhabit the nortliern and southern districts of Tangut. To give to its measures greater stability and to forward their extension, it has eonverted the greater part of Tangut, with some of the adjacent countries, into a province of China Proper, under the name of Kansi. (Du Halde's History of China; Ritter's Erdhunde von Asien, vol. i.)
TANIORE, a distriet inSouthern Hindustan, was formerly a small independent kingdom or prineipality, and though now under l3ritish superintendenee, is still goverued by its raja. The distriet is included in the provinee of the Carnatie and presidency of Madras: it is bounded on the east by the l3ay of l3engal, and extends from Point Calyuere,
$10^{\circ} 18^{\prime} \mathrm{N}$. lat., to the mouth of the Coleroon, $\left.11^{\circ} 25^{\prime}\right)^{\prime} \mathrm{N}$. lat. To the north and west it is bounded by the Coleroon and the distriet of Triehinopoli; and to the south and west by the sea and the teritory of the Polygars.
The river Cavery, near Trichinopoli, separates into two branches, of which the northern is called the Coleroon, and falls into the sea a little to the north of Devicotta; the southern branch retains its name of Cavery. These two streams however, after flowing about twenty miles at some distance, again approach each other, and are only prevented by a narrow neck of land from re-uniting and diseharging the whole river by the ehannel ot the Coleroon. To prevent this junction large mounds have been formed, and are kept in repair at a considerable expense. The Cavery, thus separated from the Coleroon, flows through the flat territory of Tanjore, and divides into a number of smaller streams, which are conducted into reservoirs and eanals for the purpose of irrigation: by this means nearly the whole distriet, which would otherwise be a sandy desert, is rendered one of the most fertile in Hindustan. From Devicotta to the salt swamp near Point Calymere, and from the Bay of Bengal to the city of Tanjore, the whole country, with its rieh covering of alluvial soil. has the appearance of a garden: from Tanjore to Triehinopoli it is like a desert.
The principal product of the district is rice, of which two crops are obtained annually; the next in importance is indigo: both are exported to Madras in considerable quantities, besides cocoa-nuts, grain, paddy, and lamp-oil.
The distriet of Tanjore has never been in the aetual occupation of the Mohammedans. Its Hindu religious struetures are therefore uninjured, and in no part of Hindustan are they so numerous, so large, and so imposing. There is hardly a village without its briek pagoda and lofty gateway. Almost all the principal offices are in the hands of the Brahmins, and they are also the chief landholders.
Besides the eapital, Tanjore, the principal towns are the following:-Carrical, $10^{\circ} 55^{\prime} \mathrm{N}$. lat., $79^{\circ} 55^{\prime} \mathrm{E}$. long. Comıbooconam, $11^{\circ} \mathrm{N}$. lat., $79^{\circ} 25^{\prime} \mathrm{E}$. long., is the antient capital of the rajas of Tanjore: there are remains whieh indieate its former splendour, and its pagodas and tanks are still very fine: it is chiefly inhabited by Brahmins; Devicotta (Devicata, the fort of the goddess), $11^{\circ} 20^{\prime} \mathrm{N}$. lat., $79^{2} 53^{\prime}$ E. long. Nagore, $10^{\circ} 49^{\prime}$ N. lat., $73^{\circ} 55^{\prime} \mathrm{E}$. long., a sea-port with a considerable export and import trade. Negapatam. Tranquebar. The villages are numerous, and the population dense.
The antient sovereigns of Tanjore were the Chola dynasty, who probably gave to the whole district the name Chola Mandala (corrupted into Coromandel), the former term in Sanscrit signifying an orbit or circle, and thence a region or tract of country. The kingdom of Tanjore was wrested from its original Hindu sovereigns by the Mahratta chief Eceojee, the brother of Sevajee, in 1675. It has ever since been retained by the Mahratta race; so that, though the language of the inhabitants is Tamul, the language of the court is Mahratta. In 1771 a dispute broke out between Mohamined Ali, the nabob of the Carnatic, and Tuljajee, the raja of Tanjore, with respect to the keeping in repair the mounds which prevent the stream of the Cavery from falling into the Coleroon. The mounds are in the territory of Trichinopoli, and the nabob, as sovercign of that territory, elaimed the right of repairing, and consequently of neglecting to repair, by whieh a portion of the nabob's territory might have been fertilized, and nearly the whole of Tanjore rendered a desert. The raja had been compelled to pay tribute to the nabob, but had never been subject to him, and appealed to the British to proteet him in his right to repair, which had always been exereised by the rajas of Tanjore, and for which, he contended, he paid his tribute. The British however took the part of the nabob. On the 20th of August, 1773, the siege of the eity of Tanjore was commenced, and a passage twelve feef wide having been completed across the wet ditch which surrounds the walls of the forts, on the 161h of September, when the sun was in the meridian and the raja's troops were taking repose, the British unexpectedly made the assault, and carried the fortress, with hardly any resistance, the raja and his family being taken prisoners. The raja was then made subjeet to the naloob; but in consequenee of the disapprobation which these proceedings met with in England, on the 11th of Apirl, 1776, the reVol. XXIV.-F
storation of the ruin to his former independence whe proclaimed by the liritinh. In ITtio the territory of Tmijore was subjected by treaty to Itritish authority. 'The raja retains the forts of Tanjore, which are garrisoned hy him, subjeet however to the condition of placing them in the hands of the British in ease of war in the province. He has a elear allowance of a lace of mipees amumbly, and onedifli of the surplus reveme of the territory, atter payuent of the civil and military establishnents, whieh amounts to at least a lac noore. He also retains lis palaces, und also a tributo paid to him by Tranquelar.

The present raja is Sewajee, the son of Sarbojee, who was adopted by the previous raja Tuljajee, or.Julia Malia, and who was intruted by him at his death to the mis. sionary Selnwarz. Of the cireumstanees under which the sovereign power was ultimately obtained by Sarhojee from Ameer Sing, the half-hrother of Tuljajee; an account is given in the artiele Scuwanz.
(IIamilton's last India Gazetteer: Maleolm's Travels in Hindustan und Chinn in 1836-7; Mill's History of Jritish Indin, by H. H. Wilson.)

TANJORE, the capital of the distriet of Tanjore, in 10° $47^{\prime} N$. lat. and $79^{\circ} 13^{\prime}$ R. long., is ahout 40 miles east from Trichinopoli, and about 57 miles west from the llay of Bengal, direct distanees. The city is situated not tar trom the south bank of the Cavery, and is five or six miles in cireumferenee, ineluding the sulburbs. It is a place of great strength, being defended by two forts, whiels are eonneeted, and both are surrounded by walls huilt of large stones, and by broad and deep wet ditches. The eity is in a flourishing state: it is regnlarly built, and is said to conltain a larger proportion of good louses than any other town in Southern Hindustan. The population is probably not less than 70,000 or 80,000 . The palace of the raja, where he resides, is in the larger fort: in one of the halls of audience is a colossal statue of Sarbojee, by Flaxman, whieh was exeeuted by commission from Sarbojee himself. The pagodas of Tanjore are very large, with javed yards and extensive gardens: one of the largest in Hindustan is situated in the smaller fort: it contains a bull finely seulptured in blaek granile. The Protestant Mission chureh was built at the expense of the missionary Schwarz: it is \& spacious and handsome strueture, and has been thoroughly repaired by the present raja. Sehwarz was buried behind the pulpit; the spot is marked by a slab, on which is an inseription in English poetry, aseribed to the raja Sarbojee. Service is performed in the chureh on Sundays both in Tamul and in English. The Protestant communicants belonging to the Tanjore mission anount to alont 7.0.0, and there are also between 400 and 500 Roman Catholie converts, under priests who are chiefly Jesuits from Goa.
(Ilamilton's Last India Gazefleer; Maleolm's Travels in Hindusfan and China.)

TANK, a reservoir for water or other fluids. The name is sometimes applied to large open reepptacles, or ponds, formed by excavating the ground and disposing the removed earth int the form of banks to retnin the water; but the tanks which will here be esplecially treated of are the smaller eovered reservoirs used to colleet and retain water and liquid manure for domestic and agricultural purpases. Respecting the construction of ponds it will he sufficient to refer to Fmankment, vol. ix., p. 373, for the metholl of forming the retaining banks, and to Canal, vol. vi.. p. 219, for a deseription of the proeess of puddling with elay, whieh is always neeessary in forming a reservoir in a porous soil, unless the more expensive method of paving or lining with chalk, bricks, stone, or timher, be resorted to. See also Sluice, vol. xxii., p. 142, for a notice of the meens used to regulate the drawing off of water from goonds, and to prevent aecident from their becoming over-filled.

In ligh mountainous pastures, tanks are indispensable to supply both men and cattle with water; and they ought to be very carefully construeted of suel materials an are at hand. In the pastures of the Jura, between Franee and Switzerhund, the tanks are usually made of wood, in the following manner: a square excavation is macle in the ground, whieh, if necessary, is lined with a coating of elay or impervious earth to prevent the escape of the water; fir-trees, deprived of their bark, are thea laid elowe together and frastened with wootlen pins, so as to form the tloor, and the sides are lined in a similar manner. The taalk is covered with a roof of the same mate-
rials; but this, instead of rising from the sider to a puint or ridere, nceording to the forms usually adopted in rocting. is made in the shape of an inverted hollow pyranid, so that it nets as a funnel to conduct all the rain-water which falls upons it into the tank, at the sane time that it keeps the tank cool, and prevents evaporation. Such tanks are nisually plaeed at a small distanee from the habitation and cowhonse, if there be one; and the water from their roots is condueted, in spouts made of small trees sawn in two and roughly hollowed ont, to the fumuelled root of the tank. They are usually of a cubical form, from 15 to 20 fent square; hut if a larger size be reguired, an ohlong shape is prefersed, the depth and width seldon exceeding 3) feet. After being onee filled, these tanks seldom tail to atlord an abundaut supply of water, although, in summer, thirty or forty head of eattle may have to be supplied exclusiyely from them.
The importanee of colleeting rain-water for domestic purposes, especially in districto where springs are defieient or lie at a great depth, has been much overlonked in ithis eountry. Waistell, in the work referred to at the end of this artiele, urges the importanee of placing syouts round all the buildings of a farm to collect the ran-water which falls upon them into a tank or tanks ; observing that, besides the value of the supply of water thus ohtainet, the buildings will be benefited by the walls and foundations being kept drier than when the water from the roof is suffered to fall upon them. He states that the quantity of water that falls amnually upon every lundred superficial feet or square of huildiny (in Great Mritain) is about 1400 imperial gallons; and this statement aypuears to be fully borne ont by the observations reeorted in the article Rain, vol. xix., p. 2io. If therefore the extermal sintlaces of roofs were adapted to the collection of the rain-water which falls upon them, and incans were provided for eonveying it to eovered tanks, in which it mught be preserved fiom evaporation, and kept free trom any admixture of impurities, almost every house might be readily and cheaply supplied with a quantity of wholesome water sufficient for the ordinary wants of its inhabitants, The extensive roofs of churches and other pullie buildings might be employed in like way to collect water for the supply of ponds or tanks for jublic nse. In some eases even the drainage of lands might also be made available, as the water may be sulmitted to any required process of filiration before it is allowed to enter the tank.

Tanks or cisterns to hold water for domestic purposes may be conveniently situated beneath the surface of the ground, so that, being paved over, they oecupy no vaIugble space. They are formed of stone slaths grooved into each other and set in cement; ot Welsh slate; of large paving-tiles bedderl in eement; of brick-work; of plates of cast-iron; or of thick wooden plankis, protectecl by charring and pitehing, or lined with sheet-lemel. The brick tanks deseribed by Waistell are circular, the sides being built like a well, with bottoms of an inverted domeshape, of very slight convexity. The top is also domeshapled, and has an opening in the eentre large enough to receive a man, in order that the tank may he thoronglily eleaned ont whea necessary. This opening. which unay be upon the surface of the ground, or a little above it, should be covered with an oak flap pierced witl a number of holes, or with an iron grating. The deppls and width of the tank should, it is stated, be nearly equal. If neeessary, "a smaller luriek chaunber may be constructed alongside of the tank, in which the water may be filtered through gravel, sand, ehareoal, \&ec, before eitering it. It is reeominenderl to make the opening by whiels water enters the tank near the top. Briek tanks of this deseription may be rendered water-light by laying the imer eourse of brieks in cement, and plastering the whole of the inside with the same to the thiekness of about threequarters of an inch. To enable them without iujury to hear the great weight of water when nearly full, the earth should be rammed elosely round the briekwork. and it should be allowed to settle thoroughly before any great quantity of water is admitted. Iouclon describes another kind of loriek tank, contrived by Mr. Mallet to bave expense in eonstruetion, by adopting a figure of masimum capacity and minimum surface. Mallet proposes, when the tank is large, to adopt the spherieal form; and when of less than tive or six leet in diameter, that of a shourt vertical eyliader with liemispherieal ends. By fuddling
with clay roundabout the tank, the necessity for the use of Roman cement is avoided.

In the forty-ninth volume of the "Transactions' of the Society of Arts (part ii., p. 12), is a communication from Mrs. Drvies Gilbert respecting a cheap method of coothstructing tanks for receiving water from the roofs of cottages, which has been successfully practised at Eástbourn, in Sussex. A reseryolr háving been dug seven feet deep and about the same wide, the bottom was cobvered with flints laid in liquid mortar composed of one measure öf grey chalk lime (made of chalk marl) well beaten up with Three meastires of clean sea-sand. The side walls were built of the same materials, leaving a small space at the back of the wall, which space was filled up with the same sort of grout or liquid mortar. The tarik was then roofed over with a dome, forined, without any centeing, of smallerflints well bedded in mortar. A hole was left in the centre, and covered with a hood, within which was hung a pulley with a rope and bucket for drawing water from the tank. This account was published in 1833, and in 1837 an article appeared in the 'Tabourers' Friend Magazine,' in which it is stated that such tanks had been found very useful during three dry summers. One, less than seven feet deep aind wide, had supplied two labourers' families during that time, while most of the springs in the neighbourhood were dry. This paper describes a brick tank with sloping sides, the dianeter at the base being sinaller than at the top, and with a dome-shaped top formed by making each row of bricks project one-third beyond that immediately below it, and balaiscing the weight by filling up the back with earth as the work proceeds. One of the flint tanks, constructed as above described, at the Eastbourn workhouse, is twenty-three feet deep and eleven feet wide. Orily ninety bushels of lime were allowed for its construction, including two eoats of plaster, and the work was executed at ten shillings per hundred square feet.

In the article last quoted from, it is observed that a current of air has been supposed to promote the purity of the watcr preserved in táiks. If so, it niầ be easily provided for. Where the prevailing winds do not blow soot and leaves upon the roof, the water is found to remain good, even for drinkinc, without clearing out the rubbish more than once a year.

In addition to tanks for water, every farm-yard should have one to collect the liquid portion of the manure, which is washed liy the rain through the refuse litter, and also the urine of the stalled cattle. Though not jel generally adopted in England, in France, Germaniy, and especially in Belgitum, such tants are considered as necessary to a farm as any of its most common buildings. They are usually constrncted of an oblong shape, of brick well cemented, with one or more divisions, and capable of containing at least ten times as many hogsheads as there arc heads of cattlc on the farm. They are vaulted over, having a sniall aperture, in which a pump is placed, sufficient to allow a man oceasionally to clear out the sediment, when tlic liquid has been pumped up. The best shape to contain of large quantity in the smallcst space woild be like those before described; but they cannot conveniently be made sufficiently large, and a cubical form, or rather that of scveral cubes in succession, is preferred. A tank for a farm of 200 actes of arable land should be 15 feet wide, 15 deep, and $4 \overline{5}$ long, giving 3 cubes of $1 \overline{5}$ feet, or a cavity capable of containing upwards of 10,000 cubic fect of liquid. In this tank the urine is diluted will water to prevent too rapid decomposition, and also to retain the ammonia which is formed; for which purpose gypsum and sulphate of copper are sometimes put uto the tanks.

If the soil be not sandy, clay will answer instead of mortar to conncet the brickwork, and a plastering of lime or cement will be suffieient to kcep out the yorms: but in very porous soils the bottom and sides must be puddled, to kecp in the liquid; and it may be advantageous to huild the walls in cement altogether. The liquid from the yards and stables is carried into the tank by a main drail constructed of brick oir stone, and which receives ha number of smaller drains from every part of the yardis aud cattle-sheds. Thus the litter in the yard is always dry, and none of the tichiness of the manure is lost by evaporation.

Sometimes the fank is vanlted like a cellar under tha cow-house and stablets, which are twashed out twice every.
day, and all the dung and water are swept into a cess-pool communicating with the tank. Thus a very diluted, but rich liquid soon fills the first division of the tank: a sluice is then shut, and the next washings run into a second division, and when that is full, into at third. In the meantime the contents of the first tank have undergore a certain fermentation, by which the caustic ammonia first evolved has become mild and impregnates the water. It is then in a fit state to be carried oil the land in tubs or water-carts. When properly diluted, it aceelerates vegetation in a surprising degree; but if put on fresh, it burns the grass or any vegetable it tonches, because the ammonia is in caustic state. If a cow drop her urine in a field in a hot summer's day, all the grass it has touched becomes yellow and is burned up: but if the same happen in rainy weather, the spot soon becomes very green, and the grass luxuriant; because, in this ease, the urine is amply diluted and its caustie nature corrécted. Those who live near gas-works may colleet the ammoniacal gas-water in a tank, and, by the addition of sulphuric acid in very small quantities, they may produce a very fertilising liquid, which will stimulate vegetation, and be a very good manurc.

The necessary concomitant of a tank, whether for water or manure, is a water-cart, that is, a large cask put upon wheels to bring water from some distance. When fhere are no means of bringing, water in pipes, a water-cart is quite indispensable. It is simply a cask placed on the frame of a cart, with a plig-hole in the end or lower part, from which the water may be let out by a cock, or drop on a flat board or into a bucket with holes, so as to spread it about. The plug-hole is shut by a valve inside, which can be opened by means of a string, the pressure of the liquid kecping it close to the pluy-hole.

Many of the artificial manures, of which a number have been lately proposed, would make excellent liquids by merely mixing them up with water in a tank, and allowing a certain degree of fermentation to take place. Thus nothing is lost, and all volatile substances are taken up by the water. The soluble portions are dissolved and the earthy matters diflused, so as to be more equally spread over the land. If it be true that the ammonia found in some plants is ehiefly derived from the very sinall portion discovered in rain water, it follows that a scarcely percep tible impregnation with this salt may have most powerful effects on vegetation.

When a farm-jard is situated on a hill, and there are fields or pastures on a lower level, at no great distanes from 1t, the liquid from the tank may be conducted by channels lined with clay, having small sluices to direct the streams to any particular field. It may thus be made to irrigate temporarily a considerable surface, which it will greatly enrich. It nay be led into the common furrows between the lands or stitches in ploughed land, and allowed to soak in them, and then it ean be spread with the earth of the furrow, by means of broad shovels, over the growing crops, and will greatly invigorate them. This species of irrigation is common in Lombardy, where much ingenuty is shown in the manner in which water is made to flow in small rivulets between the rows of growing yegetables. The water here is supplied by streans, but the same method would distribute the tank-liguor with great cffect. A very small quantity of this liquor, allowed to flow into the main feeder of a water-meadow, will soon proyé how great effects are produced by impregnations which are scarcely perceptible by chemical analysis.

Small as the experience has hitherto been in this country of the advantares of liquid-manure tanlis, it has sufficiently proved their use to induce every man who constructs a farm-yard and erects buildings to take in the tank as an essential part of his plan; and even if it only collected the refluse fluids which are allowed to run off in common sewers from most houses, it wonld soon repay the cost of its construction, while it readered the ditcles in the neighbourhood less subject to noxious enmations from the corrupted matter which now flows into them. The passage of air into or out of a manure-tank, and the consequent exhalation of noxiouls vapours, may be prevented by the use of air-traps, sinilar in principle to those described tonder Sewers, rol. xxi., p. 319, at the points where the drains enter it.

The lise of metallic cisterns or tanks, in lien of wooden casks, tor containing a supply of fresh water for long
voyages, is one of the great improvements effected of late years in naval cennomy. The nineteenth volume of the -Transactions' of the Socicty of Arts contains an account of experiments on this subject, by General Samuel Bentham, in 1706 and the following years, the suceess of which induced the Society, in 1801, to present to him their gold medul. Large enrthen jars have been tried for this purpose; but, while they leep the water very pure, they are not so convenient for general use as metallic tanks, which may be fitted to the shape of the vessel, so as to avoid any loss of room.
(W'aistell's Derigns for Agricultural Muildings; London's Encyclopedia of Cothage, Furm, and Villa Architecture; 'ransuctions of the society of Arts, vols. xix. and xlix.; Labourers' Friend Magazine, 1837. p. 131.)

TANNAIIILL, ROBEIRT, born at Paisley, in Scotland, on the 3rd of June, 1774, was the soll of poor parents, by whom he was brought up to the oceupation of a weaver, which he pursued in his native town and at Glasgow throughout the short period of his life. The earliest predilection of Tamahill was for poetry. and his taste was formed by the constant study of Allan lamsay, Fergusson, and Burns. He failed to attain the spirit of these masters of Scottish song ; but his pieces generally execl theirs in grace and sweetness. A specimen of this sweetness is found in his famous song, 'Gloomy winter's now awa:"

' Jessy, the flower of Dunblane,' is his best-known effort. The 'Song of the battle of Vittoria' has the merit of redeening from the degradation of worthless words one of the finest airs of Scottish minstrelsy, and restoring it from a whistled jig to the solemn tone of a triumphal song.

His songs were commonly inspired by the immediate oceasion; were the unlaboured fruit of his imagination or feclings. Besides the charm of harmony and of a perfect minstery of his language, which is almost exclusively Saxon, they derive not a little of their effeet from the vein of desponding melancholy which runs througlt them. This melancholy was in some degree constitutional in Tannahill, but it was aggravated by the neglect of the world, and a hopelessness of ever raising himself above circumstances so unfavourable to genius as those in which fortune had thrown him. A kindred spirit, the Ettriek Shepherd, made a long pilgrimage to visit him at Paisley. After a night spent in the nost delightful interchange of feeling, Mr. Hogg took his departure. 'Farewell, we shail never meet again,' were the words emplatically pronounced on this occasion by Tunnalill, and their neaning was shortly afterwards explained. He committed suicide by drowning himself, in his thirty-sixth year. His remains are interred at Paisley.

Tannahill's songs were published in Paisley, in his lifetime, in a small volume. They are in every modern eollection of Seottish melodies, and are oceasionally printed (under Tannahill's name) with selections from Burns. For his life, see Chambersis Scottish Biography.

TANNER, TIIOMAS, was the eldest son of the Rev. Thomas Tanner, vicar of Market Iavington, Wiltshire, where he was born, 254 h January, 1674 . In November, 1689, he was entered a student of Qucen:s College, Ox forl; hut aner haring taken his degree of B.A., he removed in January, 1G94, to All Souls, and he was elected a feliow of that society, 2nd Nov., 1696. So early as 1603, when he was only nineteen, he had published proposals for printing all the works of the antiquary John Jeland, from the original manuseripts; but this deesign, which was afterwards partially excentcd by Hearne, did not receive such eneouragement as to induce him to proeced with it. The reputation he had very carly aequired for his knowledere of English antiquities may appear from the faet that Anthony a Wood, at his death in 169\%, left his papers to Tanner's care. That same year Tanner published at London lis first work, an 8vo. volume, entitled 'Notitia Monastica, or a Short Aceount of the Religious Houses in England and Wales.' Havlig taken orders, he was soon after appointed by Dr. Moore, hishop of Norwich, one of his chaplains; and having, in 1701 , married Rose, the
eldest daughter of that prelate, he received various prefer ments from his father-in-law; the chanecllorship of Norwich about the time of lis marriage; the oflice of commissary for the archdeaconry of Norfolk in 17(x); that of commissary for the archlenconry of Sudhury in 17U7; and, in 1713, a prebend in the cathedral of Ely, to which diocese Moore had been by this time removed. Meanwlile Tanner's wife had died, at the age of twenty-five, in 1700. In the same year he was presented by a friend to the rectory of Thorj, near Norwich; and he then martied Frances, daughter of Jacol) Preston, Exc... of London, whoni however he lost in 1718. His next publication, a new edition of Wood's ' Athenac Oxonienses,' enlarged by the addition of 500 new lives from Wood's manuseripts, appeared at Loudon, in 2 vols. fol., in 1721. In December that year Tanner, who had taken lis clegree of 1).1. in 1710, was appointed by Dr. Green, bishop of Norwich, 10 the arelideaconry of Norlolk; and in 1723 he resigned his prebend at Ely, and was appointed canon of Christ's Church, Oxford. IIe was consecrated to the bishopric of St. Asaph, in January, 1732; and in May, 1733, he married Mrs. Elizabeth Scottow of Thrp, receiving with her a fortune of 15,0001 .; but he did not long enjoy these aeceessions of wealth and honour, his death taking place al Oxford on the 14th of December, 1735. By his second wife he lett one son Thomas, who died rector of Iladley and Monks Ely in Sutfolk, and prebendary of Canterbury, in 1760. His widow mantied Robert Britiffe, Esq., M.I., and survived to 1751. A new edition of the 'Notitia Monastica. with large additions (in part by the editor), was published in a tolio volume at London, in 174, by the bishop 's brother, the Rev. John Tanner, vicar of Lowestoft in Suffolk; and a third edition, considerably improved, ly the Rev. James Nasmith, appeared at Cambridge, in the same form, in 1787. The greater part of this last impression having been consumed in a fire which happened in Mr. Nichols's printing-house, on the night of Monday, the Sth of lebruary, 1808, the book is very searce. But Tanner's literary reputation rests principally on his great biographical and bibliographical work, enitled • Biblio theea Britamico-Hibernica, sive de Seriptoribus qui in Auclia, Scotia, et Mibernia, ad Saeculi xvii, initium florucrunt, literurum ordine, juxta familiarum nomina, dispositis, Commentarius,' which had been the labour of his leisure for forty years, and which was published, in folio, at London, in 1748, under the care of the Rev. Dr. David Wilkins. It is a work of extensive research and great general aceuracy. Bishop Tanner had made large collecetions of charters, grants, decds, and other instruments relating to the national antiquities, which he bequeathed to the Bodleian Library. Some letters from him are published in Dr. Bliss's collection of 'Letters written by Emuinent Persons,' \&e., 2 vols. 8vo., Lon., 1813. (Biographina Britannica.)
TANNIC ACID, or TANNIN, a peculiar vegetable acid existing in every part of the bark of each species of quercus, but especially in the bark: it is found however in the greatest quantity in the gall-nut. The name of this substance is derived from its property of eombining with the skins of animals, or in tanning, by which they are rendered impervious to water, and prevented from putrefying.
To prejare tannic acid, galls are to be reduced to coarse powder, and digested in a percolator in ather which has been previously mixed and shaken with water: in the lower part of the ressel two strata of liquid appear. the heavier of which is a strong solution of tannic acid, by eraporating which, and by subsequent purification, the aeid is obtained possessing the following properties:-It is a colourless or slightly yellowish mass, which does not erystallize, but resembles dried gnm. It is readıly soluble in water; the solution has an astringent but not a bitter taste; it reddens veyetable blues, and decomposes alkaline carhonales with efferveseence: weak alcohol dissolves it, but ather only slightly; when the arueous solution is exposed to the air, especially if the temperatire be high, oxygen gas is absorbed, and an equal volume of earbonic acid gas evolved, while the tamic acid is converted into gallic and elagie acids. Tamie acid precipitates gelatin from solution; the compound has been cealled fannogeiatin, and when the acid is in excess a viscid clastic mass is formed, which contains about half its weight of tannic aeid; when the liquid from whiel the gelatin is pre-
cipitated is heated to ebullition, the tannogelatin is redissolved; tannic acid also precipitates albumen and starch.

When dricd at 212° tannic acid consists of

Eighteen equivalents of carbon	- 108
Five equivalents of hydrogen	5
Nine equivalents of oxygen	72
Equivalent	183
With Three equivalents of water	27

When exposed to a temperature of 240°, the water is expelled.
Tannic acid combines with the alkalis to form salts, which are called tannates, and it precipitates most metallic oxides from solution. The salts of protoxide of iron suffer no change when a solution of tannic acid is added to them; but by exposure to the air a deep bluish-black precipitate is formed. Tannate of peroxide of iron, formed by the action of the acid on a persalt of the metal, is the basis of writing-ink, and is a black pulverulent precipitate.

TANNIN, ARTIFICIAL. It has been shown by Mr. Hatchett, that when powdered charcoal has been digested for a considerable time in dilute nitric acid, it is dissolved, and a reddish-coloured liquid is obtained, which by caretul evaporation yields a brown glossy substance, amounting to about 120 parts from every 100 of charcoal cm ployed.

The propertics of this substance are that its taste is astringent and bitter, is soluble in water and in alcohol, and forms with a solution of gelatin an insoluble precipitate, consisting, according to Mr. Hatchett, of 36 of tannin and 61 of gelatin in 100 parts. Sulphuric acid and hydroclloric acid, when added to a solution of artificial tannin, occasion brown-coloured precipitates, which are soluble in lot water; the alkalis combine with this taunin, and it forins a precipitate of difficult solubility when added to lime, barytes, or strontia water, and also with most metallic solutions. These precipitates are of a brown colour; unlike natural tannin, the artificial resists the action of nitric acid.

When eamphor and various resins, as shell-lac, benzoin, and dragon's blood are digested in sulphuric acid till it becomes black, a variety of artificial tannin is procured; when the blackencd acid is poured into water, a black powder is deposited, which, by digestion in alcohol, furnishes a brown matter soluble in water, and forming an insoluble compound with gelatin.

Although in certain respects the ubove artificial substance agrees with tannic acid, yet the late discoverics as to the real nature of this principle tend to the opinion that the natural componnd is essentially different from the artificial.

TANNIN, PURE, or TANNIC ACID, Medical Properties of. This substance in combination with extractive las bcen long known under the name of tannin, and recognized as the active principle in almost all astringent vegctables. [Astringents.] As many of these are powerful in restraining excessive discharges, whether bloody or otherwise, it was conjectured that the pure principle would be yet more efficacious than when in a state of combination. Accordingly it has been administered in some passive hæmorrhages, chiefly from the uterus and the bronchial tubes. To effect any good it requires to be given for several days in small doses. It is with difficulty absorbed into the circulation, being with Ereat reluctance taken up by the lacteals, and producing very great constipation, trom its direct astringent action over the intestimal canal, with which it is brought into contect. Tannic acid has been recommended in cases of incurable organic diseases affecting the uterns, aecompunied with wasting discharges. These it may for a time moderate, but the eonstipation induced never tails ultimately to aggravate the disease and discomfort of the patient. There is little therefore to induce practitioners to employ it.

TANNING is the process of converting the skins of animals into leather, by effecting a chemical combination between the gelatin of which they principally consist, and the astringent vegetable principle called tannin. [Bark, vol. iii., p. $4: 6$; Leather, vol. xiii., p. 379 ; and the preceding chemieal articles on Tasisis.] The object of the tanning process is to produce such a che-
mieal clange in skins as may render them, as observed by

Dr. Ure, unalterable by the external agents which tend to decompose them in their natural state; and, in connection with the subsequent operations of dressing, or currying, to bring them into a state of pliability and impermeability to water which may adapt them for the many useful purposes to which leather is applied. Similar effects arc produced by forcing oil or grease into the pores of the skin, or by preparation with alum; proccsses which may be briefly noticed in connection with the more immediate subject of this article.

The preparation of skins by tanning or other analogous processes has been practised from the earliest times; and, although it has engaged the attention of several scientific men, and has been the subject of many curious experiments, it has rcceived less modification from recent improvements in chemical science than many other manufacturing processes. Several plans which have been suggested with a view to expediting the process, which, on the old system, is a very tedious one, have been found to deteriorate the quality of the leather, and have therefore been wholly or partially abandoned; and others, which appear to be more successful, are as yet adopted by a ferv manufacturers only. One of the probable causes of this comparatively slow progress of improvement in the leather manufacture is suggested in an interesting article on 'Tanning', in the seventh edition of the 'Encyclopædia Britannica,' the author of which observes that, owing to the slow turning of money in consequence of the length of time occupied in tanning the heavier kinds of skins or hides, the tanner 'must have capital enough to pay for twelve months' hides, bark, \&c., labour, and contingent expenses, besides keeping a stock of leather; and, when his capital has been turned at the end of twelve or more months, it must pay him, in one single profit, the in' erest, \&c. of twelve months.' "This,' he proceeds to say, 'has confincd the trade to a few wealthy individuals, who look upon tanning as an investinent for capital rather than as is business which might be improved by science; and, being in comfortable eircumstances, they are not driven to personal exertion and close application, which would be required of less wealthy tradesmen.' 'It is,' he adds, 'from these cireumstances, that tanning lias been morc stationary than any other manufacture, and that the fow improvements which have becn made in it have not been made by tanners.'

The larger and heavicr skins operated upon by the tanner, as those of bulls, buffaloes, oxen, and cows, are technically distinguished as hides; while the name skins is applicd to those of smaller animals, as calves, shecp, and goats. The process necessary to convert hides into the thick hard lcather used for the soles of boots and shoes, and for similar purposes, will be first noticed. The hides are brought to the tanner cither in a fresh state, when from animals recently slaughtered, or, when imported from other countrics, dricd or salted, and sometimes both, for the sake of preserving them from decomposition. In the former case the horns are removed, and the hide is scraped to cleanse it from any small portions of flesh or fatty matter which may adhere to the cutis; but in the latter it is necessary to soften the hides, and bring them as nearly as possible to the fresh state, by steeping them in water, and repeated rubbing or beating. Atter this the hair is removed; sometimes by steeping the hides for several days in a solution of lime and water, which has the effect of loosening the hair and epidermis, or outer skin; and sometimes by suspending them in a close chamber called a smoke-house, heated a little above the ordinary tempcrature of the atmosplere by means of a smouldering fire; in which case the epidermis becomes loosened by incipient putrefaction. In either casc, when the hair and epidermis, or cuticle, are sufficiently loosened, they are removed by scraping with a curved linife, the hide being laid upon a convex bench, or 'bcam.' The hicles are prepared for the actual tanning, or immersion in a solution of bark, by steeping them for a few days in a pit containing a sour solution of rye or barley flour, or in a very weak menstruum consisting of one part of sulphuric acid mixed with from five hundred to a thousand parts of water. By this process, which is called 'raising,' the pores of the hides arc distended and rendered more susceptible of the action of the tan, and the substance of the skin is apparently increased; but, as the process does not add to the gelatin of the skin, a hide which is much thickened by
the raislng uracess loses 11 s substance wheî condensed by the shoemaker's hammer.

Differcut tamers vary much in the details of the abovedescribed preparatorj yrocesses, as wall as in those which follow, and which constitute the actual tanning, or convervion of the prepared 'pelt' into leather. Oak bark is the substunee most commonly used to supply the astringent principle, and it is crushed or groum to a coarse powder in a bark-mill. The comparative efficiency of this and other vegetable substances used for the same purpose is sisted under Baкк, vol. iii., p. 457. In the old inethod of laming, which is not yet entirely abandoned, the lides and powdered bark were laid in alternate layers in the tan-pit, which was then filled with water to the brim. Aner sone inontlis the pit was cmpticd and re-filled with fresh bark and water and this process was repented whenever the strength of the bark was exhausted. In this way the time required for impregnating the hides varied, aecording to their thickness and other clreumstances, from one to four years. The process has been greatly expedited by the improvements introduced tin consequence of the experiments of M. Seguin, a French chenist, which are detailed in Nicholson's 'Journal, vol. i., p. 271 (quarto scrics, published in the year 1797), of tanning with eoncentrated solutions of bark, formed by passing water through a fisass of powdered bark, until, by successive infiltrations, it is completely deprired of its soluble tanning prineiple. Seguin expeeted that, by the use of very strong solutions, hides and skins night be tanned in as many days as, under the old system, they would require moniths; but these expeetations have been very imperfectly realised in practice, although the new system, which has been rery extensively adopted, has heen productive of an important saring of time. Without entering into a minute investigation of the objections to the use of concentrated tanning infusions, it may be sufficient to state that, as observed by the late Sir Humphry Davy, in his raluablo paper on the operation of astringent vegetables in tanning, published in the 'Philosophical Transaetions, for 1803, experience shows that skins which are quickly tanned, by the use of strong solutions, produce leather of less durable quality than that which is slowly formed. Dr. Ure, in referenee to this important point, says (Dict. of Arts, \&゙c., p. 1226):-'The older tanners, who prided themselves on producing a substantial article, were so mueh impressed with the advantages of slowly impregnating skin with astringent inatter, that they employed no coneentrated intusion (odize) in their pits, hut stratified the skins with abundanee of ground bark, aud covered thein with solt water, knowing that its active grinciples are very soluble, and that, by being gradually extracted, they would penctrate inniformly the whole of the animal flbres, instead of acting chietly upon the surface, and making britile leather, as the strong infusions never fail to do.' In lllustralion of these remarks, he states that loulbs. of skin, quipkly tanned in a strong infusion of bark, will produce 137 lbs . of leather, while the same weight of skin, slowly tiunced in a weak solution, produce only $117 \frac{1}{2}$ lbs. ; the additional $19 \frac{1}{2} 1 \mathrm{~s}$ s. in the tormer ease tending to swell the tanner's bill, although it deteriorates the leather, and causes it to contain less of the textile amimal solid. Leather so lighly charged with tannin is, moreover, so Epongy as to allow moisture to pass readily througl its pores; but the shiving of time and Incrense of product are sfrong temptations to the fauner to adopt the system of tanning with concentrated infusions.

The varialions of practice among different tanners extend to the substanee used as an astringent, as well as to the manner of applying it. Gromd oak-bark, which was formerly the only material in common use, and ls still the most'general, produces good leather of a light-fawn colour. Valonia, of which considerable quantities are imported fior the cuse of tathers, produces leather of great solidity anis wright, the colour or which is incllaed to grey and which, according to the Encyelopardia Britannica, is more inpervions to water than that made with oak-1)ark. Valomit consists of the acorns of the Quercus Thgilings [Qurrcus, vol. xlx., p. 214], and is lrought from the Levant and the Morea. Catcelut, or turra Japonica, the insplasated extract of the Arrecia Cirtechu [Catfonu, vol. vi., j. 367], pholuces leather of a dark reddish fuwn colour, which is light, spongy, und very
pervilois to water. Another substance which has beeth used of late yensy is a kiind of bean-poed cilided divi-dlvi. These sullstances may be used either individually or in various combinations. lin the methods of preparing tanning solations there is also considerable suricty. Some tanuers use cold water for the purposes, and nithers hot water or steam; others again, instead of pure water, cmploy ooze, or tanning liquid, which has been exhansted by use. A firther point of difference is found in the strength of the solutions used. which vary exceediusly: When the impregnation of the lides with tambin is effected by laying them flat in the tan-pits, they are frequenlly taken oil to renew the solution; and the sklis which liave lain near the top of one pit are lind near the bottom of the next, so ns to equalize the amount of hydrostatic pressure. Sometimes the tauning is facilitated hy suspending the skins vertically in the lifuid, by which means they are penctrated quickly; hut the plan requires conkidemble room: and, mless the sklus are frequently moved, it oceasions injurious folds in the leather. Another plan, which answers well for small light skins, that require but a short time for tanning, is to sew up the skin into the form of a bag, to fill it with tan-liquor, and then inmerse it in the pit. The great space required is the principal oljection to this plan. In whichever of the aloove ways the fanning is ctfeeted, the hide is subjeeted to the urtion of solutions inereasing progressively in strength, until it is so perfeetly penetrated, that when cut through it presents a uniform brown colour; any appcarance of a light streak in the niddle of its thickness being an indication of imperfect tanning. When the process is complete, the hides are hung up in a shed, and allowed to dry slowly; and, while they are irying, they are compressed hy beating or rubbing, or by passing them leetween rolfers, to give thent firmness and density. A yellow deposit is how found upon the surface of the leather, to which1 the name of 'blooin' or 'pitching' is technically given; and, although this deposit is subseguently removed by the shoemaker in the operation of luffing, and forms a useless addtition to the weight and cost of the leather, the prejudice of purchasers requires that it be Jeft on the surface by the tamer. According to the explanation of the 'Encyclopmedia Britannica,' this bloon consists of the finer portion of the gelatin from the intemor of the skin, dissolved by the exhansted ooze which remains upon the surface by eapillary altraction; and the waste and deterioration oceasioned by its formation shonld be prevented by the careful remoral, hy pressure, of the exhausted ooze.
Although, owing to the many differences in the practice of tanning, no definite time can be stated for the varions operations mentioned above, it may he observed that the usial period required for tanoing such hides as are used for the soles of men's bouts is from six to twelve months, aid that from fifteen to cighteen montlis are requizel in preparing those of the thickest kinds, which are termed 'butts' or 'backs.' It remains, before notiens the processes of preparing the thinner kinds of leather, to advert to sonie of the methods which have bern contrived for effectiug a greater saving of time than could be aceompllshed liy any of those previously; mentioned.
Several schemes have been devised for foreing a tahning solution through the pores of the hide by mechanieal pressure. Mr, Francis Spiblury obtained a patent In 1823 for eitecting this olject in the following manner:-The hides, atter being freed from hair, cleansed, and otherwise prespared in the usual manner, were to be carefully examined as to soundness, any aceidental hole belng then sewed up, so as to make the skin water-tight. Three frames were to be provided of similar shape, and of such a form and slze that when laid upon each other, with two hirles placed between them, the frames inight be serewed together by bolts passing through projecting ears, so that the whole should lom a. flat water-tight chamber, circmmseribed by the middle frame. This apparatus beug then placed in a vertical posilion, tan-liguor was introduced into the chander or davity betwen the hides throngh a nipe insented in the centre frame; the air being allowed to eseape by another pipe, which slould be closed as soon as the chamber became filled witls the lipuic. The tan-liquor being supplied lrom an elevated cistern, any required dagree of liydrostatic pressure might be produced in the clantber ;
the effect of which was to distend or swell out the sides, and to force the liquid through the pores of the skins, it making its appearance on the outer sides like drops of dew or perspiration. When the leather appeared to be sufficiently tanned, the liquor was drawn off hy a stopcock, the frames were unscrewed, and the compressed edges of the hide were cut off. Spilsbury's process was soon abandoned; the reason of its failure being, according to the author before quoted, in the 'Encyelopædia Britannien' that a large excess of tannin dissolves gelatin; so that taunate of gelatin was found on the outer sides of the skins in the form of long masses of slime, while the leather had lost much in weight, was very porous, ąnd unequally tanned, in consequence of the tan-liquor penetrating most readily the thinnest or weakest parts of the hide. The error of the principle of this method not being generally understood, several similar plans were subsequently contrived by different persons; but these, or most of them, have been found unsuccessful. Of these, allusion may be nade to the processs patented by Mr. Drake, which consisted in sewing two skins together (after they had reccived a slight tanning in the ordinary way), so as to form a water-tight bag, which was filled with tan-liquor, The bay thus tormed was compressed between two vertical gridiron-like frames or racks, by which it was prevented from bulging at the sides, and the liquor was confined to a thin rertical stratum. As in the last process, the aqueous portion of the tan-liquor percolated through the fides; and this penetration of the leather was lacilitated by heating the room so as to promote evaporation from the exterior surfaces of the bags or skins. To prevent the hars of the racks or frames from producing permanent indentations in the leather, it is necessary to shift the bags a little occasionally during the process. In another somewhat similar plan, contrived by Mr. Cox, the hides were to be sewed up in the form of bags, and supported by a casing of canvas; and in the process of Mr. Chaplin, the harss were laid in an inclined position, and turned periodically to equalize the action of the tan. With every precaution howeyer, it is difficult to tan a hide equally hy any such process; and the objection urged against Spilsbury's plan applies to all the modifications of it. In another jplan, which has been tried under several forms, the tanning liquid is applied to hoth sides of the hides, which are plaeed in an air-tight vessel, and is forced into their pores by hydrostatic pressure, the air heing previously pumped out. The operation may be repeated as often as necessary, with infusions gradually increasing in strength; air being allowed to fill the pores of the hide between each immersion. Another plan which may be alluded to here is that of an American tanner, Osmond Cagswell, described by Hebert (Eng ineer's and Mfechanic's Encyclopredia, yol. ii., p. Gt), from the 'Journal' of the Franklin Institute. It consists in laying the hides upon a quantity of sawdust, contained in shallow hoxes, of which any required number may be arranged in a suitable framework, ahout twelve inches above one another. The hides are not laid flat, but have their edges a little raised, so that their upper surfaces form shallow troughs capable of holding a layer of the tanning solution, which must be replenished from time to time as it filters through the hide and the sawdust, or other sof porons sabstance upon which it is laid. The spent liquor runs off from the biottom of the box or trough, which is somewhat inelined for that purpose, into a vessel or channel provided for it. 'The improvement consists,' according to the specification quoted by Hebert, in applying a solution of oak or other bark to hides or skins i? n such manner as that when the glutinous (gelatinous) particles of the hide have absorbed and become mixed with the tauning or astringent principle, the other part of the solution (i.e, the water) may pass offf, and leave the hide free to receive more of the solution; and so on till it is tannell.' 'The operation was performed, it is stated, in : very short time ; but as the outer parts or edges of the hides were not perfectly tanned by it, it was necessary to immerse them in vats in the ustual manner for three or four weeks, to complete the process. If the principle were found to he advantageous, this, which forms a great defcet in Mr. Cagswell's seheme, might be readily avoided.
still morc recent than any of the above-mentioned plans is that patented by Messrs. Herepath and Cox, of Bristol; wlich, as far as present experience can show, appears to
effect the desired object very completely. Their process, which was patented November 16, 1837, is founded upon the principle of washing a sponge, by alternately allowing it to imbibe water, and then forcibly expressing it. In the old system of tanning, the hide may be compared to a sponge, which, after being saturated in a weak solution, is removed to a stronger, without the fluid contained in its pores being squeezed out; while in the new plan the weak infusion, or ooze, is forced out of the pores of the hide before it is subjected to a stronger, so that the fresh ooze may be able to act more efficiently. This is effected by connecting a number of hides together by strings, so as to form a continuous belt, and passing them between rollers turned by steam or other power, while they are being rcmoved from one solution to another. In order to produce a tolerably uniform belt or continuous sheet of hides, they are either placed alternately head to head and tail to tail; or, if laid across the belt, with the heads and tails towards each side alternately. In one of the arrangements described in the specification, the hides are united into an endless band, and are always passed between the rollers (of which a pair is erected over each pit) in one direction; but in another plan the ends of the belt are not connected together, and the motion of the rollers is reversed when necessary, so that the belt of hides may be delivered into the tan-liquor alternately on each side of the apparatus. The latter arrangement is that described in the recently published article in the 'Encyclopædia Britannica,' from which the following details are derived. The lower roller is about thirty inches in diameter, and is covered with horsehair cloth; and the upper roller, which is pressed against the lower onc with any determinate degree of force by means of weighted levers, is only about eighteen inches in diameter, and is covered with woollen cloth. By this process a strong hide may, it is stated, be tanned through in from one to two months, and calf-skins and kips. (the hides of young cattle) in from twenty to thirty days. Double the usual quantity of work is performed; one-half of the capital required in the common process is rendered unnccessary; the saving on bark, labour, and general cost of manufacture is about $11 d$. per lb . ; and the inerease in the weight of butt leather, as compared with that made in the usual way, is as 34 llbs. to 28 lbs. The very thick hides, known as 'butts,' when prepared by the patent process, are sent to market within four months from the time of their delivery in the tanner's yard; and the profits arising from quick returns, great weight of leather produced, and reduced cost of production, are stated to be eight times as great as upon the old plan, the prices of hides, bark, and leather being the same. It should be further observed that the leather made in this way is more elastic and impervious to water than any other.
Although the general principles involved in the preparation of all kinds of leather are the same, and some of the processes above described are performed with little yariation upon the skins of smaller animals as well as upon the thick hides of various kinds of oxen, the precise course of operations requires many modifications which cannot be here described. Of the preparation of several of the lighter and more ornamental kinds of leather, a familiar account is given in No. 652 of the "Penny Magazine, which is devoted to a sketch of the processes followed at one of the great leathcr-manufactories of Bermondsey. Wo have hitherto alluded chiefly to the prepatation of the thick hides used for sole-leather, amoug which several varieties may be found, each distinguished by a different technical name, by which its thickness, quality, or mode of preparation is known; but the thinnest and wealest hidcs, as well as the skins of calves and other animals, are also prepared for use as upper-leathers, in which case it is necessary to reduce their thickness by shaving or paring them down upon the flesh or inner side, before they are subjected to the action of the tanning infusions. Such hides or skins also require, after leaving the hands of the tanner, to be rubbed, softened, and dressed by the currier, in order to bring them to the necessary degree of flexibility and smoothness. The curricr also has recourse to shaving or paring with a peculiarly formed knife, to bring the skin to the requisite tenuity; and it is his office to blacken the surface, which, for common shoe-leather, is done on the flesh side, although for some purposes leather is blackened upon the outer or grain side. Horse-hides, which are comparatively weak and thin, are sometimes
dressed in the latter way, under the nane of cordovan hides, from the circumstance of such leather having been formerly made at Curdova in Spain. Calf-skins supply the quality of leather most generally preferred for the upper part of boots and shoes.

Of the thin skins prepared for ornamental purposes. many are tanned witha substance ealled sumach, prepared froni a plant of the same name. [Rues, vol. xix., p. 484.] At the establishment above referred to, which is commonly known as the Neekinger Mills, sumach leather is extensively prepared; the most important kind being that ealled "Moroceo,' which is made from goat-skins. In the routine of operations deseribed in the paper from which we quote, the processes of cleansing the skins from fieshy impurities, and removing the hair, \&.c., present no material variation from those before described. During these processes, the line employed to assist in the depilation enters the pores of the skin so completely, that it would impede the aetion of the tanning liquid if allowed to remain. It is therefore removed by inmersion in an alkaline solution, whieh opens the pores in a way resembling the process of - raising,' described in a previous column. The tanning is then performed by sewing up each skin into the form of a bag, with the grain or hair-side outwards, and nearly filling it with a strong solution of sumaeh in water. The bag is then fully distended by blowing into it, and the aperture is tied up; after which it is thrown into a large shallow vessel filled with hot water containing a little sumach. The distended bags fioat in this vessel, and are oceasionally moved about. with a wooden instrument, until the solution which they contain has thoroughly penetrated their substance. Owing to the thinness of the skins and the heat to which they are exposed, this operation is performed in a few hours. The process is expedited by taking the bags ont of the solution and piling them upon a perforated bench or rack at the side of the tub, so that their own weight may foree the confined liquid through the porcs. When the tanning is completed, the bags are opened to remore the sediment of the sumach; the skins are washed, rubbed on a board, and dried; anter which they are ready for dyeing and finishing with a ridged instrument, which imparts to the surface that peculiar grain by which moroceo leather is distinguished; An inferior kind of leather, known as 'imitation moroceo,' is prepared in a similar manner from sheep-skins. The wool is removed from these skins by the fellnonger; after which they are subjected to great pressure in a hydrostatic press, in order to remove the oleaginous or greasy matter which they contain in a much larger quantity than goat-skins. Surprising as it may appear, these, as well as larger and thicker skins, are often divided or split by a machine into two thicknesses, each of which may be made into leather suitable for some of the purposes to which it is applied, as the covering or lining of books, work-boxes, hats, \&e.

Turing is the name applied to the process by which the skins of sheep, lambs, and kids are converted into soft leather by the aetion of alum. Of this kind of leather gloves are usually made. Skins intended for tawing pass through a series of operations resembling those by which skins are prepared for tanning, but they are then subjeeted to a solution of alum and salt, to which, for the superior kinds of leather, flour and yolks of eggs are added, instead of a vegetable astringent solution. Sometimes the skins are put into a kind of barrel with the solution, and then the whole is made to rotate rapidy; by which the skins are quiekly penetrated; and in other eases the impregnation is etfected in an opent tub, the skins being worked in the pasty liquid with the hands, or trampled upon by the naked feet of a man, until the emulsion is thoroughly incorpurated with them. They subsequently require a good deal of stretching and subbing over a kind of blunt-edged knife, and some other finishing operntions, to give them the requisite smoothness and suppleness. Many of the gloves sold as kid are really made of lamb-skins, of which considerable numbers are inported from the shores of the Mediterranean. These are brought with the wool on; and, as it would be injured by the action of lime, it is loosened by iaducing fermentation or ineipient putrefaction in sultermnean vaults or cellars; an operation whieh requires great nicety, since the pelt would be injured by allowing the fermentation to proceed too far. After the wool has been rewoved, and the skins have been seraped

10 free them from a slimy subsance which exudes from the pores, the pelts are immersed in lime-water for a few days, to renove the grease which yet remains in then. The subsequent operations of remosing the lime, tawing, Se., are similar to those required for other skins. In tawing sheep-skins with the wool on, for housings and similar articles, the wool side is carefully folded inwards, to protect it from the tawing liquid or paste, which is, then applied to the flesh side only. Other shins are occasionally converted into leather without renoving the wool or hair.
The only other kind of leather to be here noticed is that in which oil or grease is forced into the pores of the slint. to take the place of the animal matter, whiel would tend to its deeompusition by putrefaction. This kind of leather takes its name from a fine son leather prepared from the skin of the chamois goat; and the process by which it is made is called shamoying or shammying. Sueh leather was formerly very muelı used as an article of elothing, especially by soldiers; nnd it is still applied to several useful purposes, for which its peeuliar sotuess and pliability renders it valuable. Wash-leather may be cited as a common example of this kind of preparation. The skins of deer, goats, sheep, \&e. are dressed in this way; and mueh shamosed leather is made from the inferior or least regular portion of split skins, in cases where the grain side has been taken off carefully of a uniform thickness for preparation in a different way. In general, when whole skins are shamoyed, the grain surface is removed by seraping or rubbing with pumice-stone. Atter the usual preparation with lime-water, and subsequent washing in a sour infusion of bran or some similar lituor, to remove the lime and open the pores, the skins are made as dry as possible by wringing or pressing them, and, in the process practised at the Neckinger Mills, are then exposed to the aetion of fulling-stoeks, which consist of heary wooden hammers, faced with copper, and set in motion by connection with a revolving sliatt. A wheel revolves near the head of each haminer, of which two are mounted together in one tramework; and this wheel is made, during its revolution, alternately to raise the hammer abont a foot, and to let it fall into a trough fitted to receive its head. The leather, or rather a roll of the skins whieh are to be made into leather, is placed in this trough, and beaten by the hammers until it is perfectly dry. Cod-oil is then poured upon the skins, and forced into their pores by the action of the hammers or stocks; the form of the trougls being sueh that the skins gradually turn themselves over and over during the operation, to render the beating uniform. When the oil is theroughly beatell in, the skins are hung up to dry, after which they are returned to the trough to receive a fresh supply of oil and a rupetition of the beating. This is repeated eight or nine times, until two or three gallons of oif have been imbibed by one hundred skins; and when they are sufficiently impregnated with it, they are placed in large tubs, or hung up in close heated chanbers, in which they undergo a kind of fementation, by which the pores are distended, and the action of the oil upon the fibres is completed; und finally they are immersed in a weak solution of potash, whieh removes whatever excess of oil may have remained in the leather, forming with it a saponaceous mixture. 'llicy are then hung up in the open air to dry.
(Dr. Ure's Dictionary of Arts, \&e., art. 'Leather;' Encyclopredia Britannica, seventh edit., art. 'Tauning; Ilebert's Lugineer's and Mechanic's Encyclopedia, art. - Leather;' Penny Mayazine, No. G52.)

TANSI'LLO, LUlGl, born of a noble family at Nola, in the kingdom of Naples, about the year 1510, wrote in his youth a licentious poen, entitled 'Il Vendemniatore,' or 'the Viutager,' wherein lie deals largely in the obseene jokes and seurrilities in which the peasantry of his country indulge during the vintage season, something affer the manner of the antient Saturnalia. This poem, whieh the author did not intend for the press, was published by some friend througla an abuse of eoufidence. In order to make amends, Tansillo wrote a pious poem, entitled ' le Jagrime "di San I'ietro,' of which a part ouly was published hefure his death. A more complete edition of it was published in 1000. Malherbe made a translation, or rather wrote an imitation of it, entitled 'Les Iarmes de St. Pierre, initces du Tansille, an Roi IIenri 111.,' 1587. Tansillo resided chiefly at Naples, at the court of the Spanish vieeroy

Don Pedro de Toledo and his son Don Garcia. He aceompanied the vieeroy in an expedition against the Barbary powers. He died about lis84. He wrote also a georgieal poem, entitled 'Il Podere,' and another didactic poem, entitled 'La Balia,' besides sonnets, eanzoni, and other lyric poems, in which he has displayed great poetical powers. He has been compared by some with Petrarea. A complete edition of Tansillo's works was published at Venice in 1738, in 4to. (Tiraboschi, Storia della Lettcratura Italiana; Comiani, Secoli della Letteratura Italiana.)

TANSY. [TaNacetum.]
TANTALLDE, a family of Wading Birds. [Grallatores.]

The genus Tintalus of Linnaus stands between the genera Ardea and Scolopax, in the twelfth edition of the Systema Nature.

Cuvier places the genus Tontalns between the Openbeaks (Hiens, Laeép.; Anastomus, Ill.) and the Spoonbills (Platalea, Linn.). He characterizes the genus as having the feet, the nostrils, and the bill of a stork; but the back of the bill is, he observes, rounded, and its point eurved downwards and slightly notehed on each side: a portion of the head, and sometimes of the neek, is, he adds, denuded of feathers. He notices the following species: the Ameriean Tantalus, Tantalus loculator, Jinn.; the African Tantalus, Tantulus Ibis, Linn.; and the Ceylonese Ibis, Tuntalus lencoceplialus, the largest of all.

Of Tuntalus Ibis, he remarks that it is white slightly clouded with purple on the wings, with a yellow beak, and the skin of the face naked and red, adding that it was for a long time regarded by naturalists as the bird so much revered by the antient Egyptians under the name of IBis, but that recent researelies had proved that the Ibis is a innch smaller species, of whieh he intends to treat thereafter. This species, he states, is not commonly found in Erypt, but that it had been brought from Senegal. Tuntalus he arranges in the family Cultirostres.

Ibis, Cuv., finds a place in the Règnc Animal, as the seeond genns of Chvier's Longirostres, between Scolopax and Niumenius, Cuv.

1bis religiosa, Cuv.-Adult.
Cuvier states that he has separated the Ibises from the Tontali of Gmelin, beeause their bill, arehed like that of the Tuntali, is nevertheless much more feeble, and without any notch at the point, whilst the nostrils, piereed towards the back of its base, are each prolonged into a furrow which eontinues to the tip). The bill, he adds, is rather thick, and nearly square at its base: there is always, he further remarks, some part of the hearl, or even of the neck, denuded of feathers. The external toes are notably palmated at their base, and the hind toe is sufficiently long to touch the carll. Some of the species, he observes, have

1․ C., No. 1493.
the legs sliort and reticulated: these are the most robust, and have the largest bill.

Of this genus Cuvier notices the following species:-
L'Ibis sacrć (Ibis religiosa, Cuv.; Abou-IIannes, Bruee, pl. 35 ; Tantalus Ethiopicus, Isath.). For the adult of this speeies he refers to Ossemens Fossiles, tom. i., pl. 1 and 2 (skeleton and perfeet bird); and for the young to Savigny, Descrip. de l'Egypte, Hist. Nat. des Ois., pl. 7.
'This,' says Cuvier, 'is the most celebrated speeies: it was reared in the temples of antient Egypt, with veneration which approaehed to worship; and it was embalmed after its death, as some said, because it devoured the serpents which would otherwise have beeome dangerous to the eountry:-aceording to others, beeause there was a resemblanee between its plumage and some of the phases of the moon: finally, aecording to other some, because its advent announced the rising of the Nile. For a long time it was thought that this Ibis of the Egyptians was the Tantalus of Afriea: we now know that it belongs to the genus of which we are treating. It is as large as a hen, with white plumage, exeept the end of the wing-feathers, which is black; the last eoverts have their barbs elongated, loose, black, with violet reflections, and thus eovering the end of the wings and tail. The bill and the feet are black, as well as all the naked part of the head and neek: this part is covered in youth, at least on its upper surface, with small blackish feathers. The species is found thronghout the extent of Afriea.' [Abou-Hannes.]

The other species noticed by Cuvier are-L'Ibis rouge (Scolopax rubcr, Linn.; Tantalus rubor, Gm.) and L'Ibis vcrt, vulg. Courlis vert (Scolopa.c falcincllus, Linn.). (Rçne Animal.).

The following is the deseription of L'Ibis vert (Ibis fal-cinellus):-Purpled ehestnut, with deep green mantle. The young with the head and neek sprinkled with whitish. Locality, South of Europe and North of Africa. (Regne Animal.)

This, Cuvier observes, is to all appearance the species which the antients ealled the Black Ibis. [Abou-Hannes, vol. i., 1). 38.]

The views of Mr. Vigors with regard to the position of Tantalus will be found in the artiele Herons, vol. xii., p. 165.

Mr. Swainson states that the Tantalida, or Jbises, are large and very singular birds, living almost entirely on the swampy banks of rivers and fresh waters, rarely, if ever frequenting open shores, like the more typical waders. He observes that their labits and strueture seem eompounded of those belonging to the Herons on one side and to the Rails [Rallid.e] on the other: their flight and size, he says, remind us of the former, while their long toes and inscetivorous nature are more in unison with the latter. He traces their analogy to the Tenuirostres in the metallic colours of their plumage and in their having their heads frequently bare of feathers, as in the Ampelidec and other tenuirostral types. The majority, he remarks, live in tropical latitudes.

In the Synopsis the following eharaeters of the family (which is plaeed between the Ardeidee and Rallidee) are given:-

Tantalide.

Fumily Character.-Size large. Bill hard, considerably lengthened, cylindrical, and curved from the basc. Fuce and head more or less naked. Hinder toe on the same plane as the others. Plumage metallie.
Genera.

Anastomus, Ill. Open bcali. Bill straight, hard, heavy, solid, eompressed, marked with longitudinal wrinkles. Upper mandible very straight; the base thickened at the top and as high as the crown; the tip notched; the margin dentated: under mandible greatly enrved upwards, and only tomehing the upper at the base and at the tip.

Example, Anastomus lamelligerus.
Tantalus, Linn. Bill nearly as thick at the base as the head; eylindrical and attenuated towards the tips, which are slender and slightly bent: margins entire. Upper inandible notched. Nostrils naked, vertical, basal, ovaloblong. Toes connected at the base.

Example, Tuntalus locnlator.
Ibis, Antiq. Bill much more "slender; cylindrical, and arehed from the base. Nostrils basal, lateral. Wings broad, ample: the seeond and third quills longest.

Example, Ibis ruber.

Aramus, Vicill. Bill lengthened, slightly curved towarls the point, which is entire and intlexed. Under mandible curved fron about the middle and angulated. Furnow of the nostrils long. Nostrils latem, remote from the base, longitudinal. Feet long. Hallux elevated. Anterior toes divided at their base. Wings moderate; the two first quills shorter than the third, which is the longest. America.

Example. Aramus scolopacius. (Chassificulion of

 Birds.)The Prinee of Canino places the Tuntulide between the Psophicke and Scolopacider, and arranges under the former the genera Tuntulus and Llis. (Birels of luaroye and North Amerira.)
Mr. G. IR. Gray makes the Tuntalince the finh and last subfumily of the Ariteide, placing it next to the Ciconiure, and arranging under it the following genera:-

Thentalus, Limn. Mhis, Mophr. Geronticus, Wagl. Cercibis, Wagl. Theristicus, Wagl. Phimasus, Wagl. Marpiprion. Wayl. Falcinellus, (Ray) Bechst. Aramus, Vicill.

Mr. Gray gives the synonyms of all these genera. (List or the Giners of Birds, and edit.)

We proeced to illustrate the Ilises of Anterica by Nuttall's description of the Scarlet Ibis, Ibis rubra of Vicillot, Tantalus ruber of Linnaxus, Red Curlere of Catesby:
This species is 23 inches in length and 37 in alar extent. Bill 5 inclies loug, thick, and of a somewhat square form at the hase, gradually bent downwards and sharply ridged; blaek, except near the base, where it inelines to red. Iris dark-liazel. The face naked, slightly wrinkled, palc-red. Chin bare, wrinkled also. Plumage rich, glowing scarlet, except abont three inches of the extremities of the four outer quill-feathers, whieh are deep steel-blue. Legs pale red; the three anterior toes united by a membrane as far as the first joint. (Nuttall.)
'This brilliant and exelusively American species, inhabits chicfly;' says Nuttall, 'within the tropics, abounding in the West India and Bahama Islands, and south of the equator, at least as far as Brazil. They migrate in the course of the sunmer (aloont July and August) into Florida, Alabama, Georgia, and South Carolina; but retire into Mexico, or the Caribbean Islands, at the approach of cool weather. They generally associate in numbers, frequenting the borders of the sea, and the banks and aestuaries of ncighlouring rivers, feeding on small fry, shellfish, erustacea, worms, and insects, which they eolleet at the ebbing of the tide. They are said to be in the habit of percluing on trees in companies; but they lay their egrs. wheh are greenish, on the ground, amidst the tall grass of the marshes, on a slight nest of leaves. When just hatched, the young arc black, soon changing to grey, but are nearly white before they are able to fly; by degrecs they attain their red plumage, which is not complete until the third year. The young and old associate in distinct bands: In the countries where they abound, they are sometimes domesticated, and accompany the poultry. The Dis shows great courage in attacking the fowls, and will even defend itself from the insidious attachs of the cat. It is generally esteemed as good food; and its riela and gandy plumage is used by the Brazilians for varions ornaments.'
(Manual of the Ornithology of the United Stutes and of Cunada.)
PANTAIITE. [Colummus.]
TANTALUAI. Columbics.]
TANTALUS. (Ornithologje) [Tantalid.e.]
TANYSI'TVERA. [KINGFISHERS, vol. xiii., p. 232.]
TAORMINA. [MEssina; Tarromenium.]
rads. [Mexiean States.]
TAP ROOT. [ROot.]
TAPAJOS. [Jвaŋn.]
TAPE WORNI. [ENTOzon.]
TAPESTRY (French, Tupisserie; Italian, Tuppezzeria). This name is most commonly applied to the textile labries, usually eomposed of wool or silk, and sometimes enriched with gold and silver, woven or embroidered with figures, landscapes, or ornamental devices, and used as a lining or colering for the walls of apartment. It is derived from the French 'tapis,' which is from the Iatin 'tapetum,' 'tapes,' 'tapete.' The Iatin worl is the same ns the Greck 'tapes' or 'tapis' (rín $\xi_{\text {s, }}$ rínç). The Latin and Greck words signified a carpet or covering for a hed or couch. The French 'tapis,' though generally applied to carpets, is also used to express other figured cloths used
as coverings, suelh sis the coverings of tables; whence, most probably, we lave the common expression 'on the tapis,' as applied lo subjects under discussion or eronsjderation. Of the use of the worl tapestry in this more extended sense, Here is un insfance in Shakspere's : Comedy of Eirrors,' net iv., sc. 1, where Antipholus of Epliesus. sends to Adriana, informing her that

Joluson, who rites this passage, gives also one from Dryden, in which tapestry is used in the sense of carpet:

- The rasemenlu are with golden llame mproal,

And horses' hoots, dor exth, on ailken tspestry tread."
In this more genernl sense the term is used ly M. Aclitle Jubinal, in lis recently published work, entitled ' Recherches sur l'Usage et l'Urigine des 'Tapisseries,' in which he extends his inquiry to worked or figured cloths (tapisseries il ymaiges) used for many other purposes than the eovering of walls. To this work we are indelted for much of the following information respecting the history of tapestry.
The early history of the art of producing figured fabrics by the loom may be nore conveniently treated of under Wravise than in this place; and it may be sufficient here to obserye, that althongh the loom was employed from the earliest times by the Greeks and lRomans for the production of ordinary tissnes, its application to the weaving of omamented or figured fabric swas chiefly Oriental. It is probuble also that many of the early tapestries were cmbroidered hy hand or worked with the needle. This kind of work, of which the Bayeux tapestry is a celebrated example, was continned long after the practice of weaving tapestry in the loon had beome common. The ormmented eurtains of the Jewish tabernacle, described in the twenty-sixth, thirty-fifth, and thirty-sixtly chapters of Exodus, are generally considered to have been embroidered by the needle. Jubinal supposes that they were worked with a needle in thread of silk, gold, or wool, in such a manner as to imitate the brilliancy of the plumage of birds; but he conceives that the vail of the Moly of Holies, which is deseribed in the linglish translation of the Bible as of 'cumning work' (Fixodus, xxvi, 3l; and xxxvi. 35), and which was ornamented with chernbim, was produced by the skill of the weaver, 'that is 10 say, excented by the shuttle with woofs of various colours, and in woven stuff.'

The Jews are supposed to have derived their skill in embroidery and other ornamental work of similar character from the Egyptians, "lon produced figured cloths both by the needle and the loon, and practised the art of introdscing gold thread or wire into suclh work. Wilkinson observes (Manuers und Cnstoms of the Antient licyptians, vol. iii., p. 128), "Many of the Eegyptian stuffs presented carious patterns worked in colours by the loom, independent of those produced ly the djeing or printing process, and so richly composed that they vied with cloths embroidered ly the necdle.' Jubinal inotes several antient authors who refer to figured tissucs as made and used by the F.g.plians and other nations of antiquity: Tapestry was used by the Balylonians to represent the mysteries of religion, and to perpetuate historical facts. Philostralus, In his Iife of Apollonius of Tyana, mentions Babylonian tapestry ornamented with silver and gold. The Greeks practised the art of ensbroidering figures upen eloth, and nttributed its invention to Mineria. Honer alludes, in sereral passages of the 'Iliad' and 'Odywsey; to combroidered stuffs of the character designated by Jubinal 'tapisseries àmaiges,' among which he comprises even some articles of dress. Without nfempting to pursue the investigation of this subject minntely, a general idea of the chancter of these ormamental tissues may he given hy a reference to the artiche 'Peplum' in the 'Diefionary of Greck and lRoman Antiquities.' edited by Dr. Suith; the author of the article 'l'eplum' nbserves, that of all the productions of the loom, shawls were those 1 pon which the greatest skill and labour were ernployed; and that the subjects represented upon then were so tarious and tasteftu, that ports delighted to desctibe them. He adds that 'Euripides describes one which represented the sun, moon, and stars ; and which, with lations others containing hunting-
pieces and a great variety of subjects, belonged to the temple of Apollo at Delphi, and was used to form a magnificent tent for the purpose of an entertainment (Ion, 1141-1162); for it is to be observed that stores of shawls were not only kept by wealthy individuals (Homer, Odyssey, xv., 104-108), but often constituted a very important part of the treasures of a temple (Euripides, Ion, 320, 330), having been presented to the divinity on numerous occasions by suppliants and derotees. (Homer, Iliad, vi., 271-304; Virgil, Eneid, i., 480, Ciris, 21-35.)'

Several substances appear to have been used by the antients as materials for the ornamental fabries alluded to. Jubinal states that flax, wool, and byssus [Brissus, vol. vi., p. 81] entered into their composition; and that the richest colours, embroidery, precious stones, and gold, were used in them. It is not very clear in what form and manner gold was applied in many cases. In the third verse of the thirty-ninth chapter of Exodus, Moses speaks of beating gold into thin plates, and then cutting it into wires, to work it into the ephod with eunning work; and Wilkinson states that probably the gold thread used in Egyptian embroidery was formed in like manner, and rounded by the hammer. Beckmann (Ilistory of Inventions, vol. ii., p. 212, \&c.) enters minutely into this question, and states that he liad not met with a single passage in antient authors where mention is made of inetal being wire-drawn; yet Jubinal thinks that gold was perhaps sometimes used in antient tapestry in the form of fine drawn wires, flattened and wound round threads in a manner resembling modern gold thread. He further supposes that gold was sometimes introduced subsequently to the weaving of the tissuc, by loosening its texture, and inserting the gold between the threads.

Scanty as are the notices of tapestry in antient writers, our information respecting it during the middle ages is not muel fuller. Jubinal obscrves that we find females engaged in working tapestry with the needle from the earliest epochs of the French monarchy. Gregory of Tours, writing towards the close of the sixth eentury, in his description of the rejoieings which followed the profession of Christianity by Clovis and his people, speakis of the streets being shaded with painted eloths or curtains (rolis depictis), and the churches leeing adorned with hangings; and again, in describing the consecration of the church of St. Denis, he mentions tapestries cmbroidered with gold and gamished with pearls. The fabricafion of tapestry-hangings by the loom appears to have been introduced into France, at the earliest, about the ninth century, until which time the needle had been used exclusively in their production; and, long atter that period, the two processes were practised coneurrently. At this time we often find embroidered cloths enumerated sumons the decorations of churches. Jubinal quotes Father lable for the statement that many tapestries were made for the church of Auxerre prior to the year 810 ; and he relates that, alpout 08%, there existed in the abbey of St. Florent, at Saumur, a great manufactory of stuffs, especially tapestries, which were woven by the inmates. From contemporary notices', it is crident that there was a celebrated manufacture of tapestry at Poitiers as early as 1025. Nor was the manufacture of tapestry comined to France at this period. The inhabitants of the north of Europe also practised it, and linglish embroidery was much admired and highly prized on the Continent. In the East also, where the art had been cultivated from the earliest antiquity, fine embroidery was produced in the eleventh century. Much of the early Oriental tapestry was adorned with grotesque figures; and. long after. it became usual to depict natural figures and scenery upon tapestry, sucla devices were often used in ornamental borders.
In the twelnh and thirteenth centurics the use of tapestry extenderl greatly. It passed from churches and monasteries, in which it had been nsed for curtains, palls, altarcloths, vestments, \&-c., to the residences of the nobility. Respecting this change, Jubinal observes:- If, in the solitude of the cloister, the monks had, as we have seen, practised the weaving of wool and silk for the sake of occupation, ladies and their followers, shut up in their castles during the long evenings of winter, the tedium of which was interrupted only lyy the perisal of works of piety or chivalry, embroidered with their needles the glorious aetions of our forcfathers. The ligh walls of these cold
rooms, built of stone, spoke far more effectually to the hearts and imaginations of those who lived under their protecting shelter, when they were covered with interesting histories, with important instruction, or with glorious remembranees of the past, than when nothing appeared to veil their nakedness.' The use of tapestry in this way was one of the luxuries introduced from the East in consequence of the increased intercourse occasioned by the crusades. The crusaders brought accounts of the Oriental practice of covering walls with prepared and ornamented skins, ehiefly those of goats and sheep. These, which were probably at first used of their natural size and shape, were, at a later period, cut into rectangular pieces, about two feet high, and rather less in width, and united by sewing into very solid and handsome hangings, which were well adapted to resist damp. Such hangings, or leather tapestry, were manufactured much at Venice and Cordova, and were sometimes either gilt all over, or ornamented with gilt devices, in which case they bore the name of dor basane. The Oriental origin of the more ordinary kind of tapestry is indicated by the name Sarcazins or Surazinois, which was frequently applied in France to the early manufacturers.

Numerous allusions to the use of tapestry in the fourteenth and fifteenth centuries, collected from contemporary documents, are given by Jubinal. It was then not only used to cover the nakedness of interior walls, but was also employed, on great oceasions, as for instance on the public entries of princes, to decorate streets, and to impart a joyfu] appearance to towns and public places. It formed part of the decorations of festal halls, and was employed to ornament the galleries and other crections required at tournaments. Rich embroidery was also much employed in the decorations of the horses and men who formed the actors in those chivalric amusements; and the brilliant, though often grotesque devices of heraldry, which formed so important a part of the display upous such oceasions, afforded extensive employment to the workers of tapestry and other ornamented tissues.

The art of making tapestry, for which the Illemings had been celebrated from the twelfth century, made considerable progress in Flanders in the fourteenth century, and attained its highest perfection there in the fifteenth. Guicciardini has ascribed the invention of tapestry to Flanders; but, if received at all, this statement must be supposed to refer merely to such as is produced by the loom. It is certain however that Europe is much indebted to the Flemings for the revival and improvement of tapestry, and for the production of many ot the finest specimens yct existing. The countess of Wilton, whose interesting volume on 'The Art of Neddlework' contains nuch information upon the subject of tapestry, is probably correct in assuming that the weaving of tapestry-hangings was not practised until they had become, from custom, a thing of necessity. 'Unintermitting and arduous,' she observes, "had been the stitchery practised in the creation of these coveted luxuries, long, very long, before the loom was tanght to give relict to the busy finger.' 'Tapestry manufactories were early established at Brussels, Antwerp, Oudenarde, Jisle, Tournay, Bruges, and Valeuciennes; but that of Arras* was more celebrated than any other, and its productions were so highly prized, that the name arras became a common expression for the finest tapestry gencrally, whether made in that place or clscwhere. The hangings of Arras, as well as those of other manufactories in France, were, says Jubinal, for the most part executed in wool. Hemp and cotton were also used in them, but no silk or gold thread. The fabrication of tapestries formed of these substances was carried on ehiefly at Florence and at Venice. The recollection of this difference is important in diseovering where old tapestrics were made, and Jubinal refers to instances of the clifference in some of those engraved in his great work on this description of monuments. Writing of the period under consideration, he observes that the devices (ymaiges) of the tapestry were very various. We have scen that they sometimes represented scenes from antient history, from the fabulous stories of heroes, and from modern historical events; but the imagination of the tapestry-designers did not stop

- Tapestry of Arras, representing the battles of Alexnuder the Grent; formed lart of the gresent sunt by the king of France, in 1096 , to the sultan Bajazet, to induce him to masom some captives takeuat the battle of Nicopolis. (Mack pherson, Annals of Commerce, vol. i., p. Cu8.)
there. The langings of the fourteenth century often represented hants, fantastical animals, or the oecupations peculiar to the different seasons of the year; and romantic and clivalric poems afforded a rich store of subjects for illustration. Jubinal quotes inventories of tapestries, ruceipts. ©e.., of the fourteenth century, in which tapestries of the above and of several other vareties are memioned. The account given of those belonging to Charles V. of France is particularly curious. It is taken from an inventory preserved in the Bibliotheque du Roi, which, besides tapestries ornamented with figures, mentions hemaldic tapestries (tupisseries (tarmoirie), and tuppiz whas, or hairy or shaggy tapestry: The fifteenth eentury affords many similar documents, though Jubinal does not give them so fully. He gives however very long extraets from a MS. in the Bibliothèpue du Roi respecting some old tapestries, from whiel it is evident that the names tapis Sirrazinois and tupis de Turquie* were otten applied to hangings fabricated in the West, they being probably made in imitation of Oriental work. In this epoch tapestry was othen alluded to by poets, and to it is attributed the fabrieation of most of the tapestries to whiels the term - tapisseries historites' has been applied.

The sixteenth century, whieh was an age of general improvement in France, gave a new impulse to the producfion of tapestry. Francis I. founded the manulactures of Fontaincblean, in which threads of gold and silver were skilfully introduced into the work. It was, we are informed, with this new impulse that the practice was commenced of weaving tapestry in a single picee, instead of composing it, as before of several smalter pieees joined logether. This prince brought Primaticeio from Italy [Prisaticcio, Francesco, vol. xix., p. 1], and, among other works of art, commissioned him to make designs for several tapestries, which were woven at Fontainebleau. Francis spared no pains in the eneouragement of this department of the fine arts. Ile engaged Flemish workmen, whom he supplied with silk, wool, and other materials, and paid liberally for their labour; and documents exist to prove that he also patronized the lapestry-makers of I'aris. Hemry II., the son and successor of Franeis, continued to encourage the manufactory at Fontainebleau, and established a manufacture of tapestry on the premises of the Hopital de la Trinité, which attained its highest eelebrity in the reign of Jienry IV., and produced many fine tapestries. In libat Du Bourg, the most eminent artist comected with this establishment, made there the eelebmated tapestries of St. Meri, which were in existence until a recent perionl ; and these pleased Henry IV. so much, that he determined to re-establish the manufacture of tapestry at l'aris, where it had been interrupted by the disorders of the preeeding reigns. This he did in lis! , bringing Italian workers in gold and silk to assist in the work.

The narrative of M. Jubinal, from which most of the preceding facts are taken, does not extend later than the close of the sixteenth century; but, to continue the history of the tapestry manufacture in France without interruption, we may turn to the volume recently published by the Countess of Wilton. A few years after the cwents last mentioned, as appears from his ' Memoirs', the Due de Sully, Ilenry's minister, was actively engaged in promoting this braneli of industry. In lo0.) were laid the foundations of new edifices for the tapestry-weavers, in the horsemarket at Paris; and at that ime, or a little later, Flemish workmen were engaged to superinfend the manufacture. The establishment languished, if it did not beeome quite extinet, afer the death of Henry IV.; but when the royal palaces, especially the Lourre and the Tuileries, were receiving their rich deeorations, in the reign of Lounis XIV., his minister Colbert revived it, and from that time the eelebrated royal tapestry-manufactory of the Gobelins dates its origin. This was established in premises which had been erected by eslebrated dyers

[^0]named Gobelin [Gubelin, vol. xi., p. 3RG], but which were purchased ly Louis NIV. in or about the year lteic, and adapted to the tapestry-munufacture, under the name of Ilôtel Royal des Gobelins. Foreign artists and workmen were engaged, laws were drawn up for the protection and govermment of the manufactory, and everyining was done to render it, what it has ever sinee remained, the finest establislament of the kind in the world. 'The quantity of the finest and noblest works that have been produectl by it,' olsserves the work above referred to, 'and the number of the best workmen bred up therein, are incredible; and the present flourishing condition of the arts and manufactures of France is, in great measure, owing thereto.' The production of tapestry at the Gobelins is snicl to have attained the highest perfection in the time of the minister Colbert and his suecessor M. de Lowvois. Le Brun, when chief director of the establishment, made many designs for working after; and M. de Louvois eaused tapestry to be made from some of the finest designs of Raphael, Julio Ronano, and other Italian painters. 1 further account of this celebrated manufacture is given in the elegant volume whiel has jnst appeared under the title of 'The Iland-book of Necdlework,' the authoress of which writes under her maden name, Miss Lanibert. She states thmt the manufacture declined greatly at the Revolution, but was ret ived under the government of Napoleon, and has ever siluce been earried on suceeessfully; though by no means to the same extent as formerly. About liouz ninety persons were employed in it, ehiefly in preparing tapestry for the palace of St. Cloud. 'The pieces executed,' according to the work last named, 'are generally historical subjects, and it oceasionally requires the labour of from two to six years to finish a single piece of tapestry:' 'The produetions of this manufactory,' says the same authority; "wheln is entirely supported by the government, are chiefly destined for the royal palaces, or for presents made by the king; but some few pieces, not designed as such, are allowed to be sold.' Wool is the only material now used, it being found to retain its colours better than any other; and in eonnection with the weaving establishment is one for djeing wools, under the direction of able chemists, in which many colours are dyed for this purpose exelusively. From a passage in Evelyn's 'Diary' (Oct. 4, 1683), in which he speaks with admiration of some new French tapestry he had seen in the apartments of the duchess of Portsmouth, it appears that the productions of this manufactory were known in England at that time.
The preceding historieal notiees respecting tapestry refer almost exclusively to Franee, but we must retrace our steps to take a brief review of the use and mantacture of this kind of fabrice in England. Respecting the AngloSixon period, it is observed in the 'Pictorial Mistory of Fingland' (vol i., p. 323):- The dwellings of the higher classes appear to have been completely and sometimes splendidly furnished: their walls were hung with sitk richly embroidered with gold or colours. The neetle-work for which the linglish ladies were so famous was herein displayed to great advantage. Inculphus mentions some hangings ornamented with golden birds in needle-work, and a reil or curtain on which was represented in embroitery the destruction of Iroy: In the Auglo-Saxon poen of Begwulf we read that, in 'the great wine-chaniber'-

There ahone rariegaled with gold
The web on the walls.
Many wondere in the sight
That would gaze on It beeame ritible
'The Saxon term for a eurtain or hanging was ruanreft; and, in the will of Wiynfloda, we find the bequest of a long heall tedhrift and a short one. The same lady also bequeaths three eoverings for benehes or settles (setltrregh).' The Baybux Tapestry (vol. iv., p). 68) is perhapss the most antient pieee of needlework in existenec. It was probably owing to the expense of such haugings, when of large size, and the very long tine required for their production, that the less comfortable device of painting the walls of chambers was extensively adopted in the early Norman period. Of this time the work before quoted obseries (vol. i., p. G:3.3):- The hangings of needle-work and embroidery which adorned the walls of the Anglo-Saxon palaces, seem to have been partially superseded in the course of this period by the fashion of
painting on the walls themselves, or the wainscot of the chamber, the same historieal or fabulous subjects whieh had hitherto been displayed in threads of colours and gold.' Many instanees miyht be enumerated of this kind of decoration, but it is sufficient to refer to the directions given by Henry III. early in his reign, for the painting of his wainscoted chamber in Winchester castle with the same pietures with which it had been previously adorned; a circumstance presumed by Walpole to indieate the very early existence of historical painting in England. The praetiee alluded to appears to have extended considerably during the reigns of Henry III. and his immediate suecessors; and, aecording to the same authority (vol. i., p. 864), the paintings were, in several instances, directed to be made in imitation of needle-work tapestries. Lady Wilton states that tapestry of needle-work, like the Bayeux tapestry of Matilda, which 'had been used solely for the decoration of altars, or the embellishment of other portions of saered edifices, on occasions of festival or the, performance of solemn rites, had been of mueh more general application amongst the luxurious inhabitants of the South, and was introduced into England as furniture hanging by Eleanor of Castile.' That tapestry was not originally introduced by that queen will be seen by the facts stated above; and we know not whether there is any further authority for the statement than the mention, by Matthew Paris, of her having used tapestry for covering floors, the word being apparently used in the sense of earpet. (Pict. Hist. of England, vol. 1., p. 863, note.) Chaucer mentions a 'tapiser,' in company with a 'webbe' and a ' dyer,' among his Canterbury pilgrims; from whieh circumstance it may be presumed that the business was not a very uncommion one towards the close of the fourteenth eentury. In the fifteenth century the use of tapestry greatly extended in England ; but then, and for long after, the principal supply appears to have been from the Continent. In the sixtcenth century a kind of hanging was introduced which holds a place intermediate between painted walls and woven or embroidered tapestry. Shakspere alludes to these langings under the nanie of painted cloths.'*
The appearance of the rich tapestry common in the Elizabethan period is admirably described by Spenser, in his 'Faerie Queene, book iii., canto ix., in the aceount of the tapestry seen by Britomart in the apartments of the house of Busirane, in the following lines :-

> For round abont the walls yclothed were
> With goodly arras of yreat majesty,
> Woven with gold and silke so close and nere,
> That the rleh metall lurked privily,
> let here, and there, anl everywhere, anwates
> It shewd liselfa, aud shone unwillingly;
> l. Ike a discolourd snake, whowe lidden snares

Through the greme gras lis lung bright-burnisht back declares.
The poet described what he was in the habit of sceing, and sufficient remains yet exist to attest the aceuracy of his deseription; although in most eases the brillinney of the metalic threads and the beauty of the colourrs are greatly impaired, and in some instanees the gold and silver threads have been arffulty withdrawn, their intrinsie value proting too strong a temptation for cupidity to resist.
The introduction of tapestry-weaving into England is usually attributed to a gentleman named Sheldon, late in the reign of Henry VIII. Lady Wilton mentions indeed an intimation by Walpole of its origin as early as the time of Edward III. ; but if any attempt was made to introduce the art at that time, it does not appear to have produced any important result. Aceording to her 'Art of Needlework,' Sheldon allowed an artist, named Robert Hicks, to use his manor-louse at Burcheston, in Warwichshire, for the practiee of the art ; and mentioned liin in his will, which was dated 1570, as sthe only auter and leginner of tapistry and arras within this realme.' At Burcheston were worked in tapestry, ${ }^{\circ}$ on a large seale, maps of Oxfordshire, Worcestershire, Warwickshire, and Giloncestershire, some frayments of which were, it is stated, in Walpole's colleetion at Strawberry IFill. Little more is known of this establishment. James I. endenvoured to revive the manufaeture of tapestry by encouraging aud aussisting in the formation of an establislment at

[^1]Mortlake, about 1619, under the management of Sir Francis Crane. James I. gave 2000l. towards the formation of this establishment, which appears to lave been originally supplied with designs from abroad, but subsequently by an artist named Francis Cleyne, or Klein, a native of Rostoek, in the duehy of Mecklenburg, who was engaged for the purpose. This undertaking was a favorite hobby both with James and his suceessor, who regarded Cleyne so favourably that he bestowed upon him, in 1625, an annuity of 100l. (Rymer's Fodera, vol. xviii., p. 112), which he enjoyed until the civil war. In the same year Charles I. granted 2000l. a year for ten years to Sir Francis Crane, in liers of an annual payment of 1000 l. which lie had previously covenanted to pay for that term, as the grant recites, 'towards the furtherance, upholding, and maintenance of the worke of tapestries, latelie brought into this our kingdome by the said Sir Francis Crane, and now by him and his workmen practised and put in use at Mortlake, in our countie of Surrey ; and of a further sum of 6000 l . due to the establishment for three suits of gold tapestries. (Foedera, vol. xviii., p. 60.) After the death of Sir Francis Crane, his brother, Sir Richard, sold the premises to the king, and during the eivil war they were seized as royal property. After the Restoration, Charles II. endeavoured to revive the manufacture, and employed Verrio to make designs for it, but the attempt was unsuecessful. Lady Wilton however conceives that, although languishing, the work was not altogether extinet, 'for,' she observes, 'in Mr. Evelyn's very searee tract entitled "Mundus Muliebris," printed in 1690 , some of this manufacture is amongst the articles to be furnished by a gallant to his mistress.' During its period of prosperity, this manufacture produced the most superb hangings, after the designs of eelebrated painters, with which the palaces of Windsor Castle, Hampton Court, Whitehall, St. James's, Nonsuch, Greenwich, \&e., and many of the mansions of the nobility, were adorned. Fire, at least, of the cartoons of Raphael, which appear to have been bought by Charles I. for that purpose, were worked in tapestry at Mortlake. These eelebrated works were designed for the purpose of being eopied in tapestry, and were originally worked in Flanders. [Cartoon, vol. vi., p. 330.] An act of parliament was passed in 1663 to eneourage the linen and tapestry manufactures of England, and to restrain the great importation of foreign linen and tapestry.

The use of the word 'hangings,' as applied to tapestry, as well as to other kinds of lining for rooms, perhaps sufficiently indicates the manner in which such decorations were formerly put u]. 'The tapestries,' observes the Countess of Wilton, 'whether wrought or woven, did not remain on the walls as do the hangings of modern days: it was the primitive office of grooms of the chamber to hang up the tapestry, which, in a royal progress, was sent forward with the purveyor and grooms of the chamber." She relates a eurious ancedote in illustration of this praetice. Henry IV, of France, wishing to do honour to the pope's legate, the cardinal of Florence, when visiting St. Germain-en-Laye, sent orders to hang up the finest tapestry; but, by an awkward blunder, the suit selected for the cardinal's chamber was embellished with satirical emblems of the pope and the Roman court. The mistake was discovered by the Due de Sully, on whose authority the anecdote is given, and another suit was substituted for that with the offensive devices. In a subsequent chapter, on 'The days of good Queen Bess,' after showing the universality of tapestry and similar decorations in the houses of the nobility and gentry of England, it is stated that tapestry was at that time suspended upon frames, whicl were probably, in many cases, at a eonsiderable distance from the walls, as we frequently read of persons concealing themsclves, like Falstaff (Merry Wives of Windsor, act iii., scene 3), 'behind the arras.'

The interest attached to antient tapestries as historieal monuments, as well as in the eharaeter of works of art, is of no mean order. The most important work on this department of arehæology is that of M. Jubinal, the author of the historical treatise quoted in the former part of this article, entitled 'L.es Anciennes Tapisseries Historices,' in which are given minute descriptions, illustrated by many large folio plates, of the most remarkable tapestries made from the eleventh to the sixteenth century, and preserved to the present time. Such monuments, as he observes in his preface, sometimes represent to us, with a clarming and
faithoul maïvele, grave historical events, and sometimes seenes of gaiety. "There they show us a siege or a toumainent; here, a feast ; a littlu fiuther, a chace; and always, whether eliaee, hantuet, toumament, or siere, nll is, as Montaigne would have said, ponrtrayed to the life; they all retrace 10 us most literally the mode of life of our ththers, showing us their residenees, their churches, their dresses, their arms, and even (thanks to their explanatory legends) their language at different epoels. Further than this, if we refer to the inventory of Charles V., made in 1379, we flad that all the French literature of the fmitnol ages preeeding the era of that wise monarch had been by his orders translated into wool.' At a later period, although the beauty of tapestry was increased by improveinents iu the arts of weaving and dyeing, and by the adoption of superior designs, mueli of its peculiarly interesting character was lost. Jubinal, in the smaller work frequently quoted in the earlier part of this article, regrets the disappearance of the Gothic labels, which contained quaint deseriptions of the subjects represented; of the peculiar arehitecture of the middle ages (arehilechure a ogives), and of the furniture and dresses of our forefathers; and he conceives that their place is but ill supplied by the imitation, ' elever in the great masters, but detestable in their disciples,' of Greek and Roman forms, of whiel he refers to 'eclebrated and grievous examples in the compositions of Rubens reproduced by the manufactory of the Gobelins; in the tapestries of Beauvais, and in those of Aubusson.'

In the primitive method of working tapestry with the needle, the wool was usually applied to a kind of eanvas, and the effect produced was coarse and very defective ; but some finer kinds of tapestry were embroidered upon a silken fabric. The process of weaving by the loon, after the manner known as the haute lisse, or high warp, was practised in the tapestries of Flanders (and, aceording to Jubinal, in those of England atso), as early as the fourteenth and fifteenth centuries; the only essential differenee between these and the productions of modern times being that previously notieed, the comparative size of the picees woven in the loom. The weaving of tapestry, both by the 'haute lisse' and the 'basse lisse,' appears to be of Oriental invention; and the difference between the two methods may be briefly described. In the 'haute lisse' the loom, or sather, the frame with the warp-threads, is placed in a perpendicular position, and the weaver works standing ; while in the 'basse lisse' the trame with the warp is laid horizontally, and the weaver works in a sitting position. In wearing with the 'basse lisse,' whieh, Miss Lambert observes, is now relinguished, the painting to be eopied is laid beneath the threads of the warp, which are stretehed in a manner resembling that of common weaving, the pattern being supported by a number of transverse threads stretehed beneath it. The weaver, sitting before the loon, and leaning over the beam, carefully separates the threads of the warp with his fingers, so that he may see his pattern between them. He then takes in his other hand a hind of slmittle, ealled a flute, charged with silk or wool of the colour required, and passes it between the threads, after separating then in the usual way by means of treddles worked by the feet. [Wravisc.] Thie thread of woof or shoot thus inserted is finally driven elose $1 p$ to the finished portion of the work by micans of a reed or comb formed of box-wood or ivory, the teeth of which are inserted between the threads of the warp. In this process the face of the tapestry is downwards, so that the weaver eannot examine lis work until the piece is conpleted and removed from the loom. The frame of the 'haute lisse' loom eonsists of two upright side-pieees, with large rollens placed horizontally between them. The threads of the warp, which usually consist of twisted wool, are wound round the upper roller, and the finished web is coiled round the lower one. The eartoon, or design to be eopied, is placed perpendieularly behind the baek or wrong side of the warp, and then the jrineipal outlines of the pattern are drawn upon the front of the warp, the threads of which are sufficiently open to allow the artist to see the design between them. The eartoon is then renoved sofar back from the warp that the weaver may place himself betreen them with his baek fowards the former, so that he nust furm round whenever he wishes to look nt it. Attaehed to the upright side-picees of the frame are contrivanees for separating the threads of
the warp, so as to allow the füte, or broach, which carries the woot, to pass between them. Like the weaver with the 'lasse lisse,' the operator works, ins it were, blindfold; but by walking monel to the front of the loom lie may sec the progress of his work, aud may adjust any threads, which have not been foreed iuto their right position by the read or comb, with a large needle, called an aiguille i gresser. The process of working with the ' hante lisse' is mueli slower than the other, and is indeed. says Jubinal, almost as slow as that of working with the needle. Lady Wilton, in deseribing the productions of the IIotel Royal des Gobelins, ouserves that 'Not the least interesting part of the proeess was that performed by the rentrayecres, or fine-dmawers, who so unite the brealihss of the tapestry into one picture, that no sean is disecrnible, but the whole appears like one design:' Now, however, the pieces are woven so wide that joining is very seldom resorted to, even for the laryest pieces.
(Jubinal, Recherches aur l'Usige ef rorigine des Tirpisseries a Personnages, dites Historices; The Arl of Needlework, edited by the Right Honourable the C'ountess of Wilton; The IIandbook of Needlework, by Miss Lambert : \&.e.)
TAPMozóus. [Cheiroptra, vol. vii., 1). 24.]
TAPIO'CA, a furinaceous substanee, prepared in South America from two species of Janipha, or the bitter and sweet Cassada or Manioe plants, which two were loug regarded as one species, and conipreliended under the name of Jatropha Manihot, till Pohl distinguished thens, ealling the bitter Manihot utilissime, and the swect Menihot Aipi (Polil, Pl. Brasil., ic. i. 32 t. 21). The ehief distinction between them is that a tourg ligneaus fibre or cord runs through the heart of the sweet Cassavaroot, of which the latter is destitute.' 'Though the bitter contains a highly acrid and poisonous juice, from which the sweet is exempt, yet the bitter is cultivaled alnost to the entire exclusion of the other, which is probably owing to the greater faeility with which it can be ground or rasped into flour, owing to the absence of the ligneous centre. The poisonous principle of the bitter manioc is thought to be of the nature of liydrocyanie aeid. (Guibourt, Hist. des Drogues, tom. ii., p. 455), 3ieme ed.) It is easily dissipated or decomposed by heat or fermentation; henee the flour becomes perfectly wholesome in the process of baking the cassava bread. [C.assays, vol. vi., p. 344.] The juice, after expression, inay be inspissated by lone boiling, or formed into a soup, with flesh and spices, calted cassarepo. By means of molasses it can be fermented and converted into intoxicating driuk.
The feeula, or flour, after the juice has been carefully expressed, having been washed, and dried in the air mithout heat, is fermed mouchaen in Brazil, mousvache in the Antilles, and cypipa in Cayenne. This coustituted the Brazilian arrow-root of English commeree. When this fecula is propared by drying on hot plates, it beeomes gramular, and is called fapiona. It oceurs in irregular lumps or grains, and is partially soluble in cold water. The granules, diffused through water, and exumined by the microseope, are of great uniformity of size, and smaller than those of arrow-root from the Marantas. Tapioea in very nutritious and easy of direstion, being free fiom all stimulating qualities. It is therefore very necessary to distinguish it trom an amificial tapioea nade with sum and potato starch, which is in larger graumes, whiter, more easily broken, and nore soluble in eold water than the genuinc.
TAPIR, Tnjirus, the name of a genus of pactoydermatous quadmpeds.
Linnmens does not notice the Tapir in the 12th (his Inst) edition of the systemu Nature: But Gimehn cuotes it as the Hippopotamus (tertestris) pedibus posticis trisulcis. (Eysf. Nat. x. i., p. 74. 11. 2.)
(inclin introduces it nimder the fitle Simpir, between Mippopotamis and Sus.

Cuvier arranges the genus as the last of his Pacliydermes Ordinaines, making it immediately sueceed the extinet Palcontherfa and Tophiodons. The gemus was well linown to the older zoologists who wrote on the natural products of America, as we slall hereafter see.

Oboanization.

Skelefon. When viewed in profile, the pyramidal eleation of the skull of the Tapir, ealling to mind what is to
be seen in the hog, strikes the obscrver forcibly. But the pyramid of the Tapir differs from that of the hog in having only three faces; and also in this, that its anterior line is formed by the meeting of the lateral faces, and it is only towards the front that it is dilated into a triangle, which is due to the frontal bones: thesc are early united and directed a little backwards. At the middle of the base of this triangle, to which the bones of the nose are articulated, is a point which penetrates between them ; and from the two sides above the orbits descends a deep furrow produced by the structure of the upper border of the orbit, and which approaches towards the suborbital hole: it serves for the insertion of the muscles of the proboscis. The orbit descends lower than the mid-height of the head, is very wide, and has the postorbital apophyses bit little marked.

That part of the cranium which is in the temporal fossa is convex. The occiput is a small demi-oval extremely concare plate, because the occipital crest projects considcrably backwards in a parabolie shapc. The occipital bone ascends on the cranium. The frontal bones descend largely in the temple, and are there articulated with the lachrymal, the palatine, the two sphenoids, and the temporal bonc. The parietals are square, very large, occupying a great portion of the sagittal crest, and united also early between them. The nasal bones are no less striking than the form of the cranium. They are very short, articulated to the frontals by their base, and to those of the jaws by a descending apophysis; but they are free and projecting, forming a kind of triangular penthouse above the cavity of the nostrils. This structure, which reminds the observer of that of the elephant, indicates the presence of a moveable proboscis. The aperture of the osseous nostrils thus becomes extremely long, nearly horizontal, and bordered in great part by the maxillary bones, which advance well beyond the bones of the nose, to form the projecting part of the muzzle; they earry the intermaxillary bones which (a remarkable thing, observes Cuvier) were anchylosed together in the individual examined by him, although it was very young, and consequently formed but a single bonc, and Cuvier' remarked the same conformation in other crania. It was only in a nascent tapir, when 110 tooth had come forth, that he found the suture which separates the maxillaries from each other. These same intcrmaxillaries form a ceiling under the orbit. The lower border of the orbit and the half of the arch are due to the os malc, or jugal bonc; the test to the temporal bone. The zygomatie arch is curved downwards at its anterior portion, and upwards at its posterior portion : it projects moderately outwards. The os unguis, or lachrymal bone, touches the malar bone, and advances a little on the cheek, and nioderately in the orbit. There are two lachrymal bones in the very border of the orbit, separated by an apophysis, the upper of which is the largest. The suborbital hole is oval, rather large, and at a little distance in front of the suture, which unites the jugal and the lachrymal to the maxillary bone. The incisive hole is elliptical and very long, in great part, in the maxillary. The posterior nasal fosse notch the palate towards the fifth molar. The suture which separates the palatine from the maxillary bone corresponds with the third. The palatine hones contribute much to the pterygoid ale, and the sphenoid very little: thesc rloe are short and truncate, with a small hook which represents the internal pterygoid wing, and which remains for a considerable time a detached bone. The sphenoid bone does not reach the parietal in the temporal fossa, but romains separated from it by the squamose portion. The palatine bone there forms a lons and narrow tract; which procecds forward for the lengtli of the upper loorder of the maxillary hone up to the suborbital canal. Jehind the glenoid cavity of the temporal bone, which is very large, is a semicircular lamina, descending vertically and directing itself forwards and inwards: it intermpts the lateral and posterior motion of the lower jaw. Between this lamina and the mastoid apophysis is a rather narrow noteh where the meatus auditoriss internus is found. The masthid apoplyysis descends as low as this lamina. It reaches the temporal bone hy its anterior tuberele, and the oecipital by its point. The holc analogous to the spheno-palatine is in the middle of the orbital tract of the palatine bone. The analoyne of the pterygo-palatine bone is helow it, on this suture of the palatine with the maxillary bone. The
optic formmen is small, and placed on the suture of the frontal and of the anterior sphenoid bones. The sphenoorbital and round foramina are only separated from each other by a delicate lamina. There is a rather large vidian canal. The oval hole is confounded with the anterior and posterior apertures, so that a great portion of the petrous bone is separated from the sphenoid and basilary by a space. The tympanie bone does not appear to be ever anehylosed with the neighbouring bones, and falls easily, as in the hedgehog, the opossum, \&c.

The lower jaw exhibits a striking width at its ascending ramus, and presents a rounded contour backwards at its posterior angle. Its coronoid apophysis elevates itself in the form of a pointed falx above the condyle, which is transverse and large. The two jaws are a little concave laterally at the vacant interval of the teeth, and are very much narrowed there; their edge is trenchant.

Bones of the Neck and Trunk. - The lateral apophyses of the atlas are wide, but little extended outwards: the spinous process of the axis is an elevated crest; the transverse processes are small and irregular; the odontoid is large and obtuse; the transverse processes' of the thrce succeeding vertebræ descend obliquely, are a little widened at the end and cut nearly square; their spinous processes are very small. The fiftlo eervical vertebra has a small apophysis on its transverse process, which, for the rest, resembles that of the preceding vertebræ, but is rather longer: its spinous process is also rather longer; still more is that of the seventh vertebra, the transverse process of which is very small-in short, a simple tubercle. The articular facets of the cervical vertebre rise obliquely from within outwards, so that the articular facet of one vertcbra is below that which responds to the preceding vertebra. The bodies of the vertcbre are convex forward and concave bchind, an organization which is more or less repeated in the rest of the spine. The number of dorsal vertebra amounts to twenty; the spinous apophysis of the sccond is the longest. They decrease and incline backwards to the eleventh, from which they become straight, square, and ncarly equal. Their articular apophyses are so fitted that those of one vertcbra are in adrance and above those which correspond with it in the vertebra below. Cuvier found twenty pairs of ribs in one individual, nineteen in another, eight of which are true, all slender, and rounded for the greatest part of their length. The breastbone is composed of five bones: its antcrior portion is eompressed, and projects in the form of a ploughshare. There are four lumbar vertebræ, the transverse apophyses of which are rather large. Those of the last, which are rather shorter and oblique, are articulated with the first sacral vertebra. These transverse apophyses have on their base the same elevated crests as the dorsals have for articulation with the ribs.
The os sacrum of the adult consists of scven vertebræ, the spinous apophyses of which are distinct and inclined backwards; the five last of these apophyses are short and terminate, by a widencd disk. The tail has seven vertebras.

Bones of the Ertremities. -The blade-bone has a strong semicircular notch towards the lower part of its anterior border; the rest of this border is round as well as the upper border: the posterior border makes an angle upwards and then descends a little concave. There is neither acromion nor coracoid process, if a hook-like process be excepted. The spine of the bone terminates at the lower third of it; its greatest projection is at its middle; the articular surface, is oval and ligher than it is long. This
blade-bone, kays Ciwier, emphatieally, and not more emphatically than iruly, cannot be contonnded with that of any other animal.

The head of the humerus is powerful, behind the axis of the bone. Its large tuberosity is bilobated by a rounded notch; its bieipital eanal is simple and not wide; the ndge is little marked; the condyles do not projeet much. The radial artieular face is divided by a projecting rib into an entire pulley on the internal side, and the half of
one on the external side; both the one and the other correspond to projections of the radius, so that this last has no rotation. It is even probable, observes Cuvier, that with age it is anchylosed to the ulna, which remains throughont its length on the external edge of the arm. The npper head of the radius is nearly rectangular; its body, rounded in front, is flattened behind. The body of the ulne is triangular. One of its crests follows the external crest of the radius.

Ekeletua of American Tapir.

The carpus of the Tapir bears a near resemblance to that of the Runoceros, especially in having, like it, a single small bone articulated with the wedge-shaped and unciform bones, in licu of the trapezoid and thumb; but this bone is articulated with the metatarsal bone of the index, which is not the ease in the rhinoceros. The other bones of the wrist are nearly of the same form, excepting that their width is less in proportion to their height, a condition which is true evell with regard to the unciform bone, although it has to earry two eomplete metacarpals, whilst in the rhinoceros it only carries one and the restige of another. The pisiform bone is also longer in proportion in the Tapir. The metacarpal of the middle finger is longest and straightest; those of the index and ringfinger are curied nearly symmetrically one with reterence to the other, as in the rhinoceros. But the Tapir has also one small, short, and rather irregular metacarpal. The three first fingers are those which touch the earth, and their ungual phalanges resemble those of the rhinoceros; the little finger does not touch the ground. The first phalanges ure longer than they are wide, but the contrary is the ease with regard to the second.
The widened part of the ossa ihii is very broad transversely, and a little concave outwards. The external redge of this bone is larger than the internal one; the anterior border is largely concave, and the two spines are, as it were, truneated; its neek is narrow, with referenee to its length; the oval holes are longer than they are wide, and the posterior extremity of the ischium terninates in a pount very distant from its correspondent. The anterior passage of the pelvis is as long as it is wide, and nearly circular.
The femur has its great trochanter pointed, forming a projection backwards, and giving off a rib which deseends along the external border. Besides the two ordinary trochanters, there is a third, which is flattened and recurved in front: In these points its resemblance to that of the horse is perecptible, but it diflers much in having the two borders of the rotular pulley nearly equat. The fibula is curved outwards, which separates it a little from the tibia: this last has its upper head rather marked, but the tuberosity which terminates this end alove is obtuse and curved but little. Its lower head is wider than it is lones, is oblique, and its antero-posterior diameter on the
internal side is wider, and this border more projecting than that of the fibular side.

The tarsus of the Tapir is still better modelled than its carpus after that of the rhinoceros, of which it seems to be only a repetition: only the os ealeis is much more clongated and more compressed; but its facets are the same. The neek of the astragalus is longer and touches the euboid bone by a narrower facet. There is no ventige of a hind toe, but the little finger is represented by an elongated bone, bent at the end, articulated to the seaphoid, to the small cunciform and the external metatarsal bones. The posterior tuberele of the cuboid bone is less projecting and less hooked than in the rlinoceros. (Ossemens Fossiles.)
Cuvier, in his osteological comparison of the Indian Tapir with the American form, observes that a glance at the profile of their respective crania is sufficient to impress upon the olserver their specitic differences. The forehead of the Indian Tapir is, he observes, so convex, that it rises higher than the oceiput : it elevates in its rise the nasal bones, which much prolones the ascending part of the jaws and the deseending portion of the frontal bones along the external aperture of the bony nostrils, thus giving much wider room for the comparatively large proboscis, and adding length to the furrows where the muscles are inserted. This organization, he observes, explains why the Indian Tapir has a more powerful and extensible trunk than that of America. There is even, he adds, in the Indian species, on the base of the nasal bones at their junetion with the fromal bones, and on eneh side, a deep, fossa which does not exist in the other species. This elevation of the forehead is accompanied ly a depression of the oceipital erest, which, far from forming a pyramid, as in the American species, rather desecnds hackwards. The aperture of the bony nostrils, so enlarged by the prolongation of the maxillary bones, terminates below and forwards by more elecrated intermaxillaries, which are for the rest anchylosed together in carly youth as in the Amcrican Tapir.
The interval between the canine and the first molar is less in proportion in the Indian Tapir, whose dentition is otherwise the same with that of the American species.
The zypomatic apophysis of the Indian species is a little higher backward and less forward: its mastoid apophysis is more transversally turned.

The occipital surface of the skull offers a difference corresponding to that of the profile, inasmuch as it is less high, but it is also much wider in proportion ; and from this width results another difference in the upper surface of the cranium, namely, that the sagittal crest, instead of remaining throughout its length linear and narrow, widens much backwards, and even remains rather wide at the point where it is most narrowed by the approximation of the two temporal fossæ. The triangle which these two fosse leave in front upon the frontal bones is also wider and its surface more convex. The triangle formed by the true bones of the nose is wider at its base. For the rest, the composition of the cranium, the connexion of its bones, its sutures, its foramina, entirely resemble, as well as the teeth, those of the American species.

Cuvier then remarks that the rest of the skeleton of the t wo species does not offer such appreciable differences. The blade-bone of the Indian species is rather the wider; but the notch towards the lower part is smaller and rounder. The anterior hook of the great tuberosity of the lumerus is more projecting ; the unciform bone of the carpus is narrower; the last phalanges of the middle anterior toe are wider and more rounded, and the same may be said of the middle toe of the hind feet; the great trochanter of the femur is larger; the neck of the astragalus is shorter: but all these differences, Cinvier observes, are of so little innportance, that, without those of the crania, they would hardly justify the conelusion of specific distinction. (Ossemens Fossiles.)
Mr. Yarrell, in the 4th vol. of the Zoological Journal, gives an account of the post-mortem appearances in an American Tapir brought to this country by Lieut. Maw, R.N., which survived its arrival in the gardens of the Zoological Society in the Regent's Park only a fen hours.

When dead, the animal, which was said to be about twelve months old, measured from the nose to the root of the tail 48 inches, and its girth was 35 inches. The incisor tecth $\frac{6}{6}$ were very much used; the edges coming into close contact when the molars are in action. The canines $1-1$ $\overline{1-1}$ were small in the upper jaw, and remored a short distance from the lateral incisor, for the admission of the larger canines of the lower jaw; the molars were $\frac{4-4}{3-3}$. Of those in the lower jaw, the first had threc lobes, with five points; the second and third two lobes, with four points. Of the four upper molars, the first had two outer and one inner point; the other three had each two lobes with four points: all the parallel points or tubereles were connected transversely by a slight triangular ridge ; and each of these triangular ridges, with their connected tubercles, shut into similarly shaped eavities in the teeth opposed to them, throughont the whole length of their continuous surfaces. The second, third, and fourth upper molars had each a small additional but less elevated point on the external anterior angle, increasing somewhat in size from the second tooth baekwards. On cutting through the lones of the palate in order to the eomplete removal of the brain, Mr. Yarrell found the crown of another molar tooth on each side, posterior to, and somewhat within the line of range of, the last exposed molar. This tooth had a fith tuberele of increased magnitude.
The cartilage of the septum narium was thick and strong, and the central ridge of the skull very much elevated. The ligamentum nucher was composed of three strong cord-like portions, two of which, passing in a parallel rirection from the elongated spinous process of the first vertebra, were inserted together upon the extreme superior posterior angle of the central ridge of the cranium, supporting the whole length of the elcrated erest and mane. The third portion of this strong ligament passed between the other two, and was inserted into the more elevated portion of the elongated spinous process of the clentata.

The anterior portion of the sternum was hecl-like and rounded in shape, and projected forwards. There were twenty ribs on cach side and four lumbar vertebre. The tracheal eartilages were firm : the rings however were incomplete throughout. One large and one small lobe formed the right ling; one large and two small ones the
left: they were inflamed. The pericardium, which was loaded with fat, was of unusual thickness; but the heart presented nothing remarkable : the coats of the arteric3 were particularly thick and firm.

The œesophagus was narrow: the stomach presented a single cavity, rather small, measuring, when moderately distended with air, 8 inches only from right to left, and $15 \frac{1}{2}$ inches in circumference : the parietes were thickened about the pylorus, but the internal surface was not examined, the organ having been preserved entire: it contained a loose mass of tow, hair, string, and shreds of cloth.
The spleen was narrow, thin, and 12 inches long.
The liver was divided into four lobes:-two, one large and one small, on the right side ; and two, large and equal, on the left; the lower of these last was divided and notched on the edge. There was no gall-bladder.
The small intestines, uniform in size throughont their length, measured 21 feet, and were inflamed.
The cæcum was capacious compared with the stomach, measuring 14 inches in the line of its long axis, and 24 inches in girth at the largest part, and had two deep and several sinaller circular indentations externally, and marked with one strong longitudinal band on each surface; tapering somewhat to a point at its closed extremity, but without any appendix vermiformis. The colon, at two feet from its commeneement, doubled suddenly upon itself, and formed a fold 16 inches long, the inner surfaces of which were closely connected. The large intestines measured seven feet in length.
The scxual organs (the animal was a female) presented about the uterus, its cornua, and the ovaria, a degree ot vascularity which rendered it probable that the period of life was approaching when breeding would have commenced.

Mr. Yarrell refers to Sir Everard Home's paper in Phil. Trans. (1821), in which Sir Everard points out the differences existing in the skulls of the Sumatran and American Tapirs, and las described a part of the viscera of the former. In the Sumatran 'Tapir the stomach is large, the intestinal canal very long, and the cexcum small; in the American Tapir the stomach is small, the intestines of moderate length, and the crecum large.
Mr. Yarrell adds, that, of the species described,
The length of the Sumatran Tapir is eight feet; and the whole length of its intestinal canal is 89 feet 6 inches. Proportion as 11 to 1.
The length of the American Tapir is four feet; and the wholc length of its intestinal canal 28 feet. Proportion, as 7 to 1 .

In the Physiological Series, preserved in the Museum of the Royal College of Surgeons in London, No. 754, is the anus of an American Tapir, in which, as in the ordinary mammalia, the intestinal canal has a distinct external orifice, situated bchind, and not, as in the osseous fishes, in front of the genito-urinary outlet. Professor Owen, the author of the Catalogue, remarks that this example of the mammiferous type of anus is preserved on account of the peculiar jagged appearance and abrupt termination of the common integument at the verge of the anus.
No. 1217 of the same series is a section of the kidney of a Tapir (Tupir Americanus), with the arteries injected, and the pelvis laid open to show the terminations of the tubuli uriniferi, as in the horse. No. 1286 is the suprarenal gland of an American Tapir laid open, showing the central darkcolonred substance very distinctly. No. 2778 exhibits part of the vagina, with the urethro-sexual eanal, vulva, and clitoris of the American Tapir, in which the clitoris projects within the anterior margin of the vulva: it is a short pyramidal body with two small lateral lobes. The urethrosexual eanal is separated from the vagina by a broad transverse semilunar fold, beneath which is the wide aperture of the urethra. No. 2527 B , is the distal extremity of the penis of the Sumatran Tapir. The upper and lateral parts of the base of the glans present three rounded processes, beyond which the extremity of the glans is continued forwards, and terminates in a large truncate slightly convex surface, in the middle of which is situated the orifice of the urethra.
Gcneric Character.-Molars presenting on their crown, before they are worn, two transverse and rectilineal tubercles (collines). Nose terminated in a small moveable proboscis, but not terminated with an organ of touch like that
of the clephant ; neck sather long ; skin rather thick, and covered with hair, looking ns if it had been elose shom; two inguinal mammes. Anterior feet with four toes; posterior feet with three foes.
Dental formula :-incisors $\frac{6}{6}$; canines $\frac{1-1}{1-1}$; molars $\frac{7-7}{\frac{7-6}{6}}$ $=42$

Geographical Distribution.-Asia and America. M. Lesson observes that it was for a long time believed that this genus was peculiar to Anerien; but that the rich and beautiful diseoveries of MM. Diard and Durancel have proved that it is also proper to Asia : of which observation more will presently be said.

Aslatic Tapir.

Up to the year 1810 it appears to have been thoumht that the Tapir form was confined to America, and the species known in collections as the Ameriean Tapir seems to have been regarded as the only example of the genus. M. Lesson, who so swecpingly clams the discovery of the Asiatic speeies for Frenels naturalists, is not the only zoologist of that country who puts forth such pretensions. Mr. Bennett has thus corrected those pretensions:-

- Some vague notices liad reached Sir Stamford Raffles of the existence of a similar animal in Sumatra and the Malayan Peninsula; but to Major Farquhar belongs the credit of having first procured a specimen and sulmitted its description to the world at large. The history of this transaction affords too striking an illustration of the injustice of certain among the Frencla zoologists to the merits of our conntrymen to be passed over without observation. "The knowledge of this animal in France," says M. Dessmarest, in his 'Mammalogie,' carefully shielding hinself under an equivocal form of expression, "is the to M. Diard." But M. Lesson goes farther; and echoing, as usual, the dicta of his predecessor with a slight addition of his own. speaks of the Indian tapir as a species "discovered by M. Diard." Again, in the "Dictionnaire des Sciences Naturelles,' M. Desmarest, forgetful of his former caution, heightens the farce still more by asserting that its "discovery in the forests of Sumatra and the P'uinsula of Mnlacea is due to MM. Duyaucel and Diard." In none of these works is the least indication given that the animal in question had previonsly been even seen by an English-
man; muel less is the fact suffered to transpire that long before M. Diard had "diseovered" it, not in the forests of Sunatra or the Malayan Peninsula, but in the menagerie of the Governor-general of British India at Barraekpore, "I full deseription, logether with a figure of the animal and of its skull, had been laid before the Asintic Society by Major Farquhar, for publication in their ' Researches.' This latter circunstance, it is true, was not mentioned by M. Frederick Cuvier when he figured the tapir of Malacen in his splendid work, from a drawing made by M. Diard in the Barrackpore menagerie, or by that gentleman himself in the published part of his accompanying letter; but there seems to have been no intention on their parts wilfully to mislead their readers. That M. Diard at least could not have heen netuated ly any such desire is fully proved by several passares in thie note appented by him to Major Farguhar's original description, in whieh he speaks of the gallant officer as "the excellent naturalist Who has enriched zoology with so important a discovery;" and attributes the "honoir" 10 hinn "alone." Baron Cuvier too, in the recent edition of his ' Regne Animal,' silently rejects the ummerited distinction in fivor of his stepson and firiend ; and candidly quotes, as the first describer, our, in this instance, nore fortumate countryman.* Affer this, we trust that we shall hear no more of the "diseovery" of the Indian tapir by MM. Diard and Duvaucel, who have too many real claims on the consideration of zoologists to require to be tricked out in the borrowed plumes with which it has hitherto been the fashion among our neighbours to invest them.' (The Gardens and Menagerie of the Zonlogical Society delinented, vol. i.)

Dr. Horstield states that the first intelligence of the axistence of this interesting animal in Sumarra was given to the government of Fort Marbborough at Bencoolen, in the year 1762 , by Mr. Whalfeldt, who was employed in making a survey of the coast. In the mouth of April in that year, it is, according to Dr. Hossfield, noticed in the records, that Mr . Whalfeldt laid before the govermment his observations on the places southward of Cawoor, where he met with the tapir at the bouth of one of the rivers. He considered it to be the hippopotamus, and described it by that name; but the drawing which accompanied the report identiffes it, says the Doctor, with the tapir. Dr. Ilorsfield adds that this mistake in the mame may readily be explained, when it is recollected that in the tenth edition of the 'Systeme Naturse' of Linneus the tapir is placed as a species of hippopotamus, while in the tweltth edition no mention is made of that animal.
'The learned author of the 'History of Sumatra,' William Marsden, Est.,' ' continues Dr. Inosficld, ' was at that time secretary to the government at Bencoolen; and the public owes to his zeal in collecting every valuable information relating to that island the first notice of the existenee of this animal. which is lyy the Malnys in many places denominatel Fudk-my/r, literally hipjo-polamus. Afer the first discovery, in 1\%\%2, the tapir was not observed for a considerable period. From the same catalogue of Sir T. S. Raffes which has tirmished the deseription, it appears that in the year 180.0 a living specimen ras sent to Sir George Leith, when licutcmant-governor of Penang. It was aftervards olserved by Major Farquhar in the vicinity of Malacea. A draving and deseription of it were communicated by him to the Asiatic Socicty in 1816, and a living subjeet was anemvards sent to the menagerie at Barrackpore from Bencoolen. At this place a drawing was made ly M. Diard in the year 1818, which, accompanied by an extract from the deseription of Major Fargular, was commmieated to his friends in Paris, where, in Mareh, 1810, M. Fred. Cuvier published it in his large lithographie work on the nammalia of the menagerie in Paris.'

- In the month of September, 1820, the first specimen of the Malayan lapir was received in Encland from Sir Thomas Siamford Rafles, wifl the general zoological collection of mammalia and birds, the deseriptive catalogne of which, being contained in the 13 th vol. of the 'Transactions of the Limean Socicty;" has been already referred to. This specimen of tapir was accompanied by a complete skeleton, and the thoracie and abdominal viseera preserved in spirits of wine.' Dr. IIorsfield then refers to the use made by Sir Everard Ilome of these materials in the paper above alluded to.

[^2]A living specimen of this species was latey brought to this country, and publicly exhibited in the garden of the Zoologieal Society of London, where it died more than a year ago.

Description of Tapirus Malayanus-Tapirus Indicus of the French zoologists; Le Maiba, F. Cuv., Mamm.:-"The Malay Tapir resembles in form the American, and has a similar flexible proboseis, which is six or eight inches in length. Its gencral appearance is heavy and massive, somewhat resembling the hog. The eyes are small; the ears roundish, and bordered with white. The skin is thick and firm, thinly covered with short hair. There is no mane on the neek, as in the American speeies. The tail is very short, and almost destitute of hair. The legs are short and stout; the fore-feet furnished with four toes, the hind-feet with three. In the upper jaw there are seven molars on each side, one small caunine inserted exactly on the suture of the incisor bone, and in front six ineisors, the two outer of which are elongated into tusks. In the under jaw there are but six molars; the eanines are large; and the number of the incisors, the outer of which are the smallest, is the same as in the upper jaw. The general colour is glossy black, with the exception of the back, rump, and sides of the belly, which are white, and separated by a defined line from the parts that are black.'

Sueh is the deseription of Sir Stamford Raffles, for the aceuracy of whieh we can voueh, having eompared it with the living animal in the garden of the Zoologieal Society. Major Farquhar describes a young Tapir of this species which he had alive in his house thus:-'It appears that
until the age of four months it is black; and beautifully marked with spots and stripes of a fawn colour above and white below. After that period it began to change colour, the spots disappeared, and at the age of six months it had become of the usual colour of the adult.' (See post, American Tapirs.)
Marsden, as we have already seen, notices the animal as the Hippopotamus; coodo-ayer. In Sumatra, according to Sir Stamford Raffles, it is known by different names in different parts of the country: thus by the people of Limun it is called Saladang; by those of the interior of Manna, Gindol; in the interior of Bencoolen, Bubi Alu; and at Malacea, Tenmu.
Habits.-The habits of this speeies in a state of nature are probably similar to those of the American Tapirs. In captivity, Major Farquhar deseribes it as of a mild and gentle disposition. "It beeame as tame and familiar as a dog; fed indiscriminately on all kinds of vegetables, and was very fond of attending at table to receive bread, cakes, or the like.' Sir Stamford Rafles adds that the living specimen sent from Beneoolen to Bengal was young, and became very traetable. It was allowed to roam oecasionally in the park at Barrackpore, and the man who had eharge of it informed Sir Stamford that it frequently entered the ponds, and appeared to walk along the bottom inder water, and not to make any attempt to swim. Sir Stamford also states that the flesh is eaten by the natives of Sumatra.
The individual exhibited in the Regent's Park was very mild and gentle.

Tayir Malayanus.

American Tapirs.

John de laet (1633), speaking of the province of Verapaz, says that amony the living quadrupeds which are there found the greatest is that which the barbarians call Bonri, and the Spaniards Danta, an animal not unlike a calf, But with shorter legs and articulated after the manner of an elephant's; the anterior feet have, he states, five toes or lioofs, the posterior only four. The head he describes as oblong, the forehead rather narrow, the cyes small in proportion to the bulk, and the proboscis as being a palin long and pendulous above the mouth. When the aninval is angry, he states that it ereets itself, and crinning shows its teeth, which are like those of logs. The ears he describes as aeute, the neek contraeted, the tail short and with few hairk, the skin very thiek, so that", it may with diffieulty be grasped by the hand or perforated by iron. It feeds, he says, on grass and sylvan herbage. The
natives, he adds, eat its flesh, and relate that they are tauyht venesection by this animal, for when it finds itself overloaded with blood, hy rubbing against rocks it opens the veins of the legs and lets blood. There ean be no doubt that the animal here meant is one of the American Tapirs.
Marcgrave gives a very rude figure, not however to be mistaken for anything but a Tapir, under the name of Tipiercte, Anta of the Spaniards, describing it and its habits with considerable general aceuraey; but Mr. Bennett observes that he speaks of the tecth as eonsisting of ten ineisors and ten molars in each jaw, an error which Mr. Bennett remarks held its ground for nearly two centuries, and having passed successively through the writings of Ray, Brisson, Buffon, Gmelin, and Blumenbaeh, was first correeted by Geoffroy St. Hilaire.
Towards the close of last eentury the fabulons elouds
that had gathered alout the history of this animal began to clear away before the lights of observation. Butlon had noticed the only American Tapir then known, as the largest animal of the New World ; but this can hardly be said of it when the Elk and the Wapiti are rememberet. Geoffroy St. Hilaire and Baron Cuvier first aecurately detined its zoolomical characters ; and Sonnini and D'Azara gave a correet aceount of its habits. Buffon's figure, after a drawing by La Condamine, was the fint at all appronehing to aceuracy. A living individual was atterwards brought to France, hut died before its arrival at Paris, and furnished a still better design, published with further information, derived chicfly from Sonnini, and M. Bajon's memoir on the anatomy of the species, in the Supplement to Buflon, vol. vi. : hut still some of the errons were retained; nor was the account of two other individuals living in the menagerie belonging to the I'rince of Orange, by Allamand, complete.

Licut. Maw, in his Journal of a Passage from the Pacific to the Allantic (1820), speaks of the Tapir as common in the woods and rivers about Egas, there called Auta, and which is the same animal with the Sachywaka, Dante, or Gran Bestia of Peru, of which they had heard much both before and sinee embarking. Two kinds were described to them, one having the tips of its ears white, and which is the largest: when young it was stated to be striped and spotted like a deer, the spots disappearing as it grows older, till it becomes entirely of a dusky bay colour. Here we have a clear intimation of the knowledge of two species by those inhabiting the spot.

The form of the species hest known has since been rendered familiar to Englishmen by the exhibition of living specimens in the gardens of the Zoological Society of London in the Regent's Park.

But this is not the only American Tapir; for M. Koulin, about thirteen years since, laid before the French Academy a description and figures of a news species inhabiting the mountainous parts of the same districts, the plains of which are frequented by the other; and his account is given in the Annales des Sciences Naturelles: from this it would appear that the Ameriean Tapir of the momtains is more nearly allied to the Asiatic species than the American Tapir of the plains.

We take as our example the species first known, Tupir Americamus, Gmel.

Description. General colour throughout deep brown approaching to black. Sides of the lower lip, band on the under and middle part of the chin, upper edges of the cars, and naked line at the junction of the hoofs pure white. Scanty hair of the body very short, closely adjressed to the surface ; hardly distinguishable at a short distance. The skin beneath it is of great density, being, aceording to M. Roulin, not less than seven lines thick on the back, and cight or nine lines on the check, and so tough that Sonnini frequently shot at a female which was crossing the river with her young, without disturbing her or making her turn out of her course, thongh he saw the impression of a ball whieh he had fired on the animal's eheck. There is a thiek rounded erest on the baek of the neck, extending from the forehend as low as the level of the eyes to the shoulders, and bristled with a not thick mane of stifl blackish hairs. Mr. Bemuett remarks that it is peculiar to the present species, but is not found, according to M. Roulin, in the female at Cayenne: although 1) Azara states that the female is equally furnished with it in Paragury. In the female brought by Lient. Maw from Para, and formerly in the menagerie of the \%oological Society of london, it was very conspicuons. Head very long; muzzle prolonged and covered above with hair of the same colour as that of the body, but naked and fleshcoloured at its extremity (which is flattened) and underneath. Eyes very small, of a dill lead colour.
The colour of the individual dissected by Mr. Varrell was rusty reddish-brown, with indieations of lighter spots and horizontal lines on the ribs, tlanks, and thighs. 'These fawn-coloured spots and stripes,' says Mr. Yarrell, 'are common to both speeies of Tapir' (ihe Sumatmn and the American species then known are meant) 'while young ; that of Sumatra not exhibiting till it is six months old any appearance of the well-defined black and white colour which afterwards distinguishes the adult animal.' (Zool. Journ., vol. iv.)
Mr. Bennett, too, remarks that the young is of a much
lighter brown than the adult, with numerous small white spots on the checks, a whitish muzzle, and six or cight complete narrow bands of white passing aloug euch side of the body from the shoulders to the haunches. . Regular rows, says Mr. Bennett, in continuation, 'of small white spots, placed at egual distances from each other, alternate with these bands. The upper parts of the limbs are marked in a similar manner; their inner sides, as welt as the under surface of the body, are white; and their extrenities of the ground-colour of the whole body, with a few fainter spots seaftered over them. Before the end of the first year of their age this livery becomes completely lost: it is partially visible in the young speeimen in the Socicty's museum, hut not at all in the living individuals at the Gardens (I830). Similar markings occur in the young of the Sumatran species, and also, we may ubserve, in that of the Hog in its native state. The adult female of the present species has cenerally a considerable number of whitish hairs intermingled with the brown, which gives her somewhat of a grizzled appearance.' (Gardens und Menageric of the Zoological society delineated.)
Loculity. South America. Few animals of equal size, says the author last quoted, 'have so extensive a range as the American Tapir. It is found in every part of South Ameriea to the east of the Andes, from the Sitraits of Magellan* to the lsthmus of Darien ; but appears to he most common within the tropics. MI. Roulindwells upon it as a singular fact that althongh it occurs as far as 400^{6} south of the equator, it ceases suddenly at about δ° north, in a situation where it is extremely abundant, and where no adequate cause has yet been assigned to bar its further progress, no large rivers nor lofty mountaius intervening, nor any change in the character of the vegetation of the country being manifest. The left bank of the Atrato near its moith, and the part of Darien inhabited by the independent Indians, may be considered as its norihern limit. Its highest range, in the province of Maraquita at. least, appears to be from 3000 to 3600 feet above the level of the sea, while the new species discovered by M. Roulin is only met with at a much greater clevation.'
Habuts, Chace, fe. The innost recesses of deep forests are the chosen haunts of this species, which is not gregarious, and flies from the proximity of man. It is for the most part noeturnal in its habits, sleeping or remainine quiet during the day, and at night seeking its food, which. in its uatural state, consists of shoots of trees, buds, wild fruits. \&e. If we are to believe D Azara, and he was an accurate observer, it is very fond of the barrero, or nitrous earth of l'araguay. It is however a most indiseriminate swallower of everything filthy or clean, nutritions or ot herwise, as the farrago found in the stomach of the incliviclual dissected by Mr. Yarrell showed. Pieces of wood, elay, pebbles. and bones are not unfrequently taken out of the stomachs of those which are killed in the woods: and one kept by D'Azara gnawed a silver smitf-box to pieces and swallowed the contents.
It is a powerful animal, and everything in the underwood of the forest gives way to its rush. It is in the hahit of making runs or roads throught the brishwood, and these beaten tracks are usually selected by trovellers in passing through the forests.

Quiet and peaceable in its demeanour, it is hunted for the sake of its fough lide and its flesh, which, though not liked by the lauropean (for it is coarse aud dry), is relished by the unsophisticated palate of the Indian.
The lasso is not often employed in its capture, not only from its haunts being generally unfavourable to that mode of humting, but because its determined mush and strength will at a single eflort snap the line which is strong enough to arrest the eareer of a bull. The hunters will sometimes lie in wait with their dogs near a Tapir's road as evening approaches, and so get between him and the water to which he usually directs his course for the purpose of bathing and wallowing at the commencement of his noeturnal eareer. He makes a good fight and inflicts severe wounds upon the dogs with his teeth, esperially if he ean reach the water, where he stands at bay, brcast deep and defies the fiereest of then; for as they are compelled to swim to the attack, the Tapir bides his time, and seizing them by the backs of their necks as they suecessively come within his reach, shakes them off, not without biting a piece out.

- Apparently not nt present.

But it would seem that the most common method of catching them is by imitating their sharp but not very shrill whistle, and thus bringing them within shot of the Indian's poisoned arrow.
Jieut. Maw, who, as we have above seen, brought a young animal of this species to England, speaks of it as feeding upon herbs and the branches of trees, and going mueh into the water, walking along or rather perhaps aeross the bottoms of rivers. 'It possesses,' says Lieut. Maw, ' great strength, partieularly in the fore part of the body; but is harmless, exeept when attaeked. It is said to pass direetly throngh the thiekets without following any previous track.* We were told that when the Tapir is attacked hy a Tiger' (Felis Onga) [Leopard, vol. xiii., p. 43i3], 'the Tiser generally springs upon the Tapir's baek, whien the latter rusles into the woods and endeavours to kill the assailant by dashing him against some large tree. Although strongly, and apparently heavily made, the Tapir is said to be fleet.' (Journal of a Passage, \&e.)
This speeies is mild in eaptivity and easily domestieated. Sonnini states that several tame Tapirs are permitted to go at liberty through the streets of Cayenne, and to wander into the woods, whence they return in the evening to the house where they are kept and fed. He adds that they are capable of attachment to their owner, and expresses his opinion that eare and attention might convert its qualities of strength, doeility, and patience to aecount as a beast of burthen.

Fossil Tapirs.

Dr: Buckland, in his Reliquice Diluriance, notiees the remains of Tapir in company with those of rhinoecros, elephant, horse, ox, deer, hyxana, bear, tiger, fox, wolf, mastodon, hos, and beaver, in the Val d'Arno, on the authority of Mr. Pentland; and in his interesting and instrnetive first plate illustrailive of his B ridgencater Treatise figures a Tapir in little among the mammalia of the first period of the Tertiary series (Focene of Lyell). In the Eppleshcim sand (Mioeene of Lyell), Professor Kaup found two species larger than those now living.
It should be borne in mind tlint the seeond or Mioeene system of tertiary deposits contains a nixture of the extinet genera of lacustrine mammalia of the first or Eocene series, with the carliest forms of existing genera. M. Desnoyers first notieed this in the Faluns or Touraine, where the remains of Palcotherium, Authracotheriun, and Lophiodonn were found mixed with the bones of the tapir, mastodon, rlinoceros, hippopotamus, and horse. Thiese remains were fiactured and rolled, and sometimes covered with flustra, and inust, Dr. Buckland observes, have been derived front carcasses drifted into an æstuary or sea.
Von Meyer reeords the following species: Tapir Avernensis, Croiz. and Job., from the diluvium, Puy-deDôme, Cussac; Tupir Mustodoutoides, Harlan, from Kentueky, with a justifiable query, whether it is a Tupir at all ;r and Tupir Priscus, Kaup, from the Epplesheim sand. IIe also alludes to other remains notieed in the works of Fisicher, Clift, and Fichwald. (Diluwium, Iravadi.)

Dr. Jund, in lis • View of the Fauna of Brazil,' states that he had in vain looked for either remains or foot-prints of the living Tapir; whenee he coneludes, that it does not take refure in eaves: but he says that he is in possession of fossil bones which evidently belong to the genus,

- But see abive.
\uparrow Profemar Owen lefteves this no-called Tapir to be the young of Mastudion gigqnteus.
though they are too imperfect to determine their relation to the recent animal.

TAPPING, or Paracentésis (in Surgery), is the operation usually employed for the removal of fludd from any of the serous eavities of the body in which it has colleeted in a dangerous quantity. It is aecomplished by means of an instrument called a troear, and a tube, or eanula, in whieh it exactly fits. The trocar is of steel, eylindrical through the chief part of its length, and terminated by a threesided pyramid which ends in a very sharp point. The eamma being placed upon its shaft, the troear is thrust into the eavity eontaining the fluid, and being then withdrawn through the eanula, the latter is retained in the aperture till all the fluid is diseharged. The diseases for which tapping is ehiefly performed are ascites, hydrothorax, hydroeele, and, oceasionally, hydrocephalus, and effusions of fluid in the perieardium.
TAPTY. [Hindustan, p. 211.]
TAPUH. [Sooloo Archipelago.]
TAR, a well-known einpyreumatic produet.
The properties of tar are, that it is a viscid brown semifluid mass, which long preserves its softness. If it be mixed with water, it acquires a yellow colour and the taste of tar, with slightly acid properties; this solution is well known by the name of tar-water, and has been used in medieine. Tar is soluble in aleohol, in wther, and in the fixed and volatile oils.

If tar be distilled with water, there passes over a brown liquid whiel consists of much empyreumatie oil and some oil of turpentine ; this produet is called oil of tar ; by redistillation with water it beeomes colourless; the substance remaining in the still is piteh; so that, in faet, tar is a mixture of oil and pitch.

* Within a few years, tar has been subjeeted to a minute examination by Reiehenbach, who has obtained from it a variety of substances possessing very different properties; the most important of these is creasote. [Creasote.]

After what has been stated of the many different eompound substanees of whieh tar is eonstituted, no exact analysis eould of course be stated; its chief eonstituent is carbon, combined with hydrogen and oxygen, and a small portion of azote.

TAR (Freneh, Goudron; German, Theer ; Italian, Cutrame ; Spanish, Alquitran; Polish, Smola Gesta; Russian, Degot, Smola shitkaja; Swedish, Tjära), is obtained from wood or eoal by distillation in close vessels, or in piles from whieh the air is excluded. Pitch (French, Poix ; German, Pech; Italian, Pece; Spanish, Pez; Russian, Smolu gustaju) is commonly obtained by the inspissation of tar, or hy hoiling it until all the volatile matters are driven off. For the chemieal properties of tar, see the preceding article.

Tar is extensively manufactured from the ronts and branehes of pines and firs in Norway, Sweden, Germany, Russia, North America, and other countries in which those trees abound; but that made in the north of Europe is considered far superior to what is produced in the United States. The proeess usually followed is deseribed in Dr. E. D. Clarke's 'Travels in Scandinavia,' and is, he states, similar to that which, aceording to Theophrastus and Dioscorides, was practised by the antient Greeks. He observes indeed that 'there is not the smallest difference between a tar-work in the forests of Westro-Bothnia and those of antient Grecee.' After describing the noble forests which cover'the soil down even to the water's edge, about the inlets of the Gulf of Bothnia, Dr. Clarke says, 'From the most southern parts of Westro-Bothnia to the northern extremity of the Gulf, the inhabitants are occupied in the manufaeture of tar, proofs of which are visible in the whole extent of the coast. . The situation most favourahle to the proeess is in a forest near to a marsh or bog ; becanse the roots of the fir, from which tar is prineipally extraeted, are always most productive in sueh places. A eonical eavity is then made in the ground (generally in the side of a hank or sloping hill), and the roots of the fir, together with logs and billets of the same, being neatly trussed in a stack of the same conieal sliape, are let into this eavity. The whole is then eovered with turf, to prevent the volatile parts from being dissipated, whieh, by means of a heavy wooden mallet, and a wooden stamper worked separately hy two men, is beaten down and rendered as firm as possible above the wood. The stack of hillets is then kindled, and a slow eombustion of the fir takes plaee,
without flame, as in making chareoal. During this combustion the tar exudes; and a east-iron pan being at the hottom of the fumel, with a sprout whieh projpets through the side of the bank, barrels are placed heneath this spont to collect the fluill as it counes away. As fast as the barrels are filled, they are bungell and made rendy for exportation.' 'From this description,' he adds, 'it will be evident that the mode of obtaining tar is by a kind of distillation per deacensum; the turpentine, melted by the fire, mixing with the sap and juices of the fir, whilo the wood itself, beeoming charred, is convertell into charcoal.' The proeess of tar-making in Sweden, north of the Bothnim Gulf, has been more recently described in laing's - Tour in Sweden,' in whieh work it is stated that fir-trees which are stunted in growth, or from their situation unsuitable for the saw-mill, are prepared for this purpose by peeling off the lark to the height of one or two tathoms up the steln. This is done by degrees, so that the tree may not decay and dry up at once, but may remain for tive or six yeurs in a vegetativo slate,-alive, but not growing. The sap, thus cheeked in its eirculation, makes the wood rieher in tar, so that, when eut down, the tree is almost entirely converted into the substance from which tar is distilled. The roots, rolten stubs, and seorehed trumks of trees felled in elearing land, are all appliell to the purpose of producing tar. It is stated, in the lastmentioned work, that the state of the weather during the process of burning or distilling greatly affeets the amount of produce. The lnbour required to eonvey the tar from the forests to the rivers is often very great; and not unfrequently the barrels are committed to the stream in orter to pass rapida or falls.

In some parts of France and Switzerland tar is extracted in a kind of oven or kiln, built of stone or brick, in the fom ol' an egg, with its smaller end downwards. These kilns are sometimes as much as ten feet deep and six feet in dianneter; and they are provided with a gun-harrel or tube at the lower end to conduct the tar, as it is inaule, to yessels placed to reecivo it. The wood is cut into billets, and freed from its hark; and the kiln is flled with bundles of billets, chips being inserted to fill up the interstices. A layer of chips is also placed at the top of the kiln, whieh, when charged, is eovered over with flat stones, so arranged as to form a kind of vaulted chimney. Fire is applied to the dry chips at the top, through an opening left in the centre, and, as soon as the pile is fairly lighted, the chimney is elosed in with a large stone, and wet eath is heaped upon the top of the kiln until the eseape of smoke is effectually prevented. It is however necessary oceasionally to refresh the fire by the admission of a little air throngh holes in the sides of the kiln. The average product of tar is stuted to be from ten to twolse per cent. of the weight of the eharge ; but the red wood and the knots limish about one-fourth of their weight of tar. By this plan the wood is charrenl more equally, and the tar is of superior quality. A considerable quantity of lanup-latack colleets upon the stoues which form the roof and chimmey of the kiln, and this is removed after eacl! operation. Probahly a still better plan would be to distil the wood in close retorts, similar to those used in the manufacture of coal-mas ; but any such npparatus is unsuitable for the wild torest districts in which tar is principally made.
The great importance of tar and pitch as naval stores mabled the Tar Company of Sweden, in 1703, to put England to consideralile ineonvenience, by refusing to supply those articles exeepting at their own price, in such gran-tities as they might ehoose, and in Swedish shipping. This eircumstance induced parliament to offer bounties for the importation of these and other naval stores from the British colonips in North Americk, a measure whieh produecd highly heneficial results. It wha eomputed at that period that the annual consumption of foreign tar and pitch in Great 13ritain and Ireland was about 1000 lasts, and that of other European countries about 5000 lasts, of which four-finhs was tar; and it was stated that besides Sweden, which afforded the chief supply, considerable quantities were inade in Norway and in klussia. I'robally this estimate was much too small; for Anderson states that in 1730) the quantity of tar annually shipped from Archangel in Ruasia was computed to he 40, , 400 lasts. The American war of independence, by intermpting the trade between Jinglaud and North" $\mathbf{N m}_{\text {merich, }}$ revired the former diffienlty respeeting the supply of tar, and led to
the establishment of the manufacture of tar from piteoal ; an oljeec whieh had been previously attempted. Beeher, a foreign chentist, who livel about the time of Charlew I1., is supposed to huve been the tirst to propose the making of coal-tar; and it was made for many years in the lishopric of Liege, and in other parts of Germany; the coal heing distilled in a kind of still formed of cast-iron. No. 22s of the 'Plilosophiceal Transaetions' (vol. xix., p. ist), which way pulhlished in May, 1097, contains an "Account of the muking (of) pitch, tar, and oil out of a blackishs stone in Shrophsire, communicated lyy Mr. Martin Ele, the inventor of it.' The minemal used is deseribed as a blackish porous rock, lying over the strata of coal, in Broseley, lbently, Pitchford, \&ce. ; and the bituninous part was separated ly breaking the roek to powder, and boiling it with water. About the year 1799 , in consequence, as lefore stated, of tho Amerienn war, some lamp-black manufacturers at lristol turned their attention to the manufacture of tar from pit-coal; and in 1781, lorl Dundonald, a nobleman distinguished for his scientilic punsuits, olhtained a pratent for improvements upon tho process previously followed. Mr. Pitt, of Pendeford, near W'olverhampton, in a letter nddressed to the Society of Arts, in 1790, on the sulpject of converting tho smoke of steam-engino furnsees into tar, alludes to three establishments at Bradley, Tipton, and Dudley Wood, erected by Iord Dundonald and the gentlemen associated with him; and states that the business was then carried on with success. 'These tar-works,' says Mr. l'itt, "are erected in the vicinity of large iron and conl works: the iron-masters furnish the tar-works with mw coal gratis, and reecive in return the cokes produced by such conl; and the proprictors of the tar-works have the smoke only for their labour and interest of capital.' (Transactions of the Sociefy of Arts, vol. ix., 1 . 13:2.) The proeess adopted at these works is fully detailed by Mr. Pitt. The manufteture of eonl-tar has not proved so important as was at one time antieipated, although for some purposes it is deemed superior to that made from wood. The author of the artiele 'Navy,' in the Supplement tn the Encycloperdia Britannica, considers tar froms sencoonl to be an important resouree in case of England being compelled to revert to her own resources for nasul stores; and observes that for painting or tarriner wood-work of every kind, it is said to stand exposure to the weather befter than the common tar. IIe also refers to the pitehlake of Trinidad [Trividan] as a source whence an alnost inexhaustible supply of mineral pitch and tar night be obtained. Tar is produced in large quantities in the mamufacture of coal-gas ; but in some distriets its value is considered so trifling that it is mixed with the luel by which the retorts are heated. It is usually sepuated from the gas by condensation; but the introduction of a quantity of brushwood into the condenser, so as to form a mechanical interruption to the passage of the cas, is found greatly to assist the operation.
The import duty upon tar has heen for some years past 12s. per last,* if lroni British possessions, and 1.iss. if from forcign countries; but under the new tarill of Sir Robert Peel (1842), it is respectively 6il. and $2 s .6 \%$. per last. The quantity imported in the five years from 183 to 1839, wa.s 00,622 lasts, or about 12,124 lasts per annum ; of which 58,106 lasts, or 11,621 lasts annually, were entered for home consumption. During this period the duty amounted to 44,0233 ., or upon an average $8804 l$. per anmum. Of the above quantity Russia fumished about $50,15.5$ lasts; the United States, G446 lasts; Sweden, 2297 lasts; Deumark, 1300 lants; and Nonway, 38 lasts; the remainder heing made up of small quanitities from Germany, Prussin, \&ec.
l'itch is cxtensively mamafactured in Great Britain, yet the quantity imported in 1829 iss stated, by MrCulloch, to have been about 10,502 ewt. The duty is 10 d . per cwt., if from foreign countries, and 9 d. if from l3ritish possessions; or, under the new tariff, Gid. and ld. per eirt. respectively.
(Dr. E. D. Clarke's Trarels in Scandinneia, sec. i.. pp. ail, 252; laink's Tour in sumeden in 1839, p. $176 ;$ Macpherson's Anmals of Commerce; M'Culloch's Dictiontry of Commerce.)
Tara. [Sibraha.]
TARABJOUS. [SVRIA.]
T'ARA]. [Hismistas, p. I7.]

- A last is (welon larrelo, niml each barrel is, by the Custom-Ilomse regula tiJu, locontafo vol more linn ibiry one gullens and a lualf.

TARAKAÏ is the name of a large island, which has long figured on our maps under the name of Saghalien or Saghalian, and has at different times been supposed to be called Tchoka, Karafto, and Sandan. This island extends from south of 46° to $54^{\circ} 30^{\prime} \mathrm{N}$. lat., more than 600 miles in length, but the width is various. Towards the southern extremity, north of the Bay of Aniva, it is nearly 100 miles wide, but it soon contracts to about 25 miles, whieh is about its average width as far north as the Bay of Patienee, where it suddenly expands to 120 miles, Cape Patienee running far out into the Pacific. From this point $\left(40^{\circ} \mathrm{N}\right.$. lat.) northward the island again grows narrower, but very gradually, so that at $51^{\circ} \mathrm{N}$. lat. it is still nearly 80 miles wide. Farther north its ayerage width does not exceed 50 miles. The area of the island probably exceeds 30,000 square miles, which is not much inore than that of Scotland, if we inelude the islands.
Tarakaï extends along the eastern coast of Asia between 142° and 145° E. long., and is separated from the continent by a strait, which is ealled the Gulf of Tartary, because the country of the Mantchoos for a long time was known by the name of Tartary. This gulf or strait is 200 miles wide at its most southern extremity, but it grows narrower as we advance farther north, until near $51^{\circ} 30^{\prime} \mathrm{N}$. lat. it is less than 40 miles wide. So far this sea has been navigated, but at that point a shoal extends across the gulf, on which there is only water for boats. That portion of the gulf whieh lies between $51^{\circ} 30^{\prime}$ and $52^{\circ} 30^{\prime} \mathrm{N}$. lat. is not known. Krusensterm thinks that this part of the island of Tarakail is united to the continent of Asia by an isthmus, but La Perouse expressly states that dried fish is carried from the western shores of the island to the river Amur in boats, which eould not be done if the isthmus of Krusenstern existed. It may appear strange that these two navigators have not been able to deeide this point, as one sailed up from the south to $51^{\circ} 30^{\prime}$, and the other from the north to nearly $53^{\circ} \mathrm{N}$. lat., but they found the sea always covcred with ihick fogs, and hardly ever could see a few iniles before them, and the water shoaled so suddenly and constantly that they did not think it advisable to proceed farther. If an isthmus exists, it must be near $52^{\circ} 30^{\prime} \mathrm{N}$. lat., where a low sandy cape certainly stretches so far to the east as 10 approach very near the western shores of the island. North of this narrow and shallow part, the gulf presents a cireular basin, about 50 miles wide, which rcccives the waters of the river Amur, and is therefore called by Krusenstern the Liman of the Amur. This basin is united with the sea of Okhotzk by a strait, which in the narrowest part is about ten miles wide. It does not appear that there is any current in this gulf, which is in favour of the opinion of Krusenstern. The soufhern extrenity of Tarakaï is divided from the island of Yeso by the Strait of La Perouse, which, between Cape Critlon on Tarakaï and between Cape Soja on Yeso, is hardly thirty miles wide, and in which the tides run with great velocity. La Perouse, who visited the Gulf of Tartary in June, found that southern winds were blowing nearly uninterruptedly; but Broughton, who was there in Scptember, experieneed eastern and north-eastern winds.
Though the enast of the island is of great extent and mueh indented, it does not appear that there are many good harbours. Along the western shores only open roadsteads have been found. At the southern extremity of the island, between Cape Crillon and Cape Aniva, is a wide open hay, the Bay of Aniva, which is enelosed by two
projecting tongues of land, and extends 50 miles from projecting tongues of land, and extends 50 miles from south to north. There is good anclorage at its most northern extremity. The projecting headland, which occurs near $49^{\circ} \mathrm{N}$. lat., on the eastem side of Tarakaï, and terminates with Cape Patience, encloses the Bay of Patience, whieh is very extensive, but open and exposed to eastern and southern winds. At the most northern extremity of the island is the Northern Bay, between the cape of that name' and Cape Mary. It is not very large, and offers in several places good anehorage and shelter.
The island is natirally divided into three tracts: the mountainous, which oecupies the southern portion; the level, in the middle ; and the hilly traet, which extends over the northern distriets. The mountain-region is the largest, and comprehends more than one-half of the island, terminating on the north at Cape Délisle de la Croyere (near $51^{\circ} \mathrm{N}$. lat.). Λ chain of mountains begins at Cape Crillon, and continues in an uninterrupted line northward
to an elevated summit called Peak Bernizel, where it seems to be united to another and lower chain, whieh traverses the eastem peninsula, and ineloses the Bay of Aniva on the east. Cape Aniva is formed by a high isolated hill, which is eonmected hy a low isthmus with the chain of hills which lies farther north, and joins the principal range at Peak Bernizel. Farther north occur other summits, as Peak Lamanon, Peak Mongez, and Mount Tiara: the two last mentioned are north of $50^{\circ} \mathrm{N}$. lat. None of these summits have been measured, but their elevation probably does not exceed 5000 feet above the sea-level. Along the western coast the mountains in some plaees eome elose up to the water's edge, but a narrow level tract generally separates them from the shore, and this tract is covered with high trees, while the delivities of the mountains are mostly bare, probably owing to the rapidity of their slope. Extensive flats oecur at Aniva Bay and the Bay of Patience. The low country; which skirts the shore on the eastern side of the mountains appears to be more extensive and less interrupted than that along the western shores. On the eastern side the shore in some places is level and low, and in others elevated. The country extending from 51° to $53^{\circ} \mathrm{N}$. lat. is so low that the shores are not visible at the distanee of five or six miles, and it is sandy and overgrown with bushes. The interiol is in general level, partly sandy and partly swampy, and a great part of it is eovered with short bushes or small trees. A number of low sand-hills are dispersed over the country, which are destitute of trces, and appear like islands in a sea of verdure. The hilly tract oceupies the most northern part of the island, or that whieh extends from $53^{\circ} \mathrm{N}$. lat. to Cape Elizabeth. The coast is in general high and steep, being generally eomposed of perpendieular white eliffs. There are only a few tracts in which the coast sinks down to the level of the sea; and here the villages are built. The interior consists of a suecession of high hills covered with full-grown trees to the very summits; the valleys which intervene between them are partly wooded and partly covered with a fine close turf. This part of Taraliai seems to possess a considerable degree of fertility.

Climate.-As European navigators have only oceasionally visited this island, and have only stayed there a few days, or at the utmost a couple of weeks, our information respecting the climate is extremely deficient. We only know that even at the beginning of June the higher summits of the mountains have still some snow on then, which indieates that the country must be much eolder than Great Britain, whieh is nearly at the same distance from the pole : otherwise the summer months seem to be tenperate, but the continual fogs which enclose the island nearly all the year round are more dense than those that occur on the coasts of Nova Seotia.
Productions.-No kind of grain is cultivated, not even round the settlements of the Japanese, nor are orchards or kitehen-gardens mentioned. The inhabitants however derive profit from the spontaneous products of the soil : they dry the roots of a species of lily for winter food, and eolleet great quantities of garlic and angelica, which are found on the skirts of the woods. The forests consist of oak, maple, birch, and medlar, but chiefly of fir. Large tiaets are eovered with juniper-trees. Gooseberries, raspberrics, and strawberries abound, and also wild celcry and watercresses. It docs not appear that wild animals are numerous: ouly martens and bears are mentioned, and even these do not seem to be common. The sea supplies the inhabitants with the means of subsistence. Salmon is perhaps nowhere so abundant as in the Gulf of Tartary. The account of La Perouse in this respect seems hardly eredible. Dried and smoked salmon, together with the skins of salmon, are prepared for the foreigu market, and eonstitute the prineipal artieles of export. Herrings, whieh are very abundant, are likewise eured and exported. Cod oceurs, hut it does not seem to be taken to such an amount as to form an artiele of export. Whales are numerous in the Strait of La Perouse and along the eastern coast, and train-oil in bladders is an article of export. In the same parts seals, fur-seals, "(Phoca ursina), sea-lions (Phoca jubata), and sea-otters (Lutra murina) are very frequent. No mines are worked.
The inhabitants are aborigincs, among whom a few Japanese have settled on the Bay of Aniva, and a ferr Mantehoos on the Northern Bay. In the Japancse settlements are a few Japanese officers, but no Chinese authorities have been
seen, nor is this island enumerated among the possessions of the Chinese. The abromines call themselves Ainos (i.e. men), and are at present known under that name as a nation. This nation extends northward to the peninsula of Kantchatka, of whieh it occupies the most southern extremity near Cape Lopatka, ance it inhabits the Kurile Islands, the Japanese island of Yeso, Tarakai, and the coast of the continent of Asia from the mouth of the dmur river southward to the very houndary-line of Corea. They never cultivate the soil, nor apply themselves to hunting wild animals, and they keep no domestic animals except dogs, whieh they use in winter for drawing their sledges, like the inhahitants of Kamtchatka. Ja Perouse found them somewhat shorter in stature than Europeans, rarcly exeeeding five feet six inehes, and some hardly five feet. Their comntenances are benes olent and friendly; they have tolerably large eyes, thick lips, rather high check-bones. and a somewhat broad and compressed nose. Their cheeks and chins are covered with long. thick, black beards: there are many individuals whose body is covered with hair, as oceasionally is the case in Europe. The only kind of manufacture among them is a kind of cloth made of the bark of willow-trees, which are very common in the island, and do not seem to differ from the European species. They use in this manufacture a machine. The other articles of cloth they obtain by barter from the Japanese and Mantcloos. They show also some skill in the erection of their huts and the building of their boats. Their huts are of wood, eovered with the white bark of birch, and have a roof of wood thatehed with dry straw. La Perouse compares them with the cottages of the peasants of France. Their boats are of large size and strongly built. Some of their costumes are evidently adopted from the Clinese, as the practice of letting their nails grow to a eonsiderable length, and their mode of saluting by prostration. Like them, they sit on mals, and eat with little sticks. Their language does not resennle either that of the Japanese, Chinese, or Mantchoos. The Manteltoos risit the northern and western coast to barter dried and smoked salmon, and dried herrings, for some mankeens, tobacco, and utensils. The Japanese visit the southern and eastern districts, where they obtain train-oil, herrings and salnon, and a few furs, and give in return lacquered wooden eating and drinking vessels, tobacco and tobacco-pipes, kitchen utensils, rice, coarse cotton-cloth, and some minor articles.
(La Pérousc's Voyage round the World; Brouglaton's Foyage of Discovery in the Northern Part of the"Pacific; Krusenstern, Voyage round the Worll; and Krusenstern's Recucil de Mémoires explicatifs, fe.; Jangsdorf's Voyages and Tracels in rurious Parts of the World.)

TARANTA'SIA, or TARANTAISF. [SAvov.]
TARANTISIUS is the name given to a peculiar newons affection which was long supposed to be the consequnce of the bite of the Tarantula Spider. It seems to have occurred frequently in the kingdom of Naples during the sixtcenth century, and to have been nearly similar in its characters to the disease whieh was originally ealled St. Vitus's dance [Chorea], and to that which has oceasionally prevailed in parts of Scotland, and has been called the 'leaping ague.

The patients, nearly all of whom were women, soon after being bitten (as it was supposed) used to fall into a profound stupor, from which nothing roused them but the sound of sueh musie as pleased them, on heating whieh they had an irresistible desire to dance. So long as the inusic continued, and was in tune and suffeiently lively, they would go on jumping and dancing till they feil exliausted; and, all the time, some used to shriek, some to laugh and sing, some to weep. When, after a short rest, they had recovered from their fatigue, they would again begin to danee with as much vigour as before, unless the music were played slowly or confusedly, when they would stop and grow anxious and melancholy, or even, if the musie were not soon made agreeable to them, would fall into a dangerous state of stupor. The disease used to last about four days, and seemed to be cured by the profuse perspirations brought on lyy the active exercise; but it offen returned at the same time in the following year, or even for a succession of years, and on every occasion required the same treament.

Sinee it has been formd that the bite of the Tarantula can produce no sueh strange effects as these, many have suspected that the disease ascribed to it never really
existed, but was feigned for the purpose of exciting pity or for the pleasure of dancing. There is good reason to believe that in most instances it was merely counterfeited: but there ean be no doubt that such a disease had oecurred and had given occasion to the practice of the fraud. Besides lits similarity to diseases whose reality is generally admitted, such as the St. Vitus's dance and the leapingague, cases have oceasionally been met with ia recent times which closely resemble it, and in which there eould be no just suspicion of fraud. Such a ease is described by Mr. K. Wood, in the seventh volume of the 'MedienChirurgieal 'Transactions;' another is recorded by Mr. Crielton, in the 31 st volume of the 'Edinburgh Medical and Surgieal Journal ;' and in the 'Cyelopaedia of Practieal Medicine,' art. 'Chorea,' several eases of analogous allections are related. All these however occurred singly. That the Tarantisuns and the St. Vitus's dance should liave assumed the characters of epidemics may be aseribed to their propagating themselves, as all convulsive atfections are apt to do among nervous and superstitious persons, by the propensity to imitation, the effeets of whieh are still frequently seen in the production of hysteria, chorea, and other similar diseases.

TA'RANTO, a town of Apulin, in the kingdom of Naples, in the administrative provinee of Lecee, or Tertia d'Otranto. It is an archbishop's see, and the liead town of a district: it eontains 18,000 inlabitants. It oectupics only a small part of the site of the antient Tarentum, being confined to the island or preninsula at the entrance of the inner harbour or Mare piecolo, on which formerly stood the fortress or acropolis of Tarentum. There are few remains of the antient town. Modern Tarento is ill built: it is fortified and has a crastle, several churches and eonvents. It earries on some trade by sea in small eraft. It has also some manufactures of linen and of ' pinua marina,' the name of a kind of mussel or shell-fish, the silky filaments of which are woven into gloves and other articles. A part of the popalation is emploved in fishing. Excellent oysters are found on the const. The inner port is nearly filled up, but the nuter or large port is aceessible to vessels of good size, and is protected by two islands which are situated at the mouth. Taranto lias the advantage of being the only safe harbour in that javt of the eastern eoast of Italy which extends from Messina to Cape Leucas. The large gulf which lies hetween the coast of Calabria and the Iapygian peninsula is called the gulf of Taranto. Mach wool is grown in the neighbourhood of Taranto. Two lagoons, one of them of considerable extent, which lie south-east of the lown, and which conmmmieate with the sea, yield a great quantity of salt by evaporation. The district of Taranto contains above 87,000 inhabitants: [Otranto, Thrra Di.] (Neigebaur; Serristori; Afan di Rivera, Considerazioui sulle due Sicilie; l'etroni, Censimento dei Reali Dominj.)
Antient Tarentum, the Taras (Tupas) of the Greeks, was one of the principal, or rather the princi pal Greek city on the east coast of Italy. It is said to have been a town of the Messapians, to which were joined some Cretan colonists from the neighbouring town of Uria. About 694 n.c., according to the story, Phalantus, one of the Parthenix, or illegitimate sons of the Spartan wonten born during the absence of their husbands in the first Messeniail war, laving lett lis country with a number of others of the same eondition, arrived on the coast of Iapygia, took Tarentum, and expelled the original inhabitants. He organized the new colony, and remained at the head of it until he was expelled by an insurrection, and withdrew to Brundusimm. where he died. (Justin, iii, 4.) A war between the Tarentines and the Iapygians ensued, in which the people of Rhegium assisted the Tarentines, but they were deteated ly the Inpygians, who destroyed a great number of the Iarentines. (Diodorus, xi.) Tarentum however recosered from its losses, and it flourished by commeree, aequired a considerable extent of teritory, and became the most powerful city of Magna Graceia. IIeraclea was a colony of Tarentum. Herodotus (iii, 136) mentions Aristoplililites as king of Tarentum in the time of Darius Ilystaspues. The government however underwent several changes, and Strabo (vi. 193) speaks of Tarentum as being at one time a democracy. Archylas, a native of Tarentum, is said to have made a body of haws for the Tarentines. [Arcuytas.]

About 338 13.c. the Tarentines, being engaged in war with their neighbours the Lueanians, applied to Sparta
for assistance. Archidamus, the son of Agesilaus, was sent to them, and he was killed in fighting on their side. Some years after, being hard pressed by the Lucanians and Bruttii, the Tarentines applied to Alexander, king of Epirus, and uncle to Alexander the Great. He came to Italy with troops, obtained considerable advantages, but was at last surprised and killed by the Bruttii, near Pandosia, b.c. 323. (Justin, xii. 2; Livy, viii.? 24.). The Tarentines had by this time degenerated; like most of the Greeks on the Italian coast, they had become luxurious and effeminate. Ælian (Var. Hist., xii. 30) speaks of their habit of drinking early in the morning, and their appearing intoxicated in the forum.
In the year 382 b.c. the Romans, after having conquered the Samnites, made war upon the Lucanians. The Tarentines, who saw with jealousy the encroachments of Rome, unexpectedly attacked a Koman fleet, commanded by the Proconsul L. Valerius, which was sailing near their coast, and killed a great many of the crew. The Roman senate sent commissioners to demand reparation for the outrage, but the Tarentines treated them with insult. Aroused however to a sense of their danger, they applied to Pyirhus, king of Epirus, for assistance, and sent vessels to convey him over with his troops, B.c. 281. Pyrrhus soon found that the Tarentines were too effeminate to give him much support, and he was obliged to assume a dictatorial power in order to enforce something like order and obedience among them. Chiefly with his own troops, he carried on the war against Rome for several years, but was at last defeated by the consul M. Curius Dentatus, and obliged to re-embark for Epirns; leaving lowever a garrison in Tarentum, b.c. 27.). [Pyrrhus.] The Tarentines having shortly after quarrelled with the Epirote garrison, applied to the Carthaginians for assistance to drive away the Epirotes. The Romans having had notice of this negotiation through Milo, the Epirote commander, sent the consul L. Papirius Cursor, who took Tarentum, and allowed the Epirote garrison to return homc. It appears however from Livy (Epitome, xv. 1) that the Tarentines, though treated with severity, were placed in the condition ot allies of Rome, which they continued to be till after the battle of Cannæ, when Hannibal, who occupied Canpania and Apulia, began to carry on secret intelligence with some of the Tarentine chief citizens, who were dissatisfied with their forced Roman alliance.
I In the year 212 b.c. the hostages of the Tarentines ran away from Rome, but being pursiled and overtaken near Terracina, they were brought back, and after being beaten with rods were thrown down the Tarpeian rock. This cruel punishment irritated the people of Tarentum, an agreement was made with Hannibal, and his troops were admitted into the city by night. The Roman garrison stationed in the citadel was besieged by sea and by land. The example of Tarentum was followed by Metapontum and Thurium. The Roman garrison in the citadel of Tarentum defended it most gallantly, although they suffered greatly from want of provisions. An attempt which was made to introduce supplies by vessels from Sicily was deteated by the Tarentine squadron under Democrates, with the loss of several Roman ships. In 209 's.c. the consul Q. Fabius Maximus retook Tarentum by surprise, and through the treachery of the garrison left by Hannibal, whiclı consisted of 13ruttian auxiliaries. The Tarentines made only a slight defence. Nico, Democrates, and Philomenus, the leaders of the party which was hostile to Rome, fell during the assault. A great booty was made by the Romans, said to be ncarly equal to that made at the taking of Syracuse. But the consul Fabius abstained from taking the statues of the gods, saying he would leave to the Tarentines their angry deities. (Livy, xxv. 7, 1I; xxvi. 39 ; and xxvi. 15, 16.)

From that time Tarentum remained in subjection to Rome; and although it greatly declined in wealth and importance, it was still a considerable place in the time of Aughstus. Horace calls it 'molle Tarentum' (Satir., ii. 4), and 'imbelle Tarentum' (Epist., i. 7). The Greek language and manners were retained by the inhabitants even alfer the fall of the Western Empire. Tarentum was one of the chief strongholds retained by the Byzantine emperors in Sonthem Italy. About A.D. 774 , Romualdus, the Jongobard duke of Beneventum, took Tarentum from the Byzantines. The Saracens landed at Tarentum about A.D. 830 . The town was afterwards several times taken and re-
taken and sacked, and it was during this period that the old town on the mainland was abandoned. and the inhabitants retired to the island as being more fitted to their reduced numbers, and also better capable of defence. At the breaking up of the Longobard state of Beneventum, Tarentum was for a time a separate principality, like Capua and Salernum. In the eleventh century it was taken by the Normans with the rest of Apulia, and Robert Guiscard made his son Bohemund prince of Tarentum. Under the Suabian dynasty, Frederic II. gave the principality of Tarentum to his illegitimate son Manfred. Charles II. of Anjou gave it to his younger son Philip, whose descendants acted a considerable part in the civil wars of the kingdom of Naples under Joanna I. Tarentum came afterwards into the possession of the powerful family of the Orsini, upon whose extinction it reverted to the crown.
(Giannone; Giovani, De Antiquitate et varia Tarentinorum Fortuna; D'Aquino, Delicice Tarentince LibriIV., Naples, 1771.)
TARARE. [RHôNe.]
TARASCON, a town in France, in the department of Bouches du Rhône, $4 \overline{5} 2$ miles south-south-east of Paris, by Auxerre, Lyon, Valence, Le Pont St. Esprit, and Beaucaire; and 48 miles west-north-west of Aix, the capital of the department.
Tarascon is mentioned by Strabo, who writes the name Tapáoк $\omega \nu$, and by Ptolemy, who writesit Tapovarúv; but it appears to lave been of little importance in antient times. Under the counts of Provence, to whom in the middle ages it was subject, it was of more consequence from its frontier-position. It had a castle at least as early as A.D. 1251; of which the present castle occupies the site. This latter was built, according to Millin, by Louis II. of Anjou, count of Provence (A.D. 1384-1417); but according to other authorities Charles II. le Boiteux (A.D. 1285-1309) commenced the structure and Louis finished it. It is popularly called 'Château du Roi Réné' ('King Réné's Castle"),
but it was undoubtedly erected before his accession.:
The town is on the left bank of the Rhone, immediately opposite Beaucaire, on a rocky site sufficiently elevated above the bed of the river to secure it from inundation. The communication with Beaucaire was antiently by a stone bridge ; a mass of stone-work, the remains of this bridge, lately existed, and probably still exists, in the middle of the river, between the two towns; the rest of the bridge had been swept away by the stream. In later times the communication was by two bridges of boats, extending one from each bank to this fragment of the old bridge. Within the last few years a suspension bridge of iron-bars has been constructed.
Tarascon is surrounded by an old ruined wall flanked with towers, and is entered by three gates. Some of the streets are straight and tolerably wide. The castle is a picturesque Gothic building of freestone in pretty good preservation: from the platiorm on the top of the castle there is an extensive view along the valley of the Rhône. Sainte Marthe (Martha) is the principal church in the town; in the crypt is a monument with a marble statue apparently sculptured carly in the IGth century, and shown as the monument of Sainte Marthe. In the same church is the uncouth figure of a monster called the Tarasque, which, according to the legend, fed on human flesh and haunted the banks of the Rhône between Arles and Tarascon, and was overcome by Sainte Marthe. This figure is paraded through the city on Whit-Monday amidst the sliouts of the idlers of the place, whose riotous behaviour frequently leads to serious accidents: it also makes part of the procession on the festival of Sainte Marthe. These customs, which had been disused after the Revolution, were renewed under the empire of Napoleon, if not before. There are a town-hall, a court-house, a commercial court (Tribunal de Commerce), two hospitals, a theatre, barracks, and abattoirs, or public slaughter-houses; these are_most of them, if not all, modern buildings.

The population of the commune, in 1831, was 9225 for the town, or 10,967 for the whole commune. The neighbourhood of the town is very fertile, and a considerable trade is carried on in com, wine, and oil; the townsmen are engaged in throwing silk and spinning cotton-yarn, and in manufacturing hussars' and grenadiers' caps, hats, brandy, vinegar, and starch; there are tan-yards and cooperages. There are three fairs in the year. The industry of the inhabitants and their lively temperament

Vos. Xxiv.-I
impart to the place an air of life and activity which eontrants remarkably with the ordinary duhness of Beaucaire.
Tarasco:l has a communal college or high sehool and a jublic libiary of su00 vols. : it was the birth-place of Jeon Menand, the antiquary: The town was for a loug time ance the Revolutio: the seat of a subprefeeture, or eapital of an arrondissement; but athout the time of the first restuation of the Bourbons, the subprefecture was removed to Arles.
(Via)'sse de Villiers, Ilinéraire Descriptif de la France; Millin. Foyage dans les Départemens du Milli de la France; Dictionnaire Gégraphiquo L゙nivers 1.)

There is another town in Frauce called Tarascon, in the department of Ariége, and on the river Aritge abore Foix: it is from its position sometimes distinguished as Tarascon-sur-Ariege. D'Anville is disposed to identify it with the Tarusconienses of Pliuy (Hist. Nal.. lib. iii., e. 5, G), which others would fix at Tarascon on the Rhône. Tarascon-sur-Aricige is a small place, a mart of the ironstone dug in the adjacent I'yrenecs. The population is probably about 1500).

TARAXACUM. [Lsowtodos.]

TARAZO'NA, a considerable district of Aragon in Spain, bordering on the north and east on the province of Navarre; on the south out the province of Soria; and on the west on the Corregimiento de Borja. The capital, Tarazona, the autient Turiaso, is situated at the foot of a lofly mountain-range called the Moncayo. on the banks of the river Queiles, in $41^{\circ} 55^{\prime} \mathrm{N}$. lat., $2^{\circ} 4^{\prime} \mathrm{W}$. long. Tarazona is the see of a bishop, who is suffragan of Saragossm. The fown is badly built, and the streets narrow and crooked. With the exception of the eathedral, a fine Gothic pile erected in the thirteenth eentury, there is no other building worth notice. Miñano (Diccionario Geografico, vol. viii., p. 332) estimates the population of Tarazona at 10,000 inhabitants, is 1827 . The neighbourhood is rell cultivated, and yields abundant crops of all sorts of grain. There is also a small town in La Mancha called Tarazona.

TARBES, a town in France, capital of the department of Hautes I'yrénées, or IIigh Pyrenees: about 400 miles from Paris, in a direct line south-sonth-west; 4.53 miles by the shortest road through Orléans, Châteauroux, Limoges, Périgucux, Agen, and Auch: or 533 miles by Limoges, Cahors, Montauban, Toulouse, and Aueh, which is the ruate given by Reichard in his Jlinéraire. It is in $43^{\circ} 13^{\prime}$ N. lat. and $0^{\prime} \bar{y}^{\prime} \mathrm{E}$. long.

Tarbes is mentioned in the 'Notitia Provinciarum et Civitatum Gallize.' where it is called Tuba: it was the chief town of the Bigerrones, Bigeni, or Begeni, a nation which has given name to the distict of Bigorre. In the town or adjacent to it was a fortress, called, in the ' Notitia,' Custrum ligorra, the site of which is now oecupied by the cathedral. In the middle ages, Tabes was the capital of the county of Bigorre; it suffered fron the ravages of the Saracens and the Normans, and was held for a time by the Enclish. There was some sharp fighting near the town, in the campaign of the Duke of Wellinglon, A.D. 1814.

Tarbes is situated in a fertile plain, nearly 1000 feet above the level of the sea, watered by the Adour (on the left bank of which the town slands) and by the Leeliez, and bounded on the south by the l'yrences. The town is walled; the streets are well laid out, broad, paved, and watered by little brooks or streams, which contribute both to coolness and cleanliness. There are two public places or squares, that of Maubourget, which is planted with trees, and that of Marcadien, remariable for its size; beside these two places, there is an agrecable promenade, called Le Prado, outside the walls. The houses in the town are genemally of two or three stories, well built, of brick, some of marble, und roofed with slates. They have for the most part good gardens. The prineipal pulblic luildiags are the cathedral ; the prefect's office, formerly the residence of the bishop, whielt from its elevated situation commands a pleasant prospect; and a handsome theatre of quite modern erection. The old castle of the counts of Bigorre is used as a prison. Tarhes has five faubourgs, or sulburbs, on the five roads which lent from it in differeut directlons: the subuths are that of Rubastens on the cast, on the right bank of the Adour, which separates it from the town; that of Vie on the north; that of lagoerres on the south; all on the roads leading respecfive.y to thence places ; that of Sainte Anne on the west,
on the road to Pan; and that of Sainte Catherine on the south-west, on the road to L.ourdes and Argellez.
The population of the commune, in 1820 , was 8712 ; in 1631, 0700 ; in 1836, 120030. There are copper-mills and manufactories for copper utemails. paper-mills, and tanyauds; the town is the general mart for the supply of the department ; there is a cousiderable inarket every fortnight for agricultural produce of every hind and for entle, much frequented by the Spaniards, who make large purchases of live stock. There is a marble-quarry near the town.

Tarbes has a subordinate court of justice and a commercial court, some fiscal and other government offices; a conununal high school with a library, and school buildings of good architecture ; a free school of drawing and architecture ; an hospital ; a soeiety of agriculture ; and a government stud, for which there are two large ranges of stables and a landsome riding-school, just outside the town.

The arrondissement of Tarbes has an area of incos square miles, and comprehends 197 communes: the population, in 1831, was 104,022 ; in 1830, 110,512 ; and is divided into eleven cantons, or districts, each uncler a justice of the peace. The hishoprie of Tarbes dates from the suth century, and now coinprehends the department: the bishop is a suffragan of the archbishop of Auch.
(Millin, Voyage duns les Dép, du Midi da la Frunce; Malte Brun, Géngruphie Úniverselle; Dictionnaire Géogruphinpue liniversel.)

TARDI'GRADA, Cuvier's name for the first family of the Edentata, comprising, of liviug genera, the Sloths ouly. [A1; Unav.] The Tardigiulla form the cighth order in Illiger's method, and comprise the Sloths and Prochilus; but the latter cannot be said to have any claim to such a collocation. [BEar, vol. iv., pp. 30, 91.]
TARDI'VOLA, Mr. Swainsoli's name for a genus of the subfamily Tanagris.e, and thus characterized by him:-
Bill lengthened, conic, somewhat slender; the sides not gibbous; the commissure slighty or not at all sinuated. Wings very short; the first quill shorter than the four next, which are equal and longest. Tail lengthened, cuneated or graduated. Feet large. Tarsus and toes long. Outer toe rather shorter than the inner. Claws slender, slightly eurved.

Example, Tardivola sphenura. [Tanagers.]
TARE. We hardly linow whether all the words tare, tret, clof, sultle, gross. net, are still used in comnerce; they all hold their places in works of arithmetic. Ture is said to be the allowance for the weight of the box or bag in which goods are packed; lret, an allowance of 4 l . in 10 llb . for waste; clo $\mathrm{F}_{\text {, an allownec of } 2 \mathrm{l} \text {. in }}$ 3 cwt ., that the weight may hold good when sold by retail; the gross weight, that of the goods and package all together; the sutfle weight, that which remains when tare only is allowed; the net weight, thint whieh remains when ail allowances are made. Wie slaall merely state what we know of these worls.
Ture (written fura in some of our older arithmetical works) is made from the Italian tarave, to abate. In that language tura is a technical term implying abatement of any kind, not for weight of package only. We believe cloff to have been the English word which originally stood for the allowance for package: in our older arithmeticians, lare and clofte generally go together, and the Intter seems to be for the pachage, the former for other abatements. Cloff or clough is defined in an old dietionary as that wherein any thing is put for carriage sake. Inmplarey l3aker (1515?) speaks only of tare and cloffe; Mastersori (1592), of tara, cloffe, andl tret, but the first two ternss are used together. We cannot find cloft used in the sense given to it hy our modern books of arithmetie until about the end of the seventeenth century.

Trel seems to be from the Italian tritare, to cmmble. Stevinus, in his Iatin trealise on book-keeping, uses intertrimenfum in the seuse of deduction froni the quantity charged for. Gross weight needs no explanation; the Italian form netfo was formerly used for net weight. It being well known that these terms generally come to us from the Italian, we nust suppose suttle to be from sotfile, which is used in the sense of fine and valuable, and is applied to the finer part, as separated from the coarser. One of our old writers (Mnsierson, 'Arithmetike,' 1592) uses suttle weight in a manner which makes us inagine we see the origin of the hundred weight being a hundred
and twelve pounds. Without any explanation, as if it were matter of notoriety, hè contrasts suttle and averdupois weight, the former having 100 pounds to the hundrediseight, the latter 112 . In the rougher sort of goods. at the same period, the tare was (as appears by the tables they give) yery often 12 pounds in 112: perhaps then the hundredweight of 112 pounds was only an allowance for the weight of the box, barrel, or other paekage.
TARES are a most important green erop in the improved systems of agriculture, especially on heary soils, where they thrive best. When sown in autumn, with a small sprinkling of wheat or rye, they cover the ground in spring, and supply abundance of fodder in summer. A good erop of tares is fully equal in value, if not superior, to one of red clover: it comes off the ground in sufficient time to give the land a hasty summer tillage, whieh is so useful in destroying weeds, and to allow turnips to be sown in the same season. They smother annual weeds if the erop is plentiful, which should always be secured by an abundant manuring: thus they arc a good substitute for a summer fallow in heavy soils, and amply repay the labour and manure bestowed upon them.
There are many species and varieties of tares; but that which is found the best adapted for agricultural purposes is the common tare (Vieia sativa), of which there are two principal varieties, very slightly differing in appearance, one of which is hardy, aud will stand the severest winters: the other is more tender, and is therefore only sown in spring; but it has the advantage of vegetating more rapidly, so that spring tares sown in March will be fit to cut within a fortnight or three weeks after those which were sown in autumn. By sowing them at regular interyals from September to May, a succession of green tares in perfection, that is, in bloom, or wher the pods are formed, may be cut for several months, from May to October. A prudent farmer arranges his crops so that he shall have artificial green food for his horses and eattle at least six montlis in the year, by liaving tares fit to eut between the first and second cut of clover. When there are more tares than is absolutely required for this purpose, and the weather permits, they make exeellent hay; or, if the weather is not favourable, they are cut and given to sheep, which are folded on the portion already cut. It is an advantage to have portable racks for this purpose,
that the fodder may not be trod under foot and wasted that the fodder may not be trod under foot and wasted;
or the tares may be placed between hurdles, tied two and two, whieh form extemporaneous racks. It is prudent to raise sufficient secd ior another year ; but a crop of seedtares raised for sale is seldom profitable, as they greatly cxhaust the soil: and the price varies so much in ditfcrent seasons, that it becomes too much of a speculiation for a farmer. The difficulty in distinguishing the seed of the winter tare from the spring variety is so great, that it should either be raised at home, or only purchased from ncighbours, or from the most respectable seedsmen. It is a common practice with dealers to mix the seeds of the winter tares, after the time of sowing is past, with spring tarcs, which are in request at a later period. The inconvenience of this is, that they do not vegetate equally, and eonsequently the winter tare is not in bloom when the spring tare is fit for the scythe. Forcign tares, which are imported in large quantifies, are offen the growth of southern climates, and will not stand the winter; or they have been raised from seed sown in spring, so as to be really spring tares. The difference is probably more owing to habit than to any real botanical distinction between them. When spring tares are sown in autumn instead of winter tares, they may occasionally stand the frost, if not yery severe; but, in general, they rot on the ground and never recover; whereas the real hardy winter tares, whose vegetation is slower, scem insensible to the severest frosts.
In the early part of summer green rye and tares, mixed, are sold at a great price in Jarge towns, for horses which
have wrorked hard and been hishly fed in winter. They have worked hard and heen highly fed in winter. They where cerry procluce is forced with an abundanee of manure, tares are often fit to cut early in May, and the land is imniediately ploughed and planted with potatoes, or sown with mangel wirzel or ruta baga, which come off in September or October, in time for wheat-sowing. Thus two very profitahle crops are raised during the time
been fallow; and at the same time it is left as clean, by careful hoeing, as the best fallow would have made it.
There are a great many species of tares or vetches, for the terms are synonymous, many of whieh have been proposed to be introduced into general eultivation; but none seem, on the whole, to be so well adapted to our climate as the common tare:- some have biennial and some perenial roots. The Vicia biemnis has a strong stem and large leaves, and grows four or five feet high ; but it is not so sueeulent as the common sort. It might, perhaps, by eultivation and early eutting, become a useful early fodder, and it may be worth while to make some experiments with it. There are several species of tares which grow wild in bushes and hedges; but they have never been cultivated in the fields,' perhaps from the difficulty in collecting the seeds, which shed as soon as they are lipe. Of these, the Vicia cruca appears most deserving of attention. It bears its blue flower on stems or spikes longer than the leaves, which are downy. It is veiy common in France among wheat; and, although a decided weed there, it is not much dreaded by the peasants, as it improves the foddler greatly. It has the appearance of great Iuxurianee in its growth, where it meets with a proper support. If it were mixed with some plants with a strong stenn, sueh as the Bokhara clover (Melitotus arborea altissinna), which itself affords mueh fodder, it might probably be cultivated to great advantage.

In the south of Franee there is a white perennial veteh or tare, ealled Vicia pisiformis, which is eultivated for its. white seeds, of which soups are made, as with the pea and lentil. It grows in very light soils; and, although indigenous to a southern climate, it is said not to be impatient of frost. It has been called by some the Canadian lentil, or the white tare.
We shall only notice one more of the wild tares, whieh is an annual; it is called the yellow tare (Vicia lutea). It grows in stony soils and among bushes, is very branehing, and rises from one to two feet high. From some experiments made by the Agricultural Society of Versailles several years ago, it would appear that this tare might be cultivated with great advantage, and is even superior to the eommon sort, because it can be cut two or three tinies during the summer, and affords a very good pasture in winter, which docs not stop its vegetation: ' it will even bloon in a mild winter. Although short, it is so thick upon the ground, that its first cut is as heary as that of the eommon tare, which is seldom worth cutting a second time.
Tares should be sown on land whieh 'is well pulverised. If after wheat, the stubble should be ploughed in with a deep furrow after a powerful scarifier has gonc over the land several times to loosen it: five or six cart-loads of good farm-yard dung should be ploughed in. The tares should be drilled or dibbled, and the surface well harrowed. The intervals should be hoed early in spring: this will aecelerate the growth, and insure a complete eovering of the ground: As soon as the tares show the flower, they may be cut daily till the pods are fully formed; after this, any which remain uneut should be made into hay or given to sheep; for if the seeds are allowed to swell, the ground will be much exhansted. Another piece should be ready to eut by this time, and thus there may be a succession of tares and broad elover from May to. November. Tares may be sown as late as August, on a barley or rye stubble, for sheep-feed early in winter, or to be ploughed in to rot in the ground where beans. or, peas are intended to be sown early in spring: this is perhaps the cheapest mode of manuring the land, the only expense being the seed; for the tillage is nccessary nt all events. In light soils, tarcs and buckwheat sown together immediately after barley or rye harvest, will produce a considerable crop of vègetable matter, whieh may lie ploughed in in November. In favourable esenons, wheat may be sown immediately after, without fearing the effect of two white crops following each other; for the tares and buckwheat intervening, by their shade, and the two ploughings of the ground, one when they are soivn, and the second when they are ploughed in, will entirely destroy all weeds, and give to the soil that inpprovement which will enable it to bear as good a erop of wheat as it would have done had it been sown the year after on a clover ley. Clover, whieh could not be sown with the barley, from the foul state of the land, may be sown fmong the wheat in the next spring, when it is hoed for the
accond time. This is held out as a hint to show how an accidental interruption in a rotation may be remedied without any lass of crop or great deviation. As no rule is withont exception, so no rotation cnn always be strictly adhered to; and those crops which admit of being sown at different times of the year are of the greatest use as substitutes for others which coukl not be conveniently sown without materially nltering the succession of crops. In the common counse of cultivation of heavy soils, where neeasional fallows are neecssary to elean the land, onehalf of the land which requires fillowing may be sown with tares; nnd thus the clean unproductive summer fallow will only return at every second rotation. If the tares have been manured, or if they nre fed off with sheep folded upon the land, the wheat or other erop which is sown after them will be as good as on a elean fnllow, or after a good crop of clover. This alone would makic tares a valuahle crop; and they may be compared in their effect on heavy lnnds to turnips on lighter soils.

The seeds of the tare are oceasionally ground into meal and made into bread. It is a very poor food; and when there is inore seed than can be profitably disposed of, it may, be given to pigs: but poultry, espeeially pigeons, are very fond of it. When given to horses, the seeds of tares are found very heating; nnd although they produce a fine glossy coat, they are not to be recommended for this purpose.

TARENTUM. [Taranto.

TARGUMS, or CHALDEE PARAPHRASES OF THE OLD TESTAMENT. During the Babylonish captivity, the language of the Jews was affected by the Chaldee dialect spoken at Babylon, to such an extent, that apon their return they could not understand the pure Hebrew of their saered books; and therefore, when Ezra and the Levites read the law to the people, they found themselves obliged to add an explanation of it, undoubtedly in Chaldee. (Nehem.; viii. 8.) [Iebrew Language; Aramafan lasgugge.] In course of time such explanations were committed to writing, and from their being not simple versions, but explanatory paraphrases, they were callcd by the Chaldee word Targum (ロוגר), whieh signifies 'an explanation.'
-There are ten Targums extant:-1. The Targum of Onkelos, on the Pentateuch, is the most nntient. Onkelos is supposed to have lived at Babylon. The Babylonish Talmud makes him a contemporary of Gamaliel, at the very beginning of the Christian sera. No eritics place hin lower than the sccond century. His language approaches nearer than that of the other Targums to the pure Chaldee of the books of Daniel and Ezra. He follows the Hebrew text so closely, that his work is less a paraphrase than a version, and he is free from the fables which prevailed among the later Jews.
2. The Turgum of Jonathan Ben Uజziel, on the Prophets, is by many ascribed to an author contemporary with Onkelos, or even a little older, namely, Jonathan the son of Uzziel, a disciple of the elder Hillel. The mention of his name in the Talmuds proves him to have lived carlier than the fourth and finth centuries. But Jahn points out certain internal marks, from which he coneludes that this Tnrgum was compiled, towards the end of the third century after Christ, from other paraphrases, some of which at least were considerably older. The Jews make Jonathan contemporary with the prophets Malachi, Zeeharinh, and Hacgai, and relate marvellous stories respeeting the composition of his Talmud.

This Targum is more paraphrastic than that of Onkelos; its dinlect is not so pure ; the yersion is not so necurate, and indeed varies in accuracy in different parts; but it is free from the fnbulous stories of the later Talnuds. It comprises the Prophets, in the Jewish sense of the word, namely, the books of Joshua, Judges, Samuel, Kings, Isaialn, Jereminh, Ezekiel, and the twelve minor l'rophets.
3. The Turgum of the pseudn-Jonathan, on the Pentateuch, is so called from its having heen erroneously ascribed to Jonathan Ben Uzziel. In purity of dialeet, in its general style, and in its mode of exposition, it is liar inferior to the Targum of Jonathan. It abounds in silly falles, and displnys sreat ignoranee of IIebrew on the part of its author. From interial evidence, such as its mention of the Turks and Lombards, it is evident that it could not have heen written earlier than the seventh, or jerhaps the eighth, century.
4. The Jerusalem Turgum, on the Pentateuch, of which however it omits large portions, "and sometimes explains only single words, is cevidently Inter than that of the pseudoJonathan, which it generally follows closely, occasionnlly departing from it for the worse. Its dialcet is vervimpure, abounding in Greek, Ialin, and Persian words.

The other Targums scarcely deserve a separate notice. An account of them, and lists of the editions nnd latin versions of the Targums, will be found in the works quoted at the end of this artiele. Tnken logether, the Targims form a paraplurase of the whole of the Old Testancent, exeept the books of Daniel, Ezra, and Neheminh, which ealled the less for such an exposition, as they are to a great extent written in Claldec.
(Prideaux's Connection, pt. ii., bl. viii.; the 'Introductions' of Ilorne and Jaln.)
TARI'FA, a small sea-port town situated in the narrowest part of the Strait of Gibraltar, on a point of land projecting into the sea; in $36^{\circ} 3^{\prime} N$. lat. and $5^{\circ} 36^{\prime}$ W. long. The Arabs called it Jezirah Tarif (the Island of Tarif), because a Berber, named Tarif Ibn Malek Al-ma'feri, who was the lientenant of Musa Ibn NosseyT. landed on the little island facing the lport with n small forec, two years before the final conquest of Spain hy the Arabs. [Moors.] Tarifa is now a dependency of Cadiz, which has been inade of late the capital of a province of the same name. In 1205 it was berieged ly the Africans under Abí Yúsuf. but it was stoutly delended by Don Alonso Perez de Guzman 'el Bueno,' the progenitor of the dukes of Medina Sidonia, who would not surrender that fortress to them, notwithstanding they threatened to behead his only son, which they did lefore his cyes. In 1310 a great battle was fought near Tarffa, between A1phonso XI. of Castile and Abicl-hasan, sultan of Fcz nnd Maroceo, when the former was victorious.

TARIFF, a table of duties to be paid on goods imported or exported. The principle of a fariff depends upon the commercial poliey of the body by which it is framed, and the details are constantly fluctuating with the change of interests and the wants of the community, or in pursuance of commereial treaties with other states. The 13ritish lariff has undergone six important alterations within the last sixty years, namely in 1787, in 1803, 1819, 1825, 1833, and 1812. The aet embodying the tariff of 1833 is the $3 \& 4$ Wm. IV., ea 56. Its character has been deseribed in the Report of a Committee of the House of Cominons in 1840, on the Import Duties, as presenting ' neither congruity nor unity of purpose : no general principles seem to have been applied. The tarift often aims nt incompatible ends: the duties are sometimes ineant to be both productive of revenue and for protective objects, which are trequently ineonsistent with each other. Hence they sometimes operate to the complete exclusion of foreign produce, and in so far no levenue can of course be received; and sonctimes, when the duty is inordinately high, the amount of revenue beeomes in consequence trifling. An attempt is made to protect a great variety of particular interests at the expense of the revenuc and of the commercina intercourse with other countries.: The schedules to the net $3 \& 4 \mathrm{Wm}$. IV., c. 50 , contain a list of 1150 articles, to each of which a specifie duty is affixed. The unenumerated articles are admitted at an ad ralorem duty of 5 and of 20 per cent, the rate having previously been 20 and 50 per cent. In 1838-9, seventeen artieles produced $94 \frac{1}{2}$ per cent. of the total customs' duties, nad the remainder only $5 \frac{1}{2}$ per cent., including twenty-nine, which produced 3 ? per cent. The following table of the tarifl of 1833, showing the duties received in 1838-9, is an analysis of one prepared by the inspector-yeneral of imports for the parliamentary committee to which allusion has been made :-

Artic	340	8,0.0
2. Ditto less than 210%.	32	31,629
3. Ditto less than 7131 .	$4{ }^{\text {a }}$	32,056
4. Ditto less than 2.230%.	107	24,933
5. Ditto less than 2, 180)	63	1,377,324
6. Ditto less than 183, 864 \%	10	1,838,6,30
7. Ditto less than $2,063,885$	9	18,575,071
8. Articles on which no duty has been received.	147	Excess of draw: $\text { back } 5,398$
	86	22,122,0

The new tariff, whieh is on the point of beeoming law, contains very numerous alterations. Cattle and fresh meat are admitted, for the first time, on payment of duty; and the reduction of duty on salt-meat is considerable. Time will be required to show the result of the various changes which it contains. The heads of the tariff are comprised under nineteen heads, and the articles enumerated are as many as those in the tariff of 1833.
TARIK. [Roderic.]
TARLTON, RICHARD, a comic actor of great eelebrity in the reign of Queen Elizabeth, was born in the hundred of Condover, in Shropshire. The date of his birth is not known. He died in 1588, and was buried (September 3) at St. Leonard's, Shoreditch, London.
Tarlon was especially distinguished for his performanee of the clowns of the old English drama, in which he is spoken of as having been unrivalled, and seems besides to have been one of those clowns who spoke 'more than was set down for them: he was famous for his extempore wit, which indeed must have been an important addition to the dull and rulgar specehes generally assigned to the clowns before Shakspere's time - he interlarded with his wit the lean and hungry prose. Dr. Cave, 'De Politica,' Oxford, 4to., 1588, says (we translate Care's Latin), 'We English lave our Tarlton, in whose voice and countenanee dwells every kind of comic expression, and whose eceentrie brain is filled with humorous and witty conceptions.'
Stow mentions that Tarlton was one of the twelve actors whom Queen Elizabeth, in 1583, eonstituted grooms of the chamber at Barn Elms: he seems indeed to have been one of her especial farourites; for Fuller says, that 'when Queen Elizabeth was serious (I dare not say sullen), and out of good humour, he could undumpish her at his pleasure. Her highest favourites would, in some eases, go to Tarlion before they would go to the queen, and he was their usher to prepare their advantageous aecess to her.'
One of Tarlton's last performances was in 'The Famous Victories of Henry V.;' this was in 1588, at the Bull in Bishopsgate Street, to which theatre he seems to have been generally attaehed. Of this play, which is a much earlier one than Shakspere's ' Henry V.,' a full 'aecount is given in the introductory notice 10 'Henry, VI., Parts I. and II.,' in Knight's 'Pietorial Shakspere. It is one of the 'Six Old Plays,' printed by Nichols in 1779.
Tarlton is known to have written at least one play, 'The Seven Deadly Sins,' which, though never printed, and now lost, was much admired. Gabriel Hervey, in his 'Four Letters and certaine Sonnets especially touching Robert Greene and other Parties by him abused,' 4to., 1792, speaks of a work written by Thomas Nashe, 'right formally conveyed aceording to the stile and tenour of Tarlton's presillent, his fannous playe of 'The Seven Deadly Sinnes,' which he designates as a 'most deadly, but ' most lively playe.'
There is a portrait of 'Tarlton, in his clown's dress, with his pipe and tabnr, in the Harl. MS. 3885; and a similar portrait of him (probably the one is a copy of the other) in the title-page of a pamphlet called 'Tarlton's Jests,' 4 to., 1611 . A copy of the former portrait is given in Knight's 'Shakspere,' at the end of 'Twelfth Night.' The peculiar flatness of his noso is said to have been oecasioned by an injury which that feature received in parting some dogs and bears.
(Baker's Biographia Dramatica, by Reed and Jones.)
TARN, a river in Franee, belonging to the system of the Garonnc. It rises near Mount Lozerre, one of the Cévennes, in the department of Lozère, and flows first west to Sainte Enimic in the same department, 27 miles, and then south-west 27 miles to Milhau, in the department of Aveyron: from thence west-south-west 88 miles, by Alby and Gaillae, dejartment of Tarn, to St. Sulpice ; and from thence 48 miles north-west and west by Montauban (department of Tarn and Garonne) into the Garonne, below foissac. The navigation is marked in Brué's map of France as commencing at Gaillac, and has a length of about 60 miles; other authorities make the navigation commence at Alby, and this statement agrees with the official accounts, which assign to the river a navigation of 90 miles. It has several tributaries, but none of them are navigable. [France; Garonne; Tarn (department): Tarn ft Garonse.]

TARN, a department in the south of Franee, bounded
on the north and north-east by that of Aveyron, on the south-east by that of Herrault, on the south by that of Aude, on the south-west and west by that of Haute Garonne, and on the north-west by that of Tarn and Garonne. The form approximates to that of a parallelogram, having its sides respectively facing the north-east, south-east, south-west, and north-west. The extreme length, from north-west to south-east, from the neighbourhood of Penne on the Aveyron to the border of the department of Hérault, near St. Pons, is 65 miles; the extreme breadth, from the neighbourhood of Valence to that of Puy-Laurens, is 46 miles. The area is estimated at 2222 square miles, which is somewhat under the average area of the French departments, and rather greater than the conjoint areas of the two English counties Surrey and Sussex. The population, in 1826 , was 327,655 ; in $1831 ; 335,844$; and in $1836,346,614$, showing an increase in five years of 10,770 persons, or above 3 per cent., and giving 156 inhabitants to a square mile. In amount and density of population it is below the average of the French departments, and is very far below the county of Surrey aloue in amount, and in density of population below both Surrey and Sussex. Alby, the capital', is on the Tarn, 339 miles in a straight line nearly due south of Paris, or 482 miles through Orléans, Châteauroux, Limoges, Cahors, Montauban, and Toulouse ; a very circuitous route, but the only one laid down in Reiehard's Road-book.
The department is very mountainous in the south-east part, where it comprehends a portion of the Cévennes. A' range of hills branching off from this chain, and running nearly parallel to it, crosses the north-west part of the department, skirting the valley of the Tarn; and there are some other ranges of less elevation and importance. The peak of the Cévennes, which overlooks the town of Sorèze, in the south of the department, has an elevation of 1760 feet. The eastern side of the department, bounded by a line drawn southward or south by east from the junction of the Viaur and the Aveyron, is chiefly occupied by the granitic or other primary or by the earlier secondary formations: west of this boundary-line the tertiary formations prevail; only on the banks of the Cerou and the Aveyron in the northern part, and about Puy-Iaurens in the southern part of the department, the secondary formations; which lie between the cretaceous group and the new red-sandstone group, erop out from beneath the tertiary rocks. The mineral productions are of no great importanec. There was, in 1831, only one coal mine worked; it gave employment to 273 workmen within the mines and 42 others, making a total of 315 : the quantity of eoal produced was 19,033 tons, and the total value $13,152 \mathrm{l}$., or 13 s .9 d . per ton on the average. The quantity produeed in 1835 was 18,420 tons. There were, in 1834, two iron-works with three forges for the manufacture of wrought-iron: the ore was eonverted direetly into malleable iron, and chareoal was the only fuel employed. Lead and copper ore are said to be" found, but no mines are now worked. There are marble-quarries, plaster-pits, and pits for porcelain and potters' elay.

The department belongs entirely to the basin of the Garonne. The Tarn, one of the principal 'feeders of that river, touches the border of the department just above the junction of the little river Rance, and flows along the border till that stream (which belongs altogether to the department of Aveyron) joins it; it then quits the border and flows westward to Alby and then sonth-west to the junction of the Agout, shortly after which it quits the department to enter that of Haute Garonnc: the navigation commences at Gaillae, or, according to some authorities, at Alby. Just above Alby the Tarm has a fall, or rather a series of falls, over the steep face of a limestone rock, in whieh it has worn a number of channcls, which so divide the stream, that when the water is low it may be crossed by leaping from one prominence to another: this fall is called Saut du Sabot or Saut du Tarn. The tributaries of the Tarn which belong to this department are the Aveyron, the Tescou, and the Agout. The Aveyron las only a small part of its course in this department, and another sinall part along the border; its affluent the Viaur has part of its course along the border; but the Cerou and the Verre, two other affluents of the Aveyron, belong to this department almost entirely. The Agout rises in the department of Hérault, but belongs almost entirely to this departnent,
as do its affuents, the Viau (which receives the Vebre), the Gijon (which reeeives the Gijas and the Berlou), the Taure (which reecives the Lam and the Lamette), the Sor, the Bagra, and the Aclou. None of the tributaries of the Tam or thelr afllnents are navigable, though some of them are of considerable length, the Aveyron being above $1: 30$ miles, the Viaur 60, the 1 gout 75 , and the Adou 45 ; the others are smaller.

There are in the department five Rontes Royales, or government roads, which had, January 1, 1833, an aggregate length of 207 miles, of which 116 miles were in good repair, 85 miles out of repair, and 6 miles unfinished. None of these roads are of the first class: the principal are those wheh lead from Alby sonth-west, by Gaillac, Lisle, and llabastens, to Toulouse; south, by Realinont and Castres, across the Cérennes into Langucdoc; east hy Villefranche to La Cavalerie, on the high road from Paris to Montpellier; and north-cast by Carmeaux to Rodez, in the department of Aveyron. Roads brancli from the Alby and Toulonse road at Gnillae, and lead, one west to Montauban and Bordeanx, one north by Cahusae and Cordes to Airillac, in the department of Cantal. Another road leads from Castres by lavaur to Toulouse. The departmental roads had at the same thene ninggregate length of $48 \mathrm{~m}^{\circ}$ miles, of whielı 296 were in repair and 189 out of repair. The vicinal roads had an estimated aggregate length of 7500 miles in round numbers.
The area of the department is equal to mether more than $1,400,000$ aeres; considerably more than one-half of this is under the plough. The soil, except in the mountainous parts, is generally fertile; but agrieulture is in a very hackward state; manures are negleeted, and the system of rotation is very faulty. These deficiencies are chefly observable in the arrondissements of Alby and Gaillae, which comprehend the beautiful valley of the Tarn; in the arrondissements of Castres and Lavaur, in the south of the department, improvements have been more readily adopted. The produce in grain, comprehending wheat, barley, oats, rye, maize, and buekwheat, is sufficient to supply the consumption of the department and to leave a little for exportation. Pulse, flax, hemp, woad, aniseed, coriander, and saffron are also raised; the growth of woad is of long establishment and considerable importance. The meadow and grass lands may be estimated at about 100,000 aeres, and the heaths, conimons, and other open pastures at 150,000 acres. The valleys and the slopes of the hills afford good pasturage, and the breeding of cattle is one of the prineipal sources of the wealth of the department. Sheep and pigs are numerons, and the real is in lighs repute. The breed of horses is improving. The vineyards oecupy nearly 80,000 neres; the cultivation of the yine is very skilfully and carefully managed. The red wines of Cunae, Caisaguet, St. Juéry, St. Amarans, and Gaillac are of the first class; those of Meilhart, La Roque, Florentin, La Grave, Tecon, and Rabastens are of the second class: Gaillac produces some white wines. The average produce of the vintage is estimated at above 430.000 hectolitres, valued at 5,500,000 franes. The orchnrds and gardens oceupy abont 6000 aeres. The olive is not cultivated to any exteut.

The woodlands oceupy 200,000 acres; the oak, the heceh, the ash, the maple, the chestnut, the walnut, the mulberry, and the wild eherry-tree are common.

Bees are numerous, but the breeding of the silliworm is not carried on to the extent of which it is capable. The wild boar, the roebuek, the wolf, the fox, the badger, the polecat, and the hedgehog are found; and small game is tolerably abundaut.

The department is divided into four arrondissements, as follows:-

In the arrondissement of Alby are-Alby, or Alli on the Tarn; population, in 1831, 9049 for the town, or 11,665 for
the whole commune; in 1836, 11,801 for the commune [Alsy]; Castelnau and Leseure, on the Tarn; Realmont (pop. 2100 for the town, or 2660 for the whole commune) on the Adou, and Villefranehe and Denat on a tributary of that rleer; Valence, Camenux. Monestiss, and Salles, on the Cerou, or its tributaries; Villeneure, on the Verre : and Pampellonne, on the Viaur. Castelnau, distinguished as Castelnau-de-Bommafoux, is built on a slope rising from the north bank of the Tarn, just below Alby, and is commanded by an old eastle. Leseure ras antiently fortified; it is a little above Alby. Realmont has a Protestant church, and is a tolerably well-built town: there are some linen manufactorics and a bleach-green; serge and cotion and worsted hose are also made: eight falrs are held in the town. Villefranche has nine considerable cattle-fairs. Valence is regularly laid ont with straight streets, in a well-wooded distriet, from whieh a considerable quantity of timber is sent to Alby, Gaillae, and lBordeanx: the town has five large fairs, chictly for cattle. Leather and glass are made at Carmeaux ; and considemble trade is carried on nt Monesties in linen, thread, and eattle. Moncestiés has thirteen sairs, Salles two, and Villeneure (distinguished as Villeneuve-sur-V erre) fice. Pampellone, or Pampelonne, is surrounded by the remains of lits fortifications, nud has two gates. There are two principal strects, and two large places or squares. Cousiderable lusiness is done in horsecloths, which are manufactured; and there are six yearly fairs.

In the arrondissement of Castres are-Castrea, on the Agont, population, in 1831, 12,032 for the town, or 16,418 lior the whole commune ; in 1836, 17,602 for the whole commune [Castres]; Brassac, Fort-de-Ferrieres, Roquecourbe, Burlats, and Viclmeur, all on the Agout : Angles, Haut poul, Mazamet (pop. 3896 for the town, or 7098 for the whole commume), and Lat Brugiere, on the Tame or its tributaries; La Canne (pop. 16.50 for the town, or 3641 for the wholo commune), on the Gigas ; Vabres, on the Gijou; Mondragon, on the Adou; La Bessonie and Lantree, between the Adou and the Agout; and Dourgne und Soreze (pop. 1574 for the town, or 2517 for the whole commume), in the southern comer of the department. Brassae, distinguished as Brassne-de-Belfourtes, is the centre of a considerable manufacture of dimity and other eotlon goods, canied on in the village of Brassac-Castelnnu (which is included in the commune of the fown), and other villages around. Fort de Ferriéres takes its name from an antient fort, onec used as a state prison, now as a manufactory of eotton goods. Roquecourbe, situated in a fertile district, has a Protestant church, and is the sent of a considerable manufacture of woollen stockings; it has four yearly fairs. Vielmenr, or Vielmur, has n manufacture of cotton yarn and of knitted stoekings ; it has fise fairs. Angles has manufaetures of woollen and cotton yarn, and woollen and cotton goods. Ilautpoul has an antient castle, formerly the capital of the barony of Hautpoulois: it was stormed, A.n. 1212 by Simon de Montfort. Mazamet is a busy town; it has a number of manufactones for woollen goods of various sorts, some dye-honses, and se veral paper-mills; it has four fairs for cattle, wool, and manufactured goods. Flannels, blankets, and other woollens are manufactured at La Brıgière, distinguished as Ia Brugidre-Dulae; hosiery and dimity at La Canne ; and calicoes, dimities, and other cottou goorls, and flannel at Vabres, distinguished as Vabres-des-Sénégals. V'abres has a Protestant church: four fairs are held in the year. Mondragon, now of little importance, was formerly of considerable note: it has six yearly fairs a number of pigs are sold here. Lautree is on n small eminence, and has the ruins of an antient castle; it has ten yearly fairs. The neighbourhood produces good wine and melons. Lantree was formerly a viscounty: it was held in the time of Francois I., by Odon de Foix, a general of considemble distinetion in the lialian wars of that king. Dourgne has some inanufactures of coarse wonllens, three cattle-fairs, and in the environs some imporlant quarries of white and gray marble. Sorize had formerly a Benedictine abbey, where twelve young persons of noble tamily; but without fortune, received a gratuitous education: it has now a college or high school, one of the most important in the south of Franee. Cotton yarn, woollen and cotion hoviery, and leather are made: nid there are two yearly fairs. Sordze was fortifled by the Iugnenots in the religious wars of the sixteenth century, but the ramparts
were destroyed in the reign of Louis XIV. At La Roquette, near Castres, are two remarkable natural curiosities: Le Rocher tremblant, a mass of stone, comprehending about 3 CO cubic feet, and resting on a very narrow base, so as to rock or vibrate sensibly when pushed, like the Logan or Louging Stone, in Cornwall ; and the grotto which bears the name of St. Dominic, from having served as a retreat to that celebrated ecelesiastic.

In the arrondissement of Gaillac are - Gaillae (population in 1831, 55.52 for the town, or 7725 for the whole commune; in 1836, 8199 for the commune), on the Tarn; Lisle (pop. 1726 for the town, or 5065 for the whole commune) and Rabastens (pop. 3417 for the town, or 6966 for the whole commune), on the same river; Pemne, on the Aveyron; Cordes (pop. 2239 for the town, or 2002 for the commune), on the Cerou; Cestayrols, Cahuzac, Castelnau de Montmirail, and Puiceley, on or near the Verre ; Salvaignac, near the Tescou; and Cadalen, between the Tarn and the Adou. Gaillac is on the right or north bank of the Tarn; it is an old town without any striking public building ; there are an hospital and a small theatre. East of the town is a suburb, well laid out and pleasantly situated. There are brandy distilleries and cooperages, and one or two tan-yards, dye-houses, and yards for building boats and other tiver-craft. Trade is carried on in corn, wine, and yegetables: there are seven yearly fairs. Lisle (otherwise L'Ile d'Alby), on the right bank of the Tarn, is a small torw, with a place or square regularly laid out and adomed with a fountain. Considerable trade is canied on in corn and wine, and there are seven yearly fairs for cattle, linen cloth, and wool. Rabastens, in a fertile plain on the right bank of the Tarn, is an ill laid out and ill-built town. There is a pleasant suburb, and adjacent to it an agreeable promenade. Some blankets are manufactured, and some trade carried on in corn, wine, and fruit: there are six yearly fairs. Rabastens has the ruins of an antient castle, which was taken by Simon de Montfort in the religious wars of the thirteenth century, and by the English in the wars of the fourteenth century. Cordes is on an elevated site on the left bank of the Cerou: it has a handsonie place or square, and the ruins of ant antient castle: linen and lenther are manufactured; there is a considerable weekly market for com and fruit, and there are six yearly fairs. Castelnau de Montmimil was antiently a place of strength: it is in a district fertile in corn and truit. Coarse marble is quarried in the neighbourhood. Puiceley is on a height on the right bank of the Verre, not far from Castelnau de Montmirail; the ehicf business of the town is the manufacture of casks, joiners' and other wood work, and cheeses of great delicacy: there are four yearly fairs. Abundanee of wood is obtained in the adjacent forest of Gufsine. Salvaignac, or Salvagnac, is pleasantly situated on an eminence not far from the left Gark of the Tescou: it has some iron-forges, and considerable trade is carried on in eattle : there are six yearly fairs. Some trade in cattle is carried on at Cadalen.

In the arrondissement of Lavaur are-Lavaur or Laveur, near the Agout (population in 1631, 4422 for the town, or 7173 for the whole commune; in 1836, 7203 for the communc), Giroussens and St. Sulpice, on or near the same river; Puy-laurens (population 1709 for the town, or 6160 for the whole commine), near the head of the Giron, an unimportant feeder of the Garonne; and Graulhet (population 2458 for the town, or 5097 for the whole commune) and Briatexte, on or near the Adou. Lavaur is on the left bank of the Agout, which is here crossed by a modern bridge of bold construction. The town was defended by walls and protected by a castle in the cleventh century. In the religious wars which signalised the carly part of the thirteenth century, it was one of the strongholds of the Albigenses, from whom it was takem, A.D. 1211, by Simon de Montfort, who committed the most fearful cmielties. The place is divided into the old town and the new town, but is altogether ill built. The chief branch of inctustry is silk-throwing, The raw silks of Haut or Upper Languedoc are brought here; and when thrown are sent to Nimes and Lyon. Some silk-stuffs for the upholsterers, and silkstockings are made; and there are dye-houses and tanyards: there are three yearly fairs. Lavaur has a high schonl, a small public library, an agricultural saciety, and a subordinate court of justice. Giroussens was formerly a place of strength, and the olject of contest in the English wars of the fourteenth eentury. It stands on the right
bank of the Agout: the townsmen manufacture brown pottery, but their ware is less in request than formerly. There is one yearly cattle-fair. Puy-Laurens is on a small eminence commanding the surrounding fertile plain. It was one of the strongholds of the Huguenots in the religious wars of the sixteenth century: but the fortifications were rased in the reign of Louis XIII. The town appears to have been after this still occupied by the Protestants, who had here an Academy of Sciences, which was suppressed after the revocation of the Ediet of Nantes. Silk-throwing is carricd on, and there is considerable trade with Spain in horses and mules: there are five well-attended yearly. fairs. Graulhet, on the left bank of the Adou, has a considerable manufacture of hats and woollen stuffs, and a number of tan-yards. Considerable trnde in horses is carried on, and there are five cattle-fairs. The district round the town is fertile: millstones are dug.
The population, when not otherwise described, is from the census of 1831.
That part of Franee whieh now constitutes this department was chiefly comprehended, in the earliest historical, period, in the territory of the Ruteni. The southern portions were comprehended in the territory of the Umbranici, and the south-western in that of the Tolosates. That part of the territory of the Ruteni which was comprehended in the department is considered by D'Anville to lave been occupied by the Ruteni Provinciales, distinguished by Cæsar by that epithet from the other Ruteni, as being within the limits of the Roman province at the time of his command in Gaul. The Umbranici and Tolosates were, also within the province. The Ruteni were defeated by Fabius Maximus, 8.c. 121, and it was probably at this time that part of then (the Ruteni Provinciales) becane subjeet to Rome. The independent Ruteni took an active part in the general revolt of the Gauls under Vercingetorix, near the close of Cæsar's command, and were sent by Vercingetorix to ravage the lands of the Voleae Arecomici, who were Roman provincials. They were subdued by Cæsar. All these nations appear to have belonged to. the great Celkic stoek. Under the Romans the Ruteni (including the Ruteni Provinciales) appear to have been comprehended in the province of Aquitania Prima; the Umbranici and Tolosates, in Narbonensis Prima. The town of the Albienses (Civitas Albiensium) of the 'Notitia' was probably Alby: the Albigi of the anonymous Geographer of Ravenna was probably the same place. Noother Roman town can be identified with any locality within the department. The river Tarn is noticed by Ausonius (Mosellec Descriptio, 465) and Sidonius Apollinaris (Curmen, xxiv. 45) under the name of Tarnis: the former bestows on it the epithet 'aurifer,' 'the gold-bearing;' the second calls it 'citus,' the 'switt.'
In the middle ages, and down to the period of the Revolution, the larger portion of this department was known as the territory of LiAlbigeois ; the arrondissement of Lavaur, and the adjacent parts, formed the district of Le Bas (Lower) Lauraguais : both these were comprehended in le Haut (Upper) Languedoe. Alby was the chief town of L'Albigeois; Lavaur of Bas Lauraguais.
Upon the downfal of the Roman Empire this part of France passed into the hands of the Visigoths, and sulsequently of the Franks under Clovis. The district of L'Albigeois was part of the great duchy of Guienne in the time of the later kings of the Merovingian dynasty. It was subsequently held in succession by the counts of Toulouse, the viscounts of Bezziers, and the counts of Carcassonne: and was, in, the early part of the thirteenth century, the scene of the fearful crueltics perpetrated in the crusade against the Albigcois or Albigenses, a sect deriving their name from the district, and persecuted by the Komish church as heretical. [Almigenses.] In the sequel of this erusade the district of L'Albigeois was annexed to the crown. The district of Lauraguais was suecessively held by the counts of Carcassonne and Barcelona; one of these latter, having become king of Aragon, ceded. Le Lauraguais to the Viscount of Béziers, "wto again ceded it to St. Louis, king of France. It was alienated by Louis XI., who gave it to the counts of Auvergne, but was reunited to the crown by Henri IV.
TARN ET GARONNE, a department in the south of France, situated between $43^{\circ} 47^{\prime}$ and $44^{\circ} 23^{\prime}$ N. lat., and $0^{\circ} 40^{\prime}$ and $2^{\circ} 0^{\prime}$ E. long. It is bounded on the north by the department of Lot, on the north-east by that of Avey-
ron, on the east and sonth-enst by that of Ta.a, on the south by that of Haute Garonne, on the sonth-west by that of Gers, and on the north-west by that of Iot et Garomue. Its form is irregular; the greatest length is from northeast to south-west, from the border of the departinent of Aveyron near Parisot, to the bank of the little river larax, near Javit-de-l.omagne, of miles; the greatest breadth at right angles to the length, is from the border of the depart ment of Lot et Garonne, near Montaigut, to the border of the department of Haute Garonnc, near Grizalles, 44 iniles. The area of the department is estiniated at 1421 square iniles, which is not so much as two-thirds of the averaue area of the Frenel departments, and is rather less than the area of the English county of Sussex. The population, in 1826, was 241,586 ; in 1831, 242,509; and in 1836, 212,184, showing a very trifling inerease (iol 08 persons, less than $0 \cdot 25$ per (eent.) in the ten years from 1826 to 1836 ; and in the latter half of the term a positive decrease. The number of inhabitants to a square mile, in 1836, was 170, whieh is ratherabove the average density of the population of France; but the departnent is inferior in amount of population to inost other departments; and both in amount and density of population to the English county with which we have compared it. Montauban, the eapital, is 335 miles in a direct line south by west of Paris, or 408 miles by the road through Paris, Orléans, Cháteauroux, Limoges, and Cahors.

This department was not one of those formed at the first establishnent of the departmental division of France by the National Assembly, A.D. 1790; but was created by a senatus-consultum under the reign of Napolcon, A.d. 1808. It was tormed from the arrondissement of Montauban, taken from the department of Lot; the arrondissement of Castel Sarrasin, taken from the department of Haute Garonne; the eantonsof Auvillard, Montaigut, and Valence, takenf from the arrondissement of Agen, in the department of Lot et Garonne ; the eanton of Lavit-de-Lomagne, taken from the arrondissement of Lectoure, in the department of Gers; and the canton of St. Antonin, taken from the arrondissement of Villefranche, in the department of Aveyron. The department thus formed was divided into three new arrondissements, Montauban, Moissac, and Castel Sarrasin.
-The department has no mountains and seareely any hills; slight undulations alone vary its surface. The greater part is occupied by the tertiary formations of the basin of the Gironde: the part north-east of St. Antonin, on the Areyron, and Puy-la-Roque, is oceupied by the secondary formations which intervenc between the chalk and the red marl or new red sandstone. Some of our authorities enumerate coal among the productions of the department ; but this is hardly consistent with its geological character, nor were any coal-mines wronght in 1832 and 1835 , of which the official returns are before us. Some iron is obtained; and there was, in 1834, one iron-work, with two furnaces for making pig-iron, and five forges for making wrought-iron. Chareoal was the fuel alnost exclusively employed. Marble and good freestone are quarried in the north-east parts of the departınent; and limestone, marl, and potters'-elay are dug in several places.

The department belongs altogether to the basin of the Garonne. The Garome itself enters it on the south side, a little below Grenade, and flows north-west by Verdun and Le-Mas-Garnier, to the junction of the Tarn: it then flows a few miles west by Auvillard; and turning again north-west, and passing Valenee, quits the department. It has about 40 miles of its conrse (49 miles, according to the official aecount) in this department, navigable throughout. The Tarn enters the department on the south-east : it flows first north-west by Montauban to the neighbourhood of La Française; and then, in a winding channel, westward into the Garonne, which it joins on the right bank: its whole course in this department may be estimated at 36 miles (40 aecording to the official aceount), navigable throughout. These nre the only navigable rivers. Of smaller streams, the Garonne reecives on the left bank the lambon, the Gimone, and the Serre, above the junction of the Tarn; and the Larax, or Rats, below the junction of that river. The Barguelone (formed by the junction of the Grande Barguelone and the Petite Barguelone) and the Saine (which receives the Seune) join the Garonne on the right bank, below the junction of the

Tarn, and beyond the limits of the department, to which however a considerable part of their course belongs. The A veyron, a considerable leeder of the Tarn, whicill it joins on the rimht hank, between Montauban aud La Françise, has the lower part of its course in this deparment or along the boundary. The Tarn receives also the Tescon (of which the Tescomet is a feeder) and the Lemboulas (of which the latte is a feeder), both on the right bunk. The Aveyron receives the Seye, the llonnelle, and the bere, on the right bank; and the Verre mind the Tuuse on the lett bank.

The departinent lad, 1 Jan., 1837, seven Routes Royales, or govermment roads, with an aggregate length of 15.5 miles, viz. 150 miles in good repair and 8 iniles unfinished: the aggregate length of the departmental roads at the same time was 231 miles, viz. 156 miles in good repair and 78 miles mutinished: the bye-roads and lanes had an aggregate length of above 4200 miles. The prineijpal road is that from P'aris to Montanlan and Toulouse: it enters the department on the noth side, at the village of la Madeleine, and runs southward by Canssade and Realville to Montauban; and from thenee, still southward, by Grizalles, a little beyond which it quits the department, to Tonlouse. A road from Montaubani us west-north-west, parallel to the course first of the Tarn, afterward of the Garonne, by Ia Francaise, Moissae, and Vilence, to lbordeaux: another road runs south-west, by Montech and Beaumont-de-Lomagne, to Auch; and a third, east-southeast, to Gaillac and Alby, in the adjacent department of Tarn. A road which enters the department on the northeast runs by Caylus and Septfons, and, uniting with the road from Paris to Toulouse at Caussade, forms the communication between Rodez and Montauban. A road minning from Moissae along the valley of the Garonne, by Castel Sarrasin, St. Porquier, Scatalen, and Fignan, to Grizalles. forms the shortest communieation between Bordeaux and Toulouse.
The elimate is generally mild, but subject to variations, which oecasion frequent attacks of eatarrh and rheumntism, The mean temperature in winter is frons 36° to 39° of Fahrenheit, that of spring and autumn from 59° to 64°, and that of summer from 81° to 86°. Rains are frequent ins spring: the sunımer heat inereases gradually towards the end of July, when it is very great : autumn is the plensantest season of the year : winter, thongh sometimes very cold, is gencrally dry. Snow rarely falls.
The area of the department may be estimated at about 910,000 aeres in round numbers, of which alhout 575,000 acres, or above six-tenths, are under the plough. The soil is various; in some parts stiff and clayey, in others light and sandy; so sandy in some plaees as to be incapable of cultivation. The greater part however is very fertile: the plains and alluvial tracts which line the banks of the Garonne, the Tarn, and the Aveyron, are among the richest in France; but those along the banks of the Graronne are liable to be injured by the inundations of that river. The farms are generally separated by quick-hedges, and adorned with clumps of the wild quince-tree. The most important article of agrienltural produee is wheat, which is of excellent quality. It is ground into flour, especially at Montauban ; and large quantities are exported to Anlerica. Barley, onts, rye, maize, pulse, potatoes, vegetables of excellent quality, rape, thax, and hemp, are also cultivated to a considerable extent.
The meadows have an extent of about 43,000 or 44,000 aeres, the heaths and open pastures of more than 41,000 acres. The number of horned cattle and sheep is not by any means so considerable as it might be: the breed of sheep has been however gradually improving, and the wool is of good quality. Horses, fitted for the light cavalry, are reared; and a considerable number of mules are bred for the Spanish market. The breeding of swine is on the increase. Poultry, especially ducks and geese, are numerous: they are salted in considemble quantity; and their livers, which sometimes weigh two pounds, are made into the pies for which this part of France, 'Coulouse especially, is so famous. The quills also form an important article of trade.
The vine is extensively cultivated on the slopes and more elevated plains, where the soil is comumonly of a whitish colour, of mingled clay and fine sand, little adapted for the growth of corn, but suited to the vine, which suceeeds admirably in the district between the Tarn and
the Garonne. The vineyards have an extent of about 90,000 aeres. A large part of their produce is made into brandy for exportation. The wine is of fair quality, but not first-rate; and in general of a deep colour, which it loses by age.
The orchards and gardens occupy about 4500 acres: the walnut and chestnut trecs are of great size: the white mulberry is cultivated in order to rear the silk-worm, which is an object of attention, though not so extensively as it night be made. The woods oecupy about 110,000 aeres. Game and fresh-water fish are abundant: great quantities of the lamprey and the shad are taken in the Garonne in the spring.
The department is divided into three arrondissements, as follows:-

	Silua-	Area in		n in	Can	Com-
Name.	lion.	Sq. miles.	1831.	1836.	tons.	munes.
/ Montauban	E.	619	107,853	106,799	11	62
Moissae	N.W.	341	62,489	62,735	6	49
Castel-Sarrasin.	SS.IV.	461	72,167	72,630	7	80
		1421	242,509	242,181	21	191

In the arrondissement of Montauban are-Montauban, on the Tarn (population, in 1831, 18,235. for the town, or 25.460 for the whole commune; in 1836, 23,865 for the eomınune) [Montauban] ; La Française (pop. 3686), near the Tarn; Varell, St. Antonin (pop. 2861 for the town, or 5492 for the whole commune), Montricoux, Bioulle, Négrepelisse, and Réalville (pop. 3030), on or near the Aveyron; Bruniquel, on the Vcrre; Parisot, on the Seye; Caylus (pop. 1318 for the town, or 5319 for the whole commune), on the Bonnette; Puy-la-Roque, Septfons, Caussade (pop. 2441 for the town, or 4479 for the whole commune), on or near the Lerc or its affluents; Montpezat and Molières, on or near the Lemboulas; Mirabel, between the Lere and the Lemboulas; and Montelar, on the Tescounet. La Fiançaise has a manufacture of pottery from the fine clay which is dug in the neighbourhood. St. Antonin is on the right bank of the Aveyron, at the junction of the Bonnette. There are manufactures of serge and other woollen stuffs, and there are tan-yards and paper-mills: considciable trade is earried on in leather and dried pluns. Montricoux has twehe yearly fairs: marble is quarried near the town. Negrcpelisse was formerly inhabited ehiefly by the Huguenots; and when Louis XIII. besieged Montauban (A.D. 1621), he put a garrison into this town ; but the inhabitants rose upon the garrison, and put them to the sword, in consequence of which the town was taken and burnt ly the royal arny. Cotton goods are woven, and trade is carried on in corn, wine, and hemp): there are ten ycarly fairs. At Réalville considerable trade is carricd on ill corn and flour: there are five yearly fairs. Bruniquel has an iron-work. Caylus has eleven yearly fairs, and a trade in corn. Caussade has some manufactures of linen and woollen; and the townsmen carry on trade in eorn, flour, saffron, and truffes: there are eight yearly fairs.
In the arrondissement of Moissae are-Moissac, on the right bank of the Tarn (population, in 1831, 5950 for the town, or $10,16 \mathrm{~m}$ for the whole commune ; in 1836, 10,618 for the commune) [Monssac]; Auvillard or Auvillar (population 1963 for the town, or 2302 for the whole commune), on the Garonnc; Valence (population 1994 for the town, or 2575 for the whole communc), between the Garonnc and the Barguelone; Lauzerte (population 1753 for the town, or 3685 for the whole commune) and Miramont, on the P'ctite Barguelone; Monjoy or Montjoye and CastcISagrat, on or near the Saônc; Le Bourg-du-Visa, on a small fecder of the Sainne; Montaigut or Montaigu (population 2000 for the town, or 4172 for the whole commune) and Roquccor, on the Seune; and Dunes, near the western border of the department. At Auvillard or Auvillar (sometimes written Auvillards) are manufactures of earthenware and worsted hose: there are four yearly fairs. The neizhbourhond is productive in wine. Valence (distinguished as Valence d'Agen) has four yearly fairs: the townsmen tan leather and prepare quills for writing. Lanzerte is in a picturesque situation on a rocky eminence, at the junction of the Lendou with the Petite Barguelone: it has cleven fairs, where much business is done in corn, wine, and cattle. Montaigu has some manufactures of woollen stuffs and leather, and five yearly fairs. Duncs has ninetecu yearly fairs for cattle, corn, and linen cloth,

In the arrondiscement of Castel-Sarrasin are-CastelSarrasin, near the right bank of the Garonne (population, in 1831, 3346 for the town, or 7092 for the whole commune; in 1836, 7408 for the commune); Verdun (population 1809 for the town, or 4234 for the whole commune), Le Mas-Garnier, and St. Nicolas-de-la-Grave, on the Garonne; St. Porquier, Scatalen, Montech, Fignan or Finhan (population 1600 for the town, or 1730 for the whole commune), and Grizalles or Grizolles (population 1724 for the town, or 2091 for the whole commune), between the Tarn and the Garonne; Bouillac, near the Lambon; Beaumont de Lomagne (population 3126 for the town, or 4130 for the whole commune), on the Gimone; and Lavit de Lomagne, near the Serre. Castel-Sarrasin suffered much in the religious wars, and the quantity of bones and of arms dug up in the neighbourhood bears testimony to the frequeney or severity of the conflicts it has witnessed. The town is agreeably situated in a fertile plain about a mile from the Garonne, and is well built. The old walls and ditches have been destroyed, and replaced by agreeable promenades. The townsmen manufacture serge and other woollen stuffs, hats, and leather: there are three yearly fairs. There are one or two subordinate government offices. Verdun, distinguished fiom other places of the same name as Verdun-sur-Garonne, is on the left bank of the river: it has much declined from its former importance, but has still some woollen manufactures and three yearly fairs. St. Nicolas-de-la-Grave is known for the excellent melons grown in the surrounding district : there are four yearly fairs. St. Porquier is known for the extensive cultivation of tobacco and saffron in the neighbourhood: it has three yearly fairs. Grizalles or Grizolles is in a fertile plain, a short distance from the right bank of the Garonne : the townsmen manufacture a considerable quantity of cutlery, especially excellent scissars : there are three ycarly fairs for eattle and horses. At Beaumont-deLomagne coarse cloth and other woollens, hats, and leather are manufactured, and trade is carried on in corn: there are seven fairs in the year.

The population, when not otherwise described, is that of the commune, and from the census of 1831 .
This part of France, at the earliest historieal period, was oceupied by the Cadurci, a Celtie people, who were north of the Garumna (now the Garonnc), the Tarnis (now the Tarn), and the river now known as the Tescou; by the Tolosates, also Celts, who inhabited the part south of these rivers; and by the Lactorates (of the Aquitanian stock), in whose territories that small portion of the department which lies south of the Garonne and west of the Larax or Rats was included. Perhaps some small portions of the north-western border may have belonged to the Nitiobriges, a Celtic peoplc, and some portions of the eastern border to the Ruteni, who were also Celts: but these portions, if there were any, must have been vcry small. The Tasconi of Pliny, who appear to have left their name to the little rivers Teseou and Teseounet, on the banks of which they dwelt, were probably either a subdivision of the Tolosates, or a sinall tribe subject to them. In the Roman division of Gaul the Tolosates, with the Tasconi, were included in the province of Narbonensis Prima; the Cadurei and the Ruteni in that of Aquitania Prima; and the Nitiobriges and Lactorates in Novempopulana.

Only two places mentioned hy Roman authorities are supposed to have been in this department. Cosa, mentioned in the Theodosian or Peutinger Table, was probably on the bank of the Aveyron, uear Realville; and the Fines of the same authority may be placed on the Tescou, near the junction of the Teseounct.

In the niddle ages, the north-western parts, about Montaigut, Castel-Sagrat, and Valence, as far south as the Garounc, were included in L'Agenois; the northern and north-eastern parts, as far south as the Tarn, in the district of Le Bas Quercy, exeept just about Parisot and St. Antonin, which belonged to La Basse Marche in Rouergue; L'Agenois, Quercy, and Rouergue were all subdivisions of Guiennc. South of the Garonne the whole was included in Gascogne or Gaseony; the part west of the Larax being eomprehended in Le Condomois, a district of Gascogne Proper; and the part eastward of the Larax in Lomagne and IRivière-Verdun, two distriets in Bas (Lower) otherwise Noir (Black) Armagnae: The districts bctween the Garonne and thic Tarn belonged to the district of Le Toulousain, or the county ol' Toulousc, properly so called, in Languedoc. Vol. XXIV.-K

These ternitories, upon the overthrow of the Roman empire, passed into the hands of the Visigoths, from whons they were ancerwards wrested by the Franks. The county of Toulonse was amexed to the crown in the reign of Philippe 111. le Hardi; the county of Armagnac firm by Louis XI. and finally by Henri 1V., and Rouergue finally by François 1. Te Querey and l'Agenois were for a long time part of the English posesessons in France. The English were finally driven out in the middle of the fifteenth century.
TAliNOPOL is a elrele in the enstern part of Austrian Galicia, bordering on the Russinu, govermment of Podolia. The area is about 1400 square niles, and the population 212.500, of whom about 13.000 are Jews. The surface of the country is an undulnting plain broken only by a few hills. The forests are very extensive, and the soil in general extremely fertile: it produces corn, flax, hermp, tobneco, garden vegetables, and friits. 'The fine meadows,' snyy Hassel, ' would enable the inhabitauts to breed great numbers of cattle, but it is only the breeding of horses that is more considerable than in the rest of Galieia; they are of the true Polish race. In 1817 there were 36,273 horses, 9412 oxen, 20,339 cows, and 59,292 sheep.' According to the very detailed statistical tables for 1830 (published in 183, which are the latest that we have seen), there were 41,223 horses, 11,156 oxch, 26,063 cows, and 81,283 sheep. There is no large river in the eircle ; the Podhorze forms the eastern boundary towards Russia and the interior is watered by the Sered, the Tryna, the Guila, and other small streams.
TARNOPOL, the capital of the above cirele, is a considerable town, with 10,500 inhabitants, of whom nearly half are Jews. It is situated on the river Sered, which there passes through a lake. There nre in the town a Roman Catholic and a Greek chureh, three synagogues, a Jesuits' college, a Eymuasium, and a philosophical seninnry. In the year 1850, 50 of the Jesuits expelled from Russia were allowived to settle in a Dominican convent at Tarnopol.
The sum of 300 florins n year was assigned to eneh, with The sum of 300 florins a year was assigned to eneh, with a moderate sum for the establishment of the gymmasium, it being intended that they be solely emplored in the education of youth in and out of the town. The inhabitants have a pretty considerable trade, but have not made mueh progress in manufactures. The principal establishments are fanneries. As in most Polish towns, the houses are of wood, and the streets unpaved, where filth of all kinds is suffered to aceumulate.
(Hnssel ; Stein ; Cannalich; Mission from the Church of Scotland to the Jeres, 1812.)
TARNOW, a circle of Austrian Galieia, is bounded on the north by the Vistula, which separates it froni Poland, on the cast by Rzeszow, on the south by Jaslo, on the south-east by Snnok, and on the west by Bochnia. The arca is 3000 square miles, and the population at present must be at least 240,000 ; since, according to the statistieal tables for 1830 , it was 233,453 , of whom 14,608 were Jews. The country is an extensive plain, with here and there an ineonsiderable eminenec. The soil is on the whole hot very fertile, in many parts sandy, and ill-eullivated. The rivers are, the Vistula on the north, the Dinajee on the Trest, and the Wisloka, which flows through the middle of the circle. Though the chief occupation of the inlabitants is agrienlture, its operations are pertormed in a veryslovenly manner, and the breeding of entlle is by no means in proportion to the extent of the country: the forests however are very profitable, and there is no other eirele in Galicia where the people make so many wooden wares of various kinds, pipe-staves, \&\&c. There are no manufaet orics, properly speaking, except in the ctrief town and its neighbourhood, but the country-people manuficture a great quantity of linen.
Tarsow, the eaplat of the cirele, is pleasnntly situated on an eminence nenr the river Biala, over which there is n handsome woodels bridge of one arch of 180 feet span, which is entrely covered over. The population of the town, without the suburb, is 2250 , of whom 1030 are Jews; with the suburb the population is 4800 . The houses are for the noast part well Uuill of 1rick, two stories high. This town la the see of a Roman Catholic bishop, and the seat of the tribunal- of the cirele. It has a cathedral, a Franciscan convent, a synagogue, a gymunsium, o Jewivhl infirmary, a milltary hospital, crected in 183.3, and several schools. The inhabitants manufacture linen, damask,
wooden-ware, and cahinet-work. They have many tanneries, and carry on a brisk trade. Thie eathedral contains The monuments of the prinees Janusz von Ostrog, and of the counts of Tarnow-Tarnoswsky: two of them are from 60 to 70 fect high, and reach to the roof of the church. These two monuments are very liehly spoken of as works of art.
TARIPEIAN ROCK. [Roak.]
TARPORLIFY. [Cheshre.]
TARQUI'NIl (Taprivia, or 'Taprontyori), an antient town of Etruria, on the southern bank of the river Marta, whieh emptics itself into the sea a few miles belors, Aceording to Strabo (v. 2, p. 355, ed. Tauchnitz), the town was finulded by Tareon, one of the companions of Tyrrhenus (Stephanus Byzant., s. v. Tapruvia; Virgil, Sín., siii. 505̈; Sillius 1talieus, viii. 473); and, nceording to others, it was a colony of Thessalians and Spinambrians. In the reign of Aneus Marcius, Demaratus of Corinth is said to have come with a band of his countrymen to Eirmian, and to have been favourably received ly the Tarquinienses; and the story describes him ns the father of L . Tarquinius Priseus. (TarQunsucs.] Whatever may be thought of this tradition, it seenıs clear that Etruria and Tarquinii in particular experienced at an carly period considerable influence from Grece. Tarquinii appears to have beeome in a short time a great and powernil city, ns is clear from the wars which it carried on with Rome, and from the inportant remains which have recently been disenvered; and there is little doubt that it formed one of the twelye republics of Emaria, consisting of the cily and an extensire tertitory around it. Anter the expulsion of Tarquinius Superbus troon Rome in B.c. 509, the Tarquinienses were the most forward in his cause, and unsulecessfully endeavoured to restore him by force of arms. (l.iv., ii. 6, 太e.) Abont the vear B.C. 397, the Tarquinlenses ngann made war upon the Romans, and ravaged their territory, but they were de feated by A. Postumius and L. Julips. Thtis however did not deter them fiom renewing their hostilities a arainst Rome, and from making inroads uppon her territory. It wis on stch an oceasion, in the year B.c. 3.58, that a war broke out between the two states, which lasted for sereral years. The Romans in their first enmpaign, under the consul c. Fabius, were unsuceesslul, and the Tarquinienses made 307 Roman soldiers prisoners, all of whom were sacrlficed to the gols. Rome for somo time carried on the war on the delensive, while her cnemies acquired new allies, and invaded the lloman territory as far ns the Salinx, at the mouth of the Tiber. At last however, In 3.36 n.c., they were defeated by the dietalor Marcius Rutilus, and the year after they were compelled by C. Sulpicius to lay down their arms. The Romans now took ernel revenge for the outraice which had been committed upon their prisoners. The commion Tarquinienses who fell into the hands of the Romans were all massacred, but 3.78 nobles were sent to Rome, where they were benten to death in the formm. (Liv,, vii. 12-19.) Stiortly atter the Tarquinienses sued for a truce, which was granted for forly years. Tarquinii, like the rest of the Etruscan towns, was hencoforth neutral in the wars of lome with other nations, and remained in ninnost perfeet independence of Rome. Shorly aner the expiration of the fruce the Tarquinienses obtained a peace of the same duration. At a later period Tarquinii becamo a Roman Municipium (Cicero, pro Cacein., 4).
The site of the antient Tarquinii is elearly diseernible in the ruins stlll extant on the hill of Tarchino, near the modern town of Corncto. The place has in nodern times aequired a peeuliar interest through the numerous works of art which linve been discovered in the tombs and catacombs. The first of these were opened in 1699, and what was found in them was deseribed lyy Buourrotti. New discoveries have frequently been made there since that time; the nost important are the paintings with which the walls of the eatacombs are decorated; but besides these, therniw and temples with inseriptions, moswics and vaves, and other works of art, are found there. Respecting these discoveries, see Wilcox and Morton, Account of some subterrancous Apurtinents with Eitruscan Iuscriptions and Paintings, fr., in the Philosophical Trunsactions for 1763 , vol.vii., 127: Von Stackelberg, Aelteste Donkmüler der Malcrei. oder Tlandgemëlde aus den IIypngïen von Turquinii, 1827, with mumerous plat cs.
TARQU'INIUS. Accorling to carly Roman listory the family of the Tarquinii gave two kings and one consul to Rome. Its origin was traced to the Cown of Targuinii in Etruria, and thence to Grecee. Modern investigations
howerer have shown that the Tarquinii did not come from Etruria, but must originally have belonged to Latium, and that from the carliest times there existed at Rome a gens Tarquinia. (Niebuhr, Hist. of Rome, i., p. 373, \&e.) TWe subjoin a list of those members of the house of the Tarquins who play a prominent part in the carly history of Rome.
Lecius Tarquinus Prescus. The old story eoncerning his birth and his arrival in Rome ran thus:- During the tyranny of Cypselus at Corinth, Demaratus, a wealthy merchant who belonged to the noble family of the Bacehiads, was obliged by the tyrant to quit his native city. He sailed to Etruria, which he had often visited before on his mercantile voyages, and took up his residenee at Tarquini1. Here he married a woman of noble rank, who bore him two sons, Lueumo and Aruns. (Dionys., iii. 46 ; Liv., i. 34; Polyb., vi. 2.) As an aspiring foreigner eould never lope 10 satisfy his ambition in Etruria, Lueumo, after the death of his father and brother, resolved to cunigrate with his wife Tanaquil and a numerous band of finends to lome, where several strangers had already obtained the highest honours. He was eonfirmed in his expectations by a miraculous oceurrence whieh happened just when he was approaching the city, and by the interpretation of it by his wife, who was well skilled in augury. At Rome Lucunio was favourably received by King Aneus Marcius, and lands were assigned to him. To omit nothing on his part which might characterize him as a complete Romian, he adopted the name of Lucius Tarquinius, to which subsequently the name Priscus was added to distinguish him from other menbers of his house. His wealth and prudenee induced King Ancus to allow Tarquin to take part in all the affairs of state, and in his will he nade hinn the guardian of his childrent, who were jet under age. [Ascus Marcius.] Tarquin himself aspired to become king of Rome. Accordingly, on the death of Ancus, he sent the young prinees out hunting, and during their absence he held the eomitia for eleeting a suecessor to Aneus, and suceeeded in persuading the people to elect him, to the exclusion of the sons of Ancus, 616 n.c.
This is the cominon story of the descent of the fifth king of Rome, of the manner in which he came to Rome, and was raised to the throne. How much there may be historical in the tradition eannot be ascertained. Thus much however. appears eertain, that the arrival of Demaratus in Etruria cannot have been contemporaneous with the tyranny of Cypselus, and that, as stated above, Tarquinius was not a foreigner, but belonged to a Latin gens Tarquinia. (Niebulr, Hist. of Rome, i., p. 373, \&ce.)
L. Tarquinius Priseus distinguished himself during his reign no less in war than in the peaceful administration of the state. His first war was against the Latins, from whom he took great spoil. With equal suecess he carried on war with the Sabines, whom he defeated in two great battles, and from whom he took the town of Collatia with its territory. After this he again made war on the latins, and after, he had subdued them and made hinself master of many of their towns, he concluded a peace with them. During the intervals between these wars lie introdueed various improvements into the constitution of the state, which are mentioned in the articles Rosse, p. 104, and Senatus, and whieh were intended to organize the body of the plebeians, and perhaps to place them on an equality with the patricians. But he could only partially carry his schemesinto effect, as he was thwarted by the augur Attus Navius, who probably acted at the instigation of the patricians. After his first Latin war. Tarquin built the Circus Maximus for the exhibition of the publie speetacles, and is said to have been the founder of the Roman or great games (ludi Magni or Romani). He also assigned the ground round the torum to private individuals, that they might there build porticoes and places for transreting bnsiness; and lastly he is said to have formed the plan of enelosing the city by a stone wall, which he was prevented from accomplishing by the outbreak of the Sabine war. Alter the second war against the Iatins, he reeurred to his plan, and is sand to have made actual preparations for building the wall; but the eompletion of it was reserved for his sueeessor Servius Tullius. The greatest work at Rome, whieh owes its orivin to Tarquin, and which has survived all the vicissitudes of the city, are the gigantic sewers (cloacae) in the lower districts of Rome. [Cloaca.]
The sons of Ancus Marcius, who had been deprived of
the throne by their guardian Tarquin, never forgot the injury, and when they discovered that it was his and Tanaquils intention to secure the sueeession to Servius Tullius, they formed the design of murdering Tarquin. [Servius Tullius.] For this purpose they hired two sturdy shepherds, who went to the king's palace, and there eondueted themselves as if they were engaged in a violent quarrel. At last the king himself appeared to settle their dispute, but while he was listening to one of them, the other split the king's head with an axe. Thus died L. Tarquinius Priseus, after a reign of thirty-eight years, in B.c. 578. The queen kept his death secret unti] the suecession was seeured to Servius Tullius. The assassins were seized, and the sons of Aneus fled to Suessa Pornetia. (Livy, i. 31-42; Dionysius, iii. 46-73.). Tarquinius Priseus left two sons, Lueius and Aruns Tarquinius.
During the reign of this king Rome appears as a powerful state in comparison with what it is said to have been before him. Aecording to the hisforians this greatness was not the result of his reign, but is supposed to have existed before it, and to have enabled him to do what he did, so that this increase of the power and dominion of Rome must have taken place previous to his reign, although we do not know how it was effeefed. Some traditions mentioned (Tacitus, Annal., iv. 6̄5) that under Tarquinius Priseus an Etrusean of the name of Cacles Vibenna came with a eolony to Rome and settled on the Caelian •hill; which derived its name from him.
Lucius Tarquivius Superbus, the seventh and last king of Rome, was the son of Tarquinius Priseus, and brother of Aruns. Tullia, a daughter of Servius Tullius, was married to the gentle Aruns, and her sister to L. Tarquinius. In concert with Lucius, Tullia murdered her own husband Arins and her sister, and then married L. Tarquinius. Lucius placed himself at the head of a conspiraey, and murdered his own father-in-law, the aged Servius Tullius. Tarquinius, who received the surname of the Haughty or the Tyrant (Superbus), suceeeded his father-in-law as king of Rome, 584 b.c., without either being eleeted by the people or eonfirmed by the senate.
There is no doubt that the hatred of the very name of king which prevailed at Rome during the republie, has greatly contributed to exaggerate the eruelty and tyranny of the last king, and thus to corrupt his history. But notwithstanding all this, it is clear that Tarquin by his talents, both as a general and a statesman, quickly raised Rome to a degree of power whieh it had never possessed before. The first act attributed to him after his aceession is the death of all the senators who had supported the reforms of Servius Tullius, and in order to render his own person safe, he formed an armed body-guard which always aecompanied him. He in fact undid all that Servius had done: he took on himself the administration of justice, put persons to death or sent them into exile according to his own pleasure, and kept the whole internal and external administration in his own hands, without either consulting the people or the senate. In order that the senate might sink into insignificance, he never fillied up the vacancies which so frequently occurred through his exeeutions, banishments, or through the natural death of senators. To seeure himself still more, he formed a close connection with the Latins, to one of whom, Octavius Mamilius of Tusculum, he gave his own daughter in marriage. The influenec whicli he thus gained among the Latins was most visible in their assemblies on the Alban Mount by the temple of Jupiter Latiaris, in whieh Rome also had a vote. Tarquinius, by cunning and fraud, or, according to others, by foree of arms, subdued the towns of Latium and placed Jome at the head of the league (Livy, i. 50, \&e. ; Dionysius, iv. 45, \&e.; Cieero, De Re Publ., ii: 2t), which was now also joined by the Hernieans and the Volscian towns of Ecetra and Antium. The wealthy town of Suessa Pometia was besieged and taken, perhaps because it had refused to join the league. The Latin town of Gabii experieneed a similar fate. Sextus, the king's youngest son, went thither under the pretext of being a deserter, and eontrived to put himself at the head of the Gabian arny. After having put to death or sent into exile tho most distinguished eitizens of Gabii by the advice of his father, he treacherously surrendered the town to him. The whole aecount of the war with Gabii bears the charaeter of a fable, and resembles in many respects other fabulous stories of early Grecian history. The treaty which was formed
with Gabii after its surrender, was engraved on a wooden shield, and preserved in the temple of Jupiter Fidius to the time of Dionysius of Halicamassus. Tarquin founded in the conquered territory of the Volscians the two colonies of Signia and Circeii, by which he extended and strengthened the power of Rome.
Tarquin is said to have been fond of splendour and magniticence. He buitt the capitol, with the threcfold temple of Jupiter, Juno, and Sinerva, and adorned it with brazen statues of the gods and of the carly kings. (Livy, i. 53; Dionysius, iv. 50 ; Pliny, llist. Nat., xxxiii. 4; xxxiv. 13.) Here he also deposited the oracular books which he had purchased from a Sibyl. [Sibyz.] After the establishment of the colonies of Signia and Circcii, a fearful omen was seen, which seemed to bode ruin to his family; and in order to asccrtain its import he sent his two sons, Sextus and Arms, aeconpanied by his nephew, I. Junius Brutus, to Delphi. To the question as to which of the three ambassadors was to reign at Rome, the Pythia answered: he who should first kiss his mother. Brutus, who had always assumed the appearance of an idiot, understood the oracle, and on landing in Italy, fell down and kissed the earth, the mother of all. Tarquin's coffers were now exhausted by the great works that he had undertaken, and he was tempted to make himself master of Ardea, a wealthy town of the Rutuli. As however he did not succeed in his first attack, he laid siege to the town. While this was going on, a dispute arose between the sons of Tarquin and their cousin, C. Tarquinius Collatinus, respecting the virtue of their wives. This led to the violation of the chaste Lucretia, the wife of Collatinus, who lived at Collatia, by Sextus, the king's eldest son. As the highest pride of a Roman woman at this time was her virtue, lacretia sent for her husband, father, and Brutus, and killed herself in their presence, after having cursed the family of the king, and implored her friends to avenge the injury which she had suffered. Brutus immediately marched with an armed force from Collatia to Rome, and roused the people to avenge the indignity and throw off the yoke of their tyrant. The citizens were easily persuaded; they deprived the king, who was yet in the camp of Ardea, of his imperium, and banished him with his wife and children from Rome, 510 b.c. After these occurrences Tarquin hastened to Rome, but finding the gates of the city shut upon him, and learning that he was cleclared an exile, he retired to Caere, whither he was followed by his son Aruns. His other son Sextus sought a refuge at Gabii, but the citizens, remembering his former treachery, put him to death. The simple fact of the banishment of King Tarquin, which was commemorated at Rome every year by a festival called 'The King's Flight' (Regitugiun or Fugalia), is beyond all doubt historical ; but what is described as its immediate cause, and its accompanying cireumstances, may be poetical inventions.

Tarquin however did not give up the hope of recovering what he had lost. He first sent ambassadors to lRome to demand the surrender of his moveable property. During their stay in the city the ambassadors formed a conspiracy, in which young patricians chiefly are said to have joined them. The conspirators were diseovered and put to death, and the moveable property of the royal tamily was given up to the people, in order to render reconciliation impossible. The king is said to have found favour and protection with the inhabitants of Caere and Tarquinii, and with the Veientines, and to have led the united torces of these people against the Romans, who however defeated their cnemies near the forest of Arsia. Brutus fell in this battle in single comhat with Aruns. Tarquin now sought and found assistance at Clusium, which was then governed by the mighty Jar Porsenna. [Porseswa.] During the war of this chiettain with Rome Tarquin is entirely lost sight of in the narrative of the listorians; but affer its conclusion we find him supported by the latins, and waging a fresh war agninst Rome under the Jatin dictator Octarius Mamilius of Tusculum. The hatte near lake Regillus (496 B.C.), in which the king lost his only surviving son, decided the whole contest. The accom of the detail of this battle is as fabulous as any part of the carly history of Rome, and formed, as Niebuhr supposes, the concluding part of the 'lay of the Tarquins.' The nyed king, now deprived of all his hopes, retired to Cumar, which was then governed by the tyrant Aristodemus, where he died the year following, 495 H.C.
' (Jity, ii. 19, Ece.; Dionysius, vi. 2, \&c. ; Niebulur, Mist. of Rome, i., p. 5.55, S.c.)
lucius Tarquinius Collatisus, the son of Egerius, and the husband of lucretia. Aner the banishment of the king he was elected consul together with l. Junius Brutus. But the people beginning to suspeet that he night perlaps be tempted to follow the example of his kinsman, and endanger the freedom of the young republic, he was compelled to abdiente, and to sulmit to the senlence of exile, which whe now pronnunced upon the whole family of the Tarquinii. (Livy, i. 57,60 ; ii. 2.)

TARLAGONA, a province of Spain, bordering on the north on Catalonia, on the south on Valencia, and on the west on Aragon. The capital, Tarragona, is situated on the coast of the Mediterrancan, on the declivity of a mountain rising to 760 teet above the level of the sea, and near the mouth of the river Francoli, $41^{\circ} 7^{\prime} \mathrm{N}$. lat. and $1^{\circ} 1 \mathbf{7}^{\prime}$ E. long. Tarragona, the Roman Tarraco, is one of the most antient cities of Spain; as it is supposed to have been founded by the Phonicians. During the second Punie War it hecame a Roman colony (Plin., Hist. Nat., iii. 3), and, subsequently under Augustus, the capital of Hispania Citerior, or Tarraconensis, which comprised Catalonia, Aragon, Navarre, Biscay, the Asturias, Galicia, a portion of Leon, and the Balearic lslands. Tarraco was also the chief city of one of the seven conventus, or divisions of the province for purposes of administration, and chiefly for justice. In A.D. $46 \frac{7}{7}$ it was taken by Euric, king of the Goths, and levelled with the earth. The Aralss reduced it in 710 , like most cities on that const, and it remained in their hands until lRaymond IV., count of Barcelona, took it from them, about the close of the eleventh century. The city being found in a very ruinous and dilapidated state, Don Bernardo, archbishop of Toledo, undertook to rebuild it on condition that the pope would absolve him of an oath he had taken, and not tulfilled, of repairing to the Holy Land. The absolution having been granted, the archbishop of Toledo destined the greatest portion of the revenues of his see to the rebuilding of Tarragona. During the War of Sucecssion, the English took possession of the city, whieh they intended to keep and began to fortity. Some of the oufworks and redoubts thrown up by them are still visible. In 1810 the French, under Marshal Suchet, laid siege to it, and look it by storm on the 23th of Junc, 1811, after a siege of several months. The conduct of the French commander on this occasion is greatly to blame ; he not only justified, but even encouraged, the perpetration of all kinds of atrocities, on the ground that he wishat by one dreadtul cxample to terrify the people and prevent all further resistance. An attempt to retake the city, made in June, 1813, by the allied forces under General Sir John Murray, failed completely ; for at the approach of Suchet, who was advancing from Valencia, that officer mised the siege and re-embarked his troops with such precipitation that he left all his artillery and stores behind.

Tarragona is tolerably well built, and the Roman remains render it interesting. Besides the circus, which is now almost entirely buitt upon, it has a very fine amphitheatre, in a good state of preservation, and a large Roman building, probably a temple, which the inhabitants eall 'the palace of Augustus.' The remains of a splendid aqueduct, which once supplied Tarmgona with water, which was brought from a distance of 10 miles, afford likewise a proof of the importance of the city under the Romans. About three miles east of the city there is a very fine mausoleum, which the vulgar call ' El Sepulero de los Scipiones' (the tomb of the Scipios), from a belief that Cnacus and Publius Seipio are buried ninder it. Of the Moorish domination there remain no other traces than a large building close to the sea, which is believed to have been their arsenal. The cathedral is ly far the most interesting building in the eity, and is well deserving of attention tor its vast dimensions and the elegance and purity of its Gothie architecture. It was erected in the year 111\%, but has since been grcatly added to. The chajel of Santa Theela, which is entirely luilt of rieh marbles and jaspers, is one of the richest and most tastefully decorated in the church. The great altarpiece too is much admired tor its exquisite carvings, executed by a natire artist in 1420. Tarragona is the sce of an archbishop, who once disputed with that of Toledo the primacy of Spain. During the Moorish domination, several provincial and general couneils were held there. At the first, whieh took place in 810 ,

TAR

it was ordained that the Sabbath should commenee on Saturday night. The immediate neighbourhood of Tarragona is well eultivated, and yields com, wine, oil, and hemp, in great abundanee. The principal manufaetures are cloth, coarse cotton-goods, hats, and eutlery, which are exported to all parts of Spain, and to the island of Cuba.
TARSHISH (תרְשִׁשׁ) is a place meutioned in the Old
Testament, partieularly in eonnection with the commerce of the Hebrews and Phœenicians. In Gen., x. 4, the name oecurs among the sons of Javan, who are supposed to have peopled the southern parts of Europe. (Compare Ps. 1xxii. 10; Isaiah, lxvi. 19.) In other passages it is mentioned as sending to Tyre silver, iron, tin, and lead (Ezekiel, xxvii. 12; Jerem., x. 9); and from Isaiah, xxiii. 10, some have inferred that it was subjeet to the Phoenieians. The prophet Jonah, attempting to avoid his mission to Nineveh, fled from Joppa in a ship bound to Tarshish. (Jonah, i. 3; iv. 2.) In several passages of the Bible 'ships of Tarshish' are spoken of, especially in connection with Tyre ; and it is pretty generally agreed that that phrase only deseribes a speeies of large ship, sueh as those used in the trade with Tarshish, just as we speak of ' Indiamen.'
From a comparison of the above passages, the majority of erities have eoneluded that Tarshish must be sought for in the western part of the Mcditerrancan, or even outside the Straits; and it has been generally identified with the Phoenieian emporium of Tartessus in Spain, a plaee whieh would undoubtedly furnish the produets said to have been brought from Tarshish. The Phereieian name ' Tarshish' would easily beeome the Greek Taprクfoós; in fact the Aramæan pronunciation of 'Tarshish' would be 'Tarthesh.' We havc abundant proofs that the Phemicians had established an extensive commercial intercourse with Spain at a very carly period.
But there is a eonsiderable difficulty about the position of this Tartessus. The antient geographers plaee it, some at the mouth of the river Bactis (Guadalquivir), the most antient name of which river they state to have been also Tartessus; while others identify it with the city of Calpe, or Carteia, near Mount Calpe, the rock of Gibraltar. (Herod., iv. 152; Strabo, p. 140, 148-151; Mela, iii. 6; Plin., iii. 1; Pausan., vi. 19; Steph. Byzant., v. Tapт Tgrós.)
The best way to explain and reeoncilc these statements with each other, and with the biblical aceounts respecting Tarshish, seems to be lyy taking the latter as the name not of a single plaee, but of the whole eountry in the neighbourhood of Gibraltar. In this district there may have been more than one city bearing a name like Tartessus. The name survives in various forms in the names of the rock Calpe, of the neighbouring city Calpe, Carpe, or Cartcia (for it is written in all these ways), and of the people Carpetani. This statemient will be more clearly understood after a referenee to the articles on the letters C, P, and T. In confirmation of this view, Strabo states that the country in the neighbourhood of Calpe was called Tartessis.
Respecting the difficulty arising from the conjoint mention of Tarshish and Ophir in the book of Chronicles, sce Ophir.
TA'RSIUS, Stort's name for a genus of Quadrumana.
Generic Character.-Head rounded; muzzle short; eyes very large; posterior limbs very mueh elongated, with the tarsus tlurice as long as the metatarsus. Tail long.
Dental formula :-incisors $\frac{4}{2}$; eanines $\frac{1-1}{1-1} ;$ molars $\frac{6-6}{6-6}$ $=34$.
Exsmple, Tarsius Bancamus.
Description.- Dr. Horsfield remarks, that although the Tarsius from Banca agrees in the essential points with the other speeies of this singular genus which have hitherto been diseovered, it has no intermediatc front teeth, and the exterior tooth on eaeh side is, compared with the other species, very minute. Counting (with Desmarest) one canine tooth on eaeh side, above and beneath, it has, says Dr. Horsfield, only five grinders in each jaw.
'The heal,' 'continues Dr. Horsficld, ' in proportion to the size of the body, is large; the areh of the forehend rises high, and the occiput is regularly spheroidal. The proximity of disposition and excessive sizc of the eyes is equally characteristic in this as in other species. The

: Fronl view of the teeth of Tarsins Bancanus. (Horsf.)
rostrum, or extremity of the face, is short and obtuse ; the nose is slightly rounded, almost flat above; and the nostrils, as usual in this genus, are piereed laterally. The cars, whieh from their ereet position and their projeetion beyond the crainium give a peeuliar distinetive character and appearance to the other speeies, in our animal are disposed horizontally, and instcad of rising up towards the crown of the head, incline baekwards and extend but little from its sides; the lobes, as usual, are very thin, niembranous, semitransparent, thinly beset with delicate hairs; several tufts of longer hairs arise from the base, where the interior membranaeeous lobules are discovered, but in our specimen too much eontraeted to admit of a detailed description. The neck is very short, and the anterior extremities have the same proportion to the body as in the other species. The hands are externally eovered with a very soft down; internally they are naked, and provided with several rather prominent protuberances, which, aceording to the opinion or Mr. Fiseher, are calculated to assist the animal in climbing. The fingers are deeply divided and very delicate; those of the hands have the same proportion, one to the other, as they have in man; on the feet they are more lengthened and slender; the thurd finger is longer than the middle finger, and the thumh is proportionally short. In all the third phalanx is somewhat thiekened, and surrounded by a projecting orbicular border, which, in the thumb partieularly, eonstitutes a delieate ball, supporting the nail. The nails of all the fingers of the hand, as well as of the thumb and the third and fourtl finger of the feet, are thiangular, and represent a delieate compressed seale: on the index and middle finger of the feet they are ereet, sharp, eompressed, slightly eurved, and not inaptly eompared by Mr. Fischer to the thorns of a rose-bush, constituting one of the essential characters of this genus. The body is handsomely formed, and, as in the other species, somewhat contracled towards the pelvis; the lower extremities also have in general a similar character, but the tarsus has less of theextravagant length which is common to the other Tarsiz.

The tail has nearly the Iencth of the body and head taken together; it is soniewhat thicker at the base, nearly naked two-thirds of its length, lint covered towards the extremity with a soff down, which forms, near the tip, a very obscure fun. The for is remarkably son to the tonch; it is composed of a thick and very delieate wool, which enrelopes the bolly, head, and extremities, forming a coat of an unequal surface, from which irregular straggling hairs project ; at the root of the tail, and at the hnuds of both extremitles. it terminates abruptly in the form of a ring. The general coloor is brown, inclining to grey; on the breast, abdomen, and interior of the extremities it is grey, inclining to whitish: a rufous tint is sparingly dispersed over the upper paits, which shows itself inost on the head and extremities: the naked parts of the tail near the root are considerably darker than the extremity:' (Zoological Researches in Java.)
Loculity.-Dr. Horsfield obtained this animal in Banea, near Jeboos, one of the mining districts, where, lie snys, it inhabits the extensive forests in the vicinity.

Tarsins Bancanus. (Ilorsf.)
M. F. Cuvier remarks that the dentition of the Tarsier approximates the animal more to the Galeopilheri, and even to the bats, than to the Quadrumana. The bones of this genus are well represented in the excellent Ostéographie of M. de Blainville.
TARSUS, now TERSOOS, a town on the Cydnus, situated in Itshili, a division of Caraman, and formerly one of the chief towns of Cilicia. It is about twelve miles distant from the sea, and is in $37^{\circ}{ }^{\circ}$. lat, and $34^{\circ} 50^{\prime} \mathrm{E}$. long. The traditions about its origin are various. It has been supposed to be the Tarshish of Scripture, but neither Bochart nor Vineent (Commerre of the Ancients) countenances this conjecture. Stephamus llyzantinus (c. Tacrós) says it was founded by Sardanapalus (see the inseription on the loinh of that monarch, Sirabo, 67 e, ed. Cassub.). Ammianis, 1. xiv., c. 28, and Solinus, Polyhish.. c. xli., assert that Persens was the founder (Iucan, iii. 22j), and the name Tarsus has been derived from the fable that lins horse P'egasus lost a hoof (Tapaós) there. (Dionys. Perricget., 8 es, et seq., and for other fancithl derivations see Stephanus 13yz.) Straho relates that it was a seltlement made by those who aecompanied Triptolenms from Argas in lis quest of lo (p,750, ed. Casanb.). The first historical motice of Tarsus aiter this is in Xenophon, Arabu, i. 2), who deseribes Tarsus as a greal and flourishing city when it was taken and plondered by the younger Cyrus, who afterwards concluderl a treaty with Syemnesis, king of Cilicia, who had his palace there.
We learn from Curtius (iii, 4), that Alexander the Great
arrived at Tarsus just in time to save it from being lournt by the Persians. In later times the inlablitants joined the party of Julius Cimar, in honour of whom they took the Hame Joliopolis; they were in conseguenee severely phenished by Cassius, and rewarded afterwards by Antony, who made Tarsits a free city. (Dion, 47, 342, 344, fol., Hamb., 1750.) Tarsus enjoyed the favour of Augustus, whose lutor Athenodorus, i Stoic, was a native of this place, and persuaded the enperor to release lis countrymen from all taxation. (Lucian, Mucrob., 21, Lehmanu, 1839.) Athenodorus, returning to his native place in his old age, expelled a tronblesome faction, at the liead of which was loethus, an unprincipled demagogue, and remodelled the constitution. (See Strabo, p. 074 , who gives some curioos details.) IIe was suceceded in his government by Nestor, an Aendentician.
Tarsus continued to flourish under the eniperors, under Whom it assumed the several titles-Madriana, Conmodiana, Antoninopolis, Macriniana, Alexandriana, Alevandrinopolis, and tinally, in the time of Valerian, Iladriana, Severiana, Antoniniana. (Eckhel, Doct. I'el., 111., 'Tarsus.') The Tarsians, according to Strabo, excelled in quickness of repartec and every kind of ready wit; and their sehools of philosophy were not less celebrated than those of Athens and Alexandrin. The chaef among the Stoies were the two Athenodori; among the Academicians, Nestor. Athenæeus (v., 2lō, ed. Casaub.) speaks of Lysias, an Epicurean, who was tyrant of Tarsus at some. time. The coins of this eity inforin ins of its relations with Cilicia and the ndjacent provinces. The inscriptions koinos kiaikias, on a decastyle temple; folnoz ton TPIQN EMAPXION, referring to the games common to the three provinces of Isamria, Caria, and Lycaonia, are to he found in Mionuct, Recucil des Medailles, iii. That it was a metropolis appears from an inseription on a coin, NHtponoaeas Trxil, and from the testimony of Strabo; and Appian's statentent that it was a free city is confirmed by the title eaeyeepa. St. Paul was a native of this place. (Acts, xvi. 37 ; and xxii. 23-29.) Other interesting types and inseriptions occur on the coins of Tarsuls. On those of Septimius Severus there is Ebbuphia oaymia emiNEIKIA, recording his victory over Pescennius Niger in Cilicin. Jnpiter Nicephorus, Apollo, Hercules engaged in several of his labours, Perseus with the harpa, are frequent types, and confirm the testimony of Dion Chrysostom (Urat., 33,20), who mentions these annorg the chiel deities of the place.
The figure of Triptolemus, the reputed founder, also oceurs; and the name BOHfOr, referring perhaps to the demagogue of that name. The imperial series extends as low as Gallienus, and contains some silver coins, a proof of the great wealth and importance of Tarsus. In the Synecdemos of Hierocles, Tarsus is placed in the Provincia Ciliciar Prima, and styled Metropolis; Constantine Porphyrogennetns (lii). ii., Them. 13) places it in the Theme of Selenceia, and adds, that it was an important ontpost for the Arabs. It had been seized by them during the early times of their empire, and had been strongly fortified by Harun al Rashid, whose son and suceessor Al Manum, was buried there, A.D. \&33. It was recovered ly Nicephoros Phocis, the shecessor of Constantine Porphyrogennetus, after a great resistance. (Leo Diacon., iv. 3, \&e..) Elbn Haukal, an Oriental geographer, who wrote in the tenth centory, thus descrihes it:- Tarsous is a considerable town, with a double wall of stone. The inhabitants are raliant men, horsemen, and fond of warlike aclievements. It is a strong and pleasant place. Frons it to the horders of Roum are many hills and mountains of diffent ascent. They say that in Tansous there are above a thonsand horsemen; and in all the chief cities of Islaur, such as Scistan and Kirman, and Pars, and Khuzistan, and Irak, and Mejaz, and Egypt, there are inns, or public places, appointed lor the people of this Lown.' (Ouseley's Translation,]). 4(i.)
Tarsis was afterwards retaken ly the Aralas, bot it was wrested from them by the Crusaders, onder the cominand of Tancred, the nephew of lBoenond, who resigned lis conquest to Balhwin, afterwards count of Edessa. (Guibert de Nogent, llistoire de la l'remiére Croisade, iii: 108 ; Guizol, Mem. relat. a l'Hist. de lirance, ix.). William of Tyre describes it at this lime as a metropolis of Cilicia, with suffragan towas, and a propolation of Greeks and Armenians, much oppressell by the Arabs. Albert d'Aix says that it was populous, and well fortified. In the
twelfth century Benjamin of Tudela speaks of it as the limit of the Greek empire (i.58, Asher's translat.) ; and in the thirteenth, during the eallphate of Mostazem, the Arabs attempted to recover Tarsus, but failed. (Abulpharagius, p. 160, cd. Pococke, Oxon., 1673.) It was finally taken by Mohammed II., in 1458. (Von Hammer's Geschichte dess Osmanischen Reiches, ii. 35.)

Very fow remains of the antient city of Tarsus exist ; at the north-west end of the antient town is part of an old gateway, and near it a very large mound, apparently artificial, with a flat top, from which is an extensive view of the adjacent plain: on an eminence to the south-west are the ruins of a spacious circular edifice, probably the gymnasium. Lucas, who visited it in 1704, only noticed one inscription, which he gives (i. 271-2, Amster., 1714). For the probable situation of the tomb of Julian, see Rennel, Western Asia, 88, \&c. On a rock three or four leagues from Tarsus is a fortress, called the Castle of Giants. Kazalu, the port of Tarsus, is now about twelve miles distant, and is closed up by a sand-bar. (Beaufort's Survey of Curamania, 276.) The population of Tarsus is about 6000 , chicfly Greeks and Armenian Christians, governed by a Moosellim: its site is nunhealthy. For further information, see Michaud and Poujoulat's Correspondence d'Orient, vii., 146.
TARTA'GLIA, NICHOLAS, a learned Italian mathematician, who was born at Brescia about the beginning of the sixtcenth century. When he was six years of age his father, who followed the humble occupation of a messenger, or carrier, died, leaving him in indigent circumstanees, and without education. Eren his family name is unknown, and that which he bore (designating one who stammers) was given him in derision by his young companions in consequence of an impediment in his speech arising from a wound which he received on his lips from a soldier, when the French army under Gaston de Foix relicved Brescia in 1512.

No account has been transmitted of the means by which Tartaglia obtained a knowledge of the rudiments of science, and it is probable that he owed but little to a preceptor. His own exertions, aided only by a mind endowed with the power of readily comprehending the processes of mathenatical investigation, enabled him at length to attain the highest rank among the geometcers of his time. Having passed several years as a teacher at Verona and Vicenza, lie was appointed professor of mathematies at Brescia, and in 1534 he removed to Venice, where he held the like post till his death, which took place in 1557 .

Tartaglia wrote on military engineering and on natural philosophy, but it is on his talents as an algebraist that his fame principally rests. In that age it was the custom for mathematicians to send difficult propositions to each other for solution, as trials of skill; and in the work entitled 'Quesiti ed Inventioni Diverse,' which Tartaglia published in $15+6$, there are contained some interesting accounts of the circumstances connected with the algebraic questions which he had received and answered. Among these are his investigations relating to equations of the third degree; and the solutions of two eases, in which both the second and third powers of the unknown quantity are involved, are shown to have been discovered in 1530, on the occasion of a question proposed by a person who kept a school at Brescia: Tartaglia states also that, in the year 1535, he found out the solutions of two equations, in which the first and third powers of the unknown quantity enter without the second, while preparing himself for a public contest with Antonia Maria Fiore, who then resided at Venice, and who had challenged him to a competition, in which taelı was to solve as many as he could of thirty questions to be proposed by the other. It is added that Tartaglia, in two hours, answered all those of his opponent without reccising one solution from the latter in return.
In 1033, Cardan, who lad been informed of the discoreries of Tartaglia, applied to the latter for the solution of cerrain questions which le proposed, in the hope of obtaining from hin a knowledge of the processes which he employed in obtaining the roots of equations of the kind just neentioned. The application was made at first through a bookseller, and atterwards by letter; but Tartaglia, who, by the possession of his secret, enjoyed great advantages over the other mathematicians of the time in resolving the questions which were proposed to him, declincd making any communication by whicli his method might become
publicly known. Though disappointed in these attempts, Cardan soon afterwards succeeded, by a promise of introducing him to an Italian nobleman, wbo had the reputation of being a great patron of learned men, in induclng Tartaglia to make a visit to hlmself at Milan: the latter, while there, yielded to the entreaties of his host, and having exacted a promise of inviolable secrecy, gave him a key to the rule which he had discovered. Cardan immediately found himself embarrassed with what is called the irreducible case, in which the expression $\frac{1}{4} \mathrm{Q}^{3}-\frac{1}{27} \mathrm{P}^{3}\left[\mathrm{I}_{\mathrm{R}}\right.$ reducible Case], entering into the value of the unknown quantity under the sign of the square root, is negative, and he applied to Tartaglia on the subject: the latter however declined giving a direct answer to his inquiry, being himself unable to conquer the difficulty; in fact the solution of the equation in this case is even now usually obtained by the aid of trigonometrical functions.
In the work of Tartaglia above mentioned there is an geeount given of a dialogue which took place in 1541 between himself and a Mr. Ricliard Wentworth, who then resided at Venice, and to whom it appears that Tartaglia had given lessons in mathematics. On being pressed by that gentleman to give him the rules for the solution of equations coutaining the second and third powers of the unknown quantity, the Italian mathematician declined doing so, on the plea that he was about to compose a work on arithmetic and algebra, in which the rules, he said, were to appear.

In 1545 Cardan published his work' entitled 'Ars Magna,' and, in direct violation of his solemn promise, gave in it the rule for the solution of the cubic equation containing the first and third powers of the unknown quantity. He does not assert that he is the discoverer of the rule, but observes that it was first found out about 30 years previously by Scipio Ferrcus, of Bologna; and adds that it had since that time been independently discovered by Tartaglia. The publication of this work produced, as might be expected, the most animated remonstrances from the man who thus felthimself seriously injured and aggrieved: Tartaglia however revenged himself in no other way than by sending challenges to Cardan and his disciple Lewls Ferrari, to hold with him a disputation on mathematical subjects, by which the public might be judges of their several merits. The discussion actually took place in 1540, in the church of Santa Maria, in Milan, between Tartaglia and Ferrari ; but during the sitting, on the former pointing out an error which had been committed by Cardan in the solution of a problem, the people, who appear to have taken the side of their townsman, excited a tumult, and the assembly broke up without coming to a decision. Tartaglia has received no more justice from posterity than he experienced from his cotemporarles, and the formula for the value of the unknown quantity in such equations is still designated Cardan's rule. It must be admitted however that Cardan was the first who published its demonstration.
The works of Tartaglia, all of which werc published at Venice, are-'Nuova Scienza; cioè Invenzione nuovamente trovata, utile per ciascuno speculativo Matematico Bombardiero, \&c., 1537: this is a treatise on the theory and practice of gunnery, and it was translated into English in 1588. 'Euclide, diligentemente rassettato,' \&ec., 1543: this is said to be the first Italian translation of Euclid. 'Archimedes Opera emendata,' \&cc., 1543. 'Quesiti ed Invenzioni Diverse,' 1550 : this is the work above mentioned, and it is dedicated to Henry VIII. of England: it contains the answers to questions which had been proposed to Tartaglia concerning mechanics and hydrostatics; and to one of the books there is a supplement concerning the art of fortifying places. 'La Travagliata Invenzione, ossia, Regola per sollerare ogni affondata Navc,' \&c., 1551 ; 'Ragionamenti sopra la Travagliata Invenzione,' 1551; 'General Trattato de' Numeri e Misure,' 1556-1.560; 'Trattato dl Aritmetica,' 1556 ; 'Descrizione dell' Artifiziosa Macchina fatta per cavare il Galeone,' 1560 ; 'Archimedis de Insidentibus Aqua Librl duo,' 1565; 'Jordani Opusculum de Ponderositate,' 156\%. A collection of his principal works was published in 1606.
TAlitan. [Weaving.]
TARTAR. [Potassium.]
TARTARIC ACLD. This acid was first obtained in a separate state by Schecle; it exists in several vegetable
products, but principally in hi-tartrate of potash, which is nsually called cream of tartar, s salt which is deposited from wine.
The tartaric acid of this salt is olitainod first by converting the excess of $i t$, one half of it, into tartrate of lime by the addition of chalk, and the otherhalf into the same salt by ineans of chloride of calciun; the resulting tartrate of lime is decomposed by sulphurie acid, by which sulphate of lime is precipitated, and the solution of tartaric acid thus obtained by single elective affinity and decomposition is evaporated, and ergitals of the acid are deposited on cooling.

The properties of tartaric acid are, that it is colourless, inodorous, and very sour to the taste; it occurs in crystals of a considemble size, the primary form of which is an oblique rlombic prisin; it suffers no change by exposure to the air; water at $C 0^{\circ}$ dissolves about one finh of its weight, and at 212° twice its weight; the solution acts strongly on vegetable blue colours, turning them red, and it becomes mouldy and decomposes when long kept; alcohol dissolves it, but more sparingly than water. The crystals, when heated a little above the boiling-point of water, melt into a liquid, which boils at 250°, leaving on cooling a semi-transparent mass, which is rather deliquescent; if it be inore strongly heated in a retort, tartarie acid is decomposed, and converted into pyrotartaric acid, accompanied with some other products. When very strongly heated in the air, a coaly mass is procured, which is eventually dissipated. Sulphuric acid acts upon and decomposes tartarie acid, with the production of acetic acid; by means of nitric acid it also suffers decomposition, and a portion of its earbon, by acquiring oxygen from the decomposed nitric acid, is converted into oxalic acid.

Solution of tartaric acid acts with facility upon those metals which decompose water, as iron and zine; it combines readily with alkalis, earths, and metallic oxides; and these salts are called tartrates. For an account of the more inplortant of these we refer to the respective bases. Tartaric acid has a remarkable disposition to form double salts, one of the most distinct and remarkable of which is the tartrate of potash and soda, which has long been enployed in medicine under the name of Rochelle Salts.
Tartaric acid free from water, in which state it may be obtained by exposure to a heat of 302° in an oil-bath for some time, consists of

Two equivalents of hydrogen	2 or 3.
Four equivalents of carbon	$24 \% 36.4$
Five equivalents of oxygen	$40, ~$

In the crystallized state it consists of -
One equivalent of anhydrous acid 66 or 88
One equiralent of water. . 9 ., 12

Equivalent

75 100
By the action of heat, so as partially to decompose it, tartaric acid is converted into tartrelic acid and tartralic acid, which are not of sufficient importanee to require deseription.
Tartaric acid is largely employed as a discharge in calico-printing, aud for making what are called sodaic jowders, which are extemporancous imitations of sodawater.
TARTARIC ACID is entirely confined to the regetable kingdon, and is found free or uncombined in tamarinds, in the unripe grape, and in pepper; and in combination in tanarinds, ripe grapes, gooseljerries, nulberries, squill, dandelion, chenopodinm vulvaria, in jarious species of pines, and as fartrate of lime in the fruit of the Rhus typhina. For medical purposes it should be remarkably pure, when it is without odour, but makes a powerful acid impression ou the organs of taste. In small doses, properly diluted, it acts as a refiscerant, and is of much value in tevers, particularly mucous, and in biliary remittents. It excites the appetite of persons in whom the stomach is in a healthy condition; and those who, by long indulgence in stimulating food and drinks, experience loss of appetite, painful digestion, constipation, with a yellow and altered countenance, and diminished muscular power, find in tartaric acid a remedy of singular power. For this state of system a few crystals should be dissolved in two small tumblers, and drank in the momlng fasting, an hour intervening be-
tween the tumblers. A few grains are sufficient for each tumbler, as when made too strong it excites irritation, followed lyy jurging. Occasionally it disturl)s the nervous system in a distressing way, so that patients refuse to continue its use. This plan has in many instances reclaimed individuals addicted to habitual intoxication, to which they have recourse to relieve a painful feeling of sinking and creving of the stomuch, which is effectually removed by the acid draught. This is also useful after an altack of delirium bremens.

Tartaric acid enters the circulation, and diffinses itself through the whole bods, and may be recognised in the urine, generally in combination, often with line. Tartaric acid is much used to decompose alkaline carbonates, and form effervescing draughts, the employntent of which requires eaution. [ANTAchus.]
TARTARS, or, more correctly, TATARS (Khazars and Kiptshak). The name Talars once designated a great number of different nations in Middle Asia and Fastern Europe, which, according to general opinion, were of one common origin. Careful researel however into their history, language, and ethnographical relations, has shown that the name of Tatars never designated any particular race, athough it was at first restricted to certain tribes, among whicls there was no differenee of race. It has however gradually become a collective name, under which are comprehended different nations of Mongol. Turkish, and even liunish origin. The numerous errors and the inextricable confusion in the earlice historians who have written on this subject can ouly be cleared up by going back to the historical origin of the name of Tatars.

As early as the beginuing of the ninth century, the Chinese knew a people called Thta, who lived to the east and south-east of the lake of Baikal, lowards the upper part of the river Amur. They were also called Tatooll, the Chinese pronunciation of Tatar, and they are probably identical with the Tailljod of the Mongol historian SanangSetsen. In the middle of the tenth ecntury the Tatars were divided into three tribes, the White, the Wild, and the Black or Water Tatars, the last of which lived about the sources of the Amur, and were subject to the White, until Insugay (Yessugay), the father of Genghis Khan, a prince of the Water Tatars, subdued the White Tatars, in the middle of the twelfth century. He then united the Wild and all the other tribes of his race; and his son Genghis Khan gave to these warlike nations, the general nanie of which seenis to have been Bede, the name of Köke-Mongols, thut is, the Blue Bold, or the Celestial Mongols. A particular circumstanee made the change of their name agrecable to lis subjects. The word Tatar signifies in the Mongol language 'a tributary people,' and, in consequence, could not be agreeable to nations which had not only censed to be tributary, but boasted of the noble title of ilongols. (Sínang Setsen, Ifistory of the Enstern Mongols, ed. J. J. Schmidt, p. 71 , and notes 21 and 22 ; Pallas, Summhung Historischer Nurhrichten über die Mongolischen l"üherschaften, vol. ii., p. 429 ; Schmidt, Forschungen im Gebiete der l'ölker Mittel Asiens, p. 59.)
When Genghis Khan sent his son Tushi Khan to conquer the west. all the Turkish nations which were seattered over Middle Asia, fron the sources of the Amur to the Caspian, were suhjugated. and thus became Tatars, that is, tributary subjects of the Mongol empire. Eastern Europe, inhabited by other Turks and numerous mations of the Finnish race, shared their fate; the tributary inhabitants were obliged to tight under a Mongol chief; and the names of Mongols and Tatars were not only confounded, but the latter soon gained the ascendency, because it denignated the great majority of Mongol subjects. In 12:23, when the Mongols made their first invasion of Russia, they were generally called Tatars; and when Batu, the graudson of Genglis Klann, after having laid waste Russia and Poland, appeared on the frontier of Gernany, the emperor Frederie II. summoned the princes to tise against the Tatars. The battle of Wahlstat1, or Lieguitz, was fought on the 9th of April, 1211, in which the Monerols, although they defeated a feehle army of Poles and Germans, were so struck with the heroic resistance of the Teutonic knights, that they did not advance any farther. This battle was for some time generally called the Tatar Battle: seven Silesian nobles who surviyed that day had and have still Tatarcaps in their armorial bearings; and another Getnan knight, whose deseendants are still living, lad his name
changed in commemoration of the day; but his new name was not Mongol, but Tader. A further proof of the great numerical preponderance of the tributary nations over the true Mongols is, that an army of 660,000 men, with which Batu occupied Russia and the Ural country, contained only 160,000 Mongols; while 500,000 belonged to the subdued Turkish, Finnish, and Slavonic nations. (Hammer, Geschichte der Goldnen Horde in Kiptshak, p. 114, 115, 141; Karamsin, iui., p. 275.)

These well-known facts, which might easily be augmented, are sufficient to prove that the name of Tatars was first known in Europe in its etymological signification; that it got a political signifitation, and was applied to nations which were not of Mongol origin ; and that it had lost all precise ethnographical signification even before it reached the West. Tatars became a general name for any nomadic and barbarous hordes which invaded Europe from Western Asia, and thus it appears why in Sweden the gipsies were once known under the name of Tattars, and why in the duchy of Holstein they are still called either by the name of Zikhainers or by that of Tatars. (Benzelius, Epitome Commentariorum Moysis Armeni, Stockholm, 1723, 4to., p.89.)

The incorrect orthography Tartars occurs as early as the appearance of the Mongols in Europe, and was probably introduced by superstitious monks and writers, who, struck with the seeming analogy between Tatar and Tartarus, believed them to have come from the infernal regions. This at least is more probable than the opinion that the name Tartars was introduced by Saint Louls, who, in a letter to his queen Blanche, about the approaching danger of the Tatars, speaks of them in the following terms:- ${ }^{\text {'This di- }}$ vine consolation will always exalt our souls, that in the present danger of the Tartars either we shall push them back into the Tartarus whence they are come, or they will bring us all into heaven.' (Klaproth, Asia Polyglotta, p. 202.) These words rather prove that in King Louis's time the name and its origin were known.

If the empire of Genghis Khan had lasted longer, the name of Mongols would certainly have prevailed over that of the tributary nations, in the same way as that of the Franks supplanted the names of the Gauls, the Romans, the Goths, and the Burgundians. But the name of Mongols disappeared in Europe, and was no longer heard of except in the remote deserts of eastern Asia. The old name of Tatars however lasted as a designation of the different inhabitants of the empirc of Kiptshak, which was founded by the descendants of Genghis Khan on the frontiers of Asia and Europe. There the princes only and part of the nobles were Mongols, and they were sometimes called so by those foreigners who werc able to perceive the ethnographical differences among the inhabitants of Kiptshak (Treaties between Venice and the Golden Horde, cited below), but the remaining population was composed of Turkisli and Finnisli tribes, of which the former were the more numerous. The Russians, who were under the dominion of the Mongols for above two centuries, knew the Finnish tribes by the name of Tshudes, and their application of the name of Tatars exclusively to the Turks of Kiptshak gave rise to the present signification of the name. The other nations of Europe were less able to make such distinctions. Thus, for instance, Olcarius, the sccretary to the dukc of Holstein's cmbassy to Persia, says, in his 'Travels,' that Moruma (Murom on the Oka) was "the first town of Tartary on the way from Moscow, and that at Wasiliyrod, at the entrance of the Sura into the Wolga, began the country of those 'Tatars who are callcd Tsheremisses.' But Murom is situated just at the entrance of the country of the Mordwins, one of the oldest Finnish tribes known to history, and the Tshermisses are likewise of Finnish origin. Nevertheless Olcarius calls them Tatars. He observes however that their language had a particular character, and resembled neither the Turkish nor the Tatar language, an observation which proves that Tatar has here two meanings: it first designates the inhabitants of the conquered territory of Kiptshak (Tartary), and then in a narrower sense the Turkish inhabitants of that country.

At present the name of Tatas is still given to the 'rurkish inhabitants of southern and eastern Russia, and as their origin is well known, there is no more reason for dropping the name for that of Turks, than there is for retusing the French their name, and calling them Gauls. It is nevertheless an important fact that the Tatars call
themselves Turks, and feel highiy offended by being called Tatars, a name which in their idiom signifies 'robbers.' This fact refutes the hypothesis of Klaproth, who believes that the subjects of the Mongol empire adopted the name of Tatars as a title of honour, on account of its being the antient namc of the chicf tribe of the ruling nation. Klaproth's opinion becomes also entirely untenable if put in connexion with a fact stated by Sherefeddin and Arabshah, who tell us that Timur, who, as a descendant of Genghis Khan, undoubtedly belonged to the Mongol race, in a letter to Báyazid, calls himself a Turk, upbraiding this sultan of the Osmanlis with being a vulgar Turkoman. Can we believe that the subdued nations should have distinguished themsclves by an ignoble name of their masters, while these, at the same time, made a boast of that of their Turkish subjects! It must be repeated that the tributary nations were called Tatars by the Mongols and by foreigners, and disliked the name on account of its meaning; and that the ethnographical signification of it was supplanted by the general and glorious name of Mongols. [Turks.]
This account of the origin and the gradual diffusion of the name Tatar is more or less different from those given by Klaproth, Abel Rémusat, and Schmidt, but it is founded entirely on facts the knowledge of whieh we owe to these authors, and especially to Julius von Klaproth. Besides the above-cited works, the readcr may consult Schmidt, in Hammer, Fundgruben des Orients, vol. vi., heft 3; Klaproth, Beleuchtung und Widerlegung der Forschungen des Herrn Schmidt ; Abel Rémusat, Recherches sur les Langues Tartares; Abulghasi Bayadurkhan, Histoire Généalogique des Tartars, Leyden, 1726, 8vo.; Ahmedis Arabsiadae, Vita et Res gestae Timuri, cd. Manger, ii., cap. 19 ; Shercfeddin Ali, Hist. de Timour Bey, trad. par Pétis de la Croix, l. v., c. 14.)
The above-mentioned Turkish nations were known in history long before they were called Tatars. Part of them founded the empire of Khazaria, between the Dnicpr and the Yaik.

The Khazars, the Ghysser or Ghazar of Moses of Khorene, inhabited in the time of this Armenian author, in the fifth century A.D., the country north of the Caspian Sea; and in the sixth century they penetrated into the countries north of the Kuban and the Black Sea, where they founded a powerful empire. Among the Byzantine historians, Thcophanes is the first who mentions them. As carly as A.D. 625) they allied themselves with the emperor Heraclius, and in conjunction with him attacked Anushirwan, the king of Persia, and from that time were in continual political intercourse with the Byzantine emperors, who were always anxious to maintain peaceful relations with this people. Contemporary historians state that the Khazars consisted of two principal races: one of them was little, ugly, with black hair, and probably of Finnish origin; the other was tall and handsome, and spoke a Turkish dialect: many other races however were mixed up with them, so that Leo Diaconus justly calls them a 'colluvies gentium.'
(Ouseley, Oriental Geography of Ebn Haukal, pp. 185190; Frähn, Veteres Memoriee Chazarorum ex Ibn Toszlano, \&.c.; Mémoires de l'Académie de St. Pétersbourg', vol. viii.; Theophanes, iii. 28 ; vi. 9.)

Their kings were called Chagan, or more correctly Khaghan, which was the name of the old Mongol kings a thousand years before the appearance of the Khazars. In the time of the emperor Constantinus Porphyrogenitus the Khazarian empire cxtended in the south to the Black Sea, and contained the northern part of the Crimca, which preserved the name of Khazaria until the thirteentl century, and the island of Taman, then inhabited by Goths; on the Caucasian isthmus it was separated from the Alans by the present river of Manytsl. The western coast of the Caspian Sea belonged to it as far as Derbent in the prescnt country of Daghestan, where they were contiguous to the Arabs. The eastern boundaries of it were probably the river of Yaïk or Ural. On the north it extended even beyond Kasan, and on the west it was bounded by the Dniepr. In the eighth century the Khazars made the Russians of Kiew for some time tributary, as well as the Sewerians, the Radiwitshes, the Viatitshes, and other Slavonic nations. Constantinus Porphyrogenitus recommends his son to maintain an alliance with the mighty Khazars, but he severely blames his predecessor Leo, who had assumed the imperial dignity
P. C., No. 1497.

VoL. XXIV.-L
acminst the will of the pmitriarch, and who had crowned lis disobeclicuce against the ceelesinstical authority by marrying the daughter of the Khaghan. 'For,' adds this historian. 'the k hazans, far from being orthodox Christians, are no Christians at all, but impious heathens; and Len was punished for his erime by a carbuncle in his face, of which he died young, afler severe sufferings.' " Cliristianity indeed, although some feelle traces of it appear in Khazaria as early as 740, was not adopted by the najority of the Khazars. On the contrary, their kings were Jews, and many Jews had founded great families in that country.
However strange this circumstance may appear, it is an undoubted fact. According to Frähn, one of the best writers on the Khazars, the relimion of Moses was propacated among this people by the Jews, who were expelled from the Byzantine einpire at the end of the eighth century. The princes, states !bn Hankal, were obliged to be Jews, but the nine ministers of the Khaghan might be Jews. Christians, Molammedans, or heathens, a faet from which we must conclude that there was great toleration in Khazaria. In the subsequent ceuturies we neet with sonse Christian prinees, such as Georges Tzuda, in 1016, but the Khachan Cosro (Khosrew), who reigned about 1140, was a Jew who had been converted to the religion of Moses by the rabbi Isaak. Sangarns, as is stated by the rabli Jehndah, in his work eited below, whieh is dedieated to that king.
(Ibn Ifaukal; Massudi, in Silvestre de Sacy, Chrest. Arabe; IIerbelot, Biblinthèque Orientale, suh voee 'Khozar;' Frähn; Lehrberg. Untersuchungen zur älteren Gcschichte Russlands; Karamsin and Bulgarin, Hist. of Russia; Mïller, Der Ugrische Volksstamn: Jolh. Buxtorfius, fil., liber Cosri, Basileae, 1660, 4to. This last book was originally written in Arabie, by Jehudah Levita, and was translated into Hebrew by Jehudah Abn Tybbon, both Spanish rabbis.)
The Khazars were very different from those barharous Mongol tribes which an erwards invaded Europe. Although many of them led a nomadie life, they were generally settled in villages and towns, which they embellished with magnifieent buldings erected by Arabian and Byzantine architeets, and the ruins of which still attest their former splendour. Ignorant historians have asserted that neither navigation nor commerce flourished among them, but there are numerous faets which prove the eontrary. In the first place, the number of Jews and the toleration that existed in Khazalia may be considered as certain inclieations of the flourishing sfate of its conmeree. The Khazars were renowned for their fine earpets, which were prineipally manufactured in their capitat. Itel, the present Astrakhan, which was also called Bilándsher and Nihije, Seunend, with the surname of Serail Banu, or 'the palace of the lady,' now Tarku, Old Kasan, and Sarkel, a fortress on the Don, were also commereial towns. Honey, skins, leather, fius, fish, salt, copper of the Ural, were the goods they exchanged in the sonthern conntries for silk, wines, spiees, jewellery, which they carried to the inhabitants of the north. Gold and silver vessels, which were fabrieated in India in antient times, have been found in our own days at Perm on the Kama, in the north-eastern corner of Russia. The Wolga with its tributary rivers and the Dwina were the commerelal roads by which they communieated with the kinglom of Perm, the Biarnia of the old Seandinavian and Anglo-Saxon writers, and with the Norwegians, who, anter having doubled North Cape, anehored in the mouth of the Dwina. This route ceased to be used when the Tatars of Kiptshak stopped all intereourse aeross castern Russia, and was not re-opened before the end of the sixteenth century, when Jeukinson, an Englishman, discovered it again. Another road followed the Dniepr as far as Orkha, and, reaching the Duna in the west and the Wolkhow in the north, brought them into communieation with the Baltic, and with Julin, the famous eity of the Wendes. The Arabs took a considernble part in this eommeree, and their presence in these northern remions is altested not only by their geographers, sueh as Ibn Foszlan, Massudi, Shemseddin, and Yakut, but also by numerous Kufe coins which have been found in Seandinaria, and in

- Conmanthne confocunde swo of his predecensom. The emperor Ylavius Conetaollemp, a meor heretlo, married Irege, the daughter of tho Khagban. and diad in 7is; their mon Flavlos Leo, surnamed Chazarul, on arcount of his malermal cotkin. Whe a alill grater lifretic, and died In 78D. of carbmaclen in his fuce in hilo thitrtella year. (Hendurius. Cum in onp. 13, Do Admin. Imp.;

the vast conntry between the Baltic and the Black and the Caspian seas. In short, in the preriod from the seventh 10 the eleventh century, the Khazars and the Arals followed cerfain commereial routes in Russin, the natural advantuges of which were so obvious, that the emperor Constantinus I'orphyrogenitus, overlooking entirely the tract between the "pper part of the Dniepr and the sources of the lovat, believed that the Russians of Nemomarda, the present Novirorod on the Wolkhow, sailed with their ships directly to Kiew on the Dniepr. (De Adm. Inip., eap. !1.) The present canal system of Russia, which is Eenemily regarded as the realization of an idea of Peter the Grent and flekd-narshal Munnieh, is founded on that systen of conmercial intercourse whieh had been carried into effeet by the Khazars a thousand years before.

The power of the Khazars in Europe was broken by the Russians in 1016, who made their Khaghan Gcorges Tzula a prisoner; but in Asia it continued for two eenturies lonrer, mint it gradually sank under the repeated attacks of the Pechenegues, the Uzes, the Bulcars, the Kumanes, the Yasses, and their very nane had disappeared. When, in the beginning of the thirteenth century, castern Europe was overwhelmed by the greatest of all eonrpuerors, fentghis Khan. (Constantinus Porplyrogenitus, De Afmmistrandn Imperio; Nestor; Frühn; Lelırberg; Nov* Aciu Acad. Petropolitanue, vol. iii., p. 40 ; Alemoires de l.Icesdémio de St. Petersbourer, vol. i., 1.527 ; vol. ii., p. 297 ; vol. iii., p. 73 ; vol. viii., p. $5 \frac{1}{7}$; IIillmann, ficschichte des Byzantinischen Hendels; Modernch, Dessription Iconomique du Gouvernement de Perm; Deseription of Perm, in Hermann, Statistische Annalen; History of the Commerce of Russia, in Storel,, Gemälde des Russischen Reiches, vol. iv.; Krestinin, Geschichte der Sladt Archangel; Lelewel, Numismatigue, seet. 'Poland;' Ilanway, Ihstorical Account of the British Trade orer the Caspian Sea; Hakluyt, Navigation, with regard to Jenkinson and Chancellor.)

Tutars of the Golden Horde, or of Kiptshak. While Genghis Khan was carrying his arms into India and China, Batu, his grandson, invaded the west as far as the frontiers of Germany, conquered the easternmost part of Europe, whieh was inhabited by Slavonic, Turkish, and Finnish nations, and compelled the prinees of Ikussia to becone his vassals. One of Genghis Khan's last acts (12.27) was to bestow upon I3atu the dirnity of a Khan or viceroy of the western conquests, which formed one of the four, and afterwards five, uluses, or under-kingdoms, iuto which the Mongol empire was divided. The new viceroy chose for his vast dominions the name of Kaptshak, more correctly Kiptshak, or 'the hollow tree,' which was the name of a warlike Turkish people who lived in the flat country between the Wolga and the Don, the name of which was Deshti Kiptshak, or 'the steppe of the hollow tree.' The narrower sirnification of this name, whicle still belongs to a district near the month of the Terek, must therefore not be confounded with its larger meaning as that of an entpire the frontiers of which varied accorling to the military success of its inhabitants. A second name of Batn's kingdom was that of the Golden Ilorde, or rather, of the Golden Camp, ordu, the eanp, having been contounded with orda, the horde. In his golden tent, whieh was at Great Serai on the Akhtuba, a brnnels of the lower part of the Wolga, Batu received the Russian prinees who were his vassals; Saython, king of Armenia; and Plano Carpini aud Ruysbroek (Rubriquis), the ambassadors of Saint Louis. king of Franee, who, while fighting against the Mohammedans in Figypt as enemies of Christ, courted the friendship of heathen Tatars as useful in lis schemes against. Germany. IBatn founded the town of Great Serai, his capital; Seraï, called antwards Baylyit-Serai, in the Crimea; and New Kasan at a short distance from (OH Kasan. IIe died in 127\%.

Anter the short reign of Sertak and Ulaghji, the eldest and the youngest sons of Batu, the throne was orenpied by their paternal uncle Berke, who seized the governnient in spite of the right of the second and the third sons of lis late brother. Berke was the first khan of Kiptsliak who was converted to the Moliammedan religion, and he showed himself so zealous that he ordered all persons to be put to death who refused to follow the Korán. 'Ihis happened before 1238 , and thus the Islam took root on the banks of the Wolga and in the snowy cleserts of Siberia. In 1260 Berke sent Noghai, his greatest captain,
against Hulaku, the Mongol govemor of Persia, who aimed at independenee, but was defeated on the 19th of January, 1203, in a bloody battle on the banks of the Terek. and had a considerable part of his army drowned in retreating across the frozen river. It was in the same year that Marco Polo eame to the Golden Camp, where he stayed for a whole year. Berke, who is generally represented as a prince of great merit, and whose influence in Asia Minor was sensibly felt by the Byzantine emperors, died in 1266, and was succeeded by Mengku Timur, a grandson of Batu. This prince ceded to the Genoese Kafla in the Crimea, a town which was then one of the great markets where the Tatars used to sell the immense number of prisoners that they made in Russia and Poland, as slaves to the southern nations, and especially to the Sultans of Egypt, who there recruited the body of the Mamluks. He sent commissioners into all the subject Kussian towns, who sold as slaves all who did not pay the heavy poll-tax imposed upon them by the Tatars. This proceeding caused such great mischief to the cominerce of Old Novgorod, that the Germans of Lïbeck and otlier Hanseatic towns, in order to save their stores, sent ambassadors with rich presents to Mengku Timur, who reached the Golden Canip in 1269. Mengku Timur Khan died about 1283. His successors, Tuday Mengku and Thalabugha, ravaged Hungary and Poland, threatened Gerinany, and kept up diplonatic relations with France. (Abcl Rémusat, Mémoires de l'Acad. des Inscript. et B. L., vol. vii.)

The following khatl was Toktay, whose reign is inportant in many respects. Under him, paper money, an old invention, afterwards imitated in Persia, was introduced into Kipstshak under the name of Jaw, many years beforc any such thine was known in Europe. (J. von Klaproth, Origin of Puper Money; Von Hammer, p. 222.) Toktay owed his elevation to the throne to Noghaï, above inentioned, a powerful under-khan of the southern Turks of Kiptshak, whu belonged to the house of Genghis Khan, and who was married to Euphrosyna, a natural daughter of the emperor Michael Palaeologus. The power and the in-
flucnce of Noglai were so great, that he would perhaps have made himself master of Kiptshak, if jealousy had not arisen among his sons and led to a civil war, in which Toktay took anl active part. After a struggle of seven years, Nogliai was defeated, and died of a wound in 1235, but lie left his name to lis tribes, who from that time to the present day liave been, and are stili known under the name of Tatars Noghaïs, or Nogay Tartars. Toktay Khan, who died in the yeur 1313, abandoned the Islam and adored idols and the stars, but he never showed limself intolerant to other believers. He was narried to a natural daughter of his ally the emperor Andronieus, who followed the poliey of some other Byzantine emperors, who gave their legitimate princesses to Christian princes, while they abandoned their natural daughters to Turks and Tatars, who did not set much value on the difference between legitimate and illegitimate children.

Usbeg, the shecessor of Toktay, a boy thirteen years of age, found the Russian prinees disobedient: they delayed to take the oath of vassalage until the young khan peremptorily ordered the first of them, Michacl, grand-duke of Moscow, to appear in the Golden Camp. Miehacl immediately went, justificd himself, and was dismissed without punishment, but Usbeg scized him some years later, and, after laving punished limi for some months, ordered him to be put to death. This liappened (in 1319) precisely a year after the pope had writion a letter to Usbeg, in which he thanked him for the kind protection
that he had granted to his Christian subjects. (Mosheim, Ilist. Tutar. Eecles., Aypend., p. 130.) In 1327, the Tatarian Garrison of Twer hasing been surprised and cut to pieces by the Russian inhabitants, who were excited to this act of national vengeance by their prince Alexander Wassiliewicz, Usbeg Khan invaded the eountry, slaughtcred the inhabitants, expelled Alexander, and ordered Iohn Jaroslawiez, prince of Riäsan, to be executed. Alexander a!so and his two sons werc beheaded in 133.J, and their death was preceded or followed by the exccution of six princes more, among whom was Juri Danilowic\%, graud-duke of Moscow. Many common people sharel their fate, and for forty years after this bloody revelrge, peace was never agrain disturbed in Russia by any
rebellion against the authority of the Tatars. By a treaty of the 7th August, 1333, the first which was made bctween the Tatars and European states, Usbeg granted consideable commercial advantages to the Venetians of Azof or Tana. (The treaty is contained in Hammer, Geschichte des Osmanischen Reiches, vol. iii., p. 665.) Usbeg's court was brilliant. Although as a Mohammedan he had several wives, he was far from keeping them in that close confinement to which the women of the Oriental nations have always been subjected. Sitting on a silver throne under a golden canopy, and surrounded by his royal children and the nobles of his court, the gallant khan rose when one of his women entered the room, and stepping forwards, toois the hand of the unveiled lady and led her to a seat by his side. (Hammer.) One of his daughters was married to Kusun, sultan of Egypt, a native of Kiptshak. Usbeg died in 1310, and his descendants became lihans of some Turkish tribes to the east of the Caspian Sea, whiclı are still known by the name of Usbecks.
Onc of Usbeg's successors, Berdibeg (I359), murdered his old father, strangled his twelve brothers, and assumed the title of 'king of the just, the sublime support of the world and of religion.' He himself was murdered three years later, and with his death the house of Batu became extinct. The reign of all the following khans was short and bloody. Civil wars shook the empire, and Kiptshak was divided for some time into several khanats, the most powerful of which werc those of Kasan, of Astrakhan, of the Crimea, and of the Yaik, each of which claimed the supremacy: At last Mamay was successful in reuniting them for a short time. He made an alliance with Jagliello, the prand-duke of Lithuania, for the purpose of subjugating the different Russian princes, who had become less dependent on Kiptshak in proportion as its strength was undermined by war and rebellion. Dmitri, the grand-duke of Moscow, had just assembled his troops, when, on the 8th of September, 1380, he was attacked in the plain of Kulikow, by 700,000 (?) Tatars and Iithuanians. (Karamsin, v., p. 31; and all the other Russian historians.) The Tatars were defcated with dreadful slaughter; 200,000 (?) of them were left on the ficld, and Mamay fled to Kaffa in the Crimea, where he was treacherously murdered. For the first time during a lundred and forty ycars, a hope of national independence consoled the IRussians.
Toktamish Khan, the son of Urus Kkan, who was the founder of the dynasty of the White Horde, avenged the defcat of Kullikow. In 1382 le took Moscow by storm, burnt the town, and ravaged Russia. He renewed the treaties with the Venetians and the Genoese, and Kiptslaak was in a fair way to recover from all its ealamities, when Timur, or Tamerlane, the conqueror of Asia, appeared on the banks of the Yaik. Toktamish was twice defeated by Timur, and in a third battle on the banks of the Kama, north of the mouth of the Bielaya, which happened on the 18th of June, 1391, his whole army was slaughtered. The khan of Kiptshak, lowever, did not despair: he appeared in the field with a new army, and advanced to meet Timur. The encounter took place near the mouth of the Terek, on the 15th of April, 1395; but notwithstanding their heroic resistanee, the Tatars were again defeated, and Timur's host overwhelmed Russia. Serai and Astrakhan were destroyed, Moscow was threatened, and saved by the interposition of the Holy Virgin, who appeared on the wails (20th of August, 1395), and Toktannish fled to Witold, grand-duke of Lithuania. Meanwhite Tinur had left Kiptshak, and his beys, unable to maintain themsclves in the hostile country, were driven out in 1399 by some enterprising 'ratar chiefs. One of them, Kostlogh Timur, became khan of Kasan, and the others maintained themselves in the Crinea, on the Yaik, and at Great Seraï, the khan of which assumed the name of khan of the Golden Horde, without having much authority over the others. Eneouraged by the divisions among their masters, the Russian princes paid their tribute very irregularly, and ecased to appear in the Golden Camp and to take the oath of vassalage. In 1450 Haji Ghiray was almost independent in the Crimca. From 1462 there were constant wars between the khan of Kasan and Ivan Wassiliewicz, grandduke of Moscow, who at last eonquered the whole khanat, and took the capital, Kasan, in the autumn of 1468 . During this time, Casimir, king of Poland, defeated the Southern Tatars, and when the Great Khan of Serai was bold enough to send ambassadors to Ivan to claim the
tribute which was due, the grand-luke refused it haughtily, cut otl the noses of the anbassadors, and sent them lack 112 this state to the Golden Camp. He then allied limself with Mengli, khan of the Crimea, and attacked the great klian, who was clefeated, in 1450, at the Oki, and near Azof on the Don. This was the last war between Russia and the Golden Horde. Russia, free from the yoke of foreigners, was master of Kasan; Mengli became au indepeident klan in the Crimea, and Yaghmurji in Astrakhan. The Khanat of Astrakhan was conquered by the Russians in 1044. The khanat of the Crimea, although it became a vassal state of Turkey, existed for three centuries, when it was conquered by Potemkin, under Catherine the Great. Thus the powerful kingdom of Kiptshak, the creation of Genglis Khan, became a province of Russia.

In this long struggle with the Tatars, the Russians were taught to bear chains, and to forge them for other nations. From 1210 to 1440 , two hundred and fifty Ruscian princes went to the Golden Camp and humbly knelt before the mnjesty of a Tatar king; twelve of them were beheaded. One hundred and thirty noble families of Russia and many of the common people are descended from the Tatars. Many words in the Kussian languare, several legal customs, various social usages, and articles of dress, several names of weights, measures, and coins, ceremonies at the emperors eourt, the knout itself, are of Tatar origin. The influence of the Tatars upon the Russians has never been befter characterized than by that bon-mot of Napoleon: 'Scrub a Russian, and you will find a Tatar." [Astrakias; Casar; Crimea; Turkey; Turks.]
(Hanmmer, Geschichte der Goldenen IIorde in Kiplshak; Molammed Riza, Asseb u's Sryiär (the Seven Planets); IIistoire des Khans de la Crimé, traduite du Turk par Mirza-Kasem-Bey, 1832 in 410.; Abulghazi ; DOhsson Krestinin, Geschichte der Kasanischen Zare, Petersburg, 1791; Fischer, Sibirische Geschichte, Petersburg, 1768; Decuignes, Histoire des Huns.)

TA'RTARUS (Táprapos) was, according to the notions of the Grecks and Romans, a part of the lower world, and was inaceessible to the light of the sun and to the winds. Homer deseribes it as being as far below Hades as heaven is above the earth, and as being provided with brazen gates at its entrance. (Iliad, viii. 13, \&c., 481.) He further regards it chiefly as the place in which the gods were punished. Hesiod entertains on the whole the same idea, but he adds that Tartarus is surrounded by a brazen wall and triple night; the roots of the earth and the sea hang down into it. It is the prison of the Titans. (Hesiod, Theogr., 720, \& c.) In later times Tartarns designated that part of the lower world in which the shades of the wicked were punished (Plato, De Rc Publ., p. 616; Virgil, Ain., vi. (5)-13), and the ideas then formed of it were niore awful than in earlier times. According to Virgil's description, which we may take as an example of the later ideas, the road into the lower world was divided at a certain point into two roads, the left of which led into Tartarts, which was surrounded by a triple wall and the fiery river Phlegethon, and was closed with an adamantine gate. At its outer side Tisiphone kept wateh, and at the inner side the fifty-headed hydra. Rhadamantlyys was the jndge in Tartarus, and at his command the Furies scourged the shades of the wicked. Tartarus was twice as far below the earth is heaven above it.

Tartarus was also the name of a small river in Gallia Transpadana, which is now called Tartaro. It was connected with the ladus and Athesis by the Fossae Philistinae.

TARTARY, or more corrcetly TATARY. This name was in former times given by the European nations to the country of Kaptshak or Kiptshak [TARTARS], or the three Klanats of Astrakhan, Kasan, and the Crimea [Astuakilas; Casan ; Chimea], the last of which had the special uame of Little Tatary. [Turker.] Great Tatary, on the contrary, designated the vast country between the Caspian Sea on the west, the desert of Gobi on the east, Siberia on the north, and Persia, Afrhanistan, and Tibet on the south. The greater part of it has now the more convenient name of Turkistan. [Turkistan.] The name of Tatary has entirely disappeared from geography, but it occurs frequently in the history of those regions.
(litter, Asien.)
TARTESSUS.
[Tarsimsm.]
TARTI'NI, GIUSEPPE, a name celebrated in the annals
of music, was lyom at Pisano, on the cosist of Istria, in 1692 , and educated at the university of Padua, for the profession of jurisprudence; but his love of music triumphed over his graver pursuit, and after some struggles, and several adventures of rather a romantic kind,-among which the fighting of many ducls, the marrying a cardinal's niece against her uncle's and his father's consent, and his consequent flight to a monastery; where, to aroid the effects of his eminency's resentment, lie remained during two years seereted, may be thus sliglitly mentioned, he became a professed violinist, and the founder of a school which in after-times boasted of a Nardini, a Pug. nani, a Viotti, and a luaillot among its disciples.

Tartini was also a composer, and lis productions are much extolled by a very competent judge, M. Baillot, an eminent French violinist and good critic: but he is more generally known by his writings on the art, among which Tis Tratlato di Musica scconde la vera Scienza dell'Armonia (17.3), a strictly scientific work, is still read, and was freely and ably translated and explained in 1771, by Edward Stillingfleet, under the title of "Prineiples anl Powers of Harmony, who cleared it of many of the obscurities which D'Alembert justly complained of, and by lis additions and illustrations rendered it entertaining as well as instructive. This Treatisc is partly founded on the author's theory of a Third Sound, a subject which has so long engaged the attention of all writers on acousties, and on which most of Tartini's work is built, that we liere give an explanation of it nearly in the words of the abovenamed translator, or, rather, commentator.

- Two sounds being given on musical instruments that admit of the tones being held out and strenerthened at pleasure, as violins, oboes, homs, \&c., a third sound will be heard. On the violin let the intervals $C E, C \neq \Sigma, u \varepsilon$, BG, BbG, be sounded with a strong bow, and the thirt sounds, represented by the black notes in the sul)joined example, will be heard :-

A similar result will oceur if the same intervals be sounded by two players on the violin, distant from each other about 29 or 30 feet; always using a strong bow, and holding out the notes. The auditor will hear the third sound much better if staticned exaetly between the two instruments. Two oboes will produce the same effect placed at a muelı greater distance.
'This diseovery of the Grave Harmonics, as these third sounds are called, was made so nearly at the same time by Tartini and Romien, that both seem to have an undoubted claim to be considered as discoverers. M. Romieu was a member of the Royal Society of Seiences of Montpellier. The memoir which he read before the society is entitled "A New Discovery of Grave Marmonic Sounds, whiclı are very sensibly produced from the union of Wind Instruments."

Tartini died at Padua in 170. To the Dictionnaire des Musiciens we are indebted for what relates to his early life: which work also furnished M. Prony with materials for an interesting menoir in the Biographic Universelle. In the Encyclopedic is un Blowe by M. Ginguene on the eompositions of Tartini, in which they are nost indiscrectly compared with those of Corelli.

TARTRATFS. [TARTARIC Acid.]
TARUDANT. [Marocco.]
TASHKEND. TURKISTAN.]
TASMAN, ABEJ, JANSSEN, one of the greatest navigators of the seventeenth cenfury, whose fame has not equalled his merits, owing to his countrymen, the Dutch, having neglected to make known the important services which he rendered to geography. In the serviec of the Dutel Fast India Company he gave such proof of his enterprise and ability as to induce Anthony Van Diemen, the most distinguished governor-general who had presided over the affairs of that company, to cominission him, in 1642, to proceed on a voyage, the object of whicl was to ascertain the extent of the Australian continent, on the western enast of which discoveries had been made by previous Dutch navigators.

On the 14th August, 1642, Tasman sailed from Batavia
in eommand of two vessels, the Heemskirk and the Zeehaan, directing his course first towards the Isle of France, where he put in for provisions and water. From the Isle of France he set sail on the 3rd October, and proeecded south to about $41^{\circ} \mathrm{S}$. lat., afterwards to the southeast, to about $50^{\circ} \mathrm{S}$. lat., and then due east. Having passed 127° E. long., he sailed to the north and east, and on the 24th November discovered, at 10 miles distance, a land to which he gave the name of Van Diemen. He did not remain here long, nor did he meet with any of the natives, but he continued on his voyage, sailing to the south-east, and doubled what he conceived to be the southern extremity of the Australian eontinent, or New Holland, but what in fact was the southern extremity of the island of Tasmania, or Van Diemen's Land. He made an unsuccessful attempt to anehor in a bay, to which he gave the name of the Bay of Tempests - Storm Bay-on the south-eastern coast of Van Diemen's Land; and then ran to the north, where he found secure anchorage in another bay, to which he gave the name of Frederik Hendrik Bay, $42^{\circ} 52^{\prime}$ S. lat., $147^{\circ} 57^{\prime}$ E. long. On the shore lie erected a standard, to whieh he attached the colours of the Duteh East India Company, and on the 5th set sail again. Unfavourable winds prevented his surveying, as he had intended, the north coast, and he therefore bore to the east, proposing to visit the Solomon's Islands, of which some account had been given by previous navigators. But on the 13 th , being in about $42^{\circ} 10^{\prime} \mathrm{S}$. lat. and $170^{\circ} \mathrm{E}$. long., he found himself in view of a high and mountainous eountry, which he named Staaten Land-land of estatesnow known as New Zealand. Tasman supposed this land to be part of the eontment of Australia. He sailed along the coast lowards the north-east, and on the 17 th anchored at the entrance of what he concluded to be a great bay. The natives from the shore approached in their eanoes, but still remaincd at a distance, and refused to come on board either of Tasman's vessels, although every amicable demonstration was exhibited by the crews. Gathering confidence however, they afterwards came in large numbers, and a quarrel ensuing between them and the Dutch, three sailors were murdered. The bay in which this happened received the name of Mordenaars' Bay, or Murderers' Bay ($40^{\circ} 40^{\prime} \mathrm{S}$. lat., $173^{\circ} \mathrm{E}$. long.). Tasman did not revenge the death of his men, but, availing himself of a favourable wind, set sail. Being followed however by two and twenty canoes with natives armed, he fired among them, killed one or two natives, and drove the rest on shore. He did not make any progress owing to the variableness of the weather, and was obliged to anchor again in a bay to the east of Massacre or Murderers' Bay, which yet preserves his name Tasman's Bay (about $41^{\circ} \mathrm{S}$. lat., $173^{\circ} 30^{\prime} \mathrm{E}$. long.). When cnabled to resume the voyage, he continued his course along the coast, bcaring northwards, until, on the 4 th January, 1643 , he fonnd himself in a situation in whieh the volence of the current bearing to the west, andothe swelling of the waves, which bore to the north-west, led him to conelude that the sea in that part afforded a free passage. To the west he pereeived a group of small islands which he named the Three Kings (in about $34^{\circ} 3^{\prime}$ S. lat., 172° 5^{\prime} E. long.). Those islands were inhabited, but the violenee of the waves prevented all intercourse with the natives. Tasman now resolved to sail to the east, and afterwards to the north as far as $17^{\circ} \mathrm{S}$. lat., and then to the west towards the isles of Cocos $\left(15^{\circ} 50^{\prime} \mathrm{S}\right.$. lat., $174^{\circ} 10^{\prime} \mathrm{W}$. long.), and of Hoorn ($14^{\circ} \mathrm{S}$. lat., $178^{\circ} 20^{\prime}$ W. long.), with a view of obtaining some fresh provisions at one of these islands. On the Gth January he saw an island to the south at three miles distance, but no name is given to it. On the 8th, being, as he represents, in $32^{\circ} \mathrm{S}$. lat. and $174^{\circ} \mathrm{F}$. long., the forec of the waves whieh rolled from the south-east suggested to him that he ought not to look for land in that direetion; he therefore elaaiged his course to the north, and on the 19th discovered an island which he ealled Pyllstaart (22° 22 S. lat., $176^{\circ} \mathrm{W}$. long.). On the following day he saw two other islands, and on the 21st approached the more northern, whieh he named Amsterdam, the native name leing Tonga Tahoo ($21^{\circ} 30^{\prime} \mathrm{S}$. lat., $175^{\circ} 20{ }^{\circ} \mathrm{W}$. long.) ; the other Aliddelburg, the native name being Eoa, the Ea-oo-wee of Cook $21^{\circ} 21^{\prime}$ S. lat., $175^{\circ} \mathrm{W}$. long.). The islanders brouglit various fruits in their canoes, and Tasman has described them as uniting courage with inildness. While here he diseovered some other isles,
before one of which he anchored, naming it Rotterdam, the native name being Ana Moka or Annamooka, $20^{\circ} 15^{\prime}$ S. lat., $174^{\circ} 31^{\prime} \mathrm{W}$. long. Captain Cook, when he visited these islands about a hundred and fifty years afterwards, found the tradition of Tasman's visit preserved among the natives.

On the lst of February Tasman discovered the islands of Prince William, but his provisions being nearly exhausted, he could not stay to visit them. For several days subsequently the sky was so eloudy as to prevent his ascertaining the situation of his vessel, and when fine weather partially returned, he judged it best to sail towards $5^{\circ} \mathrm{S}$. lat., and then to bear towards New Guinea, apprehending the return of unfavourable weather, in which he might be cast upon an unknown coast. By the 22nd of March he was in $5^{\circ} 2^{\prime} \mathrm{S}$. lat., and having the advantage of clear weather and the east trade-winds, he soon came in sight of a cluster of islands which had been visited by two navigators, Schouten and Le Maire, and by them named Ontong Java. On the 29 th he sailed past the Green Islands $\left(4^{\circ} 53^{\prime} \mathrm{S}\right.$. lat., $154^{\circ} 50^{\prime} \mathrm{E}$. long.), and on the 30th the Isle of St. John ($3^{\circ} 50^{\prime}$ S. lat., $153^{\circ} 50^{\prime}$ E. long.). This island, he says, appeared to be well cultivated, to abound in flesh, fowl, fish, and fruit, and to have a numerous population. Schouten having before sustained some injury from the natives, Tasman did not attempt to land. On the lst of April he was in sight of what he supposed to be New Guinea, but in fact of New Britain, and shortly after he doubled the eape to whieh Spanish navigators had before given the name of Cabo Santa Maria-Cape St. Gcorge of Dampier ($5^{\circ} \mathrm{S}$. lat., $152^{\circ} 15^{\prime} \mathrm{E}$. long.). The orew were suddenly awoke on the night of the l2th by what resembled the shock of an earthquake: the situation of the vessel at the time, as Tasman states, being $3^{\circ} 45^{\prime} \mathrm{S}$. lat. They sounded, supposing that the ship had struck, but could find no bottom. Several shoeks, each less violent, suceeeded. On the 20th they were near to Brandande Yland, or Burning Island, which had been mentioned before by Schouten: on the 27 th they were in sight of another island, which he calls Jama, a little to the east of Moa ($8^{\circ} 21^{\prime} \mathrm{S}$. lat., $127^{\circ} 45^{\prime} \mathrm{E}$. long.), where they obtained cocoa-nuts and other fruits. Tasman has described the inhabitants as absolutely black, and speaking a copious language, in which the frequent repetition of the letter r is noticed. He anchored on the following day at the Isle of Moa, where he was dctained for eight days by unfavourable weather. The Dutch carried on an interchange of knives for eocoa-nuts and Indian figs with the natives. On the 12th of May he coasted the island to which Sehouten had before given his name ($50^{\prime} \mathrm{S}$. lat., $136^{\circ} 20^{\prime} \mathrm{E}$. long.), and which is described as fertile and populous: the natives gave proof of their commerce with different Spanish vessels by the production of various articles whieh they had received in barter. Having now fulfilled his instructions, Tasman directed his eourse back to Batavia, where he arrived on the 15th June. A map of his discoveries was sent to the Stadt House at Amsterdam.
The success of this voyage induced Van Diemen to commit to Tasman the command of a second expedition, the objects of which are sct forth in the instructions given by the governor-general on the occasion. These instructions are printel in the introduction to Flinders' Voyages. After quitting Point Turc, or False Cape, situated in 8° S. lat., on the south coast of New Guinca, he was to continue eastward along the coast to $9^{\circ} \mathrm{S}$. lat., carefully erossing the eove at that place, looking about the high islands or Speults River with the yachts for a harbour, despatching the tender De Braak for two or three days into the cove, in order to discover whether within the great inlet there might not be found an entrance to the South Sea.* From this place he was to eoast along the west coast of New Guinea (Carpentaria) to the farthest discoverics in $17^{\circ} \mathrm{S}$. lat., following the const farther, as it might run westward or southward. It was feared that he would meet in those parts with the south-east trade-winds; from

- The great inlet or cove where the passage was to be sought, is the northwest part of Torres Straits. It in evident that n susspieion was entertained in 1611 of such a strait; but that the Dutch were imount of lits laving been paseet. The 'high islands' are those which lie in $10^{0} \mathrm{~S}$. lat. on the weat sile of the stralts. Speults river appears to be the opening between the Prince of Wates Ishand tud Cape York throuth whic. Conk ahoy and narged Endeavour Strait. (Flinders' \boldsymbol{V}^{\prime} oyage, 'Introdiaction.')
whel it would be diffieult to keep the coast on board, if he stretelied to the south-enat; but notwithstanding lie wras by all means to endeavour to proceed, that it might be ascertained whether the land was divided from the great known Soutl/ Continent or not. These instructions were signed in 164, 29th January, by the governorgeneral, and two ressels-the Zceharn and the Brankwere placed at Tasman's disposal. But of the results of this second royage absolutely nothing is known with certainty; nothing was ever published. 'It seems to have been the general oplalon, says Flinders, 'that Thasman sailed round the Gulf of Carpentaria, and then westward along Arnhem, and the northern cosst of Van Dienen's Land; and the form of those consts in Thevénot's charts of 1603 , and in those of most succeeding geographers, ceen up to the end of the eighteenth eentury, is supposed to have resulled from this voyage. This opinion is strengthened by finding the names of Tasinan, and of the governor-general, and of two of the council, who signed his instructions, applied to places at the head of the gulf; as is also that of Maria, the daughter of the governor, to whom Tasman is said to have been atlached. In the notes also of Burgomaster Witsen, concerning the inhabitants of New Guinea and Hollandia Nova, as extracted by Mr. Dalrymple (Collection of Voyages), Tasman is mentioned as among those from whon his information was drawn.' Of the private life of Tasman nothing is known, neither when nor where he was born or died.
An account orTasman's first voyage is given in the Collection de Thécénot, partic iv.; in Ilarris's Xavigantium alque Ilinerantium Bibliotheca, 1741, fol.; at the end of the Voyages de Correa, tome ii., Paris; in Terra Australis Cognita, or Voyages to the Terra Australis during the Sixlecnth, Seventeenth, and Eighteenth Centuries, by Callander, Edin., 1760. From these sources, and from the Biographie Universelle, tome 45 , the sulstance of this article has been collected. Tasman is not even named in Chalmers, nor in many other universal biographies in the English language.
TASNA'NLA, more gencrally known by the name of Van Diemen's Land, is an island and British colony situated in the southern hemisphere, south of Australia. It lies between $40^{\circ} 45^{\prime}$ and $43^{\circ} 45^{\prime}$ S. lat., and between $144^{\circ} 45^{\prime}$ and $148^{\circ} 30^{\prime}$ E. long. It is separated from Australia ly Bass's Strait, which washes its northern shore. On the west of the island is the Indian Ocean, and on the east the Pacific. On the south it is washed lyy that portion of the ocean which connects the two first-named oceans, and exlends southward to the shores of the newly-diseovered antarctic continent. [South Polar Coustries.] From Cape Grim, its north-western extremity, it extends south-south-cast to South Cape, a distance of about 230 miles,and this is its greatest length. lts greatest width occurs near $41^{\circ} 20^{\prime} \mathrm{S}$. lat., between Ordnance Point on the west and St. Helen's Point on the cast, which are about 100 miles distant from one another. According to a rough estimate, the surface is 24,000 square miles, or about 4000 square miles less than the extent of lreland.
Coast-line and Islands. - The western coast, beginning on the north at Cape Grim, and extending to South-West Cape, is about 240 miles long. It is less accessible than the other slores of the island, as in general it rms in a continuous line, being only broken by large inlets at two places. The shores are steep, exposed to the prevailing south-western winds, to a strong swell and surf, and without anchorage and shelter. This coast is therefore rarely visited by vessels, and no settlements hare been established on it, execpt at Macquarric llarbour and Dort Davey, where a few conviets are kept to cut wood. The northern parts of this const, and as far south as Macquarrie Ilarbour, are in general low, but south of Maequarric Marbour they are ligh. South of Cape Grim, which consists of steep rocks of moderate clevation, the const is formed by low black rocks, which towards West Point sink down to the level of the sea, and in this part there are a few shallow creets. From West Point, which is formed by a short, low, and sandy projection, to the month of the river Arthur, the beach is low and sandy, and belind it extends a swampy level tracl, covered with tea-frees to the distance of three or four miles, where the country rises inlo low hills, At a few places the low beach is intermpted by rocky eliffis. This low coant continues to Ordnance P'oint, near which is

Jacob's Harbour, which is accessible to boats. At Ordnance I'oint the const rises to a moderate clevation, but It is frequently interrupted by low and sandy tracts. The shores are overgrown with low bushes. A buy of moderate extent occurs between the mouth of the river Pedder and Sandy Cape, but it is slallow and uselce. That part of the coast which extends from Sandy Cape to Maeguarrie IIarlour is almost unknown, except that it chiclly consists of sandy low shores, without a beach, of the back of which there are hills, some of which attain ε conslderuble elermion. Maequarrie Harbour is a fine sheet of watcr, extending nearly 25 miles south-south-cast, and terminating with two fine basins, liercli's Inlet and Kelly's Basin. $1 t$ is on an average five miles wide, and affords good anchorage and complete shelter; but near its entrance is a bar, which has only nine feet of water. The harbour is surrounded by wooded liills. Cape Sorell, forming the western side of the entranec of Macquarric Ilarbour, is a steep and rocky promontory, and farther south the coastline is ligh and rocky, and liere and there a few rocks projeet into the sea, lut the small bays thus formed do not afforl slyelter against the swell of the sea, and not even a safe landing-place. At the back of the beach there are steep and lofty hills. Cape Ilibbs is formed by a moun-tain-mass projecting three or four niles into the sea. South of it the const rises still higlner, and between that cape and Rocky Point two linls, which project about two miles from the shores, constitute a harbour, in which small vessels may anchor, but it is open to the west. The high shores continue to Port Davey and to South-West Cape. Port Davey is the best harbour on this coast. At the cntrance it is about four miles wide, and it continues at tlat vid th about 6 miles inland, when it divides into two lnanches. That branch which runs northward is called Cocklourn, and is about two miles wide and six long: the somthern, which runs castward, does not mueh exceed a mile in width, but extends more than 10 miles inlaud, turning at its castern extremity to the south. These two branclies have good anchorage, and afford safe shelter, being surrounded by high hills; but the wide bay, of which they are branclies, is open to the westerly winds and the sirelt of the sea: the anchorage however is good.

The southern coast, between South-West Cupe and Whale Head, is about 50 miles long, and runs in a serpentine line, forming several bays, of which a few lave good anchorage, as Cox Bight, east of South-West Cape, and the nameless vide bay which lies west of South Cape, and at whose innerinost recess is a harbour about five miles long and a mile wide, which has a good entrance, and affords anchorave and shelter, but it has not been regularly surveyed. This harbour is separated from the wide bay by a tongue of land of moderate elevation, on which the sea breaks with a heavy surf. The shores of this coast are in general rocky and ligh, and constitute the lower declivity of the mountain-masses which extend over this part of the country. Several small islands opposite this const break the swell of the sea, and as most of then are elevated, they serve as beacons.
The south-eastern coast extends from Whale IIead, the most south-castern promontory of Tasmania, to Cape, Frederik Hendrik, about 60 miles in a straight line, but, measured along the shores, it is probably double that extent. It contains a greater number of safe anchorages than probably any ollier country of the same extent on the globe. There is hardly a mile along this coast-line Which does not ofler a safe refuge to vessels. This great advantage is owing partly to the size and form of the island of bruni, whicls extends along the coast, and partly to two far-projecting promonfories, called Ralph's I'eninsula and Tasman's Penimsula. The island of Bruni extends about 30 miles nearly due south and north, but it varies grcatly in width, as the isthmus of St. Algnan is only a tew hendred paces across, whilst the mountain tract south of it is more than eight miles wide. It consists of three isolated traets of high hills, connected by isthmuses: the most southern of these tracts has the form of a hook, and is connected with the central moun-tain-tract by a low istlimus about a mile wide and two miles long, which separates Taylor's Bay from Busd Bay. The central mountain-tract, consituting the main body of the island, is about 15 miles longs from sonth to nonth, and more than eight niles wide la the biondest part. It is connected with the northern mountain-tiact by the isthums of

St. Aignan, which is five miles long, and only a few hundred paces wide. It is low and sandy, and separates Isthmus Bay on the west from Adventure Bay on the east. The northern mountain-tract is about 12 miles long, and so much indented on the western shore that its average width does not exceed three miles, though in some places it is five miles across. The mountains of this island do not appear to exceed 1200 feet in elevation: they are covered with wood, and supply numerous streams. Along the western side of the island are five harbours, which, from south to north, are called Great Cove or Taylor's Bay, Little Cove, Isthmus Bay, Great Bay, and Burnes Bay. They all have excellent anchorage and shelter, except Taplor's Bay, which is rather too large, and exposed to the rusts of wind which come down from the mountains on the mainland. On the eastern side of Bruni Island are three bays, Bad Bay, Adventure Bay, and Trumpeter Bay. Bad Bay is useless, being open to the southern winds, and subject to a very heavy swell, which causes such a tremendous surf at the foot of the rocks which surround the basin, that landing is almost impossible. Adventure Bay is open to the east, but is so far protected by Tasman's Peninsula, that the inconveniences of this harbour during easterly winds are reduced to a difficult landing. Before the foundation of the colony it was frequently visited by whalers. Trumpeter Bay is of moderate extent.

The strait which divides Bruni Island from the mainland of Tasmania is called D'Entrecasteaux Channel, or Storm Bay Passage, and extends 45 miles in a straight line from Whale Head to Pilot Strait, or the narrow arm that divides the northern extrennity of Bruni Island from Tasmania. Its southern entrance between Whale Head and Bruni Head is wide and open to the south and west; but on the western sliores there are two excell int harbours, Recherche Bay and Mussel Bay. North of Mussel Bay the channel begins, which is 30 miles long, and varies in width from one to cight miles. In all its extent it has excellent anchorage and sufficient depth; even opposite Isthmus Bay, wherc it is shallowest, it is 40 feet deep. Being mostly surrounded by hills, which shelter it on all sides, it is, properly speaking, an immensc harbour, the only inconveniences of which are that it is subject to gusts of wind, and that the bottom consists of an earth somewhat too tenacious. On the western shores of the channel, besides several smaller harbours or coves, there are three, or rather four, large and excellent ports: Esperance Bayor Adainson's Harbour; Huon Bay, or the extensive aestuary of the river of that name, which extends nearly 20 miles inland, and has suffieient depth of water for large vessels; Port Cygnet, or Swan Port, situated near the moutli of the Huon astuary; and NorthWest llay, which constitutes the most northern extremity of D'Entreeasteaux Channel, and resembles the harbour of Portsmonth. North-West Bay is two miles wide at its entrance, and extends nearly six miles inland. The low and level country surrounding this excellent basin is the most southern district of Tasmania in which cultivation has made any progress. The strait leading from it to the wide estnary of the river Derwent is only one mile wide, and is called Pilot Strait.

East of Bruni Island, and between it and Tasman's Peninsula is Storm Bay, extending about fifteen miles from south to north, and as much from west to east. Though it has good anchorage-ground, and is almost entircly free from danger, it cannot be considered as a harbour, being open towards the south, thougl protected on the three other sides by high hills. Storm 13ay however leads to two extensive arms of the sea, which open to the north of it, and are respeetively called the restuary of the Derwent and Frederick Henry Bay. These two arms of the sea are separated by Ralplis Peninsula; which extends about 20 miles from north to south; and this distanee may be considered as the length of the two arms of the sea, the sestuary of the Derwent advancing a few milos farther inland. At the entrance of the zestuary is a small rocky island, Ironpot, on which a lighthouse has been erected. Within the gestuary is Ralph's Bay, on the cast. This bay is formed by a low sandy spit of land which projects from the west side of Ralph's Peninsula, and surrounds the bay on the south and west ; and by another spit of land which projects to the south. The eutrance of Ralph's Bay is a short clannel, nearly two miles wide, which leads to a basin eight miles lorg and three wide, with execllent anchorage, and sleltered on all sides. Ralpli's Peninsula
consists of two mountainous tracts united by a low isthmus. This isthmus is only half a mile wide, and is the place where Ralplis Bay approaches nearest to Frederick Henry Bay. This last-mentioned bay, which has also the name of North Bay (Bai du Nord) is united to Storm Bay by a cliannel situated between Ralph's Peninsula and Tasman's Peninsula, which is five miles long and five miles wide. The bay itself consists of threc basins, North Bay, Pitt Water, and Norfolk Bay. Nortlı Bay, which oecupies the centre, is a basin about eight miles long from south to north, and six from west to east. It has good anchorage, with sufficient depth of water, and is generally well sheltered. Along its northern shores there is a low and sandy tongue of land, with an opening at its eastern extremity, whieh leads to Pitt Water, an arm of the sea extending from east-south-east to west-north-west about eight miles, with an average width of two miles, which branches out into numerous small coves and inlets affording safe anchorage for small vessels, but the entrance has only sufficient depth for them. Noriolk Bay lies to the east of North Bay, with which it is connected by a channel about three miles wide. This bay is surrounded on three sides by Tasman's Peninsula, and constitutes one of the finest harbours on the island: it has excellent anchorage, with a convenient depth of water, and is sheltered by high hills. It is eight miles long, and the width varies from three to five miles. It is free from all danger, and branches out into numerous coves.

Tasman's Peninsula extends about 25 miles from south to north : it consists of two larger peniusulas, of whieh the southern is properly ealled Tasman's, and the northern Forestier's Peninsula. Tasman's Peninsula surrounds Norfolk Bay on the south and west: it extends west and east about 15 miles, with an average width of eight miles. The surface of this tract is covered with mountains, wlich rise with a steep ascent from the water's edge, and are mostly composed of basalt coluinns, especially between Maingon Bay and Fortesque Bay. On the west side of the peninsula, on the east shores of Storm Bay, is Wedge Bay, which has tolerably good anchorage. Maingon Bay, on the south coast of the peninsula, is quite open, but on the north it leads into a safe harbour, Port Arthur, whieh runs more than six miles inland, and is more than a mile wide. The high roeky isthmus which divides its northern extremity from Norfolk Bay is only three miles wide. On the eastern shores of Tasman's Peninsula is Fortesque Bay, which is large, and lias excellent anchorage, but it is open to the east. Pirates Bay, further north, is still more open: it is separated from Norfolk Bay by an isthmus called Eagle Hawk Neck, which is only 600 feet wide and 700 feet long, and whicls connects Tasman's Peninsula with Forestier's Peninsula. It is low and sandy. Forestier's Peninsula extends 10 miles from south to north, with an average width of seven miles: it is a roundish mass of high roeky mountains, scantily covered with low trees, and it has a sterile soil. The high rocky masses along its eastern shores run in a continuous line. On the north side of the peninsula is Frederik Hendrik Harbour, in which Tasman anehored in 1642: it has grood depth, but is open, and along the southern side it is lined with shoals and rocks. The isthmus which joins Forestier's Pcninsula to the mainland of Tasmania is called East Bay Neck, and the northern portion of Norfolk Bay is also known by the name of East Bay: it is about two miles long, and half a mile wide in the narrowest part: it is low and sandy. The bay which extends between this neck and the most northern portion of Forestier's Peninsula, and is called Blackman's Bay, is spacious and well shcltered, but beset with shoals and rocks, especially along the southern shores and its entrance, so as to admit only small vessels.

The eastern coast of Tasmania extends from the northern cxtremity of F'orestier's Peninsula to Cape Portland on Bass's Strait, more than 150 miles in a straight line. The southern part, or that south of $42^{\circ} \mathrm{S}$. lat., resembles in some degree the south-eastern coast: it contains many places of rcfuge for vessels, though in general they are much less numerous than on the south-east coast, and not quite so safe and commodious. The wide bay on the north of Forestier's Peninsula, from which a channel leads to Blackman's Bay, has a flat sandy shore, 110 which the sea breaks with a heavy surf, so as to render it inaccessible, but towards the north are scveral small coves for boats. Cape Bernier is formed by a high conieal hill: between it and

I'rosser's Bay the coast is high and rocky, except at Sandspit, where it is low, and forms a shallow cove. Prosser's lay is of good size, being three miles wide at its entrance, and extending in two arms five iniles inland. There are several shoals in it, but it has good anchorage, especially in the northern arm. Between I'rosser's Bay and Cape Bailly the coast is high, roeky, and well wooded. At Cape Bailly begins Oyster Buy, the largest of the bays of Tasmania: it is 18 miles long from sonth to north, and 15 miles wide at the entranee, but it narrows gradually towards the north, being at its northern recess 10 miles across. It contains good anchoring-ground, and is tolerably saic, for though it is open towards the south, the island of Maria and several smaller islands in that direction break the swell of the sea. The surrounding country is hilly and well wooded. Near Cape Bailly is Little Swan Port, a moderately extensive basil with a shallow entrance. It admits only boats. The western shores of Oyster Bay are ligh and steep, and may be approached with safety. On the northern side of the bay is a tongue of land less than a mile wide. It consists of low sand-hills, and terminates on the east at a narrow and shallow channel, which leads northward to an arm of the sea, which winds through a low country for more than 10 miles. This arm of the sea is shallow, and ealled Moulting Lagoon. The eastern side of Oyster Bay is formed by Vanderlin's Peninsula and Schouten's Island. Vanderlin's Peninsula is nearly 12 miles long, and consists of two masses of rocky mountains, united by a low sandy neek, about one mile and a half long and one mile and a half wide, on which is a small fresh-water lake. To the west of this neck is Refuge Bay, and to the east Thouin Bay. The first is a safe harbour, but the second is open and rather shallow. Another low and sandy neek about three miles long and a mile wide conneets Vanderlin's Peninsula with the main body of Tasmania. The mountains of the southern mass of Vanderlin's Peninsula are the highest in the peninsula. Schouten's Island is separated from that peninsula by Geographe Strait, which is nearly three miles long and about one mile and a half wide on an average: there is good anchorage in the strait. Schouten's Island has nearly the form of a square, and extends about four miles in every direction. On its southern side, in Faure Bay, there is anchoring-ground. The island consists of a mass of rock, deseending on the east with a steep declivity to the water's edge, but on the west with a gentle well-wooded slope.
South of Oyster Bay is the island of Maria, which is about 12 miles long, and consists of two large masses of rocks connected by a neek of land. The northern mass extends 7 miles from east to west, and consists of elevated mountains, the highest part of which, called the Bishop and Clerk, is about 3500 feet above the sea-level. The deelivity of the mountains towards the cast is very steep and terminates on the beach; but the slope is gentle towards the west, where it leaves a broad level tract along the sea, which is sandy and scantily wooded. The low sandy neck south of it is only 300 paces across, and about two niles long. On the west of it is Oyster lay, which is well sheltered and has good anchorage, but is shallow near the land; and on the east of the neck is Reidle Bay, whieh is deeper, but has a rocky bottom, and is exposed to the easterly and southerty winds. The southern peninsula of Maria Island is one mass of rocks, rather well wooded, which deseends towards the cast in precipices and lowards the west with a gentle slope. The strait which divides Maria Island from the mainland is about five miles wide on an average, and is nearly equal to D'Entreeasteaux Channel in the advantages which it affords to navigation, having good anchorage-ground, and being generally well protected against the winds and swell of the sea. North of Maria Island, towards the entrance of Oyster Bay, is a small island, White Rock, to which seals resort in great numbers.

The remainder of the eastern coast, beginning at Cape Tourville on the south, is as difficult of access as the western coast of Tasmania. In an extent of more than 100 miles not one harbour oceurs which ean be entered by vessels of moderatc size, and even small craft find only three or four places where they can anchor with safety. The coast between Cape Tourville and Eddystone Point is elevated and roeky, and always beaten by a heavy surf. South of Cape Lodi the hills are barren and generally destitute of trees. Farther north however they are still
more elevated, but tolerably well wooded. Between Eddystone Point and Cape Porland the shores consist of a low tract of considerable width: the soil is sandy and of indifferent fertility. The woods which cover it ennsist of short, crooked trees. This part of the coast is beset with shoals, and cannot be approached with safety.
The northern coast of Tasmania extends from Cape Portland on the cast to Cape Grim on the west, and is about 100 miles long in a straight line, but following the eoast it measures more than 220 miles. North of this coast is 13ass's Strait, at the eastern entrance of which is the group of the Furneaux Islands, which consist of two larger islands, four of moderate size, and many smaller islands. The larger, Great Island, extends 40 miles nearly due south and noth, and is on an average nine niles long, so that its surface may be estimuted at 360 square miles, or somewhat more than that of the Seotch island of Islay. The interior of the island is mountainous, and the mountains advance on the west side close to the sea, but leave a tract of low ground along the eastern shore, whieh is sandy and in some parts swampy. South of Great Island is Cape Barren Island, which extends from cast to west about 30 miles, with an average width of about five miles. It consists of several isolated masses of rocks counected by low grounds. These islands, as well as the smaller islands, are generally mountainous and rather high; they contain many low tracts of considerable extent, but the soil is sandy, swampy, and in general of indifferent quality. Trees are not abundant, and only of stunted growth. The surface is chiefly covered with thiek bushes, coarse wiregrass, and a kind of Chenopodium, the ashes of which may be used in the manufacture of soap. Fresh water is searee. These islands are always surrounded by great numbers of seals, and are resorted to by many vessels from Sydney and other plaees. The strait which divides Furneaux Islands from Tasmania is called Banks's Strait. It is 10 miles wide, and contuins no hidden dangers, but as the current sets through it with great rapidity from cast to west, it is not mueh used: the vessels that sail to and from Sidney generally pass through Kent Strait, or the middle strait of the three which constitute the eastern entrance of Bass's Strait. This strait is 24 miles wide between Great Island and Kent Group, and in general free from dangers. The western current which runs through it is moderate.
The coast from Cape Portland on the east to Port Dalrymple at the mouth of the river Tamar is low and sandy, with the exeeption of some sandy hills at and between East and West Double Sandy Points, and the high eape of Stony Head, which consists of elevated roeky masses overgrown with grass. The shores are either entirely barren or covered with short bushes. In a few places there are swamps, and in others some flat and low rocks of small extent. The bays have in general sufficient depth of water and good anchorage-ground, but being wide and open, they do not afford seeurity against winds and the swell of the sea. The largest is Ringarooma Bay, west of Cape Portland.

Port Dalrymple is the best harbour on the northern shores, though it cannot be eompared with the harbours on the south-eastern coast. Before its entrance on the west is the dangerous reef called Hebes Reef, and even in the sea-reach, which is two miles wide and six long, there are some shoals. The navigation is tedious and difficult, but the Tamar is deep enough for large vessels as far as Launeeston, 30 miles from Port Dalrymple in a straight line. West of Port Dalrymple the coast is high, being formed by elevated and wooded hills, the highest of which are called the Asbestos Hills. To the west of these hills is 1'ort Sorell, which is rather spacious and has good anchorage, but is difficult of aceess. Between P'ort Sorell and Fort Frederick the shores are low, and about half a mile from the sea is a narrow lagoon, which oceupies more than lalf of the space between the two harbours. Port Frederick, or the zestuary of the river Mersey, resembles Port Sorell. From this harbour to P'enguin Point, west of the mouth of Leven river, the coast is generally roeky and high, but intersected by the mouths of several nvers, which however do not admit even boats, exeept the Leven, which may be ascended by boats to the distance of six miles from the sea. From Penguin Point to Circular Head the coast presents an alternation of high and low shores. The low shores are sandy or swampy, and generally covered with
thick busnes, and the high shores present in many places columns of basalt, the tops of which arc covered with a layer of good soil, and overgrown with trees. There is no harbour for ships on the coast, except at the moutl of Emu river, where small vessels find good anchorage in Enut Bay. Boats may enter Parish's Harbour, not far from Emu Bay to the west, and Pebbly Bay, west of Rocky Cape, a rather elevated rocky mass projecting into the sea.
Circular Head is a tongue of land projecting into the sea to the distance of about scven miles from the mainland. Its northern portion is an undulating table-land resting on basalt eolumns, whose surface is covered with bushes and small trees, and affords good pasture-ground. The highest part of it is 450 feet above the sea-level. This table-land is about five miles long from north to south, and somewhat more than two miles across in the widest part. It is united to the mainland by a low sandy isthmus nearly three miles long and about one mile wide. On each side of the isthmus is a tongue of land, which advances four or five miles into the sea, and forms two harbours, called East and West Bay, which have sufficient depth for small vessels. The advantages afforded by these two harbours, and the pastureground on Circular Head, have induced the Van Diemen's Land Company to fix their chief establishment here. The coast from Circular Head to Cape Grim is low and sandy. In some places there are swamps overgrown with tea-trees. It is lined by numerous shoals, and though there are several coves at the embouchures of the rivers, none of them has sufficient depth of water for a boat.
North of this coast-line are the IIunter Islands, a group consisting of three larger and several smaller islands. Robbin Island, the nearest to the mainland, is divided from it by a narrow strait, Robbin Channel, which is full of shoals, but has good anchoring-ground near the eastern entrance. The island is about 7 miles long from east to west, and 5 miles wide on an average. The eastern portion, embracing about two-thirds of the whole, is low, and has a sandy soil, covered with bushes and snall trees: it has also pasture-ground. The western district is a rocky ridge, covered with heath. Three-Hummock Island is about the same size, but it is hilly, and chicfly covered with bnshes, low trees, or grass. On its eastern side is a cove, with indifferent ancliorage. West of Three-Hummock Island is Barren Island, which is the largest of the group, being 15 miles long, and on an average 4 miles wide. It is likewise rocky in its whole extent, but less elevated than Three-IIummock Island: in fertility it scems to resemble it very much. On the western shores are numerous reefs, which render the access to the island difficult and almost impossible. Towards the southem end of that coast however there is a cove, which is accessible to boats. The strait between Barren Island and Three-Hummock is called Peron Channel : it is well protected by the surrounding islands, and has good anchorage at several places, so that it may be considered the best larbour at the western entrance of Bass Strait. The basin, surrounded by the threc large islands of this group, is called Boulanger Bay. It is well protected, but very dangerous, being full of shoals and small low islands, especially towards the north-westem district of Tasmania.
Surfuce and Soil.-As the first European settlement on Tasmania was established only forty years ago, it can be no matter of surprise that the country is imperfectly explored. Nearly onc-half of the island is almost unknown, namely, nearly two-thirds of that portion which is south of 42°, and one-third of that which is north of that parallel.
The Unexplored Mountain-Region, south of 42°, ocelpies the southern and western districts of the island, and reaches north-east to the banks of the river Derwent. This river, from its source in Lake St. Chair to its mouth, separates the well-known part of the island from that which is entirely unknown exeept the coasts and the districts in the immediate vicinity of the river. These districts are occupied by an apparently continuous mountain-range, which extends along the river at a short distance from its banks, and in some places sends off branches which allvance close to the river. This range is sometimes called the Western Mountains by the settlers, but has not yet obtained any other nama. It begins on the aestuary of the Derwent, opposite the entrance of Ralph's Bay, with Mount Nelson, which is considered to be about 1000 feet
P. C., No. 1498.
above the sca. Hence it extends north-west to Mount Wellington, which is a few miles west ot Hobart Town, and rises, according to Darwin, 3100 fect above the sea. Farther on, the range, which occupies a width of perhaps 20 miles, does not seem to contain many summits which rise much above the general level of the range, which level probably is never less than 3000 feet above the sea. The summits, which have been noticcd, are-Mount Field (near $42^{\circ} 40^{\prime}$, which is estimated at 3000 feet ; and Wyld's Ciaig, or Peak of Teneriffe, about 4500 fect above the sca. The latter is covercd with snow for nine months. It is stated that in several places plains of considerable extent occur on the top of the range; but as the wholc of it is covered with an impenetrable forest, it has hitherto been impossible to ascertain this fact. The mountains which surround Lake St. Clair, the source of the river Derwent, appear to be connected with this range, and to constitute its nortlerm extremity. At the southern extremity of the range is a large peninsula, formed by D'Entrecasteaux Channel and the æstuary of the river Huon, the whole of whicl is covered with high hills, clotled witls dense forests to their summits, and broken only in a few places by valleys, which exhibit a great degree of fertility, but in which no settlements have yet been made.

The remainder of this region is only known so far as it has been observed from the sea and a few places from the coast. The most striking feature of this district is a moun-tain-range which rises a few miles from the southern coast, and appears to extend, without interruption, from the eastem part of Port Davey, called Bathurst Harbour, to the vicinity of Port Refuge, at the entrance of D'Entrecasfeaux Channel. Its lower parts are covered with thich forests, but the higher are without wood. Some parts of them appear white, which has suggested the opinion that they are always covered with snow; but this fact is questioned. The higher parts however are considered to rise to an elevation of 5000 teet above the sea-level. North of this range therc are two elevated mountain-nasses, a few miles south of $43^{\circ} \mathrm{S}$. lat., which are called Harz Mountain and Arthur's Range. The latter is visible from Mount Wellington, though more than 50 miles distant. At the back of thesc masses, north of $43^{\circ} \mathrm{S}$. lat., open plains are stated to extend from the banks of the river Huon to the mountains which line the western shores. A few open plains of moderate extent are also found near the banks of the Huon, where the river runs eastward; but farther down the whole country is covered with impenetrable forests. From this river to $42^{\circ} \mathrm{S}$. lat. the country is entirclyunknown. Several summits have been seeu from cousiderable distances. The most elevated appears to be Freuchman's Cap, east of Macquarrie Harbour, which is covered with snow nearly the wholc year: its base is said to be surrounded by woodless, open, and grassy plains of considerable extent. The forests, which cover this region almost without interruption, consist chiefly of different kinds of Eucalyptis, especially Eucalyptus globulus, and different kinds of pines, among which Tasmania and many tree-like ferns are frequently met with.
The Valley of the Lover Derwent extends from Mount Nelson upwards to the confluence of the Derwent with the Ouse (near $42^{\circ} 35^{\prime}$ S. lat.), and is rather more than 50 miles long, measured along the bends of the river. The Derwent runs close to the range of high mountains which extend along its western banks; and the space between the banks of the river and the base of the steep rocky masses hardly ever exceeds a mile in width, and is frequently not half so much. The soil of this narrow and comparatively level tract is of great fertility, and a large part of it is under cultivation. On the east of the river the valley extends to the distance of about five miles, where it meets the higher hills that enclose the valleys which lie fartlier east and north. The surface of this part of the valley is level near the banks of the river, and subject to inundations; but at a short distance from them the ground rises in gentle undulations, on which some low and isolated hills are met with. The soil of this tract appears to be gencrally of first-rafe quality: it produces rich crops of wheat, and is well adapted to orehards. Cultivation is rapidly spreading over this tract.

A Hilly Region extends east of the Lower Valley of the Derwent. It cxtends eastward to the shores of the Pacific, and northward nearly to $42^{\circ} 35{ }^{\prime} \mathrm{S}$. lat. The surtace of this tract is a continuous succession of hill and dale. The tra-
veller no sooner armes at the bottom of one lill than he has to ascend another, often three or four times in the space of a mile. In souse places the land swells into greater heights, which have several miles of ascent. Except the valleys, which conslitute the buttoms of the numerous rivers which traverse this region from north to south, and which are generally of modernte width, the level tracts, either mamales or plains, are comparatively few. The most elevated part of this region apprears to le a ridge of high gronnd which begins on the north at Table Mountain, a summit standing near the south-eastern extremity of Lake Sorell, whose elevalion is estimated at 3×00 feet. The ridge branching off from it towards the south is of moderale clevation, but considemble width, occupying the greater part of the tract between the rivers Clyde and Jordan. It terminates abont five miles from the banks of the Derwent in Mount Dromedary; the summit of which is 1800 feet above the seat-level. In general the hills sink lower as we proceed south, and the surface of IRalph's le ninsula, and of the conntry enelosing Pitt's Water und North Bay, is only undulating. Cultivation in this region is almost exclusively linited to the bottons of the rivers, where there is a strong soil, whieh produces plentifil crops of wheat and other grain. The declivity of the hills is sometimes too steep for cultivation, and they are generally covered with thick woods. Bui even where the declivities are gentle, Which is most frequeatly the case, the soil is too dry. These declivities, and also the upper parts of the hills, where small lerels frequenlly oecur, are overgrown with open forests without underwood, under the shade of which there is grass nearly all the year romnd. These hills afford excellent pasture for sheep and cattle. This description applies to the whole region, except that portion which is north of Norfolk IBay, and whieh appears not to have been explored. That part of it which lies along the Pacifie consists only of rocky masses, frequently destitute of woods and bushes, and in other plaees overgrown with erooked and stunted trees.

The Plevuted Pluins are north of the Hilly Region, and extend from $42^{\circ} 35^{\prime}$ to about $41^{\circ} 50^{\prime}$. They are separnted from the Pacific by a higher Iract, called Eastern Tier. This tract begins on the south near $42^{\circ} 33^{\prime}$, where it is about 10 miles wide, and extends northward to the valley of the South Esk, to which it deseends with a steep deelivity. It increases in width as it proceeds farther north, and on the banks of the South Esk it is more than 30 miles from east to west. This region also is entirely unknown, and is a blank on our maps. We can find no information respecting its character and capabilities. The heights which extend along the sea are very scantily wooded, and do not present a promising aspeet. The plains themselves are divided into the southern and northern plains by a somewhat hilly and wooded tract, which erosses then in a diagonal direction from south-east to north-west, beginning on the Eastern Tier with the Blue Hills, south-east of Oatlands, and passing east of that township to Table Mount, and the other heights surrounding lake Sorell, and henee to the range of mountains called the Westem Tier or Western Mountains, from the southern extremity of which it is livided by the upper valley of Lake River. Farther west the Western Tier constitntes the norhern boundary of the sonthern plains. These southern plains are distinguished by many large lakes. The moot westem of these lakes is that of St. Clair, the cource of tho Dervent river. It is about ten uiles long and three miles wide on an average, and differs from the lakes larther enst in having more of the shape of an al pine lake and being surrounded by mountans. The conntry cast of the lake st. Clair is not ineluded in the plains, being very momtainons, and containing several high summits between tle Derwent on the west und the Nive river on the east. Even to the east of the last-mentioned river that part of the country whieh lies near the Derwent is extrumely uneven and hilly, but farther north the southem plains begin with the tmet that surrounds Lake teho. This lake is of a ronnd form, but only three miles in diameter. The shape of this, like all those farther cast, shows that they are not enclosed ly muuntains, but spread out in plains. North of Lake licho is Great Lake. the souree of the Shannon, one of the largest iribntanes of the Derwent. It is said that this lake is 20 miles long, 10 wide, and, owing to its numerous bravelies, 75 nliles in circuit; but our maps give it hardly half these dimeusions. East of Great Lake are the three Arthur
lakes, the largest of which has a cirenit of belween 20 and 30 miles. Lake Sorell, which is farther lo the south-east, is of a very irregular form, and hardly inferior in extent to Great Lakic. Sinaller lakes are numerous, especially along the wooded fract which seprates the southern trum the northern plains. There are fewer lakes in the northern phuins, and they are all small, with the exception of the Western Lagoon, a clusler of bakes situated at the eastern lermination of the Wetern Tier, the largest of winels may be five miles long and half a mile wide. The woorly tract separating the plains has a lilly surfaee, and is abunt cight nules wide where it is crossed by the great road trom IIobart Town to Launceston. In lhe plains there are somo short ridges of low hills, which rise above the commun level with very long slopes, and are eovered with open forests. At other places there are single hills, mostly of a conical form, hence called sugar-loaves: they are most frequent in the district whieh approaches the Eastern Tier. In other respects the surface of the plains is either a dead level or sliglaty undulating. In their natural state they are generally destitule of trees, but in a few spots, especinlly where the surfaco is undulating, trees occur in small clumps. The elimate is much colder thap in the low tracls near the coast, as the snow sometimes covers the ground for several weeks, and thus the soil imbibes suffieient moisture to maintain a vigorous growth of grass nearly all the year round. The pastures thus produced constitute tho agrienltural wealth of this region, nst the soil is seldom rich enough for the growth of grain. The pastures are much better adapted forsheep than for eattle, and the chief pait ot the wool exported from Tasmania is brought to the seaports from this region. Among these plains that called Salt-Pan Plain reguires notice. It lies near the watershed of the Derwent and Tamar, between the sourees of the Maequarrie river, which mus to the Tamar, and those of the Jordan, which falls into the Derwent. In this plain are three ponds, or, rather, hollow depressions, which are filled with water during the rainy season, but dry up when the rains are over, and the soil is then so strongly impregnated with salt that a considerable quantity is collected every season for donestic purposes.
The region hitherto described is watered by many streams, most of which join the Derwent. Tlis river originates, as already obscrved, in Lake St. Clair. It runs about 60 miles measured in a straight line, until it meets the tide-water, and its general courso is sonth-east. Issuing from the lake, it traverses for several miles aplain, and then enters a narrow valley bounded by momntains, in which it is joined from the north by the Nive, and from the sonth by the Florentine river, the course of whel two trihutaries is hardly known. It leaves the mountains above its junetion with the Dee, where it forms two ontaracts, a mula from one another, of which the uppermost is 30 feet high. It then flows along the foot of the westem momutains with a rapid current, and is not navigated, chicfly owing to the numerous rochs along its banks, but also parly beennse its volume of water is subject to great changes. The last rapids oeeur at New Norfolk, up to which place the tidewater comes. During the summer months the water of the river is lrackish, and unfit for drinking at New Norfolk; but when it is swollen by rains, it is fresh to the distance of two or three miles below the town. The river is here a quarter of a mlle wide, and begins to be navigable for ships. Λ few iniles lower down the river widens to three-quarters of a mile, whieh width is gradually inereased to two miles. Below Hobart Town it varies hetween two and four miles, and is deep enough for large vessels, and free from shoals, which are rather numerous above that town. The tide ascends 30 miles from Stom Bny. None of the tributaries whieh enter the Derwent from the south, after it has emerged from the mountains, aro above the size of a mountain-torrent; but it receises several rivens from the north which flow from 20 to 30 miles, as the Dee, the Ouse, the Clyde, and the Jordan. Some of them form cataracts aud mpids, and none of them are navigable.

The river IIuon, which drains the greater part of the momutain-region west of the Derwent, hans a course of alout 80) mites; bit this river lies without the settled portion of the colony, and its course has only been explored wiflin a few years. No neconnt of it cxisis. It forns a wide aesInary, like the Derwent, which opens in D'Entrecasteaux Bay. Coal River drains the undulating counlry east of
the Derwent, and falls into Pitt's Water: its course is abont 20 miles.

We pass to the description of the northern part of Tasmania (north of $41^{\circ} 50^{\prime}$). The watershed of the eastern distriets of this country lies close to the Pacifie, as the remotest sources of the South Esks are only from four to five miles from its shores. The Upper Valley of the South Esk lies between two large mountain-masses, but the Lower Valley constitutes a part of the Basin of Lincoln. The Upper Valley extends from the sources of the river westward to the vieiuity of Ben Lomond Rivulet, where an offset of the Ben Lomond eomes close to the river, whilst from the sonth the most north-western branch of the Eastern Tier also approaches very near, so that there is a natural pass by which the Upper Valley of the South Esk is entered. This ralley extends about 35 miles from the gorge, following the St. Paul's River, but nearly 50 miles along the Break-o'-Day River. The mountains which extend along the shores of the Pacific, and connect the northern part of the Eastern Tier with the range of the Ben Lomond, have not been explored. When seen from the sea they constitute a high range, overtopped by several summits, among which is Tasman's Peak and Mount Champagny, south-west of Cape St. Helen's : the last mentioned, n conical summit, rises about 3000 feet above the sea. It has not yet been ascertained where and how this maritime range is connected with Ben Lomond. Ben Lomond appears to be the highest ground in this part of Tasmania, and is estimated to rise 4200 feet, or about 1200 feet higher than the mountain in Scotland whose name has been transferred to it. The mountain-mass, of which it forms the most elevated portion, extends to a considerable distanee to the south-west, where, as already observed, it conies close to the banks of the South Esk, near the place where it is joined by Ben Lomond Rivulet, and it is probable that it advances still farther to the north-east, in which direction this region has not been explored. It is however certain that the maritime range and that of Ben Lomond join at an aente angle, leaving between them a depression of a basin-like shape, which may be called the Basin of Flingal, from a township of that name situated near the place where the South Esk and the Breal-o'-Day River join. The existence of this basin has only been ascertained within the last ten years, and our information respecting it is scanty; but as the settlements begin to be numerous, and as it has been divided into hundreds, we may presume that the soil of this tract is good. The Basin of Fingal extends from north to south about 15 miles, and about as much from east to west. Its southern districts are drained by the Break-o'-Day River, which rises in the maritime range, and, running eastward, meets below Fingal the South Esk, whieh originates in the Ben Lomond range, and waters the northern districts of the basin. 1 few miles below the confluence of these two branches, the South Esk, having a south-west course, enters a wide valley, about 10 miles long, and afterwards reaches a plain, where it is met by the St. Paul's River. The valley, through which the last-mentioned branch of the South Esk descends from. its source in the maritime range, is for a considerable part of its course so wide, that it has obtained the name of St. Paul's Plains, which are described as an undulating country, in some parts overgrown with open forests, and in others without trees, but well watered, and producing rich pasture. Between the Valley of St. Paul's River and the Basin of Fingal is a moun-tain-mass, which is connected on the east with the maritime range, and whose westem extremity is marked by a dome-like summit, to which the name of St. Paul's Dome has been given. It is considered to rise 2800 feet above the sea-level. After the confluence of the two principal branches, the South Esk turns westward, and flows along the base of the Eastern Tier, so that between the river and the mountain south of it there is only a narrow strip, with an undulating or hilly surface, which however has a good soil. North of the river the valley extends to the base of the Ben Lomond range, a distance of five or six miles: the intervening ground resembles in general the St. Paul's Plains, belog better adapted for pasture than for agriculture, and partly eovered with thin forests. Thus the valley continues to the gorge above the mouth of Ben Lomond Rivulet.
North of the Upper Valley of the South Esk extends the North-Eustern Mounlain Region, the whole of which
is probably occupied by mountains; but the interior of it has not been explored, and only the outskirts of it are known. The country along the Bay of Fires, between Cape St. Helen's and Eddystone Point, is of considerable elevation, but partly well wooded and partly covered with a fine growth of grass. This tract is supposed to be fit for pastoral settlements. North of Eddystone Point the mountains are several miles from the shore: they have only been seen from a distance, and appear to constitnte one continuous mass, broken in a few plaees by ravines, by which small rivers issue from them. There are no striking summits, except Mount Cameron, between Eddystone Point and Ringarooma Bay, but its elevation is not known. The mountains are generally wooded. The flat country between these mountains and the sea, from Eddystone Point to the mouth of the Tamar, is watered by numerous small streams, but the soil is generally dry and sandy, in some places overgrown with bushes or short, crooked trees, and in others covered with swamps, in which only tea-bushes are found. There are a few tracts which have a better soil, and might be cultivated, as on the banks of Piper's River. The best portion of this region is the valley of the North Esk, which opens to the west, and stretches eastward into the mountains on the north of the Ben Lomond range. This valley however is narrow, and contains very fetv tracts adapted for agricultural purposes, and the number of settlements is small, though the proximity of the town of Launceston affords a ready sale for their produce. A ridge of sterile but wooded hills runs along the southern side of the river, and continues to the banks of the South Esk, where that river, about a mile above Launceston, runs in a narrow valley for a mile, and at the point where it leaves that valley forms a cataract about 40 feet high.
The gorge through which the South Esk flows above Launceston scparates the valley of the Tamar, which lies north of it, from the Basin of Lincoln, which extends south of it. The Tamar is only a deep inlet of the sea, which begins at the town of Launceston, and where the two Esks fall into it. Its length to Port Dalrymple in a straight line is about 30 miles, but measured along its numerous bends it is 43 miles. The tides come up to Launceston, at which place the inlet is only 60 yards wide, yet vessels of 150 tons may ascend to the town. The width of the navigable channel is 20 yards, nor does it widen for two miles below the town, and it is very narrow 10 or 12 miles farther, though the inlet itself widens to three-quarters of a mile. Ten or twelve miles below Launceston the inlet alternately expands to a breadth of three miles, and contracts to a mile, so as to appear like several small lakes connected by short channels. In this part are several shoals and sand-banks, and they only disappear about 15 miles from the sea. It is a great obstacle to the navigation of the river that the wind always blows either directly up or down it, so that a vessel is often obliged to depend upon the tide, and it sometimes happens that a passage from Port Dalrymple to Launceston occupies two or three weeks. The valley of the Tamar, measured between the summits on the two sides of the river, is about eight miles wide, but two or three of them are occupied by the declivities, though these declivities are rather steep. Thus the cultivable ground, if the extent of the inlet itself is subtracted, varies between three and six miles. Near the town of Launceston, and to a distance of about 11 miles north of it, the eountry on both sides of the river possesses a considerable degree of fertility, and is well settled; but farther down the eastern banks have a dry sandy or stony soil of very inferior quality, which is still uninhabited. On the left bank of the river the soil is mueh better, and there the settlements are numerous, though not so numerous as near Launeeston.
The Basin of Lincoln, so called from the hundred of Lincoln, which occupies the centre of it, is the most fertile portion of Tasmania. It includes on the east the lower valley of the South Esk, extending to the western base of Ben Lomond, and on the west reaches the eastern base of the Western Tier. It is scparated from the Northern Elevated Plains by the hilly and woody tract called Epping Forest. On the north it is bounded by the ridge of hills south of Launceston, and the mountains which line the northern banks of the Mæander as far as the mouth of Quamby's Brook. It extends from south-east to northwest about 25 miles, and as much from north-east to sonthwest. This gives an area of 600 square miles. This basin is watered by several large rivers, which unite, and ulti.
mately fall into the South Fisk before it enters the abovementioned gorge. These rivers are, from east to westElizabeth River, Maequarric River, Lake River, Pennyroyal River, and Mreander or Western liver. The surface and the soil of the Basin are not uniform. East of the South Esk the higher eountry chiefly consists of plains. either destitute of wood or thinly woolled, and well adapted for sheep: the wide bottom of the rivers yields rich crops. The conntry between the Sonth Esk and Lake Iliver consists of wide valleys along the courses of the rivers, and narrow ridges of hills between them, which however in some places attain a considerable clevation above their bases. These hills are generally wooded, and though the soil on their deelivities is good, they are at present only used as pasture-ground: the wide level traets along the waterconrses have a very fertile soil, most of which is under cultivation. The most level portion of the basin is that which is west of Lake liver, for in this distriet the uplands do not rise much above the bottom of the valleys, extend with an undulating surface, and are seldort interrupted by high hills. Jike the bottoms, they were formerly clothed with trees, exeept on the very margins of the rivers, but nearly the whole of the region has been cleared and converted into fields. The soil of the bottoms is very rich, but they are subject to inundations, which however are of short duration. From the l3asin of lineoln all the corn is brought to Lanneeston, which is exported from that place, and whieh is the prineipal support of the population in the country round Sydney, whenever Australia experienees a dearth.
To the west of this basin is the Western Tier, or Western Munntains, which extend from the banks of the Iake River a few miles below the place where that river issues from the Arthur Lakes, in a west-north-west direction to the sources of the river Mersey, a distanee of about 50 miles. The range lies between the southern plains and the Basin of Lineoln, but we have very little information respecting this region. A few summits have been noticer, as the Quamby Bluff, near the north-western extremity of the Basin of Dincoln, which is stated to be 300 fect high, and the Extreme Western Bluff, at the west end of the region. It appears that the upper part of the range constitutes a tolerable level, on whieh only a few peaks attain 500 feet, and which is covered with small lakes, grass, and an alpine vegetation. Some low rocky ridges which run across it are covered with erooked euealyptus and bushes. The width of this elevated tract does not execed a few niles, but its elevation must be considerable, which may be inferred from the circumstance that even in January, which eorresponds to our July, a heary fall of snow was experienced, which covered the ground some inches deep. The whole vegetation, especially the frequent occurrenee of lichens and mosses, proves its great clevation, which probably is not much less than 4000 feet above the sea-level.

At its northern extremity the Western Tier is of considerable width, extending from Quamby's Bluff to Extreme Western Bluff, a clistance of about 25 miles. At its northern declivity extends a depression or valley, from east to west, which may be called the Valley of the Mreander, as that river drains the greater part of $i t$. Though a car-road has been made through it, we are not aequainted with its extent from south to north, but we are informed that it extends westward to the vicinity of the Mersey where this river tums westward, being here divided from the valley of the last-mentioned river by a narrow offset of the Western Tier. This traet consists of level plains, which are generally without trees, but in several places there are small clumps of them, and they are oeceasionally intersceted by narrow belts of forest, extending from the mountains to the lanks of the rivers. Numerous rivers water this country, the soil of which is stated to be of good quality, and equally adapted to cultivation and the rearing of eattle.

Proceeding westward from the banks of the Merscy, two high and steep mountain-rilges must be passed before that region is reached which is ealled the Surrey Jhills, and which constitutes one of the most remarkable leatures of Tasmana. It oceupies the country for about 20) niles on each wide of $146^{\circ} \mathrm{E}$. long. and an equal extent on both sides of $41^{\circ} 30^{\prime} \mathrm{S}$. lat., but properly' speaking, its extent towards the south is not known, and it is even probable that it reaches the foot of the Eldon range, a chain of mountains which has been seen from a distanee, and which
probably is alrout $41^{\circ} 55^{\prime} \mathrm{S}$. lat. This recrion gives ongin to a great number of rivers, which run off in all directions. With the exception of a few rivulcts originating near the coast, all the rivers which fall into the sea west of $146^{\circ} 25$ E. long. and north of $42^{\circ} \mathrm{S}$. lat. rise in the Surrey Hitls: they must therefore constitute the highest ground in this part of Tasmania. It is remarkable that the highest part of the region lies on its outer edges, for the region is surrounded on the east, and still more on the north and west, by hills which rise considerably above the general level, have extremely steep deelivities, and narrow level treets on their tops, but are otherwise covered with dense forests frequently matted together by underwood. Among the single summits are the St. Valentine's Peak, near the nortlicm edge, which is 3000 feet above the sen, and the Blaek Bluff Moment, which is said to be 300 feet higher. The interior of the region is very lifferent. Its surfaee is formed by a suceession of low hills, which rise with so gentle a slope that it may be considered a plain, and it is intersceted by small brooks, the sides of which are adorned with narrow belts of heautiful shrubs and trees. Whenever a hill rises to a ligher elevation, its declivity consists of level and regular terraces, as if laid out by art, and the summit is crowned with stately peppermint-1rees. There are many open plains of several square miles in extent without a tree. In general there are not more than ten trees to an aere. The hills are covered with a vigorous growth of grass. The soil is a dark vegetable mould upon a rieh brown loam. The substratum appears to be gravel, whiels renders these liills perfectly dry, and fit for sheep-walks, for which purpose they now are used by the settlements which have been formed on them by the Yan Diemen's Land Company. This country extends north of St. Valentine's Peak on hoth sides of the Emu river, where it appens even more park-like than farther south, being handsomely chumped with trees. This tract is ealled the Hampshire Hills. The elevation of the Surrey Hills above the sealevel renders the elimate much colder than on the eoast. Snow covers the ground for several weeks, which however must be considered as an advantage in a country where the soil inclines to dryness. It has also the benefit of abundant rains during antumn (March and April).

Between the valley of the Mrander and the Surrey Ilitls on the south, and llass's Strait on the north, is the hilly region of Devonshire. The mountains which extend from the gorge of the South Esk to the west of the Tamar north-north-west, and terminate on the sea with Point Flinders, appear to constitute a continuous range of moderate clevation. They are partly wooled and partly destitute of trees, and in some plaees coverel with a very seanty vegetation of shrulss or grass. Farther west this region is very little known, except that the spaces between the rivers are filled up with mountains and high hills, and that these lreights come close to the shores of the sea. Few, if any, seftlements have been formed on it. This region extends westwarl to the banks of the Emu River.
West of the Fmu River begins the Great Plain of Tasmania: it oceupies the norlli-western portion of the island, extending along the northera const from the Emul to Cape Grim, and along the western coast to the Arthur River. The narrowest portion of this plain appears to be between the Emu and Metention Rivers, where its widh does not exceed 12 miles, and it terminates on the south at the Hampshire Hills. liarther west a eontinuous range of high hills, ealled the Campbell Range, forms its boundary, and terminates near the souree of the Detention River wilh Dip Hill, a moumtain of moderate elevation. The surface of this prortion of the plain is strongly undulating, and in many parts even hilly. Near the sliores it is overgrown with clense forests, which are made nearly impenetrable by the underwood, bushes, and ferns. But about three miles or somewhat more from the sea the forests are interrupted by a suceession of small plains covered with grass and destitute of trees. They have a light dry soil, are well watered by springs and streams, and surrounded by excellent timber. The grass is coarse but plentiful: there are also some tracts fit for cultivation. West of Detention River the plain grows wider. From Dip Hill, at the souree of the river, Hellyer dibtinguished the high grounds at Cape Grim and West Point, though they are of very moderate elevation. The plain, west of Detention River, exeeed 15 miles in width. This large traet however is very ill adlapted for colonization. The surfaee is generally level
and the water not being carried off, the country has been converted into an immense swamp. A portion of the swamp is overgrown by low tea-trees, and the remainder is covered with forests of eucalyptus and underwood. The higher grounds, which generally oceur nearer the shores, have a sandy soil covered with heath or stunted trees. The only tract which seems to be applicable to useful purposes is along the sea from Cape Grim to the River Arthur: its width near the cape is several miles, but farther south it grows much narrower: the surface is hilly and partly stony. The soil has generally a tendency to sand, but it is thickly covered with kangaroo grass, and makes good pastureground for sheep, and in some places for cattle. Trees occur only at considerable distances from each other. It is probable that the plain continues south of Arthur River, but that it is of less extent there, as low hills have been seen at a short distance from the sea, which are dry and only covered with bushes, but behind them the hills rise much higher. These parts have never been visited.
The Arthur, whose mouth is near $41^{\circ} 10^{\prime} \mathrm{S}$. lat., is a river of considerable size, and brings down a large volume of water. There is a bar across its mouth, on which the sea breaks with a heavy surf. Its middle course is not known, but it is supposed that the chief supply of its waters is derived from the Surrey Hills, and that two large rivers, which rise there, and are respectively called Hellyer River and Arthur River, unite in the country between the Surrey Hills and the western coast ; and that by their confluence the Arthur is formed.
The other known rivers of the northern part of Tasmania are unimportant, with the exception of the Emu, which is navicable for boats for a few miles. With respect to the South Esk, which probably has a course of 100 miles, two of its prineipal branches, the Macquarrie and the Lake River, rise on the southern elevated plains, and the upper branches of these rivers interlock with rivers which flow southward to the Derwent. As other branches of the South Esk rise near the eastern coast, and others far to the west, it is probable that the area of the country which is drained by it and the North Esk does not fall short of 4000 square miles. The Tamar certainly receives the drainage of a much larger extent of country than any other river of Tasmania.
Climate.-As no meteorological observations have been published on the climate of Tasmania, we only know its peculiarities by comparisons which have been made between it and that of England and Sydncy. There is a considerable difference between the climate of Hobart Town on the soutliern, and of Launceston on the northern coast. The climate of Hobart Town seems to be greatly influenced by the range of mountains west of the town and the vicinity of the open ocean. The vague statement of Breton, that the mean temperature in summer is 70°, and in winter between 40° and 48°, is apparently not derived from observations, and is not much to be relied on. The climate of Hobart Town is extremely changeable. Heat, cold, rain, and sumshine succecd each other with a rapidity which is rarely observed in any other part of the globe. The winter is not more constant than the summer: the same alternations, sith the addition of hail and snow, follow each other in quick succession; but the snow never remains on the ground beyond a few hours, whilst at Launceston it falls in greater quantity, and covers the ground for many days together. This statement does not agrce with another, according to which the average number of days on which rain actually falls docs not exceed fifty or sixty in the year, and that, cxcept on these days, the sky is clear, the sun brilliant, and the atmosphere dry, pure, and elastic. Hot winds sometimes occur, which occasionally raise the thermometer to 108°. They blow from north and north-west, and rarely last a long time; but during their prevalence vegetation is greatly injured. However warm the middle of the day may be, it is invariably attended by a morning and evening so cool as completcly to brace the body, and to counteract any enervating effects of the climate. Thunder-storms are less frequent than in Australia, but violent gusts of wind sometimes occur, which cause great destruction in the forests, and the coasts are visited by mucl boisterous weather. Aleng the western coast strong south-westerly winds prevail nearly all the year round, and render this tract almost inaccessible on account of the want of harbours. During some seasons of the year westerly gales continue for many wecks in Bass's Strait, so that vessels sailing from Sydncy to the Atlantic find that they save time and labour by
going round the island. The climate is very healthy : no epidemic or contagious diseases have been observed, and acute diseases are generally mild and of short duration, and yield more easily to the usual remedies than in any other country.
Productions.-The mineral wealth of the island is not known. The existence of gold and silver rests on statcments whicly cannot be relied on; but that of copper is cerlain, and this metal is rather abundant in some of the hills on the north coast. Iron-ore is abundant, but not yet turned to account. Some ore which was subjeeted to a trial yielded 80 per cent. of metal. There are also indications of lead, zinc, and manyanese; and those of coal have been found all across the island. Roofing-slate of good quality abounds in many parts: on the Arthur such extensive layers were discovered by Hellyer, that in his opinion the whole globe might be supplied with them. Salt is obtained from the salt lakes of Salt-Pan Plain, and is also got from sea-water on Bruni Island, but not in sufficient quantity to supply the consumption. Salt is imported from England. Excellent sandstone for building is found in all parts of the island, and marble is met with at various places. Basalt rocks are frequent along the coast and in many plaees in the interior.

No tropical grains or plants are cultivated, but all grains cultivated in England succeed well. Wheat is of excellent quality, weighing generally from 62 to 64 pounds the bushel: considerable quantities are exported. Barley and oats will only thrive in a good soil. Vegetables of all kinds are most plentiful, even those of Southern Europe, the production of which requires in England much care and expense. The apple-orchards are of great extent, and the making of cider is attended to. Peaches, apricots, and nectarines grow very abundantly. Damsons, plums, cherries, pears, and quinces are also grown ; but the fruit is of inferior quality, for want of care. Grapes are of good quality, but no good wine has yet been made. Raspberries, gooseberries, and currents are abundant and of good quality : strawberries are also good. All these fruits have been introduced by the settlers.
The domestic animals of Europe have been transplanted to Tasmania, and thrive very well. Sheep are most numerous. Wool and live stock are exported to a great extent. Black cattle are also numerous, and many head are annually exported; and also some horses. Fowls are extromely numerous, but geese and ducks are not much kept.
The spermaceti-whale is very abundant in Bass's Strait, and many of them are annually taken, but more by the inhabitants of Australia than by those of Tasmania. Black whales abound in all the seas round the island, and a very lucrative fishery is carried on along the southern coast. Whalebone and train-oil are important articles of export. A small quantity of spermaceti-oil is also exported. Seals are found on most of the smaller islands, and especially on the eastern coast: their skins constitute an article of export. Some of the animals of the forests are common to Australia and Tasmania. The native tiger (Hyæna opossum) and the native devil (Dasyurus ursinus) are peculiar to Tasmania, and perhaps also the wild cat. These are the only carnivorous animals in Tasmania, with the exception of some species of weasel. There are three or four species of kangaroos, two kinds of opossum, the bandicoot, the native porcupine or echidna, the wombat, the opossum-mouse, and the ornithorhynchus paradoxus. All the wild animals of Tasmania, with the exception of the native devil, are very easily tamed and domesticated. The birds are numerous: these are emus, black and white cockatoos, parrots, two kinds of magpies, the laughing jackass, hawks, eagles, the carrion crow, pelican, black swan, ducks, teal, widgeons, quails, snipes, and bronzewinged pigeons: the last-named are considered the most beautiful birds in the island. There are likewise several varietics of snakes, two or three of which are venomous; also centipedes, scorpions, and large ants. Fish arc said to be more numerous than on the eoast of Australia, but they have not been further noticed. The river-fish are small.

None of the forest-trees or shrubs yield an edible fruit. They are all evergreens, and have that sombre olive hue which prevails in Australia, without a single lively tint, except that of the native cherry, to break this monotony. The most numerous are the eucalyptus, which attains an
immense size. From one of its species a manna is obtalned, which tastes like some kind of sugar-plum: it forms conoretions on the leaves and smaller branches; but is found in such trifing quantities, that it would never repay the trouble of oulleeting it. The most useful tree is the stringy bark, which is used for bullding and fencing; and the blue gum, of which most of the boats in the colony are huilt. The smaller trees are used for masts for smafl vessels. The peppermint, so called from the tasto of the leaves, is a large free, lint of very little use. Tho Huon pine is the most beautiful wood in the island: it is very superior both in colour and substanee to the Norway deal, bit is scaree and difficult to be had. The Adventure plne, so ealled from the bay of that name, is a species of pine adapted for house-work and furniture ; but it is not common. The black and silver wattle (mimosn) are used in honse-work and furniture, but they are of diminutive size. The bark of the black wattlo is oxported to lingland in large quantities. The tea-tree is a shrub which grows in wet situations: an infision of its leaves makes a pleasant boverage, and, with a little sugar, forms an exeellent substitute for tea.
(Flinders's V'oyage to Terra Australis; Rossel's Voyage d'Entrecasteaur, \&ec.; Evans's Geographical, Jfistorical, and Topographical Description of Van Diemen's Land; Widowson's Present State of Agriculture, fic., in Van Diemen's Land; Bischoff's Sketch of the History of Van Diemen's Land, s.c.; and Breton's Exceursions if New South Wales, ${ }^{\text {g.c. }}$.

History. - In 1803 Lieutenant Bowen, eommissioned by the govemment of New South Wales, landed on the east bank of the Derwent, and formally took possession of Van Diemen's Land as a plaee of settlement. In the following year Colonel Collins, the first lieutenant-governor, arrived, and established the seat of government on the west bank of the Derwent: he gave in the spot the name of Hobart Town, in eompliment to Lord Hobart, then sceretary of state for the colonies. Colonel Patterson arrived in the aame year in the Tamar, and formed an establishment on its west bank. Colonel Davey suceeeded to the government in 1813, and under his administration the ports of the colony were first opened to commerce, only transport vessels from New South Wales having previously been admitted. Colonel Sorell was appointed lieutenant-governor in 1817, and in 1819 the immigration of free settlers from England commeneed, the colony having been previously exclusively formed of criminals sent from New South Wales for crimes repeated there, and of the eivil and military officers charged with their superintendenec. Till the year 1824 the government was subject to that of New South Wales, and the chief eivil and criminal questions arising in Van Diemen's Land were decided in Sydney. The only courts in the island were those of poliee magistrates, who had eognizanee of petty erimes, and a court for the settlement of questions of value not exceeding $50 l$., in which a military offieer presided. Great ineonvenience and mischief resulted from this stato of things. Civil eases were mostly settled by compromise ; and in oriminal eases, the most dangerous offenders were allowed to eseape.
Tho most important steps in the progress of the eolony were made between the years 1894 and 1836 , during the administration of Colonel Arthur:-
In 1824, the population was 12,043 ; in 1835 it was 40,283 " Number of yossels

(Statistical Returns of Van Diemen's Land, compiled by the Colonial secretory, Hobart Toun, dated 10th Oct., 1836.)

Runds wore formed and bridges eanstrueted in different parts of the island; wholesome laws were introduced; the
tone of public opiniou was improved, and the fruits of enterprise and industry were secured by an improved police bystem.
That which chicfly contributed to the progress of the settlement was extraordinary eneomragements held out to emigrants. Grants of land were mado to them proportioned in extent to the capital whith the colunlist was prepared to invest la stock and in agricultural improsements. The labour of eonvicts was not only liberally provided, but the colonist was rowarded for employing it ly allowanees of rations for himself and the convicts in his employ fur some time after his arrival ; and at a later period, when this remuneration, or, to speak more correctly, this addlitional bonus, was withdrawn altogether, labour was ohtained on the cany conditions of the settler providing elothes, food, and lodging to the conviels nssigned to him. There were other advantages likewise incident to the penal purposes for which the colony was founded, which assisted its progress. The character and condition of the majority of the population required that a eivil and military force should be established on tho island, which, being maintained by tho British government, introdueed so nueh eapital annually. From the magnitudo of their crimes or their dangerous charaeter, it was not decmed sate to remove from under the immediate eoercion of governinent a large number, amounting latterly to some thousands, of the eonvicts, and their pmishment was made to eonsist of hard labour at works of publie utility, sueh as the making and repairing of roads and bridges. While the expense of maintaining these conviets was defrayed ly the British government, the settlers contracted to supply the various artieles which made up that expense. They were thus in a twofold manner benefited: they had labourers employed for their advantage at the enst of a third party, and they wero enahled to derive a profit from the payment of that labour. With such eireumstanees in its favour, with a healthy elimate, and a soil of avernge eapabilities, it was impossible that Tasmania should not advanec. Its progress has aceordingly been steady, scarcely subject to any of those variations to which young colonies are exposed ;-to none indeed but such as may be strictly referred to that gambling spirit of speculation which the ocensional great profits of an imperfeetly established market are apt to engender.
In 1831 the system of colonization by free grants of land was abolished, and sinee then land has been sold by anc-tion, first at the upset priee of five shillings per nere; subsequently at twelve shillings; and latterly at twenty, it which it remains. The system of assignment of convict labour is at present only partially in force, and it is intended to diseoutinue it. The colony has probably advaneed to that state in whieh tho advantages (advantages not without some drawbacks even in the best case) of compulsory labour have ceased, and in which the mimute eare, the good will, the steady subordination of the servant are requisite to the success of industrial operations.

Trade and Commerce. - The staple artiele of production in Tasmanua is wool, the amount of which exported in the year ending December, 1839, exceeded 2,400,900 lbs. (Parliamenfary Report on Hool and Woollen Menufucturex, April 29, 1839.) The value of this wool in the English market has, according to the Statistical Report of the secretary to tho government of Van Diemen's Land, quoted above, ranged from $1 s .0 d$. to 2 e .6 d . per lb . Λ eonsiderable tmdo has during the last five years been carried on with the new colonies of Anstralia, South Australia, and Port Phillip, in sheep, the prices of whieh have varied in that time so much as from seven shillings to sixty shilling* per head.

Owing to the smallness of the denaand for grain, and the great outlay required in the elearing of land, agricultural operations have been slow in Tasmania. This has likewise been aecounted for by the cireumstance that few practical fariners emigrated to the colony. "The earlier sentters were ehiefly artizans of intemperate habits, unaequainted with husbandry, and disinelined tu atain a knowledge of it. Still (says the writer from whose account wo quote, himself for ten years a colonist of Yan Diemen's land) they obtained and loeated themselves on grants of land; turned up the soil, and threw grain into it ; and it being grateful, repaid their rude essays with bountiful harvests. This was sufficient. When one picee of land was exhausted, another was broken up, and so on in constant sueeession. Fresh
settlers continued to amve, and obtained land too; and as these were not agriculturists either, they had to copy their predecessors. Such was the progress of agrieulture in Van Diemen's Land; and such is its condition at the present period (1838). The diversity of the elimate in the different distriets is still overlooked; the seasons are seareely ascertained, and the proper times for sowing remain doubtful, and are adopted irregularly.' (The Condition and Capabilities of Van Diemen's Land, by John Dixon, 1839.) Van Diemen's Land however produces not only a sufficient supply ot grain for domestic consumption, but has contributed for several years to supply the deficiency in New South Wales; and in the opinion of local writers there is a probability of its being the granary of the southern hemisphere. Oxen are generally used, instead of horses, in plourhing, and the implements of husbandry are those in use in Enyrland.

Oil constitutes the second great article of export from Tasmania. Whales of the black species were at one time taken in great abundance in the bays on the eoast of the i.sland; but we find that Mr, Dixon confirns the apprehensions expresscd by an earlier writer on the colony (Observations on New South Wales and Van Diemen's Land, by John Henderson, Caleutta, 1832) of their being driven away by an injudicious, prosecution of the fishery at all seasons of the year. Sperm oil, as well as that of the black whale, is exported. The returns derived from this source are still eonsiderable.

Among the misecllaneous exports are bark, kangaroo skins, whale-bone, and potatoes (to Sydney); but the aggregate of the returis from these artieles is trifing.

There are about eight banking establishments, with branches in the chief towns. They are all joint-stoek, the shareholders being responsible to the full extent of their property. They cireulate notes of one pound and upwards. Bank interest at a recent date was ten per cent., and at the period at which this article is written it eannot be affirmed with confidence whether it is lowered. There are also several companies for the insurance of life and property.

Divisions of the Island.-Original'y Tasmania was divided into two counties, but it has sinee been subdivided into poliee districts, and more recently into thirty-six counties. We are not aware however that any map embracing the courity divisions has been published, and in the following details we adhere to the divisions into districts. The district of Hobart Town is bounded on the east by the river Derwent, and on the south and west by the riverlfuon, on the north by New Nortolk and Rielmond districts. It comprises nn area of about 400 square miles, or 250,000 acres, of which not more than about 4000 are yet in cultivation. Riclumond is bounded on the south and east by the sen, on the north by Oatlands, and on the west by New Norfolk: its towns are Richmond, Sorell, and Brighton; besides which it includes several large agriculturn establishments: it contains about 1050 square miles, or 672,000 ficres, of which about 22,000 are estimated to be under cultivation. New Norfolk is bounded on three sides by Hobart, Clyde, and Kichmond districts, and on the west and soutl-west ly unlocated lands. The townsare New Norfolk and Ilamilton, and it comprises about 1500 square miles, or 06,000 aeres, a great portion of which is barren and rocky: about tovo acres are in cultivation. Clyde is bounded on the west by unlocated lands, and on the other three sides by Norfolk Plains, Camplsell Town, and Oatlands districts: its only town is Bothwell. This district comprises 1700 square niles, or $1,088,000$ aeres, about 5000 of which are in cultivation. Oatlands, bonnded on the south by Richmond, east by Oyster Bay; west by the Clyde district, and north by Campbell Town, contains 900 square miles, or about 576,000 acres. Datlands and Jericho are its towns. Upwards of 4000 ncres are in enltivation. Camplell Town, bounded on the south by Oatlands, east by unlocated lants extending to the sea, west by the Clyde and Norfolk Plains, and north by Launceston distriet, comprises nbout 1260 square miles, or $8: 50,000$ acres. Its towns arc Campbell Town and Ross. The land is rich and fertile, having 8000 or 9000 acres in cultivation. Norfolk Plains are bounded on the south by the Clyde, east by Campbell Town and Launceston districts, and by the territories of the Van Diemen's Land Company, and north by Bass's Straits. Tlis district comprises 233) square miles, or rather more than $1,500,000$ acres. I.ongford and Westbury are the townships. About 8000 acres of land are supposed to bein cultivation. Laun-
eeston district is bounded on the south by Campbell 'own, on the west by Norfolk Plains distriets, and on the north and east by the ocean. Besides the town of Launeeston it has Perth and George Town. The district covers 3800 square miles, or about 2,352,000 acres; not more than 10,000 or 11,000 of which are in eultivation. Oyster Bay is bounded on the south by Riehmond, west and nortll by Oatlands and Campbell Town distriets, and east by the ocean. It contains about 900 square miles, or 576,000 aeres, of which between 2000 and 3000 are estimated to be in eultivation. (Martin'ṣ Van Diemen's Land; Hobart Tonn Annual.)
The other divisions of the island are-the Van-Diemen's Land Company's territoríes, comprising nearly half a million of aeres on the north-west corner of the island, bounded on two sides by the sea, on the others by crown lands not yet located, and by the settled districts of the Norfolk Plains; and Tasman's Peninsula. Of the purposes to whieh Tasman's Peninsula is applied, an account is givet in the article Transportation.

Towns.- Of the towns mentioned in the preceding outline of the territorial divisions of Tasmania, only two or three are worthy of notice, the others being little more than villages or sites laid out for towns on which a few straggling houses are built. 'Hobart Town is built upon an undulating surface, reeding from a cove on the left of the Derwent. Seen from the water, it seems to run up before you on a variety of ascents, and to spread itself abroad upon the lills in the distanee. Mount Wellington, a great mountain, whicl during nine months in the year is eapped with snow, and which rises four thousand feet above the level of the sea, stands at the back, in darkness and sublimity, and overlooks the surrounding seenery. The town is laid out with judgment: There are about twenty streets, all wide, and dividing or intersecting one another at right angles. A narrow and shallow rivulet, which takes its rise from Mount Wellington, flows through the town, and affords the inhabitants their only supply of fresh water. All the strcets are macadamized, and none are flagged. . . The honses bear no common aspect: Some are of brick, others of stone; but all, instead of being slated, are roofed with shingles. As every proprietor has been guided by his own taste in the structure of his house, few are built 2like or upon the same plan; and as he was not restrained by the government to a settled line, they are often planted in a zigzag position. The town covers a great deal of ground, but little of it after all is built upon: A tree is seen sometimes standing in the midst of houses, and a housc often in the midst of trees. Dwellings have been ereeted long before the streets were made, and the town being apon a very irregular surface, some of the buildings in consequence now oecupy very awkward situations. On one side of a street they are often elevated much above the level; while, on the other they are sunk considerably beneath it. Shops are seattered all over Hobart Town; but the business thoroughfare is confined to two streets. Some of the shops are showy and respectable, even tasteful and elegant; displaying an appearance equal to that of many in London. The houscholder is as particular in decorating the interior of his house as lie would be were he in England, and hence his furniture is not inferior to that of those of his own rank in the mother country:' (Dixon's Account.) In 1839 there were upwards of fifteen hundred houses in Hobart Town. Among the public buildings may be named three handsome Episcopalian churches, and one Presbyterian, ore superior edifice belonging to the Wesleyans, besides several of inferior deseription, the property of the same body, two Independent chapels, and a Roman Catholic chureh, by this time probably completed. The Government House is an irregularstrueture, made up of continual additions to an originally small building, and is shortly to give place to another house intended for the residence of the lieutenant-governor, of which the foundation has been laid. There are customhouses, a handsome theatre, a court-house, and polieeoffice, nnd an exchange has been set on foot. There are many benevolent and religious institutions and societies established, and two or three of a literary character. Seven papers arc published, most of which are weekly, besides an official gazette and. two gratuitous advertising sheets. The population of Hobart Town, ineluding the convlets and military as well as the free inlabitants, in the town and its immediate precincts, is not less than ten thousand. The
followng refurus exhihit the amount of the llolart Town inpports and exports, with the places from which received, and to which sent, tor the year ending Deeember, 1837 :limparts.

In a comparison of these returns it is pointed out by the editor of the 'Van Diemen's Land Anmal,' from which uiblication they are taken, that the apparent balanee exhibited against Hobart Town is diminished when it is considered that a great portion of this balanee consists of property imported by individuals who have settled in the colony. We have not been able to procure authentic returns of a later date than those quoted; but it may be concluded that the value both of the exports and imports of Hobart Town has greatly inereased since.
Launceston, the second town of the colony, is situated at the confluenee of the North and South Esk, which there form the Tamar, flowing about forty-five miles, when it disembogues into the ocean at Bass's Straits. It is 124 miles from the eapital of the colony. Launceston is situated in a marshy spot, and is neither in beauty nor in the promise of health to be compared to Hobart Town. The enterprise of its inhabitants, aided by the vieinity of the riehest settlements in the island, is however great, and it is not improbable that this town will outstrip its southern competitor in commerce. The imports in the year 1837 were 191,8131 . in value; the exports being 264,5991 ., thwards of twenty-nine thousand pounds above those of Hobart Town; and in subsequent years it is believed that the difference is mueh greater in amount. Launeeston contains many churches, the property of different religious denominations, and the private and public buildings are not destitute of architectural beauty.
The highway between the northern and southern capitas of Tasmania is for the most part well laid out; there are inns along this road at short distances from one another, the accominodation in which is not far from cqualling the same on the roads of England. P'assing from the highway into what were not long sinee unpeopled woods, the fashionahle vehicle as well as the rustic waggon of the settler is to be seen driven along cross roads which are everywhere in process of formation; and here and there. only partially olseured from a distance by the thick and somhre Australian foliage, are to be seen mansions almost haronial, superseding the rude shelter of the aborigine, and the hut, almost as rude, in which the colonist first lodged.

Poputation.-In 1838 a census of the free iuhabitants of Van Diemen's Land was made with a reference to the religious denominations to whieh they belonged, whieh exlibited the following summary:-

The aceuracy of this retum, in so far as it referred to the relatuve numbers belonging to ditferent relighous denoninations, was generally questioned: but the aggregate representation of the amount of population, we believe. was admitted. No great increase by immigration has taken place sinee, dud the new colony of Port Phillip has attracted many trom Tasmania. The return of the number of male and fenale convicts for the same year gives:-

$$
\begin{aligned}
& \text { Male convicts } \\
& \text { Female conviets }
\end{aligned} \quad . \quad . \quad 16,129
$$

An aecount of the convict systeni of Van Dienen'rs Land is reserved for the article Trasisportation; but the fol lowing returns are introduced here, as they bear upon the general social condition of the island :-

Return showing the Dispmsal of the Convicts in 1838.

Sentence of transportation expired	793
Free and conditional pardons	365
Transported to New South Wales	33
Transported to Port Arthur	1,306
Absconded in 1837	225
Died	67
Executed .	4
Confined in caols	69
Siek in hospitals	82
Invalid estallishments	126
Employed in chain gangs	537
Employed in public works	0,583
Artificers on loan to setlers	202
Assigned to settlers	6.023
' 'Tickets of leave,' or conditionally free	3,960
Constables and field police	305
Missing	3.9
	16,959*
Female Convicts.	
Sentence of transportation expired	163
Conditional pardons	5
Died	10
Sent to New South Wales	
Total number remaining	2,086
	2.318*

State of Crime.-If Van Diemen's Land has greatly loenefited in an ceonomical sense by being a settlement for convicts, it has undouhtedly suffered from this eanse in a moral sense. A paragraph will not suffice to give an aecurate idea of the general momal condition of the population. Referring therefore to the Trunsportution Report of 1838, and to a volume entitled 'Australiana,' by Captain Maconochie, R.N., K.H. (Parker, Strand, 1839), we shall introduce here only a few details and accompanying explanations taken from the last of these authorities. Notwithstanding the strietness and vigilanee of the police of this colony, notwithstanding the length of time during whieh the prisoners lave for the most part been subjected to its minute supervision, notwithstanding the decided tendency of the are to moral improvement, and notwithstanding the great influx of free settlers into the colony within the last ten years and the high personal respectability of most of them, the proportion of erime and disorder to the cutire population is not only very great, but appears in many partieulars even to be on the increase.' From No. 33 of the Statistical Papers drawn up ly the colonial secretary, it appears that convictions for drunkenness were, in 1894, as $3{ }^{7}{ }^{7}$ to 100 of the whole population, and in 1832 ns 09 ?nt . Convictions under penal statutes of free persons in 1824 were as 5y to 100, and in 1832 as Tfs ; and geueral misdemeanors by conviets in 1821 wero as 11_{b} to 100 , and in 1832 ns $43 \%_{2}^{2}$. Afler 1832 the returns are diflerently made, and the several heads of otlence are multiplied; yet, with few exeeptions, the same general fact is evident. Thus drunkenness amone the conviets in
 The tendency, as is well known, in Jinglish society, unless in pleculiar ecreumstances, lans been rather steadily, during the last ten or twelve years. towards sobricty. Felonies disposed of summarily were in like manner, in 1833-31-35,
 3 fis to 100 ; mud what are called various offences, not in-

We have not intrmbured the resurus of conviets arnsing from England,
tain Maconochic quotes returns of the convictions before the supreme court and quarter-sessions, on which he remarks: lst, that the ratios throughout to the whole population are enormous, convictions in England being scarcely 1 to 1000 inhabitants, and in Scotland only 1 to 1300 , thuse for Van Diemen's Land being, in 1835, 1 to 100_{361}^{577}; 2ud, the extreme vigilance of Van Diemen's Land police tends to prevent the commission of great crimes, while the latitude given to its summary jurisdiction makes it manecessary to bring mediunn offences under the cognizanee of the higher courts; 3rd, the pecuniary prosperity of Van Diemen's Land is advancing, which shows that dissipation, not distress, leads there to crime. Comparing the state of petty crime in the colony to that in London, it is found that in Van Diemen's Land, for drunkenness alone, the convictions among the free population are about 14 per cent.; whereas in London, for every description of pelty offence, they are little more than 5 per cent.; and Captain Maconochic remarks that the returns in Van Diemen's Land refer to a mixed population of agriculturists as well as town residents, which makes the comparison still more disadvantageous. As general characteristics, he mentions dissension, bitterness of feeling, improvidence, and a reliance upon authority, instead of moral influence, in the relations of master and servant. He remarks also that there is a low standard of moral principle, a characteristic which, though not so obvious, is radieally more detrimental than great occasional vices, and one whieh it is more difficult to correct. But as he irequently points out in his interesting work, and as there is a neccssity of remarking here, in strictness a social character can scarcely be predicated yet in reference to the population of Van Diemen's Land; the colony is not old enough to have moulded the character of its inhabitants; and, amid much that is painful in the aspect of society, there is also much of an opposite character-individual benevolence and publie spirit.

Gocernment.-Van Diemen's Land is administered by a licutenant-governor, who is assisted by two councils. The lieutenant-governor has the initiative of all laws. The conncils are called the Executive and the Legislative. The former is composed of official members, and the latter of official and non-official : all are appointed by the crown, and removable at the governor's pleasure, with the sanction of the crown. If two-thirds of the legislative council are opposed to any act proposed, it cannot pass: the reasons of dissent arc entered. Practically however this provision is of no value, for half of the council are salaried ufficers of the local government. Laws passed by the council must, within sceen days, be enrolled in the Suprente Court; and fourteen days from such enrolment, unless the judges declare them to be repugnant to British law or the charter, or letters patent of the colony, they come into operation. In ease of objection being made, the governor and council re-consider the act. The laws of Encland, so far as thicy can he applicd, are recoguised, and embodied in local enactments.

The judicature consists of a supreme court, having two judges, of courts of quarter-sessions, and courts of requests, which last are sometimes called courts of conscience, and have jurisdiction in matters to the extent of ten pounds. Criminal offences are tried in the Supreme Court by seven military officers as a jury; civil cases, by a judge and two asscssors, magistrates of the eolony appointed by the goremor, and who are open to challenge by the parties, the challenge being determined by the judge: if the assessors do not agrce, the judge has a easting vote. The Supreme Court may, on the applieation of either parly in an action, summon a jury to try it. This conrt declares insolvencies and distributes effects: it likewise possesses equitable and eeclesiastical jurisdiction. The total estimated expenses of the judicial establishment for the year 1839 was $1: 3,266 l .78 .6 d$.

In all the most populous distriets of the island there are police magistrates, who sit daily for the trial of petty offences: thicir decisions are sulject to the approval of the governor, who is advised by the chief police magistrate. A large constabulary force is maintained, composed chicfly of convicts. The total police estimates of V an Dienten's L.and for 1839 exceeded $20,000 \mathrm{l}$.

The ecclesiastical provision is of the most liberal character. Three religious denominations, the Episcopalian, l'reslyterian, and Roman Catholic, receive allowances
I. C.. No. 1499.
from the state. They are equally provided for in proportion to the respective number of their bodies, and the clergy of each have the same political status. In the towns the subscription of two hundred adults (three chil. dren or persons under a specified age being eonsidered cqual to one adult) to a paper, intimating their eonnection with one of the denominations named, desiring to have a church erected for the use of such denomination, and the contribution of at least $300 l$. towards its erection, are the conditions on which the government erects such church and provide sor the maintenance of worship in it. In the rural districts the fulfilment of these conditions by eighty adults, residing within a radius of ten miles, is required. The sum expended by the government on the erection of a church is equal to that raised by private contribution. The stipend allowed to the clergy in the towns is $250 l$. annually, and to those in the rural districts 200l. A glebe and ten acres of land are also allowed, and in certain cases a further sum of money for the feed of a horse. The Wesleyans have an annual grant of 400 l. voted in their favour by the legislative council.
The Church Act has stimulated the ereetion of churehes in the colony, so that there is now no deficieney, comparatively speaking, except in the districts in which there is a very limited population. The estimated expenses of the ecclesiastical establishment for the year 1839 amounted to 7055 l .14 s .11 d ; but the Church Act had not, at the period at which that estimate was made, cxerted so much inAluence as it has since done, and at present it is certain that the ecclesiastical outlay is considerably above the sum stated. Numerous places of worship have been erected throughout the settled districts of the island by Protestant denominations, not embraced in the government scheme of support. The government assists in the maintenance of Sabhath schools in connection with the different churches.

Liberal provision is made for juvenile education, on the principles chiefly of the British and Foreign School Society; and, besides a collegiate institution, founded and maintained by the government, one has been projected by the colonists, for which subscriptions have been raised. The sitc of the first is at New Norfolk: the second is to be established at Camplell Town. These institutions are to be in the first instance superior grammar-schools; and gradually, as professors can be obtained, and there is a demand for the higher brancnes of learning, they are to receive the claracter of colleges.

In the estimates of the expenditure of Van Diemen's Land for the year 1839, a sum of $4000 l$. is put down for schools; and an additional sum of $2751 l$. for the " O_{1} phan Schools, in which the offspring of convicts are educated and maintained. The expense of the collegiate institution is not included in the sum of 4000 l . : its foundation had not been laid at the date of that estimate.

The revenue of the colony is derived from duties on spirits- 10 s . per gallon on brandy; 7 s .6 d . on hollands or geneva, West India Rum, or Britislı gin; 1s. 6d. per pound on tobacco: from licences - 253 . per annum for licence to sell spirits; $3 l .3 s$. for auctioneer's, and $4 l .4 s$. for marriage licences: from the fees of public offices, fines, \&ce. It has increased progressively for many years. In 1826 it amounted to $34,655 \mathrm{l}$. 0s. 14d.; in 1830 it was $62,018 l .78 .8 \frac{1}{2} d$. ; in 183% it wás $91,320 l$. 19s. 91d. (Statistical Report of the Colonial Seeretary.) With the addition of the revenue derived from the salc of land in these ycars, it amounted to 65,178l. 17s. 0 7 d. in 1830; to 106,640 l. 8s. $2 d$. in 1835 ; in 1840 , the revenue, it was cstimated, would amount to 200,000 \%. Part of this revenue is appropriated to the immigration of labourers, and the rest to the civil, judicial, ecelesiastical, and niscellaneous expenses of the colony, which are not bome by the British government. The expenditure of the year $18: 37$ amounted to $136,856 \mathrm{l}$. 1 s . 6 d. ; for 1838 the estimated total was $124,143 \mathrm{l} .14 \mathrm{~s} .4 \mathrm{~d}$. ; for $1839,111,710 \mathrm{l}$. ($A b$ stract, dated July 5th, 1838, Colonial Secretary's Office, Hobart Town.)

Natives.-The aborigines of Van Dienen's Land so elosely resemble in physical character those of Australia, as to leave no doubt of their origin being the same. [Australia.] M. Péron says that the Tasinanian has a large head, especially remarkable for the great lengtli of the line from the chin to the sinciput, and that the head of the New Hollander is less bu!ky, and is compressed in the back part, while that of the 'lasmanian is elongated in
tive same direction. The great difference eonsists in the hair, which is strayht or eurled in the New Hollander, and woolly in the Thimanian. (Papers on Neas south Wiales, by Baron Field, Fsq.) In languge and customs the resemblance is equally' apparent. Tasman, in the briet aecount of his voyare, published in 'Harris's Collection of Yoyages (vol. i., p. 3e5), mentions his observing on the shores of Van Diemen's Land trees which land 'a kincl of steps cut in the bark, in order to clinub up to the birds' nests: these steps, he says, were the distance of five feet from each other, so that we must conclude, that either these people are of a prodigious size, or that they have, some way of climbing trees that we are not used to.' The difficulty here suggested by Tasman has been since resolved: 'The natives of Austratia climb trees by cutting noteles in the bark, by means of a small stone hatehet, and with each hand alternately. By long aequired habit a native can support hinself with his toes on very small notches, not only in elimbing, but while he euts other notches for his further ascent with one hand, the other arme embracing the tree.' (Major Mitchell's Trutels in Australia, vol. ii., p. 338.) In this singular custom the natives of Van Diemen's Land and of Eastern Mustralia agree. The corroboreé dance [Swas Rivra] is common to both, and the oflensive weapons of both people are precisely the same. Major Mitchell expresses a decided opinion that the natives of both countries are derived from a common stock (Travels, vol. ii., p. 311), in which other travellers have concurred. The natives of Tasmania, necording to the accounts of carly colonists, and of Cook and D'Entrecasteaux, appear to have been more intelligent and friendly than those of New Holland when first approached. M. Labillardicre, the historian and naturalist of the expedition of Admiral D'Entreeasteaux, speaks of their music, their knowledge of plants, and their general acuteness, in terms by no means contemptuous; while he highly praises the humane and contiding disposition which they evineed towards their French visitors. Dr. Ross, the Editor of the "Van Diemen's Iand Annual, to whom we are indebted for the best secords of the early history of the colony, after many years' opportunities of intercourse with the aborigines, thus refers to them: 'During all the intercourse I have had with this interesting people, I not ouly found no want of sense or judgment among them, but, on the contrary, mueh to admire in them as thinking men, as endued not only with much ingenuity and penetration, but with the tellderest sympathies of the heart, and all the nobler passions that elevate man in the scale of being.'
Original harmlessness of elaracter has not however preserved the Tasmanians from the usual consequences of European contact-expatriation or extinction. The hislory of the events which have nearly extinguished this raee is briefly as follows:-Van Diemen's Land was colonized in the first instance by the most abandoned eriminals. These men had no wives; no regular system of diseipline was adopted in reference to them, but they were dispersed in small bodies over the territory, white others, escaping from eontrol, pursued a predatory life. The wives of the natives were sedueed by criminals, which excited the animosity of the men, and during several years indiscriminate warfare subsisted between the aboriginal and the colonizing population. At length, in 1830, the loeal goverminent systematically interfered, and the free and conviet inhabitants of the colony were enrolled for the purpose of killing or capturing the aborigines. Very limited success attended this mode of proceeding after it had been in operation for a considerable period, when Mr. Robinson, an individual of remarkable courage and selfposyession voluntecred, with the assistance of some friendly natives, to bring the rest to terms of pacifieation. By fair promises to the natives he accomplished a vietory which eould not be obtained by an expenditure of upwards of 30,0001. (Vion Diemen's Land Anual for 1838) dilferently direeted, and the natives put themselves in the power of the government. This triumph, obtained by noral influence, and which might have been made subservient to the good of both races consistently with the aborigines remaining on their native soil, was converted to their muin. They were transported) to an unfavourable spot (Flinders' 1sland, in Bass's Straits), where a miserable remnant of about eighty individuals were all that survived in 1836 of a population of three or four thousands, the estimated abori-
ginal population of Van Diemen's Land when colonization began there. (Vitn Diemen's Land Anubal for 183s, 1μ). 127-8.) The couruge which faced the aborigines unarned in a time of warfare, was no evidence that the individal who dared to do this possessed the gualities essemtial for the suceessful treatment of ancivilized race with a view to its improvement. However that courage was rewarded by the appointment of Mr. Robinson to the oflice of "civilizing' the 'Tasmanians at Flinders' lsland. It would be tedious to detail the features of the 'civiliziny's systern pursued there: it is sufficient to mention that every habit and amusement peenliar to the aborigines has been diseournged; the cumbrous and uncongenial forms auk ineidents of advanced civilization have been enforeed in every-lay life; the native language las been as much as possible suppressed; native names have been made to yield to those of the Geesars, the Mambals, and the Seipios; a disposition to indulge in the pleasures of the chace has been recorded as a delinqueney; and the verbal repetition of the Commandments auch the Cateelism is alleged as the evidence of religious progress, and a confutation of all disbelief as to the capacity of uncivilized races to appreciate the doctrines of Christianity. (Report of the Commandant of Filinders' Island; Parliamentary Papers, 1839.)

An intelligent witness of the experiment carried on at Flinders' Island has thus reported upon it: 'The commandant has an establishment of thirty-two conviets to wait on the aborigines, and supply the deficiencies of thei: own labour, and is rewarded by a great deal of reading, writing, singing, rehearsal of the catechism, tailoring, sul)missiou, attachment, decorum, tranquillity, everythung, in a word, which gratifies superficial exammation; and he persuades himself that he is eminently suceessful with them: but they have no free agency, and are nere children at school, and they cannot escape from their prison, they camot subsist at a distance from it, they must not break its rules, it must be a place of excessive pmmi to them: as moral agents they are lower now than when savages; and they die the faster, I fear, for much of this kindness. The commandant imputes the mortality among them to the situation and climate, and wishes to transjort them to the south coast of New Holland; but in six months I am persuaded they woukl be, on this plan, happy savages in the bush.' (MS. Leller.)

TASSIE, JAMES, was borm of humble parentage, in or about the year 1735, in the neighbourhood of Glangow, and was brought up as a country stone-nason. Going to Glasgow ou a tair-day to enjoy himself with his companions, hie visited the eollection of paintings exhibited by the brothers Foulis, who were then endeavouring to establish an academy for the fine arts in that eity: [Founis, vol. x., p. 383.] Feeling a strong desire to become a painter: Tassie renoved to Glasgow, and studied drawing in Foulisis academy, but contimed to practise his business. Tliough poor, he was frugal, industrious, and penseveriny; ancl, hoping at least to become a statuary, if not a painter, he, in 1763 , went to Dublin, where he was employed for some time as a seulptor and modeller. There he become aequaiuted with Dr. Quin, who was making experiments in the benutiful art of imitating engraved gems by means of coloured glass, or pastes, and who engagel him as his confidential assistant. Ilaving sueceeded in ettecting great improvements in the art by their joint labouns, Tassie was encouraged ly his patron to remove to London, and to follow it as a profession. He aceordingly reached London in 176G; and although, owing to his diffidenee and modesty, he had to struggle with many difficulties, he gradually emerged from obscurity, obtained a comfortable competence, and established such a reputation, that the principal eabinets of Europe were thrown open to him. Among lis earliest patrons in the metropolis were the Society of Arts, who, in 1767, awarded hint the sum of ten guineas for imitations of antient onyx. In $17 \mathrm{~T} . \mathrm{J}$ Tassie, who then resided in Compton Strect, Soho, published a catalogue of the antient and modern gems in his collection, of which he sold pastes or sulphur impressions at very moderate prices. The eollection then amounted to more than three thousand artieles; but it was subsequently mueh extended, and in 1701 appeared a new eatalogue, containing fifteen thousand eight hundred articles, and forming two quarto volumes. This work, whiel is not confined to a dry description of the gems, but contains
much useful information on that department of antient art, was compiled by Mr. R. E. Raspe, who prefixed to the catalogue an introduction on the utility of such a colleetion of works of art, and on the history of engraving upon hard stones, and the imitation of gems by artificial pastes. The work contains also a frontispiece and fifty-seven plates of gems, etched by David Allan. From Raspe's introduction it appears that the demand for Tassie's pastes was encouraged, in the first instance, by the jewellers, who introduced them into fashion by setting them in rings, seals, bracelets, and other trinkets. He was very careful of his reputation, and would not issue imperfect impressions; but the celebrity of his casts induced other and less skilful modellers to sell their works under his name. About 1787 or 1788 Tassie received an order from the empress of Russia for a complete set of his gems, which he executed in the most satisfactory manner, in a beautiful white enamel composition, so hard as to strike fire with steel, and of such a texture as to take a fine polish, and to show every touch of the artist with the greatest accuracy. Wherever it was possible to do so, he coloured these in exact imitation of the originals; and in other cases such colours were used as might display the work to advantage. Tassic's business was continued by his nephew, William, on his premises in Leicester-square; and he added to the collection a series of casts of coins, from the museum of the late Dr. William Hunter, of which he made a set by order of the emperor Alexander, to add to the gems executed for the empress by his uncle, who died in 1799. Besides the branch of art for which he is principally celebrated, Tussie displayed considerable talent in modelling small portraits in wax, from which he frequently made pastes. He was much respected in private lifc for his piety, simplicity, modesty, and bencvolence.

Raspe's Catalogue of Tassie's Gems, \&c. ; Dr. Gleig's Supplement to the third edition of the Encyclopredia Britannica, 1801.)

TASSISUDAN. [BCotan.]
TASSO, BERNARDO, born at Bergamo in 1493, lost his father when a boy, and was brought up under the care of his uncle Luigi Tasso, bishop of Recanati, who was living at Bergamo. The bishop being murdercd by robbers in 1530, Tasso left his native town, and lived for several years at Padua and Venice, and other towns of North Italy, where he displayed his talent for poetical composition. In 1525 he engaged himself as secretary to Guido Rangone, who was general of the Papal troops in North Italy. In 1529 he went to the court of Ferrara, where he remained a short time. A volume of Italian verses which he published at Venice in 1531 made him known to Ferrante Sansevcrino, prince of Salerno, one of the pincipal Neapolitan barons, who kept a princely court after the feudal fashion of the times. The prince invited him to come to Naples, granted him a handsome allowance, with the liberty of withdrawing himself from time to time from his court to apply to his poetical studies in rural retirement. Tasso accompanied the prince of Salcrno in the expedition which Charles V. undertook against Tunis, in 1531. He was afterwards sent to Spain, in 1537, on a political mission, and on his return he spent some time at Venice, where he became acquainted with the celebrated Tullia d'Aragona, the illegitimate daughter of a cardinal of the royal house of Aragon, who was herself a poctess, and led a very frec life. Bernardo Tasso wrote verses in her praise. Having at last discntangled himself from this connection, he rcturned to Naples, where he soon after married a young lady of Sorrento called Porzia de Rossi, by whom he had a son, Torquato. In 1547 an insurrection broke out at Naples against the Spanish viceroy Don Pedro de Toledo, who, in concert with Pope Paul III., wished to establish the Inquisition in Naples alter the fashion of Spain. The people elected a sort of council coniposed of nobles and citizens, under the name of 'Union for the service of God, the cmperor, and the city.' to administer temporarily the affairs of the country. This boly chose the prince of Sanseverino and the prince of Sanyro as its deputics to proceed to Germany and lay their gricvances before Charles V. Bernardo Tasso, against the opinion of others, advised the prince to accept this mission. Sanseverino found the emperor highly incensed against the Neapolitans, and fearing for himself, he went to France and entered the service of IIenry II., for which le was declared a rebel by Cliarles V., and his property
was confiscated. Bernardo Tasso followed his patron to France, where, after a time, he found himself in great pecuniary dista ess. He then returned to Italy, and went to the court of Guidobaldo, duke of Urbino, from whence he passed to that of the duke Gonzaya of Mantua, who made him governor of Ostiglia, in which place he died in 1569.

Bernardo Tasso wrote a romantic pocm in ottava rima, entitled 'Amadigi,' the subject of which is taken from a Spanish romance. [Amadis de Gaula.] The plot or plots of Tasso's poem are deficient in intcrest, but the style is good, and the poet excels in his descriptions and comparisons, but lie indulges at times in licentious strains. After writing his poem, he detached one of the episodes and swelled it into a separate poem, entitled 'Floridante,' which was published after his death by his son. He also wrote five books of 'rime,' eclogues, hymns, odes, sonncts, and other lyrics, some of which are admired for their imagery and smoothness of versification. He introduced in the Italian language that species of poctry which is called ' pescatoria ' and ' marinaresca,' being descriptive of the habits and occupations of fishermen and mariners. His letters have bcen published in three volumes.
(Corniani, Secoli della Letteratura Italiana ; Tiraboschi, Storia della Letteratura Italiana; Panizzi, Introductory Essay on the Romantic Narrative Poetry of the Italians, prefixed to his edition of 'Bojardo.')

TASSO, TORQUA'TO, son of Bernardo, was born at Sorrento, in 1544. At the age of ten he was sent for by his father, then an exile, and after some time spent with him in several towns of north Italy, he went to the university of Padua to study law, for which however he had little inclination. At the age of eighteen he composed his first poem, ' Rinaldo,' in twelve cantos. The subject is romantic, and is taken from the old chivalric legends conccrning Charlemagne and his wars with the Moors. Bernardo was at first angry with his son for neglecting his more serious studies, but at last he relented, and gave his consent to the publication of the poem, which Torquato dedicated to the Cardinal Luigi d'Este, brother of Alfonso II., duke of Ferrara. In 1566 the cardinal took him into his service as a gentleman attendant, and introduced him to his brother the duke, and to his two unmarried sisters Lucrezia and Eleonora. He was well received by all, and admitted into their familiar society. Tasso was young and amorous; he had been for some time passionately in love with Laura Peperara, a lady of Mantua, to whom he addressed many sonnets and other verses after the manner of Petrarch, styling her his Laura. This lady, with whom he had probably become acquainted during a visit which he paid to his father at Mantua in 1564, eame some years after to Ferrara as a lady of honour of the duchess, and was married to Count Turchi of Ferrara. But in the mean time Tasso appears to have been struck with the personal attractions and mental accomplishments of the princess Eleonora, the duke's sister, and already in 1566 there is a sonnet by him, beginning 'Nel tuo petto real da voci sparte,' which is evidently addressed to a princess of a sovereign house. From that time he continued to write amatory verses evidently addressed to the same person, whom he styles his 'donna,' or mistress. In some of them he mentions the name of Eleonora, but as there were several ladies of that name at different times at the court of Ferrara, this has given rise to various surmises about the person meant. At last Tasso arowed in several ways his love for the princess, though, from the then existing usages of society, it was impossible that he could ever have obtained her hand. Most of the sonnets and other lyrics, which are evidently intended for this object of his second love, are conceived in a respectful and somewhat melancholy strain, as if the writer felt the hopelessness of his passion. The disparity of rank was in those times an insurmountable obstacle to any legitimate result of such an attachment, and the house of Este was one of the proudest in Italy. Like Petrarch, Tasso seems to have obtained friendship only in return for his love. But there are some of Tasso's compositions written between 1567 and 1570 , in which he assumes the tone of a favoured lover. Such are the two sonnets 'Donna di me doppia vittoria aveste' and 'Prima colla belta voi mi vinceste,' the dialoguc between love and a lover, beginning ' Tu clı' i più chiusi affetti,' and the madrigal which begins 'Soavissimo bacio.' From the context, although no name is mentioned, they all cvidently allude to the samc object as the
other amatory verses adaressed to his 'donna.' There are also some autograply lines of Thsso diseovered by Mai anoong the Falconicri MSS., and publishecl ly Betti at Rone (Giornale Arcadico, Oetober, 1827), in whieh Eleonora is mentioned by name:

> Otando sark che d'Eilmnora mis
> l'oses gudernal in livertede atoure ?
> $\begin{aligned} & \text { Ah, pictoso it deetin tnmto mi dial } \\ & \text { Aldio cetra, addio laurl, addio ntsoore. }\end{aligned}$

It would appear that these verses, having been abstraeted from Tasso's papers by some cnemy, and shown to Duke Alfonso, fint roused his suspicions.
Professor Rosini, in his able essay upon the 'Love of Tasso and the Causes of his Imprisonnent,' Pisa, 1832, proves, in opposition to the nassertion of Serassi and others, that Elieonora d 'Este was the object of the aboye compositions, as well as of all the others addressed to his 'domna.' It is the four compositions last alluded to that constitute the real guilt of Tasso: they boast in prurient language of favours received, which, aceording to the best cireunstantial evidence, were never granted, and which, if even granted, ought not to have been mentioned. And Tasso liimself must have felt this, for when he set out for France at the beginning of $1 \overline{0}-1$, to accompany Cardinal Luigi d Liste on a mission to Charles IX, he left his MSS. in charge of his friend Rondinelli, with directions to publish them in case he should die abroad, 'except those which he had written to oblige some friend, and which must be buried with him.'
This was a subterfuge to conceal the object of the abovementioned compositions, and to make them appear as if written at the request of others, which in itself would have been no very creditable employment for a man of genius. However, before the end of the year 1571, Tasso took his leave of the cardinal in France. It would appesr that while in that country, where he was introduecd at the court of king Charles IX., and beeame acquainted with the French poet Ronsard, Tasso applied himself to study the points of controveryy then debated between the Roman Catholic and the Reformed churches, and that his investigations of those delieate matters displeased the cardinal, who spoke to him strongly on the subject. But Tasso had other and secret reasons for wishing to return to Italy. Having returned to Ferrara, he entered the service of Duke Alfonso limself, by whom he was most graciously treated. - The duke extolled his poctical taleut ; he often listened to the recital of his verses (Tasso was then engaged about his 'Gerusalemme,' which he intended to dedicate to the (luke); he admitted lim to his own table, and to his own familiar society; and he refused him no favour that he chose to ask.' (Serassi, Vita del Tasso; Rosini, Saggio sngli Amori di Tasso.) Such was the conduct of Duke Alfonso towards the poct, until he discovered, years after, his guilty compositions. Whilst Tasso was thus a favoured guest, mither than a dependant of Duke Alfonso, he wrote his pastoral drama, the 'Aminta,' in which he portrays with exquisite skill the pangs and the delirium of love deemed hopeless for a long season, but in the end requited. The drama was performed at the court of duke Alfonso, and its fame soon spread about Italy. Luerezia, Eleonora's sister, who had married Franeeseo Maria, duke of Urbino, wishing to hear the 'Aninta,' invited Thsso to her court, where lie remained several months. This was in 1573 . White Tasso was absent from Ferram, envy was busy at work against him to lower his creclit with Duke Alfonso. At the saine time Guarino, the poet, who was also at the court of Eerrara, stmpe to ingratiate himself with the puincess Eleonora, and this excited the jealonsy of Tasso. It apppears that Tasso had been in the habit of writing to the princess, and sending her some of his poetieal composiiions; hut now he wrote none for several months. At last he wrote her a letter, dated September, 1573, whieh was first purblished by his hiographer Sernasi, in which, affer apologizing for his long silence, the sends her a sonnet. wlich,' he says, ' is not like those fine ones whieh I suppose your graee is now wont to hear very ofen,' alluding to those of liis rival Guarino. And he goes on to say, that lis somet is poor hoth in the eoneeption and the style, ns the author is poor of luek. This last expression cannot be minderstood sas referring to his circumstances, for he wasstill in favour with both the courts of Ferrara and Urlino, and was reeevingy at the time presents from the duchess lucreria of Urbino. But still he sends to the prineew Eleonora
the sonnet, 'hoping that, whether good or had, it will produce the efleet that he wisles.' 'This sonnet, which begins 'Sdegno, delisil guertier, campion audace,' is that of it "tesponding lover who asks for mercy. Thsso couchudes his letter with the usual subterfuge, that the sonnet is not written on his own account, but at the request of a poor lover, who having been for a time angry with his nisitress, is now no longer able to stand out, and surrenders himself and asks for merey.' This and other passages of his amorous verses, referred to ly l'rofessor Rosini in the abovequoted essay, prove that the princess Eleonora had been long aware of Tasso's passion, and felt flattered by it, but probably looked upon it as a poetieal feeling, for which she gave him her friendship. He himself acknowledges this in several plaees; and yet this same man had already written, in the recess of his study, the guilty eompositions which, have been mentioned above.

Towards the end of 1573 Tasso returned to Fermm, where he applied himself to finish his great epic poem 'la Gerusaleinme.' The touching episode of Olindo nnd Sofronia, in the sccond eanto, was meant to portray his own situation with regard to the princess Eleonora; and in a sonnet which he wrote to that lady he evidently speaks of the character of Sofronia as meant to represent herself.

Parts of the 'Gerusalemme' began to cirenlate about in MS., and the author was assailed by numerous peclantic critics. He thought that the duke and lis sister fleonora did not take up his defence with sufficient zeal ; and this slight sank deep into the poct's heart. Towards the end of 157 a false friend, who was in the seeret of his love for the prineess, diselosed some partieulars of it to others. Tas-o having heard of this, and mecting him in the eourt of the ducal palace, required him to deny what he had said, and upon the other's refusal, gave him a blow in the face. This led to a duel; the treacherous friend came escorted by his relatives, who also drew their swords against the poct, but Tasso, who was a good swordsman, snceceded in partying their blows, and came away in triumph. Nothing particular happened after this until June of the following year, 15\%, when Tasso, on the evening of the 17th of Jlune, being in the apartments of the duchess of Urhino, in Dukc Alfonso's palace at Ferrara, fell into a violent passion at some in pertinenec real or supposed of a donestic. and forgot limself so far as to throw a knife after lim. He was immediately arrested by order of duke Alfonso, and confined to a room which looked on the court of the palace. It nppears that between these two incidents his own servants had been tampered with in order to give up his concealed papers. Tasso got information of this, and looked out tor a trusty servant from Urbino, and wrote on the subject to Guido 13aldo, marquis del Monte, and his lefter is quoted by his biograpler Serassi. He had also felt for some time scruples about matters of faith: he nentions in his diseourse to Scipione Gonzaya, that he had doubts concerning many points of religion ; he had even applied to the inquisitor of Bologna, who had granted him absolution; but still he thought himself under the censures of the church. All these things added to the anguish of lis mind. From the place of his imprisonne ant 'Tasso wrote a subnissive letter to the duke, begging his pardon, and the duke appearing to forgive him, released him after a fels days, and took him with him to his country-seat of 13 Cl Riguardo about the end of June. What happened there between the duke and Tasso is not aseertained, but from some expressions of the peet it appears that he was there closely and sternly examined by the duke, who had probably by this time in his possession Tasso's papers. "iu order to get from him an acknowledgment of what, if avowed, would ineense him against him.' (Tasso's Sonnet, heginning ' Alma grande d'Alcide,' addressed to the deceased duke Hercules, father of Alfonso.) On the 11th of luly the duke sent Tasso baek to Ferrara under an escort, anil shut him up in the convent of St. Praneis, his secretary laving written to the monks that le was mad, and must be treated as a madman.
Tasso's love adventures, his real or pretended madness, and the eauses of his long imprisonment, made inuch noise about laly at the time; and they have been so much disenssed and commented upon since, that they huve acquired an historical importance, especially as they serve to illustrate the manners of the times. Duke Alfonso has been much abused, and, we think, without diselimination, for his treatment of the poct. There is a
mystery about the whole story resembling that which hangs over Ovid's banishment. Professor Rosini has collected with the greatest patience and care the discordant opinions, as well as the evidence resulting from Tasso's own writings, published and unpublished, and from those of his contemporaries; and the conclusion which he arrives at by the help of sound criticism is, that the Duke, having in his hands the loose compositions of Tasso already mentioned, which joined to his other compositions addressed to the same person, and his other strange sayings and doings, furmished full evidence that his sister Eleonora was the person alluded to in them, was naturally enough incensed against the poet, and thought that the only reparation that he could make to her injured honour was to make it be supposed that Tasso was mad. This gives the clue to his subsequent treatment of the poet. He must also have been confident that his sister was guiltless, otherwise, as Rosini observes, he would have taken a different sort of vengeance, accordiug to the manners of the age. From the convent of St. Francis, Tasso wrote to the duke, saying, 'that the clemeney of his highness had forgiven him his faults, and that thenceforth if he spoke to any one, he should acknowledge to all that which he clearly knew, that he was under a sanitary treatment.' He adds, that he had resolved, when the treatment was over, to turn monk; and in a postscript he says, that he earnestly wishes that the Duke may know all the truth, that he may not think him more mad than he is. In a long letter which he atterwards wrote to the Duke of Urbino, he says, that 'in order to please Duke Alfonso, he thought it no disgrace to imitate the example of Brutus and Solon.' Both those personages, according to Livy and Plutarch, feigned madness. Receiving no answer from either Duke Alfonso or the Duke of Urbino, Tasso, about the 20th of July, ran away from the convent, quitted Ferrara, and made his way alone and mostly on foot to Naples, and thence to Sorrento, wherc his sister was marricd. Having by kind treatment recovered his health and his spirits, he went to Rome, where he applied through some agent of the Duke to be allowed to return to Ferrara. Duke Alfonso wrote in reply, that he was willing to receive Tasso again into his service, if he would allow himself to be treated by the physicians; but that if he continued his subterfuges, and to talk as he had done before, he would immediately turn him out of his territories, and never allow him to return. Tasso, upon this, returned to Ferrara in the spring of 1578 , with the Cavaliere Gualengo. He was civilly but coldly received by the Duke, who gave him to understand that he ought now to try to compose himself and to lead a quiet life, and to avoid all excitement. He allempted to get an interview with the Princess Eleonora and the Dichess of Urbino, but was preveuted. Tasso, tired of this numner of life, having lost the favour which he used to enjoy at court, ran away again from Ferrara in the summer of 1578 , wandered to Mantua, Padua, and Veniee, and then went to Urbino, wherc he wrote to the duke of Urbino, who appears to have been then on bad terms with his own wife and with the court of Ferrara, entreating him to make the truth known, and to contradict the reports maliciously 'circulated of his madness,' saying that he had suhmitted to it in obedience to Duke Alfonso's wishes, hut that he could not consent any longer to lead an animal life, far from literature and from the Muses. He wrote in sinilar terms to his friend Scipione Gonzaga at lRome, to his own sister at Sorrento, and to the Arciprete Lamberti, to whom he sent a sonnet, beginning 'Falso è il romor che suona.' In Oetober, 1578, he left Urbino, and went to Piedmont under an assumed name; but lie was soon known, and his fame as a poet secured him a flattering reception from Charles Emmanuel, Prince of Fiedmont, who offered to take him into his scrvice upon the same terms as the Duke of Ferrara. But poor Tasso lad still his eyes and his heart fixed upon Ferrara, and in spite of the advice of his friends at Turin, and, among others, of the Marquis Frilippo d'Este, Alfonso's relative, he determined to go to Ferrara. He was encouraged to lo so by letters froni the Cardinal Albano, who it appears had been commissioned by the duke to induce him to return, promising him a kind reception. He arrived at Ferrare on the 21st Febmary, 1579, on the eve of the arrival of Margarita Gonzaga, the new bride of Duke Alfonso. The court was busy about the preparations
to receive the duchess. The duke refused to see Tasso, the princesses also denied themselves, his old apartinents in the palaee were closed to lim, and the courtiers and court attendants treated him with rudeness and contempt. Tasso now became furious, and he uttered impertinent words against the duke and the whole house of Este, which being reported to Alfonso, he gave orders to arrest him and confine him in the hospital of St. Anna as a declared madman.

Tasso remained a prisoner in the hospital full seven years, till July, 1586. From some ohscure passages of his own letters he appears to have been treated very harshly at first by the attendants of the hospital. He wrote to the duke, and to the princesses, but in vain. At last he grew more calm, and was treated with greater leniency. The wretched hole which is shown at Ferrara as having been his prison is no longer believed by competent judges to be the identical place of his confinement. (Valciry, Voyages Littćraires en Italie, book vii., ch. 14.) Political party-feeling in our age has contributed to exaggerate the hardships of Tasso's confinement, as religious party-feeling has exaggerated the sufferings of Galileo in a similar condition. There was hardship no doubt in both instances, and the hardship in Tasso's case was aggravated by the statc of his own sore and unsettled mind. When Cardinal Scipione Gonzaga visited Tasso at St. Anna, in the spring of 1580, he was lodged in a large and commodious apartment, where he could write and correct his compositions. In November of the same ycar he was visited by Montaigne, who speaks of him as a man whose reason was overcome by the vivacity of his imagination. In July, 1581, the Lady Marfisa d'Este obtained leave of Alfonso to take Tasso with her for a few days to her country-house, where he had a philosophical discussion with her and her two ladies of honour, Tarquinia Molza, a learned woman, and Ginevra Marzia, upon the naturc of love. From the recollection of this conversation, Tasso afterwards composed his dialogue, which lie entitled 'La Molza, ovvero dell' Amore.' In September, 1582, Tasso received at St . Anna the visit of Aldo the younger, who brought him copies of some of the finest editions which had come out of his press, and they spent two days together in speaking of their respective studies. Tasso in the meantime was busy writing, or correcting his various poctical compositions which were printed at Venice, but very inaccurately, to his great annoyance. He wrote in his confinement several philosophical diseourses or treatises, sucli as 'Il Gonzaga, ossia del Piacere Onesto,' Il Padre di Famiglia,' the discourse 'Della Virtù Eroiea e della Carita,' the dialogue 'Della Nobiltà,' and others. In his discourse to Gonzaga he says that it was wished that he should become insane, and that the cause, or at least one of the causes, of this persecution was some laseivious verses of his.
In 1583 Tasso grew seriously ill, he complained of his head, of his digestion, of singing in his ears, and other symptoms of a like naturc. He consulted his friend Mercuriale, a physician of Padua, but Tasso was not a very docile patient; he wished for none but pleasant medieaments, and he would not submit to a total abstinence from wine. One of his vagaries was that he had a familiar spirit who appeared to him to comfort him. In 1584 he was allowed to be out at large during the Carnival season, and he wrote a curious dialogue on that circumstance entitled 'Il Gianluca, o della Maschcre.' He enjoyed the society of Tarquinia Molza, of Count Girolamo Pepoli, and other noblemen and ladics of the court of Ferrara. He wrote about that time the dialogues 'Il Beltramo, ovvero della Cortesia;' 'Il Malpiglio, ovvero della Corte ;' 'Il Ghirlinsone, ovvero dell' Epitaffio;' 'La Cavalletta, ovvero della Poesia Toscana;' and 'Il Rangone, ovvero della Pace,' which last, addressed to Bianca Capello, grandduchess of Tuscany, is dated from his apartments of St. Anna, 'Dalle sue stanze in St. Anna.' He was now tolerably composed and reconciled, and could hardly be called a prisoner. In one of his autograph letters, written to the Marquis Buoncompagni, in April, 1585, and which is in the library of Ferrara, there is a passage copied by Valéry, in which he says that the duke does not kcep me 111 prison, but in the hospital of St. Anna, where priests and monks can visit me at their pleasure, and no one prevents them from doing me good.' In several of his unpublished lefters he gives directions about some articles for his wardrobe or his table, and shows a refined taste in botli. But
in that sime year, 1585, a fresh source of vexations opened upon hinı. Ilis great epic poem, "La Gerusalemme Iaberata, had been published emplete at ['arma in 158], and afersunds at Mantua in 15R-L. A host of erities fell upon it, and by their strictures strove to ohseure all the merits of the poem. At the head of them stood Salviati, of the Crusca Aeademy. Tasso's language, his poetieal style, his imagery, the plot of his poem, his episordes, everything was made a sulject of ennsure. Tasso, already weakened by mental and bodily suffering, felt these attacks bitterly. Ife however took up his pen and wrote in a measured and dignified tone a defence of his poem. He was at the same time writing letters 10 all his friends to obtain his final liberty from the duke. He wrote to the city of Bergamo, to the duke of Mantua, to the grandduke of Tuscany, to the pope, to the emperor, who all emplojed their good offices on his belialf with Duke Alfonso, who hesitated a long time before he consented to his release. At last Vincenzo Gonzaga, sou of the duke of Mantua, obtained, in July, 1586, permission for Tasso to accompany him to Mantua. His reeeption at that court was like a trimmph. In order to make some return for the kinduess which he experienced from the house of Gonzaga, he completed histragedy of 'Torrismondo,' which he dedieated to his liberator Vincenzo, on his aceession to the ducal throne of Mantua in 1587. The subject of the 'Torrismondo' is a supposed Scandinavian legend. Some of the descriptions have been admired, Atter some time spent at Mantua and in his paternal town of Bergamo, Tasso, depressed by a settled melancholy, took leave of Duke Vineenzo, and repaired to Rome in the latter part of $15 \% 7$, and thence to Naples in the following year. The poet appeared delighted with the beauties of his native country. At Naples he began a lawsuit to recover his paternal property; which had been seized when his father Bernardo became an exile. The Neapolitan courts of law have been at all times proverbinlly known for their dilatoriness, and justice was wretchedly administered under the Spanish vieeregal administration. Tasso made little progress in his suit. But he found a sineere friend in the Marquis Gio. Batista Manso, who took him in the autumn to his estate of Bisaccio, where they spent the time in sporting, listening to the rustic improvvisatori, and conversing in the evening upon various topies, especially about Tasso's pretended familiar. It was at the request of Manso's mother that Tasso undertook lis 'Sette Giornate del Mondo Creato,' which is a poetical paraphrase of the narrative of the creation of the world in the first tivo chapters of Genesis. In 1589, Tasso, always restless, repaired to Rome; but finding himself in great pecuniary clistress, he accepted an invitation of the grand-duke Ferdinand de' Medici to go to Florence in the spring of 1590 , where he was received with great honour by the court and other persons of distinetion, as if to make amends for the annoyance given to him by Salviati and his compeers.
Towards the end of the same year however he went to Rome, and in 1591 he returned to Naples, and then applied himself to re-write his epic poem, under the title of ' Gerusalenme Conquistata,' in order to satisly the crities. However the first version of his poem is in the hands of all, whilst few ever read his 'Gerusalemme Conquistata.' Tasso intended to end his days at Naples; but in 1592, Cardinal Aldobrandini having heen made pope by the name of Clement V111., his nephew, Cinzio Aldohrandini, afterwards carclinal, who was well aequainted with Tasso, invited him in the most pressing manner to Rome, where he eame ahout middle of that jear. He was stopped several days at Moln di Gaeta, the road being bloeked up by the bands of the fanous robler chief Marco Sciarta, who was scouring the country with perfect impunity. Sciarra, who was a man of birth and education, having heard that Tasso was detained at Mola, sent hima a message to entreat him to proceed on his journey, assuring hins of perfect safety from his men, and oflering him an escort, which however Tasso declined; upon which Sciarra withdrew his men from the mountains of Hr , so as to leave the passage open for Tasso. Having arrived safcly at lome, he completed his 'Gerusalemme Conquistata,' which he dedierited to Cardinal Cinzio Aldohrandini. In the summer of 1591 he returned to Naples, and lodged first in the l3enedictine monastery of San Severino, and attenwards went to a country-sent of his friend Manso. Meantime Card aal Cinzio, out of affection and gratitude

Lowards Tesso, prevailed on lope Clement to grant the poet the honour of being solemuly crowned with the laurelcrown in the Capitol, as Petrarch and othens lad been. This being agreed upon, Cardinal Cinzio hastened to announce the news to 'lasso, urging him to repair to Rome as soon as possible. Tasso did not seem at all elated: he ohserved to Manso that he thought it more glorious to deserve honours than to reecive them. He however assented, and took an affectionate leave of his kind friend Manso, with a foreboding that it would be the last. He spent the Christmas festivities at the monastery of Monte Casino, and arrived at Rome in the beginning of 1595. Ile was inet outside of the gates by many gentle men and attendants of the P'apal c'ourt, by whom he was led in a kind of triumph to the Vatican palace, where he was introduced to the pope, who told him that he had - awarded hin the laurel-crown, in order that it might he as much hononred by him, as in former times it had served to honour others.' Tasso was lodged in the P'apal palace, and treated with the greatest regard. While the day of the coronation was anxiously expected, Cardinal Cinzio fell ill; and Lent coming on, the pageant was postponed, and then Tasso himself fell serionsly ill. He felt from the first a conviction that this illness would be his last; and wishing to compose himself in retirement for his last inoments, he expressed a wish to be taken to the monastery of St. Onofrio, on Mount Janieulum. Having been carried thither in one of Cardinal Cinzio's carriages, he said to the prior and lis monks who came to reeeive himi at the gate, 'I am come to die amongst you.' He was led into a comfortable apartment, where he devoted lis remaining day's entirely to religious practiees, and seemed totally weaned from worldly feelings and eares. When the pope's physician announced to him his approaching death, he cmbraced lini, thanking him for the happy tidings. To Cardinal Cinzio, who came to take leave of him, he expressed his gratitude for all his kindncss ; and as the cardinal and those present could not refrain from tears, he said to them, 'You think that you are leaving me, lnt I shall go before you.' He expired on the 25 th of Λ pril, 1505, after fifteen days' illness, being filty-one years of age. He was buried, according to his desire, in the church of St. Onofrio, with a plain slab over his tomb, upon whieh the monks engraved the simple inseription, "Torquati Tassi ossa hic jacent.'

The lasting fame of Tasso as a great poet rests upon his 'Gerusalemme Liberata,' or 'Il Goffredo,' as it is sometimes catled, one of the few great epie poems of which the world ean boast. The action is complete: it relates the events of the great crusade, and ends with the ostensible object of that expedition, the deliverance of Jerusalem from the hands of the Moslems. The beauties, as well as the faults of the composition, have been the theme of many disquisitions. Among foreign erities, Blair, Voltaire, D'Alembert, Ia Harpe, and Chateaubriand have been loud in its praise. The poem has a peculiarity that distinguishes it from most other epies: it is essentially a Christian poen; and breathes throughout the feelings, the faith, and the hopes of a Christian. Tasso, as he says in his invocation,

> OMusa, the che dh caluchitalori
> Non circondl is fruate in Filicone
> Ma nu nel Cielo Inirat I bati mid
> Uai di बelle Immortadi aurea Corona.'-(c. 1., tu. 2.)
had drawn his inspiration from a sacred source, and has thus afforded a refitation to those who pretend that the Christian religion is not so favourable to poctical imagery as the splendid fictions of mythology. A melancholy tinge pervades the poens; but it is a melancholy lighted up by eheering and constant hope. With the single exception of the episode of the gardens of Amnida, the language of the 'Gerusalemme' is eminently chaste, and the morality of its sentiments is pure and elevated, whieh renders it fit for the perusal of youth. Among its beauties of detail we will only instance the episode of Olindo and Sofronia, in the znd eanto; the council of the demons, in the 4th; the flight of Emninia, and her meeting with the old shepherd on the banks of the Jordan, in the 71h; the introduction of the Turk Solynan inno the besieged city, in the 10th; the death of Clorinda, in the 12th; and the last fight of Argante with Tancred, in the 19th eanto.

The other poenss of Tasso have been mentioned in the course of this article. Ilis lyrieal compositions are very
numarous, and many of them exquisite both in language and sentiment. Besides those which are upon amorous subjects, some refer to contemporary events, or are in praise of eontemporary princes; others are upon religious subjects; and others refer to his own misfortunes. The whole of Tasso's poetical works have been published in one large 8vo. vol. of nearly 1000 pages, in double columns, at Venice, 1833. Prefixed to it is the biography of the author, by his friend the Marquis Manso.

Tasso's prose works consist of dialogues and dissertations, some of which have been already noticed; of a treatise upon epic poetry, dedicated to Cardinal 'Pietro Aldobrandini ; diseourses upon the poetical art, dedicated to Seipione Gonzaga; and of numerous letters, some of which have remained unpublished till lately, "Lettere Inedite,' Pisa, 1827. Professor Rosini has edited a new edition of all the works of Tasso, begun at Pisa in 1820.
'risso's 'Gerusalemine Liberata' has been translated into most European languages. There are English translations by Fairfax, Hoole, Broadhead, Hunt, and Wiffen. It lias also been paraphrased into several Italian dialeets, Milanese, Neapolitan, Calabrian, \&c. The Life of Tasso has been written by Manso, Serassi, and others, and has been commented upon by Tiraboschi, Muratori, Zeno, Maffei, and other Italian philologists.

TASSONI, ALESSA'NDRO, born of a noble fanily at Modena, in 156\%, was educated first in his native town, and afterwards at Bologna and Ferrara, where he studied the law. In 1597 he went to Rome, when he entered the service of Cardinal Aseanio Colonna, whom lic accompanied to Spain in the year 1600. In 1603 the cardinal, having been made viceroy of Aragon, sent Tassoni to Rome to take charge of the administration of his property in Italy. During his stay in Spain Tassoni had opportunities of observintr the internal state of that kingdom, which, after alarming all Europe in the preceding century by its ambition and the extent of its conquests, was now fast sinking into deeny nnder the weak reign of Philip III. At Rome he wrote his ' Considerazioni sopra il Petrarea,' published in 1609, in which he commented very severely upon numerons finults, real or supposed, which he pointed out in the writings of that generally admired poet. Endowed witl an inquisitive but somewhat eaptious mind, Tassoni aimed in his writings at opposing reecived opinions, and he employed sarcasm and ridicule for the purpose. Aromatari of Assisi took up the defence of Petrarch in his ' Risposte' to Tassoni's considerations, and this led to a controversy in the usual bitter style of Italian literary polemics. In 1612 'rassoni published his ' Pensieri Diversi' in ten books, being a collection of remarks on various subjects of seience and literature which he had been in the liabit for years of entering in his memorandum-book. Among other subjects he attacked the Physies of Aristotle, although he does not seem to have had himself very correct notions of physieal phenomena. This work led to another controversy between Tassoni and several of his contemporaries. "Meantime the Cardinal Colonna had died, and Tassoni, being now without employment, applied to Charles Enmanuel I., duke of Savoy, who promised him the post of seeretary to lis son, the cardinal of Savoy. But partly through court intrigues, and partly on aecount of Tassoni's known aversion to the eourt of Spain, with which the Duke of Saxony wished to be on good terms, he was kept waiting for years before he could take possession of his office at the court of the cardinal, who was then residing at Rome. Certain comjositions entitled ' Filippiche,' in which the court of Spain was severely handled, as well as another pamphlet entitled - Esequie della Monarehia di Spagna, which appeared during that period, were generally attributed to Tassoni. Tiraboschi thinks that the first two of the 'Filippiche' are Tassoni's, but that the other five are by another pen. Copies of this work are very scaree. In 1623 Tassoni left the eardinal of Savoy in disgust, and retired to a countryhonse in the suburb of Transtevere, where he employed hiniself in study and rural occupations. Aloout this time he had his portrait taken with the rind of a fig in his hand and the following distich written underneath:-

Destoraa cur ficum quaris mea gestet suncm?
Longi operis merces hace fuit: suladedit.'
In 1626 Cardinal Ludovisi, nephew of Pope Gregory XV., took Tassoni into his service, and gave him apartments in his own palace, with a handsome stipend. After the eardinal's death, in 1632 , Tassoni repaired to Modena,
when he was made councillor to his sovereign Duke Francis I. of Este, for the remainder ot his life. He died
at Modena in 1635 .

Besides the works already mentioned, Tassoni made an abridgment in Italian of the 'Annals' of Baronius, and some 'Aunotazioni,' or corrections and additions to the Italian vocabulary of La Crusea. But the work for which he is best known is his moek-heroic poem, 'La Secehia Rapita,' or the 'Rape of a Bucket.' He is considered as having first introduced this kind of composition in the Italian language, as he had finished, though not published in print, his poem years before lis eontemporary Bracciolini published, in 1618, his 'Scherno degli Dei,' in which he turns into ridicule the gods of the antient mythology. Tassoni's poem was published in a printed form. in 162, but MS. copies had been in circulation long before. The subject is taken from the annals of lis country under the year 1249, when a war having broken out between the two neighbouring eities of Modena and Bologna, the Modenese earried off in triumph a wooden bucket fiom within one of the gates of Bologna, which bueket is still seen suspended by a chain in the cathedral of Modena. The 'Secehia Rapita' has been generally admired by Italian as well as foreign crities. Voltaire speaks of it disparagingly, although he has borrowed from it (Valéry, Voyages Littéraires), but Perrault and other French crities have done Tassoni full justice. The humour of the poem is peeuliarly Italian, and the admixture of the serious and heroie with the burlesque is happily combined. Some of the deseriptive passages are exquisitely soft and true to nature, such as the song in canto viii. which begins: 'Dormiva Endimion tra l'erbe e i fiori,' and the beautiful episode in canto x . of the voyage of Venus from the mouth of the Arno to Naples for the purpose of engaging Manfred, son of Frederic II., to assist the Guibelines of North Italy. The 'Secehia Rapita' has gone through numerous editions: that of Barotti, Modena, 1744 , is nost splendid. Gironi has collected various judgments and comments upon this poem in his biography of Tassoni. Muratori has also written the Life of Tassoni.
(Tirabosehi, Storia della Letterutura Italiana; Corniani, Secoli della Letleratura Italiuna; Zeno, Note al Fontarimi.)

TASTE. The organs of this speeial sense are certain parts within the cavity of the mouth, obviously so disposed as to take carly eognizance of matters about to be swallowed, and to act as sentinels for the remainder of the alimentary canal, at the entrance of whieh they are situated. Their special endowment, aided by an exquisite development of common sensibility, enables them to give timely notice of any aerid, eaustic, or nauseous quality, of any undue temperature, of any inconvenient hardness, iregularity, size, or sharpness in the material submitted to them, and thus to proteet the stomach against the intrusion of many hurtiul agents. These organs morcover establish for our appetites a seale of liking and disliking: they superadd a discriminative pleasure to the enforeed assuaging of hunger: they modify that merely quantitative ingesfion, which is an absolute and daily need of the organism, with a qualitative choice, and so give a motive to those variations in diet which experience proves to be beneficial or necessary.

Common language (as in the word 'palatable') seems to attribute the sense exclusively to a part, which is by no means the only or ehief seat of it. In order to give a more conrect notion of its extent, we slall first briefly sketeh the arrangement of the membrane which lines the eavity of the mouth. It is a continuation (a tubular folding in, as it were, through the aperture of the lips) of the general integument, the skin; and although somewhat changed in its grosser characters, it yet preserves, under the name of nucous membrane, a close resemblanee to the parent tissue. It lines the inside of the cheeks, invests the alveoli, or gums, giving to these parts their polished smoothness of surface, is reflected from the lower alveolar arehes to the fongue, from the upper alveolar arches to the palate, and from both these organs prolonged baekward into the throat. In its palatine portion, the membrane covers the horizontal processes of the upper jaw, which divide the eavity of the moutli from that of the nose, and, while spread on this solid frame-work, is said to belong to the hard palate; and it likewise cxtends baekward, beyond the limits of this bony partition, to form a pendulous flap, called the soft
palate; which, with the nipple-like uvula, that langs from its extrense idge, muy readily be seen when the mouth is opened. In extendins to the longue, the membrane is so arranged as to leave the tip and sides of that organ prominent and free; and is remarkably developed into a vast number of minute emmenees called grypilfe, whieln eover the horders and surface of the tongue, are largely supplied with nerves and blood-vessels, nal variously concerned in the fimetions of the part. ['lusoure; l'alatz.]

Very carefin] experiments on the sense of taste lave been male by MII. Guyot and Admyrandel (.Memoire sur le Siese du Gouft chez VIIonme, larss, 1 N30), from which the following results are obtained:-A sinall portion of the soll palate, just above the base of the uvulu, the remotest part of the back of the tongte, where it corresponds to the inthmus of the palnte, and the entire circumference of the tomme, are so endowed; while the internal surface of the theeks, the hard pnlate, the gom, the remaining jarts of the son palate und of the tongue are entirely destitute. Thus, those parts of the tongue with which, in sipping or In masticating, the food would lave contact (its borders, and, most emmently, its tip), are gustative ; and the property is shared, though in a less derree, by the lingunl and palatine surfaces of the isthmus through which the food enters the splere of involuntary actions.

The nerve, speeinlly endowed with the sense of laste, is a branch of the third part of the fith cerebral nerve, called, from its finction, gustatory; but it seems possible to some physiologists that the glosso-pharyngeal serve shares this property. The gustatory nerve is distributad to the papilfary suriace of the tongue, espeedally along its borders and lip: the lingual part of the glosio-pharyngeal nerve is restricted in its distribution to the posterior part of the tongue, where it supplies the mucous surface exelusively.

For the sensation of taste, mosture must be present; all are tamiliar with a temporary impairment of the sense, under the influence of mousual dryness of the surface of its organs; the parched tongue of fever is notorionsly indifferent to all savours. Matters are only capable of being tasted when they exist in a fluid form : an insoluble borly is insipid; a solid body provokes an immediate flow of saliva, and its sapid qualities are pereeived in proportion only as it dissolves: cerlain gases are alleged to excite sensations of taste; but it is ouly by such as are soluble in the saliva (sulphurous acid, lor instanee), and only in proportion as they are dissolved that these impressions are produced.
*" The sensation of taste undoubtedly admits of an immense varicty of inodifications which no language can express. If a man were to examine five hundred different wines, he would hardly find two of them that had precisely the same taste: the same thing holds in checse, and in many other things. Yet of five hundred different tastes in checese or wine, we ean hardly describe twenty, so as to give a distinct notion of them to one who had not tasted them." The vaguc, or mot-to-be-described, nature of gustatory impresions, as here expressed by Dr. Ruid, receives some additional obscurity from the eircumstance that taste and smell are often simnltaneously affected in a manner which renders it difficult to alostrat either. Various substances, after exciting the sense of touch on the fauces, and that of taste on the longue, are capable of producing a third impression, whieh is popularly reterred to the palnte, but is really felt upon the sentient membrane of the nostrils: the fume of certain kinds of food ascends into the cavities of the nose, and produces this third and distinct sensation: in administering medieine to children, it is well known that the greater part of what is disagrecable in its flavonr may be avoided by elosing the nostrils when the draught is swallowed; and by repenting this experiment upon various articles of fool, it is casy to asecrtain how much of their flavour depends upon one sense, and how mueh is appreciated by the other." Mr. Mayo, from whom this paragraph is quoted, goes on to classify the impressions produeed by substanees taken into the fauces:-

1. Where sensations of touch alone are produeed, as by roek-crysta], sapplaire, or ice.
2. Where, in addition to being felt upon the tongue, the substance excitcos sensation in the nostrils, as for instance tin and oiher odorous metals.
3. Where, besides being felt upon the tonmue, it produees sensations of faste, as, for instance, sugar and salt.
4. Where the substanee is felt on the tongue and tasted
by it, and in addition excites a sense of flavour in the nowtrils, Ra, for instance, bread, mauma, and other substanets. (Oullines of physiolocry, p. 314.)

Fharuur, then (in distinction from liale), can in correctness be attributed only to bodies possensed of some rroma or volatility; and, by alternately suelling and tasting such, und by contrasting their impression with that produced by a simply sapid substance (mustard und salt coun illustrate the two cases), it will be notieed that flavour is hut an odour, which, from its alfeeling a compmratovely winattised part of the oltactory apparalus, is at first imperteetly and olsanarely recognised.

Such are the clicef relations of the sense of taste in man, and in the aninials whieh most nearly resemble him in structure. As the sense is a provision for the sceurity of the digestive organs, we mity on sound plysiological gromuds anteipate its existence, under a more or les mudified form, in every anmal posiseming a dimestive casily. No special organ for its excreise (with very doubthal excep)tions) ean be traced in the invertebratar ; nor can we presume to infer in them the presence of tante, otherwise than as an obscure sense determining their choice or rujection of food: to this extent it undoubtedly exists in them, (ven to the botlom of the scale-to the intusory animalenles, in which Elurenberg las witnessed its exereise. Among the invertebrata, mollusks posisess the most highly developed alinentary organs, aud it seems probable that in them the guiding sense of those organs lass a corresponding development.

Through the subregnum of vertebrata it aequires an advancing maturement: in the lower classes, fishes and reptiles, the orgaus are present, but seem rather to belong to the movements of prehension and of aleglutition, thas to the sense of taste: in birds too the organs are little developed, and the sense secmingly imperfect: through the class of manmalia it is gradually augmented in acuteness; but although in certain orders of then, or in proticular individuals, the sense appears sharp and the appeetite fastidious, it is probably in man alone that the organs and their function are completely matured.

TASTE, according to the definition of Sir Joshua Reynolds, 'is that net of the mind by whicls we like or dislike, whatever be the subject.' (Discourses before the Royal Sociely; Discourse vii.)
Taste is frequently spoken of as a gif, as something independent of rules, a kind of instinct, bestowed more liberally in clegree upon some men than upon others. It has been trented by some writers as the resnlt of capriec or fashion, as having no uniform or permatnent prineiples for the ground of its decisions. Others have resolred it into different complex elements. whose joint devolopment is determined by eertain principles of beauty or sublimity in things extermal.
Lord Bacon has been quoted as apparently sanctioning the idea of taste being a kindi of gift or instinct. A man canmot tell, he says, "whether Apelles or Albert Durer were more the trifier; whereof one would malie a personage of geometrieal proportions; the other by taking the best parts nut of divers iaces 10 make one excellent. The painter must do it by a kind of felicity, and not by rule. Sir Joshua Reymolds las overthrown this position in one sentence: "Very object which pleases must give us pleasure upon some certain principles.' These principles are unquestionably so intelligible that they may be embodied in the form of words, and may be drawn out into mhtes. Burke, towards the end of his easay on Taste (introductory to the Sublime and Beautiful), has likewise ndverted to this position, which will come under notice again in the course of this artiele.

The hypothesis whieh refers our emotion of taste to the influence of fashion, or temporary and varying canses, hits been maintained in the Inguiry intn the frincigles of Taste, by Mr. l'ayne Knight. According to Mr. Knimlit, there is scarcely any suljeet npon whiel men differ more than concerning the objects of their pleasures and anuacments; and this difference subsists not only among individuals, but among ages and mations ; almont every gencration aceusing that whieln preceded it of bad taste in buikling, furniture, and dress ; and almost every nation having its own peculiar modes sud iders of exeellence in these matters, to which it pertinacionsly adheres, until one parficular people tras aequired such an ascendency in]ower and reputation as to set what is called the fashiou, when this
fashion is indiscriminately adopted upon the blind principle of imitation, and without any consideration of the differences of climate, constitution, or habits of life, and every one who presumes to deviate from it is thought an odd mortal, a humorist void of all just fecling, taste, or elegance. The fashion continucs in the full exercise of its tyranny for a few years or months, when another, perhaps still more whimsical and unmeaning, starts into being and deposes it; all are then instantly astonished that they could ever have been pleased even for a moment with anything so tasteless, barbarous, and absurd. The revolutions in dress only, not to mention those in building, furnishing, gardening, \&c., which have taken place within the last two centuries afford ample illustration. \qquad Let no one imagine,' says Mr. Knight, 'that he solves the question by saying that there have been errors in taste, as there have been in religion and philosophy; for the cases are totally different: religion and philosophy being matter of belief, reason, and opinion ; but taste being a matter of feeling, so that whatever was rcally and considerately thought to be ornamental must have been previously felt to be so ; and though opinions may by argument or demonstration be proved to be wrong, how shall an individual pretend to prove the feelings of a whole age or nation wrong, when the only just criterion he can apply to ascertain the rectitude of his own is their congruity with those of the generality of his species.' (c.i., p. I.)

This argument is founded on an exaggeration of a fact in reference to the philosophy of taste admitted by those who contend that taste is determined by some definite and invariable principles: the fact may be described under the general head of the influence of association on our emotions of this order. Mr. Dugald Stewart has observed on the exaggeration in question, that the association of ideas can never account for the origin of a new notion, or of a pleasure essentially different from all the others which we know. It may indeed enable us to conceive how a thing indifferent in itself may become a source of pleasure by being connected in the mind with something else which is naturally agrecable; but it presupposes in every instance the existence of those notions and those feelings which it is its province to combine: insomuch that it will be found wherever association produces a change in our judgments in matters of taste, it does so by coöperating with some natural principle of the mind, and implies the existence of certain original sources of pleasure and uneasiness. This suggests a distinction in the circumstances which please in the objects of taste, between those which please in consequence of casual associations and those which are fitted to please by naturc. The perfection of taste in reference to the last depends upon the degree in which the mind is free from casual associations; in refercuce to the first it depends upon the facility with which such associations are formed. (Elements of the Philosophy of the Human Mind, c. v., p. ii., p. 364, 4to.)

The different modes in which association operates have been illustrated with much elegance, and their true place in the philosophy of taste distingnished, by Mr. Alison: ' Fashion,' he remarks, ' may be considered in general as the custom of the great. It is the dress, the furniture, the ianguage, the manners of the great world, which constitutc what is called the fashion in each of these articles, and which the rest of mankiud are in such haste to adopt after their example. Whatever the real beauty or propriety of these articles may be, it is not in this light that we consider them. They are the signs of that elegance and taste and splendour which is so liberally attributed to elevated rank : they are associated with the consequence which such situations bestow; and they cstablish a kind of distinction between this envied station and those humble and mortifying conditions of life to which no man is willing to belong. It is in the light therefore of this connection only that we are disposed to consider them ; and they accordingly affect us with the samc emotion of delight which we receive from the consideration of taste or elegance in more permanent instances.' (Essays on Taste, Essay i.)

Association then can only modify, it cannot wholly account for our emotion of taste, and it cannot even modify except by operating in a manner which implies certain original sources of pleasure and uneasiness in the objects of our emotion. In some cases association heightens the agreeable or disagrecable effect of objects; in others all the delight or disgust which we experience can be resolved
P. C., No. 1 \%n.
into the influence of association. The distinction implies the fact insisted on. What constitutes the distinction, or where are we to find its explanation? We may with pro priety employ our reason in reducing particular phenomena to general principles; but we must in the end anive at principles of which there is no other account to be given than that such is the will of the author of our nature. We cannot explain why such forms please or displcase; we must stop short at the discovery of the respects in which they please or displease. (Stewart.)

Sir Joshua Reynolds has referred the idca of beauty to some 'central form' in the objects of our perception. 'All the objects which are exhibited to our view by nature, upon close examination, will be found,' he says, 'to have their blemishes and defects. The most beautiful forms have something about them like weakness, minuteness, or imperfection: but it is not every eye that perceives these blemishes; it must be an eye long used to the contemplation and comparison of these forms; and which, by a long habit of observing what any set of objects of the same kind have in common, has acquired the power of discerning what each wants in particular. This long laborious comparison should be the first study of the painter who aims at the greatest style. By this means he acquires a just idea of beautiful forms; he corrects nature by herself, her imperfect state by her more perfect. His eye being enabled to distinguish the accidental deficiencies, excrescences, and deformities of things from their general figures, he makes out an abstract idea of their forms more perfect than any one original ; and, what may seem a paradox, he learns to design naturally by drawing his figures unlike to any one object. (Discourse III.) He observes in explanation in another part of the same discourse: 'To the principle I have laid down, that the idea of beauty in each species of beings is an invariable one, it may be objected, that in every particular species there are various central forms which are separate and distinct from each other, and yet are undeniably beautiful ; that in the human figure, for instance, the beauty of Hercules is one; of the Gladiator another; of Apollo another; which makes so many different ideas of beauty. It is true indeed that these figures are each perfect in their kind, though of different characters and proportions; but stilt none of them is the representation of an individual, but of a class: and as there is one general form which, as I have said, belongs to the human kind at large, so in each of these classes there is one common idea and central form, which is the abstract of the various individual forms belonging to that class. Thus, though the forms of childhood and age differ exceedingly, there is a conmon form in childhood and a common form in age, which is the more perfect as it is more remote from all peculiarities. But though the most perfect forms of each of the general divisions of the human figure are ideal, and superior to any individual form of that class, yet the highest perfection of the human figure is not to be found in any one of them. It is not in the Hercules, nor in the Gladiator, nor in the Apollo, but in that form which is taken from all, and which partakes equally of the activity of the Gladiator, of the delicacy of the Apollo, and of the muscular strength of the Hercules. For perfect beauty in any species must combine all the characters which are beautiful in that species. It cannot consist in any one to the exclusion of the rest; no one therefore must be predominant, that no one may be deficient. . . . There is likewise a kind of symmetry or proportion which may properly be said to belong to deformity. A figure lean or corpulent, tall or short, though deviating from beauty, may still have a certain union of the various parts, which may contribute to make them on the whole not unpleasing:'
This theory (the principle of which extends to other objects of taste besides those contemplated by Sir Joshua Reynolds) reconciles the apparent inconsistency, insisted on by Mr. Payne Knight and by other writers of the same school, between the decisions of taste in one country and in another, as tending to show that the standard of taste is wholly arbitrary. The ideal beauty of the African is the result of the process which has been described applied to the coloured inhabitants of Africa, as the ideal beauty of the European is the result of the same process applied to the inhabitants of Europe. To institute a comparison between the beauty of the European and that of the African, and to conclude that taste has no invariable

Voz. XXIV.-()
principles as its foundation, from the opposite decisions on sueh a comparison, involves the same deseription of error as it would he to arrive at the same conclusion from the opposite deeisions in a comparison between the beauty of two distinet species of animals, the one biped and the of her quadruped. There is a 'central form' of beauty proper to the different races of mankind; to the two sexess of the different races; to different ages; and so on in reference to inferior animals and objects of inanimate nature. We trespass beyond the province of mere taste when we compare objects in respect to whieh the principles of beauty are altogether distinct.
Much obscurity has arisen in discusions on the subject of taste from the twofold sense in which the word taste has been employed, as expresive of an cinotion, and of something objective in which there exists an aptitude to produce emotion. The tenn taste strictly applies to the emotion only; the theory of the different causes by which the emotion is produced belongs to the subject or beauty. We have been obliged to refer to the theory of beauty in the preceding part of this article in establislung the reality of certain principles determining our emotions of taste: in what follows we shall confine ourselves to the explanation of taste in its restricted or proper sense.
When any object either of sublimity or beauty is presented to the mind, we are conscious of a train of thought being immediately awakened analogous to the character or expression of the original object. The landseapes of Claude, the music of Handel, the poetry of Milton, excite feeble emotions in our minds when our attention is confined to the qualities they present to our senses, or when it is to sucl qualities of their composition that we turn our regarl. It is then only we feel the sublimity or beauty of their productions, when our imaginations are kindled by their power, when we lose ourselves amid the number of images that pass before our minds, or when we waken at last from the play of fancy as from the charm of a romantic dream. (Alison, e. i., seet. 1.)
The trains of thought which are thus suggested are distinguished in the nature of the ideas or coneeptions whieh compose them, and in the nature or law of their suceession. In the case of those trains of thought which are suggested by objects either of sublimity or beauty, they are in all cases composed or ideas capable of excifing some affection or emotion. Mr. Alison has supposed that not only the whole succession is accompanied with that pecutiar emotion which we call the emotion of beauty or subtimity, but that every individual idea of such a succession is in itself productive of some simple emotion or other. But to this it has been objected, and we think truly, that such a train of images passing before the nind, and imares accompanied with lively emotion, could searcely fail to be remembered by us; or, at least, ir they are not rememDered by us, there is no reason, a priori, to suppose the existence of them. (Brown, Iectures on the Philosophy of the Human Mind, lecture lvii.)

There is this distinction between the emotions of taste and all our different emotions of simple pleasure, that in the case of these last emotions no additional train of thought is neeessary. The pleasurable fecling follows immediately the presence of the object or quality, and has no dependence upon anything for its perfection but the sound state of the sense by which it is received. The emotions of envy, pity, benevolence, gratitude, utility, propriety, novelty, \&e. might undoubtedly be felt, although we had no such power of mind as that by which we follow out a train of ideas, and certainly are felt in a thousand censes when this faculty is unemployed. In the case of the emotion of taste, on the other hand, it seems cvident that this process of mind is necessary, and that untess it is produced these enotions are unfelt. Whatever may lee the nature of that simple emotion which any olject is filted to excite, whether that of gaiety, tranquillity, melancholy, \&e., if it produce not a trrin of kindred thought in our minds, we are conseious only of that siniple emotion. Whenever, on the contrary, the train of thought which has been mentioned is produced, we are conscious of a higher. and more pleasing cmotion; and which, though it is impossible to describe in language, we yet distinguish by the name of the emotion of taste. The emotions of taste may therefore be considered as dixtinguished from the emotions of simple pleasure, by their being dependent upon the exereise of our
imagination; and though founded in all eases upon simple emotion, as yet further requiring the employment of this faculty for their existence (Eissay i., conelusion, s. ii., Alison); or, rather than the employment (a worl which seems to intimate a deliberate intended act, in the process of imagination), as Dr. Brown would say, the operation of the comnon laws of suggestion in the node to which we apply the word imagination.
The sugzestion of trains of kindred or harmonising images which has been pointed out as distinguishing the emotion of taste, aceounts for the more enlarged susceptibility in some than in others of this emotion. The more our ideas are increased or our conceptions extended upon any subject, the greater the number of associations we connect with it, the stronger is the emotion of sublinity or beauty we receive from it. 'What is it', (says Mr. Alison) 'that constitutes that emotion of sublime delight, which every man of common sensibility feels uplon the first prospect of Rome? It is not the scene of destruction which is before lim. It is not the Tiber, diminushed in his imagination to a paltry stream, and stagnating amid the ruins of that magnificenee which it onee adorned. It is not the triumplh of superstition over the wreck of human greatness, and its monuments crected upon the very spot where the first honours of humanity have heen gained. It is antient Rome which fills his imagination. It is the country of Cessar, and Cicero, and Yirgil, whieh is before him. It is the mistress of the world whielh he sees, and who seems to him to rise again from lier tomb, to give laws to the universe. All that the labours of his youth or the studies of his maturer age have aequired, with regard to the history of this great people, open at onec before his imagination, and present lim with a field of high and solemn imagery, which can never be exhausted.'
'The beauty of a theory or of a relic of antiquity is unintelligible to a peasant. The eharms of the country are altogether lost upon a citizen who has passed his life in town.' It is on the principle in question that Burke remarks that the execllence and force of a composition must always be imperfectly estimated from its effect on the minds of any, except we know the temper and character of those minds. (Introduction to the Sublime and Beautiful.)
The rules by whieh taste is deternined vary with the objects to which its decisions refer ; but in respect to all, this general principle liolds, that a composition is to be judged by its fitness to produee the end designed by it. If to please, to instruet, to move, to ereate laughter, be its design, its inerits are to be determined by its aptitude to produce any of these effeets. If its objects be to please, Ec. only a particular people or class, it is to be estimated under the given cireumstances. If its object be to give pleasure or instruction to alt ages and couditions of society, it is to be estimated by its correspondence with those universal principles of human nature which it contemplates. That eomposition is the highest which is of the last deseription. (IIume's Lissay on the Standard of Taste.)
The reader who may desire to see this subject furlher discussed is referred to the artiele Beautr; ; to Mr. Alison's Lisays; to Brown's Lectures on the Philosoplyy of the Ineman Mind, lecture Ivii.; Hume's Essay on the standurd of Taste.

Tatars. [Tartars.]

TATE, NAHUM, was born in Dublin in the year 10.52. His father was Dr. Faithful Tate, a elergyman in Ireland. He was edueated at Trinity College, Diblin, whence he removed to London. On the death of Shadwell in 1690, the interest of Tate's friends procured him the situation of poet-laureate, which he held till his death. He seems to have been an improvident man, and sonewliat nddicted to intemperance. In the latter part of his life he resided in the precinets of the Mint, in Southwark, where he died, August 12, 1715. The Mint was then considered a privileged place, where debtors were not liable to arrest. This supposed privilege however was put down by statute 9 Geo. 1.
Tate wrote • Memorials for the Learned, collected out of eminent Authors in Ilistory.' 8vo., 1686 ; 'Charaeters of Virtue and Vice described and attempted in Verse, from a Treatise of Joseph Hall, B3ishop of Exon,' Lond., 1691; - Miscellanea Sacra, or l'oemis on Divine and Moral Subjects,' Lond., 1698, 8vo.; 'Panacer, a Poem on Tea,

Lond., 1700 ; besides Birth-Day Odes, and an Elegy on the death of Queen Mary. He was also the author of about ten dramatic pieces, tragedy, comedy, and opera, including an alteration of Shakspere's 'Lear,' which kept the stage many years, but has for some time been superseded by the original.
Tate is chiefly known now by his metrical version of the Psalms, which he executed in conjunction with Dr. Nicholas Brady [Brady], and which is now commonly annexed to the Book of Common Prayer of the Chureh of England. This version, though not of high merit, has deservedly taken the place of the former version by Sternhold and Hopkins. [Sternhold.] The first publication was an: 'Essay of a New Version of the Psalms of David, consisting of the first Twenty, by N. Brady and N. Tate,' Lond., 169 i , 8 vo. ; this was followed by 'A New Version of the Psalms of David, fitted to the Tunes used in the Churches, by N. Tate and N. Brady,' Lond., 1698, with a 'Supplement of Church Hymns,' Lond., 1700 , 8vo.
(Baker's Biographia Dramatica, by Reed and Jones; Watt's Bibliotheca Britannica.)

TATIA'NUS, of Assyria, was a pupil of Justin Martyr, after whose death he wrote an apology for Christianity, under the title of 'A Discourse to the Heathen' (Sóyos $\pi \rho o{ }^{\text {" }}$ E λ р ν as). In this work he gives some account of his own life. He was brought up in leathenism, the different forms of which becatne known to him by his many travels; and all those forms appeared to him unsatisfactory. He then turned his attention to the Old Testament, on which he thought he saw the impress of truth. Arriving at Rome, where he practised as a rhetorician, he met with Justin Martyr, by whom he was converted to Christianity.

After the death of Justin he embraced some heretical opinions, the germs of which may be seen in his 'Discourse to the Heathen.' The chief of his heresies were the Marcionite doctrines of the two principles of good and evil, and of the evil of matter [Marcionites], and the Valentinian doctrine concerning Aeons. His followers were however chicfly remarkable for the practical application they made of their Marcionite opinions by lives of the strictest asceticism. They lived in celibacy, rcfused all luxuries, and abstained from the use of wine even at the Lord's Supper. Hence they were ealled Encratites (iyкparitat), Apotactites (á погürтıкot), and Iydroparastatac (ídporaрабтárat). But it must be observed that these terms were often applicd to all ascetics. The Tatianists werc Encratites, but all called Encratites were not Tatianists. The date of Tatian's heresy is placed by Eusebius in the year A.d. 172.
Of his lost works the chief were a treatise on ' Perfection after the Pattern of the Saviour' ($\pi \in \rho$ t foü kard fòv, $\sigma \omega \tau \bar{\eta} \rho a \times a \tau a \rho \tau \leftarrow \sigma \mu \sigma \bar{v}$), and a 'Harmony of the Four Gospels" (aíayyidiov dià rearáp $\omega \nu$). The latter work is particularly noticed by Theodoret, who found 200 copics of it in the Syrian churches, which he took away from the people on account of the heresics contained in the book. For this reason, chiefly, Neander supposes that the Harmony of Tatian was not simply compiled from the narratives of the four Evangelists, but contained also many things out of the Apocryphal Gospels. Some writers, among whom is Lardner, think that Tatian's 'Harmony' is still extant in an Arabie MS. in the Vatican Library.
IIs 'A pology' is usually printed with the works of Justin Martyr. There are separate editions of it by Gesner, Zürich, 1546, fol. ; and by Worth, Oxon., 1700, 8vo.
(Eusebius, Hist. Ecc., iv. 29; Hieronymus, De Vir. Illust., c. 29 ; Clemens Alexand., Strom., iii. 12; Lardner's Credibility, pt. ii., c. xiii., \&cc.; xxxvi., sec. 2; Neander's Gesch. der Christ. Relig. und Kirche, i., p. 762, and p. 1131.)

TATIUS, ACHIJLES. [Achilles Tatius.]
TA'TTA. [Hivdustan, xii., 221.]
TATTEISSAALL. [Livcolnshire.].
TATTOOING is the name usually given to the custom, eommon among many uncivilized tribes, of marking the skin by punctures or incisions, and introducing into them coloured fluids, so as to produce an indelible stain. It is mentioned in Captain Cook's account of the South Sea islanders under the name tattowing; and, with trifling differcnce in the orthography, the same name is applicd by English writers to similar practices among other people. The word 'tattoo' appears to be formed by a reduplication of a Polynesian verb 'ta,' meaning to strike, and thercfore to allude to the method of performing the operation, and, if
this supposition be correct, it has a curions resemblance to the English word tattoo, meaning a particular beat of the drum.

From a passage in the book of Leviticus, chap. xix., v. 28, in which the Israelites are forbidden to make any cuttings in their flesh for the dead, or to print any marks upon their bodies, it has becn supposed that some custom resembling tattooing was practised in the time of Moses. A note upon this passage in the 'Pictorial Bible' states, that although tattooing seems to have been commonly regarded in England rather as a custom of savage islanders than anything more, it is also an Oriental custom, and that too among people whose proxinity to the Hebrews affords a reason for the prohibition contained in the text referred to. 'The Bedouin Arabs, and those inhabitants of towns who are in any way allied to them,' observes the author of this note, 'are searcely less fond of such decorations than any islanders of the Pacific Ocean. This is particularly the case among the females, who, in general, have their legs and arms, their front from the neek to the waist, and even their chins, lips, and other prominent parts of the face marked with bluc stains in the form of flowers, circles, bands, stars, and various fanciful figures. They have no figures of living objects, such being lorbidden by their religion; neither do they associate any superstitions with them, so far as we are able to ascertain. They probably did both before the Mohammedan æra, as their descendants in the island of Malta do at present. The men there generally go about without their jackets, and with their sleeves tucked up above their elbows, and we scarcely recollect ever to have seen an arm, thus bare, which was not covered with religious cmblems and figures of the Virgin, or of some saint under whose immediate protection the person thus marked conceived himself to be.' 'Thus also,' proceeds the author, 'persons who visit the holy scpulchre and other sacred places in Palestine have commonly a mark impressed on the arm in testimony of their meritorious pilgrinage.' The works of antient writers contain many notices of the practice of tattooing, as practised by several barbarous races. As to the Britons, Cæsar merely describes their custom of staining their bodies with vitrum, or woad; but 'Solinus represents the process as a laborious and painful one, but permanent in its effect; and speaks of the painting as consisting ehiefly of the figures of animals, that grew with the growth of the body. Herodian says they punctured their bodies with the figures of all sorts of animals. Isidore is still more explicit ; for, in speaking of the Picts, whose name he derives from thcir coloured skins, he tells us that the painting was done by squeczing out the juice of certain herbs upon the body, and puncturing the figures with a needlc.' (Pictorial History of England, vol. i., p. 129.) Cæsar supposed that this practice was adopted for the purpose of terrifying their enemics; but probably this kind of skin-painting was the national dress, and if so, it may have existed in its highest state of perfection at a period anterior to the Roman invasion. Tattooing may also have been practised by our ancestors as a means of distinction, as well as from the love of ornament. Thus Herodotus, who describes the habits of the Thracians, says that to be tattooed or marked (larixЭat) was an emblem of rank, and the want of it indicated meanness of descent ($\mathrm{v}, 6$). The extcuded use of clothing at a later period rendered such ornaments superfluous, and led to the decline and subsequent abandonment of the practice. 'It is therefore,' says the ' Pictorial History of England,' 'that we hear no more of this tattooing in the south (of Britain) after it was subdued and civilised into a Roman province, though it still continued among the rude tribes of the north, where it lingered until it was banished thence also by the full attire of civilization.' In a subsequent part of the same volume (p .329) it is stated that the custom of tattooing, or puncturing the stated was practised by the Anglo-Saxons as well as by the Britons, and that a law was passed against it in the year 785. It was ncvertheless continued during the whole of the Anglo-Saxon period, and is among the English vices reprobated by William of Malmesbury after the Norman conquest. Several other anticnt notices on the subject are collected by Lafitau, in his ' Mceurs des Sauvages Ameriquaines,' which work is cited in the volume on the - New Zealanders' in the 'Library of Entertaining. Knowledge,' where much information respecting tattooing is given.

In modern times the custom of tattooing has been found in most of the islands of the l'acitic Ocean, and among many of the aboriginal tribes of Africa and America, as well ns, on a limited scale, as before stated, in the East. Much curious luformation on the various kinds of tattooing is eolleeted in the volume on the 'New Zealanders,' previously eited. From this work we eondense the following aceount of the proeess of tattooing, as performed in New Zealand upon an Euglish sailor, named John Rutherford, who was captured by the natives in 1816, and resided among them for nearly ten years, and upon some eompanions who were faken with him:-The natives having seated themselves on the ground in a ring, the Englishmen were placed in the iniddle, stripped of their clothes, laid down on their baeks, and held by five or six men cach, while two others eommenced the operation of tattooing. Having taken a piece of chareoal, and rubbed it upon a stone with a little water, so as to produce a thick lignid, they dipped into it an instrument inade of bone, with a sharp edge like a chisel, and shaped in the tashion of a garden-hoe. They then applied the instrument to the skin, and struck it twice or thrice with a piece of wood, thereby making it cut into the flesh as a knife would have done, and causing a great denl of blood to flow, which they kept wiping off with the side of the hand, in order to see whether the impression was made sufficiently elear. If not, they applied the cutting-instrument again to the same plaec. Various instruments were however employed in the course of the operation, one sort being made of a shark's tooth, and another having a serrated edge; and they were used of different sizes, to suit the different parts of the work. Rutherford states that the pain was most acute, and that, although the operators were very quiek and dexterous, he was four hours under their hands; and he was eompletely blinded for a time by the operation. In three days the swelling oceasioned by it had greatly subsided, and he began to reeover his sight; but six weeks elapsed before he was completely well. Rutherford's account agrees with those of other observers, excepting in the circumstanee of the whole operation being performed at onee, while both Captain Cruise and Mr. Marsden state that it repuired several months, and sometimes several years, to complete the tattooing of a chief, owing to the necessity of allowing one part of the faee or body to heal before commencing the decoration of another part; but, besides the probability that this might apply only to the more infricate patterns, or to eases in whieh the tattooing extended over a larger portion of the person than in the ease of Rutherford, it is possible that the natives may have designed to put his powers of endurance to a severer test than would be required of a native. Captain Cruise states that the New Zealanders oceasionally renew their tattooing, as the lines grow fnint by lapse of time; and from various accounts it would appear that the tincture introdueed into the wound (on the edge of the cutting-instrunent) is sometimes obtained from the juice of a tree; and that, before the cutting is eominenced, the intended figure is traeed upon the skin with a burnt stiek, or a piece of red earth. The age for performing the operation appears to vary from eight or ten years up to about twenty; and the females are not required to submit to anything beyond a slight tattooing of the face. Those aniong whom Rutherford lived had the inside of their lips tattooed,* as well as having marks on the ehin, forehead, and sides of the nose and mouth; while the men were eommonly tattooed on the face, hips, and body, and some as low as the knee. The most conplicated pattems are found upon chiclis of the highest order; and their peculiar devices, or, as they are ealled, amocos, form distinetions which, in some eases, take the place of the sign-manual of the individuals to whom they belong. An instance is related in the 'Missionary Register' for 1816, in whieh a chief in the Bay of lslands, on making a grant or conveyance of a pieee of land to some missionaries, had a drawing of the tattooing of his face affixed in lien of a signafure; while an attesting witness added, in like manner, a eopy of the pattern on one of his cheeks. Of the character of these patterns a better idea will be conveyed by the annexed bust of Shungie, copied from an engraving in the "Missionary

[^3]Register' for 1816, than by the most lengthened description. Aner it is inserted a copy of a drawing, exeeuted by Tupai Cupar a Ncw Zealand chief, without the aid of a glass, of his own amoco, or tattooed pattern. This interesting individual also drew from memory, while in England, the amocos of his brother and of his eldest son ; and such was the force of association in his mind, that, on finishing the latter, he held it up, gazed at it with a murmur of aflicetionate delight, kissed it repeatedly, and finally burst into tears.

Ilead of Shambis, from a caring by himself.

Taltoolng on the face of Tupal Cupn, froas a drawing iny himaelf.
The proeess of tattooing as practised, or rather as it was formerly praetised, in other islands of the South Sea, was less painful than that followed in New Zealand; for, aecording to the aceount of Captain Cook, in some easers the punctures eould hardly be said to draw blood. The instruments used were edged with small teeth, somewhat resembling those of a fine comb; and, as in the case of New Zealand, the colouring tuncture was introduced at the same operation as that by which the skin was punetured; the substance employed in some plaees being a kind of lamp-black. On the brown skins of the natives, the marks made with this substanee appear blaek; but on the skin of a European they are of a fine blue colour.* Lafitau speaks of powdered elareoal as the colouringmatter commonly used by the Ancrican Indians; and states that it was introdueed by a proeess subsequent to that of cutting or puneturing the skin. This insertion of the colour appears to have been the inost painful part of the operation of tattooing as practised among them.

- Rutherfoml states that the Lattoning on the lonlie of the lipw of Mew Zealand wumen aplesers of a bive colour.

In addition to the other reasons which have been alluded to for the general adoption of the practice of tattooing among savage tribes, it is likely that it may be regarded as an important part of the initiation of a warrior, of whose passive courage it is a severe test. 'Thus,' observes the author of the 'New Zealanders,' ' in the account which Rochefort, in his 'History of the Antilles' (p. 108), gives of the initiation of a warrior among the people of those islands, it is stated that the father of the young man, after a very rude flagellation of his son, uscd to proceed to scarify (as he expresses it) his whole body with the tooth of the animal called the acouti; and then, in order to heal the gashes thus made, he rubbed into them an infusion of pimento, which occasioned an agonizing pain to the poor patient ; but it was indispensable that he should cndure the whole, adds our author, without the least contortion of countenance or other evidence of suffering.'
(Pictorial Bible, note on Levit. xix., 28 ; Pictorial Histrimy of England, vol. i., pp. 129 and 329; New Zealunders, 'Lil). of Ent. Knowledge,' chapters vi. and xiv.)

TAUBMANN, FRIEDRICH, was born at Wonsces, near Baireuth, on the 16th of May, 1565, where lis father was a shoemaker. His father died very early; and his mother married a tailor, who wished to bring up his stepson Friedrich to his own business; but as the boy showed little inclination, he was sent, in 10.77 , to school at Culmbach, where he was obliged to gain his livelihood by singing and begging. In 1582 he went to the gymnasium of Heilbronn, where his Latin verses and the wit displayed in then were so nuch admired, that he was crowned by l'aul Melissus as poet-laureate. Ten years later he went to the University of Wittenberg, where he distinguished himself, and, in 1595 , was appointed professor of poetry and cloquence, to which afterwards the honour of courtpoet was added. He died at Wittenberg, on the 24th of March, 1613.

Taubmann was conscientious in the discharge of his official duties, and he was a witty and humorons man. During his lifetime he had the reputation of being the greatest wit of the age, and persons of the highest rank sought his socicty. From all that can be learned about lim, it is clear that he did not, like many others in similar positions, forget his own dignity as a man: he never acted as a buftoon or flatterer, but always manifested a straightforward and upright character. In his time philology was sinking very rapidly in Saxony, all attention being absorlsed by theological controversies and sophistries, and Taubmann was one of the very few who, both in earnest and in jest, impressed upon his contemporaries the necessity of resuming a thorough study of the antient languages as the only means of raising theological studies to their proper position. This he did more especially in lis work, 'Dissertatio de lingua Latina,' the last edition of which appeared at Wittenberg, 1614. With the same view he exerted himself in his lectures, and in his editions of Plautus (Wittenlerg, 1621, 4to.) and of Virgil (Wittenberg, $1618,4 t 0$.), in which he made his countryinen acquainted with the labours of foreign scholars. His poetical works, though very popular in his time, have no great merit. They appeared in several collections, under the titles of 'Columbae Pocticae,' Melodaesia,' 'Schediasmata Poetica, and others. After Taubmann's death, the name of Taubmanniana was applied to all kinds of witty sayings and anecdotes.
(Erasmi Sclmidii Oratio in Taubnanni Memoriam, Wittenberg, 1613, 8vo.; Taubmanniana, oder Fr. Taubmann's Leben, Anecdoten, witzige Einfälle und Sittensprüche, von Simon von Cyrene, Leipzig, 1797, 8vo.; Fr. l3randt, Leben und Tod Frid. Taubmanni, Copenhagen, $1075,8 \mathrm{vo}$.: the best work however is by Ebert, Leben und Verdienste Fr. Taubmanns, Eisenberg, 1814, 8vo.)

TAULER, or THAULER, JOHANN, the most celebrated German divinc of the fourteenth century. He was borm in 1294, as some writers say, at Cologne, but according to othens at Strassburg. Respecting his life very little is known. Ife entered the order of the Dominicans at an early age, and was held in the highest esteem on account of his knowledge of philosophy and mystic theology, as well as for his pious and unblemished conduct, although he fearlessly attacked the vices and follies of his fellowmonks. The latter part of his life he spent in the convent of the Dominicans at Strassburg, where he died on the

16th of June, 1361, as is attested by his tomb-stone, which still exists in that city.

Tauler was a man of extraordinary piety and devotion, in zealous teacher, and a great promoter of mystic theology in Germany, which must regard him not only as the founder of that school of divinity, but at the same time as one of the greatest men that have ever sprung from it. His sermons, as well as his other religious and ascetic works, show a glowing imagination and deep feeling: they are less addressed to the understanding than to the heart. But although this leaning and his love of the mysterious frequently led him to religious sentimentality and absurdities, yet he never sinks down to the level of some modern mystic divines. Tauler was deeply read in scholastic philosophy, and although in his sermons lie endeavours to steer clear of it, yet they are not quite free from sophistic subtleties, and there are passages which must have puzzled more than enlightened his andience. In his love of truth, and the earnestness with which he devoted himself to the instruc. tion of the people, he was a worthy predecessor of Luther Tauler's influence upon the German language and literature has acquired for him as distinguished a place in the history of German literature as that which he occupies among divines. In his time German prose scarcely existed, and the standard of sermon-writing was very low. The creation of a prose literature belongs almost exclusively to him : his style seldom aims at oratorical beauty, his sentences are short and abrupt, but always full of meaning. His language, which is the dialect of the Upper Rhine, is as pure as can be expected. It appears that Tauler did not himself write his sermons, but they were taken down as they were preached, by many of his hearers. We must therefore suppose that in the editions which were published shortly atter his death, the form has been somewhat altered by the editors. The first edition of his sermons appeared at Leipzig, 1498, in 4to., under the following title: 'Sermon des grossgelarten in gnaden erleuclıteten Doctoris Johannis Tauleri predigerr ordens, weisende auff den nehesten waren wegk, yn geiste czu wandern durch uberschwebenden syn, unvoracht von geistes ynnige vorwandelt i deutsch manchen menschen zu selikeit. This edition was followed by another at Augsburg, 1508, fol., and a more complete one at Basel, 1521, fol. A translation of these sermons into the dialect of lower Germany was published at Halberstadt, in 1523, fol., and another into High German by P. J. Spener, at Nürnberg, 1688, 4to. A new edition in modern High German was published at Frankfurt-on-the-Main, in 3 vols. 8vo., 182j, \&c. The most interesting among his other religious works is that on the imitation of the life of Christ, 'Nachfolgung des armen Lebens Christi,' which was first printed at Frankfurt in 1621. The most recent edition is that by Schlosser, Frankf., 1833. A collection of all the treatises of Tauler was commenced in 1823, at Luzern, by N. Cas. seder, but only two volumes have appeared.
Most of the works of Tauler were translated into Jatin by Laurentius Surius, Cologne, 1548, fol.: this collection has been reprinted at Macerata and Paris. Tliere are also one Italian and three Dutch translations: the best of the Dutch translations is that of Antwerp, 1685, fol.

A list of the works of Tauler, together with the whole literature on the subject, is given in Jörden's Lexicon Deutscher Dichter und Prosaisten, vol. v., p. 1-9.

TAUNTON, an antient town in the south-western part of Somersetshire, situated in a fertile vale called Taunton Dean, and distant 141 miles from L.ondon, 44 from Bristol, and 33 from Exetcr. Roman coins and other antiquities have been found, from which it has been inferred that there was a loman station here. Taunton was certainly a place of considerable importance in the Anglo-Saxon period; and in the eighth century a castle was built here by Ina, king of the West Saxons, in which he held his first great council. The building was destroyed by his qucen in expelling one of the kings of the South Saxons. An other castle was built after the Conquest by one of the bishops of Winchester, to whom the town and manor were granted; and the present remains are believed to be those of a still more recent edifice. Perkin Warbeck held josscssion of the castle and town for a short time; and in the civil wars the town snstained a long siege under Colonel (afterwards Admiral) Blake, against 10,000 royalist troops, until relieved by Fairfax.

The town is about a mile long; the principal streets are
well pared, and lighted will gas ; and the houses of brick, of respectable appearance. Apart from the inain thoroughfares are some very poor sitreets, which, before the enlargenient of the borough, were inhabited by persons desirous of profiting ly the parlinmentary franclise. The woollen manufacture was estahlished nt Taunton in the fourteenth century; but has long since decayed; nnd at present the silk manuffacture is cearried on, though not to any great extent. The river Tone flows on the northwestern side of the town, and is crossed by a stone lridge of two arches; but the river is only partially narizable, and in 1811 a canal was projected leetween Tauniton and Brilgewater, a distanec of $12 t$ miles. This canal is of great iniportance to the properity of the town and district, by enabling it to export agrieultural and other produce to 1 Bristol and other places, from whieh it receives groeeries, conl, and other commodities in return: there is a branch from this eanal to Chard. In July, 18i2, the railway from Bristol to Exeter was opened ns far ns Taunton, so that there is now a railway communication with, the metropolis. The markets, held twice a week, are very abundantly supplied with fish, fruit, nnd every kind of provisions. The marketlouse stands in a sphcious open area ealled the Pnrade, and is a briek building of considerable size ; the upper part comprises the guildhall and nn assembly-room, and the lower part consists of an arcade on each side, in one of whieh the corn-market is held. On market-dnys the Parade, whieh is enelosed by iron posts and ehains, is oecupied by butehers' stalls. On the west side of the Parade there is a handsome building of the Ionie order, crected in 1821, the upper part of which is appropriated as a library, museum, and reading-room; and underneath, and in the rear, are the markets for fish, poultry, dairy produce, \&.c. The 'Taunton and Somerset Institution, established in 1823, contains a yood though not extensive library, and a large puhlic reading and news room. The theatre is a small neat building. Two weekly newspapers are published at Taunton. There are three churches. The chureh of St. Mary Magdalen is a spacious and very handsome edifice in the florid Gothic style. The quadrangular tower at the west end, 153 feet liigh, is much enriehed, and is a work of great beauty. The value of the living, which is a viearage, is not given in the Reports of the Eeelesiastical Commissioners. St. James's chureh is a plain edifiee, with an antient square tower formerly belonging to the conventual ehurel of the priory. The living is a perpetual euricy, of the annual value of 253%. Trinity ehurch was ennsecrated I8th June, 1842 It is in the Gothic style, built of white lias stone, with dressiugs of Bnth stone, and contains sittings for nbove one thousand yersons. It stands on clevated ground, about half a mile from the parish church, in a poor and populous part of the town. There are two cliapels belonving to the Wesleyan Methodists, one ereeted in 1778 under the direction of Wesley. The Roman Catholies, Independents, Baptists, Quakers, and Unitarinns have chapels. The free grammar-school was founded by Fox, bishop of Winchester, in 1520. The premises are situated within the castle-gatc, and consist of a large and antient school-room, and under the same roof is the dwellinghouse of the master. The endownent is worth nbout $36 /$. a year. The number of infant, Sunday, and daily seloools at Taunton was stated in 1833 to be very inadequate, and a large number of poor cliildren were at that time reeciving no education. There are various almshouses and other charitics, all of which are noticed in the Report of the Charity Commissioners (vol.v., p.481-542). The Thunton and Somerset hospital was opened in 1812; and there are other medical charitics.

Charles 1. granted the lurgesses a charter of ineorporation. In the reign of Charles II. they were deprived of this charter, in consequenec of the town having displayed so mueh zenl for the parliament, lout it was restored, and in 1792 beeame forfeited by the corporate body having neglected to fill up vaeaneies. The town then came under the jurisdietion of the county magistrates, and is still without a munieipml government. The pailiffs and constalles, as the prineipal offieers of the town, take a prominent part in all public proeeedings. Taunton hns returned members to parliament sinee 1245 (23 Henry 1.). Hefore the Reforin Act the right of election was in thic pootwallers who had been six months resident and were not in the reecipt of charitable relief. The town laving oulgrown the antient linits of the borough, which was
wholly within the parish of St. Mary Magdalen, a new boundary was ndopted, so as to conprise parts of the following parishes:-St. Mary Magdalen on the east, St. Jnmes's on the north, Bishnpis IIull on the west, and Witun on the south. By this extension the population of the borough was increased from 5.580 to $1: 2,148$, according to the census of 1831 . In 1826 the number of electors polletl was 739; in 1840 the number on the register amounted to 1010, including 216 of the old potwallers. Two nembers nre returned to parliament. The lent assizes and the Michaelmas quarter-sessions are held at Tnunton. There is Ω court for debts under forty shillings, the jurisdietion of which extends over the hundred. There is 110 prison, except a lock-11p or place of temporary confinement. The county courts and offiees are within an irregular quadrangle consisting of the remains of the eastle.
(Toulnin's Ilist. of Taunton, 1791; a new edition by Snvare. 1822.)

TAUNUS. [Germany.]

TAURELILIUS, L. [TORE1.1.1.]
TAU'RICA CHERSONE'SUS was the antient name of the peninsula which juts out southwards from European Sarmatia, between the Pontus Euxinus (13lack Sea) and the Palus Maeotis (Sea of Azof): it is now called the Crimen. It is called Chersonesus Trachea by 1Ierodotus, who compares it to the promontory of Sunium (iv. 09). Its form, size, and physical features are descrihed under Crisiza. The isthmus whiels connects it with the mainlnnd was ealled Taphros or Taphrae (Táøpos. Táppat), and there appears to linve been a town of the same name upon the isthmus.* (Strabo, vii.,]. 308; Pliny, iv. 20 ; Mela, ii. 1.) On the west of this intimus was the Sinus Carcinites (Kódoos o Kapruitns), now the Gulf of Perckop; and on the cast the shallow waters then, as now, ealled the Purrid Sea or Lake (if इaapil Aipun, Palus Putris). The south-western point of the peninsula was the promontory Parthenion ($\delta \delta$ Пrapiviov), which is either the inodern Cape Chersonese, or another promontory farther south, in the neighbourhood of the town of Sviatoi Gheorgli. The southern promontory was called CriuMetopon (Кроӧ μ iтштоข), and either the south-castern or the eastern point of the island was called Corax (ró Kópag axpov). On the east the peninsula is divided from the coast of Asia by the Cimimerian Bosporus (o Kypiptos Bós π opos), now the Strait of Kerteh or Yenikale. On the south-western side of the peninsula is a small peninsula terminated by Cape Khersonese, and enelosed on the noth by the Gulf of Achtiar, the antient lontus Ktenus (Krevoūs), and on the south by the Giulf of Balaklnva, the antient Portus Symbolorum ($\left.\Sigma_{v \mu} \beta \dot{i} \lambda \omega \nu \lambda_{1} \mu \dot{\eta}\right)$). On this peninsula, at the distance of 100 stadia from the promontory Parthenion (Strabo), stood the eity of Chersonesiths
 was Chersonesus Heracleotien. It was a colony of Heraclea in Pontus. The peninsula itself was ealled the Small Chersoncsus, and the Chersonesus Taurica was sometimes called the Great Chersonesus, to distinguish it from this part of itself. The nther important towns were, on the isthmus, Taphros (i) Táppos), now Perekop; on the weat coast Fupatoria (Eù maropia), now Eupntoria or Kazlov, built by Mithridates Fupator; on the east coast Thendosia (ì Ozodocia. or $\dot{\eta}$ Oeviocia), now Kefa or Feodosia, a colony of the Milesians; at the eastern end of the island, on the Bosporns, Pantienpacum or Bosporns (ITryfuátatoy), now Ketch. There were several towns in the interior. of which the only one worth mentioning is Cimmerion, now Eiski-Kinn, that is, Oll Krim.
The earliest inhahitants of the peninsula appear to have been the Cimmerians, some of whom remained in it after the great body of the nation had been driven from their seats round the Palus Macotis ly the Scythians. (IIerod., iv. 1, 11, 12.) Clear truces of this people remain in the names of Cimmerion, the Cimmerian Bospons, the Cimmerian Chersonesus (as the peninsila was sometimes called), and in its modern names of Crimea and CrimTartary. In the earliest notices of the Chersonesus, by Greek writers, we find the mountainous region of the south and south-cast inhabited by a piratieal people, ealled

[^4]the Tauri, from whom the Chersonesus was ealled Tauriea, and whose name remains in that of the modern Russian province of Taurida, in which the Crimea is included. Who these Tauri were is a question of some difficulty. Strabo (p. 308) ealls them a Scythian people, but Herodotus (iv, 99) clearly distinguishes the Tauri from the Seythians, as being a different nation. The inhabitants of the whole or a part of the peninsula are not unfrequently called Scythotauri or Tauroscythae. Judging from this mixed name, from the testimony of Herodotus to the two facts that the Tauri were a different people from the Scythians, and that the Scythians did not drive out all the Cimmerians from the peninsula, and, lastly, from several analogous cases,* it seems most probable that the Tauri were a remnant of the old Cimmerian inhabitants, who had maintained themselves in the mountains against the Sicythian invaders. The name 'Tauri' is supposed to be derived from an old root 'Tau,' meaning a mountain. The Tauri were reputed by the Greeks to lee inhospitable and eruel to strangers: they were said to offer human sacrifices, especially of shipwreeked mariners, to a virgin goddess, whom, according to Herodotus, the Tauri themselves identified with Iphigeneia, the daughter of Aramemnon, and whose temple stood on the promontory of Parthenion. (Herodot., iv. 103 ; Strabo, p. 308 ; Mela, ii. 1; Diod. Sic., iv. 44.) This legend enters into the composition of the 'Iphigeneia in Tauris' of Euripides, and is several times referred to by the Roman poets.

From about the sixth century before Christ downwards, several Greek colonies were planted on the Chersonese, and these were gradually formed into two states, that of Chersonesus, comprehending the smaller peninsula on the south-west, and the kingdom of Bosporus on the southeast. These two states were united under Mithridates. [Bosporus.]

Further information respecting the geography and history of the peninsula and of the adjoining delta of the Kuban is given under Crimea and Taman.

TAURI'DA, one of the govemments of South Russia, sometimes ealled the government of Simfcropol, situated on the Black Sea, consists of-Ist, the Crimea or Taurie Peninsula; 2nd, the Nogay Steppe, with the island of Taman [Taman]; 3rd, the eountry of the Tschernomorsk Cossacks. It is bounded on the north-west by Kherson, on the north-east by the eountry of the Don Cossacks, on thic east by Caucasia, on the south-east by the Kuban, and on the south by the Black Sea. The Crimea and all its principal towns are deseribed under the respective heads. [Baktschisaral; Crimea; Kaffa; Sebastorol ; Sinferopol.] The area of the whole is $3.5,000$ square miles, with 520,000 inhabitants of many differcnt nations, Tartars, Cossacks, Russians, Jews, Gypsies, Germans, and other foreign colonists, \&e. It lies between $44^{\circ} 30^{\prime}$ and $47^{\circ} 50^{\prime} \mathrm{N}$. lat., and between $31^{\circ} 25^{\prime}$ and $40^{\circ} 25^{\prime}$ F.. long. The Nogay Steppe includes the whole of the extensive country from the Dnieper and its limans to the Buda. It is a dry elevated steppe on a basis of granite. The country has precisely the eharacter of a Russian steppe: the soil is dry, poor, in part sandy, and saltish, without wood; but there are here and there cxtensive hollows with rich black mould, which produce the finest grass. The climate is extremely mild, and differs little from that of the peninsula. The winter, though short, is severe. The only rivers are those which form the boundaries: the Dnieper on the north-west, the Konski Wodi on the north, and the Buda on the east. On the south-east is the Sea of Azof, and on the west the Black Sca.

The land of the Tschernomorsk Cossaeks ineluding the island or peninsula of Taman, is bounded on the north by the country of the Don Cossacks, on the east by Caucasia, on the south by the river Kuban, and on the west by the Sea of Azof, and is separated from the Crimea only by the strait of Yenikale, which conncets the Sea of Azof with the Euxine. The coast is sandy, flat, and forms some considerable bays or inlets, called by the Russians limans, the most considerable of which is the Besugakoi, nearly in the middle of the eountry. It is an immense plain, with a few hills in the south, belonging to the Cau-

[^5]casian system, consisting in general of very fertile lowlands, which are well adapted for agriculture, but are for the most part used as pasture for eattle: the remainder consists of a poor saline soil; and there are some small lakes with salt water: the elimate is very mild. The principal rivers are the Kuban, on the south, which separates it from Cireassia, and discharges itself on the south of Taman by a very broad liman, and the Iega, on the north frontier next the country of the Don Cossacks, which is joined by several small streams, and empties itself by a considerable liman into the Sea of Azof. The small streams in the interior fall into the Sea of Azof, one of whieh, the Besuga, forms at its mouth the liman Besugakoi.

The countries forming the government of Taurida were inhabited in antient times by the Scythians and by Greek colonists. Sinee the time of Herodotus, in the fitth century b.c., they have been suecessively conquered and ravaged by many different nations. They have been subjeet to the kings of the Bosporus, the Romans, the Sarmatians, then to the Greek emperors, and at the end of the twelfth century partly to the Genoese; they were conquered in the thirteenth century by the Tartars, and at the end of the fifteenth by the Turks. Mohammed II. made himself master of Taurida in 1475, and expelled the Genoese and the Venetians, the former of whom possessed Kaffa and Kherson, and the latter had the colony of Tana. Subsequently to 1698 the Russian armies repeatedly penetrated into the Crimea, the inhabitants of which often made predat ory ineursions into the neighbouring countries. It was not however till 1771 that the country was really conquered by Dolgorucky, and the Porte compelled, in 177^{4}, at the peace of Kutsehuk-Kainardji, to recognise the Crimea as an independent country, to be governed by a khan chosen by the nation, and to recognise the sultan as their head in religious matters only. The khan Sahen Ghierai, whose election had been supported by the Russians, being pressed by the Turkish party, was at length induced to seek refuge in St. Petersburg. Russia now declared the Crimea to be her property, and the Porte, to avoid a new war, ceded it wholly to Russia, in January, 1784. The khan received a pension from Russia, and in the sequel retired to Turkey, but in 1787 was beheaded in the Isle of Rhodes by the sultan's order. Sultan Kalli Ghierai is his lineal descendant, who lives (or at least did live some years ago) in Simferopol, is a Christian, and is married to a Scotchwoman. The Crimea and the provinecs dependent on it werc formed into a government in 1784, by the name of Taurida, and incorporated with the Russian empire. The empress Cathcrine II. added to the imperial titles that of Czar of the Tauric Chersonese, and conferred on Prince Potemkin, who had been instrumental in bringing abont, not without riolenee, the submission of the Tartar inhabitants, the surname of the Taurian. The Porte indeed appointed a new khan in 1786, and demanded that the Crimea shoutd be replaced on the footing stipulated in the last peace; but it was obliged to cede it for ever to Russia in the peace of 1792. Taurida was at first a province of the government of Ekaterinoslav; in 1797 it was incorporated with the government of New Russia; and in 1802 it was made a distinet government by the emperor Alexander.
Among the numerous authorities that might be quoted, besides those already cited under the heads of the Crimea, Odessa, \&e., we may mention Muraview Apostol, Reise dureh Taurien, 1820; Eichwald, Alte Geographie des Kaspisehen Meeres des Kaukasus, und des siidlichen Russlands, 1838; and for the NogayTartars, Daniel Schlatter, of St. Gallen, Bruckstücke aus eigenen Reisen nach dem südlichen Russland in den Jahren 1822-1828.

TAURINE, a peculiar crystallizable substanee contained in the bile. Its properties are, that it has the form of a six-sided prism terminated by pyramids of four or six faces; the crystals are gritty between the teeth, and have a sharpish taste, which is ncither sweet nor saline; they undergo no alteration by exposure to the air even at 212°, and have neither an acid nor an alkaline reaction. When heated in the naked fire, this substance becomes brown, fuses into a thick liquid, swells up, cxhales a swectish empyreumatic odour resembling that of burning indigo, and leaves a eharcoal, which is readily burnt: when submitted to dry distillation, it yields much thick browu oil, and a little yellow aeidulous water, which holds
an ammoniacal salt in solution, and reddens a solution of perchloride of iron; one purt requires $15 \frac{1}{3}$ parts of water at 54° for solution; it is much more soluble in boiling water, and the excess erystallizes on cooling; it is but little soluble aven in boiling alcohol of sp. gr. 0.835 , and is nearly insoluble in absolute aleohol. Concentrated sulphuric acid dissolves and forms a limht brown solution with taurine; nitric acid readily dissolves it, and when the acid is evaporated, it is left unaltered.

TAURIS. [TAhriz.]

TAUROMENIUM, now TAORMIINA, a town in the northern part of the east coast of Sicily. The antient name, Tauromenium (Taupoplyov), like that of the river Tauromenius (the modern Aleantara), at the mouth of which the town was situated, was derived from Mount Taurus, on which the town was built. Diodomis Siculus gives two apparently contradictory accounts of its foundation, though both agree in the main point, that Tauromenium was founded by the inliabitants of the antient town of Naxos, which lay a few miles south of Tauromenium. In one passage (xiv. 69) he states that during the war of Dionysius the Tyrant with Himileo, the latter indueed the Sieuli, who had previously received from Dionysius the town of Naxos and its territory, to oceupy Mount Taurus, and to fortify themsclves there; and after the termination of the war in favour of the Carthaginians, the Siculi, about 302 b.c., formed a permanent settlement on Mount Taurus, which they ealled Tauromenium. The other aecount (Diodor. Sic., Xvi. 7) places the building of the town somewhat later, inasmueh as it sfates that it was founded by Andromachus, the father of Timacus the historian, in conjunction with the inhabitants of the destroyed town of Naxos; but in this aceount Andromachus himself is eallcd a Tauromenian, whieh implies the previous existence of Tauromenium. Consequently Diodoms can only have meant to say that Andromachus assigned to the homeless Naxians habitations in the already existing town of Tauromenium, and that he agreed with them in the name of Thuromenium being preserved. (Wesseling ad Diodor. Sie., vol. vi., p. 552, ed. Bipont.) Strabo (vi., p. 27, ed. Tauchnitz) ealls Tauromenium a colony of the Zanclacans of Hybla. Soon after its foundation the new town appears to have become very wealthy and powerful. Agathocles, the tyrant of Syracuse, put to death a great number of the inhabitants who had opposed his usurpation. (Diodor. Sic., xix. 102.) In the time of Pyrrhus the town was governed by a tyrant, Tyndarion, who supported the king on his landing in Sielly. Atter the subjugation of Sicily by the Romans, Tauromenium became a civitas focderata; and being thus under the immediate protection of Rome, it enjoyed a long peace, during which its prosperity increased. (Cieero, In Verrem, ii., 66.) In the time of Verres the town contained many statues of this propractor, all of which, after his depaiture, were destroyed, except the pedestal of one which stood in the market-place, which was left standing :o mark the disgrace of the Roman governor. In the war of Carsar with Pompey, Tauromenium was in the possession of the Pompcian party; but when Cassar made himsclf master of it, he expelled the inhabitants, and established a Roman colony there. (Appian, De Rello Civili, v. 103, 105, 109 ; Pliny, Hist. Nal., iii. 14 ; Velleius Paterc., ii., 79.)

Taormina at present contains ahout 6000 inhabitants : its situation on a steep rock on the sea-const is magnificent. It contains considerable ruins of antient buildings, especially a theatre of gigantic dimensions, the seats of which are cut in the roek, which projects into the sea. This theatre and the aqueduct, or, as it is generally ealled, a naumachia, of which there are remains, were not constmeted till the time of the empire. On the hills which rise above Taormina thera are ruins of several eastles, and among them one is very remarkable, whieh is ealled Mola, and was built in the ninth eentury of our sora by the Saracens, who took the town by storm after a long and lime resistance by the inhabitants.

The prineipal deity worshipped by the antient Tauromeninns was Apollo, which confirms the statement that the tuwn was a settlement of the Naxians, annong whom Apollo wrs the national divinity. An Aprollo, with a wreath of laurcl round his head, oceurs on many coins found at Tauromenium. with the inscription APXAPETA,
or APXAFETAE; and the reverse shows a tripod, whicl prohably indicates that Naxos was founded under the sanction of the Delphio god. Other coins show the head of Dionysius or of Athenn. There is one coin, nne side of which represents a liead of Jupiter, and the other an eagle with the thunderbolts. The name of the town is expressed on the coins by Tavpo, 'Taupop, Taupopir, or Taupopevirav. (Eckhel, Docirina Num., i., part i.. p. 247, Sc. ; Mionnct, i., p. 321, S.e. ; Supplem., i., p. 418, \&.e.)

TAURUS, MOUNT (o Taipos), in the opinion of the later Greek geographers, was a great clinin of mountains which extended ncarly duc east and west from the shores of the Aigean to those of the supposed Eastern Ocean, and divided Asia into two parts, Λ sia within the Taums (lyròs roũ Taipou), and Asia without the Taurus (ixrog roil Taypor). Their notions respecting this ehain were by no means aceurate, and indeed only a small part of it ever really bore the name.

The chain of Taurus, properly so called, commences at the south-western point of Asia Minor, and proceeding eastward parallel and near to the Mediterranean, it eneloses between itself and the coast the narrow strip) of land which formed Pamphylia and Cilicia. At the river Pyramus the chain divides into two, that of Λ manus, which proceeds to the east, dividing Syria from Λ sia Minor [Amanus], and the continuation of Taurus, which runs north-east, along the south-east side of Cappadocia, aeross the Euphrates into the northern prort of Armenia, where it joins Mount Masius. This chain now bears the name of Enamas, Ramadan, and Gourin.

In Cappadocia the Taums throws off a great branch which was called the Anti-Taurus (d 'Avriraupos), and which passes through the middle of Cappadocia, northeast to the sources of the Halys, and thence east to the Euphrates. Its modern name is Alidagh. At Sebaste (Siwas) this chain joins that of the Paryadres (Chisheshi), which extends north-east as far as the mountains of Arnrat. In modern geography the whole elain from the southwest of Asia Mlinor to Ararat bears the name of Taurus. The name itself is probably merely a form of a root which occurs in several Oriental Janguages, meaniug nountain.
(Renncll's Geogruphy of Herodotus, i. 228, \&c. : Schirlitz's Alte Geographie.) [Anatolia.]

TAURUS (the Bull), the second constellation of the Zoduac. Its position in the hearens, surrounded by Aries, Eridanus, Orion, and lerseus, is casily obtnined by the manner in which its bright star Aldeliakan is connected with the belt of Orion. In all speeulations upon the origin of the zodiac, Taums must be an important object of consideration, sinee, at the earliest date which prudent speculation ean consider it advisable to begin from, Aldebaram must have been at no great distance from the vemal equinox. Referring this point however to the article on the zodiae, we shall merely notice that the Greeks, as usual, attribute but a paltry mythological origin to this striking constellation; the fables of Europa and Io being the only ones alluded to in statements of its mythological meaning.
The figure is only a part of a bull, the head, shoulders, and fore legs. Aldebaran and the Hyades form the forehead and eye, and the Pleiades are in the shoulder. But Aratus must have drawn the figure differently, for he puts the Pleiades in the knces.
The Hyades form a group, of which flve (some of the antients said seven) are distinctly visible to the naked eye, $a, \theta, \gamma, \delta$, and of the constellation: there are many more in the eluster. These stars are arranged in the form of a V , α and ε being the cxtremes, and γ at the angular point. The star a is Aldebaran. The name seems to be derived from lu, to rain. The Latins ealled them sucule (little pigs, no doubt meaning Aldebaran for the sow, and the others for her offspring), a name which Cicero and others state to have arisen from supposing the Greek word to have been from lis (pigs), and not from luy. We think however it may be possible that they were right in their iden of the Greek word: the large star and the cluster of small ones might very easily suggest the notion of a sow and her litter.

The Pleindes are so elose a gronplof stars that it is very difficult to say how niany are seen by the naked eye. - They are called seven,' says Higinus, 'but no one can see
more than six:' and six seems to be the number generally visible, though there are many more in the cluster. These stars are $17,19,20,23,25$, and 26 of Flamstced. There is accordingly a supposition that some one star, once visible, has now changed its magnitude, or disappeared altogether. The name has been derived from $\pi \lambda \varepsilon \check{\iota} \nu$, to sail. One of the mythologieal stories makes these stars the daughters of Pleione and Atlas.

The principal stars of Taurus are as follows : $(g),(b),(m)$, $(e),(c),(d),(f),(h)$ are not Bayer's letters, but Flamsteed's, by which he distinguished stars in the Pleiades.

\cdots - moso | Character. |
| :--- | :--- | :--- |
| () nut in Bay or. |

(E)

$\ll 2<\rightarrow 38$
$+3$

TAURUS PONIATOWSKI, a constcllation formed by the Abbe Poczobut, a Polish astronomer (born in 1728: we do not know the year of his death; but Lalande mentions lis having resumed his observations at Wilna in 1802), in

- 3 Tauri of Flamstred has its only existence in a mistaken entry; and $8,15,42,100$, nad 133 the simme.
enlief found. is hamever still in Ito place. Probsbly it is a variable stas. in lially.
if The sumeas 23 Anrige (γ)
P. C., No. Noul.
honour of the reigning king of Poland, and adopted in the French (Fortin's) edition of Flamsteed's maps (or rather added to the plates). Poczobut, in 1778 , proposed this constellation to the French and other academies, by whoin it was received. Bode conjectures that a resemblance of certain very small stars in it to the figure of the Hyades was the reason for the first word of the name. It is situated between Aquila and Ophiuchus, and the Astrononical Society's Catalogue mentions one star of it, of the sixth magnitudc, being 2070 of that catalogue, and (328) of Piazzi.

TAUSAN, TAUSSEN, or TAGESEN, JOHN, the first Danish theologian who made his countrymen acquainted with the principles of the Lutheran reformation. IIe was born in 1494, at Birkinde, a village in the island of Fünen. After he had received his early education in the convent of Antworskow, he wished to continue his studies at some university, and the abbot of the convent fixed upon Cologne. Here he bccame accidentally acquainted with some of the earliest works of Luther, which excited in him such a desire to study under the reformer, that he defied the opposition of his superiors, and went to Wittenberg. After having spent some time here he went to Rostoek, where he took his degree of M.A., and thence proceeded to Copenhagen, to undertake the office of teacher in one of the publie schools, 1521. This sphere of action however did not satisfy him: his wish was to proclaim the new doctrines, which he thought he could do more effectually if he withdrew to his former convent of Antworskow. Here he gained great reputation as a preacher, and at first endeavoured privately to make his brother monks acquainted with the reformed doctrines; but in 1524 , on the occasion of the abbot being absent, Tausan delivered a sermon, which produced such an effect on lis hearers, that most of the monks declared themselves ready to abandon their old belief. The excitenent and disturbance arising from such proceedings led to Tausan being transferred to another convent at Wiborg, where howerer he persevered in his exertions, and again gained a considerable number of followers. King Frederic I. of Denmark, who was favourably disposed towards the doctrines of the German reformers, and wished to favour Tausan, sent him, in 152G, a letter of protection, gave him the title of court preacher, and assigned to him a church at Wiborg, where he might preach without molestation. The bishop of this place opposcd him in everything; but his attempts were fruitless, as Tausan was supported by the sympathy of the people. The disputes between the two religious parties low became more vehement every day; and at last the king, in order to save Tausan, invited him, in 1529 , to Copenhagen, where he was appointed preacher to the clurch of St . Nicolas. The reformation in Denmark, the seeds of which had thus been sown, made gradual and steady progress; and in order to settle the question permanently, the king issued a command that deputies of the Roman Catholics and Protestants should appear on the 8th of September, 1530, before the assembly of the states, and explain their creeds and points of disputc. Tausan and the principal men of his party were present, and it was finally scttled that the Protestants should preach and propagatc their doctrines. The tranquillity thus restored was interrupted by the king's death in 1533, when the Roman Catholic party, and morc espccially the bishop of Roeskilde, again began to trouble Tausan, who was on the point of being driven out of his country. For a time he absented himself from Copenhagen; but Protestantism in the meanwhile made such progress, that the opposition to it in a short time either ccased or beeame very weak. In 1537, in which year John Bugenlagen was sent by Luther to Denmark to assist in arranging the ecclesiastical affairs of the country, Tausan was appointed preacher and lecturer on theology at Rocskilde; and four years later he was made bishop of Ripen, an office which he held until lis death, on the 9th of November, 1561.
Tausan wrote a considerable number of theological works in Danish: some of them are controversial, others excretical, and a third class consists of translations of portions of the Scripture and of original hymns. His works, as well as the listory of his life, show that he was a simple and straighttorward man; but in talent he was firl inferior to the great reformers who were his conteniporaries. (I.. Holberg, Dännemarckische, Norwerische Staats-
VoL, XXIV.-P
und Reirhr-Historie, p. 129, ©.c.; compare Jöcher, Allgem. Gelehrten-Leric., iv., p. 1n:u), Se.)
TAUTOCHRON. [Time of Descent.]
TAUTOlITE, a mineml which oecurs erytallized. Primary torm a right rhombic prism. Fracture conchoidal, uneven. IIardness 6.5 to $\frac{7}{7}$. Very brittle. Colour velvet black; streak grey. lustre sitreous. Opaque. Specifie gravity $3 \cdot 86{ }^{5}$.
Before the blow-pipe on chareoal, melts into a blackish! scoria, which is atiracted by the magnet: wills borax it forms a clear green glass.

It does not appear to have been accurately analyzed, but is stated to be probably silieate of protoxide of iron, and silieate of magnesin. It is fome in the voleanic rocks of the Lake of Jameh, near Bom, on the Rhine.
TAYERNIER, JEAN BAYTISTE, BARON D'AUBONNE, the son of an Antwerp engraver who had settled at l'aris and dealt in maps, whs born in 160). He was a 1 raveller from his boylood. The sight of the maps with which he was surrounded and the eonversation of the geographers who frequented his father's shop, inspired hin with a passion for seeing foreigu countries, which he soon contrived to gratify, it does not very elearly appear by what means or in what capreity.
Between 1620 and the elose of 1630 he visited most of the comtrics of Europe: this may be considered as his apprenticeship to the profession of a traveller. Between 1030 and 1669 he made six journeys to the East : this was the portion of his life devoted to productive toil. The story of the remainder of his life, from 1070 to 1680 , impresses us with the idea of an elastic and montired spirit, which, stimulated in part by his dilapidated fortune, but still more by an incapacity of repose, sunk in an attenpt to re-enter that world of active exertion in which lis place had been oceupied by younger men. To appreciate Tavernier, it is necessary to examine his character as it displayed itself in each of these three periods.
He appears to have left his paternal home before he had completed his fifteenth year; for he tells us that after visiting England, Antwerp, Amsterdam, Frankfort-on-theMain, Augsburg, and Nürnbert, he was indneed, by what he heard at the last-mentioned place of the mustering of amnies in Bohemia, to repair to the theatre of war. Abont a day's journey from Nürnberg, he met Colonel Brener, son of the governor of Vienna, who took him into his serviec. Tavernier was present at the battle of Prague, 8 th November, 1620 . Some ycars later, he followed his master to Vienna, and was presented by him to lis uncle, the governor of liaab, at that time viceroy of Mlungary, who received the young Frenehman into his family in the eapacity of a page. With this nobleman Tarernier remained four years and a half, and ultimately obtained his dismissal with a view to entering the service of the Prince of Mantua. Something appears to have made him change this determination, for after a brief stay in Mantua he left it, about Christmas, 1629 ; and after making a short tonr in Italy, and visiting his friends at Paris, returned to Germany. During the summer of 1620 he made an excursion into Poland ; on his return from which he attached himself for a short time to the family of Colonel Butler, 'who aftervards killed Wallenstein.' Hearing a report that the son of the emperor Ferdinand 11. (afterwards emperor himself, with the fitle Ferdinand III.) was to be erowned king of the Romans in Regensburg, Tavernier who had been present at that prinee's clection as king of IIungary (1605) and his coronation as king of Bolemia ($\mathbf{1 6 2 7}$), wiyhed to be present at this third solemnity also, and with this view threw up his appointment (whatever it was) in Butler's household.
Tavernier has nowhere explicitly stated what were his rank and ocenpations while he led this unsettled life. No expression escapes lim to intimate that he at any time found himself at a loss for money. The appointment of page in the fanily of a nobleman holding the ligh office of viceroy of Inmgary was generally the first step to the command of a troop. Yet there is a vagneness in the language of Tavernier while speaking of this part of his history, whicla leads us to suspect that his station was more of a menial character. His lively and cuterprising disposition seems however to have made him a general favourite, and his power of expressing himself-not very elegantly; if we nre to judge from lis French, yet intelligibly-in several European languages, rendered him an eligible at-
tendant. Ilis position was most probably that of one of the ready-handed, quiek-witted, not over-serupulous uttendants, with whom men of high rank in that age found it neeessary to surronnd themselves. From hints dropped in dillerent parts of his travels, it is highly probable that he had picked up some money in the wars; he lad acquired some knowledge of the military art ; he knew something of wateh-making and jewellery; and, aloove nll, he had learned to shift for himself. Beyond such n yeneral aequaintance with mapss and geography as he had pieked up in his father's shop, he possessed no literary or seicutifie attainments; and his tastes and labits were those of the youne ruftlers of his age. A naturally frank and kindly thongh somewhat boisterons temper liad done much to neutralize the worst inupressions of the lax sehool in which he lad been educated.

After such preliminary fraining, and with a character thus far developed, Tavernier commenced his travels in the East. Ite had nlready been turning lis eyes in that direction, and making interest to be received into the suite of a new ambassador the emperor was about to despatch to the grand seignior, when the confidential agent of Richelieu, Father Joseph, who had known him at Paris, proposed that he should accompany two yomg French noblemen who were travelling 10 Palestine by the way of Constantinople. Tavernier closed with the offer, and in compnny with his employers reaehed that eity during the winter of 1030-31. Λ reeent biographer has stated that he began his first jountey in 1636: the origin of the mistake is as apparent as that it is a mistake. Tavernier says 'after the ceremony of the coronation was finished,' and Ferdinand III. was not crowned king of the Romans till December, 1636. Tavernier gives no dates in the aecount of his first journey; mit we know that he embarked at Marseille for his second in September, 1638; and we also know that he arrived at Rome on his return from lis first voyage on the day of Easter. He was detained eleven months at Constantinople waiting for a caravan, and seven weeks by a severe attack of siekness at Aleppo: so, if we assume he set out from Regensburg in December, 1636, we have only three months left for the overland journey from Kegensburg to Dresden, Vienna, Constantinople, Erzroum, Tabriz, Ispahan, Bagdad, Aleppo, and Scanderoon, and the voyage from Scanderoon to Rome. It is impossible that Tavernier's first journey sould have been subsequent to Ferdinand's coronation as king of the Romans. But a strong effort was made by that prince's father to have him erowned at the elose of the diet held at Regensburg in 1630; and Tavernier, writing from memory forty years later, may have imagined that the festivities he witnessed at that time were in honour of a coronation which was expected to take place, but did not. Two passages in lis Travels seem to place it beyond a doubt that the visit to Regensburg which led to his first journey took place in 1630. In his first volume (p. 689 of the Paris edition of 1676) the expression oceurs- in 1632 on the road from Ispalan to Bagdat.' He only travelled that romd onee, and that was on his return from his first expedition into Persia. It would be unsafe to rely upon the evidence of a figure in a book not very correctly printed; but in the aecount of his first journey to lspalanis he mentions having seen at Toent the vizir, who was excented a fev days Iater, after being obliged to raise the siege of Bagdad. This ean only refer to Khosrew pasila, executed there about the end of April, 1632.
This date being aseertained, the choonology of the ensuing forty years of 'Tavernier's life may be gleaned from lis travels with tolerable aceuracy. He began luis fint joumey to the East from Regensburg, in December, 1630; penetrated by way of Constantinople and Tinniz to Ispahan, and returned by Bagdad and Aleppo to Kurope early in the smmmer of 1633 . From this date till the con meneement of his second royage his listory wonld be a complete blank, had he not told in in parenihesis that he was appointed comptroller in the household of the clue d'Orleans, who gave him leave of absence duriny his journeys to the Fast. On the 13th of September, 1638, lie embarked at Marseille in a Duteh vessel, and landing at Seanderoon, proceeded by way of Aleppo and the Great Desert west of the Emphrates to Basra. There he ('mbarked in a ressel saning to Ormaz, and landing at Bushire, proceeded through Shiraz to Ispahan. Alter some stay in that capital, he travelled by Sliraz and Lars to

Gombroon, where he embarked for Surat. He visited Agra on this occasion ; but here again we are at a loss for
dates to enable us to traee his routes. We only know that he passed through Burhampore on his return from Agra to Surat in 1641 ; that he visited Goa and returned to Surat by land about the end of that year; and that he was at A hmedabad, either going to or returning from Agra, in 1042. That he had revisited Ispahan in the interval is not improbable, since he says that 'for six journeys which I have made between Paris and Ispahan, I have made twice as many from Ispahan to Agra and other parts of the Great Miogul's dominions.' He was at Ispahan towards the close of the year 1642; and probably soon after returned to France. On lis third voyage he took with him the brother already alluded to, and left Paris on the 6th of December, 1643. This time, after visiting Ispahan as ustual, he embarked at Gombroon for India. In January, 1645, he left Surat on an excursion to the diamond-mines near Golconda. In January, 1648, he made a voyage by sea to Goa ; and in April of the same year he embarked at Mingvela for Batavia; whence he returned to Europe in the Dutch fleet in 1649. Tavernier's fourth journey occupied him from the 18th of June, I6.31, when he set out irom Paris, till 1655. On this occasion he procecded from Persia to Masulipatan, in May, 1632; he revisited the diamond-mines ncar Golconda in 1653, and in 1654 he trarelled from Ormuz to Kerman, and after spending tlree months there, took the route of Yezd to Ispahan, and returned to Europe by Smyrna. His fifth journey was begun in February, 1676 . He was at Agra in 16i99, but we are at a loss for other dates in this journey. The sixth and last expedition that Tavernier made to the East was begm in November, 1663, and was terminated in 1669. The most important novelty of this jounney was his tour through the province of Bengal as far as Dacca, which occupied him from November, 1665, till July or August, 1666. He was at Ispahan in July, 1667, and on his return to Eirope visited Constantinople for the seeond time.
The very unsatisfactory arrangement adopted in the narrative of Tavernier's journeys lias rendered it advisable to extract from it the preceding incomplete chronology of them. His first publication was an account of tho intcrior of the scraglio at Constantinople (Nourelle Relation de I'Interient du Serrail), published at Paris, in a thin 4to volunie, in 1075. This mas followed by an account of his travels (Six. Voyages en Turquie, en P'erse, et aux Indes), also at Paris, in two quarto volumes, in $16 \pi 6$. A third Volume was added in 1679, containing an account of Japan and the origin of the persecution of the Clristians in these islands; an account of the proeeedings of the deputies from the king and the French company of the Indies both in Persia and India; observations on the commerce of the East Indies; aecount of the kingdom of Tunquin; account of the conduct of the Dutch in Asia. In preparing the account of the Seraglio and the two first volumes of his Travels, Tavernier cmployed Chappuzeau, a dull and unintelligent writer: the memoirs contained in the third volume were prepared by Lachapelle, secretary to the president Lamaignon. The account of the seraglio, and the contents of the third volume of the travels, are partly memoirs compiled from the information of others, and partly more full expositions of topics touched upon in his narrative. It is to the first two volumes of Tavernier's travels that we must look for such information of the countries he visited, the time he spent in them, and the adventures he encountered, as is necessary to enable us to determine what he wiltnessed himself, what he leamed from the report of others, how far his informants were worthy of belief, and how far he was qualified to understand their communications. But the arrangement of these two volumes is the very worst that could be conccived for supplying satisfactory information upon these heads. The first volume professes to give an account of the various routes by which the Parisian traveller can reach Constantinople, Ispahan, and the Persian Gulf. It is arranged as a routier; the result of all Tavernier's observations npon each line of road is given at once, and it is only from incidental remarks that we learn when and in what direction he trivelled it. His remarks upon the customs, government, and commerce of the different countries are thrown into intercalary chapters. A similar arrangement iy adopt ed in lis second volume, whleh contains the fruits of fis observations In the south of India, in
the region between Surat and Delhi, in Bengal, and in the Dutch possessions in the Eastern Archipelago. The work is neither a systematic account of the geography and statisties of the countries in which Tavernier travelled, nor is it a personal narrative of the traveller. It is an ill-digested and unsatisfactory attempt to combine both.
Yet are the tour volumes we have mentioned till of available matter, both for the historian and the geographer. The former will find in it the fruits of the forty years' experience and observation of a European merchant in Turkey, Persia, India, and the Indian Archipelagoo, in the seventeentl century. Tavernier did not possess either the intellect or the edueation of Thevenot and Bernier, but his opportunities of observation were more varied and protracted. He was a part of that commercial enterprisc and rivalry of which they were only spectators. He is himself a specimen of the kind of adventurers who at that time managed the commerce of Europe with the East. His unconscious revelations of his own character may be relied upon, and the naïveté with whieh they are made encourages us to believe what he tells us of others. His statements have not passed unehallenged: they wounded the national pride of the Duteh too sore to be left without a reply, and the partisan feelings of the Protestant literati of Europe induced them to embraee the cause of Holland, in opposition to the protege of Louis XIV. Even the Catholic literati took little interest in a writer who frankly confessed that he saw nothing interesting or valuable in the plain of Troy or the ruins of Persepolis. And yet notwithstanding the violent attacks of the Dutch and Calvinist writers, the silence of others, and even of himself (for Tavernier did not engage in a controversy), not one materinal assertion he made has been disproved. Unfriendly criticism has been confined to the remark that many of his statements regarding the Dutch are trivial, and betray a littleness of mind: this may be, but they are not the less characteristic for that reason. Tavernier's accounts of the principal objects of Oriental commerce in his day, of the leading markets and routes of trade, of the money of the different countries, and the state of the exchanges, are more full and inteligible than those we find in any other cotemporary writer. His success in trade affords a guarantee of the correctness of the opinions he states. We have collated his routes, whenever this was possible, with those of recent travellers, and have found them in general so accurate, that they may be relied upon for the purposes of eomparative geography, and in one or two instances as affording information regarding tracts which have not been visited since his time. Tavernier's notices of the route from Casvin to India by Candahar, and of the provinces to the north of Erivan, leave a favourable impression of his talent for extracting information from the native authorities. He has heen accused of plagiarism, principally because of the striking eoincidence between his account of the Guebres of Kerman, published in 1676, and that which Louis Moreri published in 1671 from the papers of Father Gabriel de Chinon. It deserves to be noticed that Moreri's publication is lucidly arranged and neatly expressed, while the aecount contained in Tavernier's travels is confused and miserable in point of diction. Had it been talcen from Moreri, it is scarcely possible that the latter could have been so wretchedly composed. Add to this that the information found in the papers of Father Gabriel is not said to have been the fruit of personal observation ; that Tavernier resided three months among the Guebres at Kirman, and had trequent dealings with them in India and elsewlicre ; that he and Father Gabriel repeatedly met in Persia; and it must be allowed that the priest is quite as likely to have derived his information trom the merchant as otherwisc. In judging of the statements made by Tavemier, the school in which he was trained, and lis personal character as it appears trom his own story, must nlways be kept in view. He had no knowledge of or taste for science and literature, for art, or antiquarian research. He acted upon impulse, and his instincts were love of travelling, and desire to acquire money for the sake of spending it in feasting and personal display. A diamond was a more interesting object to him than the mysterious remains of Tehelminar. He had no very nice or refined sense of honour, bat he was frank and veracious, and little inclined to deck himself withs stolen feathers of literture ; possibly because he could not appreciate their value.

In this review we have been obliged to auticipate that jurt of the history of the thind period of Taverner's life, which relates 10 what may be called his literary labours. We are thus enabled to abridge tise sequel of our narrative. On Tuvernier's return from his sixth jonmey he was presented with lettres do noblesse, by Louis XIV., and purchased about the same time the barony of Auboune in the I'ais de Vaud. When his iravels were published, they were, as has been intimated above, ficreely attacked; in partieular, most virulently ly Jurieu, in his 'Esprit de M. Arnauld' (December, $16 * 1$); more temperately and with a greater parade of evidence by Henrick van Quellenburgh, in 'Vindicie Batavica' (Amsterdam, 1641). Tavernier made no reply. Bayle has given a characteristic account of his conduct relative to the publiention of Jurieu, which was rather a libel than a criticism. He made a noise in the taverns and streets, he threatened and even named the day and hour when he would apply to the Walloon consistory of Rotterdam to demand execution of the canonieal laws agninst the minister who had dishonoured lius: but his threntenings cance to nothing, he retired very peaceably, and never commenced any persecution at all, The misconduct of a nephew, to whom he had intrusted the management of his affairs in the Levant, obliged him to sell, some time previous to 1688 , his hotel in Paris and his estate of Aubonne. He retired first into Switzerland, and subsequently to Berlin, where he was nominated by the elector of Brandenburg dircetor of a projected East India Company. From the time of his first journey he had regretted being prevented from carrying into execution a design which he then entertained of returning from Persia through the Russian dominions. His new appointment afforded lim an excuse and opportunity for making that journey, and he set out to travel to the East Indies aeross Russia in 1688 . He was taken ill at Moscow, and died there in the month of July, 1689. The equivocal conclusion of Boileau's inscription on Tavernier's portrait contains a fair enough estimate of his character:-

> It bien quicn nos climats de retour aujourd huif Lit bien rulen nos clumats de retour les pluy farcs tresors que le soleil mfante: II n'a rien rapporté desil rare que lul."
(Les six Voyages de Jean Baptiste Tavernier, Eicuyer Tharon d'Aubonne, en Turquie, en Perse, et aur. Indes, à Paris, 16すG-9, 4to.; L'Esprit de M. Arnauld, tiré des cerits de lui et de ses disciples' Deventer, 1684, 12mo.; Henrick van Quellenburgh's Vindiciar Batavica, ofte Refutatic van het Tractaet van J. B. Tavernier, Cheralier, Baron đAubonne, Amsterlam, 1684, 410.; Bayle, v. 'Tavernier;' Biographie Universelle, v. 'Tavernies, Jean Baptiste,' par Weiss.)

TAVISTOCK, a parliamentary borough and markettown, on the south-western border of Devonshire, 207 miles from London, 34 from Exeter, and 11 from Plynouth. The parish extends between the western extremity of Dart moor and the river Tamar, and, aceording to a survey made in 1781, comprises 13,987 aeres, or nearly 22 square miles; but it is probable that this survey included lands within the boundary of the borough which are not in the parish: in the census of 1831 the area of the parish is stated to be 11,660 aeres. The surface of the parish is diversified by hills from 300 to 600 feet in height, whieh rise in continued succession and are separated by valleys often deep and narrow, the general direction of which is from north-east to south-west. The higher ground towards Dartmoor is of granitie formation, and the neighbourhood of the town consists of schistose rock. The town is situated nearly in the centre of the parish, on the north-west bank of the Tavy, which here flows rapidly through a narrow valley, from which the ground rises sfeeply on both sides to the height of several hundred fect. The river is erossed by two bridges vithin the town. A narrow valley, or gully, from the north, is also covered by houses. The elimate is variable, and the average ghantity of rain falling in the year is 45 inches.
In 961 an abbey was founded at Tavistock, which was burnt by the Danes, and afterwards rebuilt on a larger seale. Henry I. ($1100-113.5$) granted to the abbot a weekly market and a fair. In 1513 the thirty-fifth abbot was ealled to the House of Peers, lont in 1533 his suceessor surrendered to the kine, when the revenue of the abbey was estimated at 00%. A printing-press was establislied in the abbey soon after the introduetion of the art.
into lingland. Fragments of the abbey still remain, but are chiefly incorporated with other buildings; and the refeetory is used as an assembly-room. Iohn, Lord lussell, ancestor of the Duke of Bedford, obtained a grant of the abbey lands. An antient lazar-house once stood on the site of the workhouse. The parish clurch is a spacious edifice, with a tower at the west end supported on arehes. The interior consists of four aisles and a chancel, and contains some good monuments. The living is a viearage, valued at 30%. per annum. The Independents, Unitarians, Quakers, and Wesleyan Methodists have places of worship. The date of the foundation of the grammar-school is not known, but in 1699 Sir John Glanville left an endowment for the education of one boy, which yields about 41. per annum; and the Duke of Bediord, in whom the school-estate is vested, allows the master the use of a house rent-free besides other advantages, and 201. a-year for the education of eight boys. There is a Laneasterian sclool chiefly supported by subscription, which in 1833 was attended by 135 boys and 88 girls. At the same period seventeen other schools were attended by 203 boys and 22.4 girls; ancl there were five Sunday-schools, in which 381 boys and 333 girls were instructed. There are two almshouses, one for four poor widows, who each reeeive 2 . a-year; and another for fifteen persons, nominated by the Duke of Bedford, who receive 3/. a-year each. A sum of 15%, is applieable to the apprentieing of poor children.

Tavistoek returned two members to parliament previous to the passing of the Reform Act, a privilege which it had enjoyed since 1995 (23 Hen . 1.). The right of election was in the resident freeholders. The Tavy formed the boundary of the borough on one side, and on the nther its limits were defined by an artificial line. Under the Reform Act the borough was made co-extensive with the limits of the parish, the manor of Cudliptown excepted, and it still returns two members. The number of voters on the register, in 1840, was 347 . Tavistock is not ineorporated. The portreeve, who is elected anmually at the court-lect of the lord of the manor, is the chief public offieer, and makes the return of the elections. Tavistoek is one of the polling-plaees for the eounty.
The parish registers of Tavistock from 1617 to 1836 have been made the subject of a more careful and elaborate examination than those of any other place in England. This task was undertaken by Dr. Barham, and the results are given in a scries of talles which are printed in part ix. of the 'Tables' published by the Board of Trade ; and an abstract of them is given in vol. iv., part 1 , of the - Journal of the London Statistieal Society., The population of the parish, in 1781, was 3117; in 1811, 4723; in 1821, 5483; in 1831,5602. The inerease between 1811 and 1821 is attributed to the extension of mining operations in the neighbourhood. There are some small manufacturing establishments. Tavistock is one of the four stannary towns in the county. In 1817 a canal was opened, which, after a course of 5 miles, 2 of which are under a tunnel, enters the Tamar at Morwell Ham quay. The head of the canal is connected with the quay by an inclined plane 240 feet high. This canal connects Tavistoek with Ilymouth. Sir Francis Drake was a native of Tavistock.

TAWI-TAWI. [Sooloo Archipelago.]
TAX, TAXATION. A tax is a portion of the produee and labour of a comitry placed at the disposal of the government.
Taxation is the general eharging and levying of partieular taxes by the government npon the community.

Obects or Taxation.
In a free state it is assumed that all taxation is necessary for the public good; if it is not necessary, the reason for it no longer exists. The amount of expenditure will in a great measure be determined by the magnitude of a state and hy the number and importance of its politieal relations; yet the prudenee with which its affirs are administered will affect the demands of the government upon the people, nearly as mueh as its necessitics. The expenses of a private person must be regulated by his income; but in a state, the expenditure that is needed is the measure of the public ineome that must be oblained to meet it. A eivilized community requires not only proteetion from foreign enemies and the means of internal seeurity, but it needs various institutions of eivil government condueive to its welfare, and whieh its wealth enables it to maintain
without an injurious pressure upon its resources. It is the business of a government to provide thesc, when proved to be necessary, in the best manner and at the least expense consistent with their efficiency.
The able and laborious committee of the House of Commons upon public income and expenditure in 1828 ' unequivocally declared their full assent to the principle, that no government is justified in taking even the smallest sum of money from the people, unless a case can be clearly cstablished to show that it will be productive of some essential advantage to them, and of one that cannot be obtained by a smaller sacrifice. The committee truly added to the statement of this just principle, that 'nothing requires more wisdom and prudence than to fix the public expenditure at such an amount that the real wants of the people sliall not be made to give way to any imaginary wants of the state: the latter arise from so many sources, that it is frequently very difficult to prevent the operation of an undue influence.' (Second Report, p. 4.) One of the first duties of representatives of the people is to watch with jealousy the expenditure of the public money. Every tax should be viewed as the purchasc-money paid for equivalent advantages given in return. This principle assumes the necessity of moderation in levying taxes, and will scarcely be denied by any one when stated in that form; yet it is not uncommon to hear it argued that so long as laxes are spent in the country, the amount is not of consequence, as the money is refurned through various channels to the people from whom it was derived. The principle we have just laid down at once exposes the fallacy of this doctrine, by reducing it to a simple question between dchtor and creditor. For exanıple, by paying a million of money every ycar, the people obtain the services of an army: this we will suppose to be an equivalent, and we will further assume that the food and clothing of the force are purchased, and that the entire pay of the men is spent, within the country. The whole of the money will thus be returned: but how? Not as a free gift, not as the repaymient of a loan, but in the purchase of articles equal in value to the whole sum. The only benefit obtained by this return of the million is clearly nothing more than the ordinary profits of trade; for the community has already provided the money, and then out of its own capital and industry it produces what is equal to it in value, and this it sell.s to the state, receiving as payment the very sum it had itsclf contributed as a tax.

In whatever manner taxes may be expended, they must he regarded as injurious to the community. 'Every new tax,' says Mr. Ricardo, 'becomes a new charge on production, and raises the natural price. A portion of the labour of the country which was before at the disposal of the confributor to the tax is placed at the disposal of the state, aud cannot therefore be employed productivcly.' (Political Leonomy, chap. xii., p. 206.)

General. Principles of Taxation.

Having settled that taxation should be generally and in amount as light as possible, it must be determined upon what principles and in what manner taxes may best be levied. No other branch of legislation is perhaps so important as the wise application of just principles in the matter of taxation. The wealth, happincss, and even the inorals of the people are dependent upon the financial policy of their government.

Adam Smith lays down four general maxims, which we shall briefly cite not only as being perfectly true in themselves and most valuable, but as proceeding from an authority so high that not to notice them might be accounted an omission.

1. 'The subjects of every state ought to contribute towards the support of the government as nearly as possible in proportion to their respective abilities; that is, in proportion to the revenue which they respectively enjoy under the protection of the state.'
II. 'The tax which each individual is bound to pay ought to be certain, and not arbitrary. The time of payment, the manner of payment, the quantity to be jaid, ought all to be clear and plain to the contributor, and to every other person.'

1II. "Every tax ought to be levied at the time or in the manner most likely to be convenient for the contributor to pay it?'
IV.'Every tax ought to be so contrived as both to take
out and keep out of the pockets of the people as little as possible over and above what it brings into the public treasury of the state.'

In discussing the merits of particular taxes and classes of taxes, we shall have to consider with some minutencss the application of Adam Smith's first maxim. Its justice requires no enforcement or illustration, although unhappily the object is most difficult of attainment. The second maxim is of great importance, and the necessity of adhering to it must be universally acknowledged. Uncertainty gives rise to frauds and extortion on the part of the tax-gatherer, and to ill-will and suspicion on that of the contributor, whilc it offers a most injurious impediment to all the operations of trade. Notwithstanding the many evils of uncertainty, it is by no means an uncommon fault even in modern systems of taxation. We would pass over the practices ol Eastern despotisms, where uncertainty and caprice prevai instead of fixed rules, but that the vices of their taxation are so exaggerated as to show the evils of a departure from just principles in the broadest light. All taxation is forbidden by the Koran, and although the prohibition has been evaded and broken through by the Turkish goverument in particular instances, it has always been an obstruction to any general system of imposts. In the absence of regular taxes, partial and irregular exactions are resorted to for supplying the wants of the sultan. Plunder becomes the business of every governor of a province, and thus the Koran, instead of defending Moslems from tax-gatherers, gives them up to public robbers. 'No man is secure in his property for an instant; all are compelled carefully to conceal their possessions, lest they should lose their liberty or possibly their lives and their property too. Industry is thus not merely cramped, but almost prevented or extirpated, by men being deprived of all confidence in their enjoyment of its rewards. The country, fertile in its resources of all kinds, is left waste, or only cultivated as far as the absolute necessities of providing sustenance may require. The nearer you approach the seat of government, this is more the case; and the neighbourhood of the capital, which in other countries is naturally the scene of extended labour, thick population, and great cultivation, is in Turkey marked by barrenness and neglect. Constantinople can only be approached on the land side by travelling through extensive wastes without either man or beast or tillage.' (Political Philosophy, ch.3.)

In Persia the same uncertain and oppressive mode of exacting money for the use of the sovereign is resorted to and is followed by similar results.

Under the more constitutional governments of Europe, the people do not indeed suffer from violent exactions, but industry, production, and commerce are too often restrained by irregular and ill-dcfined taxes. Spain unhappily affords many examples of misgovernment, and the injurious character of its taxation is shown in reference to this as well as other principles. To select one instance of uncertainty: 'Every landowner is liable to have his property taken in execution for government taxes, if he is not prepared to pay a half-year or more in advance, according to the difficulties of the Exchequer; consequently he is often compelled to make great sacrifices in order to meet such exigencies.' (Mudrid in 1835, vol. ii., p. 107.)
Perhaps there is no better example of the cvils of uncertainty than that of the Stade duties levied by the king of Hanover upon all ships passing up the Elbe from the sea, and upon their cargoes. The tariff taxes 2368 articles of commercc, and lays several duties upon the same articles, so that tlie whole number of duties is 6688 . "There are 35 different duties upon iron; 32 duties upon yarn or twist; 18 duties upon sugar; 42 upon leather; 36 upon oil ; 126 upon wood, and so on with respect to other important articles of trade.' The tariff also 'resorts to all modes and devices of taxation, by weight, by measure, by number, by value; and what is worse, it vests in the customhouse officers the sole discretion of determining by what standard they will charge the duty. The collector imposes that kind of duty which will produce the most money in the particular case. The consequence of this to the nicrchant is most serious. He cannot calculate or inform himsclf beforehand how much his goods will have to pay at Brunshausen.' (Edinburgh Review, No. el., p. 361 ; Hutt's Stade Duties.) There are also arbitrary fines for trivial informalities in the ship's papers, and which are said to rest practically with the subordinate officers, who
likewise haraw the merchants with a multitude of petty exactions for their own odvantage. Such a aystem, it need scarcely be said, is most discouraging and injurious to commerce. Ilritish merchants have been lond in their complaints, and the governments of this country and of Hanover have reeently engaged in negocintions, which, it may be hoped, will settle theso obnoxious duties npon more sound and equitable principles.

To lery a tax at the time and in the manner most likely to be convenient for the contributor to pay it ' is always a wise poliey on tho part of the state. The time or mauner of payment may often be more vexatious than the umount of the tax itself, and thus have the evil effects of high taxation, while it produces no revenue to the state. Suppose, for example, that a merehaut intports goods and is required to pay a duty upon them inmediately and before he has found a market for them:- We must either ndvance the moncy himself or borrow it from others, and in either case he will be obliged to charge the purchaser of the goods with the interest; or he must sell the goods at once, not on account of any cominercial oceasion for the sale, but in order to avoid prepayment of the tax. If le pays the tnx and holds the goods the consumer will have to repay not only the tax but the intercst; and if he parts with them nt a loss or inconvenience, trade is injured, and the general wealth and consequent productiveness of taration proportionately diminished. To prevent these evils the bonding or uarehousing system was cstablished, whieh affords the most liberal convenience to the merehant and a general facility to the trade of a country. Certain warehouses are appointed under the charge of officers of the eustoms, in which goods may be deposited without being chargeable with duty until they are cleared for consumption, and thus the tax is only paid just when the article is wanted, nnd when it is least inconvenient to pay it. [Warehousing System.]

Similar aecommodation is granted on their own premises to the manufaeturers of artieles liable to excise duties. At present the customs bonding-warehouses are confined to the ports. An extension of them to inland towns would be sound in principle, very convenient to trade, and unattended by any serious risk to the revenue or difficulty of management and supervision.

The evils resulting from inconvenient modes of assessing and collecting taxes have been very seriously felt in this country under the operation of the excise laws. When any manufacture is subject to excise duties, the officers of the revenue have cognizance of every part of the process, inspect and control the premises and machinery of the manuffeturer, and often even prescribe the mode of eondueting and the times of commeneing and completing each process; while the observance of numberless minute regulations is enforeed by severe penaltics. The manufacturer is put to great ineonvenience and expense, and his ingenuity and resources are constantly interfered with in such a manner as to impede inventions and improvement, and to diminish his profits. Some manutactures have been entirely destroyed by oppressive regulations. Fhe making of lenses of teleseopes was at one time a flourishing trade. Fingland had the supply of the whole of Europe, but within the last few years the manufacture has been Iransferred to France and Italy, entirely in conseguence of the prohibition of the excise laws against conducting the necessary series of preliminary experiments. (Digest if Reports of Commissioners of liacise Inquiry, p. 13.) Tracles less anfortunate than that just referred to are nevertheless very severe sufferers. A London distiller stated to the Comnissioners of Excise Inquiry, that assuning that the duties on spirits distilled by him should be fully secured to the revenue, 'it would be well worth his while to pay 3000 , a year for the privilege of exemption from excise interference, (Jiid, p. 15.)
Any injury done to trade is injurious to the state by diminishing the national wealth and the employntent of labour. It has the same eflect also upon the revenue as excessive taxation. The high price of the article limits the consumption and consequently the revenue arising from it. The injuriens effects of the excise restrictions " must lee felt in an neeumulated degree by the public who are the eonsumer, against whom the tax operates by the addition zarade to the priee of the commodity, not only by its direet amount, but by the necesaity of eompensating the manufacturer for his advance of capital in detrayirg
it, and nlso by the increased cost of production.' (Ilid., p. 15.) In the case of a heary tax, which nlso diminishes consumption, the state, at lenst, derives some benetit: but in the case of onerous restrictions and impediments to trade caused by the mode of collecting a tax, the state gains nothing whatever, and the manufacturer and the consumer are seriously injured, without an equivalent to any party. If the consumer must sutter, it slonold, at least, be for the benefit of the revenue, for then his contributions may be diminished in some other direction. Great attention lins been paid, of late years, to the intprovement of the excise regulations, especially by the Commissioners of Inquiry, under the able dircetion of Sir Henry Parnell. Varous restrictions have been rentoved, and it is to be hoped that the exeise revenue may be found crpable of being collected without inflicting greater injuries upon trade than other lranches of taxation.

The net produce of a tax is all that the state is interested in, and therefore any violation of the fourth maxim of Adam Sinith is liable to the same objections as those already stated in reference to the third. Such violation incremses the amount of the tax directly, as the former was shown to increase it indirectly, without any advantage to the state. Facility of collection is a great recommendation to any tax, and, on the contrary, a disproportion between the cost of collecting and the amount ultimately secured is a good ground for removing a lax, though founded, in other respects, upon just prineiples. On this account alone, as well as for the general convenience of trade, it is worthy of serious attention, whether the customs duties upon a great number of articles of inuport should not be altogether repealed. Although great alterations have recently been made in our tariff, the number of articles rentains the same. In 1839 there were 340 distinct articles, each producing less than 100\%. a year, and in the aggregate only 80001 . There are also 132 articles producing from low). to 500%. each, and altogether 31,6292 ., while 46 articles produced 983 per cent. of the whole customs revenue. (Import Duties Report, 1840, p. 4.) It is obvinus that the examination of every description of merehandize and package, and the assessment of nearly 1200 ditterent rates of duty, must greatly increase the establishment required for collecting this branch of the revenue. The cost ot col lecting the duties upon the larger and more productive articles of import could bear but a sinall proportion to the nmount of the tax.

The following table may be interesting as showing the rate at which the whole revenue is collected in the United Kingdom:-
Table showing the Cost of Collecting the Revenue of the United Kingdom of Great Brituin and Ireland for Ten Years, from 18:32 to 1841 inclusive (contpiled from the Annual Finance Λ ecounts).

	Gross Recnipt of Rerepue.	Charges of Coldection.	Hate per eent for which the grues receipt whe eotlected
	$£$ s. d.	\mathcal{E} 8. \quad d,	£ s. d.
1832	4.,571,459 178	3,064,702 1311	(6) 3 7
1833	$52.571,1161411$	3,500,6033 44	(15 5 ${ }^{\text {d }}$
1834	52753,2-16 1711	$3,580,(335) 44$	() 15 9
1835	$52,589.95246$	3,500,234 18181]	(i) 15 4
18:36	5,4,973.677 0 (6	3,4!3,641 17]	67 1全
1×57	50,287,737 1410	$3,430,679$ 6 5	6112
1838	52,970,2305 1310	$3,450,51010 \quad 12$	6 10 3
$18: 39$	$53.3-45,4984.4$	3,483,5i33 49	6111
1810	$52.916 .049 \quad 8 \quad 3$	3,549,009 15 5	614 18
1841	53,596,23) 14.4	3,5882,0339 711	(i) 133 .81

There is little variation from year to year on the grows charges of collection, but there is a considerable disproportion in the cost of collecting different branches of the revenue. In 1841 the excise cost $6 \% .78 .8 /$. per cent. in the collection; the assessed taxes $41.20 .3 d$. ; and the revenue arising from stamps only $\%$. 3.s. 4 l .

The Freneh revenue is collecled at a mueh sreater cost. For some years past the average revenuc of that country has been $1,020,000,000$ franes, or $40,000,(000)$., and the expenses of managing ind collecting that sum lave amounted to $150,(00,0 \times 0$ franes, or $6,000,001)$, , being no less than 15$)$ per cent. (Commercinl Tiri!fs, Iart IV,, France, 1842. p. 11.) It is very probable that many it ems may be included in
the French calculation of the expenses of collection which are not stated in the English aceounts; but making liberal allowance on that account, a great disproportion remains between the cost of collecting the revenue in the two countries. It may perhaps be fairly estimated that the revenue of France costs twice as much in the collection as that of England. The expenses of collecting a revenue may be high without any reference to the mode of taxation. An excellent tax may be collected in a bad manner, cither by having numerous idle and highly paid officers, or by cumbrous regulations and cheeks, which may cost the government much and proteet the revenue very little. Of these two causes of expense it is difficult to pronounce which is most injurious to a country. The former will generally be found to form part of a general system of illregulated expenditure: the latter may arise from unwise precautions for the security of the revenue. In France the prodigious number of official persons is notorious, and in that fact we must seek for the main cause of the enormous cost of eollecting the revenue.

Different Classes of Taxes.

In selecting one or more elasses of taxes for raising the revenue of a state, the principles already discussed should be adhered to as far as possible; but thesc do not point out any particular mode of taxation as preferable to others. Whatever mode of raising the necessary funds may be found to press most equally upon different members of the community, to be least liable to objections of uncertainty, or inconvenience in the mode or times of payment, or to be attended with the least expense, is fairly open to the choice of a statesman; unless objections of some other nature can be proved to outweigh these reconmendations.
The two great divisions under which most taxes may be classed are direct and indirect.

I. Direct Taxes.

All taxes ought to be paid from the ineome of the community. To derive revenuc from capital is to act the part of a spendthrift; and such a praetice, as in private life, must be condemned. If the taxes of any country should become so disproportioned to its income, that in order to pay them continual inroads must be made upon its capital, its resources would fail, employment of labour would deercase, and the revenue must necessarily be reduced by the general impoverishment of the tax-payers. Suclı a system could not long continuc as regards all capital, but it may affect particular branches of capital, or all capital in certain conditions. In whatever degree it is permitted to operate it is injurious. A tax upon legacies is avowedly a dircet deduetion from capital; and on that aecount oljectionable, although it is profitable to the treasury and very easily eollceted. In this country legacics left to strangers arc charged with a stamp duty of 10 per cent., and even when left to relatives the seale of duties is sufficiently high to cause a serious diminution of the capital. A further duty is charged on proving a will, called pro-bute-duty, which is perhaps more frequently paid out of eapital than income. The same observations will, of course, apply to duties charged upon succession to the personal property of intestates.
With thesc exeeptions it has been the object of the British legislature to derive all taxes from income, either by direct assessinent or by means of the voluntary expenditure of the people upon taxed commoditics.
Direct taxes upon the land have been universally resorted to by all nations. Such taxes are obvious, and require but little refinement to devise; and in countries withont commeree, land is the only souree from whieh a revenuc can be derived. In most of the Eastern monarehies the greater part of the revenue has usually been raised by leavy taxes upon the soil. The tangible nature of land and of its produce offers great temptations to immoderate taxation. In Spain, at the present time, the taxes upon the soil are most oppressive and injurious. 'The tax imposed on corn-ficlds is so heavy, that farmers in general find it more to their interest not to till their lands at all, than to run the risk of losing thcir costs and charges, and their labour to boot, by the cxorbitaney of the intendiente's demand which they would have to meet. They have adopted the plan therefore of sowing no more wheat than is necessary for the sustenance of their own families. It is quite elear indeed to all who are conversant with the state
of agriculture in Spain, that unless a complete change takes place in the system of taxation, so as greatly to reduce the burthens upon the land, there will not only be a stagnation in rural industry, but eventually the country will cease to produce a sufficient quantity for its own consumption of that superior wheat on whieh Spaniards pride themselves, and which was formerly and might still be grown in suffieient quantities to supply all the markets in Europe.' (Mudrid in 1835̃, vol. ii., p. 109.)
The land-tax in England is one of considerable antiquity. We find that under the Saxon kings a tax of this description was in use. When the invasions of the Danes became frequent, it was customary to purchase their forbearance by large sums of money; and as the ordinary revenues of the crown were not sufficient, a tax was impposed on every hide of land in the kingdom. This tax seems to have been first imposed A.D. 991, and was called Danegeld, or Danish tax or tribute. (Saxon Chronicle, by Ingram, p. 168.) It was originally one shilling for each hide of land, but afterwards rose so high as seven: it then fell to four shillings, at which rate it remained till it was abolished about scventy years after the Norman conquest. (Henry, Hist., vol. iiri., p. 368.) A revenue still continued to be derived under different names from assessments upon all persons holding lands, which however became merged in the general subsidies introduced in the reigns of Richard II. and Henry IV. During the troubles in the reign of Charles I. and the Commonwealth, the praetice of laying weekly and monthly assessments of specific sums u pon thie several counties was resorted to, and was found so profitable, that after the Restoration the antient mode of granting subsidies was renewed on two oecasions only. (Report of House nf Commons on Land Tax as affecting Catholics, 1828.) In 1692 a new valuation of estates was made, and certain payments were apportioned to each county and hundred or other division. These payments have varied in amount from $1 s$. in the pound to $4 s$. on the assessed annual value, according to the annual Land Tax Aets, but whatever may have been the variations in the rate levied, the valuation has been the same; and the proportion ehargeable to cach district has continued the same as it was in the time of king William III., as regulated by the Act of 1692. That assessment is said not to have been accurate even at that time, and of course improved eultivation and the application of capital during the last 140 years have completely changed the relative value of different portions of the soil. On account of the generally increased produetiveness of land, the tax bears upon the whole but a trifling proportion to the rent, yct its inequality is very great. For instance, in Bedfordshire it amounts to $2 s .1 d$. in the pound ; in Surrey, to $1 s .1 d$. ; in Durham, to $3 \frac{1}{2} d$. ; in Lancashire, to $2 d$. ; and in Scotland, to $2 \frac{1}{4} d$. (Appendix to Third Report on Agricultural Distress, 1836, p. 545.) Adam Smith imagined that this tax was borne entirely by the landlords, but this opinion has been proved to beeerroneous by modern political ceonomists, who hold that the tax increases the price of the produce of the land, and is therefore paid by the consumers. Of that we entertain no doubt ; but we are unable to agree with Mr. Ricardo, that the English land-tax is not objectionable as regards Adam Smith's first principle, viz. on the ground of inequality. (Political Economy, chap. xii.) He assumes that inferior land would not be cultivated until the price of produce had become so high as to remunerate the grower after payment of the tax ; and that the owners of the soil therefore would not suffer, but only the consumer. But land is often cultivated for pleasure, for scientific experiment, and for speculative purposes, while in this country the exclusion of foreign supply at a time when population was rapidly increasing has forced inferior soils into cnltivation. Then admitting that the consumer pays the tax, the owners of land appear to us to be in the same relation to each other as merchants would be who should be charged uncqual rates of duty upon articles in which they deal. In that case the consumer would ultimately pay the tax, but no one will deny that the scller who pays the highest tax in the first instanee nueets his competitor at a disadvantage in the market. He must wait for very high prices, or must sell at lower profits. Such is actually the case where articles imported from different countries bear unequal rates of duty; and such, we apprehend, nust he the case where the land is unequally assessed aceording to its value. [Land-Tax.]

A tax upon the gross rent of land would fall upon the landlord, and would be in fact a tax upon his ammal income, and as such would fall with undue severity upon lim, unless other classes of the community should be liable to a proportionate deduction from their respective incomes for the benefit of the state. This brings us to consider the expediency of a general tax upon all incomes.
As the object of taxation should be to obtain from each individual in a state a contribution to the expenses of govermment in proportion to his means; and as, in whatever form the tax may be levied, the contribution should be paid in every case from ineome, and not from capital, the simplest and most equitable mode of taxation would appear to be that which, after assessing the annual income of each person arising from all sources, should take from him, direetly, a certain proportion of his income as his share of the general contribution. Sueh a tax, equitably levied, would appear to agree in theory with all the four maxims of Adam Smith; but practically, every tax upon income must abound in inequalities, in uncertainty, and in great personal hardships and inconvenience.

In order to make such a tax fall equally upon all, in the first place, the assessment must be equal. But how is this to be effected? By the voluntary statement of each person, or by investigation and proof? If by the former means, the equality of the tax would depend upon the honesty of parties placed under a temptation to be dishonest: the least scrupulous part of the community would be taxed lightly, and the conscientions would bear the main burthen of the tax. If by the latter means, viz., by investigation and proof, the dishonest still have an advantage over the conscientious: because ineome arising from some sources, being capable of dircet assessment, cannot be concealed; while other descriptions of income arc often known only to the possessor, upon whose declaration alone, in such cases, reliance must be placed.

But supposing that either by declaration or by proof, or by both combined, the aetual income of each individual could be ascertained, the mere income of persons is a most fallacious test of their means or ability to bear taxation. One man has a fee-simple estate in land, or money' in the funds, producing an income of 1000 l. a year, which will descend to his children after his death; another, hy a laborious and uncertain profession, also obtains au annual income of 1000\%. dependent not only upon his life, but upon his health and a thousand accidents. The annual incomes of these two men are the same, but their circumstances are most dissimilar. Before the latter could be placed in the same position as the former, he mist have an ineome large enough to enable him to insure his life for a sum of which the interest would be 10001. a year, and still have 1000). left to spend annually, after the payment of the premium. But even then, if he should lose liis health, his present income would fail him, he would not be able to continue the insurance, and his position therefore would still be more preearious than that of the proprietor of land or funded property. Yet these two men, with means so unequal, would be assessed alike, and charged with equal contributions. But suppose that, instead of insuring his life, the professional man should save half his incorne every year, he would still be charged upon the whole, and thus his capital us well as lis income would be taxed.
The case of annuitants also may be instanced as one, amongst numerous others, of peculiar inequality. One person invests his money in permanent securities, and retains his capital, but denices a small income, and therefore contributes a proportionally small rate of tax: another purchases au ammuity, and parts with his capital; but as his income is much larger than that of the capitalist, he pay's a higher tax. At tirst sight this may appear a just arrangement ; but in fact not only the income of the annuitant is taxed, but also his eapital; for that which is taxed as his income is derived partly from the interest of his pur-chase-moncy, and partly from an annual repayment of a portion of his principal.

These and many other evident cases of incquality can searcely be questioned; but it is alleged thut other taxes press with as much inequality upon diflerent classes of persons, and that no attempts are made to equalize their pressure, as the causes exist in the circumstances of the people, and not in the nature of the taxes. (Jitt's Sjpeecher, vol. iii., 1. 9.) It is said that the assessed taxes affect the professional man to the saine extent as the man
of properly. There is however this essential difference between taxes upon income and taxes upon expenditure: the former are compulsory, the lalter are voluntary, and paid or a voided at the option of cach individual. If a mun be saving money; an income-tax seizes upon his aceruing eapital : a tax upon expenditure is levied upon that portion of his ineone only which he thinks it prodent to spend.

To smooth in some degree the inequalities of an ineometax, lst, the annual premiums on policies of insurance should not be reckoned as income in the assessinent. being clearly capital, and the payments being no longer optional, as the insurance could not be discontinued without loss ; this provision was made by Mr. Jitt in 1708: 2ndly, incomes arising from realized properly should be taxed at a higher rate than the protits of trades and professions: 3rdly, annuitants should be rated on such terms as to avoid the assessment of any prortion of their rapital as part of their income: 4thly, all persons should be liable to the tax, whatever may be the amount of their incomes.
In addition to the unequal pressure of an ineome-tax, which cannot be altogether corrected by any expedients. there is much uncertainty in the assessment of certain elasses of persons. The vicissitudes of trade, bad debts, or deferred payments, render the incomes of conmercial and professional men very uncertain; and nominal incone therefore, which afterwands cannot be realized, may be charged with the tax.
But the last and strongest of the oljections to an incone-tax is the inquisitorial nature of the investigation into the affairs of all men, which is necessary to secure a statcment of their incomes. This objection indeed is treated lightly by some ; but by the mass of the contributors it is considered, beyond all question, as the most inconvenient and unseasonable quality of an income-tax. Even if the exposure of a man's affairs could do him no possible injury, yet as an offence to his feelings, or even caprice, it is a hardship which is not involved in the pryment of other taxes. How many persons are anxious to conceal the amount of their wealith? It may be foolish; but they certainly must have strong motives for concealing that which most others sue proud of displaying. Then who cannot sympathise with the feelings of an honest man who conceals the extent of his poverty, and, by self-denial and hard cconomy, is still enabled to bear up against adversity? It is in vain to deny, what all men feel, that the appearance of poverty does degrade a man in the cyes of others; and the feelings of grond men ought to be respuceted. But apart from matters of feeling, injury of a real character is also inflicted upon individuals by an exposure of their means and sourecs of income. Mercantile men, from the dread of competition, take pains to conceal from others, especially if in the same business, the application of their capital, the rate of profit realized, their conncetions, and their credit, all of which must be disclosed, perhaps to their serious injury, when there is an ins estigation of their profits.
For these reasons, the mode of eollecting the ineome tax certainly cannot be approved of as being 'most likely to be convenient in the contributor.' Its seneral umpopullarity when in operation is the best proof of its hardship and meonvenience. Upon the whole, a fax upon income is so dillicult to adjust equitably to the means of individuals, and the mode of collection is necessarily liable to such strong oljection, that, if resorted to at all, it should be reserved for extruordinary occasions of state neeessity or danger, when ordinary sources of revenue eannot sately be relied on.
The English assessed taxes have as few objections in principle ns most modes of direct taxation. With an equitable assessment and special exemptions in certain cases, they are capable of being made to locar a tolerably just proportion to the incomes of the indwiduals paying then. They share, however, in the general unpopularity of all direct taxes, and it cannot be denied that they often press unequally upon particular persons. The number of windows in a house is a very imperfect critcrion of its annual value, and in our opinion the house-tax which laas been removed was far preferable, in principle, to the win-dow-duty, which is still retained. The incqualities in the assessments were undeniable; but these might have been corrected by eareful valuation. Under ordinary circumstances, a fax upon houses will fall upon the oceupier,
who is intended to pay it; but if a very heavy tax were imposed, it would discourage the occupation of houses, lessen the demand for them, and thereby diminish the rent of the landlord, or, in other words, transfer the actual payment to him. (Adam Smith, book 5, chap ii.; Ricardo's Political Ficonomy, chap. xiv.) Such a tax would be attended with very bad consequences; it would compel many persons to live in inferior houses or in lodgings, and thus diminish their comforts and deteriorate their habits of life; and by reducing the demand for houses it would limit the employment of capital and labour in building. The direct taxes upon horses, carriages, hair-powder, armorial bearings \&c., being paid voluntarily by the rich to gratify their own taste for luxury or display, are not likely to meet with many objectors. The use of such articles generally indicates the scale of income enjoyed by the contributor, and the tax is too light to discourage expenditure or to make any sensible deduction from his means.
A very fair principle of levying a direct tax is exhibited by the assessment of property in every parish in England and Wales to the poor rates. Local knowledgc renders a perfectly correct valuation possible, and every person owning or occupying land, houses, or other property within the parish, is assessed so much in the pound upon the annual value thereof, to raise the necessary funds for the support of the poor.

The various modes of direct taxation are too numerous to enter upon, especially as many of them involve the discussion of principles of political economy which would carry us far beyond our limits. For arguments and illustrations concerning the incidence of tithes, of taxes upon profits, upon wages, and other descriptions of direct imposts, we refer to the able works of Adam Smith, Ricardo, M•Culloch, and other eminent writers upon political economy.

II. Indirect Taxes.

In preferring one tax to another, a statesman may be influenced by political considerations as well as by strict views of financial expediency, and nothing is more likely to determinc his choice than the probability of a cheerful acquiescence on the part of the people. All taxes are disliked, and the more directly and distinctly they are required to be paid, the more hateful thcy become. On this, as well as on other grounds, 'indirect taxes,' or taxes upon the consumption of various articles of merchandizc, have been in high favour with most governments. 'Taxes upon merchandize,' says Montesquicu, 'are felt the least by the people, because no formal demand is made upon them. They can be so wisely contrived, that the people slall scarcely know that they pay them. For this end it is of great consequence that the seller shall pay the tax. He knows well that he does not pay it for himself; and the buyer, who pays it in the end, confounds it with the price.' (Esprit des Lois, livre xiii., chap. vii.) This effect of indirect taxes is apt to be undervalued by writers on political economy; but it is undoubtedly a great merit in any system of taxation (which is but a part of gencral government) that it should be popular and not give rise to jarring and discontent. A tax that is positively injurious to the very partics who pay it without thought, is, certainly not to be defended merely on the ground that no complaints are made of it; but it may be safely admitted as a principle, that of two taxes equally good in other respects, that is the best which is most acceptable to the people. The very facility, however, with which indirect taxes may be Ievied, makes it necessary to consider the incidents and effects of them with peculiar caution. The statesman has no warning, as in the case of direct taxes, that evils are caused by an impost which is productive and which every one seems willing to pay. When any branch of industry is visibly declining, and its failure can be traced to no other cause than the discouraging pressure of a tax, the necessity of relief is felt at once; but if trade and manufactures are flourishing, and the country advancing in prosperity, it is difficult to detect the latent influence of taxes in restraining that progress, which but for them would have been greater; and still more difficult to imagine the new sources of wealth which might have been laid open if such taxes had not existed, or had been less heavy, or had been collected at different times or in different ways.
P. C., No. 1502.

The government is directly interested in the increase of national wealth, and taxes upon commodities should be allowed to interfere with it as little as possible. On this account duties upon raw matcrials are very objectionable. They increase the price of such materials, and thus limit the power of the manufacturer to purchase them, and to cmploy labour in increasing their value, and in adding to the production and capital of the country. They discourage foreign commerce and the cmployment of shipping ; for as the power of buying is restrained, so also is that of selling, and the interchange of merchandize between different countries is checked. Moreover, by increasing the price of the exported manufactures, they limit the demand for them abroad and subject them to dangerous competition.
Similar objections may be urged against taxes upon domestic manufactures, since by increasing the price they diminish consumption, and consequently discourage the manufactures, which if left to themselves would have given employment to more capital and labour, and would have added greatly to the amount of national wealth and prosperity. The object of a government should always be to collect its revenue from the results of the successful employment of capital and industry, and not to press upon any intermediate stage of production.

Adopting this view of the objects of taxation, the British legislature has of late years very wisely repealed or reduced various duties upon raw materials and upon manufactures. Of the former we may instance the customs' duties on barilla; on raw, waste, or thrown silk; on cotton-wool and sheep's wool, unwrought-iron, hemp, and flax; which have been from time to time very much reduced. Of the latter, the taxes on printed goods, on candles, and on tiles, have been altogether removed; and those on plate and flint glass, on malt, and on soap, have been partially remitted. There are still many similar taxes which need revision. Of these perhaps the most injurious are the heavy duties upon foreign timber, which we shall show other reasons for condemning, in treating of protective duties; but in this place they must be partlcularly censured, as offering a serious obstruction to ship-building (one of the most important branches of national industry in a maritime country), and to the construction of buildings for the convenience of trade and manufactures. The amended tariff of 1842 , whieh for many reasons is a most important change in the financial policy of this country, has reduced the duty on colonial timber to a rate perhaps unnecessarily low; that on foreign timber, though much reduced, is still too high.
One of the chief recommendations of indirect taxes is, that, when placed upon the proper description oi articles, the payment of them by the consumer is optional. If charged upon what may be strictly called the necessaries of life, their payment becomes compulsory, and falls with unequal weight upon labour. Competition generally reduces a large proportion of the working classes to a state which allows them but little if anything beyond necessaries; consequently a duty upon these, as it will have no effect in diminishing the competition of labour and in raising wages, must reduce the conforts and stint the subsistence of labouring men.
That class of articles commonly called luxurics, of which the consumption is optional, is a very fair subject of taxation. In principle there is no objection to such taxes: they do not interfere with industry or production, but are paid out of the incomes of the contribntors, anc paid willingly, and for the most part without undue pres. sure upon their means. But in laying on taxes upon par ticular articles of this description care must be taken ts proportion the charge to the value of the article. Excessive duties fail in the very object they have in view, by rendering the revenue less productive than moderate duties; while the causes of their failure are injurious to the wealth of the country by discouraging consumption, and to its morals by offering an inducement to smuggling. It is only by experience that the precise point can be found at which the revenue is most productive, consistently with an unchecked consumption and an absence of smuggling; but it may be assumed as certain that whenever a tax adds very greatly to the price of an article of general consumption, it puts it out of the reach of many who are anxious to purchase it, and tempts smugglers, by the chance of a large profit, to cvade the payment of the duty. On the contrary, when a duty is moderate, it adds so little

Vos. XXIV.-Q
to the prisec of an article, that it will searcely affect its consumption; and the profit arising liom evasion of the duty is so small as not fo cover the risk and penalties of detection In proof of these facts there has been ample experience in the taxation of this country, and a few instances may serve as instructive illustrutions.

In 18:3 the excise dinties upon Scotel and Irisla spirits were redueed from 5 ds. $6<l$. to 2 co , per gallon, and the immediate ctfect produced upin the apparent consmmption and upon the revenue will appear by the following statement for the two years preceding and following the reduction.

Quantities of spirits inade in Ireland and Scotland which paid duty for lome consumption, slating the rate of duty paid, and the net revenue:-

Irpland.			
	Gallons.	Rute of Duty	Net Reventue.
1821	2,649,170	\{5s. 6d. per lrish $\}\{$	2913.288
1522	2,32,397	gallon $\}\{$	737,518
		\{2e.per English $\}$	
1853	3,348,50,	Wine Gallon trom 10th Ociober	634,460
1824	6,690,315	Ditto	71,600
1825	9,262,74	Ditto	1,084,191
		Scotland.	
	Cultons.	Rate of Duty.	Net Revenue.
1821	2,220,435	$\left\{\begin{array}{c} \text { 5s. } \\ \text { 6d. yer English } \\ \text { Wine Gallon } \end{array}\right\}$	£727,650
1822	2,079,556	Ditto	691,136
1893	2,232.7128	2f. frotn 10th October	536,6\%)4
1821	4.330, 301	Ditto	520,624
1825	5,081,550	Ditto	682,818

In 1826 bd . was added to the duty, and again in 1830 a similar addition was made, the effect of which is shown by a continuation of the stalement:-

	Gallons.	Rate of Duty.	Net Revenue.
1856	6,837,408)	£964, 509
1827	8,260,919	2s. 10d. per limperial gallon	1,123,000
1898	9,937,903		1,395,721
1829	9,212,223		1.305,064
1830	9,004,533	2s. 10d., 3s., \& 3s.4d.	1,409,123
1831	8,710,672	3 s .4 d .	1,4.51,5s0
1832	8,6i77,756	Ditto	1,442,845
1833	8,168,596	Ditto	1,360,769
		Scotland.	
	Gnlloni.	Rate of Daty.	Nel Rerenuc.
1826	3,988,788	2s. 10 d . per Imperial gallon	£563,263
1827	4,752,199	Ditto	672,441
1898	$5.716,180$	Ditto	$809,5.59$
1829	5,77, 230	Ditto	818,448
1830	6,007,631	2ss. 10d., 3s., \& 3 s. 4 d.	939,238
1831	5,700,689	3s. 4 \%.	930,041
$18: 32$	5,407,097	Ditto	901,182
1833	5,988,556	Ditto	998,031

These tables show the effects of taxation in encouraring or repressing smnggling, rather than its influence upon consumption. Taking the case of lreland, it would be inpossible to believe that the actual drinking of spirits could have been increased more than threefold in a lew years, even il there had bcen no evidence of illicit distillation; but before the reduction of duty in 1823, an enormous amount of smuggling had been detected, and there were other means of estinating the extent of frads practised upon the revenme. For instanee, in 1811, the duty hal been only 2s. 88 . a gallon, and in that ycar no less than $6,500,36 \mathrm{t}$ gallons liad paid duty; while, in 182:, when the duty was 5s. Od., only $2,329,397$ gallons were brought to charge. The revenue commissioners, on whose reeommendation the duty was reduced in 1823 , then estimated the annual consumption of sjuirits in Ireland at ten millions of gallons, and the illicit supply at about seven inillions. (Fifth Report of Revenue Commissioner's, pp. $8,10$.

In $18 \% 7$ the duties on spirits made in England were reduced from 12\%, Gu, to 78. a gallon. The average consumption for three yrars to 1897 was $3,677,457$ gallons, and the revenue $2,281,5261$. In 1829 (only two years after
the reduction) the consumption was $7,700,766$ gallons, and the revenuce $2,695,2(2 x)$, or $-113,542 /$. more than the lighler duty had produced. (Parnell's Financial foform, 4th cd., 1]. H1.)
It has been a eommon opinion that spirits should not be treated merely as a source of revenue; lout that being injurious to the morals of the people, the consmuption of then shouk be repressed by heavy duties. If has accordingly been the objeet of this and of other governments to limit the consumption of spirits, and nt the same tine to mise a large revenue from it. The object is unquestionably a good one if it could be secured: but the result of numerous experiments has proved that taxation should be conducted with refercuec to the imnediate object of obtaning a revente in the best maner ; and that the interests of a country are promoted by following out just prinefples of taxation, rather than by sceking indirectly, and by a violation of those principles, to accomplish objects which, if attaimable, can only be attained by other means. The signal failure of in measure in the last century for discouraging the drinking of spirits is a strons eximijle of the futility of attempting to forec a chenge in the habits of the people by a tax. In 1730 a lax of 20 r . a gallion was imposed upon all spirits, with very heavy penalties for evasion of the duty. The tax was extremely unpopular, and was evaded lo such an extent, that in two years mu less than 19,000 persons were convicted of offences maxainst the law. Indeed the mensure proved allogether so odions and so impracticable, that it was abandoned aller six years of vexatious and unprotitable trial.

High duties apon foreign articles imported into at country are liable to all the objections which have been stated as applying to immoderate laxes upon consumplion, and they are chargeable with another, - they diminish importation, and thereby restrict commereial intercourse and the demand for and exportation of domestic produce or manufac. tures.

The number of gallons of brandy and geneva imported and retained for consumption, on an average of four years to 1807 , was $1,820,000$. The duty wats then 14 s. a gallou, and the revenue $1,370,000$. In 1814 the duty was made 18s. $10 d$., and on an average for the four succeeding years, the number of gallons entered for home consumption was 712,000 , and the revenue $833,000 \%$. Thus a loss of $545,000 \%$. a yeur was sustaned by the revenue, the legitimate trade in brandy discouraged, and a rich premium offered to the smuggler. The present duty is 11 . 5 s. Gil. a gallon, and in the year ended 5th January, 1842, only 1,180,641 gallons were entered for home cousumption, the gross revenue on which was $1,317,461 l$., or 23,0007 . less than in 1807 , notwithstanding the great increase of wealth and population since that time. That French brandy is smuggled into this country in large quantities is notorious; and when we consider that the duty is estimated at 400 or 500 per cent. on its original price abroad, the inducement to evade it is so grent, that we cannot be surprised if all the vigilance of our customs cstablishment is rendered ineffectual. Indeed so regular and certain is the smuggling trade, that it is made the subject of insurance, like other commercial risks, and it is even said at premiums of from 10 to 15 per cent., which bear no proportion to the profits, if the speeulation be successlu].

The suecess of moderate duties upon articles of consumption, in encournging the use of them, plaeing them within the reach of a larger number of persons, and at the same time nugmenting the revenue, was never betle shown than in the article of coffee. In 1824 the duty 0 : 13 ritish plantation coffece was 1 s., upoin East India $1 s$. Git. and upon foreign coffee $2 r .6 \mathrm{~d}$. per 1 b . In 182 Z thone duties were reduced one-half, and the consequence has been comsidernbly inore than a threefold increase in the cousumption, while the revenue las been more than doubled. In the three years preceding the reduction, the consumption and revente were as follows:-

In the three years following the reduction, the consmption greatly increased, but not sufficiently to improve the revenue:

	Quantities cleared for Consumptiou.	Net Revenue.
1826	-	$13,203,323$ lbs.
1827	-	$15,566,376$
1828	-	$17,127,633$

But the consumption has since been rapidly increasing, and in the last two years the consumption and revenue thus appear:-

	Quantities cleared	
	for Consumption.	Net Revemue,
1810	28,708,033 lbs.	£921,550
1841	28,420,980	887,721

The slight falling off in the last year may be accounted for by the general depression of trade, and perhaps in some measure also by the addition of 5 per cent. to the customs duties, which was then in operation.
In 1835 coffee, the produce of British possessions in India, was admitted at the same duty as plantation coffee, viz. $6 d$. per lb ., and the effect of the reduction, in encouraging the growth of the plant in India and the consumpfion of the berry in this country, has already been very great, and pcrhaps the coffec trade of the East may as yet be eonsidercd in its infancy. In 1834, the year before the reduction, $8,875,961 \mathrm{llbs}$. werc imported from the East India Company's territories and Ceylon; and in 1840, $16,885,698 \mathrm{lbs}$. , or nearly double. The new customs tariff effects a further reduction of duty. That on foreign coffee is for the future to be $8 d$. a lb ., and on coffee the produce of British possessions only 4d. An increased consumption will doubtlcss be the effect of this measure, and ultimately the revenue will be inproved.
Thus reductions of existing duties are proved by these examples to increase the revenue; but whether the effect of them be immediate or deferred must depend upon a variety of circumstances. If the reduction puts an end to cxtensive smuggling, the revenue will derive immediate benefit, as both the demand and the supply of the article already exist, and the reduced tax, without affecting production or consumption, acts as a police regulation, and at once protects the revenuc from frand. But where there is little or no smuggling, and the revenue can only be increased by means of additional consumption, the effect of reduced duties may be deferred and cven remote. The article may have to be produced ; capital, skill, labour, and time may be required to provide it in sufficient quantities to mect the growing demands of the consumer; and even should the supply beeome abundant, the habits and tastes of a pcople cannot be clanged on a sudden. The high price of an article may lave placed it out of their reach, and in the meanwhile they may have become attached to a favourite substitute, or may bc slow to spend their money upon a commodity which they have learned to do withouf. These and other causes may defer for a considerable time such an increasc of consumption as would make up for the reduced rate of tax, especially when the reduction has been so great as to requiro an extraordinary addition to the previons amount of consumption, bcfore the sacrifice made in the revenuc can be redeemed. But where the article on which it is proposed to reduce a tax is already in universal request, and the supply immediate and abundant, and where the tax is so heavy as to restrain consumption, no present loss need be apprchended from a remission of part of the tax, and a yery speedy increase of revenue may be expected. Sugar is an article of this description. It has become a necessary of life as well as a favourite luxury. There are scarccly any limits to the supply that could ve raised, and the present duties add materially to the price and check consumption. As a proof of the suddentiess with which the consumption of foreign sugar might be expected to increase if the excessive duty were reduced. we may refer to the effects of equalizing the duties on Fast and West India sugars in 1836. In that year the duty on East India sugar was reduce lfom 32 s. the covt. to 248 . In 183π the quantity imported had been 137,976 cwts. ; and in 1837, one year only after the change, the import had increased to 302,945 cwts. ; in 1838, to 47.1010 cwts ; and in 1839, to 587, 142 ewts. As the tax was diminished only by oue-fourth, and the consumption was immediately more than doubled, the revenue at once gained considerably by the reduction of duty.

A recent financial experiment will serve to show how little an increased revenue can be depended upon as the result of an augmentation of taxes upon articles of consimption. In 1840 an addition of 5 per cent. was made
to all the duties of customs and excise, and a proportionate increase of revenue was anticipated, but not rcalized. The net produce of the customs and excise in the year ending January 5th, 1840, amounted to 37,911,506l. The esti mated produce for the year ending January 5 th, 1812, was $39,807,081 l$., $1,895,575 l$. being expected from the additional 5 per cent. The actual increase however was only
206,715l, or little more than one-half per cent $206,715 l$., or little more than one-half per cent., instead of the 5 per cent. which had been expected. This result was undoubtedly in part caused by a general stagnation of trade, and by the consequent distress which prevailed in that year, but we notice it because the principle of an indiscriminate augmentation of existing taxes, without reference to their present amount, character, and circumstances. is very unwise. We have said that experience alone can show the precise rate of a particular tax which will not affect consumption and will at the same time discourage smuggling. It must be presumed that existing rates have been fixed in order to secure these results, and that they are justified by experience. To add to them therefore, not hecause they are insufficient for their immediate object, but because a general addition to the revenue is needed, is to neglect experience and to disturb the proper relations between the amount of tax and the value of particular articles. During the last century it was a conimon financial course to add a general per centage of increase upon all the customs duties whenever the revenue was found to be insufficient for immediate purposes. To this unwisc policy must be attributed many of the strange anomalies which up to this time have existed in the British tariff. Any recurrence to so unscientific a mode of taxation should be avoided. The tax upon each article ought to be adjusted by itself upon sound principles, and then should not be changed mercly to save the trouble or to avoid tho unpopularity of sclecting particular articles for increased taxation or of inventing new burthens.

Protective, Discriminating, and Prohibitory Duties.

The legitimate object of taxation is that of oltaining a revenue in the least injurious manner for the benefit of the community; but this object has constantly been overlooked for the sake of ends not fairly to be accomplislied by taxation. It is nalural for a legislature to endeavour by every means in its power to encourage agriculture, trade, and manufactures; and it would be culpable to neglect any proper means of encouragement, which are not only beneficial to particular interests, but add to the general prosperity. Unfortunately however the zeal of most legislatures upon this point has been misdirected. They have seized upon taxation as the instrument of pro tection and encouragement; and, using it as such, have injured the great mass of their own countrymen, and ultimately have falled in promoting the very interests they had intended to serve. All that we can hope in this and other European countries is a gradual adoption of sound principles, and the correction, at some distant period, of the mistakes which have been acted upon for centuries; but it is to be hoped that in the new countries of the world, where systems of revenue are not yet established, or are growing up with the progress of society, none of the errors of the Old World will be suffered to have a beginning. If once the system of protection has existed, severe injuries and cven injustice are inflicted whenever an attempt is made to undo the mischief which has been done. Reason and experience unite in teaching the impolicy of protective taxes; and, in our own country, it is now so generally acknowledged, that nothing but the extremo difficulty of withdrawing the protection which las been given obstructs legislation upon sound principles.
The object of a protective duty is to raise artificially the price of the produce or manufactures of one country as compared with the produce or manufactures of another. A heavy tax easily effects this object, and thus prevents compctition on the part of that country whose commodities are taxed, and establishes a monopoly in the supply of those commodities in favour of the parties for whose benefit the tax was improved. The revenue, the avowed object of a tax, so far from bcing improved, is here actually sacrificed by the exclusion of merchandise, which at moderate duties would fill the coffers of the statc. The state clearly is a loser; the foreigner, whose goods are denied a market, is a loser. Who then gains by these losses? Not the consumer; for the morc abundant the supply, the better and
eneaper will he find the market ; but the seller, who is entbled to obtain a high price for his wares because he

- has a monopoly in the sale of them, is the onty party who gains. The community at large suffer doubly: first, by having to buy dear instead of cheap goods, or by being denied the usc of them ultogether; and secondly, by being obliged to payother taxes which would not have been required, if the very articles which would have made ineir purchases cheaper had been charged with a moderate impost. Even the sellers, for whom alt these sacrifices are made, do not derive the benefit which might be expected. In the goods which they sell themselves, indeed, they are gainers; but in purehasing of other monopolists they lose by an artificially high price, like the rest of the conimunity. It constautly happens, too, that although the priees at which they sell are high, their profits are redued, by the eompetition of others selling the same artieles, to the general level of profits throughout the country. When this is the case, all parties, without exception, are losers-the statc, the community, and the monopolists. The general injury done to trade by the protective system is too extensive a question to enter upon, but it is well illustrated in the - Report of the Committee of the House of Commons upon Import Duties' in 1810.
Protection may be accomplished by aetual prohihition of the inport of partieular articles, by exorbitant duties which amount to prohibition, or ly such duties only as give the home producer an advantage. Duties may also diseriminate between the produce of different countries, and give the preference to some, to the injury and exclusion of others.

In this country all these modes of protection have been resorted to. For the protection of agriculture, foreign cattle, sheep, swine, beef, mutton, pork, and other provisions have been entirely prohibited. High duties have been plaeed upon the importation of corm on a slidingscale, so devised as to exclude it entirely, except in times of seareity ; and more moderate duties are payable npon various articles of agricultural produce. The prohibitions however have recently been removed, and moderate import duties substituted. The corn-laws, though the slidingscale is still adhered to, have been considerably modified, and, it is hoped, will hereafter admit a larger amount of toreign grain, and enrich the revenue. The principle of a sliding-seale, we would here observe, apart from its general policy, is very injurious to the revenue. When the high part of the scale is in operation, it acts as a prohibition; and when the lower duties only are payable, they are comparatively unproductive. The loss sustained by the consumer on account of the protective duties on corn has been variously estimated at from $12,000,000$. to $50,000,000 \mathrm{l}$. a year; and yet it is well known that money invested in the purchase of land produces a very low rate of interest, not excceding 3 per cent., and that persons engaged iu agriculture, for whom the protection is maintained, have been continually eomplaining to parliament of their distress.

Upon various articles of manufacture there have been prohibitory and highly protective duties. In 1825 the former were removed; and the latter have, in the present session of parlininent (1812), been so modified as to be very fair taxes for the purposes of revenue.

Duties are called discrininating when they are not leried equally upon the produce or manufactures of diflerent countrics. The object of them is to give an advantace to the country on whose commodities the tax is lightest, as compared with others. To obtain such a preference has been the object of various negociations and commercial treaties betiveen diflerent states, as it opens extensive inarkets to the industry of the favoured nation. By the present commereial poliey of England, the prineiple of diserimination may be said to be confined to the protection of our colonies against the competition of foreign countries. As regards each other, all foreign countries enjoy equal comnereial advantages in their intereourse with England. Our colonial policy is so wide a question, involving politieal and commereial considerations of high importanee, that we can only touch upon it. It may be contended that colonies should form an integral part of the mother country, and that the comunercin] intercourse between the several parts of the British empire onght to be viewed as a vast consting-trade. If this principle were acted upon, it would certainly present a grand fiscal mion worthy of admiration; but the existing system does not
partake in any degree of the charneter of a coastingirade, To put it upon suels a footng, the duties on eolonial prodnce imported into the United Kingdom should be litthe nore than nominal, and we should rely upon productive imposts upon forcign produce for our revenue. Our practice is the reverse of this. Where our taxes diseriminate, we derive our revenue from the colonial produee; and we either exclude foreign produce altogether, or linit its introduction so much as to prevent it from contributing materially to the revenue. The object of the duties upon the foreign produee, which would enter into competition with the colonies, is not revenue, but exclusion, for the sake of creating a monopoly in favour of the latter. This system we have already condemned, even when established for the protection of trade and agriculture in the mother country; and upon fiscal grounds it is equally indefensible when applied to the colonies, and quite as injurious to the community. There are two great articles of consumption, viz., sugar and timber, upon which the discriminating duties deserve especial notice. Sugar imported from the colonies pays a duty of $2 t \mathrm{~s}$. The ewt.; from foreign conntries 63s. The disproportion is so great, that forcign sugar is comparatively excluded from the eonsumption of our people, who are forced to rely upon the colonies for the supply of that important article. The population of the country has rapidly increased, and with it the demand for most articles of eonsumption. It is painful to see the supply of sugar so forcibly restrained by our commercial policy that the consumption has not incrensed for ten years. In 1831 , 3,781,011 cwts. were retained for home consumption; and in 1810 only $3,594,832 \mathrm{cwts}$. So inadequate have the colonies alone been to supply our wants, that their exports have actually been diminishing. In 1831 the West Indies exported to the United Kingdom $4,103,800 \mathrm{cwts}$. In no sueceeding year has their exjort been so great; and in 1840 it had sunk so low as $2,214,764 \mathrm{cw}$ ts. During this period the consumption of coffee, cocoa, and tea had considerably increased, and the people must therefore have suffered a serious privation on account of the limited supply of sugar. The community is plainly a loser by the colonial monopoly; and the falling ofl' of the produce of the West Indies, in spite of an increasing demand for it, is not the only proof that they have not gained much by their protection: meanwhile the revenue has lost incalculable sums by the exclusion of foreign sugar, whieh, with moderate duties, might be imported at a low price in unlimited quantities.
The discriminating duties upon timber lave been peculiarly injurious to this country, and it is extremely doubtrul whecher they have conferred any benefit upon the colonies. They have acted as a bounty of $4 \overline{5} s$. the load in favour of timber the growth of British possessions, and have obliged the consumer either to pay a tax of 22,5 per cent. (not for purposes of revemue, but tor the protection of other interests), or to use an inferior article, less snited to his uses, and cheaper only by reason of the duty. Extensive charges are, happily, about to take effect, whieh will, in some measure, equalize the duties upon foreign and colonial timber. On the 10th October, 1812 the duty upon foreign timber will be reduced from 555 . the load, to 305 ., and on the 10th October, $1843,1025 \%$. The duty on colonial timber is, at the same time, to be refluced firom $10 s .1018$. Eventually therefore the disproportion will be only 24 s. the load, instead of $45 s$.

Export Duties.

We have hitherto spoken of taxes upon such commodilies only as are consumed by the subjects of the state tor whose bencfit they are imposed, and which are either produced within the country or imported into it. Dutics levied upon goods exported to toreign countries are ultimately paid by the foreign consumer, and thas have the effeet of making the subject of one state beur the burthens of another. However desirable this may appear to the state, whose treasury is enriched at the expense of foreigners, the expediency of such duties will depend upon peculiar cireumstanees, and great nicety is required in the regulation of them. If a country possesses within itself some produce or manufacture uneh in request abroad, and for the production of which it has pecularadvanteses, a moderate export duty may be very desirable. l:1 his manner lunssia, which has almost a monopoly in the supply of tallow to the rest of Europe, derives a consider-
able revenue from an export duty upon that artiele. Upon the same prineiple a duty upon machinery exported from Great Britain would have been politie. British machinists far excelled all others in skill and ingenuity, and foreign manufacturers were willing to pay almost any priee for their maehinery. Notwithstanding the prohibition, large quantities have been smuggled abroad at an cnormous cost, but the diffieulty and expense of evasion have been so great that foreigners have latterly almost confined their purchases, in this country, to models and drawings, and have made the maehinery themselves, with the assistance of British artizans, whom they have enticed abroad by extravagant wages. (Reports of Committees of the House, of Commons on Artizans and Machinery, in 1824 and 1825, and On the Exportation of Machinery, 1841.) If, instead of prohibiting the export, a duty of $7 \frac{1}{2}$ or 10 per eent. ad valorem had been imposed, foreign manufacturers would have paid much less for the machinery purehased by them in England than they could have had it made for abroad; there would have been a large export trade from this country, and a considcrable revenue. The partial relaxation of the prohibitory law in 1825, by granting lieences to export certain kinds of machinery, has shown the extent to which the trade might have been carried under a more liberal policy. The official value of machinery exported under licenee in 1840 was $593,064 l$., in addition to various tools allowed by law to be exported, of which no aecount was taken. (Sess. Paper, 1841, No. 201, p. 2in7.)

On the same grounds a moderate duty on the export of coal, being a produet peeuliarly abundant and of good quality in this country, is a legitimate tax, which would be jaid by the foreigner, and, if sufficiently moderate, would not be injurious to the coal trade.
But while moderate export duties upon articles of whieh a country has almost the exelusive supply may be advisable, heavy dutics will eheek the demand abroad in the same manner as they have been shown to affeet the consumption of commodities at home. In the same manner also they are injurious to trade and unprofitable to the revenue.

All duties whatever should be avoided upon the export of produce or manufactures whieh may be also sent from other countries to the same markets. They would discourage trade and offer a premium to foreign competition.

Although the temptation is great to shift taxes from one country to another by means of export duties, this temptation is equally great in all eountries; and if their several governments should be actuated by the desire to make foreigners contribute to their revenue, their opportunities for earrying out such a system would probably be equal, and thus retaliations might be made upon each other, which, after all, would neutralize their efforts to tax foreigners, and leave them in the same position as if they had been contented to fax none but their own subjeets. In this power of retaliation lies the antidote to the evil of one state being forced to bear the burthens of another as well as its own. Every state would naturally resist such an imposition upon its subjeets, and export duties ean therefore only be safcly resorted to in such peculiar cases as we have notieed, where foreigners are willing to pay an inereased price for commodities which they must have, and which they eannot obtain so good or so cheap from any other place.
[Custons; Excise; Land Tax; Post-Office; Stamps; Taxes; Tithes: Warehousing System.]
TAXA'CEA, a natural order of plants belonging to the elass Gymnospermæ : - This order possesses the following essential eharacters. The flowers are monœecious or diœecious, and are naked, or solitary surrounded by imbrieated bracts, or in spikes surrounded by braets. The male flowers have no calyx, and several stamens, mostly united at the base, with the anthers either combined or distinet. The female flowers are solitary and naked; the ovules are naked, with the foramen ai the apex. The seeds are hard, and are sometimes surrounded by a sueculent, coloured, cup-shaped pericarp: they possess fleshy albumen, and a straight dieotyledonous embryo. The plants of this order are trees or shrubs, having a woody inssue marked with circular disks, with evergreen and mostly narrow, rigid, entirc, and veinless leaves.

This order is very characteristic of the class to which it belongs, in the absence of any regularly formed ovary, and the consequent exposed or naked state of the ovule
and seeds. In thls respect it offers a lower state of organization than the Coniferæ, or Pine tribe, the ovules of which have a kind of protection in the hardened scalelike bracts which constitute the cones of that order. The foliage also of Taxaeeæ differs from Coniferæ, in their possessing a greater tendency to expand and form veins within their tissue. In the few species of Taxaceax that possess veins, they are not straight and parallel, as in Endogens, but are forked and of a uniform thiekness, similar to those possessed by the higher forms of Cryptogamia, as the Ferns.

This order consists of plants that are but thinly distributed on the surface of the carth. They are mostly natives of temperate parts of Europe, Asia, Africa, and Ameriea. The order yields trees whieh are valued for their timber, and, like Conifera, possess resinous properties. The branehes of the Dacrydium taxifolium are used in New Zealand for making spruee-beer. [Taxus; Safisburia.]
TAXA'TIO ECCLESIA'STICA, signifies the assessment and levy of taxes upon the property of the chureh and of the clergy. The pope onee elaimed in all countries the first year's whole profits and the tenth part of the whole annual profits of every eeclesiastieal benefiee. These were ealled 'First-Fruits and Tenths' [First-Fruits ; Tenths], and were, for the most part, paid willingly by the elergy to their eeclesiastieal superior. The popes founded their claim upon seriptural precepts and praetice. They referred to Abraham, a priest, paying tithes to Melclizedeek, the high priest (Gen., xiv. 20; and Hebr., vii. 4); and to the Levites, in the Mosaie law, paying the seeond tithes, that is, the tithes of their tithes, to the priest: 'Thus shall you offer an heave-offering unto the Lord of all your tithes which ye reeeive of the children of Israel, and ye shall give thereof the Lord's heave-offering to Aaron the priest.' (Numb., xviii. 28; Fuller's Church History, p. 226.)
The pope had his colleetors in every dioeese, who sometimes by bills of exchange, but generally in specie, yearly returned the tenths and first-fruits of the clergy to Rome.
But while the clergy were thus liable to taxation by their ceelesiastical head, it was maintained by the Roman Catholie chureh that their property enjoyed complete immunity against all elaims of temporal powers, being set apart for the serviee of God, the support and dignity of the Christian church, and for works of eharity. Upon this point frequent contests very naturally arose, and the vast possessions of the church tempted the pope and temporal princes by various modes to exact contributions from the clergy. The means resorted to by these respective powers to raise a revenue from the elergy, and the laws and eustoms that prevailed upon the matter, may be conveniently stated by dividing the subject into-

1. Taxation of the ehureh or elergy ly the pope for ecelesiastical purposes.
2. By temporal prinees for the service of the state.
3. The pope was by no means satisfied with the regular contributions of the clergy, but continually applied to them for extraordinary funds for special purposes. In 1199 Pope Innoeent IMI. issued a bull commanding the prelates and clergy of the Christian church to pay the 40th part of all their revenues to defray the expenses of a crusade. This is said to have been the first attempt to impose a tax on the elergy of all nations by the authority of the pope as head of the chureh. To enumerate only a small portion of the instances in which the pope afterwaids exacted taxes from the clergy in the various countries of Europe would oecupy mueh space; but a few examples from English history may be coltected.
In 1225 the pope entertained a projeet by whieh the revenues of two prebends in every cathedral, and the portion of two monks in every monastery, in all the eountries in communion with the ehureh of Rome, were to have been granted to the pope for the better support of his dignity. When this project was laid before the parliament of England in 1226, they evaded a direet answer to the papal legate, by alleging 'that this affair coneerned all Christendom; and that they would conform to the resolutions of other Christian countries.' (Wilkin's Concilia, vol. i., p. 620.)

Two years afterwards the king of England, Henry JII., in order to induee the pope to interfere in a dispute concerning the appointment of an arehbishop to the sec of Canterbury, rceently vaeant by the deaill of Cardinal laug.
ton, promiserl him a tenth of the moveables not only of the clerry, but of the laity. In this proceeding there appears to have been a twotod peculiarity. Firat, a telnporal prince uffered the pope a contrilution from his elergy, which commonly originated with the pope; and sceondly, a tax was to be levied upon the laity not for the service of tha state, but for the benefit of a foreign ecelesiastic. The strangeness of the circumstances however did not prevent the pope from takimu inmediate advantage of the king's offer, and he accordingly sent a legate into England to collect the tenths. His demand met with some opposition, indeed, chiefly from the barons, but the pope and the king together were 100 powerful to be resisted. The legate, to shorten the work ot collection, obliged the bishops to pay the tav for their inferior elergy; and when any of them complained that they had no ready inoney, he introduced them to certain Italian usurers whom he had lorought with lim for that purpose, who lent them the sums demanded at an exorbitant rate of interest. (Matthew Paris, p. 362.)

In the same reign the pope's legates were conslantly demanding presents from the bishops, monasteries, and elergy, and convening assenblies of the church with no other object than to exlort money. Their proceedings created such disgust that the great barous sent orders to the warlens of the seapoits to stop all persons bringing any bulls or mandates from Rome, and at last succeeded in driving the legate himself out of the kingdon. (Matthew Paris, p. 659.) Little good however was effected by these measures, for we find that in 1246 the pope demanded the half of all the gonds of the non-resident clergy and the third of those who resided. (Ibid., 708.) The resistance met with in this case deterred the pope from enforcing his demand; but the sums which lee continued to draw from the clergy at that time appear to have been enormous, and the histories of that period are full of comsplaints and remonstrances against papal exactions. An act was passed by the parliament in 1307 (Statute of Curlisle, 35 Edward I.), to restrain, in some ineasure, the exactions of the see of Rome, but apparently with little good results; for seventy years afterwards we find the Commons in parliament stll! protestlng against the nxtortions of the pope. In their remonstrance to the king upon that grievance they asserted, 'that the taxes paid to the pope yearly, out of England, amounted to five times as much as the taxes paid to the king.' (Cotton's Abridgment, p. 128.)

Although complaints continued long after this period, no measures were effectual in limiting the demands of the court of Rome until the pope's authority was altogether suppressed in England at the Reformation in the reign of Henry VIlI.
2. The inmunities clamed by the church were not effectual in protecting its revenues from being laid under contribution for the service of the state. The kings of England, sometimes by the pope's authority, sometimes by forced or voluntary conpliance on the part of the church, and somelimes by their own direct power, obtained large sums from the elergy.

William the Conqueror found the chureh very wealthy, and subjected it to much spoliation. (Matthew Paris, p. 5.) A singular occasion for taxing the clergy arose in the reign of Henry I., A.D. 11:0. An eoclesiastieal council, assembled at London, denouneerl all married clergymen, and decreed that they should put away their wives. The council committed to the klig the excectution of their decrees, but lie, instead of compelling the clergy to send away their wives, imposed a tax on those who chose to retain them, which is said to liave been very productive.

The pope was not unwilling to nssist in oppreasing the elerty for the benefit of kings, when they were inclined to further his own ohjects, either by undertaking erusales, carrying on wan against his enemes, or making concessions to hinn. Ho could not sutfer the inmmunties of the church to bo infringed by the temporal power, but often placed at the diaposal of princes the revenues of the chureh by his own authority. Thus the pope, by virtue of his apostolical power, granted King IIenry Ill., by several bullx, the goods of all clergymen who died intestate, the revenues of all vaeait beneffees, and of all non-resldents. In 1253 Pope Innocent XXII, gave the first-fruits and tenths of all ecclesiastical benefices to the king for tliree
years. This grant male a valuation or taxation of the benefices neecrsary, which was accordingly undertaken in Ho following year, and is sometimes called tho Norwich Taxation,' and sometimes 'I'ope Innocent's Valor.' 'The same prince, with the pope's concurrence, extorted large sums from the clergy in 1235 to carry on lis wars with Sieily. Bills amounting on the whole 10 150,5 to marks were drawn upon all tho bishops, abbots, and principal clergymen of the kingdom hy Wialleran, lishop of Herefond, who resided at Rome as an agent for the church of England: these bills were made over to Italian merclanuts, who, it was pretendel, had already advanced the money for the Sicilian war. All resistance on the part of the clurch to these unjust demands of their own spiritual superior was unavailing, and after much remonstrance and opposition the money was paid. (Matthew [’aris, pp. 615-610.)

In 1258 Pope Nicholas IV. granted the teuths to King Edward 1. for six years, towards detraying the expenses of an expedition to the Holy land; and in order to eollect them at their full ralue, a taxation hy the king's precept was begun in that year, and finished, as to the province of Canterbury, in 1291, and as to that of York in the following year, the whole being under the direction of the bishops of Winchester and Iincoln. This taxation is a most important record, bceause all the taxes of the church, as well to tho kings of England as to the pope, were afterwards regulated by it until the survey made by Henry VIII.; and because the statutes of eolleges which were founded before the IReformation are also interpreted by this criterion, according to which their benefices, under a certain value, are exempted from the restriction in the statute 21 IIenry VII1. conceming pluralities. (Prefuce to Tuxatio Licelosiastica, P. Nich, IV., by the Record Commissioners.)

In 129.5 Edwark, notwithstanding the pope's grant, and numerous exactions from the clergy in the meantime, being still in great need of money to carry on his wars, summoned deputies from the inferior elergy for the first time to vote him supplies from their own body. In the preceding year he had, by threats and violence, exacted a tax of half the revenues of the clergy; lut now he thought it prudent to obtain their consent to lis dennands in a more regular manner. The elergy however would not obey the ling's writ of summons, lest they should appear to acknowiedge the temporal power; and in order to overcome this objection, the king issued his writ to the archbishop, who, as their spiritual superior, summoned the clergy to meet in eonvocation. (Gilbert's Hislory of the Exchequer, p. 51 ; Iume, rol. ii., pp. 278, 279.)

This was the commencement of the constitutional practice of the elergy necting in Convocation at the same time as the Lay Parliament, and voting subsidies by its own voluntary act for the service of the state. It was not viewed without alarm by the pope and the high church dignitaries; and in order to put a stop) to all such exactions of princes from the clergy, Pope Boniface VIII, issued a bull in 1290 , which, after stating that temporal prinees were in the habit of extorting heavy contributions from ecelesiastical persons, who, fearing to offend temporal power more than the etcmal, had umwisely acquiesced in such extortions, proceeded to forbid churchmen of every degree to pay any tribute, subsidy, or gif to laymen, without authority from the see of IRome; and declared that if they should jay, or princes exact, or any one assist in levying such unauthorised faxes, all such persons respectively would lncur the sentence of excomnumieation. (kymer's Pedera, vol. i., part 2, p. 838; Recorl Coninissioners. ed. 1816.)

In the same year however Edward I. demanded of the elergy a fifth of their moreables, which they resisted, on the ground that they could not disobey the pope: but the king was not inclined to desist; and in orver to foree the acquiescence of the clergy, he put then out of the pate of the laws. Orders were issued io the judges to hear no cause brought before them by the clergy, but in clacide all causes in which they were sued by others. The clergy were immediatcly exposed to violence and spoliation on all sides, in spite of a general scutence of excommunication pronounced by the archlishop acainst all persons who should attack the persons or property of ecelesiastics. The clergy could not long resist these oppressions; and although they were unwilling to disobey the Papal bull, they evated it by voluntarily depositing a sum equivalent to the amount
demanded of them in some church，whence it was taken by the king＇s officers．In this expedient the whole ecclesias－ tical body acquiesced，and thus yielded up their spiritual privileges，under coercion by the temporal power．

At the Reformation，the chief source of revenue to the pope，viz．，first－iruits and tenths，was transferred to the king＇for more augmentation and maintenance of the royal estate of his imperial crown and dignity of supreme head of the church of England．＇（Stat． 26 Henry VIII．，c．3．） In order to collect this revenuc a court of first－finits was established，and the king ordered a valuation to be made of all the episcopal sees and benefices in England．The book which contains this valuation is called the＇Liber Regis，＇and all the benefices which have not since been exempted still pay first－fruits and tenths according to this valuation．The first－fruits and tenths continued to form part of the royal revenue until Queen Anne，by the Act 2 \＆ 3 of her reign，c．11，gave up the proceeds thereof on the part of herself and her successors，and assigned them for ever to the augmentation of poor livings．
lt now only remains to notice more particularly the prac－ tice of taxing the clergy in convocation，which continued in full force fill the reign of Charles II．It had afforded the kings of England a lucrative revenue from the church． Their influence as heads of the church，and as having zcelesiastical preferments to bestow，was very great after ：he Reformation，and enabled them very commonly to obtain larger subsidies from the convocation than those that were voted by parlianent．The church therefore was not un－ willing to be deprived of the expensive privilege of voting separate subsidies；and acquiesced in an arrangement pro－ posed in $1664-5$ ，by which the Commons have ever since voted taxes upon the possessions of the church and of the clergy，in the same manner as upon the laity．As a boon for this submission of the church to temporal authority，two sub－ sidies which the convocation had granted were remitted， and the parochial clergy were allowed to vote at elections． ［Clergy；Convocation；Tithes．］
TAXES．The general objects，character，and principles of taxation，and of different classes of taxes，are treated of under the head of Tax，Taxation．In this place it is proposed to give a short summary of the amount and de－ scription of taxes paid in this and some other countries， whether assessed dircetly upon property，or collected indi－ rectly upon articles of consumption；including not only such taxes as are paid to the gencral government，but also all municipal and local assessments or contributions．

United Kingdom．

The chief sources of revenue are from indirect taxes，as will be seen by the following statement，mate up to 5th January，1812：－

		Rate per cent．at which collected．
	Gross Rereipt． $£$	which collected． $£_{\delta_{0}} d \text {. }$
Cus	23，821，486	5 564
Excisc	15，477，674	6 6－7 81
Stamps	7，494，239	234
Taxes（Assessed，\＆c．）	4，720，457	$4{ }^{4} 209$
Post－Office ．．	1，539，274	6096
Duties on Pensions and Salaries．	5，752	176
Crown Iands	438，297	818 3
Small branches of he－ reditary revenue	5，562	
Surplus fees of public offices．	93，504	
Total ordinary revenues	53，596，200	61381

To these parliamentary taxes may be added the follow－ ing local ansessments：－

Poor－rates ．．	rates， $700,000 \%$ ．）
Chirrch－rates	600，000（in round numbers）．
Higlaway－rates	1，312，812
Turnpikc－tolls（Ens－ land and Wales）．	1，577，764
Grand－jury present－ ments（Ireland）	1，265，866
Total of local taxes． （Parliamentary Pap （1．12（13．））（23．7）．）	$11,108,270$ crs， 1839 （562）， 1841 （314）（421），

These include all the local taxes of which any account can be given，but there are still many others，such as ratcs for paving，lighting，and watching particular cities and towns，and for other municipal purposes．It may also be added that the tithes of Great Britain and Ireland amount to $4,000,000$／
It is instructive to compare the present amount of taxes with that rendered necessary by a war expenditure．From 1805 to 1818 the payments into the British exchequer from taxes and loans in no one ycar amounted to less than $100,000,000 \%$ ，and in 1813 arose to the enormous and scarcely crediblc sum of $176,3+6,0231$ ．

Denmark．
The total amount of all state and provincial or country commune taxcs amounted in 1841 to $2,020,000 \%$ ．，11pon a population of $2,100,000$ ．

Sueden．
 State taxes：－
Direct ．
£497，413 Indirect and Miscellancous ．1，261，989

Kingdom of Naples and Sicily．
Naples：－State taxes（exclusive of Sicily）$£ 3,991,957$
Municipal taxes
155，267
Total
£4，150，224
Sicily：－Direct state taxes £23こっって10
Indirect
630，639
£862，86！
Municipal taxes
$£ 1,163,212$

Portugal.
Crown rents
Direct taxes
Indireet taxes
Various rents

Total

£2,330,866 $0 \quad 9$
Further interesting particulars conecrning the several taxes of European States will be found in the Parliamentary Paper, No. 227 , of 1812 , ordered by the House of Commons to be printed, 3rd May, 1842.

TAXO'DIUM, from tarus, the name of a genus of plants belonging to the natural order Conifere. The plants of this genus are moncpeious. The male flowers are arlanyed in catkins of a rountish form, disposed in racemose panieles; the pollen of each flower is contained in five cases, which are attached to the scale at its inner fiee. The fenale flowers are also arranged in small round eatkins, two or three of which are attached near to the base of the spike of the eatkins of male flowers The ovules are two in each receptacle. The fruit is a globose strobule, with peltate angled seales; the seeds are angled with very thick interuments; the embryo, with from 5 to 9 cotyledons. The leaves are linear, disposed in two ranks, and are deciduous. This genus has been distinguished from Cupressus principally on account of the arrangement of its inale catkins in racemose panieles, the small number of flowers in the female eatkins, and the numbers of cotyledons possessed by the embryo.

This genus is well known through the Taxodium distichum, deeiduous Cypress, a tree that was introduced into Europe from North Amerien as early as 1640 . This species is characterized by two-rowed, flat, deciduous leaves; leafless and panieled male flowers, and somewlat globose strobils. It is an clegant tree, and attains a height of 120 feet in its native soil. The first plant that is mentioned as existing in this country was grown in South Lamheth, and was raised from seeds brought from Virginia. Since then it has been introduced in various parts of Great Britain, and many fine specimens are now to be found. In its native distivets in North America it is execedingly abundant, and in many parts, as in Louisiana, it entirely oceupies thousands of aeres of the low grounds, which are thence called cyprières, or eypress swamps. It is found in Delaware, on the banks of the Indian River, in $38^{\circ} 50^{\prime} \mathrm{N}$. lat., which is its northern boundary, and, proceeding southward, it is abundant in the swamps of Virginia, the Carolinas, Georgia, and the Floridas.

In America, where the tree grows, its wood is used for all the purposes to which timber is applied. In 1819 , according to Michaux, alnost all the houses of New Orleans were constructed of the wood of this trec. It is considered very durable, and is employed where this quality is an object. In Jouisiana it is used for making the masts and sides of vessels, and also canoes, which are fashioned out of a single trunk, and are said to be more durable than when made from any other wood. The bark of the tree exudes a resin of an agrecable oclour and a red colour which is used by the negroes for dressing wounds, but it cannot be obtained in sufficient quantities to constitute an article of commerce. The ronts of this tree are remarkable for the production of knobs or protuberances, which are sornctimes five or six, and, according to some observers, many more feet in cireumference. They have generally a conieal form, and are hollow inside, with a covering of red bark, similar to that of the roots. In America, they are ealled 'eypress knees,' and are used by the negroes for bee-hives.

In the cultivation of the deciduous eypress, a rich moist soil nust be selceted in a low situation. It may be increased by seeds from the imported cones, or it may be propagated by cuttings, planted in autumn in a moist sand or heath soil, situated ina shady damp place. Layers also, when put down in moist soil, will root freely the first year.

During eultivation, this tree is exceedingly prone to sport, so that no two individuals have precisely the same appearance. On this account, a number of varieties have been named. The most common is the T. d. patens, which lias horizontal branehes. Another, with pendulous branches, is known as T.d. pendulum; a third, with pendulous first-
year's shoots, as T. u'. mutuns. Other species of the genns have been described, but are not jet used or cultisated. F'or further information on this genus, see lourlon's " Irb. et Frut. Brit.,' vol. iv.

TANUS (tarus, Latin), the name of a genus of plants, the type of the natural order Tuxaccie. This genus is moncecious; the perianth of the barren flowers is single at the base; the stamens are numerous, with peliate anthers $6-8$-celled, the ceells opening beneath. The fertile flowers lave a single, urecolate, sealy perianth; 110 style; and a fleshy drupaccous fruit, perforated ut the extremity The species of this genus are evergreen trees, with numerous, mostly linear, entire leaves. They are natives of Europe and North Ameries.
T. baccuta, Common Yew, has its leaves 2 -ranked, crowded, linear, flat, with the flowers axillary, sessile; the receptacle of the barren flowers globular. The conimon yew is well known: it is indigenous 10 most parts of Ein. rope, and is found in every part of Britain and Ireland. It is seldom seen growing in company with itm own species, but alone, or with other species of plants.

The yew is a low tree, the trunk rising lhree or four feet from the ground, and then sending out numerons spreading branches, forming a head of dense foliage, which, when full grown, may be sometimes 30 or 40 feet higls. It is of slow growth, attaining under favourable cireuntstances a height of 6 or 8 feet in ten years, and 15 feet in twenty years. The tallest yew in England is in the churehyard at Harlington, near Hounslow, which is 58 feet high. A trececontinues growing for about one hundred years; it mostly ceases to grow at that age, but will live for many centuries. The yew-trees at present existing at Fountain's Abbey in Iorkslire are supposed to have attained their full growth when the abbey was creeted in 1132.

The remarkable eharacters and properties of the yew have drawn lowards it at all times much attention. Dioseorides, Pliny, and Theophrastus mention its poisonous properties. Caesar (Bell. Gall., vi.31) relates that Cativolcus, king of the Eburones, committed suicide by swallowing the juice of the yew. Plutarch says tlat its fruit is poisonous, and that its shade is fatal to all who slecp under it. This is also stated by Illiny ; but there must have heen some mistake on some of these points, as it is now well known that the fruit of the yew may be eaten with impunity, and that its shade is not more deadly than that of other trees.

The yew appears to have been employed from the earliest times in the manufacture of bows, and was used for this purpose by the nations of antiquity. The bows used by the English previous to the introduction of gunpowder were made of yew, and there are many allusions amongst English poets to this use of its wood. The battles of Cressy and Poietiers were gained by the English yew-bows, and the same weapon was used in the wars of York and Laneaster. In the course of time the supply of yew was defieient, and other woods came to be used; but the introduetion of gunpowder soon after put a stop to the use of the bow as a weapon of war altogetlier. Bows are now seldom made of the yew, various omamental woods from South America being preferred. In Switzerland the yew tie is called William's tree, because the bow of William Tell is said to have been made of that wood, The yew is a common ormament of the churchyard. 'lhe origin of the practice of planting this tree in such situations is not at all clearly made out. Their dark foliage and sup)p ised deadly shade may have pointed them ont as the fit emblenss of silence and death. Mr. Bowman (Magaz. of Nat. Hist., vol. i.) observes that it seems most natural and inost simple to believe, that being indisputably ineligenous, and being, from its perennial verdure, its longevity, and the durability of its wood, at once an emblem and a specimen of immortality; its braneles would be employed by our pagan ancestors, on their first arrival here, as the hest substitute for the cypress to deek the graves of the dead, and for other sacred purposes.

The yew used to be frequently planted in gardens as an ornament, on pecount of the facility with whicls it may be cut into various fantastic sliapes. During the past century it was not uncominon to meet with these trees eut into the forms of balls, pyramids, beasts, birds, and men ; but this practiee having fallen under the well-merited censure of Pope and other writers, only a remnant of it here and
there is scen at the present day. Although the fruit of the yew is not poisonous, thare are many well-authenticated instances of the leaves producing death. Deer and goats are said to feed upon them with impunity, but to cows and horses they prove an active poison. The yew has not been at any time used generally as a medicine although its effects on the system have been represented as similar to those of digitalis, and as being more manageablc and less liable to accumulate in the system than that medicine. Professor Wiborg of Copenhagen states that the leaves of the yew are only poisonous to animals when they are eaten alone, but that if eaten with three or four times the quantity of other food they are innocuous.
There are several remarkable specimens of old yews existing in this country. Those at Fountaius Abbey are said to have sheltercd the monks whilst that magnificent pilc was erecting. The Tytherley, Fortingal, Arlington, and Loch-Lomond yews are remarkablc for their size and age. Many of them, if we estimate thoir age in the mode proposed by De Candolle, must exceed considerably a thousand ycars.
The wood of the yew is used extensively in cabinetmaking. It is very hard, compact, and of a fine close grain, which arises from the smallness of its annual layers, 230 being sometimes found in a piece not more than 20 inclies in diameter. It is also much used by the turncr for nuaking snuff-boxes, inusical instruments, \&cc.
There are several varieties of the common yew; the most remarkable is the Irish yew, which Professor Lindley has made a distinct species, Tuxus fastigiatu. It is distingrishied by its upright mode of growth, and by its leaves not being arranged in ranks, but scattered. It was first discovered at Florence Court, on the mountains of Fermanayh, and has sinee been observed in other parts of Ireland. Other varieties are described, produced by difference in cultivation, soil, \&cc. The Canada or North American yew is described as a species, T. Canudensis. The leaves are narrower and smaller than those of the conmon yew, and are revolute at the margin, and the male flowers are solitary in the axis of the leavcs. It is found native in Canada, and on the banks of a river in Maryland.
In the eultivation of the yew, a moist soil should always he selected; but it tlrives best on clays and loams, on rocks, and in shady places. It is best propagated by secds, whicl, if sown as soon as thcy are gathered in autumn, surrounded by the pulp of the friit, will eome up the next or following spring; but if dried, will not come up till the third year. Where the object is to form a fence, cuttings may be cmployed. Before transplanting, whether they be raised froni seeds or cuttings, the plants should be three or four feet high.
For further information concerning the yew, see Loudon's Arboretum et Fruticetum Britannicum.)
TAY, River. [Pearushire.]
TAY, Loch. [PERTHIMiRe.]
TAYGETUS. [LAcova.]
TAYIOR, ROWLAND, LLID., was a clergyman emineat for his learning aud piety, who was burnt at the stake in the reign of Queen Mary. IIe is said ly Bishop Heber to have been an ancestor of Jeremy Taylor. He was chaplain to Arehbishop Cranmer, by whom he was appointed rector of Hadleigh, in Suffolk, where he went to reside.
Dr. Taylor was summoned, in the ycar 1553, to appcar in I.ondon before Gardiner, bishop of Winehester, who was then lord clancellor, for resisting the performance of mass in liis church at Hadleigh. He was strongly persuaded to escape, but refused, and prescnted himself before Gardiner, by whon, after a long conferenec, in which he defended his cause with unshrinking firmness, he was cominitted to the King's Bench prison. There he remained till the 22nd of January, $1 \overline{\bar{y}} \overline{\bar{u}}$, when he and other prisoners were eited before Gardiner, and the bishops of London, Norwich, Salisbury, and Durham, who were joint commissioners with the cliancellor. The chicf offence of which Dr. Taylor was now aceeused was his marriage; but he defended the right of priests to marry with so much learning, that no sentence of divorce was pronounced, though he was deprived of his benefice. At the end of January the prisoners were again bronght before the commissioncrs, by whom they were sentenced to death. Dr. Taylor was committed to the 1'oultry Compter, where, on the 4th of February, he was
visited by Bonner, bishop of London, who went there for the purpose of making him put on the dress of a Roman Catholic priest. Dr. Taylor resisted with his usual courage, and the dress was put upon him by force: he treated the whole procceding with the utmost contempt, as a piece of mummery, and Bonner would have struck him with his crosier if he had not been restrained by his chaplain. On the following day the procession set forth which was to conduct him to the place of execution. In the course of the journcy much persuasion was used by the sheriff and others to induce him to recant, but without making the smallest impression upon him. The procession passed through Hadleigh, where he was consoled and chcered by the blessings and prayers of his parishioners. The execution took place on the 8th of February, 1555 , on Aldhan Common, near Hadleigll. A stone, with the following inscription, perhaps still remains to mark the spot:-' 1555. Dr. Tayler in defending that was gode at this plas left his blode.
Bishop Heber, in his 'Life of Bishop Jcremy Taylor,' says, 'There is nothing indeed more beautiful in the whole beautiful Book of Martyrs than the account which Fox has given of Romland Taylor, whether in the discharge of his duty as a parish priest or in the more arduous moinents when he was called on to bear liis eross in the cause of religion. His warmth of heart, his simplicity ot manners, the fotal absence of the false stimulants of enthusiasm or pride, and the abundant overflow of better and holice feelings, are delincated, no less than his courage in death and the buoyant cheerfulness with which he encountered it, with a spinit only inferior to the eloquence and diguity of the "Plæedon."
(Fox's Acts and Monuments.)
TAYLOR JEREMY, was born at Cambridge in 1613, where he was baptized on the I5̈th August in that year. His ancestors had been wealthy and respectable, one of whom, Dr. Rowland Taylor, is mentioncd in Fox's 'Book of Martyrs' as bringing upon hiniself the persecution of the popish party in the reign of Mary, not only by the popularity of his character and talents, but also his wealth. Taylor's father was a barber, a calling generally united in those days with surgery. At an early age Taylor was sent to Perse's grammar-school in Cambridge, and in his fourteenth year he was entered at Cains College as a sizar, an order of students which, Bishop Heber intorms us, were then what the 'servitors' still continue to be in some eolleges in Oxford, and what the 'lay brethren' are in the convents of the Romish church. At little more than twenty years of age, having taken the degrec of master of arts, and been admitted to holy orders, he attracted the notice of Laud, then archbishop of Canterbury, before whom he was invited to preach at Lambeth. Laud appreciated his eloquence and his talents, which he encouraged in the nost judicious manncr by having him settled at Oxford, where he was admitted to the degree of master of arts, and by the powerful interposition of the arehbishop, in 1636, nominated to a fellowship. Taylor does not appear to have remained long or uninterruptedly at Oxford. In 1637-8 he was presented by Juxon, bishop of London, to the rectory of Uppinghan in Rutlandshire. About this time an acquaintance which, in common with Laud, he maintained with a learned Franciscan friar, Francis ù Sancta Clara, exposed him to the suspieion of a coneealed attachment to the Roman ehurch -a suspicion to which the character of his mind, which tended to aseeticism in religion, and to an extravagant veneration for antiquity, and which cherished a love of the gorgeous and imposing in the eeremonial of worship, gave some plausibility. At a later period in life however Taylor solemuly denied that there had ever been any solid ground tor questioning the sinecrity of his Protestantism.

In the civil wars he followed the fortunes of Charles, whose chaplain he was, and in 1642, when the king was at Oxford, he published there his 'Episcopacy asserted against the Acephali and Aerians New and Old, in which he souglit. to maintain a eause that had then however, unfortunately, passed from the controversy of the pen to that of arms. Charles rewarded Taylor in the only way which it remained in his power to do, by commanding lus admission to the degree of doctor of divinity. This honour was diminished by the indiscriminate manner in which it was conlerred upon many other loyalists at the same time, so as to provoke an expression of dissatisfaction from the

Vol. XXIV.- R
heads of the University; and its advantages were overbalaneerd by fle lows which Taylor enconntered in the same jear, in the sequestration of his reetory of Uppinglam by the parliament. In 1617, when the crisis of the civil war impended, hie published lis diseourse, 'The Liherly of Prophesying.' Afer the defeat of the royalists Taylor was repeatedly imprisoned, but only for short periods: During the fint jears of the protectorate he supported himself by keeping a school, in Wales, in compnny with Nieholson, aferwards bishop of Gloucester, and Wyat, afterward's prebendiary of Lineoin, by his oceasional writings, and by whatever contribution the friendship of the earl of Carhery; on whose estate lie exercised his ministry, night afford to hime. In the year 1658 he was eneourayed by I.ord Conway to settle in Ireland, where he divided his resideuce between Lisburn and Portmore, and he officiated in the ministry at both these places. The provision which he received was however so inadequate to his wants, that he was obliged to remain under obligations to his fricnd John Evelyn, who generonsly allowed him a yearly pension. In the obscurity of P'ortmore Taylor did not escanpe the uuhappy persecutions of that period. He was charged by an informer with having used the sign of the eross in baptism, and dragged before the Irish privy eouncil, from a distance and in the middle of a severe winter, to be examined. A fever was the consequence of his arrest, whieh probably indueed the eouncil to act leniently towards him.
In 1600 he fravelled to Iondon to prepare for publication his 'Duetor Dubitantium,' when he attaehed his sigmature to the deelaration of the royalists, dated April $24 t \mathrm{~h}$, in which they expressed the moderation of their views, and their confidence in the wisdom and justice or Monk. Taylor was thus favourably brought under the notiee of Cliarles II., whose restoration took plaee this year, ande to whom he dedieated the 'Duetor Dubitantiun.' The king nominated him under the privy seal to the bishoprie of Down and Connor, to whieh he was conseerated in January, 1661 : in the following month he was made a inember of the lrish priyy council ; and in the next, in addition to his original diocese, he was intrusted with the administration of the small adjacent one of Dromore, on meeount, in the words of the writ, 'of his virtue, his wisdom, and industry?' In the course of the same year he was cleeted viee-chaneellor of the University of Dublin. Bishop Heber has deemed it neeessary to aceount for 'Taylor's not having reecived an Einglish bishopric. Besides his eminent abilities, and his laithful adherence to the cause of, the church and the king, he hat married the natural danghter of Charles I., who was his second wife, and then living. This last cireunstance however, is pleaded with the king in favour of preferment for Taylor, as Bishop Heber thinks, may have contributed to determine the seenc of his promotion: 'Charles may not have been unwilling to remove to a distance a person whose piety might have led. him to reprove many parts of his conduct, and who would have a plausible pretence for speaking more freely than the rest of the dignified clergy:
Tha new station which Taylor was called upon to fill had peculiar and great diffeulties connected with it. In the revolution through which religion had passed, livings had been eonferred on men whose feelings were at varianee with episcopacy, and they had to be coneiliated to a willing obedienee, or, as time proved, to submit to the severest test of principle in the saerifice of their emoluments. In Ireland there were additional cireumstanees to contend with. The Episcopal or Protestant chureh was unpopular ; the preachers were almost exclusively English; the ritual was English, and to the mass of the natives unintelligible ; there was no translation of the Seriptures, and yet attendance at the established ehurches was compulsory. Bishop Taylor laboured with mueh zeal and energy for the establishment of the I'rotestant religion; but with little effect. He was altaeked by fever on the 3rd August, 1067, at Lisburn, and died in ten days, in the finy-fint year of his age, and the seventh of liss episeopmey. The ehildren of his first wife died before himi; by his second, who survived him, he left three daughters.
The writings of Jereny Taylor may be brought under Sour descriptions: pratient, theologieal, casuistie, and devotional. The first eomprises lis 'life of Christ', whieh le \quad mublisiled in 1653 ; 'Contemplations on the State of

Man,' a posthumous work; "Holy Living and Moly Dying,' 1631 ; aund his Sermons, whieh appeared at various periods. A work entitled 'Chistian Consolation' has been ruferred to lim, and publinhed in the eolleeted edition of his writings by j3ishop IIeber in 1830-2; but it has since been published in the name of Bishop IIackett, who aypears to have been its true anthor. The second comprises his 'Episeopney, asserfed against the Acephadi and Acrians New and Old,' 1642 ; 'An Apology for Authorized and Set Forms of Liturgy; 1GH4; his DDiseourse of the Jiberty of Prophesying, with its just limits and tennper ; showing the unreasonableneas of prescribing to other mens faith, and the iniquity of persecuting differing opinions', 1647; the 'Unum Necessarium; or the Doetrine and Practice of Repentance,' 1605 ; 'Deus Justificatus, or a Vindication of the Clory of the Divine Attributes in the question of Original Sin, against the Iresbyterian way of manderstanding it,' 16:i6; 'The Real I'resenee and Spiritual of Christ in the 13lessed Sacrament, proved against the Doctrine of Tramsubstantiation,' $16 \overline{3} 4$; 'A Dissunsive from Popery;' 1G64. The third ineludes his ' Discourse of the Nature, Offiees, and Measures of Friendship, with lules of Condueting it,' 16:57 ; and the 'Duetor Dubitantium, or Rule of Conseience in all Her general Measures,' 1660. The fourth comprises his 'Clerus Domini, or a Discourse of the Divine Institution, Necessity, Saeredness, and Separation of the offiee Ministerial, together with the Nature and Manner of its Power and Operation,' 16:51; The Golden Grove, or a Manual of Daily l'rajers and Litanies, fitted to the Days of the Week,' 16 int ; The Psalter of David, with Titles or Collects, according to the Matter of eael Psaln,' 1644 ; 'A Collection of Otfiees or Forms of Prajer in cases ordinary and extraordiuary; taken out of the Scriptures, and the Ancient liturgies of several Churehes, especially the Greek,' 1038 ; 'Devotions for Various Oeeasions; ind 'The Worthy Communieant, or a Diseourse of the Nature, Effeets, and Blessings consequent to the worthy receiving of the Lord's Supper, and of all the Duties required in order to a worthy preparation; together with the Cases of Conscience oecurring in the duty of him that ministers and of him that communicates, 1660.

Mr. IIallam ranks the Sermons of Bishop Taylor 'far above any that had preceded them in the Chureh of England. An inagination essentially poetieal, and sparing none of the decorations whieh by eritical rules are deemed almost peculiar to verse; a warm tone of piety, sweetness, and charity; an aceumulation of circumstantial aceessories whenever the reasons, or persuades, or describes; an erudition pouring itself forth in quotation till his sermons becone in some places almost a garland of flowers from all other writers, and espeeially from those of classical antiquity, never before so redundantly scattered from the pulpit, distinguish Taylor froms his contenıporaries by their degree, as they do froni most of his suceessors by their kind. IIis sermons on the Marriage ling, on the House of Feasting, on the Apples of Sodom, may he named without disparagement to others, which perhaps ought to stand in equal place. But they are not without considerable faults, some of which lave just been hinted. The eloquenee of Taylor is great, but it is not cloquence of the highest class; it is far 100 Asiatic, 100 much in the style of Chrysostom and other deelaimers of the fourth century, by the study of whom he had probably vitiated his taste; his learning is ill-placed, and his arguments often mueh so; not to mention that he has the common defect of alleging uugatory proofs; his vehemence loses its effeet by the eircuity of his pleonastie language; his sentences are of endless length, and hence not only altogether unmusieal, but not always reducible to grammar. But he is still the greatest ormament of the English pulpit up to the middle of the sevententh eentury; and we have no reason to belicve, or rather mueh reason to disbelieve, that he has any competitor in other languages.' (Inallanis Introduction to the Literature of Europe, vol. iii., c. ii., $\mathrm{p}^{\text {. 125-6.) }}$

IIe has been aecused of having copied Ω work of a similar character by Indolphus de Saxouia, a IRoman Catholic writer, in lins 'Iife of Christ;' but Bishop IIeber, who had examined both works, asserts that there is seareely any resemblanee between then, and none which authorizes the imputation of plagiarism.
'The Liberty of 'Prophesying' (that is of interpretation! is the most popular in the second division of Taylor's writ.
ings. Λ very good sketch of it will be found in the third volume of Mr. Hatlam's 'Introduction to the Literature of Europe, and a more detailed one in the first volume of Heber's edition of Taylor's works. But the discourse itself is not long, and will well repay the reading. It considerably diminishes the admiration with which we are disposed to conneet this production of Taylor with the man, his order, and the times, when we take into account the motives which he afterwards assigned for its publieation. 'In the dedication to Lord Hatton of the collective, edition of his controversial writings after the Restoration, he declares that when a persecution did arise against the Church of England, he intended to make a reservation for his brethren and himself, by pleading for a liberty to our consciences to persevere in that profession, which was warranted by all the laws of God and our superiors.' (Hallam, Introduction th the Literature of Lurope, vol. jiii, p. 116.) Bishop Ifeber has vindicated Taylor from the eliarge of tergiversation, founded not upon the above testimony which Taylor limself furnishes, but upon the eharacter of his proceedings when cpiscopacy was restored. If we must allow in reference to lis Sermon preached before the Irish Privy Council, that the obedience which he there insists upon is only, as Bishop Heber suggests, that obcdience to tlie laws of ecclesiastical superiors which is paid by the members (clergy) of their own communion; and that it is in fact no more than the privilege (which every Christian society exerts and mist exert for its own preservation) to have the offices of its ministry supplied by such men as conform to the regulation imposed by the body at large on those to whom its powers are delesated; we ought 10 add that this distinction is left in much ambiguity; that principles are maintained with a much more general signification than this explanation allows; and, in one word, upon ninetynine out of a hundred readers the sermon before the Irish Privy Council would produce impressions totally inconsistent with those derived from the 'Discourse on the Liberty of Prophesying,' After expressing his sorrow at secing the horrid mischiefs which come from rebellion and disobediener, and his hopes of better things, the bishop of Down and Connor proceeds in his sermon before the Privy Council to say tlat he sees no objection 'ayainst his hopes but that which ought least of all in this case to be prctended: nen pretend conscience against obedience, expressly against, St. Paul's doctrine teaching us to obey for conscience sake; hut to disobey for conseience in a thing indifferent is never to be found in the books of our religion. It is very hard when the prince is forced to say to his rebellious subjects, as Gorl did to his stubborn people, 'Quid faciam tibi ?' 'I have tried all the ways I can to bring thee home, and what slall I now do unto thee?" The subject should rather say, "Quid me vis facere? "What wilt thou have me to do "?" This question is the best end of disputations. "Corrumjutur atque dissolvitur imperantis offielum. si quis ad id
quod facere jussus est, non obsequio debito, sed consilio quod facere jussus est, non obsequio debito, sed consilio a subject is commanded to obey, and he disputes, and says, 'Nay, but the other is better,' he is like a servant that gives his master necessary counsel when he requires of him a necessary obedience. 'Utilius parere edieto quam efferre consilium;' 'he had better obey than give counsel;' by how much it is better to be profitable than to be witty, to be full of goodness rather than full of talk and argument.' Firflier on, in the same sermon, he distinguishes between a 'tender conscience,' which is such in reference to age or ignoranee, or of 'new beginners,' and that which is the - tenderness of a boil ; that is soreness indecd, rather than tenderness, is of the diseased, the abuscd, and the mispersuaded.' The first is to be dealt tenderly with. "But for that tendermess of conscience whicll is the disease and soreness of a conseience, it must be cured by anodynes and soft usages, unless they, prove ineffective, and that the lancet may be necessary.

Mr. Hallam refers to the 'Duetor Dubitantium' as the most extensive and learned work on casuistry which has appeared in the Finglish language: 'As its title shows, it treats of sulbjective morality, or the guidance of the con-
science. But this canot le much discussed witlout estascience. But this canmot le much discussed without esta-
blishing some principles of objective right and wrong, some standard by which the conscience is to be ruled. "The whole measure and mile of conscience," according to Taylof, "is the law of God, or God's will signified to us by nature or revelation; and by the several manners and
times and parts of its communication it hath obtained several names: the law of nature, the consent of nations, right reason, the Decalogue, the sermon of Christ, the canons of the apostles, the laws ecelesiastical and civil of princes and governors, expressed by proverbs and other instances and manners of publie honesty. .. .These being the full measures of right and wrong, of lawful and unlawful, will be the rule of conscience and the subject of the present book." The heterogeneous combination of things so different in nature and authority, as if they were all expressions of the law of God, does wiot augur well for the distinetness of Taylor*s moral philosoplyy, and would be disadvantageously compared with the Eeclesiastical Polity of Hooker. Nor are we deeeived in the antieipations we might draw. With many of Taylor's excellencies, his vast fertility, aud his frequent acuteuess, the "Ductor Dubitantium" exhibits his characteristic defects: the waste of quotations is cven greater than in his other writings, and. his own exuberance of mind degenerates into an intolerable prolixity. His solution of moral difficulties is often unsatisfactory; after an accumulation of argunent and, authorities we lave the disappointment to perceive that the knot is neither nntied nor cut ; there seems a want of elose investigation of principles, a frequent confusion and obscurity, which Taylor's two elicf faults, excessive display of erudition and redundancy of language, conspire to. produce. . . .Taylor seems inelined to side with those who resolve all right and wrong into the positive will of God. The law of nature lae defines to be "the universal law of the world or of mankind, to which we are inelined by, nature, invited by consent, prompted by reason, but which is bound upon us only by' the command of God." Though in the strict meaning of the word law, this may be trily said, it was surely required, eonsidering the large, sense which that word has obtained as eoineident with moral right, that a fuller explanation should be given than Taylor las even intimated, lest the goodness of the Deity should seem something arbitrary and precarious. And, though, in maintaining against most of the scholastie metaply sicians that God ean dispense with the precepts of the D_{G}; ealogue, he may be substantially right, yet his reasons seem by no means the elearest and most satisfactory that might be assigned. It may be added, that in his prolix, rules concerning what lee ealls a probable conscience, he, comes very near to the muel-decried theories of the, Jesuits. There was indeed a vein of subtlety in Taylor's? understanding which was not always without influence on, his candour.' (Introduction to the Literature of Europa; chap. iv., vol. iv.)

Bishop Heber has also remarked on some of TayJor's, positions to the same effect; instancing his admission that private evil may be done by public men and for the public, necessity ; his justification on moral grounds of the supposed fraud of the children of Israel in horrowing jewels of the Egyptians without any intention of restoring them.. - In the first ehapter of the third book, which ireats of human laws and their obligations, a case oceurs in illuso tration of Rule iv., that "a law founded on a false pre: sumption does not bind the conscience," in which the Romish canonists seem to have given a more just decision than Taylor: Biretti, a Venetian gentleman, pretends a desire to marry Julia Mediei, the daughter of a neiglibour, with a purpose to seduce and desert her. A contract is, made ; but beforc its exceution he gains his end, grod, leaving her, marries another. The canonists declare the: former contract, followed by congress, to be a marriage; and that he is bound to return to Julia. "No," says Taylor, "if he did not lie with her, "affectu maritali," "he was extremely impious and unjust ; but he made no marriage; for without mutual consent marriages are not made." To these illustrations, addueed by Heber, may be added another, referred to elsewhere: Rule xi., 484 , lie. maintains the right of using arguments and authorities in. controversy which we do not belicve to be valid; a rule, of which he appears to have taken advantage; for, in the Defence of Lipiscopacy, published in 1642 , he maintains the authenticity of the first fifty of the apostolic: canons, all of which, in the "Jiberty of Prophesying". a very 'few years afterwards,' hee indiseriminately rejects.'? (Hallam.)

On devotional subjects the character of Taylor's mind fitted him to write with most suecess. In these we, find his most glowing language, his aptest illustrations; and
'whether he deseribes the duties, or dangere, or hopes of man, or the merey, power, and justice of the Most lligh; whether he exhorts or instructs his brethren, or offers up his supplieations in their behalf to the common Futher of all, his coneeptions and his expressions belong to the Ioniest and moot sacred deseription of poetry, of which they only want what they eannot be said to need, the name and the metrical arrangement.' (Heber, Life und Works of Jeremy Toylor, 15 vols., 1820-?.)
TAIIOOR, JOHN, best known by the title, which he seems to have given to himself, of The Water-Poet (The King's Majesty's Water-Poct'), was bom in the elty of Gluncester in the year 1580 . His education was limited, for he limself informs ns that he was "gravelled' in his 'Accilence, and could get no farther. IIe came to Jondon, and was bound apprentice to a waterman, an oceupation from which he derived his title of 'Water-Poet,' and which afforded him the means of subsistence during a great part of his life. He had however for fifteen or sixteen years some situation in the Tower of London; and he afterwards kept a publie-house in Phœenix-Alley, Long Aere. Being an enthusiastic royalish, when Charles 1 . was beheaded he hung up the sirn of the Mourning Crown, which however he was compelled to take down, and he then supplied its place by a portrait of himself; with the tollowing eouplet under it: -

There's many a king's head hang'd up for a slm,
And many a sainl'n head wo: then why not miue?
Taylor was not satisfied with the distinction which his literary productions procured for him: he was fond of fixing publie attention by other extraordinary performanees. He onee undertook to sail from London to Rochester in a boat made of paper, but the water found its way into his boat before he reached his destination, and he had some diffieulty to get safe ashore. A journcy which he performed by land is described in one of his traets, entitled • The Pennyless Pilgrimage, or the Moneyless Perambulation of John Taylor, alias the King's Majesty's Water-Poet ; how he fravelled on foot from L.ondon to Edinburgh in Scotland, not eanying any moncy to or fro, neither begging, borrowing, or asking meat, drink, or lodging.' He left 'the Bell Inn that's extra Aldersgate' on the 14th of July, 1618. A full account of this journey, abstracted from Taylor's pamphlet, is given in the ' Pemy Magaziue, Nos. 622 and 623. He was attended by a servant with a horse, and they had a small stock of provisions and provender, which more than once relieved them when the oceasional inhospitality whieh they met with had reduced them to the extremity of hunger. His eourse was through St. Albans, Stony Stratford, Coventry, Lichfield, Newerstle-under-Lyne, Manchester, Preston, Lancaster, Penrith, Carlisle, Edinburgh, Dunfermline, Stirling, Perth; and being then in the IIighlands, he had an opportunity of secing, at ' the Brae op Mar,' one of those great deer-hunts which were then frequent in that part of Scotland, and of which he gives in his pampllet an entertaining and picturesque description. The whole journey till his return to London occupied about three months. But a sort of voyage which he afterwards performed was apparently not less difficult. He pullished, as usual, an aecount of it himself, 'Joln Taylor's last Yoyage and Adventure, performed from the 20th of July last, 1641 , to the 10th of September following; in which time he passed with a sculler's boat from the citie of London to the eities and townes of Oxford, Glouecster, Shrewsbury, Bristol, Bathe, Monmonth, and 1lereford.' From this title it night be supposed that he went all the way by water, a feat which, secing the courses of the rivers, and the want of eanals in those days, was an obvious inpossibility; but the fiect is, that when a river ceased to be navigable, or ran in a wrong direction, he shipped his boat and himself in a wain or waggon, and voyaged overland till he came to another river which suited his purpose: still a great part of the voyage was performed by water, and thas, to use his own words, 'in lesse than twenty days' labour, 1200 miles were prassed to and fro, in most hard, difficult, and many danccrous presages.

Taylor died in 16.51, in lis 7 Tith year, and was buried in the church-yarl of Covert-Garden, London.

His publications, which amount to upwards of cighty, are some in prose, some in verse, and many both in prose and verse. As literary productions they are of little or no valae, the verse more doggrel, and the prose such as might
be expeeted from a writer not without observation, but of no great power of mind, and almost entirely uneducated. Still they are by no means without their value. Nearly all of them being short occasional productions aring out of the circumstances in which he was placed, they afford many curious deseriptions, as well as interesting glimpses of the opinions and manners and general state of sociely of the limes in which he lived. Sir Egerton Brydres, in his ' Censura Litteraria,' has given a full list of 'raylor's writings, and a tolerably copious one is also given in Tratt's - Bibliotheea Britannica.'
(Haker's Biogruphia Dramalica, l)y Reed and Jones, in which work he has obtained a place in consequeuce of having written a pageant, 'Triumphs of Fame and Honour, $410 ., 1634$.
TAYLOR, SIL,AS, otherwise called Domville, or DOmville, by Antony Wood, was the son of Sylvanus Taylor, one of the commissioners during the civil wars for ejecting those of the clergy called 'scandalous and insufficient ministers.' Silas Taylor wias born at Harley near MuchWenlock, in Shropshire, July 16, 162t, and after beins educated at Shrewsbury and Westminster schools, became a commoner of New Inn Hall at Oxford in 1041. 'He was taken thence by his father to join the parliamentary army, in which he lad a captain's commission. After the war he was appointed by the interest of his father sequestrator of the royalists in Herefordshire, in discharge of wheh office he eonducted limself with so mueh moderation as to conciliate the king's party. Pat of the bihhop's palare at Hereford fell to his own share in the general spolnation, and he aequired considerable wealth, all of which he was compelled to restore at the Restoration.

On that event he was treated by the royalists with great lenity, and appointed coonmissary of ammunition, \&e. at Dunkirk, and about 1603 made keeper of the king's stores and storehouses for shipping at Harwich. He died November 4, 1078, and was buried at Harwich. Taylor was much interested in the antiquities of his country, and was enabled in the confusion of the civil wars to ransack the libraries of Hereforl and Woreester eathedrals, and in the course of these researches is said to have discovered the original charter in which King Edgar asserts his claim to the sovereignty of the seas, which is printed in Scllen's - Mare Clausum,' lib. ii. He left materials for a history of Herefordshire, which afterwards came into the hands of Sir Fdward Harley of Brampton Brian in that county: To this collection belong Nos. 4046, 41\% $\%$, 6726,6760 , GS5 6 , and 6868 of the Harleian MSS., containing part of a general history with notes and special topographical information under the several parishes, exfracts from 'Domesday;' Leland, \&ec. From these papers Mr. William Brome, a subsequent collector for the same county, is said to have borrowed largely. (Gough, Cubtulngue if Topographical Works, '1Yerefordshire.') In the Slomie MSS. is a paper of Taylor's on the making of cider. ($\Lambda y s c o n g h ' s$ Catalogue, 'Taylor.')
Ilis published woiks are, The History of Gavellindwith some observations and remarks upon many special oceurrences of British and English history. To this is added a short history of William the Congueror, written in Latin by an anonymous author in the time of Ienry 1.,' London, l6G3, 4 to.

A IIistory of llarwich was published from his papers loy Samuel Dale, in 1730, and another cdition, or the same with another title-page, London, 1732.

Wood (Athen. Oxnn.) states, that Taylor wrote many pamphlets before the Restoration, but without his name; that he was a good clussical seliolar and mathematician, and possessed of much general information; that he was an excellent musician, and that lie composed several anthens, and edited 'Court Ayres,' \&ce., 16i.', Svo., printed by Joln Playford.
TAYLOR, BROOK; TAYLORS THEORFM. In referring all matters comected with algehraical development to Taylor's Theorma, we were bartly inoved by the idea that so little was lnown of the lite of the discoverer of that theorem, that the additional space required by our plan wonld not appear more than was due to the eclebrity of the subject. We tind ourselves however very much deeeived in two points, since both the history of Taylor limself, and that of his theorem, are to be, and ean be, recovered from the neglect into which they lave fallen, at least in this country.

Nothing is said of Brook Taylor in the 'Biographia Britannica,' or Martin's 'Biographia Philosoplica;' and Hutton, \&ce., give nothing but the date of his birth and leath, entrance into college and the Royal Society. The - Biographie Universelle' was the first work which gave any detail of his life, aud this is due to the following cir-cunstance:-In 1790, some members of the French Academy, struck with the scantiness of the existing information relative to so celebrated a man, requested Mr. William Seward to make some inquiry on the subject in England. This gentleman applied to Sir William Young, Brook Taylor's grandson, who accordingly drew up an account* of his ancestor from family materials, and printed and circulated it privately. It is from this work that the following aecount is taken, as to the facts of his private life :-
Brook Taylor was born at Edmonton, August 18, 1685̃, and was the son of John Taylor, of Bifrons House in Kent, by Olivia, danghter of Sir Nicholas Tempest, of Durham, lBaronet. John Taylor was the son of Nathanicl, who, to use a phrase of his own't diary, 'tugged and wrest'cd with the Lord in prayer,' and was member (elected by Cromwell's summons) for the county of Bedford, in the (Barebones) parliament of 16:33. Brook Taylor's father was the most despotic of parents: his son was educated at home, where, besides enough of the usual learning to enable him to begin residence at St. John's, Cambridge, in 1701, he became excellent both in music and painting. - His numerous family were generally proficicnt in music, but the domestic hero of the art was the subject of this memoir. In a large family picture he is represented, at the age of thirteen, sitting in the centre of his brothers and sisters, the two elder of whom crown him with laurel bearing the insignia of harmony.' The paintings of the future writer on perspective are represented as not needing the allowance always made for amateurs, but as capable of bearing the closest scrutiny of artists. At Cambridge he applied himself to mathematics, and acquired early the notice of Keil, Machin, and others. His first writing was on the centre of oscillation, in 1708, as appears by a letter to Keil (afterwards given in Phil. Trans., 1713, No. 337). In 1709 he fook the degree of LL.B.B., in 1714 that of LL.D.: in 1712 he was elected to the Royal Society. As yet he had published nothing: his letters to Machin (preserved in his family), from 1709 to 1712, treat of various subjects; and, in paticular, contain a solution of Kepler's problem. We may here conveniently put together a complefe list of his works.
In the Philosophical Transactions, 1712 (No. 336), On the ascent of water between two glass planes; 1713 (No. 337), On the centre of oscillation; also on the mofion of a vibrating string: in the same year, a paper on Music, not printed. 1713 (No. 344), Account of experiment made with Hawksbee on the law of attraction of the magnet. 1717 (No. 352), Method of Approximation to the roots of cqnations; (No. 353) Appendix to Montniort on infinite scries; (No. 35.1) Solution of a problem proposed by Leibnitz. 1719 (No. 360), Reply to the accusations of John Bernoulli. 1721 (No. 367), Propositions on the parabolic motion of projectiles; (No. 368) Experiments on magnetism. 1723 (No.376), On the expansion of the thermometer. Besides these, the separate publications are:-
1715. Methodus incrementorum directa et inversa. Londini.
1715. Linear perspective, or a new method of representing justly all manner of objects as they appear to the eye in all situations. London.
1719. New principles of Linear perspective, or the art of designing on a plane the representations of all sorts of oljects in a more general and simple method than has been done before. London. A different work from the former: its second edition (called the third, by an ohvious mistake) bears 'revised and corrected by John Colson, London, 1749.' Joshua Kirby's well-known work, though called Brook Taylor's perspective, is not an edition of Taylor, but a new work founded on his methods.

- Nict published. Contemplatio Philosoplifers, o posllinmons work of the Eete Irook Taylor, LL. 11, H. It S., some limu neecetary of the Royal Society. To which is prelixed a Iife of the anthor, ly his grandson, Sir William Yoning. Ilart, F.il., A.s So, with an gppendix, contaming sundry origionl papers,
 The acenns xiven by Prony in the Blographic Uoiversello (1826) in, we are amant surc, one rirawa ip at the time from Sir W. Young manuseript account lication.
t tif araudson: hapliamnl atame wos probably in memory of the notevi purtan, Lord Hrouk.

In January, 1714, he was chosen secretary of the Royal Society. In 1716 he visited his friends Montmort and Conti at Paris. He had just had a warm correspondence with the former on the Newtonian doctriue, and on the tenets of Malebranchc.* His posthumous work, or rather tract, the ' Contemplatio Philosophica,' seems to contain his latest thoughts on the opinions of Malcbranche and Leibnitz. In France, he formed the acquaintance of Bishop Bossuet and Lord and Lady Bolinglbroke, with all of whom Sir W. Young has printed some of the correspondence. He returned to England in February, 1717; but his health was now impaired, and, throwing inp the secretaryship in October, 1718, he retired to Aix-la-Chapelle. On returning to England early in 1710, he seems to have abandoned the mathematics almost entirely: among lis papers of this period are essays on Jewish Sacrifices, and on the lawfulness of eating blood. At the end of 1720 he went to visit Lord Bolingbroke at La Source, near Orleans, and returned to England in 1721. After the middle of this year he wrote nuthing for publication, nor could his grandson find anything of a mathematical character among his papers, with the exception of reference to a treatise on logarithms, which it seems he had placed in the hands of his friend Lord Paisley (afterwards Abercorn) to prepare for the press, but which was never printed.
At the end of 1721 he narried a young lady of small fortune, a circumstance which occasioned a rupture with his father. Some months after his marriage, and when there appeared hope of issuc, his wife was informed that the birth of a son would probably accomplish a reconciliation between her lusband and his father. On this she fixed her mind with such earnestness, that on finding herself in due time actually delivered of a son, she " literally died of joy :' the infant also perished. This melancholy event led to the reconciliation the hope of which had caused it, but not till the autumn of 1723 . Dr. Taylor returned to his father's house, and in 1725, with his father's consent, married the daughter of a ncighbouring proprietor. In 1729 he succeeded to the family estate by the death of his father, and in the following year his wife died in giving birth to a dáugliter, afterwards the mother of the writer of the memoir from which we citc. This blow was fatal; Lord Bolingbroke, now settled again in England, endeavoured to divert the thoughts of his friend by inducing him to pass some time in his house, but in about a year after the stroke, Dr. Taylor died of decline (in London, we suppose), December 29, 1731, and was buried in the clpurchyard of Saint Anne's, Soho. The family estate of Bifrons is still in the possession of the descendants of his brother Herbert.
We shall dismiss other points with brief notice, and as well known, in order to come to the history of the theorem: such are the celebrity of Taylor's solution of the problem of vibrating chords, the questions he proposed to the foreign mathematicians in the war of problems, his answer to those of Leibnitz, the accusation of plagiarism made against him by John Bernoulli, and his reply. With reference to the celebrated works on perspective, the first was mathematipal, the second intended for artists who hardly knew anything of geometry. Bernoulli charged Taylor with having taken his method from another, and Prony states that it is in fact the one given by Guido Ubaldi, though he thinks Taylor could not have seen that method. The work referred to is 'Guidi Ubaldi Perspectivæ Libri Sex,' Pisauri, 1600, at which we have looked in consequence. Nothing is more easy than assertion about old books: if Prony had really looked attentively at the works of Ubaldi and of Taylor together, he would have seen that whereas the formert only introduced the use of vanishing points as to lines which are horizontal (the picture being vertical), Taylor introduced the method of vanishing points for all lines whatsoever, and made them of universal application. We cannot think that he had never seen Ubaldi's work: a man of.learning, an artist from early youth, was not likely to be ignorant of so celebrated a production. He must have seen, and generalized, the method given by Ubaldi. If indeed any one between the two is asserted to have a claim, that claim, when proposed, mnst be discinssed: but a general charge of plagiarism from Jolm Bernoulli is literally no more than a record of the fact that

* Fontemelle, in hin Eloge of Malebranche, says that the "Recherche de la Verite was translated into linglish hy n relative of Taylor of the same name-
4 Thee rery title parce of Vhasdits work aunonnees by a dingran that its distinctivo feature is the use of vanishing points all at the height of the eve.
the party aceused and Jolin Bernoulli had had a quarrel, whilo what relates to Ubaldi is only so far true in that Ubaldi used the partienlar and Taylor the general method. It is not eredible that Ubaldi was ignomut of the general proposition, or if he were so, Stevinuts (whose Sciograjhia wes published in 1608) was not;* but Stevinus did not use any vanishing points, except those of lines parallel to the grownd, nor Ubaldi neither: while Taylor did use them, whiel is the distinetive feature of his system. Again, it is a strong presumption in favour of Taylor's oriminality in this point, that works published abroad shortly ntter his time do not eontain it. For example, the 'Kurzgefaste Finleitung zur Perspectiv, von J. C. Bischoff. 1741: a quarter of a century ifter the time of Taylor's pullieation, contains no use of vanishlug points exeept at the height of the eye.
The Methodus Incrementornm is the first treatise in which whint is at this day called the calculus of finite differences is proposed for consideration. Besides what are now the most common theorems in this subject, there are varions purely fluxional or infinitesimal theorice, such as the change of the independent variable, integrations, J. Bernoulli's series, \&ce., and various applications to interpulation, the vibrating chord, the catenary, dome, sie., eentre of oseillation and percussion, law of density of the atmosphere, refraction of light. The' first enunciation of the eclebrated theorem is as follows:-

PROP. VII. THEOR. III.

Sint x et z quantitates dux variabiles, quarum z miformiter augetur per data incrementa z, et sit $n z=0$, $v-z={ }^{1} v,{ }^{\prime} r-z={ }^{\prime \prime} v$, et sic porro: Tuin dico quod quo tempore z creseendo fit $z+\tau, x$ iten creseendo fiet

$$
x+x \frac{v}{1 z}+x \frac{v^{9} v}{1.2 z^{3}}+x \frac{v^{\prime} v^{w_{n}}}{1 \cdot 2.3 z^{3}}+\text {, } \mathrm{E} .
$$

Corollary I. expresses the corresponding theorem for decrements.

Coroll. II.

Si pro Incrementis evarteseentibus serihantur fluxiones ipsis proportionales, factis jam omnibus " p, ' c, v, v, n, v, \&c. :equalibus quo tempore z uniformiter fluendo fit $z+v$ fiel x,
$\because \quad x+\dot{x} \frac{v}{1 \dot{z}}+\ddot{x} \frac{v^{2}}{1.2 \dot{z}^{2}}+\dot{x} \frac{v^{3}}{1.2 .3 z^{3}}+$ \&c.
vel mutato signo ipsius v, quo tempore z decreseendo fict $z-v, x$ decrescendo fiet

$$
x-\ddot{x} \frac{v}{1 \dot{z}}+\ddot{x} \frac{v^{2}}{1.2 \dot{z}^{2}}-\dot{\ddot{x}} \frac{2^{3}}{1.2 .3 \dot{z}^{3}}+, \& c .
$$

Taylor does not make mueh use of his own theorem in the Methodus Inerementorum, but he shows his command over it in the paper above eited on the roots of equations, in which he extends Newton's method to other than algebraical equations.

One would have supposed that such a theorem as that of Taylor, the instant it was proposed, would linve been hailed as the best and inost useful of generalizations. Instead of this, it sunk, or rather never rose, till Jagrange pointed out its power. This is perhaps an assertion which some may doubt: we proeeed to make it good. The first criticism upon the whole work (withbut a word albout the theoremi) was that of I.eibnitz, in a letter to Johm Bernoulli (dune. 1716, vol. ii., p. 380, of their corresporndence), and it will show of what sort of view the negleet of this theorem was the eousequenee. The translation is as cuffllows:- I have received what Taylor ealls his Methon the facterements. It ls an applieation of the differential and ran in a wl caleulus to numbers, or mether to general mag-- ${ }^{\text {gin }}$ Thus the Einglish have placed the horses, aceorlor et the proverl), behind the eart. I began the diffeini "ucaleulus from series of bumbers and so eame if Poly from the seneral calculas to the special geomeinf reror infinitesimal calculus. They proceed the other remifo aruse they have not the true method of inventiger

 'solus.',
swers (August, 1716, p. 380):- 'I have at length received Tuylor's book. What, in the name of Gool, does the man mean by the darkness in whels he involves the elearest things I No doubt to conceal his habit of thieving; as far as I ean make it ourt, I see nothing but what he has stolen from me, throught lis thick eloud of ohscurity?' The notion of Leeibnitz prevailed for a long time, and is not quite extinet in our own day, thongl rapidly expirine: the Differential Calenlus was to be used only as the medium in which pure algebra was to be rpplied to geometry and physies, and even a gencralization of existing theorents, expressed in the language of that Caleulus, was a positively erroneous mode of proceeding.

In Britain, two really great diseiples of Taylor soon appeared, Stirlivg and Maclatras. The fipst chaph. Difl., p. 102) repented the theorcin as given by Tajlor limaclf, and adds that Herman had also piven it in the Appendix to his Phoronomia; and as this last work was pulsithed in 1716, were Slirling's assertion true, Ilernan must probably be considered an independent inventor. But ons examining the appendix to the Phoronomia (p. 393), to whiels Stirling refers, we find only the theorem in book v... lemma 3 , of the Principia, and Jolin Bernoulli's series for integration. Maclaurin (Fluxions, 1742, p, 010) proved Taylor's theorem again in the way which has since become common. But loth Stirling and Maclaurin use only a particular ease of Taylor's theorem, expanding not $\phi(x+z)$. but $\phi(0+z)$, or expanding ϕz in powers of \approx. Neither thought he was doing more than provine Taylor's theorem, and hoth atmbute the result to Taylor. Nerertheless this particular ease has been sinec eafled Maclaurin's theorem, though, if not Taylor's, it is Stirling's. Naclaurin's book was, no doubt, more read than either of the other two; it was the answer to Berkeley's metaphysical olyjections, and contained great power and vast store of instanees; and this may have been the reason why a theorem whieh was best used in, and best known by, Maclaurin's book, should be called after his name. It is well that it should be so, or rather, it would be well that the development of $\phi(0+z)$ in powers of z should be ealled by the nanie of Stirling: for in trulh the development of $\phi(a+b)$ in powers of b is one theorem or another in its uses, and in the consequences it snggests, according as a or b is looked at as the principal letter.
In the interval between Taylor's deafl and Lagrange's paper in the Berlin Memoirs for $17 / 2$, in which he first proposed to make Taylor's theorem the foundation of the biflerential Calculis, the theorem was hardly known, and even when known, not known as Tayloris. We cannot find it in. Hodgson's Fluxions (1736), in Maria Agnesi's Institutions (1748), in Landen's Residual Analysis (17(4)), in Simpson's Fluxions (1737), in Limerson's Increments 1763), in Emerson's Fluxions (1743), in Stone's Mathematical Dietionary ($17+3$), nor in tlic fint edition of Montuelaंs History (1758), We lave examined various other places in which it slould be, without finding it anywhere, except in the great Frenel Eneyelopedia (article 'Series'), and there we certainly did find it, mentioned only incidentally, and attributed loy no less a person than Condorret to D'Aembert. The Abbé Bossut, who wrote the preliminary essay, knew nothing about the theorem at that time; though afterwards, when he publisbed lis listory of mathemalies, he was better infornect. We found aflerwards that Condorect (Lacroix, tom. iii., p. 396) was in the habit of assigning this theorem to D'Alenbert; not with any unfair intention, but in pure ignorance. The faet was that D'Alembert (Recherches sur differens points S.e., yol. i., p. 50, uecording to bacroix) gave tor the first time the theorem aceompanied ly a method of finding the remmant of Taylors scrics after a certain mumber of terns have been taken; and Condorect, who probally hal never seen the theoren elsewhere, thought it was D'Alembertiso In fact, D'Alembert himself gave the theorens as if it were new, and withont mentioning the name of any one, which Lacroix say's is 'assez singulier,' an opinion in which we eannot agree. Unless D'Alembert read English, we cannot imagine how he shonld have known Taylor's theorem, nor event then, umless T'aylor, Stirling, Maclaurin, or an old volume of the Philosopliical Transactions, be supposed to have fallen in bis way. We lave no doubt that ID Alembert Whs a new discoverer of the theorem, and that Condoreet never saw it exeept in his writings. Our wonder rather is where Iagrange could have found the name of Taylor in
eonnexion with it. For the use which Lagrange proposed to inake of it, see Difrerenticil Calculus, and Functions, Theory of. From the time of the publication of the works cited in the article last referred to, Taylor's theorem takes that place which, if it had always occupied, we should not have had to write any llistory of it. Full justice is done to the discoverer : it only remains to restore to Stirling the view of the theorem which las hitherto been given to Maclaurin.
Taylor's Theorem. We propose in this part of the article to give some aceount of the methods of algebraical development which are consequences of the celebrated theorem, the history of which is given in the last article. The simplest parts of the Differential and Integral Calenlus will be presumed known. It is not usual in works on that subject to bring together in one place the most conspicuous theorems which have arisen out of that of Taylor; which makes it the more desirahle that such a thing should be done in a work of reference. It is to be particularly remembered that we do not here profess to teach the subject of development, but only to recall the steps of the several prucesses to those who have alrcady learnt them, and to present the theorems. in a form which can be casily referred to.
As to notation, we shall frequently signify differentiation by accents: thus $\phi^{\prime \prime} x$ is the second difterential coefficient of ϕx with respect to $x ;(\phi, r \psi x)^{\prime \prime \prime}$ is the third diffcrential coefficient of the product of ϕx and ψr. And $[n]$ will signify the product $1 \times 2 \times 3 \times \ldots \times(n-1) \times n$. Morcover when a series is written, tliree terins will be written down, and the general term appended.
Tuylor's theorem is as follows:-
$\phi(x+h)=\phi x+\phi^{\prime} x \cdot h+\phi^{\prime} e e^{\frac{h^{2}}{2}}+\& \mathrm{e}, \quad\left\{\phi^{(n)} x \frac{h^{n}}{[n]}\right\}$
This theorem is true whenever x has such a value that1. No one of the set $\phi, x, \phi^{\prime} x$, Sce. is infinite. 2. All of them do not ranish. Thus neither of the following eould be allowed to be treated by it when $x=a$:
$\mathcal{N}\left(x^{2}-c^{2}\right) \cdot \log x$ and $\varepsilon^{-(x-a)^{-1}}$.
In the first function, $\phi^{\prime} x$, and all which follow; are infinite when $x=a$; in the second ϕx and all its differential coefficients vanish when $x=a$. The meaning of this cireumstance is as follows: the form of Taylor's theorem essentially requires that $\phi(x+h)$ should be developed in ascending integer powers of h; consequently when such form of development is impossible, this theorem inust show sizns of being inapplicable, Now, the first of these funetions (when $x=a$) can only have $\phi(a+h)$ expanded in aseending fractional powers: and the second only in deseending integer powers. Tlose who will only allow the use of eonverging series may require also that h should he so small that the resulting serics is convergent: but this objection will afterwards be inapplicable, as will be seen.
We shall state five proofs of this theorem bricfly, bcing substantially those given by Taylor, Maclaurin, D'Alembert, Lagrange, and Ampèrc.
Taylor's Proof.-Let $\omega \theta=h$, and form differences of ϕx from the series $\phi r, \phi(x+\theta), \phi(x+2 \theta), \ldots \ldots \phi(x+m)$. Consequently we have [Difference]

$$
\phi(x+n \Delta x)=\phi \cdot x+n \Delta \phi x+n \frac{n-1}{2} \Delta^{2} \phi x+, \& e .:
$$

where $\Delta x=\theta$. Throw this into the form

$$
\phi(x+h)=\phi x+\frac{\Delta \phi x}{\Delta x} h+\frac{\Delta^{2} \phi x}{(\Delta x)^{2}} h \frac{h-\Delta x}{2}+, \& \mathrm{c}
$$

L.et n increase without limit, Δx at the same time dininishing, so that $u \Delta x$ remains always $=h$. Then

$$
\begin{gathered}
\phi(x+h)=\phi x+\binom{\text { rimit of }}{\Delta \phi x: \Delta x} h+ \\
\binom{\text { Limit of }}{\Delta^{\prime} \phi x:(\Delta x)^{s}} \frac{h^{2}}{2}+, \text { scc }
\end{gathered}
$$

So that Taylor's theorem is proved when we know that $\phi^{(h)} x$ ls the same as the linit of $\Delta^{h} \dot{\phi} \cdot \mathrm{c}:(\Delta x)^{h}$. This was all assumption * of Taylor's: but in the modern dif-

- If pro incrementis evanctcenthes serilhntur finziones ipsis propor.
ferential ealeulus it is a better plan to prove Taylor's theorem in another way, and then from the preceding follows the simplest mamer of showing the identity of $\phi^{(k)} x$ and the limit of $\Delta^{k} \phi x:(\Delta x)^{k}$.
Maclaurin's Proof.-The method here given was first used by Maclaurin, and though it was only applied to develop $\phi(0+h)$, yet it will do equally well for $\phi(x+h)$; and Maelaurin himself saw no difference (as indeed there is none, ϕ being any function whaterver) between the two eases. It turns upon $\phi(x+h)$, giving the same result, whether differentiated with respect to x or h, and assumes the form of the development, which is a radical defect. It is as follows: Let $\phi(x+h)=\mathrm{A}+\mathrm{B} h+\mathrm{C} h^{2}+$, \&c. ; then $\phi^{\prime}(x+h)=$ $\mathrm{B}+2 \mathrm{C} h+3 \mathrm{D} h^{x}+, \& \mathrm{c} ., \phi^{\prime \prime}(x+h)=2 \mathrm{C}+3.2 \mathrm{D} h+, \& \mathrm{c}$. $\phi^{\prime \prime \prime}(x+h)=3.2 \mathrm{D}+$, \&c., which, when $h=0$, give $\phi x=$ $\mathrm{A}, \phi^{\prime} x=\mathrm{B}, \phi^{\prime \prime} x=2 \mathrm{C}, \phi^{\prime \prime \prime} x=3.2 \mathrm{D}$, \&c.; from which the theorem readily follows. The cominon proof, given in most elementary works on the differential calculus, is but a less commodious form of this.
D'Alembert's Proof. -The first principles of the Integral Caleulus give

$$
\phi(a+h)=\dot{\phi} \dot{\phi}+\int_{a}^{a+h} \phi^{\prime} x d x
$$

Let $x=a+h-z ; \int_{a}^{a+h} \phi^{\prime} x d x=-\int_{h}^{0} \phi^{\prime}(a+h-z) d \dot{z}$

$$
=\int_{\varphi}^{h} \dot{\phi}(a+h-z) d z=\phi^{\prime} a \cdot h+\int_{0}^{h} \phi^{\prime \prime}(\dot{q}+h-z) \cdot z d z ;
$$

the last step being made by parts. Similarly

$$
\begin{aligned}
& \int_{0}^{h} \phi^{\prime \prime}(a+h-z) z d z=\phi^{\prime \prime} a \frac{h^{x}}{2}+\int_{0}^{h} \phi^{\prime \prime \prime}(a+h-z) \frac{z^{8} d z}{2} \\
& \int_{0}^{h} \phi^{\prime \prime \prime}(a+h-z) \frac{z^{2} d z}{2}=\phi^{\prime \prime \prime} a \frac{h^{3}}{2.3}+\int_{0}^{h} \phi^{\mathrm{iv}}(a+h-z) \frac{z^{g} d z}{2.3},
\end{aligned}
$$

and so on: whence it appears that if we go up to h^{*} in the, series, the term involving h^{n} may be followed by another, expressed in the form of a definite integral, and which alene represents all the remnant of the series; as follows:-

$$
\phi^{(n)} a \frac{h^{n}}{[n]}+\frac{1}{[n]} \int_{0}^{h} \phi^{(n+1)}(a+h-z) \cdot z^{n} d z
$$

The conditions of integration require that neither $\phi x, \phi^{\prime} x, \ldots . \phi^{(n+i)} x$ should be infinite from $x=a$ to $x=a$ $+h$, both inelusive: this one condition being satisfied, the difficulty of divergent series disappears; for the theorem does not give an infinite series ät all, but only any number we please of the terms of a series together with a concluding quantity which is finite both in form and reality. This integral mighit frequently be diffieult to use, but limits for its value may be readily obtained. Let \mathbf{P} and p be the greatest and least values of $\phi^{(n+1)} x$ from $x=a$ to $\dot{x}=a$ $+h$, both inelusive: then the eoneluding integral lies between

$$
\mathrm{P} \int_{0}^{h} z^{n} d z \text { and } p \int_{0}^{h} z^{n} d z \text { or } \frac{\mathrm{P} h^{n+1}}{n+1} \text { and } \frac{p h^{n+1}}{n+1} .
$$

Now when a continuous function does not become infinite between two values of x, every quantity which lies between its greatest and least value is one of its intermediate values: or anything between P and p is a value of $\phi^{(n+1)}(\alpha+\theta h)$, for some value of 0 which is either 0 or 1 , or between them. Hence the preceding expression may be written

$$
\phi^{(n)} a \frac{h^{n}}{[n]}+\phi^{(n+1)}(a+\theta h) \frac{h^{n+1}}{[n+1]}
$$

The following form has been given by M. Cauehy. Let P and p represent the greatest and least values of $\phi^{(n+1)}$ $(a+h-z) \cdot z^{n}$ from $: z=0$ to $z=h$, both inclusive : pre ' ciscly similar reasoning will give for the last term chosen of 'raylor's series, and the value of the remnant,

$$
\phi^{(n)} a \frac{h^{n}}{[n]}+\phi^{(n+1)}(a+h-\theta h) \cdot \theta^{n} \frac{h^{n+1}}{[n]}
$$

where θ is either 0 or 1 , or between them.

We eall the preceding D'Alembert's proof, but it is rather D'Slembert's result, and even that in a different form: his real process is as follows:-To take a case, integrste $\phi^{\text {ir }}(x+h)$ four times with respect to h, beginning at $h=0$: the results are ($x+h=\mathbb{X}$ for abbreviation)

$$
\begin{aligned}
& \phi^{\prime \prime} \mathrm{X}-\phi^{\prime \prime \prime} x=\int d h \cdot \phi^{\prime \prime} X \\
& \phi^{\prime \prime} \mathrm{X}-\phi^{\prime \prime} x-\phi^{\prime \prime \prime} x \cdot h=\left(\int i / h\right)^{2} \phi^{\prime \prime \prime} \mathbb{X} \\
& \phi^{\prime} \mathrm{X}-\phi^{\prime} x-\phi^{\prime \prime} x \cdot h-\phi^{\prime \prime \prime} x \frac{h^{2}}{2}=\left(\int d h\right)^{3} \phi^{i v} x \\
& \phi X^{2}-\phi x-\phi^{\prime} x \cdot h-\phi^{\prime \prime} \cdot r \frac{h^{3}}{2}-\phi^{\prime \prime \prime} x \frac{h^{n}}{2.3}=\left(\int d h\right)^{\prime} \phi^{16} x,
\end{aligned}
$$

and from this sort of process the result is

$$
\begin{gathered}
\phi(x+h)=\phi x+\phi^{\prime} x \cdot h+\phi^{\prime \prime} x \frac{h^{2}}{2}+\ldots \\
+\phi^{(n)} x \frac{h^{n}}{[n]}+\left(\int_{0}^{h} d h\right)^{n} \phi^{(n)}(x+h)
\end{gathered}
$$

the two sides presenting the most identien forms whieh have yet occurred. The integral may easily be reduced to the form already given (Lacroix, vol. iii., p. 397). D'Alembert funished with the preceding form: it was Iagrange who first gave the limits wheh we have appended above.
Lagrange's Pronf.-By this we do not mean the fallaeions proof referred to in Functions, Tuzory of, but that by which Lagrange established the limits of the value of the remnant, which, on the ordinary definition of a differential coefficient, is a proof, and a very satisfactory one, of the whole theorem. It rests upon the proposition that if a function of x have always one sign from $x=a$ to $x=a+h$, the integral of that function taken between those limits will have the same sign.

If then we wish to establish Taylor's theoren as far as; say, the term involving h^{2}, and to give the limits of the remainder, let P and p be the greatest and least values of $\phi^{\mathrm{lv}}(a+z)$ from $z=0$ to $z=h$. Between those limits then $\psi^{\text {iv }}(a+z)$ -P is negative : integrate from $z=0$ to $z=$ any value not grenter than h, and, by the preliminary theorem, $\phi^{\prime \prime \prime}(1+z)$ $-\phi^{\prime \prime \prime} u-\mathrm{P} z$ is negative. Integrate successively under the same conditions, and we learn, step by step, that

$$
\begin{aligned}
& \phi^{\prime \prime}(a+z)-\phi^{\prime \prime} a-\phi^{\prime \prime \prime} a \cdot z-\mathrm{P} \frac{z^{8}}{2} \\
& \phi^{\prime}(a+z)-\phi^{\prime} a-\phi^{\prime \prime} a \cdot z-\phi^{\prime \prime} a \frac{z^{z}}{2}-\mathrm{P}^{2} \frac{z^{8}}{2.3} \\
& \phi(a+z)-\phi a-\phi^{\prime} a . z-\phi^{\prime \prime} a \frac{z^{2}}{2}-\phi^{\prime \prime \prime} a \frac{z^{3}}{2.3}-\mathrm{P} \frac{z^{4}}{2.3 .4}
\end{aligned}
$$

are severally nerative. But $\phi^{\text {iv }} x-p$ is positive from x $=a$ to $x=a+h$; consequently, proceeding in the stme manner, we find that, z being not greater than h,

$$
\phi(11+z)-\phi a-\phi^{\prime} a . z-\phi^{\prime \prime} a \frac{z^{2}}{2}-\phi^{\prime \prime \prime} 1 \frac{z^{2}}{2.3}-p \frac{z^{4}}{2.3 .4}
$$

is positive. If then we make $z=h$, we find that $\phi(a+h)$ lies between
$\phi+\psi^{\prime} a . h+\ldots .+P \frac{h^{4}}{2.3 .4}$ and $\phi a+\phi^{\prime} a . h+\ldots+p \frac{h^{s}}{2.3 .4}$,
and the rest is is in the last proof.
There is a pronf given by M. Canchy which resembles the preeeding in its pinceiple, though of very different details, which may be seen in the 'Lib. U. K., Differential Calculus, pp. ©8, \&e., 707 . L3at this pronf, though very well in a treatise on the subject, on aceount of the coflatomal uses of the preliminary theorems which it requires, is not so well smitel to an isolated article on Taylor's theorem.

Amf ire's Prouf.-I.et $\phi x=\phi a+\mathrm{P}^{\prime}(x-a)$; differentiate suceessively with respect to u, and we have

$$
\begin{aligned}
& 0=\phi^{\prime} a+\mathrm{P}^{\prime \prime}(x-a)-\mathrm{P} \\
& 0=\phi^{\prime \prime \prime}+\mathrm{P}^{\prime \prime \prime}(x-a)-2 \mathrm{P}^{\prime} \\
& 0=\phi^{\prime \prime \prime}\left(a+\mathrm{I}^{\prime \prime \prime \prime}(x-a)-3 \mathrm{P}^{\prime \prime},\right. \text { sce. }
\end{aligned}
$$

substitute for P P $P^{\prime \prime}$, Sce. their values: that is, sulsstitute from each equation to the preecding, and we have, making $x=a+h$, Thylor's theorem with the following result for the remnant following the term which has $h^{\prime \prime}$ in it

$$
\frac{d^{n}}{d u^{n}}\left(\frac{\phi x-\phi x}{x-a}\right) \frac{h^{n+1}}{[n]}
$$

making $x=a+h$ anter differentiation.
It gives some trouble to show the linits of this expression, for which we may refer to Ampere, 'Irecis de Ciletul Ditferentiel,' Se., Journ. Ec. Polytectm., eah. xiii., p. 1:30. This tract of Anpere is one of the purest deductions extant of the Ditherential Caleulus from the theory of limits.
In looking through all the proofs whieh give limits to the remnant of the serics, it will be seen that neither $\phi \cdot x$. nor any diferential coefficient emploged ean be allowed to become infinite between $x=a$ and $x=u+h$. When such a eireumstance does occur, the theorem relative to the limits may cease to be true. For instance, let ϕx $=(x-m t)^{-1}$, and stop the series after the first term, which gives

$$
\frac{1}{a+h \quad m}=\frac{1}{a-m}-\frac{1}{(a+\theta h-m)^{2}} \cdot h
$$

if $a+h$ and a be both greater or both less than m, a value of 0 lying between 0 and 1 will be found to sativfy this equation, as it should do from the theorem. But if $r=m$ between $x=a$ and $x=a+h$, none but ant innginary value of 0 will satisfy this equation.
Slirling's theorem, as it should be called, Maclaurin's as it is ealled, is found simply by making $a=0$ in the development of $\phi(a+x)$. It gives

$$
\begin{aligned}
\phi x= & \phi 0+\phi^{\prime} 0 x+\phi^{\prime \prime} 0 \frac{x^{2}}{2}+\ldots \ldots \\
& +\phi^{(n)} 0 \frac{x^{n}}{[n]}+\phi^{(n+1)}(\theta x) \frac{x^{n+1}}{[n+1]}
\end{aligned}
$$

0 being either 0 or 1 , or between them. Here $\phi^{(n)} 0$ means that ϕx is to be differentiated n times, and x made $=0$ after all the differentiations. This is the nost useful form of Thylor's theorem, with which it-may be considered as identical in one point of view, and of whieh it is a particular ease in another: for $\psi(a+x)$ absolntely developed by Stirling's theorem is simply $\psi(a+x)$ developed from \$a by Taylors theorem.
Jofn Bernoulli's theorem, as given in the Leipsie acts for 1696, is as follows:-

$$
\int_{0}^{3} \psi x d x=\psi x \cdot x-\psi^{\prime} x \cdot \frac{x^{2}}{2}+\psi^{\prime \prime} x \frac{x^{5}}{2.3}-8 \mathrm{sc}
$$

Here is an instanee rery mineh rescmbling the counexion of the Bivomal T'ukomes (1,412) with Wallis's previons investigntions. If Watlis had lonked at his own result in a new point of view, he might not have len the binomial theorem for Newton: if John Bemonlli had done the same, he might have given the law of developarem of $\phi(x+h)$. The preceding is a ense of Taylor's theort7n, 2; follows: by that theorem

$$
\begin{aligned}
& \phi(x-x)=\phi x-\phi^{\prime} x \cdot x+\phi^{\prime \prime} x \frac{x^{3}}{2}-\ldots \\
& \quad \pm \phi^{(n)} x \frac{x^{n}}{[n]} \mp \dot{\phi}^{(n+1)}(x-0 x) \cdot \frac{x^{n+1}}{[n+1]}
\end{aligned}
$$

and $x-0 x$ is the same in meaning as $0, r$, an undetemined fractional part of x. Let $\phi, x=\int_{0}^{x} \psi x \cdot \| x$, then $p(0)=0$, nond substitution and transposition give

$$
\begin{aligned}
& \int_{0}^{\pi} \psi x d x=\psi x \cdot x-\psi^{\prime} \cdot x \frac{x^{2}}{2}+\psi^{\prime \prime} \cdot x \cdot \frac{x^{3}}{2 \cdot 3} \\
& \pm \psi^{(n-1)} x \frac{x^{n}}{[11]} \mp \psi^{(n)}\left(0 \cdot x^{\prime}\right) \frac{x^{n+1}}{[n+1]}
\end{aligned}
$$

This theorem is not of muel nse as a methot of development, so that we need say no more of it in the present article.
Some views of I, mbert on the reduction of the roots of equations (Acfa Meleffica, 1758) Into series were geucmlized by lagmunge (Mém. Acad. N©i., 1768) into a celebrated theorem of development bearing his mame; and this again was generalized in form ly laplace (Méc. Cef.).

The problem is as follows : given

$$
y=\mathrm{F}(z+x \phi y) \ldots \text { (A) }
$$

required the expansion of ψy, when possible, in powers of x. Since ψy is, by the preceding equation, a function of x and z, if z be constant, and we differentiate with respect to x, and then make $x=0$, or $y=\mathrm{Fz}$, we may use Stirling's theorem. But this differentiation would be laborious and indireet ; it was made more direct (by Laplace) in the following manner:-A constant may have any value given to it, or may be made to vanish, either before or after differentiation with respect to a variable: if then we can express differentiations with respect to x in terms of differentiations with respeet to z only (in whieh x is constant), it will be in our power to make x vanish before the differentiations, which will reduce the indireet or implicit to direct differentiation. This substitution of z-differentiations in place of those of x is done as follows:-Differentiate (A) both with respect to x and z separately, and we have

$$
\begin{array}{lc}
\frac{d y}{d x}=F^{\prime}(z+x \phi y)\left\{\phi y+x \phi^{\prime} y \frac{d y}{d x}\right\} \quad \text { whenee } \\
\frac{d y}{d z}=F^{\prime}(z+x \phi y)\left\{1+x \phi^{\prime} y \frac{d y}{d z}\right\} \quad \frac{d y}{d x}=\phi y \frac{d y}{d z}
\end{array}
$$

Let u be a function of y only, that is, not of x or z exeept as these variables are contained in y : then

$$
\frac{d u}{d y} \frac{d y}{d x}=\phi y \frac{d u}{d y} \frac{d y}{d z} \text { or } \frac{d u}{d x}=\phi y \frac{d u}{d z}
$$

From this equation only it may be shown (by Inducmow) that

$$
\frac{d^{n} u}{d x^{n}}=\frac{d^{n-1}}{d z^{n-1}}\left(\bar{\phi}^{n} y \frac{d u}{d z}\right)
$$

as follows. Assume the preceding to be true for one value of n, and, sinee $(\phi y)^{n} \times d u: d y$ is a function of y only, let it be $d v: d y, v$ being another finction of y.

$$
\begin{gathered}
\frac{d^{n} u}{d x^{n}}=\frac{d^{n-1}}{d z^{n-1}}\left(\frac{d v}{d y} \frac{d y}{d z}\right)=\frac{d^{n} v}{d z^{n}} \\
\frac{d^{n+1} u}{d x^{n+1}}=\frac{d^{n}}{d z^{n}}\left\{\frac{d v}{d x}, \text { or } \phi y \frac{d v}{d z} \text {, or } \phi y \frac{d v}{d y} \frac{d y}{d z},\right. \text { or } \\
\left.\phi y(\phi y)^{n} \frac{d u}{d y} \frac{d y}{d z}, \text { or }(\phi y)^{n+1} \frac{d u}{d z}\right\}
\end{gathered}
$$

whence the theorem remains true after writing $u+1$ for n. But it is true when $n=1$; thercfore it is true for all values of n. If then we make $x=0$, or $y=\mathrm{F} z$, which may be done before the differentiations on the second side of the equation, we have (u being ψy)

$$
\left\{\frac{d^{n} \psi y}{d x^{n}}(x=0)\right\}=\frac{d^{n-1}}{d z^{n-1}}\left\{(\phi \mathrm{~F} z)^{n} \frac{d \psi \mathrm{~F} z}{d z}\right\}
$$

Apply this to Stirling's Theorem, and we have Laplace's Theorem, namely,

$$
y=\mathrm{F}(z+x \phi y) \text { gives } \psi y=
$$

$$
\psi \mathrm{F} z+\left(\phi \mathrm{F} z \frac{d \psi \mathrm{~F} z}{d z}\right) x+\frac{d}{d z}\left((\phi \mathrm{~F} z)^{*} \frac{d \psi \mathrm{~F} z}{d z}\right) \frac{x^{8}}{2}+, \& \mathrm{e} .
$$

$$
\text { the general term, } \frac{d^{n-1}}{d z^{*-1}}\left\{(\phi \mathrm{~F} z)=\frac{d \psi \mathrm{~F} z}{d z}\right\} \frac{x^{n}}{[n]}
$$

Lagrange's theorem, from whicll Laplace generalized, is the case in which $\mathrm{F} x=x$; namely,

$$
y=z+x \phi y \text { gives } \psi y=
$$

$$
\begin{aligned}
& \psi z+\left(\phi z \psi^{\prime} z\right) x+\frac{d}{d z}\left(\overline{\phi z}^{2} \psi z\right) \frac{x^{2}}{2}+\text {, \&e. } \\
& \text { the general term } \frac{d^{n-1}}{d z^{n-1}}\left\{(\phi z)^{n} \psi^{\prime} z\right\} \frac{x^{n}}{[n]}
\end{aligned}
$$

$$
y=z+\phi z . x+\frac{d(\phi z)^{3}}{d z} \frac{x^{2}}{2}+\frac{d^{2}(\phi z)^{3}}{d z^{2}} \frac{x^{3}}{2.3}+, \text { \&e. }
$$

Lagrange's theorem leads to Burmann's Theorem (prcsented to the institute in 1796). The second is in fact the samp as the first, though very different in form, and arrived at independently. It is required, when possible, to expand
ψx in powers of ϕx. This might be done indireetly, by expanding $\psi \phi^{-1} x$ in powers of x, and substituting ϕx for x in the result. The form in which Burmann nbtained Lagrange's theorem avoids the indirect proccss. Let ϕx vanish when $x=a$, and let $\phi x=(x-a): \chi x$, or $x=a+\phi x \cdot \chi x$. We can now employ Lagrange's theorem to expand ψx in powers of ϕx, and we have

$$
\psi x=\psi a+\chi^{a} \psi^{\prime} a, \phi x+\frac{d}{d a}\left(\bar{x}^{2} \psi^{\prime} a\right) \frac{(\phi x)^{2}}{2}+, \& e .
$$

Now the general term of this has for its co-efficient the value of

$$
\frac{d^{n-1}}{d x^{n-1}}\left((x x)^{n} \psi^{\prime} x\right) \text { or } \frac{d^{n-1}}{d x^{n-1}}\left\{\left(\frac{x-a}{\phi x}\right)^{n} \psi^{\prime} x\right\}
$$

when $x=a$: consequently ψx, expanded in powers of ϕx, is found by making $x=a$ in the eo-efficients of the powers of ϕx in the following series :-
$\left.\phi a+\left\{\frac{x-a}{\phi x} \cdot \psi^{\prime} x\right\} \phi x+\left\{\frac{d}{d x}\left(\left(\frac{x-a}{\phi x}\right)^{2} \psi^{\prime} x\right)\right)\right\} \frac{(\phi x)^{2}}{2}+$, \&e. When in a function of any number of variables $x_{1}, x_{2}, \& \mathrm{c}$., the variables are severally to receive increments h_{1}, h_{2}, \&c., the law of the development is best seen by the calculus of operations. [Operition.] To change x into $x+h$ is to perform the operation ${ }^{h} \mathrm{D}, \mathrm{D}$ being the symbol of differentiation with respect to x : the condensed form of the development now before us is

$$
h_{1}^{h_{1}} \mathrm{D}_{1}+h_{2} \mathrm{D}_{2}+\ldots . . \quad \phi\left(x_{1}, x_{2}, \ldots . .\right)
$$

where $\mathrm{D}_{1}, \mathrm{D}_{2}$, \&c. refer to x_{1}, x_{2}, \&e. The general term of the development is

$$
\frac{\left(h_{1} \mathrm{D}_{1}+h_{2} \mathrm{D}_{2}+\ldots . .\right)^{*}}{[n]} \phi\left(x_{1}, x_{2}, \text { \&e. }\right)
$$

which must itself be developed. It is not worth while to pursue this case further; we shall only observe that when it is desired to stop, the remnant may be obtained by writing in the last term $x_{1}+\theta / h_{1}$ for $x_{1}, x_{2}+\theta h_{2}$ for x_{1}, \&e., where 0 , the same in all, is either 0 or 1 , or between them.
The value of x which makes $\phi x=0$ is represented by

$$
\begin{gathered}
a-\frac{\phi}{\phi^{\prime}}-\frac{\phi^{\prime \prime} \phi^{2}}{2 \phi^{3}}-\frac{\left(3 \phi^{\prime \prime 2}-\phi^{\prime} \phi^{\prime \prime \prime}\right) \phi^{3}}{2.3 \phi^{\prime 3}} \\
-\frac{\left(15 \phi^{\prime \prime 3}-10 \phi^{\prime} \phi^{\prime \prime} \phi^{\prime \prime \prime}+\phi^{\prime \prime} \phi^{i v}\right) \phi^{\prime}}{2.3 .4 \phi^{\prime 7}} \\
-\frac{\left\{10 \pi \phi^{\prime \prime 2}\left(\phi^{\prime \prime \prime}-\phi^{\prime} \phi^{\prime \prime \prime}\right)+10 \phi^{\prime 2} \phi^{\prime \prime \prime}+15 \phi^{\prime 2} \phi^{\prime \prime} \phi^{\mathrm{iv}}-\phi^{\prime 3} \phi^{\prime \prime}\right) \phi^{3}}{2.3 .4 .5 \phi^{\prime 9}}
\end{gathered}
$$

- \&c. : where a is any assumed value (the nearer the roiot the better) and ϕ, ϕ^{\prime}, \&e. represent $\phi a, \phi^{\prime} a$, \&e. This series is obtained by common reversion from $\phi(a+h)=0$. For the forms whieh Paoli gave to this series, and also to Burmann's, see Lacroix, vol. i., pp. 306-308. The preceding series has been used, as far as three terms, in the article Approximation.

All that preeedes is found in elementary treatises, with the exception of a few terms of the last series: we now come to matter which has been hitherto only the property of the well-read mathematician, but which well deserves to be made as common as Taylor's Theorem. We refer to Arbogast's method of derivutions. Few, even among mathematieians, are aware of the power of this process, which may perhaps arise from their taking Lacroix's aecount of it, instead of consulting the work of Arbogast himself: the former has only exhibited it to show that it may be reduced to processes of the differential calculus; and even the latter has so loaded his method with heavy applieations, that he lias concealed mueh of its beauty and simplicity.
The foundation of Arbogast's methods is a contrivance for expediting the expansion of $\phi\left(a+b x+c x^{2}+\ldots\right.$ into a series of the form $\mathrm{A}+\mathrm{B} \cdot x+\mathrm{C} \cdot x^{3}+\ldots \ldots$ The process by which B is formed from A, C from B, \&c. is uniforn, and is called derivation; and A being $\phi a, \mathrm{~B}$ may be called $\mathrm{D} \phi a, \mathrm{C}$ may be catled $\mathrm{DD} \phi a$. or $\mathrm{D}^{2} \phi a$, and so on. Hence b ought to be called $D a, C$ ought to be $D^{\prime} 火$, and so on. This notation is not precisely that of Arbogast, but will do for our purpose. For more detail,* see the Differential Calculus (Libruy of Uscjul Knouldedge), pp, 328-3\%.

- There is a yreat denl oll the subject ln the " Mathemutical Treat no " (prnthumurg) of the lev, Johu West, pullished at fahburnhimlous Mr. Wext
$-\mathcal{R}$, for a moment, we write the expansion thus-
$\phi\left(u_{0}+a_{1} x+a_{3} z^{2}+\mathbb{E} c .=A_{0}+\Lambda_{1} x+A_{5} c^{2}+\mathbb{E} e\right.$. and if we differentiate both sides with respect to a_{m}, x and all the other eoefficients remaining constant, we have $\phi^{\prime}\left(a_{0}+a_{1} x+\mathbb{E} e_{0}\right) \cdot x^{m}=\frac{d A_{0}}{d a_{m}}+\frac{d \mathrm{~A}_{1}}{d a_{m}} x+$ \& \&c. which shows that a_{m} eannot enter any eocfficient oreceding $\mathbf{A}_{\boldsymbol{m}}$, or

$$
\phi^{\prime}\left(n_{0}+a_{1} x+\varepsilon \mathrm{c}_{0}\right)=\frac{d \mathrm{~A}_{m}}{d a_{m}}+\frac{d A_{m+1}}{d z_{m}} x+, \delta \mathrm{c}
$$

The first side of this is the same series, whatever letter - was made to vary; the second side is therefore always the same series; whence we collect that $d \mathrm{~A}_{\mathrm{m}+\mathrm{n}}: d u_{\mathrm{m}}$ does not alter with the value of m, being always the coefficient of x^{n} in the development of $\phi^{\prime}\left(a_{0}+a_{1} x+\right.$, Sce.). It is enough to satisfy this condition for cach letter and its preceding one; that is to say, each co-efficient differeniiated with respect to any one letter, is to yield the same result as the directly preceding co-efficient differentiated with respect to the directly preceding letter. The following rules are found sufficient. To pass from any one derivative of ϕ to the next, arrange the letters $a, b, c, \mathbb{S} c$., or $a_{0,}, a_{1}, a_{9}$. Se., whichever may be used, in order, in cvery term: differentiate with respect to the last letter in each term, and multiply by the letter which comes next to it. And when the last but one immediately precedes the last in the alphabet or other consecutive system, do the same with the last but one, and divide by the exponent of the last lefter, as it becomes after the increase which it receives from the process of the preceding letter; but in no case use any letters but the last or the last but one. For instance, beginning with ϕ, in which is only one letter, we have $\phi^{\prime} a, b$, or

$$
\mathrm{D} \phi a=\phi^{\prime} a . b ;
$$

in which are two letters, a and b, consecutive. Operate upon b, and we have $\phi^{\prime} a . c$; operate on $\phi^{\prime} a$, and we have agrain $\phi^{\prime \prime} a . b$, which, with the b which was in before, is $\phi^{\prime \prime} a . b^{2}$, which we divide by the new exponent of b, or by 2, whenee

$$
D^{2} \phi a=\phi^{\prime} a \cdot c+\frac{\phi^{\prime \prime} a}{2} b^{1} .
$$

In forming $D^{3} \phi\left(r\right.$, we use only c in $\phi^{\prime} a . c$, because a does not immediately, precede a; and we get (the suecession being $a, b, c, e, f, g, h, k, \mathbb{S} c$.)

$$
\mathrm{D}^{\prime} \phi a=\phi^{\prime} a \cdot e+\frac{\phi^{\prime \prime} a}{2} \cdot 2 b c+\frac{\phi^{\prime \prime \prime} a}{2.3} b^{3} ;
$$

and so on. As soon however ns the law is established, it is best to form a table of the successive derivatives of the powers of b by this same law: we then have

$$
\begin{gathered}
\mathrm{D}^{\prime \prime} \phi a=\phi^{\prime} a \mathrm{D}^{n-1} b+\frac{\phi^{\prime \prime} a}{2} \mathrm{D}^{n-2} b^{2}+\frac{\phi^{\prime \prime \prime} a}{2.3} D^{n-3} b^{2}+\varepsilon c . \\
\text { as far as } \frac{\phi^{n} a}{[n]} b^{n} ;
\end{gathered}
$$

in which $\phi^{\prime} a, \phi^{\prime \prime} a$, \&ec. are to be taken from the function by common differentiation, and the derivatives of the powers of b from the table. Tlus being done, we have
$\phi\left(a+b x+c x^{2}+c x^{3}+f x^{3}+g x^{3}+\right.$, \&.c. $)=$

$$
\phi^{n}+\mathrm{D} \phi\left(\mathrm{c} \cdot x+\mathrm{D}^{2} \phi a \cdot x^{2}+\mathrm{D}^{3} \phi, x^{3}+,\right. \text { \&.c. ; }
$$

and the process is shomened to its utmost extent ; nll that is not differentiation being merely reference to a table and writing the result.
We shall give materials for procecding as far as the term $D^{12} \phi \pi . x^{12}$, not that so much will often be necessary, hut because it is desirable to slow with how little trouble questions of enormous labour in the ordinary way, nueh, for instance, as that solved in Revereston of Series, may be looked at without dismay. We have to form every derivative of every power of $b, \mathrm{D}) \mathrm{m} / \mathrm{n}$, in which $m+n$ does not exceed 12.
has whitituted a notation, for lial of Arbotimat, in which the will probably have
 Arbogent work, will fiad Wextis srealisen elfounding in derivatous

$\mathrm{D} b=c$	$\mathrm{D}^{2} b=e$	D' $b=f$	$=8$
$\mathrm{D}^{\prime} 6=h$	D ${ }^{6}$	$\mathrm{D}: 6=1$	$\mathrm{D}^{9} 6=m$
$\mathrm{D}^{2} b=n$	$1{ }^{10} 8=p$	$\mathrm{D}^{\prime \prime} \mathrm{B}=9$	
$\mathrm{Db}^{3}=2 b c$			
$D^{4} b^{2}=2 b e+c^{2}$			
$\mathrm{D}^{4} b^{2}=2 / f f+2 c e$			
D $b^{*}=2 b g+2 \cdot f+e^{3}$			
$1)^{\prime} h^{4}=2 h h+2 c g+2 f^{\prime}$			
$D^{\prime} L^{3}=2 b, h+2 . h+2 \rho g+f^{4}$			
$\mathrm{D} 26^{2}=2 h l+2 c k+2 r h+2 f g$			
$\mathrm{D}^{4} b^{s}=2 h n+2 c l+2 c h+2 / h+g^{3}$			
$\mathrm{D}^{0} b^{2}=2 b n+2 c m+2 s l+2 f k+2 g h$			
$\mathrm{D}^{10} b^{3}=2 b p+2 c n+2 m+2 h+2 g h+h^{2}$			
$\mathrm{D} b^{3}=3 b^{\circ} \mathrm{c}$			
$\mathrm{D}^{2} b^{3}=3 b^{2} c+3 b c^{3}$			
$\mathrm{D}^{3} b^{2}=3 b^{2} f+6 b c e+c^{3}$			
$\mathrm{D}^{4} b^{8}=3 b^{2} g+6 b c f+3 b c^{8}+3 c^{8} e$			
$\mathrm{D}^{5} b^{3}=3 b^{2} h+6 b c g+6 b e f+3 c^{8} f+3 c c^{3}$			
$\mathrm{D}^{2} b^{3}=3 b^{2} k+6 b c h+6 b e g+3 b f^{t}+3 c^{8} g+6 c e f+e^{3}$			
$\mathrm{D} 7 b^{3}=3 b^{2} h+6 b c h+6 b c h+6 b f y+3 c^{2} h+6 c e g+3 c^{2}+3 c y$			
$\begin{aligned} D^{8} b^{3}= & 3 b^{2} m+6 b c l+6 b c k+6 b f h+33 g^{2}+3 c^{2} k+6 c c h \\ & +6 c f g+3 e^{2} g+3 f^{4} \end{aligned}$			
$\begin{aligned} D^{2} b^{3}= & 3 b^{2} n+6 b c m+6 b c l+6 b f h+6 b g h+3 c^{2} l+6 c e k \\ & +6 c \int h+3 c g^{2}+3 c^{2} h+6 f g+f^{3} \end{aligned}$			
D $b^{6}=4 b^{\circ} \mathrm{c}$			
$\mathrm{D}^{2} b^{4}=4 b^{3} e+c b^{4} c^{3}$			
$\mathrm{D}^{3} b^{3}=4 b^{3} f+12 b^{3} c 8+4 b c^{3}$			
$D^{5} b^{4}=4 b^{3} g+12 b^{2} c f+6 b^{2} e^{2}+12 b c^{4} e+c^{4}$			
$\begin{aligned} \mathrm{D}^{2} b^{4}= & 4 b^{3} k+12 b^{2} c h+12 b^{3} c g+6 b^{2} f^{2}+12 b c^{2} \dot{g}+24 b c e f \\ & +4 b c^{3}+4 c^{3} f+6 c^{2} e^{1} \end{aligned}$			
$\begin{aligned} \mathrm{D}^{2} b^{6}= & 4 b^{3} h+12 b^{2} c k+12 b^{2} c h+12 b^{2} f g+12 b c^{2} h+24 b c e g \\ & +12 b c f^{3}+12 b e^{2} f+4 c^{3} g+12 c^{2} f f+4 c c^{3} \end{aligned}$			
$\begin{aligned} \mathrm{D}^{2} b^{4}= & 4 b^{3} m+12 b^{2} c l+12 b^{3} c k+12 b^{\prime} j \\ & +24 b e \mathrm{c} h+246 \mathrm{f} g+12 b c^{2} g+1 \end{aligned}$			
$\mathrm{D} b^{3}=5 b^{4} c$			
$D^{2} b^{3}=5 b^{4} e+10 b^{2} c^{2}$			
$\mathrm{D}^{3} b^{3}=5 b^{4} f+20 b^{3} c e+10 b^{2} c^{3}$			
$\begin{aligned} & \mathrm{D}^{\mathrm{b}} b^{s}=5 b^{6} g+20 b^{3} \mathrm{e} f+1.0 b^{3} c^{3}+30 b^{2} c^{2} e+5 \\ & \mathrm{D}^{3} b^{3}=5 b^{4} h+20 b^{3} c g+20 b^{3} c f+30 b^{2} c^{2} f t \end{aligned}$			
$\begin{aligned} D^{8} b^{3}= & 5 b^{4} k+20 b^{3} c h+20 b^{3} c g+10 b^{3} c^{2}+30 b^{8} c^{3} g+60 b^{3} c c f \\ & +10 b^{2} c^{3}+206 c^{2} f+30 b c^{2} c^{2}+5 c^{4} c \end{aligned}$			
$\begin{aligned} D^{2} b^{3}= & 5 b^{4} l+20 b^{3} c k+20 b^{3} e h+20 b^{3} f g+30 b^{2} c^{2} h+00 b^{2} c c c^{2} \\ & +30 b^{2} c f^{2}+30 b^{2}+20 b+20 b c^{3} g+60 b c^{2} b+20 b c c^{3} \\ & +5 c^{4} f+10 c^{3} e^{2} \end{aligned}$			
$\mathrm{D} b^{6}=6 b^{5} c$			
$D^{2} b^{6}=6 b^{3} c+15 b^{4} c^{3}$			
1) $b^{6}=6 b^{3} f+30 b^{4} c e+30 b^{3} c^{2}$			
$1{ }^{2} b^{6}=6 b^{3} c+30 b^{+} c f+15 b^{4} c^{2}+60 b^{2}$			
$\begin{aligned} \text { 1) })^{3} b^{5}= & 6 b^{3} h+30 b^{4} c y+30 b^{4} c f+60 b^{3} c^{2} f+60 b^{3} c c^{3}+60 b^{2} c^{4} c \\ & +6 b c^{3} \end{aligned}$			
$\begin{aligned} \mathrm{D}^{6} b^{6}= & 6 b^{4} k+30 b^{4} c h+30 b^{6} e g+15 b^{4} f^{1}+60 b^{3} c^{8}{ }^{g}+120 b^{3} c e f \\ & +20 b^{4} c^{3}+60 b^{5} c^{1} f+90 b^{2} c^{3} e^{2}+30 b c^{4} c+c^{6} \end{aligned}$			
$1)^{4} b^{2}=7 b^{6} c+21 b^{3} c^{3}$			
1) ${ }^{6} b^{7}=7 l^{6} f+42 h^{3} \mathrm{cc}+3 \mathrm{~m} b^{6} c^{3}$			
1) $b^{2}=7 b^{6} c+42 b^{3} c f+21 b^{8} c^{2}+105 b^{4} c^{2} c+35 b^{3} c^{4}$			
1) $)^{3} b^{2}=7 l^{n} / 4+42 b^{3} c g+42 l^{s} c f+105 b^{4} c^{3} f+105 b^{8} c c^{8}$			
$\mathrm{D} b^{6}=8 b^{\circ} \mathrm{c}$			
1) ${ }^{2} b^{\prime \prime}=8 b^{7} c+28 b^{8} c^{2}$			
1) ${ }^{\prime} b^{8}=8 b^{7} f+56 b^{4} c c+56 b^{3} c^{9}$			
$1)^{4} b^{6}=8 b^{2} g+56 b^{4} c f+29 b^{6} c^{1}+168 b^{3} c^{2} c+706 b^{4}$			
$\mathrm{D} b^{6}=0 b^{\circ} \mathrm{c}$			
1) ${ }^{2} b^{3}=$	$c+36 b^{7} c$		
$\mathrm{D}^{3} b^{6}=$	$f+72 h i c$	$81 b^{6} c^{3}$	
I) $b^{10}=$	$b^{4} c$ I	${ }^{10}=10 b^{\circ} \mathrm{e}$	+45b ${ }^{\circ} c^{3}$
	D b^{1}	$116^{18} \mathrm{C}$	

To verify these results, observe that if we consider each letter as of the first dimension, every term of $\mathrm{D}^{n} b^{r}$ is of the r th dimension; but if we consider each letter as of the dimension following:-

$$
\begin{array}{cccccccccccc}
b & c & e & f & g & h & k & l & m & n & p & q \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12:
\end{array}
$$

then every term of $\mathrm{D}^{n} b^{r}$ is of the $(n+r)$ th dimension. To find out if all the proper terms be there, and with the proper exponents, write down the number of ways in which $n+r$ can be made out of r numbers. Thus to verify this point for D: b^{3}, write down the ways in which 10 can be nade out of three numbers, namely,
$8+1+1,7+2+1,6+3+1,6+2+2,5+4+1,5+3+2$, $4+4+2,4+3+3$;
take the letter answering to each number, in the above list, and multiply the letters of each set together, which gives

$$
b^{2} l, b c k, b e h, c^{2} h, b f g, c e g, c f^{2}, e^{2} f,
$$

which are, coefficients excepted, the terms of $D^{7} b^{3}$ in the table. To yerify the coefficients separately, observe that the coefficient of that term of $D^{n} b^{r}$ which contains the sth power, th power, Sic., is

$$
\frac{1.2 .3 \ldots(r-1) r}{1.2 .3 \ldots .8 \times 1.2 .3 \ldots 1 \times \ldots \ldots .}
$$

Thus in $D^{4} b^{8}$, the term containing $b^{3} c^{2} e$ ought to be multiplied by

> 1.2.3.4.5.6.7.8
$\frac{1.2 .3 .4 .5 \cdot 6.7 .8}{1.2 .3 .4 .5} \times 1.2 \times 1$, or 168 , as is the case.
But the best general mode of verification is derived from the theorem

$$
\mathrm{D}^{n} b^{r-1}=\frac{1}{r} \frac{d \mathrm{D}^{n} b^{r}}{d b}, \text { or } \mathrm{D}^{n+1} b^{r-1}=\frac{1}{r} \mathrm{D}\left(\frac{d \mathrm{D}^{n} b^{r}}{d b}\right)
$$

that is, having a certain derivative of a certain power, the next higher derivative of the next lower power may be found by differentiating with respect to $\dot{\phi}$, dividing by the exponent of the original power, and then performing the derivation. Thus:
$\mathrm{D}^{3} b^{0}=9 b^{3} f+72 b^{7} c e+84 b^{6} c^{3}$,
differentiate with respect to b, and divide by 9 . which gives
$8 b^{7} f+56 b^{5} c c+56 b^{5} c^{3}$.
Now derive, which gives
$8 b^{7} g+56 b^{6} c f^{2}+28 b^{8} e^{2}+168 b^{3} c^{3} e+70 b^{4} c^{4}$,
the same as is found in the talle for 1$)^{3+1} b^{9-1}$. Here we verify the earlier result of the table from the later: to verify the later from the earlier, use the following:-

$$
\begin{aligned}
& \mathrm{D}^{n} b^{r}=\mathrm{D}^{n-1} c \cdot r b^{-1}+\mathrm{D}^{n-2} c^{2} \cdot r \frac{r-1}{2} b^{r-2}+\text { \&e. } \\
& \text { up to } c^{n} \frac{r(r-1) \ldots \ldots(r-n+1)}{1.2 \ldots \ldots n} b^{n-n}, \ldots
\end{aligned}
$$

in which the derivatives of powers of c must be formed from the corresponding tabular ones of b, by changing each letter into the next following. There are thus abundant means of verification. We will mention yet one method more. Only the last letter and the last but one (and that only when the two letters are consecutive) are used in the derivations. If we use any letter, no new term is produced, but only a repetition of those which other terms give. For instance, in $D^{8} b^{5}$ is the term $60 b^{2} c e f$; and in passing to $D^{i} b^{8}$, we derive from f because it is the last letter; and from c because, being the last but ooe, it inmediately precedes f in the series. We do not here use b and c at all; but if we did use them, we should only repeat terms which will come into D: 6 from other sources. Thus:$C 0 b^{2} c e f$ gives, from $f, 60 b^{2} c e g$, which is set down in 1$) \psi^{5}$: from e, $60 b^{2} c f f \div 2$, or $30 b^{2} c f^{2}$, which is also set down : from r, if c had been used, we slould have had $60 b^{2}$ eef $\div 2$, or $306^{\circ} e^{2} f$, which, on looking, we find set down, as arising frons the last letter of $10 b^{2} e^{3}$. From b, in $60 b^{\prime} c e f$, had it been used, we should have got $120 b c c e f \div 2$, or Gollc ${ }^{2}$ ef, which is also found, and arises from the last letter of $30 b c^{2} L^{2}$. If then we ever find that derivation from one of the unused letters gives anything but what arises from some of the letters which are used, it is a sign that some error has been committed.

By help of the preceding method, expansions which analysts usually avoid as much as possible, at almost any expense of circumoperation, are carried with the greatest facility even further than is necessary. The development of $\phi\left(a+b x+c x^{2}+\right.$ \&c. $)$, already given, is one instance; the process in Reversion of Series is another. This last is done* by expanding x in powers of $a x+b x^{0}+$, \&ec., by Burmann's Theorem,' and making the expansion of the negative powers of $\left(a+b x+c x^{s}+\right.$, \&c. $)$, which will be wanted, by the method of derivations. We shall state some further applications:-

$\left(b+c x+e x^{2}+\& \mathrm{c} .\right)^{m}=b^{m}+\mathrm{D} b^{m} \cdot x+D^{2} b^{m} \cdot x^{4}+, \& c$.

When m is integer, these derivatives are in the table. When $b+c x+\& c$. is a finite series, the whole result is brought out with great ease, compared with the trouble of the common algebraical operation: in this case the valuc of every letter after the last in the finite serics is 0 , or the last letter of that series is not to be employed in derivation. Let the reader try for himself $\left(b+c x+e x^{2}+f x^{3}\right)^{3}$ by this mode and then in the common way, going only so far in the latter as to feel sure that the former is of no trouble compared with it. Let $m, m \frac{m-1}{2}$, \&ec. be denoted by m, m_{2}, \&c.

$$
\begin{gathered}
\left(a+b x+c x^{3}+\mathbb{S} c .\right)^{m}=a^{m}+m b a^{m-1} x \\
+\left(m a c+m_{2} b^{8}\right) a^{m-2} x^{8} \\
+\left(m a^{2} c+m_{2} a b^{2}+m_{3} b^{3}\right) a^{m-3} x^{3} \\
+\left(m a^{3} f+m_{2} a^{2} D^{2} b^{5}+m_{3} a \mathrm{D} b^{3}+m_{4} b^{4}\right) a^{m-4} x^{4}
\end{gathered}
$$

,+ \&c.; the law of which is evident, the only thing left being the substitution of the values in the tables instead of the derivatives of b. This form is convenient for fractional or negative powers. The following case is worth exhibit ing separately :-

$$
\begin{gathered}
\frac{1}{a+b x+, \& c_{0}}=\frac{1}{a}-\frac{b}{a^{2}} x+\frac{b^{2}-a c}{a^{3}} x^{8} \\
\frac{b^{3}-a \mathrm{D} b^{2}+a^{2} e}{a^{4}} x^{3}+\frac{b^{4}-a \mathrm{D} b^{3}+a^{2} \mathrm{D}^{2} b^{3}-a^{0} f}{a^{3}} x^{4}
\end{gathered}
$$

-, \&c. We have avoided the formality of writing $\mathrm{D} b$ for $c, \mathrm{D}^{\prime} b$ for e, \&e.

$$
\begin{gathered}
\frac{\mathrm{A}+\mathrm{B} x+\mathrm{C} x^{8}+, \mathrm{Ec} .}{a+b x+c x^{2}+, \& \mathrm{c} .}=\frac{\mathrm{A}}{a}-\frac{\mathrm{A} b-\mathrm{B} a}{a^{2}} x \\
+\frac{\mathrm{A}\left(b^{2}-a c\right)-\mathrm{B} a b+\mathrm{C} a^{2}}{a^{3}} x^{3} \\
\frac{\mathrm{~A}\left(b^{3}-a \mathrm{D} b^{2}+a^{2} e\right)-\mathrm{B} a\left(b^{2}-a c\right)+\mathrm{C} a^{2} b-\mathrm{E} a^{3}}{a^{4}} x^{3}+, \& \mathrm{c} .
\end{gathered}
$$

The law is here evident enough; the next numerator would be

$$
\begin{aligned}
& \mathrm{A}\left(b^{4}-a \mathrm{D} b^{3}+a^{2} \mathrm{D}^{2} b^{2}-a^{3}\right)-\mathrm{B} a\left(b^{3}-a \mathrm{D} b^{2}+a^{2} e\right) \\
& +\mathrm{C} a^{2}\left(b^{2}-a c\right)-\mathrm{E} a^{3} b+\mathrm{F} a^{4}
\end{aligned}
$$

The derivatives of the general term b^{n} may be readily formed, but the particular cases are more useful ; see the derivatives of a^{m} in the general form above given. We shall not overload this subject, with further examples: enough have been given to show those who require developments of some extent how inuch labour they might save. It frequently lappens that the form given is not
$\phi\left(a+b x+c x^{3}+\right.$, \&e. $)$ but $\phi\left(a+b x+\frac{c x^{8}}{2}+\frac{e x^{3}}{2.3}+, \& c.\right)$, in which ease the occurrence of the fractions in the denominator renders the process more complicated than it need

[^6]
TA Y

be. We put down tables for the development of this function, derived from the preceding tables, wa far as the tenth power of x : to be used as follows:-
Let
$\phi\left(a+b x+c \frac{x^{4}}{2}+c \frac{x^{3}}{2.3}+\right.$ Sc. $)=\Lambda_{0}+\Lambda_{1} x+\Lambda_{3} \frac{x_{2}^{2}}{2}$

+ Sc.
Then $A_{n}=\phi^{\prime} d \cdot D^{-1} b+\phi^{\prime \prime} a \cdot D^{n-2} b^{2}+\ldots+\phi^{(n)} a \cdot b^{n}$ where the derivatives of the powers of l, which do not mean the same as hitherto, are to be taken from the following table:-

Dib $=n, \quad \mathrm{D}^{8} b^{2}=10 b m+45 \mathrm{cl}+120 e k+210 f h+126 \mathrm{~g}^{2}$ $\mathrm{D}: b^{3}=45 b^{2} t+360 b c k+810 b e h+1260 \mathrm{lfg}+630 c^{2} h$ $+2520 \mathrm{ceg}+1575 \mathrm{r} f^{2}+2100 e^{2} f$
$D^{6} b^{4}=120 b^{2} k+1200 b^{2} c h+2320 b^{2} e q+157.5 b^{8} f^{2}$ $+3780 b c^{2} g+12000 b c e f+2800 b e^{3}+3150 c^{3} f$ $+6300 c^{4} e^{*}$
$D^{3} b^{s}=210 b^{h} h+2520 b^{3} c g+4300 b^{3} e f+9450 b^{2} c^{2} f$ $+12600 b^{2} c c^{2}+12000 b c^{3} e+945 c^{3}$
$D^{2} b^{6}=252 b^{3} g+3150 b^{4} c f+2100 b^{4} e^{8}+12600 b^{8} c^{4} c$ $+4725 b^{\circ} c^{4}$
$D^{3} b^{7}=210 b^{\circ} f+2520 b^{3} c c+3150 b^{4} c^{3}$
$D^{2} b^{2}=120 b^{7} c+630 b^{6} c^{8}, \quad \mathrm{D} b^{0}=4: 5 b^{2} c$.
We shall conclude this article by recommending that the process of derivation should be introduced, without demonstration of course into clementary books of algebra, as one of the best exercises of simple algebraical operation. We are firmly of opinion that the arithunctician and the analyst should be trained early in the performanee of operations in which mumerous details, each very simple in itself, follow one another in rapid suecession with much sameness and some diversity. For this reason we should recommend, in arithmetic, Iforner's process [l.s volution and Evolution] ; and in algebra, Arbogast's derivation. We proceed necordingly to divest this inethod of the phraseology of the diflerential calculus, and to put it before the elementary student in algebra.

The unnee of the process is derivation; its primary object the raising of any power of an expression of the form $b \cdot f x+e x^{2}+f x^{3}+$, \&c. immediately, that is to say, by writing down the result at once, without any but simple mental processes in passing tromterm to term. The rules are ns follows:

1. Begin with that power of b which is to he raised.
2. To pass from the coeflicient of one power of x to that of the next, multiply each letter by its exponent ; then diminish that exponent by a unit ; then introduce the next letter. And if this last process increase an exponent, owing to the letter newly introduced having been in the term before, divide by the increased exponent. But remember never to operate on any letter exrept the last in the term, or the last but one; upon the last always, upon the last but one when it immediately precedes the last in the original series $b, c, e, f, \& \in c$.
3. If $b+c x+$, $\& c$. be not an infinite series, but a finite number of terms, operate as if the succeeding letters were severally equal to $0:$ for instance, if g be the last letter, drop every term in which h should appear, as fast as it arises.
For example, the fifth power of $b+c x+e x^{2}+f x^{3}$. Begin with b^{3}, derive from it $5 b^{4} c$, the two first terms are $b^{3}+5 b^{4} c \cdot x$
To form the coefficient of x^{3}, take $5 b^{4} c$, and observe that b and c follow each other in the series, so that in the next derivation there are two processes. First, use c or c^{1}, the last letter, which by the rule gives $1 c^{\circ} e$ or c : so that derivation applied to the first power of a letter gives merely a change of that letter into the next : henee $5 b^{\circ} \mathrm{c}$ gives $5 b^{4} e$. But b^{6}, which must also be used, gives $4 b^{3} c$, and $5 b^{5} c$ gives $5\left(4 \beta^{3} c\right) c$; so that c becomes c^{3}, and we must therefore divide by the inereased exponent 2 , giving $10 b^{3} c^{2}$. Hence the next term is

$$
\left(5 b^{6} c+10 b^{2} c^{2}\right) x^{5}
$$

In the next derivation $5 b^{d} e$ gives only $5 b f f$ for b not immediately preceding e in the series b, c, e, \&e, is not used. But $10 b^{3} c^{3}$ gives

$$
10 b^{3}(2 c e)+\frac{10\left(3 b^{2} c\right) c^{2}}{3}, \text { or } 20 b^{3} c c+10 b^{3} c^{3} .
$$

Next term ($\left.n b^{4} f+20 b^{8} c e+10 b^{2} c^{3}\right) x^{3}$.

In the next derivation $56 f$ must be neglected entirely, because f is the last letter, and b is not the one immediately preceding. Also $30 b^{3} c e$ gives $30 b^{3} r f$ and $30 b^{3} e c \div 2$ or $10 b^{3} e^{3}$; while $10 b^{2} c^{3}$ gives $30 b^{4} c^{3} e$ and $2 \times 10 b c c^{3} \div-\frac{1}{-1}$ or $5 b c^{4}$. The whole value of $\left(b+c x+e x^{2}+f x^{3}\right)^{5}$ is as follows, and a little practice would enable any one to write it down at once, without any intermediate operations:
$b^{3}+5 b^{4} c x+\left(5 b^{4} c+10 b^{3} c^{2}\right) x^{4}+\left(5 b^{4} f+30 b^{8} c e+10 b^{2} c^{3}\right) x^{3}$
$+\left(20 b^{3} c f+10 b^{3} e^{3}+30 b^{2} c^{2} e+5 b c^{4}\right) \cdot c^{4}$
$+\left(20 b^{3} \rho f+30 b^{2} c^{2} f+30 b^{2} c c^{2}+20 b c^{3} c+c^{3}\right) x^{3}$
$+\left(10 b^{3} f^{2}+60 b^{2} c e f+10 b^{2} c^{3}+30 b c^{3} f+30 b c^{2} c^{8}+i c^{4} e\right) x^{8}$
$+\left(30 b^{2} c f^{2}+30 b^{2} e^{2} f+60 b c^{2} \rho f+30 b c c^{3}+5 c^{4} f+10 c^{3} e^{2}\right) x^{7}$
$+\left(30 b^{2} e f^{2}+30 b c^{2} f^{2}+60 b c e^{2} f+5 b e^{4}+30 c^{2} c f+10 c^{2} c^{7}\right) \cdot x^{0}$
$+\left(10 b^{4} f^{3}+60 b c e f^{4}+20 b e^{3} f+10 c^{9} f^{3}+30 c^{2} c^{2} f+5 c^{5} \mathrm{~s}^{4}\right.$
$+\left(206 \mathrm{c} f^{3}+30 b c^{4} f^{2}+30 c^{2} e f^{2}+20 c c^{4} f+e^{3}\right) x^{10}$
$+\left(20 \mathrm{br} f^{3}+10 c^{2} f^{3}+30 c^{2} f^{3}+5 e^{4} f\right) x^{11}$
$+\left(5 l f^{4}+20 c e f^{3}+10 e^{1} f^{2}\right)^{13}+\left(5 x f^{4}+10 e^{2} f^{2}\right) x^{13}$
$+5 e f^{4} x^{16}+f^{5} x^{13}$
This process, so simple as compared with the actual performance of the four multiplications, has hitherto hain hid in works on the higher parts of the differential caleulus: it is time it should take its place in every system of algebra which contains the binomial theorem, of which it is the legitimate extension.
TAYIOR, JOHN, IL.D., was born about the year -1703, at Shrewsbury, where his father, according to sonte writers, was a poor shoemaker, or, according to others, a barber. He received his carly education at the grammarschool of his mative place, and afterwards went to Cambridge, where he entered St. John's College, of which he became a fellow in 1730. The great reputation which he soon acquired as one of the best Greek seholars in the University, procured him the office of librarian of the University library, which however he afterwards exchanged for that of registrar of the University. His first work of importance was his edition of the Greek orator Lysias, under the title ' Lysiae Orationes et Fragmenta, Graecè et Latiné: ad fidem codienm MSS, reeensuit, notis eriticis, imterpretatione, cuteteroque apparatu necessario domavit Joannes Taylor,' London, 1739, 410. The year after he edited at Cambridge an octavo edition of the same orator for the use of students, with short notes and a useful index of the language. The study of the Attic orators led him
to the study of the Attic law, of which he probably possessed a better knowledge than any man of his are. He was also fond of the study of the Roman and English law, and he resolved to devote himself to the legal profession. In 1741 he was admitted an advocate in Doetors' Commons, and the year after he took his degree of doctor of laws. On this oceasion he published a Latin dissertation, - Commentarius ad Legem Decemviralem de Inope Debitore in partes dissecando, whieh is a very unsatisfaetory explanation of this difficult subject. Soon after this he published an edition of two Greek orations, 'Orationes duae, una Demosthenis contra Midiam, altera Lyeurgi contra Leocratem, Graeec̀ et Latine,' with notes and emendations, Cambridge, 1743 , 8vo., and in the same year he published the 'Marmor Sandveence, cum Commentario et Notis,' Cambridge, 1743, 4to. This volume also contains a useful dissertation on this celebrated inseription, which had been brouglit from Athens to London by Lord Sandwich in 1733 . In 1744 Dr. Taylor was made ehancellor of Lincoln; and some years later he took holy orders, though without abandoning the study of the law and of the anticnt writers. He was now sueeessively made archdeacon of Buekiugham and rector of Lawford in Essex, to whieh, in 17.57, was added the luerative place of canon residentiary of St. Paul's. In 1755 he published at London, in 4 to., his ' Elements of Civil Law,' a second edition of which appeared in 1769. Dr. Taylor undertook this work at the suggestion of Lord Carteret, who had intrusted hinn with the education of his grandsons, whom he wished to be instrueted in the prineiples and history of the eivil las. The work displays great learning and knowledge of the subject, but it is not well adapted for the use of beginners; an alridgement of it appeared in 1773, in I.ondon, under the title 'A Summary of the Romau Law.' During the last period of his life, Dr. Taylor had made extensive preparations for a new edition of the Greek orators. One volume (which is the third) appeared in 1748 at Cambridge, but his death on the 4th of April, 1756, prevented the author himself from eompleting the work, though all the materials were ready for press. The sceond volume appeared after his deatll, in 1757. The work bears the title, 'Demosthenis, Eschinis, Dinarelii, et Demadis Orationes: Graece et Latine, cum notls edidit J. Taylor.' The notes, which were published at a later time, are incorporated in Reiske's 'Apparatus Criticus' to Demosthencs. In a eritical point of view the edition of Taylor is not of any great worth, and its chief value consists in his notes in illustration of the history of the orations and the Attie law. Dr. Taylor is said to have been a most amiable and disintcrested inan: he had considerable taste for poetry, and some specimens of his muse are printed in the 'Gentleman's Magazine,' and in Niehols's 'Select Colleetion of Poems.'
(Aikin and Johnston's General Biography, vol. ix., p. 337, \&c.; Reiske, Praefutio ad Demosthenem, p. 42, \&.
TAYLOR, SIR ROBERT, born in 1714, was the son of a Iondon stone-mason, who was more prosperous than prudent, for hic affeeted a style of living very unusual at that period among persons engaged in business: he kept his carriage, and also his country-louse in Essex. Towards his son, on thic contrary, he appears to have been far from liberal, as he bestowed on him only a common school edueation, and then placed him under Sir Menry Cheere, a seulptor, whose ehief work of note is the statue of Col. Codrington, in the library of All Souls, Oxford. On quitting Cheere, he was furnished by his father with just sufficient money to proceed to Rome, where he was obliged to live with the utmost frugality. His studies in Italy were however of no long continuance, for he was soon summoned home by the intelligenee of his father being dangerously ill; upon whieh he hurried back to England with as much expedition as the state of the Continent would then permit, and was obliged to dispuise himself as a Franciscan friar. On reaching home, he found that. his father was dead, and that he had left nothing. Thus thrown entirely upon his own resources and ability, all that remained for him was to set up business as a statuary, and he first brought limself into notice ly Cornwall's nomument. Ifis prineipal other works in seulpture are Gueat's monument, near the north door of Westminster Abhey, the fizure of Britannia at the Bank of Fnyland, and the bas-relief in the pediment of the Mansion-house, Lon-
don. After this he abandoned seulpture for architecture, and one of his earliest productions in his new profession was the mansion ereeted by him for Mr. Gower, near the South Sea House. In 1750-58 he was employed in the alterations of old London Bridge in conjunction with Dance, and thenceforth upon a number ot buildings both publie and private; yet very few among whieh display much arehiteetural taste, and least of all any of that riehness in decoration and detail which might liave bcen expeeted from one who had been brought up and had practised as a sculptor. The wings added by him to the Bank of England (afterwards swept away by his suecessor Soane) were at the time termed 'magnifieent,' but then it could only be by comparison with the older building by Sampson, to which they were attaehed. This design itself was only borrowed from one of Bramante's [Bramante], and was upon so small a seale as to look insignificant in such a situation. The 'Stone Buildings' at Lincoln's Inn are such a mere architeetural blank, that the columns, instead of diminishing the poverty of its charaeter, serve only to render it the more apparent. There is however some arehitectural character displayed in that which is called the 'Six Clerks' Offiee, situated between the other building and Chancery Lane. The villa which he built for Sir Charles Asgill at Richmond is at least unexceptionable in taste, though it hardly deserves the admiration it has obtained. Among his other works, Lord Grimston's seat at Gorhambury is one of the best. If not very great, he was eminently successful, in his profession, and obtained several luerative appointments and surveyorships to the Admiralty, Foundling Hospital, Greenwich Hospital, and the Bank of England, for which he was well qualified, being a man of most business-like liabits, and of most extraodinary diligence and assiduity. He ras rarely in bed after four in the morning; was most abstemious in his diet, and drank no wine. Whether in consequence of taking warning from his father's example or not, he seems in almost all respects to have been the very reverse of him in his mode of living; and it is not surprising that his cconomy, together with the appointments which he held, should have enabled him to realize a fortune of 180,000 l., though, as he himself used to say, he began the world with hardly eighteen pence. He died at his own house in Spring Gardens, September 27, 1788, and was buried in St. Martin's chureh. He gave the whole of his property to his only son, the late Miehael Angelo Taylor, M.P., with the execption of a sum to the university of Oxford, to aceumulate for a eertain term of years and then to be applied to found an institute for the study of modern languages. This bequest having been incorporatod with a similar one by Dr. Kandolph for a picture and statue gallery, a building was begin in 1841, under the name of the ' Taylor and Randolph Institute,' from the designs of C. K. Coekerell, Esq., professor of arehiteeture at the Royal Aeademy. Taylor was knighted when sheriff of London in 1783.
(Gentleman's Magazine; Cresy's Milizia; Dallaway's Arts in England; Companion to Almanac, 1842.$)$
TAYLOR, THOMAS, was born in London on the 15 th May, 1758: lis parents were respectable in their ealling, but not wealthy. At a very early age he was sent to St. Paul's sehool, and after remaining there about three years he was placed under the care of a relation who held a situation in the dockyard at Sheerness, with whom le resided several years. During this time he applicd himself assiduously to the study of mathematies, and also obtained some knowledge of chemistry : he next became a pupil of the Rev. Mr. Worthington, a dissenting minister who possessed considerable classieal aequirements, ultimately in tending to complete his studies at Aberdeen with a view to the ministry. But a premature narriage and pecuniary diffeulties compelled him to relinquish this plan, and to aceept a junior elerkship in Messrs. Lubboek's bankinghouse. While in this employment he devoted his spare hours to the study of Plato and Aristotle and their commentators. At this time, and to the end of his life, Mr. Taylor always devoted at least six hours of every day to study, and when not engaged in business they were generally the first six. Poverty, and the diffieulties attending it, were no obstaeles to him, and he always hoped to emerge from the obseurity thcy plaeed him in. He first attracted pullic notice ly an attempt to discover the secret of the perpetual lamp, upon which he gave a leeture and exhibited his experiments at the Frcemasons'

Tavern. Though it was a failure, it was marked by some ingenuily and great and curions research; it made lim some valuable acquaintances, who encouraged him in another mindertuking, whieh was to deliver a course of lectures on the I'latonic pliilosophy. Introducing liniself by such means, he was cmabled to procure pupils, to whom he tanght the languages and mathennties, having also been appointed to the offiee of assistant-secretary to the Society for the Eincouragement of Arts, Manutuetures, and Commeree, which he held for several years: he of course gave up and was glad to be emancipated from the less interesting labours of the banking-house. It was in this situation that he urade a more extensive acquaintance among leamed and scientific men of all professions, and moong men of vrrions ranks who are promoters of arts und sciences, than usually falls to the lot of an obseure individual: but he inade something more than mere acquaintance; he aequired many friends who were able and willing to assist him in all his modertakings, and with whose help he finally accomplished all that he had in view, which was to translate the works of all the untranslated antient Greek philosophers. It was an arduous task for one man, and apparently a hopeless one, seeing that Sydenham, with the advantage of n more regular edlueation, being a graduate of Oxford, and a known and aekuowledged seholar, had not only failed in his desire to impart knowledge to his less learned countrymen by means of translations, but liad been suffered to perish in the attempt for want of patronage, 'to the sorrow and shame (as his biographer says) of every friend of literature:' yet Sydenhan was a good man, highly respected, and had many friends, or believed he had : he must have been a recluse, for the eireumstanees of his dea! h seem to have caused surprise. Mr. Taylor was fond of society, and always in it: there was no appearance of abstraction about him; and a stranger would not have suspected him of being studious; he was always ready to join in conversation with any one who happened to be near him, and upon any subject; there were few subjects upon which he had not read, and he could nlways amuse or instruct if required. 'Being gifted with a very extraordinary memory; he not only refained the immense store of knowledge he, lad amassed, but he could bring it all into use at his will:' he was deeply read in things that many like to hear of, thongh they are no longer studied, soreery, witcheraft, alcheny, Sie., and his fund of aneedote was quite inexhaustible: all this, joined to simple and unobtrusive manners, and irreproachable conduct, made lim not only an agreeable companion to many, but to some he became almost a necessary one. Men whose oceupations had prevented their reading, though they were desirous of knowledye, were particularly delighted with the company of Mr. Taylor, and such were his great supporters. It was by making friends chiefly that Xr. Taylor, who was as poor as Sydenham, contrived to print works that must have cost more than 10,000 l., that were not of the most saleable deseription, and that upon the wholc produced no pecuniary profit. The duke of Norfolk printed Plato, and from some unaceountable whim locked up nearly the whole edition in his house, where it remained till long after his decease, but he was attached to Mr. Taylor, and frequently made him his eompanion at Arundel. Mr. Meredith, a wealthy tradesman retired from business, was a man possessed of sound mental faculties, with no nversion to exercise them. Having read Plato he wished also to read Aristotle in an English translatoon, and Mr. Taylor was ready to help, him to it upon no other condition than his undertaking to print it, which he did; and though he inade a losing sperulation of it, by printing too few copies, he was so well satisfied with Mr. Taylor's exertions, that he not only assisted him iu bringing out some of his minor publications, but settled a pension of 100 , a year upon him, which he enjoyed till his death: such munificenee and friendship in a man who had earned his money, and knew the value of it, is truly honourable. Mr. Meredith, though not versed in the antient languages, obtained a Ereat knowledge of antient literature; he was a man who thought for himself, and came to just conclusions upon most subjects. Among Mr. Taylor's minor works some will be fouxd dedieated to persons who printed the un upon similar terms, and in a few eases gave him the bencfit of the whole edition. He never exacted payment for lis labour, execpt in one or two cases with the booksellers,
and then he had little enough. But with such means he got over all his difficulties, and he lad some, for he was twice married anil had several children; his ineome altogether was about 2001. a year. There are some persons who are not at all pleased with Mr. Taylor's attempt to revive eerlain antient opinions; they neither wished to see some of the works he has translated, nor his remarkis upon them in Finglish; but they are the very persons who brought the writers into wotice by eonstantly referring to them, and speaking of them in terms that are neither liberal nor contirely merited. These writers were the supporters of antient opinions and establishments, the failure of most of which is now complete and past recovery; there can therefore be little to object to in their writings, and there is mueh that is good and worth preserving. For these reasons they found transintors in every eivilized country but England. It seems then that our professed scholars have not done their duty to the public: if they had given us good translations with their own annotations, the labours of Mr. Taylor would not have been called for, and any remarks he might have made elsewhere would have had little weight, and have been overlooked. There are important works jet untranslated, and there are many translations which are disgraceful to the literary character of our country: it is time then that our scholars should look to these matters, and see that things which must and will be done are well done.
Mr. Taylor, during the last forly years of his life, resided in a small house at Walworth, leading a life of perfeet uniformity, and dividing his time between his labours and his attentions to his friends and family. He died on the Ist of November, 1835, of a very painful disease in the bladder, which he bore with extraordinary fortitude and without complaining. He was an Academician by profession and a Stoio in practice; a sinecre friend and a delightfin companion. His works and translations are:1, 'The Elements of a New Method of Reasoning in Geometry, 4to., 1780, a juvenile performance lost or suppressed; 2, a I'araphrase of part of Ocellus in the European Magazine, 1782; a translation of the whole work in 1831, 8vo.; 3, 'The Hymus of Orphens,' 12 mo ., 1787 ; second cdition, 189-4, augmented; 4, 'Plotinus on the Beautiful,' 12 mo., 1787 ; $\overline{5}$, 'A Dissertation on the Eleusinian and llacehic Mysteries,' Svo., no date ; 6 , ' 71 le Rights of Brutes,' 12 mo., 1792 , in ridieule of Paine's 'Rights of Man;' 7 , 'Sallust on the Gods and the World, 8 8vo., 1793; 8, 'The Phedrus of P'lato,' 4to., 1792; 9, 'The Cratylus, Phædon, Parmenides, and Timæns, 8ro., 1793; 10. 'Proclus on Euclid,' 2 vols. 410., 1792; 11, 'Two Orations of the Emperor Julian to the Sovereign Sun and to the Mother of the Gods,' 8 vo., 1793; 12, '1'ansanias' Description of Greece,' 3 vols. 8 vo., 1 194: for this translation, made in such haste that Mr. Taylor nearly lost the use of his right hand from continued exertion, he received 181. The work was in such demand that it sold for a high price, and a second edition was printed in 182:4 without consulting the translator, who heard of it aceidentally, when it was too late to correct it; a slight compensation was made to him, and he added some notes: this is an illustration of the remarks already made ; a work like this should not have been left to a neeessitous writer: 13, Five books of Plotimus, 'On Felicity; on the Nature and Origin of Exil; on Providence; on Nature, Contennplation, and the One ; on the Deseent of the Soul,' 8vo.. 1704 ; 14, 'Cupide and l'syehe,' from Apuleins, 8vo., 1703; 1:5, 'Melaplyysies of Aristotle,' 4to., 1801; 16, Hederie's 'Greek Iexicon,' edited, 410., 1803; 17. 'The Dissertations of Maximns Tyrius,' 2 vols. $12 \mathrm{mo.} 1804 ;$,18 , 'An Answer to Dr. Gillies' Supplement to his New Analysis of the Works of Aristolle, 8vo., 180t; 19, 'The Works of Plato,' 5 vols. 4to., 1804 ; includirg reprints of the parts previously translated, and many commentaries taken from NISS., some of which have since been printed in the original language; 20, "The I'ythagoric Sentenees of Demophilus ;' these are printed with Mr. Bridgeman's translations, 8vo., 180t; 21, 'Miscellanies in I'rose and Verse,' 12mo., 1805, 2nd ed. 1830; 22. 'Collectanea,' 8 ro., 1806 ; 23. 'The Emperor Julian's Arguments taken from Cyril, with Extracts from his other Works relative to the Christians,' Rro., 1809; 24, 'The Works of Aristotle, ? vols. $410 ., 1812$, with eopious extracts from the antient commentators, to wheh are added a dissertation on the philosophy of Aristotle, and a treatise on the elements of
the true arithmetie of infinites, both of whiel2 had appeared in a separate form ; 25, "The Six Books of Proelus on the Theology of Plato,'2 vols. 4to., 1816; 26, 'Theoretie Arithmetie,' 8vo., 1816, containing what had been written on this subjeet by Theon of Smyrna, Nieomachus, Iamblicus, and Boethius; with remarks on amicable and other numbers, and a specimen of the manner in which the Pythagoræans philosophised about numbers; 27, 'Select Works of Plotinus,' 8 vo., 1817; 28, 'Life of Pythagoras by Iamblicus,' 8vo., 1818 ; 29, 'Tamblicus on the Mysteries of the Egyptians, Chaldxans, and Assyrians,' 8 vo., 1821 ; 30, 'The Commentaries of Proelus on the Timæus of Plato,' 2 vols. 4to., 1820; 31, 'Political Pythagorie Frarments and Ethieal Fragments of Hieroeles, 8vo., 1822; 32, 'The Metamorphoses and Philosophical Works of Apuleius,' 8vo., 1822 ; translated gratuitously at the request of a friend, but purehased by a publisher for 100 .: Mr. Taylor had a few eopies for his bencfit; 33, 'Select Works of Porphyry,' Svo., 1833; some Essays are added; 35, 'All the Fragrients that remain of the Lost TVritings of Proelus,' 8vo., 1825; 36, 'Arguments of Celsus relative to the Christians, taken from Origen, with Fxtracts from other Writers,' 12 no., 1830; 37, 'Proelus on Providenee and Evil,' 8vo., 1833; 38, 'Plotinus on Suicide, with Extracts from Olympiodorus, and two books on Truly Existing Being, \&e., with Notes from Porphyry and Proclus,' 8ro., 1834. Besides these, there are many papers written by Mr. Taylor in the "Classical Journal" and other periodieals, amongst which may be specified a complete and valuable collection of the Chaldsean oracles, republished by Mr. Cory.

TAYLOR'S THEOREM. [TAYLOR, BROOK.]
TAYWAN. [TAï-wan.]
TCHAD, LAKE. [SOODAN, p. 249.]
TCHERNIGOV. [CzERvigof.]
TEA. [THEA.]
TEA, PARAGUAY, or MATE', is the produce of a plant belonging to the family Aquifoliacea. It was formerly supposed to be the produce of the Ilex zomitoria, which is tound in North America, in the Carolinas, and Florida; but, from specimens sent from Brazil to Mr. Lambert, It appears to be a distinet species, whieli he lias named Ile.s fraraguanensis. It is a slimb attaining the size of the orange-tree; it is quite smooth, with bluntisli wedgeshaped remotely serrated leaves, with umbelliferous flowers seated in the axils of the leaves. It is the Mex Mate of Saint Hilaire, and grows wild in Paraguay and Brazil, and is called by the Spaniards Ferve Mute. The leaves of this slarub are in great repute amongst the inhabitants of Bouth America, and are used in infusion in a similar manner to the tea of China. Upwards of $5,000,000 \mathrm{lbs}$. of the leares of this tree are annually collected in l'araguay, and are sent to Chili and the viecroyalty of Buenos \AA yres. $1 t$ is not cultivated, and merchants earry various articles of use into the interior, which they give the natives for their labour in collecting the leaves of the plant. After the branches arc cut away, the ground is heated by means of a fire, and the branches, being laid upon the heated ground, are dried, and afterwards they are beaten and pressed into bags, in which state it comes into the market. There are three kinds known in the market: the Cutectys, which is the bud of the leaf; the Cua-mini, the leaf torn from its midrils and veins without roasting; and the Cace-grutzu, or Yerve de Palos of the Spaniards, the whole leaf with the petioles and small hranches roasted. The first does not steep well, and is seldom seen. The plant when used is steeped in boiling water, to which a little sugar and sometimes lemon-juice is added. It is drunk out of a vessel called matci, which has a spout perforated witla holes for the purpose of preventing thic powlered lierb from passing out with the fluid. The Creoles are passionately fond of this infusion, and never partake of a meal without it. The properties of this plant are sedative and stimulant.

Another species of llex, the I. Gonghona, found in Brazil, is applieable to the same purposes as the last; and although inferior in quality, was used extensively as a substitute tor the true Paraguay tea, when the export of the latter from Paraguay was forbidden by the dietator Franeia.

The Ilex romitoria produces the Cassena of Florida and the Carolinas, which is used for the purpose of correcting the flavour of water.
TEAK. [TECTONA.]
TEAL (Querquedula creeca, Steph.; Anus erecea, Linn.),
one of the smallest of the Anatide, and most beautiful of the Ducks, in which article will be found Mr. Swainson's observations on the subgenus denominated Teals, together with a deseription of the Blue-vinged Teal.
Description of the CommonTeal.-Adult Male.-Top of the head, cheeks, and neek of a deep chestnut; throat blaek; a broad band of fine glossy green passing from the eyes to the back of the neek, bordered by a pale margin inclining to yellowish; head and eheeks chestnut; back, seapulars, and flanks zigzagged with irregular alternate lines of black and white ; breast and under parts yellowishwhite, but the breast is spotted with blaekish; wingcoverts brown ; beauty-spot (speculum) rich glossy green, deepened at the sides into a velvety black; quills brown-isll-black; under tail-coverts buff, with a longitudinal black band; bill black; iris brown; legs blackish-brown.
This is the nuptial dress; but, in July and August, this brilliant livery is exchanged for the more sober hues of the

Fcmale. -Top of the head Sienna yellow, with dashes of deep brown; throat and cheeks dusky white, sprinkled with brown spots; plumage above tarnished or dulf brown, each feather with a margin of a lighter eolour; under parts yellowish-white ; beauty-spot green.
This is the Sarcelle, Petite Sarcelle, Cercelle, Cercerelle, Alcbrande, Garsote, and Halcbran of the French; Cercedula, Cercceolo, Scavolo, Sartella, Anitrella, and Auitre d' Inverno of the Italians; Spiegel-Entlein and Krickente of the Germans; Winter Taling of the Netherlanders; Arta and Kracka of the Swedes; Kestelort-And of the Norwegians; Krik-And of the Danes; Cor Ifryad and Brach Ihuyad of the antient British.

IIabits, Geographical Distribution, \&c.-Mr. Yarell, in his 'British Birds,' now nearly complete, and forming a most valuable addition to British ornithology, thus sums up the information extant relative to the habits and locality ot this pretty species, whieh he notices 'as an early and constant winter visitor, naking its appearance by the end of Scptember, sometimes sooner than that, and remaining with us till spring has made considerable progress; their numbers are constantly reeruited through the winter months by additional arrivals trom the northern parts of Europe, and our markets in consequence oblain a regular supply from the various decoys and other modes of capture. Although numbers in spring retum again to more northern loealities to breed, many remain in this eountry and pass the summer near fresh-water lakes. That some of them breed here also, in suitable localities, is proved by the fiact that, in the summer of 1817, Mr. Youell of Yarmonth had four young birds of the Teal brought to him, which were hatched at Reedham in Norfolk. The authors of the Catalogue of Norfolk and Suffolk birds say also that very small ones have been obtained in company with their parents upon Lanworth Broad, by Mr. Kerrison of that plaee; and that they breed also on Scoulton Mere. The Rev. Riehard Luhbock of Norfolk, in his note to me on this species, say's, "the Tcal must, in some years, either breed abundantly with us, or migrate hither very early: I have known sixty or scventy Teal come in small parties to the same. plash of water at sun-down by the first week in August." The Teal bear confinement well; and at the gardens of the Zoological Socicty, though restricted to a very small pond, with a margin of thick and high grass, with some low shrubs, have bred regularly for the last five seasons (Feb., 1812). The eggs are white, tinged with buff, measuring one inch three lines in length, by one inch four lines in breadth. The food of the Teal consists of seeds, grasses, water-plants, and insects in their various states. In confincment they require grain. Some Teal breed about the lakes of Wales, and a few in Iomney Marsh. Mr. Selby, who has paid attention to the habits of this species in Northumberland, says, 'our indigenous broods, I am inelined to think, seldom quit the immediate neighbourhood of the plaee in which they were bred, as I have repeatedly obscrved them to haunt the same district from the time of their latehing, till they separated and paired on the approach of the following spring. The Treal breeds in the long rushy herbage about the edges of lakes, or in the boggy parts of the upland moors. Its nest is formed of a large mass of decayed vegetable matters, witls a lining of down and feathers, upon which cight or ten eggs rest. Dr. Heysham, in his catalogue of Cumberland anintals, says that a few Teal certainly breed in the mosses of that county every year.'

White, in a letter to the Hon. Daines Barrington, dated Selhorne, July- \& 17T3, says, 'Some young men went down lately to a pond on the verge of Walmer Forest to hunt flappers, or young wild ducks, many of whieh they caught, and, among the rest, some very minute, yet well-fledged wild fowls alive, whieh, upon examination, I found to be teals. I did not know till then that teals ever bred in the south of England, and was much pleased with the diseovery: this I look upon as a great, stroke in natural history.'
But to return to Mr. Yarrell, who thus proceeds: 'In Ireland the Teal is found in great numbers throughout the winter, and a few are resident there all the year. Sir Robert Sibbald, and other authorities since his time, notice the teal as inhabiting the edges of t :e Scottish lakes; Mr. Dunn however says that it is not numerous cither in Orkney or Shetland, although the mast so in winter; but that a few pairs oceasionally remain during summer and breed. They prefer the inland lakes to the sea-shore. Kichard Dunn, ksq., sent me word that this benutiful little duck is widely and numerously dispersed over the whole of Norway and Sweden, but is most plentiful in the north during the breeding season. It breeds all over Lapland, both western and eastern, and is very abundant in the Dofre Fiell, within the range of the birch-trees. The eges vary in number from ten to fifteen. It breeds also in the cultivated districts in all the mosses and bogs. Mr. l'roetor says the Teal is pretty common in Iceland. Eastward of Seandinavia it is found in Russia, and is abundant in Germany, Holland, France, Spain, and Italy; visits North Africa in winter, and has been noticed at Smyma and Trebizond. The Teal was found in the vicinity of the Coueasian range, by Russian naturalists, and is included in eatalogues of the birds of various parts of India, Clina, and Japan. The Teal of North America is distinet from the Teal of Europe and Asia.' (British Birds.)

Mr. Gould, in his great work, ' The IBirds of Europe,' remarks that M. Temminck names Northern Ameriea as amony the native loealities of the Teal; but Mr. Gould says that he is inelined to dissent from this opinion, for the American examples may always be distinyuished by a white ereseent-shaped band on each side of the eliest near the shoulders. This, together with the absenee of the white tertial feather, will constitute, he thinks, fair grounds for a genuine specific distinction.
M. 'Temminck, in the fourth volume of his ' Mamel,' has himself corrected this error, acknowledging the differeuce, and referring to Dr. Richardson, Fauna BorealiAmericaua,' vol. ii., p. 443.

The teal flies virorously. Drayton, in the 'five and twenticth song' of his 'Polyolbion, alludes to this power. After celebrating the Duek and Mallard, he continues:-

Utility to Man.-This species is one of the most delieate of the dueks. Willughby remarks, that for the taste of its flesh, and the wholesome nourishment it af!ords the
borly, it 'loth ileservedly challenge the fist phace among those of its kind.'
In the 'Portraits d'Oyseaux' ($1 \mathbf{i n} 5 \mathrm{j}$), the following quatrain celebrates its excellence and alludes to its habits:-

> - Whea peu aouvent merphoss in asmelle
> Fiarre deux raux, de laquelle tu chair

Aceordingly we sce it holding a hich place in antient feasts. We find it among the "goodly provinion' at the banquet given at the enthroning of George Nevell, arelsbishop of York, in the reign of Jelward IV.: ' Mallardes and Teales, 4000.' The price, in the Northumberland Ifousehold Book, is 'Teylles, ld.,' mallards being 21.

In the provision for the marriage of Roger Rockley and Elizabeth Nevile, 14 th January, 17 th Henry VIII., there appear among the dishes for the first course at dimmer 'Teals, 7 of a dish;' and in the account of the expense in the week for flesh and fish for the same marriage, "Mallards and Teal, 30 dozen,' are charged ' $£ 3118$.' Also in the eharge of Sir John Nevile of Chete, the father of the bride above mentioned, at Lammas nssizes, in the 20th II eary VIII., he then being sheriff of Yorkshire, we find 42 shillings charged for 'Jiallards, Teal, and other wild fowl.'
TEAM. Nothing is of greater importanee in the manayement of a farm than the eattle which perform the necessary work in ploughing and other operations on the soil, in drawing manure to the land and carrying the produee to market. It is evident that the smaller the expense of the team which does the requisite work in proper time, the greater the profit of the farmer, and every saving in this part of the expense of cultivation is so nuech added to the elear gain. Wherever the land is only partially cultivated, and a portion of it remains in coarse pisture, which costs little or nothing to the oceupier, or where extensive open commons afford cheap food for oxen, thesc last are naturally employed in farm labour. If four oxen do only the work of two horses, they are maintained at a mueh smaller expense, and, after working for two or threc years, their value is improved for the purpose of fatting for the butcher. The neecesary gear is much less expensive, especially where the old yoke is still in use, whether aeross the neck or the horns. In faet for a poor man who has only a few acres of land, and who is situated near a waste or common, oxen, and even cows and heifers, are by far the most ceonomieal team. Many writers on agriculture, who in general have more theoretical than practical knowledge of husbandry, have maintained the general superiority of an ox team over that composed of horses, and have given calculations which appear elearly to establish their point. I3ut, on the other side, it may be observed, that wherever arable fand is the chief object of the farmer's attention, and the tillage of the soil is brought to any degree of perfection, there oxen are never scen at work, but have been invariably superseded by active horses.
It has been urged that at Windsor Park, where it may be supposed that the farms in which George III. took so muchinterest were conducted by the most expericneed agriculturists, a considerable tean of oxen was kept, and did most of the work, even the earrying on the roads. This is a confirmation of what we have observed before. The oxen feed on the grass of an extensive park, the value of which is not brought to account. They are very lightly worked, and fatten well anter two or three years' work; but if a rent had to be paid for their pasture, or if it were eatenlated how many youmg oxen and heifers or sheep conld have been kept on the pasture consumed by the oxen, and the profit of these were set against the value of the work done, it would probably appear that there was no great economy in the ox-team compared with the horses. In Switzerland, whieh is tolerably advanced in its agriculture, oxen are very generally used for the work of the farm; but there the system of stall-feeding is universal, and having a considciable portion of grass-land, which can be irrigated by the streans from the mountains, they ent the coarse lony grass produced there for their cows and oxen ; and this food is more cougenial to their nature than to horses, whieh do not thrive on coarse watery grase, and reppure hay and com nearly all the year romad. But where there is less grass-land and more artifieial grass, such as lueerne, sainfoin, and clover, which is the ease in all ex-
tensive farms, there horses are chiefly used, this food being suited to their constitution. Not to enter further into the comparative advantage of oxen and horses, we shall turn our attention to the most profitable management of the latter, which now almost universally compose the farmer's team.

The choice of the horses for a farm is of great importance. It may be very satisfactory to a rich famner to see fine large well-fed horses in his waggon, moving along as if they tollowed a procession, with bright harness omamented with shining brass. This is a luxury like that of the rich man's coach-horses, and as such is very natural and innocent. It is the pride of many a wealthy yeoman, and we would not curtail his pleasure or despise his taste; but as a matter of profit or loss the case is very different: a fat horse does little work, no more than a fat coachman. Horses to be in working condition should be muscular and aetive. The great heavy cart-horse may, for a moment, be capable of a greater exertion at a dead pull, his weight assisting him; but in a long day the thin active horse will do with ease what would sicken, if not kill, his heavy companion. Horses about fifteen hands high, with short legs and broad chests, such as the Suffolk punches, which walk as fast as an ordinary man, or the active Scotch horses, which have more blood and will readily trot with a moderate load, are the most economical for farmwork. A pair of such horses will draw a load in a cart sixteen miles and return, or plough a Scotch acre of Jrnd, equal to one acre and a quarter imperial measure, in ten working hours, having a rest of two hours; while the heavy slow South-country horses could not walk the distance in the time without being over-driven. This is more than the average work; but in the busy time of the year it is a great advantage to have horses which can, with good feeding, work longer and faster without suffering in their health. The carriers on the roads, who live entirely by the work of their horses, know how to choose them and how to feed them to the greatest advantage, and, without over-working them, to make them do as much as is consistent with their health. If hard work is the cause of some diseases in horses, comparative indolence causes many more. Where horses are sluggish, the men soon become so likewise. To see a rraggon with four strong horses returning empty, at the rate of two miles in the hour, with two men, or at least a man and a boy, lying lazily in it, is a sure sign that the work on the farm to which they belong is done at the same rate. A singlehorse cart, or a light spring waggon with two horses, driven by a man or boy with reins and a whip, and trotting at the rate of five miles an hour, is a perfect contrast to this, and no doubt the owner has his work done much more expeditiously, and consequently at a cheaper rate. The stagecoach proprietors have generally very light four-whecled earriages to carry their corn from their chief stations to places where they keep horses, and they often carry as heavy loads as a farmers waggon does when carrying corn to narket; yet the two horses in the light carriage trot with their load, and the three or four heavy horses of the farmer move at the rate of two miles and a half in the hour at most, both going and returning. It is evident that there is a waste of time and power here, which is so much lost. Horses half-bred between a cat-mare and a blood-horse are reared by some spirited farmers, and if they are more delicate and susceptible of cold than the common carthorses, they have many advantages: sometimes they inherit so much courage and vigour from theirsire, that they become valuable as carriage-horses or hunters, and well repay the expense incurred in rearing them; and at all events they are superior to any others for the work of the farm, and are in general docile and tractable. The only inconvenience arises from their spirit. When any sudden obstruction arises in ploughing, such as a considerable root of a tree or a large stone, they make violent exertions, and sometimes break the ploughs or other implements. In this respect oxen are more phlegmatic, and stop when the collar presses on them; so that in breaking uprough commons or newly cleared woods oxen may be preferred. This is almost the only ease where spirit and courage are not an advantage.

With respect to the food of farm-lorses, as we observed before, a great saving may be effected by a judicious use of many vegetables and roots which are easily mised on arable land. Various modes of preparing the food have
been recommended, such as steeping com till it sprouts, baking it into bread, or mixing it with boiled roots. All these may have their advantage where economy is the object; but, with the exception of baked bread made of ryc, barley, and oats, and slightly leavened, which is perhaps the best food which can be given to slow-working horses, there is nothing so congenial to the healthy stomach of a horse as good hay and dry oats, or beans bruised in a mill and mixed with cut chaff. They require no cooking to be fully digested, and the digestive power of the horse will extract all the nourishment which they contain. But there are cheaper fodders than hay and corn, especially in summer, when they can be given fresh and green. Tares, clover, lucern, and sainfoin, cut as they are wanted, will keep a horse in health and working condition with little or no corn, and at a comparatively trifting expense ; carrots are peculiarly relished by horses, and are very wholesome ; and Swedish turnips, or ruta baga, given raw in moderate quantities make their skins shine, and thus prove that they tend to keep them in condition. Every prudent farmer takes carc to have a sufficient supply of these cheaper substitutes for hay and corn, keeping these last as a reserve and auxiliary to the former. In a prize Essay of the. Highland and Agricultural Society on the comparative advantages of raw and boiled grain as food for farm-horses, the author adduces some experiments, which lead to the conelusion that there is no advantage in boiling grain, but rather the contrary. The cost of keep of a horse per day on different food has been given as follows:-

This last appears the most cconomical food, but steamed turnips and strav only would probably not keep a horse in good working condition, and it is not said how long the experiment was continued, nor whether the horses thus fed lost weight. The food is also valued at a low rate.

It is evident that if farm-horses can be kept in condition for $6 \frac{1}{4} d$. a day, which is not $4 s$. a week, while on hay and oats, in the common mode of feeding, they will cost more than double that sum, the saving in a year would amount to nearly $10 l$. on each horse ; and as evcry twenty-five acres of a farm of moderately light land will require one horse for its cultivation, there will be a saving of $8 s$. per acre, probably half the rent, and more than half the profit. However this may be, there is no doubt that it is of great importance to ascertain what is, on the whole, the best and cheapest mode of feeding farm-horses; and without entering into minute calculations, it will be found that various artificial grasses may be made to succeed each other, by successive sowings, so regularly, that the horses shall be kept for six months of the year entirely on succulent green food, which will enable them to do all the neeessary work, and keep them in good health and condition. Thus with the help of carrots, potatoes, and ruta baga, a great saving of hay and oats may be effected in winter, and these crops will take up much less land for their production than hay and oats, and exhaust the soil less; if we except potatoes, which are more profitably used as human food or to fatten pigs.

The example of tradesmen and manufacturers who keep horses, and cut all the hay which they use into chaff, mixing it with oats, may be good for a farmer to follow, where hay is scarce and beans a good price: but othervise it is fully as economical to give the hay in racks, provided no more be given at once than a horse will eat up entirely,
P.C., No. 1505.

Voł. XxIV.-T
and a certain ration be allowed for ench horse, which experience has shown to be sulficient. In the cavalry, where greal attention is paid to economy, the horses have their rations of hay, onts, and straw according to the exercise they take, or the fatigue they are exposed to: solikewise it should be with a farmer's team. In the old mode of feelling liorses with as much hay as they would eat, and two bushels of onts for each horse per week, during at least nine mouths in the year, and giving them lares or artificial grasses between spring sooving and harvest, when chere was less to be done, the expense of a horse was much greater than most farmers could now afford; and more land was devoted to the keep of the team than was neeessary. The following is the ealculation of the cost of the keep of a horse in this way:-

The hay and oats are al high prices, but at all events a horse cannot be kept in this way under 10 s, per week. They are then lowever in excellent eondition, and able to work ten hours per dlay in summer and eight in winter.
On poor land, where gorse or furze grow readily, a very cheap food is obtnined by bruiving or crushing the yourig shoots of the gorse to destroy the sharp spines which injure the mouths of the cattle. Horses reared in large commons ars often seen beating the gorse with their feet, and then eating it greedily: instinct here teaches them to prepare their own food; and, if they have a sufficient quantity of it, they get fat and in good condition.
It is of great importance to a person about to hire a farm to know exaetly what number of horses will be required for its proper cultivation, and this depends upon many circumstances whieh mast all be taken into consideration, and which will make a very material difference, onen as much as half the.rent of the land. Ile is to consider the situation of the farm-buildings, especinlly the stalls and eattle-yards, where the manure is to be made, with respeet to their distance from the fields; the state of the roads and the access to the fields; the distance of a good market-town, and whether the fields lie in a ringfence or are seattered. A farm of good light loan will require one horse for every twenty-five acres for its cultivation, with an additional one for cevery 200 acres; that is, 9 horses for 200 aeres. The additional horse should be lighter and more active than the rest, for the farmer to ride on and to drive in a light cart : yet it should be capable of sumplying the place of any of the others in case of illaess or accident, or when extra work is required, as in larvest or seed time. The larger the farm, or vather the fields, the fewer liorses are required in proportion to its size, Lecause much tine is lost in turning the plough where the furrow is short; and ploughing is always the principal work of the team. If more than two horses are required to plough the yround, the soil must be very cormpact and heavy, and if this is not compensated by greater fertility, the experise of the liorses will nuch reduce the profit of the farmer. It is the custom in some farms for each ploughman to have the elharge of his own horses: but it is far better to make the feeding and cleaning of hosses the busiuess of regular servants, who sllould sleep in or near the stables, nnd rise very early, so that the horses may be fed and ready to go to work as soon as the ploughman comes. When a mal has been eight or ten loours lolding a plough, he is not so capable of cleaning and rubbing the liorses as one who has only bad light work in the dlay. The horse-keepers can prepare manure, make composts, cut hay and straw into chail for the horses, mow tares or other green food, or hoe the, erops in the season while the liorses are at work, and the last thing hefore they lie down af night should be to give the hories their proper mation of layy nnd see that their beds are comfortable aud cyerything in proper order in the stables : good grooming is of as great use
to a horse as good feeding, and without it they will never be in perfect working condition. The harness should always be cleaned and oiled, and lung upl in a sepmante place, not, as is too comnoonly done, hung un behinut the hosise in the stables. There should be no ummecessary ornaments, but strength and sinplicity should be studied. The weight and size of the collars is in minany places absurd: they cannot be too light, provided they are of sufficient strength. The work in the field when the days are long should be divived so as to give the hones at leasit tivo huur rest, during which they should be fed with hread or corn. When the fields are near the stables the horses may he brought home, but a portable manger is easily carrical into the field, such as is used at the inns on the roads where carriers stop to bait. In winter it inay be as well to finish the day's work with only an interval of half an hour. The time in summer should be from 5 in the morning till 10, and from 2 till 7 if the weather is verj) warm, resting 4 hours ; or from 6 till 11 and from 1 till 6 , resting 2 hours. In winter the time is from 7 till 3. resting half an hour or an hour hetween 11 and 12 . With good feeding and grooming this is by no menns too hard work when the work requires to be eniried on briskly: The heavier and lighter kind of work should be so arranged that when horses have worked hard for a day or two, they may have one or two days of lighter work. In muot parto of England the paee of the horses and their dnily work are much less than in Seotland: two horses should plough an acre a day or more, on an average, hut ferf limmers can get much more accomplished than three-quarrers of an aere, if they plough a good depth or break up clover or grass lays. In the light sands of Norfolk and Jineolushire they go over much ground ; but there the turrows are wide and shalluw, and the horses might easily trot with the plough if the ploughman could keep up with them. In Flanders such land is ploughed with one horse only; and the work is well done. There is yet nuel room for improvement in the use and management of the team on most farms in England.
teano. [Lavoro, Terra di.]
TEARS. [Eve, p. 142.]
TEAZLE (Dipsucus Fillonum) is a plant whiel grows wild in the hedges, but an improved variety is earefully cultivated in those distriets of England where cloth is manufactured. It is used for the purpose of forming a species of brush with which the finer hairs of the woollen fibric are drawn to the surface, where they produee what is usually ealled the nap of the cloth. The teazle has a fine hooked awn, which very readily insinuates itself into the woollen web, and draws out with it some of the fine fibres of the wool ; these are afterwurds sliom smooth, and leave the cloth with the fine velvet-like nap which is its peculiar appearance. A further aceount of the operation of teasling, in the woollen manufncture, is given in Ure's - Plilosonlly of Manufactures,' p. 192.

Teazles will grow in any soil; but they grow strongest and best in a stiff loam. They require the soil to be in good heart, and are supposed to exhaust it much ; bit ne great portion of manure is required to obtrin a good crop. Like all the tribe of thistles, they grow best on ground newly turned up froni grasis which has lain some time, and the same ground will not again produce them of so goorl a quality till after a considerable interval. The wild tenzle which grows in hedges appents at tirst sight to he the same as the cultivated varicty: but it is of no use to the cloth-worker from the weakness of the awns, whielt break off, instend of drawing the wool out of the surface of the web.
The growing of teazles is a peeculiar trale, and a kind of speculation. The teazle-grower hires a piece of ground suited to his purpose from the farmer for 1 wo years, and pays a consideratile rent. If the ground is lroken up, from grass, it is ploughed as deep as as the staple of the soil permits, and as carly as possible, if before winter so much the better: the ground is laid in nurow stitelles, on which the seed is drilled in April, in rows from 12 to 18 inches aplart: moisture is necessary to make the seed ger-. minate. As soon as the plants appear, they are thinned out, and the intervals carefully hoed and weecled. During the summer, the ground is several times dug, or spacted, ns it is called, to a considerable depth, with very narrow and long spades ; this greatly invigorates the plants. In. November, some plants may bo transplanted from where,
they stand too thiek, to the plaess where they have failed. They should stand about a foot apart in the rows. During the ensuing spring, the eultivation is repeated, and earth is drawn up to the plants, but without burying the heart. They soon begin to push up their stems, and are fit to be cut in July, just when the blossom has fallen. As they do not come to proper maturity at the same time, several suceessive gatherings are made. They are cut with a sharp knife about nine inches below the head, and tied in small bundles or handfuls: thick gloves are very neeessary in this operation. They must be carried under cover before night, as the rains or heavy dews would injure them. When the sun shines, they are exposed to dry in the same manner as is donc with onion seed, and they are never packed elose until they are perfectly dry. When drying they are usually hung on poles; so that the air may circulate between the bundles. The bundles are afterwards opened, and the teazles sorted into kings, middlings and scrubs, aecording to their size; 9000 kings or 20,000 middlings make a pack. The serubs or refuse are of little value: sometimes the grower places a certain number in a flat bundle by means of eleft stieks, in which the stems are held and the heads spread out like a fan. In this state they are not only more easily packed, but nore readily fixed to the eircumference of the drum, on which they form a continuous card, which brushes the eloth as it is drawn along while the drum revolves.
Teazles are a very precarious erop; sometimes they produce a very great profit, and at other times a serious loss. Care and cultivation lessen the chances of failure greatly: but the priee also fluetuates so mueh that it is an uncertain speeulation, resembling in this respcet the cultivation of hops. Hence it is undertaken by men who are prepared for the event, and who malie the profits of one ycar repay the loss of another.
Several attempts have been made to substitute artificial tcazles, formed of hooks of very fine and elastie steel wire; and at one time there was so mueh appearance of suecess, as to eause the cultivation of teazles to be neglected: but it was soon found that the wires tore the fine fibres of the wool, especially where there were knots in the thread, whereas the hooks of the teazles gave way, and either bent or broke off before the fibre of the wool was injured. The card made of natural teazles was found far superior to the artifieial substitutes, and for a time the price of teazles rose to an extravagant height from their searcity, while some time before they were quite unsaleable. A quantity of teazles which was sold at one time in Berkshire for 51 ., being thought perfeetly useless, was taken into Gloueestershire, and there proluced the next ycar 150%. The grower was dead, and they were sold by his exceutors for what they would fetch. This was exaetly at a time when the artificial eards were given up, and no teazles were to be had. A good erop of teazles is about 10 or 12 paeks on an acre: this is sometimes exceeded, but more often it fails hy one-half, and a total failure is not uncomnon. The price may average six or seven pounds a pack, so that a good erop is worth more than the land it grew on. The expenses, however, are great, and, taking all the chances, it is a erop which, except in very particular situations and eircumstanees, is not suited to the regular farmer, who should never spęculate to any extent.

Although teazles are said to exhaust the ground much, yet from the continual stirring of the soil they render it very fit to grow other crops, provided a proper quantity of manure is used : thus very good crops of wheat have been obtained after a crop of teazles.

Every piece of fine broad-cloth requires from 1500 to 3000 teazles to bring out the proper nap, after which they are useless, the hooks being mostly broken off or worn out. This causes a considerable demand for them in the neighbourhood of eloth manufactories, as in Wilts, Glouccst erslure, and Somersetshire. In the new tariff the duty is $3 d$. per thousand, whether from foreign countries or British possessions.
'EIBALDE'O or TIBALDE'O, ANTO'NIO, born at Ferrara about 1463 , studied medieine, but afterwards deroted himself chiefly to literature and poetical eomposition, both Italian and Latin. The first edition of his Italian poems appeared at Modena in 1498, by his cousin Jaeopo Tebaldeo, apparently unknown to the author, who was vexed at it because he thought that his compositions re-
ehiamate Opere d'Amore,' $410 .$, Modena, 1498, aftervards reprinted several times at Milan, Veniee, and other places. In 1519 appeared at Milan another small poem of Tebaldeo, with the title, 'Stanze nuove ad un Vecehio che non amando in gioventu fu costretto ad amare in veechiezza.: A correet edition of Tebaldeo's works is however still wanted. A selection from his pastoral poems has been inserted in the eolleetion entitled 'Poesie Pastorali e Rustieali, raceolle ed illustrate con note dal Dottore Giulio Ferrario, Milan, 1808. Bembo and Giraldi, eontemporaries of Tebaldeo, speak of his Italian poems with praise, but they regret that they were too hastily published. Tebaldeo afterwards applied himself to Latin poetry, in which he aequired great reputation. He was for a timc at the court of Mantua, and afterwards settled at Rome, where he became a favourite of Leo X., who speaks very highly of him in some of his epistles, and is said to have made him very liberal presents. After Leo's death Tebaldeo fell into distress, and was obliged to borrow money of Bembo and others. He died at Rome in 1537. A few of his Latin epigrams and other small poems are in several collections.
(Tirabosehi, Storia della Lettcratura Italiana; Zeno, Note alla Biblioteca dell' Eloquenza Italiana del Fontanini.)

TECTIBRANCHIA'TA, Cuvier's name for his fourth order of Gastropods, described by him as having the branchix attaehed along the right side, or on the back. in form of leaves (fcuillcts) more or less divided, but nonsymmetrical. The mantle eovers them more or less, and contains nearly always in its thickness a small shell. The Tectibranchiata approach the Pectinibranctuata in the form of the organs of respiration, and live, like them, in the waters of the sea, but they are all hermaphrodites, like the Nudibranchlata and the Pulmoniferous mollusks.

The following genera are comprehended, by Cuvier, under this order:-Pleurobranchus, Cuv. ; Plcurobrancheca, Meekel (Pleurobranchidium, Bl.); Aplysia, Linn.; Dolabella, Lam.; Notarchus, Cuv.; Bursatella, Bl.; Akera, Müll.; Gastropteron, Meekel; and Umbiellu, Lam.

Of these Pleurobranchus, Pleurobranchea, and Umbrella arc treated of in the article Sempmyllidians; and Akera or Acera, and Gastropteron or Gastroptera, under the artiele Bullade. Aplysia or Laplysia (for Linneus writes it both ways), Dolabella, and Notarchus therefore remain to be noticed here.

> Aplysia.
M. de Blainville thus defines the Aplysians (Aplysiacca) the second family of his Monoplevrobiancriata:-

Body not divided, or forming a single soft fleshy mass; four tentacular appendages always distinet, flattened, auriform; the mouth in the shape of a vertieal slit, with two lateral subeorneous labial plates, and a cordiform tongue besèt with dentieles; eyes sessile between the two pairs of tentacles; the branehiæ eovered by a sort of operculum ; orifices of the generative apparatus more or less distant, and united together by an external furrow.

Shell null or incomplete, constantly internal.
M. Rang's definition is-

Animal not divided, furnished with four tentaeles with eyes at their anterior base, and sometimes with membranes proper for swimming; the branehix in form of a plume, in a dorsal eavity, protected most frequently by a free opereulum at the right side, or simply by the approximated edges of the mantle; organs of generation very distant.

Shell rudimentary or null.
The following is Cuvier's description of Aplysia:
Edges of the foot raised into flexible crests and surrounding the baek on all sides, being eapable even of being refleeted upon it; head earried on a ncek more or less long; two upper tentacles hollowed like the cars of a quadruped ; two others flattened at the edge of the lower lip; eyes below the first. 'On the back are the branehix, in form of very eomplieatcd leaves (feuillets), attached to a large membranous pedicle, and eovered by a small pediele equally membranous, whieh contains in its thickness a horny and flat sliell. The anus is pierced behind the branchiæ, and is often hidden under the lateral crests. The vulva is in front on the right, and the penis comes out under the right tentacle: A furrow, whieh extends
from the sulva to the extremity of the penis, conducts the semen at the time of coition. An enormous inembranous crop leads to a muscular gizzard, armed within with cartilar ginous and pyramidal corpuscles, which accompniny a third stomach beset with pointed trooks, and a fourth in form of a crecum. The intestine is roluminous. These animals feed on sea-weed (fucus). A particular gland pours out by an orifice situated uear to the vulyn a linpid hmmour, which is said to be very acrid in certain speeies ; and from the borders of the mantle there nozes abundantly a deep purple liquor, with which the ammal colours the sen for a considerable distance around when it perceives any danger. The eggs are disposed in long interlaced glairy filaments, delicate as packithread.

Cuvier instances as examples from the European seas, Aplysice fasciuta, menctatu, and depilans.
The acrid humour noticed ubove probably gave rise to the acconnts of the prison of the Lapus murinus (an Aplysia, and most probably Aplysia depilans) among the antients. See, for example, Irliny, Naf. Hist., lib, xx., c. xxi.; lib. xxiii., e. vi., Se.

In the muscum of the Royal College of Surgeons in London, No. 625 of the Physiological Series, is an Aplysia calbu, in which the mantle has lieen laid open on the left side, and the peritoneal membrane dissected away, to show the intestinal canal winding among the lobes of the liver: the tunies of the intestine being thin and transparent, permit the contents of the eanal to be distinetly seen; these consist of particles of sand with comminutel fragments of zoophytes and shells: so that it appears that their diet is not merely vegetable, as Cuvier seems to have thought. Bristles are inserted at the mouth and anus; the latter orifiee is situated in the branelial eavaty, below the gills. No. 626 is the intestinal canal of a larger species of Aplysiu, distended with similar particles of earthy matter; and the author of the Catalogue remarks that this preparation affords a striking exanple of the powers of living organized matter, and cannot be contemplated without surprise, when we consider the foree that must be exerted to propel a column of such heavy and rude materials along a tortuous eanal provided with parietes apparently so inadequate to sustain the neecssary pressure. No. 1011 is a smal Aplysia alba, Cuv., with a portion of the mantle dissected away to expose the branchise of an arboreseent structure, but more complex and better defended than in the Doris, the respuratory cavity lueing shielded by a thin homy plate or rudimentary shell. No. 1012 is a larger fpecimen of the same species of Aplysia, further dissected. so as to show, in addition to the branchis, the heart and perieardium, the mouth and mastieatory organs, the stomach, nervous ganglia, and the penis on the right side of the neek. A portion of the shell is left to show how loosely it is lodged between the layers of membrane forming the roof of the liranchial chamber; and No. 1013 exhibits another species (Aplysia Camelus, Cuv.), showing the branehise in their natural position, without dissection, by merely separating the dorsal lobes of the mantle and elevating the roof of the branchial chamber. (Cat., vols. i. ii.)
M, de Blainville divides the genus Aplysia into the following sections:
Λ. Species whose lateral appendages are very wide, divided behind, and depressed.
Example, Aplysiu deprilans.
13. Species whose narrower appendages are united and elevated behind.
Example, Aplysia vulgaris.
C. Species whose appendages are very wide, and which have only two tentacles, behind whieh are the eyes. (Genus Actaon, Oken.)
Example, Aplysia viridis.
D. Elongated species with a subulate tail; the four tentacles long and slender; the branchial eavity subdorsal, without opereulum or sliell.
Tixample, Aplysiu Broneniartii.
The other genera arranged by De Blainville under the Aplysians are Dolabella, Bursatella, Notarchus, and Eivivia.
M. Rang divides Aplysia into two subgenera:
I. The Aplysiae, properly so ealted (Lapplysia, Linn.; Dolabella, Lann.; and Actron, Okenl.
This sul)genns is thus characterized by M. Rang:-
Animal curnished with a dorsal slit, always nedian and
longitudinal ; foot large, branchise enclowed in the bettom of a eavity, whence their length does not permit theru to be protruded, and protected above by an operculum.
sivell rudimentary, calcareons, membranous, hidden in the thiekness of the opereulum.

1st Group.
Body convex behind, an oblique posterior disk, borders of the inantle elosed on the baek, and impmper for swimming.
Shell triangular and very ealeareous.
This gronp eomprises the geuus Dolabellu of Iamarek.
Example, Aplysiu Rumphii, \&e.
2nd Group.
Body narrowed at the two extremities, no disk, borders of the mantle very small and improper for swimming.
Shell subquadrangular and caleareous.
This group, M. Rany observes, is composed of new species, with the exception of one, which was erroneously arranged among the Dolubelle.
Example, Aplysia dolabrifera.

3rl Group.

Body narrowed at the two extremities; borders of the mantle dilated and proper for swimuing.

Shell subrounded, inembranous, and solidified ly it caleareous stratum.
M. lang remarks that this group has for its type the genus Laplysia of Linmeus, and he divides it into two sections.
A. A tulue at the membrane of the opereulum.

Example, Aplysia fasciata.
13. An aperture at the membrane of the opereulum.
II. Subgenus: Nioturchus, Cuv.

The other genera arranged ly M. Kang under the Aplysians are Bursatella and Actcoon. (Manuel.)

Mr. J. E. Gray makes the Aplysiadre, the 2nul family of his 3rd order (Pleurobranchiuta), consist of the genera Aplysia, Dolabella, and Notarchus. The fanily is placed between the Bullide and the Umbrellide.
As an illustration of the genus Aplysia, we take Aply-
ia depilans. sia depilans.
Description.-Blackish, with large eloudy greyish spots or blotehes, or of different sliades of brown tinged with
blue or purple. blue or purple.
Locality and Mabits.-European seas, where it adheres to rocks.

Dolabella.
Cuvier observes that this form only differs from the Aplysice in having the branchix and that which surrounds them at the posterior extremity of the body, which resembles a tmineated cone. Their lateral crest, he adds, does not elose on the branchial apparatus, leaving a narrow furrow, and their shell is calcareous.
Locality and IIabits.-East Indian seas, and Mediterranean, where it has been found at a depth of six fathoms on sands.
The Laplysians of Lamarek consist of the genera Aplysia and Dolabella only; and M. Deshayes, in the last edition of the 'Animaux sans Vertelores,' thns stums up the information on the subject. Lamarck, he olserves, knew little of the animals of this family, though lec had indeed seen some species preserved in spirit of wine in the anatomical collcetion of the museun. Thus he only admitted the two genera last atove named into the fanily. Since the pubfieation of Jamarek's work, M. de Blainville, in his nonograpl of the Aplysice, and, above all, M. Rang, in lis

Shell of Dolabella Rumphii. 1, inside ; 2, outside.
Natural History of the Aplysians,' have, he remarks, added many important observations on the animals of this group. M. Rang, in his work, having especially studied the Aplysians, has, as we have above seen, proposed to admit into this family threc genera only, Aplysiu, Bursaletta, and Actroon, and he divides the great genus Aplysia into subgencra, among which is found the genus Dolabella, Lam. There too is to be found the genus Notarchus, Cuv, This last, obscrves M. Deshayes, has in fact much analogy with the Aplysians, but it preserves some peculiar characters capable of easy distinction; and he thinks that the great genus Aplysia, as considered by M. Rang, ought to he adopted. Lamarek established his genus Dolabella, and separated it from Aplysia because the shell is calcareous, and not entirely corncous, as in that genus. Lamarck, without doubt, continues M. Deshaycs, would have perecived the little value of this character if he had been able to examine as many species as did M. Rang: he then would have scen the establishment by insensible gradations of a passage between Dolabella and Aplysia, not only with reference to the form of their shells, but with regard to their consistence also. With regard to the posterior truncation of the animal of Dolabella, that may be seen to disappear insensibly, so that there exist Dolabellec with a calcarcous shell, having entirely the extermal form of Aplysice. If, on the one hand, we sce the Aplysice with calcarcous shells (Dolabcllz) pass into those with corncous shells, we perceive on the other hand Aplysice with horny shells pass into species which have no trace of such protecting body. These remarkable species have the lobes of the mantle less slit, inore closed upon the back, and nevertheless prescrving the principal characters of the true Aplysiec. M. Rang has established on these speeics his subgenus Aclesia, remarkable for the singular tentaculiform appendages on the bodies of the species which form it. Next to Aplysia MI. Rang places Notarchus, and the Notarchi are Aplysice which have only two tentacles, and whose mantle is more closed on the back than it is in the preecding genus; the foot is extremely narrow, it is terminated anteriorly by a double lip, and resembles rather the foot of the Scyllece and other mollusks which creep on the stems of sea-weerls, than that of the Aplysire. It is to be wished, adds M. Deshayes, that the Notarchi could be found in sufficient numbers for dissection, by which means all doubt with regard to them would vanish. After the genus Aplysia, M. Rang places Bursatella; and M. Deshayes remarks that this genus has so great an analogy with Notarchus, that a new anatomy of the former is much to be desired. The animal seen by M. de Blainville was mueh contracted in the spirit, and its body was beset with a small number of tentacular appendages, which approximate it to the subgenus Aclesin, whilst in form it appcars to come nearer to Notarchus. The last genus, says M. Deshayes in conclusion, placed in the family of Aplysians by M. Rang, is the Actroon of Oken, which is not sufficiently known to be definitively admitted into the system; so that the family of Aplysians may bc rimorously reduced to the genus Aplysia, as considered by M. Iang.

Notarchus.

Animal furnished with a very small dorsal slit, whieh is sometimes oblique; foot clongated, and rather narrow; branchise often very long, and capalle of being protruded out of the cavity; opcreulum rudimentary or null.
Sliell nuld.

TE'CTONA, a genus of the natural family of Verbenacer, so named by Linnæus from the Indian name (Tekke) of the famous Teak-trec (called also Sagoon), which is a native of different parts of India, as well as of Burma, chiefly along the banks of the Irrawady, and of the islands from Ceylon to the Moluccas. The genus is characterised by having a 5 -6-toothed calyx, which becomes inflated over the growing pericarp. Corol 1-petalled, 5 - 6 -cleft. Stamens 5, but often 6. Gern superior, 4-celled, cells 1 -seeded, attachment central. Drupe obtusely 4 -sided, woolly, spongy, dry, hid in the calyx. Nut hard, 4-celled. Seed solitary. Embryo erect, without perisperm.
The teak-trce grows to an immensc size, and is remarkable for its very large leaves, which are from 12 to 24 inches long and from 8 to 16 broad, and are compared by Oriental writers to the ears of the elephant. The pctioles, as well as the young branches and flower-stalks, arc all 4 -sided and the sides channelled. The inflorescence is in very large terminal panicles, of which the divisions are first cross-armed and finally dichotomous, with a sessile fertile flower in each cleft, the whole eovered with a hairy farinaceous substance. The flowers are small, white, and very numerous. As teak timber is so highly valued both for domestic purposes and for ship-building, it is desirable to notice its distribution a little more in detail. The best timber for ship-building was supplied to Bombay from the mountains of the Malabar Ghauts, where the tree is found rather in detached clumps, of some extent however, than in extended forests. It is also found on the mountainous parts of the Coromandel Coast, along the banks of the Godavery up to Poloonsha. It procceds far into the interior of India, and may be seen in the mountains of Bundeleund, in the form however of only a moderate-sized shrub. Dr. Roxburgh introduced the teak into the low grounds of the Circars as carly as 1790, and Lord Cornwallis and Colonel Kyd planted it in Bengal about the same time. The Calcutta Botanic Garden contains a number of these trecs. From the Saharunpore Botanic Garden, in $30^{\circ} 9^{\prime} \mathrm{N}$. lat. (wherc, its buds being covered with scales, it is enabled to resist' cold, besides its leaves falling and giving it a season of rest), the trec has becn spread along the Doab Canal; the whole of the intermediate country is suited to its cultivation, and the East India Company have recently ordered the Malabar forests to be preserved. The most extensive forests are however those extending along the banks of the Irrawady, especially in Pegu. A considerable timber-trade has been established at Moulmein, whence Calcutta is supplied with some of the finest teak timber. So much straight timber is taken and the erooked left, that thousand of pieces called 'shin-loys,' and admirably adapted for ship-timbers, are left. The tree grows quickly, straight, and lofty, but requires from 60 to 80 years to attain the proper size and maturity for ship-building.
From extensive experience teak timber has been found the most valuable timber for ship-building, and has been called the oak of the East. The wood is light, brownishcolourcd, easily worked, but at the same time strong and durable. It is soon scasoned, and, from containing a resinous oil, resists the action of water, as well as insects of all kinds. It does not injure iron, and shrinks but little in width. Some of the old trees have been found by Dr. Horsficld to have large and beautiful burrs like the Kiabouca wood of commerce. No other part of the tree is knowa to be converted to much use; but the leaves are said to dye cotton and silk of a purplish colour. They have lately been imported into the London doeks carefully rolled up, but for what purpose is not known.

TECTUS. (Conchology.) [Trochide.]

TEES. [DURHaM.]

TEETII. Since the article Dentmon was written, the teeth have been subjected to the most careful mieroseopic exanination, and the result has been the requisition of a great amount of knowledge in regarl to both their strueture and their mode of growth. Indeed there is probably no part of physiology in which more remarkable and important progress lias been made churing the last ten years than in this, to which the name of Odontography has been given. The chief diseoveries were made coincidentally by Professor P'urkinje of Breslan and Professor Retzius of Stockholm. The former publislied his observations in 183), in the inaugural dissertation of Dr. Fraenkel (De penitiori Dentium Structura), and in that of Dr. Raschkow (Meletemuta circa Denfium Erolutionem); and the latter communicated his deseriptions to the Royal Aeademy of Sciences at Stockholm, in whose Transactions they were published in 1836. In 1839 Dr. Sehwann published, in his 'Mikroskopische Untersuchungen,' an account of the modes in which the several constituent tissues of the teeth are developed; and in the same year Mr. Goodsir (Edinburgh Medical and Surgical Journal, vol. li.), carrying out the view before suggested by Professor Arnold, described that method of their early growth which is now generally reecived as the truth. Mr. Owen also, in his 'Odontography; and in various papers, at the same time that he has confirmed and greatly added to the facts deseribed by those already mentioned, has proved, by his investigations into their comparative anatomy, that the minute strueture of the teeth may be taken as one of the most certain characters for the diserimination of the genera, and even of the species, of both existing and extinet animals; and he has already applied his knowledge of them to the determination of some of the most difficult questions of prexantology.

In the following account searecly any of the discoveries will be detailed except such as relate to the structure and physiology of the human teeth; for, various as the struetures are in the different elasses of animals, yet there is so much analogy among them, that the description of the tooth of one will, in great neasure, explain the general plan of structure in the rest. Besides, the lately published artieles on comparative anatomy contain nearly all the important facts regarding the strueture of the teeth in the animals of which they treat.

The best method of preparing teeth for mieroscopic examination is to immerse them in dilute hydrochlorie acid, till their earthy matter is so far dissolved that thin transparent slices may be cut from them with a knife; or, without softening thems in acid, to make thin seetions, in the vertical and other directlons, with a fine saw, and to reduce these to the neetssary thinness and transpareney by filing

them, and polishing them on a hard and 'smooth whetstone. For general cxamination, lenses inagnifying about 50 diameters are sufficient.

In such a vertieal section of a tooth three distinet substances are seen; namely, the dentine or ivory (lig. I, aa). which forms the greater zass, and, as it were, the mould of the tooth, and which contains the pulp cavity (b); the enamel (cc), by which the erown or exposed part of the tooth is covered; and the bone, cenient, or crusta petrona (d d), which forms a thin layer around the fang, except at that part at which the vessels enter the pulp, and is continued in a finer and seareely pereeptiblo layer over the chamel.
The bone, or cement, has in each animal a minute strueture similar to that of which the bones of its skeleton are composed. In man it consists of a basis of honogeneous substance, a compound of cartilage and carthy matter, in which there are minute cavities (Fig. 2), with delieate branched eanals leading from one to the other. On the walls of these camals and cells the earthy matter is deposited nore thickly than in the intermediate spaces, so that when examined by transmitted light they appear black or dark grey. The cavities, orbone-corpuscles, in man are romud or oval, and flattened; most of them are between ates and rtho of an inch in length, about one-third as much in lreadhh, and one-sixth as much in thickness. They have somewhat jagged edges, from all parts of which there proeeed the fine bramehing canals, to which the name of culcigerous has beengiven, and which traverse the homogeneous basis of the bone, and conmunicate irregularly with one another. The diameter of these canals, at their lareest parts, is not more than rowo of an inch; that of their smaller branches is between गobo and ados. Their general direction is fowards the axis of the tooth, around which the corpuscles are arranged in concentrie circles.

Dicroscopic view of bone-cospuseles and calcigerous enthals.
The enamel is composed of solid prisms, or fibres (Fig. 3, a a), about ऊon of an inch thick, set side by side and upright upon the ivory of the crown of the tooth (b). One end of each prism is fixed in a little depression on the rough outer surface of the ivory; the other, which is somewhat larger, is turned fowards the mastieating surface of the tooth in the direction in which the chief external pressure is to be resisted. The course of the prisms is more or less wavy, their curves being, for the most part, parallel (Fig. 4), but sometines opposed. Most of them extend from the ivory to the surface of the tooth: and where they do not, small complemental prisms fill up like wedges, the vacant spmees.

View of the arrangezaent of the mamel-abres
on the crown of an incinor tooth.
In the perfect state the enamel contains so small a quantity of animal matter, that it eannot be demonstrated to the sight, and the prisms are inseparably consolidated; but in young teeth it is soft, and may be broken up into
its elementary parts. In the early state also it exhibits portions of a membranous animal substance, consisting of the cells in which each of its prisms was formed; for, as will be presently shown, the earthy matter is deposited in what might be called a set of moulds formed by the primary cells of the enamel membrane, and, as it accumulates, the membrane of the cell is so nearly removed, that in the perfect tooth no portion of it can be discerned. Its former existence however seems to be indicated by fine close-set transverse strix upon each prism of the enamel.
The dentine, or ivory, is composed of a hard fibrous basis of cartilage and earthy substance, traversed by very fine, branching, cylindrical tubules, which run in an undulating course from the pulp-cavity, on whose internal surface they upen (see Fig. l, b) towards the adjacent part of the exterior of the tooth. Each tubule in its course outward makes two or three chief curves ("primary curvatures,' Owen), and is besides bent at every pait in minute and very close undulations, or secondary curvatures; but the course of those tubules, which are adjacent to each other, is very nearly parallel. It is from the parallelism of these secondary curvatures of the tubules, that the appearance arises, as if the ivory were composed of concentric lamella arranged round the pulp-cavity.

The chief branchings of the tubules of the dentine are dichotomous (Fig. 5) ; but they also frequently give off minute branches, which again sending off smaller ones, fill up the spaces between the trunks (Fig. B). At the trunk each tubule has an arerage diameter of about rodes of an inch, and the distance between cach two tubules is nearly equal to the width of three of them. Both the walls and the cavities of the tubules, as well as the substance between them, are filled by the carthy constituent ef the ivory, which is deposited in fine granules. The basis of the intertubular substance seems to be composed of bundles of flat, pale, granular fibres, whose course is parallel to that of the tubules.

Views of the jubules of dentines.
A separate organ is provided for the formation of each of these three constituent parts of the tooth, though, when they are perfected, they contain no vascular tissue but the pulp within the pulp-cavity, and it is doubtful whether, in the human subject, fresh material is ever formed from this after the tooth has once attained its complete development. The first appearance of the pulp of each tooth is in the form of a minute process or papilla rising from the bottom of a groove in the mucous membrane of the mouth behind the edgo of the jaw. In course of time, as the borders of the groove grow around it, the papilla seems to sink into the mucous membrane; and it now appears as if rising from the base of a follicle, or of a flask-like depression, in the edge of the Jaw. And lastly, processes ot membrane, or opercula, grow from the sides of the mouth of the follicle, and as they approach each other and adhere by their mutually opposed edges, they gradually close 1 , and convert it into a capsule or sac, to the bese of which the first-formed papilla is affixed. In the first-appearing tooth, the papillary state may be seen in the human cmbryo an inch in length: the capsular stage is completed at about the fifteenth. week of cinbryonic life.

These three stages of the formative organs of the tooth, namely, the papillary, the follicular, and the capsular, being completed, the substances of the tooth itself begin
to be produced. The dentine is developed from the papilla, which gradually assumes the form and relations of the proper tooth-pulp; the enamel, from a special organ developed at that part of the capsule which is opposite to the papilla; and the bone probably from the interior of the capsule itself.

The papilla and the sae both gradually increase in sizc; but the growth of the latter is at first more rapid than that of the former, and the space between them is thus enlarged. Within this space there is deposited from the wall of the sac a soft, granular, non-vascular substance, the enamel-organ, or, as Mr. Hunter (Natural History of the Tecth) termed it, the external pulp. And at the same time as this is being produced from the interior of the sac, there is formed on the surface of the papilla a peculiar structureless membrane, which has been ealled the preformative membrane, and which, when the papilla begins to ossify, presents numerous little elevations and depressions, on which the enamel fibres are afterwards fixed; for as the papilla enlarges, the preformative membrane comes in contact with the enamel-organ, and they are exactly moulded the one upon the other.
Both the papilla, or as it may now be called, the pulp, and the enamel, are composed of primary cells [Nurre ron], and it is by the transformation of these that the tubules of the dentine and the fibres or prisms of the enamel are severally produced. The exact mode however in which the change is effected is not yet known. All that can be seen is that the superficial cells of the pulp, which are at first round or oval, and nucleated, assume the same diameter and direction as the trunks of the dentine tubules, and then have earthy matter deposited in and around them. And these changes go on gradually from without inwards: as fast as the elongated and branching cells of one layer are ossified, those of the layer beneath them become elongated in preparation for the same change; and so on, till a great part of the pulp is hardened. It is due to this gradual ossification of the pulp from without inwards, that in growing animals, to whom madder is alternately given and omitted in their food, the dentine is found to consist of alternate rings of red and white ivory; for while madder is being taken, all the earthy matter that is deposited in the most superficial layer of the unossified pulp-cells is dyed by its colouring principle, and when it is discontinued the same material is deposited uncoloured in the layer of cells which is subjacent to that already ossified and reddened. Whon nearly the whole of that part of the pulp which was formed in the original papilla is thus hardened by the deposition of earthy matter, its base begins to grow into one or more conical processes, and, by a hardening of these, through a process like that just described, the fangs are formed, and the tootli rises to the surface of tho gum.

In the formation of the enamel, the primary nucleated cells on the inner surface of the enamel-organ become elongated and cylindrical, or prismatic; they assume a direction which is perpendicular to the surface of the lardening pulp; and then, their nuclei disappearing, they also are hardencd by the deposition of earthy matter within them, which is continued till they are inseparably eompacted, and their original membranous wall is not discernible. These changes also, like the preceding, make progress in layers; but the progress is here from within outwards, and it goes on till nothing is left but a thin external enamel-membrane on the surface of the crown 0^{s} the tooth. As the enamel organ and the papilla, bott. growing and hardening, approach more nearly to eact other, the preformative membrane also disappears.

By the iransformation of this enamel-membrane, or of the superficial part of the capsule itself, that part of the bone is produced which envelopes the enamcl ; and by similar changes in that part of the capsule which has grown in company with the fang-processes of the pulp, that part of the bone is formed which invests the fangs. The changes in this part of the process are probably exactly similar to those through which new bonc is produced between a periosteum and the old bone which it surrounds.

TEETH OF WHEELS. [WheELS.]
TEFLIS. [TIFLIS.]
TEFZA. [Marocco.]
TEGEA. [Arcania.]
T'EGERNSEE, THE, is a lako in tho circle of the Isar,'
in the kinedom of Bavaria, about thirty miles from Muniel, at the foot of the Bavarian Alps. It is about four miles long, one mile and a quarter broad, and 390 feet deep. This Inke gave its name to a Benedietine abbey, whiel? was founded by the Agilolfingers, in the time of Kinig Pepin, was destroyed by the Hungarians, restored in 979, and not abolished till some years after the beginning of this eentury. The albots were prinees, and had four liereditary offiees in their household whieh were held by noblemen. The late king of Bavarin, Maximilian Joseph, lad the abbey eonverted into a fine palace, whielt he presented to lis eonsort the late Queen Caroline, with the lordship depending on it, whieh is about 00 square miles in extent, including the village of Tegernsee, with 300 inlabitants. This palace is situated in a beautiful country surrounded with lofy mountains, among whiels the Waldbery and the Setzberg are sometimes illuninated when there are royal wisitors at the palaee. The grounds are laid out with great taste, and the villnge ehureh is very liandsome, and contains some fine paintings. In the vieinity there are quarries of fine marble of varions colours. nnd the mineral springs of Kreuth and Seliwaighof. Krentl) is in a very romantie situation, at the foot of ligh mountains, and is mueh frequented for its sulphureous waters. Near Tegermsee naphtha is found, whieh is here called St. Quirinus oil, because it was formerly pretended that it issued from the corpse of St. Quirinus, to whom a elapel in the vieinity is dedieated.
(Hassel, Geographie; Stein, Geographisches Lexicon ; Cannabieh, Lehrbuek der Geographie; Hübner, ZeitungsLexicon.)
TEHERAN, or Tehran. [Persia.]
tehuacan. [Mexican States.]
tehuantepec. [Mexican States.]
TEIGNMOUTII. [Droossimpr.]
TEIGNMOUTH, fOHN SIIORE, LORD, was the eldest son of Thomas Shore, Esq., sometime of Melton in Suffolk, and of his wife Dorothy (other authorities say Deborah) Shepherd. The family was originally of Derbyshire, I.ord Teignnouth's great-grand father liaving been a Sir John Shore, of Derby, M.D., who was knighted in 1667 . Lord Teignmouth was born, it is believed, in Deronshire, Oetober 8, 1751 : his father died in 1759, his mother in 1783, and his only brother, the Rev. Thomas William Shore, who was viear of Sandal in Yorkshire, and of Otterton in Devonshire, in 1822.
Lord Teignmouth went to Bengal in 1760, as a eadet in the Company's civil service, and was first stationed at Moorshedabad as an assistant under the council of revenue. In 1773 his knowledge of that language procured him the appointment of Persian translator and sceretary to the Provineial Council of Moorshedabad; and this was followed the next year by a seat at the Caleutta revenue board, which he retained till the dissolution of the board in 1781 , when he was appointed second member of the general committee of revenue, established by the new charter gramted that year. While holding this situation, Mr. Shore lived in terms of intimacy with Warren Hastings, the governor-general; and when Hastings eame liome in 1785 , he aeconppnied his friend to Englnnd. During this visit to his native country he married Charlotte, only daughter of James Cornish, Esq., n. medieal praelitioner at Teignmonth; and n few weeks afer, in April, 1786, he set out again for Cnleutta, having been appointet one of the members of the Supreme Council under the new governor-general Lord Comwallis. To his activity and assendeney in the council is mainly ntributed the adoption of Comwallis's great messure, the new settlement, in 1789 , of landed property in the presideney of liengal, by wlieh the zemindars, lintherto only the revenue agents or tnx-gatherers of the government, were made the hiereditary proprietors of the estates whielh they farmed, and the ryots, or peasantry, who had till now n right of oecupation so long ns they paid their nassessments, were deelared the tenants of the zemindars, and made removable at the will of their landlords. The new judicial gystem which was intredueed towards the elose of Ioord Cornvallis's government in 1793. nlso owed its establislment in a priueipal degree to Sliore, who lhad been made a bnronet the preeeding year. On the retirement of Comwallis, in August, 1793, Sir John Shore was appointed to sueceed him as governor-general; and he held that high office till the elose of the year 1797, when he resigned
it to the earl of Mormington, and was created an Irish peer by the title of Baron Teignmonth.
Upon the death of Sir Willian Jones, in April, 1799, Sir John Shore was elected president of the Asintie Soeiety; and taking his seat in that capacity on the き2nd of May; he delivered a discourse on the merits of the late president, which is printed in the fourth volune of the Soeiety's 'Transsetions.' Aner his return home Lord Teignmouth published, in 1804, a 410 . volunie, entitled 'Memoirs of the Life, Writings, and Correspondence of Sir William Jones ;' nnd in 1807 he produced an edition, in 13 vols. 8vo., of Jones's Works, with this Life prefixed. Upon his leaving India Lord Teignmouth had leeens sueceeded as president of the Asiatie Society by Sir Roleert Chambers, in a diseourse ly whont, delivered at a mecting of the Society on the 18 th of January, 1798, and printed in the sixth volume of their 'Transaetions,' there is a sketeh of the charaeter and eareer of his predeeessor. In 1804, on the formation of the British and Foreign Bible Society, Lord Teignmouth was eleeted its first president: and this situation he retained till his sleatlh, though for some years before that event he was obliged to devolve its actuse duties upon his suecessor, Lord Bexley. In the prosperity of the Society he at all times took the liveliest interest.
On the 4th of Λ pril, 1807, Lord Teigninouth was appointed one of the commissioners for the affairs of India, or, in other words, a member of the Board of Confrol : and on the $81 / \mathrm{l}$ of the same month he was sworn of the Privy. Couneil. IIe retained his seat at the Bonrd of Control for some years; and his death took place on the 14th of Febriary, 1834.

Besides the publications already mentioned, Lord Tcienmouth is the author of A Letter to the Reverend Chiristopher Wordsworth, D.D., on the subjeet of the Bible Society;' 8vo., I.ondon, 1810; and 'Considerations on eommunieating to the Inhabitants of India the Knowledge of Christianity,' 8 vo 0 , London, 1811. (Gent. Mug. For 1834, pt. i., p. 552.)
TEISSIER, ANTOINE, was born at Montpellier, 28th Jannary, 1632. His fanily, which was originally of Nînes, was Protestant; and lis father was reeciver-general of the province of Ianguedoe, but he was deprived of that appointinent, and also of whatever else he passessed, a tew months after the birth of his son, for haviug joined the revolt of Henri, Die de Montmorenci, or nt least given up to him the pullie money which was in his hands. Montmorenei was taken prisoner at the alfair of Castelnaudari, on the lst of September, 1632 ; his insurreetion was suppressed, and on the 3uth of October he was beheaded. Ater the ruin of his fanily it was deternined that Antoine Teissier should be edtueated for the ministry of the lrotestant elurcll, and with that view lie studied theology for sone time at the Protestant seminaries of Nîmes, Montruban, antl] Saumur. But in the end he made up his mind to adopt the profession of the law, indueed, it is said, by the weak state of his health; and after having gone through the usual eourse of study at Bourges, and taken his doetor's degree, he commeneed praetiee as an advocate before the distriet court called the Presidial, at Nimes. His lodily strength however proved to be no more suffieient for the bar thnn it had been thought to be for the pulpit ; and after some time he gave uip lis profession, and took to literature as a means of sulbsistence. On the revoeation of the Ediet of Nantes, in 168\%, Tcissier took refuge in Switzerland, having, aceording to the • Biogrnplie Universelle,' although in extreme distress, dectined very tempting proposals which were made throurg the ehane ellor D'Aguessean, to induce him to remain in France. But it would no doulht be made a condition that he should aljure Protestantism. He supported hinself eliiefly at first by publishing n French newspaper nt Berne; then by giving a course of public law (droit public) at Zurrich; mnd the works he sent to the press from time to time also brought lim something. At length, in 1602, he was invited by Frederic III., eleetor of llrandenburg (afterwards king Frederie 1. of Prussia) to come to 13erlin; and there he resided till his death, on the 7 the of Septenıber, 175. Immediately on his arrival he had been nominated a councillor of state, and appointed to the office of historiographer; and part of lis time was also oeeupied for some years in superintending or directing the elluention of the hereditary prinee, afterwards Frederic William
I. A complete list of Teissier's numerous publications is given in the 'Biographie Universelle.' The most celebrated among them is his 'Eloges des Hommes Savans, tirées de l'Histoire de M. de Thou,' first published at Lyon and at Geneva, in a 12 mo . volume, in 1683 ; then at Utrecht, in 2 vols., in 1696; and again at Leyden, in 4 vols., in 1715. In the two latter editions the text of De Thou is aceompanied by numerous annotations, which display much curious researeh. Teissier was an aceurate inquirer ; but there is no artistic quality or vital power in any of his books, and all of them, even ineluding his ' Eloges,' may be said to be now superseded and nearly forgotten. One of the most creditable is a Catalogue, in Latin, of the authors who have written catalogues, indexcs, \&e., in two parts, 4to., Geneva, 1685 and 1705 ; some others relate to parts of the history of Prussia; and a great many are translations, which have the eharacter of being generally faithful enough, but of little elegance or spirit, from St. Clement, St. Chrysostom, Calvin, Sleidan, and other Greek and Latin writers, the latter mostly, if not exelusively, moderns.

TEIXEIRA. [TEXEIRA.]
TEJEN. [PERSIA.]
TEJUCO. [Brazińn p. 368.]
TE.JUS. [Sauvegarde.]
TE'LLECLES. [Sculpture.]
TELEGRAPH (from rīhє, 'distant,' and $\gamma \rho a \neq, \omega$, 'write'), a machine or contrivance for communicating intelligenec to a distance, usually by means of preconcerted signals, to which some conventional meaning is attached. On this aecount telegraphic communications may be as remarkable for their impenetrable seereey as for their rapidity. The name semaphore (from $\sigma \ddot{j} \mu a$, ' a sign,' and $\phi{ }^{\text {e }} \rho, \omega$, 'bear'), is commonly applied to some of the machines used for effecting telegraphie communieation; which, in an extended sense, may be considered to cm braec every means of conveying intelligence by gestures and visible signals, as flags, lanterns, roekets, blue-lights, beacon-fires, \&e., or by audible signals, as the firing of guns, the blowing of trumpets, the beating of drums or gongs, \&e., as well as by the machines called telegraphs or semaphores.

Although telegraphic communication, as a means of conveying any required intelligence, is an invention of recent date, the use of signals for the specdy transmission of such brief messages as might be previously arranged between persons, is a practice derived from the most remote antiquity. The use of beacon-fires, for example, as a means of giving specdy warning of the approach of an enemy, is aliuded to by the prophet Jeremiah, who wrote about six eenturies before the Christian gera, and who warns the Benjamites to 'set up a sign of fire in Beth-haccerem; for evil,' le adds, 'appeareth out of the north, and great destriction.' (Jeremiah, vi. 1.) The fine description given ly Eschylus, in his 'Agamemnon,' of the application of a line of fire-signals to communicate the intelligence of the fall of Troy, is often referred to as an carly instance of this kind of telegraphic despateh; but if the sera of the writer, and not that of the event, is referred to, the passage above quoted affords an earlier illustration. This simple means of spreading an alarm, or communicating intelligenee in time of war, is practised by many nations ; and, to come nearer home, we may refer to the graphie stanzas of the 'Jay of the Last Minstrel' (canto iii., st. Xxv.-xxix.), descriptive of the rapid communieation of the approach of the English forees from the border stations, along 'height, and hill, and cliff,-

> Till high Dunedin the hlazes aaw, From toltra and Inmprader Lawi And Jothian heard the hegent'e order, That all should boune them for the border

In a note illustrative of this description, Scott refers to an Aet of the Seottish parliament in 1455, e. 48, whieh dircets that one bale or faggot shall be warning of the approach of the English in any manner; two bales, that they are coming indeed; and four bales blazing beside eacli other, that the enemy are in great foree. Suel signals, thorgh best adapted to give information by night, were also available in the daytime, when they appeared as columns of dense smoke. Torches held in the hand and moved in any particular manner, or alternately displayed and hidden behind a sercen, were also used in antient times as signals, as we learn from several early writers on
P. C., No. 1506.
military subjects; but as they were merely arbitrary signals, which admitted of very little variation, such devices could only be rendered available by previous coneert.

That some attempts were made by the antients to improve upon such simple signals is evident from the tenth book of Polybius, in which allusion is made to a device of Eneas (Tacticus), who proposed to write several sentences, such as it might be desirable to communieate, upon two oblong boards, one of which should be kept by each of the parties. These boards were to be affixed to cork floats capable of rising and falling in eylindrical vessels of similar form and size, one of which was plaeed at each station. Matters being thus prepared, and the vessels filled with water, the person desiring to send intelligence allowed the water to eseape from his vessel by a small opening until the suitable sentence on the inseribed board had sunk to a certain mark; making toreh signals to indicatc the moment of allowing the water to run out, and that at which the board sank to its proper level. The person at the distant station regulated the egress of water from his vessel by the torch signals, and was thus enabled to aseertain which of the sentences written on the board conveyed the required intelligence. Complicated as was this arrangement, it afforded very little more scope than the use of simple torches or fires. Polybius however describes a much more perfect method of telegraphic communieation, which, he says, was invented either by Cleoxenus or Democlitus, but improved or perfected by himself. This method is capable of communicating any required intelligence with the greatest precision, the signals being made to represent the letters of the alphabet, and the message being displayed letter by letter. Instead of quoting the description of Polybius himself, which refers to the use of the Greek aphabet, we shall adopt that of Bishop Wilkins, who describes the plan as applied to the English alphabet. The alphabet must be divided for this purpose into five portions of five letters each (excepting the last, which has but four, j and v being omitted as unnecessary), and inseribed upon tablets, as in the following diagram:-

This being donc, each of the corresponding parties is to be provided with a copy of the tablets, and also with ten torehes, five of them on the right hand and five on the left. Any letter may then be expressed by first lifting $11 p$ on the right hand so many torehes as may indicate the number of the tablet in which it is contained, as I., II., III., \&ce., and then so many on the left as may show the number of the particular letter in the tablet, as $1,2,3$, \&c. Thus the word hasten would be expressed by displaying the torches six times, in the following order, in which the Roman letters indicate the number of torches raised on the right hand, and the Arabic numerals those on the left:-
Right hand.
II.
IV.
IV.
II.
II.

	Left hand.
h	3.
a	1.
t	3.
t	4.
n	5.
n	3.

Polybius observes that dioptrical instruments, framed with two holes or tubes, should be nsed to enable the olserver to distinguish aecurately the right and left liand lights; and that solid fences should be erected upon cach side, bchind which the torches might be coneealed when out of use. Bishop Wilkins, in his curious work entitled 'Mercury; or the Sceret and Swift Messenger,' after deseribing this telegraph of Polybius, mentions another which requires only three lights or toreles. The twenty-

Vol. XXIV.-U
four necescary letters of the alphabet are, aecording to this plan, which he gives on the authority of Joachimus Fortius, to be divided into three classes of eight letters euch. The first clase is represented by one torch, the second hy two, and the thind by three; and the number of the letter by the number of times which the torches are elevated or discovered. Thus one toreh raised onee would represent a, or raised eight times, h; two torches maised once would indicate \boldsymbol{i}, raised twiee, \boldsymbol{k}; or eight times, q; and three torches raised from onee to cight times would give the remaining letters, from r to \approx. Similar to this, but still easier of applieation, is the night-telegraph contrived by the llev. Jaines Bremner, of the Shetland Islands, and rewarded by the Society of Arts in 1810. A single light constitutes the whole apparatus in this plan, and the whole operation consists in its alternate exhibition and concealinent. The alpliabet is divided into four elasses or clivisions, of six letters each; and the number of obseurations is to indicate, first, the number of the division, and seeondly, the number of the letter in that division; a pause being inade between the obseurations whieh indicate the number of the division and those whieh show the number of the letter in that division; and a longer pause between the double set of movements thus required for every letter. Two lights, one to represent the division, and the other the number of the letter, might in some eases be used ; but Mr. Bremner eonceives that, especially in long distanees, oue is preferable, as affording less risk of error: His plan had been found mitable for distances of twenty mlles and upwards, and had been suceessfully put in operation between the lighthouse on Copeland fsland and Port Patriek on the opposite side of the Irish Chaunel. Further partieulars respecting this, and a deseription of a nother telegraph for day-service, by the same author, are given in the thirty-fourth volume of the Society's 'Transactions,' pp. 213-227. Tedious as Mr. Bremner's method may appear, it is stated that, supposing the whole alphabet to be used, sixty letters might easily be given in five minutes; while the communication might be effected more rapidly if, as in some telegraphic systems, only sixteen lettens were used. In addition to the alphabetie systems which depend nerely upon the number or alternate display and concealment of lights, Bishop Wilkins describes one which depends upon the relative positions of tro lights attached to long poles, and which, he says, 'for its quickness and speed is much to be preferred before any of the rest.' It will thus be perceived that that ingenious writer eame very near to the priuciple upon which many of the modern telegraphic systems depend. In suggesting the use of extended lines of telegraphic communication, he further hints at the applieation of the teleseope (or, as he styles it, 'Galileus his perspective'), to the deciphering of distant signals.
Among the scientific writers who seem to have had some notion of the modern telegraph are Kireher, Schottus, and Kessler; the latter of whom proposed to eut out such characters as it was desired to show in the ends of a eask, which was to be elevated with a light enelosed in it. The Marquis of Worcester also, in his 'Century of Inventions,' 1603, announces, 'How at a window, as far as the eye can discover black from white, a man may hold discourse with his eorrespondent, willsout noise made or notice taken,' \&c.; and Rgain, " A way to do it by night as well as by slay, though as dark as pitch is black? The earliest well. defined plan of telegraphle communieation appears however to be that described in a paper addressed to the Koyal Society in 1684. by Dr. Kobert Hooke, and pub)lished in 1726 in Derham's collection of his ' Philosophical Experiments and Observations,' pp. 142-150, 'showing a way how to eommunicate one's mind at great distances.' llooke states that he had discoursed on thie subjeet some years before, but that the then recent siege of Vienna by the Turks had revived the matter in his mind. His seheme will be readily understood by the annexed cut, lig. 1, whleh represents an elevated frame-work supporting a panel or screen, a, behind which were to be suspended a number of symbols or deviees, formed of deal plank, of the various shapes represented by the small black figures. The first twenty-four of these, whieh eonsist entirely of straight lines, were to stand foralphabetic charaeters; and the six devices consisting of curved lines were to be used as arbitrary signals. Whenever it was desired to display any of these charaeters, they were to be drawn from be-
hind the soreen by a rope e, passing over pulleys in the frame-work, and so rentered visible in the open sprace at b. These telegraphs were to be erected upon ulevated

Fig. 1.

stations, so chosen that, if possible, there might be no refraction of the atmosphere to impede vision, and so that no intervening objects or disturbed hackground might interfere with the clearness of the prospect; and telescopes were to be used by the observers. The order of conneetion between the signs employed and the letters of the alphabet might, it is explained, be infinitely varied, for the sake of secrecy; and none of the parties employed, excepting those at the terminal statious, need have any knowledge of the message eommunicated. Hooke further proposed a seheme for night communieation by means of lights disposed in a cerlain order. About twenty years after the date of Hooke's paper, Amontons brought forward a very similar plan in France, and made public frial of his contrivanee before seyeral persons of rank. Some other individuals subsequently devised sinilar schemes, but nothing was effected in the praetical application of telegraphic communieation until the war of the French revolution. Macdonald states that, Following the prineiples laid down by Dr. Hooke, in 1681, Dupuis, in Franee, invented the French telegraph, which Don Gualtior, a monk of the order of Cilcaux, in 1781, modified, and proposed to Condorcet, Milli, and Dr. Franklin, who recommeaded it to the French government.' The telegraph brought into use in 1793 or 1794 , hy M. Chappe, was, as will be seen by Fig. 2, a very superior machine to that of Dr. Hooke.

Chappe's telegraph, which, from its position when at rest, is sometimes ealled the T telegraph, consisted of an upright pole or post, at the top of which was pivoted, by its eentre, a transverse beam, which, by means of ropes worked in the chamber below, that served also for an observatory, might be made to assume any required angle with the post. Each end of this moveable beam earried a short arm, that was capable of assuming any required angle with it ; and these arms also were worked by ropes, which were conslucted through the axis of the bean, in orler that the necessary degree of tension might not be disturbed by the aetion of the machine. By this contrivance, without the use of any angles of less than 45° (which might be indistinct when viewed from a great distance, or under the influence of a refractive atmosphere), as many as 256 different signs might be made. A much smaller number was however suffieient, as M. Chappe eommunicated his intelligence letter by letter, and sumplified the movements by using an alpliabet of only sixteen letters. The small figures in the eut show some of the different positions assumed hy the beam and arms; and, as the eonneetion hetween theso and the letters they were made to represent was quite arbitrary, their significa-
tion might be changed as often as was necessary for the purpose of secresy; it being only necessary that the key should be known to the parties sending and receiving the message, although it might be transmitted through a great number of intermediate stations. Such telegraphs were first erected on a line commencing at the Louvre, in Paris, and proceeding by Montmartre and other elevated points to Lisle, in order to communicate between the Committee of Public Welfare and the combined armies in the Low Countries. Telescopes were used at each station, and the signals displayed at one station were immediatcly repeated at the next; four seconds being found sufficient for effecting the required motions, and sixteen seconds the time allowed for observing and noting down each signal, during which the machine remaincd stationary. Barrere, in announcing the invention of the telegraph to the Convention, on the 17 Ih of August, 1794, stated that the news of the recanture of Lisle had, by means of this machine, reached Paris in an hour after the troops of the republic had entered that placc. (Annual Register, 1794, p. 51.)
The advantages of such extraordinary celerity of communication were so obvious that, in England and other countries, many plans were immediately brought forward, some of whioh differed materially from that which had been successfilly put in practice in France. Among these was that contrived by Mr. R. L. Edgeworth, who states that he had made experiments as early as 1707, when he proposed to use the sails of a windmill as a means of convcying intelligence by signals. The report of Chappe's telegraph revived the matter with him, and late in 1794 he, with some friends, tried experiments with a numerical telegraph (or a telcgraph expressing numbers, which numbers refer to letters, words, or sentences, in a dictionary), on the principle shown in the cut Fig. 3. An index, or pointer, in the form of an isosecles triangle, was so mounted upon a post, or on a portable triangular stand, that it might be

Fig. 3.

turned into any of the eight positions shown in the upper part of the cut ; these positions indicating, respectively, 0 and the numerals 1 to 7 . Four such pointers, mounted side by side by side, as in the lower part of the figure, afford power for expressing any number from 1 to 777 , execpting $8,9,18,19,28,29$, and all others in which the numerals S and 9 are required : the first pointer representing thousands, the second hundreds, the third tens, and the fourth unils. Thus the four black pointers in the figure, heing, respectively, in the positions indicating $2,7,7$, and 4 , express, collectively, the number 2874. The numerical system affords at least equal facilities with the alphabetic or lettering plan for secrecy in the communications; since the connection between the numbers expressed and the sentences to which they refer may be changed at pleasure, and none of the jersons employed in transmitting the intelligence nced to possess the dictionary, the number boing all that they require to know. In reference to this distinctive feature of his plan, Edgeworth observes that, while 'telegraph is a proper name for a machine which describes at a distance, telelograph, or, contractedly, tellogruph, is a proper name for a machine which dcscribes zoords at a distance;' and therefore he uses the latter term. In his 'Essay on the Art of Conveying Secret and Swift Intelligence,' published in the sixth volume of the 'Transactions of the Royal Irish Academy;' in which the details of his plan are fully given, Edgeworth notives the great advantages derivable from the application of telegraphic communication to commercial and gencral purposes, as, for instance, to the speedy announcement of market-prices at a distance; and even hints at the possibility of a line of telegraplis between Europe and the

East Indies. He also published a pamphlet entitled 'A Letter to the Right Honourable the Earl of Charlemont on the Tellograph, and on the Defence of Ireland,' which was reprinted at Londou in 1797.
Another of the individuals whose attention was directed to this subject by Chappe's telegraph, was the Rev. J. Gamble, then chaplain to the Duke of York. He issued a thin quarto pamphlet, without date, entitled ' Observations on Telegraphic Experiments,' in which, after noticing several suggestions which had been made for effecting rapid communication, he propounds another, of which he believed himself to be the inventor. The apparatus which he proposed consisted of a frame-work containing five boards, or shutters, arranged vertically one above the other, and pivoted in such a way that any or all of them might be closed, so as to present their broad surfaces to the eye, or opened, so as to present merely a thin edge, which would be invisible at a distance. The variouis signals produced by closing one or more of these shutters niay be applied cither to a numerical. or an alphabetical system: A similar plan submitted to the Adniralty in 1795, by Lord George Murray, was adopted in the first government line of telegraphs established in England, in 1799, betwcen London and Dover. The ' Annual Register' for that year (p. 4 of the 'Chronicle') mentions the erection of the telegraph over the Admiralty on the 2sth of January, and states that information had been conveyed from Dover to London in seven minutes. The action of this kind of telegraph, which was continued in use by the Admiralty until the year 1816, is illnstrated by Fig. 4, in which A represents a square frame-work with six octagonal shiutters, $1,2,3,4, \overline{5}$, and 6 , arranged in two vertical columns, or

sets, and turned into a vertical position, so as to display their broad surfaces completely, and B represents the same apparatus with the boards or shutters placed horizontally, or turned one-quarter round upon their respective axes, so as to present notling but their edges to the eyc. The central space between the two columns of shutfers serves to render them more distinct to a distant observer, and affords room for the ropes and pulleys by which the telcgraph is worked, and which are managed by persons in the observatory below. As shown by the following table, the six-shutter telegraph is capable of expressing sixty-three differcnt signals, by closing one, two, three, or morc of the shutters, according to the Arabic numerals in the table, which refer to the numbers inserted in the cut Fig. 4, A. The position of the apparatus shown in Fig. 4, 1B, is not counted as a signal ; it being the position of rest.

- Table of the Separate or Distinct Signals given by the: Six-shutter Telegraph.

1	23	124	236	1245)	3456
2	21	125	245	1246	12345
3	25)	126	246	1250	12346
4	20	134	256	1345	12356
5	34	13:)	345	1346	12456
6	3.7	130	346	13356	13456
12	36	145	356	1450	23456
13	45	146	4.56	2345	123456
14	40	150	1234	2340	
15	56	234	1235	23 วิ6	
16	123	235	1236	2156	

These signals affords the means of expressing cach letter of the alphabet, and cach of the Arabic numerals, by a distinct and simple sign, and still leave several signs unappropriated, which may be applicd to words or sentences of common use, or to arbitrary signals; and the connec-
tion between the signals given in the table and the letters or numerals they represent may be varied almont infinitely; so that if, in time of war, the key were to fall into the hands of the enemy, it might be immediately changed. In a modifieation of this kind of telegraph, intended for night as well as for day service, which was sulomitted to the Society of Arts, in 1800 , by Mr. Joseph Davis, a seventh shutter or board is added, whieh, instead of being poised on an horizontal axis, is made to slide up and down in grooves in the eentre of the framework; so that it may either range with the shutters 1 and 2,3 and 4 , or 5 and 6 , or, if not required at all, may deseend into a space provided for it in the roof of the observatory. By this simple deviee the power of the machine is quadrupled; it being rendered eapable of making the sixty-three signals showu in the table without the sliding-shutter, and the like number with it in each of its three visible positions, or two hundred and fifty-two changes in the whole.

About the same time that shutter-telegraphs were being introdueed in England, the Chevalier A. N. Edelerantz, of Stoekholm, was devising similar machinery for use in Sweden. In 1796 he published an aecount of his experiments and inventions in the Swedish language, which in 1801 was translated into Freneh and published at Paris, and was notieed in Nieholson's 'Journal ' in 1803. A few years later Edelcrantz communieated a model of his tclegraph to the English Society of Arts, in whose 'Transactions' for 1808 (vol. xxvi., pp. 181-189), it is minutely deseribed. He commeneed his experiments in September, 1794, with a maehine resembling that first employed in France ; but he soon abandoned it, and adopted a shut-ter-telegraph with ten boards or vanes, arranged in three vertical rauks, of whieh the centre one has four, and the others three boards each. By this arrangement 1024 changes or signals may be clearly shown; and it would be possible, by observing the order in which the shutters are exhibited, to show $4,037,912$ changes. The minute attention required in this case would, however, oceasion some uneertainty ; and it is not likely that any eircunstanees could render so many ehanges at all desirable. Edelcrantz reeommends that the vanes or shutters, which are represented as of a square form, should be painted black, and the frames which support them either white or red; and he says that the intervals between the shutters should he greater than their diameters. The apparatus for working the telegraph is ingenions, but too complicated for deseription here. It is sufficient to state that, when out of use, the shutters are held open by weights, and that the leverage afforded by the apparatus for elosing them is such as to enable one man to hold them all, if neeessary, against a high wind, whieh, it is added, could not be done with the English six-shutter telegraph, notwithstanding the smaller number of vanes, without employing several men. This ineonvenience led Mr. Menry Ward, who had observed the diffieulty of working the telegraph at Blandford, in Dorsetshire, to contrive an ingenious apparatus whieh is deseribed in payes 207-8 of the same volume of the 'Transaetions' of the Society of Arts as that which eontains the communication of the Chevalier Edelerantz. In this apparatus the grooved wheel or pulley which is fixed upon the axis of the shmtter, to receive the rope by which it is turned, has the grooved portion of its rim formed in two segments, which are so attached to the periphery of the wheel by steel springs that they fly oll and remain at a little distance from it when there is no strain on the rope; although, so soon as the rope is pulled, its pressmre forces the segments into close contact with the solid rim of the wheel. In the segments are formed two notehes, which, when the shutter is in either of its required positions, engage with a fixed catch so soon as the strain on the rope is relaxed, and so hold the shutter steady withont any aid from the attendant. The pulling of the rope, by drawing the segments close to the wheel, releases the eatch, and consequently enables the attendant to return the shutter to its original position. The ten-shutter telegraph of fidelcrantz had, at the date of his letter to the Society of Arts, heen in constant use for twelve years, on both sides of the Baltie, and in other plaees in Swellen; 'ehicfly in facilitating the communication of posts between kusvia and Finland on one side (of the Balfie), and Sweden aud EngJand on the other.' He states that one person was sufficient for working it and making the observations, espe-
cially at the terminal stations; and that six signals were usially given in a minute.

Lieutenant-Colonel Maedonald, who greatly prefers the numerical to the spelling or lettering system, recommends a shutter-telegraph of still greater power, and consequeutly of greater complexity, than that of Edelerantz. Ifis terrestrial telegraph, the advantages of which he has pleaded at length in two treatises, published in 1808 and 181\%, consists of thirteen shutters, arranged, like those of Edelerantz, in three vertical sets, whieh represent, respeetively; hundreds, tens, and units. As three boards in cael set would only afford seven eomlinations for each column, he uses four, which give fifteen combinations, ten of which are used to express the numerals from 1 to 9 , and 0 , and the remaining five for abbreviations and arbitrary signals. The twelve ordinary boards are eapable of produeing 4003 distinet combinations, and the thirteenth, or auxiliary board, which is mounted over the eentre of the machine, doubles that number. A flag or vane is added to the hundred side of the apparatus, to distinguish it in whatever direction it may be viewed, and a ball sliding upon the staff which supports it allords the means of again doubling the number; so that, in the whole, 16,380 distinet signs may be made with this machine. Maedonald reeommends that the shutters be made about five feet square; in whieh ease they may be seen with a molerate teleseope, in elear weather, at a distanee of ten or eleven miles.
Although the shutter-telegraph was originally considered an improvement upon that of M. Chappe, which was so complex as to lead to considerable rist of error, unless it were worked by a praetised penson, experience has established the superiority of telegraphs or semaphores with moveable arms; and these have been great Iy sinnplified, so as to avoid the objection raised to the old French telegraph. Among the schemes proposed soon after the first practieal applieation of telegraphs, was one which consisted in dividing a large eirele into twenty-four parts, for the letters of the alphabet, and employing a traversiug radius, or index, to point them out; wires being fixed before the objeet-glass of the teleseope to enable the distant observer to determine the position of the radius. This plan eould only be applied to short distanees, beeause refraction might render it diffienlt to distinguish between positions solittle varying from each other. The same radiating prineiple was, however, adopted in some muchines of more practical charncter; amony which was a telegraph eontrived by the Rev. J. Gamble (whose original shutter-telegraph has been before mentioned), consisting of five beams or arms pivoted at the top of a pont, upon one axis, and eapable of producing many different combinations without using angles of less than 45°. Un a similar prineiple were construeted the French coast telegraplis adopted in 1803, to which the name of scmuphores was first applied, and from which it has been given to other telegraphie maelines, the action of whieh is dependant upon the motion of arms around pivots placed ut or near their extrenities. These French semaphores, or, as they were sometimes called, signul-posts, consisted of upright posts with two or three moveable arms, turning upon separate pivots, one above the other. Before they were much known in this comutry, Captain (now MajorGeneral) Pasley hal bcen led to observe the inferiority of the conmmon land-telegruph to that used at sea, which contsisted of coloured flams, and by which three numbers, or rather three mumerals combined to form one mumber, might be readily expressed. To remedy this defeet, he, in 18i)7 (before he had seen the French semaphore), devised what he termed a 'polygramnatie telegraph,' of which he published a deseription in the twenty-ninth volume of Tilloch's 'Philosoplical Magazine.' 'This machine, whieh is represented in Hig 5 , eonsisted of four postr, at

$$
\text { Fig. } 5 .
$$

the top of each of which was pivoted a pair of arms. Each pair of arms was capable, by assuming the various positions indicated by the dotted lines added to the first pair, of forning more than a sufficient variety of distinct signals to express any of the numerals or the 0 ; and consequently the whole machine could represent any nurnber composed of not more than four figures, besides having several signals to spare. In 1809 Captain Pasley saw the French semaphore, which he described in the following year, together with a modification of lus own polygrammatic telegraph, founded upon it, in the thirtyfift volume of the periodical just mentioned. This simplified polygrammatic telegraph, represented in Fig. 6,

Fig. 6.

has three pairs of arms, representing hundreds, tens, and units, pivoted to different parts of the same vertical post. This contrivance is adopted by LieutenantColonel Macdonald, with very tritting variation, in his - Treatise explanatory of a new System of Naval, Military. and Political Telegraphic Communication,' published in 1817. By the addition of a ball and rane at the top of the mast, it becomes a nachine of the same power as Maedonald's thirteen-shutter telegraph; as each pair of arms is capable of assuming fifteen distinct positions. Another semaphore on the same principle was submitted to the Society of Arts in 1821, by Lieutenant N. H. Nicolas, and described, together with a method of applying a slitting key to telegraphic communications, for the purpose of insuring their secrecy, in the thirty-ninth volume of the Society's 'Transactions; where, although allusion is made, in a note, to the similar plan published by Colonel Macdouald, nothing is said of the earlier invention of lasley. The telegraplı of Lieutenant Nicolas consists of a lofy pole with four pairs of arms, one above another, the lowest pair representing units. For eacll of the three lower pairs of arms nine positions are all that are required, 0 being indieated ly both arms being closed into the post, and therefore concealed from sight ; bat the upper pair are made to represent any number from 1 to $1 \overline{5}$, so that the total range of the machine is from 1 to 15,999 .* This is effeeted by making the right arm represent 1,2 , or 3 , according to its position as inclined upwards, extended horizuntally, or inclined downwards; and assigning to the left arm the number 4 if inelined downwards, or 8 if extended horizontally. $5,6,7$, and 9 are formed, respectively, by the combination of the signs for 4 and 1,4 and 2,4 and 3 , and 8 and 1 ; and, in the case of the pair of arms which represent thousands, the left arm when inclined upwards indicates 12 ; and $10,11,13,14$, and 15 are produced by 8 and 2, 8 and 3, 12 and 1, 12 and 2, and 12 and 3, respectively. The telegraphs upou the commercial line of communication recently estallished letween London and the Downs are constructed upon another modification of the polygrammatic principle ; four pairs of arms being employed, but mounted upon two posts instead of one, as in the semaphore last described, or four, as in the original design of Captain Pasley.

In 1816 it was determined to change the Admiralty telegraphs into semaphores constructed on the principle of those used in France, with the improvements suggested by Sir Home Popham, who had previously done much for the improvement of naval signals. The action of Popham's semaphore is explained by Fig. 7, in whicls dotted

- 16.909 is the maximum number atated in the deseription of the machine: bot this ts prulably a miepriat for 15,999 , as no means is described for pro. rheing the number 16 , althorght it is ewy to conceive how it milght be dune, if abcersury.
lines are added to show the various positions in which the arms may be placed, and numerals to show the numbers indicated by those positions. Only two arms are employed; but as they are mounted upon separate pivots,

each of them ean assume six different positions, and the two together are capable of affording forty-eight siguals; which number, though less than that given by the sixshutter telegraph, is sufficient to express the letters of the alphabet and the Arabic numerals, and to leave thirteen signals unappropriated, for abbreviations and arbitrary signs. This kind of semaphore is still used at the government stations; and for the following table of its various changes or positions, and of the letters and numbers indicated by them, we are indebted to the article : Telegraph,' in the seventh edition of the ' Encyclopaedia Britannica,' by Sir John Barrow, one of the seeretaries to the Admiralty.
Table of the separate or distinct Signals given by the Admiralty Telegraph, with their respective Significations.

$\begin{gathered} \text { Signaly by } \\ \text { one and two } \\ \text { arms. } \end{gathered}$	Significa tion.	Signals by two arms.	Siqzilieation.	Siguals by two arms.	Sinnuification.
1	1	15	G	43	X
2	2	16	II	44	Y
3	3	21	1	45	Z
4	4	22	K	46	
5	5	23	I,	51	
6	6	24	M	52	
1	A	25	N	53	
2	B	26	0	51	
3	C	31	P	55	
4	D	32	Q	56	
5	E	33	12	61	
6	F	34	S	62	.
11	7	35	T	63	-
12	8	36	U	64	
13	9	41	V	6.5	
14	0	42	W	66	

Sir Home Popham's felegraph, in addition to its superiority in the inportant quality of simplicity, was a great improvement upon those which preceded it in the details of mechanical construction and in the mode of effecting the required novements. These are minutely detailed and illustrated with engravings, in the thirty-fourth volume of the 'Transactions' of the Society of Arts, in whose museum a model of the telegraph is deposited. The vertical post or beam is not a solid mass of timber, but a hollow hexagonal mast, which, turning on a pivot at its foot, and in a collar where it passes through the roof of the cabin used as an observatory, may be moved so as to display its signals in any direction. The moveable arms are provided with balanceweights in the form of masses of metal attached to their shorter ends, very near to the pivots upon. which they turn, by which means they are enabled to move in any direction with the exertion of a very small force; and they
tre made, when out of use, to fall into groaves or reeesses in the post, so as to become wholly invisible. The movements are effected ly means of two winch-handles near the base of the mast, within the eabin, one for each arm. The winch-handles turn two small vertieal bevil-wheels, which communicate motion by means of two horizontal bevil-wheels to long upright shafts or rods, which pass up the inside of the hollow post of the telegraph. At the upper ends of these rods, which are lield steady by suitable bearings, are endless serews, which work into toothed wheels fixed upon the axes of the arms, and thereby communicate motion to them. In order that the person who works the machine may know precisely when the arns are brought to the required positions, zimilar endless sercws are added near the lower ends of the vertical rods, to give motion by toothed whecls to indexes, which give a miniature representation of the motion of the arms. Excepting these indexes and the winch-handles, the whole apparatus is enclosed in the vertieal shaft of the telegraph, un the outside of which sinall blocks may be added, to chable a person, with the assistance of a rope from the top of the post, to ascend the macline for the purpose of cleaning and oiling it.

About the eane time Sir Home Popham proposed a modification of the semaphore for marine purposes, which, ne conceived, would be found very advantageous for the merehant-service, by superseding the necessity for a costly set of signal-flags; the expense and wear and tear of whieh formed a serious objection to a systern of general telegraphic communicatlon at sea, excepting in the ships of the East India Company. His proposed sea-telegraph would not, it is stated, cost more than finy shillings at first, and its wear and tear would not amount to five shlllings a year. As the height of an apparatus resembling his land-semnphore would be objectionable for marine purposes, Popham proposed to use two posts fwelve teet two inches high and six inches thick, each having a single arm siy feet four inehes long and ten inches broad, pivoted to the top, but not falling into a slot in the post, as in the last-described machine. In a small slot at the top of each post is a grooved pulley or sheave fixed upon the same axis as the arn ; and at a convenient height from the bottom of each post another precisely similar pulley is mounted in like way, its axis passing through the post. and earrying a small wheel with four handles at right angles with cach other, by which the machine is worked; the motion of the lower pulley being communieated to the upper one, and consequently to the arm, by an endless rope, which has two or threc turns round each of the sheaves, and passes up by the sides of the post. When the telegraph is in use, the posts may be attached to the side of the vessel by stepping their lower ends into bloeks fixed for the purpose, and lashing them to the buhwarks; or they may be inounted upon trucks, so as to be readily moved from one part of the ship to another. The deseription of this machinc in Sir Home Pophan's communication to the Society of Arts mentions but four positions for each arm, and states that when placed in the four positions diagonally to the post, one arm denotes $1,2,3$, and 4 , and the other $5,6,7$, and 8 . This arrangement gives twenty-four distinct signals, and a yoids the possibility of mistaking the horizontal for an inelined position of either arm, of which there might, owing to the motion of the ship, be some risk.

Major-General Paslcy, in a pamphlet published in 1823, entitled • Description of the Universal Telegraph for Day and Night Signals,' states that, athough he at one time considered I'opham's arrangenents to be judicious, he now deens the use of two separate pivots in the landsemaphore, and of two posts in that for marine use, unnecessary ; and that, concoiving simplieity to be of more eonsequence than the power of making many changes or distinct signals, he has abandoned the polygrammatic prineiple, and adopted the simple form shown in the next cut, lig. 8, which represents what he styles the 'universal telegraph,' ns adapted for day-serviec. It consists of an upright post with two aima, both attached to one pivot it its upper extremity. Each arm is capable of assuming the reven positions indieated in the cut, besides what is called the stop, whieh is made when turned down and obseured by the pont. Twenty-cight distinet signals may therefore be made by the apparatus, ns showis in the subjoined table; these being anore than suffieient for the letters of

the alphabet, though not numerous enough to allow of a full alphabet and the numeral charaeters.
Table of the separate or distinct Signals given by Pasley's Universal Telegraph.

1	6	$1 i j$	23	36
2	7	16	26	37
3	12	17	27	45
4	13	23	34	46
5	14	21	$3 i j$	47

57
67

It had been found, in using Sir Ilome Poplamis slipsemaphores, that inconvenience and uncertainty was occasioned by the signals being sometimes seen in reverse, in which case one number or sign would be confounded with nother; and this circumstance laving been mentioned to Pasley by an officer in the navy, he provided against its oceurrence with his universal telegraph by the addition of the auxiliary arm, or indicator, marked a in the cut, which, in whatever direction the machine may be viewed, distinguishes the side at which the numeral signs commence. It scrves also to prevent the position marked 4 from being confounded with the stop, which it might be if there were nothing to indicate that the telegraph is at work, and to cmable the cye to measure its height. The arms and indicator of this telegraph are franed and pannelled, for the sake of lightness, and the former nove respectively before and behind the post; the indicator only turning up, by mcans of a rope from below, into a cavity in the shalt, like the arms of P'opham's semaphore. The counterbalance weights of the arms are not fixed close to the pirot, but extend to some distance from it, in the form of a slender framework of iron, with a ball at the outer extrenity, their light appearance rendering thern almost invisible at a distance.

The motions are effected by an endless chain or rope, with a coutrivance for keeping it at the necessary degree of tension, as this plan is quieker in action than that of Popham ; but l'asley observes that if, as in a ship-telegraph, a rope or strap be used instead of a chain, the index attached to the lower pulley must not be implicitly depended upou. In a sub)sequent part of his pumphlet he stries that, in working with a rope, it is best to have the pulley-grooves of a triangular form, or with notches of the sane form, cut into projecting elents fixed to their circumference, hathich case the turns of the rope round the pulleys may be dispensed with. A friend who was well aeguainted ivith the effects of the climate of India, recommended to him that no iron should be used in semaphores to be exposed to it, and no wood, excepting for the post, which may lie of teak, and for some additional parts required to convert the machine into a night-telegraph, for which bamboo may be used. The panmels of the arms should, in such a case. be made of thin sheet-copper, and the other purts of the inachine of brass or bronze. Pasley states that telegraplas should in general be painted black, and, if possible, so plaeed that they may be seen withont any background. If however a background be unavoidable, the teligiaph should be of sueh a colour as to contrast with it. In some enses, where the appearance of the bnelkground vanies much at different periods of the day, it has heen found nscful to paint the arms white and black, it large chequers, each oceupying half of the width and half of the length of the arm.
The ingenious contrivanees which have been suggested for effeeting telographic communication are so vely numerous, that anything like an enumeration of them is
impossible in this place. Several depend upon the applieation of arms of various forms to a semaphoric telegraph. A two-armed telegraph, of which the two arms are differently shaped, would be capable of making twice as many signals as a two-armed telegraph with both arms of the same form ; but, for ordinary purposes, such an arrangement would have many.disadvantages. A machine of this claracter, contrived by Mr. Alexander Law, for both land and sea service, is described in the thirty-third volume of the 'Trausactions' of the Society of Arts. Another class of telegraphic contrivances depend upon the exhibition of devices or symbols, in a manner somewhat resembling the original contrivance of Dr. Hooke. Of this sort Macdonald describes one under the name of the 'symbolic telegraph,' in which symbols resembling those of Hooke, but representing numerals instead of alphabetic characters, are dropped from three boxes or screens into as many open spaces, which have the values of hundreds, tens, and units respectively. An auxiliary shutter, a ball, and a vaue or flag, as in his shutter-telegraph, serve to increase the powers of the machine at pleasure. Another contrivance, which, like the last mentioned, is well adapted for a portable telegraph for use in moderate distances, was invented about the year 1817 by Mr. Conolly, and described by him in a pamphlet published in that year, in English and French, entitled 'An Essay on universal Telegraphic Communication,' and also in the thirty-sixth volume of the 'Transactions' of the Society of Arts. Conolly's ' Portable Telegraph' consists simply of three square bourds painted with simplo devices in black and white, as shown in Fig. 9, the colours on oue side being the reverse of those upon the other. The six figures in the upper row

Fig. 9.
VRIIVO
are thus produced upon three boards, and each of these six figures is capahle of producing four different signals, by turning each side of the board downwards in succession, as shown in the four devices at the lower part of the cut. Thus the thrce boards afford twenty-four distinet signals, which are sufficient foralphabetic communication; and one only is suffieient for making numerical communications, with the assistance of a smaller paddle-shaped board, the two sides of which, when it is used separately, denote affirmation or negation. In experiments made at Chatham, boards but eighteen inches square were found sufficient for a distance of two miles, with a telescope with a magnifying power of twenty-five ; and Mr. Conolly had also, it is stated, cxhibited these signals between Gros-nez and Sarque, a distance of seventcen miles, with boards twelve feet square. The day-telegraph of the Rey. James Bremner, alluded to in a previous column, consists of a framework with two circular openings, in each of which a semicircular screen or shutter revolving upon an axis in the centre of the circle, is capahle of assuming four different positions. This machine expresses an alphabet of sixteen letters, by dividing the letters into four classes or sets of four cach, and making one shutter express the class, and thic other the number of the letter in that class. Major Charles Le Hardy communicated to the Society of Arts, in 1808 , a telegraphic scheme of very different character to mo-t that have been proposed. His telegraph consists of a larye frame-work with nine radiating bars, representing the numerals from 1 to 9 , and four sets of other bars intersecting them in such a manner as to form four concentric polygons (the whole apparatus having somewhat the a ppearquce of a spider's web), which polygons express reapectively units, tens, hundreds, and thousands; thousands heing shown by the innermost polygon. Attached to the centre of the maohine by pivots are four slender arms, carrying as many square boards of sufficient size to be visible at a distance; the respective lengths of these arms being such that the hoard of one may, during the revolution of the arm, traverse the polygon which represents thousands, that of another the hundreds polygon, \&o. The action of
the apparatus is as follows:-If it be desired to express the number 9202 , the shortest arm is placed in such a position that its board may rest upon the radius 9 , at the point where it is intersected by the thousands or innermost polygon; the next arm is turned to the radius 2 , its board covering the point of intersection between it and the secoud, or hundreds polygon; the third arm and board is not called into action at all; and the fourth is, like the second, turned to the radius 2 , the board covering the intersection between it and the outermost or units polygon. Thus far therefore the machine can express any number from 1 to 9999 ; but its power is increased by the addition of two other boards at the upper corners, one of which denotes 10,000 , and the other 20,000 , or, when displayed together, 30,000 ; 80 that the total range of the telegraph is from 1 to $39,999$.
Several modes of telegraphic communication without machinery, or with nothing which cannot be conveniently carried by hand, have been devised, especially for the purpose of directing military operations, or of conveying speedy intelligence in time of war, where no line of ordinary telegraphs can be established. In 1808 such a plan, under the name of an 'anthropo-telegraph,' was laid before the Society of Arts by Mr. Knight Spencer, whose communication was printed in the twenty-seventh volume of their 'Transactions.' Mr. Spencer had observed, in the volunteer scrvice, the inconvenience and loss of time occasioned in passing the orders of the commander-in-chief to the officers commanding distant divisions, when a great number of men were mancuvred together, and this led him to devise the plan alluded to, which he put in practico for the first time in 1805. His apparatus consisted simply of two circular dises of wicker-work, about eighteen inches in diameter, with handles sixinches long, painted white, with a black circle or ball in the centre. As these did not weigh more than about a pound each, a man could easily hold them, one in each hand, in any required position. Standing in the position of the first figure in the subjoined cut, $F i g .10$, with both dises held down and turned edgewise to the observer, the telegrapher indicated 'attention'; in the second position, ho expressed a desire to convey intelligence to the correspondent at a distance; turning

one-quarter round again, and displaying one disk as shown by the third figure, he expressed the number 1 ; in the next position, 2 ; in the fifth, $3 ; 4,5$, and 6 were expressed by positions the reverse of 1,2 , and 3 ; the right-hand disk being held edgewise, and the other displayed; 7 was shown by displaying both dises in the lowest position; 8, as shown by the last figure in the cut, by both held out at arm's length; and 9 , by both elevated; 0 was given by holding both dises above the head, one behind the other, so as to appear but one; and the signal of 'point' or 'period,' used at the clase of every number, by placing the right hand disc in front of the breast, and the other behind the back, so that, like all the other signals, it might be seen both in front and rear. Another position, formed by displaying the right hand dise in the position 1 and the left hand diso in the position 6, formed a signal of 'error,' to be used in case of any mistake which might require the repetition of a signal. By this simple arrangement any
number might be readily expreseed ; and consequently it might be applied to any numerieal dietionary whatever. Signals night also be made at night, ly attaching reflec-tor-lamps to the dises, in such a manner that they might hans vertieally in every position of the dises, and strapping another lamp, glazed with green glase, upon the breast of the telegmpher. If intermediate stations be required, there mist also be lamps upon the back of the man and of the dises. The difterence of colour between the lamps upon the body of the lelegrapher and those atfached to the dises is essential to the distinet pereeption of some of the signals; and the difference between 'attention' and 'point' or 'period,' in nocturnal telegraphing, depends solely upon it. A letter from Admiral Ifunter aecompanies the description; in which, after expressing a very tavourable opinion of the plan, he reconmends enlarging the dises to two feet diameter, and painting one side as above deseribed, and the other with a white centre and black rim, so that either might be used, according to the state of the weather.

In the volume from which the above details are taken, there is also an account of a yet simpler contrivance, invented by Lieutenant Spratt, for telegraphing by means of a white handkerehief, held in various positions to express the numeral eharacters and a few other convenient signs. The inventor employed this mode of communication some time before the battle of Trafalgar, as a means of carrying on conversation with a distant vessel ; and he had used it successfully to converse between Spithead and the green ramparts at Portsmouth, \&c. With a common teleseope it may be used at a distance of four miles. Macdonald describes some more complicated contrivances of similar character, by the display of small flam, or of two white handkerchiefs and a black hat ; by the latter of which plans between fify and sixty distinct signals may be made. He also shows how signals may be made to any required extent by men changing their positions from sitting to standing, \&e. Twelve inen, arranged in three sets of four men each, may in this way be used instead of his large shutter-telegraph.

Some of the earliest methods of telegraphic communieation which have been noticed above were essentially adapted for noeturnal use; but in modern times the use of night-signals has not been extensively required, although provision might have been made for their exhibition in connection with many day-telegraphs. Thus, for instance, it was proposed to add lamps to the moveable parts of Chappe's telegraph; and Edelcmantz suggested the applieation of lamps to his ten-shutter machine. In Davis's seven-shutter telegraph, previously described as applied to day-serviee, night-signals were to be given by a eoloured lamp mounted in the centre of the seventh or sliding shutter, and six white lights attaehed to the outside of the trame, to produce, by their display or concealment by slides, the sanie signals as, under ordinary circumstanees, are given by the opening and closing of the shutters. These sidelamps were to be secured to upright picces of wood, sliding up and down in dovetailed grooves in the outside of the frame-work, so that they might be readily withdrawn when not in use. Provision is made for the adaptation of Pasley's universal telegraph to nocturnal communication by adding a central light at the top of the post, a lamp to the extremity of each arm, and an additional light as an indicator, suspended from a light derrick or erane projecting horizontally beyond the range of the arms, and on a level witls the top of the post. This, the lamps themselves, and the additional counterweights required with them, should alt he removed during the day. How little neeessity there is, under ordinary eireumsianees, for the use of telegraphs by night, at any rate in connection with the navy, may be assumed from the statement of Sir John Barrow, that no attempt was ever made to add lamps to the six-shintter telegraphs formerly used by the Admiralty, notwithstanding the ease with which it might lave been done. The semaphores now used by the Admiralty are also constructed without any provision for the display of night-signals. Maedonald's treatise (1817) contains several seliemes for night-telegraphs, both for land and sea; one of which, consisting of three sets of four lights eacl, with an additional or dircetor light to each set, has the same extensive powers as his favourite large shutter-telegraph.

Marine telegraphic communication is an object of even greater importance than that which has been principally treated of in this article, sinee there are many cireum-
stanees which render personal communieation between vessels at sea impractieable, and that sometimes in cases of the greatest emergency. But, although naval signals have been, of necessity, long used, and flags of varous forms and colours have been extensively employed for the purpose of making them, it was not till within a compamtively reeent period that they were reduced to anything like an efficient telegraphic system. Sir John Barrow states (İncy. Brit., art. 'Nayy') that 'The idea of numbering the flags, and of assigning a certain number of corresponding sentences to certain combinations of these numbers, was reduced to something approaching a regular system in the flect of Lord Howe; and that in the year 1798 a new signal-book was issued by the Admiralty, the references to which were made hy a numerical artangement of flags. This book contained about four hundred sentences, expressive of the most usual operations of the fleet; but it was so imperfect that, if any order had to be eransmitted which was not to be found in the dictionary, it became necessary to make the signal for 'a boat from each ship;' an order which could not always be coniplied with. This inconvenience was remedied by the plan, suggested by Sir Home Popham, of making the flag-sigulals represent the letters of the alphabet, as well as words and sentenees, in connection with numbers. This individual also printed, at Caleutta, a new code of naval signals, which was subsequently reprinted in England, greatly extended, and adopted for use in the navy. Among the numerous improvements introduced by him is a new method of cutting the signal flags, so that, as he explained to the Society of Arts in 1816, 'the selvages of the luntin are brought on the outer edges of the flags, and the gorings in the eentre; by which means the outer edge is susceptible of the least air of wind, and when the flag blows out, the gorings assist in keeping it out; whereas the old flags hud a hem on the outside, which rendered them diffieult to be moved without a fresh breeze, especially in damp and rainy weather, as the hem then became very lieavy. 'Besides,' he adds, 'it is impossible, from the mature of the buntin, to sew a straight seam, for the instant it is cut it will become in some degree curved.' (Transactions, vol. xxxiv., p. 174.) The only objection urged by Barrow to the cole of naval signals now in use is one which is also applicable, more or less, to all that have been subsequently proposed, namely, the great number of flags, \&ic., required for making numerical signals to the extent laid down; which, in the code in question, amount to nine flags, fise cornettes, five triangles, and five pendants. With such a number, he states, it is next to impossible, in ealm weather, to make out the figure and colour of the flags ; and equally so when, though expanded by the wind, the situation of the observer causes them to present only an edge towards the eye. He eonceives that Popham's sea-felegraph, before described, is capable of entirely removing this difficulty ; and that possibly Pasley's universal telegmpla might be applied in like way with advantage.
The principle of the numerical system as applied to flag-telegraphs in the nary is briefy explained by Macdonald. Nine different variegated flags are employed to express the numerals 1 to 9 , another for 0 , and another, called a substitute, to repeat any flay under which it is hoisted, in case of the same numeral occurring twice in the number to be expressed. Λ pendant is also used in some cases ns a substitute for the uppermost figure; and thus, by the use of eleven different flags and a pendant, any number from 1 to 999 may be expressed without displaying more than three flags, or two flags and a pendant, at once. In a telegraphie system devised by Mr. Conolly, and fully explainet in the 'Transactions' of the Socieity of Arts for 1817 (vol. xxxv., pp. 205-208), flays are applied to express numbers in a different inanner to the alove. The hasis of the system is an alphabetical list of the most neeessary English words, arranget in a tabular form like the figures in the common multiplication table; the columns and horizontal lines being numbered. There are ninety-nine of each; and consequently the number of squares or divisions is 9801 . The number of words is however greater, beeause in some cases, where no ambignity is likely to be oceasioned by it, the radical word and several of its modifications are placed in a single square or division of the table. The signals consist of twelve square flags (ten for the numerals and 0, a substitute, and a preparative signal), the sume number of triangular flags, of

TEL

153
TEL
stmilar colours and devices, and a pendant: and any word contained in the table may be expressed by one or two square flags to indicate the number of the vertieal column in which it occurs, and one or two triangular flags hoisted beneath them, to point out the horizontal column. In case of both the square and the friangular flag requiring to be doubled at once, instead of the two substitutes, the pendant is hoisted between them; and if it be necessary to spell any name or word not contained in the vocabulary, the twefth triangular flag (answering to the square preparative signal) is hoisted to indicate that the twentyfour flags are to be taken for the letters of the alphabet, according to a preconcerted order.
We should not quit the subject of marine telegraphs without adverting to the very important advantages likely to accrue to the commercial shipping intcrest by the gencral adoption of a simple and uniform code of communication between vessels at sea, and from them to coast stations, or vice versâ. This desirable objeet is now being greatly promoted by the commercial telegraphic association superintended by Mr. B. L. Watson, whose signal books are, in future, by the direction of the Lords of the Admiralty, to be supplied to all the government vessels, in order that they may communicate with such merchant vessels using the code as they may meet with at sea. The whole code consists of thirtecn Hags, by which any message may be communicated from one vessel to another, or between a vessel at sea and any of the coast-stations established by the association at prominent points around the British islands. In connection with these coast-stations there are lines of semaphores from the Downs to London; from Holyhead to Liverpool; and from the Spurn to Hull; and from all of them communications are transmitted to a central office in London, and also to the owners or consignees of vessels entered in the telegraph list; for which privilege a subscription of twenty shillings per annum is paid to the association for each vessel. In like manner any message from the owners of a vesscl, relative to change of destination, or otherwise, can he communicated from any station within sight of which she may pass.
Having now noticed the prineipal varicties of telegraphs which act by displaying signals visible at a distance, whether for usc on land or at sea, it only remains, before alluding to contrivances of a different character, very briefly to touch upon a few points which bear upon telegraphic communications gencrally, but more especially upon land. The subject has been so ably treated by Sir John Barrow, in the article beforc alluded to, with the peculiar advantages derived from his connection with the Admiralty, that we cannot do befter than condense some of his remarks on the comparative merits of different telegraphic systems. He observes that a telegraph employed for public purposes should be possessed of power, certainly, simplicity, celerity, and secrecy. It should have sufficient power to exprcss, by distinct positions or combinations of movcable parts, any possible order or information, either by letters, words, or sentences. Its certainty will depend upon all its parts being clearly defined, wholly within the field of the telescope, and so distinct that there shall bc no risk of mistaking one signal for another; whence the importance of simplicity becomes obvious. Bearing these points in mind, Barrow conceives that the choicc will be found to lie between the six-shutter telcgraph, Popham's semaphore, and Pasley's universal telegraph. Macdonald thinks that the arms of the semaphore are not so distinguishable even in clear weather, and not near so visible in cloudy weather, as the boards of a shutter-telegraph; but Barrow cites some observations of Mr. Gamble, which tend to a contrary result; making it appear that, owing to the confusion in the image on the retina, occasioncd by the refraction of the atmosphere, the property which he terms insulation is generally more requisite than mere superficial magnitude, to give distinctness to a distant object. This point is illustrated by supposing a person to look at the letter I in the midst of a printed page, and to remove the paper from the eye until the image becomes indistinct from bcing confused with the surrounding lefters; and observing how much more distinet the image would appcar if the letter were printed alone upon a sheet of white paper. This question however does not rest upon merc theory or analogy; for it is stated that every officer upon the Admiralty line bears testimony to the superior dis-
tinctness of the semaphore at all times, and especially in cloudy weather. In order finly to decide the question, the shufter-telegraph at Nunhead, near New Cross, was left standing for some time on the same hill as the new semaphore; and the result of the trial for a whole winter was, 'that the semaphore was frequently distinctly visible when the boarded telegraph was so much cuveloped in mist and fog that the particular boards shut or thrown open could not be distinguistied;' and that the number of days in the course of the winter upon which the semaphore was visible exceeded those upon which the shutters could be seen by fillly one-third. Even in the six-shutter telegraph one shutter was occasionally mistaken for another, and such accidents would doubtless have been more common had a more complicated shutter-tclegraph, like that of Macdonald, been employed. The objection urged against the semaphore on the ground of the longer time taken to move the arms, because they describe ares of larger circles than the boards of a shutter-telegraph, is hardly deserving of noticc, as the difference (which may, Barrow says, amount to one second in cach signal) is amply compensated by the greater facility of reading off. The semaphore has also the advanfage in the greater simplicity of its machinery, which is much less liable to get out of order than that of the boarded telegraph.
As shown by the tables given in the previous descriptions of the thrce machines particularly noticed by Barrow, the shutter-telegraph has the power of making a greater number of combinations without the use of the stop-signal (or signal which separates one word or one sentence from another) than either of the others, and Pasley's universal tclegraph has the least power; but this is of little consequence, if the lowest power prove sufficient. Although the primary signals of the universal telegraph are only 28 in number, they may be increased to 787 by the use of two changes with onc stop-signal between them (making threc signals in the whole), or, by making three changes (four signals, with the stop), to 21,952 ; a number considerably exceeding the words and sentences in Sir Home Pophan's iclegraphic dictionary, which do not cxceed 13,000 . As this dietionary has ncver, it is affirmed, been found materially deficient in any of its divisions of subjects, it is evident that even when applied to communication by words and sentences instead of by letters, Pasley's sinnple telegraph affords sufficient power for all usefin! purposes ; and further, that those who have extended their telegraphic dictionaries to very high numbers (Pasley mentions one extended to 140,000), have impaircd their usefulness, owing to the difficulty and loss of time in finding the required sentence among so many. 'We have actually seen in one telcgraphic dictionary,' observes Sir John liarrow, ' 120 pages, of thrce colnmns in each page, and sixty sentences in cach column, containing upwards of 20,000 sentences (about one-third of the number of words in Johnson's dictionary), and cach of these sentences beginning with the personal pronoun "IIe;" 20 pages with " If," \&c.' 'Compared with the use of such a dictionary,' he proceeds to say, 'spelling the sentences is infinitely preferable as to certainty, and in many cases as to celcrity. Indeed we should say that the abbreviated nature of communications made by telegraphs renders spelling by far the most'eligible mode. In clear weather the rapidity of working single signals, the short compass within which any message may be condensed, the impossibility of committing any mistake that cannot be immediately rectified, more than compensate for the difference of a few minutes whieh the use of sentences may probably save. In cloudy or foggy weather, the latter method will always be liable to mistake. If experience may be assumed as a guide, the practice at the Admiralty of spelling all sentences, for the last thirty years, must decide in favour of that system.' In making communications alphabetically, much time may Lee saved by omitting nonessential words and letters, especially vowcls. For example, the meaning of the sentence 'Order the Agamemnon out of harbour, and direct her to proceet to Spithead,' may be sufficiently expressed by 'Agmemn. to Spithed.' It is also important to condense the substance of the communication as much as possible into the former part of the message, so that no serious mistake may arise if the communication slould be interrupted by foggy weather. Barrow relates a circumstance which occurred during the Peninsular war, iu whicle some anxicty was occasioned by
the non-observance of this principle: n deapnteh from Plymouth to convey intelligence of a Britisla victory hnsing been commeneed lyy the words ' Wellington detented,' and then broken off by fog. which prevented the whole meaning, 'Wellington defeated the French nt,' \&e., from being transmitted. Ind the message run thus, 'Freneh defeated at,' \&e., the intermeption of the desprich would have been of far less consequence.
Any means of telegraplic communication which depends upon the decipheriug of siguals exluhited at a distant sintion is necessarily dependent upon contingencies of weather; but many plaus have been contrived for effeeting the objeet in such a manner as to be independent both of light and of the state of the atmosphere. For communication between the different parts of a honse this object may be effected by a mechanieal cornection, by chains or wires, between two dials with revolving indexes or pointers, in such a way that when one pointer is directed to a particular letter or worl inseribed upon the dial to which it is attached, the other may exhibit n similar morement. The attention of the servant is engmged previously by ringing a bell; and when the required signal has leen made, a spring returns both indexes to their original position. Such a plan, though very useful for domestic purposes, is not alapted for distant communication. Speaking-pipes, or tubes to convey the voice from one place to another, nre also available for short distances, but their range is too limited for application on an extended seale. One of the carly schenies of this character depends upon the principle of water always finding its level; but, independent of the difficulty which might arise from the friction of wnter in a yery long pipe of small diameter, such as would be required to connect the vertical tubes in which the observations would be made, such a plan involves the necessity of having all the communicating stations at or near the same level. Other hydraulic telegraphs depend upon the incompressibility of water or other liquids; it being proposel to lay down small pipes of any required length, and to indicate differcut signals by pressing more or less upon the surface of the fluid contained in them, which would, it is supposed, transmit the motion to the opposite end of the pipe, where it might be pointed out upon a dial, or in any other convenient manner. Mr. Vaflance deseribed such a method of telegraphic communication in a pamphlet, published in 1825, of which Hebert gives some account (Linginper's and Mechanic's F'meycloprediu, vol. ii., pp. 707-8); and some similar scheroes have been more recently propounded. Air confined in small pipes has also been tried to a limited extent as a pneumatic telegraph; but in this, as well as in the hydraulic system, the risk of leakage is a serious disadvantage. The npplication of electricity to telegraphic communication is nttended with fewer difficulties, and has recently been caried into effect on an important scale by Messers. Wheatstone nud Cooke. The possibility of so applying it was conceived by several persons long before it was attempted on a practical seale. Arthur Young, who visited France in 1787, 1788, and 1780, mentions, in his travels, the experiments of M. Lomond, who was able by means of electricity to convey messages from one room to another; and the Rev. Mr. Gamble, in his description of his original shutter-telegraph, alludes to the project of electrical communication. Mr. Francis Ronalds, in a pamphlet on this subject, publisthed in 1823, states that Cavallo proposed to convey intelligence by passing given numbers of sparks through aut insulated wire; and that, in 1816, he had himself tried experiments upon this principle, which he deemed more promising than the application of galvanic or voltaic electricity, which had been projected by some Germans and Xmericans. He succeeded perfectly in transmitting signals through a length of eight iniles of insulated wire ; and he describes minutely the contrivances necessary for adapting the principle to telegraphic cowmunication.

It is however to the joint labouts of Messrs. W. F. Cooke and Professor Wheatstone that clectric telegraphs owe their practical application; and in a statement of the facts respecting their relative positious in connection with the invention, drawn up at their request by Sir M. I. Brunel and Professor Daniell, it is observed that " Mr. Cooke is entitled to staud alone, as the gentleman to whom this country is indebted for laving practically introduced and carried ont the electric telegrapti as a useful undertaking,
promising to be a work of national importance ; and Proiessor Wheatstone is aeknowledecd as the scientific man whose proiound and successful researches had already prepared the public to receive it as a project capable of pracfical application.' Their telegraph, which was patented in 1837, acts upon principles founded on Oërsted's celebrated discovery, that a magnetic or compass needle may, through the agency of a voltaic current, be invested wift an artificial polarity. [Electro-Magsetis3s, vol. ix., p. 312] 'Thus,' explains Mr. Cooke (Telearayhic Maitrays, p. 14), 'rs a natural stream of clectricity passing round the circumfercnce of the earth canses magnetic needles in general to be deflected at right angles to its course, or towards the north and south poles, so an netificial stream of electricity of adequate strength will cause magnetic needles placed within its influence to be similarly deflected at right angles to its course, whatever that mny be. If then a magnetic needle were placed parallel and near to any part of n conducting wire, which we will suppose to be laid down between London and Blackwall, the transinission of an electric current from a voltaic lnttery would catse the needle to change its position, so as to stand during the continuance of the current at right angles to the wire, being turned in one direction or the other according to the course of the current. If this deflexion of the needle were limited by two fixed stops placed respectively at the two sides of one of its poles, the motion of that pole to one stop micht eridently constitnte one signal, nud its motion to the other stop another signal.' Such an apparatus is shown in Fig. 11, the dial upon which the siguals are represented being removed. In this cut a

may be supposed to represent the battery, and $\& b$ the conducting wire, which is tormed behind the dial into a coil c: $d d$ is the magnet, which is monnted upon an axis passing through the coil, and carrying upon its extremity, which enmes through the dial, an index or pointere. The arrows indieate the direction of the current required to deflect the magnet to the position indicated in the figure; and a current in the opposite direction would produce n detlexion towards the opposite side. While no current passes through the wire, the magnet and pointer rennisin vertical. The next cut (Fig. 12) represents three such in-

Fig. 12.

striments complete, and comneeted together by wires enclosed in tubes, which may be of any required length. One of these may be supposed to be at the Minories, the next at an intermediate station, and the thirl at lulackwall; and as cach is provided with a battery, and a handle (benenth the dial) by which the conducting wire may be connected with it at pleasure, the attendant at every station at which such an instrument is placed onn instantancously communicate the signal to 'stop' or to 'go on' to all the other stations; attention beink previously engnged ly ringing a hell, placed above the dial, by an infenious npplication of the voltaic current. By this beaufifully simple apparatus the peculiar method of working the trains upon the Blackwall railway [Ralewny, vol. xix.,
p. 260$]$ is effeeted with the greatest case, although it is essential that the attendants at each terminus should know not only when the train is ready to start from the opposite end of the line, but also when the earriages at the five intermediate stations are ready. In stopping the trains the same precise information is required; and it is of vital importance in case of any casualty to the rope or to any of the carriages. It is perhaps not too much to say that the mode of working adopted on this railway would be impraeticable without the aid of the eleetrie telegraph. Some telegraphs of more extensive powers than the above are in use on the Blackwall railway, as well as on the Great Western and Edinburyh and Glasyow lines. Fig. 13, which represents a dial like that on the Great Western Railway, shows how, by the eombination of four such magnets and pointers as are described above, all the letters of the alplabet may be expressed, by poiuting one or two

Fig. 13.

necdles towards then; and of course a larger or smaller number of signals night be made on the sane principle if neecessary. A telegraplh with two pointers, showing eight signals, is considered by Mr. Cooke to be sufficient for all ordinary purposes. The wires, where several are used, are eonbined into a rope and enclosed in an iron tube, which may be either buried beneath the surface of the earth or supported above it; and they are insulated from eaelı other by wrapping then round separately with a mixture of cotton and eaoutchouc. For details ot construetion ns applied to various purposes, and for an exposition of the great advantages derivable from the use of the electromagnetie telegraph, especially in comneetion with raitways, we must refer to the publieations of Mr. Cooke, the 'Reports of the Seleet Comnittee of the Honse of Commons nn Ruilway Communication' in 1840; nnd the 'Railway Tinies' for June 12, 1841. The longest continuous line yet completed is that from Paddington to West Drayton, about thirteen miles; hut this has been so arranged for the purposis of experiment as to be equal to a stage of thirty-nine niles. It is reported (July, 1812) that an eleetrie teleyraph is about to be 'Jaid down aloug the South-Western Rallway, from London to Gosport.
(IIampton's Polybius; Bishop Wilkins's Secret and Scoivt Messenger ; Dcrham's Philosophical Experiments; Macdonnld's Trealise on Telegraphic Communication, 1817; Pasley's Description of ihe Unicersal Tele. Ranalds's Descriptions of an Dilectrical Telegraph, foc., 1823; Cooke's Telegray,hic Railways, 1842; Transactions uf the Society of Arts ; Lincyclopredia Britannica.)
 (Ulysses) and Perielope. When hiis father joined the Greeks in their expedition against Troy, Telemachus was very young, but during his father's absence he greve up to manhood. When the gods lad decrecd that Odysseus should return home from the island of Okygia, Athena (Minerva), assuming the appcaranee of Mentes, king of the Taphians, appeared to Telemachus, and advised him to Ket rid of the suitors of his mother; but if Penelope should wish to marry again, to send her to her fallier's house, that slie might celebrate her nuptials there. Slie also advised lim to sail to Pylos and Sparta, to wee whether he could learn anything cooeerming his father, who, as slie said, was probably still living in some island where lee was forcibly detained; but if he should be dead, sle enjoined Telenaeluis to raise a momument to his menory, and to rid himself of the suiturs of his mother either hy stratagem or by firee. Telemachus obeyed the commands of the godeless, und visited Nestor at 1'glos aud Menelaus at

Sparta. Both of them received him hospitably, and Menelaus communieated to him the propheey ot Proteus about his father. In the meantime Odysseus arrived in Ithaca, and lodged with Eumaeus, the swineherd, in the disguise of a beggar. In this condition he was found by Telemachus, who, by the adviee of Athena, had also returned to Ithaca. The father made himself known to his son, and the two devised a plan for getting rid of the suiton. They went to the town, and Odysseus was admitted as a beggar to a feast of Telemachus and the suitors. When the suitors began to insult the poor man, a fight ensued, in which Odysseus and Telemachus killed the suitors. Telemachus then accompanied his father to the aged Laertius. Thus far the story is deseribed in the Odyssey. Later writers mention other incidents connected with the story of Telenachus, especially relating to liis marriage, whiel however is told in different ways. Accordiug to one tradition, he married Ciree or her daughter Cassiphione, and he had a daughter Roma, whom he gave in marriage to Aeneas. Servius (ad Aeneid., x. 167) calls him the founder of the town of Clusium in Etruria.
In modern times the name of Telemachus has aequired eelebrity from the moral romance of Fénelon, which is based upon the story in the Odyssey. [Funklon.]
TELEMANN, GEORG PHILIPP, a name of no mean rank in nusieal history, therefore entitled to some notiec here, was son of the minister of the Lutheran church at Magdeburg, and there had his birth, in 1681. Though edueated with other views, his predilection for musie was too strong to be combated, and it becaine his profession. He suceessively held many appointments in Gernany, the chief of whieh was that of coniposer to the Lyrie theatre at Hamburg, for whieh he produeed no less than thirtyfive operas. But these were only a small part of his labours: he is said to have exceeded the prolifie Alessandro Scarlatii in the number of his works for the ehureh and the chamber; and, in 1740, his overtures on the model of Lulli amounted, Doetor Burney tells us, to six hundred! Strange however as it may appear, yet it is most true that of this almost ineredible number of eompositions, only tiso or three fugues are now known, at least in England, and these only to a very few organists of patient and deep research.
Telemann was a fellow student of Handel, and attained considerable longevity, having died in 1767, at the age of 86. He was twicc married, and each wife had ten children; and it is remarkable that not one of them manifested the slightest inclination for the art to whieh their father owed his fortune and septete.
TELEOSA'URUS. Since the artiele Crocodile was written, Professor Owen has published lis valuable Report on British Fossil Reptiles, in which he notices, among others, a family of extinct erocodilians claracterized by a conbination of a bi-concave strueture of tho vertebre with long, narrow jaws, arned with slender, eonical, sharppointed, and equal teeth, adapted, like those of the existing Gavials, for the seizure and destruetion of fishes. Professor Owen makes this family consist of two genera, whose characters mainly rest on the difference of position in the external nostril. In the first of these, Tcleosaurus, the external nostril is terminal and plaeed at the extremity of the upper jaw; in the other, Steneosuurus, this aperture is a little belind and above the termination of the upper jaw.
Geological Distribution and Habits of the Fumily:The Teleoscuri and Steneosauri are confined to the oolitic division of the secondary rocks. At this period there were scareely any mammals, but fishes were abundant, and Professor Owen refers to the just observation of Dr. Buekland in his Bridgewater Treatise, that it might, a priori, have. been expected that if any croeodilian forms had then existed, they would most nearly have resembled the madera Gavial. Professor Owen goes on to remark that the modification in the strueture of the vertebral colunn, and the complete, nuail of inbricated bony seutes, characteristic of the species, indicate that the habits of the autient Teleosuuri and Stencosauri were more strictly marine than those of the modern Gavials, and that their powers of swinuming, of pursuing and overtaking their aquatie prey, were greater.

After noticing the papers of Messrs. Wooller and Clapman, in two sepante communieations in Phit. Trans., vol. 50,1758, and the figurcs of an ineomplete skeleton
:here given, as one of the earliest evidences of antient reptiles whieh is recorled i:a a scientifie publication, and observing that, notwithstanding the renark of Captain Chapman, that ' it seems to have been an alligator,' and of Mr. Wooller, that 'it resembles in every respeet the Gangetic Gavial,' Cunper pronouneed it to be a whale, meaning perlinps a dopplin ; an opinion adopted by Faujas, who went a step further, and referred it to the genus P hyseter, Professor Owen points out Cuvier's refutation of Frujas in the first edition of the Ossemens Fiossiles, and his declaration in the same work that it was in tmith a erocodile. The l'rofessor adds, that Cuvicr's subsequent analywis led liin (in 1812) to the conclusion that it belonged to the genus of Croeodiles, and was most probably identieal in speccies with the crocodile of Honfenr.

But although the opinions of Messrs. Wooller and Chapanan came nuich nearer to the truth than those of Camper and Faujas, they were still distant from it ; and Professor Owen proceeds to show that the fossil renlly difiters more from the Gavial than the Gavial does from any other existing Crocodilian.
Pursuing his inquiry, Professor Owen remarks, that in 1836, when so many new and singular genera, allied to the Crocodilian family, had been added to the catalogues of pularontology, by the labours of English anatomists and geologists principally, Cuvier expresses his opinion with more cnution. Cuvier then says, 'It now remains to be known whether it is a crocodile, or one of those new genera discovered in the same beds. The bones of the extremities are too incomplete, and the hend is not represented with suffeient details, to decide the question; but the vertebra: appear to we to be longer, in relation to their diameter, than in the new genera, nnd, in this character, more like those of Crocodiles. Those alone who shall rediscover the original, if it still exists, will be able to inform us whether the other characters respond to those referred to.'
Professor Owen inquired at the British Museum, to which the collections formerly belonging to the Royal Society of London wire transferred, but he states that no specinien corresponding with the aecount and figures given by Messrs. Wooller and Chapman exists in that mauseum.
But a second specinen of a Crocodilian with a long and slender nose was proenred from the lias near Whitby (between Staiths and Runswiek) in 1791, and a inore perfect skelcton was obtained from the alum-shale of the lias formation at Sallwick, near Whitby, in 1824. Professor Owen states that both these specimens so closcly resemble the older fossil in all the points in whieh a comparison can be established, as to dissipate the remaining doubts as to the nature and affinities of the specimen from the same locality deseribed in Phil. Trans., 1758: He then refers to the figures of the skeleton discovered in 1824, in Young and Bird's Geological Surcey of the Yorkshire Coust, and in Dr. Buckland's Bridgerater Treatise [Croconies, vol. viii., p. 169], observing that it is now preserved in the muscum at Whitby, where he closcly examined it. 'In this specimen,' says the Professor, 'are preserved the eranium, wanting the snout, the whole vertebral column, the ribs, and the principal parts of the four extremities, together with the dorsal and part of the ventral series of dermal bones. The entire length of the skeleton, following the curvature of the spine, is fifteen feet six inches, to which may be added two feet six inches for the lost snout. The cranium posteriorly is broad, depressed, and syuare-shaped: it begins to eontract anterior to the orbits, and gratually assumes the form of the narrow depressed snout; the converging sides of the maxille are conenve outwardly. The zygonatie spaces are quadrilateral, longer in the oxis of the skull than transverscly; the orbits are subcireular; they look upwards and slightly outwards; their margins are not raised, and their interspaec is slightly concave. The parietal bone is relatively longer than in the Gavial, and sends up a longitudinal median crest, from the posterior part of which a strong process extends on each side outwards, and curres slightly backwards parallel with the ex-occipitals, to join the mastoid and tympanic bones, the latter of which expands as it desecends to form the joint for the lower jaw.'
Professor Owen then gives details of the dimensions, from wheh he ealculates that the entire length of the skull must have exseeded 4 feet 6 inchas. He slates that
the cranium of one of the Caen Tetcosauri measures 3 feet 4 inches, whence Cuvicr valculates the cutire length of the aninial at near 15 fect . Professor () wen remarts that the Whithy Teleoraur agrees with the Caen species, and differs fromi the Cavial in the following particillars:- The anterior frontal bone is less extended upon the cheek; the lacrymal is much more extended, and is larger at its base ; and the jugal bone is more slender. The posterior frontal bone, which separates the temporal from the orbital cavities, is much longer and narrower. 'The parietal and occipital crests each form a thin trenchant plate, and are not flattened above. The mastoidean augle is not uniwterruptedly united with the back part of the articular proeess of the tympanic ; it is scparated from it ly a large depression, which is overarched by a trenclumt crest belonging to the ex-oecipital. The mastoidean bone has a concavity at its descending part, of which there is no trace in the Gavial. The indentation between the artieular process of the tympanic and the tuberosity of the basi-oceipital is mueh smaller than in the Gavial, and the basilar tuberosity projects downwards in a less degrece. The pterygoid ala is not expanded externally, as in all croeodiles, but is contracted by a large fissure at the part where it is going to unite itself to the bone; the orbital margin of the malar is nol raised, and does not leave behind it a decp fissure, as in the Gavinl. The malar does not rise to join the posterior frontal bone ; but, on the contrary, the frontal descends to join the malar at the external margin of the orbit. The vaeuily between the orbit and the anterior part of the tympanum is much elongated in the fossil, andl occupies four-fifths of the temporal fossa ; the anterior part of this fossa is narrow and acutc. The columella, or ossicle of the ear, is cylindrical, and much larger in proportion than in alry kinown crocodile or other reptile.
'Cuvier calculates the number of teeth in the Telco-45-4. saurus Cadomensis to be 180, viz. $\frac{4-4.3}{43-45}$.

The Teleosanrus Chapmanni has at least 140 teeth. The Gavial has 112 , or $\frac{28-28}{23-28}$. The iceth of the Whitby Teleosaur are as slender and sharp-pointed, but not so compressed as inthe Gavial ; they correspond with those of the Caen Tcleosaur, and equally illustrate the dental characters usually at tributed to the present extinct genus.'
Professor Owen then shows that the Whithy Teleosnur differs from the Caen Teleosaur, as does the Monheim Teleosaur (Crocodilus priscus, Soemmering), in having the upper temporal fossa longer in proportion to their breadth, and that it also differs from the Teleosaurs of both Caen and Monheim in the more equal size of the teeth, and from that of Monhein in the grenter number of teeth, the Teleosaurus priscus having at most $\frac{27-27}{26-26}=106$. He also points out other differences.
In reating of the vertebral column, the anthor states that the number of yertebree in the true croeodiles of the present period rarely exceeds sixty, the number assigned by Flian to the crocodile of the Nile. Cuvier, he observes, generally found 7 cervical, 12 dorsal, 5 lumbar, 2 sacral, and 34 caudal vertebre. In the Crocodilus acutus, he remarks, a thirteenth pair of ribs is oceasionally developed, and, aecording to Plumier, the last-mentioned speeies bas two additional caudal vertelbre; the nlligator (Alligator Lucins) [Crocomles; vol viii., p. 163] has 68, the additional ones being in the candal region; the Gavial has 67 vertebre, viz. 7 cervical, 13 dorsal, 4 lumlar, 2 sacral, and 41 caudal.
-The very perfect specimen in the Whithy Museum; says l'rofessor Owen, 'displays the number of the vertebrae through the whole spinal column, and establishes another differenee between the Telcosaur and the Gavial, the former having a number of vertebra intermediate betireen the Crocodiles and Gavials, viz. 64, with a special peculiarity in the excess of costal vertebre, as the following formulh indicates, viz., 7 cervical, 16 dorsal, 3 lumbar, 2 sacral, 36 eaudal. In all subgenern of existing croeodiles, ns in the extinct tertinry species, the lind surface of the vertehra is convex, the fore surface coneave, except in the atlas and two sacral vertebras. Cuvier, who lad the opportunity of secing only the annular part (neurapophyses) of the cervical vertebrec of the Caen

Teleosaur, regrets his inability to state whether either of the articular extremities of the centrum were convex, or which of them. The Whitby Teleosaur decides this question, and shows that both articular extremities of the vertebre are slightly concave in the cervical as in the rest of the vertebral series. The atlas in the Teleosaur corresponds essentially with that of the crocodiles, as is shown by the three main component parts of this bone, from a Whitby Teleosaur in Lord Enniskillen's collection. The body or centrum is a transverse quadrilateral piece, smooth and convex below, narrowing like an inverted wedge above, with articular facets, viz. : a concavity in front for the occipital condyle; a flat rougher surface on each side of the upper part for the attachment of the neurapophyses; a posterior facet for the anterior part of the detached odontoid element of the axis; and the small surface on each lateral posterior and inferior angle, for the atlantal ribs. The neurapophyses are pyramidal processes, with their apices curved towards each other; they are relatively smaller in proportion to the centrum than in the crocodile. The general anterior concavity for the reception of the occipital tubercle is formed at its circumference by the centrum and neurapophyses of the atlas, and at its middle by the anterior detached odontoid epiphysis of the axis, which is here evidently the analogue of the so-called atlas in the Ichthyosaurus, the true body of the atlas in the Teleosaur representing the first inverted wedge-shaped bone in the Ichthyosaur. The spine of the atlas is a large oblong piece articulated with the neurapophyses of the atlas, and partly overlapping those of the axis.'
The Professor then describes in detail the cervical vertebrex, from which it appears that the same mechanism for fixing and strengthening the neek, as is found in existing species, exists in the ancient marine crocodiles; the vertebre of the dorsal region, with 16 pairs of ribs, a grcater number than occurs in any existing Crocodilian; a posterior dorsal or lumbar vertebra, which faintly indicates one of the most striking characters of the vertebree of Streptospondylus; and the caudal vertebre, which progressively diminish in every diameter, save length, from the middle to ncar the end of the tail, the terminal vertebre being shorter than the rest. The sternum and sternal ribs, he remarks, closely agree with the ordinary Crocodilian type. He had not seen a specimen of the abdominal sternal ribs.
Professor Owen then notices the structure of the Pecloral and Pelvic Extremities, as compared with those of cxisting Crocodiles, and the Dermal armour, the bony dermal scutes of which are regularly disposed in the Teleosaur, as in them ; but the scutes of Teleosaurus Chapmanni, he observes, differ as much from those of the existing Gavials and Crocodiles, as those of Teleosaurus Cadomensis do. The following are the species recorded by the Professor:-Teleosuurus Chapmanni; Teleosaurus Cadomensis ; Teleosaurus Cadomensis, var.; and Teleosaurus asthenodeirus, Owen. [Steveosaurus; Crocodlle, vol. viii., p. 168.]
 (far-seeing'), an optical instrument consisting of a tube which contains a system of glass lenses having all their centres in one common axis, or a tube containing a metallic speculum in combination with such lenses: by either kind of instrument distant objects are caused to appear magnified, and more distinct than when viewed by the naked eye. Those which are constructed with glass lenses only are called dioptrie, or rcfracting, and the others catoptric, or reflecting telescopes. In the former kind the rays in the pencils of light which come from every part of the object viewed are, by the first lens on which they are incident, made to converge so as to form an image at the focus of the lens. In some eases the rays in each pencil are intercepted by a second lens, and, by its refractive power, are made to enter the cye in parallel directions: in other cases, tho rays, after having crossed each other at the place where the image is formed, fall in a divergent state upon a second lens, and by it are refracted so as to emerge from it in parallel directions. Frequently however the parallelism of the rays is effected by two or more lenses in addition to that, called the object-glass, by whieh the image was formed. In reflecting telescopes an image is formed by the reflection of the rays in the pencils image is cormed by the reflection of the rays in the pencils
of light coming from the object, after having impinged
upon the coneave surface of the speculum: in some cases this image is viewed through one glass Iens or more, but frequently the rays, before or after torming the image, are reflected trom a second mirror, and are subsequently transmitted to the eye through lenses.

By these instruments objects even in the remotest depths of space are rendered accessible to human vision; and terrestrial objects faintly visible in the distance are brought, as it were, close to the eye. In the hands of astronomers they were the means, almost immediately on being invented, of making more discoveries in the heavens than had been made during 5000 years previously; they form a valuable addition to the instruments employed by the mariner and the surveyor, and they will ever constitute the most agreeable companion of the traveller, by enabling him to distinguish, in every direction from him, objects which it might be difficult or impossible for him to approach.
In exhibiting the principles on which a telescope is constructed, it will be proper to commence with an explanation of the means by which the image of an object is formed at the focus of a lens or of a refleeting mirror. With respect to a lens, if it be of the kind called convex [LENS], the rays in the pencils of light whieh proceed from every part of an object, as APB, in passing through the lens, supposing the latter to have a proper degree of curvature, are made to converge by the refracting power

of the glass at points, as $a, \mathrm{~F}$, and b, and the assemblage of such points constitutes an image of the object : if a screen were placed at F perpendicularly to the axis PF , the object would be represented on it , in an inverted position.

If the lens were of a concave form, the rays in the several pencils, after passing through it, would be made to diverge from one another, and consequently no image could be formed: yet if the directions of the rays, after refraction, were produced backwards, they would unite between the lens and the object, in points corresponding to those which constitute the image formed by the convex lens.

If the rays in the pencils of light proceeding from different points, A, P, B, in an object arc reflected from the surface of a coneave mirror, supposing the latter to have a

certain degree of curvature, those rays will unite in as many points, $a, \mathrm{~F}$, and b, and form an image of the object. If a screen were placed at F the object would be represented on it, in an inverted position. The rays in each pencil reflected from the surtace of a convex mirror are made to diverge from each other; and in that case no image is formed.
Now, if the object AB be so remote that, in each peneil, the rays incident upon a lens may be considered as parallel to one another, the point F is called the principal foeus; and in the article Lens (p. 421, col. 2) there will be found a collection of formule for the reciprocals of the focal lengths of lenses of all the different kinds; it being understood that the diameter of the lens is small, which is generally the case with telescopes, and that the light is homogeneous. But, since all light is not of one kind, and a lens acts like a prism in causing, in cach pencil, the rays of the differently coloured light to diverge from one another: it follows that each of the coloured lights will form its own image at its proper focus; and the image formed by light of one kind being seen by the eye along with the images formed by light of the other kinds, the representation of an object when formed by a single lens
appears to bo indistinet and surrounded by a coloured frigge. [Achromatics; Dispersion.] It may be observed that the principal focus of any lens, with respect to each colour, may be obtained from the formulae in loess by substifuting in them the value of μ (the index of refraction) for the given kind of light.

Thus, in an optical instrument, in addition to the distortion of the imuge arising from the sphericity of the lens, there is an indistinctness caused by the dispersion of the lifferent colour-making rajs; and, in a good telescope, it is reçuisite that both of these imperfections should as far as possible be removed. The chromatic aberration, as the dispersion of the colour is called, constitutes by far the greater evil of the two, for Newton has shown that it exceeds the former nearly in the ratio of 5H9 to 1 ; but fortunately it is that which, 10 an extent sufficient for practical purposes, admits of being casily corrected.

Since different kinds of glass have different degrees of dispersive power, it is evident that the chromatie aberration may be diminished, if not wholly removed, by causing the light to pass through two lenses of different kinds of glass, and of such forms that they miny refract the rays in each pencil in opposite direetions. The object-glass of a telescopre when so formed is said to be achromatic, and the manner in which the effect is produced may be understood trum the following description. Let $P Q$ be the direction of a peneil of compound light incident on the

first surface of the convex lens $A B$, in a direction parallel to the common axis, XY, of the two lenses. By the refractive power of this lens (erown glass) the red rays in the pencil would, if no object were interposed, proceed in the direction $Q b$, meeting XY in r, and the violet my in the pencil would proceed in the direction $\mathrm{Q} c$, meeting the axis in ε. But the refractive power of the coneave lens CD (flint glass) acts, from its form, in a direction contrary to that of the convex lens, causing the rays cither to diverge from the axis XY , or to meet it in points beyond v and r, towards Y: suppose the curvature of this lens to be such that the red rays in the pencil P^{ρ} Q would, after refraction in both lenses, meet the axis in F (the ray $\mathrm{Q} b r$ taking the direction $b F$); then the dispersive power of this kind of glass exceeding that of the other kind, the violet rays in the refracted pencil will tend farther away from the axis than the red rays do, and thus will tend towards the latter; the ray Qce, for example, taking the direction CF . It is coneeivable, therefore, that the curratures of the surfaces of the lenses may be such that, in each ineident peneil, the red and violet rays (the extreme rays of the spectrum) shall after refraction unite at the place of the image; and thus the fringe due to these two colours may be destroyed.

If the two kinds of glass dispersed the different colourmaking rays in the sume proportions, their contrary refiacCons wonld eause all the colours to be united on the iunage formed at F : no two kinds of glass have however been as yet sliseovered which posisess this property; and therefore the red and violet images only are united : fortunately in uniting the extreme rays of the spectrum, the others are brought so near tugether, that for ordinnry purposes the inage is ns free from colour as can be desired.
From the description just given it will be evident that the place \mathbf{F}, of an image in which the dispersion of the red and violet rays is corrected, may be determinel on obtaining, from the common theorems of optics, alycloraic exprestions for the focal lengtis of the compound lens for cach of thowe. kinds of light, und making the expressions equal to one another. Thus, supposing 12 and S to be the radii of the enrve surfaces of a donble convex lens of crown glass, and μ the index of refraction for light of one kind (red, for example); supposing again that the rays in the pencils of incident light are parallel to one another and pass through the lens very near the axis; then, by a fundamental theorera in optics we have, E being the distanee
from the focus to the lens, which is moreover without thiekness,

$$
\mathrm{F}=\frac{\mathrm{R} . \mathrm{S}}{\mathrm{R}+\mathrm{S}} \cdot \frac{1}{\mu-1}:
$$

but since, in the present case, the lens may be supposed to be isosceles $(1 R=S)$, we have $k=\frac{12}{2(\mu-1)}$.
In like manner the focal length F^{F}, of a double comeave lens of flint glass, W^{\prime} being the radius of each surface, and μ^{\prime} the index of refraction for red rays, is equal to $-\frac{k^{\prime}}{2\left(\mu^{\prime}-1\right)}$, the rays being ineident near the axis.

Hence, by a fundamental theorem in optics,
$\frac{\mathrm{R}^{\prime}}{\mu^{\prime}-1}-\frac{1}{\mu-1}: \frac{R^{\prime}}{\mu^{\prime}-1}:: \frac{12}{2 \mu-1)}: \frac{R^{\prime}}{2\left\{R^{\prime}(\mu-1)-R\left(\mu^{\prime}-1\right)\right\}}$ and this last term is the focal leugth of the compound lens for red rays. Its reciprocal is equal to $\frac{2(\mu-1)}{k}$ -$\frac{2\left(\mu^{\prime}-1\right)}{R^{\prime}}$, which, in the algebraic seuse, is the sum of the reciprocals of the focal lenyths of the separate lenses.

On writing $\mu+\delta \mu$, and $\mu^{\prime}+\delta \mu^{\prime}$ in place of $\mu \cdot$ and μ^{\prime} in the last expression, we bave for the reciproeal of the focel length of the compound lens for violet rays,

$$
\frac{-(\mu+\delta \mu-1)}{R}-\frac{2\left(\mu^{\prime}+\delta \mu^{\prime}-1\right)}{1 k^{\prime}}
$$

In an aehromatic telescope the focal lengths of the compound lens for red and violet rays are to be equal to one another; and it is evident that this condition will be fulfilled when $\frac{\delta \mu}{R}-\frac{\delta \mu^{\prime}}{R^{\prime}}=0$. From this equation we have $\mathrm{R}: \mathrm{R}^{\prime}:: \delta_{\mu}: \delta \mu^{\prime}:$ then, dividing the antecedents by $\mu-1$ and the consequents by $\mu^{\prime}-1$, we have [Dispersios] the ratio of the focal lengths of the two lenses equal to that of the dispersive powers of the two kinds of glass; and hence, the focal length of the compound lens being assumed at pleasure, those of the separate lenses, consequently the radii of their surfaces, may be obtained.

In order to diminish the spherical aberration, the objectglasses of achromatic telescopes frequently consist of three lenses, of which the first and third are of the kind called double convex, and are formed of crown glass, while the second is double coneave, and made of flint glass. In this ease, since the index of refraction is the same for the third lens as for the first, if the radius of each surface of the third lens be $12^{\prime \prime}$, the reciprocal of the principal focal lengths of the separate lenses for red rays will be

$$
\frac{2(\mu-1)}{12},-\frac{2\left(\mu^{\prime}-1\right)}{1 R^{\prime}}, \text { and } \frac{2(\mu-1)}{1^{\prime \prime}} ;
$$

these being added together, their sum will be the rectprocal of the focal length of the compound lens for one kind of light. On substituting in the above terms, $\mu+\delta \mu$ for μ, and $\mu^{\prime}+\delta \mu^{\prime}$ for μ^{\prime}, in order to obtain the reciprocals of the foeal length for violet rays, we shall have, when the chromatic aberration is corrected,

$$
\frac{\delta \mu}{R}-\frac{\delta \mu^{\prime}}{\mathrm{R}^{\prime}}+\frac{i \mu}{\mathrm{R}^{\prime \prime}}=0 \text {, or } \mathrm{R}^{\prime}\left(\frac{1}{\mathrm{R}}+\frac{1}{\mathrm{R}^{\prime \prime}}\right)=\frac{\delta \mu^{\prime}}{\delta \mu} .
$$

But $\frac{i \mu^{\prime}}{8 \mu}$ is known from tables of the refractive iudices for different kinds of glass: therefore if any convenient relation between the radii of two of the lenses be assumed, the values of all the radif, and consequently the focal lengths of the several lenses, may be found.
The investigation of formulie for the correction of the spherical uberration is'a process of some labour, und is scarcely a fit subject except for a mathematienl work: it is treated with great perspicuity in leohison's 'Mechanical Philosoplyy, vol. iiii., from which the subjoined theorem is borrowed, the notation only being changed for that which lias been adopted above; and also in the articles Liens and Spraculim. If a compround object-glass consists of one double convex lens of crown glass and a double coneave lens of thint glase, and a ray of light be ineident upon the anterior surface of the former in a direction parallel to the axis, at a distance from thence, which
is expressed by e; the distance from the lens, of the point at which the ray after refraction will meet the axis, is $f-f^{2}\left(q+q^{\prime}\right)$, where f is the focus for parallel rays infinitely near the axis, and may be found as above, and ${ }^{2}\left(q+q^{\prime}\right)$ is the aberration. Here, neglecting the thickness of the lenses and the interval between them,
$q=\frac{\mu-1}{\dot{\mu}}\left\{\frac{\mu^{3}}{n^{3}}-\frac{2 \mu^{2}+\mu}{R n^{2}}+\frac{\mu+2}{R^{2} n}\right\} \frac{e^{2}}{2}$, and $n=\frac{\mathrm{RS}}{\mathrm{R}+\mathrm{S}}$;
(R and S being the radii of the two surfaces of the convex lens,) and

$$
\begin{gathered}
q^{\prime}=\frac{\mu^{\prime}-1}{\mu^{\prime}}\left\{\frac { \mu ^ { \prime 3 } } { n ^ { \prime 3 } } \left(\frac{2 \mu^{\prime 2}+\mu^{\prime}}{R^{\prime} n^{\prime 3}}+\frac{\mu^{\prime}+2}{R^{\prime / 2} n^{\prime 2}}+\frac{3 \mu^{\prime 2}+\mu^{\prime}}{F^{2} \cdot n^{\prime 2}}-\right.\right. \\
\left.\frac{4\left(\mu^{\prime}+1\right)}{\mathrm{F} \cdot R^{\prime} n^{\prime}}\right\} \overline{e^{2}}:
\end{gathered}
$$

where F is the principal focus of the convex lens, and $n^{\prime}=-\frac{\mathrm{R}^{\prime} \mathrm{S}^{\prime}}{\mathrm{R}^{\prime}+\mathrm{S}^{\prime}} ;\left(\mathrm{R}^{\prime}\right.$ and S^{\prime} being the radii of the surfaces of the concave lens.)

It is evident that, in order to correct the spherical aberration, the ralues of the radii of the surfaces must be determined from the equation $q+q^{\prime}=0$. This equation is however indeterminate, because it eontains several unknown quantities; but it may be made subject to certain conditions by which there will remain only one: for example, the different radii of the lenses may be made to have any given relation to one another, so that the values of all, in terms of any one, may be substituted for them. In the values of q and q^{\prime} the terms represented by n and n^{\prime} are respectircly equal to half the radii of equivalent isosceles lenses; and it has heen shown, in the investigation coneerning the chromatic abcration, that these are to one another as $\delta \mu$ to $i \mu^{\prime}$; consequently $n^{\prime}=n \frac{i \mu^{\prime}}{\delta \mu^{\prime}}$, and therefore n^{\prime} is known in termis of n. If again it be supposed that $\mathrm{R}^{\prime}=\mathrm{S}$, or that the nearest surfaces of the convex and coneave lenses have equal curvatures, the value of R may be found from the equation $q+q^{\prime}=0$, in terms of n, by a qualratic equation.

Sir John Herschel, in a paper on the aberration of compound lenses and object-glasses (Phil. Trans., 1821), has also investigated formule for the values of the chromatic and spherical aberrations; and M. Littrow, of Vienna, setting out with Euler's formula for spherical aberration (Dioptrica, tom. iii., 1769), and introducing in it the values of the focal lengths of two lenses so that the former aberration may be corrected, has ohtained two equations from which the radii of the four surfaces may be determined by such eonditions as may he thought convenient. (Memoirs of the Astron. Soc., vol. iii., part 2.) In solving the problem relating to the determination of the four radii, Professor Littrow uses a method which possesses some facilities for computation, and on that account it has been adopted in the following process.
The radii of the surfaces of the first lens may be determined on the supposition that the whole refraction of light in passing through the lens is a minimum ; that is, that the incident and emergent rays make equal angles with the surfaces, or with those radii. Thus let a ray PQ be ineident on the first surface in a direction parallel to the axis XY of the lens, and infinitely near it ; and IRQT being

the radius ($=\mathrm{R}$) produced, of that surface let t'se angle PQT of incidence be represented by a; then $\mu: 1:: a: \frac{a}{\mu}$ ($=$ IRQF, the angle of refraction at that surface). But if R'QT' be the radins ($=\mathrm{S}$) produced, of the sceond surface; then, in the triangle $\mathrm{K}^{\prime} \mathrm{QR}$, neglecting the thickness of the lens and substituting ares fortheir sines, $\mathrm{S}: \mathrm{K}:: a: \frac{\mathrm{R}}{\mathrm{S}} a$;
and $\frac{\mathbf{R}}{\mathbf{S}} a+a-\frac{a}{\mu}\left(=\mathrm{T}^{\prime} \mathrm{QF}\right)$ is the angle of incidence on the second surface : and, by opties, 1 is to μ as this last angle is to $\frac{a \mu \mathrm{R}}{\mathrm{S}}+a(\mu-1)$, the angle of refraction $\left(=\mathrm{T}^{\prime} \mathrm{QF}{ }^{\prime}\right)$ at the second surface. But by hypothesis, this angle is to be equal to a; therefore $\frac{\mathrm{R}}{\mathrm{S}}=\frac{2-\mu}{\mu}$. Again, by opties, $\frac{\mathrm{RS}}{\mathrm{K}+\mathrm{S}} \cdot \frac{1}{\mu-1}$ is equal to the focal length of the lens; and supposing this to be equal to unity, we obtain $\frac{R}{S}=$ $\frac{\mathrm{R}-\mu+1}{\mu-1}$: equating this last term with $\frac{2-\mu}{\mu}$ above, we get $R=\frac{2(\mu-1)}{\mu}$; whence $S=\frac{2(\mu-1)}{2-\mu}$. Therefore the twe radii are found on the supposition that the focal distance of the lens is unity.
Now PQT being the angle of incidence as aloove, and QF the direction of the ray after one refraction, we have by opties, $\sin . \mathrm{RQF}=\frac{\sin . \mathrm{PQT}}{\mu}$; and by trigonometry, in the triangle RQF,

$$
\mathrm{RF}=\mathrm{R} \frac{\sin \cdot \mathrm{RQF}}{\sin \cdot \mathrm{~J}^{\prime} \mathrm{QF}} \text {, and } \mathrm{MF}=\mathrm{R}\left(\frac{\sin \cdot \mathrm{RQF}}{\sin \cdot \mathrm{P}^{\prime} \mathrm{PF}^{\prime}}+1\right)
$$

also, respresenting the thickness MN of the lens by t,

$$
\mathrm{R}^{\prime} \mathrm{F}=\mathrm{R}\left(\frac{\sin \cdot \mathrm{RQF}^{\prime}}{\sin \cdot \mathrm{P}^{\prime} \mathrm{QF}^{2}}+1\right)+\mathrm{S}-t
$$

Then, by trigonometry, in the triangle $\mathrm{R}^{\prime} \mathrm{QF}$,

$$
\text { we get } \frac{\mathrm{SF}+\mathrm{S}-t}{\mathrm{~S}} \sin . \mathrm{P}^{\prime} \mathrm{QF}=\sin . \mathrm{T}^{\prime} \mathrm{QF}
$$

$\mathrm{SE}, \frac{\mathrm{SF}+t}{\mathrm{~S}} \mu \sin . \mathrm{P}^{\prime} \mathrm{QF}=\sin . \mathrm{T}^{\prime} \mathrm{QF}^{\prime}$, consequently by optics, $\frac{\mathrm{SF}+\mathrm{S}-t}{\mathrm{~S}} \mu \sin \cdot \mathrm{P}^{\prime} \mathrm{QF}=\sin . \mathrm{T}^{\prime} \mathrm{QF}^{\prime}$,
or the sine of the angle of refraction at the second surface. or the sine of the angle of refraction at the second surface.
Now $T^{\prime} Q F^{\prime}-T^{\prime} Q F+P^{\prime} Q F=Q F^{\prime} M$, or the angle which the sccond refracted ray makes with the axis of the lens: but hy trigonometry, in the triangle $\mathrm{R}^{\prime} \mathrm{QF}^{\prime}$, we have
$R^{\prime} F^{\prime}=S \frac{\sin . T^{\prime} Q F}{\sin . P^{\prime} Q F} ;$ whenec $N F^{\prime}=S\left(\frac{\sin . T^{\prime} Q F}{\sin . P^{\prime} Q F}-1\right)$.
Suppose next a douhle concave lens, the centres of whose surfaces are at $R^{\prime \prime}$ and $R^{\prime \prime \prime}$, and whose radii are R^{\prime} and S^{\prime}, to be applied to the convex lens on the side N : then, neglecting the thickness of the concave lens and the distance between the two, and supposing $\mathrm{QF}^{\prime \prime}$, $\mathrm{QF}^{\prime \prime \prime}$ to be the directions of the ray of light after the third and fourth refractions respectively, we have in the triangle $\mathrm{R}^{\prime \prime} \mathrm{QF}^{\prime}$, hy trigonometry,

$$
\frac{\mathrm{R}^{\prime}+\mathrm{S}^{\prime} \mathrm{F}^{\prime}}{\mathrm{R}^{\prime}} \sin . \mathrm{P}^{\prime} \mathrm{QF}^{\prime}=\sin . \mathrm{T}^{\prime \prime} \mathrm{QF}^{\prime}
$$

or the sine of incidence on the first surface of the sceond lens; and by opties,

$$
\frac{\mathrm{R}^{\prime}+\mathrm{S}^{\prime} \mathrm{F}^{\prime}}{\mathrm{R}^{\prime} \mu^{\prime}} \text { sin. } \mathrm{P}^{\prime} \mathrm{QF}^{\prime}=\sin . \mathrm{T}^{\prime \prime} \mathrm{QF}^{\prime \prime}
$$

But $\mathrm{P}^{\prime} \mathrm{QF}^{\prime}-\left(\mathrm{T}^{\prime \prime} \mathrm{QF}^{\prime}-\mathrm{T}^{\prime \prime} \mathrm{QF}^{\prime \prime}\right)=\mathrm{P}^{\prime} \mathrm{QF}^{\prime \prime}$; and in the triangle $\mathrm{R}^{\prime \prime} \mathrm{QF}^{\prime \prime}$, by trigonometry, we have

$$
\mathrm{R}^{\prime \prime} \mathrm{F}^{\prime \prime}=\mathrm{R}^{\prime} \frac{\sin \cdot \mathrm{T}^{\prime \prime} \mathrm{Q} F^{\prime \prime}}{\sin \mathrm{P}^{\prime} \overline{\mathrm{Q}} \mathrm{~F}^{\prime \prime}}
$$

wherefore $\mathrm{NF}^{\prime \prime}=\mathrm{R}^{\prime}\left(\frac{\sin . \mathrm{T}^{\prime \prime} \mathrm{Q} \mathrm{F}^{\prime \prime}}{\sin . \mathrm{P}^{\prime} \mathrm{Q} \mathrm{F}^{\prime \prime}}-1\right)$; and considering $\mathrm{NR}^{\prime \prime \prime}$ to be cqual to $\mathrm{S}^{\prime}, \mathrm{R}^{\prime \prime \prime} \mathrm{F}^{\prime \prime}$ will be cqual to $\mathrm{NF}^{\prime \prime}-\mathrm{S}^{\prime}$. Again, in the triangle $\mathrm{R}^{\prime \prime \prime} \mathrm{QF}^{\prime \prime}$, we have by trigonometry,

$$
\sin . \mathrm{R}^{\prime \prime \prime} \mathrm{QF}^{\prime \prime}=\frac{\mathrm{NF} F^{\prime \prime}-\mathrm{S}^{\prime}}{\mathrm{S}^{\prime}} \sin . \mathrm{QF}^{\prime \prime} \mathrm{N}
$$

for the sine of incidence on the fourth surface; thereforc, by opties,

$$
\frac{\mathrm{NF}^{\prime \prime}-\mathrm{S}^{\prime}}{\mathbf{S}^{\prime}} \mu^{\prime} \sin . \mathrm{QF}^{\prime \prime} \mathrm{N}=\sin . \mathrm{R}^{\prime \prime \prime} \mathrm{QF}^{\prime \prime \prime}
$$

the sine of refraction at the fourth surface: then
$Q F^{\prime \prime} \mathrm{N}-\left(\mathrm{T}^{\prime \prime \prime} \mathrm{QF}^{\prime \prime}-\mathrm{T}^{\prime \prime \prime} \mathrm{QF}^{\prime \prime \prime}\right)=\mathrm{P}^{\prime} Q F^{\prime \prime \prime}$, or $=Q \mathrm{Q}^{\prime \prime \prime} \mathrm{N}$;
and by trigonomctry, in the triangle $Q F^{\prime \prime \prime} \mathrm{R}^{\prime \prime \prime}$, we lave

$$
\begin{aligned}
\mathbb{R}^{\prime \prime \prime} F^{\prime \prime \prime} & =S^{\prime} \frac{\sin \cdot \mathrm{R}^{\prime \prime \prime} \mathrm{QF}^{\prime \prime \prime}}{\sin \cdot \mathrm{QF}^{\prime \prime \prime} \mathrm{N}}, \text { and } \mathrm{NF}^{\prime \prime \prime} \\
& S^{\prime}\left(\frac{\sin \cdot \mathrm{R}^{\prime \prime \prime} \mathrm{QF}^{\prime \prime \prime}}{\sin \cdot \mathrm{QF}^{\prime \prime \prime} \mathrm{N}}+1\right)
\end{aligned}
$$

the focal distance of the compound lens.
These values being reduced to what they become when the incident ray $\mathbf{P Q}$ is infinitely near the axis of the lenses; that is, when the angles are substituted for their sines, there nay be obtained

$$
\begin{gathered}
\frac{\mathrm{R}}{\mathrm{MF}}=\frac{\mu-1}{\mu}, \frac{\mathrm{~S}}{\mathrm{NF}^{\prime}}=\frac{\mu \mathrm{S}}{\mathrm{MF}-t}+\mu-1, \\
\frac{\mathrm{R}^{\prime}}{\mathrm{NF}^{\prime \prime \prime}}=\frac{\mathrm{R}^{\prime}}{\mathrm{NF}^{\prime \prime} \mu^{\prime}}+\frac{\mu^{\prime}-1}{\mu^{\prime}}, \text { and } \frac{S^{\prime}}{N F^{\prime \prime \prime}}=\frac{S^{\prime} \mu^{\prime}}{N F^{\prime \prime}}+\mu^{\prime}-1 .
\end{gathered}
$$

By means of these equations, eliminating the quantities $\mathbf{M F}, \mathrm{NF}^{\prime}$, and $\mathrm{NF}^{\prime \prime}$, and neglecting powers of t above the first, there may be obtained a value of $\frac{1}{\mathrm{NF}^{2 / 1}}$: then differentiating this value with respect to μ_{0}, μ^{\prime}, and $\mathrm{NF}^{\prime \prime \prime}$, and making the resulting value of the dillerential of NF"' equal to zero 'which is a condition necessary in order that the chromatic dispersion may be corrected for rays near the axis), there may be obtained a value of $\frac{1}{\mathrm{R}^{\prime}}+\frac{1}{\mathrm{~S}^{\prime}}$. ggain on substituting $\frac{2(\mu-1)}{\mu}$ for R, and $\frac{2(\mu-1)}{2-\mu}$ for S, as above found, there will result

$$
\begin{aligned}
& \frac{1}{\mathrm{~N}^{\prime \prime \prime}}=1-\frac{\mu^{\prime}-1}{\mu-1}\left\{1+\frac{1}{\mu}(\mu+1) \ell\right\} \frac{d \mu}{d \mu^{\prime}}+\frac{1}{d} \mu t, \text { and } \\
& \frac{1}{\mathrm{I}^{\prime}}+\frac{1}{\mathrm{~S}^{\prime}}=-\frac{1}{\mu-1}\left\{1+\frac{\left.\left.t^{\prime} \mu+1\right) t\right\} \frac{d \mu}{d \mu^{\prime}}}{} .\right.
\end{aligned}
$$

Now the value of NF"' may be directly computed from the formule first investigated; aflerwards assuming different values of $1 R^{\prime}$, and substituting them in the last equation, let the corresponding values of S^{\prime} be found. With these values of S^{\prime} find corresponding values of $\mathrm{S}^{\prime}\left(\frac{\sin . \mathrm{R}^{\prime \prime \prime} \mathrm{QF}^{\prime \prime \prime}}{\sin . \mathrm{QF}^{\prime \prime \prime} \mathrm{N}}+1\right)$; that is, of $\mathrm{NF}^{\prime \prime \prime}$, and proceeding according to the usual methods of trial and error, there will at length be found a value of $\mathrm{NF}^{\prime \prime \prime}$ agreeing with that which was computed by the direct process: the four radii will then, consequently, be determined.

Investigations relating to the dispersion of light, and rules for computing the radii of curvature for achromatic object-glasses, will also be found in an essay by Mr. I'. Barlow of Wonlwich, printed in the 'Philosophical Transactions' for 1827.

Though on thus uniting the red and violet light by lenses of crown and flint glass the chromatic dispersion is in a great measure corrected, yet when the image is examined, it is found to be surrounded by a green-coloured fringe. The difficulty of procuring flint glass of sufficient purity is also a serious impediment to the perfection of achromatic lenses for telescopes; and though great rawards have been offered for glass which shall be free from defects, the exertions of artists have litherto been almost without success. Ocensionally however flint glass is obtained nearly homogeneous, and the oplticians of Germany appear, in this respect, to have been more fortunate than those of England.

The late Dr. Ritchic obtained a dise of flint glass which was, by Mr. Dollond, formed into an object-glass nearly 7 inches in diameter. It was applied to a telescope 12 feet long, and bore a magnifying power equal to 700 times: it is said to have had scarcely any spherical aberration, and to have been very free from colour. (Mem. Astr. Soc., 1810.)

In the 'Transactions' of the Royal Society of Edinburgh, 1791, there is given an account oi some experiments made lyy Dr. Blair, from which he was led to the discovery of a fluid medium, whish, being applied between lenses of crown glass, renders the compound lens completely achromatic. lby alding liquid murintic acid to chloride of antimony, or sal ammoniac to chloride of mercury, he succeeded in obtaining a spectrum inarhich the coloured rays in each pencil followed the same law of dispersion as takes place in crown glass. Therefore, confining a small
quantity of either of these liquids between the convex surfaces of two plano-conyex lenses, or between those of a plano and a colvex meniscus lens, of crown glass, D1 Blair obtained an object-glass in which the ellomatic aberration was entirely destroyed; and he is said to have thus constructed one of 9 inches focal leneth, and as much as 3 inches in diameter or aperture. Olject-glasses so made were for snme years on sale in Jondon; but either from the crystallization of the fluids, or the negligence of the artists in compounding them, the telescopes became imperfect, and gradually fell into disuse.

Dr. (Sir David) Brewster, in lis 'Treatise on New Philosophical Instriments,' reconmmends the employment of sulphuric neid and oil of cassia for the composition of fluid lenses, by which the secondary spectrum may be destroyed ; the acid heing, of all known substances, that which exerts the grealest, and the oil that which exerts the least action on the green coloured rays. The correction of the cliromatic dispersion ly means of fluids has also recently leen attempted by Mr. Barlow, who, in combination with a convex lens of erown glass, used a concave lens, consisting of sulphuret of carbon between two glasses (like that of a watch), of each of which the two faces were of equal curvature : this fluid has nearly the same refractive index as flint glass, and its dispersive power is more than double that of the latter material. The crown glass lens and the fluid lens, instead of being close together, were placed at a considerable distance from one another, by which disposition an increased magnifying power might have been obtained without increasing the lengtly of the telescope. Probably from imperfections in the forms of the glasses, the images of objects were found to be not well defined; and the construction, in consequence, has not been adopted.
The image formed by the great speculum of a reflecting telescope is free from the inconveniences attending the chromatic aberration of light; for the angles of incidence being equal to that of reflection, in any pencil coming from a point in an object, all the rays will converge to one point at the place where the image is formed. If the surface of the speculum were that which is formed ly the revolution of a parabola about its axis, then all the rays in any pencil proceeding from a very remete object, as one of the celestial bodies, and being incident on the speculum in a direction parallel to the axis, would, by the nature of the parabola, converge accurately in the focus of the curve; and on this account, an effort is always made to give to the reflecting surface of the speculum a paraboloidal figure. The adrantage does not however hofd good with the pencils which fall on the mirror in directions oblique to the axis; and therefore that figure is of less importance, when the telescope is to be used for viewing terrestrial objects, than when it is to be employed for astronomical purposes; for then, on aceount or the great distance of the objects, the several pencils of light fall on the mirror with a very sinall obliquity to its axis.
The teleseope invented by Galileo consisted of one convex lens A13, and of a concave lens CD; the distance between them being equal to the difference between the foeal lengths of the two lenses. In this instrument, if the

object OI^{2} were so remote that the rays in each.pencil of light might be considered as parallel to one another, there woild be formed at its principal focus an inverted image $o p$, of that object by the union of the rays in eacla pencil in one point ; then the coneave lens being placed between $A 13$ and that image, in such a situation that its principal focus may coincide with the place of that image, the raye in each pencil will, by the refracting power of the lens, be made to emerge parallel to one another; and in this case, by the optical pronerties of the eye, distinct vision is oltained.

The line $O X O$ is the axis of the pencil of light from O; and, as this passes through the centre \mathcal{X} of the lens $A B$ without refraction, the angle ZX o is equal to half the angle under which OP woukl be observed by an eye at \mathbf{X}
when no telescope is interposed, while ($m n$ parallel to Yo being the direction of a ray in that axis after refraction in CD) ZY O is halr the angle under which OP is seen in the telescope: the ratio between these angles is thercfore the measure of the magnifying power of the telescope; and sinee the angles are to one another as YZ is to XZ , nearly, it follows that $\frac{\mathrm{XZ}}{\mathrm{YZ}}$ nearly expresses the magnifying power.
This is the construetion of what is called an opera glass; and the Galilean telescope is now used chiefly for viewing objects within a theatre, or an apartment, since if considerable magnifying power were given to it the extent of the field of view would be very small.
A simple teleseope may also be constructed by means of two convex lenses, which are placed at a distance from one another equal to the sum of their focal lengtlis.. For the image being formed at the foeus Z, of the lens $A B$, which is nearest to the object, as in the Galilean telescope,

and being supposed to be a plane surfaee, the light also being supposed to be homogeneous; the rays of each pencil, after crossing at the focus and procceding from thenee in a divergent state, on being allowed to fall 1 pon the surface of the second lens CD, may be refracted in the latter so as to pass out from thence in parallel directions; and consequently distinet vision of the objeet may be obtained by an eye situated so as to receive the pencils.

If $\mathrm{X} O$ be the direction of the axis of a pencil of light coming from O, one extremity of the object $O P$, which is supposed to be so remote that all the rays in eaelh pencil may he considered as parallel to one another; then the angle ZXo is half the angle under which the object OP would be seen by an eyc at \mathbf{X} without a teleseope, while the rays of that pencil entering the eye at E in the direction DE, which is parallel to oY, the angle ZYo is half the angle under which the same objeet is seen when viewed through the telescope. Now these angles are to onc another nearly as ZX to ZX ; therefore $\frac{\mathrm{ZX}}{\mathrm{ZY}}$
will express nearly the magnifying power of the instrument. As the peneils of light from O and P eross the axis of the eye at E. be fore they are united on the retina, the image of the object OP is formed in the eye in a position contrary to that which is formed when the objeet is viewed without the telescope ; therefore, on looking through the latter, the object OP appears to be inverted.
But the image formed at op, instead of being a plane, is nearly on a portion of a spherieal surface whosc centre is at X; and, on the other hand, in order that the rays in each pencil may after refraction in CD be parallel to one another, they ought to diverge from a point nearly in the surfaee of a sphere whose centre is at Y , the two spherieal surlaces being in contact at Z: consequently when the distance between the lenses is such that the erossing of the rays in a pencil parallel to the axis takes place exactly at Z, the erossing z in one of the oblique peneils will be at a certain distanee from the point z^{\prime}, at which it ought to be to permit the rays in it to go out of CD parallel to one another ; the rays of the pencils which proceed from the margin of the object will not then emerge parallel to one another, and consequently that margin will not be distinctly seen. Moreor cr from the unequal refrangibility of the different kinds of light, the rays in each pencil will be decomposed in passing through the lens CD , so that though the chromatic aberration were perfectly corrected in the image at po, it would exist in the image whiels is formed in the eye hy the rays emerging from CD.

The spherieal aberration can. only be diminished by diminishing the inelination at which the rays in the marginal pencils fall upon the surfaee of the lens after having erossed at the foeus of the object-glass; that is, by using a lens of less convexity or of greater focal length; adding a seeond cye-glass in order finally to render the rays in each peneil parallel to one another. Thus, if it be required to preserve the same magnifying power and field of view
as might be obtained with any single eye-glass; let, as before, X be the place of the object-glass, op the image formed by it, and let CD be the place of the single eyeglass : then draw a line $O Q$ so as to bisect the angle DoY

which may be considered as the whole refraction produced by the lens CD : let G, on the right or left of op, be the assumed place of what is called the field-glass, and draw GH perpendicular to XY, the axis of the teleseope. meeting XD in H ; also through H draw MHK parallel to oQ, eutting Go, or Go produeed, in M: again draw MN perpendicular to the axis of the telescope, and MR parallel to o Y ; also draw RS perpendicular to the axis. Iastly, draw GU' parallel to $o \mathrm{Q}$ to meet $\mathrm{X} \circ$ in U , and UV perpendicular to the axis. Then, from the prineiples of optics, if a lens be placed at G, having its focal length equal to GV, and another at R, whose focal length is $\mathbf{R N}$; the ray $\mathrm{X} o \mathrm{H}$ will by refraction in the first lens take the direction HS, and by refraction in the second lens it will take the direetion ST parallel to o Y or DE: thus the present visual angle STR wifl be equal to DEY, which was obtained with the single eye-glass.
This is called the Huygenian eye-piece, and it is that which is generally.used tor astronomical telescopes: the object seen through it is inverted, as in the last-mentioned telescope.

If the places \mathbf{G} and \mathbf{R} of the two eye-glasses are given (GH being very near op; its foeal length being also known), and it be required to find the foeal length of RS so that the red and violet rays in each pencil may emerge from it parallel to one another, that length might be determined in the following manner. In a peneil of rays crossing each other at H , let $\mathrm{H} m$ be the direction of a mean ray, and $\mathrm{Hr}, \mathrm{H} v$ those of a red and a violet ray; these lnst will make with one another an angle cqual to

about $\frac{17}{27}$ of the angle $\mathrm{DH} m$, which may be supposed to le known. Now, by optical principles, if these rays are to emerge from RS in directions parallel to one another, the foeal lengths of the lens for red and violet rays, viz. RF andl $l f$ must be to one another as 28 to 27 , and the foei F and f must be in places determined by perpendiculars drawn to the axis from points W and w, in which the linc RW supposed to be drawn parallel to $r r^{\prime}$ or $v v^{\prime}$, meets Hr and II v; that is, by finding the position of a line to be drawn from R to eut the given lines $\mathrm{H} r, \mathrm{H} v$, so that RW may be to $\mathrm{R} w$ as 28 to 27 . For this purpose, having drawn the straight line HR, the angles RHW, RH w will be known; let them be represented by a and b; also let the angle HRW be represented by $\theta:$ then by trigonometry we shall have, after a few reductions, 27 cotan. a 28 cotan. $b=\operatorname{cotan} . \theta$.
In order to afford a view of objects in the same position as they appear to have when seen by the naked eye, a telescope may be formed with three lenses besides the object-glass. In the construetion of this instrument, if attention is paid only to the rays which suffer a mean refraction, the first eye-glass, or that which is nearest to the object-end of the telescope, may be placed between the image formed by the object lens and the eye, with the foci of the two lenses in coineidence; by this means the rays in eaelı pencil will emerge from the first eye-glass in directions parallel to one another, those of the pencils which arc ollique to the axis of the teleseope crossing each other at some point in the latter axis.. 1 second eyc-glass is then placed at any convenient distance from the former, beyond the place where the oblique pencils eross each other; and by this lens a second image is

Vor. XXIV.-Y
formed in a position contrary to that which is formed by the olject lens. Lastly, the third lens belug placed between this iname and the eye at a distance from the former equal to its fueal length, the rays in the several pencils will emerse pratlel to one another, and an crect mage of the object will thus be formed in the eye. I
The ratio between the angles under which an object would be seen by the uaked eye, and that by which it is seen in the telescope, is compounded of the ratios of the focal lengths of the several lenses; thus, if F be the fucal length of the objeet-lens, $f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}$ those of the eyelenses, reckoned in orter towards the eye, the expression $\frac{- \text { In } \cdot f^{\prime \prime}}{f^{\prime \prime} \cdot f^{\prime \prime \prime}}$ will denote the magnifying power.

But both the spherical aberration and the chromatic dispersion in such a telescope aro very considerable; and before the Invention of the achromatic object-glass, Mr. Dollond endeavoured to diminish the former by an eyetube consisting of five lenses disposed so as to divide the bendings of the peneils nearly equally between them. Sueh telescopes are not now used; and Mr. Dollond suceeeded at leugth in construeting telescopes with four eyeglasses, from which both distortion and colour are removed as much perhaps as a removal is possible.
This is accomplished by placing the first eye-glass beyond the image formed by the object-glass, and at a distance from it less than the foeal length of that eyc-glass; by this disposition the rays of mean refrangibility in each pencil which diverges from the image are not, after refraction, parallel to one another, but go on with diminished divergency. A little way beyond the place where the axes of thie oblique pencils cross the axis of the telescope there is placed the seeond eye-glass, which is of such focal length that the mean refrangible rays in each pencil, ufter passing through it, meet in a point, and thus a second image of the object is formed near tho eye: the use of these two lonses, therefore, is to cause the second image to be formed by a gradual convergence of the rays in each pencil. But the several pencils of rays are intercepted by the third eye-glass (commonly called tho field-glass), and the second image is thereby formed rather nearer to the first than it would be without such field-lens: from this image the rays in each pencil diverge, and by the refractive power of the fourth eye-glass they are made to enter the eye in paraltel directions: thus distinet vision of the expernal object is obtained. The field-glass might have been placed between the cye and the second image, as in the Huygenian eye-piece beforo described; but the aberration arising from the spherical form of the glasses is a little less by the construction just mentioned.

Now, in each peneil, the red and violet rays which had been united at the image formed by the object-glass, and which there crossed each other, go on from thence diverging from each other till, on the opposite side of the axis of the telescope, they fall upon the surface of the second eye-glass: after passing through this lens, the violet ray, which is always more refracted than the red ray, gradually eonverges towards the latter, and at length mects it in sone place short of that at which the rays of anean refraction unite to form the second imate. The practice is to fix the third or fell-glass exactly or nearly at the place where the red and violet rays so unite in all the pencils; for the different coloured rays crossing each other in that place, they arc finally, by the refractive power of the fourth eyc-glass, made to enter the eye in parallel directions, and thus aflord a view of the object nearly or wholly free from colour.
In forming the eye-glasses of telescopes it may be observed that they should be such as will allow the incident and emergent pencils of rays to be nearly equally inclined To their surfaces: on this account the first mind fourth cyeglasses are of the plano-convex fomm; the flat side of that which is nearest to the object-glass being lowards the Jatter, and that of the other fuwards the cye.
It has been said above that, in refleuting telescopes, is speculum at one extrenity of the tube serves the purpose of the object-glass iu refmeting telescopes by forming an image at ils focus; and the manner in which, in the former instrumente, tho image is transmitied to the eye remains now to be explained.
The folloning diagram represents a longitudinal section tbrough the axis XY of the instrument, which is supposed

to he of the Gregorian kiud. $A B$ is the tube which contains the specula, and is opent at the end CB ; and at the extremity nearest to the eve of the observer is a tubo HF containing two lenses. MN is the anterior surfaco of the great speculun, which has a cirentar perforation, $m h$, at its centre: G is a small speculum, concave like the former, its surface being either spherical or prabolical. It is connected with the sido of the tube A13 by tho arm HK, and is capable of being moved in the direction of the axis XY ly means of the rod PS: the latter passes through a knob Q_{2} which is fixed to the side of the tube, and works in the knob R, which passes through an ollong perforation in the side of the tube, and is attached to the part K of the am HK. This movement is given to the sinall uirror in order that its foents may be made to coincide with the place of the image formed by the great speculum; that image being at different distances from the latter according to the distance of the objeet from the observer.
Let O be the apper part of an object, and let $O N$ be the direction of the rays in a pencil of light diverging from O ; the rays of this pencil will, after being reffected at N , converge to o, whlch will be the luwer part of the image ot. From o the rays in the pencil diverge, and having fallen upon the small mirror at n, they are reflected from thence towards the cye-picce EF: having pased through the orfice $m h$, they fall on the lens $n t \mathrm{~F}$, by which they are made to unite at p, where an image, μp, of the object is formed. From p the rays in the same pencil again diverge, and, falling on the lens at E, they arc made to emerge in paralle] directions, so that tho cye is cmabled to obtain distinct vision of the object in tho samo pasition as if the latter were viewed by tho naked eye. The rays, after being reflected at n, might with a due concavity of tho smalter mirror have united, as at p^{\prime}, in front of the great mirror, and the second image might have been formed at $p^{\prime} q^{\prime}$: in this easo the rays in each pencil, after crossing one another, would have fallen in a divergent state on the lens at F , and then, by the refractive powers of both lenses, they would have entered the eye in parallel directions as before. The positions of the lenses at FE and F , and the curvatures of their surtacos, are determined aceording to the inethod of Huygens; and the construction ditfers in no respect from that which has been deseribet in speaking of the eye-picces of dioptrie telescopes.
The magnifying power of a reflecting telescope of this kind is expressed by tho formula $\frac{V z, G y}{\delta y \cdot G z}$; in whieh $V z$ is the focal length of the grent speculum, $\mathrm{G} y$ is the distance of the small speculum from the image $p q$, λy is the focal length of the second eyc-glass, and G: is the focal length of the small specnlum for prallel mays.
In the Cassegrimian telescope the snall mirror G is wade convex, and it is placed so as to intercept the mys from the great speculum MN before the image of is formed; the rays of each pencil consequently fall in a convergent state on the swall mirror, and, after reflection from thence, minte to form the inage either at $p^{\prime} \eta^{\prime}$ or after refraction in the first cyo-glass F . It is obvious that these telescopes, with equal magnifying power, will be shorter than the Gregorian telescopes by nore than twice the focal length of the small speculun; and it may added that, in some degree, the spherical aberration is corrected by the contrary curvatures of the two nirrors.
The Newtoninn reflecting telescopes have oue concave speculum at the bottom of the tube; and, in each pencil of light, the rays reflected from it fall in a convergent state upon a small plane uirror placed so as to make au angle of 45° with the axis $\mathcal{X} \mathbf{Y}$ of the telescope: after the second reflection the rays unite and form an image which is viewed throngh a Muygenian cyc-piece fixed in the side of the fube A13, opposite the plane mirror; that is near the open end of the tube.

The great teleseope eonstructed by Hersehel differs from the Newtonian telescope only in having no small mirror. The surface of the great speeulum, which is 4 feet in diameter, has a small obliquity to the axis XY, so that the image formed by reflection from it falls near the lower side of the tube at its open end: at this place there is a sliding apparatus which carries a tube containing the eye-glasses. The observer in viewing, is situated at the open end of the tube, with his back to the objeet, and he looks direetly towards the centre of the speeulum, the magnitude of which is sueh that the rays intereepted by his head, in coming from the ohject, do not in any sensible degree diminish the brightness of the image.
Formerly the great speeulum of a reflecting telescope was pressed into its eell by means of springs attached to the interior side of the brass plate at A ; but the vibrations of the springs were found to eause tremulous motions in the image at the foous of the mirror; and this effeet was so great as to render refleeting teleseopes inferior to those of the dioptrie kind. The Reverend Mr. Edwards, who detected the cause of the tremors, at once removed it by taking away the springs (Nout. Alm., 1787); and the same gentleman liurther improved the distinctness of the image by enlarging the aperture to which the eye is applied. It has been observed also that when the great speculum is nearly in a vertical position, and consequently rests on its lower extremity, its weight bends it, and thus canses a change in the figure of its polished surface: on this aceount it is recommended that the speculum should be made to rest on two small wedges, placed one on each side, at aloout 45 degrees from the lowest point.

Besides the power of magnifying objects, that of affording distinct vision with given quantities of light is often an essential requisite in a teleseope, particularly to naval men, who have occasion during the obseurity of the night to keep in view a ship of which they may be in chase. This subjeet was investigated by the late Sir William Herschel, and an account of his researches on what he calls the 'spaec-penetrating power of teleseopes' was printed in the Philosophical Transactions for 1810.
Herschel states that he was aware of this property of teleseopes as carly as the year 177 , when he had construeted a Newtonian teleseope with a speenlum whose focal length was 20 feet: for, on direeting the instrument to a churell-steeple at a considerable distance, he conld distinguish the hour by the cloek, though with the naked eye he could not see the steeple itself. In order to obtain a formula for the space-penetrating power, he observes that the quantity of light received by the natural eye varies directly with the aperture of the pupil, or with the square of its radius, and inversely with the square of the distance of the object: also that the quantity of light transmitted by a telcseope, supposing none to be lost in the reflections from the mirrors, or in refraction through the lenses, will vary directly with the square of the radius of the aperture and inversely with the square of the distanee of the objeet. But, from experiments on the measure of light, it appears that the whole quantity incident upon a plate of glass is to the quantity transmitted through it as 1 is to $\cdot 9381$, or to the quantity lost as 1 is to 0619 ; and from this, the whole quantity of ineident light being unity, an estimate may be made of the quantity of light transmitted through all the lenses of a telescope: with respect to the quantity lost in reflection from mirrors Sir W. Hersehel found that out of 100,000 ineident rays, only 45,212 reached the eye after two reflections.
Let the quantity of ineident light be to that which arrives at the eye as 1 to m; then r being the radius of the pupil, and R that of the aperture of a teleseope, $\frac{\mathrm{R}^{4} m}{r^{2}}$ will express the ratio between the quantity of light transmitted to the naked eye, and through a dioptric teleseope: therefore the space-penetrating power varying with the square root of the quantify of light, $\frac{\mathrm{I}}{r} \sqrt{m}$ expresses the penetrating power. With respeet to reflceting telescopes, it R ' be the radius of the small speculum, the penetrating power will le expressed by $\frac{1}{r} \sqrt{ }\left\{m\left(\mathrm{R}^{2}-\mathrm{R}^{\prime 2}\right)\right\}$. It is neceseary te observe that, in these expressions, it is supposed.
that the peneil of light transmitted by the teleseope is not greater than the pupil of the eye.
TELESCOPE, HISTORY OF THE. It has been the fate of almost every instrument by which scienee has been extended, or the well-being of man promoted, that the preeise epoch of its invention, and even the name of the individual to whom the world is indebted for it, are alike unknown. This is particularly the ease with the telescope, of which the earliest notices are that it existed in England and in Holland near the end of the sixteenth or in the beginning of the seventeenth century.
There is in Strabo a passage (iii., p. 180, Falconer's ed. ; p. 138, Casaub.) in which, speaking of the enlargement of the sun's disk at his rising and setting in the sea, it is stated that the rays (of light) in passing through the vaponrs which rise from the water, as through tubes, are dilated, and thus cause the apparent to be greater than the real magnitude (of the objeet) ; and from this it has been inferred (Dutens, Recharches, \&c.), thongh the inferenee is probably without foundation, that there then existed tubes furnished with lenses for magnifying objeets by refracting the light. It would be needless to make any observations on an inference founded upon an hypothesis so obscurely expressed: the words in Straho probably signify only that the rays of light might become divergent in passing along the intervals between the particles of vapour.

Omitting then all notice of this, and of the ill understood passages in Aristophanes ('Clouds') and Pliny (lib. xxxvi., c. 67) eoneerning transparent spheres, or lenscs for concentrating the rays of light, it must be acknowledged that before the end of the thirteenth century lenses of glass were in constant use for the purpose of assisting the eye in obtaining distinctness of vision. Vitello, a native of Poland, in that eentury, gave some obscure indieations of the apparent magnitudes of objects when viewed through a segment of a sphere of glass; and Roger Bacon, in his 'Opus Majus,' both mentions the like faet, and expresses himself in such a manner as to indicate that in his time (he died in 1292) speetacles were already in use. He may not have actually made combinations of lenses in one instrument, but there is no doubt of his being aware of the fact that lenses might be arranged so that objeets seen through them would appear to be magnified. [Bacon, Roger; Spectacles.]
The idea being known to the learned, it is scareely possible to doubt that the comlination of two lenses, or of a concave or convex mirror and a lens, must have been often made during tho three centuries which elapsed between the time of Breon and that which is gencrally considered as the epoch of the invention of teleseopes. Dr. Dee, in his preface to Fuelid's 'Elements' (1570), having mentioned that some skill is required to ascertain the numerieal strength of an enemy's force when at a distance, observes that the 'eaptain, or whosocver is eareful to come near the truth herein, besides the judgment of his oye, the help of his geometrical instrument, ring, or staffe astronomical (probably for determining the measure of distanees), may wonderfully help himself hy perspective glasses:' these last ean only signify some kind of telescope, which therefore must have been then in general use. And in the 'Pantometria' of Digges (1571) it is stated that ' by eoneave and convex mirrors of circular' (spherical) and parabolic forms, or by frames of them placed at due angles, and using the aid of transparent glasses which may break, or unite, the images produeed by the reflections of the mirrors, there may be represented a whole region: also any part of it may be augmented, so that a small object may be discerned as plainly as if it were close to the observer, though it may be as far distant as the eye can deserie. In the preface to the second edition (1591) the editor, who was the author's son, affirms that 'by porportional mirrors placed at convenient angles, his father could discover things far off, that he could know a man at the distance of three miles, and could read the superseriptions on coins deposited in the open fields." There is probably some exaggeration in this aceount, lont it is sufficiently manifest from it that refleeting telescopes, or optical instruments containing combinatious of mirrors and lenses, were known in England before the end of the sixternth century. The elaim of Baptista Porta (between 1545 and 1615) to the invention of the telescope appears to have no other foundation than the circumstance that
ne perceived a small object to be magnified when siewed through a convex lens.

It is highly probable that the telcscope had been invented lung before the value of such an instriment was duly appreciated; and it may have been owing to the very gradual diseovery of its importance that the neme of the inventor sunk into oblivion: about the middle of the seventcenth century, however, an cffort was made to discover the traces of the invention, and Peter Borellus, in his work entitled 'De vero Telescopii Inventore, which was published in 1603 at the IIague, has given testimonials in favour of two persons ; the first of these is Rachariah Jans, or Jansen, and the other, Jlans Iapprey, or Lippersheim, both of whom are said to have been opticians, or spectacle-nakers, residing at Middleburgh: in a letter written by a son of Jans, it is stated that the epoch of the discovery is the year $1: 500$; but by another account, the year 1610 . The same author has also wiven a letter from M. William Boreel (envoy from the States of Holland to the British Court) which seems to throw some light on the facts. The writer of the letter asserts that he was acquainted with the younger Zachariah Jans, when both of them were children, and liad ollen heard that the elder was the inventor of the microscope: he adds that, about the year 1610, the two opticians Jans and Lapprey first constracted telescopes, and that they presented one to l'rince Maurice of Nassau, who desired that the invention might be kept secret as (the United Provinces being then at war with France) he expected to obtain in the field, by means of the instrument, some advantages over the enemy. The writer further slates that the invention became known, and that soon afterwards Adrian Metius and Cornelius Drebbel went to Middleburgh and purchased telescopes at the house of Jans. This account differs from that which is given by Descartes ("Dioptrics," eap. 1), who, writing in Holland, states that about thirty years previously, Mefius (who was, he observes, a native of Alckmacr), having always taken pleasure in forming burningmirrors and lenses of glass and of ice, by chance placed at the extremities of a tube two lenses, one thicker in the middle, and the other thinner, than about the edre (convex and concave) ; and thus, he adds, was formed the instrument which is called a telescope. The 'Dioptrics' was published at Leyden in 1637, and therefore the time of the supposed invention by Metius is nearly coincident with that at which; according to l3orellus, it was made by Jans. From the papers of Harriot, it appears that this mathematician observed spots on the sun, in 1610 , with selescopes marnifying from 10 to 30 times; but it is uncertain whether he got them from Holland, or whether they were made in this country; and the only conclusions at which it is possible now to arrive, are, that telescopes were known in England and Holland about the end of the sixteenth century, and that in both countries they were then in a form which rendered them practically useful.

The two Jansens, father and son, appear to have used their telescopes in observing the heavens; and the latter is said to have remarked four small stars near Jupiter: it has been concluded from thence, that he was the first discoverer of the satellites of that planet; but though this may be, he probably did not continue his observations long enough to enable lim to determine their distances from it, or the times of their revolutions.

The use of the telescope, and, probably, even the knowledge of the fact that it had been invented, must have been for many years confined to the north of Europe; for it appears that it was not till the year 1609 that Galileo, who then happened to be at Venice, heard from a German a rumour of the discovery which was said to have been made in Holland. The Italian plulosopher states, in the 'Sidereus Nuncius,' that he had then no knowledge of the nature of the instrument, and that he requested a friend at Paris 10 send him some information coneerning it. On being informed, merely, that it was a tube containing glass lenses, his acquaintance with the nature of the refraction of light enabled him, it is said, to discover that one of the lenses must have been convex and the other concave, and also to determine the distance at which they should be placed from one another in order that the objeets seen through them might appear magnified and distinct. Without however supposing that Galileo was here gunaed by theoretical considerations merely, it is easy to conceive that, as lenses of diflerent
forms were then in use for spectacles, he might have obtained from an opticinn some which were of different degrees of convexity and concavity; and after a few trials he must have found such as would constitute on instrument possessing magnifying power.
The telescopes which he constricted consisted of one convex object-glass and one concave eye-glass, which were placed at the extremities of a leaden tube; and the first of them magnified the heights and breadths of objects three times only. Soon afterwards he made one which magnified eight times; and subsequently he suceeeded in torming a telescope with a magnifying power which catsed objects to appear about thirly times as great as they are to the unassisted eye.
The knowledge which tian had acquired of the visible heavens received many important accessions from the discoveries which Galileo was enabled to make by means of the telescope. Execpt the sum and moon, not one of the celestial bodies had hitherto been observed to have any visible form or magnitude, and it was to the eye of reasons alone that those appeared to be anything but plane surfaces: the fixed stars and the planets were alike known only as luminous and ill-defined points; but when seen through a telescope, the planets were found to have certain magnitudes, and somic of them to undergo variations of form; while the fixed stars appeared unchanged, or only divested of the radiance with which they seem to be surrounded when seen by the naked eye; and hence it became obvious that the former must constitute a distinet group of bodies infinitely nearer the carth than the others. The sum, from the spots obscried on lus surfuce, was found to revulve on its axis, and consequently was ascertained to be globular; and the light and dark spraces on the inoon were distinctly perceived to be mountains and vallcys, nearly resembling those features on the surface of the earth. Galileo relates, in the work above mentioned, that in the year 1610 he discovered the four satellites of Jupiter, and observed that they revolved about that planet as our moon revolves about the earth. Nearly at the same time he observed that Saturn presented a remarkable appearance: at first he thought it was accompanied by two smaller planets; but on using a telescope of superior magnifying power, these were found to be portions of R vast annulus which surrounds Saturn without touching his surface; and soon afterwards he ascertained the fact that Venus exhibited phases similar to those of the moon.

The species of telescope which was used by Gralileo continued for several years unchanged; yet it is extremely defective, on account of the small extent of the field of view which it affords when its magnifying power is considerable; and the l3atavian or Galilean teleseope, as it was called, is now chiefly used to distinguish objects in a theatre. It is due to the memory of Kepler to state that he pointed out (in his 'Dioptries') the jossibility of forming telescopes with two lenses, both of which are convex; but he did not reduce his ideas to practice ly the construction of such an instrument, and the honour of having been the first to do so is to be attributed to the Jesuit Scheiner, who, in lus 'Rosa Ursina' (1650) gives: a description of telescopes with one convex eye-glass. He observes that they cause the images of objeets toappear in inverted positions; and adds, that thirteen years previously the had used such a telescope in presence of the Arehduke Maximilian.

Telescopes with a single convex eye-glass have been since designated astronomical, from the circumstance that they were long employed for celestial observations; the greater extent of their field of vicw having caused thenr, notwithstanding the inversion of the image, to supersede for that purpose the telescopes of Galilco. It ought to be remarked however that telescopes with two eye-rlasses, by which the object might be scen in a direct position, as it appears to the naked eye, were described by Kepler. and construeted by Scheiner; but as they eaused the olject to appear much distorted and coloured about the margin of the field, they were not esteemed. l'ere de Rheita, about the same time, constructed for telescopes eye-tubes containing three lenses, which, he olserves, atford a better image than those with two: the same jerson was the inventor of what is called a binocular telescope, that is, an instrument which eonsists of two telescopes having equal magnifying powers, and placed near
each other in such positions that an object might be observed with both eyes at the same time. Attempts have been since made to revive this invention; but the advantages, if any there be, are more than compensated by the trouble of dirceting the two tubes to the object.

The magnifying power of a dioptrical telescope increasing with the ratio which the focal length of the object-glass bears to that of the eye-glass, and since, by increasing the focal length of the former without increasing its diameter, the coloured border round the image is diminished so that vision is rendered more distinct, the opticians of the seventeenth century were induced to form, for object-glasses, lenses which were segments of very great spheres, that is, lenses of great focal lengths. Campani at Bologna, by order of Louis XIV., made telescopes having object-glasses whose focal lengths were as great as 136 feet, and with such, Cassini, in 1671, discovered the satclites of Saturn. [Campani.] M. Auzout is said to have made a lens of 600 feet focal length, but it does not appear that he was able to use it as a telescope.
Huygens, who was an ingenious mechanic as well as a good philosopher, contrived to use an object-glass of long focus for astronomical purposes without placing the system of lenses in a tube. On the top of a long pole which was planted vertically in the ground, he mounted the object-glass, having fixed it in a frame with joints so that its axis could be moved in any direction by means of a string which was held in the hand of the obscrver; and the axis being in a line passing through the celestial body, a short tube containing the eye-glasses was fixed to a stand near the ground with its axis in the same direction. An instrument of this kind having an object-glass of 123 fect focal length, was made by Huygens and presented to the Royal Society; and with it Dr. Bradley made some of his astronomical observations. It is described by Huygens in his 'Astroscopia Compendiaria,' which was printed at the Hague in 1681. But the chicf merit of Huygens as an improver of astronomieal telescopes consists in his construction of an eye-picce with two lenses so combined as both to enlarge the field of view and diminish the aberrations produced by their spherical forms.
There is some probability that the elder Digges had contrived an instrument which constituted a species of catoptric, or reflecting, telescope; but, on account of the obscure manner in which the instrument is described, it will be searcely necessary to notice further his claim to the honour of the invention. It appears that leire Mersenne, in his correspondence with Descartes, and in his 'Catoptrics' ($\mathbf{1 6 5 1}$), suggested the idea of a concave spherical mirror to be used, like the principal lens of a dioptric telescope, for forming in its focus an image of an object ; and that this image being viewed through a convex eyeglass of proper curvature, the original object would appear to be magnified. Descartes, in his reply to Mersenne, which is said to have been written in 1639, makes scveral objections to the scheme, and no effort was then made to put it in practicc. But the great length of the dioptric telescopes which were then in use rendering the management of them very inconvenient, ingenious men werc induced to attempt a construction in which with equal magnifying power much smaller dimensions might be employed. Mr. James Gregory of Edinburgh, in his 'Optica Promota' (1663) published a suggestion for forming a telescope by means of the image at the focus of a concave speculum. The mirror was to be of polished metal with a paraboloidal surface, which by the properties of that curve would cause all rays incident upon it in directions parallel to the axis to converge accurately at one point. It is uncertain whether Gregory had any knowledge of Mersenne's treatise, or whether the idea originated with himself; but this is of little consequence, for not being able to find an artist who could execute such a speculum, though he came to London for the purpose, the suggestion was abandoned, and men of science continued to direct their inquiries to the means of improving dioptric telescopes.

When, however, Newton had discovered the unequal rcfrangibility of light, and had ascertained that the abcrration produced by this cause about the focus of a lens was many hundred times greater than that which was caused by the spherical form of the glass, he gave up the hope of being able to construct refracting telescopes which should be free from this defect, and applied him-
self to the formation of specula for those of the catoptric kind : the image formed by reflection from a mirror being free from what is called the chromatic aberration, and consequently incomparably more distinct than one which is formed by the refraction of light in a lens of any transparent medium.
In the beginning of 1669, Newton having obtained a composition of metals which appeared likely to serve for a mirror, began with his own hands, to grind its surfacc to a spherical form ; and early in the year 1672 he completed two telescopes: of the construction and performance of these instruments he sent to the Royal Society an account which was read in the January of that year. The radius of the concave metal in one of them was 13 inches, and the telescope magnified about 38 times. The rays, before forming an image in the focus of the speculum, were intercepted by a glass prism, or a plane mirror, and the image formed after this second reflection was viewed by a convex eye-glass which was fixed for the purpose in the side of the tube. In the telescope proposed by Gregory, the rays in each pencil of light, after crossing at the focus of the great speculum, were to fall upon the surface of a small concave mirror ; and by this being again reflected, they were to form a second image near the anterior surface of the first speculum: through a perforation in the latter the image was to be viewed; a convex lens being interposed between the image and the eye of the observer. This has been always called the Gregorian telescope; and in 1672 , the year in which Newton completed his reflecting telescopes, M. Cassegrain, in France, proposed one which differed from that of Gregory only in the rays reflected from the great speculum being intercepted by a small convex mirror: from this the rays of each pencil were again reflected, and they were made to form an image near the anterior surface of the great speculum : this image was to be viewed through a convex lens behind an aperture in the latter speculum, as in the telescope of Gregory. It does not appear that M. Cassegrain constructed such a telescope, but it may be observed that the image formed after reflection from the convex speculum would be more free from the aberration caused by the surfaccs of the mirrors, and would also be rather greater, than that which is obtained from the concave speculum of Gregory or the plane one which was used by Newton.
The first reflecting telescope, in which the great speculum was perforated so that objects could be viewed by looking directly at them, was executed by Dr. Hooke, and produced before the Royal Society in February, 16\%4. But the difficulty of obtaining metal proper for the purposc, and of giving it a perfectly spherical form, for a long time prevented reflecting telescopes from attaining the desired degree of perfection. In 1718 Mr. Hadley succeeded in cxecuting two telcscopes, cach about five fieet long, which were considered good; and he gave, in the 'Philosophical Transactions' (1723), a description of the methods employed in their construction. By his advicc Dr. Bradley, who was then professor of astronomy at Oxford, in conjunction with Mr. Molyneux at Kew, applied themselves to the construction of these instruments: having executed one which was satisfactory, they in 1738 instructed Scarlet and Hearnc, two London opticians, in the processes which they used, and these artists presently succecded in making good reflecting telescopes for general sale. Mr. James Short, of Edinburgh, also soon afterwards distinguished himself by his skill in forming such telescopes: he attempted at first to make the principal speculum of glass, but finding that this material had not sufficient steadiness to preserve the form of its surface, he devoted himself to the improvement of metallic specula, and succeeded in giving them, it is supposed, a correct parabolic figure, by which means his telescopes admitted of larger apcrturcs than any that had before been madc.
The processes adopted by Mr. Mudge in grinding and polishing the mirrors for reflecting telescopes, and in giving them the parabolic figure, may be scen in the ' Philosophical Transactions' for 1777. Sce also Speculum Metal.
But the reflecting teleseope was destined to receive the highest power of which perhaps it is susceptible from the hands of Dr. (afterwards Sir William) Herschel : this distinguished astronomer, while residing at Bath, employed his leisurc hours in grinding and polishing specula, with
which he formed teleseopes, both of the Niewtonian and Gregorian binds; and about the end of 17×3, that is, subsiquently to the discovery of the planet which is called by his name, being ailed by the liberality of the king (George 111.), he began the formation of a speculum four feet in diameter and forty feet in foeal leagh: the teleseope to which it appertains is of the Niewtoman kind, the olsarver being placed in a seat near the open end of the tube, and viewing the image through a system of eyeglasses. With this telescope, which was completed in 1789 , objects are maenified ahout 1300 times; and on the night ather it was finished. Dr. Herschel discovered the sixth satollite of Saturn. An nttempt is even now heing made to form a reflecting telescope possessing a higher derree of perfection than that of Hersehel; but though the expectation should be fulfilled, telescopes of great magnitude must always be inconvenient in the management ; and, from the expense of their construction, they will ever be confined to a few persons. It is right to observe moreover that the grentest discoveries of which astronomy can boast have been made with telescopes whose mannifying power did not exceed 700 times.
While the improvement of refleeting telescopes was in progress, the etforts to combine glass lenses in order to diminish the coloured fringes by which the images in dioptrical telescopes are surrounded were not entirely néglected; and as uarly as 1720 , a private gentleman, Mr. Chester More Hall, of Essex. influenced, it appears, by an opinion that the humours of the eye are combined so as to eorrect the dispersions which eacli alone would produce in the tifferent kinds of light, contrived to combine two Ienses of different kinds of glass in such a way as to form an image which was free from colours: it is added that telescopes with such object-glasses were in the possession of several individnals many years afterwards. (Gent. Mag., October, 1790 ; phil. Mag., November, 1798.)
In 1747 Euler, guided also by the constitution of the eye, conceived the possibility of forming a lens compounded of two hollow spherical segments of glass, inelosing water between their coneave sides, which should be free from the chromatical and spherical aberrations; and in investigating the curvatures he assumed that the logarithuns of the terms expressing the ratio of the refraction of a mean ray in passing from nir into glass, and from air into water, were proportionnl to the logarithms of the terms expressing the ratio of the refractions of red rays in the same media. Ilc was not able to obtain from any artist a lens of this nature, in which the proposed end was accomplished, and Mr. Dollond [Dollozn], in a short paper whieh is printed in the 'Philosophieal Traneactions' (1752), contested the justness of Euler's principle on the ground that it was contraiy to one whieh he conceived to be founded on the experiments of Newton.
But M. Klingenstierna, a Swedish mathematician, having foon ancrrards, in a Mémoire whieh was sent to the Aeadfmic des Seienecs, pointed out that the principle whieh had been adopted by Dollond was not conformable to the aeknowledged laws of refraction, the latter determined immediately on laving recourse to experinient. Fither guided by the ohject-glasses constructed under the dircetion of Mr. Hall, or from a series of experiments made by himself on the refraction of light in wedges of erown and flint glass, he diseovered that by employing a eonvex lens of the former, in combination with a concave Iens of the latter hind, the rays of the different colours in each pencil of light, after refraction through both, might be made to unite at the focus, and thas produce an image of the objeet nearly free from colour. For this important diseovery Mr. Dollond received trom the Royal Socicty the Copleian medal. In 1763 his son, Mr. Peter Dollond, diminished the aberration of light on account of the splierieal forms of the lenses by combining together two convex lenses of crown glass with a coneave lens of flint glass between them: This construction is particularly ndvantageons, by the increased aperture wheh it allows when the focal length of the compound lens is short.

For several years atter the telescopes thus improved by Dollond had been in general use, Euler contimed to believe that all kinds of glass differed but little from each other with respect to their disperaive power, and he ascribed the suceess of the English artist merely to a fortunate determination of the curvature of his lenses; but having, in the year 1764, received information that, by
the addition of lead, mlass lad been oltained whose dispersive power was four times as great as that of the common kind, he immediatels renounced his former opinion ; and from that time the merit of the achromatic objectglasses, as they were calted, has been timnly established. The most eminent mathematicians, hoth on ihe Continent and in this country, have subsequently investigated, on seientific principles, the eurvatures which should be given to the surliaces of lenses, so that, the focal length of the compound lens being assumed, the ehromatical and spherieal aberrations may be correeted.
The arrangement of lenses for the eyc-pieces of telescopes is of no less importance than the tormation of the object-glass : nncl lluygens proposed (Dinptrics, prop.51), in onder to diminish the refraction of light at the surfaces. to sulbstitute for the slugle eye-glass of the common astronomical telescope two convex lenses, of sueh eurvatures that the whole refraction, or the angle between the ineident and emergent ray in the former construction, should be divided between the two lenses.
One mode of cffecting this purpose is to place the first eyc-glass, or that which is nearest to the objeet, so as to intercept the pencils coming from the object-glass before the rays are united, and thus the image is formed afler the refraction of the light in this lens: the second eye-glass is then placed so that the rays falling on it, after having erosed at the place of the image, are made to enter the eye parallel to one another. A micrometer cannot be applied to such an eye-piece, since any change in the place of the lens which is nearest to the cye would derange its adjustment: these eye-picees ean liowever be rendered achromatic, and they have the greatest possible ficld of view; they have therefore been construeted for the purposc of merely vicwing the eclestial bodies by Dollond, Ramsden, and Frauenhofer. Mr. Ramsden was the first who constructed cye-pieces with two lenses which were capable of being used with a micrometer: this he accomplished by placing the tube coutaining those lenses so that the rays in the pencils, after crossing at the focus of the ohject-glass, fell in a diverging slate upon the first eycglass, and, afler refraction in both, entered the eye in parallel directions.
With both these kinds of cye-picees the object appears to be inverted; hut eye-picces with three lenses, by which the object is made to appear in the erect position, had heen proposed by Rheita: these being found delective, Mr. Dollond endeavoured to improve upon the construction by dividing the refraction at the flist and third ejeglasses between two lenses, according to the method recommended by liuggens, and thus he formed eye-tubes with five lenses. But some light is always lost by reflection when it falls upon glass; and, in oriter to diminish this evil, Dollond subsequently, retaining the Huygenian construction in the two lenses nearest to the cye, used but one tens to perform the office of the second and third (in the eye-piece with five glasses), in rendering the rays of each pencil convergent after the first had diminished the divergency cansed by the erossing at the focus of the objectglass: he thus suceceded in producing an eye-piece of four lenses which was nearly aphanatic, or free both from the ehromatical and splecrical aberrations; and such are the telescopes now in common use for viewing terrestrial objects.
The chicf improvements, if they may be so called, which have sinee been made in dioptrie teleseopes, consist in the means which have been adopted to remove those alperrations more completely; and the natures of the different media which have been used for this pupose by Dr. Blair, Sir David Brewster, and Mr. Bnrlow, have been mentioned in the artiele Telwsoope.
Attempts have been made by M. Chevalier to diminish the aberrations hy means of two achromatic object-ghasses placed at a certain distance from eaeh other in the tube; and by Mr. Kogers of Leith, by a single convex lens of platc glass, in combination with a doubte achromatic lens, the convex lens being of plate-glass, and the coneave lens of flint-glass. This jast gentleman proposes to unite the red and violet mays it the image of the oljeet by a proper distance between the single and the double lens, and to correct the spherical aberration cither by giving proper curvatures to the surfaces of the compound lens, or by placing the two lenses at a small distance from each other. (Mfomoirs of the Astron. Soc., vol. iii., part 2.) Dr.

Brewster has suggestell (Treatise on New Phil. Inst., p. 400) that it may be possible to remove, or at least very much diminish, the uncorrected colour in the inage by the use of two lenses of the same kind of glass with the same or different dispersive powers. He proposes that the exterior lens should have the meniscus form, the convex side being outwards; in order, from the obliquity of the incident rays to the surface, that the dispersion produced by that lens may increase in a higher ratio than its refraction, so that the dispersion produced by the other lens may be eorrected; while in each pencil the rays, after retraction through both, may be convergent.
It would be improper to omit here to mention that M . Amici at Modena, some years since, invented a species of achromatic telescope by a combination of four prisms, all of the same kind of glass : the refracting edges of one pair of the prisms were parallel to one another, and those of the other pair were also parallel to one another, but perpendicular to the edges of the first pair; and each pair formed an achromatic combination. By the refraction in the first pair the breadth of the object is magniffed, and by that in the seeond pair the length is magnified in the same ratio: thus the result is an image undistorted and magnified. Sir John Herschel states that, in 1826, he saw in the hands of its inventor one of these tclescopes, which magnified about four times.
TELESCO'PIUAI (the Telescope), a constellation of Lacaille, in the southern hemisphere, surrounded by Ara, pavo. Sagittaxius, and Ophiuchus. Its proreipat stars are as follows:-

TELESCO'PIUM, De Montfort's name for the Cerithium Teloscopium of authors. [Ewtomostomata, vol. ix., p. 451.$]$

TELFORD, THOMAS. In the life of this eminent man, as lims becn observed in a brief notice of the fathers of that science of which he was so distinguished an ornament, in the prefaee to the 'Transactions' of the Institution of Civil Engineers, 'another striking instance is added to those on record of men who have, by the force of natural talent, unaided save by uprightness and persevering industry, raised themselves from the low estate in which they were born, to take their stand among the masterapirits of their age.' Telford's father was a shepherd in the pastoral district of Eskdale in Dumfriesshire, where, in the parish of Westerkirk, his only son was born, on the 9 th of August, 1757. His father dying while he was yet an infant, the care of Telford's early years devolved upon his mother, Janet Jackson, for whom he cherished an affectionate regard until her deatb in 1704; he having been in the habit, according to Mr. Rickman, of writing letters to her in printed characters, that she night be able to read them without assistance. He recelved the rudiments of education in the parish seliool of Westerkirk; and, while engaged during the summer season as a shepherd boy in assisting lis uncle, he made diligent use of his leisure in studying the books furnished by his village friends. At the age of fourteen $h 0$ was apprenticed to a stone-mason in the neighbouring town of Langholre; and for several ycars he was employed, chiefly in hls native district, in the various operations usually performed by a country mason in a district where there is little occasion for the higher departments of his art. The construction of plain bridges, of fain buildings, and of simple village churches and manses, afforded however good opportunities for obtaining practical knowledge. Telforl himself has expressed his sense of the value of this humble training, observing, that although convenience and usefulness only are studied in such erections, yut peculiar advantages are offered to the young practitioner; ' for,' to adopt lus own words, 'as there is not sufficient employment to produce a division of labour
in building, he is under the necessity of making himself acquainted with every detail in procuring, preparing, and employing cvery kind of material, whether it be the produce of the forest, the quarry, or the forge; and this necessity, although unfavourable to the dexterity of the individual workman who earns his livelihood by expertness in one operation, is of singular advanfage to the future architect or engineer, whose professional excellence must rest on the adaptation of materials and a confirmed habit of discrimination and judieious superintendence,' Chambers states that during this period of his life Telford was remarkable for the neatness with which he cut letters upon gravestones. In 1780, being then about twentythrec, and considering himself master of his art, he visited Edinburgh, apparently with a view to obtaining employment. The splendid improvements then in progress in that city enlarged his field of observation, and enabled him to contemplate architecture as applied to the object of magnificence as well as utility; and he seems at this time to have devoted much attention both to architeeture and drawing. After remaining there about two years, he removed to London, where he obtained employment upon the quadrangle of Somerset House, then erecting by Sir William Chambers, an engagement in which, according to his own account, he obtained nuch practical information. About 1784 he was engaged to superintend the erection of a house for the resident commissioner in Portsmouth dockyard, from the design of Mr. S. Wyat. Telford's good character and promising talent had secured for him the friendship of two families resident in his native district, the Pasleys and the Johnstones, and to their influence his early employment on important works is, in some measure, to be attributed. He was engaged upon various buildings at the Portsmonth dockyard for three years, during which time he became well aequanted with the construction of graving-docks, wharf-walls, and similar engineering works; and in 1787, having completed his engagements there, he was invited by the late Sir William Pulteney (a member of the Johnstone family) to take the superintendence of some alterations at Shrewsbury Castle. He therefore removed to Shrewsbury, where he was also eniployed to erect a new gaol, which was completed in 1793, and was subsequently appointed county surveyor, in which office (retained by him until death) he had to furnish plans for, and oversee the construetion of, bridges and similar works. The first bridge whlch he designed and built was that over the Severn, at Montford, about four miles west of Shrewsbury, consisting of three elliptical stone arehes, ono of fifty-eight, and the others of fifty-five feet span. His next was the iron bridge over the Severn, at Buildwas, consisting of a very flat iron arch of a hundred and tlurty feet span, constructed upon very superior. prineiples to that erected a few years previously at Coalbrook Dale: Telford"s object was rather to introduce the trussing principle of a timber construction than that of a stone arch. This bridge was built in the years 1795 and 1796. Forty smaller hridges were ereeted in Shropshire under Telford's direction.
The Ellesmere Canal, a series of navigations intended to unite the Severn, the Dee, and the Mersey, and extending altogether to a length of abont one hundred and three miles, was the first great work upon which Telford was engaged, his satisfactory execution of the county works intrusted to him baving led its projectors to select him as their engineer; and from this engagement, whieh commenced about 1793 , in which year the act of parliament was obtained for the scheme, his attention was directed almost solely to civil engineering. The uneven character of the country oceasioned many serious difficulties in the construction of this canial, and rendered necessairy tho execution of some works of astonishing magnitude, especially in erossing the valleys of the Ccriog, or Chirk, and of the Dee. In the former the canal crosses the river at an elevation of seventy feet by an aqueduct-bridge of ten arches, each of which is of forty feet span, in the construction of which some important deviafions were made from the previous practice of engincers. It had been usual in suely struetures to form the bed for the canal of puddled clay confined in masonry, a practice which involved great expense, and some danger in time of frost, from the expansion of the moist puddle. The great elevation of the Chirk aqueduct would have increased the difliculty, but Telford abandoned the puddling system, and forned the

Ded of the canal of flanged east-iron plates resting upon walls built on the piers, and construeted the sides of masonry. This work was executed between 1796 and 1801, at a cost of 90,898 . The equeduet-bridge over the valley of the Dee, ealled the Pont-y-Cysylte, is still more remarkable: it consists simply of a trough of cast-iron plates, securely flanged together, and supported by eighteen piers or pillars of masonry, the elevation of which is a hundred and twenty-one fect above low-water. These piers are solid to the height of seventy feet, above which they are hollow, with interior walls. The water-way in the eastiron trough is cleven feet ten inches wide, of which four feet eight inches is corered by the towing-phth, supported upon cast-iron pillars, so as to allow the water free play beneath it. The length of the nqueduct is about one thousand feet, and the leight of the canal one hundred and twenty-seven feet above the Dee; and at onc end of the aqueduet-bridge is a great embankment, fifteen hundred feet long, rising in parts to a height of seventy-five fect above the natural surface. These gigantic works were executed between 1795 and 1805 , at a eost of 47,0181 . In the loeks of this eanal Telford introduced cast-iron framing in lieu of timber; and in one instance, where the loek was formed in a quicksand, he made every part of that material.
The Caledonian Canal is another of Telford's prineipal works. In 1773 the commissioners of the forfeited estates in Scotland had engaged Watt to report on the practicability of a ship-canal along the valley called the Glen of Scotland, to be formed by connceting the lakes which form a series of navigable waters extending a great part of the distance; but although the report was favourable, it was not aeted upon, and the scheme was deferred for some years by the restoration of the forfeited cstates, through which the line would pass, in 1784. In 1801 however Telford was deputed by government to make a survey of the coasts and of the interior of Scotland, and to report generally upon desirable publie works for the improvement of the eountry. In consequenee of his reports Commissions were formed to earry out the proposed canal, and other improvements classed under the gencral title of Highland Roads and Bridges; and the services of Telford were engaged by both boards. The Caledonian Cannl was opened throughout in 1823. Its construetion was delayed by many untoward eireumstances; and unfortunately its utility has not hitherto answered the expectations of its projectors. It forms however a noble monument of the still of the enginecr. The locks are stated by Telford to be the largest ever constructed at that time, being forty feet wide, and from one hundred and seventy to one hundred and eighty feet long; and one of them, at Clachnaearry, near Inverness, was made under eireumstances of especial difficulty, the earth being a soft mud, into which an iron rod might easily be thrust to a depth of fifty-five fect. The means adopted for conquering this difficulty are fully drtailed in the engineer's own narrative.
Of other canals constructed wholly or partially under Telford's superintendence it is sufficient to mention the Glasgow, laisley, and Ardrossan (which was never completed to the length originally intended) ; the Maeelesficld; the Birmingham and Liverpool Junction; the Gloueester and l3erkeley (completed under his direction); the Birmingham, which was completely remodelled and adapted to the conduet of a very extensive traffic, by him; and the Weaver navigation, in Cheshire. He also constructed a new tunnel, 2926 yards long, 16 feet high, and 14 feet wide, at Harecastle, on the Trent and Mersey Canal, the original tunnel of Brindley having been found too small [Tuxnel]; and he cxecuted many important works connected with the drainage of the fen eountry, especially of Bedford Level. On the Continent likewise he superintended the construetion of the Gotha canal, in Sweden, a navigation of about one hundred and twenty English miles, of which fifty-five arc artificial canal. This navigation rises one hundred and sixty-fwo feet from the Lake Wenern, at one extrenity; to the summit-level, and falls three hundred and seven feet to the lialtie, at the other: the rise and fall are eflected by fifty-six loeks. The canal is forty-two feet wide at the bothom, and ten feet deep. Telford visited Sweden in 1808 to make the surveys and preliminary arrangements, and again in 1813, taking with him, under the sanction of the British government, several experieneed workmen to instruct the natives in the works then in progress. Upon
the completion of the eanal a Swedish order of knighthood and other honours were conferrel upon Telford.
The works exceuted by Telford under the Commissioners of Highland Roads and Bridges are of great importance. His survey was delivered to the Lords of the Treasury in 1802 , and in the following year the Commission was appointed. Of the works committed to their superintendence Telford observes that 'the whole of Scotland, from its southern boundary, near Carlisle, to the northern extremity of Caithness, and from Aberdeenshire on the cast to the Argyleshire islands on the west, las been interseeted by roads; its largest rivers, and even inferior streams, crossed by bridges; and all this in the space of twenty-five years, under the same board, and (with some few exceptions) by the same individual Commissioners;' and all this was done under the direction of Telforl alone. The practical operations under this Commission embraced about a thousand miles of new road, with twelve hundred bridges, in a mountainous and stormy region, of which five only, aecording to Telford's narrative, have required to be renewed. It should be explained that the operations of the Commission were not confined to the objects defined in its title, but embraced also the Glasgow and Carlisle road; the Lanarkshire roads; the improvement of several harbours, of which the principal are those of Peterhead, Banff, Frazerburgh, Fortrose, Cullen, and Kirkwall; and the ereetion of several Highland elhurehes and manses under a jarliamentary grant of 1823. Nor were these Highland churches anil manses the only buildings in which Telford acted as an areluteet; he had, many years previously, erected a chureli at Bridgenorth, from lus own design.

In the improvements of the great road from London to Holyhead, under another parliamentary Cominission, appointed in 1815, Telford had a further opportunity of carrying into cffeet his system of road-making, of which an account is given under Roan, vol. xx., p. 29, \&e. This road, and the works connected with it, is probably the most perfect specimen of Telford's skill as an engincer, and appears to have been regarded by him with nueli satisfaction. The Menai suspension-bridye, especially, is a noblc example of his boldness in designing and practical skill in exeenting a work of novel and difficult eharaeter: it is described under Meyai Bridez, vol. xy., p. 91, and Suspenslow-Bridgr, vol. xxiii., pp. 33-5.

Among the other works of Telford are many bridges of considerable size, in which he adopted the important prineiple of making the spandrils hollow, and stupporting the roadway upon slabs laid upon longitudinal walls, instead of filling up the haunches with a mass of loose rubbish, which may press very injuriously upon the arel, and often proves of serious inconvenience when the masonry of the bridge necds any repair. He employed this mode of construction in a large arch, of 112 feet span, erected over the Dee, near Kirkeudbright, in 180 : and 1806, and in many subsequent bridges. In his 'Life' will be found partículars of the ingenious alteration of Glasgow old bridge, by the addition of a projecting footpath of eastiron on each side, so as to leave the whole width of the stone structure for carriages; and of the new bridge designed by him for erossing the Clyde at Clasgow, and commenced in 1833; of the light and elegant Dean bridge, at Edinburgh ; Path-head bridge, of fise arches of 50 feet span, over a ravine about eleven miles south of Edinburgh; Morpeth bridge; Tewkesbury bridge, erceted between 1823 and 1826 , with a light iron arch of 170 feet span and only 17 feet rise ; the Over bridge at Gloucester, and many others. The last-mentioned bridge has an areh of peculiar form, previously employed by Perronct in the Nenilly bridge. The general hody of the areh is an elliptieal curve of 150 feet span and 35 feet risc, but the external arch stones at the sides of the bridge forn segmental eurves of the same span, but of only 13 feet rise: the two arehes are coincident at the crown, and are connected by a vaulted form on the haunehes of the bridge. "This complex form,' observes Telford, 'converts each side of the vault of the arch into the shape of the entranee of a pipe, to suit the contracted passage of a fluid; thus lessening the flat surface opposed to the current of the river whenever the tide or upland flood rises above the springing of the middle of the ellipse, that being at four feet above low-water; a precaution rendered necessary in this instance owing to the liability of the bridge to very trying floods.'

Telford executed some important harbour-works at Aberdeen and Dundee; but his most striking performance of this class is the St. Katherine Docks, London. Owing to the very limited space which could be obtained, it was necessary to construct these docks of irregular forms, and to adopt unusual arrangenients respecting the warehouses; and these arrangements, combined with the admirable machinery employed, have reduced the time requisite for unloading a vessel in an astonishing degree.* There are two doeks, communicating with the river by a tide-lock 180 feet long and $4 \overline{5}$ feet wide, with three pair of gates, so that either one very large or two smaller vessels may pass the lock at one tinie ; and steam-engines are provided, capable of filling the locks in a few minutes by pumping water from the middle of the river, so that vessels are enabled to pass in and out of the docks with great rapidity so long as there is a sufficient depth of water to receive them outside the lock. The cast-iron turn-bridge over this lock is an excellent specimen of that kind of machinery, being easily worked by two persons at each end, although it supports a carriage-way 24 feet wide. These docks were constructed much more quickly than is usual for works of such magnitude, and more quickly than the engincer could fully approve, although he admitted the urgency of the case as a justification of a course against which he could not but enter his protest. Onc of the very latest engagements of Telford was the silvey of Dover harbour, undertaken, in January, 1834, at the request of the duke of Wellington, as warden of the Cinque Ports, with a vierr to the adoption of measures to check the accumulation of shingle at the entrance.
In addition to the works which he executed himself, Telford was frequently applied to for his judgment upon important schemes, and in this way he made many reports to parliament. For many years he was employed to report upon all publie works of engineering character for which loans were required of the Exchequer L.oan Commissioners. Among his reports are several of considerable interest, cspecially upon proposed canals between Londnn and Birmingham, and between the English and Bristol Channels, and on the supply of water to the metropolis, one of the last objects to which he devoted his attention. For some years beforc his death he had gradually declined as mnch as possible forming new engagements, and had made preparations for the publication of such a selection from his papers as mighit leave on record an authentic account of the important works in which for more than half a century he had been engaged. Having made arrangements with his exceutors for the completion of his work in case he should not live to finish it, he set about it with ardour, and had many of the plates completed, the manuscript in a very forward state, and arrangements made respecting the paper, type, \&cc. before his death. The book was not published until 1838, clicfly owing to the illness and death or Mr. Turrell, the engraver, and the difficulty of getting the plates completed. It forms a thick 4to. volume, entitled 'Life of Thomas Tclford, civil engineer, written by himself; containing a descriptive Narrative of his Professional Labours;' and it contains a preface and supplement, by the editor, Mr. Rickman, and a very copious appendix of illustrative reports and other documents. The plates, eighty-three in number, constitute a companion volume, in large folio, to which is prefixed a fine portrait of Telford, engraved by W. Raddon, from a picture by \mathbf{S}. Lane. From this work the materials of the preceding notice of his principal works are chiefly derived; and from the supplementary noticc, by Mr. Riekman, and some other sources, are collected the foullowving additional biographical particulars.
Before leaving his native district, Telford acquired some distinction as a poet. He wrote in the homely style of Kamsay and Fergusson, and contributed small pieces to
Ruddinan's ' Weekly Magazine,' under the simnature of Ruddiman's 'Weekly Magazinc,' under the signature of 'Eskdale Tam.' He wrote a short poem, entitted 'Eskdale,' descriptive of the seenes of his carly years, which was originally published in a provincial miscellany, subsequenty reprinted at Shrewsbury, at the request of his friends, and afterwards inserted in the appendix to his Lifc. Another pleasing fragment of his composition is given at the end of the first volume of Dr. Currie's • Life and Works of Burns,' published at Liverpool in 1800 : it is an extract

from a poetieal epistle sent by Telford, when at Shrews-: bury, to the Ayrshire poet, rccommending him to take up other subjects of a serious nature, similar to the 'Cottar's Saturday Night.' He taught himself Latin, French, Ita-• lian, and German, so as to read them all with facility, and to converse, readily in French; and he has left valuable contributions to engineering literature, in the articles Architecture, Bridge, Civil Architecture, and Inland Naviga-tion, in Brewster's 'Edinburgh Encyclopædia,' in which work Mr. Rickman says, he was a shareholder. He was well acquainted with algebra, but he held mathematical investigation in rather low estimation. In his early years he appears to have been tinctured with democratic opinions; but after seeing the excesses of the French revolution, he always studiously avoided conversing on political subjects. In all the relations of life he commanded respect and esteem ; and he was particularly remarkable for his facility of access to the deserving, and especially for his ready communication of professional information to foreigners; a circumstance which, added to his connection with the Gotha canal and some other contiuental works, procured for him the highest respect on the continent of Europe. The Russian government frequently applied to him for advice respecting the construction of roads and canals; and the sixty-scventh plate in his atlas represents the details of a road designed by him from Warsaw to the IRussian frontier. The emperor Alexander of Russia acknowledged his sense of his services on one occasion, in 1808, by sending him a diamond ring witl a suitable inseription. Although he was not connected with the Institulion of Civil Engineers at its formation, he acecpted their invitation in 1820, and became their president; and from that time he was unremitting in his attention to the duties of the office, having become, by his partial retirement from business, a pretty regular resident in the metropolis. He ardently loved his profession, and was, observes Mr. Kickman, so energetic in any task before him, that all other motives became subordinate to it. He never married, and hardly had a fixed habitation until a late period of life. He was of athletie form, and reached the age of seventy without any serious illness; but in 1827 he was afflicted with a severe and painful disorder, after which he beeame subject to bilious attacks, under one of which: lie died, on the 2nd of September, 1834, at his residence in Abingdon Strect, Westminster, at the age of seventy-seven. He was buried in Westminster Abbey. The acquisition of property was always a secondary consideration with Telford; and in certain cases, espccially of abortive speculations, he was ingenious in finding arguments for giving his assistance gratuitously. Even in increasing his charges as his reputation and experience increased the value of his services, he seems to have been actuated chiefly by a sense of what was due to others in his profession, whose remuneration was in some degree dependent upon his own. After his mother's death he had few family connections to provide for, and he lad a great objection to raising any individual above his station in life, which is stated by his biographer as his reason for not leaving his property to relations. His will, printed in the appendix to his 'Lite,' provides for the payment of handsome legacics to many personal friends; of 2000 . to provide annual premiums to be given by the Institution of Civil Engincers ; and of 1000\%: each in trust to the miuisters of Westerkirk and Langholm, for the purehase of books for the parish libraries. Llis seientific books, prints, drawings, \&c..are bequeathed to the Institution of Civil Engineers. Telford became a fellow of the Royal Society of Edinburgh in 1803, and of that of England in 1827.
(Life, edited by Rickman ; Chambers's Scottish Biographical Dictionary; Annual Biography, vol. xix.)

TEIINGA or TELUGU LANGUAGE. [Hindustan, p. 229.$]$
P. TELL, WILLIAM, a simple countryman of the village of Buirglen near Altorf in Switzerland, who lived towards the end of the thirteenth and during the first half of the fourt centh century. His early life is unknown, and his name would: probably never have bcen heard of in history, if the tyranny. of the Austrians had not called him from his obscurity. At the beginning of the fourteenth century, when Albert I. of Austria was endeavouring to suppress the spirit of free-dom and independence in the three Waldstidte, Uri, Schwyz, and Unterwalden, and was using every means to add them to his family estates, he sent bailiffs (Landvigłe)
into these cantons, who perpecrated the most flagrant acts of tyranny, and treated the preople like a conyuered nation. The principal men of the three Waldstidtes in 135%, forned a league, which was headed by Walter Firirst, A rnold von Melchitha, and Werner Stantincher. Willinn Tell, who had minried as daurliter of Walter Fiirst, also belonged to the leaguc, though sithout taking any proaineat part in it. The objeet of these men was gradunlly and secretly to increase their numbers, nnd to seize on any favourable opportunity for delivering their eountry from its oppressors, and if possible withont bloodshed. While the contederates were daily maining news stronyth, Hermann Gessler of Brunegg, one of the ballift's of Albert I., who had latien up his residence in the eaaton of Uri, after varions cther vexations aets, caused the dueal hat of Anstria to be raised on a pole in the market-place of Altorl, and commanded that every one who passed the pole should uneover his hend ns a token of respect for the hoise of Austria. William Tell with his little boy happened one day to pass the pole withont paying any regard to the orders of ihe bailitt; and he was inmediately seized and taken before Gessler. Tell hat the réputation of being an excellent bowinan, and Gessler devised a mode of punishment which sloould put lis skill to a severe test. He ordered Tell's boy to be plaeed at a considerable distance from his father, and an apple to be fixed on lis head. A crosshow and arrows were handed to 'lell, who, without being observed, contrived to get two arrows, and he was ordered to shoot the apple from his own child's head. The tymat added, that it he missed the apple, he should die. Tell sueceeded in hitting the apple. (iessler liad expeeted that Tell would kill or hurt his child, and in his disappointment he tried to find out some pretext for pmishing the presumptuons peasant: he asked him why he had taken a second arrow? Tell boldy replied: 'It was intended for thee, if the first hard hit my child!' The bailiff, clelighted with this opportumity of satistijing his vengeance, orclered Tell to be bound and to be conveged in a boat across the lake of Wallstidten to the eastle at Küssnacht, the residence of Gessiler, who himself aecompatied his prisoner. When the boat was on the lake, a stomn arose, which beeame so violent, that the rowers wore unnale to manage the boat, and proposed to Geasler to uafeeter Tell and allow hint to assist them, as he was known to be an experieneed boatruan and well acquainted with every part of the lake. Tell was freed trom his fetters, and thking the rudder in his hand, he steered the boat towards a prirt of the rocky shore, where a flat sleelf jutted out into the lake. When he was near this spot, he seized his how, jumped upon the projecting roek, and with his foot pushed the boat back into the waters.' The storm however was abating, and Gessler and his men were safely landed. Tel! knew the road by whieh the bailiff had to pass to Kïssuacht, and lay in writ for him in a narrowr defile. When Gessler eame, Tell shot him through the heart. This happened towards the end of the year 1307. The event was followed by a series of wars between the Swiss and the Austriais, which did not terminate till the year 1499.

The conduet of Tell was highly disapproved of by his friends, as they wished to avoid bloodshed, and were not yet prepared to earry their plans into excention. Alter this adventure Tell sinks a gain into his former obscurity, though he is said to lave taken part in the hattle of Norgarten, and to have perished, in 1350 , in the river Sehächen during a great flood.
Tell has been represented as a hero and a eliampion of liberty, by historians as well as by poets, but hiss conduct, if looked into more elosely, will appear in a ditferent lightt. His refusal to pay homage to the chucal lint of Anstria was indeed owing to h noble independence or spirit; butt his obeying the inhuman command of Geessler to sthoot the apple from his cliild's head is repugunt to all fintermal feelines, and a true hero would have aimed at the torant lilmself. He shot his enemy forin in ambunsl, which, although in a mensure an act of self-derence uader the circumstancea, yet in the manure of the exceution was littlo better than murter.
But tho trith of tho atory of Tell, notwillasandine its being comniemonted dowii to thls day lyy chapels and other public monuments, has been doubfed ly severial modern listorians; while othen, and hmong them Jolininn von Müller, regurd it as a genuline listory. The doubts
about its truth liave arisen trom the fact that n similar story is told in the Wilkina Saga, mud by Savo Grammaliens, of a Danish king Harokd and one Toko. The name story is also told of one Willium Tell and a comnt of Seedorf who lizd extensive possessions in Uri, but must have lived early in the iwelfth century. Another singular circunstance is that in the doenments relnting to the uatient Swiss confederacies, and published by Kopp at Luzcrulin 1835 ("Urkunden zur Geschtichte der cidgeaïsischen Bindes) there is no mention of a Gessler annong the bailiffs who resided in the castle of Küssmeht. For these and other reasons, Grimm and Ideler (D)fe Singe vom Schuswe de: Tell, Berlin, 1826) consider the whole story of Trell as fabulons. There are howerer facts which seein to ronfirm the historical fruth of at least the groundwork of the story. It was not many years alter the death of Tell that it became castomary for aanual proceasions to visit the spot where Tell had escaped fromi the boat, and in 1338 the eantor of Uri built the celebrated chapel of Tell near the same spot, and it is stated that among the visitors of that year there were one hundred and fourteen who had knowa Tell himself. His adventure is moreover told to the same effect by all the chronieless who wrote at or soon after the alleged time of the occurrence.
TELLER, WILIELM ABRAHAM, son of Romanus Teller, minister of St. Thomas's church at Leiprig, was born in that city, 9th January, 1734. So carly as at the age of twenty-two he attracted the attention of the theolngreal world by a Latin translation of Kennicott. on the Hebrew Text ; and after being for a year or two preacher at the Nicolai elurch, very unexpectedly received the appointment of professor of theology at felmstad, from the Duke of Bruaswick, in 1761. On entering upon his new offiee, he published as an inangural disputation his 'Topice Seripture,' whieh was cousidered by Superintendant Bahrdt so heterodox in its opinions, that it was with difficulty he could be prevailed upon not to protest agninst Teller's appointment. Not deterred by this circumstance from expressing his owa convietions, Teller published net long afterwards his 'Lehbueh des Christlichen Glaubens.'a production that caused no little noise at the time, exciting violent disapprobation in some quarters, and olstaming him friends in others. Just before this work appeared he lud been invited to aceept the professorship of theology at. Halle, then vaeant by the death of Baumgarten, and lie declined it ont of regard towards his patron the Duke. But the persecution he continued to expericnce from those to whom his opinions had rendered lim obnoxious made his residence at Helnestadt so disagreeable, that it whe without the least reluctance he'ex'changed it, about three years afterwards, 1567, for Berlia, with the appointment of 'Oljereonsistorial-Rath' and Dean of Cologne. While it removed him from their immediate nflaeks, the distinction thus conferred upon him also lu some measure arred his opponents; und at the same time he himself was brought into infereonse with sone of the most learned and distiaguished characters belonging to the reign of Frederick the Great. He was so fir however from neglecting his professional duties or relaxing his zeal, that he continued to apply to his theologieal studies will, the same ardour as before, and was instrumental in promoting many hencficial plans conucetet with chnreh matiers and edumbion in public schools. The vast number of sermons and various Theologieal writings published lyy hinn, attest not only his industry, but his earnestness in the eause of genuine religion, atthough his rejection of the dogmas iagratted upon Seripfure atiorden lise enemies and those who lay greater stress upon speeulative points than upon religious cordnet and feeling an opportunity to deery him as very dangerusts, heterodox, and unsound. 'Equally remote from all nysticism on the one hand, and from dry metaphysical philosophizing on the other, Teller,' says Kuftner, 'addresses himself linth to the reaton and the heart, and while he tonches the latter, earries conviction to the former.' Others have also spotich of him in very high terms, not only as a writer and teacher of religion, lrut as a man-uni no less estimable in private life than in lis public capacity, and as exemplifying in himself that conduet which he sought to eaforce upon others:
Busides his German writings, Teller published not a ferr theolowieal and eritienl disserlations in Jatin, and contimed to emiploy his pen almost up to the time of his lealh; for though he was greatly worn out in body, his
faculties continued active to the last. He diet at Berlim, Deeember 8,1804 . (Jörden's Lpxicon.)

TELIERS OF THE EXCHEQUER were the hollers of an antient office in the Exchequer. They were four in number: their duties were to receive money payable into the Exchequer on behalf of the king, to give the clerk of the pells (skins or rolls of parchment) a bill of receipt for the money, to pay all money according to the warrant of the auditor of receipts, and to make weekly and yearly books of receipts and payments for the lord treasurer. (4 Inst., 103 ; 'Com. Dig., tit. ' Court,' D. 4, 74, 15.) The office was abolished by aet of parliament (4 \& 5 Wm . IV., c. 15$)$, together with that of the clerk of the pells and the several offiees sulpordinate thereto, and a new constitution established, a comptroller-general of the reeeipt and issue of his Majesty's Exchequer being appointed to perform the duties of the four tellers. (4 \& 5 Wnı. IV., c. 15.)
TELLEZ, BALTHEZAR, a native of Lisbon, was born, aecording to the statement of M. Weiss, in the 'Biographic Universclle,' in the year 159.. Moreri states that he joined the Society of Jesus in the year 1610. In the eulogistic letter of Dom Franciseo Manoel, prefixed to Tellez's 'History of Ethiopia,' he is said (at least this seems to be the writer's meaning, which his affected style renders rather obscure) to have studied ten years, and taught forty; to have paid attention to literature during the whole ien years of his career as student, but devoted two of them more especially to philosophy, and four of them to theology. He lectured upon belles lettres for twenty years, teaching in succession the most advanced literary classes in the Socicty's colleges at Braga, Evora, Jisbon, and Coimbra. He lectured two years on philosophy, but Alauoel dues not mention in what seminary. Lastly, Tellez was eight years professor of theology in the college of St. Antonio at Lisbon. At a later period he was appointed niaster of the house of the professed Jesuits in Jisbon, and ultinatcly provineial of the order in Portugal. He died in his eightieth year, on the 19th of April, 1675. The published works of Tellez are:-1, A compendium of philosuphy, entitled 'Summa Universae Philosophiae, cum Quaestionibus quae inter Philosophos a ${ }^{\text {gitantur,' }}$, published at Lisbon, in folio, in 1642; at Paris, in two quarto vohumes, in 1G44; and at Lisbon, in four nctavo volumes, in 16j2: : 2, 'Chronica da Companhia de Jesus da Provincia da Portugal,' in two volumes, the first published in 1645, the second in 1918, both at Lisbon: 3, 'Historia geral ile Ethiopia a alta,' in one folip volume, at Coimbra, in 1660. He is also said to have left in MS. a hisfory of the Society's labours in the East. The historical works of Tellez are of more value than his philosophieal treatise. The llistory of the Jesnits in Portugal is a valuable contribution to the history of that aceomplished and energetic order. The 'History of Ethiopia,' or, more properly, the history of the Jesuit-Missions in Ethiopia, is indispensable to any one who wishes to study the history or comparative geography of Abyssinia. The first book contains an outline of the geography of Abyssinia, of its political divisions, government, and statistics, as they existed from the time that the Jesuit missionaries first entered the kingdom till their expulsion under Facilidas. The remaining five books are chiefly occupied with the narrative of missionary enterprise, but contain important contributions to geography, the general accuraey of which has, on the whole, been confirmed by the testimony of later travellers. In the preface Tellez gives an account of the authorities from whom he has compiled his book, Manoel d'Almeyda, Affonso Mendes, Jeronymo Lobo, and Pero Pays ; and he has availed himself of their information both with taste and judgment.
(The authoritics for the statements in this sketeh are the - History of Ethiopia,' with the preface by Tellez limself, and the letter of Francisco Manocl prefixed to it; the articles on Balthezar Tellez, in the Bibliotheca Seriptorum Hispaniae' of Nicolao Antonio, in the 'Dictionnaire Historique' of Louis Moreri, and in the 'Biograplic Universelle.')
TELLicherky. [Hindustas, p. 207; Malabar, p. 312.$]$

TELLI'NA. [Conchacea, vol. vii., pp. 428, 429.]
TEIJI'N1DES. [Coxchacea, vol, vii., p. 428.]
TELLU'RIUM, a metal which was diseovered in 1782 by Mïller of Rcichenstein, but its properties were more minutely examined by Klaproth sixteen years afterwards,
and he give it the name it now bears. It is a scarce metal. Its properties are the following:--its colour is silver-white, and it is very hrilliant : it is crystalline and brittle, of a lamellar fracture, easily: pulverized, and a worse conductor of electricity than antimony or bismuth. Its specific gravity, aceording to Klaproth, is 6.115 , while Magnus makes it 6.1379. It is nearly as fusible as antimony, and at a high temperature it boils, and may be distilled. When strongly heated in contact with air, it burns with a lively blue flame, green' at the borders, and forms a white vapour, which has an acid odour.

The principal ores of tellurium are the following:-
Nutive Tellurium.-It is found erystallized and massive. Primary form a rhomboid; oecurs in minute six-sided prisms, the terminal edges of whieh are usually replaced. Cleavage parallel to the faces of the prism.. I'racture indistinct. Hardness: scratches sulphate of lime, and is seratched by the carbonate. Easily trangible. Colour tinh white or steel-yrey. Lustre metallic! Speeific gravity 5.7 to $6 \cdot 115$.

Before the blowpipe very fusible, burns with a streenish flame, and is volatilized in a white vapour. It is soluble in hydrochlorie acid.
Massive Varipty-GGranular. . Colqur splendent tinwhite. Lustre netallie. Opaque, Specifio gravity 6.115. It oceurs in Transylvania.
Klaproth's analysis gives,-

Graphic Tellurium. Aurn-argentiferous Tellurium.Occurs crystallized. Primary form a right vhombic prism; oecurs in attached tlattened crystals, which are generally minute. Fracture uneven. Hardness: scratehes tale, and is scratched by caleareous spar. It is brittle, 'Colour steel-grey. Lustre metallic. Opague. Specifie gravity 5. 723.

Before the blowpipe it readily fuses into a globule, and is rechuced to a metallic button of a bright yelow colour. Soluble in nitrie acid, except a yellow metallic residuc.

It occurs aecompanying gold in narrow, veins traversing porphyry at Officnbauya, and also at Nagyag, in Transylvania.
Analysis by

Berzelius found also a little sulphur, arsenie, antimony, iron, and copper.

Yellow Tellurium.-Occurs in imbedded crystalline laminæ. Primary form of right rhombic prism. Traces of cleavage: Fracture uneven. Hardness: seratehes gypsum, and is scratched by caleareous spar. Rather brittle. Colour silvery-white, inclining to brass-yellow. Lustre metallic. Opaque. Speeific gravity $10 \cdot 6.8$.

By the blowpipe melts into a metallie globule. Partly soluble in nitric acid.
It occurs at Nagyag in Transylvania, and in the Altai Mountains in Siberia.

Black Tollurium.-Oceurs erystallized, and in imbedded foliated masses. Primary form a squrre prism, Cleavage parallel to the terminal plane, in thin fiexible lamina. Fracture indistinet. Hardness: seratches tale, and is scratched by gypsum. Colour dark lead-grey. Lustre metallic. Opague: Specifie gravity $7 \cdot 08.0$.
Before the blowpipe is fusible on charcoal, and eovers it with oxide of lead; reducible into a grey metallic globule, which eventually lenves a button of golfi.
IL is found at Nagyag and Ofeubanya in Transylvania.

Analysis of the ore from Nagyag, by Kiaproth:-

106.

Brandes and Berthier have also analyzed this ore from Naryag: their results ditler considerably from the above, and also from each other.
Bismuthic Tellurium. Telluret of Bismuth.-Oceurs erystallized in small six-sided prisns. Cleavage paralle] to the base of the prism. Fracture indistinct. Hardness: scratehes ealeareous spar, and is seratehed by fluor-spar. Colour steel-grey or zinc-white. Lustre metallie. Speciffe gravity 7.82.
Fusible by the blowpipe, and disengages the odour of seleninm. Aeted on by nitrie aeid, and the solution is precipitated by water.

It is found in Norway. Analysis of Wehrle :-	
Tellurium .	34.6
Bismuth	$60 \cdot 0$
Sulphur and traces of selenium	$4 \cdot 8$
1	93•4

We shall now describe the more important binary eomipuunds of tellurium, beginning with

Oxygen and Tellurium.-It has been already mentioned that when tellurium is heated in contact with air, it burns, and a white vapour is formed: this is oxide of tellurium, or tellurous acid. It may also be obtained by the action of nitrie aeid on the metal; by adding water to the solution, part of the oxide is precipitated, and the remainder is obtained by evaporation to dryness. The yroperties of this substance are, that it is a white granular anhydrous powder, whieh slowly reddens moist litmuspaper, and is insoluble in water and aeids. It is dissolved by a solution of potash or soda, and by fusing with their carbonates ervstalizable salts are formed: when these are decomposed by aeids, hydrated tellurous acid is precipitated, which, if washed with very cold water, and dried at a temperature not above 53°, may be preserved without suttering ehange, and is soluble in water, acids, ammonia, and the alkaline carbonates, whiel2 last it deeomposes: the aqueous solution reddens litmus-paper: when zine, tin, and some other metals are left in a solution of this acid, they deoxidize it, and metallie tellurium is preeipitated in the state of a blaek powder. Its salts are ealled tellurites.

It is composed of -

Sesquioxide of Tellurum, or Telluric Acid.-This is obtained by fusing tellurous aeid with nitrate of potash: by this it is oxidized eompletely, and the result is tellurate of potash: when chloride of barium is added to it, tellurate of barytes is precipitated, whieh, being decomposed by sulphurie aeid, yields a solution of tellurie aeid; this yields hexagonal erystals of the aeid: it acts but feebly as an acid, the dilute solution reddening litmus-paper with difficulty, and its taste is rather inctallic than sour: the erystals contain water, two-thirds of which they lose at about 212°, and the remainder below a red heat becomes a mass of a tine orange colour, whieh is completely insoluble in water, either cold or boiling, or hot hydroehloric or nitric acids, or solution of potasil. It is decomposed at a high temperature, and converted into a white powder, whieh is tellurous acid. Its salts are ealled lellurates.

It eonsists of

One and a half equivalent of oxygen . 12
One equivalent of tellurium .
One equivalent of tellurium
Equivalent
32
Ilydrogen and Tellurium.-When telluriuin is alloyed by fusion with tin or zine, and the eompound is aeted upon by hydrochlorie aeid, the hydrogen of the decomposed aeid dissolves tellhrium, and telluretted hydrogen gas is obtained. This gas lias a smell somewhat resembling that
of hydrosulphurie aeid: it is soluble in water, forming a -laret-coloured solution; and, as it possesses acid properties, though feebly, it has been callet hydrotelluric acid. It decomposes many metallic salts, yielding an alloy of tellurium with the other metal. Chlorine, nitrie acid, and the oxygen of the air, all take the hydrogen from the telhurium.
It consists of

One equivalent of hydrogen One equivalent of telluriun
Eyuivalent

Chlorine and Tellurium form two compounds. When a feelle current of chlorine gas is passed over tellurium at a high temperature, the dichloride formed passes over as a violet-coloured vapour, which condenses at first into a black liquid, and eventually into a solid of the samse colour. It is decomposed by the action of water into metallic tellurium, which is precipitated, and chloride of tellutitus remains in solution.
It is comprised of

One equivalent of chlorine
Two equivalents of telluriun
Equivalent
:---:
6.

The Chloride of Tellurium is obtained, as above stated, by the aetion of water on the dichloride, but is better proeured by passing a larger quantity of chlorine over tellurium at a lower temperature than in forming the dielhloride. It is yolatile, and any excess of chlorine being seprarated by agitation with mercury and rectification, a white erystalline solid is obtained, which is composed of

> One equivalent of chlorine

36
One equivalent of telluriun
32
Equivalent
68
Sulphur and Tellurium combine in two proportions: the sulphuret is obtained when hydrosulplanric acid gas is passed through a solution of ehlorite of tellurium, tellurous acid, or of a soluble tellurite. It is of a dark brown colour, and is soluble in a solution of potasls. It is formed of One equivalent of sulphur
One equivalent of tellurium

Equivalent

48
Persulphuret of Trllurium is obtained by mixing a solution of persulphuret of potassium with one of a salt of tellurie acid. It is of a deep yellow colour; but it is a very unstable compound, for it speedily becomes black, and is converted into protosulphuret.

TELOPHO'NUS, Mr. Swainson's naine for a gemus of Laniance [Shrikes, vol. xxi., p. 416], whieh he thus cha-raeterises:-

Bill more lengthened (than in Lanius), slightly hooked; the tooth smaller. Wings very short and rounded. Tail lengthened, graduated. Lateral toes free; the inuer very slightly shorter than the outer.
Example, Telophonus lcucogrammicus.

Bill of Tclophonus leueogrammicus. (Sw., Classification (Birds, val. ii.) TELUGU or TELLNGA IANGUAGE. [II×DUsTA: p. 2a29.]

TEMANZA, TOMMASO, an architect who is better known by his writings relative to lus art than by the buildings which ho execited, was the son of an arelitect, and] the nepliew of another architect (Giovamin Scalfarotti), aud was born at Venice in 1705. Having finished his mathematieal studies in the selool of ladre Niceolo Comini and the eminent Marchese Poleni, he was appointedalthough then only twenty-two-one of the assistants in the Commission of Engineers, and in 1742 beeame the ehief of that body on the resiguation of Bernardino Zendrini, a few years before the latter's death (1747). His share in the hydraulic commission caused him for awhile to be involsed in literary disputes, he having offended the people of Padua by a publication entitled 'Dell antico Corso de' Fiumi in Pudova e suoi Contorni ;' wherein he asserts that their ancestors had attempted to turn the
course of the Brenta. As an architeet he had not many opportunities afforded him, for the period of Venctian grandeur and enterprise in art had passed away. He was however employed to exeeute one of the very feew public edifices of any kind erected at Venice in the last century, namely the ehurch of La Maddelena, a structure of the Ionic order, and which, though it may be said to be comparatively pure, is also somewhat feeble and insipid in design. His other prineipal architectural works are-the façade of Santa Margherita, at Padua; the Rotunda at Piazzolo, built at the expense of the Contarini family; and the bridqe over the Brenta at Dolo. It is as a writer that Temanza is chiefly known, more especially by his - Vite de' più Eccellenti Arehitettie Scultori Veneziani,' 4 to., Ven., 17.8; which is one of the most copious as well as best-written works of the kind, not on account of the number of lives it contains, it being in that respect scanty, but for the uuusual extent at which they are given. In faet several of them, Palladio, Sansorino, \&c., had previously been published separately. Besides this literary production-an important contribution to architectural biography,-he published the :Antiehiti di Rininin,' folio, 1741 ', and left bchind him another work, 'Degli Arahi e delle Volte, e delle Regole gencrali dell' Arehitettura Civile,' which was first edited in 1811. There are likewise a great many letters by him on architectural topies in Ticozzi's edition of Bottari's ' Raccolta di Lettere sulla l'ittura,' \&se.
Temanza died at Veniee, June 14, 1789, and was buried in his own church of La Maddelena. There is a porrait of him in Gamba's 'Gallcria d'Uomini Illustri,' to which work, and to Comolli's ' Bibliografia Storia Critica dell' Architettura Civile,' we are indebted for some of the partieulars here given.
TEME. [Shropshire.]
TEMESWAR, THE BANAT OF, is onc of the finest and most remarkable portions of Hungary, comprehending the counties of Torontal, Temes, and Krassova, and the German and Wallacho-illyrian districts. These two districts are sometimes not considered as part of the Banat. The area of the whole is 11,310 square niilcs, and the population is said to be above a milliout ; but there is no part of the Austrian empire the population of which it is so difficult to aseertain as that of Hungary. It is bounded on the north by the Maros, separating it from the counties of Arad, Csongrad, and Cianad; on the west it is separated by the river Theiss from the eounties of Csongrad and Bacs, and the Czaisk district, and by the Danube from Slavonia; on the south by the Danube from Servia; and on the east by the Cserna, and the offsets of the Carpathians, extending from Transylvania, fronı Little Wallachia, and Transylvania. The Magyars comprehended it in the military district of Kant. It was a frontier province against the Wallachians, the Bulgarians, and the Turks. The latter however got possession of it in 15532 , and retained it till 1716; when, in eonsequenec of the vietories of Prince Fugene, it was restored to Austria by the treaty of Passarowitz in 1718 . Under the disorderly rule of the Turks, the country was overrun with banditti, so that many parts were nearly uninhabited and desert. Field-Marshal Count Francis Mercy d'Argenteau, who was appointed governor, and died in 1731, and Baron Engelsholen, his suecessor, exerted themselves to inprove it by inviting numerous colonists from Germany, Italy, and Franee, building towns and villages, establishing manufactories, and erecting forts. But the Turkish war being renewed in 1737, many of these establishnents werc ruined, and a great number of the foreign colonists quitted the country. When peace was restored, numbers of Servians, Rascians, Macedonians, and IBulgarians, , aine from the Turkish provinces, bringing their property with them. In 1752 the government was ehanged froni the military to the civil form, and, with the exception of a temporary check during the Seven Years' war, the progress of improvement in this province has been constant.
The 13anat is remarkable for the great varieties of climate: in many parts the snow on the high mountains and in the deep ravines never melts, and in other parts It falls only in severe winters. A third part of the country is mountainous, and almost everywhere well watered. The ground whiel has been gained hy draining the morasses on the banks of the Thieis and the Danuble, and in the more elevated tracts by clearing the old forests, is ex-
tremely fruitul. In the middle of the military frontier districts lies the most extensive sandy tract in the whole Anstrian empire, in whieh there are however many oases. The prineipal points of the high mountains are Sarko, Gugu, Muraru, and Godjan ; on the lower mountains there are vast forests and fine pastures. The prineipal rivers are the Danube, Theiss, Maros, Körös, Neray, Temes, and Bega. . In 1748 and the following years canals were made in order to drain the marshes :, the prineipal of these is the Bega canal, 50 miles in length, which traverses the whole of the counties of Temes and Torental, and is conducted into the Theiss. By the draining of the marshes, traets which in the latter half of the last century were stagnant pools, the souree of pestilential exhalations, are now covered with the finest. coru-fields, or, where they lave been imperfectly reelaimed, with crops of riee, and the salubrity of the country has been greatly improved. The protection which the mountains give against the east and north-east winds, and the mitigation which the north winds experience in traversing the great plain, raise the temperature to that of a southern country, and the rieh soil yields abundant crops. The wheat and maize of the Banat are of the finest quality. Rice is extensively cultivated. Suecessful attempts have been made to cultivate cotton and silk, and in some parts a sweet wine is produced. There is no part of Hungary in whiel colonization has been attended with such favourable results by the scttlemeut of industrious foreigners as the Banat, where there is still so much uncultivated land, and where, with the exceptiou of sone marshy tracts, the elimate is very healthy. Mineral springs are frequent, but little usc is made of then. Only those of Mehadia, which were known to the Romans by the name of Therme Herculis, are still mueh resorted to, especially by the Wallachian and Moldavian nobles. About this place, as well as in other parts of the Banat, Roman antiquities arc frequently found. The population of the Banat, which is continually inereasing by the aecession of foreign settlers, consists chiefly of Wallachians, Raseians, Bulgarians, gypsies, Germans, Jews, French, Italians, and other forei浆 settlers: among whom, in the mountainous distriets. the Wallachian language is prevalent; in the towns and colonised plains, the German; and in the districts of the military frontier, the Illyrian. The natural productions are horses, horned cattle, swine, wheat, maize, rice, flax, hemp, tobacco, fruit, wine, woad, madder, saffron, silk, timber, honey: game of all kinds and fish abound. The minerals are gold, silver, eopper, zinc, and some iron. The gold is obtained by the gypsies, by washing the sand of the rivers. Between 4000 and 5000 workmen, chiefly Wallachians, are employed in the mines. The chief occupations of the inhabitants are agriculture and the breeding of cattle. There are 110 manufaetures. The county of Temesswar, as has been stated, is one of the three included in the Banat, and nceds no separate description. A cirele of the county bears the same name.
TEMIESIVAR, the eapital of the Banat and of the county, is a royal free city, situated in $45^{\circ} 45^{\prime} \mathrm{N}$. lat. and $21^{\circ} 10^{\prime} \mathrm{E}$. long., at the confluence of the Temcs and the Bega, and on the Bega canal, in a part of the country which is rendered unhealthy by the stagnant waters in the vicinity. It is one of the strongest fortresses and one of the handsomest and most regular towns in the wholc Austrian empire. While the town was in the possession of the Turks it consisted of. only a few houses and an old castle, wlich is still habitable. When Prince Eugenc made himself master of it in 1718, the strong fortifications were erected as a bulwark against the Turks, and the town was built in the modern style. The inner town, or fortress, is surrounded with triple walls and moats, and consists of large uniform stone houscs, in straight, broad, well-paved streets. There are three gates, the Vienna, Peterwardien, and Transylvauia gates, wluch are defended by strong blockhouses. The casemates arc eapable of containing 3000 men . Temeswar is the seat of the Roman Catholic bislop of Csanad, with his clapter and seminary, and of the schismatic Greek bishop of Temeswar: herc too are the court of justiee for the three countics, the offices of the governor of the fortress and of the commander of the Banat military. fronticr, a military academy, a great arsenal, and many othcr offices connected with the military and civil administration. The most remarkable buildings are -1 , the old strong castle of John Hunyady, built of freestone, the
only relic of the antient Tenies; 2, the churches, viz. the fine Gothic eathedral of St. Feorge, belonging to the bishouric of Csanal, the enthedral of the schismatic Grecks, the Roman Catholic parish church, the churches of the Piarists, and of the seminary; 3, the elegant residence of the bishop of Csanad, the remarkibly fine building in which the chapter resides, the house of the commander of the military fronticr on the parade, the large and handsome county hall in the great square, the barracks, the military and eivil hospitals, the synagogue, the Rascian town-hall which contains the theatre and the aserably-rooms. Some of the churches were formerly Turkish mosques.
Terueswar has three suburbs, one before each gate, at the distance of 300 paces, with fine avenues of trees leading to them. Before the Viemna gate is the suburb Michala, inhabited by Wallachians, who have their own churehes, and whose occupations are agriculture and the breeding of eattle. Before the l'eterwardien gate is Josephstadt, an extremely pleasant suburb, with very broad straight strects, and frees planted in front of the houscs. Many wealthy families reside here in the summer to enjoy the cointry, and formerly to avoid the fevers that usually prevailed in the town, but which have greatly abated since the sumounding marshes liave been drained. The inhabitants of this suburb are Germans. The fine l3cga canal passes through the middle of this suburb, and communicates with the Danube. Before the Transylvania gate lies the manufacturing suburb (Fubriken Vorstadt), so called from the great manufactories that were formerly established here, but most of which were broken upin 1738, when a Turkish war was apprehendel; the suburl, however retains its name. The Turkish merchants have their warchouses here. In this subburb there is a curious hydraulic engine, by means of whieh water is conveyed in iron pipes underground into the fortress: the inhabitants are chicfly Raseians. There is a considerable trade at Temeswar in the productions of the country, and some manufactures of eloth, paper, iron-wire, and silk. The pppulation of the fortress is about 3000 ; and that of the whole town, including the suburhs, 13,000 , besides the garrison.
(Brockhaus, Conversations Lexicon; Jenny, Mandhuch füReisende in dem Oesterreichischen Kaisersiuate ; Thiele. Das Königreich Ungarn; Die Oesterreichische National Encyelnpüdie; Rohrer, Statistik des Oesterreichischen Kaisorthums; Neueste Beschreibung von Ungarn, థic.; Joseph von Mammer, Geschichte des Osmanischen Reches; Hisloriseh-Stutislischer. Unriss von der Desterreichischen Monarchie. Theso two last works are anonymons. Hassel ; Stein; Blumenbach; Hörsehelmann ; and Cannabich.)
TE'MIA, Le Vaillant's name for a genus of Ivsessores, or perching birds, which, Cuvier observes, M. Vicillot has changed into Crypsirina, and Dr. Morsfield into Phrerotrix, whilst M. Temminek arranges them under Gluucopis.
Cuvier remarks, that these birds have the carriage and tail of the magpies, an elevated bill with the upper mandible convex, and the base furnished with velvety feathers, nearly as in the Birds or Paradish. The specics most antiently known is, he observes, the Corvus rarians of Latham, whieh is of a bronzed green colour, and found in India and Afriea. Cuvier places the genus between Caryocatactes [Nutcrackrr] and Glaucopis.

Mr. Swainson arranges Crypsirina in the subfamily Gluucopine, or Wattle-Crows, in his Classificution of Birds; but in Faunu Boreali Americara he had made Grypsiritue a subfamily. In the Classification, the genus is situated at the head of the Glauropinc, and is immedintely succeeded by Ptilostomus, Sw.
Mr. Swainson thus characterises Crypsirinu:-
Bill shorter than the heat, much compressed; the culmen considerably arched, ansl curved from the hase. Nostrils small, basal, concealed by incumbent feathers, which are either soft or setaceons. Wings short, nuch rounded; the primaries hardly longer than the secondaries. Tuil feathers brosd and obtuse. Feet moderate, arboreal. The raidde toe and claw short, but as long has the tasius;

lateral toes unequal; hind toe and clnws shoster than the tamus. ladia.'
Crypserine ragaboult (vagabunula) and Temia are among the species given as examples.

The first of theve is the Piea ragabuadia of Gould (Century of Birds from the Ilimaling't Afoutums), und thus deseribed by him:-

- The specifie detfomination of this bind is bentowed upon it in conserpuence of its peculiar halhit of life. The Jica rogabunda, or Wiandering lie, unlike the iypical pies, who reanuin constautly stationiry in one neighburhood, seeking for their food in its vienity, wnalers trom place to place, trivelliny over a large space of ground, and not evincing a partiality for any particular situation. The shorter tarsus of this bird, indeed, and its more elongated tail, are indicative of trees being its must usinal resort, where fruits and berries ofler a supply of 'ls natural food; whereas in the more typical Picee the longer tarsus and more clongated beak fit them for digging in the ground, in which they almost solely seck for subsistence. This species is more widely distributed than my of its congeners, being found in considerable abundanee all over India.
- The had, neck, and crest are of a smoke colour or a blackish-grey; the back light cinnamon; the centre of the wings grey; the quills black; tail grey; cach feather being tipped laryely with black ; the under surface is paletawny; the beak and farsi black. Length 163 inches; beak $1 \frac{1}{4}$; tarsi $1 \frac{1}{6}$; tail 10 inches.

Dr. Horsield, who gives Corvis parians as the syonym of his Phrenotrix Temia (the Chelitul or Rentenl of the Jasaneso), states that although not a rare bird in Java, his Phrenotrix is by no means familiar, and never approaches the sillages and halitations like many others. "It can only he observed near solitary hamlets situsted in tracts recently cleared for cultivation, where its food is abundantly supplied by the insects contained in the rich mould, and by the wild fruit-trees about the skirts. In consequence of the shortness of the wings, its motions are slow : it is chiefly seen about noon sailing heavily through the air in a right line towards the trees surrounding the openings in the forest. The strength of the bill and of the elaiss shows its adaptation to feed both on fruits and insects:' (Zoological Researcher in. Jawn.)

TEMNU'nUS. [TROGON1D.t.]
TEMPE ($\mathrm{T} \frac{1}{\mu} \mu \eta$, called also Thessala or Thessalica or Phthiotica 'Tempe) was the antient name of a beattiful valley in Thessaly, lying between Mount Olympus on the north and Mount Osca on the south, near the mouth of the river Pencus, which runs through it. It is a narrow glen, not quite fire miles long, openirg on the east into a wide plain which extends to the Thermaic gulf. It forms the only break in the great chain of mountains by which Thessaly is enclosed on all sides. Antient traditions asserted that the great plain of Thessaly was at ouc time covered with water, which was at length discharged by the vale of Tempe, which was opened by a stroke of Neptune's trident, or (accortling to another legend) by the strength of Hercules. The appearance of the country lias led modern travellers to accept the mythical story as meaning that the pass was opened at some period by a great convulsion of nature. The rocks which cuclose it rise in preclpices from the bed of the Peneus, and at the narrowest point these prccipices approach so near each other that the road is cut in the face of them.

The Greeks reverenced Tempe as the place from whicls Apollo transplanted to Delphi lis sacred laurel, and admired it as the most beautiful spot in their country. The must vivid description of it is that of Aclian (Vur. Iflst., iii. l). See also Ovid, Metamorph., i. B69, \&c. ; Jivius, xliv. 6; Plin., IIist. Nut., iv. 8 ; Cramcr's Greece, i., p. 379 ; the Tours of Clarke, Holland, Dodwell, and Gell ; and Thirlwall's IIist. of Greece, i., p. 5.
TEMPERAMENT (fсmperamputum, xpäбus) is a vague and unsatisfactory term, but still it is one whiel,, as Dr. Majo observes (I'athology of the IFuman Mint, London, $12 \mathrm{mo}$. 1838, Append., p. 162), "las for many centuries been found a convenient generalization; and, unless we propose to sacrifice knowledge at the altar of logic, we inust still be contented to use this or some other equally indefinitc term.' 'Ile word means literally a tempering, or mixing together, and may be defined to be a peculiar state of the system common to several individuals, which results from the various proportions in which the elementary parts of the human body are mixed up logether, and which gives rise to a tendency to certain phenomena. There is besides in eacll individual a further peculiarity of coinbination, which serves to distinguish his temperament from that of any other person, to whon however he may in other respects bear a great resemblance. This individual temperament is called an idiosyncrasy (i.e. a peculiar mixing together), and, as the two words are sometimes confounded, it may be useful to have pointed out the distinction between them. $\Lambda l l$ the different systems of organs in the human frame are accurately adjusted to each other, so as to produce one hiarmonious whole. If the disproportion be too great, discase ensucs; but there are inany gradations, compatible with health, where yet this disproportion is very observable. The preduninance of any particular system of organs modifies the whole economy, impresses striking differences on the results of the organization, and fas perliaps almost is great an influence on the moral and intellectual as ou the physical ficulties. This predominance establisines the temperament: it is the cause of it, and constitutes its essence. The anticnts paid considcrable attention to the
subject of temperaments, and pointed out various peculiarities in the constitution and actions of the human body; which have been seen so far to coincide with general observation, that their nomenclature has continued in very, general use even to the present day, although the hypothesis on which it was founded is universally disearded. They described four temperaments corresponding to the four qualities of Hippocrates-hot, cold, moist, and dry? It was supposed that there were four corresponding primary components of the human body, namely, blood (alua), phlegm or pituita ($\phi \lambda \varepsilon \dot{\varepsilon} \gamma \mu \dot{\alpha})$, and the two kinds of bile ($a i$ סv́o xodai), yellow bile ($\xi \alpha \nu \theta \dot{\eta}$ xod $\dot{\eta}$), and black bile or atrabilis ($\mu^{\dot{k}} \lambda a, v a \quad \chi 0 \lambda \eta$) ; and the preponderance of one or other of thesc components in different persons prodnced the different temperaments. These four primary principles of living bodies were supposed to be compounded of the simple elements or qualities of nature thus: lot and moist produce blood; cold and moist, phlegm or pituita; hot and dry, yellow bile; and cold and dry, black bile. Bodies in which blood superabounds are of the sanguine temperament ; if phlegm is in cxcess, the phlegmatic temperament is developed; if yellow bile, the choleric; and if black bile, the melaneholic or atrabilious temperament: The following is the description of the different temperaments given by Paulus Aegineta (De Re Medica, líb. i.; cap. 61), in Mr. Adam's Translation (London, 1834, 8vo.):-- Those bodies which are of a lhotter temperament than the moderate will have their teeth earlier than usual, and will grow in like manner. They feel warmer to the touch, and have less fat; they are of a ruddy colour, and have their hair black and moderately thick, and their veins are large. But if such a one be also fat and brawny, and have large reins, he is fat from habit, and not from nature! The following are the symptoms of a cold temperament: sucls bodies appear cold to the touch, are without hair, and are fat; their complexion, like their lair, being tawny. But when the coldness is grcat, they are pale, leadencoloured, and have small veins; and if lean, this does not proceed from nature, but habit. "The dry is harder and more slender than the temperate, the liardness indeed being inscparable from the dry temperament ; but lean ness not only follows the connate temperaments, but also those which are acquired by long labit. It is peculinr to the humid temperament that the body is oppressed by things of a moist nature. The warm and dry temperament, in other words, the choleric, is extrenmely shaggy, having the hair of the litad in carly age of rapid growth, black, and thick; lut in after-life baldness follows. The veins are large, as are likervise the arteries, which beat strongly. The whole body is firm, well articulated, muscular, and without obesity; and the skin hard and dark. Whets the temperament is cold and humid, or phlegmatic, the chest is narrow, and, like the rest of the body, without hairs, the skin is sott and white, and its hairs somewhat tawny, especially in youtls; and such persons do not get bald: when they grow old: they are timid, spiritless, and inacitive; their veins are invisible; they are gross and fat; their inuscles and legs are feeble, and their joints ill: formed; and they are bandy-legged. But should the humidity and coldness increase, the colour of their skin and hair becomes tawny, or, if they increase still more, yale. The hot and humid, or sanguine, temperament is solter and more fleshy than the proper, and, when it increases much, is subject to putrid disorders; but if it be only a fittle more humid and much hotter than the moderate, ${ }^{3}$ the bodies of such persons are only a little more soft and fleshy than the moderate, but they are much more lairy, and hotter to the touch. But it the cold and dry grow' equally together, and form the melancholic temperament, sucl persons have naturally their bodies hard, slender, and white, witl fine muscles, small joints, and little hair; and they are cold to the touch. Although slender, fat is mixed with their flesh. The colour of their hair is correspondent to the degrec of constitutional coldness. As to disposition of mind, they are spiritless, timid, and desponding. To say all in a word, with regard to the compound temperaments, they are always to be distinguished by the marks of the prevailing quality.'

The due admixture of these different qualities was supposed to constitute the best form ot temperament or constitution (Evxpaoia), of which the following is Paulus Aegineta's description (Ibid., i..60):- 'That man is in the best temperament of body when it is in a medium between all extremes, of leanness and obesity, of softness and hard-
ness of heal and cold, of moisture and drymess; and, in a nord, who has all the natural and vital energies in a laultless state. His hair also should be neither thiek nor thin, neither black nor white. When a boy, his locks should be rather tawny than black, but when an adult, the contrarywise.
Further information respeeting the opinions of the antients on the suljeet of the temperaments may be found in the treatise of Hippocrates, De Nutura llominis, tom, i., ed. Kühn; in Cialen's works, De Likementis ex llippocrate, tom. i., De Temperamentis, tom, i., De Optima Corporis nastri Consfitutione, tom. ix., De Sanitate Thendh, lib. r., tom. vi., and his Ars Medica, tom. i.; Oribasius, Synopsis, lil. v., eap. 43, sq.; Aëtius, Libri Medicinales, lib. iv., eap. $\mathbf{3}$, sq. . Maly Abbas, Theor., lib. i.; Averroes, Collig., lih. vi.; Alsaharavius, Theor., traet. vi.; and Avieenna, Cantica.
Afer the revival of letters, this fourfold division was adopted in its most essential parts ly all the most eminent physiologists. Stahl ingeniously adapted it to the modem? doctrines of the humoral pathology; and even Boerhave. although he inereased the number of the tempernments to eight, and relinquished the erroneous opinions of Hippoerates and Galen respecting the constitution of the blood, yet lie still derived the characters of his temperaments from the principles of the humoral pathology, and supposed then to be formed merely by different combinations of the four cardinal qualities. SIany late physiologists have been inclined to doubt whether the external characters assoeinted with the four temperanents are real and eonstant signs of diversity in bodily strueture, and enable us $t 0$ distinguish the prineipal varieties of eonstitution whieh exist. Several attempts have aecordingly been made to define in a more satisfactory manner the peeuliarities of organization and the resulting varieties of predisposition, whieh are chiefly interesting with regard to pathology. Hoffimann and Cullen have indeed retained the old division, supposing that the theory of the antients as to the peculiarities of constitution was founded originally upon facts, though subsequently combined with an erroneous theory. Haller seems to have been the first who deeidedly opposed the antient doetrine, not only by showing that there was no foundation for the varicties of the temperaments in the peeuliar nature of the fluids, but by substituting in their place the vital actions of the system. Darwin proceeded nipon the prineiple of Haller; and, in eonformity with the lypothesis whieh he adopted of reducing these actions to the four heads of irritation, sensation, volition, and association, he formed four temperaments in which these qualities were supposed respectively to prevail. The only attempt however to improve upon the Hippocratic theory and division which has been attended with any degree of suceess is that by Dr. Gregory, who to the four temperaments of the antients added if fith, whieh he ealled the nervous, and bestowed upon three of the others the new appellations of the tonic, the relaxed, and muscular temperaments. Dr. Prichard however restricts the number to four, and designates them by their original names; remnarking that only four strongly marked diversities of external eharaeter present theniselves to observation; that the nervous temperament is not so distinguished; and that therefore, as this is an essential part of the original seheuse for the distribution of temperaments, the improvement proposed by Dr. Gregory is lame and defective. These four varieties then of external clatracter really indieate, more or less constantly, well marked differenees of constitution, and likewise of morlid predisposition. There is no doubt that persons having the complexion and other signs of the sanguine temperament are more liable to eertain elasses of disorders than the phlegmatic or melancholie, while the latter have their own peeuliar tendeneies. The sanguine, having a fully; lleveloped vaseular strueture, and therefore a vigorous cireulation of blood, a warm skin, and a high degree of organic sensibility, are more liable to sudden and powerful impressions from external agents than those of more languid vital functions. They are subjeet in a greater degree to severe inflammatory disorders, and disorders of this elass are in them more aeute: they bear however, better than persons of more languid habit, evacuations of blood and the other measures which are found to be the proper remedies for these diseases. The greater fulness of bloodvessels, of those at least which are near the surface, the greater warmth of the skin, and the florid complexion of
the anguine, afford reason to believe that the desicnation given to this teniperament is not wholly unfounded. We likewise find that sanguine persons are more suljeet to lentorrhages (to those at least which are termed nctice) as arising from exeess in the foree of circulation through the arteries. Individuals of the phlegmatie temperament are predisposed to disorders arising from, or conneeted with, a lowd degree of vital energy. Iocal congestions of blood arising independenly of general exeitement come under this category. Glandular and tubereular diseases take place in bodies weak in the stmetures conneeted with the vital funetions, and are perhaps more frequent in the phlegmatie than in other temperaments. Intlammatory complaints, when they attack the phlegmatie, are less nemie and more disposed to terninate in chronic diseases than are those of the sangnine constitution, when at least the latter have been treated ly appropriate remedies. The relations of the choleric to the melancholic temperament are similar to the relations which the phlegnatie bears to the sanguine; the former displays greater vigour. both in health and disease, than the latter. The choleric and sansuine, when affected by diseases of the nervous systen, have complaints of greater violence and acuteness; mania or raving madness belongs particularly (aceording to the observations of M. Esquirol and many others) to these constitutions. The melancholic temperament is nost prone to monomania, attended with depression and melaneloly illusions. Hypoehondriasis mueh wore frequently affects the phlegmatie and melanelolie, though it is oceasionally observed in persons who lave some of the external characters of the sanguine lemperament. The most severe cases of liypochondriasis, adds Dr. Priehard, and those which approached most nearly to the eharaeter of inelaneholia, have certainly oecurred in individuals of a dark leaden complexion, fixed and sullen aspect, and lank coal-black lair.
But it is not merely on the body, both in its healthy and morbid state, that the temperament exerts an inportant influence; the relation of the different forms of plysical organization to the intellectual, and even to the moral, faculties is equally marked and apparent. The relation of mental peculiaritics to the structure of the body has been observed by medieal authors of every age, and it has been stated and expinined in different ways. Hippoerates said that 'the soul is the same in all men, but that the body is different in different individuals. The soul is ever like itself both in greater and in less, for it underyoes ehange neither by nature nor by necessity; but the body is subjeet to continual alterations. The affections of the mind depend upon the body; there are many states of the latter which sharpen, and many which obtund it.' (IFipp., De Fictûs Ratione, lib. i.,'s 21, tom, i., p. Gijo.) Demoeritus, in a letter said to lave been addressed by him to Hippoerates, asserted that 'the intelligence of the mind depends greatly on the body, the diseases of whieh obseure the mental theulties, and draw the latter into consent.: (lipp., Lipist., tom. iii., 11. 82t.) Among the writings of Galen there is a freatise entitled Quod Animi Mores Corporis Temperamentu sequanfur (fom. iv., ed. Kühn), written expressly 10 establi-h the conncetion between the passions and desires of the mind and the temperaments, wherein he has handled the subject very ingeniously and has delivered many profound views of the animal ceonomy. But it is in the works of modern writers that we find this doetrine inost fully developed, and made a foundation for a division of human characters. Aecording to Iotrmanm, the cholerie temperament by peenliarity of organization disposes men to preeipitate and impetuous eonduct, to anger, audaeity, impatience, temerity, quarrels, sedition, and the like. On the other hand the slow progress of the blood through the vessels of the meninges, Which is the result of its erassitude in melaneholies, renders suel persons timid, slow in business, anxious, suspicious, with diffienlty of forming or uttering opinions. The sanguine ly a happier temperament are rendered cheerful and free from carc. A too abundant serosity eauses the phlegmatic to he lazy, sommolent, and torpid. Certain temperaments qualify men for particular situations in life. Melancholie men, says Hoffmann. sloould be the king's ministers and eounsellors; cholerie persons should be appointed generals, foreign ambnssadors, orators, and conductors of all business requiring energy and di-patell; and it was with some such inpression concerning the peculing qualities of this temperament that Napo'eon. after em.
plaining of its incouvenient effects in deranging his temper, is said by M. Ségur to have added, 'Cependant sans rette maudite bile on ne gaigne pas de' grandes 'batailles.' Sanguine men, continues the writer above mentioned, are fit for courtiers; but individuals who have the misfortune to be of the phlegmatic temperament, being quite incompetent to any elevated condition, must be made common soldiers or labourers, and condemned to the lowest employments. (De Temperamento Fundamento Morborum, \$10, quoted by Dr. Prichard.) ; It is extromely improbable that an opinion should have held its ground for so many ages among men of observation, especially on a subject requiring no abstruse research, without some foundation at least in fact. The doctrine of temperaments is truc to a certain extent, and has ever been confirmed by an appeal to experience. States of the mind are' so connected with affections of the body, that it is impossible for any person who considers all the physiologieal facts that present themselves in connection with this subject to doubt that with each temperament particular mental qualities must be associated, although it is manifest that many writers have indulged their fancy on this subject, and have gone into more full and minute details than experience will establish. The same may be said of phrenology: with which science the doctrine of the temperaments is in this point of view closely connected, as modilying in some degree the intellectual and moral qualities depending on the organization of the brain. This very interesting subject is discussed at some lcugth in Dr. Prichard's article on 'Temperament' in the Cyclopcediu of Practical Mredicine, from which most of the preceding observations are taken. See also Bostock, Richerand, and Muiller's norks on Physiology, and other writers there quoted.
उEMPERAMENT. [TUYLNG.]
temperature. [Atmosphere; Climate; Isothermal Javes.]
TEMPERATURE OF THE EARTH. [GEOLOGY; p. 133.]

TEMPERATURE. It is intended under this head to notice the law of the variations of temperature on the earth so far only as to indicate its analogy with that of the rariations of terrestrial magnetism; the formulae expressing the nean temperatures at different places leing, as yet, very far from affording satisfactory results, and observations being too few to serve as a basis for correct theory. In Chimate there are given some gencral observations concerning the distribution of heat at the surface of the carth, and under Isothersal. Lines there will be found the estimated values of the mean temperatures at the equator and at the geographical north pole. With respect to the former, it may be said to have been tolerably well determined, and to be nearly uniform quite round the world; but the mean temperature at the pole can only be surmised from the uncertain evidence afforded by an application of the formula of temperature which has been found to hold good in the north of Europe, and a correction founded on an estimated amount of the frigorific influence of ice: even the determination thus obtained is rendered still further uncertain by the fact that the decrease of temperature in proceeding from the equator northwards is ditferent on meridians which differ considerably in longitude.
Before this difference of temperature on the same parallel of latitude in the old and new continents was known or regarded, a simple formula was thought sufficient to express the temperature at any parallel of terrestrial latitude. The celebrated Tobias Mayer, from such mean temperatures as had in lis time been observed, found that the temperature t (on Falrenheit's scale) at any place might be represented by $T-52^{\circ} \sin .^{2} \mathrm{~L}$, where T is the mean temperature at the equator, and L the geographical latitude of the place ; and in 1819 M . Daubuisson ('Traite de Gréognosic ') proposed the more accurate formula $t=27^{\circ} \cos { }^{2}$ L (rentigrade scale); which being adapted to Fahrenheit's seale, considering the mean temperature at the equator to be 81°, becomes $32^{\circ}+49^{\circ}$ cos..1 I. This formula has been found to serve for temperatures in Europe as far north as the latitude of 60°; but beyond that parallel it is useless, and it supposes the tomperature at the geographical pole to be 32°, which is much too ligh.

From above 4040 observations which were made by Sir Fdward Parry, it is found that in Winter Harbour, in 74° $45^{\prime} \mathrm{N}$. lat., and in long. 250° ($110^{\circ} \mathrm{W}$. long.), the mean 1. C., No. 1510°
temperature is as low as 1.33°, and from above 600 observations at Spitzbergen ($78^{\circ} \mathrm{N}$. lat.) Mr. Scoresiy found the mean temperature to be 16.99° : a mean temperature of 17° is also found on the American continent, in 65° N. lat.; and hence it may be inferred that, between the parallels of 65° and 78°, and near the meridian or Winter Island, there exists a pole of ninimum temperature. ' The mean temperatures of places in the eastern parts of Asia have not been well ascertained; but since at North Cape in Lapland the mean temperature is that of freezing water, and in Siberia, as low as the parallcl of $60^{\circ} \mathrm{N}$. lat., the surface of the ground is constantly frozen, it is evident that the isothermal line of 32° must form a curve about some point as a focus in the northern part of the Asiatic continent : hence, for determining the mean temperature of any place, no formula which does not involve the position of the place with respect to the two toci of coldness can be expected to satisfy the phenomena.
This circumstance has suggested to Sir David Brewster the formula $T=(t-\tau) \sin .^{n} \delta \sin n^{n} \delta^{\prime}+\tau$ for the mean temperature at any place: T being that temperature, t the mean temperature at the equator, othe temperature at each of the foci of coldness, and δ, δ, the distances in degrces between the given place and those foci. A corresponding expression will serve to determine the number of vibrations which would be perlormed by a magnetized needle in a given time if t and τ be made to represent the numbers performed, in an equal time, at the magnetic equator and at either of the poles of magnetic intensity: the exponent n, both for temperature and in!ensity, is to be determined by means of observations, and Brewster considers that the fraction \& may be the value of it in the formula for temperature.
The similarity of character which is presented by the isothermal lines and those of magnctic dip and intensity, with respect to two polar points in one hemisplere of the earih, and the fact that the poles of tempcrature and magnetism lic nearly in the sanie parts of the world, cannot fail to suggest the idea that there may be a connection between the temperature and magnetism of the earth. It is generally believed, also, that the temperature of the western parts of Europe is now highcr than it was nearly two thousand years since ; and it lias, hence, been inferred that the poles of minimum temperature perform revolutions about the geographical pole of the earth, so that the terrestrial meridian on which the greatest cold prevails gradually changes its position. If this opinion be well founded, the circumstance will afford another argument in favour of the hypothesis which assigns to the temperature and magnetism of the earth an intimate connection with each other, by its correspondence to those motions of the poles of magnetic dip which have been adduced from observations by M. Hansteen. [Terrestrial Magnetismi]
As the mean temperature at the surface of the earth is an clement of great importance in the present state of physical science, it has been strongly recommended to travellers and persons making distant voyages, if they are to remain only a few days at any place, that they should, on arriving, lose no time in burying in the earth, to the depth of from three to twelve feet, according to the power of penctrating into the soil, bottles filled with water, or with spirits, if there should be any danger of water freezing. These bottles should be packed in boxes stuffed with woollen cloths, pounded charcoal, or any other nonconducting material, and should be allowed to remain underground till the time of departure, in order that they may acquire, as accurately as possible, the temperature of the ground. On bcing taken up, the temperature of tho liquid should be ascertained by a good thermometer inserted in the bottle.
TEMPERATURE OF PLANTS. The living processes by which heat is so evidently developed in animals go on, though much less actively, in plants, and give to them a peculiar temperature, independent of the air in which they live. The periods at which an inerease in the temperature of plants has been most evidently observed are those of germination, flowering, and impregnation; but it is only because those chemical changes which produce heat are more active during the performance of those functions that the heat becomes more evident. The great cause of the development of heat in animals is the union or combustion of carbon with oxygen, which is constantly taking plaee during the process of nutrition in the various tisstues of
the auimal body. The same thing occurs during the general groutio of the jlunt: a cestaing guantity of earbonaccous muter is contained in the shy of the phant, which, coming in) contact with oxygen in the tissues of the plant, unites with it, forms carbonice acid, and heat is developed.

That a derelopment of heat took place auring the growth of plants was proved by Humter, who placed a thermoncter within the stems of several trees, and found that their teniperature was always above that of the fitmosplere. These experiments were followed np by Salome, Ifermstadt, and others, who confirmed the experments of Tunter. De Candolle however supposed that this increase of temperature depended on the saj! which was pumped 11 p from the soil ; but this theory will not explain the phenomena of heat observed during the growth of plants, nor is it at all applicable to its occurrence during gernination, which is evidently an analogous process.

Sclrubler, Neuffer, Nau, and Goeppert have conducted a variety of experiments on the temperature of plants. They found that in winter the parts that were not frozen had a higher temperature than the surrounding air: this was much more remarkably the case in spring; but in sumner the temperature of the plant was mostly below that of the surrounding air. These experinents are in accordanee with what we know to be the law of the devejopment of heat in more highly orgranized texfures. In witer the vital processes of plants ure slow or almost suspended; hence the small incerase of temperature at that seasoll. In the spring the process of growth is most rapid, and there is the greatest conversion of nutritive matter into the structure of the plant, and it is at this season of the year that the temperature of the plant is highest above the surrounding air; but in summer the heat of the air becomes greater, and the temperature of the plant $\mathrm{i}_{\mathrm{s}} \mathrm{kept}$ under that of the atmoxphere lyy the extmation which is constantly going on from all paris of its surface.
In the development of lieat during germination the changes that take place are more evident. The starch or fecula surrounding the young plant is converted into sugar, and this process takes place through the separation of carbon and oxygen in the form of carbonic accif, which, during their union, give out heat. A familiar instance of this process is seen in the inereased leat of the growing barley previous to its belug dried to form maft.
The increase of heat is more cvident still in the flowering of plants, which, according to Dunal, results tiom the conversion of a certain portion of starch or fecula in the disk and petals of the plant into sugar, for the nutrition of the authers and ovules of young plant, The increased hent of the flowers of plants during certain stages of their development was first observed by Madame Ilubert In Madagascar, who, being blind, was the more dependent ph the organ of touch; and in lithding plants slie found that the Arum cordifolium was much warmer than others. Thls led BorySt. Vincent to pursuc a ecties of $6 x$ pertments Un this plant, in which he found a very high degree of heat developed during its flowering, which was sometimes 7° higher than the surrounding atmosphere. The nowers of the Arum tribe are very favourably constructed for the Bevelopment and retention of heat; but all flowers, previous to the full devolopment of their anthers and the function of impregnation, undergo these changes, which produce an increase of temperalure.
(Mejen's Pfanzen Physiologio, band ii. ; and Lindley's Intraduction to Botany.)
TEMIPERING OF STEEI. [SteEL.]
TEMIPESTA, ANTONIO, a celebrated lialian battle and aninal painter and enmaver, was born at Forence in 1555. Ile beenme tho scholar of Jolin Strada or Stradantus, a Fleming, who was setiled at Florence in the cmploy of the grand-duke, and who assisted him in the battles which he painted in the old diteal palace. Tempesta, after paluting some years with Strada, whom he surpassed in many respects, visited rome, and was employed ly Gretory XIII., in the Vatican, where he paluted, in smail figures in tresco, the Translation of the Body of St. Gregory of Nazihnzus, and some other suhjects, which acéguired him in great reputation among the artists and virtions of Romia, and procured him constant occupation froin the IRoman thobllity. Ile executed several good works for thie Chardinal Aleseandro F'rmese, at lias rilla at Caprafola, and some at Bassino for the Marquess Ciustininus, Tempesta resided chietly at Kome, and died there in 1630, aged seventy-
five. His reputation rests now almost entircly upou his efchings, al though in his time he lad a great name nlso as a puinter. Lanzi terms lum the fint Italian who ever athumed distinction in Jandscape and animal painting, and conidens him at this period to have been unrivalled in his ownstyle in Italy: he wnis however surpussed afterwarls ly. Cerguozzi and Borgognone. Honses weré his favourite: subjects, and lac excelled in hattles, processions, cavalcad(s, hunts, and yaripus field-sports, His designas particularly his, etchings, are remarkable for theid bpinit and bolduess of conception, bit they are at the pance time coarse and heary, and carglens in their cexcution. H1e pointed gencrally sinall digures; in large ones he was not snccessful, and lie seldour attempted then; ho however occasionally prepared larga cartoons for tapestries, in the style of his master Strada. Tempesta's chiel works in puinting, besides those in the Vatican, already noticed, were a Slaugliter of the Innocents, in the Churelh of San Stefaino Rotondo, at Rome ; and two great cavalcades and state-processions, executed for the Cardinal Seipione Borghese, as friezes around the loggic of his palact on Monte Cavallo (alferwards Palazzo Bentivoglio , which, according to his biographer and contemporayy. Baglione, were atone sufficient to have ensured him a lasting reputntion if he had never painted anything else. One represented a state procession of the l'ope; flie other, one of the Grand Turk. Tempesta has executed etelingss of both these subjects. His invention wha amazingly fortile; he has been equalled by few artists in the number of his designs. According to Gandellini, Tempesta etclred 15! plates, and about 500 have been engraved after him by other inasters. He also engraved after oller masters himself; he executed some battles, and 40 plates of the Spanish story of "The Seven Twin Sons of Tara,' after Otho Venius: Filibich, in his 'Entretiens sur les Vies des plus celcebres Peintres,' has related the story at length, and has described the subject of each plate.
Tempesta's stỳle of cfeling is peculiar and not agreceable ; and although his designs are bold, and contain many grand parts, they aré heavy, his style of design gross, his compositions generally contused, and his light and slaade disposed without taste: his most valuable designs are his hunts and fiedd-sports, and his studies of horsis. Oi his other picees the following are among the best and thic most celebrated
A set of 1.50 illustrations to the Old Testament, known as - Tempesta's Bible ; 15 largo figures of Clrist, the Virgim, and the Apostles; a very large plate of the Victory of the Jews over the Aimatebites, marked 'Hebraeomm Victoria ab Amalechitis reportata, the composition of which is spinited, but very confused the Life of St. Antony, in $2 t$ plates; 150 small plates from Ovid's. 'Metamorphoses;' 13 of the Labous of Hercules; and 7 of the Selen Wonders of the Antient World. He efched many cavalcados and processions, and engraved also large plates from the following statues-they are however execuled foo much in his oirn style to be faithful representations of the orlginals:-Castor and Pollux, and the horses on-Monte Cavallo, and the equestrian statue of Mareus Aurelius on the Capitol, at Rome; the equestrian statue of Cosmo I., by John of Bologna. at Florence; that of Henry IV. of France, at Paris, which was destroyed in 1792; and one of Henry II. of France. The last statue however never existed, for a figure of Louis XIII, was placed upon the horse whieh was originally desigued for a statue of Henry 11, who was lilled at a tournameint. Tempesta's print bears the following inseription: 'Effigies equi aenei operis Dan. Riceci, 'Volterrani, fieri jussit Reg. Marin ob menme. Reg. Ilenrici 11. F. M. sui viri, qui obiil in torniamentis.' A spirited desigu of the Battle of the C'entaurs and the 1,apilbac, ly Tempesta, was cut in a large size in wood, by Jeronime Parabole. As a man Tempesia mpears, according to his contemporary Baglione, to have been highly accomplinhed in every respect, and to have bech universally esteemed, by his conpanions. There is a long list of the works of Tempesta in Ileinclen's. Dictionnare des Altistes, EEe., and in the 'P'cintre Gravenr' of Bartseh.
TEMPE'STA, CAVALLERE, called also in lialy Pietrq Mulier or de Mulieribus. This artist, who is sometimes confoundel with Antonio Tempesta, was a native of Ilolland, although better known in Italy, and his real name was Peter Molyn. Fiorillo says he was the son of a landscale-painter of the sume name, and was born at Haar-
em in 163\%. He was ealled Tempesta throngh his skill in painting sea-storms and similar subjects, in which he was exeellent, and in some respects rivalled Backhuyzen: he was also nearly equally excellent as an animal painter, especially of wild animals, and some have said that had he remained in his own country and pursued entirely such subjects, he would have rivalled Rubens and Snyders in that department. There is yet another comparison to make respeeting him ; he rivalled; or perhaps surpassed, the infamous Castagno in moral depravity. Paseoli, who has written an aecouut of Tempesta in his 'Lives of the Painters,' \&e., says that lus father was a merehant, and that he intended to bring up his son to his own business; young Peter was however naturally so fond of drawing, that when a boy, instead of going to sehool, he used, unknown to his parents, to spond 'his time in sketching upon the sea-side, sometimes drawing the sea'and shijping off the coast; and at others cattle grazing near the shore. He was eventually allowed to takes lus own course, but nature appears to have been his only or at least chief master. After painting with great suecess in rarious eities of the Netherlands, he became acquainted at Antwerp, in about his 30th year, with in monk of the barefooted Carmelites, who converted him from Calvinism, in which he had been brought up, to Popery; and Teinpesta was thence strongly indueed to make a journer to Rome. At Rome he found a valuable patron in the Duke Braeciano, and his suceess was beyond his expectations. He reeeived so many orders for pietures, that he was obliged to employ assistants; and the sister of one of these, lins facourite, lnown as Tempestino, beeame his wife. He however never appears to have lived in great amity with her, but the fault is suid to have been Tempesta's. The story of the deep tragedy which followed is told differently by Paseoli, and the writer in the 'Musco Fiorentino,' in which there is a Jife of Tempesta, but there is no diserepaney in their statements of the main fact. Tempesta made up his mind to leave Rome, it is said, in order to get rid of his wife, and he requested permission of the Duke Bracciano to depart: the duke eonsented, but unwillingly, yet he presenter Tempesta with a cross and a ehain of gold, and knighted him before his departure. Tempesta lett Rome, and promised to send for his wife as soon as ho was settled; he went round by Venice and Milan, where he made a short stay, to Genoa. In Genoa ho wais as suceessful as he had been at Rome: but soon after his arrival he beeame enamoured of a beautiful Frenoese lady, and being unable to obtain possession of her except by marriage, he resolved upon marrying her, and he got over the obstacle of already finving one wife in the following infamous man; ner:-He dispatched a hired assassin to Rome, with a letter to his wife, ordering her to Rccompany 'the-bearer immediately to (ienoa; his wife, who knew her husband's character, and disliked the messenger, delayed going, but on a second shmmons from her hushand she complied, and commenced the fatal journey. The unfortunate woman was murdered by the rufflan, her companion, at Sarzana. The aflair was not long a seeret, and Tempesta, who must have already married the Genoese lady, necording to Pascoli, was arrested upon suspieion, was tried, convicted, and condemned to death. The sentence was however not carried into execution: Tempesta obtained a respite, or, accorling to the other account, had sufficient interest to obtain a commutation of sentence from that of death to onc of perpetual inıprisonment.
Paseoli says he was set at liberty amain, after remaining five ycars in prison, throngh the intercession of the Count di Melyar, governor of Milan; aceording to the other story, he obtained his liberty during the bombardment of Genoa by Lonis XIV.: when the prisons were thrown open: having suffered an imprisonment of sixteen years, He was however busily employed with his pencil during the whole time, and he found it difficult to satisfy the demand for his pictures. On recovering 'his liberty he went to Milan, and there cstablished himself, where, through his unenviable notoriety, his success was even greater than it had been previously either at Rome or at Genos. He was in the receipt of a great income, lived in splendid style, and cven kept. a private menagerie, containing many varietics of wild animals, solely for the purpose of painting from them. His eonduct at this period of his life was still consistent with his previons immorality, for though enjoy-
wife, but left her destitute, aceording to Pascoli ; yet how such conduct could be suffered by the laws is difficult to understand. He had several mistresses, and he I ac quired the cognomen of Mulier or de Mulieribus by his profligate habits; Peter Mulier iss the name by which lie is best known in Italy. As he grew old his powers of painting forsook him, and his means accordingly gradually diminished, and as he was too improvident to make any provision for his old age, his affairs beeame embarrassed at the end of his life. He died of a fever in 1701, aged 64, in a state of poverty when compared with his formef affluenee. His pictures are numerous in the collections of the north of Italy: those 'which he painted during his imprisonment are gencrally accounted his best.

TEMPIO. [SARDEGNA.]
TEMPLARS, KNIGH'S TEMPLARS, or KNIGHTS OF THE TEMPLE, are' the 'popular designations for the Brethren of the Temple of Solomon at Jerusalem, also ealled the Soldiery of the Temple (Militia Templi) and the Soldiers of Christ. The three great religious military Orders, the Knights of the Hospital of St. John of Jerusalem (commonly ealled the Knights Hospitallers), the Templars, and the Teutonie Knights of St. Mary of Jerusalem "(or German Knights of the Cross), all originated in' the twelfth century; the two former towaids its commenteement, during the 'first crusade, the last not till near its elose. The founders bf the Order of the Templars, which is held to date trom the year 1118 or 1119, were nine Knimhts, all Freneh, of whom the two chief were Hugues de Prayens or de Pagands) and Geoffroi de St Oner (or St. Ademar). One account makes all the nine to have heen previously nembers of the Order of St. Joln ; but it is at least doubtful if this was the case. At all crents, the Hospitallers were not yet a inilitary order; their distinguishing profession was to entertain pilgrims and to attend the sick and wounded; the idea of addingito the three commm vows of ehastity, porerty, and obedience, an engagenent to fight agrinst the infdels, appears to have leen first put in practice by De Payens and his brethren. Up to this tiune, when a knight 'entered the society fer he Hospitallers, he seems to have laid aside his arms. Nue probably did the nine Knights forming the new assuciation at first contemplate either the extensively military character which their order eventually assumed, or event the establishment of an order when' shonld extend and perpetuate itself. "Their" original yow was simply to maintain free passage for the pilgrims' wh should visit the Holy Iand; nor did they' proceed to nd to their number fill six or seven years after their association. In another respect also their early condition and pretensioin were remarkably contrasted with their subsequent state for at this time they made the greatest show of poverty, even De Payens, who twas styled Master, and his finend De St. Omcr, keeping only one horse between them, a eircumstance, commemorated in the seal of the order, which represents two armed kuights' mounted one hehind the other on the same horse. At this their beginning; indeed, the name which they took, and by whieh they were commonly known," was the l'auper soldiers (Puu: peres Commilitones) of the Holy City; and they prot fessed to have no sourree of subsistence but the alms of the faithful. The king of Jernsalem, Baldwin. IL, gave them their first place of residence, a part of his palace; to which the abbot and canons of the church and conveht of the Temple, which stood adjoining, added another building for keeping their arms, whenec they aequired the name of Templars.
The new prineiple of their association, however, immediately drew general attention; so much so that in 1120 the Hospitallers got their order remodelled by l'opst Calixtus II. on the same principle. The first regular erubodying of the Templars was by Honorius 11., the suc, ecssor of Calixtus, who in 1128 eonfirmed, a rule for them which had been drawn up and decreed that same year by: the Council of Troyes, on the requisition of Hugues deg Payens and several' of his brethren, who had come to Furope for that purpose with strong recommendations from king Baldwin. Honorius at the same time, to distinguish them from the Hospitallers, who were arrayed in a black mantle, assigned the brethren of the new order a white mantle for their peruliar dress, whielt they worg plain till Eugenius III., in 1146, appointed them to weas a red cross on the left breast, in imitation of the white
sross wom ly the Howpitallers. This hloody eross was also borne upon their banner, which "as formed of cloth striped Wack and while: whenee it was called thaswant. an old lreuch term applied to a horse marhed with these colques. This worl consequently became the tamons warery of the Templar chivalry'.
The new order spleedily rose info consideration. Memben of the noblest families in every uation of Christendoun parcerly sought to be joined to it ; legacies and donations in lands and money were showered upon it hy persons of all ranks ; and in course of time it aequired ample possesisions in nearly every comutry of Europe. At the head of the onder was the Master, or Grand-master (Mugisler, or Magnus Magister), who was however not only eleeted by the Clapter, or general body of the Knights, hat very muel controlled by that body: the Grand-Minster had immediately under him his Seneschal, or lientenant; and other high offieers were tho Marshal, the Treasirer, Sce The several conntries in Asia and Europe in which the order had possessions were denominated Provinces; and each of then was presided over by a resident chief, called, indifferently, a Grand Prior, Grauk Preeeptor, or Provincial Master. Under, the provineial masters were the Priors, ot herwise called Bailifs, or Masters, who had chargo eaeh of one of the disfricts into which the province was livided; and finally, under the priors were the l'reepptors, each of whom presided over a single honse of the order (or sometimes over two or three adjoining houses which were considered as one establishment), hence enlled a l'reeeptory: The head province was that of Jerusalem; the afthirs of the order, in lact, were for the most purt, directed by the chapter of this province, which was invested by the eonstitution with all the powers of a general chapter at all times when such a chapter was not assembled. The grand-prior of Jerusalem was ex-officio treasurer of the order; and in this province the grand-master resiled so long as the Cliristians retained any footing in the country: first in the city of Jerusalem, from the origin of tho order till 1187, when Jerusalem was taken, and the hingdom founded by Godfrey of Bouillou put an end to, by Saladin; then (after a retirement of four years to Antioch) at Acre, from 1101 till 1217; then at the newly-built fortress of the Pilgrims' Castle, situated on the sea-coast a fen miles north of Carsarea, till the fall of Aere, and the final extinction of the Jatin power in Palestine, in 1192 . On this the Kuights took refuge in the town of Limisso (otherwise ealled Limasol) in Cyprus. The other provinces in the cast were Tripolis and Antioch; to which Cyprus, i ill then included in one of these, was added after that island became the head-quarters of the order. The western provinees were, Portugal, Castile and Leon, Aragon, France and Auvergne, Normandy, Aquitaine or Poitou, Provence, Fngland (in which Scotland and Ireland were included), Germany, Upper and Central Italy, Apulia, and Sicily.
For souse tume after its institution the order of the Templars consisted exelusively of laymen. But in the year I162, the famous bull entitled 'Omme Datum Optimum,' issued by Pope Alexander L1I., among other mportant privileges which it bestowed upon the order, permitted it to receive as nembers any spiritunl persons who were not bound by previons vows. These spiritual menbers were ealled Chaplains. They did not fight, nor take the military vow; but, in lien of that duty, they not only eelebrated mass and ofher religious oflices in the houses of the order, but usually also acted as seceretaries to the clapter. They were not allowed to take any share in the government of the society unless specinlly invited by their superiors; but they were treated with much ceremonious respeet, and they were freguently appointed preceptors. Among the other privileges granted by the bull of 116 was that of having the offees of religion celebrated nnea in the jear in the honses of the order, even in countries lying linder an intertict; a permission well ealeulated to induce persons to join the society, especially affer it came, as is asserted, to be interpreted in practice as entirely exempting the Templars from the, effects of interdicts. Alexander's bull, also allowed the order to have its own burial-grounds; released it from all spiritual obedienee. excerpt only to the holy see; firsed it from the payment of tithes, and even authorined it to meceive then if thie hishop gave his consent: and prohibited any one who had onee beconte a Templar from ever leaving the order unless to enter into a stricter one.

- At a date a little later the society still farther exiended its scheme and its influchere by admitting as members many pensons who were not knights or of nobse liith, but who were desirons of participating in the ndvantages of helonging to so powerinl a lusly, on enndition of acting as the siguires and servants of the linights. These were styled Serving Brethren; and in this clans were sometimes fonnd individuals hoth of great wealth and emiment station, thouyh not of high birth or knighty rank. The serving-brethren however could not be preceptors, or hold any of the higher offices in the order. Latterl, they wre divided into two classes-those of arme nind those of trades; She former attending the kinights to the teld as esquires; the latter exercising varions handiera!ts in the houses or on the lands belonging to the order. The serving-brethren of arms were considered to form by much the nore honourable of the two classes, and were treated with much more consideration than the others; but hoth appear to have been equally cutitled to he present at meceings of the chapter, although it may be presumed that Hone of the serving-brethren either voted or took part in the deliberations. 'The order also associated to itself many persons under the name of Affliated Members, who took no vows, assumed no peeuliar drese, nor became sulject to any duties or services; but, continuing to pursue their ordinary secular oceupations, mercly purchased enrolment in the runks of the powerful and highly privileged soldiery of the Temple for the salie of the protection and uther advantages, both temporal and spiritual, which eren such a mere norumal nemberslip ensured. The affiliated comfreliended women is wels as men. Finally, there were the Domafi and the Oblati, consisting of children dedieated to the order by their parents or other relations; mul also of persons of all manks, both laity and elergy; who, without entering the order, pledged themselves to stand by it and to maintain its rights.
The history of the Kinights Templass would embrace the lustory of the wars of the Clirisitians against the Infidel's in the East for all the time they lasted after the establishment of the order. Formore than a hundred and seventy years the soldiers of the Temple formed the most renowned portion of the Christian troops, and almost every encounter with the enemy bore testimony to their unequalled prowess and daring. Bnt it inay nevertheless he questioned whether the establishment of this and the bther religious military orders proved advantageous to the attempt so perseveringly made to wrest the Holy Land from the dominion of the Intidels. The Templars and Hospitallers probably damaged and weakened the eause for whieh they fought, as much by their rivalry, jealousies, and frequently open contention, as they aided it by their valour. On some occasions this opposition between the two orders rose so high as not only to make them desert or withhold assistance from each other in the extremest dangers, but even to throw one of them for the time into concert with the common enemy. No chargo (though such charges have been broullit) enn be sulstantiated agnainst the bravery of cither; but they can hardly be aequitted of treachery in some instances to one another, and, the most seandalous abandonwent of their duties to the public eause. Then, the immense wealth and worldly power which the Teinplass in particular speedily aeguired altogether ehanged the miginal character and spirit of their institution long before it was lailf a century old. Within thirty or forty years from the origin of the order. Iwo at least of the four vows which the suembers still contimed to take lad become a moekery and a profanation; instead of poverty and chastity, they were already distin' guished by their pomp and pride, and the genemal luxury and licentiousness of their fives. But the vast materia? forces of the association, the exlent to whieh it had projeeted its ramifications in all directions, and its other eleinents of strength, might have loug withstood the principlo of corruption thus at work within it, if it had not drawn upon itself an asgault from without ly wheh it could not fail to be overpowered.

The destroyer of the Templans was the resolute and vindictive Philip IV., surumaed lee Jed, or The Tair, of France. Philip, who came to the throne in 1285, at the age of sesenfeen, was the enmy of the. chureh by ceducation, hy tenper, and by circumstanees. IIe had already proceeded to extremities in a quarrel with Pope Bonifaco proceeded to exiremiesina was ferminated only with the life of that
pontiff. His successor, Benedict XI., is supposed to have been poisoned at the instigation of Plilip. Benedict was succeeded by Clement V., who is believed to have purclased his elevation from Philip on condition, anong other compliances, of co-operating with him in the destruction of the Templars. This was in 1305. Obnoxious already as the natural allies and defenders of the Holy See, and tempting the attack of the needy and unscrupulous king by their immense possessions, these knights are also said to have further irritated Philip about this time by their suspected share in exciting an insurrection of the Parisians against a debasement of the coinage, a praetice which he repeated so often in the course of his reign, that lie acquircd for himself the name of the money-lorger (le fauxmonnoyeur).

In 1306 Jaeques de Molay, the master of the. Temple, was drawn to Europe by a summons from the pope, who professed a desire to consult with him on the expediency of a union of the two orders of the Templars and the Hospitallers. The following year, while Molay was at Paris, the first distinct accusaiions against the Templars were made by two individuals lying in prison under sentence of death; Squin de Flexian, who had formerly been a member of the order and prior of Montfaucon, but had been cjected for heresy and other offenees, and a Florentine called Noffo Dei, also, aceording to one recount, a degraded Templar, by general admission a person of the worst character. They made their recelations to Philip hiniself, and were immediately liberated from prison. Their charges, imputing to the order the systematic praetice and encouragement of all sorts of secret immoralities. as well as the stranyest confusion of heresy, idolatry, and infidelity, are far too absurd for examination. Very soon after this, on the 12 th of September, 1307 , royal letters were issued sealed to all the governors of towns and other officers of the crown in authority throughout the kingdom, and transmitted along with orders to then to arm themselves and the persons under their command on that day month, and then fo open the letters in the night, and to act as they should find themselves therein directed. The result was' that the next day nearly all the Templars in France, De Molay ineluded, were in custody. Their houses and-goods were also everywhere scized; the vast stronghold of the Temple at Paris, the ehief seat of the order in that kingdom, was entered and taken possession of by Philip himself; and on the following day, the 15 th, the university met there, and cxamined De Molay and some other knights.

An act of aceusation was forthwith published; and Philip at the same time wrote to the pope, and also to the king of England, intimating what he lad done, and calling upon thens to second him. Edward II. expressed himself at first disinelined to believe what was said against the kinights; but on soon after receiving letters from Clement, he yielded, and the Engli.h Templars were also all seized and thrown into confinement about the end of December. Meanwhile the examinations had been going on in France under the direction of the king's confessor, Imbert, a Dominican priest, and as such the inveterate enemy of the order of the Templars. Confessions, in many cases ineredible from their 'inherent absurdity, were extracted from many of the knights at Paris anil elsewhere by the most savage tortures: the coufession was iu iumerous instances speedily followed by a reeantation; but a new application of the wheel, or the fire, to which the aceuserl werc exposed in some cases till the roasted flesh dropped from the soles of their feet, generally made them repeat their former testimony. This went on for many months. In August, 1308, Clement, whose very person Philip had now contrived to get completely into his power, issued a bull, ealling upon all Christian princes and prelates to aid him in examining into the guilt of the order; and about the same time his holiness appointed a commission, consisting of the archlishop of Narbonne and other prelates and dignitaries of the church, to meet at IPris to try the case. This commission however did not commence its sittings fill the Jth of August, 1309. A few months later, examinations under judyes, deputed or nominated by the pope, commenced in England and other countries. Altogether many hundreds of kniglits were examined by these commissions during the years 1309, 1310, and 1311; but it was only in France, where torture was made use of, that any admidsions were
obtained of the erimes laid to the eharge of the order, or any at least that were not manifestly and undeniably unworthy of all regard.. Even the Paris commission however did not satisfy the inhpatience of Philip: on its requisition a great number of knights had stood forward to defend the order, among whom were several, of those who had confessed and afterwards retracted. Plilip, having forecd the pope to nominate Philip de Marigni, bishop of Cambray, the brother of Enguerrand de Marigni, his primeminister, to the arehbishopric of Sens, which had just beeome vacant, and then included the diocese of Paris, got the new archbishop to convoke his provineial council in the capital, on Sunday, the 10th of May, 1310; and this body, on the Wednesday morning following, had fiftyfour of the delenders of the order, who had formerly made confession, brought out as 'relapsed hereties' to a field belind the abbey of St. Antoine, and there committed to the flames. They all died asserting their innocence and that of the order. This terrible example was specdily imitated in the province of -Rheims and elsewhere; and some months after, the arehbishop of Sens held himself another council, and burned four more knights. . These proceedings put'a stop to the attempt at defending the order: the rest of the linights who had undertaken this task now all declared their renouncernent of it. Meanwhile a general, council had been appointed by Clement to mect at Vienne in October, 1311. It assenibled on the 13th of that month, but it was not found so compliant as Plilip and the pope had expected; and Clement, having put an end to the session, assembled the cardinals and a tew other prelates upon whom he could depend in a seeret consistory, and abolished the order by his own anthority, on the 22nd of March, 1312. When the council reassembled, pursuant to the adjournment, on the 3rd oi April, Philip was seated on Clement's right hand, accompauied by his brother and his sons, and attended by an imposing military foree; and his holiness read the bull of abolition, the eouncil listening in silence. It was formally published on the 2nd of May following. On the 18tlo of Marcl, 1314, Molay, the grand-master, and Guy, eounmander or grand-prior of Normandy, who had all this while remained in prison at Paris, were bronght before the archbishop of Sens, condenmed to death, and burned on one of the sumall islands in the Seine, about the spot where the statuc of Hemi IV. is now erected on the Pont Neuf.
After all, Clement and Philip, the former of whom died suddenly about a month, and the latter, of a fall from lits horse, within a year affer the martyrdom of De Molay, were able to secure to themselves only a small portion of the plunder which they had probably hoped for. The king of Franec scized and kept, or divided with his confederate, the moveable property of the Templars in that country; but there, and also in England, and throughout the rest of Europe, with the exeeption of Spain and Portugal, it was found necessary to transfer their landed possessions to the Hospitallers, or Knights of St. John (at this time commonly known, from the place where they had fixed their head residenee, as the Knights of Rhodes). In Spain the lands of the Templars were bestowed upon the Knights of Our Lady, of Montesa, a new order, founded in I317; and in Portugal the socicty merely took the new name of the Order of Christ, which still subsists. It is affirmed that even in France the order of the Templans has survived to nur own day; and it is certain that a society ealling itself by that name exists in Paris, which professes to be in possession of the original register and records of the antient Templas, and to have been governed by au unbroken succession of grand-masters, many of them of illustrions rank, ever siṇe the time of Jacques de Molay. It pretends therefore to be the supreme chapter of the order. In England, and we believe also in Germany, the Trecmasons are in the halbit of holding themselves up as a sort of repre; sentatives of the antient Templars.
It is asserted by Matthew Paris, that about the year $121+$ the manors or estates in possession of the Templars througlat: out Christendom already, amounted to 9000 ; and it has been calculated that the entire revenues of the order when it was dissolved did not fall short of six millions sterling, though it seems impossible that this should not be a great exargeration. "Their possessions in England particularly were eren at a comparatively early period of great extent and value, as may be seen from an 'inquisitio, or aecount
of their landa, taken by royal anthority in the year 118%, which Dugdale has printed in his "Momasticon' (yol, vi.. pt. ii.. pp. sli., \&e.. edition of 1830). They are supposed to have heensettlech in the Old Temple, at london, which stook on the shuth side of Ilolhorn, near the present Sonthampton Buildings, by the beginning of the reign of Stephen: they removed to their nets holse at the western extremity of Fleet Street, the site of which mill 'retains the name of the Temple, in 118.5. This was the chief seat of the order in Eusland.
The question of the ginit or innocence of the Templars has heen mueh disenssed in modern limes; and although it may le said to be now almost unirersally admitted that the jarticular clarges upon whieh they were condenned were for the moat part entirely minfounded, some attempts have been mate to shom the probability that the order nevertheless was held together by certain secert principleis or doetrines which made its exist ence dangorous to society and called for its suppression. Von Hammèr, for lustanee, in hiss 'Gesehichte der Asisastinen' (or 'Ifistory of the Assassins'), of which there is ant English translation by Dr. (r. C. Woot, has endeavoured to estahlish a similarity and connection hetween the orler of the Templars and that famous fassociation; and in a disqulsition, printed in the sixth volume of his 's Mines de l'Orent,' the same writer has attempted to convict the order of a participation in the apostasy, idolatry, and impiety of the Grostics and Ophianites. Von Hammer's lesay has been answered by Mr. Kaynomind, in a long note printed in the fifth volume of Miehaud's 'IIistoire des Croisades,' p. 572, \&c.; ancl also in two arlicles in the 'Journal des Savans for March and April, 1819 ; and in two others, published in the 'Bibliothe'gue Universelle? tom. x., p. 327, and tom. x., p. 3. . The documents relating in the condemnation of the Templars were first pulblished in a work entitled 'Traitez concernant la Condemnation des Templiers, par M. Dis Puy, 8to., Paris, 16̈4; reprinted, with additions, under the title of "IIstoire de la Condemnation ded 'Templiers,' \&e., par Pierre Du Puy, 2 vols. 8vo., Bruselles, 1713 ; and under that of 'Ifistoire de POrdre Militaire des Templiers, avec les Piéces. Justificatives, $410 ., 13$ ruxelles, 37 ml . Other works on the sulbjeet are - Nicolai Gürtleri Historia Templaiorum,' 8 ro.. Amstel. 1691,'and, with large additions, 1703; 'Christiani Thomasii Dissertatio de Templariorum Equitum Ordine Sublato,' 4to., Ilalae, 1705; Ravuouard. "Monumens Historiques relatifs à la Condamnation des Templiers,' Buo., Pario, 1813; Voltaire, 'Essai sur les Momirs et l' Esprit des Nations,' chap. P6: Munter, 'Statutenbuch des Ordens der Tempeetherren :' Wilike, 'Geschichte des Tentpelhertenordens:" -Secret Societies of the Middle Ages" (in the 'Iibrary of Fnterlaining Knowledge'), 12mo., Lond., 1837 ; and 'The Thistory of the Kinighls Templars, the Temple Chureh, and the Temple? by C. G. Addison, Fsig., 4to., I, ond., 18t2. See nlso Tanner's 'Notitia Monastica,' fol., Lond., $17+4$, pp. 30i-310, for numerous referenees to priuted books and MSS. on the sibjeet of the Enclisls Templars.
is TEMPLE (the Jatin ' Templam'). That is known of the architecture of the nations of antiquity is derived chiefly fimen their temples; for of all their public edifices those devoted to religion are thic most numerous, if we execpt perhaps those of the lRomans, the remains of whose therime, aqueducls, theatres, amphitheatres, and oller momments of that class, are as common as lleir teniples, and have been as well preserved. Nearly all of what may, for distinetion's sake, be lermed the columnar arehitectmre of the nulients-Ebyitians, Greeks, and Ro-mans-is seen in their temples. In those of the lopytiane, it may be sat to display itself exelusively, and fikewise much more extensively than in the tenples of the other two, with this further diflerence as regards the general design and elaracter, viz. that in the Egyptian edifieca the columns are placed internally, that is, so as to form colonnades aloner the sides of an cnelosed fore-court, and the poital or frontispicee of the temple itself. Of this disposition of the entire plan, with a walletl-in cortile or cloister, an example is shown in Ecvptuan Arcmithettre (p. 310), Where other particulass relative to Egyptian temples and some of the clsaracteristic differenees belween them and those of the Grecks are mentioned. Instead of being composed of a tariety of parts grouped and combined together, thesc latter consist ouly of a simple parallelogram, a celle, or body of the teinple itself, either in antis, or else perip-
teral, that is, entirely surrounded with an exlernal colonnade; for to these two distinetions may be reduced all those subordinate ones for which sequarate technical terms havo been insented, yet they du not at all affeet the general shape and outtine, which still remains π sinplele unbroken parallelogram, cither with or without external colonnades along its sides.

An explamation of those terms having been given in Civil Architfoctire, page 201, eol. 1 , we refer to what is there said for the respective delinitions, und instead of repenting them, now lutroduce liere what will render them more intelligiblu, and be of assistance in the prosent article, viz: examples of the different forms of plan as regards columniation, or the arrangement of the columns.

Thongh so exceedingls small as to show litle more than the position of the columns, withont any regard to exactness in ot her respects, these slight diagrams will both serve to render evident many ciremistonces that camol dse he fully explained, and also to exemplify the respective denomimations of temples and porticos according to the number of colnmns in front. The one in antis' is a distyle in antis, there being only two columns between the antæ, or three intercolumms, as in the, two tetrastyle examples (prostyle and anıphiprostyle); whereas were there four columus between the anta, it wonld become ootrastyle in antis, and have as many intereolunnas as an herastyle, of which last the peripteral figure is an ex. ample. The dipterai and psendo-dipternd are both netiostyles; and the hypathral a decrastyle. This jast may also We taken as an exanple (though an impericet. one) of a diprostyle, for it will be seen that if the portico were \& mere prostyle, it would project forvard two intercolumps from the liody of the temple. In this figure the pronaus may also be termed polystyle, on seconnt of the great numbert of columns in successive rows petween the side walls enelosing that part of the plan (pronaos), which may be do. scribed as a diptaral or double telrupfyle in untis, having a distyle in antis belind it, and a blijronstyla decaslyle in front of it."
Still thero is no variely whatever as to external form, no individual charaster as to ontline or even the general jro-

[^7]portions, nothing of combination or of design, as the last term is usually understood; but the difference of effect depended altogether upon the actual dimensions of the structures, upon material and. execution, upon ceircumstances of detail and finish, and on the degree and particu-lar-kind of decoration in regard to sculpture-and-polychromie embellishment. The only instance, of combination and grouping is that afforded by the Erechtheion, or triple temple on the Aeropolis at Aihens, which has tivo yistinet porticos, wiz, an Tonic hexastyle monopprostyle at its east end, and' a tetrastyle diprostyle' of the same order on its north side, and upoin a lower level; besides which there is a smaller attached or projecting structure at the soith-west angle, forming a tetrastyle diprostyle arrangement of earyatie figures, raised upon a, screen-wall or podium. The combination is here jiot tery harmonious, since no regard has been paid to symmétry; tor which very reason it is all the more striking, as forming a deeided contrast to the unvaried and even monotonous uniformity pervading the temple-architecture of the Greeks. It is almost the only Grecian strueture that can be said to be as much distinguished by pieturesqueness as by eleganee of architectural detail, and it is therefore to be regretted that it has not been studied by modern architects, with especial reference to such quality, instead of their attention being almost exclusively given to the details and proportions of the individual parts. This edifice moreover affords almost the only instance in the Grecian style of distinct portieos or prostyles projeeting from a building [1PokTico], other portieos being cither in antis, so as to be recessed within the main walls forming the sides of the edifice; or are only the end or ends of the eolonnades continued throughout the whole exterior: consequently in neither ease does such portico show itself as an actual prostyle. The only other known examples of Greek prostyles are the two small Ionie temples at Athens, that on the banks of the Ilissus, ealled the temple of Panops; and that dedicated to Nike Apteros, or Wingless Vietory. Both these were ampliuprostyle, and not in antis, consequently had a projecting portico at each end; and in both the portieos were tetrastyle. Of the former nothing now remains, but it is well known from Stuart's delineations, and the order itself-of plain and bold but elcgant character-has been adopted as the type-not to say stereotype-of most of our modern Grecian Ionic. Though amphiprostyle, the porticos were not exactly similar in plan; for while the one was a mere monoprostyle; that forming the entrance end was also decply recessed within the main walls, after the manner of a portico in antis without columns. The other temple, the ruins of which have been explored within only a very few years, was a very small strueture a mere votive chapel, close by the west firont of the Propylea of the Aeropolis, with its linder portieo facing the south wing of that edifce, yet turned obliguely from it, which want of parallelism is utterly at variance with all modern notions of architeetural symmetry and order. Yet altbourh they carried regularity alnost to faulty exeess, the Greeks seem to have paid no regard to it whatever in disposing buildings relatively to each other, for there is a sinvilar and apparently intentional want of parallelism between the Parthenon and Erechtheion on the Acropolis itself; nor are either of them in a line with the Propyliea, or equidistant. from such line or axis. [PAR-thenon-Plan.]
This inattention to uniformity of arrangement, where different buildings are brought together on one general plan, shows a striking difference of taste in that respect between the Egyptians and the Grecks. The temples of the Egyptians consist of various architectural parts subordinate to the prificipal strueture, but combinlng with that and with each other to form a whole; whiel seheme was sometimes further extended by an architectural avenue of sphinxes in front of the bulflings. The Greeks, on the contrary, certainly did not attempt to imitate or tival the Egyplians, in the extent and complex arrangement of their temples, though there can be little doubt that they were unicinally indebted to theni for much of their architeetural knowledge. Their temples were almost invariably single structures, not only detaehed from but altogether unconnected with adjacent ones, instead of forming with them a asmumetrically arranged asserall hage at. Eroup. It scenis however to have becn in sonie degree the practice to erect several temples in the immediate
neighbourhood of eaeh other, and in a partieular district of a city, as was the case in the Forum and Capitol at Rome, where temple sueceeded to temple almost uninterruptedly; and the ruins of Pestum, Agrigentum, Selinus, and other places show a somewhat similar concentration of sacred edifices-about the same spot. Temples were-frequently surrounded by a sacred grove or plantation of trees, Temenos, or, else plaeed within an enclosure, Peribolus, forméd kither by mere walls or by colonnades, but there are scarcely any examples of the kind now remaining; and they are ehiefly Roman works, viz. the temples at Baalbee and Palmyra. Similarly enclosed and standing in the centre of a peribolus or piazza (therefore very different iu plan from an Egyptian temple preeeded by a fore-court), were the temples of Jupiter and Juno, Yenus and Roma, at Rome [Rosias Architecture, p. 74]; that of Jupiter Olympius at Athens, a work completed in the time of Hadrian; and also, among Graco-Asiatic examples. the temples of Minerva Polias at Prienc, and Apollo Didymaus at Miletus.
Similar as it is upon the whole to that of the Greeks, the temple-arehiteeture of the Romans differs fiom it in nauy other circumstanees besides those of style; which latter was, with very few exceptions, Corinthian-the national style of the Romans, as the Dorie was of Greece and its Italian.eolonies. One leading distinction in regard to getheral arrangement is, that Roman plans were hardly ever in antis, and not often peripteral, but generally prostyle, will the portioo projecting out from the cella, or body of the structure, three or more intereolumns, so as to be triprostyle, \&c. [Portico.] Suclr fagide' was generally furthet distinguished by having a flight of steps enclosed within pedestals at its ends, which were continued as a podium or moulded bascment along the sides of the edifice; whereas the Grecks raised the temples ouly three steps or so above the ground, and earried those gradini quite round the strueture, wherefore eaeh elevation or side of their peripteral temples was uniform in design, having no other variety than that produeed by greater extent and number of columns in one direetion, and by the pediments at the extremities. The Romans certainly evinced greater taste, for both contrast and pieturesque combination than the Greeks, although decidedly inferior to them in beauty of detail and finish of exceution; "except perhaps in one or two partieular examples of that order which, although. called Corinthian, is so peeuliarly their own, that Roman wrould be the more correet name for it. In order to give greater dignity to the whole temple or to the principal structure in an arehitectural group, they elevated it upon not a mere basement or substructure with an assent in front or at both ends, but upon a spreading-out platform, constituting a terrace on every side. They appear to have oecasionally formed a suceession of terraces of flights of steys, leading up to if not continued on every side of the building. The eelebrated Temple of Fortune at Preneste, usually supposed to have been originally founded by Solla, was a very remarkable example of the kind. Very little now remains of it, except the terraees themselves; neither have we any aceount ot the arehiteeture, but besides the principal edifice or temple there were several subordinate ones, on the different platforms. 'I know of no other example,' says Woods, in his 'Letters of an Arehitect,' - either of antient or modern times, where so great a number of edifices, and oecupying so great an extent, were combined into onc regular and symmetrical plan; and our admiration is still increased when we consider that it was necessary not only to erect the building, put absolutely to build a place for it to stand on.?

Circulat plans for temples are peeuliar to the Romans, and oceasion a diversity of charaeter not to be met with in those of the Greeks. Besides the two simplest forms, the monopteral and peripteral, which have been shown above, there were other varieties and combinations. For a notice of some of them we refer to Roman Architectures (1.) 73).

Instead of entering into formal deseriptions of particular temples, we subjoin a synopsis with aecompanying remarks. Sonic of the measurenents and other partieulars stated in it may not exaetly accord with other accounts of the respective structures; for so great is frequently the diserepaney between different authorities, whether writers or delineators and restorers; that it is impossible to obtain complete aceuracy.

Taibe of sone of the Principal Greek and Roman Temples.

	Thescion Parthenon	Duric Doric	Ifexastyle, periplerd, with 12 intereolumns on sides, $46 \% 10.5$ feet. Octastyle, peripteral, laypathral, $100 \times 2: 28$ feet; Ictinus and Callicrates, arehitects. [Parthevon.]
	Propylea	Duric	Hexastyle on both fronts, with wings of a smaller order, at iight angles to west tront. [Partiteno:-Plan.] Mnesieles, architect ${ }^{2}$, 437-13: n.c.
	Erechitheion	Ionic	Hexastyle, prostyle at cast end, with a tetrastyle, diprotyle on north side.
		Ionic	Tetrastyle; aimphiprostyle. A well-known example, though no longer cxtant, having been destroyed by the Turks since Situart's time.
	Nike Apteros Jupiter Olympius	Ionie Curinthian	Tetrastyle, amphiprostyle. Recently explored, and since rebuilt. Decistyle, peripteral, columns fof feet high, $6 \times 2 i 9$ feut. Finchoed by a peribolus. A Roman work originally begm in the time of 1isistratus, continued by Antiochus Epiphanes, and completed by Iladrian:
Elcusi	Ceres	Doric	A square building of about 180 feet on each side, with a dodecastyle colonnade forming the west front. This temple begun by letinus; colonnade added by Philo, arelitect, about 31.5 n.c.
	Prop	D	Hexistyle on both fronts, with inner Ionic order ats at Athens, 50×60 fect. A second aud smatler propylra withm the peribolus, distyle in antis. See " Unedited Anticquities of Attica.' None of these buildines now remain.
Thoriens		D	Eptatyle, peripteral, or with'seven columns at each end, and fourteen on erch side. No cella remaining; but supposed to have been a donble temple, with a passage through the centre, from the sides, dividing the eella into two.
Khamnıs	Nentesis Themis, or lesser Temp. of Nemesis	Doric Doric	Ifexastyle, peripteral, 11 intercolumis on sides, 33×70 feet. Distyle in antis.
※gina	Jupiter I'anhellenius	Doric	Hexastyle, peripteral, hypethral, 41×50 feet. This strneture is celebrated for its polyehromy and sculpture (the Jiginetan $\mathrm{Mar}_{\mathrm{ar}}$ bles).
Olympia	JupiterO pius	Do	Hexastyle, peripteral, hypacthral, 93×230 feet. Completed about 435 в.c. Libon, architeet.
	Apollo. curius		Ilexastyle, peripteral, hypisthral, 47×125 feet. Date about 4.30 u.c. Ictinus, arehiteet. In interior, Ionic columns.
Tegea	Athene Alea	lonic	Peripteral, hypathral. Doric internally; with upper Corinthian order. Seopas, architect.
Nemea	Jupiter	Doric	Hexastile, peripteral.

Magna-Gracia and Suchly.

İphesus	Diana	Ionic
Mikctus	Apollo Didy-	Ionic
Magnesia		Ionic
lriene	Mincrra Yolias	Ionic

Decastyle, dipteral, hyprethral ; columns Gn feet high ; one of the largest Grecian temples, being 220×425 feet. Ctesiphon and Metagenes, architcets. Date about 310 b.c.
Dechstyle, dipteral, hypaethml, 164×303 feet. Columns $9 \frac{1}{2}$ diameters. P’onius, architect. A peribolns.
Octastyle, psendo-dinteral, 106×198 feet. Hermogenes, arehitect.
Hexustyle, peripleral, 61×116 feet. TPtheas, arelitect, abont 340 3.c. The order the best example of Aviatic Ionic. This temple had a peribolus and propylaum; the latter tetrastyle, with two rows of square pillare within.

Astatic Greetr.

Teos Samos	Bacchus Juno	Ionie Ionie	Hexastyle, peripteral. Hermogenes, architect; about the time of Alexander the Great. Decastyle, dipteral; 189×346 feet.

Roman

Rome	Coneord	Ionic
"	FurtunaVirilis Jupiter and Juno	Ionie Corinthian
"	Jupiter Stator	Corinthian
"	Jupiter Tonans Mars Ultor	Corinthian Corinthian
"	Venus and Roma	Corinthian
"	Antoninus and Faustina	Corinthian
",	Pantheun Vesta	Corinthian Corinthian
Tivoli	Vesta, or the Sibyl	Corinthian
Praneste	Fortuna	
Pompeii	Jupiter	Corinthian
Nismes	Maison Carree, or Temple of Caius and Lucius	Coriuthian
Baalbee		Corinthian
	Lesser Teniple	Corinthian
Palnyra	Helios, or the Sun	Corinthian

Hexastyle. Appears to have been a diprostyle, but nothing of the eella remains.
Tetrastyle, diprostyle, cella pseudo-peripteral ; about 24×44 feet.
Two separate temples, alongside each other, in centre of a colonnaded peribolus. Similar in dimensions, but the one octastyle, peripteral ; the other oetastyle, diprostyle. Erected by Metellus Macedonicus, about 140 в.c. No remains; but the authority is the antient plan of Rome in the capitol.
Supposed to have been octastyle, peripteral. The eelebrated 'Three Columns,' in the Forum, are all that now remain of this very fine example.
Octastyle, dipteral; 92×115 feet. Columns 47 feet high.
Of this temple, sometimes called that of Nerva, only three columns remaining; but it is said to have been octastyle, peripteral.
Decastyle, pseudo-peripteral, enclosed within a peribolus formed by double colonnades of a lesser order. [Roman Architecture, p. 74.]
Hexastyle, triprostyle; 33×55 feet.
An oetastyle, triprostyle, attaehed to a rotunda. [Pantueon.] A eircular peripteral of 20 columns.
[For further deseription, and an account of other temples at Rome, sce Rome, p. 93, \&e.]
A eireular peripteral, of 18 columns around cella. The order a very peculiar and fine example. [Roman Architecture.]
No renains of this celebrated temple itself; buf merely of the series of terraces and flights of steps on which it was elevated.
Hexastyle, tetraprostyle; about 50×110 feet.
Hexastyle, triprostyle ; order continued along the eella, making it a pseudo-peripteral; 38×77 feet. [Nismes.]

Deeastyle, peripteral ; 160×290 feet. [Balabec.]
Octastyle, peripteral; 118×22; feet. [Baalnec.
Octastyle, peripteral ; 95×180 fect. Enclosed within a peribolus about 7.40 feet square, formed by an outer wall and two ranges of Corinthian colunns, making a double colomade. [Palmyra.]

The above table might be rendered more eopious and greatly extended; and it might also have been differently arranged in several ways, each of which would have had something to recommend it , according to the purpose for which it may happen to be consulted. Chronulogical order, for instanee, if the respective dates eould be ascertained with tolerable aecuracy, may be considered preferable by some persons; or the buildings might have been classified aecording to the number of columns in front, and as being in antis, prostyle, peripleral, \&e.; or else according to their relative size and dimensions. In fact a separate talle is required for each mode of classifieation and arrangement; but as that could not be clone, we have adopted what we consider the most satisfactory upon the whole. We may however render it in some measure more complete by here pointing out that the decastyle examples mentioned in it are the Temple of Jupiter, Athens; Diana, Fiphesus; Apollo, Miletus; Juno, Samos; Vemss and Roma, Rome; and the great temple at Baflbec. As regards dimensions and relative size, the following are the largest struetures, viz. :

Agrigentum, Great Tcmpl	182	
Selinus, Great Temple	160	330
Venus and lomar	116	350
Athens, Parthenon	100	228
Temple of Jupit		

By way of affording a standard of eomparison, we add the dimensions of St. Paul's, London, and Ja Madeleine, at Paris, viz. : the former, 180 ly 500 ; the other 138 ly 328 feet.

TEMPIE, SOIOMON'S. For 417 years atter the Itebrews had entered the land of Canaan they eontinued to P. C., No. 1 J 11.
worship at the tabernacle which had been framed for their use in the Wilderness. The incongruity of a settled people having only a tent for the eelebration of their splendid ritual service first occurred to the mind of David. It appeared unseemly to him that the Ark of God should still 'dwell between curtains,' while he abode himself in 'a house of cedar, and he therefore proposed to huild a temple in which the worship of God night be more becomingly eonducted (1 Chron., xvii. 1). The prophet Nathan was however commissioned to inform him that having been engaged in eonstant warfare, and shed much human blood, he could not be allowed to execute the design he had formed, which was to be reserved for the peaceful reign of his son Solomon. This undertaking was however a principal subject of David's thuught and care during the remainder of lis reign ; and to it he appropriated a large proportion of the immense treasuro which his many victories produced. He may be said to have provided all, or nearly all, the materials before lis death; consisting of large but variously estimated quantities of gold and silver, brass and iron, stone and timber. lle also secured the services of skilful mechanics and artificers for every branch of the work, and furnished the design, plan, and site of the building; so that more of the credit of this work seems due to David than to Solomon (1 Chron., xxi.; xxii.; xxviii. 11-19).

The foundation of the Temple was laid in n.c. 1012, heing the fourth year of Solomon's reign; and in seven years and a half it was completed. During this time 183,000 persons were employed on the work. Of Jews there were 30,000 serving ly rotation of 10,000 monthly; and of Canaanites there were 153,600 , of whom 70,000 were laloourers, 80,000 hewers of wood and stone, and were lalsourers, 80,000 hewers of wood and ston
YoL. XXIV. 22 B

3000 sverseens of the others. To save the labour of earringe, the parts were all prepared for use at a distance from the site of the building. and when they were brought together, the stricture was reared without , the sound of frammers, axes, or tools of iron (1 Kings, vi. 7).

To furnish a distinet idea of Solomoin's temple from the materinls which have reached us, cven if we take in the ideal temple of Fzekiel, which is conecivel to be franted on the same model, would require sueh a eomblination of real arehitectural knowledge with deep Biblical learning as have perhaps never been eombined in any one person. Hence all the deseriptions which have been dedueed from such materials ditter greally from one another. Thesc only claim our confidence in the points in whieh all, or nearly all, of them agree ; for sueh points of ngreement appear to embody all the real information which lins litherto been collected from the text. There are however materials of comparison and illustration, which, taken along with the tex1, might furnish sonte clearer notions than have yet been realized in a matter which eireumstances have invested with considerable interest. 1. It would be considered that the temple was on the same essential plan as the taberuacle, differing chiefly in materials, extent, and in additions to the enelosure. 2. Reference would be made to other antient Oriental temples, of which we know more, and espeeially to those of Egypt, some of which are in sufficient preservation to allow their relative parts and proportions to be elearly understood. And in this regard it will be seen that those plans of the emple which appenr most in acreement wilh the fext offer the most striking analogies to Eeryptian temples (see the ehapter 'An Egyptian Temple,' vol. i., pp. 69-127, of 'Eygytian Antiquitics,' in Library of Entertaining Knorledge). And althougln it is provable that, from the friendly relations which Solomon hiad alrendy established with Ecypt, Egyptian as well ns Pheenician artists supplied the arlistic labour for the temple in which the Hebrews were themselves deficient, such analogies need not be neeessarily fraced to initation, but to similar conditions and circumstanees producing similar results. The popular notion of a temple, as a vast pile of building in which, as in our eathedrals, large multitudes might nasemble for worship under cover, does not in these eases apply. A temple was a large area, enelosed by a wall, and laid out in courts, where the crowds worslipped and where sacrifiecs were offered; and in colounades around these courts, where the worshippers might walk or find shelter from the sun or rain. Apartments for the numerous officiating priests, and elambers for stores and treasures, also inereased the display of building wilhin and around the enelosing walls. The saered editice itself, being only intended to contain tho saered symbols, and being entered only by the priests for particular services, was never large; buit what it wanted in size was made up in eost of materins, and splendour of workmanship. These ideas apply equally to the temples of Jerusalem and of Eigypt; and in both the sacred building was divided into three parts, whicl were in Solomon's temple ealled the Porel,, He Holy Plaee, and the Most Holy Mlaee, answeriug in some degree to the porch, the nave, and the chancel of Clluristian eluureles, the parts of which were indeed arranged originally will an intended reference to those of the Jewibl femple. Firen the pillars called Jachin and Boaz, which Solomon set up at the porch, find analogies in the obelisks which the Egyptians placed in a corresponding situation. 3. Another souree of illustration is olfered in the more amplo description which is given by Josephins of Herorl's temple ; for althongh that appears to have been arelitecturally a greater and more muposing fabrie than that of Solonion, there is no doubt that it had the same parts, and that they were similarly proportioned to eaelt other. 4. The antient Christian churelhes also offer some analogies of arrangement, which elain to be eonsicicred when viewed as intended retrosplects of the Jewisll temple. Ainong the plans of antient ehurches given in Coleman (Autiq. of the Christian Church, Andover. U. S., 1841), that of the chureh at Tyre affords some renarkable illustimtions.
The site of Solomon's Temple was the summit of Mount Morial, one of the eminenees on which Jerusalem sloorl. This eminence rose to 10 great heiglit within the cily, hut was hiyll and steep alove the valley of the Kedron, which it overlooked. It faeed the Mount of Olives. The Moxque of Oinar now oceupies the srme site; and the iniposing ligure
whieh it makes in every view of Jerusalem shows that a more oulvantageous situntiun could not have been chomen. The top of the lill was levelled, and the sides banked up to afford a sufficient area. This area was divided into ino (but in Herod's temple three) courts, in the outermost of which stood the people. It was sopyarated by a low wall (or, as some think, by a latticed fence or frellis) from the inner eourt, called the Court of the l'riestos in which was the great altar of burnt oflerings, and where the priests and Levites officiated in view of the people, and in tront of the holy house, or proper temple. The proper temple, is previously indieated, was an oblong building. It was 70 cubits in length, 20 in width, and 30 in height : this last was however only the elevation of the house or holy place, for the innermost sancluary was but 30 eubits high (1 Kings, vi. 30) ; and allhougls the poreh is said, in 1 Chron., iii. 4, to have been 120 eubits high, or four times the height of the main building, the numhers in that text are now generally admilled to be corrupted: 20 culits, which we find in the antient versions, is probably the true number; being the same height as the sanetuary: The poreh covered the breadth of the building 20 cubits, and was 10 eubits deepl: the holy place was 40 cubits long ly 20 wide; and the sanctunry was a perfeet square of 20 eubits. The building fronled the east. Along the north and south sides, and the west end of the structure, were attached certain luildings called 'side chambers,' in three stories, each five eubits high. This made 15 cubits of total deration, which was not more than half the lieight of the main buildug, in whose walls, above, there was therefore roon for the splayed windows whieh gave light to the femple.
The saered utensils were of the same description and occupied the same relative position as in the tabernacle: but some of them were larger, as the altar, candlestick, \&c., in proportion to the more extensive estallishment to which they belonged. The prineipal of the new utensils was the great brazen laver for ablutions, which rested on the batckis of twelve oxen of the same metal.
Tho inner sanetuary was separated from the holy place by a rich eurtain or veil. The whole of the interior was wainscoted with eedar, earved with figures of eherubim, palm-trees, and flowers, and then overlaid with the finest gold. The doors were also eovered with gold: all the utensils in the honse were of that metal ; and cven the floor appears to have been overlaid with it (l Kingss, vi. 30). It is this lavish expenditure of precious metal upon the building, and the claborate workmanslip bestowed upon it, whieh, rather than its arehiteetural effect, accounts for the reports' of its surpassing magnificence, and for the immense wealih consumed in its erection. The popular impression eoneerning it, however, being based mither upon the exaggerated statements of Joseplus than upon the more sober aecounts in Seripture, docs, 110 doubt, greatly exceed the tmith. More might be said of its richness than of its grandeur. Its wealth is indeed attested by the spoliations of successive limes and conquerors; and it nay be well to remember that this was not, is in other nations, one of many temples, but was the sole temple of tho wholo nation, and in the production of which the whole nation could therefore eoncentrate its zesourees.
The Temple of Solomon retained its pristine splendour only for forty years, when its treasures were plundered by Shishak, king of Fgyth. Afler undergoing various olher profanations and pillages, it was finally destroyed by the Chaldrans under Nebuchadnezzar, a.c. bise, after having slood 417 years. Alter the Captivity, the 1emple was reluilt', on the sane plan, and on a more extensive seale, but with greatly diminished splendour. This fenple stood until some years before the birth of Christ, when IIcrod the Great, to propitiate his suljects, whom most of The measures of his reign had tended to exasperate, undertook to rebuild it on a larger scale and with greater magnitiecuce. In nine years, duting which so, (o) workmen were constantly employed, he aceonplished his original design; and produced a fabric, whith, white the same in its essential eharacteristics, muelh surpassed the Temple of Solomon in extent and architecture, although the precious metal may have been less lavishly displayed in the interior decorations. Many years after, the Jews kept workmen einployed in embellishing the pite, and in the ercetion of addifion:al buildings (John, ii. 20). In A.1. 64, nothing remained to be donc, and the dismisal at
once of 18,000 workmen exeited some alarm for the part they might take in the troubles which had already commenced, and which, a few years after, brought upon the nation the armies of Rome under Vespasian and Titus, and involved the temple and city of Jerusalem in one common ruin, A.D. 70.
TEMPLE, SIR W1LLIAM, an eminent statesman, diplomatist, and writer, was born at Blackfriars, in London; in. the year 1628, and was the cldest son of Sir John Temple, who was Master of the Rolls in Ireland, and author ol a History of the Irish Rebellion which began in 1611. He was educated first by, lis uncle, Dr. Henry Iammond, a learned divine and zealous royalist, and was afterwards, on his uncle being tumed out of his living by the parliament, sent to a school at Bishop-Stortford, and, at the age of seventeen, to Emmanuel College, Cambridge, where the celebrated Cudworth was his tutor. He, is said by his sister, Lady. Giffard, who wrote a memoir of him; to have passed a gay idle lite at Cambridge, and, after having been there about two years, he went away without a degree. He then weat abroad, and having spent two years in France, and visited Holland, Flanders, and Germany, he returned to England, skilled in the French and Spanish languages. As he was about to start on his travels, he met, in the Isle of Wight, the young lady to whom, after many delays and difficulties, arising out of want of fortune and the opposition of the friends of botl, he was cventually united. She was the daughter of Sir Peter Osborne, a devoted adherent of Charles I., and a great sufficrer by his devotion: letters of hers whieh are preserved show her to have been a very superior woman: she remained faithful to Temple through a long engagement, amid many and great discouragements, and at last, after the death of her father, and after six ycars' waiting, they were married in 1034. It appears that, among many offers which she rejected for Temple, was one from IIenry Cromwell.

Temple was trained to no profession, though his father was poor, independently of his appointment as Master of the Rolls in lreland, and when deprived of this for some years during the civil wars, was execedingly hampered in his finances. Sir John Temple was restored to this appointment in 16:3, the year before his son's marriage; and his son, after his marriage, resided with him in Ireland. Under his father's roof in Dublin, or in a country-seat in the county of Carlow, Temple passed five years, which were dirided between literary pursuits and county business, and which were marked by the birth and death of five children. In 1600 Tenmple was chosen, without solicitation or even previous knowledge, member of the Irish convention of that year for the county of Carlow.

After the Restoration he was re-elected for the same county in the first regular parliament that was called: lie flad his father for his colleague, and a younger brother was member for the city of Carlow. Ife appears to have been 2 very active and useful member of parliament. In July, 1661, he was one of the commissioners sent to wait on the king, and urge scyeral measures affecting the interests of Ireland. On the prorogation of the parliament in 1603 , Temple went to reside in England. He earried an introduetion from the duke of Ormond to lord Arlington, secretary of state, who eonccived a great fondness for him, and procured him to be appointed, in 1665 , on a seeret mission to the bishop of Münster. The object of this mission was to watch orer an invasion by the bishop of Münster of the United Provinces, towards which England, then at war with the Dutch, had guaranteed a subsidy; and though the bishop, who harl made the first advanees to Eingland, went off from his engagenient, and, in fear of France, conelurled a separate treaty with the Dutcl, Teinple was not in. any way to blame for this failure of the object of liis mission. Indeed his employer was so satisfied witl the way in which he had acquitted hlmself in his first cliplomatic employment, that he was appointed in the same year, through I.ord Arlington's influence, resident at the viere-reyal court of Spain at Brussels.
Temples residence at lBrussels for two years presents no feature of peenliar interest. It was his business at tirst to watel orer the neutrality of Spain in the Duteh war, and assist in cultivating a grod understanding between Spain and England, with n riew to a treaty which was then being negociated at Madrid, but which never came to pass, and subsequently to bring about peace with the United Provinces and with France. This last object was recom-
plished in July, 1667, by the treaty of Breda, which how: ever Temple had no part in negoeiating, and the mode of bringing about which he had not altogether approved of. In 1666 Temple's services had been rewarded, without any solicitation on his part, by a baronetcy.
In the close of the year 1667 Temple received orders from Arlington to repair to the Hague, to negociate a treaty against France, and for the protection of the Spanish Ketherlands from that power; and by his energy, judgment, and address the celcbrated Triple Alliance was concluded on the 33 rd of January, 1668 . England, Holland, and Sweden bound themselves by this alliance to bring about peace between France and Spain, and to prevent France from entering the Low Countries. Temple had thus achieved an object which lie had had at heart, even before the treaty of 13reda, so favourable to French views, a blow to the ambition of Louis'XIV. The successful conclusion of this treaty established Temple's diplomatic fame, and was of the first importance to England and Europe.

Temple was next appointed ambassador at Aix, where the negociations for peace between France and Spain, in pursuance of the Triple Alliance, were to be carried on. On the conclusion of the peace of Aix, he was appointed ambassador at the Hague. Here lie continued, carrying out the policy of the Triple Alliance, till Scptember, $16 \overline{0} 0$, when a complete change having been silently worked in the councils of Charles II., and the cclebrated secret treaty having been made with France, Temple was ordered home, found himself on his arrival in England no longer in the confidence of Arlington, and in the summer of 1071 was dismissed from his post. 'There was a rumour that Temple's dismissal had been made a condition by the French government. (Temple's Works, ii., 179.) He now retired to Sheen, and meditated never again returning to public life, saying that "he had been long enough in eourts and public business to know a great deal of the world and of himself, and to find that they were not made for one another.'
During this retirement Temple devoted limself to gardening, the improvement of his house at Sheen, and literature, and published several of the works on which his reptetation is a writer rests ; among them, the 'Observations upon the United Provinces,' published in 1672. Temple was summoned however from his literary retirement in the summer of 1674 , to conelude the second Dutelt war, and he obeyed the summons. He mis on the point of starting for the Hague, as envoy and plenipotentiary for this purpose, when the Spanish ambassador in London received full power to negoeiate there, and in three days the freaty of Westrninster was concluded. Temple was now offered the embassy to Spain, which, at lis father's wish, he refused. He was very soon alter appointed again to the Hasfue, as ambassador extraordinary, and the next jear ambassador to the congress at Nimeguen. The peace of Nimeguen, concluded in the beginning of 1679 , ill carried out the riews which Temple assiduously laboured to establish, and he was glad to avail himself of a point of form for the purpose of withholding his signature to the treaty.
Temple now returned to England to receive an offer of the post of scerctary of state, which he refuscd. He was much consulted by the king, who had just lost the services' of Lord Danlyy; and in the ministerial difficulties which followed upon Danby's impeachment and committal, Temple subnitted to the king a plan of a council, which the king adopted: not always following Temple's opinions however as to the persons of whom it should be composed, and, above all, in defiance of his advice, placing Lord Slattesbury at the head of it. This council was not longlived, but it did not die intil after its author had been removed from it. [Charles 1I.]
Thus cnded Temple's political carcer. The remainder of his life was passed in the country, and divided between. learuing and rural pursuits. 1Ie now composed his 'Memoirs.' He died on the 2th January, 1609. No particulars of his death have been transmitted to us.

After the Revolution of 1688 , Sir William Temple refused office from Wilham 11I., who was very anxious for his counsel and for the athority of his name. But his. son, with his permission, accepted the place of scerefary at war, and within a week after committed suicide.

Neither as statesman nor as author does Sir William Temple oecupy a foremost. place; but in both churacters he is more than respectable. The following is a happy
deseription, by Sir Janies Mackintosl, of his charaeter as diplomastist and statesmnn., 'He was a most admirable person. Ife seemis to be the model of a negotiator, uniting politeness and address to honesty. His merit ns a domestic politician is also very great : in an age of extremes ho was attached to liberty, and yet averse from endangering the publie quiet. Perlapps diplomatic hatiits had smoothed a way his turbulence tou nuth for sucha government as England.' (LLife of Mackintosh, ii. 199.) Dr. Johnson, speaking of Sir Williau Tenngle as a writer, has said that the was the first writer who gave cadence to Euglish prose.
There are two or three biogmphies of Temple; one by Abel Boyer, published about fourteen years aner lis death, and another by his sister. Jady (iiflird, prelixed to the edition of his works published in 1731, 2 vols, folio. A very laboured and somewhat dilfuse lifc has been lately published by the late Mr. Perergrine Courtenay, and to this work all who wishl for the fullest information as to Temple's life will resort. The best edition of 'Temple's works is that published in 1814, in 4 vols. 8 ro.
TENACITY (from the, Latin 'tenacitas,' 'the power of holding'), a property of materinl bodies, by which their parts resist an efliort to force them asunder.
This jroperty is a result of the corpuscular forces acting within the insensible spaces supposed to exist between the partieles of bodies: it is consequenty different in different materials, and in the same material it varies with the state of the body with respect to temperature and other cireumstances.
Those eorpuscular forees consist of attrnetions which vary according to unknown laws with the distances of the partieles from one another, and cren at certain distances they become repulsions; but, in all boties except the clastic fluids, the combined actions of adt the puirticles produce that coherence which conslitutes the tenacity of the masses. In those fluids the particles have no coherenee, and when the pressures to which they are subject are renored, those partieles imnediately separate from each other with forces depending, probably, upon the quantity of caloric with which they are combined. In non-elastic fluids and in solids, tenacity exists, but in very dilferent degrees; its forec depending upon differences in the intensity of the attracting powers between the particles, upon differences in the distances of the partieles themselves, upon the action of the caloric, and, in some cases, upon variations in the pressure of the almosplere.
The molecules of liquids adhere to one another, and gencrally to those of solid bodies, by attractive forces which deerease very rapidly; and, at insensible distances from the supposed places of contaet, the adhecion entirely disappears (capiluary Attraction): the real tenacity of the molecules being, as Dr. Youug observes, equal to the exeess of their mutual attractions above the forces of repulsion arising from the actions of the calorific partictes. It is on aceount of the small distance to which the altrartions of the fluid molecules extend, and to the freedom with which the particles move on one another, that fluids appear to have so little temacity; but from the weight of water which it supports in glass tubes, Mr. Robisou has estimated that the mutual attraetions of the particles of water on a surfaee equal to one square inch must far exceed 190 pounds.
Grains of dust or sand, while dry, have no power of arlhering together, probably hechuse their forms do not permit a sufficient number of points on their surfaces to be hrought within the distance at which eorpuscular attractions take plaee ; but, if slightly wetted, the mutual attractions between the dust and tho liquid produce a certain degrec of tenacity: this is very sensible in clay moistened with water; for being then drawn into the form of a roll, it is capable of beariny a small weiglit surpended from it. Tenacily exists in ratious degrees in riscid fuids, as oil, gum dissolved in water, \&ce. : sealing-wax and class alko, wheu heated, lose their brittecress, antlare capable of being moulded into any form, while their particles retain a considerable degree of adhesive power.
The tenacity of solids constitutes, in part, the sulject of The power of bodies to resist strains; and ander Materanls, Streverth or, will be found a table ($p . Q$, col, 2) of the weights which would overcome the force of coltesion in rolsimimoreably fixed at orre end and pulled in the direetion of their length: those weights may be considered as
the measures of tenacity in the different kinds of material ; and it nay be liere added that, from a mean of several experiments made by Mr. Telford on the tenacity or forged iron, the breaking strength, when reduced to that whech it would be if the area of a transverse section of the bars had heen one square inelh, is $29+$ fons. The bars were cylinders or parallelopipeds varying in length from 1 foot 5 inches to 2 feet 3 incles; and in area of section, from 0.56 to 3.14 square inclies: they stretched in length from 2 inelies to 4 incles before they broke. Mr. Telforl found also that a bar of enst-steel bore suspended from it $27 \cdot 92$ toins, a har of blistered steel 17.27 tons, and of cast-iron (Welsh, pig) $7 \cdot 26$ tonss ; the area of the section in all being one stluare inch. Tenacity in solid bodies varies greally will their templerature. M. Coulonib took a piece of cop-per-wire, which, when cool, carried 22 lus. suspended from it ; ancl, upon bringing it to a white heat, it would scarcely bear 12 lls .
Though, when a piece of metal is fractured, the parts will not by simple adjunction athere together; yet, in some cases, by hammering them upon one another, so many points on their surfaces may be brouglit within the liniits to which the force of cohesion extends, that they will aequire' a tenacity equal to that which the netal had in its matural state.
The temacily of wood is muel greater in the direetion of the length of its fibres than in the transverse direction, the fibres being united ly a substanee having little colhesive power. Few experiments lave been nade on the tenacity of wood perpendicularly to its grain, as it is called ; and from those of Mr. Emerson it appeass to vary from one-tenith to one-seventh of the tenacity in the other direction. When a struin takes place in the direction of the fibres, they become disengaged lrom one another, and thus lose the strength which arises from their lateral cohesion: they then beoome subject to separate strains; the weaker ones are firs ruptured, and at length all give way, leaving au irregular surface of fracture.
With respect to metals, the processes of forging and wirc-drnwing increase their tenacity in the longitudinal direction; the augmentation of friction and lateral cohcsion, arising from the partieles being foreed logether in the transverse direction, more than compensates for the diminution of the altraction which may restult from the particles being foreed or drawn farther asunder fongitudinally. Copher and iron have their tenacity more than doubled, while gold, silver, brass, and lead have it more than tripled ly those metals being drawn into wire.
Mixed metals have, in general, greater tenacity than those which are simple: the tenacity yaries with the different proportions in which the metals are mixed; and the proportions which produce the greatest strength are different in different mietals. The only experiments on this subject with which we are nequainted are those of Muschenbrock; and from these we find that a compound of which $\frac{8}{8}$ were gold and $\frac{6}{6}$ copper had a tenacity, or force of cohesion, more than double that of the gold or copper alone : brass, eomposed of copper and zine, had a tenaeity more than double that of the copper, and nearly twenty tinnes as grent as that of the zine: a metal of wlich $\frac{z}{}$ were block-liu and I lead, had a strength more than doulule that of the tin; and a mixture of which b were lead and d zine had a tenacity nearly double that of the zine, and nearlv five times as great as that of the lead alone.
TENAILLE, in Fortification, is a rampart raised in the. main diteh, imnectiately in front of the curtain between two bastions; and, iu its most simple form, it consisits of two faces conciding in direction with the faces of the bastions, and, consequently, forming with each ollor a reentering ningle. Generally, however, it consists of threc fiees, of which two lave the directions jnst mentioned and the third forms a curtain which is paiallel to that of the eneeinte. See 1', Fig. 1, Bastrox, and 1' (in the plan, 1. Siti), Vortification.

This work was origiually proposed ly Yaubn, in order to serve the purpose, in part, of a tilluse--braye (19 Ausssisarave], since the fires of musketry on its faces may be employed, in conjunction with those of artillery and musketry on the flanks of the bastions, to oppose the passage of itre enemy across the muin ditch when about to monnt a breach in the ramparts of the place.
The relief of the tenaille, or the elevation of its crest above the bottons of the ditch, is determined consistenlly
with the intention of thus defending the main diteh; and in order that the defenders of the tenaille may not be injured by the shot fired over their heads, from the flanks of the bastions, it is usual to make the crest of that work coincide with a horizontal plane passing three or four feet below the point where a line of fire from one of those flanks would eut a vertieal plane, bisecting the angle of the fenaille or its eurtain. The height thus determined will allow the parapet of the work to be clevated from two to four feet above the terreplein of the ravclin in its front; and, consequently, from the curtain of the tenaille a grazing fire of misketry might be employed to protect the interior of the ravelin, or of its reduit, if there is one, should the defenders of either of those works abandon it (in consequence of an assault being made) before the enemy has time to cover himself in it by a lodgment : that fire will also contribute powerfully to prevent the enemy from attempting to enter the ravelin by its gorge.
Vauban, at first, gave to his tenailles short flanks ncarly parallel to those of the bastions, but he soon abandoned that construction, perceiving that though the defenders might thus fire correctly along the main ditch, yet the parapets of those flanks were liable to be destroyed by the fire from the enemy's counter-batteries [H, Fig. 1, BasT10 ́], and they were enfiladed from the rampart of the ravelin (Q), or from the glacis of the places of arms (L).
Besides affording additional fires for the defence of the main ditch, the tenaille serves to eover, in part, the revetment of the curtain in its rear, and prevent it from being breached by fire from any lodgments of the enemy on the glacis. Its parapet serves also to mask the postern in the curtain of the enceinte, which would othervise be so much exposed to the fircs from the counter-batteries, that the defenders might be unable to eommunicate through it with the outworks. On this accomnt the breadth of the ditch between the curtain of the tenaille and that of the enceinte is made such only as to allow the parapet of the former, with the relief deternined as above mentioned, to conceal the postern from the view of the cnemy on the glacis. This ditcli is adrantageous in preventing the defenders of the tenaille from bemg injured by the splinters which may be detached from the flanks and eurtain behind it; and, when dry, it serves to cover bodies of troops which may issue from thence and attack the eneny while crossing the main ditch, previously to making an assault. If the main ditel contains water, the tenaille serves to cover the boats and rafts by which the defenders of the enceinte communicate with the outworks.
The tenaille has been considerably improved by Bousmard, who, returning, in one respect, to the original idea of Vauban, has given flanks to the work in order that the main diteh may be direetly defended by them. These flanks are raised high enough to cover the revetments of the flanks of the bastions, while their upper surfaces may be grazed by a fire of artillery from thence ; and, instead of being formed with open terrepleins, and parapets for musketry, as usual, each flank of the tenaille is provided with easemates, or yaults, for four pieces of artillery which are placed nearly on a level with the terreplein of the corered-way. These guns are consequently capable of being directed argainst the counter-batteries (H) of the enemy, as well as of defending the foot of a breach in the face of the bastion.
This construction was adopted by Chasseloup de Laubat in the tenailles of the detached works which he executed about Alessandria, in Italy, when Napoleon (after the battle of Marengo) proposed to make that city the base of his operations beyond the Alps. But, in order to avoid the mischief which results from a fire directed against casemates (the shot in striking the chceks or sides of the embrazures detaeling from them splinters, which being driven into the rault do more injury to the defenders than the shot itself), this enginecr raised before each flank of the tenaille a mass of earth which was reveted witly brickwork, and perforated in such directions that, in defending the ditch, the shot from the casemates could be fired through the apertures, while the mass served as a mask which would prevent the enemy from seeing the embrazures in the flanks of the tenaille.
Beliflor, in his 'Seience des Ingenieurs' (1720), proposed tenailles with each face in the form of a circular are, extendiug between the curtain and the shoulder of the bastion. But this eonstruetion, to which the name of
'ram's horns' was given, lias seldom been put in praetice.

Any work belonging either to permanent or ficld for: tification, whieh, on the plan, consists of a succession of lines forming salient and ri-entering angles alternately, is said to be de tenaille.
TENAILLON; or Great Tenaille, in Fortification, is a speeies of exterior work which has been occasionally coinstructed before the faees of a small ravelin, with a view of increasing the strength of the latter, procuring additional space beyond the diteh, or covering the shoulders of the bastions. They were invented by Vauban, who, however; very seldom construeted them; and subsequent engineers have generally considered them as inferior in defensive qualities to a counterguard [QQ, Fortification, Fig., p. $377]$ placed over the faces and salient angle of the ravelin.
The form and position of a fenaillon may be understood, Y being supposed to represent a small ravelin, if beyond the ditch of the latter the ramparts of the right and left faces be produeed till each of them meets a -rampart nearly perpendieular to the face of the bastion and extending to the place of meeting from the counterscarp of the main ditch at a point opposite the middle of that face: The works thus formed, one over each face of the ravelin Y, constitute a tenaillon; before eaels line of rampart is a diteh, and part of the general covered-way, the main ditch and that of the ravelin being in the rear. The two faces which are beyond the salient angle of the ravelin would, if produced towards the latter, form with- eaeh other a re-entering angle, whose vertex would eoincide with that of the said angle.
The objections to tenaillons are, that the besieger would experienee little diffeulty in establishing a lodgment on that part of the eovered-way or glacis which is immediately in front of the salient angle of the ravelin; and in this sitnation he would be able to breacl the faees of the two half-bastions in four plaees, by fires of artillery directed along the ditches of the ravelin and those on the side faces of the tenaillon. The salient angles of the tenaillon; and of the ravelin which it covers, may be breached at the same time, and, when the ditehes are dry, it 'would 'be possible to atfack and earry the ravelin at the time of making the assaults on the tenaillon: then, the enemiy having got possession of the former work, any retrenchments whieh may have been made in the tenaillon must necessarily be abandoned by the defenders.

At the siege of Lille, in 1708, one of the tenaillons held out a long time, but this is aseribed by French engineers rather to the faulty manner in, which the -siege was eonducted by the allies than to the strength of the work.
The re-entering space between the two faees which are in the prolongation of the faces of the ravelin, and which constitute the head of the tenaillon, is sometimes occupied by a small redoubt, consisting of two ramparts perpendieular to the faces which have been just mentioned; and thus there may be obtained'a" good crossing 'fire for the defenee of that part of the covered-way which is concealed by the salient angles of the tenaillons from the defenders of the bastions.
Demi-tenaillons are works placed also on the sides of a ravelin, and consisting of two ramparts which are perpendicular to and nearly opposite the middle of the faces of the bastions and ravelins: these are-usually accompanied by counterguards which cover the salient angles of the latter works, and are ealled Bonnets.
TENANCY. [TENANT.]
TENANT. [Tenure.] Tenants, in the more extended legal sense of the word, are of variotis kinds, distinguished from each other by the nature of their estatés; such as tenants in fee simple, in fee tail, for lifé, \&c. [Estate; Tenant in Fee Simple, \&e.]
TENANT AND LANDLORD. The word tenant in the more limited lergal sense, which is also the popular sense, is one who holds land under another, to whon he is boumd to pay rent, and who is ealled his landlord. The present article is confined to this sense of the word, in whiel it is proposed to show the nature, construction, and effcet of the contract by which the relation of landlord and tenant is created; the rights, liabilities, and duties of each under it; how it eeases or may be terminated; and the legal means by which the rights and duties of each may be enforeed.

The wort land is here used in its comprehensive legal sense, which means not only the actual land itself, but also all thinge, sucli as huildinks, wouds, and water, whieh may be uponi it. Any one who has an estate in land, proviled he is also in prossession, may let the land to another. The charaeter and duration of the letting are partly regulated by the malnre of the interest of the lessor or lindllord and partly by the contraet of letting. Thus one who is the owner of land in fee simple may let the land for any limited periol, white one who holds oully for life camnot let for any Longer period than the life upoin whicla his eslate depends, unless he has a special power to grant leases; and if he blould let for any longer period, the interest of the temant will eease on the expiration of the life. To constitute the relation of landlord and tenant, the period for which the land is let must be shorter than that during which the land is held br the lessor, so that the lessor may have a reversion. If he parts with his whole interest, he is an asssignor, not a lessor. Where the letting takes place by an express contract between the parties, the contract is called a lease. [Lease.] A lease may be made ly deed, by writing without deed, or by a nere verbal agreement. By the 29 Ch . II., c. 3, s. 1, all leases, estates, sec. in land, \&'e. not put into writing, and signed by the parties so making or creating the same, or their agents thereunto verlaally nuthorized or by writing, shall lave the foree and effect of leases or estates at will only, and shall not either in law or equity be deemed or taken to have any other or greater force or effect, \&ee. The second section of this aet makes an exception in favour of 'all leases niot exceeding the term of three years from the making thereof, whereupon the rent reserved to the landlord during such term shall amount nnto two third parts at least of the full improved value of the thing demised.' Under the construction which this statute has received, an unwritten lease for a longer period than three years will create a tenancy froml year to year, and the terms as to remt, \&e. upon which the tenant holds will be those which are agreed upon in the unwritten lense. The loss of a lease will not destroy the tenancy, provided the previous existence and the terms of it can be proved.
But the relation of landlord and tenant may be created otherwise than by a formal lease. If one man with the consent of another occupies his land, a contract of letting is assumed to have been made hetween thenn, and the oceupier becomes tenant to the owner. Formerly suels tenants were'called tenants at will, and might have been turned out at any time by the landlord; but now a more convenient and reasonable eonstruetion of their occupation prevails, and they are cousidered to be upon the same footing as if the lands had been let to them for a year dating from the commeneenent of their oceupation. At the end of the first year, a second year's tenancy hegins, unless six months' notice of the intention to determine the contract has been given by either party to the other, and so on from year to year. The same construction is applied to enses where a lenant continues to occupy land after the expiration of a lease made by deed; but in this ense all the eovenants of the expired lease as to payment of rent, repairs, insurance, and the like are held to be in force unless the lease is cancelled by destroying the seal; and even if there slould be a verbal agreenent for a different rent, still the old covenants subsist, unless the lease is cancelled. If a party who has the power to set aside an existing lease chooses to receive rent under it, he will he held to lave confirmed it; and eren where a lease lins determined, as a lease granted by a tenant for life for a longer period than hee was entitled to grant one would hecome upon his death; yet it the remainder-man or reversioner has allowed the tenant to lay ont inoney on the premiese, he will be prevented by a court of equily from diyputing the lease.
Besides tenanciea for fixed periods, a tenancy inay exist at Will and by Suffermiee. [1pwatit at Will; Treant at supprrance.] A tenant at will camot lanfully be turned out of possession, nor ean the landlorl suceeed in an action of cjeetment against him, till after a demand to quit has been unade upon linin by his landlord; Int a tenant ly sufferance may be tumed oit by an action of ejecturent without any demand. A master may let lund to liis servant, but where the servant is allowed by the master to oecupy premises belonging to him for the mere purphose of more conveniently periorning his duties as servant, or as
in part or total payment of wages, the servant does not therefore become a tenant, and the preasises are considicred to be in the ocenpution of the master. The law as to landlorlds and tenants. generally applies also, so firr as it is not restricted or varied by the particular circumstanees of the contract between the parties, to the case of the letters and oecupiers of lodgings.
In every case where the relation of landlord and tenant exists, either lyy express or by implied contract, certain termas are implied by law to have been agreed upon ly the parties ns forining part of the contract. It is of course in The power of the partics, where the contract is express, to quatify these terms so implied by the language of the contract itself. But it may be olserved that as these terms are eomprehensive in their mature, and distinecly understood in law, the interests of parties are oflen better consulled by leaving them to the general protection afforded by these implied terms than by attempts to define by enlumeration in detail the respeetive riglits and duties of the landlord and tenant. The terms implied on the part of the landlord are, that the tenant shalt quietly cujoy the premises; on the part of the tenant, that he will pay rent, keep the premises in repair to a certain extent, as hereatter mentioned, and use the land, \&ec. in a fair und lusbandlike manner.
As a general rule it may be laid down that the tenant is not entitled to set off argainst his rent, debbs due from the landlord to him; but there are some exeeptions. When the landlord is himsself tenant of the premises to a superior landlord, and neglects to pay his rent, and the oceupying tenant is called upon to phy to to the superior landlord, he may do so, and set it off agrainst the rent due from him to his own landlord. P'aymenis also inade by the tenant under the land-lax act (35 Geo . 11 I .) may be set off against the rent due to his landlord. When a landlord is bound to repair, and the tenant, in order to prevent tirther dilapidations himself, expends money on the repairs, or the landlord las undertaken to repay the tenant the amount of rates and taxes, \&se. paid in the first instance by him, the temant may set off. If a tenant laas coyenanted without exeception or reservation to pay rent during the term for which the leise has been granted to him, he will be bound to pay it even although the premises should be entirely destrojed by fire or other casually; and even although he should have assigned his lease to another and ceased to be in possession, he will still remain liable under his covenant to pay rent. But the party to whom he has assigned it will, as a general rule, remain liable for rent to the original landlord only so long as he continues in the possession of the premises.
Generally, the tenant is bound to repair the premises. Repairs lave been divided into two linds; sibstantial repairs and ordinary repairs. The dlvision appears a very simple one, but great difficully often oceurs in practice in deternining 10 which kind any particular item of repair belongs. Telants for a long term of years are said to be liable for substantial repairs, sucla as beams, roofing, \&e. ; tenants from year to year are liable ouly for ordinary repairs, and for injuries caused by their own negligence. A landord is in no ease, unless under a special agreement to that effect, liable to any action for not repairing nor even for not rebuilding where there has been a total destruction of the premises. But in the case of short temancies, if the handlord should not rebuild or do the stlbstantial repnairs necessary, the tenant would be juslified in quitting the premises and would ecase to be liable for rent. It has been allrealy observed that a tenman mider a lease which contains covenants to repair, who by holding over and paying rent after the expiration of his lease becomes a yearly fenumt, will still be liable to repmir in the manner provided for by the covenauls. Surch a temme, therefore, though ouly a yearly lenant, may be liable to do sulbstantial repairs ; and if hie wisties to avord such a lialility, he should guard aramint it by an expres agricement. In the case also of a lense which thongh invalid has been acted on by the parties as if inlid, the cos emants of the lease will be looked to for the purpose of determining what are the chuties and liabihtics of the parties us to repairs, \&e. No tenant, in tle absence of an afrectment to that effect, is bound to rebuild after aecidental destruetion of the premises by fire. But under a general corcnant to repair, and leare regmired, the tenant is bound to rebuild even in the ease of destruction by fire. Core-
nants to repair are said to be construed by the courts favourably for the landlord, but the temant is not bound to counteract the natural consequences of the wear of time and of the elements.
In agricultural tenancies the lease itsclf generally determincs the mode in which the farm is to be treated, and the meaning of the expressions used will be ascertained by the construction put upon them by persons familiar with husbandry. Unless also the lease expressly or impliedly excludes the operation of the custom of the country, the tenant is bound to conform to it. The custom of the country means the general practice employed in neighbouning farms of a similar description, with reference to rotation of crops, keeping up fences, and other like matters. In leases of farms it is often the practice to protect the laudlord against certain acts of the tenant, such as ploughing up meadow land, \&c., by introducing certain provirions into the lease. These provisions may operate according to the phraseology used, either to assign a penalty or to determine the liquidated damages agreed to be paid for the act done. It is offen a matter of great importance and of some nicety to determine under which class the provisions fall. If under the first, the landlord is not entitled to the whole penalty upon the act being done, but he can only recover in an action the amount of the actual damare which has accrued. If under 'the second, he is entitited to the whole amount of the damages agreed on. Λ covenant by a tenant mot to plough up meadow under a penalty of 5%. ior evcry acre ploughed, is an instance of the first class: a covenant to pay $5 l$. rent for every acre of meadow ploughed up, is of the second class. The right to timber and timber-like frees belongs to the landlord; loppings of pollards and bushes, to the tenaut. Different definitiouss precail in different counties of timber and timber-like frecs, and yarious customs prevail as to what anount of wood the tenant may be allowed to cmploy (after the landlord has been called on to select it) for the purposes of the farm. No tenant, unless he employs the land as a nurseryman or gardener, can remove any kind of shrub from the soil, not even a row of garden box, though phanted bs limself. [WASTE.] Neither can a tenant remove fixtures, though put down by limself. A fixture is a chattcl which is itself let into the soil, or united to some other which is let in. There are some exceptions to this rule in favour of fixtures used for the purpose of tralle or, agriculture, or merely ornamental purposes, where the removal will cause little or no damage. (Amos and Ferard, On Fixtures.)

The tenant in occupation of the premises is, in the first instance, liable for alf taxes and rates of every description due in respect of the premises. The party therefore who is authorised to collcet them may proceed against the temant in occupation to recover them. It is generally a matter of agreement between the landlord and temant that the tenant shall pay all rates and taxes cxcept the land tax. If however the landlord lias undertaken to pay the tenaut the rates and taxes, and fails to do so, the, tenant may deduct the amount from his rent, or bring an action to recover it; but this should be done during the current year, and if the tenant allows a considerable time to elapse without claimiug a deduction or bringing an action, he will be held to have waired his clain to recover them from the landlord.
Where a fixed rent has been agreed upon, has bccome due, and is neither paid nor tendered, the landlord, under the exceptions mentioned hereafter, has a right to seize frowing crops, any kindi of stock, goods, or chattels, upon the premises, or pasturing any common enjoyed in right of the premises, whether such things are the actual property of the tenant or not; and if the rent remains unpaid, he may sell them. The exceptions are: Things in actual IISC, as clothes then being worn, or a horse on whicl a person is actually riding. The reason given for these exceptions is that the seizure of goods so circhmstanced would leall to a breach of the pence. Things sent to a tradesman for the purpose of being worked up by him ; goods sent by a principal to his factor for salp, and thic beasts or carriages conveying them; the goods and cattle belonging to guests at an inn ; goods that are niready in the custody of the law, such as goods in a bailiff's hands under a writ of execution, Se. The tools, Se. of a man's tracle, beasts of the plough, Sc., are not lialle to distress
if there are other goods sufficient in value upon the premises. [Distress.]
The contract of letting may cease otherwise than by the mere lapse of time. By 29 Cl . II., c. 3, the Statute of Frauds, a surrender of a lease can only be by a deed or note in writing, signed by the party surrendering or his agent authorised in writing, or by act and operation of law.
The deed or note in writing must proceed upon mutual agreement between the tenant in possession and his immediate landlord, and, besides being signed, must be duly stamped. A lease may cease to exist by act and operation of lav: 1 , upon the acceptance by the tenant of a nevr lease in writing for the same premises from the landlord, the operation of which is to begin at some, perioi during the term for which the original lease was granted; 2 , in the case of a yearly tenancy, where the landlord permits the tenant to quit, and he does quit, and the landlord accepts the possession; 3 , where the estate of the landlord and teuant become united in the tenant, the tenancy ceases to exist; 4, by forfeiture. A forfeiture may arise either lyy a breach by the tenant of one of those conditions which are implied by or attached to the relation of landlord and Lenant, as where a tenant disclaims or impugns the title of lis landlord by acknowledging, for instance, the right of property to be vestcd in a stranger, or asserts a claim to it himself, or by a breach of a condition which is expressly introduced into the lease, the breach of which is to be attended with a forfeiture of the tenancy, as a condition to pay rent on a particular day, to cultivate in a particular manner, \&c. To this head may be referred provisoes in a lease for re-entry by the landlord on the doing or failure to do certain acts by the tenant, such as the commission of waste, the failure to repair, \&e, The coirts are said to be unfavourable to forfeitures ; therefore, when the landlord has notice of an act of forfeiture, or an act which entitles him to re-enter, he must immediately procced in such a way as to show that he intends to avail himself of his strict legal right. If after the commission of the act he does anything which amounts to a subsequent recognition of the tenancy, as by the acceptance of rent subsequently duc, he will be held to have waived his right to insist upon the forfeiture.
A yearly tenancy, where no period of notice is agreed on, nust be detcrmined by a notiee to quit at the expiration of the current year, given six months previously. If the period at which the current year expires is uncertain, the notice should be to quit at the end of the year.which shall first occur after the expiration of six months from the service of the notice. Where a fixed period of notice is agreecl on, what has been said as to the period will apply to the period agreed on. Where different portions of the premises have been entered on at different times, the entry upon the principal portion will, for the purposes of yuitting the premises, be considered as the entry upon the whole ; and in case of a dispute at a trial which is the principal portion, the jury must determine. In the case of lodgings, the time, when less than a year, for which they are taken, will be the time for which a notice is necessary. Thus lodgings taken by the month or week require a month's or week's notice. A notice to quit may be waived by an acceptance of rent or by a distress for rent due after the expiration of the notice.
If by the default of the landlord the premises cannot be occupied beneficially, as where the landlord is bound to repair, \&ec., and does not, the tenant may quit without notice.
The notice to quit need not be in writing, though, from the greater facility of proving it, a written notice is always desirable. It should distinctiy describe the premises, be positive in its announcement of an intention to quit or require possession, be signed by the party giving it, and served personally upon the party to be affeeted by it.
If a tenant, atter having given notice to quit, continues to oceupy, he is liable to pay double rent. If he does so, no fresli notice is neecssery. If he continues to oceupy atter the landlord has given him notice, he is liable to pay double value for the premises.
At the expiration of the contract the tenant is bound to deliver up posscssion of the premises; but if either by apecial agreement or by the custom of the country the tenant is cntitled to the crops still standing on the land, and which are called away-going crops, he may enter for
the purpose of gathering them, and also use the barns and stables for the purpose of threshing and ennseying them away. The in-coming tenant may also cnter during the temaney of the preceding tenant to plough and prepare the Iand.

An aetion for the reeovery of rent may, if the land is let by lease under seal, be in clebt for the amount, or in covenant for the damages incurred by the non-payment of it. If there is no indenture, the aetion may be in debt on the simple contract, or in assumpsit for the use and oeeupation of the land.

If the tenant refuses to deliver the possession of the land, the landlord may bring an action of cjectment to recover it. By 4 Gen. II., e. 32 , which was passed with a view to remove the diffieulties existing under the eommon law as to the neeessity for a formal entry, \&e. by the landlord, it is enaeted that where there is half a year's rent in arrear, no suffieient distress on the premises, and the landlord to whom the same is due lias a riglit of re-entry; lie may, without any formal demand or re-entry, serve a deelaration in ejectment, which shall stand in plaee of the stame.
By the 11 Geo. II., e. 19, and 57 Geo. III., c. 55, if a tenant, under any lease or agreement, written or verbal, though without a clausc of re-entry, of lands at a raek-rent, or rent of three-fouths the yearly value, shall be in arrear for half a year's rent, and shall leave the premises deserted and without suffeient distress, any two justices of the county, at the request of the landford, may go and view The premises, and fix on the most conspicuous part of them notiec in writing on what day, distant fourteen days at least, they will return again to view the premises; and if on the seeond day no one appears to pay the rent, and there is no sufficient distress on the premises, the justices may put the landlord into possession, and the lease shalt beeome void. These proceedings are subjeet to appeal before the judges of assize for the same county at the ensuing assizes.
By 1 \& 2 Vic., $c .74$, where the interest of any tenant of land, Se. at will, or for a time less than seven years, liable to the payment either of no rent or a rent of less than 901 a year, shall have ended or been duly deterimmed, and the tenant shall refuse to quit, the landlord may serve him with a notiee, a form for which is given in the aet, to appear before n justice for the eounty; and if he fails to show satisfactory eause why he slould not give up possession, the justices, on proof of the tenaney and of the expiration of it, may give possession to the landlord. If the fandlord was not at the time of the proecedings lawfully entitled to nossession, he will be liable to an action of 1respass at the suit of the tenant, notwithstanding the aet of parliament.
(Woodfall's Landlord and Tenant; Coote's Landlord and Tmant.)
TENANT AT WILL, AND FROM YEAR TO YEAR. 'Temaney at will,' says littleton, s. 68 , 'is where lands or tenements are let. by one man to another to have and to hold to him at the will of the lessor, by foree of which lease the lessee is in possession. In this ease the lessee is ealled tenant at will beeause he hath no certain or sure estate; for the lessor may put him out at what time it pleaseth him.'

An estate at will may arise by implication, as well as by express words. Thus, where a ienant for years eontinues in possession after the expiration of his tern, and pays rent as before, the parment and aceeptanee of rent constitute a tenaney at will. So, where a man enters under an agrecment lor a lease or a contract for the purchase of an estate, he must be eonsidered at law as the tenant at will of the person who has the legal title. ($10 \mathrm{Vin} ., \mathrm{Ab} ., 400 ; 1 \mathrm{~B}$. and C., 448; 3 Camp., 8.)
Where a mortgagor continues in possession of his land with the cuasent of the mortgagee, after default in payment of principal and interest at the time stipulated in the mortgage deed, he is tenant at will. So also, where the legal estate is vested in a trustee, the beneficinl owner, or cestaique trust, if he he in possession, is considered at kaw as tenant at will under the Irustec. (Cruise, Digest, tit. 9, e. 1, §4.)
Λ tenant at will having no eerfain estate, has mothing which he can giant to another, and a person entering under a grant from a tenant at will is subject to an aetion of trespass. 'Cy. Litt., 57 a.)

A tenant at will has no right to eommit any lind of waste ; but, on the other hand, he is not liable to repuir or sustain houses, sec., and therefore there is no remedy agninst him for permissive waste. (Co. Litt., 57 a; 5 Rep., 13 b.)

A tenaney at will may be determined either by express deelaration of the lessor that the tenamt shall hold no longer, whieh must be made on the lant, or notiee given of it to the lessece (Co . Litt., 5i. b .), or by some act of ownership exercised by the landlord inconsistent with the continuanee of the estate, such as entering on the land and eutting down tress demised, making a feotiment, or a lease for years to cominenee immediately. On the part of the tenant, any aet of desertion, an assigmment of the Innd to another, or the commission of waste, is a determiuation of his estate. A lessor determining the tenaney before the rent is due loses the rent; and on the other hand, the lessee who deternines it before the rent is due must notwithstanding pay it up to that time. If either paty dies, the tenaney, if it be of a honse, continues till the next rem-day; and if of land, until the summer profits are received by the tenant or his representatives. (Co. Litt., $55 \mathrm{~b}, 57$ п.)

Where a tenaney at will is determined by the lesinn, the tenant is entitled to emblements; but not it it he determined by the tenant himself. (Litt., § $68 ; 5$ Rel., 116.)

It is settled that a landlord eannot bing an ejectment against the tenant at will or his representatives without giving sis months' notiee to «uit. (Cruise, tit. 9, e. i., § 15.)

The courts are always inelined to eonstrue demises where no certain term is mentioned, not as estates at will, hut as tenancies from year to year; and the circumstanee of an annual rent being reserved has been eonsidered sufficient to warrant this construetion. (2 Blackst., 1171.) Where a remainder-man receives rent from a tenant under a lease for years wheh is void as against him, before electing to aroid it, a tenancy from year to year is created. ($7 T$. R., 478.) Λ lso where an agrecment for a lease for more than three years is made hy parol, and is therefore void by the Statute of Frauds, there is a tenancy from year to yeur regulated by the terms of the agreement. (5 T. $1 / ., 471$.)
A tenancy from year to year, when once eonstituted. is binding not only upon the reversioner, but his aisignee (1 T. R., 378), and does not eease upon the death of the tenant, but goes to his executors or administrators. (3 T. R., 13 ; 15 Ves., 241.) The tenant is entitled to six months' notice to quit, ending at the expiration of the year, and thus a new year is contimally added to the term as often as the half year's previous notiee is omitted to be given at the proper time. (3 B . and $\mathrm{C} ., 483$.)

A tenant at will is capable of taking a release of the inheritanee after he has entered, but lis estate cannot he the foundation of a remainder. (Litt., iii., $460 ; 8$ Co., Rep. 7 . a.)
TKNANT AT SUFFERANCE, says Lood Coke, 'is he that at first eame in by lawful demise, and after his estate endeth, continueth in possession, and wrongfully holdeth over.' Thus a tenant pur autre ric, eontinuing in possession after the death of epstuique vie, a tenant for years holding after the expiration of his term, and a person who, having been temant at will, continucs in possession after the death of the lessor, are all tenants hy sufferance.

As the tenant at sufferance holds only by the laches of the owner, there is no privity of estate between them, and therefore the temant at sufferanee is not eapable of taking a release of the inheritanee. (Litt., $\$ 460$.) On the sune ground it was held that tenants at sutferance were not bound to payany rent; hut by the 4 Geo. II., e. $2 \mathbb{2}, \$ 1$, it is enaeted that' Where any tenant holds over after demand made and notiee in writing given for delivering the possession, such persons so holding over shall pay double the yearly value of the lands so detained, for so long a time as the same are detained; to be recosered by action of debt, against the reeovering of which penalty there shall be no relief in equity.' By the 11 Geo. II., c. 19, § 18, a similar penalty is imposed on tenants gising notice to quit and afterwards holding over. And by the 1 Geo. IV., e. 87 , various provisions are made for enabling landlords more speedily to recover possession of lands and tenements unlawfully held over ly tenants.

TENANT-RIGHT is the name for a species of eustomary estates peculiar to the northern parts of England, in which border services against Scotland were antiently performed before the political union' of the countries. Tenant-right estates were holden of the lord of the manor by payment of certain eustomary rents and the render of the scrvices above mentioned, are descendible froni aneestor to heir according to a customary mode differing in some respects from the rule of descent at common law, and were not devisable by will either directly or by means of a will and surrender to the use of the same, though they are now made devisable by 1 Vie., e. 26, s. 3. Although these estates appear to have many incidents which do not properly belong to villenage tenure or eopyhold, not being holden at the will of the lord, or by copy of court roll, and being alienable by deed and admittance thereon, it has been determined that they are not freehold, but that they fall under the same general rules as copyhold estates. (Doe d. Reay v. Huntington, 4 East, 271.)
TENANT IN FEE-SIMPLE. Atenancy in fee-simple is the greatest estate whieh a subject can have in land. [Tenure.] The possession of an estate in fee-simple involves a complete power of disposition over the land; and after a grant made in fee-simple the grantor has parted with his whoke intcrest.
The words necessary for transferring an estate in feesimple may be reduced to this form: 'I give this land to you and your heirs.' (Litt., l.) The addition of the word 'heirs' is alssolutely necessary in a deed, and no other expression will serve; for any such words as 'I give the land to you;' or 'to you for cver;' or 'to you in fee-simple,' would carry to the grantee nothing more than an estate for life. But words of limitation, sueh as 'heirs,' are not now necessary to pass a fee-simple by devise. (I Vie., c. 26, s. 28.)

When the tenant in fce-simple dies intestate, the estate descends to the heirs general of the purchaser (in the sense in which that word is explained in $3 \& 4 \mathrm{Wm}$. IV., e. 106), whether male or female, lineal or collateral. [Descent.]
Lands in fee-simple in possession are subject to the courtesy of the husband and the dower of the wife. [Courtest; Dower.]
Lands in fee-simple in the hands of the heirwere suljeet at common law to the debts of the ancestor due to the crown and to specialty debts. By the 11 Geo. IV. and 1 Wm . IV., e. 47, a complete remedy was given for all kiods of specialty debts, both against the heir and devisec ; and by the $3 \& 4 \mathrm{Wm} . \mathrm{IV} ., \mathrm{c}$. 10 , estates in fee-simple are made liable in the hands of the heir or devisce for payment of the simple contract debts of the ancestor.
Estates in fee-simple are forfeited to the crown for high treason. (Co. Litt., 390 b .) In cases of petty treason and feluny the forfeiture to the crown is only for a year and a day, called the annus, dies ef rastum; after which time the estate escheats (in cases of petty treason and murder) to the lord. By the 54 Geo. MII., c. 145, the forfeiture and escheat consequent upon attainder for felony, except in cases of high treason, petty treason, and murder, are limited to the life-interest of the offender. It would seem that this statute leaves the offender the power of disposing of the estate after his decease. Trust-cstates in fce-simple may be forfeited to the crown, but are not liable to escheat.
An estate to a man and his heirs may be given upon conditions or limitations, which are eapable of abridging or defeating it. The estate eannot then properly be called a fee-simple; but is, according to the eireumstances, a conditional, gualified, or base fee. (Co. Litt., 1 b .)

TENANT IN TAIL. The origin and general nature of estates tail have been already described. [Estate; Remander; Settlement.]
The estate of the tenant-in-tail has some essential characteristics. Ile has a right to commit waste of all kinds ly felling timber, pulling down houses, opening mines, and doing other like acts; and this right of the tenant-in-tail carinot in any manner he restrained. (ll Ren., 50 a ; 3 Mod., $498 ; 2$ Vem., 251.) His estate, being an estate of inheritance, is called a tenant by sufferance: he is one who, though lic rightfully entered, continues to occupy wrongfully, as is subject, when it is an estate in possession, to the cuurtesy of the hushand and the dower of the wife. [Courtess; Dower.] The tenant-in-tail is also entitled to the custody of the title-deeds, which the Court of Chancery will order
to be delivered up to him. (2 P. W., 471.) The tenant-in-tail is not bound to pay off incumbrances affeeting the fee of the estate, as he has only a particular interest, and not the entire property in the land; and it scems that he is not in general even bound to keep down the interest on such incumbrances; though if he do pay off such ineumbraneés, it will in general be presumed to have been done in exoneration of the estate. (Cruise, Digest, tit. 2, e. 1, s. 40 : and tit. 15, c. 4, s. 74.)

By the statute De Donis the tenant-in-tail was restrained from alienating his estate in any manner for a longer period than his own life, that is to say, the estate of the alienee, though not ipso facto determined by the death of the tenant in tail, became thereupon defeasible hy his issute or the remainder-man or reversioner. (2 Id. Raymond, 779.)
If the tenant-in-tail conveyed his estate by lease and release, covenant to stand seised, or bargain and sale and grant, the right of entry of the issue and remainder-men was not affected by the conveyance. But a feoffment or fine made or levied by the tenant-in-tail in possession by virtue of the entail, caused what was called a discontinuance of the estate tail, whereby the issue and the persons in remainder and reversion lost their rights of entry and were driven to their action. (Litt., 595, 596, 597.) This diseontinuance might be either in fee, or for a limited period, according to the duration of the estate created by the conveyance of the tenant-in-tail ; but while it lasted it affeeted not only the estate tail, but all the remainders and reversions. (Litt., 620, 625.) A discontinuance might also be produeed by the obligation of a warranty by the tenant-in-tail deseending on the person entitled under the entail. This discontinuance however was but partial, extending only to the heirs general of the person who made the warranty. (Co. Litt., 328, 320 a.) A fine duly levied with proclamations was an absolute bar to the issue, though not to the remainder-men, creating what was ealled a base fee; and by means of a common recovery duly suffered, the tenant-in-tail might bar his issue and alt the remainders over, and makic an absolute conveyance of the estate. [Recovery.]
By the $3 \& 4 \mathrm{Wm} . \operatorname{IV} ., \mathrm{c} .74$, fines, recoveries, and warranties of land were abolished, and by the Statute of Limitations ($3 \mathbb{\&} 4 \mathrm{Wm} . \operatorname{IV}$., e. 27) it was enacted that no discontinuance or warranty wlich may happen or be made after that day (31st of Deeember, 1833) shall defeat any right of entry or action for the recovery of land.' It seems thercfore that no discontinuance, properly so called, can now be produced by any mode of conveyancc, for, whatever may be the form of discontinuance, the last-mentioned statute takes away its effect.
The $3 \& 4 \mathrm{Wm}$. IV., c. 74 , which abolished fines and recoverics, has substituted for them certain modes of assurance whereby the tenant in tail may now at once bar his estate tail and all the remainders over. [Fine; Recovery; Settiement.]

In accordance with the principle which prevented a tenant in tail from alienating his estate for more than his own lifetime, leases by tenants in tail might be avoided after their death by the issue in tail. But by the 32 IIen. VIII., e. 28, tenants in tail were enabled to make leases for three lives or twenty-one years, which should bind their issue, though not the persons in remainder or the reversioner.
The estate of the tenant in tail is not subject to any of the debts or ineumbrances of his aneestor, exeept debts due to the crown, by the $32 \mathrm{Hen}. \mathrm{VIII.}, \mathrm{c}. \mathrm{39}, \mathrm{s} .\mathrm{7} \mathrm{\%}$.
Estates tail are subjeet to the bankript laws. The mode of procedure as to bankrupt tenants in tail is regulated by the $3 \& 4 \mathrm{Wm}$. IV., e. 74 , the $55 t h$ section of which expressly repeals the 6 Geo. IV., c. 16, s. 65 , and virtually repeals the $1 \& 2 \mathrm{Wm}$. IV., c. 56, s. 26 . The powers of the commissioners of bankrupts as to the disposition of such estates are defined (ss. 56-69).

Estates tail are subject to forfeiture, for high treason by the 26 Hen. VIII., c. 13. By attainder for high treason, the estate of the tenant in tail, of his issue, and of all such of lus collateral heirs as would have been entitled to take under the estate tail, are forfeited, but not the estates in remainder or the reversion.
The 26 Hen. VIII. extends only to eases of high treason, and therefore as to felonies the statute De Donis is still in force, and the forfeiture by attainder for felouy extends
only to the life interest of the tenant in tail. (Co. Litt., 392 b .)
TENANT FOR LIFE. Tenancy for life of lands or fenements is the possession of a freehold estate or interest, the duration of which is confined to the life or lives of the tenant or some other person or persons.
The estate of the tenant for life is either (1) such as is created by deed or some other legal assurance, or (2) such as arises by operation of law.
(1) An estate for life may be ereated by lease with livery of seisin, or by any other conveyance at common law which might be employed in conreying the fee, or by a deelaration of a use, or by will. The estate so linited may be either to a person for his own life, or it may be given to one for the life of another, or for any number of lives mentioned in the grant. In the last case, the estate is in effeet one for the life of the survivor of the persons so named. On the other hand, an estate may be granted for the joint lives of A and B , in which ease it is in faet an estate for the life of the person who dies first.

When lands or tenements are conveyed by deed, without any express limitation of the quantity of estate to be taken by the grantee, he takes an estate for life only. This however is the case only when the grantor might larfully ereate such an estate; for if he be tenant in tail, the conveyance, unless it be a lease within the provisions of the stat. 32 Hen. VIII., e. 28 , will pass only an estate for the life of the grantor. (Co. Litt., 42 a.) Before the 1 Vie., e. 20 , a devise without words of limitation conferred on the devisee a life estate only; but now by sec. 28 of that act, a devise, though without any words of limitation, passes the fee simple, or the whole of suelh other estate as the testator had power to dispose of, unless a contrary intimation appear by the will.

Formerly, when lands were given to Λ for the life of B without any words of limitation, if A , or the person to whom he had assigned his estate, happened to die in the lifetime of B, the estate was considered as a kind of hereditas jucens, belonging to whoever first took possession; and the person who did so was called the general oecupant (Co. Litt., 416). [Occupascr.]
A gift to two persons for their lives is an estate in joint tenanes, and for the life of the survivor, if the parties continue joint tenants; but if the jointure be severed, eaeh has then an estate in the moiety for his own life only. (2 Blackst., Com., 187.)
A condition may be annexed to an estate for life, as well as to an estate in fee simple; but the condition, it appears, must not be one prolibiting alienation on pain of forfeiture, such a condition being considered inconsistent with the nature of the estate. (18 Ves., 433.)
(2) The estates for life arising by operation of law are, the estate tail after possibility of issme extinet, and the estate by courtesy and the estate in dower.
The estate fail after possibility of issue extinet arises when, by the death of one of the persons from whom the inheritable issue is to proceed, it has become inpossible that any person should exist upon whom the estate tail ean descend. Thus, if lands be given to A and the heirs of his body by B, his wife, or to A and B and the heirs of their bodies, and 13 die without leaving any issue of their two bodies living. Λ, from being tenant in tail special, becomes tenant in tail after possibility of issue extinet; which is in effect nothing more than a tenancy for life, with certain pecullar privileges remaining to the tenant out of his former inleritanee, the prineipal of whieh is the right of eommituiug waste. (Co. Litt., 27, 0; Cruise, Digest, tit. 4.)

As to the nature and incidents of tenaney by the courtesy and tenaney in dower, see Courtray and Dower.

Tenants for life are entitled to estovers; that is to say, to an allowanee of neeessary mood for the repair of houses and fenees oul the land; but no tenant for life, exeept .tenant in rail after possibility of issue extinet, ean cut down more tlmber than is necessary for sueli purposes, or build new houses, or open mines, without being guilty of waste, unless his estate be, as it may be, made expressly without impeaeliment of vaste. [Waste.]
When a tenant for life dies before harvest-time, his executors will be entitled to the erops then growing on the lands, as a return for the labour and expense of eultivation, and these are called in law Emblements. (Co, Litt.,

A tenant for life is not bound to pay off the prineipal of ineumbrances affecting the inheritance, but he is bound to keep down the interest of all sueh incumbranees. (1 13no. R., 308; 1 Ves. jun., $233 ; 213 \mathrm{roc}$ R., 123.)
In real actions all tenants for life, except tenants in tail after possibility of issue extinct, may pray in aid, or call for the assistance of the person entitled to the inheritanco to defend his title, beeause the tenant for life is not generally supposed to have in his possession the evidences of the title to the inheritanec. (Cruise, Dig., 1. 3, c. 1, s. 26.) It seems to have been formerly considered that the tenant for life had no right to the custody of the title deeds, but the eontrary appears now to be established. (2 P.W., 477 ; 1. Ves., jun., 72 ; 1 Seh. and Le§., 209.)

The tenant for life may convey or demise his tene. ment by the same means as a tenant in fee, provided he does not attempt to convey any estate greater than his own.
If he convey by grant, lease for years, baryain and sale, or lease and release, he can pass no interest greater than that which he himself possesses, the conveyanco for the exeess is merely void, and no forfeiture is incurred. But a conveyance by feoffment, or by any assurance ecquivalent to a fine or recovery, if purporting to exceed the bounds of the life estate, displaees the estates in remainder and ereates a wrongful fee simple. The person entitled to the next estate in remainder or reversion beeomes then inmediately entitled to enter, thereby restoring all the estates which had been displaced by the tortious conveyance, except that of the tenant for life, which beeomes absolutely forfeited. (Litt., 609, 610, 415, 416.)
As to the merger and surrender of estates for life, see Mrrger and Suybender.
The name tenant for life is also applied to the person to whom, in settlements or wills of personal property, is given an interest for life only in the fund which is the subject of the settlement or will. [SETtLement; Will.]
TENANT FOR YEARS. [Estate; Lease; Term of Years: Tenant and landlord.]
TENANTS or TENANCY IN COMMON. [CONmon, Tbnancy in.?
TENASSER1M, or TENASSER1M PROVINCES, is a term whieh has lately come into general use to designate those countries on the west coast of the peninsula without the Ganges which lie on the east side ot the Gulf of Martaban, and were acquired by the British by tho peace of Yandaho (1826) from the Birmans. At that time the boundaries of this country were very imperfectly known, except that they were washed on the west by the Gulf of Bengal. Fiven during times of peaee predatory ineursions had been made both by the Birmans and Siamese, which had the effect of converthg large tracts contiguous to the boundary-line into complete deserts, and thus it happened that the limits of tho Birmese and Siamese countries were unknown to the two states, which here eame into contaet with one another, and esen up to the present time the British are very imperfeetly aequainted with the extent of this possession. A river, Paheham, constituted, aceording to old reconls, the sonthern boundary-line of Birma in these parts, and the first maps whieh were published after the peace of Yandabo laid the boundary down near $11^{\circ} \mathrm{N}$. lat., but it was afterwards ascertained that the month of this river is south of $10^{\circ} \mathrm{N}$. lat. and of Cape Victoria. During the oceupation of the comiry by the Sirmans, it liad been considered that all the eountry drained by the rivers which fall into the Bay of Bengal belonged to their dominions, and that those whose drainage went to the Gulf of Siam formed a portion of the Siamese empire. When the Britishtook possession of Tenasserim, this watershed was thought to be from 30 to 50 miles from the Bay of l3engal, hut it has been ascertained that in some parts it is at a much greater distance, and that between 10° and $17^{\circ} 40^{\circ} \mathrm{N}$. hat. it is probably $l(x)$ miles from the sea. On the map annexed to Snodgrass's Birmese War, the northern boundary is laid down between 18° and $19^{\circ} \mathrm{N}$. lat., but it is now known that it is formed by the lower course of the river Thoung Yin, a tributary of the Saluen, and that it does not extend beyond $17^{\circ} 40^{\circ} \mathrm{N}$. lat. Thus we know that Tenasserim extends from 100° to $17^{\circ} 40^{\prime} \mathrm{N}$. lat., and it is supposed that the eastern houndary, at least in some parts, approaehes $09^{\circ} 30^{\prime} \mathrm{E}$. long. It is evident that in the present state of our knowledge of the country it is impossible to determine the area of Tenasserin, but we are inclined to think that the
estimate of Dr. Helfer, who assigns to it an extent of 30,000 squarc miles, is not too great.

The river Saluen or Salween from its confluence with the Thoung Yin to its mouth divides Tenasserim from Birma, and the Thoung Yin divides Tenasserim from the Shan States (Laos) of Zimmay, Laboung, and Yaihang. A range of mountains running from north to south through the whole of the Malay peninsula constitutes the boundary between Siam and Tenasserim as far south as the source of the river Pakcham, and from that point the course of the lastmentioned river forms the boundary to its mouth. In the Gulf of Bengal and opposite to Tenasserim are the Andaman Islands.

Coast and Islands.-The coast of Tenasserim from the mouth of the Salween river on the nortlı ($16^{\circ} 30^{\prime} \mathrm{N}$. lat.) to that of the Pakcham ($10^{\circ} \mathrm{N}$. lat.), extends in a straight line about 450 miles, and as its bends are not large, nor its inlets wide or deep, its length probably does not excecd 500 miles measured from point to point. A marked difference exists between this coast and that of the opposite coast of Coromandel. The coast of Coromandel extends in a continuous line withont a single break, and does not afford a place of refitge cven for a small vesscl ; that of Tenasscrim is frequently interripted by short projecting capes, by which several small harbours are formed, and a few capable of receiving large vesscls. The rivers of Coromandel do not admit ressels of any sizc, on account of the bars at their mouth, but in those of Tenasserim a considerable depth of water covers the muddy bars which lie aeross their embonchures. No soundings are found along the coast of Coromandel at a distance of seven or eight miles, whilst along that of Tenasserim there arc soundings to the distance of 60 or even 80 miles, and though in some places considerable irregularities occur, the changes may be generally said to be tolerably regular, the depth decreasing gradually to ten and even eight fathoms as we approach the land. The coast from Cape Kyckmi or Kiaykami, situated on the west of and close to the town of Amherst, as far south as Tavoy, is of moderate elevation. Between Tavoy and Mcrgui it is generally low, and in this part it is lined by a rocky reef, on which a great number of small islands rise to a moderate elevation above the sea-level. These islands are known by the collective name of Jong Island, and the reef on which they rest, having little water on it, renders the approach of this part of the coast dangerous, and in many places impracticable even for small vesscls. South of Mergui the coast-line is broken by several deep inlets, which form large promontories, and enclose some considcrable islands. The intricacies on this part of the coast are so numerous, that even at present it has not been completely surveyed, and is laid down rather by guess, though of late mnch hres been done to clear up its position by Capt. Joyd. This indented coast extends from $12^{\circ} 30^{\prime}$ to $11^{\circ} 30^{\prime} \mathrm{N}$. lat. South of the last-mentioned parallel indentations likewise oceur, but though numerous, they do not penctrate to a great distance inland. In thesc parts the country close to the sea is more elevated than at any place farther north, and probably may contain many harbours for small vessels.
Numerous islands occur along the western coast of the peninsula without the Ganges, between $14^{\circ} 40^{\prime}$ and $8^{\circ} \mathrm{N}$. lat. North of 12° they extend to the distance of 70 or 80 miles from the slore, but south of $12^{\circ} \mathrm{N}$. lat. they occupy a space of only 30 miles in width. These islands are comprehended under the collective name of the Mergui Archipelago. All the sea between them and the coast of Tenasscrim has soundings, though near the islands they are rather too deep for anchorage. These islands also break the swell of the sea during the south-west monsoon, and accordingly the channcls which divide them from the main offer great advantages to vessels coasting along this shore, which however have hitherto been little used, because the Mergui Archipclago has only been surveycd within a few years. The islands themselves are rather high, and most of them are visible at the distance of 30 to 40 milcs. Witlout including the islands which occur between $12^{\circ} 30^{\prime}$ and $11^{\circ} 30^{\prime} \mathrm{N} . l a t$. , ncar the shores, and which are divided by such long and narrow channels from the continent that they are considered as parts of the mainland, the Mergui Archipelago comprehends seven larger and many smaller islands. The larger islands from north to south are Tavoy
roing Island, Sullivan's or Lampee Island, and St. Matthew's Island. These seven islands are more than 20 miles long, but vary in width from three to eight or nine miles. They are covered with timber-trees and well provided with water, but all of them have a very rugged and uneven surface, and do not appear to possess great fertility. No part of them seems to be cultivated, and they are only inhabited by a tribe of fishemien, the Seelongs. Two of these islands require notice, on account of their excellent harbours. The northern of these harbours is called King's Island Bay, being formed by the island of this name and Plantain Island, which lies east of it. This harbour is opposite to that of the town of Mergui on the mainland. It can only be entered from the north by large vessels, as the southern portion of the channel, which divides Plantain Island from King's Island has so litfle depth as to be only passable for country boats. The harbour is spacions and safe, but the entrance has some difficulties, as a shoal extends over a part of it, which has 19 feet of water on the shoalest part at high-water, and only nine feet at lowwater. The second harbour is called Elephant Harbour, and occurs at the northern part of the Island of St. Mat thew: it is described as vcry spacious, and capable of con taining the largest navy in the world. The soundings vary from 17 to 12,11 , and 10 fathoms nearly close to the shore in some places, and the bottom is soft. It is protected from the sea by sevcral small islands at the entrance, and on the other sides it is sheltered from all winds by the high hills which surround it, so as to be completely landlocked. This harbour was discovered in 1825, by Lieut. Low. The island of St. Mattlicw is the most elevated of the group; the highest part, situated in the middle, is nearly 3000 feet above the level of the sea.

Mountains.-It is supposed that a continuous range of mountains forms the watershed between the rivers flowing on one side into the Gulf of Sians, and on the other into that of Bengal, and that this range is the boundary-line bctween Siam and Tenasserim. It is also supposed that the elevation of this range varies between 3000 and 5000 fect above the sca-level, and that the most northern part, which is known among the natives by the name of Thown-gee Mountains, is the most elevated portion. It is stated that in this part it makes a great bend towards the east, form-, ing nearly a segment of a circle. But we have no account of this part of the range: it has only been traversed at the Three Pagodas, which stand near the sources of the upper branches of the river Atta-yen (Attaran); and in reading the account which Dr. Richardson gives of his travels, one would suppose that at this place the summit of the range can hardly be less than 1000 feet above the sea-level: yct he does not say that lic traversed it by a mountain-pass. The southern part of the range, when seen from the Gulf of Siam, presents only a succession of pcaked mountains, of which some appear to rise to the elevation of 3000 feet. The Siamese give to these nlountains with some propricty the name of Sam-roi-yot, which means in their language 'the 300 peaks.' Two roads are said to have formerly been used in crossing this part of the chain; and it is certain that the chain terminates, or rather has a great depression, at the sourees and upper course of the river Pakcham. This river runs from north-east to south-west, and is navigable for large boats to Karas or Pakcham, about 40 miles. from its source. To the cast of this place runs another river in an opposite dircetion, which falls into the Gulf of Siam, and is called the river of Choomphon, from the place where it reaches the sea, or Telimfoung, as Dr. Helfer heard it named by the natives. The interval between the navigable parts of these two rivers, occupying a space of about six.hours' march, or 30 miles, is a level tract. It is even stated that at high tides the rivers rise sn as to inundate this tract, and to mingle their waters; but Dr. Helfer, who visited the place, does not mention this circumstance, and it seems to have been stated on very slender authority. As far as it is known, this chain is chicfly composed of granite and gneiss. These mountains are scarcely ever very precipitous, and are generally. rounded near the tops, which rise in gentle declivitics. The surface of the rocks is generally decomposed and covered with vegetation; a bare rock is rarely seen. Only i few spots arc occasionally cultivated by the Kareans, who are in exclusive possession of these wildernesses.

Surface, Soil, and Rivers.-The general character of the country is hilly, and in some places even mountainous,
but there are also plains of considerable extent and some wide valleys. The degree of fertility which the soil possesses cannot be determined with any certanty, as only a very small portion of it is under cultivation; but we are inelined to adopt the statement of Dr. Helfer, aceorling to which these provinees are much superior in fertility to the Malay Peninsula, by far, the greater part of them being really fertile, or capable of being made productive. He thinks that the unproduetive, sterile, or unavailable lands are less than one-fourth of the whole; and lie ascribes the fertility not only to the natural constituents of the soil, but partly also to the quantity of humus or deeayed vegetable matter whiels has aceunulated through centuries, as the whole country is an uninterrupted forest, the greater part of which has never been felled.

The Northern portion of Tenasserim we shall call the Region of the Atta-yen (Attaran), as this river drains the most fertile portion of it, and its valley must soon beeome the centre of a considerable population. This region contprehends the whole of the country as far south as $15^{\circ} \mathrm{N}$. lat., or the districts of Amherst and Yee. The most northern distriets are mountainous. Along the southern banks of the Thoung-yin, whieh forms the northern boundary of Tenasserin, runs a mountain-chain, which, as far as it is known, constitutes a continuous ridge. It is ealled $130-$ Thowng, and rises to more than 2000 feet above the sealevel. It is eomposed of sandstone, limestone, and elayslate, and its dechivitics are very steep. In some parts it is overgrowa with forests of baniboo. It is not known how this chain is connceted with the Thown-gee Mountains, and the upper course of the Thoung-yin river is equally unknown.
The country south of the Bo-Thoung, adjacent to the river Salween, and to the distance of 50 niles from it, for the more inlaud parts are not known, is a plain, which however eontains numerous masses of roeks, composed chiefly of limestone and sandstone. These masses are isolated, but they are disposed in lines running north-northwest and south-south-east. Some of them rise to the height of 30010 feet above the sea-level, but in proeeeding southward they sink lower, and on the banks of the Attayen they rarely exeeed 600 feet. Their structure, especially that of the linestone roeks, is remarkable, as the sides generally are almost perpendieular, and consequently bare, exeept in a few places, whieh are not so stecp, and where some stumted trees or shrubs grow. No level ground oceurs on their top, where they are also quite bare. On their sides there are numerous chasms and caverns. In the southern distriets the number of these isolated masses deereases. The traets of land surrounding their bases are distinguished by fertility, the soil consisting of fine black loam. The remainder of the plain is muela less fertile, the soil being composed of an arenaceous clay mixed with a small portion of saline and yegetable matter. The forests which eover the plain contain only trees of moderate size, and there is no underwood.

Within the country just deseribed there is an extensive alluvial traet, which oceurs where the three rivers Salween, Gyeng, and Atta-yen join. The prineipal of these rivers is the Salween or Saluen, generally ealled by the natives Than-Lweng: it originates in the south-western part of Proper China, in the prosince of Yun-nan, or farther to the north; for its upper course is not known: in China it is ealled Noo-kiang and Loo-kiang. Running in a generally southern eourse, it is supposed to form the boundary between the Shan States (Las), which are subject to Siam, and the Birman empire. This part of its course is not known. At the moutli of the Thoung-yin it begins to separate Tenasserim from Birma, and this is the only part of its course whieh has been investigated. Though at this point the river is only about 100 miles from its mouth, and has a great volume of water, it is not navigable. Thee. limestone and andstone rocks, which are very frequent in these parts, cross the bed of the river, and form several jedges, over which the eurrent rushes with great impetuosity. Near Towng-bio-myo (about $17^{\circ} 30^{\prime} \mathrm{N} .1 \mathrm{Int}$.) the mpids are so strong as to prevent every kind of navigation except perlaps during the north-east monsoon. There are ecveral other rapids, though less dangerous, farther down, and they ecase only at Colon Island (near $17^{\circ} \mathrm{N}$. lat.), where the river divides into two channels. The eastern channel alone is navigable. The island is rocky, and about 10 miles long, but only about two miles wide in the widest
part. Even below this i.land the banks of the river are generally bordered by liniestone rocks; and the nuvisation is very dangerous, owing to the foree of the current and the numerous eddies produced by the inequalities in the bed of the river, whiel in these places is extremely deep. A boat onee drawn within the vortex of a whirlpool is inevitably lost; both boat and erew are carried down, and never known to make their appenrance again.
The Atta-yen or Attaran is known up to the vicinity of its sourec. Its prineipal lranel origiuates to the south of the Three Pagodas in the Thown-gee range, and is called Zimee. It flows north or north by west, and is rather a deep river, for even at a short distance from its souree it is three feet deep, and this depth increases as it proeceeds farther down, where it is joined by numerous small rivens from the Thown-gee range. The eurrent is never rapid, and hence it is used for flonting down teak timber. The tide advances to Nat Kyeaung, about 70 miles from the mouth of the Atta-yen. Above Atta-yen, which is more than 30 miles from the mouth of the river, the Zimee is joined by the Way-nio, whieh comes from the south, aud, after the confluence of the two branches, the river is ealled Atta-yen. This diver has a very winding course, and the eurrent is hardly pereeptible. As the tide, which here rises to 19 or 20 feet, adranees more than 30 miles above the conflucnce of the Zince with the Way-nio, it is very probable that the whole fall of the Atta-yen, whiels amounts to 50 miles, if all its bends are taken into aceount, does not execed 12 feet. The river is very deep: in the lower part no bottom is found with 9 fathoms, and up to Atta-yen there is never less thinn 3 fathoms of water.
The Gyeng or Gain comes from the east, lut its upper course is inperfectly known. It is a broad river in its lower course, but is shallow and full ot sand-banks.

These three rivers unite nearly at the same place, ahout 30 miles from the open sea, and by their confluence form a broad sleet of water, wheh is about 15 miles long from north-east to south-wcst, and from five to six miles wide, and interspersed with numerous wooded islands. This expanse of waters is scparated from the sea by a large island calted Phulloo-rewn, or, aceording to Crawfurd, 13alú. This island is about 20 miles long, and 10 in average width. A chain of low sandstone hills runs througla its length, never exeeeding 300 fect in height. The slores of the island are covered with low mangrove jungle, but it forms only a narrow belt, which is traversed by several creeks that penetrate several miles into the island, and on which behind the mangrove jungle there are plains, whieh extend to the hills and are covered with riec-fields. The water which is colleeted above this island finds its way to the sca by two elannels, of which the southern runs due south and is about 20 miles long, and ealled the Martaban river. The nnvigation of this river is difficult, as the depth ol the channel is not more than two or three fathoms at several places, and there are many sand-banks. It does not appear that the channel north of the island of Phulloo-gewn is visited by large vessels.
The country which surrounds the expanse of water into whieh the three rivers disembogue is interspersed with limestone lills, but the intervening plains are covered with a thick layer of alluvial soil. The banks of the lake and of the rivers are covered with mangroves, and unfit for any agricultural purpose, but at a short distanee from the water's edge the alluvial plains are destitute of trees and slrubs, and cxluibit a very considerable degree of fertility, producing rieh erops of riee where they are cultivated. This rich agrienltural traet extends to the confluence of the Zimee and Way-nio rivers.
The eountry drained by the Zinee is also a plain, which is much higher than that on the Alta-yen river, as the banks of the first-naned river rise to 20 leet above its surface, whilst those of the Atta-yen are very low and subject to inundation during the rains. The plains on the Zimee river are nearly a dead level in their lower distriets, and no limestone linlls oceur above the confluenee of the two rivers; but in proceeding farther south the surface of the country becomes madulnting, and in approaching the Thown-gee range it is broken by numerous deep ravines, though it cannot be called mountanous. This extensive tract ls covered with a deep layer of clay of considerable fertility, and the country contains extensive forests, in which the teak-tree grows to a large size. But there are also tracts of less fertility, where the soil is very hard and
intermixed with small nodules of ironstone: such tracts are always overgrown with bamboo jungle, and are the haunts of numerous elephants, rlinoceroses, and other wild animals.
The country between the Atta-yen river and the sea is eovered by ridges of sandstone hills about 500 fect high. These hills run in continuous swells as far south as $14^{\circ} 30^{\prime}$ \mathbf{N}. lat. This tract, whose surface is strongly undulating, is of indifferent fertility, owing to the aridity of the soil, which absorbs the moisture. It is chiefly covered with forests, more or less thick according to the depth of the soil. In many places the rocks approach the surface, and have only a thin layer of earth over them, and in such places there arc only a few bushes, and patches of grass which soon dry up after the rains. This tract contains two small rivers, which form harbours. The most northern, called Kal-yen, falls into the sea east of the new town of Amherst, of which it eonstitutes the harbour. On its bar, which is of soft ooze, there are two fathoms and a half of water at low tide; but within the bar, and as far as 8 miles up, it is between five and a half and five.fathoms deep; and near its mouth, from 400 to 500 yards wide. It thus forms a spacious harbour, which most merchant ships can enter at low-water neap-tides, and at high-water ships of any burden. Near $15^{\circ} 12^{\prime}$ is the mouth of the Yec river, which forms a wide astuary, but it is too shallow to admit large vessels: smaller ships may sail up to the town of Yee, which is about five or six miles from the river's mouth.
The country east of the sandstone tract, and surrounding the river Way-nio and extending to the Atta-yen, is the most sterile part of Tenasserim. The vegetation is stuuted, and a great part of this tract is covered with bamboo jungle. The soil is an argillaceous transition schist, unmixed with sandy particles, which quickly absorbs all moisture.
The Region of the Tenasserim River comprehends the Central portion of the country, extending from 15° to 12° N. lat. The northern districts, as far south as $13^{\circ} 30^{\prime}$, present a very uncven surfacc. Several ridges of hills traverse the eountry from north to south: they consist chiefly of granite and gueiss, and rise to a moderate elevation. They are generally rounded near the tops, and their declivities are rather gentlc. The valleys which are inclosed by them are of moderatc width, and fertile. The decomposed particles of the adjacent rocks are washed by the rains from the sides of the hills, and deposited at the bottom of the valleys, where they are mixed with a large quantity of decaycd regetable matter, which makes a rich soil. Level tracts of a great extent are rare: the largest are near the town of Tavoy and at the foot of the Thown-gce range, where an elevated table-land occurs, called Meta-mio. The soil of these plains consists of clay or loam, with little sand, and it is very fertile.
The southern districts resemble the northern, except that the hilly ranges, which here also run north and south, occupy a much smaller portion of the surface, the plains being more numerous and of greater extent. The largest are those, which occur along the sea-shore, but especially the Plain of Tenasserim, which is many miles in length and several in width, and extends along the left bank: of the river above the town of Tenasserim. It is covered with a deposit of argillaccous marl of great depth and fertility. No less fertile is the extensive alluvial tract which surrounds the several branches into which the Tenasserim river divides before it reaches the sen, and whieh occupies also the greater part of the islands which lie between these branches. A part of this alluvial tract is unfit for cultivation, being inundated at high-water, and covered with mangroves. The whole region is overgrown with forest-trees, with the exception of a few spots which are under cultivation.
The most important river of this region is the Tenasserim. According to Low, it rises near $15^{\circ} 30^{\prime} \mathrm{N}$. lat., but other known facts render this improbable, and its sources are laid down in our maps south of $15^{\circ} \mathrm{N}$. lat. It flows in a southern direction over nearly three degrees of latitude, or more than 200 miles in a straight line. The upper part of its coursc is interrupted by numerous rapids and falls, which occur even farther down, and as far as $13^{\circ} 15^{\prime}$, where the last great rapids are. To this place the tides ascend, but the river still has a rapid current, numerous shallows, annually changing banks, and shifting shoals. During the dry season it is impracticable for boats drawing more than 17 inches. It beeomes deeper at its confluence
with the Little Tenasserim, or Khioung-galc, which joins it at its most southern bend, and brings down a large volume of water from the Sami-roi-yot range. Up to this place, where the town of Tenasserim is built, the river is deep enough for vessels of 100 tons. At the same place the Tenasserim turns to the west, having passed between two high hills to the north-west. Soon afterwards it begins to divide into two arms, which in approaching the sea again subdivide, so that, according to the survey 'of Captain Lloyd, it reaches the sea by six or seven channcls. There are sand-bars across these channels, but the bar which is found on the channel south of the town of Mergui has depth enough for vessels of moderate size at high-water, the tide rising between 14 and 15 feet. Below the town of Tenasserim the river still runs above 40 miles in a straight linc. Its whole course is about 240 miles.
The river Tavoy, which originates near $15^{\circ} \mathrm{N}$. lat.,'rums first to the south-west, but turns gradually to the south, so that its lower course is parallel to the shorc." The wide æestuary by which it is connected with the sca reaches to $13^{\circ} 30^{\prime} \mathrm{N}$. lat.; the wholc course of the river in a straight line is not less than 100 miles. It is stated that the tide, which rises from 13 to 14 feet, runs up more than 50 miles from the sea, and that to this distance the river may, be navigated by boats, though the navigation is rendered difficult by numerous low islands and shoals. The town of Tavoy is about 35 miles from the sea, and so far vesscls of 120 tons burden may ascend. There is no bar at the entrance of the river, but the navigation is intricate, owing to the numerous shoals and low islands, as there are various channels among them which in some places have only 2 or $2 \frac{1}{2}$ fathoms, but in most parts the depths are from 6 to 12 fathoms. There is good anchorage on the east side of Tavoy Point, which is on the west side of the entrance of the river, in 6 fathoms, on a soft even bottom, and it is well sheltered, except against southern winds.
The Southern Region of Tenasserim, or that which lics between 12° and $10^{\circ} \mathrm{N}$. lat., is situated on the long isthmus which connects the Malay Peninsula with the main body of Asia, and is known as the Isthmus of Krah. It is the least known part of Tenasserim. Dr. Helfer, who lately investigated its geology, and mincrals, found it uninhabited, with the exception of a few spots, and from his observations it appears that the whole country is covered with high hills, and contains only a few: small valleys: The soil does not appear to be distinguished by fertility, and it may be conjectured, that with the Isthmus of Krah that sterile traet begins which extends over the whole of the Malay Peninsula to its most southern extremity, and which, though favourable to the growth of fruit-trces, produces only scanty crops of rice and other grain." The inhabited places of this tract are alnost exclusively confined to the banks of rivers, and do not extend tar inland. The rivers, though they have not a long course, are said to be large and navigable to a considerable distance from their mouths. The largest are, from north to south, the Lenya, the Bockpyn, and the Pakeham. The last-mentioned river, which divides Tenasserim from Sian, has already been noticed.

Climate.-Like all other intertropical eountries, Tenasserim has only two seasons, the dry and the wet season. They depend on the monsoons, the rains being produced by the south-west monsoon, whilst the dry. scason lasts during the north-cast monsoon. There appears to be some difference in the wet season between the climate of Maulmain and of Mergui, the only two places in which a few meteorological obscrvations lave been made, and this difference appears to depend on the eircumstance, that along the southern coast the effects of the south-west monsoon are diminished by the clevated islands of the Mergui Archipelago, whilst farther north they reach the land in all their force. At Maulmain the rainy scason sets in towards the cnd of May or the beginning of June, and during the first three months the rains are heavy and nearly ineessant, but they gradually diminish in Scptember, and entirely ccase in October. This is the hottest part of the year, but the heat is far from being so oppressive as on the coast of Coromandel. In May the thermometer averages at 80° clock in the morning 78°, and at 40^{\prime} clock in the afternoon 82°, in June it kecps at 72° at 80° clock, and at 76° at 40° clock, and in July and August at 77° at 80° clock, and at 80° at 40 o'clock. The thermometer las never been observed to rise above 90°. The differenee
between the temperature of the air in the day and at night is remarkable, as the thermometer is olten found at $6{ }^{\prime}$ ' at sun-rise, even in July. In the dry season the therinometer varies between 60° and 80°, and the weather is very constant, rain rarely falling, and only in short showers. The heat is molerated by the sea and land breezes, which blow very regularly in this season.

At Mergui the rainy season sets in towards the end of April or the beginning of May, and lasts to the month of November. During the first two montls the mins are moderate, but from the middle of June to the beginning of September they are heavy, when they again begin to abate, and gradually to diminish. Rain falls also during the dry season, but only in showers, which oceur at intervals from four to six weeks. The greatest heat oceurs before the rains, and in the first two months after they have set in, but it is stated that the average temperature of the six hottest months does not exceed 84°. Land and sea breezes are regular during the dry season. At some places in the interior, which are considerably elevated above the sea, as tho table-land of Meta-mio, the climate is some degrees more temperate than near the eoast.
Tho climate is considered very healthy. This opinion is confirmed by Dr. Helfer, who lived there many years, and whosays that it is the most healthy of all known tropical eountries for Europeans; and he supports his opinion by the statement that the lists of mortality kept by the medical gentlemen of the European British corps stationed at Maulmain and its dependencies show that the rate of mortality scareely ever exeeeds and is sometimes less than it would be under similar circumstanees in Europe. This is the more remarkable, as many of the adjacent countries, and especially Aracan, which resembles Tenasserim in nearly every respeet, have acquired a bad name for their insalubrity. Helfer camnot aecount satisfactorily for this phenomenon. He finds no other reason than that the country is either part of a narrow peninsula or immediately adjacent to one, and that the extensive seas on both sides produce a constant though not always perceptible current of air, by which the noxious vapours that rise from vegetable matter and other clements of malaria are cither destroyed or carried away. Even the exposure to the sun is rarely attended by bad effeets, and the climato does not produce languor or mental inactivity, which is partly to be affributed to the coolness of the nights.

Productions.-If the value of a country were to be estimated by the number of marketable artieles exported from it, Tenasserim would eertainly be one of the least valuable. For, if a small quantity of riee and some teak timber are excepted, hardly iny article worth mention has becn exported from that country up to the last few years. But it vies with any country on the globe in the varieties of its natural products, and when cultivated it will export almost every artiele which belongs to tropical countries.

Though the greater part of the country has not been explored, it is known to be rich in minemls. Gold is found in some of the rivers, but in small quantitics. A silvermine exists in the range of the Bo-Thowng, but its value is still doubtful. It has lately been ascertained that there is copper-ore in the north-cast portion of Sullivan's Istand, and on the island of Calla-gkiank, near Mergui. Tin is the only metal which has ever been worked. The tin-mines are about one day's journey to the east of the town of Tavoy, and in the vienity of Mergui. But Dr. IIelfer, who has explored the southem districts, states that the range of hills whiels runs north of the Pakeham River is the richest in tin-ores, the prains or erystals being sometimes of the size of a pigeon's egg, and the layer in whieh they arc found being 8 or 10 feet thick. It is however diffieult to work these ores, as the contiguous country is entirely uninhabited. Tin-ore is also found on the banks of the Mokpyn river and on Domel Island. The richest deposits of tin-ore are probably yet unknown. Iron-ore of good quality is found in ahundance in the vieinity of Tavoy, and at several other places farther sonth, especially in the distriets south of the Tenasserin river. Antimony occurs in the neighbourhood of Maulmain. Extensive coal-measures have been lately discovered in several places on the banks of the Tenasserim river. The coal is generally of good quality, and the best kind is near the banks of the river below the last rapids, so that it can be brought to Mergui at moderate expense. Three or four years ggo this mine began to be worked at the expense of
the East India Company. It is thought that the diseovery of these coal-measures will have some effect on the steamnavigation of the Gulf of l3engal and the Straits of Malacea. limestone and marble ane common in the northern distriets.
Rice eonstitutes the principal olject of eultivation: luit it does not appear that irrigation is practised; and only one erop is taken. Whent is cultivated at a few places on a sinall scale. Other objects of agriculture are sesamum, ehilies, yams, sweet potatocs, plantains, and melons. The sugar-cane, indigo, and tobacco are only grown for home consumption, and also cotton, which is of an inferior hind. It is thouglt that these last artieles could be raised to a great extent if there was a demand for them. Anong the frees which are cultivated the most important is the areca palm, which sueceeds well as far north as $15^{\circ} \mathrm{N}$. lat. Sinee the oceupation by the liritish, the natives have begun to etultivate it on an extensive scalc, and it will soon yield a large article of export if the fruits of this palm should continue to be used in Europe for tanning, instead of oak-bark and sumaeh. Of late years coffec-trees, nut-meg-trees, and clove-trees have been introduced. The fint two thrive well, and promise to remunerate the cultivators, but the suceess of the clove-trees is still doubtful. The produce of the coffec-trees is compared with the second quality of Java. Nearly all the delicious fruits which grow in the Malay Peninsula and the Indian Arehipelago may be raised in Tenasserim. The durian is found up to $16^{\circ} \mathrm{N}$. lat., and is exported io Kangoon and other places of Ava. The mangostecn has lately been introduect, and thrives well, but only south of $13^{\circ} \mathrm{N}$. lat.; mangoes, pine-apples, guavas, and oranges also succeed well. In some parts the arnotto (Bixa orellana) is raised. Coeoa-nut plantations are rather extensivo near the sca, and also the nipah palm (Nipa fruticans). The toddy or palm-wine of the latter contains more saccharine matter than the cane. Nearly the whole of Tenasserim is covered with timbertrees, which are not mueh used at present; but as the countries surrounding the Bay of Bengal are mostly destitute of such forests, and the demand for timber is rapidly inereasing. they will soon be considered as a source of wealth. Extensive forests of teak-trees still cxist on the banks of the Attayen, and furnish at present the most important article of export. A small number of junks are annually built by Chinesc at Mergui and Tavoy from the Hopea odorata, whieh is also employed by the Birmese in the construetion of small eraft. The best timber-trees, except the teak, belong to the Hopeas, Vaticas, and Shoreas; the most numerous are the Dipterocarplea, whieh attain an enormous size, but furnish an inferior wood. All these trees when full grown are from 70 to 120 feet in height, rising with a straight trunk 40 or 60 feet high, and before they throw out any branehes they hare a eircumferenee of 10 to 30 feet. In addition to timber, the natural productions whieh are derived from the forests and plants which grow wild are numerous. There are various kinds of trees yielding eaoutehouc, stieklac, gamboge, sassafras, cajeput-oil, different gum-resins, nutoil, blaek varnish, sandal-wood, dammar, several tanning substanecs, several dyes, aloes, and sapan-wood. Carda-mum-plants are said to be found in the mountains on the eastern boundary, and hemp grows wild on some of the river islands. Large traets are covered with bamboo-jungle, and bamboo begins to be exported, having been found of a superior quality to that grown in the neighbouring countries. On the sam-roi-yot range there is an aromatic wood, ealled hy the natives cnllame, which is brought down to Mergui, and there shipped for Rangoon.

Domestie animals are not numerous, with the exeeption of buffaloes, which are large. As to wild animals, lielfer observes that as Tenasserim constitutes as it werc the bridge by which the continent of Asin is united to the Indian Arehipelago, its zoology possesses several speeics peeuliar to these two great natural divisions of Southern Asia. The number of species common to Bengal and Ifindustan is comparatively small, but in the northern distriets of Tenasserim there are many species which are peculiar to the countries east of the Brahmapootra, and even several of Bootan and Nepaul; and in the southern, others which have hitherto been exclusively found in the Indian Arehipelaro.
There arc five different kinds of quadrumana: a species of cercopithecus belongs to the rarest animals of this class;
it is chiefly found in the northern distriets, on the isolated limestone rocks. The Malay bear occurs in the more mountainous parts as far north as $13^{\circ} \mathrm{N}$. lat. The royal tiger is found in great numbers, and is very strong and large ; but it is said that it rarely attacks men. The black tiger is common. There are also leopards and wild-cats. Elephants are numerous, and they have a wide extent of forests to range in. They are killed and eaten by the natives, who bring their teeth to Maulmain. The rhinoceros is very common, and all the known Asiatic species are found. The Malay tapir, called by the natives the 'great pig,' is found in the most sonthern districts. The wild hog is common, and also the Sus Babiroussa. The Cervidx are numerous: Rusa Hippelaphus, Elaphus Wallichii, Cervus Aristotelis, C. Axis, and C. Muntjac, with two other species, are known to exist. The Bubulus Arni and Domesticus are both in a wild state; and of the Bisons, the great Gaurus is rather rare, but Bison gayal is very common. A variety of Cinnyris, and Nectarinia, in its splendid plumage and diminutive size, resembles the humming-birds. Four species of Merops rival in colours the species of Java and Australia. The Indian peacock is abundant in the interior near moun-tain-torrents. There are five species of parrots. The Phasianus gallus, the origin of our domestic fowl, is very common in the jungle, and the native breed is kept up by supplies of egrs from the forests. The Hirundo esculenta inhabits the cliffs along the southern coast and the islands of the Mergui Archipelago, and a considerable number of the nests are annually collected and exported by the Chinesc. There are several species of hawks, falcons, and herons, and five kinds of pigcons, some of which are very beautiful. Fish is abundant between the islands of the Mergui Archipelago, where an extensive fishery is carried on by the Seclongs, Malays, and Chinese, who prepare fish for market, which is done by spreading it over a frame work of mangrove-trees, and drying it in the sun : it is also daily trodden with the feet twice. No salt is ever employed in curing the fish: some kinds of fish are smoked. In these parts there are also shrimps, prawns, \&e., of which balachong, or pressed fish, is made, which is an article of commerce. Whales are frequently seen among the islands of the archipelago, and a little oil is got. There are also some pearl-banks, which were formerly fished, but an attempt made for that purpose some years ago was not successful. Trepang is one of the principal objects of fishery. Tortoise-shells, mother-of-pearl, and ambergris are collected in small quantities by the Seelongs. Wax and honey constitute an important article of intcrnal commerce, and are partly also exported. There are said to be five different species of wild bees, two of which are without stings. Snakes are numerous, but only a few kinds are poisonous.
Inhabitants.-Helfer estimates the population of Tenasserim at about 100,000 individuals, and consequently there are ahout three to a square mile. Though this population is very small, it consists of very different races, or rather we find different races mixed. This is chiefly to be ascribed to the frequent conquests to which the country las been subjected since the time when it was first visited by Europeans. In the last two centurics the Siamese, Thalians, and Burmese have alternately and more than once possessed Tenasserim. These nations appear to have adopted a policy which we find mentioned in the most antient historical records of Western Asia, namely, the transplanting of the inhabitants of one country to another at a great distance from it.
The bulk of the population consists of Birmans, Thalians or Thalains, Siamese, and Karians or Karens. Thongh all these nations have some physical features which belong to the Mongol race, yct there are others which indicate that a mixture with other races las taken place. The Siamese approach nearest to the Chinese: they lave a flat forehead, a small nose, prominent cheek-bones, black hair, very thin beards, tluin lips, and a colour more or less vellow. The Birmans and Thalians are half Malays and Half Chinese, and the Karians half Malays and hali' Caueasians; indeed the features of the Karians approach so much to the Caucasian form, that many of them have aquiline noses, a high forchead, and the European facial angle. This resemblance to the Caucasian race seems one of the reasons which has led some American Baptist missionaries t) consider the Karians as the lost tribes of Israel.

The Birnans, who were the lords of the country up to
the peace of Yandabo, are still the most numerous. They are settled in the plains on the rivers Atta-yen and Gyeng, in the vicinity of Mergui, Tavoy, and Yee, either near the sea-coast or on the banks of navigable rivers or creeks, and never far inland. They are healthy, strong, and muscular. Their principal occupation is agriculture. They are indolent and self-conceited; but honest, polite in their manners, and neither passionate nor revengeful, by which they are distinguished from the Malays. They are Buddhists, and consider the sovereign of Ara as the head of their religion: they are quiet subjects. The cluildren are placed at an early age in monasteries, established in almost every village, and endowed by the voluntary contributions of the inhabitants: the children remain here for a certain time, during which they are fed by the monks, and instructed in reading, writing, and religion; and thus elementary knowledge is more generally diffused among The lower classes than in most countries of Europe; but the knowledge of the higher classes is not much greater. The knowledge of their priests is limited to the explanation of theological and metaphysical doctrines: The missionaries have hitherto failed in their attempts to convert them to Christianity, with the exception of a few isolated instances, where Birmans have nominally become Christians for the sake of worldly gain. This want of success is not to be ascribed to fanaticism or obstinacy on the side of the Birmans, but to their religious dogmatical indifference. They admit the beauty of the Clristian morals, but contend that theirs are equally good; and with reference to the dogmas, they say that the Christian are as unintelligible as the Buddhist.

The Thalians or Peguans do not differ in physical constitution from the Birmans, and their separation into two nations might be considered merely a political one, as they had formerly two different governments, if it were not that the Thalians speak a different language, which is said to have searcely any resemblance to that of the Birmans. But this language is fast declining, as the greater number of the Thalians speak the Birman language, which has been adopted as the language of the courts, of public transactions, and of general conversation. The Thalians are likewise Buddhists, and participate in the cducation provided by that religious establishment. Their chief and almost sole occupation is agriculture, and rice is almost the only object of cultivation. A small number of Thalians were settled on the Atta-yen previous to the occupation of Tenasserim by the British, but a much greater number have emigrated since that event. Having shown during the war a great partiality for the 13ritish, they feared the vengeance of the Birmans when their country (Pegu) was restored to that nation, and took refuge in Tenasserim, where they settled in the vicinlty of the new settlement of Maulmain, where there are at present twenty Thalians for onc Birman.
When Tenasserin was subject to the king of Siam, the Siamese were very numerous, but after their conquest by Alompra they retired from these provinces almost entirely, except the districts south of Mergui, where a number of them remained on the banks of the rivers Lenya and Bokpyn, that part of the country having always remained a disputed district. The security and equitable administration introduced by the British lave attracted a considerable number of cmigrants from Siam, who have formed settlements in scveral parts of the country, especially on the banks of the Greater and Lesser Tenasserim rivers. They are, according to Helfer, an industrious, hardy racc, and more enterprising than the Birmans, besides being quiet, ovedient, and orderly. He thinks that their immigration in greater numbers would be a desirable accession in the wilds of Tenasserim. They have introduced the cultivation of the sugar-cane for the purpose of making sugar, which art they have learned from the Chinese who are settled in their country, though this cultivation has not yet become important. Many of the Siamese are luntsmen by profession, living for months in the wildest forests, where they shoot elephants for the ivory; they are also the trappers, tamers, and nanagers of elephants in general. Under the Birman rule few elephants were tamed, but at present the practice is becomine more general through tho Siamese, in whose country clephants are the most important of domestic animals.
The Karians occupy exclusively the country adjacent to ol the mountain-range which divides Tenasserim from Siam,
never being found near the sea-shore. They are said to be the sune nation which ocenpies several mountain-tracts in Birma, and is dispersed over the delta of the Imwaddi [Binma, vol. iv., p. 4H0], and to support this opinion it is attirmed that the Birman Karians bortering upoll China, at the distance of 13 degrees of latitude, speak a dialeet of the same langunge which is current among the Kiarians of Teuasserim. This fact requires to be confirmed, for in other ruspeets these nations differ greatly in habits. In Birma the Karians are the most industrious cultivators of the soil, and manufacture several kinds of cotton and silk cloth, but those of Tenasserim are an agricultural people without any fixed habitations, migrating every second or third year. When a Karian:family has chosen a place for a plantation, huts of bamboo thatched with palin-leaves are construeted, and n part of the forest is cleared, just ns much as is necessary to plant the ground with rice sufficient to maintain the settlers for a year. The paddy is sown uppon the ground, which is imperfectly eleared, without any tillage or other preparation, and whatever else is wanted (cotton, indigo, sesanum, vegetables, \&e.) is sown or planted promiseuously on the same spot. The following year another spot is eleared in the vieinity, and after some years, or when a death happens, the family removes to a greater distance, and begins again the laborious task of felling immense forest-trees, visiting ouly from time to time the old establishment, which yet yields fruit for several seasons, and thus the Karian wanders all his lifetime without ever settling permaneully. It seems however that an improvement in the condition of the Karians is taking place. Their religion is heathenism. They believe in evil spirits, ealled nats, which have a direet influence on the destinies of mankind, and they try to propitiate them by sacrifices of fowls, tobaeco, ree, and pieees of money, which they deposit at certain places. The attempts to convert them to Christianity ly the American missionaries have been successfut. A tibe of the Karians, called the Ked Karians, inhabit the mountains north-east of Maulmain, and these mountaineers arc said to live by robbery.
The Seelongs are the lowest in civilization among the nations of Tenasserim. They are confined to the islands of the Mergui Archipelago, and are a race of wandering fishermen, who build temporary huts of reeds, paln-trees, and bamboos, during the inelemency of the monsoon, and pass the rest of the year either in boats or on the sea-beach under the shade of trees. They never cultivate the ground, but live upon the spontancous products, chiefly turtles, fish, and shell-fish, which form their principal food. They have a peeuliar language, but too little is known of it for us to cletermine whether it is a mixture of languages or a peeuliar tongue. They form a petty tribe, not exceediny, it is said, 1000 souls in number, and it is very difficult to meet them in the islands which they visit, as they hide themselves whenever they see a strange sail approaching. This is probably the effect of their having suftered much from the pirates, who, until lately, infested those seas, and it serves to explain the statement of the early European navigators, who landed on these islands, and found them uninhabited. The Scelongs have a vague idea that there are certain invisible beings which exercise an influence over the destinies of mankind, but there is no established mode of worship, and they are entirely ignorant of a future state. No attempt has yet been made to convert them.

Ielfer reports, that among the natives the opinion is general that in the most mountainous part of the country there is a mee of wild men, who shun all intercourse with their neighhours, and scem to be hardly superior to monkejz. He is much inclined to think that these wild men are the gigantic orang-ontangs of Sumatra. But the Andaman Islands are inhabited by n puny mee of men, the lowest in the seale of intellectual beings, which scems to belong to the race of the Australian negroes; and only a few degrees farther south, in the kingdon of Queda, a small tribe, the Sanngh, are found [Malay l'evinsula, vol. xis., p. 327], who greatly resemble the inhabitants of the Andaman Islanis. It is therefore not inprobable that a small rennant of such a tribe may still exist in Tenasserim.

The Karians, Scelonfs, and the last-mentioned race are probably aborigines: the others hnve ennigrated from the necightorring country. Many Chinese are settlet in the sea-ports, where they are increhants, shij-owners, shipbuilders, spirit-distillers, earpeuters, blacksmiths, bakers,
and gardeners. A few of them settled when the country was subject to Birma, and others have enme since the oecupation by the Brilish. They are married to Birman women, but their children, if males, are brought up as Chinese, and adopt the customs, manners, and dress of their fathers. There are also a number of Chulials, or natives of Coromandel, settled in the places where Europeans reside, with whose eustoms and wants they are much better acquainted than the natives, and by administering to which they gain their livelihood. The same may be said of the Bengalees, who however are always inferior to the people of the peninsula of Kindustan in enterprise and eapacity, Their number is not great. Is Tenasscrim is the penul settlement for the British possessions in Hindustan, about 2000 convicts have been sent there, especially Thuss. They are treated with great mildness, and most of thein have been converted into useful members of society. Many of them have married, and on the term of their banishment expiring have setlled in the country. At Maulmain a few Armenians and Parsees are settled, this being the only place in Tenasserim where trade is carried on.
The English settled in Tenasserim are almost all in official capacities, either civil offieers of government or the military officers of the two regiments which are stationed here. The number of private persons is small, and almost all of them are eongregated in Maulmain, where they are chiefly engaged in ship-building, or otherwise connceted with the teak-timber trade. Besides n few American Baptist Missionaries, there nre many descendants of Portuguese. By intermarrying with natise women, they have partly lost the advnntages of Enropean civilization, their condition being nearly the same with that of the natives, nnd frequently much lower. Their steadiness in adhering strictly to their faith preserves them as a distinet chass. They have also mostly preserved their language, but it is barbarously corrupted.

Torms. - In a country so little cultivated, and the population of which is dispersed over such an extent, there can be no Inrge towns. When the British took possession of the country they founded the town of Amherst, near the mouth of the Martaban river, hoping that the commerce of the country would concentrate at this place. [Amherst, vol. i_{2}, p. $\left.4 \mathrm{~m}^{2} 2.\right]$ But these expectations hare not been answered. Mautnain, whieh was at first only a military post, has sinee risen into importance and is rapidly inereasing, as its situation near the confluence of the Altayen with the Salween is the most favourable place for earrying on the trade in teak, which constitutes the most important article of export. Ship-building is the only trade which is carried on to any extent. The town of Tavoy is also small, but it has some eommeree with langoon and Mergui. The town of Mergui has the advantage of a safe and well-protected harbour. The roadstead is between the mainland and Madramacan Island, with a soft bottom in from 6 to 15 fathoms, and large vessels are sheltered from all winds. It is about six miles from the town. But vessels of moderate size enn go over the bar into the river, and anchor off the town in five fathons. Though it is at present a small place, it will probably rise to great importance, as in the country at the back of it the richest deposits of coal and tin have been discovered. The neighbourhood is also partieularly well adapted for plantations of spice-trees, hnd the Siamese have begun to eultivate the cane for making sugar: it is also well situated for commercial intereourse overland with I3angliok and the countries of Siam which surround the gulf of that name. Tenasserim, nn nutient town, which however was destroyed in the wars hetween the Siamese and Birmans, is in ruins, but will probably be revived, owing to the eoals in the neighbourhood nad the slonp navigation extending to this place.

Manufactures and Commeref. - If we exeept the building of vessels nnd small craft at Mergui, Tavoy, and especially Maulmain, there is no mamifacturing industry in Tenasscrim; nearly the whole population is in that stage of civilization in which it has not yet acquired a taste for refinement and comforts, and articles of toreign manufacture nre not mueh in demand. Such auticles as cottoncloth, coarse chini-ware, and iron cooking-vessels, are brought by the Clinewe from Bangkok, and eotton-cloth, gunpowder, and arms imported from Eugland by way of Penang or Caleutta. There are also inported petroleum
and tobaceo from Rangoon, and spices and sugar from Penang. The chief exports are teak and rice; there are also exported ivory, wax, tin, nut-oil, trepang, edible birds' nests, and bamboos. The only places with which a commercial intercourse exists are Calcutta, Rangoon, and Penang. It is hoped that an overland commerce will soon be established between Maulmain and the south-western provinces of China, especially Yun-nan, as caravans from those parts annually visit the Shan States (Laos) north of Tenasserim, and the merehants of the caravans manifested a few years ago an intention to proceed to Maulmain, but werc prevented by political circumstances.

History. - Nothing is known of the early history of these provinces. When they were first visited by the Portuguese, several places were much more thriving than they now are. It seems that at that time the bulk of the population cousisted of Thalians, and probably the country formed a portion of the kingdom of Pegu. It was afterwards connected with Sinm, from which it was wrested by Alompra, the founder of the present Birman dynasty, abont the middle of the last century. Notwithstanding the repeated contests and incursions of the Siamese, it remained a part of the Birman empire until it passed into the hands of the British by the pcace of Yandabo (1826). At that time the population was estimated at 50,000 individuals: at present it probably considerably cxeceds 100,000 . It forms part of the government of Peuang.
(Crawford's Journal of an Embassy to the Court of Ava; Low's 'Observations,' Ec. in Asiatic Researches, vol. xviii.; Forrest's Voyage to the Mergui Archipelago; Helfer; several "Reports on the Tenasserim Provinces, and its Coal-mines,' inserted in the Journal of the Asiatic Society of Bengal, 18381840 ; Foley's 'Notes on the Geology, \&c. of the country in the neighbourhood of Manlamyeng; in Journal of the Asiatic Society of Bengal, 1836 ; Riehardson's 'Journal of a Mission to the Court of Siam, in Journal of the Asiatic Society of Bengal, 1840.)
TENBURY. [WORCESTRRSH1RE.]
TENBY. [PEMBROKRshire.]
TENCH, a fresh-water fish belonging to the family Cyprinidee or Carp tribe. [Tinca.]
TENDER. A tender is the offer to perform some act. In practice it generally consists in an offer to pay money on behalf of a party indebted, or who las done some injury, to the ereditor, or to the party injured.

A tender to the amount of forty slinllings may be made in silver; but beyond that amount it must be in gold. If a tender be made of a larger amount in silver, or in banknotes, and no objection be taken at the time to the medium in which it is made, the objection to the tender on that ground will be held to be waived, and the tender will be held good to the full amount to which it is made. The money tendered must be aetually produced and shown, or at least the bas or other thing wheh eontains it shown to the party to whom it is intended to be made, unless it is dispensed with by some declaration or aet by the ereditor. This is insisted upon with such strictness, that even thougli a party tell his creditor that lie is about to pay lim so much, and put his hand into his pocket to produce the money, yet if the creditor leave the presence of the debtor before the money is actually produced, no tender will have been made: but if the creditor refuse to receive the money mentioned on the ground that it is insufficient in amount, the actual production of it is not necessary to constitute a valid tender. The offer must be absolute and without conditions. An offer of a larger amount with a request of change ; an offer with a request of a receipt, or on condition that some thing shall be done on the part of the ereditor, are not valid tenders; but an offer of a larger sum absolutely without a demand of change is good. A tender may be made cither to the party actually entitled to reccive it, or to an agent or servant authorised to reeeive it, or to a managing elerk; and a tender will not be invalidated even though before it is made the ereditor has put the matter into the hands of his attorney and the maraging clerk of the creditor refuses to receive it, assigning that circumstance as his reason for doing so. If the attomey write to the debtor demanding the money, a tender afterwards made to him or to his managing clerk is good, unless at the time when it is made they disclaim suthority to receive the money. A tender ought to be made on behalf of the party from whom the money is due ; but if the agent appointed by him to make the tender offer
a larger sum than he is authorized to do, the tender will nevertheless be good for the full amount to which the teisder is made.

If the defendant in an action plead a tender, he must state that he has always been ready to pay the money, and he must also pay it into court. The effect of the plea is to admit the existence of the contract or other facts stated in the declaration which form the eause of action in the plaintiff. The plea goes only in bar of damages. The plaintiff therefore in such case can never be nonsuited: but if issue is taken on the mere fact whether er not the tender has been made, and that faet is found for the defendant, it is a good defence to the action.
By various statutes, magistrates, officers of excise, \&e. are empowered after notice of action to be brought against them, to tender amends; and if the amount tendered is sufficient, the tender is a defence to the retion.

TENDON, or Sinew, is the tough white and shining tissue by which muscles are attached to the bones or other parts which it is their office to move. The name of tendons however is generally applied only to those which are thick and rounded, and which serve for the attachment of the long round muscles, such as those of the bieeps muscle on the front of the upper arm: those which are broad and flat, and which serve for the attachment of the membranous muscles, arc commonly called aponeuroses. But whatever be the cxternal form of a tendon, its intimate construction is the same, being ehiefly composed of the same fibrous or tendinous tissuc of which a large class of organs, including the ligaments, fascix, periosteum, and several others, consist.

The fibrous or tendinous tissue is of a peculiarly glistening bluish-white colour, dense and tough, nearly insensible, not vitally-contractile, and very little elastic. It is composed of bundles of delicate fibres, which are united by ecllular tissuc; and cach fibre is made up of several fibrilla, or filaments, which are discernible only with the mieroscope. The filaments are transparent and cylindrieal, with well-defined outlines: they vary in dameter from sobes to rotero of an inch, and, though they have a generally straight direction, are fincly undulated. The tendinous fibres are from $\frac{1}{r \sin }$ to $\frac{1}{s / 50}$ of an inch in diameter; the filaments are arranged within them in parallel lines, and are connected by a firm substance, in which no distinet structure can be disecrned. The bundles of the fibres are arranged in various plans in the different tendons and aponeuroses: in some, they are parallel; in some, interlaeed or variously woven together; but their arrangement is always sueh that they possess the greatest force of resistance in the direction in which the musele aets upon them.
The tendons, like the other fibrous tissues, are composed of a substance slowly yielding gelatine by boiliny. A large quantity of the ordinary glue of commerce is obtained by boiling down the tendons and ligaments about the fect of horses. They contain about 60 per cent. of water; and when dry become hard, brittle, yellow, and transparent. In vital propertics they are distinguished by a very low degrec of sensibility. No pain is excited by the application of stimuli ; but when stretched or twisted, the dull aching pain is produced, with which most persons are acquainted as characteristic of a sprain. Their diseases are few and are peculiarly slow in their progress.

The chief differences of appearanee in the tendons depend on the quantity of cellular tissue interposed between the bundles of tendinous fibres. In the round tendons there is so little, that it is with difficulty demonstrated, and they are, in a corresponding degrec, compact and strong. In the flat membranous aponeuroses the cellular tissue is much more abundant, and fills up large interspaces between the fibrous bundles. The more abundant the cellular tissuc, the more numerous do the bloodvessels of the tendons seem to bc. In the round compact tendons they are scareely diseernible; but when well prepared, the same arrangement is observed in them as in the blood-vessels of all the fibrous tissucs; that is, they run in parallel lines between the fibrous bundles, rarely dividing into smaller branches, and communieating by short canals which pass transversely across the bundles. The blood-vessels of the tendon are elinefly derived from those of the muscle to which it is attached. In most instances a large braneli runs across the line of boundary between the muscular and tendinous fibres, and gives off many smaller branelies to the latter.

Vol. XXIV.-2 D

At that end of a tendon whiel is affixed to a muscle each primitive fibre or fasciculus of the latter [Muscle] terminates in an abruptly-rounded extremity, which is embraced by a fasciculus of the filaments of the tendon, expanding and enclosing it in a sineath, or in a manner which may be coarsely represented by placing the end of the fore finger of one liand within a circle lomed by the ends of all the fingers of the other liand. The larger bundles of cellular and fibrous tisme in the tendon are also continuous with the cellular tissue which is placed between the secondary fasciculi of the muscle.

At their opposite extremitics the tendons are usually affixed to bones. Their fibres are intermixed and firmly united with those of the periosteum, and often pass into the very substance of the bone.
Although the chief and proper office of tendons is to serve as media for the action of muscles, yet many of them fulfil other purposes in the economy. Thus the aponeuroses of the abdominal muscles formi a great part of the walls of the abdomen, and, by their toughness, support and protect the organs within its cavity; ithe tendons of the muscles of the fingers add strength to each joint over which they pass; and many, in other parts, are arranged so as to act like ligaments.

TFNDRIC. [TEvREC.]
TENDRILS, or Cirrhi, are those elongated and filamentous organs of plants which possess a power of twisting in one direction or another, and by which the plants on which they grow are enabled to enbrace other plants, and thus to clevate themselves. Tendrils are only found on those plants which are too weak in the stem to enable thein to grow erect. In most cases the tendrils are only forms of the petiole; for although they may occur on the parts of flowers, yet the flowers must be regarded as metamorphoses of the leaf. Tendrils are distinguished according to the parts of the leaf from which they grow. When the tendril consists of the clongated petiolc of a compound Ieaf, it is called a cirrhus petiolaris, as in the common pea. When, as in Smilax horrida, it branches off on each side at the base of the lamina into a twisting branch, it is called a cirrhus peduncularis. When it is extended from the point of a single leaf, as in the Gloriosa superba, it is a cirrhus foliaris; and when it oceurs in the petals of a flower, as in Strophanthus, it is called cirrlus corollaris. Those tendrils which are in connection with the stem alone, as those of the passion-flowers and vines, are called Ca preoli. The type of these organs however is the same in all cases. (Bischoff, I örlerbuch der beschreibenden Botanik.)
TENEDOS (Tevedos), an island in the Greek Archipelago, off the coast of Troas, in $39^{\circ} 47^{\prime}$ to $51^{\prime} \mathrm{N}$. lat. and ' $25^{\circ} 58^{\prime}$ to $26^{\circ} 5^{\prime} \mathrm{E}$. long. It is said to have been antiently called Leucophrys, and to havo derived the name Tenedos from Tennes, the son of Cyenus, king of Colone in Troas, who reigned over the inhabitants, and was afterwards deified by them. (Pansanias, x. 14 ; Sehol. in Hom. II., i. 37 ; and more fully Diodor, v. 83.) According to Homer (II., xi. 624), it was sacked by Achilles, and occupied by the Greeks when they retired from the siege of Troy immediately before its capture. (Viry., Ain., ii. 21.). This commection with the story of the Trojan war has given Tenedos some eclebrity. It was colonized by Jiolians from Amycla in Iaconia, under the commanil of Pcisander and Orestes. (Pindar, Nem., xi. 43-6; Mernd., i. 151.) Little mention is made of Tenedos in antient history. It was independent in the time of Cyrus, king of Persia, hut was made subject to Persia after the revolt of lonia in the time of Darius (n.c. 493): it was afterwards a tributary of Athens, and in the fourth year of the Peloponnesian war took part with the yeople of Methymna against the rest of the fesbians. (Thucy., iii. 2.) Pausanias states that the Tenedians, becoming unable to defend themselves, submitted at some period of their history to Alexandria in Troas. Aristotle (Rhet., i. 16) mentions some dispute as having recently occurred between them and the Sigeians, in which they cited in support of their cause the writings of P'eriander of Corinth. According to Cicero, Verres rolbbed the Tenedians of a statue of Tennes, their founder, of most beautiful workmanship. (In Verrem, i. 10.) Pindar (Nem., xi.) speaks of the Prytanes, or yearly magistrates of Tenedos, to one of whom, Aristagoras, he nddresses this ode. It appears from Stephanus Byzantinus that Aristotle wrote on the constitution of Tenedos. On the antient silver
coins of the 1sland are the types of a double-edged axe of a peculiar form; and on the reverse a bitacial head like that of Janus. The 'Tencdica kecuris' (axe of Tencdos) was a proverb expressing any summary mode of execuling justice or dispateling an affair; derived from the law of a king of Tenedos, mentioned by Aristotle ns quoted by Sicphanus, which permitted a person who caught others in adultery to kill both parties with an axe. (See the passages quoted by Eeckhel, and Cic. Ad. Quintum Fr., ii. I1.) The head of Apollo also oceurs on coins. On the worship of this decity here, and its transmission to Tenea near Cormth, see Müller, Dorians, i. 247.

According to Strabo (p. 604) there were two harbours at Tenedos. It was used by the emperor Justinian as a depôt for corn going from Egypt to Constantinople when delained by contrary winds. According to Nymphodorus (Athencus, xiii. Goy) the wonen of the island were of surpassing beauty.
Tenedos was visited by Chandler, who "fomnd there but few remains of antiquity worthy of notice. In the streets, the walls, and birying-grounds were pieces of marble and fragments of pillass, with a few inscriptions.' (Trarels in Asia Minnr, p. 20 ; Inseriptiones Anliq., pp. 3, 4.) The greatest length of the island is from enst to west; the town with its harbour is situated in a low and sheltered spot at the north-east corner. In the market-place is the Soros of Atticus, father of Merodes Atticus. (Clarke's Travels, ii. 178 ; who refers to an accurate plan and account of the island in Tournefort, F'oyage du Levaul, i., Paris, 1717.) It contains two hundred Turkish and three hundred Greek houses. To the north of the harbour is a good fortress with forty-two pieces of cannon, but commanded from the heights in the rear. (Frankland's Consfantinople, i. 232.) The aspeet of Tenedos from the sea is barren, but it is enltivated in the interior, and produces wheat and very fine red wine.
TENEMENT is a word employed in descriptions of real property. Thongh in its usual and popular acceptation it is applied only to houses and other buildings, yet in its original proper and legal meaning it includes everything of a permanent nature that may be holden, whether eorporeal or incorporeal. It is sometimes uscd in n nore confined sense, in which it is appropriated to subjects of fendal temre; but in general it includes not only land, but every modification of right concerning it. Thus the word 'Liberum tenementum,' frank-tenement, or freehold, is applicable not only to lands and other solid ohjects, but also to offices, rents, commons, and the like. (Harg.; Co. Lilt., 154, п. .n. 7.)
TENERIFFE, or more properly TENERIFE, called Chinerfe by the original inhabitants, the Guanches, is the largest and most important of the Canary lslands. The most southern cape, Punta Roxa, is in $28^{\circ} \mathrm{N}$. lat.; and the most northem, P'unta del Hidalgo, in $28^{\circ} 36^{\prime} \mathrm{N}$. lat. The most eastern part, Punta de Anaga, is in $16^{\circ} 5^{\prime} \mathrm{W}$. long.; and the most western, l'unta de Tena, in $17^{\circ} 25^{\prime} \mathrm{W}$. long. Its length from south-west to north-east is about 00 miles. Towards the south-eastern extrenity it is nearly 30 miles across, but it grows gradually narrower towards the northcast, being near that extremity hardly more than five miles wide. In Humboldt's Travels, the area of the island is stated to be 73 maritine square leagues, or 897 English square miles; but according to a more recent estimate, the area is 83.80% Spanish square leagues, or 1012 English square iniles, which is nearly equal to the area of Cheshire.
Δ bout onc-seventh of the area (comprehending 100,000 acres, or 150.25 square miles) is a avalable for agricultaral purposes. The remainder is covered with lava and other voleanie productions, and a great part is destitute of veretation; a small portion only is corered with trees. The highest ground of the island is the P'eak of Teneriffe, called by the inhabitants Penk of Teyde, which name is derived from Keheyde, by which term the Guanehes meant Hell. This mountain is situated towards the noth-western part of the island, and is a volcano with two summits, of which the south-eastern and more clevated, called Piton, is 11,946 feet above the sea-level, and the north-western, Mount Chahorra, is 9888 feet. Their bascs are united by a short ridge, which is somewhat lower than the summit of Mount Chahorra. Both summits are extinct voleanocs. The crater of the Piton, called Caldera, is of oblong shape, and only 300 feet long from south-east to north-w est, and 200 feet in the opposite direction. It is distinguished by a
high eircular wall which surrounds it, and which would prevent access to the crater, if it were not broken down on its western side. The depression of the crater does not exceed 160 feet. The crater of Mount Chahorra is very large, as it takes more than an hour to go round it : it is about 140 feet deep. It is not on record that volcanic matter has issued from either of them : they are at present only solfataras, from the creviees of which sulpluric vapours are continually arising. But to the west of M ount Chahorra are four volcanic cones, from which in 1798 great quantities of lava flowed and covered the adjacent tracts. In 1706 a great quantity of lava issued from the north-eastern side of the ridge which unites the Piton to Mount Chahorra. These lavas reached the sea and almost filled the harbour of Garachico, which up to that time was the best, or, more properly speaking, the only harbour in the island. Very elevated volcanic masses extend from Mount Chahorra in a north-west direction to the Punta de Tena,which is the most elevated cape of the island. These masses rise to 7000 feet above the sea-level.
The Peak of Teyde is surrounded on the south-west, south, and south-east by an uninterrupted ridge of mountain masses, which form a semicircle, and are about three miles from its base. These mountains are very steep towards the volcano. On the other sides only single mountains occur. The tract which lies between the base of the volcano and the semicircle is called Los Llanos de las Retamas, from a plant called retama, nearly the only plant which vegetates on this tract, which is eovered with pumice-stones. Its surface is uneven, but has a regular slope from the base of the volcano towards the masses forming the semicircle. Near the base of the volcano it is about 8000 feet, and near the semicircle about 6000 feet above the sea. The mountains forming the semicircle rise from 1000 to 1800 feet above their base. It is supposed that the Peak de Teyde and the mountains that belong to it cover an area of 120 square miles.
From the outcr edges or the semicircle the country descends in rapid and broken slopes towards the sea on the west and on the north, but on the south and east the semicircle is surrounded by table-lands, whose surface is likewise much broken, but which at the distance of several miles preserve'an elevation of between 4000 and 6000 feet above the sca. These table-lands are most extensive to the east, where they terminate, about 20 miles from the semicircle, on the Plain of Laguna. These table-lands and the volcano taken together probably cover nearly half the island. In many places the table-lands and the slopes of the hills which cover it are overgrown with pines, but the greater part consists of bare volcanic rocks or lava. No part of them is cultivated, with the exception of a small portion in the vicinity of Chasna, south of the semicircle, where corn is grown, and where there are extensive plantations of fruit-trees. On the cllge of the table-land, west of Guimar, is a small yolcano, which made an cruption in 1703.
The Plain of Laguna is traversed by $16^{\circ} 20^{\prime} \mathrm{W}$. long. West of that plain the cultivalle country is found only near the sea, and from threc to four iniles froin it, with the exception of the table-land of Chasna, which is more than eight miles distant. The cultivable tract along the sea is so uncren that it is almost impossible to find a square mile which can be called level. A portion of it rising in steep
and sharp ridges cannot be cultivated, but where the deand sharp ridges cannot be cultivated, but where the declivities are moderate the soil Lenerally repays the labour bestowed on it. The most fertile tract is on the north side of the island, between Tegina and San Juan de la Rainbla, especially west of Santa Ursula, which portion is called the Valley of Taoro. The soil consists of a mixture of
sand, volcanic matter, and some clay and produces rich sand, volcanic matter, and some clay, and produces rich crops of wheat and all kinds of fruit, especially grapes. West of San Juan de la Rambla are a few fertile evalleys, but a great part of the country is covered with recent lave. Punta de Tena and Punta Roxa, where there are only a few narrow valleys, and where a tract several miles in length on both sides of Puerto de los Cliristianos is quite barren. Between Punta Roxa and Santa Cruz there are several fine valleys, which have a fertile soil composed of decomposed pumice-stone and tufa intermixed with gravel; but their fertility cannot be compared with that of the valley of Taoro, which is mainly to be ascribed to the smaller quantity of rain which falls on the southern shores.

The plain of Laguna occupies the middle of the island, near $16^{\circ} 20^{\prime}$ W. long.: it is about 1700 feet above the sea, and enclosed by hilils; the surface is nearly a dead level, occupying a space of about 12 square miles. After the rains it is partly covered with water, and hence is derived its name. The soil consists of a reddish clay, and produces abundant crops of grain, but no part of it is covered with trees.
The castern portion of the island, or the peninsula which extends east of the plain of Laguna, is only hilly in comparison with the western portion, as the highest summit, the Bufadero, rises only to 3069 feet above the sealevel. In this part no traces of lava and no volcanic cones occur: the hills consist mostly of black basalt: the valleys are numerous, but narrow. These valleys and the adjacent hills are cultivated and planted with trees where the surface is not too steep: they produce the finest fruits in the island. The country descends gradually towards the east, and Punta de Anaga is only elevated a little above the sea-level.
Climate.-Teneriffe, beng situated near the tropic, partakes of the climate both of the countries within and without the tropic : it has only two seasons, a rainy and a dry season, but the rainy season does not occur when the sun is nearcst, as in the tropical countries, but when it is near its greatest southern declination. It occurs in the same period of the year as in southern Europe. The dry season is produced by the trade-winds, whicl, when the sun approaches the northern tropic, proceed farther north, and are met with at 30° and even $33^{\circ} \mathrm{N}$. lat. These winds blow on Teneriffe without interruption from April to Oc tober, and always from the east-north-east: they are strongest from the middle of May to the middle of August. The wind begins in the morning between ten and eleven o^{\prime} clock, and continues to five or six in the afternoon, when it is followed by a calm, which lasts till midnight. From midniglit to seven or cight o'elock the land-breczes blow, and they are again followed by a calm, which lasts till the trade-wind sets in. Along the western shores of the island these winds are not felt, but there is a continual calm, which extends about 15 miles into the sea. The trade-wind renders the communication between the islands tedious and difficult. From Tenerifte a vesscl can run to Hierro in less than one day, but to return from Hierro to Teneriffe it generally takes ten or twelve days, and sometinies even three or four weeks. A voyage from Madeira to Teneriffe is made in two days, but it takes more than a month to sail from Teneriffe to Madeira. During the prevalence of the trade-winds the weather is constantly fine, and not a drop of rain falls.
In the rainy season, from October to April, soutli-west winds prevail : in October the winds turn to the east and south-east, and then the summit of the Peak of Teyde begins to be covered with clouds which proceed from the south. These clouds accumulate on the Peak, and gradually descend lower. When they have sunk to about 6000 feet above the sea-level, and cover the most elevated part of the island, they produce terrible thunder-storms. The rain begins to descend in torrents on the sides of the mountains, and the summit of the peak is covered with snow. In summer the mountain is quite free from snow, which is only found in a deep depression on the northern slope. This depression is called Cueva del Yelo. The snow rests on the mountain about four montlis. At the beginning of November the wind is settled in the south-west, and whilst it blows the rains sometimes last for three days. In February, Marcl, and April the wind turns to the west-north-west, north-west, and north-north-west, and the rains decrease gradually. They cease at the end of Marclı.
The climate of Teneriffe and of the Canary Islands in general is disagreeably affected by the wind called El Levante, which comes from the south-east, and genernlly blows before or after the beginning of the rainy season. Its effect on all organic bodies is very great, and the heat which it brings from the Sahara is felt mucl more in eleyated places than near the sea-shore, the more so as water is very scarce in those parts, and the thirst which the wind produces is intolerable. In those higher places it blows with such force that it frequently throws down men and horses. The air is misty, and it is not possible to distinguish objects even at a moderate distance; but there are no clouds in the sky. Sometimes this wind brings locusts in large numbers to the island. It was
formerly thouglat that these insects reached the island by flying, but Mactiregor states that such immense numbers of them are carred from the Sahara into the sca as to form a thick layer; and that in this way they are carried to the Canary 1slands, and that most of them are dead when they arrive there, but those which cover the upper surface are alive, and spread their devastation over the eom-fields and Ilantations.

We subjoin the ineteorologieal obscrvations made nt Sanfa Cruz and at Laguna: the last-mentioned place is nboat 1700 fect above the sea.

Santr Cruz laguna	Jan. 67.83° 55°	$\begin{gathered} \text { Feb, } \\ 6434^{\circ} \\ 55^{\circ} \end{gathered}$	Mar. $6:^{-1} \cdot 6^{\circ}$ Sis		$\begin{gathered} \text { May } \\ \begin{array}{c} -1.120 \\ 620 \end{array} \end{gathered}$	$\begin{gathered} \text { Jume. } \\ -3.69^{\circ} \\ 65^{\circ} \end{gathered}$	$\begin{gathered} \text { July. } \\ \cdots 20 \\ 60^{\circ} \end{gathered}$	$\begin{gathered} \text { Aus, } \\ 78^{\circ}=j^{\circ} \end{gathered}$	$\begin{gathered} \text { Sem. } \\ \hdashline \div 0^{\circ} \\ 100^{\circ} \end{gathered}$
	Oct.	Sinv.	Ihee.	What	Spring		Avtm.	Anu. mean.	
Sonta Cruz 1.8gump	7706° 60°	-0.430	${ }_{5}^{65} 91^{\circ}$	$\begin{aligned} & 65.11^{\circ} \\ & 35.33^{\circ} \end{aligned}$	$\begin{array}{ll} 71 & 11^{\circ} \\ 6200^{\circ} \end{array}$	$\pi \cdot 960$ 70.00°	$\begin{aligned} & 70.11^{\circ} \\ & 62.00^{\circ} \end{aligned}$	$\begin{aligned} & 7107^{\circ} \\ & 6285 \end{aligned}$	

This table shows that the climate of Teneriffe is distinguished by its moderate lemperature, and that the heat of the summer is prolonged to the month of November, October being considerably warmer than May, and November than Λ pril.

Produclions.- All Furopean domestic animals are reared, and also white camcls, which are used as beasts of burden, and reared on the west const of the island, but not in large numbers. Cattle are rather searee, on account of the want of pasture-ground. They are only kept for slnugliter and for the plougls: the cows are never milked. Horscs are still less numerous. They are of good breed, of a middling size, and very handy. Goats are very numerous, and their milk is exclusively used, and butter of a white colour, called ' Inantcquilla, and a large quantity of checse, are made of it. These goats are of a peculiar breed, which existed on the island before the arrival of the Europeans. They constituted the principal riches of the Guanches. Shecp are also numerous. The breed is small, and the wool is coarse, but abundant: it is consumed in the island. Asses are rather numerous, but small: mules are - much used as beasts of burden. According to MacGregor, the number of cattle is about 4900 , of horses 1000, of camcls 60, of mules 1400, of asses 2300 , of goats 30,000 , of shecp 18,000 , and of hogs 3000 . The silk-worm is cxtensively reared, and the anmual produce of sitk may amount to 8000 lbs, but it fetclies a less price than the Italian silk, not being so well prepared. In 1828 the cochineal insect was introduced, and the first trials at rearing it succeeded very well. We are not nequainted with the result of this attempt. Bees are abundant, domestic as well as wild. The honey is of the best quality, - especially that which is collected in the neighbourhood of the Peak of Tcyde, which is extracted by the bees from the blossoms of the refama plant. Betiveen 7000 and 8000 lbs. of wax are annually collected. Rabbits are very numerous.

The donestic birds are fowls, ducks, geese, nnd pigeons. A great number of turkeys nre reared. The number of wild birds is very great. Some of them are always found on the island, and others arrive only at certain seasons, in their migration from north to south, and vice rersa. The most remarkable belonging to the first class are the wild pigeon, various species of Tctraonider, quails, and larks. The canary-bird is comnon. Fish is far frons being abundant. The inliabitants live mostly on yotatoes and salt fish, whicli is obtained from the fishery on the coasts of Africa [SAnalia, vol. xx., p. 317] ; but of late the inhnbitants of leneriffc have abandoncd this branch of industry, and huy the fish from the fishermen of the other islands. Whates are somelimes inet with among the Canary Islands, and sfill more frequently dolphins. Seals rarely visit the const.

The principal objects of agriculture are potatocs, whoat, maize, barley, and rye. Where the soil is good, and means of irrigation are at hand, two erops of maize, and one of polatoes, or two of potatoes and one of maize, may be raised in twelve months. According to an nverage of fire years (1800-1804), the anmal produce was about 70,000 quarters of potatoes, 21,700 quarters of wheal, 6511 quarters of maize, 5.333 quarters of bnrley, 2200 quarters of rye, and only 40 quarters of oals. It is however stated that since that time the cultivation of grain, nnd esprecially that of potatoes, has considerably increased. Other objects of cultivation are fax, canary-secd, sumach for the tanneries,
pumpkins, cucumbers, yams, eabbnge, peas, Turkish beans, carbanzos, lentils, lettuce, capsicum, onions, und garlic. The orclaards produce apples, pears, cherrics, plums, apricots, peaches, mulberries, almonds. chesmuts walnuts, tigs, Indian figs, oranges, and lemons, and also plantains, pineapples, dates, pomegranales, 1 мpayas, guavas, anonns, and a few other fruits lerived from the West Indies. The most important object of cultivation is the rine, which yields the largest article of export. According to an average of five ycars (1800-1801) the annual produce amounted to 21,816 pipes, ench containing 100 gallous, lut it is sfated that io this quantity irom 5000 to 80000 pipges must be added, which during the vintage were converted into brandy. Thus the annual produce amounted to about 30,000 pipes. But the war between Spain and its American colonies, to which a large quantity of winc and brandy was exported, has considerably diminished this branch of indust ry, and at present the annual produce hardly cxeced; 30,000 pipes. The best sort, known by the name of Vidonia, resembles Madeira, and is sent to England. The Malrasia wine was formerly in great request, but the demand for it has diminished. The difficulty of obtaining a remunerating price for their wines and brandies has of late induced the inhabitants to introduce some other objects of cultivation. Cotton has begun to be cultirated; the produce resenbles that of Pernambuco. They liave also made some sucecessful trials with coflice. Two centuries ago the sugar-cane was the most important branch of cultiration, but at present there is only one sugar-mill on the island.

Large forests still cover some of the higher purts of the island, though they have been greatly reduced. Among the trees there are numerous kinds of Jaurns, as I. Indiea, L. bnrbussana, I. nobilis, \&c. Two or three wild-growing plants are uscd for making barilla, and the Mesembryanthemum crystallinum is cultivated for that purpose on a small scalc. Two kinds of lichens which grow on the rocks are collected for their dyeing qualities: the rocella tinctoria, which yields the archil, and the parella: they are mostly sent to Fingland.
Teneriffc las no metals, except some iron-ore, of which no use is made. Sulphur oecurs in large quantities on the Peak of Teyde.

Population and Inhabitants. - According to an estimate of MacGregor, founded on the old census of 1802 and other dala, the population of Teneriffe amounted, in 1829 , 10 85,000 individuals; so that on the average there were 84 persons to cach square milc. The greater part of the trilice of Guanches, who inluabited the island at the arrival of the Spaniards, perished in the war by which the Spaniards got possession of if, and the remainder intermarried with the Spaniards. The present inlabitants nust therefore be considered as Spaniards, whom they also resemble in person and character. The Spanish language alone is spoken, intermixed in the parts remote from the towns with a few other words.

Political Dirisions and Tourns.-For the ndministration of justice the island is divided into three jurisdictions, the courts for which are at Santa Cruz, Laguna, and Orotava. Santa Cruz de Santiago, the seat of the governor-general of the Canary Islands, is built on the south coast of the island, not far from its castern extremity. The harbour is not larye, and is well protected against the winds, except those that blow from the south. At the dislance of from 75 to 100 fathoms from the land there is good unchorage in 6 to 12 fathons, and half a mile off in 22^{3} to 30 fathoms. The lowest part of the town is more than 20 feet above the sea-level, and the ground rises gently. The houses are built in the Spanish Moorish fashion, with a court-yand (patio) in the iniddle, and have only one floor. The sticets are straight, but narrow, and have foot-yarements. Thu population amountcd, in 1829 , to 8630 individuals. The place camies on n considerable commerce, and the liarbour is annually visited by 80 to 100 vessels.

San Christoval de la Laguna is considered the capital of the island, being the scat of administration. It is built in the niddle of the plain of laguna, and is a pleasant place. The streets are sfraight and wide, well pared, and have foot-pavements. Most of the houses lave only one floor. The population anounis to more than 10,000 . The rich inliabitants of Santa Cruz pass the suinmer montlis liere, as the climate of Laguna is nuuch cooler.
Tncoronte, not far from the northern coast, in a fine valley, has 4600 inhabitants.

Orotava is on the declivity of a steep hill, nearly 1200 feet above the sea-level: it is a well-built and thriving place, with nearly 8000 inhabitants. It carries on a considerable commerce by means of its harbour, called Puerto de la Orotava, which is about 2 miles distant, and contains a population of 4600 .

Guimar, on the southern coast, is in a very fertile valley, which produces much wine and wheat: it is rather well built, and contains 3500 inhabitants. In the vicinity are the tombs of the antient inhabitants, the Guanches, which contain mummies.

Manufactures and Commerce.-There are a few manufactures of silk stuffis at Icod de los Vinos, a town on the north coast, with 4000 inhabitants. These manufactures were formerly very active, and their produce went to America; but they are now in a declining state, especially since the population of Tencriffe have begun to wear cotton instead of silk. Linen and woollen stuffs are made by the families for their own consumption. Woollen stockings were formerly made for the American market, but this branch of industry has entirely ceased. Earthenware, especiolly larye water-filters, is still sent to Cuba and Pucrio Rico. There are manufactures of soap and vermicelli at Santa Cruz. The tannerics produce a very indifferent leather, whieh is not exported. The number of distilleries is large, and the brandy is hardly inferior to Cognac. Ropes are made from the agave; and hats, baskets, and mats from the leaves of the date-palms. Good cabinet-work has lately begun to be made for the South American market.
The maritime commerce is concentrated in the port of Santa Cruz and Port Orotava, which are annually visited by about 120 vessels, mostly English. The inhabitants have a few vessels, with which they visit the Anerican harbours. The most active commerce is that with England, in whieh about 80 vessels are constantly employed. The imports consist of iron utensils, hard ware, iron in bars, flax, glass-ware, crockery; leather, eandles, soap, large quantities of cotton goods, provisions, cod, and some minor articles. The most important exports arc wine, brandy, and barilla: there are also exported almonds, dry fruits, raw silk, and archil. The commerce with the United Siates of America and with Hamburg is also considerable.
History.-The Canaries were known to the antients, who called them the Fortunate Islands. [CAvaries, vol. vi., 226.] Teneriffe was occupied by the Spaniards in 1496, and has always remained in their possession.
(Glas, History and Conquest of the Canary Islands; Humhaldt, Voyage aur Résions Equinoxiales du Nouveau Continent, vol. i.; Von Buch, Physikalische Beschreibung der Canarischen Inseln; and Die Canarischen Inseln nach ihrem gegenuärtigen Zustandc, von Mac Gregor, Hannover, 1831.)
TENIERS, DAVID (the Elder), was bom at Antwerp in 1582. He had the good fortune to study painting under Rubens, who highly esteemed him for his promising genius. Besides the bencfit of the instruction of that great master, lie had the advantage of learning his manner of preparing his grounds and managing his matcrials. It is said that he began by painting pictures on a large scale; but having gone to Rome with the intention of improving himself in the higher branches of the art, he there contracted an intimate friendship with his countryman Adam Elsheimer, whose exquisitely-finished cabinet pictures were greatly esteemed, and he studied with him several years, painting only small pictures. It was here that he acquired tho neatness of pencilling for which his works are csteemed, and whieh, with the knowledge of colours acquired under Rubens, gives to his works so great a charm.
Returning to his native country after ten yeary' absence,
Returning to his native country after ten years' absence,
he devoted himself with the greatest ardour to the practice of his art, and chose the familiar scenes of ordinary Flemish life, such as merry-makiugs, weddings, the intcrior and exterior of public-houses, rural games, chemists' laboratories, and grotesque subjects, such as the Temptation of St. Anthony and the like. These subjects he treated with the utmost truth and fidelity to nature. His colouring, his touch, his design, the pleasing distribution of light and shade, the skilful composition of his groups, procured him great reputation and constant employment: every lover of the art was eager to possess some of his works. IIe may in fact be considered as the inventor of a new Me may in fact be considerca as the inventor of a new
degree of perfection by his son. He died at Antwerp in the year 1049, at the age of sixty-seven.
TENIERS, DAVID (the Younger), was born at Antwerp in 1610, and received his first and principal instruction from his father. Some authors have affirmed that he left his father to become a disciple of Adrian Brouwer, who however was only two years older than himself, and that he had the advantage of the precepts of.Rubens. Others have pretended that he was likewisc a pupil of Elsheimer, who died when Teniers was only ten years old. He adopted, as we have observed, the subjects and style of his father; but, with a more fertile imagination, he produced compositions much more varied and ingenions ; his colouring is more vivid, rich, and transparent, and the facility of his execution is enchanting. He studied nature in all her varied forms with the most critical attention. He possessed, in perfection, what we have heard one of the brightest living ornaments of the British sehool call 'the art, or rather the gifl, of seeing.' Hence the truth and nature of his pictures, which look almost like reflections in a conyex mirror. His pencil is free and delicate; the touching of his trees light and firm; his skies are admirably clear and brilliant, though not much varied. The expression of lus figures, in every varying mood, of mirth or gravity, good or ilt humour, is strongly marked, striking, and natural; he represented them however precisely as he saw them before him, but was perhaps inferior in delineation of character to Jan Steen or Wilkie.

It is remarkable that at the commencement of his career very little regard was shown to his merit, so that he was often obliged to go in person to Brussels to dispose of his pietures. But he was not long neglected. The archduke Leopold having seen some of his pictures, immediately distinguished lim by his patronage, appointed lim his principal painter and gentleman of his bedchamber, presented him with a chain of gold to which his portrait was affixed, and gave him the direction of his gallery of paintings, which contained works of the most eminent masters of the Italian and Flemish schools. Teniers, who posscssed an extraordinary talent in imitating the works of other artists, made copies of this gallery, in which the touch, the colouring, and the manner of the several painters, however difterent from each other, were reproduced with snch a deceptive fidelity, that he acquired the name of the Proteus of painting. Some writers have objected that his figures are too short and clumsy, and that there is too much sameness in their countenances and habits: but it must be remembered that he designed every object as he saw it ; and the charm whieh his art has thrown on scenes flat and insipid in their forms, even subjects low, barren, and comnionplace, justly excites the admiration of all lovers of the art, and the extraordinary prices which are given for his works in every part of Europe are an incontestible proof of the universal admiration and esteem in which they are held. This circumstance is the more deserving of attention, as his works, far from being scarce, are extremely numerous: his extraordinary facility of execution and the great age to whieh he attained enabled him to produce such a number of pictures, that he was used to say in joke that to liold all his paintings (though they were of such small dimensions) it would be necessary to build a gallery two leagues in length. It is worthy of remark that while of all the Flemish painters his works are the most popular, he was habitually conversant with the higher classes of society. The suavity of his manners and his irreproachable conduct secured him the esteem of all his countrymen. Besides the archduke Leopold, he was honoured with the favour and protection of Christina, queen of Sweden, the king of Spain, Don John of Austria, who became his pupil, the Prince of Orange, the bishop of Ghent, and other eminent personages. He often assisted the landscape-painters of his time by inserting figures into their pictures, and many works of Artois, Van Uden, Breughel, and others derive additional value from this circumstance. The galleries and collections in England contain a great number of his finest works. He died at Brussels, in the year 1694, at the advanced age of cighty-four years.
(Pilkington; Fuseli ; Conversations Lexicon: Bhographic Universclle; Dr. Waagen, Arts and Arlists in England.)

TENIMBAR ISLANDS. [Sunda Islands, Lesser.]
TENISON, THOMAS (born 1636, died 1715), an Eng-
lish divine, son of a clergyman in the diocesc of Ely, who was advanced by his own deserved reputation for piety, charity, learning, and libenlity, to the highest station in the English church. He was born at Cottenlaam in Cambridgeshire, educated in the grammar-sehool at Norwieh, from whenee he passed to Corpus Clristi College, Cambridge, where he was ndmitted in $1 \ddot{\omega} 3$, and took his bachelor's degree in 1657. The university was then in the state to whieh it had been brought by the parliamentary commissioners, and the turn of mind of Tenison not according with what at that time was cxpected from persons undertaking the ninistry, he for a time turned to the study of medicine ; but about 1659 he was privately ordained in the episeopal method then proseribed by the government of the time. The ordination was performed at Richmond in Surrey by Dr. Duppa, the expelled bishop of Salisbury. The restoration of the king, and with it of the episeopal church, soon following, he was made minister or St. Andrew's Chureh in Cambridge, in which situation he gained nuch credit by his altention to his parishioners during the time of the plaguc, in 1665. IIe had other preferment in the country; as the clurch of St. Peter Mancrott in Norwich, and the rectory of Holywell in Huntingdonshire. This brings down his history to the year 1680, when, being then doetor in divinity, he was placed on a more conspicuous stage, being presented by King Charles II. to the living of St. Martin's in the Fields.

In this publie situation he acted with grcat prudence, and with a liberality which emulated the munificence of the clergy of earlier times, giving more than $300 l$. to the poor of his parish in the time of the distress oceasioned by the hard frost of 1683 , and endowing a free-school, and building and furnishing a library. In 1685 he discharged the diffcult duty of attending the duke of Monmouth previous to his execution with singular diseretion. In his politics he was a Whig, and favourer of the Revolution, and was accordingly early marked out by King William for advancement in the churel. In 1689 he was made archdeacon of London, and in 1691 bishop of Lincoln. This large diocese, which had beell too mueh neglected, he brought into order. In 1694 , on the death of Dr. Tillotson, he was nade archbishop of Canterbury, in which high dignity he remained for twenty ycars. IIe died on the 14th of December, 1715, and was interred in the parish church of Lambeth.

A large aecount of his life was published soon after his death, without the name of any author in the title-page, but evidently written by a person possessed of good information, and who was fully sensible to his merits. IIe speaks of him thus :-' And as he was an exact pattern of that exemplary piety, charity, stedfastness, and good conduet requisite in a governor of the chureh, so perhaps sinee the primitive age of Cluistianity and the time of the Apostles there has been no nuan whose learning and abilities have better qualified him to discharge and defend a trust of that high importance.

The library which lie founded in the parish of St. Martin's still exists; and he may be regarded as the founder of the library in the cathedral church of St. Paul, having presented two hundred and fifty pounds to make up four hundred and fifty, which the dean and residentiaries gave for the libraries of two clergymen bought by them in 1707 . His will contains many muniticent bequests for claritable and religious objects.

Archbishop Tenison lias left no writings behind him which can be said to make part of the general literature of the country, or to establish for him a literary reputation. Fet he published several treatises, mostly connceted with the religious and politieal controversies of his age.
TENNANT, SMITHISON, a distinguished chemist, was born at Selby, in Yorkshire, November 30, 1761, and died February 22,1815 . Ie was the only child of the Rev. Calvert Teunant, of whom little is known except that he had been a Fellow of St. John's College, Cambridre, and was a friend of Dr. Rutherford, Regius I'rofessor of Divinity in that University.

While very young he gave many proofs of a particular turn for chemistry and natural philosophy, and atter quitting school lie was very; desirous of completing his chemieal studies under the imunediate instruction of Dr. Priestlcy, who was then enjoying high and deserved reputation for the extent and variety of his diseoveries in pneumatic chemistry; but this was fonnd impracticable in consequence of the previous cragagements of Dr. Iriestley.

In the year 1781 he went to Edinburgh with the intention of studying medicine. Of his companions, occupations, or studies while in Seotland, little is known, exeept that he received instruetion from Dr. I3lack; he did not however continue long in that University, for in October, 1782, he was admitted a member of Christ's College, Cambridge, where he then began to reside.

In the summer of 1781 he travelled into Denmark and Sweden, with the intention, partly of examiuing the mines of the latter country, but chicfly with the view of becoming personally acquainted with Scheele, for whoin he had coneeived a high degree of adnuration, especially on aecount of the simplicity of the apparatus which be cmiployed in lis chemical researches. In a year or two aflerwards he went to I'aris, where he became acquainted with sounc of the eminent chemists; thence he went to Holland and the Netherlands, after having recovered from a serious illness with which he was seized during his residence in the Freneh capital.

In January, 1785, he was elected a Fellow of the Royal Society, and in 1786 he left Christ's College and removed to Emmanuel College; iu 1788 he took his degrec as bachelor of physic, and soon after quitted Cambriage and came to reside in London. In 1790 he took a doctor's degree at Cambridge, but as his fortune was independent, he relinquished all idea of practice as a physician. In 1813 he was elected Professor of Chemistry at Cambridge, having in the previous year delivered, with great suceess, a few lectures on the principles of mineralogy to some of his friends.
In the month of September, 1814, Mr. Tennant went for the last time to France, and on his return home on the 20th of February, 1810̄, he arrived at Boulogne with Baron 13ulow, in order to embark therc. They embarked on the 22nd, but were forced back by the wind, and meant to embark again in the evening: in the meantime they took horses and went to see Bonaparte's pillar, about a league off, and going off the road on their return to look at a small fort, of which the drawbridge wanted a bolt, they were both thrown, with their horses, into the ditch. Baron Bulow was mercly stunned, but Mr. Tennant's skull was so severely fractured, that he died within an hour after.
The following character of Mr. Tcnnant is chiefly copied, with some variations, from the 'Anuals of Ihilosophy,' vol. vi., and the writer of this brief notice, having well known the subject of it, is able to testify to the accuracy of the statements in all the more important particulars.

Mr. Tennant was tall and slender in his person, with a thin face and light complexion. His a ppearance, notwithstanding some singularity of manners, and great negligence of dress, was on the whole striking and agreeable. His countenance in early life had been singularly engaging ; and at favourable times, when he was in good health, was still very pleasing. The general cast of his features was expressive, and bore strong marks of intelligenee ; and scveral persons have been struck with a general resemblance in his conntenance to the well-known portraits of Locke.
Of his intellectual character, the distinguishing and fundamental prineiple was good sense; a prompt and intuitive perecption of truth, both arpon those questions in which certainty is attainable and those which nust be determined by the nicer results of moml evidence. In quick penetration, united with soundness and aecuracy of judgment, he was perlaps without an equal. He saw inmediately and with great distinctness where the strength of an argument lay, and upon what points the decision whs ultimately to depend; and he was remarkable for the faculty of stating the merits of an obscure and complieated question very shortly, and with great simplicity and precision. The calnness and temper, as well as the singular perspicuity, which he diplayed on such occasions, were alike admirable; and seldom failed to convince the umprejudiced, and to disconcert or silence his opponents. He had a peculiar cast of humour, which was heightened by a perfeet gravity of countenance, a quiet familiar manner, and a elaracteristic simplicity of language. In consequenee, principally, of the declining state of his health, his talent for conversation was perhaps less uniformly conspielous during his latter years, but his mind had lost none of its vigour, and he never failed, when he exerted himself, to display his peculiar powers.
The 'Plulosophical Transactions' contain eight papers by Mr. Tennant:-1, 'On the Decomposition of Fixed Air,'
$1791 ; 2$, 'On the Nature of the Diamond,' $1797 ;{ }^{\circ} 3$, On the Action of Nitre upon Gold and Platina;' 4, 'On the Different Sorts of Lime used in Agriculture,' $1799 ; 5$, 'On the Composition of Emery,' 1802; 6, 'On two Metals found in the Black Powder of the solution of Platina,' 1804; 7, 'On an easier Mode of procuring Potassium than that which is now adopted;' $\mathbf{8}$, 'On the Mode of producing a Double Distillation by the same Heat.'

In the first volume of the "Transactions' of the Geological Society, 1811, he published the analysis of 'A Volcanic Substance containing the Boracic Acid.'

In his experiments on the diamond, he proved it to be pure carbon, by heating it in a gold tube with nitre; the diamond was converted into carbonic acid by combining with the oxygen of the decomposed nitric acid, and this united with the potash of the nitre; by the evolution of the carbonic acid, the quantity of earbon, in a given weight of diamond, was estimated. In his paper on 'İmestones,' he showed that the presence of carbonate of magnesia in them rendered them prejudicial when ealcined and applied as a manure.

In the paper on 'Emery,' he proved that this substance is merely a variety of corundum, or sapphire. The two metals which he found in native platina were osminm and iridium.

With respect to these memoirs it may be observed that they all bear the impress of originality, and that the operations which they include and describe are of the greatest possible simplicity, and stated in the plainest language.

TENNANTITE, a variety of grey copper-ore, so named in honour of Smithson Tennant, a distinguished chemist. It occurs in attached crystals, which are usually small. Primary form a cube. Cleavage parallel to the planes of the regular octohedron. Fracture uneven and imperfeetly lamellar. Hardness: seratches carbonate of lime, but is seratched by the phosphate. It is brittle. Colour varying from tin-white to blackish iron-grey, frequently tarnished on the surlace. Streak reddish-grey. Lustre metallic, sometimes splendent. Specific gravity 4:37.

When heated by the blowpipe, it deerepitates, and burns with a blue flame, emitting arsenical vapours, and then fuses into a black scoria, which is attracted by the magnet.

It oceurs only in Cornwall, and has there been found in several copper-mines.

TENNESSEE is one of the inland states of the North American Union, and lies between 35° and $36^{\circ} 40^{\prime} \mathrm{N}$. lat. and between $81^{\circ} 30^{\prime}$ and $90^{\circ} \mathrm{W}$. long. The southern boundary, which runs along $30^{\circ} \mathrm{N}$. lat., is contiguous to the northern limits of the states of Georgia, Alabama, and Misgissippi, and is 356 miles long, of which the boundary with Georgia amounts to 100 , that witl Alabama 140 , and that with Mississippi 116 miles. On the west of it are Arkansas and Missouri, from which it is separated by the Mississippi, whose course along this border amounts to about 150 miles, measured along the numerous bends. North of Tennessec are Kentucky and Virginia. The boundary-line towards Kentucky between the rivers Mississippi and Tennessee runs along $30^{\circ} 30^{\circ} \mathrm{N}$. lat. for about 64 miles, but east of the last-mentioned river it follows its course for ahout 12 miles until it reaches $36^{\circ} 40^{\circ} \mathrm{N}$. lat. and $36^{\circ} 33^{\prime} \mathrm{W}$. long, and then extends a little sontly of east until it meets the sonth-western angle of Virginia ncar $83^{\circ} 30^{\prime} \mathrm{W}$. long. The distance between the Tennessee river and the last-mentioned point is about 250 miles. The line which divides Tennessee from Kentucky is continued eastward between Tenessec and Virginia for 105 miles, when it arrives at the most eastern point of the state. East of Tennessee is Nosth Carolina; the boundary-line between them, whicli is 150 miles long, is formed by one of the ranges of the Appalachian Mountains, called the Iron Mountains. Thic length of Tennessee from east to west is about 44.5 miles, and its breadth from north to south 104 miles. The area is about 40,200 square miles, or $26,729,000$ acres. It is about 10,000 square miles less in extent than England without Wales.

Surface and Soil.-This state is naturally divided into three regions, which may he called the Eastern or Mountain region, the Middle or Hilly region, and the Western or Level region; and this division coincides tolerably well with that made for the administration of justice, according to whiel the country is divided into the Eastern, the Middle, and the Western District. The first and the last are nearly equal in extent, each comprehending about 10,000 square miles, but the Middle District is about double that size.

The Eastern or Mountain Region lics within the ranges of the Appalachian Mountains. This extensive mountainsystem may be said to commence along and near the southeris boundary-line of Tennessee. Near $33^{\circ} \mathrm{N}$. Jat. and $82^{\circ} \mathrm{W}$. long., on the boundary-line between South and North Carolina, the country forms a ridge of hills, a continuous high ground which extends westward to $85^{\circ} \mathrm{W}$. long., a distance of more than 160 miles. In the Carolinas it is known by the name of the Blue Ridge. It does not terminate at $85^{\circ} \mathrm{W}$. long., but west of that meridian it forms a kind ol mountain-knot, consisting of several ridges, which extend south-west and north-east, in the direction of the whole mountain-system. Thesc ridges lie between 34° and 35° $20^{\prime} \mathrm{N}$. lat., and the ' Tennessee river traverses this tract in a south-west direction. The highest of these ridges is on the east of the river valley, and is called the Look-out Mountains. The elevated ground just mentioned constitutes the southern extremity of the Appalachian Mountains; for from its eastern extremity, west of $82^{\circ} \mathrm{W}$. long., a ridge runs in a general north-east direction, which is also ealled the Blue Ridge, being considered as the continuation of the before-mentioned ridge so called, and from its western termination (near $86^{\circ} \mathrm{W}$.long,) there runs another ridge under the name of the Cumberland Mountains, first north-north-east, and afterwards east-north-east and north-east. The space included between these two ranges extends from east to west about 200 miles. It is traversed by several minor ridges, among which the most elevated and least interrupted is ealled the Iron Mountains. It extends southwest and north-east, is much nearer the eastern Blue Ridge than the Cumberland Mountains, which are west of it, and constitutes the boundary-line on the east between North Carolina and Tennessee.

The monntain-region of Tennessee occupies the tract enclosed by the Iron Mountains and the Cumberland Mountains, whose most elevated parts are about 70 miles distant from one another. The northern half of this tract is traversed by three minor ridges, which in general run parallel to the larger ranges, and thus with the two outer ranges form four valleys, which are traversed by four of the upper branches of the Tennessce River, namely, Powell's, Clineh, Holston, and Frenchbroad River. The valleys are 1 ather wide, but as there is little alluvial land along the watercourses, their surface is uneven and broken, and the soil, which consists mostly of siliccous gravel, is of indifferent quality, except in the valleys of the Holston and Frenchbroad rivers, where it contains a mixture of clay. Only a comparatively small portion of it is strong enough for the growth of wheat ; the greatcrpart produces rye and oats; but the mountains afford good pasture-grounds, and large herds of cattle and shcep are kept. The most elevated part of the mountains is overgrown with forests of pitch-pine, which yield timber, and from which tar, pitch, and turpentine are extracted. The minor ridges terminate near $35^{\circ} 50^{\prime} \mathrm{N}$. lat., where the upper branches of the Tennessee river form their union. The country south of $35^{\circ} 50^{\prime}$ can only be called mountainous near the southern portion of the Blue Ridge and the Cumberland Mountains, the interior being covered by a suecession of lills rising hardly more than 300 feet above their base. The soil of this tract is of indifferent quality, and mostly used as pasture-ground, but the forests contain many large trees, as pitch-pine, red cedar, and black walnut. Along the watercourses there are some tracts of moderate cxtent fit for the growth of rye and oats.

The Hilly or Middle Region extends from the Cumberland Mountains westward to the Tennessee River, where it traverses the state by running from south to north. 'The general level of this region is several hundred feet above the sea-level, and it is covered with numerous hills, which form several continuous ridges, such as that which, under the name of Elk Ridge, runs from east to west near $35^{\circ} 20^{\prime}$ N. lat, between the Elk River and Duek River. The watercourses are usually much depressed below the general level,
and most of them run in narrow ehannels. This irnel varies greatly in fertility. Near the Cumberlam Momtains, and to the distance of \mathfrak{X} miles from them, the soil eonsists chiefly of grasel mixed with limestone, and is of moderate fertility, but ingeneral it is hetter phan in the monntainregion, and larger tracts are fit for the growih of wheat. The country west of this tract is the most fertile portion of Tennessee : it extends over the whole of the state from north to south, and reaches westwards to $87^{\circ} \mathrm{W}$. lang. The soil is not inferior to the best part of Kentucky, and consists of a large jortion of clay and loan mixed with sand and gravel. A large quantity of wheat is prodteed, but the staple articles are tobaceo and maize. In the better lands, especially along the Cumberland River, the common produce of maize is from 60 to 76 bushels for one, and in other places 40 or 50 . The forests, which still cover a great part of the surfaee, consist chiefly of ash, alm, black and honey locust, mulberry, sugar-maple, and the wild glum; and wild grapes are abundant. The western diatricls, or those which lie near the Tennessee River, and extend about 30 miles cast of it, are less hilly, hut they are also less fertite: they produce the same articles, but the crops are less plentiful. In some places cotton is cultivated.

The Western or Level Region lies between the Tennessee and Mississippi rivers. The surface is traversed by some swells of high ground: the nost extensive is that which runs aeross the state from north to south, about 12 miles from the weatern hank of the Tonnessee River, and is several miles wide. Other swells traverse the southern districts, ruming from south-east to north-west, and terminating on the baulis of the Mississippi with the Chicliasaw Bliffs. The north-west districts are nearly a dead level, which descends impereeptibly to the banks of the Mississippi. where it terminates in a large wooded swanp, called the Wood Swamp. This region was very thinly inlabited twenty years ago, but it cannot be of indifferent quality, if we judge by the rapidity with which the popuIation has increased. It appears however that the nore elevated portions of the country are muels more thiekly settled than the level tract, which may be attributed to the circumstance that the last-mentioned tract contains many swampy places, and is less favourable to health. In these regions every kind of grain is grown, and cotton and tobaceo are extensively cultivated.

Rivers. - Numerous rivers drain this state, and some of them have a long course. The larger rivers are navigable tor keel-boats and for steam-boats, but only during the boating-scason, which generally commences on the 20th of February, and terminates carly in June. Oceasional freshets contribute to render them navigable during a short portion of the other months, but no reliance can be placed on periodieal returns of freshets, except those of the spring season.

The Tennessce River rises with numerous branches in the Appalachian Mountains: the most remote of them originate in Virginia near $81^{\circ} 30^{\prime} \mathrm{W}$. long. and and $37^{\circ} \mathrm{N}$. lat., and run south-west. The largest branches are the Clineli and Molston rivers: they unite with other branches, which rise in North Carolina, in the country enclosed by the Blue Ridge and the Iron Mountains, and whieh break through the last-mentioned ehain. The largest of them are the Frenchbroad River, the Tennessee, and the Hiwassec. After these numerous branches have united, the Tennessee traverses the mountain-knot between 34° and $35^{\circ} 30^{\prime} \mathrm{N}$. lat. It passes through the sidge, which on the south is called I.ook-out Mountains, and on the north Walden's Range. It rishes through this gap witl great impetuosity orer a rocky bed: this place is called the Suck: its course within the mountain-traet is very rapid, and it eseapes from it by another gap near Fort Depostt, in Alnbama. At this place it changes the south-west course into a western course, and after draining Alabama for about 200 miles, it returns to Tennessec. In Alabama the river widens from two to three miles, and in this part there are extensive rocky shoals, which are known under the name of the Mussel Shoals, and oecupy for seven or cight miles the whole of the bed. In low-water these rocks entirely obstruct the mavigation, Irut in the time of the freshets hoats of moderate size may ascend and descend withont danger. The lower course of the Tennessec River, as far as it lies within Tennessee, is from south to north. After having entered Kentueky it gradually deelines to the west, and falls into the Ohio. The whole course of the Temessee probably does not exceed 800 miles, recknned from the source of the Holston or

Clinch. In the boating season it mey be ascended by large river-boats to the Mussel Shoals, and esen to the grap by which it eseapes from the mountains by small boats. Some of its upper branehes are navignble tor small boats above the Suck. It appears that within the Appalachiun Mountains it may be descended by bouts, but the ascent is very laborious and even clangerous.

The Cumberland River rises in Kentucky, in the valley formed by the Cumberland Mountains and the Iaurel Mountains, and traverses the south-eastern district of that state by a general western course: afler a run of about 150 miles it turns to the south-west and euters Tennessice. where it soon resumes its western course. It drains the northern districts of Tennessee by a course of about wou miles; and turning gradually more to the north, re-enters Kentucky, where its general course is to the north. It falls into the Ohio a few miles above the mouth of the Temnessce. This tiver mus about 450 miles, and as the current is very gentle, the navigation is easy for sloops as far as Nashville, more than 1.50 miles from its mouth. It. is stated to be navigable for river-boats 150 miles farther up, but in Kentucky the upper course is obstructed by extensive shoals in several places.

Climute. - No meteorolodical observations made in Tennessee having been published, we are unable to form a precise idea of the elimate. It is very probable, as it is assumed by Darby, that the general level of the Mountain Region is abont 800 fect more elevated than the level tract on the Mississippi, which is about 300 feet abore the sea. This of course must produce a considerable difference in the climate of the two regions. Cornelius found the regetation in Virginia, east of the Blue Ridge, Iwo reeks earlier than in the valley west of it. It is probable that the winter in the Mountain Region lasts for several weeks, and that the frost is rather severe. In the eountries west of the range the rivers are generally eovered with iee for a few days in the winter. Snow falls to the depth of ten inches, but seldom lies more than twelve or fifteen days on the ground. In winter and spring a considerable quantity of rain falls ; but in the other seasons ram is not frequent, nor does it continue for any length of time. The air in some parts of Tennessee is remarkable for its dryoness.

Productions.-The state of ngrieulture in Tennessee will best be inferred from the statement of the returns of 1840 , aceording 10 which the quantity of maize grown amounted. to $42,467,315$ bushels, a quantity much larger than that produced in any other of the United States. As this grain is best adapted for the feeding of hogs, the number of logs was also larger than in other states, amounting to 2,795,630. Oats were raised to the amount of $6,770,116$ bushels; wheat, $4,547,273$ bushels; potatoes, 2,373,034 bushels; rye, 297,033 bushels; buekwheat, 6187 bushels ; and barley, only 4758 busliels. The quantity of cotton amounted to $125,250,308 \mathrm{lb}$... which was not half as mueli as that produced in Mississippl ($289,838,8181 \mathrm{bs}$.), and little more than half the quantity that was raised in Alabama (210,379,6001bs.). but nearly as much as was grown in Gcorgia ($148.907,880 \mathrm{lbs}$.), and Ohio ($134,329,75.5 \mathrm{llbs}$.) Tobneco was produeed to the amount of $26,542,448 \mathrm{lbs}$, more than one-third of the quantity grown in Virginis (74,157,841 lbs.). Flax and liemp yiclded 45,053 tons, and the meadows only 39,512 tons of hay. Rice is little cultivated, as the produce was only $7 \boldsymbol{T} 29 \mathrm{lbs}$: the hop plantations yielded only 8401bs. The cultivation of the sillworm seems not to have nade mueli progress, as only 11631 bs . of cocoons were gathered. The value of the prodace of the orchards was estimated at 336.76 dollars, which proves tlimt lorticulture las made considerable progress. A small quantity of wine was made, amounting to 6iv gallons. The sugar made from the sugar-maple amounted to $251,745 \mathrm{~b}$. Though the produce of the artieles drawn from the forests las clecreased, it was still consiclerable: the lumber was estimated at $2,000,266$ dollars, lesides 3119 barrels of piteh, tar, turpentine and rosin, and 212 tons of pot and pearl abhes. The number of horses and mules amounted to 327,520. that of neat eattle to 773,390 , and that of slecep to 748,459 . The value of the poultry was estimated at 581,531 dollars. The produce of the dairy was to the value of 930,003 dollars; the quantity of wool was $1,029,526]$ bs.; and the wax $50,715 \mathrm{lb}$.

Bufaloes were once numerous, but they lave entirely disappeared; the elk and moose-deer are only found
in the Mountain Region, and the deer is still abundant there. There are bears, pumas, wild-eats, and wolves; a!so beavers, otters, and musk-rats. Racoons, foxes, squirrels, opossums, rabbits, polecats, and minxes are very numerous: pheasants, partridges, pigeons, swans, wild turkeys, ducks, and geese are abundant. There is fish in all the rivers, but not very abundant. The wild trees and plants which yield fruits are the wild plum, the crabapple, the wild vine, and the strawberry.

There is gold in the mountains bordering on North Carolina, but up to 1834 only 12000 dollars' worth had been collected. Lead exists in the same mountains, but is not much worked. Iron-ore is found in great abundance on the south side of the Cumberland River, and also at a few other places. Limestone and marble are got in the Cumberland Mountains, and nitre in abundance in some extensive caves near the Mountain Region. Salt-springs are very numcrous, and some of them are strong. Some salt is made, but not to a great amount, as salt is easily obtained from the western districts of Pennsylvania and from Ohio.
Poprulation.-In 1838 the Cherokees, who up to that time were in possession of the southern districts of the Mountain Region, left Tennessee, and went to the west of the Mississippi. [North American Indisns.] At present the population consists of the descendants of Europeans and of slaves.
By the eensus of 1830 the population consisted of 422,813 individuals. At the census of 1830 it had increased to 681,004, which gives an increase of $61 \cdot 3$ per cent. in ten years. Aecording to the last census (1840) the population amounted to 829,210 , so that in the ten years preceding the census it had increased 21.6 per cent., which is still about double the rate of inerease in most countries of Europe. The increase however has not been equal in all parts of the state. In the Eastern District it had risen from 196,301 to 224,259 , or about 14.7 per cent. ; in the Middle District, from 374,749 to 411,710, or only 9.3 per cent.; and in the Western District, from 110,854 to 193,241 , or $7: 3$ per cent.
In 1830 the population consisted of 535,746 whites, 4.505 free coloured people, and 141,603 slaves; and in 1840, of 640,627 whites, 5524 free eoloured people, and $183,0.9$ slaves; whence it is evident that the slave population has increased more rapidly than the white, as the increase of the number of slaves amounts to 29.2 per cent. The proportion of the white inhabitants to the slaves is greatest in the Eastern District, which contains only 18,714 slaves and 203,371 whites, so that the slaves constitute only 9.2 per cent. of the number of the whites. In the Middle Distriet there were 301,157 whites and 107,735 slaves, which raises the slave population to 324 per eent. of the number of the whites. In the Western District the number of whites amounted to 136,099 , and that of the slaves to 56,610 , so that the slaves constituted $41 \cdot 6$ per cent. of the white population.

If the population were equally distributed over the state, there would be 20.6 individuals to each square mile. In Scotland there are 90, and in southern Sweden about 42 individuals to each square milc. It is remarkable that the most stcrile part of Tennessee, the mountain-region, is the most populous. If we allow it 10,000 square miles, which is probably somewhat too much, it contains 22.4 individuals, whilst the Middle District has only $21 \cdot 2$, and the Western Distriet only 193 individuals to each squarc mile.

Political Divisions and Touns.-For the administration of justice the state is divided into three districts; and for political purposes into scventy-two counties. As Tennessec is eminently an agricultural country, none of the towns have risen to any importance. The capital is Nashville, built on the left bank of the Cumberland River, where the navigation for large boats begins. It is a wellbuilt and thriving place, which in 1830 contained 5565 inhabitants; and in 1840, 6929 . Knoxville, on the river Holston, ncarly in the centre of the mountain-region, has a population of about 3000 . The other towus are small. Murfreesborough, south-cast of Nashville, in one of the most populous districts of the state, has about 1500 in habitants ; and Mcmphis, on the Mississippi, near the boundary-liue of the State of Mississippi, is a very thriving town, being a place of resort for the steam-boats which navigate the river.
P. C., No. 1514 .

Manufactures.- Manufacturing industry has not made mueh progress in Tennessee. In 1840 the number of persons employed in manufactures and trades was only 17,805: of whom 10,409 were in the Middle District; 4679 in the Eastern; and 2727 in the Western. The number of distilleries was 1381 , but all on a small seale, as may be inferred from the produce, which amounted only to 1,080,693 gallons: in New York 38 distilleries produced more than 4 millions of gallons, and in Massachusetts 37 distilleries more than 5 millions. Cotton and linen stuff's for clothing are made at home. There is a small number of families who make coarse cotton, linen, and hempen fabrics for sale; and there are also a few paper-mills and manufactures of cordage and ropes. Some bar-iron is made, and nails are manufactured. There are also several sniall tanneries.

Commerce.-Tennessee is not favourably situated for eommerce, as the only river which is navigable for large boats all the year round washes its western extremity. The mountain-region labours under the greatest disadvantages, as the mountains which separate it from the Atlantic regions are difficult to pass. Its commercial wealth consists of live stock: they send their neat eattle to Virginia, and their horses, mules, and hogs to the Carolinas. The Middle and Western Districts are commereially connected with New Orleans, to which place they send, by the Mississippi, cotton, tobaeco, maize, pork, potatoes, flour, hemp and flax, deer-skins, lumber, ginseng, and bar-iron. The foreign articles consumed in the country, which consist mostly of groeery and some other articles of manufacture, are imported from Pittsburg and Philadelphia, or from New Orleans.
Elucation is not neglected. The number of white per . sons above twenty years of age unable to read and write amounted, in 1810 , to 58,532 ; the number of elementary and common schools was 983 , and the number of children attending them 25,000 , of which number 6005 were taught at the public expense. The number of aeademies and grammar-schools was 152 , and they were attended by 5048 boys. There are five universities or colleges. The best is the university of Nashville, which has six instructors and a library of about 8500 volumes. Jackson College is near Columbia. The colleges of Greenville, Washington, and Knoxville are smaller. There is a theological seminary at Maryville in East Tennessee for Presbyterian clergymen.
History and Constitution.-The first settlements in Tennessee were made about the middle of the last century, but in 1760 they were destroyed by the Cherokees, then the possessors of this country, from the northern and eentral part of which they were expelled in 1780 . Since that time the number of settlements has continually and rapidly increased. Up to 1790 Tennessee formed a part of North Carolina, but in that year it was ceded by that state to the United States, who converted it into a territory. In 1796 it was admitted into the Union. The legislative power is vested in a general assembly consisting of a senate and a house of representatives, eleeted by the freeholders for two ycars. The senate is at present composed of 25 members, and the house of representatives of 75 members. The executive power is vested in a governor, who is chosen by the electors for the term of two years, and is not eapable of holding office more than six years out of eight.
(Cornelius, Tour in Virginia, Tennessee, \&e.; Long's Expedition to the Rocky Mountains, by James; Darby's Geographical View of the United States; Pitkin's Statistical Vieto of the Commerce of the United States; the American Almanack and Repository of Useful Knowledge for 1842.)

TENNIS, a game in which a ball is driven to and fro by several persons striking it altcrnately, either with the palm of the hand, naked or covered with a thiek glove, or with a small bat called a racket, held in the hand; the aim bcing to keep the ball in motion as long as possible without allowing it to fall to the ground. Strutt, on the authority of St. Foix, a French author, states that the French game of ball called palm-play, or "jeu de paume," was formerly played with the naked hand, then with a glove, which in some instanees was lined, and that afterwards the players bound cords and tendons round their hauds to make the ball rebound more foreibly; and hence, it is added, the racket derived its origin. He states that palm-play, or hand-tennis, was exceedingly fashionable in

VoL. XXIY. -2 E

France during the reign of Charles V., it being often played by the nobility for large sums of money. Perhaps the first listorical notice of the ganie in England is that which Shakspere has introdueed, slmost in the words of the old chroinelers, in lis ' IIenry V.' (aet i., se. 2), where the dauphin sends a present of tennis-balls in answer to Henry's demand for the sovereignty of France. Henry VII. was a tennis-player ; and, ns an entry in a MS. register of his expenditure in the thirteenth year of his reign mentions an item of twelve-pence for his loss at tennis and three-penee for the loss of hinls, it may be inferred that the game was played abroad, as the loss of balls is not likely to have happened in a tennis-court. Be this as it mav, in the sixteenth century tennis-courts were common in England, and the game was very popular with the nohility, which it continued to be down to the reign of Charles II., who frequently diverted himself by playing at tennis with his courtiers. Tennis-courts were divided by a line stretched in the middle, and the players, stnnding on encls side with their rackets in their hands, were required to strike the ball over this line. A similar game was sometimes played with a hollow leather ball, inflated with air, and ealled n balloon, which was driven from one player to another by striking with the hand, or with a wooden bracer fixed upon the hand and lower arm. Further particulars respecting these and other games played with a ball may be found in Strutt's 'Sports and Pastiues,' and 'Horda-Angel-Cynnan.

TENON, JACQUES-RE'NE', an eminent French surgeon, whose father also belonged to the medical profession, was born in 1724 . He went to P'ais in 1741, where his zenl and talents soon gained him the notice of Winslow, and also of Antoine and Bernard de Jussieu. The first of these celebrated men initiated lim in the study of anatomy; the two others developed in him a taste for botany and natural history. In spite of the prejudices and example of his contemporaries, Tenon understood that surgery, far from being separated from the other branches of medical science, and restricted to the mere performance of operations, is on the contrary most strietly united to them. Accordingly from this time he had a wider field opened to him for his professional labours; and he united to the study and treatment of surgical affections mimute anatomical investigations and ingenious physiological experiments. In a short time lie acquired a well-merited reputation; and though inferior to some other modern French surgeons in skill and genius for that particular department of science, yet few lave surpassed him in the extent of his studies and the variety of his information. In 1741 Tenon was appointed an army surgeon of the first class (chirurgien de premicire classe auk. armees), and served in the following year throughout the campaign in Flanders. On his return to Paris he obtained by competition (au concours) the situation of ehief surgeon to the hospital of La Salpetriere, and founded near it n celebrated establishment for inoculation, a practice which his labours contributed mueli to propagate. He afterwards became a member of the College and of the Royal Aendemy of Surgery, and succeeded Andouille as professor of patholowy. In 1757 he was received into the Acadenyy of Sciences. Tenon belonged to the first Legislative Assembly, and there displayed the same zealous philanthropy which seemed to belong to all his actions. Upon the re-organization of the learned societies, he became a member of the Institute of the first class, and read in thnt assembly naany interesting papers. He was also a member of the Legion of Honour and of several learned and scientific societies, and preserved to the end of his life the same love of labour and the same zeal for the advancenent of science whicla had marked the early years of his career. He died nt Paris, on the lith of Janiary, 1816, at the advanced age of ninetytwo. Few persons have written so mmy meenoirs and monographs as Tenon; many of these have only been published in the annual nnalysis of the proceedings of the Institute: he is also said to have left behind him a great number of mannseripts. More than thirty of his works are mentioned in the Bingraphie Médicale, of which the following are the most impoitnnt:- De Cataracta,' Paris, 17:37, 4to. 'Memoires sur l'Exfoliation des Os ,' read before the Academy of Seiences in 1758, 1750, and 1760, and afterwards printed, tokether with some others, with the title ' Mémires sur l'Anatomic, la Pathologie, et la Cliirurgic,' Paris, 1800, 8vo. 'M'moire sur les Hopitaux de

Paris, Paris, $1788,410$. ; a very able memorr, which has served as a model for many that have been since written on the same subject, in which are pointed out almost all the improvements that have been introduced into the French hospitals. His last work, which was published when he was ninety years old, is entitled 'Offrande aux Vieillards de quelques Moyens pour prolonger la Vie.'

TENOR, the name of the most common of aclult male voices, that which is between the extremes of highest and lowest, or Contratenor [Alro] and Base. [Base-Voice.] The compass of the Tenor is from c. the second space in the base, to a , the second line in the treble. Example, in the tenor clef:-

Hence it will be seen that the tenor and treble are reciprocally at the distance of an octave; conserquently, what is calculated for the one voice, as relates to compass, will, nt a distance of eight notes, invariably suit the other.
The word is derived frons Teneo, to hold; for in antient part-compositions, the plain-song, or air, if it may be so denominated, was given to, or held by, the Tenor. [Clef.]
Tenor-Clef is the c, or mean clef, placed on the fourth line for the use of the tenor-yoice. Example:-

It is also occasionally used for the violoncello: nnd the part of the tenor trombone is written in this ele:.
Tevor is also the English name for a larger instmment of the violin kind. See Viola.

TENOS (Tivos), now Tino, a small island in the Greek Arehipelago lying to the south-east of Andros, and between that island and Myeonus, and forming one of the group ealled the Cyelades. S. Nicolo, on its north enast. is in $37^{\circ} 30^{\prime} \mathrm{N}$. lat. and $23^{\circ} 15^{\prime} \mathrm{E}$. long. It is abuut 15 miles long, and its greatest length is from northwest to eouth-east. It was nntiently called Hydrusa, becanse it was well watered (raráppóvrov) (Steph. Byzant., v. rïvos; Pliny, Hist. Nat., iv. 12); and Ophiusa (Strabo, p. 487, ed. Casaub.), because it abounded in snakes. In the time of the Persian invasion of Greece a Tenian trireme rendered good serviee to the Greeks by deserting from the enemy, and giving intelligence of their movements immediately before the battle of Salamis (n.c. 480). The nnme of the lenians was in consequence inserted upon the tripod at Delphi in the list of states to whom Grecce was indebted for the repulse of the invader. (Herod., viii. 82.) Aceording to P'ausanias (v, 23) the Tenians were among those whose names were inseribed on the statue of Jupiter at Olympin, ledicated by the Grecks who fought at Platen. The island paid tribute to Athens during the Pelopomesian war. (Thueyd., vii. 57.) It was taken, and the inhabitants enslaved by Alexander, tyrant of Pherse, B.C. 362. (Demosthen. in Polycl., 1207, Reiske; Clinton, Fusti Hellcu., a. 362.) In the reign of Tiberius, when the Roman senate instituted nn inquiry into the rights and privileges attached to temples in the provinces of the empire, the Tenians quoted an oracle of Apollo, by which they had been commanded to consecrate a statue and temple to Neptune. (Tacitus, Annal., iii. 63.) This temple whs of considerable size, as appents from Strabo (p. 487), and on the coins of Tenos the trident of Neptune is a common type; on the reverse there is usually a bunch of grapes. The islnnd is still celebrated for its wine, of which about twenty sorts are grown.
TENRLE. Centetes, III.; Centenes, Desm. ; Setiger, Gcoff. The Tenrees may be considered-indeed they have been considered by most zoologists - as Hedgelogs withont the power of rolliag themselves up into a ball. They were not ineluded in the genus lirinaceus of 1 innecus, as he left it, in his last edition of the Systema Nature (the 1211), but in the 13th (Gmelin's) all the known species were included under that genus. They have no tail, are nocturnal lor the most part in their habits, feed on insecte, lie dormant during a considerahle portion of the year, and that during the hot season, and lave the skin beset with spines or spine-like bristles.

It is in this genus that we first find the jugal bone wanting among the Insectivora.
Geographical Distribution and Habits of the Genus.Cuvier remarks that threc species are found in Madagasear, the first of which, the Tenrec, properly so called, Centetes ecaudatus (Erinaceus ecaudatus, Gmel.) is, he observes, naturalized at the Isle of France.

Mr. Swainson (Classifcation of Quadrupeds) states that the second division of the fanily Sorecider is composed of mole-like animals, apparently connected to the Shrews by the American Scalops and the African Chrysochloris, and that it includes but three genera. [Sorecid.s, vol. xxii., p. 261.] Of the Tehrees (or Tendries as he writes the word) he treats as anımals peculiar to Madagascar, apparently as capable of domestication as their European congeners. 'Although inhabiting a warm region,' procceds Mr. Swainson, 'they are said to pass the three warmest months of the year in a state of torpidity: this, it must be owned, is a singular circumstance, and is the only one upon record of an animal hybernating, so to speak, in the height of summer. In other respects they feed like the European Hedgehog, and are nocturnal animals.' The singularity of the circunstance vanishes when we find that the period in which the Tenrec becomes dormant is not ouly the warm season, but the dry scason, and the apparent anomaly becomes another instance of the harmony of adaptation which prevails throughout nature. A suspension of the active powers of life becomes absolutely necessary to insectivorous quadmpeds, because there must be certain scasons when they would find no food. Our usual term for the act of retiring, in order to give way to this sutspension, is hybernation; because, in our latitudes, this alstraction of worms and insects takes place in winter, when our Bats, Hedgehogs, and Shrews lay themselves up till spring returns to call forth their prey. But in Madagascar the dry season is that in which the absence of worms and insects occurs; and then it is that the Tenrec sinks into its lialf living and half dead state.
Dental Formula:-Incisors $\frac{6}{6}$; canines $\frac{1-1}{1-1}$; molars $\frac{6-6}{6-6}:=40$.

Teeth of Tenres, ove flurd inger than the nataral nze. (F, Cuv.) The situation assigned by Cuvier to the Tenrecs is be-
tween the Hedgehogs (Erinaceus, Linn.) and Cladobates. [Tupaia.]
Cuvier remarks that the muzzle of the Tenrecs is $\ddot{\text { very }}$ pointed, and that their teeth are very different from those of the Hedgehogs.

Generic Character.-Body spiny; not capable of being rolled up into a ball, as in the Hedgehogs; muzzle elongated; five toes on each foot, separated and armed with crooked claws.
Examples.-The species are called Tenrec and Tendrac ; but the latter name is confusedly applicd to at least two species.

Of the first, the Centetes ecaudatus, Ill., is the largest, exceeding our Hedgehog in size. It is covered above with long flexible spines, except on the rertex and occiput, and has no coloured bands: the under part of the body is clothed with hairs or bristles only, which are yellowish, mixed with some longer black ones. Baron Cuvier, who is followed by Lesson, states, in his last edition of the Regne Animal, that this species has only four incisors in the lower jaw; but M. F. Cuvier, who makes the number six in each jaw, says that his illustration is taken from Cent. ecaudatus and Cent. setosus; and Fischer gives the same number.

Centertes ecandatus.
Centetes setosus, III. - The Tcndrac of Buffon and Zim-merman-is less than the former, and the spines are slor ${ }^{2}$ and rigid.

Tendrac.

The Centetes semispinosus is still less, and hardly so large as a common mole. Its body is clothed with a mixture of spines and bristles, and is banded longitudinally with yellow and black.

Striped Tenrec,

TENSION (Mechanics), the name given to the foree by which a bar or string is pulled, when forming part of any system in equilibrium or in motion. Thus when a weight is supported by a string, the tension of the string is the weight which is suspended to it. Every point of the string may be considered as a point of application of two equal and opposite forees, downwards and upwards, each equal to the weight applied.

TENTERDEN. [ḰNTT.]
TENTERDEN, CHARI.ES ABBOTT, LORD, born at Canterbury, on the 7th of October, 1762, was the son of a barher, who has been described as "a tall, erect, primitivelooking man, with a large elub pigtail, going about with the instruments of his business, and attended frequently by his son Charles, a youth as decent, grave, and primitivelooking as limself. He was entered in 1769 on the foundation of the king's school of the cathedral, under Dr. Osmund Beauvoir, who is stated by Sir Egerton Brydges to have been an admirable classieal scholar, of fine taste, and some genius. Sir Egerton, who for some years held the place next to Abbott in the class, speaks of fim as remarkable even in his school-boy days for accuracy, steadiness, and equality of labour; as well acquainted with the rules of grammar, sure in any examination or task, and a tolerably correct writer of Latin verses and prose themes.

In the beginning of 1781 Abbott was elected scholar of Corpus Christi College, Oxford, with an allowance, including his exhibition, of 50\%. a year. II mathematien aequirements are said by his friends to have been considerable. In 1784 he obtained the chancellor's medal for the best Latin verses on Lunardi's balloon, 'Globus Aerostaticus;' in 1786 his essay 'On the Use and Abuse of Satire,' obtained the chancellor's medal for the Englisli essay. This essay displays the turn for neat, lucid, and exhaustive arrangement, which was the most marked feature of his matured intelleet, and also a good deal of that want of passion and imagination which, perhaps as much as any of his positive qualities, contributed to his judicial eminence. He was elected a fellow of his college, and appointed junior tutor to Mr. (afterwards bishop) Burgess.

By the advice of Mr. Justice Buller, whose son was one of his private pupils, Abbott entered himself of the Inner Temple in 1788. He also, in compliance with the suggestion of the same experienced lawyer, attended some months the office of the London solicitors Messrs. Sandys and Co. He afterwards became a pupil of Mr. (subsequently Baron) Wood; and, aided by his recommendation, began to practise as a special pleader with marked success. He was ealled to the bar in Trinity term, 179.

He married, on the 13th of July, 1795, Mary, eldest daughter of John Logier Lamotte, Eisq., a gentleman of fortune in Kent. It is said that when the father hinted at the expediency of a marriage-settlement, Abbott said he had nothing but an excellent law-library, which the lawyers might tie up as tightly as they pleased.

Having selected the Oxford cireuit, he speedily rose into great business. The jealousy of his young rivals gave rise to rumours of his being too courteous to attorneys; but by whatever means he may have obtained his position, he kept it by the preference the leaders evinced for a junior who could often suggest a case in point, and was master of all the technicalities of pleading. To this he owed his appointment, by Sir Vicary Gibbs, when solici-tor-general, to the office known among the nembers of the bar by the name of treasury-devil, the junior counsel to whosc care the business of government is intrusted. In this eharacter he took part in most of the numerous state-trials which oceurred about the elose of last century. As his character became established, lie was appointed standing counsel to the Bank and other great mercantile communities. When the returns of the incometax were called for, Mr. Abbott's account was looked upon fs a curiosity, both for its minute aecuracy and for the largeness of the sum-total of his fees during the past year -8030%. 5 f

In a sketch of Lorl Tenterden, which appeared in the sixty-ninth volume of the 'Edinburgh Leview;' Lord Brougham says of his career at the bar:- As a leader he very rarely, and by some extraordinary accident only, appeared; and this in a manner sn little satisfactory to him-
self, that he permptorily declined it whenever refusal was possible; and he seemed to have no notion of a leader's duty beyond exposing the pleadings and the law of the case to the jury, who eould not comprehend them with all lis explanation. His legal arguments, of which for many years the books are full, were extrenely good, without reachung any very high pitel of execllence; they were quite clear, abundantly full of casc law ; betokening some dread of grappling with principle, and displaying none of the felicitous commentary that marked Mr. Holroyd's.'

In 1802 Mr . Abbott published his 'Treatise of the Law relative to Merchant-slaips and Seamen.' This work has gone through many editions: it exhausts the subjeet, is well arranged, and well written: its merits have been repeatcdly aeknowledged: it is one of the best English law ireatises.

In 1808 Mr . Abbott was offered a seat on the bench, but deelined from prudential motives, his professional ineome far excecding the salary of a judge. As years grew upon him however, and his fortunc increased, he began to long for the comparative repose of the bench. In February, 1816, he was offered n seat as puisne judge in the Court of Common Pleas, and aecepted it. In May of the sanse year, on the death of Mr. Justice Le Blanc, he yiclded to the importunity of Lord Ellenborough, and was chosen to supply the vacaney in the Court of King's Beneh, and was Finighted about the same time. On the $4 t h$ of November, 1818, Sir Charles Λ bbott succeeded Lord Ellenborough as chief-justice of that eourt.

It has been alleged that at the outset of his judicial career chicf-justice Abbott was apt to lose himself among the minute details of the cases which were brought before him. It is allowed at the sane time that during the last seven or eight years of his time he took broader and more comprehensive views of questions, and displayed great judicial capacity. He had earned to deal with facts, and his law was, as it always had been, safe, accurate, and ready. II is statements and decisions were clothed in correet, succinct, and appropriate language. He was averse to over-curious subtleties; loved to overrule technieal objections both in civil and eriminal pleadings ; and showed great anxiety to make his decisions aecord with common sense and substantial justice. Perhaps he slone most in the management of arguments which required a combination of scientific with legal knowledge: "to see him preside over a complicated patent case was a very great treat, whether to a lawyer or a man of science. \AA reasonable distinction, a reasonable interpretation of the law, were his favourite phrases. He was, as every learned and judicious lawyer inust be, rather impatient of the cheek of a jury; and was not always able to keep lus temper in command when arguing with the bar. His impartiality, as far as the parties were concerned, was unquestioned. 'It was an edifying siglit,' says Lord 13rougham, "to observe Lord Tenterden, whose temper had been visibly affected during the trial (for ou the bench he had not always that entire command of it which we have described him as possessing at the bar), addressing himself to the points in the canse with the same perfect calmness and indifference with which a inathematician pursues an abstract truth; as if there were neither the parties nor the advocates in existence, and only bent on the diseovery and the elucidation of truth.' Chicf-Justice Abbott's anxiety to support the executive suthority on all occasions was bcyond a doubt excessive; but this appears to have been the consequence of temperament and very early associations: it slows itsclf even in his prize essay upon Satire.

Sir Charles Abbott was raised to the peerage in 18\%7, by the title of Baron Tenterden. He made a suecessful débût as a speaker in the IIousc of Lords in support of Miss Turner's divorce bill; he pertinaciously opposed the passing of the Corporation and Test Act Repeal Bill ; and was the most impressive speaker against the Roman Catholic Relief 13ill. His judicial labours rendered him for the next two years an unfrequent alfendant in the Ilouse of Lords; but he recorded his protest against the leform Bill. He took at the same time an active part in the business of legislation. Among his well-studied nud carefully prepared acts are -9 Geo. IV., e. 14 , for the alteration of the law as to the limitation of actions of account and upon the case; 9 Geo. IV., e. 15, to prevent a failure of justice by reason of variances between reeords and writings pro.
duced in evidence; 1 Will. IV., c. 21, Mandamus and Prohibition Acts; I Will. IV., c. 22, Interrogatories Act ; 1 \& 2 Will. IV., c. 58, Interpleader Act; 2 \& 3 Will. IV., c. 39, Uniformity of Process Act; 2 \& 3 Will. IV., c. 71, Prescription Acts; and (prepared under his sanction) 3 \& 4 Will. IV., c. 27, for the limitation of actions and suits relating to real property, and for simplifying the remedies for trying the rights thereto.
As his political opinions were of the kind generally understood to predominate at Oxford, so his literary tastes retained the impress of his University education. When Sir James Scarlett, on the trial of Mr. Hunt for the publication of 'The Vision of Judgment,' alluded to the poetry of Lord Byron as familiar to the jury, Lord Tenterden could not repress the observation that, for himself, 'he was bred in too severe a school of taste to admire the modern poets.' His favourite recreations during the long vacation were the perusal of the classics, the study of botany, and the composition of Latin verses on flowers and plants. He founded and endowed, in the grammarschool of lus native city, two annual prizes; the one for the best English essay, the other for the best Latin verse. In his relaxations, as in the discharge of his public duties, he displayed a mind narrow, it may be, and unimpassioned, but active, dexterous, and elegant.

His later years were overclouded with ill-health, and alarm occasioned by the aspect of public affairs. He continued however to discharge assiduously the duties of his high office. He presided for the two first days at the trial of the mayor of Bristol for misconduct during the riots in that city at the time of the Reform Bill, but on the third he was confined to bed by a violent attack of inflammation. The disease baffled the skill of his physicians, and he expired on the morning of Sunday, November 4, 1832. Lady Tenterden died on the 19th of "December following. He had two sons, one of whom succeeded him in the title, and two daughters.
(The materials for this article have been found in a notice of Lord Tenterden in the Obituary of The Gentleman's Magazine for December, 1832; in a 'Life of Lord Tenterden' which appeared in the 26th volume of The Law Magazine, pp. 51-87; in a sketch of the 'Judicial Character of Lord Tenterden' by Mr. Sergeant Talfourd, in the 9th volume of the same work, pp. 234-6; and in a sketch of his career and character by Lord Brougham in the 76 th volume of the Edinburgh Review, pp. 14-23. There is a portrait of Lord Tenterden taken by Owen in 1819, and engraved in mezzotinto in a quarto form by S. W. Reynolds, and another by C. Penny engraved by H. Meyer. A cast for a bust was taken from his countenance after death.)

TENTHREDO, a genus of Hymenopterous insects of the section Terebrantia. The genus Tenthredo of Linnæus is in modern systems regarded as constituting a family, to which the name Securifera has been applied by Latreille, and Tenthredinida by Leach.

Latreillc restricts the generic term Tenthredo to those species which have nine joints to the antennæ, and in which these organs are not distinctly thickened at the apex. Their larvæ have from eighteen to twenty-two feet. The genus Tenthredo is however still further restricted by many other authors, and it is especially to Dr. Leach (Zoological Miscellany, vol. iii.) that we are indebted for pointing out distinguishing characters for the subdivisions of the very cxtensive Linnean genus. By this author the Tenthredinidos are divided chiefly according to the structure of the antennæ, and the cells enclosed by the nervures of the wings. The first section, according to Dr. Leach, contains those species which have the antenne short and clubbed at the extremity and the third joint long; the superior wings with two marginal and three submarginal cells. It includes the genera Cimbex, Trichiosona, Clavellaria, Zarea, Abia, \&c.

The species of the second section have the antennæ of moderate length, filiform, and composed of three joints ; the last joint long, slightly thickencd at the extremity, and in the males ciliated, and sometimes forked. It confains the genera IIylotorna and Schizocerus. The characters of the third section are-antenne short, with ninc or ten joints, increasing in thickness in the middle, but ending in a point; the third joint longer than the fourth; body short and increasing in thickness towards the apex. Gencra: Messa, Selandria, and Fenusa.

Section 4.-Antennæ composed of nine joints, mode-
rately long ; body moderately long; upper wings with two marginal cells. To this section belongs the genus Tenthredo as at present restricted; it is distinguished by the upper wings having four submarginal cells, and the antennæ with the third and fourth joints of equal length. The genus Allantus differs only from Tenthredo in having the third joint of the antennæ longer than the fourth. The Allantus scrophularice is a very common species in this country, and is found on the scrophalarix, on the leaves of which its larve feed. The perfect insect somewhat resembles a wasp, but is of a rather more slender form; it is black, and has the body adorned with yellow rings; the legs (with the exception of the thighs) and antennæ are also yellow. The larva, which is provided with twentytwo feet, is white and has black dots, and the head is black. When touched it rolls itself up in a spiral manner, as indeed do the larvæ of other Tenthredinide.

Section 5.-Superior wings with but one marginal cell; body short, narrower at the extremity in the males; antennæ simple, nine-jointed, slightly ciliated, increasing in thickness in the middle, and decreasing at the extremity. This section contains the genera Crosus, Nematus, and Cladius, examples of each of which are found in this country.

Section 6.-Antennæ with numerous joints; body rather depressed; wings with two marginal and four submarginal cells. British genera Tarpa, Lyda, and Lophyrus. The larve of the species of Lophyrus live in society, more particularly on the pines, and are said to be very injurious to the young plants. The species of this genus are very rare in England. The antennæ are serrated in females, and in the males they are provided with a double series of denticulations.

TENTHS are the tenth part of the yearly value of all ecclesiastical livings. They were formerly claimed by the pope as due to himself by divine right, after the example of the Jewish high-priest who had of the Levites a tenthpart of the tithes; and his clain was sanctioned, in this country, by an ordinance in the 20th year of Edward I., when a valuation of all livings was made, in order that the pope might know the amount of his revenue from this source. The possessions afterwards acquired by the church were not liable to the payment of tenths to the pope, as all l vings continued to be charged according to that valuation. (Coke, 2 Inst., 627.) When the authority of the pope was extinguished at the Reformation, Henry VIII. transferred the revenue arising from tenths to the crown, and had a new valuation of all the livings, so as to obtain the tenth of their true yearly value at that time. (26 Hen. VIII., c. 3, s. 9-11.) By royal grants under 1 Eliz., c. 19, s. 2, the Archbishop of Canterbury and the Bishop of London were exempted from tenths and were also authorized to receive the tenths of several benefices as a compensation for certain estates which were alienated from their sees. By the 6 Anne, c. 24, all benefices were discharged from the payment of tenths which, at that time, were under the annual value of $50 l$., except those of which the tenths had previously been granted by the crown to other partics. There are also some other special exemptions. At the present time, out of 10,498 benefices, with and without cure of souls, there are 4898 which remain liable to tenths. (Parl. Rep. First-Fruits and Tenths, 1837, No. 384.) Queen Anne gave up the revenue arising from tentlis, as well as from first-fruits, which had been enjoyed by her predccessors since the Reformation, and by act 2 and 3 of her reign, c. 11, assigned it to the augmentation of poor livings; for which purpose she erected a corporation by letters patent in 1704 to administer the funds, called the Governors of Queen Anne's Bounty. This act declared that Episcopal sees and livings not excmpted should continue to pay in such rates and proportions only as heretofore, or according to the valuation of Henry VIII., commonly known as the 'King's Books.' Tenths under the act 1 Vict., c. 20, are collected by the Treasurer of the Governors of Qucen Anne's Bounty. Payment is enforced by Exchequer process, when not duly made, and the treasurer is required to give notice of arrears within one month aftcr the proper time of payment. In case of a living being vacated, the Exchequer is empowered by act 26 Hen. VIII., c. 3, s. 18, to recover arrears of tenths, not only from the executors and administrators, but also from the successor of the last incumbent. (2 Burn's Ecclesiastical Law, 9th ed., pp. 273-295.) [Fjrst-Fruirs; Taxatio Eccleslastica; Tithes.]

TE. TZEL, or TENZEL, WHIHELM ERNEST, a Germnn historian and antiquarian, was born in 1Gen, at Greussell in Thuringia, where his lather was pastor. After the completion of his school edueation he went, at the age of eighteen, to the university of Wittenberg, where he chiefly devoted himself to the study of the antient and Oriental languages in connection with history: In 1683) he was nppointed teacher at the gymmasium of Gotha, and was at the same time intrusted with the eare of the cullection of antiquities and coins belonging to the Duke of Saxe-Gotha. Several learned dissertations which he published shortly nfer this lime altracted the attention of his learned countrymen, in consequence of which he became a very active contributor to the 'Acla Firuditormm,' nad to the 'Observationes llablenses.' Tentzel was the first German who conecived the idea of establishing a German journal for reviewing new books and for pubtishing interesting essays. This periodical was set on foot in 1689, under the title - Monatliehe Unterredungen einiger guten Freunde yon allerhand i3üehern und andern annehmlichen Gesehichten.' The undertaking had great success, and was carried on till 1698 . The whoie was published in monthly parts, nnd eonsists of len volumes. The extensive knowledge of history, especially of the history and antiquities of Germany; procured Tentzel, in I696, the honourable post of historiographer to the house of Saxony of the Ernestine line. Before he commenced writing on the history of Saxong he travelled through the greater purt of Germany, visiting several eourts and examining various libraries to find materials. In 1702 the elector of Saxony (also ling of Poland) conferred upon Tentzel the title of councillor, and made him historiographer of the electorate. In this capaeity Tentzel took up his residence nt Dresden, and was frequently obliged to appear at court. But the simple honesty and straightforwardness of the man made linn a subjeet for ridieule among the ignorant and idle courtiers, nnd as soon as Tenizel became aware of it he resigned his office and retired to private life, devoting himself entirely to his historical and antiquarian studies. He died on the 24 h of November. 1707 , in great poverty.
Besides the numerous essays in the periodical publieations mentioned above, the following separate worlis of Tenizel deserve to be mentioned: 'De Ritu Lectionum Saeranım,' Wittenberg, I685, 4to.- 'Exercitationes Selecter, in duas partes distributa,' Leipzig, 1692 tto.; 'Epistoha de Sceleto Elephantino Tonne nuper effosso,' Gotha and Jena, 1600, 12mo.: "Von dem Atter der Buchdruckerkunst, Gotha, 1700, 12mo.; this interesting work is ranslated into Latin and incorporated in Wolf's 'Monumenta Typographica, ii Gt4, \&ce. The principal work of Tentzel is his - Saxonia Numismatiea, sive Nummophylaciun Numismatum Mnemonicorum et lconicorum : bucibus Saxoniæ eudi jussorum,' Franktort, Fioj, 2 parts in 4 to. He also continued the history of Gotha which had been commeneed by Caspar Sagittarius, in two supplementary volumes. His history of the Reformation, "Historiseher Bericht vom Anfang und Fortgang der Reformation,' which was edited by E. S. Cyprian, in 2 vols. 4 to., Leipzig, 17t8, is a valuntle work, which shoukd still be consulted by the student of thant important period.
(Jüher, Allgem. Gelchrten-Lexicon, iv., p. 1057, S.e.; Conversulions-Lexicon, s. v. 'Tenzel."
TENUIPE'DES, Lamarck's second division of the Conchifera Dimyaria, consisting of the Muetracca, Corbulacea, the Lithophaga (Nixicola, Petricolu, and Venerupis), the Nymphacea, the Cardiacea, the Trigonacea, the Naiades, and the Chamacea.
In the first division, Crassipedes, are comprised the Tubicolces, the Solenacea, and the Myaria.
M. Deshayes, in the last edition of I,amarek, objects, and we think with reason, to these divisions as being defective; nor does he consider the arrangement eapable of amelioration, because the principal chameter is too exelusive. Ile olnserves that to follow it rigorously it would be neecessary to break very natural links wlueh bind certain genera together.
TENUIROSTHES. Cuvier made the Tcuuirostres the fourth family of his Pamseraur, placing it between the Conirostres and the Synduetytes, and comprising under it the genera Sitta, Linn. (with the subgenera Xenons, Ill.; Anabater, Temm.; and Synalluxis, Vieill.); Certhia, Iinn. (with the subgenera Certhia, Cuv.; Dendrocolaples, Merm. ; Tichodroma. 111.; Nectarinia, 111.; Dicarsm, Cuv.; Mclithreptus, Vicill.; Cinnyris, Cur.; and Aruch-
nathera, Temn.); Trochilus, Linn. (dividing the gem.s into the Ilumming-hirds properly so called, or Colibris, Trochilus, lacepp; ; nnd the Olscaux Monches, or Fly-birds, Orthorhynelus, Lacép.); (Eupx, Linn. (with the snbgenera Fregilus, Cus.; the Hoppoes properly so called Upupa; Promerops ; nad lipimarhus).
Mr. Vigors, nfter pointing out the place of one group of the Linnean Ccrlhice which cliub and feed on animal food among the Scavsores, and that of the other group which live only on the nectar of flowers, and have feet formed for perching only [Creeper, vol. viii., p. 116], thus enters the family now before us, and designates the Suctorial Biris as the most interesting gronp perhaps of the animal world. [Sunmmes, vol. xxiii., p. 281.] Ife remarlis that the aberrant families of the order are so mumerous in their lorms, nnd hitherto have been so unsatisfactonily characterized, that it is impossible to speak of them with that eertainty which may attend observations on better defined groups. The genus Promerops appears to him to be that form of the present tribe which approaches nearest to the adjoining tribe of Fissirostres. Retainiug, Mr. Vigors observes, the stender bill of the Tenuirastres, Promerops exhibits somewhat of the broad base of the bill of the Fissirostres, and, nt the same lime, the cressorial feet. BJ means of M rops, he renarks, the eurved bill of which approaches the structure of its own, it appears to be immediately connected with that. group. 'Of the limits of this tamily, which may receive its nppellation from M. Brisson's above-mentioned genus," contmues Mr. Vigors, 'I can say nothing at present; nor do I wish to enter into more than a general reference to the suceeeding family of Meliphagidec. (Sce the artiele for this.)
The families admitted by Mr. Vigors into this tribe of Insessores will be found in the artiele Sunmms, loc. cil.
Mr. Swainson (to whose publieation on this order, in the 1st vol. of the 'Zoological Journal,' which appeared aller the paper On the Natural Afimities that conurel the Or ders and F'omilies of Birds was sent to press, Mr. Vifors refers), in his tenth chapter of the second volume of the - Classifieation of Birds,' remarks, that the most aberrant division of the insessorial order is that of the Tcruirostres. or honeysuckers, so called trom the great majority derising their subsistence both from insects and the nectar of plants, which they such up by means of a long or filamentons tongue adap'ed for the pmpose. "As these birts,' says Mr. Swainson in contimation, ' are furthest removed from the lypes of their order, they consecuuently show a greater affinity to the Scunsores on one hand, and to the Fissirostres on the other, than to the more perfect groups of the perchers, as seen in the Dentirostres and Conirosites: like the seansorial ereepers, the bill is slender, and the feet very short; but there the comparison ceases. The scansorial birds derive their food entirely from insects; nnd, in gencral, have a simple and pointed tongue; tut those we are now to consider are chietly supposted by vegetable juices, extracted by means of a sery long tongue, always rethactile, and cither simply forked, or divided into so many slender filaments an to resemble a painter's brush; the bill moreover is so soft or delicate, that it is often incapable of grasping food, and appears, in the typical groups, principally intended to protect the tongue, as the chief memter by which life is supported.'

Mr. Swainson includes the following lamilies under this tribe:-Meliphagidet: Cimuride [Sunhirds]; TrocimLID.E (Humming-13inds); I'rosikropid.e (lloopoes); and Paradisiadoe [Birds of Pahadise].
The Tenuirostres nre placed by this author between the Scansores and the Fissirostres.
M. Lesson makes the tribe Tenuirostres (whien he nrranges between the Latirostres and the Syuductyles) eonsist of the following families and genera:-

1. Promeropidie.

Genera.-Uipupa; Promeropis.
2. Certhinds.

Genera.-Certhia; Tichodroma; Dendrocolaptes; Climucteris; Furmarius; Crerebu; Diccum.
3. Philedonidx.

Genera.-Drepanis; Cinnyris; Pomatorhinus; PrL nia; Orthotomus ; My omela; Myzantha; Anthochara, Tropidorhynchus; Mellisura.
4. Trochilides.

Genera,-Polylmus, Briss, ; Ornismya, Les,

In Mr. G. R. Grays ' List of the Genera of Birds' (2nd edit., 1841), a work remarkable for its aceuraey and the quantity of condensed labour which it eontains, the Tenuirostres stand as the second tribe of Insessores, between the Fissirostres and the Dentirostres, and comprise the following families, subfamilies, and genera:-

1. Upupidæ. (See the article.)
2. Nectarinidæ. [Sunbizds.]
3. Trochilidx. (See the artiele.)
4. Meliphagidæ.

Subfamily 1. Myzomelince.
Genera.-Myzomela, Vig. and Horsf. (Phylidonyris, Less. ; Certhia, Gm. ; Meliphaga, Vig. and Horsf.) : Acanthorhynchus, Gould (Leptoglossus, Sw.; Melithreptus, Vieill.; Ccrthia, Lath.; Meliphaga, Vig. and Horsf.): Glyciphila, Sw. (Meliphaga, Lew.).

Subfamily 2. Meliphagince.
Genera.-Meliornis, G. R. Gray (Cerihia, Lath.; Meliphaga, Lew.; Philedon. Cuv.; Strigiceps? Less.): Prosthemadera, G. R. Gray (Merops, Lath. ; Authochera, Vir. and Hers.; Philcmon, Vieill.; Sturnus, Daud. ; Meliphaga, Temm.; Philedort, Cuv.): Ptilotis, Sw. (Meliphaga, Lew.: Philemon, Vieill.; Certhia, Lath.): Authoruis, G. 1R. Gray (Anthomyza, Sw.; Melithreptus, Vieill.; Furnarius. Steph.; Certhiu, Sparr.; Philedon, Less.): Philemon, Vieill. (Anthochera, Vig. and Hors.; Merops, Gm.; Meliphaga, Temm.; Philedou, Cuv.) : Phyllornis, Boie (Turdus, Gm.; Chloropsis, Jard. and Selby ; Meliphaga, Horsf.): Meliphuga, Lew. (Zunthomyzu, Sw.; Merops, Lath. ; Philemon, Vieill. ; Anthochera, Vig. and Hors.; Xanthomyzu, Strickl. ; Philedon, Cuv.): Anthochrera, Vig. and Hors. (Creadion, Vicill.; Philedon, Cur.; Merops, Lath.): Acanthogenys, Gould (Anthochicra, Fras.): Entomyza, Sw. (Gracula, Iath.; Philemon, Vieill. ; Gymnops, Cuv.; Entontyzon, Sw.; Tropidorhynchus, Vig. and Hors. ; Meliphuga (Lew.), Temm.): Tropidorhynchus, Vig. and Hors. (Philedon, Cuv.; Merops, Lath.; Meliphuga, Temm.; Gymnops, Cuv.).

Subfamily 3. Melithreptine.

Genera:-Plectorhamphus, G. IR. Gray (Plectorhyncha, Gould): Manorhina, Vieill. (Myzantha, V. and H. ; Philanthus, Less.; Gracula, Lath.): Psophodes, V. and H. (Muscicapa, Lath.; Timaliu, ? Sw.): Eidopsarus, Sw. (Sturnus, Wagl.): Melithreptus,Vieill. (Hamatops, Gould; Gymnophrys, Sw.; MEliphaga, Temm.; Philedon, Cuv.; Meliphuga, V. and H.; Certhia, Shaw): Entomophila, Gould.

5 Certhidx.

Subfamily 1 .
Genera:-Cinclodes, G. I. Gray (Furnarius, Less.; Opetiorhynchus (Temm.), Gould and G. 1R. Gray; Upucerthia, D'Orb. ; Motacilla, Gm.): Cpucerthia, J. Geoffr. : Furnarius, Vieill. (Opetiorhynchus, Temm.; Figulus, Spix ; Merops, Gm.; Turdus, Licht.): Geositta, Sw. (Certhilanda, DOrb. ; Furnarius, G. IR. Gray ; Alunde, Kıtll.) : Lochumias, Sw. (Picerthia, J.Geoffr.): Enicornis, G. R. Gray (Eremrbius, Gould): Ochetorhynchus, NIeyen (Cpucerthia o 1) Orl). et Lafr.): Limnornis, Gould: sclerurus, Sw.: Cinclocerthiu, G. R. Gray (Stenorhynchus, Gould).

Subfamily 2. Anabitanre.
Genern:-Synalluris, Vieill. (Sphrnuru, Lieht.; Purulus, Spix; Syrullaxis, D'Orb. et Lafr.): Diglossa, Wagl. (Serrivostrum, D'Orb. et 「afr.; Dendroma, Sw.; Agrilorhynchus, Bonap. ; C'ncirostrum, DOrb. et Lafr.) : Anumbius, D'Urb. et Lafr. (Annumbi, Azara; Furnarius, Vieill.; Sphenura, Liclit.; Mulurus. Sw.; Anabutes, Spix; Anthus, Less.; Synallaxis, Gould): Anabates, Temm. (Philydor, Spix; Sphemura, Lieht. ; Motacillu, Gnı.; Xenops, Lafr.): Oryrhamphns, Strickl. (Oxyrhynchus, Temm.; Oxyruncus (olinı), Temm.).

Subranily 3. Dendrocolaptina.
Genera:-Dendroplex, Sw. (Aasicu, Less.; Oriolus, Gm.; Dendrocoluptes, Cuv. and Temm.): Ghyphorhynchurs, Pr. Max. (Sphenorhynchus (olim), I'r. Max. ; LJendrocolaptes, Licht.; Sittusillu, Less.; Zpnopliasia, Sw.; Xenophasia, Strickl.): Dendrocops, Sw. (Dendrocolaples, Spix): Upndrocincla, G. R. Gray (Dryocopus, Pr. Max.; Dendrocolaptes, Licht.) : Dendrocolaptes, Herm. (Dendrocopus, Vieill.; Gruculu, Gm.): Xiphorhynchus, Sw. (Dendrocoluples, Temm., Cuv.; Picoluptes, Less. ; Dendrocopus, Vieill.): Proluptes, Less. (Ziphorhynchus, Sw. ; Dendrocolaptes,Spix : Oryurus, Less. ; Dendroplex,Sw.):

Sittasomus, Sw. (Neops, Vieill. ; Synallaxis, Cuv. ; Dendrocolaptes, Temm.

Subfamily 4. Certhinæ.
Genera :-Certhia, Linn.: Oxyurus, Sw. (Synallaxis, Less.; Sylvia, Lath.; Motacilla, Gm.): Climacteris, Temm. (Petrodroma, Vieill.; Meliphaga, Temm.) : Tichodroma, Ill. (Petrodroma, Vieill. ; Certhia, Linn.): Geobates, Sw. : Tatare, Less. (Sitta, Luess.; Turdus, Gm.; Thryothorus, Quoy et Gaim. ; Oriolus, Forst.).

Subfamily 5 . Sittinæ.
Genera:-Sittella, Sw. (Neops, Vieill.; Sitta, Lath.) : Silta, Linn.: Dendrophila, Sw. (Orthorhynchus, Hursf.; Sitta, Horsf.): Dendrodromus, Gould : Xenops, Hoffm. (Neops, Vieill.).

Subfamily 6. Orthonycinæ.
Genera:-Orthony.x, Temm.: Mohoua, Less. (Certhia, Quoy et Gaim. ; Muscicapa, Gm. ; Orthonyx, Less.). Subfamily 7. Troglodytinæ.
Genera:-Rhinocrypta, G. R. Gray (Rhinomya, D'Orb. et Lafr.): Menura, Dav. (Parkinsonius, Beelst.; Meg'apodius, Wagl.): Pteroptochos, Kittl. (Hylactes, King; Megalonyx, Less.; Leptonyx, Sw.): Scytulopus, Gould (Myiothcra, Pr. Max. ; Platyurus, Sw. ; Motacilla, Gm. ; Malucorhynchus, Menetr.; Sylvia, Lath.; Troglodytes; Kittl. ; Sylviaxis, Less.; Leptonyx, DOrb et Lafr.) : Microura, Gould (Micrura, Striekl.): Merularis, Less. (Platyurns, Sw. ; Malacorhynchus, Menetr. ; Merularis, D'Orb. et lafr.): Thriothorus, Vicill. (Sylvia, Lath.): Campylorhynchus. Spix (Turdus, Gm. et Lieht.; Cichla, Wagl.; Sphenura, Lieht.; Opeticrhynchus, Pr. Max. ; Picolaptes, Lafr. ; Anumbius, D Orb. et Lafr.) : Rhamphoccenus,Vieill. (Troglodytes, Sw.; Acontistes, Sundev.; Scolopacinus, 13onap.): Troglodytes, Vieill. (Motacillu, Linn.; Anorthura, Remı. ; Regulus, Briss. ; Luscinia, Jinn.).

Of these genera, Mr. G. R. Gray remarks that Anthony za had been previously used in botany; Plectorhyncha and Oxyrhynchus in iehthyology; Rhinomyza in entomology; and that L'remobius is very like a word employed in that science ; that Dryocopus had been previously used in Picidce and Stenorhynchus for a erustaceous animal. Stcuorhynchus has also been employed to designate a genus of Seals. [Vol. xxi., p. 163.]

TENURE. The general nature of tenure and its origin and history in England are explained in the article Feudal Law. A few remarks may be made here on tenure as at present existing ly the law of England, for whieh purpose a short recapitulation is necessary.
All land was and is held of the king either mediately or immediately. All tenures were distributable under two general heads, according as the services were free or base; and consequently there was the general division of tenures into liranktenement or free-holding, and Villeinage. The act of Charles II. (12 Car. II., e. 24) abolished military tenures, which were one kind of free serviecs, and changed them into the other species of free services, namely free and common soeage. Thus one tenure in soeage was established for all lands held by a free tenure, which eompreliended all lands held of the king or others, and all tenures except fenures in frankalmoyne, copyhold, and the honorary services of grand-serjeanty; and it was enacted by the same act that all tenures which should be created by the king in future, should be in free and common soeage. It is particularly provided in the act whiel abolishes milifary tenures, that it shall not alter or change any tenure by copy of court-roll, or any services incident thereto, nor take away the honorary services of grand-scrjeanty, other than clarges incident to tenure by knights' service.
Thus it appears that tenure is still a fundamental principle of the law relating to land in England.
All the land in England in the hands of any layman is held of some lord, to whom the holder or tenant owes some service. It is by doing this service that the tenant is entitled to hold the land: his duty is a service, and the right of the lord is a seignory. The word tenure comprehends the notion of this duty and of this right, and also land in respect of which the duty is due: the land is a tenement. As already observed, all land is held either mediately or immediately of the king; and ultimately all land is held of the king. The ownership of land in EEngland is therefore never unlimited as to extent, for he who is the owner of land in fee, which is the largest estate that a man can have in land, is not absolute owner: le owes serviees in respect of his fee (or fief), and the seignory
oi the lord always subsists. This seignory is now of less value than it was, but still it subsists. The nature of the old feud was this: the tenant had the use of the land, but the ownership remained in the lord; and this is still the case. The owner of n fee has in faet a more profitable estate than he once had ; but he still owes services, fealty at least, nud the ownership of the land is really in the lond and ultimately in the king. For all practical purposes the owner's power of enjoyment is as complete as if his land were allodial, but the cireumstance of its not being allodial has several inuportant practical consequences.
No land in England can be without an owner. If the last owner of the fee has died without heirs, nnd without disposing of his fee by will, the lord takes the land by virtue of his scignory. If land is aliened to a person who has a enpacity to acquire but not to hold land in England, the king takes the land; this happens in the case of lands being sold to an alien. The forfeiture of lands to the king for high treason and to the lord in cases of petty treason and murder are also consequences of tenure.
The case of church lands seens something peculiar They are held by tenure, though no temporal services are due. This tenure was originally the tenure in trankalmoigne. By the tenure in frankalmoigne the tenant was bound 'to make orisons, prayers, masses, nnd ot her divine services for the sotl of his grantor or feoffor,' \&c. (Litt., s. 135); but he did no fealty. If land was given for 'ecrtain divine service in certain to be done,' \&e. (Litt., s. 137), the lorl might distrain, and in this case it seemed the Iord might have fealty; this tenure by eertain service was not ealled tenure in frankalmoigne, but tenure by divine service. Coke, in his 'Commentary on Littleton' (96,6) observes, 'for this divine service certain the lord hath his remedy, as it here appears by our author, in foro seculari; for here it appears that if the lord distrain for not doing of divine service, which is certain, he shall upon his arowry recover damages at the common law, that is, in the king's temporal court, for the not doing of it.'
The Act which abolished military tenures could not from its terms affect tenure in frankalmoigne ; but for greater caution it was declared that this act should not subject tenures in frankalmoigne to nny greater or other services. Tenure in frankalmoigne theretore is now exactly what it was before the I2th of Charles II. was passed. Church lands then, which are held in fraukalmoigne, still owe no services; but the lord of whom they are held must be considered the owner. And this conclusion is consistent with and part of the lnw of tenure, by which no Ind in England is cver without an owner. Church land ditfers from land held by laymen in this, that the beneficial ownership ean never revert to the lord, for all spiritual persons are of the nature of corporations, and when a parson dies, the corporation sole (as he is termed by an oudd contradiction in terms) is not extinct, and it is the duty and right of some definite person to name a suecessor. It is stated by Blackstone (i. 470) that "the law has wiscly ordained that the parson, quaterus parson, shall never die any more than the king, by making him and his successors a corporation; by which means all the original rights of the parsonage are preserved entire to the successor: for the present incumbent and his predecessors who lived seven centuries ago, are in law one and the same person.' But notwithstanding this ingenious attempt to make a man. together with others not ascertained, a corporation, the difficulty really is, that when a parson dies, there is no person who has a legal ownership of the land until a successor is appointed, if Blackstone's theory is true. The comparison of the case of a parson with that of the king is unapt, for the successor to a deceased king is ascertnined ly the death of his predecessor; but the successor of a parson is generally ascertained by the will of some other person being exercised, and till the person entitled to appoint a parson has named one, and he has been duly instituted, the lauds of the church have no legal owner, unless the lord is the owner. This seignory may be worth nothing, but it still exists. The difficulty may indeed be solved without the supposition of a seignory still existing, and in the following manner. There is succession in the case of one parson succeeding another, for which the notion of a corporation is not necessary. The notion of suecession is this: the right which is the object of the succession, continues the same the subject, that is, the person, changes. In order to con-
slitute strict suecession, the new ownersluip or right must begin at the moment when the former ceases, and the new ownership or right is terived from and founded on a former ownership or right. This is the case of sucecssion to the crown. In the case of a parson, when a new one is appointed, his right by n fietion of law commences at the time when his predecessor's right ceased, though an interval has elapsed between the time of his predecessor:s death and his own appointment; and this was the doctrine which the Romnns applied to the ease of a heres who did not take possession of the hereditas till some time nfter the death of the testator or intestnte. This subject is disceussed by Savigny, System des Römischen Rechts, \&e., vol. iii. When then the parson dies, the frechold may he eonsidered to be in abeyance till the appointment of his successor, one of the few instances in the English law in which it is said that n frechold estate can be in abeyance.
No seignory, in the sense above explained, can now be created except by the king. It was enacted by the statute Quia Emptores (18 Edw . 1.), that all feoffments of land in fee sinuple must be so made that the feoffee must hold of the chief, that is, the iminediate lord of the aliening tenant, by the same services by which the tenant held. Therefore all seignories exist unw which existed nt the time when the statute of Quia Emptores was passed. A lord may release the services to a tenant ; but it would be consistent that the king could not release the services due to him, for if that were the case land mirht become allodial, and on the death of a person without heirs there might be land without an owner, which is inconsistent with the fundamental principles of law relating to Enslish land. Still it is said that the king can release to his tenant all services, and yet that the tenant holds of him: by this assumption of a still subsisting tenure the consequence above mentioned is nvoided.

Tenure of an imperfect kind may be created at present. Wherever a particular estate is ereated, it is held of the reversioner by an imperfect tenure: this is the common ease of landlord and tenant. If wo rent or other services are rescried from the tenant of the particular estate for life or years, the tenure is by fealty only, and he may be required to take the oath of fealty. But the right of the reversioner to whom services are due is solely incident to the reversion, and is created at the same time with it. The perfect tenure originated in the pure feudal system, in which the seignory of the lord was the legal ownership of the land, and the tennnt owed his services for the enjoyment of it. The only perfect tenure now existing is Socage tenure, the services of which are certain, and consist, besides fealty, of some certain annual rent. [Socage.]

The right of wardship was one of the incidents to military tenures. The lord had a right to the wardship of his infant tenant until he was twenty-one years of age; nnd this right was in many respeets prejudicial to the interests of the heir. This right was abolished with the abolition of military tenures. The right of guardianship to an infant tenant in socage only continues to the age of fourteen; but the act of Charles II. (12, c. 2t) gave a farther power by deed or will, executed as the statute prescribes, to appoint a guardinn to nuy of his children till their full age of twenty-one, or for any less time. The guardian in socage was the next of kin to the heir, and he was chosen from that line, whether paternal or maternal, from whiel the lands hall not descended to the heir, and consequently such guardian could never be the heir of the infant. This wardship then had no relation to tenure.

If the serviees due in respect of n perfect tenure are not rendered by the tenant to the lord, he may distrain, that 1s. take any chattels that are on the land in respect of which the services are due; and mimperfect tenure so far resembles a perfect one, that a reversimner can distrain for the services due from the tenant of the partieular estate.

A right still incident to a spignory such as a subject may have is that of escheat, which happens when the tenant in fee-simple dies without leaving any heir to the land, and without having incurred any forfeiture to the crown, as for high treason. It has been observed that the nequisition by esceheat is not a purehasc, because the escheated land descends as the seignory would have descended. When lands are forfeited to the king for treason, or to the lord for petty treason or murder, the tenure is extinguished; and generally, in whatever way lands cone to the king or lord, the tenure is of neceskity extinguished.

The nature of tenure as it exists at present will be bet.
ter understood by consulting the following articles: [Cofyhold; Distress; Feudal System; Manor; Rext; Tenant.]

TEOS (T í ω_{S}), now called Búdrúm, a town of Ionia, situated on the south-side of the peninsula between the gulf of Smyrna and the gulf of Clazomenæ, very near Cape Courco, in $38^{\circ} 15^{\prime} \mathrm{N}$. lat., $20^{\circ} 30^{\prime}$ E. long. It was originally colonized by Minyæ from Orchomenus, under Athamas, and afterwards strengthened by a colony from Athens, at the time of the Ionian migration, under Nauclus the son of Codrus, Apœcus and Damasus, and by one from Bœotia led by Geres. (Pausan., vii. 3.) Teos was one of the twelve cities which formed the confederacy of the Panionium (Herod., i. 142), and was recommended by Thales from its central position as the place of congress for all the Ionian states. It was also one of the four cities of Ionia which participated in the Hellenium at Naucratis in Egypt in the time of Amasis. (Herod., ii. 178.) On the conquest of Ionia by Cyrus the Teians retired to Abdera in Thrace, where they founded a colony which eclipsed the parent state. (Herod., i. 168.) At the battle of Lade seventeen Teian ships are mentioned among the forces of the Greeks. Teos still existed as an Ionian city during the Peloponnesian war. The Teians revolted after the failure of the Sicilian expedition from the Athenians, and destroyed the wall which they had built towards the continent (Thucyd., viii. 16, 19); but Teos submitted shortly afterwards to Diomedon, the Athenian general.
Teos was the birth-place of Apellicon, the preserver of the works of Aristotle, and of Anacrcon, to whom a statue was erected there (Pausan., i. 25), and who is represented on the coins of the place playing on his lyre. It appears from Livy (xxxvii. 28) that it had two ports, one in front of the city, and the other, Geræ, not quite four miles to the north-west, the entrance to which was so narrow as hardly to admit two ships at a time; it is now the site of the castle of Sigah-jik, whence a Sanjik receives its name.
Chandler says of Teos, 'We found it almost as desolate as Erythre and Clazomenæ. The walls, of which traces arc extant, were, as we guessed, alout $\%$ miles in circuit; the masonry handsome. It was with difficulty we discovered the temple of Bacchus; but a theatre in the sitc of the hill is more conspicuous. The vault only, on which the seats are ranged, remains, with two broken pedestals, in the area. The city port is partly dry, and sand-banks rise above the surface of the water. On the edge arc vestiges of a wall, and before it are two small islets. On the left hand, or toward the continent, is a channel, which seemed artificial, the water not deep. The heap of the Temple of Bacchus, which was visible from the theatre beneath, on the right hand, lay in the middle of a corn-field, and is overrun with bushes and olive-trees. It was one of the most celebrated strictures in Ionia. The remains of it have been engraved at the expense of the Socicty of Dilettanti, and published, with its history, in the "Ionian Antiquities" (i., ch. i.).' (Trarels in Asia Minor, pp. 111-2; see also Choiseul Gouffier, Voyage Pittoresque, pl. 124.) This templc is an example of the eustylus of Vitruvius, who tells us that it was a monopterus hexastylus. It was the work of Hermogenes, the inventor of the eustylus, and is probably of the time of Alexander the Great. (Müller, Archäologie der Kunst, 109.) Leake (Asia Minor, p. 3i50) states the diameter of the columns to be 3 feet 8 inches at the base; he considers the whole length of the front to be about 64 feet on the upper step, with about 11 columns at the sides, as at Priene. According to Diodorus (iii. 6.5), the Teians believed that Bacchus was born there, and, on his account, their territory was asylus (idvios), that is, sacred or protected against violation. On the autonomous coins of Teos there are griffins, as on those of Abdera: perhaps this type is connected with the worship of Apollo. The imperial series extends from Augustus to Gallienus. (Mionnet, Recueil des Médailles Antiques.)

TEPHRODORNIS, Mr. Swainson's name for a genus of Drongo Shrikes, Dicrurina. [Surukes, vol. xxi., p. 416.]
Generic Character.-Bill resembling Prionops; the basc and the nostrils being partially covered with procumbent sctaceous feathers and bristles. Wings moderate, rounded. Tail rather short, perfectly even. Tarsi and toes short ; the lateral toes unequal; hinder toe longer than the tarsus. (Sw.)

Examples, Tephrodornis superciliosus, Sw., and Tephro. dornis Indica (J. E. Gray). G. R. Gray (Ind. Zool.).
Locality.-Warm latitudes of the Old World.

Bill of Tephrodorais, Sw.
TEPHRO'SIA (from t\&¢pós, ash-coloured), the name of a genus of plants belonging to the papilionaecous division of the order Leguminosæ. The genus consists of shrubs or herbs, with usnally unequally pinnated leaves, and lanceolate or subulate stipules distinct from the petiole. The flowers are white or purplish, arranged in racemes which are mostly axillary. The calyx is without bracts, 5 -toothed, nearly equal; vexillum ot corolla large, silky outside, and reflexed in a spreading manner; wings adherent to the keel; stamens separate or united in one or two parcels: legume mostly sessile, linear, compressed, many-seeded, with the valves flat; seeds compressed. This genus at present includes 84 species, but it is probable that a more accurate investigation will result in making several genera of the present one. The American and Asiatic species are in some measure distinguished by their properties. In the former a narcotic poison is more frequently secreted; in the latter a colouring-matter.
T. toxicaria, the poison Tephrosia, is a half-shrubby erect plant, with 18 to 20 pairs of oblong-lanceolate, obtusc leaflets, pubescent on the upper surface, silky beneath; legumes linear, velvety, mucronate. This plant is a native of the West Indies and of Cayenne, and is said by Tussac to have been first brought from Afriea. The whole plant affords a narcotic poison, and if the leaves are taken and pounded, and then thrown into water where there are fish, they become intoxicated, and losing all power over their muscles, they float about as if dead, and may be easily caught. If placed in fresh water, or the fresh water be allowed to come in contact with them as in a stream, the fish soon recover. It is, however, generally fatal to the smaller fish.
T. Virginiana, the Virginian Tephrosia, is an erect herbaceous plant, with leaves containing from 8 to 11 pairs of oval-oblong acute leaflets, villous beneath; the calyx is also villous. It is a handsome plant with reddish flowers, and is covered with villi. It is found in woods on dry and sandy soils in North America from Canada to Florida. It is considered in America a powerful vermifuge. Several other species of Tephrosia are found in North America, and are abundant on dry and sandy soils, in Georgia, Florida, and the Carolinas.
T. emarginata is an arborescent plant, with tomentose branches, leaves with 14 pairs of linear-oblong deeply emarginated leaflets, and silky straightish legumes. It is a native of South America, and has been found about the mission-stations of the Orinoco. The root possesses the same properties as the T. toxicaria, and is also used for the purpose of poisoning fish.
T. tinctoria, the Ceylon Indigo, is a shrubby glabrons plant with five pairs of leaflets, silky and villous beneath ; flowers purple or flesh-coloured, seated on axillary peduncles; straight, pendulous legumes. This plant is a native of Ceylon, where it is called Anil. Its tissue yields a blue colouring-matter, which has the same properties as the indigo, and is used in Ceylon for the same purposes. There are other plants used in Ceylon for dyeing, also called Anil.
I'. piscatoria, the Fisher's Tephrosia, is a shrubby plant with five or six pairs of leaflets, which are pilose beneath, the peduncles are 2-edged, the legume straight, ascending, and rather villous. This plant is found in the East Indies, and also in the islands of the Pacific. It contains the narcotic principle of the genus, and is used in the East Indics for the same purpose as T. toxicaria is in the West Indies.

T'. Apollinea is shrubby, and covered with a close pubeseence; the leaflets are silky beneath, and in two or Vol. XXIV,-2 F
three pairs ; the legume is 6 - or 7 -seeded, and rather pubescent. It is a native of Eyypt, and yields a blue colouring-matter, which is used in dyeing.
T. Senna, Buga Sema, is a glabrous shrub, with leaves having six pains of leaflets, and the legumes and ealyxes covered with pubescence. It grows on the banks of the river Cauca, near Buga, in Popayan. Its leaves have a purgative quality like senna, and are used by the natives for the same purposes as that plant is used.
In the cultivation of these plants a mixture of loan and peat should be used. They inay be easily propagated by seeds, or by young cutting planted in sand, and eovered with a bell-glass. Some of the species require the heat of a stove.
TEpic. [Mexican States.]
TEPIITZ, TOEPLITZ, or TEPLICE, a town in the circle of Leitmeritz in the kingdom of Bohemia, celebrated for its warin sulphureous springs, is situated in $50^{\circ} 38^{\prime} \mathrm{N}$. lat. and $13^{\circ} 50^{\prime}$ E. long. The name is Slavonian, and given by the Buhenians and Croatians to warm springs in general. Thic tradition respecting the discovery of these springs is, that a servant of a Chevalier Kolastug, a vassal of Duke Przemysl, who resided in the neighbourhood, was one day driving the swine,when several of the animals perished in the hot springs. This is said to liave happened in the year 792. This diseovery induced the chevalier to build a castle, and many settlers were soon attracted by the salubrious properties of the water, so that a street (in Slavonian, Alice) was formed, which was called Tepla Alice, 'the warm street,' and by contraction Teplice, or Teplitz.
This small town, which has not above 2500 inhabitants, is situated on a stream called the Saubach, in a beautiful plain or valley four leagues in length and one in breadth, formed by the Erzgebirge and the Mittelgebirge. The town forms an irregular quadrangle, is about half a leaguc in circuit, and has three gates. The prineipal buildings are -1 , the palace of Prince Clary, to whon the town belongs, with an extensive garden and park open to the public, in which there is a ball-room and a pretty theatre; 2 , the church of St. John the Baptist ; 3, the townhall, built in 1806 ; 4, the chapel of the Cross, outside of one of the gates. The fown is connected by a row of handsome houses with the village of Schönau. There are several springs both in the town and in Schünnu, each of which supplies several public and private baths distributed in different establishments. 'The quantity of water which the principal spring yields,' say's Dr. Granville, 'is truly marvellous, being not less than a thousand large pailfuls, or one million one hundred and eighty-nine thousand six hundred and seventy cubic inches in an lour.'. The temperature of these springs is said to have increased within the last forty years from 117° to 122° Fahrenheit, which is the present temperature of the chicf spring. The medicinal effects of the hot springs of Tcplitz are allowed by all physicians aequainted with them to be very beneficial in cases of suppressed gout, chronic rheumatism, diseases of the joints, contracted limbs, old *ounds, obstinate cutaneous eruptions, paralytic affections, to whieh Dr. Gramville adds, "that the specific virtue of these baths lies in the power they possess of restoring a eripple, it matters little from what eause, to perfect motion and elasticity.' The waters lave been used almost exclusively for bathing; of late they have been recommended and used internally. Prince Clary has spared neither pains nor expense to render the place worthy of the patronage of the kings and princes who habitually visit it, some of whom have built palaces for themselves and public hospitals for their invalid soldiers. The number of visitors every year is from 4500 to 5000 . Besides the attraction of its waters, it may be added that the expense of living at Teplitz is far less than in any other watering-place in Germany, that the private baths are fitted up in a manner unquestionably superior to those of any other Spa in that country, and that there are ample sourees of recreation and amusement without gaming, which is wholly prohibited.
(Jenny, Handbuch für Reisende in dem Oesterreich ischen Kaiserstaate; Dic Ozsterreichische National Encyclopïdie; Conversations Lexicon; Dr. Granville, The Spus of Germany.)
TfipTIARES. [Russian Esplize.]
TEQUENDAMA. [Granada, Nbw.]

TE'RAMO, PROVINCLA DI, called also Abruzzo UlIra $I_{\text {, }}$ is an administrative division of the Abruzzi in the lingdom of Naples, stretching enst of the great Apennine ridge, and sloping down to the Adriatie sea. It is bounded on the cast by the Adriatic, north by the lapal province of Fermo and Aseoli, west by the Neapolitan province of Aquila, and south by that of Chieti. The principal rivers are the Tronto, which marks the boundary between it and the Papal State, the Tordino, which flows by the town of Teramo, and the Vomano, whose several sources flow from the eastern slope of Monte Corno, called also the 'Gran Snsso d'ltalia,' the highest group of the Apennines (9500 feet above the sen), which rises on the borders of the provinces of Ternmo and Aquila, oceupying great part of the area of both. The river Peseara, in its lower course, marls the boundary between the province of Teramo and that of Chieti.

The province of Teramo is divided into two administrative districts, Teramo and Penne, containing seventy-two communes: the whole population amounted in 1837 to 200,719 inhabitants. (Serristori, Statistica d'Italia.) The area is estimated at about 1000 square miles. Most of the population nre employed in agriculture. There are some manufactories of silk, deln ware, liquorice, paper, eream of tartar, and leather; copper-ore is dug, and smelted and worked at Chiarino. The principal towns are, 1 , Teramo, a bishop's see, the ehief town of the province, and the residence of the intendente or king's lieutenant; it has a tribunale civile, or court of first instance, and a 'Gran Corte Criminale; a royal college, a clerical seminary, several churches and convents, and about 8000 inhabitants. The surrounding country is productive in corn, frnit, and pulse. 2, Penne, or Civitid di Penne, is a town with about 6000 inhabitants. 3, Civitella del Tronto, a small fortified town on the frontier of the Papal State. 4, Atri, a small town which gives the title of duke to the antient family of Acquaviva. (Petroni, Censimento dei Reali dominj di quì del Faro; Neigebaur, Gemälde Italiens.)
 of somewhat uncertain etymology and signification. That the teraphim were of human form seems evident from 1 Sam., xix. 13. They appear to have been staperstitiously, if not idolatrously, reverenced as penates, or househofd gods (Gen., xxxi. 10, 31, 35; I Sum., xix. 13-17; 2 Kings, xxiii. 21). In some shape or other they were used asdomestic oracles (comp. Zech., x. 2; Judg., xvii. 5; xviii. 5, 6, 14-20; Hos., iii. 4). This is confirmed by 1 Sam., xv, 23, where teraphim are mentioned in connection with the arts of divination. With this the alleged Syriac etymology of the word coincides ; for, according to Bar Bahlul, ๆ7.. means in that language, an inquirer, one who asks.
TERBURGH, GERARD, a very eminent painter of scenes of domestic life of the ligher classes of sncicty, was born at Zwoll, near Overyssel, in the year 1608, nid was instructed in the rudiments of his art by his father, who is not much known as a painter, but appears to have prassecl some years at Rome. Some think that he perfected himself under another master at Haarlem; however this may be, he lad acquired considerable reputation in the Netherlands as a painter of portraits of a emall size, before he resulved to travel for his improvement. He first visited Italy; but whateveradyantage he may have derived from the works of the great ltalian inasters, he never changed lis style, and proceeding from Italy to France, practised with great success at Paris. From France he returned to IIolland, where he was highly esteemed and fully employed. He visited Münster during the sitting of the eelebrated congress at which the treaty that terminated the Thirty Years' War was concluded. Herc lic painted his most celebrated picture, containing the portraits of the sixty-nine plenipotentiaries assembled on that imporfant occasion. Count I'igoranda, the Spanish ambassador at Mlinster, induced him to visit Spain, where he painted the portraits of king Ihilip IV. and all the royal family, and of many of the most distinguished nobility. Ifis performanees gave such satisfaction to the Spanish king, that he eonferred on him the honour of knighthood, and presented him with a gold chain and medal, a sword, and silver spurs. After finally returning to his own comiry he married, and was made burgomaster of the town of Deventer, where he lived in affluence, and died in 1681, at the age of seventy-three years.
The subjects whieh Terburgh generally painted were
purtraits, conversations, persons engaged at different games, periormers on musical instruments, ladies at their toilets. He finished his pictures highly, with a light and delicate touch, and is remarkable for introducing white satin in the dress of some figure in all his compositions: he always took care to throw the principal light upon it, and seems never to have painted a picture without satin drapery. Dr. Waagen says of him, 'Terburgh is the real founder of the art of painting conversation pieces, and at the same time the most eminent master in this style. In delicacy of execution he is inferior to none, and in a certain tender fusing of the colours he excels all others; but none can be compared with him in the enchanting harmony and silvery tone, and the observance of the aërial perspective. His figures, which are well drawn, have an uncommon ease of refinement, and are frequently very graceful.' Many of his capital works are in England, in the collections of Sir Robert Peel, the duke of Sutherland, Lord Ashburton, Mr. Hope, the marquess of Bute, and Her Majesty. (Pilkington; Fuscli; Dr. Waagen.)
TERCFIRA is considered the principal island of the Azores or Western Islands, though it is neither the largest nor the most fertile. It is situated nearly in the centre of the group, and it is the seat of govermment. It extends between $38^{\circ} 36^{\prime}$ and $38^{\circ} 50^{\prime} \mathrm{N}$. lat., and between $26^{\circ} 58^{\prime}$ and $27^{\circ} 22^{\prime} \mathrm{W}$. long., and is about 20 miles long from east to west, with an average width of about 13 miles. This gives an area of 260 square miles, or about 60 square miles more than the smallest of the English counties, Rutlandshire.

Terceira, and all the other Azores, with the exception of Santa Maria, has probably been produced by volcanic action, but its surface does not exhibit that extreme irregularity which occurs in the other islands, and in general in countrics which owe their existence to that agency. The coasts indeed are rocky and precipitous, but the higher parts of the island are chiefly composed of bcautiful and fertile plains, and entirely destitute of the numerous concs, craters, and peaks which distinguish the island of St. Michael. There is however, abont 6 or 7 miles northwest of the town of Angra, a wide depression, from the erevices of which sulphuric vapours issuc in abundance, and which is surrounded by hills composed of punicestone. It is called Furnas de Euxofre. It is stated that these crevices were formed by the earthquake of 1614, which was the last experienced in the island, up to 1841, when the town of Praya was completely destroyed by an earthquake, and the whole island suffered much. The interior of the island does not contain many stecp or inaccessible rocks, which is mainly to be attributed to the carth-slips which have been very frequent, and still happen from time to timc. The most elevated part of the island is in the middle, and extends from cast to west, where it terminates with Punta Serefta. Near this cape, and northeast of it, the ground seems to attain its greatest elevation, which however probably does not exceed 3000 fect above the sea-level. The elevated rocky coast along the western and northern shores cannot be approached without great danger by large vessels, and the whole island has only three harbours, I'raya on the east, Angra on the south, and Biscoitos on the north-west, but the anchorage is bad, and with certain winds vessels arc obliged to seek the open sea. The soil is composerl of volcanic ashes, pumicestone, slags, decomposed lava, a quantity of ferruginous matter, a small portion of clay or sand, and a littie limestonc. Buit a large quantity of vegetablé matter is mixed with these materials, which imparts to the soil a considcrable degree of fertility. Grain is only cultivated on the more level and low tracts along the sea-coast. The interior is overgrown with trees.

No metcorological observations have been published, but the climate is known to be very modemte, as it is stated that the average range of the thermometer is only from 50° to 75°, and rarely exceeds these two extremes. But the weather is nevertheless subject to great changes, and is only settled between the summer solstice and the autumnal equinox. Showers of rain are frequent throughont the year, and in winter so violent as to cause constant changes in the facc of the country, washing away enormous masses of pumice-stonc from the mountains, throwing down projecting portions of the rocks composed of soft voleanic materials, and leaving the surface of the roelss and heights in many places quite destitute of soil. The number of finc days is estimated at about 200 , and the
wet ones at sixty. The sea which surrounds the Azores is remarkable for the incessant gusts and gales to which it is subject, on which account it is rather dreaded by seamen. This phenomenon is probably connected with the Gulfstream, which reaches the most western islands (Flores and Corvo), and frequently extends over the whole group. All navigators have observed the frequency of these gusts and sudden squalls, especially along the northern edge of the Gulf-stream. The prevailing winds during the winter range between north-west and south-west; the south-west wind generally blows in strong gales, and is attended by heavy rains. During the summer the most frequent are northerly, north-easterly, and easterly winds; but at all seasons the changes of the winds are frequent and sudden, and render the navigation between the islands very tedious.
The soil being more suitable to agriculture and pasturage than to the cultivation of fruit, grain and cattle are the staple articles. The principal objects of cultivation are wheat, Indian corn, flax, French and broad beans, and a little barley. The yearly produce of the grain is stated to be 720,000 bushels, and some is exported to Lisbon, Oporto, and Madeira. The most common vegetables are yams, potatoes, sweet potatoes, onions, and capsicums. All the fruit-trecs of southern Europe succeed, but their cultivation has been neglected until lately, when the inhabitants have begun to apply themselves to that of the orangetree, and the oranges oi Terceira are now hardly inferior to those of St. Michael, and are largely exported to England and Hamburg. The vineyards are extensive, and their annual produce exceeds 4000 pipes, but the wine is converted into brandy, and the wine consumed in the island is imported from Fayal. The apples, pears, figs, chestnuts, and wallnuts are tolerably good. On the declivities there are some pine-woods and beech, but the higher parts arc covered with underwood and impenetrable bushes of loriars, among which are many evergreens, such as myrtle, juniper, and box, with stunted cedars. Quantitics of orchilla are collected from the rocks. Cattle are numerous, and of good size in the cultivated parts, and those parts which are not cultivated serve as pasture-grounds for sheep and goats. Goats are rather numerous. Only a few small horses are reared; the oxen and asses, which are numerous are used as bcasts of burden. Hogs are very numeruls, and are fed on Indian corn and chestnuts. There are no wild animals, except rabbits, and no poisonous reptiles. Fowls and turkeys abound. There are thousands of blackbirds, woodeocks, and partridges, but no pheasants nor peacocks. Fish is said to be abundant. Sometimes whales are seen ncar the island.
In 1820 the population amounted to 40,717, and in 1832 it was estimated at 50,000 individuals, which gives more than 192 persons to each square mile, rather a large proportion when it is considered that much more than half the island is not cultivated and does not produce food for man. Lincolnshire has only 130 to each square mile, according to the census of 1841 . This population is settled in three towns and fifteen villages. Angra is the capital. [Avgra.] Praya, which has about 3000 inhabitants, is situated in the centre of a beautiful sandy, deep, indented bay, well defended by nature and art, and has some commerce with Portugal and Madeira: it exports grain and live-stock.

Very good linen and coarse woollen-eloth is made on the island for lome consumption. Coarse earthenware is also manufactured to a considerable extent, the clay for which is imported from Santa Maria. The exports consist of grain and live-stock, which go to Portugal and Madeira, and of brandy, oranges, and orchilla, which go to foreıgn countries, chiefly England and Hamburg. The imports are principally coarse cotton fabrics, some woollencloth, hardware and cutlery, and cod, most of which articles are brought from England.
Terceira was discovered in 144, by some Portuguese navigators who were returning to Europe from Cape Verde, and it then received its present appellation, being the third of the Azores in the order of discovery. It was then uninhabited, but it was immediately settled by several families from Portugal. In 1580, when Philip II. took possession of Portugal, the inhabitants declared against him, and repulsed his fleet from their shores; hut in 1583 they were obliged to submit. In 1828, when Don Miguel
had abolished the constitutional government of Portugal, and proclaimed himself absolute king, Tereeira declared for Donna Maria; and, in 1829, a large fect and army sent by Don Miguel for the conquest of the island were repulsed with great loss from the town of Praya. In 1831 the other islands of the group were recovered for Donna Maria by a small number of troops sent there from Terceira.
(Ashe's IIistory of the Azores or Western Islands; Von Bueli's Physikalische Beschreibung der Cunarischen Insela; Fowler's Journal of a Tour in the State if Newe York, and Return to lingland by the Western lslands; Boid's Deseription of the Azores or Western Islands; and Capt. Bartholomew, in London Geographical Journal, vol. iv.)
TEREBELILA. [TcBicOLD.E.] (N.B. This comes too near to Terebellum.)

TEREBELLA'RLA, a genus of Polypiaria, included by Blainville in the family of Milleporea.

TEREBELLUM, Lamarek's name for a genus of testaccous mollusks, placed by Cuvier among his Pectinibraneliate Gastropods, between Ocula and Voluta; by De Blainville amonr his Angyosfomata, between Comus and Oliva; and by Rang between Mitra and Ancillaria.
The fossil Terebellum convolutum is the type of Montfort's genus Seraphs.

Generic Character.-Animal?
Shell delieate, polished, subeylindrical, rolled upon itself; the apex pointed; the aperture longitudinal and triangular, very narrow behind and notehed before; edge of the right lip simple and trenchant; columellar border smooth, truncated, and slightly prolonged forwards.
There appears to be but one reeent species known, Terebellum subulatum.
De Blainville divides the genus into two sections:-
A. Species whose spire is visible, and whose aperture
is shorter than the shell. (Terebellum.)
B. Species whose spire is nearly entirely hid by the rolling up of the whorls of the spire, and whose aperture is nearly as long as the shell. (Seraphs, fossil.)
Example, Tercbellum subulatum.
Description.- Shell subulate-cylindrical, rather thin, smooth, and polished; the spire distinct; the outer lip attached to the columella.

There are at least four varieties :-
A. Clouded with ehestnut, quadrifasciate, or with the eclour in patches.
3. Ornamented with flexuous subspiral or transversely oblique chest nut lines.
C. Thickly dotted with rich chestnut.
D. Entirely white.

Locality. - The East Indies.

Terebellum rabulatum.
Fossil Terenblla.
The fossil species appear to belong to the Tertiary formation, Eacene period of Lyell (Grignon, \&e.). M. Deshayes, in his Tables, notices but two, Terebella convolufurim and fusiforme, the same that are recorded by Launarck.

TEREBINTA'CEEE, a natural order of dicolyledonous plants. They are trees or slrubs, abounding in a resinous, gummy, caustic, poisonous, and sometimes milky juiee. The leaves are alternate and simple, ternate, or pimate. The flowers are terminal or axillary, mostly unisexual. The calyx is small. The petals and stamens are equal in number to the divisions of the calyx; sometimes the stamens are twiee the number; the disk is fleshy; ovary simple; fruit indchiscent, with a single exalbuminous sced.
This order was constituted by Jussicu, and is adopted by De Candolle, Arnott, Don, and other writers on systematic botany. Brown has however construeted five orders from this, viz., Anacardiacere, Burseracex, Connaracer, Spondiacere, and Amyridacee. These orders have been recognised by Kunth, Lindley, and others; and their characters and properties are given in this work under their respective names. [Anacardiace.e; Burserace.e; Connaracef; Spondicere; Aavpidele.]

TE'REBRA. [ENTOMOSTOMATA, vol. ix., p. 4.53.]
TEREBRA'LIA, Mr. Swainson's name for a genus of testaceous Gastropods, arranged by him under the Cerishince, the fifth subfamily of his Strombider, and thus characterized:-

Outer lip much dilated, generally uniting at its base to the inner lip, leaving a round perforation at the base of the pillar; channel truncate, opereulum round. (Malacology.)
Mr. Swainson places the genus between Pirena [MrlaNopsis] and Rhinoclavis, Sw.; and, among other species, refers to Terebralia Telescopium, Cerithium Teleseopium of anthors. [E.xtosostomata, vol. ix., p. 4.31.]

Whatever may be thought of this genus, the name, from its coming so near to Terebra, inay produce confusion.

The reasons for not adnitting Pirena as a genus will be found in the artiele Melasopsis.
TEREMRATULA. [13rachiopods, vol. v., p. 311.]
TEREDI'NA, a testaceous mollusk of the family Tubicolce of Lamarek, and belonging to the Adesmacea of De Blainville.

Gencric Charaefer.-Valves equal, but inequilateral ; umbones prominent; when closed, orb-like with a wide angular opening in front and a subeireular aperture at the back. Tube testaccous, subeylindrieal, with a terminal posterinr extremity, without any septum, uniting to tho posterior part of the two valves.
This genus is fossil only. Lamarck plaees it between Seplaria [Teredo] and Yereilo; Cuvier between Fistulana and Clafagella.
Mr. Swainson arranges it in hes family Pholide, and makes it a subgenus of Teredo.
Mr. J. E. Gray places Teredina among the Pholader, between Jouametia and Teredo.
M. Deslayes, in the last edition of Lamarck, observes that this curious genus was nut well known to that zonlogist. The Teredina, M. Deshayes remarks, is a true
globular Pholas fixed at the end of a tube, and has in fact the exterior eharacters of the Pholades. It carries an escutcheon on the umbones, and within it is provided with those appendages whieh so readily distinguish the Teredines and the Pholades from other genera. The shell is always external, and soldered by the posterior extremity of its valves to the anterior part of the tube, which is very thick and terminated by a blackish part of a horny appearance, whose internal surface is sometimes divided into cight regular earinations.
M. Deshayes, in his Tables, gives two species, Teredina personata and a new species, both from the tertiary beds (Eocene of Lyell). In the last edition of Lamarck no notice is taken of the new speeies, and to the second species, Teredina bacillum, recorded by Lamarek, is appended a note stating that this last does not belong to the genus Teredina; and that, according to the description and figure of Broechi, it can only be a Clavagella or a Fistulana; but that it is not Clavagella tibialis, as M. de Blainville believed.

Teredina persohata. (Coortagnon, \&e.)
n. tulue with valves; b, the other termioation of the tnlve; c, amecsmry valvo: d, valves with accessary valve in its place. (G. B. Sowerby.)
TERE'DO, the name given by Linnæus to a genus of testaceous mollusks, highly interesting on aceount of the ravages which one of the speeies commits upon submerged wood.

Linnxus, in the twelfth edition of the 'Systema Naturx,' plaeed the genus among his Vermes testacea, between Serpula and Sabella: nor is this certainly inapt position to be wondered at when we eonsider the very infant state of malacology in his day.

Cuvier, in his last edition of the 'Regne Animal,' makes Teredo one of the genera of his Enfermes, the fifth family of his Acephalous Testaceans, arranging the genus between Pholas and Fistulana.
M. de Blainville arranges the genus in the tenth family (Adesmacca) of his Pyloridians, between Teredina and Fistuluna, immediately after which comes Septaria.

Lamarck had placed the genus among his Tubicolées, and M. Rang adopts that arrangement, giving it a position lowever between Jouannetia and Fistulana, next to which, and immediately beforc Teredina, Septaria appears.

Lamarck ended with this genus his Tubicolées, whieh are immediately followed by the Pholadaires. Teredo is immediately preeeded by Teredina, and this again hy
Spptaria. In speaking of the last-named genus, M. Deshayes, in the last edition of Lamarck, observes that although the animal and the shell of Septaria are not known to him, the great portions of its testaeeous tulse or sheath, which he had scen, convinced him that the animal is analogous to that of the Fistulane, whieh differ from it principally in size only; and hecause its two auterior siphons are very long, and form for themselves each a particular testaceous sheath. The animal
ought therefore to have posteriorily, he remarks, a bivalve shell, whieh had escaped those who have collected the great tube, or the portions of it which we see in cabinets. M. Deshayes goes on to state that he has only seen a few septa, unequally distant and entirely incomplete. Some Fistulance, he adds, have also vaulted septa in the pos. terior part of their sheath; but the diminished or anterior part of this offers only partieular tubes projeeting out wards (1835).

Again, when Lamarek eoncludes his observations by saying that, for the rest, the Septaria is hardly anything but an exaggerated Fistulana, and scarcely deserves to be distinguished as a genus, M. Deshayes declares that if we substitute for the word Fistulana that of Tcredo, these remarks would be perfeetly just. This genus, he adds (Lamarck's Septaria), whieh liad been believed to be peculiar to the seas of India, has been found some years since in the Mediterranean; and he refers to the paper published on that animal in the 'Annales des Sciences et de I'Industrie du Midi de la France,' Marseille, 1832, by M. Matheron, in which that naturalist proves the animal of Septaria to be similar to that of Teredo; and this resemblanee, says M. Deshayes, in eonelusion, confirms his own opinion of the neeessity of uniting the Septarice and the Teredines.

Mr. Swainson (Malacology, 1840) plaees Teredo with the subgenera Teredo and Teredina, at the end of the 'Pholidee.

Mr. J. E. Gray arranges Teredo between Teredina and Bankia, under his Pholadee, the first family of his second order (Cladopoda) of Conchifera. Septaria is introdueed, with a query, into his second family, Gastrochcenide.

Organization.
It is now 36 years sinee Sir Everard (then Mr.) Home laid before the Royal Society, with the assistance of Mr. Clift in making the drawings, and the aid of Sir Benjamin (then Mr.) Brodie, his Observations on the Shell of the Sea-Worm found on the Coast of Sumatra, proving it to belong to a Species of Tercdo, with an account of the Anatomy of the Teredo Navalis. Sir Everard reniarks that the internal structure and economy of Teredines were so little known, and so much of what was said of them by Sellius was so vague, that it became neeessary to aequire an aceurate knowledge of the common Teredo navalis, before any adequate idea could be formed of the new species, which he names Teredo gigantea.

On examining the shell of Tcrcdo navalis while in the wood, Sir Everard found its external orifiee very small, just large enough, in fact, to give a passage to the two small tubes. The greatest thickness observed was $\frac{1}{2}$ of an ineh. The eanal in the wood at its termination, and for an inch in length, was not lined with shell, but smeared over with a dirty green-eoloured mueus, which was also spread upon the last-formed portion of shell. Aecording to Mr. Hatehett's analysis, the shell of Teredo navalis was perfectly similar to that of Teredo gigantea, being devoid of phosphate of lime, and composed of 97 parts. of carbonate of lime and 3 of animal matter.

While the animal was in the shell alive and undisturbed, what is termed the head was in eontaet with the end of the eanal in the wood; but, on laying the hearl bare, it was drawn in for an inch into the shell. The body of the animal filled the area of the shell completely, but appeared nuch smaller when taken out, in consequence of the sea-water which it contained having escaped. The largest of the worms examined whiell were of different lengths measured 8 inehes in length. Many of them were alive 24 hours after being removed from their shell, and in these the heart was seen to palpitate. The blood in the vessels going to the head was red, as also the parts near the liver; but this colnur disappeared soon after death.

The head of the worm was enelosed between the two eoncave boring shclls, so that what Sir Everard calls the face was the only part exposed. These shells were united together on what is termed the back part of the liead by a very strong digastrie muscle, having a middle tendon from which the fibres go off in a somewhat radiated direction. partly for insertion into the concave surface of eaeh shell, and partly into a long semicircular process projecting from the posterior part of each shcll. The two inelose the cesophagus and other parts surrounding it. The donble muscle was inelosed in a smooth shining fascia. When first ex: posed it was of a bright red.

On the opposite side of the head the slells were united by a ligament from whieh they were readily separated; at this part were iwo small tooth-like procesese, one from the narrow edge of each shell, where they were joined torcther.
From the middle of the exposed part of the head projected a kind of proboseis; which in the living animal had a vermicular motion: its cxtremity was covered by a cuttiele not unlike the cornen of the eye. On removing this, the eavity immediately beneath it was found to contain a hard brown-coloured gclatinous sulbstance, like a Florenee flask, with the large end uppermost in form. Sir Everard remarks that as this proboscis has no orifice, there is reason to beticere that it adheres to the wood, acting as a centre-bit, while the animal is at work with the shell, and thus the eanal in the wood is perfectly cylindrieal. The mouth was nearly coneealed by the projection of the probosecis, but, when exposed, prcsented a very distinct round orifice between the proboseis and the large digastric muscle.
'The body of the worm,' proceeds Sir Everard, ' is inelosed in one general covering, extending from the base of the boring shell, with which it is firmly conneeted to the root of the two small tubes, which appear out of the wood. It terminates in a small double fold forming a cup, on the inside of which are flxed the long small stems of two opercula, whiels become broad and flat towards their other extremity. These, when brought together, shut up the shell, and inclose the two contracted tubes within it: not one opercullum corresponding to each tube, but in a transverse direction. In the Teredo gigantea, the opercula are similarly situated, eaeh shutting up one-lalf of the bifurcation. At the base of this cup the general covering is thick and liganientous, for about one-fourth of an inch in length, where the stems of the opereula are connected with it; and at one spot of this thickened part there is an adhesion to the cylindrieal shell, which is the only part of the animal counected with it. There is a depression in the shell pointing out this spot. The double fold of the outer covering, that forms the cup, contains the splineter muscle, whiel eloses the orifice by bringing the opcreula together. The general covering is composed of two membranes, the outer the strongest, and made up of cireular fibres, the inner mueh finer, having no fibrous structure. On the back of the animal, this covering is firmly conneeted to the parts underncath, and is there strongest. On the belly it forms a cavity, and is thinner. It is everywhere sufficicently transparent to show the different viseera through it.'
Sir Everard Home began his dissection by dividing this covering and exposing its cavity, into whicl there are two natural openings: one, that of the largest of the abovedescribed tubes, by which it reeeives the water from the sea; the other, a transverse slit under the union of the boring shells, one-quarter of an inch long, opening into the spaee before the mouth. The author states that the smaller tube has no communication with this cavity, and that there is none between this cavity and that of the belly, the viscera having a proper covering of their own: the breathing
organs howcver, which are attaehed on the posterior surface of this carity, are described as having their fringed edge loose and exposed to the influcnce of the salt water; so that the larger fube is conslantly applying salt water to them, and conveging it to the aninial's niouth through the aperture for that purpose.

Digestive System.-The head and abdominal viscera were found to occupy about onc-third of the animal's length, the lircathing organs another third, and the space betiscen their termination and the ends of the sinall tubes the remainiug third. The cesophagus was very sllort, lying on the len side of the neek. On the right were two large approximated glands connected with its coat. The mesophagus gradualty swelling out became stomach, which externally appeared as a large bag, extending the whole length of the abdomen; the intestine commencecl close to the termination of the cesophagus; but when the stomach was laid open, a septum appeared dividing it into two distinet bags, exeept at the lower end, where they communicatc. It may therefore he snid, observes Sir Everard, to be doubled on itself. In those worms which were examined alive, the stomachs were quite empty; but in some preserved specimens the contents were a yellow-coloured pulp, of which we shall have to say more presently : the
quantity in a specimen from the British Museum was about to grains.
The intestinc was very small, and beenine dilated into a cavity, containing a lhard, white, globular body, of the size of a large pin's head, and then made a turn upon itself. Here the liver is attaccled to the stonachl, 10 which it firnly atheres. The gut passed forwards till it reached the eentral line of the stomach, opposite the septunn, and continued its course along that visens, passing round its lower end and upagain on the opposite side. It was then continued on one side of the casophagus nearly nas high as the mouth, where it was reffected over the middle tendon of the digastrie inuscle of the boring shells, and ran along the baek of the animal, till it terminated in the small tube through which its contents are emptied.
Cirentating and Respiratory Systen.-The heart was found in the niddle between the mouth and the lower end of the stomacl, and was situated on the back of the animal . There were two auricles, composed of a thin darkcoloured incmibrane, which opened by contracted valvular orifiees into two white strong tubes, which united to form the ventriele. This ventricle, Sir Everard observes, may be said to be continued into an artery, which supplies the viscera, and assends to the museles of the two boring shells. The heart was very loosely connected to the surrounding parts; its action was distinctly seen through the external covering, and was observed, in some instances, after it had been Inid bare. The first contraction was in the two aurieles, which shortened themselves in that aetion. A swelling of the ventricle, fotlowed by a contraction, is thus produced. Sir Everard found that the artcry from the ventricle could be traced up to the head, and the vessels from the aurieles were seen very distinctly as far as the treathing organs. The auricles were lined with a black pigment, so that their contents could not be seen through them; and the eoats of the ventriele were too thiek for transparency: but the anuscle of the boringshells was of a red colour, as well as the liver, and most of the surroundiug parts between the heart and the head.
Sir Everard obsertcs, that this strueture of the leart admits only of a single circulation, as in other animals which brcathe through the medium of water, but that the mode of its being performed is different from that in fishes: in the Teredines, he remarks, the blood passes direetly from the heart to the different parts of the body, and returns through the vessels of the breathing organs to the heart, while in fishes it goes first to the breathing organs, and then to the different parts of the body. This peculiar cireulation, he adds, becomes a link in the gradation of the modes of exposing the blosd to the air in ditterent animals: it appears to be less perfeet than in fishes, since the exposture to the air is carricd on nore slowly, but is more perfect than in eaterpillars.
Brain and Ner rouss System.-Sir Evcrard doubts not the existenee of the brain and nerves in animals so perfect in their organs as the Teredines, but he friled to deteet them during his investigation.

Generative System.- Sir Everard Home descrihes the tecsticles as two long clandular substanees, one on eaeli side of the stomach, of a whitish colour and granulated structure. From cacl of them a duct passed to the ovaria, which lay between the two breathing organs. The ducts ran upon their outer edge, and terninnted near the base of the small tube. In this way, he remarks, the eggs are impregnated before they phess out at that oritice. In the worms from Sheerness, examined in February, the testicles were small, and no appearance of ovaria could be seen; tut in specimens from the Ilunterian Museum the testicles were much fuller, and the ovaria forment two dislinct longitudinal ridges: these, when examinedt mader the mieroscope, were scen to contain imumerable small egES. When the ovaria are empty, Sir Everart states that there is nothing to be found between the two breathing organs bint the small seninal vessels. He then adverts to the statement of Sellius, who says that the Teredo naralis has its ovaria full of eggs in the spriug and summer ; that they are meet with as late as Decenbier; but that those individuals which he examined in February had their ovaria flacecid and emply.
With regard to Teredo gigantea, the same nuthor observes that, when arrived at its full growth, it closes up the end of its shell, and so does Teredo naralis. Sellius believed that the animal by this act formed its own tomb,
since it could no longer destroy the wood in which it was contained. Sir Everard however remarks that in Teredo gigantea death is not a consequence of seclusion from the substance in which it is imbedded. In some of Mr. Griffiths's specimens the shell was just covered in, and the part close to the termination extremely thin, whilst in others it was increased twenty-fold in thickness. In others again the shell had not only become thick, but the animal had receded from its first inclosure, and had formed a sceond three inches up the tube, and afterwards a third two inches further on, and had made the sides thicker and thicker, so as to diminish the canal in proportion to the diminution of its own size.

Animal of Teredo navalis out of the shell.

1. the opercula are wanting, and the tubes retracted. 2 the opercuila in thoir siliation, and the suliey protruded. a, a, the boring-shells; b the proloscis; c, the mouth; d, d, the contenis of the alidornen ween through the tr ingparent
exerual covering that Teredo gigantea, when arrived at its full growth, or whenever it is prevented from increasing in length, closes up the end of its shell, and lives a long time afterwards, furnislied with food from the sea-water. Teredo navalis, he observes, closes up its shell in the same manner: it nust therefore, after that perlod, be supplied with food entirely through the medium of sea-water. The Teredines, he adds, turn round in the slell, to which they are not attached, and with which their covering only has a slight connection at one particular spot, to prevent the external tubes from being disturbed. This motion, Sir Everard observes, is for the parpose of boring.

Genezic Character.-Animal very much clongated, vermiform, with a very delicate mantle, open in ront and at its lower part for the passage of a mammiliform foot; tubes separated, very short, especially that for the dejections; mouth small; labial appendages short ; anus situated at the extremity of a small tube floating in the eavity of the mantle; branchia riband-like, united on the same line tliroughout their length, and a little prolonged in the siphon; a muscular ring at the point of junction of the mantle and the tubes, in which is implanted a pair of pediculated corneo-calcareous appendages or paimules, playing laterally one against the other.

Shell rather thick, very short, annular, equally open before and behind; equivalve, inequilateral, angular, with triangular valves, trenchant in front, and only touching each other by the two opposite edges; no hinge ; an elongated, nearly straight, subfiliform, spoon-shaped process; a single slightly-marked muscular impression.

Tube cylindrical, straight or fiexuous, closed with age at the buceal extremity, so as to envelope the animal and its shell, always open at the other, and lining the cavity into which the animal has introduced itself.

Such is M. Rang's definition of Teredo, exeluding Teredo gigunlea (Septaria), of which he gives the following definition, observing that it closely approximates to the Teredines and Fistulance:-

Animal unknown. (But see the paper of M. Mathéron above referred to.)

Shall unknown. (But see the descriptions of Mr. Griffiths and Sir Everard Home here noticed.)

Tube calcareous, thick, solid, in the shape of a very elongated cone, and irregularly flexuous, furnisled internally with small, incomplete, annuliform septa; terminated at one of its extremities by a convexity, and at the other by two sleuder and separated tubes.

The number of species of Teredo (exelusive of Septaria) recorded by Lamarek in the 'Animaux sans Vertebres' (1818) were two, Teredo navalis and Teredo palmulatus
of the latter Jamarek, who had seen neither its tube ner its shell, says that it probably only differs from Teredo navalis in its greater size, its longer palmules having been more easily observed.
M. Deshayes, in his Tables, makes the number five living and five fossil (tertiary), exclusive of Septaria; and, in the last edition of Lamarck, adds to the two species above noticed Teredo corniformis (Fistulana corniformis, Lam.), Teredo gregatus (Fistulana gregata. Lam.), and Teredo arenarius (Septaria arenaria, Lam.).
N.B. Lamarek had stated that the Ropan of Adanson (Sénésal, pl. 19, f. 2) belonged to the Teredines, remarking however that he (Lamarck) knew it not. But M. Deshayes points out that M. Rang, on his return from a voyage to Senegal, where he had an opportunity of observing the Ropan, found that this eurious shell belonged neither to the Teredines, as Lamarck believed, nor to the Pholades, as Bosc says, and still less to the Gastrochcence, as M. de Blainville supposes; but that it is a Modiola already known, Modiola caudigera.

Teredo Naralis. - This is sufticiently described above, and we therefore proceed to the consideration of its

Food, Habits, \&c. - Some of the Teredines examined by Sir Everard Home were sent from Sheerness in the wood alive, and they lived in salt-water for three days after being brought to town. Sir Everard observed that when the surface of the wood was examined in a good light, while only an inch in depth in the water, the animal threw out sometimes one, at others two small tubes. When one only was protruded, the other almost immediately followed it. One of them was about three-quarters of an inch long; the other only lalf that size. When the largest was exposed to its full extent, there was a fringe on the inside of its external orifice of about twenty small tentacula, scarcely visible to the naked eye: these were never seen except in that state; for when the tube was retracted, the end was first drawn in, and so on, until the whole was completely inverted: and therefore in a half-protruded state it appeared to have a blunt termination with a rounded edge. The smaller tube was not inverted when drawn in. "These tubes,' says Sir Everard Home, in continuation, 'while playing about in the water appeared at different times to vary in their directions, but usually remaiued at the greatest convenient distance from each other. The largest was always the most ereet, and its orifice the most dilated ; the smaller ane was sometimes bent on itself with its point toueling the wood. In one instance, where a small insect came across the larger one, the point of the smaller turned round and pushed it off, and then went baek to its original situation. In several instances the smaller one appeared to be the most sensible; since by touching the larger one gently it did not retract; but on touching the smaller one they both were instantly drawn in. Indced whenever they were retracted they always were drawn in together. When the worm was confined within the sleell the orifice was not to be distinguished in the irregular surface of the wood, which was covered with small luci. The worm appears commonly to bore in the direetion of the grain of the wood, but oceasionally it bores across the grain to avoid the track of any of the others; and in some instances there was only a semitransparent membrane as a partition between two of them.

Sir Everard observes that as the Teredo gigantea bores in mud, on whiel it cannot be supposed to subsist, or even to receive any part of its nutriment from it, it becomes a question whether the Teredo navalis, an animal of much smaller size, derives support from the wood which it destroys, or is supplied wholly from the sea. The last opinion seems the most probable to Sir Everard, because the animal, having red blood and very perfeet organs, necessarily requires a great deal of iourishment for the purposes of growth, and to supply the waste constantly going on; but if, he observes, the aggregate of shell and animal substance is taken, it will be found equal in bulk, and greater in specifie gravity than the wood displaced in making the liole: lience, he remarks, it is obvious that the quantity of wood which the animal hus taken into its body is wholly insufficient for its formation and subsistence. When once it is establislied that the Teredo ean be supported independently of the wood which is eaten, and can afterwards subsist when the communieation between it and the wood is cut off, a cloubt, he adds, is created about the wood forming any part of its aliment, and it becomes pro-
bable that the Teredo navalis, like the Teredo gigantea, forms its habitation in a substanee from which it receives no part of its sustenance; and that the sawdust eonveyed through the intestines is not digested, partieularly as that examined by Mr. Hatehett had not undergone the slightest change.

Mr. Ilatehett found the ten grains of pulp from the specimen above referred to to be an impalpable vegetable sawdust. When burnt the smoke liad precisely the odour of wood; it formed a chareoal easily consumed, and was converted into white aslies, in every respeet like vegetable charcoal. Solution of potash did not act upon it, as it would have done if it had been an animal substance.

Sir Everard IIome suggests that the straight eourse of the intestine in the Teredines makes it probable that the sawdust retards the progress of the food, so as to render convolution unnecessary.

Teredo Navalis has been found at depths ranging from the surface to ten fathoms.

Shell and tube of Teredo navalis.
a, lubes sith salves in their position at the end: δ, c, lwo riews of the valves: d, double opmeulum; e, reprementatinn of the protrusion of the two tubes of the animal. (Phil. Twas.) G. II. Sowerby.
It is said, probably with truth, that Teredo naralis was introdueed into Europe from warmer elimates. However that may be, it now unfortunately swarms in our seas. The ravages of this a pparently insignifiennt animal are terrible. Ships, piles, all submarine wood-works, are ruinously affected by it : small as it is, it tlireatened the submersion of Holland by its destruetion of the dykes. The living speeimens wlieh formed the subjeet or Sir Everard Hone's observations were furnished from one of the royal doek yarls. The rapidity of its growth aud the destructive celerity with whieh it works are hardly credible. A pieee of deal. after a sulbmersion of forty dajs, was riddled ly them, and some had attained considerable size. Those from the doekrand at Plymouth, examined by Montagu, were in piles which had been recently taken up, to be replaeed with new; they lad not, necording to the information given to Montagu, been under water above four or five years, but they were greatly perforated, though they were sound solid onk when they were driven. The only effectual way of preventing the attacks of this animal upon pites appears ro be by eovering all that part which is continually belieath the surfaee with short brond-liended nails. The aetion of the sea-water on the nails produces a strong eoating of rust, said to be superior to a copper sheathing.

Wood nerforated by Teredines mamicen,

Teredo gigantea.-Rumphus, in his' Amboinsehe Rariteitkamer,' gives Iwo figures, here copied, of a speeies of tubular shell found in slablow water anong mangrovetrees. He deseribes the gronnd whence they were brought, and the mode in which the large end of the shell is elosed, so as to leave little doubt that it was Teredo gigantea, though the separation of the two tubes through whicll the parts of the aninal pass out is different from the specimeus brought home by Mr. Griffiths. This difference however, as the latter obsenes, may liave been conneeted with the situation in which the animal was found, namely, shallow water among the mangroves.

In 1800 Captain Maxwell of the Caleutta Fast Indiaman gave to Sir Fiverard (then Mr.) Home, a specinen of this shell, five feet long, but imperfeet at both extremities. The captain said it was brought from Sumatra. Several of Mr. Home's triends considered it as a mineral substance, a hollow stalaetite, being misled by its radiated structure. Sir Joseph J3anks deeided that it was a shell, and it was analysed by Mr. Hateliett, who found that it was composed of carbonate of lime and an animal gelatinous substance, which was greater in quantity than in Chama gigas, but less than in the common oyster. Mr. Home then applied to Mr. Marsten, who introdueed him to Mr. Griffiths, and the paper of the last-mentioned gentleman immediately precedes that of Mr. Home in Phil. Trans. for 1806.
Mr . Griffiths relates that a short time after a very violent earthquake that occurred in Sumatra in the year 1757. which produeed 'a most tremendous' inundation of the sea, did great danage, and caused the loss of many lives, these shells were procured in a small sheltered bay with a muldy bottom, surrounded by eoral reefs, on the island of Battoo. When the sea receded from the bay after the inuudation, they were seen protruding from a bank of slightly inklurated mud, and two or three specimens were brought to Mr. Griffths at Jadang, by the master of a boat trading between that part and the ishand, for eoeod-1ut oil, sea-slug, \&e. Mr. Griffiths then sent one of his servamts, a l'apoon Coffree, who was very expert at diving, in a small praw. This servant stated that he had found the shells in the before-mentioned bay aud in an inlet of the sea, stieking out of rather hard mud, mixed with small stones, sand, Ese. from cight to ten inches or more, and from one to three fathons under water. Both the master and erew assured Mr. Griffiths that the animal throws out tentacula
from the two apertures of the apex of the shell, that resembled the small actinice adhering to the rocks about Padang, and that the body of the shell was filled with a soft gclatinous flesh, similar to that of the Teredo navalis, but this they had washed out on account of its putridity. They said that the shells were in considerable number, and, being gently shaken, easily taken up; but all of them werc mutilated more or less, the effect probably of the carthquake, when many large fragments of madrepores, corals, \&c. were torn from their seat by the agitation of the sea. More than twenty specimens were brought to Mr. Griffiths, but not one was complete : a portion of the shell with the apex nearly perfect, and another with the opposite closed extremity nearly so, were however procurcd. The length of the longest of Mr. Griffiths's shells was 5 feet 4 inches, and the circumference of the base 3 inches, tapering upwards to $2 \frac{1}{2}$ iriches. There were other good ones of smaller size. The large specimen was nearly perfect, having a small part of the lower extremity entire. Most of the shells had adhering to them, about one foot or more from the top, the small cockscomb oyster, small serpulæ, \&c.; consequently, Mr. Griffiths observes, they must have been protruded that distance from the hard mud; but the water being thick and discoloured, the people of Battoo had not taken notice of them anteccdent to the earthquake. The specimens were milk-white on the outside and within were tinged with ycllow. Mr. Griffiths remarks that the large end of the shell is completely closed, and has a rounded appearance; at this part it is very thin. The small end, or apex, is very brittle and divided by a longitudinal septum running down for eight or nine inches, forming it into two distinct tubes, inclosed within the outer one, from whence the animal throws out tentacula. Mr. Griffiths goes on to describe the substance of the shell as composed of layers having a fibrous and radiated appearance, covered extcrnally with a pure white crust, and internally as having a yellow tinge; and the external surface as frequently intcrrupted in a transverse direction by a sudden increase of thickness, which, he observes, probably indicates different stages in the growth

Teredo gigantea.

1, the amall or apper extremity nf the shell, the external corering broken away and showisu the ferminatinn of the tubes, nue nf nlith is lroken. 2, a lougitudinal rection of that part n the stell where the dnuble tuhes are frrmerl. 3. the sicell cornulete, Gr acally wo, the exception beiog the imperfecl shate nf
tho upyet extrewaity. (Phil. Trans) tho upyer extrewity, (Phil. Trans)

1. C., No. 15íc.
of the shell, although they are at unequal distances, sometimes at six inches, sometimes at lour, in the same shell. Many of the shells, he adds, are nearly straight, others crooked and contorted.

Teredo gigantea.

1. traosverse sectinn nf shell, giving a front vicw into tho orifices of the dnuble tule, and shnwing the thickncss of the shell at that part. 2. tratsrerse sectinn of shell at the thichest part after it lad been polished, showing Trant.)

Fossil Teredines.

M. Deshayes in his Tables notes five species of fossil Teredines in the tertiary formation, Eocene period of L.yell :-one from the English crag, one from Paris, and four from Belgium. Mr. Lea (Contributions to Geology) records a species, Teredo simplex, from the Claiborne Beds, Alabama (tertiary). Professor Sedgwick and Mr. Murchison notice the genus in their Table of Fossils found in the Gosau Deposit and its Equivalents in the Alps; and also 'Teredo or Pholas,' in their Tuble of Possils of Lower Styria, as belonging to the 'middle system.' Dr. Fitton, in his Systematic and Stratigraphical List of Fossils in the Strata below the Chalk, notes the genus, with a query, from the gault of Kent and Cambridge.
terentia. [Cicero.]
TERENTIAN METRES. Few subjects connected with Latin litcrature have been treated with less success than the principles and laws which gevern the metres of Latin comedy. The majority of readers scem to look upon the writings of Plautus and Terence as so much humble prose arbitrarily distributed so as to present to the cyc the appearance of verse without its realitics. For them it would be better if the whole were printed consecutively, and such an arrangement would in fact be supported by not a few of the existing manuscripts. On the other hand, there have been writers who have laboured to remove the difficulties that obscure the subject, among whom none but Bentley and Hermann appear to have had any success; and what they have done still leaves the subject in a very unsatisfactory position. Even the writer of the life of Terence, in the 'Biographie Universelle' (published in 1826), has the following extraordinary criticism upon the metres of Terence:-'The sole rule which he obscrves with tolcrable regularity is to end each verse with an iamb; and even this limitation he often disregards, as, for instarice, in the terminations hic consiste; si vis, nunc jom; uudio violenter; huc adducam; hanc venturam, \&cc. With regard to the other feet, he freely substitutes for the iamb or spondee, a trochee, anapest, dactyl, double pyrrhic, or four short syllables, and a cretic of short between two longs,' \&c. This writer thus starts with the false impression that all the verses of Terence are reduced by critics to the single metre, called trimeter iambic; where-

VoL. XXIV. -2 G
as. in fact, all who linve dealt with the sulbject. except himself, ere aware that the poet has at least three forms of some which end trochaically; and his second exception is disposed of by the more correet orthormphy nume iam. In England agnin, wo late w the year 1837, we have a scheme of the Terentian neters, whish for the commonest of those metroh the trineter-ianbic, gives us the following scale:-

with the additional remarks that quo quid hunc may be a dlactyl, that hic quidem est, studet yar, and the three first syllables of eduptati, may pass for anapests, \&c. \&ic. All this is exceedingly unsatisfactory, and it would be better to abandon the problem as insoluble, than to give eurrency to extravagancies which would ennble us to find in any given chapter of Crsar a series of trimcter-iambics.
It must be admitted that the metres of the Greek dramatists, and more particularly of the tragedians, gratify the car with rhythms which, comparatively speaking, are smooth and appreciable. But it should be recollected, in the first place, that the Greek language is distinguished from among other languares by its abundance of words which end in a short syllable, and the advantage to the poet is inereased by the large number of instances where these short final syllables have a vowel ending. Compare, for instance, the recusatives singular povarv, Zoudov, zohev, Raupova, with the Latin musam, servom, nueim, leonem; the nominative and accusative plural zarpoves, iarporas, with the Latin leonēs; the numerals $/ z \tau \mathrm{a}$, $\boldsymbol{i} \mathrm{ka}$, with the Latin spplem, decem; the verbs rvxretre, rusrovor, with the Latin scribitis, scribunt ; the pronouns $\mu k, \sigma \in, i$, with mè, ${ }_{i} \bar{c}, s \bar{c}$. In fact, the Latin language exceeds the Greek in the number of long syllables, as mueh as the English and Gernan languages exceed the Jatin.
A still more important matter is the question whether and how far the written language of the Romans is an exact representative of the spoken language. It scems to be a conal ways be passing through a series of changes, and that those changes should consist for the most part in the gradual omission of letters and even syllables. Thus the Roman phrase mea domina is in Italian madonna; in French madame in Enylish madam, ma'am, and cven mum and mim. Meanwhile, for the most part, the changes in orthography are slow, and consequenty nearly always in arrear
of the orthoepy. Thus it will be found that the sounds of of the orthoeny. Thus it will be found that the sounds of
Englibl and fierman words which appear to the cye so weighed down with consonants, nre in the mouth of a native tolerably harmonious. Was such the ease with the Roman also? We answer with little hesitation in the affirmative, parlly beeause the Inws which novy govern language can scarcely hnve been wanting in antient taly, and purtly because we find the point established by several incidental remarks in Latin writers. Thus Surto onius says,
in his lije of Aucustus (c, 8) in his life of Augustus (c. 88), Orthogruphy-that is, the laws und prineiples of wnting laid down by bramma-
rians-be was not very observint of rians-he was not very observint of, but seens rather to
follow the opinion of those who hold that we should write as we spenk. For as to his habit of changing or ounitting not merely single letters, hut even whole syllables, that is a commoin error.' It should be observed toon, that Suetonius had himself seen the hendwiting of the enperor.
(Ilid.., 8 .) Acain, Quintilian (hrst (Ilid.,.c. 87.) Arain, Quintilian (Thst., xi. 3, 33) knys, ' As , on the one hand, it is cessential that every word should be clearly articulated; so, on the othicr hand, wo reckioul up, if
we may so speak, every separate letter, is paintup nnd Tre may so speak, every, separate letter, is paintul nd only is a coalition of vowess very common, but some too of the consonants are disguised (dissimnlamtur), when a vowel follows $;$ ' where he nust refer to sonne other let ter than in, probanhly the thal e generally and the final d of neuter
pronouns. Moreover Priscian, who by the way appears to pronound. Moreover Priscian, who by the way appears to lase written when the Latin language had ceased to be
spoken es a living tongue, at times throws out such conjectures as the collowing :- I Ihink that rigil, rigilis,
should rather be pronounced per syneopam.' We might appeal to Ciceroo nuthority for the faet that a final s was frequently omitted in pronunciation. But there are still other argunents in support of the principle for which we are contending. Within the limits of the Latin language itself we find such changes actually in progrens-as, magis, visi, ipsus, neque, olque, sive, neve, vederıs, vidsruиt, providens, mihi, nihil, quibus, pop ulus, tяgumen, opera, potesse, mavolo, noverit, novisti, dealus, becommg *cverally mage, ni, ipse, nec, uc, seu, neu, vidū̀re, vidère, grudens, mi, nil, quis, poplus (conipare also pophicus), legmen, opra, posse, walo, norit, nosti, deis or dis. Pinciphes of etymolory would enable us to carry the list out to n vast extent, and this still more if we einployed the amalogies of the Greek tongue.

Again, the languages which are aeknowledged to be derived from the Latin, such as that of the Troubadours, the Italian, French, Spanish, Portuguese, and one prortion of the English, by their shortened forius, confirn our views. And this will be found to be specially the case with the French. To those who may express their surprise that the lirench should thus take precedence in our arguinent of the ltalian, the answer is, that the French is probably derived from the latin more conipletely than even the lalian. For the Celtic, Teutonic, and lberie languages spoken in France before the Roman conquest of that country were of too foreign a character to mix with the language of eonquerors or to supply the place of it in the intercourse of the provincials with their masters; whereas in lealy there alrendy existed dialects which were intelligible to those who came from Rome, and for that wery reason were not supplanted by that particular form of the Italian language which happened to prevail in the metropolitan city. In the same way the authorised dialeet of our own tongue is more likely to become the current language of Calcutta than of Yorkshire. Add to this that the language now ealled Italian belongs to Tuscany, not to Rome.

Lastly, we find much to strengthen our present argument in the abbreviated forms of writing which were in use among the Romans nad are still iound in manuscripts. Thus the word consul is written cos, because the $1 /$ was not pronounced betore 8 , as Diomedes expressly tells us. (Putseh., 428.) Again, the word mollo not untrequently occupies such a position in the verses of Terence as to seem to require a monosyllabic pronuncintion, sueh indeed as seemis also nore consistent with its enclitie eharacter. This sery word enters into the composition of the Latin quamodo, which again in the lnnguages derived from Latin assumes various forms: in the Ronamce, com; in Spanish, como; in 1talian, come; and in French, comme. To this we now add the fact that the Romans themselves represented the simple word by the nbbreviation mo. Asain, : n. is the manuscript mode of denoting the coujunction enim, a word which must often be pronounced like en to fulfil the conditions of Terence's nictre. We may observe of this word, as of modo, that an enclitie should not attract the attention of the ear. A third example shall be a third enelitic, viz. quidem. Bentley himselt observed the trouble caused by this word in the verses of Terence (Andr., i. 3, 20), and his remedy is to drop the final m, which however still leaves the verse encumbered with a superabundance of syllables. We contend that this nlso is commonly n monosyllable, and on the following grounds. First, the metre of 'ference requires it. Secondly, if yirdem has a reduced form item, analogy will give us quem for quidem. Thirdly, the Romans, like the French, did not pronounce the vowel u afer g'otherwise such worls, upna for instance, would have had the tirst syllable long), and they also disguised the final m, ns Quintilian implies in the passage to which we have already referred. Thus we have arrived at a sound ke. Now the Greek language has a word of precisely the same power and character, y, which we strongly suspect to be the very sane word; so that if our suspicions be right, equidem and eqwye are of one origin, as wel! as of one meaning. Lastly, There are reasons still remaining which demand a nonosyllabic pronunciation for quidem. We have already called it an cuclitic, and it appears beyonel dispute in that character in the words equinem, siquidem, quandoquiden. Now an enclitie should in its mature sacrifice itself to give tone to the word which precedes it. Jet if we believe the ordinary teachers of Lntin prosody, equidem, though a corruption from eqoquidem, or eqquidem, has the first syllable short. Again, quando by itself has the final o common.
to take the most unfavourable view, for in the poets of the Augustan age it would be difficult to find a single example where o is short: and in quandoque, quandocunque, the vowel is always long. But add quidem, and they say quandoquidem has the same vowel always short. So also si in siquidem, according to their views, loses its length the moment the enclitic attaches itself to it. If our views be right, the truc pronunciation of these three words may be represented by something like $\bar{c} k e$, quand $\overline{\ddot{h}} \mathrm{ke}$, sike ; the last corresponding to the Greek fiys. We will here observe in passing, that our pronunciation of quidem suggests a correction of a corrupt passage in Persius, Sat. i. 10:

- Littera. Per me quidem sint ormin protinus alba.'

The current reading is equidem; and relying upon one errir the cditors have allowed the same equidem to stand with dubites in Sat. v. 45, when the context, as well as grammar, requires dubitem.
But to return to the subject before us. It is not uncommon with critics to imagine to themselves that the laws of Greek and of Latin verse are based upon principles essentially different from those of modern languages; the former depending, they say, upon the lengit of syllables, the latter upon nceent. This distinction we believe to be wholly without foundation. We rely little upon the fact that Priscian's treatise headed 'De Accentibus' is only a schoolboy-like scanning of the first lines in the ' Eneid,' because, as has been already said, that writer's authority is not of great weight in what concerns the spoken tongue ; and in fact, for the same reason there is little dopendence to be placed upon the dogmas of the other so-called grammarians, such as Diomedes. Our vierss upon this subject are rather derived from the perusal of Terence and Plautus themselves, ant are confirmed to a considerable extent by the hexameters of Virgil and the lyrics of Horace. They also seem to be supported by the general principles of language. We will endeavour briefly to state the resillts at which we think we have fairly arrived.
I. In words of more than two syllables, if, according to the received prosodies, two or more short syllables, exclusive of the final syllable, occur together, the second of those short syllables was slurred over. For instance, in some cases the changing a vovel i or e into the sound of a y, or of a vowel a, o, or u into the sound of a w, would be the simplest mode of effecting such a result. Thus adtriliǔre, pèrizimus, consithum, would upon our theory be pronounced adtriburere, peryimus, consilymn, the last of which is confirmed by Horace's use of the same word in his odes, and the Italian consiglio, Fr. conseil, Sp. consejo; and at any rate ourr pronunciation of the two former is more consistent with the quantity of the vowels than the inode usually adopted, viz. per--t-imus, adtribiere. Bentley has himself olsserved (Eunn., ii. 2, 36) that the words mulier, mulieris, \&c. are always so placed in Tcrence as to have the accent on the fint syllable ; which, by the way, is consistent with the Italian moglie, and the Spanish muger. We doubt however whether the dative plural would be found to obey the law laid down by Bentley. In those cases where the second short vowel is followed by a consonant, the abbreviation proposed becomes impracticable, if at least that consonant be really to be sounded. In such eases the right course is probably to drop the syllable altovether. Thus miseria, familia, and such words, Hermann (Lc Re Mctrica) truly says, are to be pronounced with the accent on the first syllable, and this in defiance of the law laid down by all the grammarians, that the accent cannot be carried farther from the end of a word than the antepenult. Hermann las not attempted to reconcile the two assertions, but they fall at once into agreement if we are right in dropping the second syllable, for then the first becomes an antepenultimate; and we arc only doing what is common in our own language, as in évery, lovely. This principle moreover may be clearly traced in forms acknowledyed to be Latin. Thus front populus should be formed populicus, but that becomes poplicus or publicus. If pello has a perfect pepuli, cado a perfect cecidi; the compounds with $r e$ should strictly give us repepuli, rececidi; but we find reppuli, reccidi. Again, in connection with opifex we ought to have opifcium and opifcina; but these have been supplanted by oficium, oficina. So too the Greek emeteiov becomes
in Latin oppidum, as opposed to the arx, or citadel ; and the adverb $\varepsilon \pi!\pi \epsilon \bar{\omega}$ s takes the form of oppide, an equivalent in meaning to plane.
II. The accent of a Latin dissyllable or polysyllable will fall upon the penult if long. Where that penult is long by the nature of the vowel, and at the same time the final syllable is short, the accent upon the penult is called a circumfex; in other cases an acute accent. Secondly, if the penult be short, put an acute accent upon the antepenult, always performing the previously mentioned abbreviation. if need be; the necessary effect of which is to give us a long antepenult, if the penult itself be short.
III. The preceding rules dispose of every case except two classes of words, viz. dissyllables with a short penult, and monosyllables. The former are either to be pronounced as monosyllables, or else to be attached to the preceding or following word; and the double word thus formed to be accentuated as a polysyllable. When a wiord is attached in pronunciation to that which precedes, it has already received in common use the name of enclitic. Hermann, who first observed that there are also words which attach themselves to those which follow, has proposed to give them the name of proclitics. The Greek article, for instance, belongs to this class, as also not unfrequently the Latin hic, haee, \&c. The same is true of prepositions, when really prepositions, that is, when they precede their noun; and the Latin non or ne, like the Greek ov, should perhaps in many cases be pronounced in immediate connection with the following verb, just as we, who are accustomed to place our not after a yerb, write cannot as a single word. Many little conjunctions also may probably require such treatment; as $s i, u t$, \&cc. Again, the list of enclitics should be extended so as to include most of the conjunctions which require to be placed second in a sentence, and even conjunctions in general, together with the relative itself when they are forced, if the word may be used, into a second place, as, for instance, in the first line of the - Æneid,' ' 'ich acquires additional power by the pronunciation Troiaé-qui. In the same way a postponed preposition becomes an enclitic, as in the phrase altis-le montibus. In this way many dissyllables and monosyllables will coalesce into polysyllables, and be accentuated accordingly. We even entertain a strong suspicion that a verb in the middle of a sentence must often be treated as an enclitic to give tone to some important word before it. But a statement of our grounds for this belief would require too much room.
IV. The principle of clision will often modify the accent of a word. Thus cumprimum, scribéndum, argumènto, would in ordinary circumstances have the accent as marked. But if elision take place, they sometimes have the accent displaced. In this way the first and eleventh lines of the Prologue to the 'Andria' should be read: ' Poéta cúm-primı ám' adseribend' ádpulit ;' and 'Non yt' dissim'li sunt argument' ét tamen.' It should also be observed that elision often destroys the initial yowel of the second word, instead of the final syllable of the preceding word, as nume tudimst officium, rather than nunc tu' est of icicum.
If now the principles we have assumed on the grounds above mentioned be applied to the plays of Terence, we arrive at the result, that the verses, with very few exceptions, acquire the desired rhythm ; and that there should be exceptions must be expected where the text of an author is not yet established upon a careful comparison of manuscripts, and where even the transposition of two words will offen alter the accent. Moreover it should always be recollected that in the comic drama it may be even desirable to avoid the purer rhythm of verse, and approaeh somewhat to the prose of natural conversation, as cicero has hinself remarked (Orator., 55). That what we now say may be put to the test, we will give a list of those words requiring abbreviation which most commonly occur, observing at the same time that a word at the end of an iambic trimeter, or after a monosyllable, is often to be pronounced with all its syllables, though elsewlere liable to contraction. Of this an example may be seen in the tenth line of the prologue already referred to, which contains both noterit and norit.
senex $=$ sen. Compare the genitive.
pater $=$ père. Compare parricida.
soror $=$ soeur, as in Prench.
voluntas $=$ vountas. Compare vis $=$ völts and invitus.
beeruma $=$ larma. Compare serment, from sacramentum. hodie $=0$ gin i, as in Italian.
dies $=$ jes. Compare jour, journce.
ego =yn. Compare liadian.
cal
Compare Cicero's story about the word couners.
tace $=t a i$, as in Freneh.
quibus $=$ quis. Compare the loss of b in the dat. pl. of the first and sceond deelensions.
$\begin{aligned} t i b i & =t i . \\ \text { sibi } & =i .\end{aligned}$ Compare the Romance, Ital, Fr., Sp., and $m i k i=m i$.
bi
ubi
abi
inde
$=01 \%$.
$=01$.
= ju. Compare the perfeet jussi.
redi $=$ rei.
magis $=$ mais. Compare mai It., mais Fr., mas Sp.
minus $=$ mins.
alius $=$ alyus. Compare Greck allos.
facere $=$ fure. Compare Fr., Ital., Sp.
figilare $=$ rigliare. Compare Fr., Ital.
ride $=$ m. Compare Fr. roi-ci, roi-la.
noros $=$ nous. Compare Greek veoc, English new.
sine $=\sin$. Compare Fr., Ital., Sp.
duo $=$ do. Compare Greek iow-dixa, Fr., Eng.
ille, \&e. $=$ il or le, \&ce. Compare It., Fr., Sp.
$\left.\begin{array}{rl}\text { bomus } & =80 n, \\ \text { sumus } & =\text { sommes, }\end{array}\right\}$ as in Freneh.
bene $=$ ben.
male $=$ mal.
homo $=$ homme, as in Freneh.
rei $\quad=r e$. Compare the forms of the fifth deetension used by Cresar, Virgil, \&e.
puer $=$ pur or por. Compare Greek rais, Spartan тогр, Latin Lucipor.
suus, \&sc. $=$ sus or sos.) Compare It., Fr., Sp., and also meus, \&e. $=$ mus, \&e. $\}$ the forms used by Ennius, and tuルs $=$ tus, \&c. $\}$ in Greek.
fuit $=$ fut. Compare It., Fr., and Latin fore.
animus $=$ ämus. Compare Ital., Fr.
asinus $=$ ânus. Compare Fr.
edepol $=$ epol. Compare ecastor, ecere, \&e.
legere $=$ lere. Compare Fr.
oculus = ocilus. Compare Fr.
generis $=$ genris. Compare Fr.
aperire $=$ aprire. Compare It., Fr., Sp.
opera = opra. Compare the form in Ennius, and Fr.,
similis $=$ sim'lis. Compare Fr. semble, Eng. resemble.
tamen $=$ ta'n. Compare tametsi for tamenetsi, and tandem for tamendem.
aliquis $=$ alquis. Compare It. alcuno, Fr. aucun, from aliquis-ztnus.
hujus $=$ his. Compare the abbreviation of nullius into nulrus and nulli.
ejus $=$ is.
For a more detailed exhibition of these words see Journal of liducation, vol. ii., p. 34; and on the subject of Latin prosody generally, the same work, vol. iv., p. 336.

It should be added that of modern editors Ifermann, Borhe, and Iindemann alone scem to have a distinct idea of the nature of the metres of Terenee and Plautus, for all that has been said applies to Plautus as well as Terence. Among older writers, Bentley certainly possessed a clearer insight into the subjeet than some of his notes would lead one tusuppose. That this is the ease is proved by an ancedote in Bishop Monk's Life of that scholar. The reverend doetor, dinme at a friends house in London. kept the gentlemen longer over their wine than was thought proper by the ladies in the dinwing-rnom, and added to the scandal when his voice was heard, even above stairs, in what wrs xupposed io be a song to the tune of "Unfort unate Mis Bailey: The doctor was only reading to them some specimen of Terences Comic Septenailus, or, to use a hander phrase, the Iambic Tetmmeter Catalectic.

TFirfiNTlANUS MAURUS. [Maurus TERevtianis.]
TERRENTIUS, or more fully P. TERENTIUS AFER. was one of the two comic poets of Rone whose works liave come down to un. The frets of his life were matier of dispute even among the Romans themselves. If we may rely upun the biogiaphy atintuted by nome to Donatus, by
others to Suetonius. he was born at Carthage, and beeame the slave of a Roman senalor named Terentius Lucanus, who, pleased with his abilities and handsome person, first gave him a liberal cducation and nerwards his freedom at an early age. Sume, on the other hand, stated that he oricinally fell into slavery as a prisoner of war. At Rome he fived on terms of intimacy with many men of family, more particularly the sceond Seipio Africanus and his friend Laelius, who were even said to have assisted in the conposition of the six eomedies which bear the name of Terence. There were even some who asserted that these two nobles merely borrowed the name of Terence for what was wholly their own. Before he had eompleted his thirty-finh year he left Rome, either to avoid the ollium which grew out of the suspicion that he had publishod the writings of others as his own, or to study the institutions and manners of the Greek nation, nnd thus qualify himself for fresh exertions in the field he had chosen. He never returned, but the aceounts of his death were various. Some said that he embarked for Asia, and was never seen from the hour of his embarkation; others that he died on his way baek from Greece, where he had translated one hundred and eight plays of Menander; while others again contended that having sent his translated plays in a separate ship, he received the news that this ship with his valued property was lost at see, and died through grief, in the eonsulship of Cn . Cornelius Dolabella and M. Fulvins Nobilior, either at Stymphalus in Areadia or at the Leucadian promontory. He was of moderate stature, slender figure, and dark complexion. He lett a daughter, who married a Roman of equestrian rank, and a property of six jugers on the Appian road. But another authority reports that he died in the most abjeet poverty. Eusebius, or rather St. Jerome, places the death of Terence in the reign of Ptolemy Philometor, and this king died in the third year of the 158th Olympiad, or the close of 146 в.c.

The difficulties in the life of Terenee are ehiefly of a ehronological charaeter: the following table of aseertaned dates bears upon it:-
218 b.c. Commencement of Second Punic War.
201 B.c. Peace granted to the Carthaginians.
18.) B.c. Birth of Scipio Afrieanus the younger.

184 b.c. Death of Plautus.
169 13.c. Death of Ennius.
168 b.c. Death of Cxeilius (partly on the authority of St. Jerome).

166 b.c. The 'Andria' aeted at the Megalensian games.
16:5 B.c. The 'Hecyra' acted at the same games.
163 3.c. The 'Hautontimorumenos' acted at the same games.
161 n.c. The ' Funuehos ' acted at the same games, and the 'Plormio' at the Roman games.

160 b.c. Death of Emilius Paulus. The 'Adelphoe aeted at his funeral ganes, at the expence of his sons Fabius and Scipio.

153 n.c. Consulship of Cn. Comelius Dolabella and M. Fulvius Nobilior.

149 b.c. Comneneement of the Third Punic War.
Thus it appears that the whole period of Terence's life must have been included in the peace between the Seeond and the Third Punic wars; so that if taken prisoner in war, that war could not have been one between Rome and Carthage. Again, there is a chronologieat difficulty in the story that the poet, when he offered his 'Andria' to the rediles, was directed to obtain the approval of Cacilius; that he accordingly went to the house of the latter, and was coldly bidden to seat himself on a stool and commence reading while the other dined; but that after a few verses Cocilius was so charmed that he invited Terence to take his seat at the table and dine with him, aner which he read through the remainder of the play and filled Cæeilius with admiration. Now the death of Crecilius, thonyh the date, as we have observed, is in some measure founded upon the testimony of St. Jerome, oecurred two years before the 'Andria' was acted. The assertion that Scipio and Larlius assisted the poet is not altogether rendered impossible by the youth of the parties, although Seipio was but nineteen when the 'Andria' was aeted, and Lacius was of about the same age with his f_{1} iend ; but the difficuity becomes greater when we find in the prologue of the 'Adelphoe,' that the nobles who were said to give him their aid are spoken of in terms seareely applicable to men so young.

Be the parties eharged to have lent their ad to the poet who they may, it is clear that the poet gives no denial to the accusation, either in the words just alluded to, or in the prologue to the 'Hautontimorumenos.' Even Cicero (Ad Atticum, vii. 3) mentions the report that Lælius was the real author; and Cornelius Nepos, who by the way makes the three parties, Scipio, Lælius, and Terence, of the same age (aequales), tells us an anecdote which confirms the report. C. Lælius, says he, happening to pass the Matronalia (a festival on the first of March, when the husband for once in the year was bound to obey the lady) in his villa near Puteoli, was told that dinner was waiting, but still neglected the summons. At last, when he made his appearance, he excused himself by saying that he had been in a peculiar yein of composition, and quoted certain verses which occur in the 'Hautontimorumeros,' viz. those beginning Satis pol proterve me Syri promissa huc induxerunt.
The fact of the poet being called Terentius is perfectly in harmony with the circumstance of his alleged master having that name, as it was the ordinary practice of the manumitted slave to take the nomen and prenomen of his late master. On the other hand, it is altogether an error on the part of Orosius to confound the poet with the \mathbf{Q}. Terentius Culleo, who, in the garb of a manumitted slave, accompanied the triumphal procession of Scipio after his destruetion of Carthage in the year 146 b.c. The name of Afer seems to confirm his Carthaginian birth, unless indeed that assertion be only an inference from the name itself.
Terence acknowledges in the titles to his plays his obligations to the Greek comedians Menander and Apollodorus; but he was not a mere translator, for one of the charges brought against him was that he drew the materials of a single play from two or more of the Greek plays. He was nuch and deservedly admired by his countrymen, even by Cæsar himself, notwithstanding the phrase in which he speaks of him, as a 'dwarfed Menander' (dimidiate Menander). From Plautus, with whom alone we can now make any satisfactory comparison, he differs most widely. Though Plautus excelled in powerful but ludicrous expressions, he was altogether deficient in the formation and development of a plot. Terence, on the other hand, though even he occasionally introduces the buffoonery of the 'miles gloriosus,' the 'parasitus,' and the 'currens servus,' to gratify the prejudices of his more unpolished hearers, who were hetter able to appreciate the merits of a boxer or a rope-dancer, still deserves our admiration for his efforts to place before his countrymen the comedy of manners. If he was not always successful, the failure was due to the rude minds of his spectators and the magnitude of a Romian theatre, and perliaps also to the use of masks, which, if always used, must have been a serious obstacle to the best efforts of the comic actor. The best edition of Terence is that of Bentley, Amsterdam, 1727. The modern imitations of Terence may be scen in Dunlop's - Roman Literature.' George Colman has translated the comedies of Terence into English. There are French translations by Madame Dacier and Le Monnicr.

TEREZ. [Mexican States.]
TE'RGIPES. [NuDimanachiata, vol. xvi., p. 361.]
TERM (Algebra). 1 simple term in an algebraical expression means all that involves multiplication, division, and extraction of roots without addition or subtraction. Thus in the expression

$$
a^{2} b^{3} x^{2}-2 a b x^{3}+\sqrt{ } a b \cdot x^{4}
$$

the terms are $a^{2} b^{3} x^{2}, 2 a b x^{8}$, and $\sqrt{ } a b \cdot x^{4}$. But compound quantifies are also ealled terms when they are put in such a form that additions and subtractions are subordinate to subsequent multiplication, division, or extraction. Thus,

$$
(a+b) \cdot x^{c+d}+\sqrt{ }\left(a^{2}-b^{2}\right) \cdot x y
$$

has two terms, $(a+b) x^{c+d}$ and $\sqrt{ }\left(a^{2}-b^{2}\right) \cdot x y$. If the form be altered into

$$
a x^{e+d}+b x^{c+d}+\sqrt{ }\left(a^{2}-b^{\varepsilon}\right) \cdot x y
$$

the expression then has three terms. Most frequently however there is one letter in powers of which the whole expression is arranged, and then all that involves any one power of this principal letter is a term. Thus $a+b x+c x$ +p.r has three terms, namely, $a,(b+c) x$, and $e x^{2}$.

When nne quantity is said to be expressed in terms of snother, it generally means merely that the first is to be an explicit rusction of the second. Thus, in $x+y=a$,
we have expressed $x+y$ in terms of a : deduce $y=a-x$,
and we have y expressed in terms of a and x. Thes is the distinction between y being expressed in terms of x, and y being a function of x : if for instance $y=a-z, z=x^{2}+x$, y is a function of x, but it is not expressed in terms of x, but of z; substitute for z its value, and y is then expressed in terms of x. It is to be remembered that by saying that a quantity is expressed in terms of x, it is not meant that x is the only lefter which enters, but that no other letter, if there be any, is a function of x. Thus, in the preceding, where we obtain $y=a-x-x^{x}, y$ is expressed in terms of x if a be no function of x. But it a be a function of x, say $x^{3}+x$, then y is not expressed in terms of x, until the value of a has been substituted, giving $y=x^{3}-x^{2}$.

TERM. The law Terms are those portions of the year during which the courts of common law sit for the dispatch of business. They are four in number, and are called Hilary Term, Easter Term, Trinity Term, and Michaelmas Term: they take their names from those festivals of the Church which immediately preceded the commencement of each. After the institution of Christianity, all days in the year, Sundays included, were among Christians for some time open for the purposes of litigation. This practice continued even after Christianity became the religion of the Roman empire. Eventually however the courts of law were closed during Sundays, and also during the times of the solemn fasts and festivals of the Church. This regulation was made by a eanon of the Church, in the year A.D. 517, and also by a constitution of the younger Theodosius whieh appears in the Theodosian Code. By these means one vacation was created in the winter during the time of Advent and Christmas, another in the spring during Lent and Easter, and a third during Pentecost. The long vacation in the summer and autumn was also found necessary, and therefore appointed during the time required for collecting the harvest and vintage. The same arrangements were introduced with Christianity into this island. The laws of Edward the Confessor contain the same provisions as to the observance of a vacation from legal business during the fasts and festivals before mentioned. The necessities of a pcople at that time sn universally agricultural scem to have compelled the observance of the long vacation. The Terms therefore consist of what remains of the whole year after the ecclesiastical and agricultural vacations had been taken out of it. It was the commencement of the Terms which was ascertained by the dates of the festivals from which they take their names. Various acts of parliament have been passed relative to the regulation of the Terms. The statute which now determines them is the 11 Geo. IV. and 1 Wm. IV., c. 70, amended by 1 Wm. IV., c. 3, which enacts that Hilary Term shall begin on the 1lth and end on the 31st of January; Easter begin on the 15th of April and end on the 8th of May; Trinity begin on the 22 nd of May and end on the 12th of June; Michaelmas begin on the 2nd and end on the 25 th of November. The Monday being in all cases substituted for the Sunday when the first day of Term falls on the latter day. During Term four judges sit in each court, and are occupied in deciding pure matters of law only, without the intervention of a jury. The fifth judge in each court sometimes sits alone to determine matters of smaller importance or to try causes at Nisi Prius. By the statute 1 and 2 Vic., c. 32 , the courts of common law are empowered, upon giving notice, to hold sittings out of Term for the purpose of disposing of the business then pending and undecided before them. These sittings are conducted in the same manner as those during the Term, except that no new business is introduced. The period during which they have the power to do this is restricted to 'sueh times as are now by law appointed for holding sittings at Nisi Prius in London and Westminster.' These times are appointed by 1 Wm. IV., c. 70, s. 7, and consist of 'not more than twenty-four days, exclusive of Sundays, after any Hilary, Trinity, and Michaelmas Term, nor more than six days, exclusive of Sundays, after any Easter Term, to be reckoned consecutively after such Terms.' The judges are also cmpowered by the same section to appoint such day or days as they shall think fit for any trial at bar (that is, a trial before four judges of the court) and the time so appointed, if in vacation, is for the purposes of the trial to be deemed a part of the preceding Term.
There is also a provision which enables the judges, with the consent of the parties, to appoint any time not within
the twenis-four claya for the trial of any cause at Nisi 1rius. The sittinge during these fwenty-four and six days are called the situng afer Tern. and are held for fhe trals for eauses at Nied Prius for London and Westuninster, which places do not form part of any of the eireuits. Sittings at Nisi Prius are also held for the saine purpose before single judses during Term time, but no special jury eases are taken within the Term. (Spelman, Of the Terms : 3 blackstone's Com., 275.)

TEKM (of years), in legal language, signifies the estate and interest which pass to the person to whom an estate for years is granted by the owner of the fee.

A term of years may be created by a conveyance at common law, but no estate is rested in the grantec, nor anything heyond a mere interesse fermini, until an actual entry is made by him upon the land. The tenant for a term of years is not said to be seised of the land, and the possescion is not given to him by livery of seisin. The delivery of a lease for years gives to the grantee a right of entry on the land; when he actually enters, he beeones possessed of the term; the scisin of the freehold still remains in the lessor, and the possession of the lessee for years is then considered as the possession of the person entited to the freehold or reversion expectant on the determination of the term. (Co. I.itt., 200 b .)

By the operation of the Statute of Uses an estate for a term of years may be created without an entry by the termor; as where a frechold estate is conveyed to \boldsymbol{A} and his heirs to the use of 13 for 09 years, with remainder to the grantor in fee: there the use is immediately executed in B, and the statute instantly annexes to it the legal estate, without any actual entry by 13 .

A term of yeirs may also be ereated by devise in a will.
A term of years may be limited to commence in futuro, which afreehold eamiot; for the freehold is not put in abeyance by the creation of such a term, as it woild be by the creation of a freehold estate to commence in futuro, but it eontinues in the grantor. (Co. Litt., 46 a.)

A term of years may be limited so as to cease by a proviso in the conveyance itself, upon the happening of any event, or the performance of any particular act (Co. Litt., 46 a.$)$; and it is usual, when terms of yenrs are created for the purposes of certain trusts, to insert a proviso for the eesser of the term upon the performance and satisfaction of the trusts of the term.

Long terms, as of 500 or 1000 yeass, are frequently erested by way of mortgage, with a proviso for determining them upon payment of the noney hy a certain day. These are more advantageous than mortgages in fee in one respect, that there does not arise, as in the case of the latter, a separation of the legal estate and the interest in the debt upon the death of the mortgagee. Similar terms are also frequently granted to the trustees of marriage settlements for the purpose of enabling them by sale or mortgage of the terms to raise portions for children and for other purposes. If sometimes happens therefore that, though courts of eqquity interfere, as in case of mortgages in fee, to enlarge the period of redemption, long terms of years of the kind above mentioned become absolute property. Again, it frequently happens that When a redemption does take place after the time fixed in the original contract, when, according to the theory of mortgages, the estate has become absolute at law, the term may, instead of heing surrendered to the owner of the inheritance, be assigned to a trustec for him and his heira, and retained as an appendage to that inheritanee under the name of an attendant term. The advantage of this practice is that it gives the power of defeating the elaims of strangers upon the inheritance, lys setting up the term as prior in ereation, and therefore in right. The right to take advantage of such terms is limited by courts of eqquity: to such incumbranees is the owner of the inheritance had no notice of at the time when he aequired it; othervise it is obvious that great injustice might be oceasioned by the use of them. A term of years attendant on the inheritance is goveraed by the same rules as the inheritance itself is subject to. The right to it does not go to executors, but follows the devolition of the inheritanee. It will not be forfitited an a chattel by the felony of the owner of the inheritance; but if the inheritance esehcat, the term will fullow is. (3 Cha. Rep, 19.) As to the assignment of attendsnt and outstanding terms to attend the inheritance,

Terms of years are considered in haw not as real estate, but as chattel interests in real property, and they therefore do not deseend to the heir of the person who dies possensed of thent, but vest in his exceutor or administrator, like any other chattel; and the prineiple is the same whatever be the lencth of the term. (Co. Litt., Ω a.)

Marriage entitles the husband to the terms of years belonging to his wife, as well as to the rest of her personal estatc. He may administer to the estate of his deceased wife, and is entitled for his own bencfit to her chattels real, whether reduced into possession, or reversionary or eonlingent ; and in case of the husband death anter the wife, his next of kin, and not hers, are entitled to the administration. (Co. Jitt., 351 a.) The husband may, during the wife's life, dispose of her chattels real by assignment, but not by will; and if he dies without having assigned then, they will belong to the surviving wife. But it the husband be an alien, he cannot aequire ly marriage any right to a term of years belonging to his wife. (Anon. 9 ; Mod. 43 ; Id. 104.)
The tenant for years is entitled to the same estovers as the tenant for life (Co. litt., 41 b .) ; and, like the tenant for life, he is not entitled to commit waste by cutting down timber, luilding houses, opening inines, ※c. (Co. Lit1., 53 a .) Ile is also punishable for permisive waste, and therefore bound to keep all houses and other buitdings on the land in good and tenantable repair. (Co. Litt., 57 a.) If a woman tenaut for years comnuits waste and marries, the husband, having aequired the term by marriage, becomes answerable for the waste. (Co. Litt., F. a.) A term of years may however, like an estate for life, be granted without impeachment of waste, and such a clause in the grant is construcd in the same manner with respeet to bothestates. When the determination of a term is certain, as when lands are let for 21 years, the tenant is not entitled to emblements, for it was his own folly to sow where he knew that he could not reap. But when an estate for sears depends upon an uncertain event, as when it is made determinable on the death of a particular person, the tenant will be entitled to cmblements in the same manner as a tenant for life. (Co. Litt., $\overline{3}$ b. b. 16 East, 71.)
Terms of years, being chattel interests, are subject to erown debts while they continue in the possession of the debtor, but not in the hands of a bona fide purehaser for valuable consideration without notice, who has bought before any excention awarded by the crown. (8 Rep., 171.) They are in like manner assets in the hands of the executor or administrator for the payment of specially and simple contraet delts, but not anter assignment by him to a purehaser for valuable consideration.
Terms of years, not being estates of inheritance, cannat be entailed, but they may be limited to any number of persons in esse suceessively for life, with limitations over, so as to be inalienable for a life or lives in being, and 21 years after. [Settliment.]
Terms of years, like life estates, nay be merged cither by becoming vested in the owner of the freehold, or by surrender to the person in remainder or reversion. [Marger; Surrendrr.] But a mete interesse letmini, not being an aclual estate, cannof be merged by surrender, though it may be extinguished by relense. (Cro. Jac., G19.) It mas formerly doubted whether one term could merge in another, but it is now settled that when two terms, granted out of the same estate. vest in the same person, there being no intervening estale, the fint merges in the tem in reversion. (6 Madd., 66.) Where a term has been created to answer trusts, a eourt of equity will sometimes relieve ngainst a merger of it, so far as to inake it answer the purposes of its creation. (3 Swanst., C03, C03.)

TEIRMES. [TERMITISa.]
TERRMINAL. We cannot say that this term is used in mathematics to the extent to which we shall canty it ; but the very great convenience which would arise from an extension of its use is sufficient justification for coining a few new incanings. Term is a word of geometry very little used, and signifying boundary or extremity; the words terminal value and terminal form are sometimes used to signify the last and most complete value or form. When a finite expression, added to a certain number of tenns of a series, nuakes up the equivalent of the expression from whieh the series is deduced, or stands for all the subsequent terms of the scries, this finite expression might be
called the terminal expression. Thus in Taylor's Theorem we have one terminal expression in D'Alembert's form, another in that of Lagrange.
There is also another use of the word, which would convey a distinction much wanting words to express it: we allude to what might be called terminal language. All the use of the words infinitely small and infinitely great [Ivfivits; Limit] is entitled to this name; as follows: When we say, for example, that a circle is a regular polygon with an infinitely great number of infinitely small sides, the language used is that of an end arrived at, a transformation actually made: the circle is described as actually consisting of straight lines; and the language is lerminal (expressive of a boundary actually attained). But the meaning of this language is, or is generally held to be, false: no polygon is a circle, how great soever the number, or how small soever the magnitude, of the sides. The proposition which is really true, that is, over which all shake hands, whatever their notion of infinity may be, is that the terminal proposition, true or false, is one to which an interminable and unlimited degree of approximation may be made. An inscribed regular polygon may, with sides enough, be made to coincide with the circle within any degree of nearness we please to assign: or the following proposition-' the area of the inscribed polygon may be made to differ from that of the circle by less than the nth part of the latter'-may be made true for every value of n that can be named, however great. Terminal language, properly employed, may be made the means of abbreviation of all those truths whose announcement contains interninable approximation: the development of this sentence is the object of the article Infisire.
TERMINA'LIA, the festival of Terminus [TERMinus], celebrated at Rome every year on the 23rd of February. It was said to have been instituted by Numa with the worship of the god himself. The festival was of a twofold character, either public or private, according as it was held at the boundaries between the fields of private persons, or at the boundary of the Ager Romanus. In the former case persons possessing adjoining lands met with their families and servants at the stone which divided the properties, adorned it with garlands and offered sacrifices, and a feast in which the neighbours partook was intended to renew the friendly relations existing between them. (Ovid., Past., ii. G13, \&ec.) Dionysius states that down to his time the Romans did not offer any bloody sacrifices on this occasion, but only cakes and fruit. But we have the most authentic statements which show that the assertion of Dionysius can only apply to the early period of the republic, and that subsequently a lamb or a sucking pig was sacrificed. (Dionysius, ii. 74; llutarch, Numa, I6; Quaes!. Rom., 15 ; Horatius, Epod., ii. 59.) The public Terminalia were solemnised in a similar manner by the whole people on the boundary of the Ager Romanus. (Ovid., Fust., ii. 679, \&c.)
(Hartung, Die Religion der Römer, ii., p. 52; Dictionary of Greek and Romun Antiquilies, v. 'Terminalia.')
TERMINA'LIA (from terminus) is the name of a genus of plants beloncing to the natural order Combretacew. The species of this genus consist of trees and shrubs, with alternate leaves, which are usually crowded together at the ends of the branches. The flowers are destitute of petals, and are disposed in spikes, which are racemose and panicled: in the lower part of the spikes they contain both stamens and pistils, but in the upper part they contain only stamens. The limb of the calyx is campanulate, 5-cleft, with acute lobes. The stamens are ten in number, arranged in two series, and are longer than the calyx. The orary contains two ovules, the style is acute, and the fruit is drupaceous, containing only one seed. All the species are inhabitants of the tropical parts of Asia and America: they are numerous, and many of them are used in medicine and the arts.
T. angustifolia, Narrow-leaved Terminalia: the leaves are linear-lanccolate, very thin at both ends, pubescent beneath; the petioles are also pubescent, and hare two glands at their apex. This tree is a native of the East Indies, and was formerly called Terminalia Benzoin, as it yields on tapping a gum-rcsin very similar to benzoin, and jossessing the same properties. This gum exudes from the tree in the form of a milky juice, which, on being dried, forms a light whitish substance, exceedingly friable. When gently dried it assumes the form of a white powder,
which was in great repute as a cosmetic. It has an agreeable fragrance, resembling gum-benjamin, which in a great measure depends on the benzoic acid it contains.
T. vernix, Varnish Terminalia, has linear-lanceolate leaves, narrowed at each end, and glabrous beneath; the petioles are also glabrous. This plant is a native of the Moluccas, and abounds in a resinous juice, which is collected by the inhabitants, and used in the natural state as a varnish. It is also used for the same purpose in China.
T. Catappa has obovate leaves, tapering to the base, pubescent beneath, and glands on the under sides of the midrib. It is originally a native of the East Indies, but has now become naturalised in the West India Islands. Some botanists have described the West India species as distinct from the Asiatic, but there is no good distinctive character. The drupaceous fruit of this tree is about three inches long, and contains a large seed, which is used for eating and obtaining an oil, in the same manner as the almond. This tree, on account of its thick foliage, is much planted in the tropics for the purpose of forming avenues near houses. The bark and leaves yield a black pigment. Indian ink is manufactured from the juice of this tree. It yields a light durable timber, which is much used.
T. glabrata, smooth Terminalia, very much resembles the last, but the leaves are glabrous beneath and small. The fruit is also of a much less size, oval, and less furrowed. It is a native of the Society and Friendly Islands, and is cultivated by the inhabitants near their huts and in their burial-places. The wood is used in these islands for building boats, making benches, \&c., and the seeds are eaten.
T. Bellerica, Belleric Terminalia, has glabrous, elliptic, entire, acute, alternate leaves, and bi-glandular petioles. It is a native of mountainous districts of the East Indies. Its flowers are very fetid. The fruit is reputed to possess tonic, astringent, and attenuant properties. When the bark is wounded a gum flows out, which is insipid, resembling gum-arabic.
T. Chebula is also an East Indian species, it is distinguished from the last by possessing opposite leaves which are pubescent beneath. The fruit of this species is more astringent than the last and is used for the purposes of dyeing. A durable ink is made by mixing the salts of iron with an infusion of the outer rind of the fruit. Both this species and the last are subject to the attacks of insects producing gall-nuts. These galls possess the astringent principle in abundance, and are also used for dyeing. They are called Cadacay by the Tamuls.
The genus Bucida is very nearly allied to Terminaliu, and belongs to the same natural order. It is distinguished from the latter genus by its urceolately-campanulate calyx, its didymous anthers, baccate fruit, and angulated putamen. The most remarkable species is the Bucida buceras, the ox-horn olive-tree, known in Jamaica as the black olive, in Antigua as the French oak, and in the French Islands as Grignon. It has obtuse glabrous ovato-cuneiform leaves, and small yellowish flowers disposed in cylindrical spikes covered with a silky pubescence. It is a native of the West India Islands on clayey soils near the coast. It has obtained its name from the tendency of its branches to shoot out into monstrous spongy excrescences resembling in form the horns of an ox. These excrescences resemble galls in their nature, and are probably produced by insects puncturing the terminal bud of the branch. This tree is remarkable in appearance for its slender crooked branches and tufted leases, but it attains a considerable sizc, and its timber is valuable. The bark of this tree contains an astringent principle which is extensively used in tanning.
In the cultivation of species of Terminalia and Bucida a soil composed of loam and peat should be preferred. Cuttings strike freely when placed in a pot of sand and covered with a hand-glass.
(Don's Miller's Dictionary ; Burnett's Outlines of Botany ; Bischoff, Lehrbuch der Botanik; Lindley, Natural System.)
TE/RMINUS, a Roman deity whose worship was said to have been introduced by king Numa Pomplius, when he ordered the fields of the citizens to be separated from one another, and the boundaries to be marked by stones which were to be considered as sacred to Terminus, or as Dionysius calls him, Zeis öplos. (Festus, s. v. Terminus,

Dionvaius, ii. 74.) A careful examination of the worship of this god shows that Terminus was only a surname of Jupiter, who was worshipped under this mame as the guardian of boundarics. The stone pillars themselves were regarded as symbolieal representations of the god himself, and hence perlaps the severe law mentioned by Festus, that whoever displaced sueh a pillhr should, together with his oxen, be devoted to the god. In the same manner in whieh the boundaries between the lands of private individuals were marked, the original territory of Roule (Ager Romanus) was separated by pillars from the territory of neighbouring tribes. In the direetion of lanrentum there was such a pillar (terminus) between the fifth and sixth milestones from Rome on the Laurentine roud. This was the public Terminus. The god liad a temple on the Capitol, and the part of the roof just above the symbolieal pillar was Ieft open. (Festus; Servius, Ad fen., ix. 44S.) A story to aecomnt for this peculiarity is related by Ovid (Fusti, ii. 6itl, Se.) and others.

TE'RMNNUS, or TERM, signifies, in seulpture and architecture, a pilla: statue, that is, either a half statue or bust, not placed upon, but incorporated with, and as it were immediately springing out of the square pillar which serves as its pedestal. If they be mere busts, figures of this kind are usually distinguished by the nane of llerma (Eppaĩ); and busts whieh, instead of having a circular monlded base, resemble the upper part of a terminus, are called terninal busts. There are many suels busts and also some termini in the Townley Collection at the British Museum ; among others a double terninal hust of Bacchus and Libera; and a terminal statue of Pan, nearly a whole figure, with a deeply moulded base. The terminus or pillar part is frequently made to taper dotutcards, or made narrower at its base than abore, which mode of diminution, the reverse of that employed for cohmms, was no doubt intended by way or similarity to the general outline of the human figure, whose greatest breadth is at the shoulders. It has been supposed that the earliest statues were merely terminal figures,-upright stones, ereeted as land-marks and boundaries, the upper cnd of which was mdely carved into the shape of a head, whieh form was afterwards retained for occasional purposes after seulpture had arrived at perfection. By modern artists the pedestal part is usually made tapering downwards or narrowest just abore its base; when it is called the gaine, from its resemblance to the scabhard of a sword.
In architectural design Terms are employed in lieu of Caryatides, not however as insulated pillars, but as pilasters forining a small order or attic, or a decoration to gateways, doors, \&c. They frequently oceur in what is called the cinqurcento and our own Elizabethan style.
TERMINUS is also now used to signity the buildings for offiees, \&ie., at the extremity of a railroad, whereas those erected at intervals along its course are called stations. The establishment of railroads has therefore given tise to a new class of structures, which from their nature and extent admit of being rendered sery striking in character and design. One of the most monumental architectural works of the kind as yet crected, is the Terminus of the London and Birminghan Railway, in Euston-square,-a Grecian Dorie propyleum (distyle in antis, on both fronts) on a large scale, the columns being about 70 fect high. The Terminus at the Birmingham end, though by the same architect (IIardwick), is in the Italian style. (For views, \&c. of both structures. see Companion to the 'Almanack' for 1839.) Other termini that may be mentioned for their pretensions to architecture, are-those of the London and Southampton Railway, the one at Nine Elms, Vauxhall, the other at Southampton, both handsome buildings in the Italian styre, by Tite; that at Blackwall, by the same arcbitect, und in a similar style; and those at Liverpool, York, and Brighton. The posifive necessity for some eovered gallery, either colonnade or arcade, and the obvious opportunity afforded for making a spacious portal, cither propylzoum or gateway, a marked feature in the general desagn, affords more than ordinary scope to the arehitect. Now that railroads (Chemins de Fer, and Visentahuen, as the French and Germans term them) have been introduced upon the Continent, they lave there also given occasion to many architectural constructions for their termini. Some desizns for Abfahrlsgebïude (Termini) may be seen in Stijler and Strack's 'Architectonisches Album.'
TERMMTI'NAE, a section of Neuropterous insects, in
which Latreille includes the genera Mantispa, Raphidia, Termes, and I'socus. These genela however are usually regarded as constituting thee distinet families, and will be here trented as such, commencing with the Rayhididde of Leach, which contains the two first-mentioned gencra. The insects of this family have the antenna slender and composed of more than ten joints; the tarsi have froin three to five joints; the wings are nearly equal in size and have numerous nervures inclosing small polygonal cells; the prothorax is long and slender.
The genus Mantispa is at once distinguished by the peculiar strueture of the anterior pair of legs, whieh are large, have the tibiae broad and compressed, and provided beneath with spines; the joints of the tarsi nre indistinct, and also furnished benenth with spines: the tarsi of the other four legs are distinetly five-jointed. The untenna are sloort, about equal to the head in length, and slender. The prothorax is elongated, slender, and broadest in front. The wings, when at rest, meet over the abdonen.

The Mantispa pagana (Fabricins) is rather less than three-quarters of an inelh in length, and of a brownish-yellow eolour; the wings are transparent, the superior pair have the upper margin yellow. It is found in France and Germany.

In Irazil are species closely allied to Mantispa, which differ in having the antennat as long as the body; the wings are nearly horizontal; the body is depressed ind terminated by two little appendices. They form the genus Hoplophora of Perty.

In the genns Raphidia the body is rather slender, the prothorax is long and almost cylindrical, the hear broad and somewhat depressed, and the eyes are prominent; the antennæ are as long as the head and thorax, and composed of about thirty-seven joints. The abdomen is terminated in the female by a long ovipositor. The legs are slender, of moderate length, and the tarsi are four-jointed.

Ruphidia ophiopsis is not an uneommon insect in this country: it is rather more than one-third of an inel in length, and the expanded wings measure $\frac{5}{5}$ of an inch; the head and body are black, the antennex and legs are yellow, and the wings are transparent.
The larva of this inseet lives in the bark of trees and is said to prey upon other insects. It is exceedingly active in its motions, which are somewhat like those of a snake. The body is soft, long, and slender, of a brown colour, striped, and variegated with yellow; the hend and prothorax are corncous and of a blaek colour. In the pupa all the parts of a perfect insect are distinet, being enveloped in a thin membrane.

Family Termitide.-This family is distinguished by the following charaeters:-Wings will few transverse nervuress folding horizontally ; tarsi four-jointed; antennes short and moniliform ; body depressed.
In the genus Termes the liead is large and rounded, and besides the ordinary compound eyes, it has three oeelli, or simple eyes, situated on the upper surface ; the antenne are as long as the head and thorax, inserted in front of the eyes, and complosed of about eiglteen joints. The abdomen is terminated by two small jointed appendages.
The Termites, or white ants, as they are often called, though they lave little affinity with the true ants, are cliefly confined to the tropies; some few species however extend into the temperate regions. Like the bees, wasps, and ants, which live in society, the Termites are composed of three kinds of individuals, males, females, and what are fermed neuters or workers. Their ravages in the warner parts of the globe are well known. They unite in societies composed each of an immense mmber of individuals, living in the ground and in trees, and often attacking the wood-work of houses; in which they form innumerable galleries, all or which lead to a central point. In forming these galleries they a void piercing the surface of the woodwork, and hence it appears sound when the slightest touch is sometimes sufficient to cause it to fall to pieces.

The termites sometimes erect their domiciles on the ground in the form of pyramils or cones, sometimes with a roof, and these nests are often very numerous, and resemble the louts of savages.

The larve nearly resemble the perfect insect, excepting that they possess no wings. The puper have rudimentary wings. The ueuters differ from the males and females in nosscssing no wings, in having the body stouter, the head much longer and provided with long jaws crussing at the
extremity. They are said to defend the nests, and stationing themselves near the outer surface, they are the first to make their appearance when their habitation is disturbed: they will attack the party molesting them, and bite with considerable strength.

The negroes and Hottentots consider these insects a great delicaey. They are destroyed with quick-lime, or more readily with arsenie, which is thrown into their habitations.

The Psocidoe are very small insects, having soft and swollen bodies: the head is very large, nearly trigonal, and provided with three ocelli on the upper surface. The wings when folded meet at an angle above the abdomen, and are sparingly provided with nervures. The antennæ are sctaceous, and composed of about ten joints. The tarsi are short, and usually two-jointed. They are very active in their motions, and live in the bark of old trees and in dwelling-houses. Nearly forty speeies are said to be found in this country.

TE'RMOLI. [SANvio.]
TERMONDE. [DENDERMONDE.]
TERN, STERNA, the name of those web-footed long-winged birds which are vulgarly known as Sea-Secallous.

Linnæus, in his last edition of the Systema Nature, places the genus Sterna between Larus and Rhynchops.

Cuvier arranges the Hirondelles de Mor between the Goelunds (Larus) and Rhyuchops. He observes that these Hiroudelles de Mer derive their names from their exeessively long and pointed wings, their forked tail, and their short legs, which give then a port and flight analogous to those of the Swallows. Their bill, le adds, is pointed, compressed, straight, without eurvature or projection; their nostrils, situated towards the base, are oblong and pierced through; the membranes which unite their toes are very much notehed, they therefore swim but little. They fly in all direetions, and with rapidity over the sea, uttering loud cries and eleverly picking up from its surface the nollusks and small fishes which form their food. They also advance inland to lakes and rivers.

The same author states that the Noddies may be distinguished from the other Sea-Swallows. Their tail is not forked.

The views of Mr. Vigors, Mr. Swainson, and others, as to the position of the Terns, will be found in the article Larid.e.

Mr. Swainson makes the genus Sterna consist of the following subgenera:-Sterna, Linn.; Thalassites, Sw.; Phaeton, Linn.; Rhynchops, Linn.; Gavia, Briss.

The Prince of Canino places Sternince, the second subfamily of his Laridee, between the subfamilies Rhyuchopsince and Larince. The Sternince consist of the following genera:-

Sterna, Linn.; Hydrochelidon, Boie; Megalopterus, Boic (N.B. Sterna Stolidu of authors) ; Thalasseus, Boie; Gelochelidon, Brehm; and Stylochclidon, Brehm. (Birds If Liurope and Norlh America.)

Mr. G. R. Gray (Gcuera of Birds) arranges the Sternine as the third and last subfamily of Laride, immediately after Rhyuchopince, with the following genera:-
Phoctusa, Wagl.; Gelochelidon, Brelım; Thalasscus, Boie; Stylochelidon, Brehm ; Gygis, Wag].; Sterna, Linn. Stermula, Boie; Irydrochelidon, Boie; Anoüs, Leach (Sicrna stolilla, of authors); Onychoprion, Wagl.; and Pelecriopus, Wagl.

The Pelecanide immediately follow.
Geographical Distribution and Habits.-The habits of
the Terns, which are widely diffused over the maritnne parts of the globe, are noticed in the article Larid.E. The following have oceurred, some occasionally only, in Eu-rope:-
The Caspian Tern, Sterna Caspia (genus Stylochelidon, Brehm); The Sandwich Tern, Sterna Cantiaca (genus Thalasseus, Boie); the Gull-billed Tern, Sterna Anglica (genus Gelochelidon, Brehm) ; the common Tern, Sterna Hirundo (genus Slerna of authors) ; the Roseate Tern, Stcrna Dougallii (genus Sterna); the Aretic Tern, Sterna Arctica (genus Sterua) ; the Little Tern, Sterna minuta (genus Sternula, Boie); the Noddy, Sterna stolida (genus Anoüs, Leach; Megalopterus, Boie); the Black Tern, Sterna nigra (genus Hydrochelidon, Boie; Viralver Leach) ; the White-winged Tern, Stcrna leucoptera (genus Hydrochelidon 9 Boie); and the Moustache Tern, Sterna leucopareïa (genus Hydrochelidon? Boie; Viralva? Leaeh). Of these, the largest is the Caspian Tern.

Our limits will not allow us to give more than two examples, and we select the Common Tern and the Noddy. We should premise that all the Terns of the British Islands are strictly migratory: many species visit us regularly for the purpose of breeding; but those, the Noddy for instance, whose home is far away, are seen casually and rarely.

The Common Tern.-Description.-Forchead, top of the head, and long feathers of the oeciput, deep black; posterior part of the neek, back, and wings, bluish ash; fower parts pure white, with the exception of the breast only, which is slightly clouded with ash-colour; quills whitish ash, terminated by ashy-brown; tail white, but the two lateral fenthers blackish-brown on their external barbs; bill erimson-red, often blaekish towards the point; iris reddislı-brown; feet red. Length 13 to 14 inches. Sueh is M. Temminck's deseription of the adult male and female.

The same author deseribes the young of the year before the autumnal moult as having the front, and a part of the top of the head, of a dirty white, marked towards the oceiput with blackish patches; the long occipital feathers brownish-black; upper parts of tannished bluish-ash; all these feathers bordered and terminated with whitish and irregularly spotted with brown or bright reddish; the lower parts of a dirty tarnished white; tail-feathers ashcoloured, terminated with whitish; base of the bill faded orance; iris blackish-brown; feet orange.

This is the Pierre Garin of the French; Fionen and Rondinc di Mare of the Italians; Meerschwalbe and Rothfussiger Mcerschwalbe of the Germans; Zce-zwaluw of the Netlerlanders; Kria of the Icelanders; Tende, Tendelobe, Sand-Tolle, and Sand-Tarrne of the Norwegians; Tarne of the Danes; Sca-Sucallow of the modern British; and Y for-ucennol fuyaf and Y scracan of the antient British.

Gcographical Distribution, Habits, fe.-'The Common Tern,' says Mr. Gould, in his great work on the Birds of Europe, 'although not universally dispersed over our' eonsts, is nevertheless a very abundant species, being found in great numbers over the southern shores, but more sparingly over the northern, which are almost exclusively inhabited by its near ally, the Arctic Tern. It is now satisfactorily ascertained that the common Tern does not extend its range to the American contiuent, and that its place is there supplied by another species, to which the Prince of Musirnano,' now Prince of Canino, "has given the specifie appellation of Wilsomi, in honour of the celebrated ornithologist by whom it was first described.' The Prince however gives both Sterna IVilsoui and Sterna Hirundo as Americall species, in his Birds of Europe and North America; and M. Temminck states that individuals killed in North America differ in nothing from those of Europe. In the fourth part of his Manuel (1840), though he adds to the synonyms and references, quoting among the rest Mr. Gould's work, he leaves his own observation above noticed uneontradicted. 'How far,' says Mr. Gould in continuation, "the Common Tern is distributed over the Old Continent we have not satisfactorily ascertained, but we believe its range is extended from the Aretie Cirele to the Mediterranean, and even to the coasts of Afriea and India, to which southern and eastern countries it is supposed to retire during our winters. The Common Tern does not confine itself entirely to the sea, but fiequently resorts to inland streams, \&e.: and when thus ascending our creeks and rivers these little fairies of the ocean fear-

VoL. XXIV.-2 H
lealy fish around our tooks, nothing ean be more pleasing than to obsecte therr poise and dip. When with their crutinizing eyes they have onserved a fish suffieiently near the surfuce, they precipitate themselves upon it with unering cettainty, aud a rapidity thant is truly astonishing: this inode of eapiure strongly reminds us of ihe fissirostral fribe among the land birds, and they may indeed be truly terned the swallows of the ocean, their long and pointed winges, nnil small but muscular bodies, leing admirally adapted for rapid and sustrined flight, and affording the menns by whicht they are enabled to traverse the surface of the deep with hever-tiring wings.'
We have seen thent perforning their graceful evolutions so far inland as near Oxford, where they were continually dipping in the lsis for bleak, as it appeared to us, which were abuidant there.
Mr. Sellyy states that this tem loreecls upon the sand or shingle beyond high-water mark, making no artificial nest, hut seraping a slight coneavity for the reception of two or three eggs, which vary mueh in colour, the ground in some being of a deep oil-greet, in others of a ereaul-white, or pale wood-brown, but all blotched with blackish-brown and asll-grey. 'In warma and clear weather,' says Mr. Selby in continuation, this bird ineubates but bittle during the day, in such situations the influence of the sun upon the egirs being sufficient; but it sits upon them in the night, and also through the day under a less favourable stale of weather. The young, when exeluled, are covered with a mottled grey and white down, and are assiduously attended hy the parents, and well supplicd with fool umtil able to fly aud accompany them to sea. During the time of incubation the ofd birds display grent anxicty, and are very clamorous when any one approaches their station, in flying sound and frequently deseending so near as to strike the hat of the intruder.'

Comanns Tera: Inumiults: one in nlutit, the other in smamer phamage. (Gousd.)
The following nolice respecting the Arctic Tern, from the ' Bristol Mirror' newspaper (1812), is deservine of attention. The time alluded to was that when we hall very howing weather:-' luring the high winds that prevailed on Sunday last, our harl)our and fonting-docks were visitel by large flights of a rare and beautiful species of lind, the Sterna Arclira, ur Aretic Tern. The birds were rasembled in such vast numblers. that two or three hundred were killed will stones and other missiles, whilst several were caught alive ; and so tame were they, that many fere otserved to piteh on the baeks of phasers by. This lern, as its mane indiceales, is a native of the ligher arectic recions, and las been met with in all the late expeditions to the polar seas. It is a sumnmer visitant to the consts of Seotland and the north of Fingland, but is rarely met with? more southerly, and until the present there was no instance on reeord of a specimen having leeen obtained in this neightourhood. The appenrance of such vist flights of arctic liinds, rare as a specics, in the very heart oi a large city, is an occurrence as remarkable as it is interesting. Flocks of there birds were ntso olserved the same day at Clevedon, Weston, and other places along the Channe! cins"

The Tem was formerly considered choice food. Thus. in the 'Household-look of the Barl of Northumberiand' we find ' Ternes' anoung the delicacies for principal feasts or his lordship's own "mees ;" and they are charged at fourpence a dozen.
The Noddy:-Descriptinn,-In this form of tern the wings reach beyond the rounded tail. Forehead white, passing into grey-ash towards the top of the head, and into a deeper grey at the oceiput, in front of the ejes a deep black pateh; throat and checks grey-brown ; all the upper antil lower plumage chocolate or sooty-brown. Bill and feet black. (Summer or nuptial dress.) Length about a foot.
Geographical Distribution and Habits.-America principally, where its head-quarters appear to be the Gulf of Mexico, the coasts of Florida, and the Bahama Islands. Dr. Latham was told that they breed in great numbers ort certain small rocky ivlands near St. Helena. Mr. Audubon observed numbers collected from the American coasts above mentioned in 1832, on one of the Tortugas, called, from the flocks that visit it, Noddy Key.

Mr. Gould remarks that the noddy, unlike the generality of tems, builds in bushes on low trees, making a large nest of twigs and dry grass, while hovering over or near whiel the old birds niter a low querulous murmur: the eges, three in number, are reddish-yellow, with dull red and purple patches and spots, and the young are said to be very good eating. It does not take its prey like the other terus, but as it skims along the water; and, when full grown, scelis its food at much greater distances from the land than the rest of the group.
Two were shot off Wexford in Ireland in 1830. Temminek states that it has been seen in France, lut he had never seen it on the coasts of Holland.

Noulds:
Mr. Nutlall gives a lively description of its lanhits.
'Faniliar to mariners who navigate in the equatorial regions, the noddy, like the soyager, frequents the open scas to the distance of sone huidreds of lengues from the land, and with many other birds of similar appetites and propensities, they are seen in great flights, nssiduously following the slivafs of their flumy prey. They pursue them by flying nenr the surface of the water, and may now be seen continually dropping on the small fish, which approach the surface to shun the persecution of the greater kinds, by which they are also hamssed. A rippling and silvery whiteness iil the water marks the course of the timid and tumultuous shoals; and the whole air resounds with the clangor of these gluttonous and greedy lirds. who, exulting or contending for suecess, fill the air with their varied but discordant eries. Where the strongent rippling npppears, there the thickest swarn of noddies and sich-fowl are uniformly nssembled. They trequently fly on board of slips at sea, and are so stupid or indolent on such oceasions, as to suffer thenselves to be taken by the hand from the yards on which they settle: they sometimes howerer, when seized, bite and serateh with great resolution, lealing one to imagine that they nre disabled oflen front flipht by exeessive fiatigue or hunger. Some linve imagined tlat the appearance of the noddy at sea indieates the proximity of land; but in the manner of the common tern, they muventure out to sea, and, like the inariner himself, the shelter of whose friendly wessel they seek, they often worage at random for seceral days at a time, committing thiemselves to the merey of the boundless ocean:
and having at certain seasons no predilection for places, where the climate suits, the roving flocks or stragglers find equally a home on every coast, shoal, or island.' (Manual of Ornithology.)

The vessel howerer is not always friendly. Bligh found the bird a seasonable supply to himself and his famished crew in his celebrated boat-voyage after the mutiny of the Bounty [Bligm]; and Byron has improved the incident in the terrible scene after the shipwreck in 'Don Juan.' [Bonsy, vol. v., p. 159.]

TERNATE, an island in the Indian Archipelago, is traversed by $50^{\prime} \mathrm{N}$. lat. and $127^{\circ} 20^{\prime} \mathrm{E}$. long. It is 10 miles long and crom four to five miles wide. It derives its reputation from the circumstance that its sovereign is in possession of a considerable portion of the islands of Gilolo and Celcbes; and on this account the Dutch have thought it expedient to form a considerable establishment on the island at Fort Orange. The northern group of the Moluccas has been called the Ternate Islands, though this island is only one of the smaller ones whieh belong to them, some of which are of great extent, especially Gilolo.

The greater part of the island appears to be oceupied by a volcano, which, according to Valentyn, attains an clcvation of 367 ruths and 2 feet, or 4095 feet English, above the sea-level. The remainder of the island is very fertile, and affords rice and the other productions of the Indian Archipelago: but we have very little information on these points, as the Dutch have always excluded foreigners, and prevent the natives from trading with the neighbouring islands, lest the spices which grow on this and other islands of the gronp should be brought to other countries by any other channel than their own commerce; and although the English have been twice in possession of the Dutch settlement, their attention has been more dirccted to the great Dutch colonies than to this comparatively small establishment. We learn only from Forrest, that the inhabitants of the Sooloo Archipelago were permitted to trade with Ternate, and that they imported large quantities of different articles of Chinese manufacture, which they exchanged for rice, edible birds'nests, trepang, sharks' fins, tortoise-shells, and small pearls: they exported also a great number of lories.

The inhabitants are Malays, who have embraced Islam. There are three mosques. The king, who possesses also the northern part of Gilolo, and the north-eastern limb of Celebes, where the Dutch have two settlements at Manado and Gurontalu, and several of the adjacent islands, lives in great statc. These countries however are governed by scparate chiefs, who in many respects resemble the feudal aristocracy of the middle ages : but the king and the chiefs are dependent on the Dutch governor of Amboyna, of which government Ternate forms a regency.

Ternate was first visited by the Portuguese in 1521, and some years afterwards they formed a settlement, which passed into the hands of the Dutch in 1606 ; who, in 1680 , reduced the king to a state of dependence on them, and enlarged their establishment. In 1797 it was taken, together with Amboyna, by the English, who restored it at the peace in 1801: it was again taken in 1810, and again given up to Holland by the treaty of Paris in 1814.
(Forrest's Voyage to New Guinea and the Moluccas, \&.c.; Stavorinus's Voyages to the East Indies; Von Buch's Physikalische Beschreibung der Canarischen Inseln, \&.c.)

TERNI. [Spoleto.]

TERNSTRÖMIA'CEA, a natural order of plants belonging to the Calycose group of polypetalous Dicotyledons. As at present constituted, by Cambessedes, who is followed by Lindley, this order consists of trees or shrubs with alicrnate coriaceous leaves, without stipules, mostly undivided, and sometimes with pellucid dots. The flowers are gencrally white in colour, sometimes pink or "red, and are arranged in axillary or terminal peduncles, articnlated at the basc. The calyx is composed of 5 or 7 sepals, imbricated in estivation, the innermost the largest; petals 5,6 , or 9 , often combined at the base ; stamens indefinite with monadelphous or polyadelphous filaments, and versatile or adnate anthers; ovary superior; capsule 27 celled; seeds few, attached to a central axis, with little or no albumen, and a straight embryo, the cotyledons of which are very large, and often filled with oil. This ordar includes the Theacerc of Mirbel and the

Camellieæ of De Candolle. Their closest affinity is with the order Guttiferæ, from which they differ in their alternate leaves; in the parts of their flowers being 5 and its multiples; in the calyx being distinct from the corolla; in their twisted æestivation, and in their thin inadherent cotyledons. They have also relations with Hypericaceæ and Maregraaviacæ. The plants of this order are principally inhabitants of Asia and America; one species only is a native of Africa.
This order includes the genus Thea, and hence is one of great œconomical importance. [Thea.] It is supposed that the dried leaves brought to this country under the name of tea are not alone the produce of the genus Thea, but that the leaves of some species of Camellia are also mixed with them. [Camellia.]. Independent of these two genera, little is known of the properties of this order. The Cochlospermum insigne is used as a medicine in internal bruises in Brazil, where it is called Butua do curvo. The C. tinctorium yields a yellow dye; and the seeds of C. Gossypium yield a gum resembling Tragacanth, for which it is substituted.

Thes Boher. -

1. branch with flowers snd leaven; 2, superior ovary with trifl atigma; 3, Sruit entire ; 4, capsule dehbsent.

TERPA'NDER (T\& $\rho \pi a v \rho \rho \circ$), the earliest and the most important historical personage in the history of Greek music and its connection with poetry, for he was both a musician and a poet. He was a native of Antissa, in the island of Lesbos, and his best period falls in the latter half of the seventh century before Christ. There are few events in his life that can he chronologically established. In n.c. 676, at the first celehration of the musical contests during the festival of the Carncia near Sparta, Terpander was crowned as victor. (Athenæus, xiv., p. 635.) He afterwards gained four successive prizes in the musical contests at the Pythian games (Plutarch, De Musica, 4); and these victories probahly fall between the years 672 and 645 B.c., since in the latter of these years he was at Spaita, and there introduced his nomes (vópor) for singing to the accompaniment of the cithara, aind was engaged in reducing the music of the Grecks, such as it then was, to a regular system. (Marmor. Parium, Epoch. 34 ; Plutarch, De Mus., 9.) At this time his fame must have reached its height. His descendants, or at least the musicians of his
 ohtain the prize at the Carneia every year without any interruption.

Numerous musical inventions are said to have been made by Terpander; many of them however may have been made by other persons, cspecially such as helonged to his school, and were subsequently ascribed to the father and founder of the art. Of many of his inventions we are unable to form any clearidea. The most inportant among them however is the seven-stringed cithara (heptachord).

2 H 2

Irevious to his tine soups, hymms, and thapeodies bad been acenmpanied withacithar of only four strings (telrachord), to whoh Terpander adked three new strings, so as to matie the culhara comprise a full velave, or, as the Greeks called it, a dimpason. The loptachord soon came into gewem? use, and remained the favourite instrument of the Greeks, especially tho Dorians, notwithstanding the various alterslions and improvements that were made. Allother very imporant improveurent which the antients unabimously asagn to Terpander, is the reduction of the antient muloties to certain systems (soppos), which continued unaltered for seveal centuries. These nomes appear to have been of a twofold character: he cither invented them himself, or lie nierely fixed those which lind been used before his time. This fixiug of ecrtain tunes and urelodies he is said to have effected by marks or notes which he made over the verses of a poem. lin this manner lie marked the tunes of his own poems, as well as of portions of the Momeric rhapsodies. His own poetical compositions, which, with the exceptions of a few frarnents, are now lost, consisted of hymns, promemia, and scolia.
(Nüller, History of the Literalure of Antient Grepce, i., p. 149, Sc.; Bude, Geschichte der Lyrische Dichtkunst der Hellenen, ii., p. 3G3, \&c.)

TERPSICHORE. [Meses.]
TERRA DI I,AVO'liO. [Lavoro, Terra di.]
TERRACl'NA, a town of the lajral State, in the adninistrative province of Frosinone, near the borders of the kingdom of Naples, and on the high road from Rome to Naples. The old town, which is built on the site of the antient Anxur, rises in the form of an amplitheatre on the slope of a calcareous rock which is a projection of the ridye called Monti Lepini, leaving but a narrow strip of land between it and the sea, along which mins the high road to Naples in the track of the anticnt Via Appia. Along the road are the modern buildings of Terracina, constructed by Pills V1., and consisting of the post-house and inns, custonslouse, granaries, and other structures for public use. The old harbour, which was restored by the emperor Antoninus, has been long since filled up, but remains of the mole are still seen. The old town is an assemblage of poor-looking louses, perched one above another, surrounded and overtopped by white cliffs which are scen from afar (Horace, Sut. i. 5), and intermixed with myrtle, orange, and palm irces, and with plants of aloes and cactus. Abore all rise the cathedral with its lofly stecple, an elegant palace built by Pius Vl., the remains of the palace called that of Theodoric, whieh is a structure of the fifth century of our ara, and is situated on the summit of the hill, and about. COO feet above the sea, and an old castle raised in the middle nges. The cnthedral is ornamented with some fine fluted Corinthian columns, which have been taken from a temple of Jupiter now ruined. Kemains of a theatre are also seen. The clinnte of Terracina is very mild and genial in winter, but is unwholesome in sumner.

The population of the town is 4000 inhabitants. Terracina is $\overline{4} 6$ miles south-east of Rome and 59 miles northwest of Naples. Beyoud Terracina, on the side towards Naples, is a detnched rock of a pyramidieal form, nearly 900 feet high, one side of which was cut perpendicularly hy C. Appins to make room for his rond. About two miles fartler is the frontier of lRome and Naples, where a military jrast is kept by each respective state. (Tournon, Ftudes Statistiques sur Rome; Valery, Voynges en Italie; Calindri, Siggio Statistico dello Stalo Pontificio.)

Anxur was a thriving lown of the Volsei long before the Roman conquest, was laken by the Romans in the year 403 \&.c., was retaken by surprise in 309, and taken again by the Romans threc years afler. It afterwards became n Roman colony by the name of Tarracina. During the second Punic war the temple of Jupiter at Tarraeina is mentioned by Jivy as having been struck by lightning. (Livy, iv. 59 ; v. 10-13; xxviil. 11.)
TfiRRANOVA. [Siclev.]
TERRIRAl'F'NE. [TORTOISES.]
TERKIRASSON, JEAN a French writer of the Iast eentury. Ile was lom at Ljon, A.d. 1050: his father was licrre Terrasson, one of a fumily of considerabic eminence and activity in that city. and a mun whose devout temper led him to make all his four sons of whom Jean was the eldest) members of the Congregation of the Oratory. Thes were all at Parim in the house of that Socicty when their father died: the three younger remained members of
the Congregation, but Jean (now a sub-dencon) whose dis. position disiuclined lim to the life of an ecelesiastice, quitted the Society, not however without having acguired considerable aequaintanee with theology. "The simplicity" of character wheh ever distinguished him rendered him the dupe of men, by whom his small patrimony was soon wasted; but he found a shelter in the house of a friend, M. Remond, to whose son he became tutor. He subsequently (A.D. 1714) undertook the eduration of the son of his cousin Mathicu Terrasson, a celebrated advocate in the parliament of Paris. He had become an associnte of the Académie lroyale des Sciences, A.d. 1707 . $\ln 1715$ he made his first appearance as an anthor by taking jart in the dispute then rafring on the value of the lionacric l'oems, and the comparative merits of the antients and moderns. Ilis work was entitled "Dissertation Critique sur Iliade d'Homere,' 2 vols. 12 mo., Pnris: it met with a favourable reception from those who joincd in or upproved of the attacks then made on Homer, who was severely eriticized. Next ycar'Terrasson published an additiou to his dissertation on Homer, in 12mo., in reply to André Dacier, by whom he had been attacked. In A.D. 1719 the financial system of Law enabled Terrasson to obtain a large fortune, and induced him to form an establishment and set up his carriage: but wealth was to him rather a source of embarassment than of pleasure ; and when he lost his fortune the next year in the financial change which took place, he contentedly observed that it would be more convenient to him to live oir a little. In A.D. 1730 he published a small work in defence of Jaw's financial schemes, entitled 'Trois Lettres sur le Nouveau Systène des Finances, 56 pp., 410. Paris, and another small work in defence of the French India Conupany. IIe saved some small part of his tortune from the general wreck; and this, with the inenme of a professorship, which He obtained next year (A.D. 1721) in the College Royal, and a pension subsequently conferred by the croivn, rendered lis circumstances easy for the rest of lis life. He became a member of the Academie Française A.n. 1732.

In 1731 Terrasson published a romance in imitation of the "Telemaque' of Fénélon. It was entitled "Séthos, 3 vols. 12mo., Paris, and professed to be 4 translation of a Greek manuscript. The scene is laid chicfly in Fgyt. This work obtained sufficient circulation to so throucrh several editions, of which the last was in 1813, in 6 vols. 18 mo ., but never became popular. An English translation was published in London in 1732. In the years 1737-44 he published the seven suecessive volumes in 12noo. of a translation of Diodorus Siculus. This translation has been reprinted onec or twice, but is very inaecurate. This was his last work of any cxtent. His memory and his bodily strength gradually failed, and he died A.D. 1750 , aged 80.

He wrote also a treatise entitled ' De l'Intini Crés,' of which he allowed one or two transeripts to be taken during his life; but it was never published, nor was the original manuscript found among his papers at his decease. Ile left also a small work, published nfter his decease, entilled - La Philosophic applicable a tous les Objets de l'Esprit et de la laison (Paris, 8vo., 1752).

From an anonymons letter printed, with one or two other pieces, at the commeneement of this small volume, and containing a biographical notice of Terrasson, we have derived the substance of this article. See also the Eloge de Terrasson, by D'Alembert; Querard, La France Lilleraire; Bingraphic Universelle.

TERRESTRIAL MAGNETISM. This term is used to denote the action of the magnetic fluid in or about the earth; the effects of that action being manifested in the phenomena presented by magnetized needles or bars.

The general polarity of a magnetized needle when supported or suspended in a balaneed state, and its inelination to the horizon, with the slow varintions to which those elements, as well as the intensity of the inagnetic force, are subject, are phenomena which are conceived to arise from eauses existing in the earthand pervading its whole mass; while the temporary effects, as the diurnal variations of the neetle, are supposed to depend upon electrical enrrents produced by variations of temperature at the surface in consequence of the changes in the sun's position with respect to the horizon, and perhaps from other ciretmstances: finally, great lemporary discharges of electricity in the upper regions of the ntmosphere may be the causes
of those oceasional agitations in the needle, to which the name of magnetic stomns has been lately applied, and which are now known to extend at the same moment over a great portion of the earth's surface.
The declination (variation) of the needle is that element of terrestrial magnetism which was first observed, and the difference of its amount in different regions, as well as the annual change at the same station, was early noticed. Dr. Halley, on his return to England after his second voyage, during which he had made many observations on the variation in different parts of the Atlantic and Pacific oceans, published, in 1701, a chart, on which were traced what have been since called isogonal lines, that is, lines passing through the points on the earth's surface where the variation was the same; and other charts of a like kind have since at different times been constructed. The expectation at first entertained, that such a chart might serve as a means of ascertaining the longitude of a ship at sea by an observed variation of the needle has not however been fulfilled, since as yet no formula has been discovered by which the variation at any given time and place may with sufficient accuracy be found: but though the changes of the variation have hitherto rendered such charts of little use for the purposes of navigation, yet a knowledge of the form of the
lines of equal variation at different periods may be of great importance as a step to the discovery of the law of those clanges. The latest variation chart is one which was published by Adolf Erman, after his journey, in company with Hansteen and Due, through the whole length of the Russian empire, and his return to Europe by sca. Erman determined the positions of the isogonal lines from his own observations, and from the most authentic of those which had been made by other observers between the years 1827 and 1830 ; and subjoined is a representation of the principal lines on the two hemispheres of the earth, projected stereographically on the plane of the equator. The lines marked oo pass through places where the variation is zero; the positive sign before a number indicates that the variation is westward, or that the needle deviates to the west of the astronomical meridian; and the negative sign indicates that the variation is eastward. On an inspection of the lines, it is manifest that on a sphere they must be curves of double curvature with bends in opposite directions; that most of them converge towards two points on the earth's surface, one in or near Baffin's Bay, and the other to the southward of New Holland; and that between the inflexions there are some which return into themselves.

The dip, or inclination of the needle to the horizon, which is another element of terrcstrial magnetism, was first recorded by Robert Norman [Inclination], and numerous obscrvations have been made to ascertain its value in different parts of the world, together with the variations to which it is subject in process of time; but a general chart exhibiting the forms of the isoclinal lines, as those of equal dip are called, is still wanting. On the above cut arc represented by dotted curves some of the lines which are best known; and these have bcen taken chiefly from the partial chat given by Major (now Colonel) Sabine, in the 'Philosophical Transactions' for 1840 . The data are stated to have been obtained from above 140 observations made on land between 1834 and 1839, and from many which were made at sea by Mr. Dunlop in 1831, and by Lieut. Sulivan in 1839. Some points have also been taken from the observations made by Erman in the Pacific Occan, of whicll last observations a table is given in the 'Seventh Report of the British Association' (vol. vi.).
a, a, a, represents the line of no dip, which is evidently a curve of double curvature, and crosses the terrestrial equator in two points at least: b, b, b, is the known portion of the iscclinal line for a dip of 30 degrees below the northern jart of the horizon: c, c, is the line for 60°; and d, d, the line for 75°.
An inspection of the cut will show that the oval lines of equal dip go on diminishing in magnitude northwards, and the pole of the dip, or place where that element is a maxi-
mum, may be fixed at a point (P in the diagram) in long. $263^{\circ}\left(117^{\circ}\right.$ west), and in lat. $70^{\circ} \mathrm{N}$.: at that place, by the observations of Captain James Ross, the dip in 1831 was found to be $89^{\circ} 59^{\prime}$. Professor Hansteen, of Cluistiania, has deduced, from the observations which have been made in the polar regions, that the isogonal lines in the northern hemisphere tend to two points in the vicinity of the pole of the dip; those which are on the north side uniting in a point a little way to the north of the latter pole, and those on the south side a little way to the south of the same pole.
Till within the last fifty years it was the general opinion that the intensity of terrestrial magnetism was the sanue at all parts of the earth's surface; and to the Académie des Sciences, in France, is due the honour of having been the first learned body which proposed that observations should be made for the purpose of determining that element. In the instructions which its members drew up for the use of the unfortunate La Perouse, it was recommended that the intensity should be observed at places very distant from one another, in order to ascertain whether or not any differences existed in its value. The accounts of any ohservations whicl may have been made during the voyage perished; but between the ycars 1791 and 1794, M. Rossel, who sailed from France with the expedition in search of La Perousc, determined with a dipping-needle the inclination to the horizon, and the times of performing a vibration, at different places; and from the latter the fact of a difference
of intensily was established. After that time extensive series of observations on the dip and intensity were nude by Itumbolit in South Anerict, and in Franee, Italy, and Germany; by Hasteen, Due, and liman in the norlh of Europe and in Sibena and ly the last-mentioned gentleman in the Pacife Ocean. Also by Colonel Sabine during his royages to the polar seas and the equatorial regions of Africa and America; by the Ruseman adiniral lutke, in a circumnavigation of the globe; and by captains King and Fitzroy in the survey of the coasts of South Ameries ; and now, no observations on terrestrial magnetivin are comadered complete untess all the three elementa, the dectination, the inclination, and the intensity, are determined at the same time al every station.
l'reviously to the time when Ifumboldt made his magnetical observations in South Anerica, the opinion that the intensity was a minimum at places where the dip of the needle was zeru prevailed; and that philosopher, in consequence, assumed unity as the measure of the intensity at a certain station in P^{\prime} eru, where the dipping-needle assumed a horizontal position. From the tinies in which e certain number of vibrations were made by such needle at that station, and subsequently at Paris, Hunboldt found that the intensity at the latter phace was equal to $1 \cdot 342$ (that in Peru beng unity); and M. Arago and Col. Sabine afterwards, by a comparison of experiments made by themselves, ascertained that the intensity in London was (in 1827) expressed by $1 \cdot 372$. The scale of intensity which had beeu assumed by Humboldt contimes to be used, though it is now kinown that the zero of dip does not
correspond to the minimum of intensity, and it beeomes necessay to employ terns leas than mity to express the intensity at many places within and even beyond the tropies. The intensity is subject to a secular variation; but of the amount and the law of that variation as yet no certain knowledge has beeu obtained.
In the subjoined cut (No. 2), which, like the former, is a stereographical projection of the notthern and southern hemispheres of the earth, are represented the principal isodynamical lines (lines of equal intensity) from the table and ehart given by Col. Sabine in the' Seventh Report of the British Association.' That chart was formed from all the authentieated experiments on the intensity which had been made between the years 1798 and 1831 ; but in the cut, in order to avoid confusion, there are ziven only the lines correspondiug to the intensity represented by $1,1 \cdot 2$, $1 \cdot 4,1 \cdot 6,1 \cdot 7$, and the poiuts at which the intensity is known to be $1 \cdot 8$, which is the highest as yet observed. In all the tract between the curve lines marked 1, the magnetic intensity is less than unity: the breadth of this tract is very unequal; at points in long. 110° and $230^{\circ}\left(110^{\circ} \mathrm{W}\right.$.) the lines approach within 3 or 4 degrees of one another, while near the meridian of Greenwieh they are separated by an interval of about 50 degrees. In the middle of this band of low intensity which surromeds the earth, it might be expected that the intensity should be the lowest; and, in fact, M. Erman, in his return to Europe, found, at a few degrees westwarl of St. Ifelena, that the intensity was 0.743 , which is the lowest yet obtained from observation.

Some of the isolynamic lines in both hemispheres are incomplete, hecause observations are still wanting at places through which the linea are supposed to pass, but no doubt (*nn exim that all of them are curves whieh return into themselves. A simple inspection will show that in each hernisphere they eonatitute a system with two loops, or with two polar points: in the northern hemisphere, judging only by the forms, it inay be perceived that the western pole, or point of maximun intensity, must be at a spot Whase longitude is ahout $270^{\circ}\left(00^{\circ} \mathrm{W}\right.$.), and Intitude about S00 ; that is, near Hludwon's Bay. The enatern, or Siberian pole, appears to be in longitude 12$)^{\circ}$: its Intitude is uncertain, but probably akout 70°. The eye will readily detect nlso, that in the southem homispliere the curves, as they ure more distaint from the equator, asoume more percepitbly the form of Ionpe nloul two joints as poles whose pasitions are, by extimation, in long. 140°, Int. 60°, and in long. $24\left(0^{\circ}\left(-120^{\circ} \mathrm{W}\right.\right.$.), lat. co 0°; the former being to the sumth of New Holland, and the latter in the sonthern part is the Pacilie Ocean. The nearest clistance in longilude between the intensity-poles ahout Iudson's Bay and to the muth of New Holland is about 130 degrees; and
the nearest distance in longitude between the Siberian and the South American pole is nbout 120 degrees: the nearest distances in Intitude are about 110° nad about 130° respecetively, so that those poles are not diametrieally opposite te one annther.
The intensity of magnetism at the New IIolland pule appears to be nearly equil to that which has been observed nt the North Ameriean pole. the obseryed intensity in Van Jiemen's Land and at New York being 1.8; and the intensity al the Siberinn pole is nearly equal to that at the South Pacific pole, the observed intensity at Viluisk in Siberia being 1.70 , and the hirhest at present known in the South Precific being $1 \cdot 7$. The fact that these last intensities are less than the former is indicatel by the lonps about then being smaller than those aloout the two western poles; and limaan thinks it probable that the ecutres or magnetic attraction, where the loops are smatl, may be at a less depth below the surface than they are where the loops contain greater areas.
Since there exists one pole of stmonger and one of weaker intensity in each of the hemispheres on the north and south of the terrestrial equator, it may be inferred, as is
observed by Col. Sabine, that the quantities of magnetism in the two hemispheres are nearly equal ; but as all the four poles lie in one hemisphere of the earth, which would be formed it the latter were cut by the plane of a meridian passing through points whose longitudes are 100° and 280° ($80^{\circ} \mathrm{W}$.), it must follow that the hemisphere which contains the poles, that is, the hemisphere which contains America and the Pacific Ocean, must have a greater quautity than the other.

The isodynamic lines present the appearance of double flexures, like those of equal dip; and in both systems of curves there is a like tendency to form two foci, or centres of greatest attraction; and the bends gradually become less strongly marked as the lines approach the equatorial regions of the earth, but it is obvious that the lines in the two systems are far from being parallel to one another : in the southern hemisphere the isodynamical line 1 crosses the line of no dip in two places at least; and each of the dip-lines, $b b, c c, d d$, in No. 1, would pass through several of the intensity-lines in No. 2. Even within the limits of the British Isles the deviations of the two systems of lines from parallelism are very sensible ('Memoir,' by Maj. Sabine, in the Eighth Report of the British Association); and it may be inferred that, at least in the northern hemispere, the pole of maximum intensity is quite distinct from the pole of the dip, the distance between them in latitude being probably as much as 30 degrees. Q and R in the cut No. 2 are the presumed places of the two intensitypoles in the northern hemisphere. It is at present quite uncertain whether or not there is a corresponding difference between the joles of maximum intensity and of maximum dip in the southern hemisphere, but the circumstanee is probable, from the fact that the highest observed intensitics in both arc equal at places (New York and Van Diemen's Land) where the dips are also equal, and where they want 20 degrees of being the greatest.

Professor Hansteen, in his treatise on the magnetism of the earth (1819), has showi, from a comparison of the observed places of the four poles of the dip at different times, that each of them has a slow movement about the axis of the earth. Not much dependence can be placed on the computed periods of the revolutions, but M. Hansteen assigns for that of the North American pole 1890 years, and for that of the Siberian pole 860 years.

The cxistence of two magnetic poles in each hemisphere is thus evident, and Gauss of Göttingen observes that there must also be a third point between each pair, which posscsses the character of hoth, and therefore is a true pole. (General Theory of Terrestrial Mugnetism, translated in Taylor's 'Scientiffe Memoirs,' pt. vi.) This is indeed obvious: for if a dipping-needle were carried from one pole towards the other, it would begin to deviate from the vertical direction tuwards the pole it had quitted; and, enming near the other, it would be found to deviate from the vertical towards the pole which it was approacling; and, as these deviations are in opposite directions, there must be an intermediate point at which the needle would assume a verfical position.

Almost as soon as a few observations on the phenomena of terrestrial magnetism were collected, Dr. Halley (1701) propounded a theory in order to account for them. He conceived that the eartli itselfmight be a shell, containing within it a globe which revolved with it about the same centre of gravity and the same axis; the outer globe, or shell, being supposed to perform its rotation in twenty-four hours, and the other in a fime rather greater or less. Each globe was supposed to have a magnetic axis passing througlı the common centre, but the two axes were supposed to be inclined to ench other and to that of the diurnal rotation; and consequently there were supposed to be, in all, four magnetic poles.

The deviation of these magnetic axes from that of the earth's diurnal rotation was supposed to be the cause of the reneral variation (declination) of the compass-needle, and the slow deviation of the magnetic axes from each other was supplosed to be the eause of that continual variation of the declination which is observed at every place on the earth's surface. The theory is highly ingenious, and resembles that of the cpicycles, by which, in the infancy of astronomy, it was attempted to account for the variations in the movencents of the planets: but when observations were multiplicd, and the variations of the needle at considerable intervals of time were compared together, it was
found to be incapable of representing the phenomena; and Mayer, of Göttingen, without gaining any advantage, modified the hypothesis by assuming that the centre of the small magnet was placed at a certain distance from that of the carth.

Subsequently (1805) M. Biot, assuming that there were two points in a supposed magnetic axis of the earth, by one of which the magnetized needle was attracted and by the other repelled, investigated a formula for expressing the dip and variation in terms of an indeterminate distance between those points. On comparing the result obtained by computation from the formula with the observed phenomena, he found that the latter were represented with tolerable accuracy when the points of attraction and repulsion were infinitely near to each other and to the centre of the earth. From the result of the investigation it follows that if a plane, supposed to pass through the centre of the carth perpendicularly to the magnetic axis, were considered as a magnetic equator, the tangent of the dip of the needle would be equal to twice the tangent of the magnetic latitude of the place on the earth's surface; and a like conclusion had been previously arrived at by Professor Kraft at St. Petersburgh, from such observations as then existed. It is here supposed that the curve of no dip is the circumference of a great circle or the sphere, and we have seen that this is far from being conformable to observation, yet the rule just mentioned may be advantageously employed when it is required, from any observed dips of small magnitude, to determinc the situation of a point on the earth's surface where the dip is zero. The last attempt to account for the phenomena of terrestrial maynetism in this manner was made by M. Hansteen (1811), who assumed the existence of two small magnets of unequal strength at certain distances from the centre of the earth. He compared the results, with respect to variation, dip, and intensity, which he olstained by computation from that assumption, with the values of those elements observed at different places; and though, to a certain extent, the agreement was satisfactory, yet in several instances the differences were such as to show that the hypothesis was erroneous or incomplete. Professor Gauss of Göttingen, in his Treatise on the General Theory of Terrestrial Magnetism above quoted, has investigated the elements independently of all liypotheses concerning the distribution of the magnetic fluids in the earth, and assuming only that the terrestrial force is the collective action of all the magnetized particles in the earth's mass, he has exhibited the resulting formulx in converging series; and has given, for ninety-one places on the globe, a table of the values of the declination and inclination of the needle, and of the intensity of magnetism, computed from his expressions for the lorizontal and vertical components of the force, together witli the observed elements at the same places; and the smallness of the differences between these last and the computed ele ments are satisfactory proofs of the correctness of the theory. For a supposed connection between the temperature of the earth's surface and terrestrial magnetisn, see Isothermal Lines.

The want of complete success which has hitherto attended the different attempts to exhibit the laws of magnetical phenomena make it evident that the time has not arrived in which that can be done with respect to magnetism which Newton aecomplished with respect to gravitation. But though the hypotheses formed, in order to account tor the phenomena of terrestrial inaguetism, have not brought out formula which will entirely satisfy the observed clements, it must not be understood that they are therefore without utility; since the approximative rules which have been obtained from them afford the means of computing small differences in the elements with sufficient accuracy to allow observations made at times or in places not very distant from one another to be reduced to what they would have been had they been made at one time or station; and thus several observations may be made to concur in the determination of a correct mean value of the element. This remark may be considered as applicable to most of the hypotheses which, in the physical sciences, have been proposed for the purpose of exhibiting the laws of the phenomena; and it may be further remarked, that the assumption of an hypothesis, by indicating the fittest place for ubserving, or the nature of the observations which are requisite for verifying it, is
advantageous in leading the observer to sclect lis stations or to viry the coustruction of his instruments, so as to put himself in the most fiwoumble circumstances for deternining the laws from observation.
In the year 1818 M. Arago, at the Observatory of Paris, mude a series of observations on the irregular changes to which the declination of the uredle is subjeet; and M. Kuptler having about the same tince made similar observations at Kasan, a comparison of the resalis led to the discovery that the perturbations were simultancous at those places, thoumh they ditferel in longitude above 47 degrees. This remarkable circumstance inunediately attraeted the notice of philosophers, and a plan for making simultaneous observations in many different places was organized by M. de Ifumbold in 18.27 . For this puppose magmetic stations were established at 13 erlin and Freybers; and the Imperial Academy of IRussia, entering with zeal into the project, eaused a chnin of stations to be extended from St. Petershurg to Pekin, at all which plaees simultaneous obscrvations were nppointed to be made seven times in the year, at intervals of one hour, during twenty-four hours.

In 1834 Professor Gauss discovered the fact that the synchronism of the perturbations was not confincd to the deelination of the needle, but that every deviation at one place of observation had its counterpart at another ; and fie was therefore induced to recommend a plan of simultaneous ohservations at intervals of five ninutes during twenty-four houns, four fimes in the year. This suggestion was immediately adopted, and on the Continent magnetic stations were formed at more than twenty cities of Europe, from Dublin to St. Petersburg. The British Governnent and the East India Company also, besides the principal observatories of the former at Greenwiels and Dublin, immediately sanetioned the formation of marnetic stations, under the direction of seientific officers, at St. Helena and the Cape of Good Hope, in Canada, the East Indies, and New South Wales; and in the present expedition to the antarctic regions under Captain .f. C. IRoss, one of the leading objects is the determination of the magnetic elements in that remote part of the world. The system of simultancous observations at numerous and stated times of the year, which has been organized in Europe, is to be conformed to by all the British observers; and the Royal Soeiety of London has caused an able Report of the objects of scientific inquiry in physies to be drawn up for the use of travellers in general, and partieularly for the persons who have beell appointed to take part in the observations respecting magnetism and meteorology.

The instruments employed for determining the elements of terrestrial magnetism, and the variations to whicl they are subject, are of three kinds: the declination magnetometer; and the lorizontal and vertieal toree magnetometers. The first is a needle or bar, from twelve $t o$ fitteen inches in length, nearly one incls broad, and a quarter of an inch thick, suspended in a loorizontal position in a stimup by untwisted silk fibres abont two feet long. The apparatus is contaned in a box, to proteet it from the agitation of the air, with two apertures in opposite positions; one of these is for illuminating the seale, and the other is used for the readings, which are taken by means of a telescope at a distance. For a deseription of such an instrument and its adjustments, see Taylor's 'Scientific Memoirs, part y: By this instrument may be observed the absolute declination, or the angle which the axis of the nerdle malies with the astronomical meridian of the place, the variations of the declination, and the horizontal component of the carth's magnetic foree. The latter is found by experiments of deflection and experiments of vibration; and the formulte to be employed for the purpose are given in the work of Gauss, entitled 'Intensitas vis Magneticat 'Termbiris' (1833). See also the Jeport of the Committee of the Royal Socicty, 1840. Hut Gauss considers that determinations of intensity by the vibrations of a needle are inaccurate on aceount of the changes which nay take place in the intensity during the time in which the vibrations continue; and in 1837 he invented a new instrument, which is called a IBifilar magnetometer, for the purpose of determining the liorizontal intensity alone. This consists of a magnetized needle or bar resting horizontally in a stimup placed under a cireular graduated plate, to the upper part of which are attached the two extremities of a fine stcel thread or wire. The middle, or
the bend, of the thread passes over two pulleys which are fixed in the upper part of the building; and the two parts of the thrend hang in vertical positions, or parallel to one another, when the needle rests in the magnetic meridian. Then, on turning the whole apparatus horizontally so as to make the needle deviate from the magnetic meridian, the tendeney of the necdle to return to its former position eauses the lhreads to assume clirections wblique to each other; and there is some position of the reedle in which its directive foree is equal to the foree by whieh the threads resist leing made to cross ench other's directions: it is easy to rdjust the instrument so that, when this equilibrium takes place, the needle shall lie in a dircetion at right angles to the plane of the magnetie meridian. The torsion of the threads by which the needle is made to assume that position indieates the horizontal component of the magnetic foree, and every clange in the intensity of the latter affects in a direct manner the position of the needle. The magnetized bar in use at the Geittingen observatory weight: 25 Jhs , and the lentith of the pair of suspending threads is 17 fect. (Taylor's scientific Memoirs. parts vi., vii.) Instruncents on the same principle, but of smaller dimensions, are made for ordinary oceasions. See the Royal Soeiety's Report.

The vertical force magnetometer consists of a magnetie needle resting on agate planes lay what are called kniteedges, and it is made to assume a horizontal position by means of weights: the deviations of the needle from that position, when in the plane of the magnetie meridian, or in a vertical plane making any angle with that meridian, serve to determine the variations in the vertieal component of the magnetic intensity.

Gauss observes that, on account of the simple relation that the horizontal and vertical components bear to one anotlier, these are nore proper to serve as the foundation of a theory, than the usual expression of the magnetic force by the total intensity, the inclination, and the declination; and he recommends that, in all observations, the intensity in the horizontal direction should be kept distinet from the other elements.

TERRIER (Canis familiaris Terrarius), a variety of the dog remarkable for the eagemess and courare with which it goes to earth, and attacks all those quadrupeds which come under the gramekeeper's denomination of Fermin, from the Fox to the Rat.

In the genealogical table of the different races of clogs we find the Hound inmediately uext in descent from the Shepherd dog, which is plaeed as the immediate descendant of the Japland dog, the lighest in the table, and collnteral to the Ilound, The Terrier, and Harrier.

Lieut.-Col. Hamilton Smith (Naturalist's Library, I840), treating on the Cur Dogs, after stating that in Southern Africa we have a race of small Snealian dogs; in Arabia, one of Thoan form ; in India, the parent Parialı breed. apparently captured in the woods of the country;-that Southern China, all Persia, Natolio, and Russia liave a similar predominant race of curs ; and that in Europe there is everywhere evidence of an originally indigenots species of small dimensions, or at least of one, lirouglat in by the earliest colonists of the west, extending from Japland to Spain,-goes on to observe, that if we seareh tor that kind which now seems to be the most typieal, that possessing innate coumpe, sagacity, and prolific power, without training or care in hreeding,-these qualities are found most unquestionably united in the terrier, and nowhere so fully marlied, with all the tokens of antient originality, as in the rough-haired or Seottish breed. 'In The tertier,' says Col. Smith in continuation, "we still see all the alacrity of innate confidence, all resources of spirit, all the willingness to remain familiar with subterraneous habitations, and all the daring and combination which makes him fearless in the preseuce of the most formidable animals; for it is often noticed in India, that when the hull-dog pauses, British terriers never hesitate to surround aud grapple with the lyyena, the wolf, or even the panther. . . If there be an original and indigenous dog of Britain, it is surely the species we have now under review: for if the Irish wolf-dog, or a questionable gaze-hound, were derived from the J3ritish wolf, such a conquest over a' powerful and ferncious animal could searcely have been achieved without the aid and intelligence of a previously domesticated and smaller species. But it is more likely the terrier of antiquity was of the same race with the
hard-footed dogs of the Cymbers, and that the first were brought over from the north-west of Europe with the primitive inhabitants. Certain it is that the intermixture of terrier blood with other and later races has in no instance tended to diminish their courage, hardihood, and fidelity: and in no part of Europe has the rough-haired breed retained so completely as in Britain all the traits which constitute a typical species.'
Terriers may be divided into two sections, the one rough and wire-haired, the other smonth-haired and generally more delicate in appearance. In courage and sagacity there is little difference if the dogs be well bred, but the rough and wiry coat of the former is a greater protection from the attack of its adversary, and it is, if anything, the most severe biter of the two. They are of all colours, red, blaek, with tanned faces, flanks, lcgs, and feet, brindled, sandy, brown pied, white, and white pied. The Pepper and Mustard breeds, rendered famous by Sir Walter Scott, are highly valued.

Every pack of fox-hounds, to be complete, should be aecompanied by a brace of terriers, and one should be smaller than the other, so that if one should be stopped by a small earth, the other may enter. For terriers going with hounds, any colour is better than all red, for a red terricr is sometimes mistaken for a fox, and hallooed off as one by inexperienced sportsmen.
Mr. Daniel, in his 'Rural Sports,' gives the following account of the ferocity and affection of a terrier biteh:After a very severe burst of more than an hour, a fox was by Mr. Daniei's hounds run to earth at Heney Dovehouse, ncar Sudbury, in Suffolk; the terriers were lost, but as the for went to ground in view of the headnost hounds, and it was the concluding day of the season, it was resolved to dig him. Two men from Sudbury brought two terricers for that purpose, and, after considcrable lalour, the hunted fox was got and given to the hounds. While they were breaking the fox, one of the terriers slipt baek into the earth and again laid; after more digging a bitch-fox was taken out. The terrier had killed two eubs in the earth, but three others were saved from her fury. These the owner of the biteh begged to lave, saying he should make her suekle them. This was laughed at as impossible ; the man however was positive, and had the cubs: the bitch fox was earried away and turned into an earth in another country
Mr. Daniel then relates that, as the terrier had behaved so well at earth, he some days afterwards bought her, with the eubs which she had fostered. The bitch continued to suckle them 'regularly, and reared them until they were able to shift for themselves: what adds to the singularity, Mr. Daniel observes, is that the terrier's whelp was nearly five weeks old, and the cubs could just sec, when this cxehange of progeny was made. He also states that a cirsumstance partly similar to the foregoing occurred in 1797, at the duke of Richmond's, at Goodwood, where five foxes were nurtured and suekled by two foxhound bitches.
The same author states, that in April, 1784, his hounds found at Bromficld-Hall wood. By some accident the whipper-in was thrown out, and after following the track two or three miles, gave up the pursuit. As he returned home, he canse through the fields near the cover where the fox was found. A terrier that was with him whined and was very busy at the foot of a poliard oak, and he dismounted, supposing that there might be a hole at the bottom harbouring a polecat or some small vernin. No hole could he discern. The dog was eager to get up the tree, which was covered with twigs from the stem to the crown, and upon which was visible the dirt left by something that had gone up and down the boughs. The whipper-in lifted the dog as high as he could, and the terricr's eagerness increased. He then climbed the tree, putting up the dog before him. The instant the terricr reached the top the man heard him scize something, and, to his surprise, found him fast chapped with a bitch-fox, which lic sceured, as well as four cubs. The height of the tree was twenty-three feet; nor was there any mode for the fox to go to or from her young, except the outside boughs: the tree had no bend to render the pathe easy. Three of the cubs were bagged, and bred up tame to commemorate this extraordinary case: one of them belonged to Mr. leigh, and used to run tame about the coffecroorn at Woud's hotel, Covent (iarden.

The breed of terriers recommended in the old times
when the huntsman went on foot, was from a Beagle and Mongrel Mastiff, or from any small thick-skinned dog that had courage. Thus the coat and courage were supposed to come from the Cur, and the giving tongue from the Beagle. The time for entering the young teniers at a fox or badger was when their age was ten or twelve months, with an old terrier to lead them on. When entered at a fox, and the old one was taken, the young terriers were set to attack the cubs unassisted, and when they killed them, both young and oid terricrs were rewarded with the blood and livers fryed with cheese, with fox's or badger's grease : at the same time the dogs were shown the heads and skins to encourage them. There were other ceremonies recommended, too cruel to be repcated, and which could have been of little or no service. Honest Dandie Dinmont's mode of entering his Pepper and Mustard generations is as good as can be practised.
A cross of the terrier with the bull-dog for the purposes of badger-baiting, \&e., was at one time much in vogue. Of this breed was the celebrated dog Billy, famous for his destruction of rats. He was often turned into a room with a hundred of those animals, and he frequently killed every one of them in less than seven minutes.
Of those inhuman practices-it is degrading the term to call them sports-badger-baiting, cat-killing, dog-fighting, and the like, we purposely sáy nothing here, except that they have been, most properly, put down by law in the metropolis and its vicinity.

TERRIER, from the French word terrier, a land-book, a register or survey of lands. Those best known in this country are the ecclesiastical terriers made under the provisions of the 87 th eanon. They consist of a detail of the temporal possessions of the church in the parish. They ought to be signed by the parson, andi are sometimes also signed by the churchwardens and some of the substantial inhabitants of the parish. Their proper place of custody is the bishop's or archdeacon's registry : a copy also is frequently placed in the parish chest. If a terrier is proved to be produced from the proper custody, and thercfore may be presumed to be genuinc, it is in all instances evidence as against the parson. And in those instances where it has been signed by churchwardens elected by the parish or ly the inhabitants, it is also evidence as against the inhabitants generaily; even against those occupying lands other than the lands occupied by the inhabitants who signed it. The questions in respect of which a terrier is generally cmployed as evidence are those relating to the glebe, tithes, Ω modus, \&ic.
(Starkie, On Evidence.)
TERTIARY STRATA, the title given by alnost universal consent of geologists to the uppermost great. group of strata. Previous to the publieation of the 'Essay on the Geology of the Basin of Paris,' by MM. Cuvier and Brongniart, in 1810, but little attention had been awakened to this great mass of deposits, though the fami-liar use of the terms primary and secondary, and the acknowledged dissimilitude between the latest of these strata and modern accumulations from water, in respect of mineral aggregation and organic exuviæ, seemed to be prophctic of the discovery of a newer type more in harmony with existing nature.
The extent to which, over great tracts in all quarters of the globe, this type has been found to prevail, is exceedingly great: most of the capital cities of Europe arc built upon tertiary strata; many of the broadest plains and widest valleys in the New and the Old World are nothing but the dried beds of scas and lakes of the tertiary period: and some considerable mountain ranges bear on their high summits, and still more abundantly on their flanks, portions of the sheily tertiary strata which were uplifted from their original horizontality and subjeeted to the convulsive movements of which the mountain ranges are the result. In almost every part of the globe strata of this tertiary serics prevail, and yield astonishing numbers of shells, corals, crustacca, and other remains of mariue, freshwater, and terrestrial invertebrata, and more locally aloundant larers of fishes, and rich deposits of bones of mammalia, \&c. Possessing so many attractions, and affording such unusual facilities for study, the tertiary strata of Italy, France, England, Northern Europe, the eastern states of North America, the great tracts of Brazil, Patagonia, \&e., have been the theatre of great and laborious investigations, which have brought forward our knowledge of these de-

Vos. XXIV.-2 I
powis to at least an equal sdranee with that of the older serata.

More than this can laardly be said with justice; for though, in eonseyuence of the great similitude between the agencies conecrned in producing modern aceumulations of sedments and organic exuvis, and those whith produeed the tertiary strata, the munute history of particular portions of these is almost completely knowin, their gemerel hintury is imperfectly eomprehended, because the oripimal formation of those strata was performed under us great a variety of locul conditions as the recumulations of sands and shells on the actual sen-bed, nnd because, since their production and clevation trom scas or lakes to form dry land, they have, from their surface position and inferior induation, been more subject to superticinl waste and deatruction than the older, more sheltered, and more consolidated strata. The incompleteness of our knowledge of the general history of the tertiary strata is evident by the incompletencss of the claseffeation which represents tlint history, and on this point, the only one which it appears necessary lere to diseuss, we shall otfer a few rentarks. Amone the primary and secondnry strata [Geolocs'] subdivisions corresponding to successive tinses of prodtretion have been found practicnble and detimble, and traeable over immense nreas by neans of π combination of mineral, nifucetural, and organic elbaracters. Limestoncs of eertain kinels, as chalk, oolite, magnesian-lintestone, accompanied with green, brown, or red arenaceous and argillaccous beds, and holding spatangi, apiocrinites, or palaonisei, mark and distinguish eretaceous, oolitic, nnd marnesiau formations and systems of sceondary stanta corresponding to the carboniferous and other older systems of rocks. This lias not been found so practicable in regard to the tertiary strata, which, though presenting many different sorts of strata, offer in the manner of combiration amongst these 100 many general analogies, and too much of locnil difference, to be conveniently ranged into formations or systems having more than a local balue, by means of mineral and structural characters.
Some assistance lowards the desired classification appeared to be furnished by the alternation of marine and iresh-water sediments, as in the lsle of Wight, and in the bnsin of I'aris, and hence the titles of Upper and Lower Marine, Upper and Lower Freslwater deposits acopuired a considerable appliention. Hut the most sucecessful and probably best-founded classification of tertiay strata rests upon a study of their organie contents.

It has been long remarked that in those strata, wherever they oceur, the forms of aninul and vegetable life make a near approach, even specifically, to living types. By (rareful examination, a certnin umbler of species have heen tound in tertinry strata actually identical with or undistinguislable from living objects. The proportion in which these still living speceies are mixed with now extinct (or believed to be extinct) forms varies, so that in Sicily. tertiary beds occur with nbove 90 per eent. of still living species of slells, but in the basins of London and Pnris others are found containing only about 5 per cent.
There are reasons independent of these jroportions which leave no doubt that the strata near London and Paris, which contain only 5 jer eent. of living forms, are among the oldest of tertiary beds; while the Sicilian heds, which eoutain only about 5 per cent. of extinet species, are amourst the most recent.
Views of this kind generalized lead to a speeulation which is strongly confirned by the general current of reological diseovery; that the relative antiquity of terliary strata may be judged of by the relative proportion of evtinet species of shells which are found in them. On this postulate M. Deslayes and Mr. lyell have founded the noost prevalent modern clizsifiention of tertiary strata, whieh may be thus briefly sketehed:-

Recent Period.

Newer Pleiocene Period, the sitata containing not allove 10 exifinct species in a hundred.

Older Pleioccue Period, the strata containing about 50 or 60 extinct species in a hundred.

Meiocene Period, the strata contnining about 80 extinet species in a lundred.

Fooenc IPeriod. the strata containing about 0is cxtinct species in a hundred.

Acondary Perind.
These terms are iaken from the Greck sausuc, recent
eombined with miciws, more, priws, less, and thw, the dawn.)

The principle of ger centage employed by Mr. l. yell in this classiffeation should not he strongly objected to on account of its rigorous numerical results Geing sometimes found locally inupplicable. It is impossib) that this should be oflerwise, for the mumerical proportions of orFance life must always vary in propurtion to local counditions as well as 10° the yeneral succession of plysical intluences; but that the great conse of the systematic varintions of the forms uf plats nal animals in sitcecessive getulogienl petiods, whether prinary, secondary, or tentiary, is the suecessive and systematic clange of physical cireunstances influential on organic life, appens amply proved. There appears no good reason to doult that the vasintions of individual organizations, nud the numerical proportions of their combinations, are in harmonty with and indicative of the stucessive playsical condinions when they lived. and conseguently of the successive periods to which these plysical conditions belonged. The comparison of individual fossil and living forms is merely nufo and iliat not the most general or important, mode of mantesting the numericul constunts of organic life of the several geological periods. By some other less obvious anthmetion jrocesses, the relative analogies of antient nud modern nature may be made to appear numerieally, iudependent of any such specific comparisons, and without limitation of geological are or geographical region. This las been attempted in regard to the Palaozoic fossils renerally, and to the fossils of Devonshire specially, and the result aftords remarkable encouragement to the npplication of rigorous caleulntions based on exact data represcnting the numbers of distinctly recognisable forms of different groups of organie remains, whether these be of living or extinet tribes.

We have only further to reinark, that the tertiary strata are lar more distinctly defined and scparated from the uppernost secondary sirala than from the recent deposits of water. In faet the most natural classifieation of tertiary volcanic products, tertinry strata, and tertiary organic remains, is with the living creation. In tertiary strata the phenomena of mineral accumulation seem to be such as are witnessed in daily operation: they contain marine, littoral, and pelagic deposits; restunry and fluviatile sediments; lacustrine beds hardly distinguishable from such as are now in progress. In these sediments oecur rennains of a system of terrestrial and aquatic life as complete (if we exeept reasoning man) as that now in activity; and if Hic absence of man, and the numals which scem to be associated with him for his comfort and advantage in the actual creation, be thought a sufficient reason to rentove from listoric time the account of tertiary deposits, and to justify the adoption of a distinct quatemary or modem period in geological classifications, it is not the less true that the geological date of the epoch of this period, the line of separation hetween it nud lhe tertiary wasas, is entircly unknown by direct and positive facts, and appears incapable of determination by reasoning on any collateral phenomena at present ascertamed.
(loyell, Principles of Geology; De la Beche, Geological Maunal; Phillips, Pilceozoic lossils of Devon.)

TERTULIIANUS, QUINTUS SEPTIMIUS FLORENS, the earlicst of the latin ecclesiastical writers, lived in the latter part of the second century and the begimning of the third. The exact date of his birth is unknown; Tillemont supposes that it was in 160 A.d., and others have fixed it as carly as 13 J . He was born, accorling to Jeronce (De I ir. Illusl., j3), at Carthage, where his father wis a centurion in the service of the proconsul of Λ friea. He embraced the profession of nht advocate or rhetoricinn, in which he appears to have athained io some eminence. During this period of his life lie was a heathen, as le liinself intorms us (Apolng.: 18; De Syectac., 19; De Resurrect. Curn., 19, ถ̃t; De Pwmilnt., 1). Ile was converted to Clristianity at (intlage in nll probntility, thongh an exprescion of Fusebins (Ilim. lice., ii. .2) lans heen thonght to imply that his conversiou look jula e at Rome. lamediately upon lis comersion he was ordained a preshyter. About the cad of the second ceniury several writers sippose abutt the year $2(0)$), he became a Montamist. [Montavists.] Jemme (l.c.) भscribes this change to his sullering from the envy and insults of the clergy of the Ronan church, but it more sdequate and more pro-
bable reason for it is found in the character of Tertullian himself. In his writings composed before his Montanism he shows many traces of that zeal and asceticism which formed the peculiar characteristic of the Montanists. It has been doubted whether he remained a Montanist to his death. Some have thought that he returned to the catholic church, and others suppose that he at last settled down into opinions intermediate between those of the Montanists and those of the orthodox. For neither of these suppositions is there any sufficient proof. There existed indced at Carthage, in the fifth century, a sect called Tertullianists; but between them and Tertullian there appears to have been no historical conncection.

Whether he remained a Montanist or not, he continued to be held in the greatest respect by the African churches. In fact it is to his influence that we must trace the characteristics which distinguished those churches from other Christians, and which at length, through Augustin, gave a tone to the Christianity of the West. His influence was especially great upon Cyprian, in whose writings there is much which closely resembles some of Tertullian's, and of whom Jerome says that in asking for the works of Tertullian he was wont to say, ' Da magistrum' ('Give me my master').

The date of Tertullian's death is unknown, but we are told by Jerome that he lived to a great age. One of his works ('Ad Scapulam') was written as late as 216 A.D.
A large portion of his works have come down to us, and these may be divided into three classes: (1) apologetic, (2) practical, and (3) doctrinal or controversial. The same classification is sometimes stated differently, as follows:(1) writings against the heathen; (2) writings on the nature, morals, rites, \&c. of the church; and (3) writings against heretics. It is important to distinguish, if possible, between the works which he wrote before he became a Montanist and those which he wrote afterwards. This distinction has been attempted by Neander and B:ihr. On the other hand, a few writers have thought that all the works of Tertullian were composed after he adopted the opinions of Montanus. (J. G. Hoffmann, Diss. omnia Tertull. in Montanismo scripta videri, Wittenberg, 1738.)
I. Of Tertullian's Apologetic Works the following appear to belong to the earlicr part of his life, and to have becn written in the reign of Septimius Severus. They are frce from the peculiar tencts of Montanism:-
(1.) 'Ad Martyres;' for the encouragement and vindication of those who suffered for being Christians.
(2.) 'De Spectaculis;' written about 198, against the Roman games and festivals, and to dissuade Christians from being present at them.
(3.) 'De Idololatria;' an exposure of the character and influence of idolatry, with an exhortation to Christians to avoid every approach to participation in it.
(4.) 'Apologeticus adversus Gentes pro Christianis;' his principal work of this class, and one of the best of all his works, is a powerful refitation of the accusations made against the early Cluristians, and a warm remonstrance against the persecutions they suffered, addressed to the Roman magistrates. It was written in tle year 198, and has heen deservedly held in very ligh esteem both in antient and modern times.
(วั.) 'Ad Nationes Libri II.' These two books, which were discovered in manuscript by James Gothofred, and rinted by lim at Geneva, 162;, 4to., form a kind of supplement to the 'Apologeticus.' The first contains much the same matter as that book, sometimes expanderl, sometimes abridged, and sometimes newly arranged; the sccond takes up the gencral subject of heathen theology. The date of these books appears to be atout 199 , if tlicy were written after the ' Apologeticus;' but some writers of high authority, as Neander and Müntcr, suppose that they were written before the latter work, in the year 198.
(6.) The treatise 'Dc Testimonio Animae' may be recrarded as another supplement to the 'Apologeticus,' the 17 lh chapter of which contains in fact the same argument in a shorter form. Its object is to prove that there exists originally in the human mind, to a certain extent, a knowledse of the truc God, and that this knowledge of God confirms the Christian doctrine of his character.

The remainder of Tertullian's apologetic works appear to lave been written after he became a Montanist. They are:
(7.) 'De Corona Militis;' a vinclication of a Clristian
soldier, who refused to wear a crown which had been awarded to him, on the ground that it was a badge of heathenism, and who was imprisoned for his refusal. This work contains remarks on other questions relating to the duties of a Christian citizen under a heathen government.
(8.) 'De Fuga in Persecutione;' a statement of the Montanist opinion that Christians, when persecuted, might neither attempt to save their lives by flight nor by money. Written about 202.
(9.) 'Contra Gnosticos Scorpiace; an answer to the slurs thrown upon the martyrs in the persecution of Septimius Severus, by those scorpions the Gnostics.
(10.) 'Liber ad Scapulam;' a defence of the Christians, addressed to Scapula, the proconsul of Africa, who persecuted them.
II. Practical Works, relating to Christian morals and discipline. The following were written before he became a Montanist:-
(11.) 'De Patientia;' on Christian patience.
(12.) 'De Oratione'; on prayer: one of Tcrtullian's earliest works.
(13.) 'De Baptismo;' on baptism : a defence and explanation of the rite.
(14.) 'De Pocnitentia;' on repentance: a manual for Catechumens and newly-baptized Christians.
(15.) 'Libri Duo ad Uxorem;' exhorting his wife not to marry a second time, if he should die before her.

The two following works were, in Neander's opinion, most probably written after Tertullian became a Montanist:
(16.) 'De Cultu Feminarum;' on female attire : consisting of two books, the first of which is sometimes denoted by a scparate title, namely, 'De Habitu Muliebri.'
(17.) 'De Virginibus Velandis;' on the vciling of virgins: in opposition to the custom then prevalent at Carthage, of virgins appcaring in church with the face exposed.

The renaining works of this sccond class are undoubtedly Montanistic:-
(18.) ' De Exhortatione Castitatis ;' dissuading a friend from marrying a second time. To the same purport are
(19.) 'De Monogamia ;' and (20.) 'De Pudicitia.'
(21.) 'Dc Jejunitate,' or 'De Jejuniis;' recommending the severe practices of the Montanists, in preference to the milder doctrine of the orthodox respecting fasts. In this work, and others of his writings, he applies to the orthodox the term 'psychici' (ψ ' $\chi^{\prime \prime}$ oi), carnal, which is used by Paul (1 Cor., ii. 14) in opposition to 'spiritual.'
(22.) 'De Pallio,' composed in the year 208, is a treatise reconmending the wearing of tlie Greek pallium in preference to the Roman toga. It contains much information respecting the form of these garments.
III. Works on Christian Doctrine and Polemics. The only onc of this class which seems to have been written before his Montanism is
(23.) ' De Praescriptione (or Praescriptionibus) Haereticorum;' against heretics in general, and especially the Gnostics and Marcionites.

He continued lis attacks upon the heretics, and especially the various sects of Gnosties, after he became a Montanist, in the following works:
(24.) 'Adversus Marcionem Libri V.'
(25.) ' Adversus Valentinianos;' which Semler supposes to be a close imitation of Irenaeus, "Contra Hacreses.'
(26.) ' De Carne Christi,' and (27.) 'De Resurrectione Carnis,' arc treatises on the resurrection, in opposition to the Gnostics.
(28.) 'Adversus Hermogenem;' against the doctrinc held by a Cinostic of that naine, that matter is eternal, and that out of this eternal matter not only all sensible things, but also the souls of men are made, the latter being besides endowed with a divine principle of life $(\pi \nu \varepsilon \pi \mu \mu)$. Against this doctrine concerning the soul Tertullian wrote another work, from which only some quotations have come down to 11s: 'De Censu Animæ.' Our loss is the less, as we have a fuller treatise by Tertullian on the same subject, (29.) 'De Anima;' in which he discusses the theories of heathen philosophers concerning the soul, and opposes to them all the doctrines of Christianity, that it is spiritual, inmortal, and received dircet from God.

There is also a work by him on the doctrine of the Trinity.
(30.) 'Adversus Praxean;' written about 201 or 205 , against the doctrine of Plaxeas, which was in fict essen-
tielly the same with that which afterwards lecaune known as Sabellianism.

In the latter part of his life he wrote a work, (31.) ' Adrersus Judacos, in answer to the Jewish oljections agninst Cliristianity.

The above list contains all the extant works of Tertullian, but he must lave written many more, since Jerome informs us thet many of his works had been lost eren before his time. (Ilicronynn., De J'ir. Illust., c. \#i3.) Among his lost works, of which the titles are known, besides that de Censu Animae, already mentioned, are some which were especially designed to explain the opinions of the Nontanists, namely, 'De Spe Fidelium.' one of the earliest works in which was put forth the doetrine now known ms Millennarianism, of the personal reign of Clirist on earth for a thousand years [1/hlekvisiest], and 'De l'aradiso.' Ife also composed a defence of the 'cestasies' of the Montanists in six books, to which was nedded a seventh against a certain Apollonius. IIs Ireatise 'De Aaronis Vestibus' appears to have heen lost before Jerome's time. (See Hieronym., lipist. lxiv., near the end.)

Two works whieh are sometimes erroneously aseribed to Terlullian are the 'Carmima Silyylina,' and the 'seta Ierpetuae et Felicitatis.' Tertultian holds one of the first places, if not the very first, among the Latin fathers, for learning and intelleetual power. Even those to whom his peculiar opinions were the least aceeptable have culogized him in the highest terms. Thus Jerome says (Eipist Ixxnsec. 5), "What more learned, what more acute than Tertullian? whose a pology and books a gainst the heathen embrace all the learning of the age.' Vineentius Lirinensis (Commonitor., c. 24) adjudges to him 'by far the highest place among the Iatin fathers,' and attributes to him 'the most extensive learning hoth in things divine and human, and a grasp of inind which comprehended all philosopliy, all sects of philosophers, their nuthors and supporters, and every variety of historical and scientific knowledge.' Erasmus calls him 'by far the most learned of all the Latin theologians.' (Prefat. ad llilar.) In short, the seneral judgment of the orthodox in antient and modern times may be summed up in the words of Jerone: ' His genues I praise, his heresy I condemn' (ejus ingenium laudo, hacresin danmo). In faet, he appears from his writings to have becone aequainted with all the learning then taught in the sehools of the rlactorjeians, while to this he added the results of eareful olservation, and then brought all his knowledge to the support of the opinions he embraced, first as a Cluristian and alterwards as a Montanist. Perhaps the most striking feature in lif writings is lisis intinate requaintance with all the ramifications of heathen theology and worship, and the powerful use he makes of this sort of learning in lis controversies with the heretics.

Ilis excellencies and defeets are strangely mingled. We trace the skill of the rhetorician in his forcible reasonings and his cloquent style, but he has also the rhetorician's faults in arguing oflen with inore sophistry than truth, and in taking liherties with language till his meaning beeomes olscure. Ilis warm and zealous temper gives life and inpressiveness to his writings; but its excess made him an enthusiast and ascectie, perlaps we ought in truth to say, a fanatic. In his writmgs we may generally see a striving after words to express the warnith of his feelings and the depth of his eonvictions, and the result of this effort, eombined with the rhetorieal charaeter of his style, is often to render his eloquenec infiated and obscure. Ife indulges freguently in figures and lyperboles, and exeels in satire and irony. llis writings ditter grently both in argument and style. His polenical works are the clearest, but not the inost elegant. His best works are lis Apology (4), and those on the I'reseription of the Hereties (23), on Repentanec (14), on J3aptism (13), on Prayer (12), on I'atienee (11), and his address to Matyrs (1).

The best editions of Tertullian are those of Rhenanus, JRigallius, and Semler. A full aeconnt of editions and illuatrative works is given at the end of the exeellent small edition of Tertulian by Leopold, in Gersdorts - Bibliotheea Patrum E.celeciasticorum Iatinorum Selecta,' 4 vols. 12mo., Be11m., 1830-41, Tauchnitz.

It is doubiful whetter the T'ertullianns, or Tertyllianus, from two of whose works there are excerpts in the "Digest," is this Tertullinnus. The sutiject is liriefly disenssed by Zinnmern ('Cesclichte des Itiom. J'rivatreehts'), with re-
ferences to other remarks on this suljeect. Tertullian, in his theologieal works, shows that he was well acquainted with lloman law.
(The Chureli Ilistories of Mosheim, Neander, and Schriekh; Baehr's Christlich-Römische Thclogre; Neander, Antignosticus Geist des Tertullianux, \&e., Berlin, 1825, 8vo. : Bishop Kaye, The liccleniastical llistory of the Neond and Third Centuries, illusfrated from the Writinge of Tertulliun, Camb., 1826, 8vo.; Münter, Primordia licelesiae Africanae, Hafn., 18:3, 4to. Other works on the Iife and Writings of Tertullian are mentioned in the Appendix to Leopold's edition.)

TERU'NCIU'S. [As.]
TESCHEN, n cirele of Austrian Silesia, is bounded on the north by Irrussian Silesin, on the east by Galicia, on the south by Hungary, and on the west by Noravia. Its area is stated by most authors at about 720 or 740 square miles: Von Liechtenstern (alone, we believe) makes it 1360 square miles. The number of inhabitants is about 180,000. The country consists entirely of mountains and valleys, but especially in the south, where the Carpathian chain commences. The northern part is flatter, but marshy, with many small lakes or meres, so that it is not well adapted for tillage. The Oder forms for a short distance the north-western boundary towards Prussian Silesia, and the Ostravitza divides it on the west from Moravia. The Vistula rises in the Carpathians on the IJumgarian frontier, from three springs, which unite near the monnain Tankow, flow to the villare of Weiehsel, and to the towns of Skotsehau and Selwarzwasser, and then runsing along the northern frontier of the circle, pass into Galicia. The cirele has many forests, and consequently timher in abundanee; fine pasturage; and a good breed of horses, horned eattle, and swine. The inhabitants raise some oats and rye, and a great quantity of potatoes. There are mines of iron and coals, which are not so extensively worked as they might be. The inhabitants in general manufacture woollen eloth, linen, and wooden-wares. The cirele contains the duchies of Teschen and Bielitz, and several inferior lordships. [13i81..tz.] The duchy of Teschen however constitutes ly far the greater part of the circle, having a population of 140,000 inhabitants, who are mostly of Slavonian origin.

The duchy of Teschen formerly belonged to the $\mathrm{cm}-$ perors, as kings of Bohemia. In 1722 it was assigned to Lcopold, duke of Lorraine, as an indeminity for the Italian duchy of Montferrat, to whieh he had some pretensious. Upon his death in 1720 it was inherited by his son, afterwards the emperor Francis I., whose daughter Maria Christima obtained it in 176 , and she having marricd Prinee Albert of Saxouy, he took the title of Duke of Saxe-Teschen. Prince Albert dying February 10, 1822, withont lineal descendants, the duclyy was inherited by the Archduke Charles, who govens it under the sovereignty of Austria.

TESCIIEN, the eapital of the cirele and the duchy, is situated in $49^{\circ} 4()^{\prime} \mathrm{N}$. Int. and $18^{\circ} 32^{\prime} \mathrm{E}$. long., at the foot of a gentle eminenee, an offset of the Carpathians. on a peninstula, or tongue of land formed by the river Elsa or Olsa, and a small strean called the Bober or Bobreek. The town has three suburbs, which are not separated from it by walls or gates: the etreets are in general broad and straight, a great fire in 1889 , before which it resembled an irregular dirty Polish town, having given an opportunity Io rebuild it in a better style; there are still however some narrow and steep streets. There are four Roman Catholic ehurclies and one Lutheran church; the last is a very large and handsone edifice. The Oberring is a regular square, or rather parallelogram, in which is the town-house, a fine building with a lotty tower, at the back of which are a theatre and concert-room. Teselien is the seat of all the courts of justice and public offices of the circle ant the duchy. There is a Ronian Catholic gymnasium, with a lilrary of 12.000 volumes, and collections of minerals, insects, and medals; and a Jrotestnut gymnasium, and several selools. The inhatbitants, now 7000 , manufacture fine broadeloths, kerseymere, leather, and a kind of muskets known in Germany by the name of Teschinks. They have also a considerable irade in leather, wool, broadeloths, IJumarian wines, honey, and wax. The treaty between Frederiek II. of Prussia and the enpress Maria Theresa, which terminated what is called the var of the Bavarian suceession, was concluded at Tesehen in 1779.
(Hassel ; Stein ; Cannabich; Oesterreichische National Encyclopädie.)
TESI, MAURO ANTONIO, or, as he is sometimes called, after the name given him by his patron and admirer, Algarotti, Il Maurino, was born at Montalbano in the territory of Modena, January 15, 1730. Though in poor circumstances, his parents were so desirous of giving him a cood education, that they removed for that purpose to Bologna, where he was admitted into the Scuole Pie. Manifesting a great taste for drawing, he was plaeed under Carlo Morettini, a mere heraldry painter. It is therefore not without reason that Algarotti calls him selftaught, for though he afterwards received some instruction from an engraver named Giovanni Fabbri, it could have contributed but little towards the excellence he displayed in that branch of art which he selected,-architectural design and painting. For this he was doubtless most of all indebted, after his own talent, to the instruction and assistance of Algarutit himself, who made him the companion of his journeys to various places, and treated him as a son. The attachment was reciprocal; and it was owing to his attentions to his patron during his last illness at Pisa, that he fell into ill health himself, and died two years afterwards at Bologna, July 18, 1766.

Algarotti has made frequent mention of Tesi in his letters, where he has described many of his works at considerable length, and speaks both of them and him in terms that wonld seem quite exaggerated, if they were expressed by a less intelligent critic, or were his praises not confirmed by the opinions of others. The encomium paid to his memory in the inscription on his monument in the church of St. Petronio, Bologna,- Elegantixe veteris in pingendo ornatu, et architectura restitutori,'-has not been considered more than is due to one who set an example of more refined and purer taste in architectural design and composition. His productions are highly esteemed, and though his pictures are few, he left a great number of drawings, and also a series of architectural plates engraved by himself.
(Tiraboschi, Bibl. Modenese; Lanzi, Storia Pittorica.)
TE'SSERA, a small cube or square resembling our dice, which was used by the antients for various purposes, and accordingly it consisted of different materials, as marble, precious stones, ivory, class, wood, or mother-ofpearl. Such small tesserse of different colours were used to form the mosaic floors, or payements in houses, which were hence called tesselata pavimenta. (Sueton., Cosar, 46.) The same kinds of cubes, usually made of ivory, bone, or hard wood, and marked on all their six sides, were used by the antients as dice in games of hazard, just as in our times. In the earlier times three diee were used in a game, but afterwards only two.

The word tessera was also employed to signify any token which was given to persons by which they might recognise one another. In this case however the tesserae were probably not cubes, but were of an oblong form, or small tablets narked with certain signs. Thus we find mention of a tessera hospitalis, which strangers when forming a connection of hospitality gave to one another, that they or their children might afterwards recognise one another, and it appears that a tessera in this case was marked with the figure of Jupiter hospitalis. (Plautus, Poenul., v. 1, 25; 2, 87, \&c.) Tesserae frumentariae, or nummariae, were occasionally given at Rome to the poor to serve as a token or ticket, on the presentation of which they received a certain amount of corn or money. (Sueton., Aug., 40; Nero, 11.) The Roman soldiers also, before they commenced a battle. received a tessera containing the watchword by which they recognised their comrades, and were enabled to distinguish them from strangers. (Virgil, ELn., vii. 637, with the note of Servius.)
(Dictinnary of Greek and Roman Antiq., 'Tesscra.')
TESSIN. There are three eminent Swedes of this name, father, son, and grandson. The first of them, Nicodemus the elder, or Nicodemus Valentisson Tessin, was born at Stansind in 1619, and held the appointment of royal or crown arenitect, which was conferred upon him by Queen Christina in 1645, then vacant by the death of Simon de la Vallée. Very little more has been reeorded of him, except that he visited Italy, that a patent of nobility was granted to him in 1674 by Charles XI., and that he filled the office of magistrate at stockholm. Even the time of his death is not preciscly stated, but it appears from collateral cvidence
to have been somewhere about 1688. As an architect one of his chief works is the palace of Drottningsholm, begun by him for the queen-dowager Hedwig Eleonora (widow ot Charles Gustavus), but completed by his son. He also erected the royal villa of Strömsholm, and the mauso-leum of Charles Gustavus. In fame he has been surpassed by his more eminent son,

Count Nicodemus Tessiv, who was born at Nyköping in 1654, and lad for one of his baptismal sponsors the queen Maria Eleonora, widow of Gustavus Adolphus. He was carefully educated by his father, expressly with a view to his future profession. As soon as he had completed his studies, first at Stockholm, afterwards at Upsala, he was sent at the age of eighteen to Italy, whither he accompanied the Marquis del Monte, a nobleman in the service of Christina of Siseden. He studied at Rome under Bernini, and acquired a taste for the fine arts generally. After four years thus spent, he visited Naples, Sicily, and Malta, and again returned to Rome, at which place he received from Sweden his appointment as future hof-arehitect in 1689. On his return he was allowed, by Charles XI., to prosecute his travels conformably with his earnest wish for further improvement, and this time he visited England and France, in which latter country he remained three years. On finally settling in his native country, he received, in addition to his former appointment, that of city-architect to the magistracy of Stockholm. The destruction of the royal palace by fire in 1697 afforded him an opportunity for displaying his ability far more favourable than might else have offered itself; and of which he so well availed liimself as to render the new edifice one of the noblest of its kind in Europe, though not what it would lave been had his ideas been fully carried out. He had also nımerous opportunities of exhibiting his taste on a magnificent scale; but unfortunately they were only of a tenporary natureon occasions of splendid court pageants and festivals, in which his talent for architectural decoration was employed. One of them was at the solemnization of the public entry and coronation of Ulrica Eleonora, the wife of Charles XI., who was herself an artist, and displayed considerable proficiency in portrait-painting. By the queen-dowager Hedwig Eleonora he was employed not only to complete Drottningsholm, but to lay out the grounds and gardens both there and at Ulriksdal. Besides the cathedral at Calmar, and Oxenstiern's monument, he executed or designed a great number of other buildings, including a project for rebuilding the palace at Copenhagen, which was partly carried into effect, many years atter his death, when it was curtailed, and by no means improved in other respects. Elevations of the original design were published by his son, under the title of 'Regiæ Iafniensis Facies,' \&c. Iu addition to his professional occupations, the count (which title was conferred upon him in 1714) was engaged in many offices that he held at court, and he took a considerable share in public and political affairs. At the time of his death (1728) he was chancellor of the university of Lund. Count Nicodemus was twice married.
Count Charles Gustanvus Tessin, the son of Count Nicodemus by his first marriage, was born at Stockholm in 1695. Though not without talent for architecture, which he had considerably improved by travelling, he did not exercisc it professionally, except in completing the palace at Stockholm after his father's death. His claim to celebrity was of a very different kind; it was as a statesman and diplomatist that he chiefly distinguished himself. He was ambassador at the court of France from 1739 to 1742 , and president of the chancery from 1747 to 1752. As tutor to the prince-royal, afterwards Gustavus III., he wrote for his instruction a series of letters on political and moral topics, which were published, and of which there is a French translation. Count Gustavus was a zealous promoter of every scheme for the advancement of his country; he did much for the encouragement of arts and manufactures, and first established the Swedish Academy for Painting aucl Sculpture in 1735. Some years before his death he withdrew from public business and affairs, and lived in retirement on his estate at Akeroe in Sudermania, where he died in 1771; and by his death-the family became extinct.
(Weinwich, Kunstner-Lexicon; Nordin, Minna of ver Namnkunniga Svenka Män; Ehreustrïm, B. Arts en Suede; Biogr. Univers.)
TESTACELLUS, the name of a genus of testacenus pulmoniferous mollusks. For the views of authors as to

Its place in the system, see the artiele Lisax. Mr. J. E. Gray nrmanges it between Pleetrophorus and Ileli.r, under the llelecider, his seeond finnily of P'eummobranchiulta.
(ieneric Character.-Animal elongated, cylindriforn, acuminated at eaels extrenity ; no cuirass ; head distinet, firnialied with four retractile tentaeles, of which the postenor are the longest and carry the eycs ; foot long and rather indistinet ; pulmonary cavity situated at the posterior fourth of the nuinal's length, its orifiee planeed entirely bnckwarls, under the right side of the apex of the shelf, the anal aperture is vely near it ; organs of generation united, and showing their orifice near and behind the great right tentacle.
Shell external, solid, suiform, depressed, with the spire onere or less projecting, having a very large and oval aperture ; the right lip simple and trenchant, the left convex and reflected: the shell covers the posterior part of the pulmonary cavity.
The number of species given by Lamarek is one only; and though M. Deshayes in lis Tables makes the number two (both reeent), one only is recorded in the last edition of Lamarek. - Mr. G. B. Sowerby figures and describes three:-Testucelli haliotideus, Scutulum, and Mangei.
History, Habits, fe. - This form appears to have been first notieed by M. Dugue, in a garden at Dieppe in 1740 : but it does not seem to have attracted mueh altention till M. Mauge, some years sinee, brought home specimens, from the island of Tcneriffe. 'It has also been found,' says. Mr. Sowerby, 'in several parts of Franee, and in Spain, and more lately in a garden at Bristol. Some speeimens from the last-mentioned place have been handed to us by Mr. Miiller of that city. It feeds upon earthworms, having the power of elonigating its body to such a degree that it is able to follow them in all their subterranean windings: we have observed them attentively, and were rather surprised that an animal generally so extremely sluggish in its motions, after diseovering its prey by means of its tentacula, thrusting from its large mouth its white crenulated revolute tongue, should instantly seize upon with extraordinary rapidity, and firmly retain, ant earth-worm of much greater size and apparent force than itself. but whieh by its utmost exertion is unalle to cscape.' Mr. Sowerby adds, that De Férussac and Cuvier consider this to be the only carnivorous terrestial mollusk.
Dc Férussac remarked that the simple, gelatinous, contractite mantle of the animal. hidden habitually under the shell, is divided into many lobes capable of enveloping the whole body by an extraordinary development, when the animal tinds it neeessary to protect itself from the consequences of too great dryness.
Incalities.- Testacellus haliotideus inhabits the Sonth of France ; Test. Maugei is an inhabitant of Tenerifte, but naturalizel at Bristol; and Test. Scutulum, which was discovered by Mr. Sowerby in a garden at Lambeth, may, in the opinion of Mr. G. B. Sowerby, be considerell as a native of this island.

Shell of Testacellus Mauzei : α, outuido; δ, Distde.

e. thelt in witu. (G. H. sinwerbỵ.)

TESTAMENT. [WM...]

TESTAMENT, OLD ANJ NEW. Some eritical disputen have arisen respecting the meaning of the worl Teatament, as appliced to the Canonical Seriptures. These, ninder the nanne of the two Testaments, eomprise the revelations of Gal to man, which, leing imparted under two frinel al conditions-the haw and the Gospel-are divided into two correqumoliny classes. The sorl thus translated by corenumt is the Hebrevs berith, so used in the first
division of the sacred writings, and rendered in the latter by diathece. But a turther notion than that conveyed by the Helorew is contained in the Cireek term (and which belongs also to the ecclesiastical Latin one, Testamentum. the original of the ordinary designation of the two portions of the Scriptures, the Old and New Thstaments). No more appropriate designation than that of the New Testament can be applied to the sceond portion. Its application to the books of the Old was defended by St. Jerome (among other authoritios of cyual weight), on the ground that 'Testamentum non voluntatem defunctomim sonat, sed pactum viventium.'

This compaet or covenant was originally entered into by the Almighty with Abraham (alihough, to speak strietly, the outline of it was given on the fall of inan). The history of the religion of the Old Testament subseguently 10 the call of Abrabian may le regarded as that of the progressive development of a belief in the One True God. It is most fitly contemplated under two prineipal points of view: 1 , the knowledge of a Revelation from God as a conneeted work, and in its subject-maller; und 2, that of the attributes of God, so multiformously but at the same time so harmoniously manifested. 'Antient prophecy ended as it had begun. The first discovery of it in Paradise, and the conclusion of it in the book of Malachi, are directed to one point. In its course it had multiplied its diselosures, and furnished various succours to religion, and created an authentic record of God's providence and moral government to be committed to the world. But its earliest and its latest use was in the preparatory revelation of Christiansty. (Darison.) The other subject, by which the Old Testament is taken up, is, as we lave observed, the progressive declaration of the attributes of God. There is observable throughout the books of the Old Testament a moral as well as a Christian revelation. In like manner with the latter, 'the divine law was unfolded. The Patriarehal and the Mosaic corenants do not express so full a model of the law of righteousness whereby man is to serve his Creator, as the later revelation given by the Prophets.' (Ibid.)

The leading use of the Old Testament was the preparatory revelation of Christianity. Its one great lesson, expressed or implied, was that of the indwelling guilt, depravity, and weakness of man. How decply rooled in human conviction was this feeling, may be estimated from the univensality of sacrifice for sin, and reliance on the medintorial ministry of a pricsthood. 'Their guilt and weakness, and consequent estrangement from God, wore exlibited to the Jews by the siu otterings of their law, which God deigned $t o$ receive, not at the guilty hands of ordinary men, but at those of his especially appointerl servants. Nor were even these faroured servants recarded as free from the lurking inlection of their race by llim, before whom the very hearens are not elean. Even to the pricsts the nearest access to God was forbidden: even to the ligh priest (that awful and mysterious tinnctiontry of Heaven) the Holy Place was elosed, save on one day, and under certain restrictions. So clearly then did their divinely appointed law show forth to the Jews their guilt, and the necessity antl difficulties of a reconeiliation with God, which other nations saw but faintly, although none were destitute of some climmerings of the fruth. But the Jewish nation went a step beyond others. All recognised in practice the necessity of smerifice and a priesthond, but the people of God stom alone in this,-that they looked hopefully forumard to a time when the law which mate high-priests of men laving infirmity should cease, and a period be put to the daily ministering and oftering the same sherifices, which can never lake awny sin. A time was coming, when the worls of God's messengers were to be fulfilled respecting a more copious diffinsion of the knowledge of the Lorrl. And all this was wrourht in Ilim who was at once offering and priest, God and man, namely, Jesus Christ.

This great doctrine of Clrist's atoncment, and its results to mankind, form the end of the types, the predictions, and the sacrifices of the Old Testament. But a total change was nceessarily introduced by the absorption of all sacrifice and priesthood in the great and enduring ones of the Son of Coot. Clrist enterat in once into the Holy Place, laving obthinct etemal redemption for us, and lenving behind lim. In the finthful, bolducsin to enter into the boliest by his blood, by a new and living way.

Christianity, or the religion of both Testaments, is that habitual course of life which rests upon a conviction of the necessity of the redemption of the world, and of the nee: of a personal redeemer-Jesus Christ. Hence the inadequacy of various terms employed occasionally as synonymous with Christianity (such as the religion of moral conduct ; a practical belief in immortality and retribution; or the worship of God according to the pattern given by Jesus) to express its distinctive peculiaritics. None of the religions to be found in the world at the birth of Christ can clainı alliance with Christianity, save that one which alone has any pretensions to be regarded as historical and positive, and which was directly alluded to by cur Lord in the words that 'Salvation cometh from the Jews.' Nor are the reasons of this difficult to be traced. The conviction of the need of redemption turns the mind upon the conviction of \sin; sin leads it to the consideration of the law broken and violated; and this last conducts it up to the original destination and capability of man and his relation to God; and nowhere are these steps to he traced so clearly as in the Law and the Prophets-the writings which contain the fullest account of the existing disease and promised remedy.
It is true that heathenism served in some sort to prepare the way for Christianity. This is clear from two facts: the ease with which heathen converts adopted the tenets of Christianity; and the analosy instituted by the carly Christian apologists between the relics of revealed truth, which formed the brightest genis of heathenism, and their own purer faith. But this preparation was merely negative. Heathenism did no more than point out contraries which it could not reconcile, doubts which it could not solve, and wishes which it could not gratify. All positive preparation for Christianity and the subject-matter of revelation belongs to the Old Testament exclusively.
The knowledge of the subject-matter of the Christian system is drawn from one source exclusively, apostolical tradition, as preserved to 1 is in the sacred writings of the New Testament. From these alone authoritative instruction is deduced. An analytical outline of the system of faith eontained in these writings is most properly divided into two portions, respectively comprising the periods of time anterior and subsequent to the coning of Our Lord.
In considering the ante-Christian period, the attention is divided between Judarsm and heathenism, or in other words, between man under the law of God, and man without this law,- the two great classes into which the human race was divided subsequently to the publication of the Mosaic code. But although different in many particulars, both classes are included under one general point of resemblance, their wretchedness and want of a redeener.

From this helpless condition of man the mind reverts to the point whence this dominion of sin and death, inseparably united, dates its commencement. But herc a question arises, whence was derived the power of sin to extend itself among those who, like the Jews, possessed a knowledge of the will of God? The considerations arising from this, of the relation of sin and death to the law, lead to the conclusion that the commandment which was ordained unto life was unto death. The law, aceording to St. Paul, so far from affording deliverance from sin, or producing sanctification, was the means of aggravating both condemnation and guilt. This is still further illustrated by other facts laid down by St. Paul, that the law can never make man loly or happy in the sight of God. Being such, why was it given at all? The answer is, that it belonged to the plan by which God designed to make man capable of redemption through Christ. To establish the necessity of such redemption, to impress upon men a conviction of the nced of it, and to kindle a longing for it in their hearts, is the object of the period anterior to Christ.

Accordingly a survey of the state of the human race antecedently to the coming of Christ leads to a conviction of the need of a redeemer. The heathens lived in vice, without knowledge of God, serving idols. Their standard of action was little higher than that afforded by earthly motives, few traces remaining of a ligher knowledge. The condition of the Jews was very different. They were indeed in possession of the divinc law, hut they sought in vain to establish their righteousness before God hy oljservance of its precepts.

Througli redemption, the difficulties whieh characterized the ante-Cliristian period (and more especially the Jewish
portion of it) were removed, and God and man reconciled. The statement of the conditions and accomplishment of this reconciliation leads to the consideration of the new and holy life arising from it.
The primary source and commencing point of the whole scheme of redemption is God. According to his cternal council, God decided on reconciling to himself a world which had become alienated from him, and on rescuing the race of Adam from the ruin to which they were hastening. This decree God had made known through his prophets. An evidence of his truth and faithfulness was supplied by its accomplishment. The instrument of this was the mission of his Son, according to the eternal purpose of his Father, 'that in the dispensation of the fulness of time he might gather together in one all things in Christ, both which are in Heaven and which are in earth.' This mission of the Son, from which the newer period, that of Christianity, dates, coincides with the time when heathenism and Judaism may be said to have filled their appropriate spheres of moral action. Although no dogmatic system, technically speaking, is to be found in the writings of the New Testament, two points iminediately relating to the person of Christ are brought prominently forward throughout. The first of these is his claim to divine honours as the Son of God ; the second, his meritorious course of action, of which the crowning point was his death, to which his resurrection was the glorious sequel, and the proof of the completeness with which his office had been discharged.

The object of our Lord's earthly life was rather a course of blameless and exemplary action than the delivery of a moral code for human guidance. Hence, although in the hortatory portions of St. Paul's Epistles allusion is made to the excellencies exhibited by Christ, the mode of becoming like him' was conceived in a spirit far deeper than that of mere moral imitation. It is described as a putting off the old man, and being clothed with Christ; as being buried with Christ, and as rising again with him. Such expressions arise necessarily from the inseparable connection, laid down in the New Testament scheme, between the death and resurrection of Christ, as the foundation of the justification of man in the sight of God.
The doctrines of repentance and a holy life implied in these characteristics of the new covenant are essential conditions on the side of the human party to the contract. This is the sum and substance of the Sermon on the Mount, which stands at the entrance of our Lord's earthly ministry, a fit entrance and portal to the temple which lies beyond, and an unfolding of the spirit and pure meaning of the law under which Christ came to live and suffer. A better observance of this would have obviated the Antinomian perversions which have risen up from the earliest times. One garment, and one only, will make man meet for Heaven (the wedding garment of Christ's parable), which is the imputed righteousness of Christ, the accepted sacrifice for the children of Adam. But while the human race exists, the essential rules of that law which Christ came to satisfy will be binding, and men will find their truest pleasure and profit in obedience to its spirit. Christ came to found a new kingdom. Accordingly he opens his first discourse by describing the members of it, their condition and prospects in the world. And yet his kingdom was not so much a new one, as a fulfilling and spiritualizing of the former dispensation; for which reason the second part of his sermon is taken up in expounding the law of Moses, and its real obligations, and, in the words of Robert Hall, 'in animating its spirit, and in filling up or directing its practice.' But essential to a due pevformance of the conditions of this law 'must be reckoned the assistance or guidance of God's holy spirit, as the chief of all aids, and which contains all others. And because this cannot be understood without admitting that the Holy Spirit is omnipresent, all-suffeient, and, in a word, strictly divine; theretore the divinity of the Holy Ghost is a fundamental article of the Chistian covenant.' (Latham, Harmonia Paulina.)

Christian Society forms the second part of the theological system which may be extracted from the New Testament, as comprehending the origin of the Christian contmunity, its gradual progress and necessary conditions, the relation of its members to each other, and their unity in the spirit. We cannot fail to observe, according to Hammond, from the interclangeable mixture of the graces described by Clurist in the opening of the Sermon on the

Mcunt, that to Gout belongs the clief and first and last of our love and obedience, det so us not to crelude, lnit rea guire aloo in its mbordination our care of duty and love fownals man also; one internixing lovincly and friendly with the other, and neither performed as it onght, if the other be neglected.' The common bond of all Cluistians is the fiult and hope by which they become partakens of the beaffis and salvation placed within their reach by the meritorious death and the resurrection of Christ. Accordingly, "the partakers of this common faith and hope form collectively that spiritmal body of which Christ is the head, namely, the Christian Church, in which, as in the natural body, varions offices are distributed to the different mentbers; but the most excellent endowment of any member is to walk in Christian love and purity under the guidnnee of the Holy Spirit. The two sacraments, which were typified to the lisaelites in the wilderness, baptism and the Lord's Supper, are symbols of the Chureh's union with Christ. In baptism, the outward sign of our resurrection to a new life from the death of sin, and of our admission to the Church, we are joined by the Holy Spirit to Christ our Ifead; and the perpetual commemoration of Christ's death, aceording to his command in the Iord's Supper, is a means whercby we perpetually renew our spiritual strength, and draw more elosely our union with him and with each other.' (Latham, Ilarm. Pazhl.)

The conelusion of the subject-matter of the New Testament is a sketcll (by prophetic anticipation) of Cluristian society in its completeness of glory, whieh shall be aecomplished by Christ at his second coming as the glorified Son of God, when he shall triumph over all opposition, and the redeemed be united with God in everlasting lappiness. We have seen that Christ's obedience unto death was in order that many might live; and this will be accomplished at that resurrection which Christianity alone teaches clearly. Those who are now in the imace of the eathly, will then be in that of the heavenly. The same spirit, which we learn from the New Testament dwelleth in our mortal bodies, slall quicken these that they shall be raised from the dead. When 'those that dwell in the dust shall awake, then our mortal bodies will be changed, and made like unto the glorified one of Clurist, by the power wherevith he is able to subdue all things unto himself.

TESTAMENT, OLD AND NEW. The view of the connection of the Old and New Testaments and the general theory of divine revelation given in the preeeding article are by no means admitted by all Cliristians. They are departed from in varions direetions and degrees by different sects, but are most completely opposed by Unitarians. They deny that the doctrine of hereditary and total depravify is cither consistent with reason and experience or at all sanctioned by Scripturc. They hold the nature of the sacrifices, hoth in the patriarchal times and under the law, to be altogether misunderstood by those who consider them as referring to a corrupted nature and to an afonement. They cudeavour to prove that the saerificial language of the New Testament is foumded on figmrative allusions to the rites and ecremonies under the law, may be naturally traced to the circumstances of the writers, and has pectiliarities which it could not have had if intended literally to express a great religious doctrine. They maintain that the whole system of types and antitypes in the Old and New Testament is without good Scrpptural authority, and loaded with ineonsistencies and false views both of the law and the gospel. They also reject the applieations which are made of some real or sup)posed prophecies.
The view which prevails among modern Unitarians of the general theory of revelation and the connection of the various parts is, that the diflerent divine interferences were admpted to diflerent stares in the progress of mankind from iufnacy towards maturity; that each was best fitted for the time in which it was given, uniting the greatest amount. of inmediate good with the greatest power to wromote the advancement of the race; that the Jewish syatem in particular was designed to proserie the great doctrine of the Unity of God at a time when the world in Eeneral was sinking fast into a degrading nud corrupting idalary, to exdibit to the mations arcombl, and to all who shonld afterwards contemplate the history of the chosen people a proof and illustration by example of the inoral govermment of God, and to prepare thir way for the estahlishment, when the world should be in a fit state for re-
cciving it , of the more perfect dispensation of Cluristianity, which may be properly represemed as a spiritmalised and perfected ludaism, adeling to it whatever imporlant refigions truths could not have been presiously delivered With advantage, especially the grand cloctrine of a future life, and opening the privileges of religious knowledge, faith, and hope to men of all nations without distinction, and without ritual observances. The knowledse of the paternal character of God and of his readiness to aceept all his children who sincerely desire and endeavour to serve him; the doetrine of a future life distinetly tanglit and direetly proved, and the entoreement of the purest moral principles, constitute, aceording to their view, the peeculiarity and value of Christianity; and the whole system of God's holiness requiring humal punislment, and of Clurist's merits saving men from wrath, is rejected as unseriptural, unreasomable, and pernicious. It is enough for us liere to state the opposite doctrines which form the grand subject of controversy in the Christian world. Any attempt to give an aecount of the evidence rppealed to on each side would lead us far beyond the bounds which we are obliged to prescribe to ourselves.

IESTAMENTS OF THE TWELVE PATRIARCHS, a Greck work which professes to contain the last words of the twelve patriarchs, the sons of Jicob, but which is considered to be undoubtedly spurious by all writers execpt Whiston, who aceepts it as a part of the canon of the Old Testament; but no weight can be attached to his judgment on the matter.

The age and authorship of this work are much disputed. It is once quoted by Origen, who flourished about A.d. 230. The most probable opinion is that of Cave and Iardner, who suppose it to have been written by a Jewish convert to Clristianity about the end of the second century after Christ.

It appears to have been the writer's object to foist his work into the Chnon, sinee, though he makes freqtient quotations from the books of the Old Testanent, he never mentions any of them by name. The only book whicl he quotes by name is "the book of Enoch the Kighteons."

These testaments lave been frequently published in Latin. They were first printed in Greek by Girabe in his Spicileg. Patr., and afterwards by Fabricius in his Cod. Pseudepigraph., and Whiston published an English translation of them in his Authentic Records.
(Iardner's Credibility, part ii., e. 29, § 3, and the authorities there guoted.)

TESTIMONY
[Evibevcr.]
TESTIMONY, PERPETUATION OF. [PERPETLAtion of Thestimony.]

TESTONE, or TESTOON. [MONEY.]
TESIS, CHENIICAI, or Chemieal Re-agents, are those substances which are einployed to detect the presence of other bodies, by admixfure with which they are known to produce certain changes in appearance and properties: this, for example, as the blue colour of litnus is turned red by acids, it is considered as and used for a test to determine their presence when umcombined or in exeess: so also litmus which has been reddened by an meid has its blue eolour resfored by the action of an alkali: reddened litmus is therefore used as a test of the presence of free or uncombined alkalis.

We give these exanıples from thousands which might have been selected, merely to explain the meaning of the term chemical test, observing that change of colour is one only of the many alterations adduced in proof of chemical action: thus the solubility of eertain stubstances in some re-agents and not in others, constitutes another eriterion or test of the nature of bodies.

We cannot enter partieularly into this subject, for its extent is cqualled only by its importance; and it is the less requisite that we slould do so, since, in describing the various metals, \&e., the tests of their presence are usually given with the properties of their salts.

We refer the reader who wishes for a complete view of the subject to two works whielh have appeared in France, viz, "Traité elementaire des Reactifs, Se., by Payen and Chevallier, in 2 vols. 8 vo., and ' Dietionmaire des Reactifs Chimiques, by Lasmignc, in 1 vol. 8 vo.

TESTUDINATA. [Tortoises.]
TESTU'JO. [Tortoisis.]
TETTANUS (ribaros, derived from reivu, to stretch) is both i generic and a specitic tern: gencrieally, it may be
defined to be a more or less violent and rigid spasm of many or all of the muscles of voluntary motion; the name is also particularly applied (as will be seen hereafter) to one of the species of this affection. Both the disease and also its name are as old as the time of Hippocrates; and, as it is proved by experience to be much more frequent in warm climates, the antient physicians probably had pcculiar advantages in observing it, and accordingly seem to have paid particular attention to it. The following description by Aretacus (De Caus. et Sign. Morb. Acut., lib. i., cap. 6, p. G, ed. Kühn) is written in his usual graphic style. (The translation by Dr. Reynolds has been chiefly followed.)
'Tetanic spasms,' says this author, • are attended with severe pain, and prove rapidly fatal, and by no means readily admit of relief; they make their attack on the muscles and tendons of the jaws and neck, but impart the disease to every other spot, for all parts become sympathetically affected with those which were primarily assailed.
'There are three forms of the convulsions: the straight, the backward, and the forward. The straight one is true Tetanus, when the patient is stretched straight and inflexible; the backward or forward varieties have their name from the direction and locality of the tension ; hence the deflexion of the patient backwards is termed opisthotonos
 tion; while, if the bending be forward, by the nerves in front, it is termed emprosthotonos (i μ Tpoo $\begin{aligned} & \text { ótovos), for tonos }\end{aligned}$ (róvos) is a term which significs both a nerve and tension.
-The causes of these affections are numerous: they often follow a wound of a membranous part, or punctures in muscles or nerves, and in such cases the patients usually die, for (as Hippocrates says, A phor., sect. . v., § 2, tom. iii., p. 735) "traumatic spasms are fatal." A woman may be convulsed after miscarrage, and she scldom recovers ; some persons are scized with spasms from a violent blow on the neck; intense cold may prove a source, and hence these diseases are particularly liable to occur in the winter; they are less frequent in the spring and autumn, and least of all in the summer, unless they arise from a wound, or a visitation of foreign diseases. Women are more liable to convulsions than men, because they are of a colder temperament, but they more frequently recover, from the moisture of their temperaments.

As respects the various periods of life, children are liable to this affection, but do not often die, for it is one they are used to, and familiar with; youths are less frequently affected, but more die; adults are lcast of all liable to be attacked; while the old have it, and die from it, more than any other class of persons: the cause is referrible to the frigidity and dryness of old age, which is also the naturc of denth, for, if the cold bc attended with moisture, the spasms are less injurious and fraught with less danger.

- It may be said in general of all these affections, that thcy are attended with pain and tension, both of the tendons and spine, and of the maxillary and thoracic muscles; for they so clench the lower jaw to the upper, that it is not casy to separate them cither by lever or wedge ; and if, on forcibly separating the teeth, any liquid be introduced, it is not swallowed, but returned, or retained in the mouth, or ejected through the nostrils, for the passage of the fances is closed, and the tonsils, being hard and tense, do not collapse so as to depress the food in swallowing. The face is red and mottled, the cyes nearly fixed, turned with difficulty round, there is a strong feeling of stifing, respiration laboured, the arms and legs on the stretch, the muscles quivering, the face distorted in all sorts of ways, the cheeks and lips tremulous, the chin in constant motion, the teeth grate, and sometimes the ears will move, as I have myself witnessed with amazement: the urine is cither retained with violent pain, or flows off involuntarily from compression of the bladder. These appearances are common to all the species of spasms; each variety of this disease lias however its pecularitics.
'In tetanus the whole body is stretched in a right line, rigid and immovable, while the legs and arms are straight.
'In opisthotnnos the patient is bent back, so that the head pulled in that direction lies between the shoulderblades, while the throat projects; the lower jaw is usually open, and is rarely locked with the upper; the respiration is stertorous, the abdomen and thorax arc prominent, and in
this form especially there is incontinence of urine; the epigastrium is tense and resonant when struck, the arms are torcibly wrenched back in a state of tension, while the legs lie bent together, for the elbow bends in a manner the reverse of what the ham does.
'If emprosthotonos take place, the back is bent, the hips are forced on a level with the shoulders, the whole spine is on the stretch, the head is dependent and bent on the chest, the chin fixed upon the sternum, the arms cramped up, and the legs at full stretch. The pain is severe in all the forms, and wailing is the voice, deep are the sobs and groans, and if now the disorder has assailed the chest and respiration, it soon hurries the sufferer off-a boon indeed to him, as it relieves him from pain, distortion, and humiliation, and serving also to lighten the distress of those present, even if they be his own father or son ; but if there be still respiration enough to support life, and although oppressed it be still performed, the patients are not merely bowed forward, but are even rolled up like a ball, so as to have their head on their knees, and their legs and back parts wrenched forward, so as to look as if the knee joint were thrust into the ham. It is an affliction more than man can bear, a sight revolting and painful to behold; and this cruel disease is irremediable, and from the distortion the sufferer is not recognised, even by his dearest friends, and the prayer of those around (which would have been heretofore impious, but hath become now righteo::s) is, that the wretched sufferer may depart out of life, and be released at the same time from his cxistence, pain, and horrible torment; and the physician, though present and looking on, is not merely unable to save his life, or to give relief to his pains, but he cannot even improve his shape; for to attempt to straighten the limbs would be like mangling and breaking the man in pieces while yet alive, and therefore, no longer offering his assistance, he is reduced to the sad necessity of merely contributing his sympathy.'
The threc forms of the disease mentioned by Aretaeus are descibed by most of the antient writers: the species called trismus, or locked-jauv (which is the name applied to it when the spasms are confined to the muscles of the jaw or throat), forms a fourth in modern authors; and to these has been added a fifth, under the name Pleurosthotonos ($\pi \lambda$ evpoofoitovos), which signifies that the body is drawn to one side. These different terms applied to tetanic affections do not imply so many particular diseases, but only the scat and varions degrees of one and the same complaint. Trismus is inyariably a part of each of the other varieties. This subdivision of the disease is of little or no practical importance; but a much more essential division is into acute or chronic, according to its greater or lesser intensity. The former kind is exceedingly dangerous and usually fatal; while the latter, on account of the more gradual progress of the symptoms, affords more opportunity of being successfully treated. (Larrey, in Mém. de Chirurgie Militaire, tome i., pp. 233, 236, quoted in Cooper's Dict. of Pract. Surgery.) Tetanus is also divided into traumatic, or that arising fiom a wound, which is also occasionally termed symptomatic; and into idiopathic, or that which proceeds from other causes.
Traumatic tetanus sometimes comes on in a surprisingly sudden manner, and quickly attains its most violent degree. The most rapidly fatal case that has ever been recorded is one that we have on the authority of the late Professor Robison of Edinburgh. It oecurred in a negro, who scratched his thumb with a broken china plate, and died of tetanus a quarter of an liour after this slight injury. (Rees's Cyclopedia, art. 'Tetanus,' quoted by Cooper.) Most commonly however the approaches of the disorder are more gradual, and it slowly advances to its worst stage. In this sort of casc the commencennent of the disorder is announced by a sensation of stiffness about the neck, a symptom which, increasing by degrees, renders the motion of the head difficult and painful. In proportion as the rigidity of the neck becomes greater, the patient experiences in the throat a sense of dryncss and soreness, and about the root of the tongue an uneasiness, soon changing into a difficulty of mastication and swallowing, which after a time become totally impossible. The attempt at deglutition is attended with convulsive efforts, especially when an endeavour is made to swallow liquids; and so great is the distress which accompanies these convulsions, that the patient becomes very reluctant to renew the trials,

VoL. XXIV.-2 K
aud oceasionally refuses all mourishment : sometimes it even inspires him with a dread of the sight of water, and a sreat resemblance to hydropholia is produced.
With respeet to the causes of tetanus, 'it must ever be reganded;' sovs Dr. Gregory (Theory aud practice of Med.), -as a very singular faet in patholocy, that an affection of so peculiar a cluaracter as this should have its souree in causes apparently so dissinular; that the puneture of a nerve, the laceration of a tendon, or an extensive burn, shonld bring on the same kind of nervous affeetion as that which is the oceasional consequence of cold: Every description of wound, no matter how inflieled, or in what part, or in what atage, may be the nceasion of tetanie symptoms which form the species denominated traumatic. Cases are on record (and are quoted by Dr. Symonds in the Cycloperdia of Practical Medicine, art. 'Tetams'), wherein the patient was attacked with the dsease in consequeuce of a bite on the finger from a tame sparrow; in which it supervened on the mere stroke of a whip-lash mider the eyes, though the skin was not broken; in which it was occasioned by a small fish-bone stiching in the pharynx ; by a slight solution of continuity in the extermal car from a musket-shot ; by the application of a seton to the thorax; by the stroke of a cane across the back of the neek; by a blow on the hand from the same instrument; by the extraction of a tooth, E.e. In short, aceording to Sir James M'Grigor (quoted by Dr. Symonds), 'it oecurs in every' descriptiou and in every stage of wounds, from the slightest to the inost fermidable, from the healthy and the sloughing, from the ineised and the lacerated, from the most simple and the most eomplieated.'

Next in frequency to wrounds as an exciting cause of tetanus is exposure to cald and damp; indeed there are but very few eases of true idiopathie tetanus which are referrible to any other. The irritation of worms and other disordered states of the alimentary eanal have beeu considered by some authors as the cause of tetanic affections. To generate this form of disease however, it would appear that a certain predisposition is also requisite, and it is doubtless the same with that which operates as an accessory cause of the traumatic tetanus. The predisposition to tetanic affections is given, in the first place, by warm elimates and warm seasons. Within the tropics therefore it prevails to an extent unheard of in colder latitudes. Secondly, tetanus is chiefly observed to prevail when the atmosphere is mueh loaded with moisture, and particularly where this has suddenly sueceeded to a long course of dry and sultry weather. Even in this country exposure to the eold and damp air of the night has occasionally been followed by an attack of tetanns. In tropical climates children are particularly subject to this complaint, aud with a few peculiarities wbich, though producing un specific difference, have been thought suffiefent to constitute a variety known by the name of trismus nascentium. The disease in this case is vulgarly known ly the absuml name of fulling of the jme. It oceurs cliefly between the ninth and fourteenth day after birth, and seldom after the latter period. Without any febrile accession, and often withont. any perceptible eause whatever, the infant sinks into an unnatural weariness and drowsiness, attencled with freynent yawnings and with a slight difficulty of moving the lower jaw. This last symptom takes plaee in some iustances sooner, in others hater, and soon increases in intensity. Even while the infaut is yet able to opeu its mouth, there is oceasionally an inability to suck or swallow. By degrees the lower jaw becomes rigid, and totally resists the introduction of food. There is no painful sensation, but the skin assumes a yellow hue, the cyes appear dull, the spasms often extend over the body, and in two or three days the disease proves mortal.
The prognosis of this disease is mainly to be determined by the nature of the exciting eause, and ly the type of the scizure. Tetanue of the idiopathic lind has ecrtainly been cured in a larger propoition of cases than fhat which follows external injury, which ' is a lact well-known' (says an able writer in the E Ediuburglı Joumal,' vol, xi., p. 20.2 quoted by Dr. Symonds) to every: planter in the West Indies, who never considers his negroes as safe when the disease supervencs on a wound, but is freguently suceasful in alleviating the idiopalhic species.' The iype of the disease as acute or elironic is a no less important guide as to the probable termination. It may be mid that recovery in a case of acute tetanus is almost, if not alto-
gether, hopeless: the chronic form liowever is of a nuel milder character. The ustal termination of the disease may be stated to oecur on the third or fourth day; and if the patient survives that time, there are good hopees of his recovery: it is rarely protracted beyond the elohth day: Mr. Cooper however mentions(Surg. Dict.) that he had a patient (who had been wounded, and suffered amputation of the thigh) who lingered five weeks with chronic tetanus before he died.

The dissection of patients who heve died of telanus has thrown little or wo light upon flie real nature of the complaint, ns is indeed the case in almost all spasmodic or neuralpic diso ders. Sometimes slight effusions are found within the eranium, but in general no morlid appearance whatever cau be detected within the liead. There is always more or lews of an inflanmatory appearance in the cosophagus and in the villous coat of the stomach about the cardia. These appearances however are common to a great number of diseases, and are uniformly met with in every case of rapid or violent death. Besides the redness and inereased rascularity of these parts Baron Laurey found the plarynx and meophagus mueli contracted, and corered wilh a viscid reddish miteus. Io also found numerous lumbrici in the bowels of several of the patients who died; but this, as Mr. Cooper remarks, could only be an accidental complication, and not a cause. In several cases Dr. Mr'drliur found the intestines much inflaned; and in two of then a yellow waxy fluid, of a peculiar offensive smell, covered their interial surface; but whether the inflammation was primary, or ouly a cons sequence of the pressure of the abdominal inuscles, which contract so violently in this disease, he is unable to decido. (Med. Chir. Trans., vol. vii., p. 47.), guoted iu Cooper's Surg. Dict.)
The treatment of Tetanus is confesselly a subject of infinite difficulty, as the disease frequently bafies every mode of practice, and, in certain instances, gets well under the employment of the very same remedies which decidedly fal in other siuular cases. Upon the Whole it will probably be universally admitted that no effeetual remedy for Tetanus has yet been discovered, as every plan has oceasionally succeeded, and every plan has still more frequently failed. The following is the abstraet of the opinions of the antients on this point given by Mr. Adams in lus Notes to 'Paulus Egincta.'
ITippoerates (Aphor., v. 70), Galen (De Ioe. Affect., lib. iii.; De Meth. Med., lib. xii.), Ocfavius Horatianus (lib. ii., cap. 10), and Avicenna (lib. iii., fen. 2, cap. 5, 6, 7) apree in stating that a fever coming on tends to remove the tetanic affeetion. Cxlius Aurelianus (De Miorb. Acut., lib. iiu., e. 6) seems to ruestion the truth of this antient aplorism. Hippocrates disapproses of the cold affusion in cases of traumatic Tetamıs: Alcxander Aphrodisiensis however speaks rather favourably of it (Problem. Phy:., i. 53). ムëthus (lib. vi., e. 38), Oribasius (Symops., lib. viü., e. 16), and Nonnus (De Medic., e. 3s), like Paulus Egineta (De Re Med., lib. iii., e, 30), recommend bleeding, emollient fomentations, and the bath of oil. Areligenes (ap). Autium, loco cit.) direets to prepare the bath by adduln a fifth part of oil to the watter.
The treatment recommended by Celsus (De Medic.. lib. ii., e. 1) is judicious, nud not unlike that of Patulus Egineta. IIe expresses himself hesitatingly about veneseetion, and forbids the early nse of wine; lie approves of opening the belly. This praetice is strongly recommended by Dr. Janilton of Ediuburgh.
The treatment of Aretzaus (De Cur. Morb. Acut.. lib. $i_{\text {. , e. 6) is altogether soothing and relaxant. Ite re- }}$ eommends to lay the patient upon a sof warin bed, and, from whatever cause the complaint arise, to begin with alsatracting blood from the arm. Thens sofl liquid food is to be given, and the whole body wapped in wool moistened vith some ealefacient oil; or bladders half filled with tepid oil are to be applied to the parts most affected. He directs to enp the back part of the neck. but cautions against exciting irritation by the application of heat. To the wound he recommends supppurative applieations containing fraukincense, turpentinerosin, and the like; for he remarks (and the fact is confirmed by the experience of the late M. Larrey, who recommends a simular mode of practice) that, when tetanus sulervenes, the sore becomes dry: He praises eastor and assafoetida as anti-spasmodies; and, if these camot
be swallowed, they are to be given in an injection. He advises also to give hiera in an injection.

Celius Aurelianus (loco cit.) enumerates nearly the same causes as Aretæus, and describes all the symptoms of the disease with the greatest precision. His treatment is also nearly the same as that of Aretæus, namely, emollient applications to the neck, venesection, and oily clysters. He even enjoins the bath of oil, which has fallen into disuse in modern practice, most probably solely on aecount of the expense with which it would be attended. He also permits sometimes to use the common bath, but not of cold water. He allows wine in certain eases. He condemns Hippocrates for giving both wine and emetics, and laving recourse to venesection, without due discrimination. He blames him also for recommending the affusion of eold water, inasmuch as he himself had pronounced cold to be injurious to the nerves, bones, \&c. Galen however remarks, in his Commentary upon this aphorism of IIppocrates (sect. v. $\$ 21$), that cold in this case is not the direct cause of the benefit derived from this remedy, but (if I understand him right) that the shock which it imparts to the systen proves beneficial by rousing the vital heat and energies of the patient. Hippocrates however, as stated above, forbade the cold affusion in traumatic tetanus. Paulus Agineta's opinion of this practice is just such as the profession in general now entertains, after it has received another trial upon the recommendation of the late Dr. Currie. (Sce Medical Reports, and Larrey's Mčinoires de Chirurgie, t. 1.)
Octavius Horatianus (loco cit.) recommends bleeding, emollient applications, purgative clysters, the tepid bath, antispasmodics, and soporifics. The use of the last-mentioned class of remedies does not appear to have been sufficiently understood by the antients; at all events they were less partial to them in this case than the moderns.
The Arabians enjoin nearly the same treatment as the Greeks. Avicenna (loco cit.) and Mesue join the preeeding authorities in recommending strongly the use of castor and assafoetida as antispasmodics; and yet it is deserving of remark that modern surgeons do not repose much confidence in these medicines. (See Sir James M'Grigor's communication in the Medico-Chirurg. Transacto, vol. vi.) Avicenna, like all the others, praises the bath of oil. Serapion (lib. i., c. 27) speaks of a bath prepared with emollient herbs. Haly Abbas (Theor., lib. ix., cap. 10, 11 ; Pract., lib. v., c. 31) describes minutely the two varieties as occasioned by repletion or inanition. For the former, he approves of purging with hot drastie purgatives, of rubbing the part affected with hot oils, and of using the warm bath with friction after it; he also approves of castor. For the other variety he praises the affusion of plain water in which lettuces, barley, \&c. have been boiled. He recommends the internal use of milk and other demulcents, and the bath of oil, and rubbing the body with oil of violets. The treatment recommended by Alsaharavius (Pract., lib. i., §2, c. 21) is very similar. Thazes mentions (Divis., lib. i., c. 16 ; Contin., lib. 1) Hippocrates' proposal of the cold atfusion; lout, like Paulus Agineta, he rather disapproves of it. He himself recommends bleeding, when there are symptoms of repletion, emollient applications to the neck, the bath of oil, the application of leeclees to the part affected, purging with aloes, \&ec., and the administration of antispasmodies, such as castor, assafoetida, and the like.
The general principle of cure, as Dr. Good remarks, is far more easily explained than aeted upon: it is that of taking off the local irritation, wherever such oxists, and of tranquillizing the nervous erethism of the entire system. The former of these two objects is of great importance in the locked-jaw, or trismus, of infants; for, by removing the viseid and acrimonious meconium, or whatever other irritant is lodged in the stomach or bowels, we can sometimes effect a speedy eure without any other medicinc. Castor oil is by far the best aperient on this occasion, and it may be given both by the mouth and by injections. If this however do not succeed, we should have recourse to powerful anodynes: of these the best is opium, which shonld be administered in doses of from three to five drops of the tincture according to the age of the patient. Opium has also been more extensively resorted to in the cases of adults than almost any other remedy ; and Dr. Good, Dr. Gregory, and others profess that it is that on which they plaee their ehief, if not their only reliance. To give it a
fair chance of success, we must begin its use from the earliest appearance of tetanic symptoms. It must be given in very large doses; and these doses must be repeated at such short intervals as to keep the system constantly under the influence of the remedy. It is astonishing to observe how the human body, when labouring under a tetanic disease, will resist the operation of this and other remedies, which, in its healthy state, would have been more than sufficient to overpower and destroy it. It is advisable to begin with fifty drops of laudanum, and to repeat this at intervals of two or three loours, or cven oftener if the urgency of the symptoms require it, until some effect has been produced on the spasmis. In the early stage of the disease we are to bear in mind the approaching closure of the jaw and difficulty of deglutition; and our remedies are accordingly to be pushed before such serious obstacles to their administration arise. When they have occurred, and are found to be insuperable, opiate encmata and frictions may be tried; but we must not anticipate mucl benefit from such feeble means. Such are Dr. Gregory's remarks; but Dr. Symonds considers that the employment of opium is recommended chiefly by systematic writers, and for theoretical, rather than for practical reasons ; while most of those who give the results of their own experience express the greatest dissatisfaction with the remedy.

Probably a much more efficient class of remedies than the preceding is that of purgatives; both on account of the obstinate costiveness which attends the disease, and also because we have in daily practice such convincing proofs of their strong revulsive influence on diseases of the cerebro-spinal centre. The testimony of the army physicians, as we learn from the report of Sir James M.Grigor, is highly in favour of a rigid perscverance in the use of purgatives, given in adequate doses to produce daily a full effect. Dr. Forbes states that a solution of sulphate of magnesia in infusion of senna was found to answer better than any other purgative; and it was daily given in a sufficient quantity to produce a copious evacuation, which was always dark-coloured and highly offensive; and to this practice he chiefly attributes in one severe case the removal of the disease. (Med. Chir. Trans., vol, vi., p. 4:52, quoted by Mr. Cooper.) Dr. Good condemns drastic purgatives, forgetting apparently that mild oncs have no effeet. Strong cathartics have indeed frequently proved of great service, and none has' higher repute than croton oil.

The employment of the warm batl has been reeommended by numerous writers, but it would be difficult to trace in their accounts any faets which decidedly show that its adoption was ever followed by unequivocal benefit. Cold bathing has also been advised, but it has generally been found to be worse than useless; and there are several cases upon record of almost instant death having followed its employment.
The practice of bleeding is another that has been tried, but most frequently without effect. In some few eases amputation of the limb, from the injury of which the tetanus has arisen, has been successful; but as this extreme measure is also very uncertain, it is not likely to be ever extensively adopted.

Numerous other remedies have been tricd, with no, or very imperfect, success ; for instance, acupuncture, strychnia, mercury, caustics, blisters, tobacco, oil of turpentine, mether, camphor, musk, bark, wine, sesqui-oxide of iron, \&c. \&cc. However, it must, after all these have been tried, be confessed that tetanus is one of the most formidable and unmanageable of disorders, and that reeovery in the aeute form still continues to be almost hopeless.
(Cooper's Surgical Dict.; Symonds, in the Cyclop. of Pract. Med.; Good's Study of Med.; Gregory's Theory and Practice of Med.; from which works most of the preceding remarks have been taken. A reference to numerous other works on the same subject will be found in Ploucquet's Liter. Med. Digesta; Cooper's Suirg. Dict.; and Forbes's Meclical Bibliography, in the Cyclop. of Pract. Med.)

TETBURY, an antient market-town in Gloucestershire, near the borders of Wiltshire, situated on elevated ground near the source of the Warwickshire Avon, 99 miles west by north from London, and 20 miles south-east of Gloucester. The parish, with four hamlets, contains a population of

2039, aecording to the census of 1831. The town consists of one long street interseeted by two shorter ones, with the market-place and a spacious market-house in the centre. The streets are paved and lighted, and the houses built cliefly of stone. A bailiff and constable are annually, appointed at the court-leet of the feoflees of the manor. There are fairs held three times a year, for cheese, cattle, sheep, horses, \&c. The parish church, wluch was built soon aner the Conquest, was taken down in 1784 , with the exception of the tower, and rebuilt in the prointed style; and a inodern spire was plaeed on the tower. The living is a viearage, of the annual gross value of 9031. The Baplists and Independents have plaees of worship. In 1723 Elizabeth Ilodges lef a rent-charge of 311. Hor the education of 15 children; and in the years 1783, 1705, and 1797 , the sum of 1001 . was left by three different persons for the support of a Sunday-school. In 1833 there were ten daily schools, attended by 173 children, and three Sunday-schools, at one of which, in connection with the Established Chureh, 1it children were instructed, and the other was a Baptist school, aftended by lis3 children. In the reign of James 1.. Sir William Romney, a native of the town, founded almshouses for eight poor persons, and lent property for the endowment of a grammar-school. The traces of an antient encampment were visible on the southerstern side of the town up to the middle of the last century; and at this spot fragments of British weapons and eoins of the Lower Empire have been found.
TETE' [SENNa.]
TETHi's. [Nudibraxchiata, vol. xvi., 1. 36t.]
TETRABRANCHIATA, Professor Owen's second order of the class Cephalopoda. This order is equivalent to the 'Céphalopodes testacés polythalanes' of Lamarek; to the 'Polvthalamaces' of De llainville ; the 'Siphonoides ' of De Haan; and the 'Sifoniferes' of D'Orbigny.
The following characters of the order are given by the Professor:-
Eyes, subyedunculate. Mandibles, ealeareous at the apex. Arms, abbreviated, tubular, and furnished with retractile tentaeles. Mantle, membranaceous, with two anterior apertures; a posterior membranaceous tubule running through the siphon of the multilocular shell. Gills, four. Branchial heart, null. Fixcrefory tube, with the walls disconnected below. Shell, internal or external multilocular.
The genera comprised by Professor Owen under this order, in his Memoir on the Pcarly Nautilus (1832), are Relemnises, Rafulites, Litnola, Spirula (\%), Ammonites, Orbulites, Nautilus, Cibicides, Rotalites, \&ic.

In the Cyclopedia of Analomy und Physiology (1836), Professor Owen modifies the views above given. In that work the Tetrabranchiata form the first order of the Cephaloproda, with the following synonyms: Polythalumacés, Blainville; Siphonifera, DOrbigny; minus the Spirulide and Belemniles.

The Tetrabranchiate Cephalopods (of which the Pearly Nuutilus may be regarded as the type) are deseribed as provided with a large external univalve shell, symmetrical in form, like the budy of the animal which it protects, straight or convoluted on a vertical plane, and divided by a series of partitions into numerous ehambers, of which the last formed is the largest, and alone contains the body of the animal; a dilatable and contractile tube is continued from the posterior part of the animal through all the partitions and chambers of the shell; but the attaeliment of the shell to the body is effected by means of two strong lateral museles which are inserted into the walls of the last elamber. The numerous hollow arms and retractile tentacles are peculiar to this order, and the head is further provided with a large ligamento-muscular plate or flattened dise, which, besides acting ras a defence to the opening of the shell, serves also, in all prolvability, as an organ for ereeping along the ground, like the foot of the Gastropods. There are no fins or analogous organs for swimming.

The following are the characters given in the Cyclope dia of Anatomy by the Professor:-
Juess strengthened by a dense, exterior, calcareous coating, and with thick dentated margins. Lyes pedunculated and of a simple structure. No organ of heiring. Gills four in number and without lranclial hearts. Circulating syofem provided with but one ventricle, which is systemic or propels artcrial blood. No ink-hag. Inferior parietes of the funnel divided longitudinally.

The second order, Dibranchiata, has the following synonyms: Cryptodibranches, 13lainv.; Acetabulifera, D Orb.; plus the Spirulider and Belemnitide.

The Tetrabranchiata are divided into two families:

1. Nuntilide: Genera:-Niuntilus, Lam. ; Clymene, Münst. ; Campmlites, Deshayes; Lifuites, Breyn; Orthocerut ifes, Breyn.
2. Ammonitidre: Genera:-Buculiten, Lann.; Humites, Parkinson; Šaphites, Parkinson; Ammoniles, Brug.; Turrilices, Jam.
Of the Dibranchiata, Professor Owen remarks, that this order also had its representative in the seas of the antient world, as the shells ealled Belemnifes, or thun-der-stoncs, the fossil sliells of the Segice discovered by Cuvier, and the loorny rings of the acetabula found by. Buekland in the coprolites, or fossil freees, of Ichthyosanri testify; but, he remarks, our knowledge of this order is, chiefly founded on observation of existing species. "These,' says the Professor, 'are extremely nunerous: they frequent the seas of every clime, from the ice-bound shores of Bonthia Felix to the open main, and floating Sargasso or Gulf-weed of the Equator; they scem however to be most abundant in temperate latitudes. Many speeics frequent the coasts, creeping among the rocks and stoncs at the bottom; others are pelasic, swimning well, and are found in the ocean at a great distance from land.'
Professor Owen then adverts to the great variety of size presented by the Dibrunchiuta, remarking that although the bulk of the gigantie speeies has been undoubtedly exaggerated, yet the organization of this order is favourable to the attainment of dimensions beyond those presented by the individuals of any other group of invertebrate animals. He then alludes to the Uncinated Calamary caught by Banks and Solander in the southern ocean [Seppad.e, vol. xxi., p. 253], and to the fragment of the cephalopod weighing one hundred pounds obtained by the French naturalists in the Atlantic ocean under the line, and preserved in the Muscum of the Garden of Plants at Paris.

The Dibranchiate Cephalopods are divided by Professor Owen into two tribes, the Decapoda and the Octopodu.
The Decapodu, besides the possession of ten arms, are characterised by having a pair of fins attached to the mantle; by having the funnel either adherent at the an-tero-lateral parts of its base, and without an internal valve, or articulated at the same part by two ball-andsocket joints to the mantle, and provided with a valve internally at its apex; by having fleshy appendages to the branchial hearts, and glandular appendages to the biliary ducts; by having generally a single oviduet with detached superadded glands; and lastly, by the shell or rudiment being single, mesial, and dorsal.

Professor Owen eonsiders the Decapodous tribe to be that which is most nearly allied to the Tetrabraneliate order, and he regards Spirula as the type of the first family of the Decapodous tribe, or that which immediately sueeceds the Tetrabranchiaft.:
The following are the fanilies of the Decapoda :-

1. Spirulide: genis Spirula.
2. Belemnitidre: genera, Relemnites, Lams.; Actinocomax, Miller; Pseudobelus, Blainv.
3. Sepiadre (Cuttle-fishes): genus Sepia.
4. Teuthide (Calamaries) ; thus divided:-
A. Funnel with an intermal valve, and artieulated at its base to two ventro-lateral cartilaginous prominences of the mantle.
Genera:-SCpiotenthis, Blainv.; Loligo, Cuv.; Onycholeuthis, Licht. ; Rossia, Owen ; Scpiola, Leach.
5. Funnel unprovided with an internal yave, and adherent at the antero-lateral parts of its base to the mantle.
Geners:-Loligopsis, Iam. ; Cranchiu, Leach.
Of the tribe Oclopodis the Professor observes, that besides wanting the long tentaeles, they are also characterised by the want of mantle-fins, and consequently are limited to retrograde progression while swimming ; their acetabula, he adds, are sessile and umarmed, and they have two oviducts, but without detaehed glands for secreting a nidamentum: the Deeapods have a single oviduct and detached glands for secreting the nidamentum.
The Octopods are thus arranged by Professor Owen :-
Ist Frmily, Tesfacea: genus Argonauta, Linn.
and Family, Nuda: genera Ociopus, Leach; Evedone,

Leach. [Beleminite; Bellerophon; Cephalopoda Cornu Ammonis; Goniatites; Nautilus; Paper Nautilus; Polythalamacea; Seplade; Spirulid.e; Teifтнide.]

TETRACERATA.- [Polybranchlata.]
TETRACHORD, the Greek name for any part of the scale consisting of four notes, the highest of which is a perfect fourth to the lowest. Thus in the common diatonic Scale (we assume a knowledge of this article throughout) we have the following tetrachords:-
CDEF, DEFG, EFGA, GABC, ABCD, BCDE.
We despair of giving anything like a satisfactory account of the Greek music; not that we think the difficulty lies in the Greek writers, but in the manner in which they have been treated. It was an assumption that the nation which produced models such as the moderns could not surpass in architecture, sculpture, and perhaps in painting, was to be considered as necessarily possessed of a system of music approaching to perfection. Their writers on the subject were to be taken as having an agreement with each other, which was to be detected and established, any apparent discrepancy, however evident, notwithstanding. The numerical relations which were the objects of inquiry in the settlement of the parts of the scale gave the subject the air of an cxact science; and explanations which required the assistance of the scholar, the mathematician, and the musician, were undertaken by persons who were deficient in one character, if not in two. The consequence has been such a mass of confusion as the world never saw in any other subject; writers whose undertakings required them to say something, copying absolute contradictions from clifferent other writers; others glad to adopt anything intelligible, whether true or not; others again, unable or unwilling to state the simplest facts of their own premises, so that their readers are not even made aware which of the most remarkable opposite opinious they mean to adopt.
We intend in the present article, without looking into any modern writer, to draw from Ptolemy and Euclid, writers who are known to be tiustworthy on other subjects, all concerning the tetrachord that we can find to bear the character of certainty and precision, and to be likely to aid an unbiassed reader in appraaching, should it please him so to do, the mass of different accounts which have been given.

All parties seem agreed that the Greek scale, which at first consisted of only two or three leading consonances, was gradually enlarged until it comprehended two octaves, or fifteen notes. It is gencrallystated that this scalc, when it was what we now call diatonic (a word which means the same with us as with the Greeks), was minor in its character, so that in fact it would be represented by

$$
\text { ABCDEFGA } B^{1} C^{1} D^{1} E^{1} F^{1} G^{1} A^{2} .
$$

It is also known that the Greeks were early in possession of the mode of dividing a string so as to produce their several notes ; and that, by the time of Ptolemy at least, they took the rapidity of the vibrations (on which they knew the pitch to dicpend) to be inversely as the lengths of the strings.

Their scales were numerous: three were considered classical, if we may use the word, and were called enharmonic, chromatic, and diatonic; the two first words not having the same meaning as with us. The remaining scales had names of locality attached to them, Lydian, Dorian, \&c. The distinction between these lay in the different modes of dividing the octave, as seems to be now generally agreed, though there have been those who have thought that these terms, Lydian, \&c., were the names, not of scales, but of single notes.

Of enharmonic, chromatic, and diatonic scales, Ptolemy lays down fifteen from his predecessors, and eight from himself. In each of them is an octave, and all of them agree in two particulars: first, each has the tourth and fitth of the fundamental note perfect; secondly, each lias the tetrachord made by the fundamental note and its fourth divided in precisely the same manuer as that of the fifth and the octave. That is, if we call the notes of this octave-

CPQFGKSC ${ }^{1}$.

then CF is a fourth, and CG a fifth, always; and the intervals CP, PQ. QF are severally equal to the intervals GR , 12S, SC.1. Thus it appears that the fourth was to the

Greeks what the octave is to us, the unit, as it were, of the scale, in the subdivision of which consisted the differences of their systems. We now give a tetrachord from each of these twenty-three scales, assigning the intervals first by the ratios of the vibrations, next by the number of mean semitones they contain, as in the article Scale. We prefix the Latin rendering of Ptolemy's appellatives from Wallis.
And first as to enharmonic scales, whicla are mentioned first, and seem to have been antient, and regarded with high approbation.

Ratio of Numbers of Vibrations in each Interval.

Archytas
Aristoxenus Eratosthenes $\}$ Didymus Ptolemy

in each Interval.			each lnterval		
	PQ	Q	,	-	F
$5: 4$	36:35	28: 27	$3 \cdot 86$	- 40	-63
19: 15	39:38	$40: 39$	4. 10	$\cdot 44$	- 4
$5: 4$	$31: 30$	32:31	$3 \cdot 86$	- 57	-55
5: 4	24: 23	46:45	$3 \cdot 86$	- 74	-38

It seems then that the enharmonic system would allow only of the following notes in an octave-

CEPFGBQC ${ }^{1}$;
where P means a note about half way between E and F, and Q one half way between \mathbf{B} and C. An odd scale truly for a modern musician to look at ; but, it may be, not incapable of pleasing effects to ears not accustomed to music in parts.
The chromatic scales come next in order, as follows: ,

	Ratio of numbers of Vibrations in each luterval.			Mean Semitones in each Interval.		
	C P	PQ	Q F	C P	P Q	Q F
Archytas	32: 27	243:224	38:27	$2 \cdot 94$	$1 \cdot 41$	-63
Aristoxenus, mollis Chroma-						
tica . . .	56:45	29:28	30:29	379	-61	-58
Do., Sesquialterius						
Chromatica .	$37: 30$	77 : 74	80:77	$3 \cdot 63$	-69	-66
Do.,tonici Chro- matica Eratos-						
matica Eratosthenes	6:5	19:18	20:19	3•16	$\cdot 94$	-88
Didymus . .	6:5	25:24	16:15	$3 \cdot 16$	71	$1 \cdot 12$
Ptolemy, mollis						
Chromatica	6:5	15:14	28: 27	$3 \cdot 16$	I•19	- 63
Ptolemy, intensi Cliromatica	7:6	12:11				
	7:6	12:11	22:21	$2 \cdot 67$	$1 \cdot 51$. 80

To make something as like as we can to these scales, we should write down in modern music

$\begin{array}{llllllll}C & E b & \mathrm{E} & \mathrm{F} & \mathrm{G} & \mathrm{B} b & \mathrm{~B} & \mathrm{C}^{1}\end{array}$

The diatonic scales, Ptolemy allows, are more agreeable to the ear, and lis specimens are as follows: we shall now write the scale with the usual letters throughout.
Archytas.
Aristoxenus,
mollis diatonica
Do., Intensi Diatonica
Eratosthenes*
Didymus.
Ptolemy, mollis
Diatonica.
Do., tonici Diatonica
Do., intensi Diatoniea.
Do., aequabilis Diatonica

| Ratio of numbers of Vibrations
 in each Interval. | | |
| :---: | :---: | :---: | :---: |
| C \quad D | D E: | E F |
| $9: 8$ | $8: 7$ | $28: 27$ |
| $7: 6$ | $38: 35$ | $20: 19$ |
| $17: 15$ | $19: 17$ | $20: 19$ |
| $9: 8$ | $9: 8$ | $256: 243$ |
| $9: 8$ | $10: 9$ | $16: 15$ |
| $8: 7$ | $10: 9$ | $21: 20$ |
| $9: 8$ | $8: 7$ | $28: 27$ |
| $10: 9$ | $9: 8$ | $16: 15$ |
| $10: 9$ | $11: 10$ | $12: 11$ |

Mean Semitones in each Interval.		
C D	DE	E F
2.04	2.31	-63
$2 \cdot 67$	1.43	- 88
$2 \cdot 17$	1.93	-88
$2 \cdot 0.4$	$2 \cdot 04$	$\cdot 90$
2.04	$1 \cdot 82$	$1 \cdot 12$
$2 \cdot 31$	$1 \cdot 82$	- 85
2.04	$2 \cdot 31$	$\cdot 63$
$1 \cdot 82$	2.04	I•12
1.82	$1 \cdot 65$	1.51

These scales have all so far the diatonic character that they divide the tetrachord into two larger intervals followed by a smaller one: the scale of Didymus would have been exactly the modern untempered diatonic scale, if he liad inverted the order of the two larger intervals in lis second

- This is also Ptolemy's Ditonici Diatonica.
tetmehord, As to the other modes, the Dorians, sec., there is much confusion in litolcmy respecting them, arising from the cormptness of the text, which Wallis lims endenvoured to remedy. Aceording to hint, they are divisions of the octave, soinew hat more frantastic than those which preeede. In more revent times the idea has beens started of their being simply different keys, or rather answering to dillierent variations of the diatoinie scale, by using intermediate senitones instead of some of the notes: it would be diffieult, wo think, to produce authority enough for this conjecture.

If it were true, as supposed, that the two oetaves of the Greck seale, begimning, say with A. were minor, it would folluw that Pholemy, in his diatonie seales, exhibited the oclave from C to C , as we have supposed. Accordingly, the principal mode of exhibiting the formation of the octave from two tetraelords and a tone would be the vire we have taken, namely,

$$
(\mathrm{C} D \mathrm{D} F)\left(\mathrm{G} \wedge \mathrm{~B} C C^{2}\right)
$$

But it is frequently supposed that it was the following:

$$
C\{D E F(G\} A B C)
$$

or the following -

$$
A\{B C D(E\} F G A) \text {. }
$$

On this point we shall buly say that there never was, we believe, so strong a union of the three charaeters of scholar, mathematician, and inusician, as was seen in Dr. Smith, the author of the Harmonies. He had studied the Greek scale atteutively, and to hini the first of these methods was a matter of course. 'Tho Greek musicians' (Harmonics, 17-4, p. 45), " after dividing an octave into two-fourths, with the diazeuetic or inajor tone in the middle betucen them, and admitting many prines to the composition of musical ratios, subdivided the fourth into three intervals of various magnitudes placed in various orders, by which they distinguished their kinds of tetrachorls.:
We do not, we confess, though admilting. that it is exeeedingly hard, and probably impossible, to reeoncile the Greek writers with themselves and cach other, find that sort of diffieulty which Dr. Burney owned to, when he said that he neither understood those writers hiunself, nor had met with any one who did. He was a musician, and was lookng out for an intelligible mode of arriving at and distribuling the most agrecable concurds, with an strong predetermination to arrive at musical truth or nothing. But the Greek writers were arithmeticians, with as strong a deternination to find natural foundations in integer numbers; they did not ask how to fiud sounds which would best suit the ear, but how to discover triplets of fretions which multiplied together should produee four-thirds of a unit. Pleased with the simplieity of the ratios which give the fourth, finh, and octave, their efforts at nusical improvement were confined to the attempt at discovering magie numbers to fill up the intervals. It was not until one of these philosophers liad laboured at his alhacus, and tasked his metaphysies to find a priori confirmation of some question in arithmetie, that he strung his monochord and tried how his seale sounded: it would have been hard indeed if his ear had refused to sympathize with his brain. In all probatility the musicinns, whose object was simply to plenast, laughed at the arithmetieians, as Tyeho Brahe did at Kepler, when the latter had discovered reason for the distances of the planets in the properties of solid bodies: they had motive enough, and, beyond all question, renson more than enough.
TETRACHORD (retpaxixpiov, 'fourstringed'), in the music of the Greeks, was a system of four sounds, -as, for example, the diatonic tetrachiord, $\mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$; the cluromatic, $\mathrm{C}, \mathrm{C} \ddagger, \mathrm{D}, \mathrm{y}$; and the enharmonic, $\mathrm{C}, \mathrm{C} \ddagger \mathrm{Db}, \mathrm{F}$. The antients proceeded from the key-note to the oetave by two eonjoint tetraehords; and so har as the diatonic scale is eoncerned, they and the moderns agrec. In what relates to the two ot her meales, so little 18 accurately known, and the sulpject is so unimportant, to either the general or the musical reader, that we should not further enter on it, even if the space allotted to our department allowed of extension. [Grxxra; Music, Hıstoks op.]
TETRADY'NAMOUS (from rifrapes, four, and "ívapes, poter r, a bolanical tern employed ly Linnsus to indieate the character of those flowers which, possessing six stamens, have two of them shorter than the other four. This peculiarity is found exclusively in the plauts belanging to the
notural order Crueiferre. Henee the Lannean elass Tetradynania, including only plants with the stamens arranged in this manner, is an exceedingly natural one, and is one of the few instances in which a peculiarity in the stamens prevails throughout a whole fanily. Didynamous is the term which expresses the existence of four atamene, two of whiel are slort and two long. This character exists in a greut number of natural families, as labiata, Scroph:1lariacero, Bignoniaceue, \&e., and is always prevalent throughout a funily where it exists. The Linnaran class Didynamia is founded on this peeuliarity of the stameno.
TETRAGON (propecty a four-angled figure), a term usually applieed to the scyuare only, when used, which it seldom is. [Rraular ligures.]
TETRAGONIA'CEAS, a natural order of plants, placed by Lindley in his Curvembryose group of ineomplete Dicotyledons. It ineludes the ₹enera Tctragonia, Aizoon, Sesuvium, and Miltus, which are generally placed in the ordcr Ficeidee or Mesembryaceex. The reason given by Dr. Lindley for this separation is the want of petals in these genera, as he considers that the tendency to produce petals in the Mesembryacee is of too powcrful a nature to admit exception. The relation of these apctalous Ficoidere to Chenopodiaceer is so strong, that Dr. Lindley says - there is no ehameter to distinguish them, except their ovary being formed of several carpels.'
Like Ficoideex, this order possesses thick suceulent leaves, which in many of the species might be used as a substitute for spinach. The Tetragonia expanso is a native of New Zealand and Japan, and is used by the natives of those countries as a remedy in those forms of eutaneous disense ealled scorbutie. It might bo used in cookery instcad of spinach. The Aizoon canariense and A. hispanicum grow on the sen-coasts of the Canary Isles and Spain, and are amongst the plants which yield soda after hurning.
TETRAGONO'LOBUS (from ritrapes, four, ywvia, angle, and λ deog, lobe , a genus of plants belonging to the papilionaceous division of the natural order Leguminosix. It contains herbs with broad leafy stipules, trifoliate leaves, winged petioles, altermate leaflets and flowers seated on axillary peduneles, furnished with a bract. The caly x is tubular 5 -clef, the wings shorter than the vexillum ; the stipma is funnelshaped and beaked; the legume is cylindrical, furnished with four foliaceous wings, whieh give it a 4 -comered appearance.
T. murpureus (purple winged-pea) is a pilose plant with decumbent stems, entire obovate leaflets, braets longer than the ealyx, and a glabrous legume, with globase sceds. It is a native of the south of Europe, and has dark purple flowers; a variety is, however, found with flowers of a dark yellow colour.
There is also a variety ealled $\tau: p$. minor, in which the stem, leaves, and legmies are inuch smaller. In southern regions, where this plant grows in perfection, the unripe legumes are eooked and caten in the same manner as we eat French beans.
There are four other specees of Tetrayonolobus, all of them inhabitants of Europe. In general nppearanee they very much resemble the speeies of Bird's-foot treforil (Lotus), and in gardens are well adapted for ormamenting rock-work. They are best propagated by seeds.
TETRAHEDRON (a solid of four faees), a term usually applied to the regular tetraliedron. [Regular Figures.] TETRAO. [TRTRAONide.]
TETRAOGATL.US, Mr. J. F. Gmy's name for a genus of birds, plaeed by Mr. G. R. Gray in the sublamily Lophophorina, of the family Phasianilla. Exanple, Tetraogallus Nigellii. (IIl. Ind. Zool.)
TETRAO'NIDE, Dr. Leaeh's name for the Grouse family.
Linnexus, in his last edition of the Systema Nutura, plaecs the genus Tetrao at the ent of his firth order, GalYince, next to the genus Numida. The Galline come between the Gralle and the Passeres: the genus Struthio is the last of the order Gralle, and the genus Columba the first of the order Passeres.
The linnean genns Tetrao is very extensive, eomprising not only the true Grouse, but also the Franeolins, Partridges, and Quails.
Cuvier, in his last edition of the Règne Animal, arranges the Têras (Teirao, Jinn.) under his fourth order, Gallinacts (Galline, Linn.), plaeing them between the lhea-
sants (Phasianus, Linn.) and the Pigeons (Columba, Linn.).

This great genus in the arrangement of Cuvier is more comprehensive even than that of Linnæus, tor it includes the following subgenera:-1. Les Coqs de Bruyire (Tetrao, Lath.) ; 2. the Lagopèdes, or Snow Partridges (Perdrix de neige); 3. the Ganga, or Attagen (Pterocles, Temm.); 4. the Partridges (Perdix, Briss.) ; comprising the Francolins, the ordinary Partridges, the Quails, and the Colins or Partridges and Quails of America; 5. the Tridactyls (Lacép., Hemipodius, Temm.), including Turnix (Bonap., Ortygis, Ill.), and Syrrhaptes, Ill.; 6. The Tinamous (Tinamus, Lath., Crypturus, Ill., Ynambus, D'Azara). Of this last subocnus Cuvier remarks that some; the Pezus of Spix, have still a small tail hidden under the feathers of the rump; others, the Tinamus of Spix, have no tail at all, and their nostrils are placed a little farther backward; and he adds that one should distInquish Rhynchotus of Spix, which has the bill stronger, without any fuirow, slightly arched and depressed, with the nostrils pierced towards its base.
Mr. Vigors places the Tetraonide among the Rasores, observing that the groups which form the family are ehiefly distinguished in modem systems from those of the Phusianidee by their nore simple appearance; by the absence in fact of those ornaments to the plumage, and those naked or carunculated appendages to the cheeks and head, so conspicuous in the fatter family, but which are reduced in the present to the mere space that encircles the eye. The still weaker conformation of the hinder toe tends, Mr. Vigors observes, further to separate them; for this member in the Tetraonide becomes shorter and gradually weaker, until it is completely lost in some of the groups. Thus viewed, Mr. Vigors is of opinion that the family under consideration holds an intermediate station between the Phasianidce, where the hind toe, althongh artieulated high on the tarsus, is yet comparatively strong, and the Struthionide, where it is generally, if not always, defieient. He further remarks that the groups which compose the Tetraonide, corrcsponding with those that form the genus Tetrao of Linnæus, seem to be imniediately united to the preceding family by means of the genus Cryptonyx, Temm., which resembles them in the sinnilar appendage of the plumage of the head. This group, he thinks, leads dircetly to Coturnix, Briss., and the true Perdix, where it has, he observes, been generally arranged, and from which it has been chiefly separated by the defalcation of a nail to the hinder toe. From Perdix Mr. Vigors proceeds to Pterocles, Temm., which, by its halfplumed tarsus, is intermediate between that genus and the true Tetrao. By means of Lagopus, Cuv., in which the toes as well as the legs are feathered, Mr. Vigors arrives at the singular genus Syrrhaptes, Ill., which is immediately connected with Ortygis of the same author by the entire deficiency of the hind toe. With these groups, in his opinion, the genus Tinamus, Lath., corresponds by the slight conformation of the same member, the joint of which is feeble and the nail scarcely developed. This group leads him loack again to Cryptory.x, whieh has no nail to the joint of the hinder toe. The whole of these last-mentioned groups, thus united, correspond also, Mr. Vigurs observes, In the shortness or weakness of their tails. Those of the Tetraonide which exlibit a weakness or defieiency in the hinder toe, lead Mr. Vigors to the threetoed groups of the Struthionide, with the bills of which, more particularly that of Rhea, those of some species of Tinamus, he observes, correspond. (Natural Affinities that connect the Orders and Families of Birds, in Linn. Trans., vol. xiv.).

Mr. Swainson miakes the Tetraontide form the third family of Rasores, and states that it is composed of the artridges, Grouse, and Quails; all of which agree in the extreme shortness of their tails and of their hind-toe: they are also, he observes, rematkable for a total want of that brilliancy of plumage which so eminently characterises the Pavonidce, betwcen whicll family and the Struthionida he places the Tetraonida. The genus Cryptonyx, he observes (a small group of Oriental birds highly beautiful from their clegant form and the texture of their crests), has been thought to connect the two; a supposition, he remarks, by no means improbable, yet requiring analogical proof. He then notices, as following these, the Grouse : those of the colder latitudes; he adds, constitute
the genus Tetrao, while Pterocles includes such as inhabi the arid sands of Africa and Southern Europe. The northerr parts of our empire, he observes, stifl furnish us witt several species ; but he laments the extermination ir Britain* of the largest and most noble grouse of Eurcpe the cock of the rock (cock of the wood must be meant)
Mr. Swainson goes on to point out how sometimes the side feathers on the neck of the male grouse are dereloper in a singular manner, so as to resemble little wings--? character mostly confined to the American species (Te traones Umbellus and Cupido). He also adverts to the several new additions to this group brought home by the expedition under Captain (now Sir John) Franklin. The African and Indian Grouse (Pterocles) have, he remarks, frequently very pointed tails, and the hind-toe is very small : heat with them, he observes, appears to be as essential as cold to the true grouse. But he notices one species, Pt. setarius, Temm., which extends its range to the South of France. He then proceeds to point out that nearly all the Grouse have the toes and legs more or less covered with soft feathers; but that this character disappears in the Partridges-an extensive group scattered over nearly all parts of the Old World, but unknown in the New, where they are represented by the genus Odontophorus, Vieill. In the Quails, he observes, we have the miniature resemblance of Partridges, but the tail is so short as to be nearly imperceptible. Closely approaching to the true quails, we have. he remarks, the genus Iemipodius, distinguished by the total absence of the hind-toe; and he adverts to the extreme pugnacity of these little birds, a disposition taken advantage of by the Javancse and other Indian nations with whom quail-fighting is even a more fascinating amusement than cock-fighting is, or rather was-for we are happy to say it is much on the decline-in Europe.
Mr. Swainson then calls attention to that singular race of birds in Tropical America called Tinamous by some of the Brazilians, and Ynambus by D'Azara. With scarcely any tail, their body is thick, and Mr. Swainson rennarks that their whole appearance reminds the observer of a pigmy Bustard, which group, he thinks, they probably represent in the New World. 'As for their flesl,; says Mr. Swainson in conclusion, ' we have often tasted if, and consider it both in whiteness and flavour infinitely above that of the partridge or pheasant. We believe these birds never perch, as some suppose, but that they live entirely ainong, herbage, principally in the more open tracts of the interior.' (Classification of Birds.)

In the Synopsis at the end of the volume; Mr. Swainson places the Tetraonida in the same relative position as that above assigned to them. He thus defines the 'Tetrconidce, Partridges and Grouse :'- Bill and tail very short. Hallux elerated; ; and he comprises under the family the following genera and subgenera :-

Cryptonyx, Temm.; Odontophorus, Vieill.; Oritygis, Ill. ; Tetrao, with the subgenéra Tetrao, Linn., Lagopus, Willughby, Lyrurus, Sw., Pterocles, Temm., and Centrocercus, Sw.; Perdix, Briss., with the subgenera Perdix, Chretopus, Sw., Coturnix, Briss., Ptilopachus, Sw., ind Ortyx, Steph.; Crypturus, III., with the subgenera Crypturies and Nothurits, Wagl.
The Prince of Canlno, in his Birds of Europe and North America, makes the Gallince the third order of his second subclass, Grallatores; and this order comprises the families Pteroclida, Phasianida, Tetraonida, and Crypturida. The order next in succession to the Gallince is formed by the Gralla.
The Pteroclida include the following subfamilies and genera:-

> 1. Symrhaptine.

Genus, Syrrhaptes, Ill.

2. Pteroclinæ.

Genus, Pterocıes, Temm.

- Sce the article Capercanizhis. The attempt at reintrodnction has since been followed up whh every prospect of soccess by the patriotic Marquis of
Breadalbane. In 1838 , and the cariy part of 1839 , that nobleman received at Brealalbane. In 183s, and the carly part of is3is, that nobleman recelved at old.eetsoned hirds, and uloont two-thirds of them were hens. They were colfireled In Sreden with great pains und expense by Mr. L. Llopd. Mr. Fowell Buxton presented them to Lord Breadalbane. His Lordship tnrned out part into the forest, and retained another portion in a large aviary. Both experl ments suceeeded, and it wns ascertainell that seventy-nine young burds hat. been hatehed ont in the season of 1839. Forty-nine were hatcled out in tho aviary by Grey Hens (females of Black Gronsc).
In 1838 three were sent to the Duchess of Athol at Blair, nnd sercral were forwarded to the Earl of Derby nt Knowlesley, where five yourg Dilda were hatehed In the sviary in the cummer ol 1839 ; four of theso were doing well when last heard of.

The Tetraonide comprehend the following subfamilies and genera:-

1. Perdicine.

Genera, Lophortyx, Bonap.; Mrtyx, Steph. ; Francolinus, Briss.; Perdix, Bonap.; Sarmu, Bonap. ; Coturnix, Temm.; Ronaria, Bonap.; Tetrao, Linn. ; and Lagopus, Vieill.

The Cryphuritae consist of the subfamily Ortygina and the genus Ortyyis, Ill.
Mr. G. R. Grny, in his List of the Genera of Rirds, armanges the Tetraonida between the Phasianide and the Chionidida, with the following subfamilies and genera:1. Perdicins.

Genera, Rhizothera, G. R. Gray; Ptilopachus, Sw.; Ithaginis, Wagl.; Lerina, Hodgs.; Plernistes, Wagl.; Francolinus, Briss. ; Chacura, Ilodes. ; Perdix, Antiq.; Arborophilu, Holgs. ; Coturnix, Antiq. ; Rollulus, Bonn. ; Odontophnrus, Vicill.; Ortyx, Steph. ; Lophortyx, Bonap.; Callipayla, Wagl.

2. Tetraonine.

Genera, Tetrao, Linn.; Layrurus, Sis. ; Bonasa, Briss. (Bonasia, Bonap.) ; Centrocercus, Sw. ; Lagopus, Briss.

> 3. Pteroclinae,

Genera, Pterocles, Temm.; Syrrhaptes, Ill.
Mr. G. R. Gray gives the synonyms of all these genern, and sufficiently numerous they are. The same author, in his Appendix, states that Chucura should have before it Caccabis, Kaup; and direets the reader to add near the genus Alectoris, Kaup, Tetrao, Gm.; also to add the genus Oreias, Kaup. He further remarks that Ocypetes is synonymous with Thinocorus.

We shall endeavour to illustrate this article with examples of the natural history of the grouse properly so called: an account of some of the leading forms of the family, taken in its more extensive sense, will be found under the respective titles.

European Grouse.

The following species are Europern :-Tetrao Urogallus, the Capercailzie, or Cock of the Wood; Tetrao hybridus, Sparmn. (Tetruo medius, Meyer), the IIybrid Grouse, generally considered by omithologists to be a hybrid between the Capercailzie and the Black Coek; Tetrao Tetrix (genus Lyrurus, Sw.), the Black Grouse or Black Cock; Bonasia Eurnpaca, the Huzel Grouse or Gelinotle; Lagopus Srodicus, the Red Grouse ; Lagopus mutus, the Common Plarmigan; Lagopus terrestris, the Rock Ptarmigan;* Lagopus salicett, the Willovo Ptarmigan; Lagopus brachydactylus, the Short-loed Ptarmigan; Plerocles arcnarius, the Sand-Grouse; Pterocles setarius, the Pin-tailed Sind-Grouse.
Of these the Black Cock, the Red Grouse, and the Common Pfarmigan are British; to which we trust that we may now add the Capercailzie, restored by the praiseworthy eare of the Marquis of Breadalbane and others.t
We seleet as an example the Common Ptarmigan, Lagopus mutur.
Deseription-IHinter Plumage (Male).-Pure white; a black band proceeding from the angle of the bill and traversing the eyes; lateral tail-feathers black, terminated by a white border; feet and toes well covered vith woolly feathers: above the cyes a naked space, which is terminated by a small dentilated membrane; these naked parts are red; claws hooked, subulate, and black; bill black; iris asll-coloured. Iength about fiftenn inches and a quarter.

Winter Plumage (Femalc).-Differing from that of the male in having the naked space above the eyes less, and no black eye-band. Smaller than the male; the length about fourteen inches and a half.

Perfect ${ }^{\circ}$ Summer Plumage (Old Male).-Top of the head, neek, baek, seapulars, and the two middle tailfeathers, as welt as the upper coverts, rusty ash crossed by numerous zigzags of deep black; breast and sides varicgnted with feathers of the same eolour, annong which are always found a great number of fenthers of a deep black varied with some scattered zigzags of a bright rust-colour; black eye-band always distinetly marked; throat most frequently white, but oiten marked with blackish; the whole of the belly, abdomen, lower coverts of the tail, wings, wing-coverth, and feet pure white; cye-brows large, of a very lively red.

Female always distinguished by the total absence of the black eye-band, and to be reeognised also by the tone of her plumage, which has less white; the head, all the upper part's of the boty, the neck, the breast, the flanks, and the abdomen streakied with transverse bands of bright rusty and black, with a good deal of regularity; only the middle of the belly, the feet, and the wings are pure white.

The loung are marked with yery fine, ash-coloured, blaek and rustrish streaks. (Temm., E.e.)
N.13. The bind figured by Mr. Gould, in his great work The Birds nf Europe, under the name of La, gopus ruperstris, The liock Plarmigan, with great doubt by that acute ornithologist ns to its identity with the North Anerican species, appears, according to Temminek, to be the female Itarmigan in her perfect summer plumage.
The newly-hatched young, aecording to Mr. Macgillivray, are covered with a light yellowish-grey down patehed on the back with brown, and have, on the top of the head. a light chestnut mark, edged with darker ehestuut. When first fledged they are, he says, very similar to the young of the Red Grouse, but handed and spotted with brighter reddish-yellow: but this plumage, he adds, soon changes, so that in the beginning of August many of the yellow and brown feathers of the back are exchanged for others spotted and barred with pale grey and brown, and the under parts are white as well as the wings. In conclusion, he states, that these young birds become white the first winter, like the old ones. (Ilistory of British Birds.)

This Ptarmigan is supposed by some, and with good reason, to be the Lagopus of Pliny (Nat. IIist., lib. X., c. 48), who notices its excellent flavour, and states that its feet with their 'hare-like hair' gave the bird its name. It is the Tetran lagopus of Linnaus; Lagopus rulgaris ofFleming; Pernice de Montagna, Permice alpestre, and Lagopo bianco of the modern Italians; Pcrdris blanche and Gelinote blanche of the French; Perdiz blanea of the Spanish; Schncehuhn and Haasenfüsige Waldhuth of the Germans; Rype of the Norwegians; Riupkarre (male), Riup)a (female) of the Jeelanders; Tarmachan of the Northern Gael; and Coriar yr Alban of the Welsh.

Geographical Distribution.-North of Europe: Japland, Norway; Sweden, Russia. The Alpine districts of the middle and south of Europe. North Ameriea: the islands lying in the south-west of Baffin's Bay (Sabine); high hills keeping near the snow-line; Churchill River (Franklin: Richardson).
In the British Islands it was formerly found in the North of England, and, as its Welsh name indicates, in Wales: but it no longer occurs in those loealities, nor is it to be met with in Ireland.

Mr. Macgillivray (Ifistory of Brilish Birds) states that it inhabits the bare and weather-beaten summits of the higher mountains of the middle and northern divisions of Scotland; but, he adds, that even in the transition range of the south of that part of the United Kingdon, many of the mountains of which, being more than two thousand feet high, seem well adapted for it, no individuals are ever met with. 'I have frequently,' says this observing outdoor naturalist, "chased it on Ronaval and other mountains in Harris; and it is said to occur on Eachdla in South Uist, on the Park and Uig hills in Lewis, on the Cuillin and Strath mountains in Skye, as well as in Mull and Jura. On all the clevated summits of the north of Seotland it is not uncommon; and, on most of the Grampians, but especially the great granite and slaty masses from which issue the sourees of the Dee, the Spey, and the Tay, it may be said to be ceen abundant. Great numbers are annually killed, but as the haunts of this Ptarmigan are not so easily accessible as those of the brown species (Lagopus Scoficus), it is not at all likely to be exterminated.'

Food, IIabits, fre-The summer food of the Ptarmigan consists principally of Alpine berrics, and in winter of the shools of young heath. Mr. Macgillivray found in their erops a large quantity of fresh green twigs of Calluna zulgaris, Fuccimum Myrtillus, and Impcerum nigrum, the largest fragments not exceeding five-twelfths of an inch in lencth. IIe adds, that leaves and twigs of Vaccinium Fitis-idea, Salix herbacea, seeds of various Juncere and Cyperacce, and other plants, with berries in autumn, also form part of their food, which is thus, he observes, for the must part the same as that of the Red Grouse, or, as he terus it, the Brown Ptarmigan.
The author last quoted gives the following description
of the habits of this species from personal observation: -These beautiful birds, while feeding, run and walk among the weather-beaten and lichen-crusted fragments of rock, from which it is very difficult to distinguish them when they remain motionless, as they invariably do should a person be in sight. Indeed, unless you are directed to a particular spot by their strange low croaking ery, which has been compared to the harsh scream of the misselthrush, but which seems to me much more like the cry of a frog, you may pass through a flock of Ptarmigans without observing a single individual, although some of them may not be ten yards distant. When squatted however they utter no sound, their object being to conceal themselves; and, if you discover the one from which the cry has proceeded, you generally find him on the top of a stone, ready to spring off the moment you show an indication of hostility. If you throw a stone at him, he rises, utters his call, and is immediatcly joined by all the individuals around, which, to your surprise, if it be your first rencontre, you see spring up one by one from the bare ground. They generally fly off in a loose body, with a direct and moderatcly rapid flight, resembling, but lighter than, that of the Brown l'tarmigan, and settlc on a distant part of the mountain, or betake themselves to one of the neighbouring sumnits, perhaps more than a mile distant.'
In winter it appears that these birds associate, forming flocks of fifty or more; and it is also stated that, during this season, they burrow under the snow, thus giving countenance to the statement and cut of Olaus Magnus, copicd by Gesiler, showing that the 'Urogalli minores' lie hid - sub nive :' to be sure, this retirement is said to be of rather long duration-two or three months, and 'sine cibo.'
Mr. Macgillivray states that early in the spring the Ptarmigans scparate and pair. He describes the nest as a slight hollow, scantily strewn with a few twigs, and stalks' or blades of grass ; the eggs, as regularly oval, about an inch and seven-twelths in length, and an inch and from one to two twelfths across, white, yellowish-white, or reddish, blotched and spotted with dark brown, the markings being longer than those on the eggs of the red grousc. He states that the young run about as soon as they lease the shell, and are, from the first, so nimble and expert at concealing themselves, that a person who has accidentally fallen in with a brood very seldom succeeds in capturing one. The parent bird it seems has recourse to the same stratagems as the partridge and other gallinaceous birds to lead the intruder from her little ones. 'On the summit of the Harris mountains,' says Mr. Maegrillivray, 'I once happened to stroll into the midst of a covcy of yery young ptarmigans, whicli jnstantly scattered, and in a few seconds disappeared among the stoncs, while the mother ran about within a few yards of me, manifesting the most intensc anxicty and pretending to be unable to fly. She succeeded so effectually in drawing my attention to hersclf, that when I at last began to searel for the young, not one of them could be found, although the place was so bare that one might have supposed it impossible for them to escape detection.'

This species has heen reared in confinement without any great difficulty, and has bred in a tame state. (Selby.)
Every one must have observed the numbers of Ptarmigan which are sent to this country early in the spring. The shops of many of the London poulterers are then positively white with them. These are imported from the north of Europe, where they are principally taken in snares made of horsehair. Mr. Yarrell states that he has more than once found a hair noose round the neck of Norway Ptarnigan in the London market, and that others have found the same. The numbers taken are immense. According to Mr. Lloyd, whom we have so often had occasion to quote, one pcasant will set from five hundred to a thousand of these snares in the winter scason. The captured hirds are kept in a frozen state till the dealers come; and one of these dealers will sometimes buy and sell fifty thousand ptarmigan in a season. According to the calculation of Sir Arthur de Capell Brooke, sixty thousand of these birds were killed during one winter in a single parish, which was however large. Mr. Grant informed Mr. Yarrell that he was assured, when in Norway, that the number of ptarmigan killed in that country every winter was beyond belief: two thousand dozen, if Mr. Grant remembered right, was the quantity exported from Drammen in one ship for England in 1839, and great numbers, he adds, are señt
to the Copenhagen market. Mr. Yarrell goes on to state that hesides those brought to this country from Drammen, great quantities are also received in London, during the months of February, Marcl, April, and May, from Bergen, Drontheim, and other ports on the west coast of Norway, from whence conveyance is obtained for them in the boats which bring constant supplies of lobsters to the London market. 'On one occasion,' says Mr. Yarrell, 'late in the spring of 1839, one party shipped six thousand ptarmigan for London, two thousand for Hull, and two thousand for Liverpool; and at the end of Fcbruary or very early in March of the present year, 1840, one salesman in Leadenhall market received fifteen thousand ptarmigan that had been consigned to him; and, during the same week, another salesnaan received seven hundred capercaillies and five hundred and sixty black grouse.'

Common Ptarmigan in winter and summer plumage. (Giveld.)

Astatic Grouse.

We select the Pin-tailed Sand-Grouse, Ptcrocies setarius, Ganga Cuta, as an example.

Description.-Old Male.-Throat black; sides of the licad and front of the neck yellowish-ash; on the breast a large cincture, about two inches, of rusty orange, bordered above and below by a narrow black band; head, nape, rump, and tail-coverts streaked with black and yellowish; lack and scapulars streaked in the same way, but towards the end of each feather there is a large band of bluish-ash, succeeded by another of a yellowish colour; lesser and middle wing-coverts marked obliquely with chestnut-red, and terminated by a white crescent ; greater coverts oliveash, terninated by black crescents; belly, sides, ahdomen, thighs, and extremity of the lower coverts of the tail pure white; tail-feathers terminated with white, and the external one bordered with that colour; the two middle feathers, which are very long, slender, and of loose texture, are three inches longer than the others. Total length, without reckoning the long tail-feathers, 10 inches 6 lines.

Ficmale differing much from the male; throat white; below this part a Jarge black semicollar, which only extends to the sides of the neck; the cincture large and orange-coloured as in the male; upper parts nearly the same ; middle, lesser, and greater wing-coverts bluish-ash, then an oblique reddish band, and all the feathers terminated hy black crescents; the two long tail-feathers or filaments are longer than the others by an inch and six lines.

Young.before their first moult.-Plumage less variegated; upper parts olive clouded with ash; the white of the sides, the thighs, and the abdomen is barred with yellowish and brown zigzags. (Temm.)

Geographical Distribution.- Very numerous on the arid plains of Persia. Not very numerous in France, on the sterile 'Landes' near the Pyrenees, and along the coasts of the Meditcrranean; less common in Provence and Dauphine, where thcy occasionally arrive ; more common in Spain, Sicily, Naples, and throughout the Levant. Temminck, who gives these localities, states, in the fourth part of his Manuel, sccond edition, that it is common in Provence, in the uncultivated plains of Crau, and says that it avoids cultured tracts, and only inhabits the sterile Landes of the south; but he adds that it is abundant in the Pyrenees, and that it is to be found all the year round in the markets of Madrid. Mr. Gould states that the species is found in the North of Africa.
Food, Habits, fcc.-Seeds, insocts, and the young shoots
Vol. XXIV.-2 L
of planss som the food of this sand-grouse: but its witd nature and the barren p'aces whleh it trequents are adrerse to observation; and litile or nothing is known of its habits. The nest is a hollow In the earth, and, necording to Temminck, the egrs, nearly of the same size at each end, of an Isabella grey, maked with smal! brown points and large bleck patches, are only two or three, a emall number compared with those of the majority of the Tetraontule.

Irimalled Sand-Grouse, mate and femate. (Gould.)

Aprican Groves.

Dr. Andrew Smith remarks, thal though we find speceies of Pterocles beyond the confines of Africa, yet the majority of those now linown are peenliar to that quater of the globe. The regions south of the equalor, he observes, have furnished nearly nas many species as those fo the north of it; and he thinks that looth will doubtless aflord many additional ones when the yet unknown distriets shall have been thoroughly explored. Each of the known species, as far as his observations go, has a liniled range; and should the range of such as inhabit the unexplored iracts of the interior not be greater, he is of opinion that we may in time expect great additions to the following list of known species which he gives :-

Pterocles arenarius, Temm., Burbary and Senegal ; Pterocles gutfatus, Licht., Egypt; Pterocles quadricinctus, Temm.. Senegal; Plerocles coromatus, Licht., Nubia; Pterocles Lichtensteinii, Temm., Nubie; Pterocles tricinctus, Swain., Senegal ; Pterocles exustus, Temm., Egypt and Senegal; Plerocles Tuchypeles, Temm., South Atrica ; Pterocles bioinctus. Temm., South Africa; Pterocles simplex, Roux, South Africa; Plerocles maculosus, IBurchell, South Afriea; Pterocles gutturalif, Snlith, South Afriea. It will les seen that P'lerocles selurius, to whieh Mr. Gould assiens North Afries as a locality, is not in Dr. Smith's list. We seleet as an exnmple I'terncles gutturalis, Smith.

Description.-Male.-Top of the head dull green, fainity freokled with black; sides of the head and chin strawyellow; cyebrows yellowish-white; sphee between the ere and bill black; neek, breast, and a portion of each shoulder intermediate between oil-green and sulphurvellow; bases of all the feathers pearl-grey; immediately behind the yellow chin, the throat and sides of the neck are cronsed by a deep brownish-black creseent. Interscapulars and seapulars clonded with pale reddish-brown, pearl-arey, and lilulsh-black or brownish-black, the latter generally prevailing towards the quills. Back nud upper tal-covert's pearly grey, strongly tinged with brown, and when the feathers ure separated, enelh is found nith a yellowish tint at the liase, and with a strong satin lustre. Becondary wing-eoverts intermedinte between Duteh and reddish orange, with the lrase and a considerable portion of the inner vine of each pearl-grey; jrimary wingcoverts and all the quill-feathers muber-lurown; secondaries narrowly tipped with rusty-white; tail-feathers blackishbrown, the outer vanes diged with pearl-grey, and all, exeept the two middle ones, larondly tlpped wifi the same colonir as the secondary quill-coverts. Helly and under thil-coverts between ehestnut and reddish-brown. Bill and claws dark horn-colour; eyes dark brown; toes greenishbrown. Wings whenf folded nearly reaching the fip of the \{all; first quill-feather rather longer than the second; longest of the tertiaries intermediate between the sixth and neventh quill-feathers; \{ail wedge-shaped, the two milalle feathens rather the longest and aenminated at their extremities; outer and inner toes of equal length. Total length 12 Inchee 6 lines.

Fomale.-Top of the head brownish-blaek, spolted with rusty-white; back of the neek dull cream-yellow, freely dashecd with brown; sides of the neek and throat jule honej-yellow; back, shoulders, and hreast brownish-black, with large cream-colourect spots; belly deep hlack, harred with pale chestnut. Under tail-coverts loright chestnut. towands their bases barred with black. Tail blachishbrown, with partial hars of light eream. oyellow; and all, exeept the two middle feathers, tipped with pale redelsh: orange. Length 111 inehes. (Smith.)

Trecocles gutturalis: male and femalo (tumilh.)
Locality, Food, Irabits, fec.-Dr. Snith states that this speeies was firsl. diseovered In $1 \mathrm{at} .20^{\circ} 40^{\circ}$, about cimhty miles to the eastward of Latakoo; and it whe when he remarked its ery to differ from that utterel by Pterocles. Tuchypeies. Temm., that he whis led to suspect that it was distinct. He says that, in common with the other South African species of this. genus, it repnirs in large flockes at regular and fixed periods to localities where water is, and that at such fimes specimens are most readily proeured; but he warns the spoitsman to be quiek in his movements. as they scarcely reach the water before they are argain on the ving. As hey approach and recede from such spots, they almost ineessantly utier eries resembling tued weet, tweet urcet.

Dr. Smith remarks, that from olserving these birels when they are in quest of water, one would be disposed to consider them gregarious, a notion soon dissipated when their feeding-grounds are diseovered, for there they are penerally dispersed singly or in pairs, and the oeensional congregation is ouly effectel ly solitary individuals suceessively joining others who are on their way from a greater distance. Pterocles guthuralis secks the water about ten in the morning and three in the afternoon, resembling in this respeet Perocles Tachypeles, which inhabits a different part of the country. P'terorles taricgutus, he tells us, drinks during the early, part of the morning, and Perocles bicinctus in the dusk of the evening and urly part of the night. In such an arrangement, he observes, we must admit design; for if all the various speceies
were to experience thirst at the same time; both delay and difficulty would occur in quenching it, since, owing to the general scarcity of water in the districts inhabited by these birds, hundreds of the same species, even as it is at present, are often to be seen fringiny the brink of a pool for hours together, and occasionally disputing for the first sip. Dr. Smith found grass-seeds, ants, and abundance of gravel in the stomachs of most of the individuals which he procured. The female lays two or three eggs, which are nearly of the same size at each end, of a dirty-white or cream-colour, marked with irregular streaks and blotehes of pale rusty and pale grey or ash-colour, upon the bare ground, without any care, once or oftener during the warm season; and it is only when level spots fitted for the reception of the eggs cannot be readily obtained, that the birds of this genus, according to Dr. Smith, bestow any labour on the preparation of nestling-places. Nothing, he adds, is ever interposed between the eggs and the soil; and indeed whatever is calculated to separate them is carefully avoided. Almost as soon as the young escape from the shell, they take to a wandering life, and remove from place to place with the parent-birds in search of food. (Illustrations of the Zoology of South Africa.)

Abericat Grouse.

America possesses several species of grouse, consisting of the genera and subgenera Bonasia, or Bonasa, Tetran, Lagopus, and Centracercus. We have already noticad the Ruffed Grouse [Bosas1a], and here select for exanple Centroeercus urophasionus.

Description.-Male.-General ground-colour of upper plumage light hair-brown, mottled and variegated with dark umber-brown and ycllowish-white. Each feather of the back with three bands of yellowish-white at equal disfances from each other, the lowest narrow, the middle one broad, and the outer one at the tip of the feather almost ohsolete; between these the colour is hair-brown, prettily marked with small irreçuler zigzass of light hair-brown: these colours cross the slaft; but on the wing-covers and scapulars the shafts are all marked by a narrow conspicuous line of yellowish-white. On the tail there are about eight bands of this colour, the lower ones being tolepably defined, but those towards the ends obscure: the margins are aigzagged, and borlered by dark umber-brown, with irregular zigzag lines of the same, upon a light hair-brown ground, between each bar. Quills light, and almost nuspotted; narrowed extremitics of the tail almost black. Under plumage white, unspotted on the bieast and part of the body; but dark nmber-brown, approaching to black, on the lower half of the body and part of the flanlis; the latter, towards the vent, marked as on the upper plumage. Under tail-coverts black, hroadly tipped with white. Feathers of the thighs and tarsi light hair-lirown, mottled with clarker lines. Throat and region of the head varied with blackish on a white ground. Shafts of all the feathers on the breast black, rigid, and looking like hairs; scalelike feathers of the sides white and thicker. Bill, which is thick and strong, and toes blackish. On each side of the breast two prominent naked protuberances, destitute of lair and feathers, more forward than the analogous parts in Tetruo Cupiulo. On eacli side of the protuberances and ligher up on the neck, a tuft of feathers, having their sliafts considerably clongated and maked, gentiy eurred and tipped with a pencil of a few black radii. These tufts occur at the same part as these of the Ruffed Grouse, but are placed much behind the naked protuberances in the specimen from which the description was taken,* so that they do not appear intended to cover them when not inflated. On the sides of the neck and across the breast, below the protubcrances, the feathers are very short, rigid, and acute, overlying each other like the scales of a fish. Wings short in proportion; lesser quills ending in a small point. Tail rather lengthened, couslderably rounded, each feather lanceolate and gradually attenuated to a fine point. Tarsi thickly clothed with feathers to the base of the toes. Leugth 31 inches 6 lines.

Femalc.-Whole upper plumage, tail, wing-covers, tertiaries, front of the neck, and sides of the breast, dark umber, or blackish-brown, and yellowish-white, irregularly barred and mottled in nearly equal quantíties; but the dark colvur forming larger blotches towards the base, and the lighter colour bars on the tipsind stripes on the shafts.

Fore part of the belly white, barred with black; hinder parts black. Plumage of breast and neck of ordinary form; there being no scale-like feathers nor projecting shafts us in the male. Length 22 inches 6 lines. (Fuuna BorealiAmericanc.)

This is the Tetrao urophasianus of the Prince of Canino, the Cock of the Plains of Lewis and Clark, and the Pyimis of the Kyuse Indians.

Food, Hubits, fe.-The favourite food of this species is said to be the pulpy-leaved thorn, but it probably feeds also on buds and berries.

This grouse appears to have been first recorded by Lewis and Clark; and it has since become familiar to the furtraders on the banks of the Columbia. Dr. Richardson gives the following interesting account of its habits by the late Mr. David Douglas:-
'The fight of these birds 18 slow, unsteady, and afionds but little amusement to the sporisman. From the disproportionately small, convex, thin-quilled wing-so thin, that a vacant space half as broad as a quill appears bétween each-the fight may be said to be a sort of fluttering, more than anything else: the bird giving two or three claps of the wings in quick succession, at the same time hurriedly rising, then shooting or floating, swinging from side to side, gradually dalling, and thus producing a clapping, whirring sound. When startled, the voice is "Cuck, curk, cuck," like the common Pheasant. They pair in March and April. Small eminences on the banks of streams are the places usually selected for celebrating the weddings, the time generally about sunrise. The wings oft the male are lowered, buzzing on the ground; the tail spread like a fan, somewhat erect; the bare yellow nesophagus inflated to a prodigious size,-fully hali as large as his body, and, from its sott membranous substance being well contrasted with the scale-like feathers below it on the breast, and the flexile silky feathers on the neck, which on these occasions stand erect. In this grotesque form he displays in the presence of his intended mate a variety of attitudes. His love-song is a confused, grating, but not offensively disagreeable tone,-something that we can imitate, but have a difficulty in expressing-" Hurr-hurr-hurp-r-r-r-hon," ending in a deep hollow tone, not unlike the sound produced by blowing into a large reed. Nest on the ground, under the shade of Purskia and Artemisia, or near streams, among Phularis arundinacea, carefilly constructed of dry grass and slender twigs. Eggs, from thir teen to seventcen, about the size of those of the common fowl, of a wood-brown colour, with irregular chocolate blotches on the thick end. Period of incubation twentyone to twenty-two days. The young leave tle nests a dew hours after they are hatched. In the summer and autumn montlis these birds are scen in sinall tronps, and in winter and spring in flocks of several hundreds. Plentiful throughout the barren arid plains of the river Columbia; also in the interior of North California. They do not exist on the banks of the river Missouri, nor have they been seen in any

place east of the Rocky Mountains.' (Fauna BorealiAmericana.)
Nuttall says that the flesh is dark and less palatable than that of other species.

TE'TRAPLA. [Origenes.]

TETRARCII (rerpápxis), from two Greek words, signifying four and to govern, a title used by the Greeks at a vers early period to describe the ruler of cach part of a emuntry which was divided into four parts, either on account of its occupation by dilferent tribes, or merely as a political division. Fach of such four parts was called a tetrarchy (rirpapxia or rerpainapia). In process of time the title came to be applied to the mulers of different divisions of the same country, or to the elicfs of different tribes inhabiting the same country, without any reference to the number four. In this sense it was equivalent to the titles ethnarch and phylarch. Under the Roman government, in the later ages of the republic and under the emperors, there were several such petty princes, independent of each other, but tributary to IRome. Thesc tetrarchs, ethnarchs, or phylurchs, were either the legitimate governons of their subjects, or persons who had received the title and government from Rome as a mark of honour. They ranked helow those other subject princes who were permitted to retain the title of king.
The principal examples of tetrarchies are those of Thessaly, which was antiently so divided, and the division was again made by Philip, the father of Alexander the Great: of Galatia, wlich sas peopled by three Gallic tribes, each of which was divided into four tetrarchies: of Syria, many of the petty princes of which bore the title of tetrarehs, especially eertain prinees of the family of Herod the Great. Coneerning the tetrarchs of Syria, see Niebuhr's History of Rome, ii., pp. 134-5.
TETRAX, Dr. Leaeh's name for one of the Bustards placed by Mr. G. IR. Gray in the subfamily Ofodince of the family Struthonid.e.
Examule, Otis tetrax, Jinn.
TETRICUS, CAIUS PESUVVIUS, a Roman senator, one of the numerous usurpers of the Imperial purple in the third century A.D., who are distinguished in IRoman history by the name of the Thirty Tyrants. He was governor of Aquitania, and, atter the death of several pretenders in Gaul, was made emperor there, A.D. 268, by Vieforina, said to be his kinswoman, and the widow of Vietorinus. He reigned for a few years not unprosperously; but after the accession of Aurelian, finding himself unable to control the turbulent and licentious soldiery who sustained his power, and becoming weary of their erimes, he invited the new emperor into Gaul, and resigned his usurped dominion in the following manner. Dreading the resentment of his troops if he deserted them openly, he pretended to prepare for an engagement near Chalons in Chanpagne, and then betrayed his army into the hands of Aurelian. Gibbon places this event before the defeat of Zenobia; but Vopiscus ('Aurelianus,' Ilistoria Augusta) says that it took place subsequently. The triumph of Aurelian, A.D. 274, was ennobled by the preesenee of the çucen of the East, and of Tetricus and his son, in the train of captives. The deposed emperor was treated by his conqueror with every mark of distinction during the remainder of his life, and was made corrector of Lucatia aceording to Vopisens and other writers, or of all Italy, if we follow Trebellius Polliu. His son Tetricus, who had been made Cresar by Victorina, met with not less favour than his father at the hands of Aurelian, and was honoured with senatorial dignity. On the coins of Tetrieus, which are extant in gold, silver, and copper, we find the reading imp.c.c.pesv.tetacicviata, and also msp.TETRICYS.Avg ; with, on the reverse, IMP.C.Cllavdivs.a yg, which, as Eckliel (Doct. V'ef. Nium.) remarks, would imply an alliance hetween him and Claudius Gothicus. Spon (Miscell., 274, Lugd., 1685) gives an inscription on a marble found at Rouen with the titles of Tetricus more at length : c.pesvibo. tetrico. sobilissiso. caks.p.f.ave.L.i. Coins struck in the name of the younger Tetrieus yet remain. (Trebellins Pollio, 'Trigint. Tyr.,' in the Ilistoria Augusta; Entropius, ix. 13 ; (iibbon., ii.)
TETRODON, a genus of fishes of the order Plectognathi. These fishes, instead of having distinet teeth as usual in the class, have the jaws provided with a substance resembling ivory, formed somewhat like the beak of a bird, and fitted for crushing crustaccous animals and fuci, upon whien they live. Both the Tetrodons and Diodons (Diodon, Linn.), very closely allied genus, have the power of anflating the body with wind, or rather a membrane which extends along the under side of the abdomen, which causes them to float on the surface of the water, without the
power, it in said, of directing their course: the membrane when inflated, gives to the fish an almost spherieal form, and is usually defended hy spines and priekles. The pectoral fins are rather small; and besides these and the tailfin, they hare one dorsal and a ventral fin. The Diodons linve but one large tooth above and helow, and are usually protected by large atrong, spines. The Tetrorlons are distinguished by the possession of four large tecth, the jaws being each divided by a central suture. These fishes are confined to the seas of warm elimates: some of them are called Globe-fishes.

TETUAN. [Marncco.]
THTZEI. J. [TEZR1..]
TEU'CRIUM (from 'reuecr, son of Scamander, and father-in-law of Dardanus, king of Troy) is the name of a genus of plants belonging to the natural order Lamiacea or Labiate. It has a tubular 5-toothed, nearly equal, or 2-lipped calyx. The tube of the corolla is shorter than the calyx, the upper lip is abbrevisted and bipartite; the lower lip is longer, spreading, and trifid. The stamens are mueh exserted, and the cells of the anthers are confluent and spreading. The species are herbs and shrubs inhabiting most parts of the carth, and having a variable habit and inflorescence. Upwarls of seventy species are described in Don's Miller's Dietionary. Of these comparatively fer are known in this country; some of them are cultivated in our gardens, and thrce are natives of the British Isles.
T. Scorodonia, W'ood Germander, or Sage, has cordate, downy, petiolate, erenate leaves; the flowers are of a pale yellow colour, with violaceous stamens, and are arranged in lateral and terminal one-sided racemes; the stent is ereet, hispid, pubeseent, or nearly glabrous. It is a native of Europe in woody hilly situations, where the soil is dry and stony. It is not an uncommon piant in Great Britain. The sinell and taste of this plant resemble very much the hop. In Jersey, where it is ealled $A m b r o i s e$, the inhabitants use it as a substitute for hops in their beer ; and hy some persons the bitter given by the Germander is preferred to that of the hop.
T. Scordium, Water Germander, has oblong sessile downy serrated leaves; flowers purplish, arranged in axillary whorls, $2-6$ flowers in each; the stem is procumbent and villous. It is a native of Europe and the temperate parts of Asia in boggy wet places. It is a rare plant in Britain. Its fresh leaves are very bitter and rather pungent, having a smell similar to garlic. It had onee a great reputation in medicine, but is now seldom used: it night however be employed in eases where an aromatie bitter is desirable.
T. Chamcedrys, Wall or Common Germander, has ovate inciso-serrate leaves, tapering into a footstalk; the flowers are reddish-purple, and arranged in axillary whorls of three flowers; the stem is ascending, and most frequently villous. It is a native of Europe and some parts of Asia, on walls and rocks and dry places. It is only rarely found in Great 13 ritain. This plant was once nuch employed in medicine, and entered as an ingredient into the celebrated Porland powder. It. has the tonic aromatie çualities of the family to which it belongs, which frequently render them valuable in diseases connected with depressed powers of the nervous system aud digestive organs.
T. Marum, Cat-Thyme, has small ovate quite entire leaves, with 2-4 flowered whorls ; stem crect, branched. It is a native of the region of the Mediterrancan. When the leaves are rubbed between the fingers, they enit a yolatile aromatic smell, which excites sneezing, and on this account it is used as an errhine, and forms an ingredient in the pulvis asari compositus of the 'Pharmacopøin.' It has been recommended as a stimulant and aromatic in various discases, but is not much used. Cats are very fond of it, and destroy it when they get near it.
T. polium, Mountain Poly, has cuncated oblong or linear leaves with revolute edges ; whorls few, condensed into globular terminal heads; stems procumbent, much branched. This plant is a native of Europe and Africa, on the shores oi the Mediterranean. Aecording to soil, situation, and other circumstances, it assumes a varicty of forms, which have been reeognised as species by many botanists. Mr. Bentham, in his monograph on Labiata, has placed six of these speeies under the present. There are other species of Teuerium, chiefly found on the shores of the Mediterranean, called Polies.

In the cultivation of the Germander a dry soil and shady situation are best. The annual kinds are best propayated by seeds sown in an open border. The perennial and shrubby kinds are readily increased by division and by euttings of the young wood.

TEUTHIDE゙, Professor Owen's name for the Calamaries, his fourth family of Deeapadous Cephalopods, derived from Teuthos ($\mathrm{T} \in \mathrm{v} \neq 0 \mathrm{~S}$), applied by Aristotle to the ten-armed Malakia with an internal horny plate or gladius. An outline of the family will be found in the article Tetrabranchiata.

Family Character.-Animal, body sometimes oblong and depressed, generally elongated and eylindrical; with a pair of fins varying in their relative size and position, but generally broad, shorter than the body, and terminal.

Shell internal, rudimental, in the form of a thin, straight, elongated, horny lamina; eneysted in the substance of the dorsal aspeet of the mantle.-(Owen.)

Professor Owen divides the family into the following sections:

Genus, Lepioteuthis, Blainville.

Generic Character.-Body oval, flattened, with narrow lateral fins, extending its whole length; anterior margin of the mantle unattached. Horny hoops of the aeetabula with denticulated margins. Gludius or rudimental shell long and wide. (Owen.)
Example Sepioteuthis loliginiformis, Rüppel.
Genus, Loligo, Cuvier.
Generic Character.-Body elongated, eylindrical, provided with a pair of rhomboidal or triangular fins, shorter than the body, and terminal, their apiecs generally converging to a point, and united to the end of the mantle; anterior margin of the mantle free. Horny hoops of the acctabula denticulated. Gladius long and narrow. (Owen.)
Example, Loligo vulgaris. The common Calamary, or Pen-fish, abundant on our coasts.
Genus Onychoteuthis, Liehtenstein.
Generic Character.-Body and fins as in the genus Loligo; long and narrow; horny hoops of the tentaeular, and sometimes of the hraehial, acetabula produced into the form of hooks or claws. Gladius long, broadest in the middle. (Owen.)
Genus, Russia, Owen. [SEPIadie, vol. xxi., p. 2in3.]
Genus, Sepiola, Leach.
Generic Character.-Body rounded, short ; anterior margin of the mantle adherent to the baek of the head; fins advaneed, circular, short, subpedunculate, distant and subdorsal. Gladius short and narrow. (Owen.)

Example, Sepiola Rondeletii, Leach.

Section B.

Genus Loligopsis, Lamarck.
Generic Character.-Body long and cylindrieal, terminated by a pair of conjoined, large, round fins, forming generally a eircular dise; anterior border of the mantle adherent to the back of the head for a small extent. Tentarula very long and slender (frequently mutilated). Gladius long, narrowest in the middle, dilated posteriorly. (Owen.)
Example, Loligopsis Veranii, Férussac.
Genus Cranchia, Leaeh.
Generic Character.-Body clongated, sacciform; anterior margin of the mantle adherent to the back of the head. Fins short, rounded, subpedunculate, approximate, dorsal, and subterminal. Gladius long and narrow. (Owen.)
Example, Cranchia scabra, Leach.
Such are the arrangement and definitions given hy Professor Owen in the Cyclopadia of Anatomy and Physiolngy. The family appears to us to be truly natural; and the definitions are very aecurate. The views and definitions of other authors regarding the forms belonging to this family, and an illustration of the forms themselves, will be found in the artiele Septad.e.
TEUTOBURGER WALD. [Germany.]
TEUTONIC NATIONS is the general name under which are comprised the different nations of the Teutonic race, which are divided into three branches. The first braneh contains the Higl Germans, to whom belong the Teutonic inhabitants of Upper and Middle Germany, those of Switzerland, and the greater part of the Germans of Hungary; it is subdivided into the Suabian and the Franconian minor
branches. The second is the Saxon branch, whieh is divided into three minor branches: the first of which contains the Frisians ; the seeond contains the Old Saxous or Low Germans, with the Dutch, the Flemings, and the Saxons of Transylvania; and the third contains the English, the Seotch, and the greater part of the inhabitants of the United States of North America. The third braneh is the Seandinavian, to which belong the Icelanders, the Norwegians, the Danes, and the Swedes. Upwards of eighty-two millions of individuals belong to the Teutonie race. The Germans amount toabout forty-two millions, thirtythree of which live in Germany, the remaining eight or nine millions form a greater or less part of the population of East Prussia, of Switzerland, of Hungary, of Transylvania, of France (in Alsace and north-east Lorraine), of Russia (in the Baltic provinces, in the kingdom of Poland, in the Crimea, in Bessarabia, and in the German colonies in the environs of Saratov on the Volga), of the duehy of Sleswig, and of the United States of North Ameriea, especially Pennsylvania. The English amount to twentyeight millions, there being about sixteen millions of English and Scoteh in Great Britain and Ireland, two millions in the English eolonies, and about ten millions of Anglo-Amerieans in the United States. The number of the Frisians is about one hundred and thirty thousund, in the provinee of West Friesland in Holland, in the islands in the German Ocean along the Dutch and the German shore, in the Saterland (near Oldenburg), and in the islands along the west coast of the duchy of Sleswig. There are about three millions of Dutchmen in Holland, and in her colonies and the Cape of Good Hope; and there are about two millions five hundred thousand Flemings in the north part of l3elgium, in the south part of Holland, and in the north-east part of Franee. The number of individuals belonging to the Scandinavian braneh amounts to about six millions, among whom there are nearly fifty thousand Icelanders; one million five hundred thousand Danes in Denmark, in her colonies and in the north part of the duchy of Sleswig; one million two hundred thousand Norwegians; and about three millions two hundred thonsand Swedes in Sweden and in the present Russian provinee of Finland, especially along the coast of the Gulf of Bothnia, in the distriets of Abo and Nyland, and on the Aland islands, which are entirely inhabited by Swedes.

Light hair and blue eyes in the northern countries, and brown hair and brown or blue eyes in some of the southern countries, are charaeteristies of the Teutonic race. Their stature is generally tall, although in those provinces where the Germans are mixed with Wends, Sorabians, and Bohemians, many of the people have the broad shoulders and the short square form of the north-western Slavonians. The straight black hair of some Slavonian tribes also sometimes appears. The mixture of Germans with the southwestern Slavonians, such as Winds and Croatians, whose stature exeeeds that of the Wends and Bohemians, is more difficult to be distinguished, the black straight hair and a darker complexion being almost the only indieation of sueh a mixturc. The mixture of Germans with Celts in Belgium and in the adjoining part of France has formed a tall race which differs from their Teutonie neighbours only in the dark colour of their hair and their black eyes. (Platé, Scenen aus dem Volksleben in Belgien.)

It is very difficult to distinguish the deseendants of English and Irish parents as belonging either to the Teutonie or the Celtic race, though it appears that wherever aquiline noses are seen among the lower classes they are a proof of Celtie origin? the true Teutonie nose not being aquiline, but either straight or curved only in its upper part. In gencral also the Teutonie forehead is broader between the temples than the Celtie. (Clement, Die Nordgermanische Welt; Herder, Ideen zur Philosophie der Geschichte, vol.i.)

The moral and intelleetual difference between the Teutonic nations is less remarkable than that which exists betwcen other European nations of the same race with one another. Capable of strong and violent passions, they do not easily lose their self-control, the intelleetual functions being more developed than in most other races. Southern nations, confounding liveliness of feeling with intensity, and nervous exeitability with moral sensibility, have been deecived by the eool charaeter of the Teutonic nations, and have aceused them of indifference. But the most superficial examination will show their sensibility, a fact which is proved by their poetry. The Teutonic nations are less excitable
than the Celtic, the Slavonian, and other races, but eapmble of deeper thought. Southernintions have accomplished great things by sudden etforts ; the Teutonic mations have reserved their enterprise for vast plans, which it requires centuries to carry into effeet. Thus they destroyed the Roman empire antera struggle of three centuries, and they formed new kingtoms in liarope upon nes social principles, which have maintained their vigour to the present day. The Normans beeamo powernil wherever the sea pernitted them to effect a laiding. The Germans, diminishet in number after they had sent their swarms to western larope, turned baek towards the east part of their country, then occupled by Slavonian nations, which they eonquered, and Gernanised upon a plan of colonization whiel enabled then to eivllise the east of Europe. And lastly, the English colonies have spread over the world: their dominion in the east and in the west is the result of plans which imply more boldness of conception, more prudence in execntion, and more reflection, than the conquests of Alcxander the Great and the ephemeral power of Napoleon.
The same eharacter of decp and patient reflection exercised on great oljeets appears in German philosophy and in the inventions of the Tentonic nations. The watch, the gun, and the art of printing are 'Jettonic inventions. They have smbjngated the power of steam; and the first model of the nodern sea-vessel was constructed at the mouth of the Eider by the lands of an otd Saxon or Erisian ship-builder. (Clement, ibid.)
The name of the Teutones was made known to the antients by Pytheas of Massilia (Marseille), who, in the nge of Alexander the Great, about 320 n.c., discovered a nation of that name in the Chersonesus Cimbrica, and on the adjarent islands, or in the present countries of Molstein, Sto swig, Denniark, and perhaps also in the sonthern extremity of Sweden. It seems that they had long been settled there, for they lived in houses, and were acquainted with agriculture and commerce. Other traces of the name appear later. Among the Celtio tribes which invaded Greece und besieged Delphi under the second Bremnus (b.c. 278;, there was a people called Teutobodiaci, who ancrwards passed the llellespont and settled with the Celts in Galatia, in Asia Minor. About a hundred and sixty years later, the Romans were attacked by the Cimbri and Tentenes, who came from the same country, where they had been seen by Pythens. The Teutonic origin of the Cimbri has been disputed: some historians consider them identieal with the Celtic Cymri, bit this error has been long since refuted, althongh it has been reprodueed in our days by 'Thierry, in his 'Histoire des Gaulois.' it is said, and it is not improbable, that inundations of the sea compelled the Teutones and their neighborrs the Cimbri to leave their country and to spek other abodes. The choice was soon made. The wenlth of Rome and the arts of Greece were not unknown to them. From the most remote times adventurous merchants, starting firm the shores of the Black Sea, followed the course of the Dniepr towards its sources, and reaching the Diina and the Niemen, deseended these rivers to their mouths in the Baltic, where they exchanged the commodities of the south for amber, the electrum of the antients. The same trade, ns it seems, was carried on by the merchants of Massilia along the Rhône and the Rhine, and therefore Sehlizer, in his Nordische (ieschichte? says that but for the nmber Germany would have remained unknown to the antients for five centuries more. Their acquaintanee with Rome and Massilia was perhaps the prinetpal cause which led the Cimbri and the Tentones to the sonth of Prance and to Italy (a.c. 113-90). Their destruction by Marius has been related. [Alarme; Cimbri.]

When the Ronans first heard the name of the Teutones, they thonght that they were a single tribe. They dill not know that it was also the general and ellnographic name of all those nations to which they afterwarts gave the vague designation of Germans.

Origin of the nume Teufones.- The roat of the word Teuton is thu or dh , which originally represented the idea of 'metivity', of 'living, procresting, nourishing,' and also of 'taming, educating, and muling,' From this ruot are formed the fotlowing words, some of which are still used in the popular diatects:-Trut, God, creator, ruler, father, nourisher (Thor, Twisco); thut or thimel, earth; fott, döte, dote. godfather; indu, lurse; thind, falher of the people, lond, ruler, king, is Gothie thiudate, in old Bavarian
theodo; diet, people, in old Siwedish thiout and thyd; thindinassus, in Cothic, kingtom. (Fulda, Hurzel-förterbuch.) The names of king and of people heing both derived from one root, which expresses the notion of ruling, is a fact which proves that they belong to the langunge of a nation in which there was neither aboolute monarchieal power, nor alsolute submission to their chiefs. This corresponds exaetly to the political state of the antient Teutonie nations, among whom the sovereignty was in the people, and the executive power of the chiefs or kings, although it was obeyed, was always regarded as clerived from the people. The idea of ruling, expressed by the root Teut, explains why this word vecurs so frequently in the names of the antient Teutonic kings, dukes, or chiefs, such as Teuthboch. Theularis, Diorix, Theodorix, Theodoric, Theodomir, Theodinir, Tentagon, \&e. It is likewise contained in the general name of alt the Tentonic nations, and in those of Various tribes, as the Tentones, the Tufonoarii, Thaifali, and the Dithmarses or Dietmarses. It is visible in 'Tcutoburger Wald,' the name of that muge of wooded mountains which stretches from Detinold westward beyond Osmabrück, in which is situated the Grotenbung, formerly 'Tent' or 'Teutohurg,' with the farm of 'Teutehof,' where Varus was overthrown by Arminius ; in 'Detmold,' 'Doesburg.' 'Duisburg,' 'Deuz,' and in a great many other localities in Germany. (Hanmerstein, Leber dus Schlachtfeld des J'arus; Reichardt, Germanica, p. 73, \&c.) Truton is identical with Deutsche or Teutsche (in Low German Dütsch, in Dutch Duitsch, in Danish Tysk, in Fuglish Dutch), which from the remotest time has been and is still the general naine of that part of the Tcutonic nations which we now call Germans, who considered the god or hero Tuisco as their common ancestor. There are no direct proofs of the word Tenton having had this extensive meaning in the earliest German history, but this is perhaps the result of the political state of the Teutonic nations, whith were originally divided into numerous tribes. each of which became separately known to the Romans. In the twelnh, cleventh, and even as carly as the tenth century; when the difference between Franks and Sinons was well marked in the German empire, these nations, each of which had its own language and laws, never objected to being ealled by the general name of Dentsche or Tcutones. At present there is no German tribe which has the pasticular name of Teutones, but although the Germans are composed of two very distinet nations, the High Germans and the low Germans, they call themselves Deutsche and their language Dentsch, though they do not understand each other. This is very different from the state of things in France. The true neaning of "Français' is political, the name signifying a citizen of the kingdom of France, whether a Frenchman, a German, a Briton, or a Basque ; in southern France the name of Francgais is given to the people north of the loire; and, on the contraty, the namie of lirench language is never given to any of the dialects of the somth, nor to the Walloon dialect in Belginm. Similar facts may be observed in Spain. If however such ethographie distinetions are the consequence of France and Spain Inving originally been inhabited by nations of different origin, the circumstance that the name 'Dentsch' has been spread over all Germany and applied to all her dialects from the remotest historical period proves that the name had a general signification long before the coumeneement of German history. Another circmastance corroborates this opinion. A mation has never changed its name for another except by some great political revolution. Thus the Tata were called Mongols, the ltalians Romans, the Romans and Gauls Franks, when one man, or one city, or one tribe exercised a predominant influence over the remainder of the people: and these nations have preserved the memory of such reyolutions. ['Tartars.] But no such revolution is recorded in the history of Germany. A further proof of this is, that the Dutch and the Flenings dislike to hear their Innguage ealled 'de Hollandsche taal,' or 'de Vlaemsche tall,' and they prefer giving it the name of 'de Nederduitsche taal.
Origin of the Tentonic Nutions.- The Tentonie race is originally from Asia. The Tcutones immlgrated into Europe at different periods unknown to history, althongh it appeairs that the last of them entered Enrope during the migration of nations in the fourth and finth centuries. Somo

account of their Asiatic origin is given in their antient national songs, principally in the Sagas of the Scandinavians. The recollection of their antient homes was not entirely lost in Germany in the eleventh century, for we find the following verses in the 'Lobgesang aut den Heiligen Annu:'

\author{

- Deren Geschlechte dere quam wilin ese Yan Armute der herin.
 Jan sagith daz dar in Halvin uoch sin Ingegin India vili verre
}

[^8]It is also said that Benedict Goesius (Goez), a Jesuit, found in 1603, in the mountains of the Hindu Kush, northeast of Cabul, a people with fair hair like the Dutch, and who are perhaps identical with that tribe of which Mliny speaks, and which was settled in the Montes Emodi. But all this is of little value, unless it is corroborated by other facts. Such facts have been furnished by the learned philologists of our are, especially by Friedrich von Schlegel, Adelung, Bopp, Grimm, and Hammer. A comparison of the Teutonic languages with the Persian, the Zend, and the Sanscrit, has shown the relationship which exists among these languages [Language; Germavy; Sanscrit], and by means of these facts, the Mythes and Sayas become important for history. According to one of these nythes, Deut or Diuta were the names of antient Indian gods who led the tribes which emigrated from India to the west. (Hammer, in Wiener LiteraturZeitung, October, 1816 ; Ritter, Ľrdkunde, vol. ii., p. 118, 898-900; Ritter, Vorhalle, p. 317, 460, 630; Grimm, Deutsche Grammatik, especially in the preface, p. xxvi., \&e.; Rïhs, Ausfïhrliche Erliuterung der zehn ersten Kapitel der Schrift des Tacitus über Deutschlund, p. 88, \&c.; Herder, cited above, i., p. 400 ; Mathaeus Riceius, De Christiana Expedilione apud Sinus suscepta à Societate Јеяи, 1684, p. 600.)
When the Teutonic nations appeared in history, they were divided into many bodies or confederations of tribes, such as, at a later period, the Franks, the Suevi, the Snxons, the Marcomanni, and the Alemanni. Long before these names were known, there was a similar confederation of tribes which came from the north-northeast and conquered the countries on the left bank of the Rhine, then inhabited by Celtie nations, which fled to their brethren in Central Gaul. The cpoch of this invasion is not known, but the event happened long time before the age of Cessar, who found those countries settled by a Teutonic population. Tribes of the Condrusi, the Ehnrones, the Cauraesi, and the Premani, were united in a confederation, and had adopted the name of Germani, or ' war-llke men.' This name was gradually used by the Romans to designate other nations which belonged to the Tentonic race (Tacitus, Germ., c. 2), and subsequently it was adopted by the Englith as n name for the 'Deutsche,' while this very name, changed into Dutch, now designates the inhabitants of Holland. It has heen pretended that the name of Germani was known long before the time of Ceesar, and this opinion is founded upon the following passage of the • Fasti Capitolini :'-
'm. Claudius M. F. M. N. Marcellus-
COS. DE. GALLEIS. INSUBRIBUS. ET. GERMANEIS. K. MART. ISQUE SPOLIA opima RETTULIT
dUCE niostium viridomaro ad clastidina interfecto.:
If the word 'Germaneis' is here right, and there is no good reason for putting 'Cenomancis' in its place, the requaintance of the Romans with the Teutonic nations eommenced long before the invasion of the Cimbri and the Telltones. There is a passage in Iivy ($\times \times 1.38$) which states that at the time of the invasion of Italy by Hannibal (b.c. 218) the country of the Alpes l'enninae was inhabited hy 'nationes semigermanae,' by which expression some writers have hastily concluded that a mixture of Germani and Celts is meant; but the passage admits of another interpretation.
The Tcutonic Nutions after Cosar.-When Cossar reached the Rhine, Northern Germany, Holland, Belgium, and a part of the countries on the Middle Rhine were inhabited by Teutonie nations which belonged to the northern, now Saxon branch. They had been settled in fixed habita-
tions for several centuries, and they must be considered as the first of this race which settled in Germany. The sonthern part of this country was then inhabited by Celts and Rhaetians, except the tract between the Upper Rhine and the Upper Danube, which was conquered by the Suevi, who belonged to the Teutonic race. The word 'Suevi,' which comes from 'schweifen,' may be translated 'wanderers,' or people who rambled about for the purpose of settling in any convenient country. It was adopted by a great number of tribes, the majority of which belonged to the High Germans, and came from the countries on the Baltic between the Oder and the Niemen. Cæsar was obliged to fight with their leader Ariovistus (b.c. 58), who had invaded Gaul. Ariovistus was compelled to go back to Germany.

Tacitus divides the Germani into three great bodies: the Ingaevones, in the north; the Istaevones, in the west, from the mouths of the Rhine upwards to Basel; and the Hermiones, in Middle Germany and towards the nort1-east. This division seems to have an ethnographic and still more a political value. The position of the Ingaevones corresponds to that of the later Saxons, and both the names have one meaning, Saxon signifying a settled people, aud In-gae-vones a people who live in a cultivated country divided into districts (In-gau-wohner or Inwohner). The Istaevones, or Western Germani (West-wohner), correspond to the later Franks, and the Hermiones to the Suevi, inchuding the Alemanni. Further, the name of Hermlones is undoubtedly identical with Hermunduri, one of the greatest Suevian or High-German tribes, the name of which is generally supposed to be the same with Doringi or Thuringi, the present Thuringians.
From the time when Cæsar first met with the Suevi under Ariovlstus, there was a deadly enmity between the Romans and the Germans. The Romans wished to make Germany into a province, and the Germans aimed at the possession of Gaul: on both sides there was the passion of conquest and the necessity of self-defence. Ambition puslied the Romans into Germany, and want of fertile lands, and perhaps some great revolution among the nations of Eastern Europe, led the Germans into Gatul and Italy. The Roman eagles were seen in the wilds of the Hercynian forest, but Arminius saved his nation from slavery in the forest of Teutoburg, where Varus was slain with three legions (A.D. 9). The campaign of Germanieus, who adranced as far as the Elbe, led to no results, though lie gained a complete victory over the Germans on the field of Idistavisus near the Weser (A.D. 16); when he celebrated his triumph in Rome (A.d. 17), the Germans between the Rhine and the Weser were as free as before. These tribes made a confederation, and chose Arminius for their leader. A war arose betwcen him and Maroboduus, king of the Marcomanni, who was defeated and obliged to implore the assistance of the Romans (A.D. 19). Being attacked by Catwald, or Catualdus, the chief of the Gothones, he lost his crown, and the confederation of the Marcomanni was broken. Arminius, the hero of Germany, fell by the hands of his jcalous kinsmen, in his thirty-seventh year. (Tacitus, Annal., ii. \&s.)
Notwithstanding the civil wars in Germany, the Romans gave up the idea of conquering the country, and Tiberius ordered a defensive system to be observed on the fronticrs, which were formed by the Rhine from its mouths to the Moselle, and from the junction of this river with the Jhine they followed the Lahn as far as the present district of Wetterau. The frontier then took a sonthern direction, passed the Main at Obernbiurg, the Jagst at Jagsthausen, the Kocher at Hall, and joined the Danube near Pföring, from which town it ran rlong the Danabe as far as Pannonia. The rivers were defended by castles, and the tracts between them by a strong rampait with towers, the Vallum Romanum of Hadrianus, a considerable part of which, the Pfahlgraben, is stlll visible. The Germans west and south of this barrier became Roman suhjects, but those who lived east and north of it enjoyed their antient liberty.

All the German tribes practised agriculture, but warfare being their favourite occupation, they abandoned their fields and their flocks to the care of bondsmen. Their agricultural system, which is still practised in some counties of Westphalia, and which is now called Dreifclder Wirthschaft, consisted in cultivating in field during threc successive years, after which it was used as pastureground for three years. The fine arts were not cxercised among the Germans, but they were aequainted with the
ant of writing [Ruac Letters], although only for religious purposes. (Rhabanus Mauma, in Goldast, Script. Rer. Alem., ii. 1, p. 67 ; IIiekesing, Thes. Ling. Septentr.) The groundwork of their social and political constitution was the union of a eertain number of fanilies into a conmunity, 'Mareha, 'end-marcha,' now - Mark-Genossenschaf.' Several marchas formed a 'gow;' now 'gan,' a distriet which had its own administration. Twice a month, and sometimes every week, the members of a gow assembled and held the 'gowding:' the gowdings were civil and eriminal courts, and also meetings for legislation, and war and peace were deeided on in them. Besides the gowdings there were 'graven' or 'greven' (graviones, comites), or delegates of the gowding, who were assisted in their judiciary functions by a eertain number of freemen. The magistrates were ehosen from the nobles (edelings or adelings), the 'principes' of Tacitus, who had also the right of forming a kind of senate, where they deliberated on important affairs previously to their being brought before the gowding, and they dispatehed matters of little importance, which did not come before the gowding. The nobles had also the privilege of keeping a - dienst-gefolge, or a band of freemen who served them in their feuds and wars ; and they had individually the right of protecting unfree people in the gowding, a right which also belonged to the community as a body, but not to individual freemen. The privileges of the nobles were probably connected with the religious institutions, of which we have no positive knowledge, allhough it appears that priests and nobles formed only one class, an opinion which is corroborated by the faet that wherever Christianity was introduced into Germany, it met with no opposition from the common people as soon as the nobles were converted. Some of the carlier Teutonic nations had hereditary kings, the 'reges' of Taeitus, who however had a very limited authority. The greater part of them chose prinees only as commanders of the army in time of war. The name of these commanders was 'herzog,' in low German 'hertog,' or 'hartog.' in Iatin ' dux.'
Besides the freemen and the nobles, there were bondsmen, ' lazzi,' ' lati,' or 'liti,' now 'leute,' in low German 'lüde,' or 'lide,' who were either the prinitive inhabitants of a eonquered territory, or prisoners of war, or freemen who had lost or sold their liberty. Their condition was in uo way like that of the Roman Servi, who, legally speaking, were not considered as persons, but in most respeets, things. Domestic and personal serviees, and espeeially agrieulture, were their exelusive oecupations.

The military organization of the Teutonie nations was founded on two prineiples. When a gow, or a confederation of several gows, determined on war, every freeman was obliged to take uparms for the defence of the eommonwealth. These wars had rather a defensive character, and they oecurred principally amons the inhabitants of northern Gernany between the Baltic and the Rhine. But war was sometimes made for the .private interest of some powerful noble, who earried it on with his 'dienstgefolge, which was a numerous body when the military renown of the chiefs, or the hope of easy conquests, promised rieh rewards to the adventurous band. These were generally offensive wars, and we find that they oeeurred chiefly among the Suevian nations.

We know fittle about the religion of the antient Teutonic nations. They worshipped a supreme being under the name of Welan or Odin, but the true character of their religion was the worship of Nature in her different manifestations. Thor, Hertha, and Freya were personifications of the power of heaven, of earth, and of love and procreation.
Sueh was the moral, social, and politieal state of the Teutonic nations when they began their wars with lRome. The Vallum Romanum prevented them from invading the Roman empire during the first and seeond centuries. In the third century they onen erossed it. In the fourth they conguered a considerable part of the countries on the Danube; and in the finls they invaded and conquered all the European provinees of the Roman empire. Instead of following the chronologieal order, which would cause confusion, we shall give a view of all these invasions by referring them to their several heads, according to the prople by which they were effected.
Alemanni. [Alomanni.] Towarls the middle of the fourth eentury swarms of people belonging to the Suevi
came from north-eastern Gerniany to the country between the Rhine and the Danube, where they settled, the Roman arny and colonists having retired beyond these two rvers. They called themselves Alemanui. In the beginning of the finh eentury the Alenanni eonquered the country on the lent bank of the Rhine, as well as parts of Norieum, Vindelicia, and Helvetia, and founded the kingdon of Alemannia. Clovis, king of the Franks, conquered the western part of it in 496: the eastern sud larger part, which was protected by Theodorie, king of the Ostro-Goths, was sequired by the Franks in 5i36. (Cassiodorus, Var., ii. 41.) The freemen lost a cousiderable part of their lands, almost all the nobles were deprived of their estates, many of them were killed, and the remainder beeame vassals of the Franks. Between 613 and $6: 23$ the laws of the Alemanni were collected by order of the Frankish king Clolarius, under the name of Lex Alenamnorunı. This collection is in Latin, like the laws of the other Teutonic nations of that period, except the laws of the Anglo-Saxons, which are written in their own language.

The Lex Alemannonum was revised in the time of Dagobert, king of the Franks, and again by Lantliced, the Frankish duke of Alemannia, in the beginning of the cighth century. There is 10 traee of the Roman law in it except in one single case (tit. 30). The lex Alemannorum, as well as all the other earlier codes of the Teutonie nations, are contained in Ferdmand Walter's 'Corpus Juris Germanici.' Sichard published an edition of it in the 'Leges Ripuariorum, Bajuvariorum, et Alemannorum,' 1530,8 vo. Besides these colleetions, the Teutonic laws are in the collections of Herold, Lindenbrog, Eecard, Heineeeius, Georgish, Canciani, and Baluzius.

Burgundians. [Burgundy.] The Burgundians eame. from north-cast Germany, and first assisted the Alemanni against the Romans; but they left Germany as early as the beginning of the finh eentury, penetrated into Gaul, and formed the powerful kingdom of Burgundy on hoth sides of the Jura, which was incorporated with the kinedlom of the Franks in 534 . The collection of the Burgundian laws, Lex Burgundionum, 'Gundobada,' 'Gundobarda, 'Loi Gombette,' was made fowards the end of the fitti eentury, under king Gundobald, who deed in 516 , and was augmented (517) by king Siegmund, who died in 523.

The legislation of Gundobald goes as far as title 42. The following titles, although they contain laws and regulations of Gundobald, were added by Siegmund, who completed the code by two 'additamenta,' containing his own laws. Charlemagne made a thivd additamentum, without altering the code itself. The Lex Burgundionum, which is written in much purer latin than most of the other Teutonie codes, eontains several of the rules of the Roman law coneerning donatious, and especially testaments (tit. 43 and 60). A separate edition was published at Lyon in 1611.
Franks. [Frasce.] In the very eountries which the Romans traversed on their way to the woods where Varus was slain, the Usipetes, the Teneteri, the Sicambri, the Bructeri, the Ansibarii, the Marsi, the Tubantes, the Chamavi, and the Clatti-all tribes belonging to the nothern, now Saxon branch (Ingaevones) of the Germani-formed a confederation, and ealled themselves Franks, either beeause they were partieularly 'free and bold, or on aceount of their 'barbed lanees' (frameae). Their name first appears in 212 , when some of them made an expedition into Gaul during the reign of the emperor Gordianus, whose general, Aurelianus, defeated them. In the beginning of the finth century they had conquered Belgium on far as the Somme, and in 487 their king Clovis put an end to the Roman power north of the Loire. The Franks subsequently eonquered Southern Gaul, then divided between the Burgundians and the Visigoths; Germany, and the Slavonian countries as far as Poland; part of Pannonia; the Longobard kingdom in Jtaly; and Spain between the Ebro and the l'yrenees. Charlemague was the lord of all the Tentonic nations, exeept the Scandinavians, the Anglo-Saxons in England, and the remainder of the Goths in the mountains of Asturias. The Frankish language, \boldsymbol{a} dialeet of the Low German, was spoken at the court of this emperor, among the nobles in France, and by many freemen. In Germany the Franks settled among the Suevian tribes on the Middle kline and the Main, and the mixture of these languages is the origin of the present Middle German or

Franconian dialects. Among the Teutonic nations which settled in Roman provinces, the Franks were the last who were converted to the Christian religion : their king Clovis was baptized after his victory over the Alemanni at Ziilpich (Tolbiacum) in 496. They founded a mighty aristecracy in France, the political influence of which was broken by Louis XI. The personal and social influence of the Franks lasted till the Revolution of 1789 , which is justly regarded by the best modern French historians as a reaction of the subjugated Celtic people against haughty and insolent Frankish invaders.

The Franks were divided into Franci Salici, who lived in the Low Countries between the Zuider Zee, the Maas, and the Somme; and Franci Ripuarii, who were settled along the Rhine between Nymegen and Bonn. Each of them had their code. The Lex Salica was written in very barbarous Latin, under Clovis, between 484 and 496, and was never revised, although it contains some laws by the sons of Clovis, which begin with the 62nd (63rd) title. Except ope rule in titje 14, about the rape of free persons, and another concerning marriage within the prohibited degrees, this code contains no trace of the Roman law. It is very important for the history of the laws of the Teutonic nations. The antient Lex Salica is often confounded with the present Salic Law, which regulates the right of succession in several sovereign and noble families in Europe. But this latter Salic law is only a single rule of the Lex Salica, and originally concerned the succession to the tax-free estates of free or noble Franks (terra Salica), which belonged to the male issue, to the exclusion of females. It is contained in title 62, ' De Alode,' 1. 6: "De terra vero Salica nulla portio haereditatis mulieri veniat: sed ad viritent sexum tota terrae haereditas perveniat.'
This law was not peculiar to the Franci Salici: it occurs in the greater part of the other antient Teutonic laws.
(Wiarda, Geschichte und Auslegung des Salischen Gesetzes; Heineccius, Ant. Germ., i., 1. 265, 285; a separate edition of the Lex Salica was published by Pithou, Paris, $1602,8 \mathrm{vo}$.)
The Lex Ripuaria was collected by Theodoric, the son of Clovis, between 511 and 534. It was several times revised, especially by Dagobert. It resembles the Lex Salica, and contains no traces of the Roman law.

Goths.-While the Alemanni, the Burgundians, and the Franks invaded the Roman empire on the Danube and the Rhine, its eastern frontiers were attacked by the Goths. The Goths originally inhabited the countries on the Baltic between the Vistula and the Niemen; but as early as the close of the second century A.D. they appeared on the shore of the Pontus Euxinus and the Maeotis, where they founded two great kingdoms,-that of the Ostro-Goths, or Greuthungi, east of the Dnieper, and that of the Visi-Goths, or Thervingi, west of it. Their power was broken by the Huns, by whom they were partly sulbjugated, partly forced to take refuge in Dacia and in Moesia. The Visi-Goths then left the Danubian countries, traversed Italy as far as Reggio, opposite Sicily, and finally conquered the southern part of Gaul, and Spain. The Ostro-Goths, less fortunate in their attempt on Thrace, were forced to go back to Dacia, where they became subject to the IIuns. After the death of Attila, in 453, they recovered their independence, and leaving the dangerous country of the eastern part of Dacia, they settled in the western part of this country, which the emperor Zeno was olliged to cede to them in 474 . In 488 their king Theodoric, after having besieged Zeno in Constantinople, compelled him to cede his claims on Italy, then under the dominion of Odoacer, the chief of the Rugii, the Heruli, and other tribes, who had put an end to thic Roman empire in Italy by deposing the last emperor, Romulus Angustulus, in 47.r. [Theodoric.] Odoacer was deprived of his crown and his life by Theodoric in 493, who founded the kingdom of the Ostro-Goths in Italy and Illyricum, which lasted till 552, when Tejas, the last king, was defeated and killed by Narses.

The Code of the Ostro-Goths, 'the Edictum Theodorici,' which was composed by order of Theodoric in 500 , is a collection of Roman laws. This king wished to form one people of the Romans and the Goths (Elictum, $\$ 30$), and he therefore adopted the laws of the most civilised of .his subjects. Leaving the Gothic laws exclusively to the
memory of the people, he knew that they would soon fall into oblivion without being formally abolished. In some cases, however, he supplanted Gothic customs by Roman laws. The Wehrgeld, or Wehre, -that is, the fine for crimes,-was entirely abolished, and in place of it the punishment of death was introduced in many cases, an innovation which seensed very hard to the Goths, who, like all the other Teutonic nations, inflicted the punishment of death only for high treason and a few such crimes. Pithou published a separate edition of the 'Edictum Theodorici' (Paris, 1579). Rhon, Commentatio -ad Edictum Theodorici, Reg. Ostrogoth., Halae, 1816, 4to.
The Visi-Goths settled in the southern part of Gaul in 412, and invaded Spain in 414. This country was then in the hands of the Suevi, the Alani, and the Vandals, who became subject to the Goths, or were forced to emigrate. In 451 the Visi-Goths, together with the Franks, defeated Attila and his 700,000 Huns, Goths, Gepidae, and other vassals, in the plain of Clâlons-sur-Marne. Their king, Alaric II., lost Gaul, except the eastern part of Languedoc and Provence, in the battle of Vougle against Cloys; king of the Franks, in 507. The kingdom of the Visi Goths lasted for three centuries, when it was overthrown by the Arabs in 712 . [Spain.]

Among all the Teutonic nations the Visi-Goths were the first who had witten laws. (Isidorus Hispalensis, : Chron. ad annum Aer. Hisp. 504, A.D. 466.') A collection of them was made by their king Euric (466-484), which is written in Jatin and has the title of ' Lex Visigothorum.' Its present form dates from King Egica, whose new code was translated into the Gothic language under King Receswind. It contains many traces of the Roman law, and is the only early Teutonic law which may be considered as a code in the modern signification of the word. The Lex Visigothorum must not be confounded with the Breviarium Alarici (Alaric II., in 506), or the Code for the Romans, who were subjects of the Visi-Goths, and continued to live under their own laws until they were abolished by the kings Chindaswind and Receswind, who declared the revised Lex Visigothorum obligatory on all the inhabitants of the kingdom of the Visi-Goths.
The Goths, the most civilized among the Tentonic nations, were the first who adopted the Christian religion. They had a literature from the time when Ulphilas translated the Bible. The Visi-Goths were at first Arians, and though they returned to the Roman Church, they distinguishicd themselves from the other Roman Catholies by their form of worship, or the Officium Gothicum, which was approved by the fourth Council of Toledo, A.D. 633. It is also called Officium Beati Isidori: Isidore presided over that council. It contains many customs and forms which have been used in the Spanish church from the earliest times of Christianity. It was written in Latin, but in old Gothic characters, which differ from the Scandinavian runes.
The Ostro-Goths soon disappeared among the Longobards, while the Visi-Goths preserved their language and nationality till the invasion of the Arabs; and another portion of them maintained their nationality until a very recent period.
These were the Gothi-Tetraxitae, who, after the emigration of their brethren to the western countrics, retired to the eastern part of the Chersonesus Taurica, now the Crimea, and the opposite island of Taman. There they lived for eleven centuries under the successive dominion of Huns, Bulgarians, Greeks, Khazars, Tartars of Kiptshak, and Tartars of the Crimea, and, lastly, of Turks Osmanlis. Their part of the Crimea was called Gothia during the middle ages. Busbequius, who was the ambassador of the emperor Rudolph II. at Constantinople, towards the end of the sixteenth century, is the last writer who mentions them. It appears that they afterwards adopted the language, the customs, and the religion of the Tartars. Russian scholars have traced the Gothic language among the Tartars of the Crimea. (Journal de St. Pélersbourg, 31st January (12th February), 1820.)

Another part of the Goths invaded Sweden, and founded the kingdom of Gothland (Gautland), which was afterwards divided into East Gothland and West Gothland (EystraGautland and Vestra-Gautland). They mixed with the Scandinavians, and it became a general opinion that they were originally the same people. But a comparison of the Gothic of Ulphilas and the old Scandinavian language

1. C., No. 1521.

Vol. XXIV. -2 M
shows that this opinion is unfoumted. (Olans Verelius, Tiohtici ef Rolf IV astromothiae Royum Ifintoria, Upalis, 16G4; Antonius, Bibl. Ifisp. Vel., i., 11. 62; Michaci Geddess Miscelhaneoms Tracts, vol. ii.. dias. 1; vol. iii., diss. 1; Manso, Geschichie des Olgothimchen Reichs in Itation' ; IIascov, eited below, if., p. 5.53-5(6).)
Suev.-From the eountry east of the Black Forest, between the Uppers Danule and the Alps, the Suevi, by which neme lice Quadi and the Hermunduri were perhaps ?:ikewise meant, spread over (iaul and forced their why into Spam (06-109). Their king Hemmanarie or Hemanrieh became master of Portugal, Galicia, and the western parts of Asturias, and Leon: he resided at Bretonia, near the mouth of the Minio, now a small village named Brefaña. Iis suceessors were independent lings, but in 55\% the Suevi became suljects of leovigitd, king of the VisiGoths. Theirlaws lave not lueen collected. They were nt first Catholics, but king Remisinund (401) professed Arianism: Theodenir (Ariamir) returned to the Catholic faith in 501.

Jinuluts.-This name, which was known to Tacitus, comprises various tribes of Teutonic and also of Slavonian origin, who lived in Eastern Jrussia and l'omerania. The Slavonian tribes were subject to the Teutonic Vandals, who are often confounded with the Wends (Venedi), who afterwards oecupied the countryof the Vnudals. The Vandals len their homes towards the end of the fourth eentury, and a part of them, after a sojourn in Pannonia, 1raversed Germany and Gaul, and foumcled the Vandal kingdon in Spain in 409. In 417 they suljugated the Alani, who had also settled in Spinin. In dey they were forced by the Visi-Golhs to abandon this country, and they went over to Africa. Their king Genserie or Geiserie took Carthage (439), nll Mamitania. and the islands of Sardinia, Corsica, the Baleares, and the western part of Sicily. On the 12th July, 4i5, they plundered Rome, and their name beame proverbial ns ihat of the most barbarous among the barbarians. Their kingdom lasted till 535, when it was destroyed by Belisarius, and becanie a part of the Byzantine empire. All the names of the Vandal kings are Teutonic, and resemble those of the Gothe kings, a faet which proves that however numerous the Slavonians were among them, the Teutonie tribes were the ruling nation. Their name is visible in that of the prevince of Andalusia or Vandalusia. (Papencordt, Geschichte der Vandialen.)

Longobards. [Iomibardy.]-The Longobardslived on the right bank of the Iower Elbe, and afterwards on the left side of this river, near Iuinelurg and Brunswick: in language and person they resembled their neighbours the Siaxons, a strong body of whon appeared with them in Italy. Before they invaded Italy they had lived in the present country of Upper Huugary, in Pannonia, and in Noricum (491-568). Their king Alboin subjugated the Gepidae in Transylvania (563?), and in 568 he conquered the greater part of ltaly. Their last national king, Desiderius, was deprived of his throne by Charlemagne (774), sho assumed the title of king of the Longobards: but the Jongobards neither lost their conslitution nor their estates; the only clange was in the reigning dynasty.

When the Longohards were subjugated by the Franks, they had possessed written Inws for 130 years. The first colleetion wes made by King Rotharis in G4.3. The laws of firimoald were collected in G69, those of Lutitprand between 713 and 724 ; those of lachis in 746 , and those of ^istulf in Tot. They contais only a few heads of Roman law coneeraing preseription and succession. (Muratori, Script. Rer. llul., tom. 1., p. 2; and especially ISiener, Dc Origine ef I'rogressu Legum Jurumque Ciermanicorum, i., p. 150, \&ec.)

These are the Teutonse nations that foundel permanent kingdoms within the limits of the Roman empire. Exeept the Alemanni, they all came in confact with a population, the educated part of which was entirely Romanized, allhough, except ltaly and some parts of the sonth of Spain and Gaul, the inhahutants of the villages were still Celts or Iberians when they were suljugated by the Teutonic invaders. (limuriel, hist. de la Ciaule Mforitionule, vol. i.) The politieal institutions of the new masters of the eivilized world rested on two great principles.
The Teutonic laws were not territorial, as they now are, but personal: a Frank was judged after the lirankish law, a burgundian after the Burgundian, wherever he lived. This prineiple being applied also to the Romana, gave rise

10 a double legislation, one for the ruling Teutonic nation, and the ather for the sulyjeet loomans. The sueond principle was that the sovereignty belonged to the body of the: conquerors, and not exchusively to their lings. This sovereignly not only comprised ihe supreme authority in legislation and adnuinistration, but it was considered as comprohending a right to the privale landed property of the vanquished nation. Every frue Frank or Goth hectane the master of a considerable portion of land which he took from the lkomans. The rights and duties of the kings towards their Tentonic fellow-conquerons remained the same as before; the kings had no riglt to punish any freeman, unless in time of war and for negleet of military duties. The frecmen also coukl not be forced to serve in any war 10 which they had not given their consent; and they did not pay any laxes to their kings, who were ouly the fint among their cquals. As to the sulhject Romans, the Teutonic kings heeame the lords of a numerous civilized nation : as suectasors to the rights of the RJoman emperors, and with regard to the Romans, they had absolute power, and they beeanie proprictors of the exten-ive privale estates of the emperors. They maintained the provincial administration, which was established by Constantine the Great and his suceessors, but they often conferrel varions functions on one person in order to render that complieated administration more easy to manage. As the eonquerors lived among the sulbjeet people, each provinee had a double administration, one for the ming nation and the other for the subject nation. Butthere resulfed $=0$ much contusion from this circunstance, that the kings were obliged, especially iu Gaul, to sacrifice the principles of the Roman administration, and to govern in the Teutunic way, althought the names of the higher public functions were Roman. The first functionary in each province in the Frankish kingdom was the Dux, who had the supreme military command, and sometimes also the authority of a judge. The second was the Comes, who was ehief judge and dircetor of all affairs concerning taxes and the revemice of the fiscus. From the cighth century the functions of the Dux and the Comes were conferred upon one person, who is sometimes styled Bux, and sometimes Comes.
The fate of the Romans in the Frankish empre was threefold. One jart of the Romans entered into the private scrvice of the king. and preserved a portion of their estates on condition of obedience to him. The great landowners belonged to this class, which lrad the name of 'Romani convirae regis.' 1 sceond part, the 'Romani possessores, remained in possession of their lands. bat they were obliged to pay taxes for thenn, a duty from which the conquerors were exempt: this elass principally cousisted of small landowners. Thie third elass were the 'IRouani tributarii,' who lost their liberty, although they did not become Servi in the Roman semse of the word: these were the antient 'coloni.' In many, towns the Romans continued to enjoy their municipal institutions, while a Teutonie community gradually arose within the same walls, and had its separate constitution. In other towns the richest anoung the Romans lost their liberty and became ' ministeriales,' a kind of privileged vassals; but the poor were treated as the Romani fribnarii in the villages.

The Teutonie mations which becams subject to the Frankish Lings were treated with less severity. The Burgumelians, the Longol aards, and the Bavarians only changed their dynast; but the greater part of the Thuringians and of the Alemanni lost n considerable portion of their lands, which were given to Frankish nobles, of whom they became vassals.
1 Sesides those nations whieh fomeded permanent kingrdoms. within the Roman empire, many tribes maintained their independence there only for a short period, or came and went rapidly without leaving further tenees, or were subjugated by others, and adopted the names of their vanquishers. Many among them were of Slavonian or other origin.
The Alani cane from the Caucasus, Iraversed Europe, and lised independent in sonthern Spain under their King Respendin!, from 409 to 417 , when they were subjugated by the Visi-Goths and carried into the south of Ganl. Another part of them setted between Orleans and Nantes under their chief (Goar (40G), but in 452 they were defeated and dispersed by, the Visi-follis. The Alani were not of Teutonic origin; the names of their kings (Respendial, Utaces, Goar) have no resemblanee to

Saxon, Frankish, or Gothic names. They are probably identical with the Ossetes or Iron, an old Persian tribe in the central part of the Caucasus. The country of Albania, notth of the Caucasus, was known to the Greeks and Romans. The Byzantines called the tract between the Terek and Shirwan, Alania. (Procopius, De Bello Goth., 1. iv.; Stritter, Memoriae Populor. 'Alania,' in tom. iv.; Suhm, Geschïchte der Däne?, übersetzt von Gräter, i. 1; Zeuss, Urgeschichte der Deutschen, 'Alanen.')
The Quadi, who lived in Silesia and Moravia in 375, were a Suevian people. The Gepidae perhaps were of Gothic origin; their kinedom in Transylvania was destroyed hy Alboin, who killed Kunimund, the last king of the Gepidae.

Odoacer, the commander of a band of Scyrri, or Scirri, Rugiz, and Heruli, put an end to the Roman empire in Italy, and was acknowledged as emperor, but he was put to death by order of Theodoric the Great in 493.

The Rugii were Germani; the origin of the Scyrri and of the Heruli is uncertain. It has been pretended that the IIeruli were a Lithianian tribe.

Tribes wilhin the limits of Germany which lost their Independence under the Franks.-The Bojoarii, Bojobari, Bajuearii, or Bararians [Bavarla], whose name became known towards the year 480 , were a confederation of Suevian tribes: they lived between the Danube, the Lech, and the Ens. In 540 they were forced to yield to the Frankish kings, and were governed by dukes of the dynasty of the Agitolfingians. Their laws, which were collected between 613 and 638, resemble the laws of the Alemanni, though they contain many traces of the Roman law. (Mederer, Leges Bajuvariorum, oder ältestes Gesetzbuch der Bajuvarier, \&c., 1793-8.) The Thuringians occupied the country north of the Bavarians as far as the Unstrut, and even beyond that river. They were related to the Goths, and their name scems to resemble that of the Thervingi, the Hermunduri, and Herniones. Their last king, Hermanfrid, was deprived of his crown by the Franks in 531. Charlemagne is said to have made the first collection of their laws, but there is no eviderfee in support of this statement. Their code is known under the title of 'Lex Angliorum et Werinorum, hoe est Thuringorum.' These Angles and Warini or Werini were settled in the northern part of Thuringia, but it does not appear why their nalles are mentioned before that of the Thuringians, who were the more numerous nation. This collection is brief and incomplete. (Leibnitz, Script. Rer. Brunsvic., i., p. 81.)

The Saxons [Saxons; Saxowr] divelt north of the Thuringians. On the east their frontiers were the Elbe, the Stcelnitz, and the Baltic; on the north, Denmark, tho Gcrman Ocean, and Fricsland; on the west, they corresponded to the western frontiers of the present province of Westphalia. When they had sent numerons settlers to Britain, their power beeame less formidable to their neighbours, the Wends in the east and the Franks in the west. The Franks were formerly united with them aqainst the Romians, but when they had conquered Gaul, the Saxons were obliged to desist from their inenrsions into this country, and hence arose jealousy and hostility. The souih-western parts were contruered by the Franks as carly as 555 ; the rich landowners were compelled to give a considerable part of their lands to Frankish nobles, and the common freernen to bend under the yoke of servitude. The remaining and greater part of the population was free, though from time to time tbe Saxons paid tribute, until, after the memorable war with Duke Wittekind (772-803), Charlenagne tecame nraster of all Saxony. But the Saxons were not subjugated like the Romans. They promised to adopt Christianity, to acknowledge Charles as their king, and to ohey his governors (greves) and bishops. On the other harid, Chailes granted them equal ' Welre' (value of their body and liberty in case of wounds, murdet, \&c..), and the same privileges which the Franks had, especially freedom from tribute, and the privilege of being tried in their own country, according to their own laws, and by their equals.

Gaxones patrlk. et Ithertatis honore
Uloc aunt pontremio socinti foedere Francis,
Anonym., in Leibnitz, Script. Rer. Brumsv., i. p. 153. Compare Möser, Oinabrückische Geschichte, i. 3-40, the best work which has been published about the old Saxons in Germany.

Charlemagne was the first king of the Saxons, who formed a great confederation of free communities; they appointed dukes for their wars, and only acknowledged obedience to the 'gowding' and to 'greves,' chosen by the freemen among the 'edelings' of the communities. The laws of the Saxons were collected by order of Charlemagne. They consist of nineteen titles, and are so short and incomplete as to justify the opinion that only a part of them has been preserved. Two 'Capitularia' of Charlemagne concern the politiead and ecclesiastical condition of those parts of Saxony which were conquered at the time of their publication, 788 and 797 . This 'Lex Saxonum' must not be confounded with the 'Sachsen-Spiegel,' the - Mirror of the Saxons,' a code of Saxon law which was written in Latin and afterwards translated into the Saxon language by Eicke van Rcbgow, between 1215 and 1218. (Gaertner, Saxomum Leges Tres. Accessit Lex Frisionum, 1730-4.)

Frisians [Frisinas].-The Frisians were brought under the Roman power by Drusus, the brother of the emperor Tiberius. Olennius, their governor in A.D. 28, oppressed them by fiscal measures, and they cast off the Roman yoke. In the war between the Romans and Claudius Civilis they joined the latter. When the Franks invaded Gaul, the Frisians occupied some countries which were abandoned by the Franks, the islands between the nouths of the Schelde and the Rhine, and the present provinces of Gelderland, Zutphen, and Overyssel; and after the emigration of the Anglo-Saxons they gradually took possession of the coast and the islunds of the German Ocean as far as Jutland. In 689 they were attacked by the Franks aind obliged to pay them tribute. After the establishment of the German kingdomi, the Frisiaus obeyed the king (emperor) as their sovercign, but they chose their own judges and other authorifies. During the middle ages they formod the powerful republic of the Seven Frisian Sealands, which was broken by the counts of Holland, of Oldenburg, and several other princes of the empire. The last independent Frisians were the Dithmarschen between the Elbe and the Eider, who were subjugated in 1559 by Clristian III., king of Denmark, and Adolphus I., duke of Holstein.

The laws of the Frisians were collected by Charlemagne under the title of 'Lex Frisionum.' (Gaertner, Saxonum Leges Tres; Accessit Lex Frisionum.) The 'Statuta Opstalbomica, the laws of the Seven Sealands, whiel are written in the Frisian language, are a different collection. The dialect of this language which most rescmbles the Anglo-Saxon language is that of the northern Frisian islands on the coast of Sleswig. (Clement, cited below.)
Anglo-Stxons.-An account of their history has been given under the heads Saxons and Evgland. The first settlement of Tcutonic tribes in Great Britain previous to the arrival of the Anglo-Saxons has been treated with great learning by Dr. Clement, in his work 'Die Nordgermanische W elt,' Copenhagen, 1840. The author, who has travelled in all parts of Great Britain where he supposed he could find traces of such settlers, has paid particular attention to Caithness and the eastern coast of Scotland. With this book the reader may compare Finn Magnusen, Om Picternes og deres Nains Oprindelse, in 'Det Skandinav. Littcraful-Selskabs Skrift,' 1816 and 1817.

The following works contain full informationi concerning the history of the Teutonic nations:-Mascov, The History of the Antient Germans, translated by Thomas Lediard; Gibbon, Decline and Fall; Eichhorn, Deultsche S'tats-und Rechts-Geschichte; Savigny, Geschichte des Römischen Rechtes im Mittelalter; Grimm, Deutsche Rechts-Alterthiimer, and lus Deutsche Gramimatik.
The Scandinavian branch of the Teutonic nations appears late in history. The Sagas tell us that in the fifth century B.c. Odin led the Scandinavians to Sweden and Norway; but this Odin is a god. Less fabulous is the history of a second Odin, who, in the beginuing of our mra, carne from Asia to Scantdinavia, accompanied by his 'Asen,' or perhaps 'Ansen,' or fellow-warriors. 'The name of the Suiones or Swedes was known to Pliny and to Tacitus, and Pliny knew the name of Scandia, now Scania, the southerm exiremity of Sweden, which name gradually acquired its present general meaning. Goths came to Scandinavia at a very early period, and the second Odin was perhaps their chief. They mixed with the Scandinavians, and traces of their language have been found in the dialects of the provinces of East and West Gothland in Sweden, and
their name is atill preserved in many localities. The aboripines of Sweden and Corway belonged to the Finnish race. They fled towards the north, but not without leaving their traces in the mountains of the Kjoelen and the Dovre Fjeld.
The Scandinaviams, Northmen, or Normans, became kinwn to the sonthern nations by their piracies, and they were ofenl leagued witt the Saxons. In the wars between Charlemagne and Wittekind, the Danes assisted Wittekind, who had married Gera, the daughter of their King Siegfried. As carly as the beginning of the eighth century the Danes and Jutes appeared in the north of England; in the beginaing of the ninth eentury the Danes settled on the south-enst coast of Ireland. Normans or Nonvegians oceupied the Orkneys before the end of the ninth century: in 861 they came to the Farce Islands, and they sent colonies to lceland as carly as 870. The northern parts of North Ameriea were known to these bold navimatons four centuries before the time of Columbus. Other Nonnans conquered Normandy; Apulia, Sieily; and the opposite const of Africa. From the eighth century the Waregians, who came from Norway and Sweden, penetrated into Russia and founded the Norman dyuasty of the grand-dukes of Kiew: some of the first families of the Russian nolility are of Norman origin.

The Swedes conquered the coast of Finland as early ns RiNO, and settled in great numbers in the distriets of Also and Nylaud. Although Finland is chiefly inhabited by a nation of Finnish origin, and though it lias become a Russian province, the Swedish language is the only language used for public acts and legal ducuments. [Scavdixaria.s Lasguge.]
Sulm is one of the best authorities for the critical history of the Scandinavians. Ile las written in Danish on the origin of the Seandinavians, on their mythology, a critical history of Denmark, a history of Denmark, and several other works concerning this country.
(Müller, in lis Kritisches Eramen der Dänischen und Noruegischen Sugengeschichte, examines the historical truth of the Sagas; Peringskjëld, Monumenta Sueo-Gothica, Stockholm, 1710, fol. ; Peringskjöld, Wilkina Suga, sive Hisloria IVikincnsium, contains an account of the exploits and conquests of the Scandinavians in Russia, Italy, \&e.)

Table of the modern Tcutonic Languages and their
Dialcets.

1. Hem German languages.

The German language as it is written or spoken by the well-edueated Germans, belongs to the High German languages, but is not a dialect.)

> A. Suabiun branch.
u. Suabian subordinate braneh, containing the dialects of

1, Suabiu, that is, of the Black Forest, of the Neckar, and of the country between the Danube and the L.eeh.
2, Bataria, that is, of the Alps, of Salzburg, and of the Danube.
3. Tyrol, that is, of Vorarlbers, of the Inn, of the Etsch (Adige), and of the Puster-Thal.
4, Austriu, that is, of the arelduelyy of Austria, of Styria, of Carinthia, of Carniola, of Southern Bohemia, and of Moravia.
b. Allemannic, subordinate braneh.

1, Allemannic, commonly so called in the south-west corner of the Black Forest.
23, Dialeets of Suitzerland, that is, of Bern, of the Oberland of Bern, of Wallis, of the country of the Grisons, and of Appenzell, \&c.
3. Dialeets of Elsass (Alsaee) and of Baden.
c. Old Thüringium, subordinate braneh, containing the dialects of the Thiringer Wald, of part of the Fiehtelgebirge, and of the northern part of the Bölmerwald. These dialects are generally confounded with those of the adjacent flat countries of 'Thiringia and the Upper l'alatinate, whiclt belong to the Pranconian branch.
B. Iranconian branch.

1, Dialcets of Franconia, of the Palatinate, of the Middle Rhine, and of Southern Ilesse.
2. Dialects of Thïringia, except the Thüringer Wald, of Northern Ilesse, and of Ite lie hsteld.
3, Dialeets of Lorraine and Luxemburg, which are mueh mixed with Low German.
4, Dialects of Upper Saxony, of Meissen, of the Eirzgebirge, and of Lusatin.
E, Dialects of Northern Bohemia, of Silesia, and of part of the German colonies in Ilungary.
6. Dialects of the nobles, the elergy, and the citizens in Curland, Livonia, ans Fsthonia.
11. Saxor Langunges.
A. Frisiun branch, which contains the dialects of West Friesland, of Saterland, of the islands along the Dutch and the Geruas coast, and of the islands ulong the const of Sleswig.
B. Loue German branch, divided into six sections, viz.:

1, Of Lover Saxony, containing the dialects of Sleswig, of Molstein, of Mamburg, of Bremen, of Brunswick, of Ilanover, of the country between the Ilarz and the Weser, and of the Marshes with East Prisia.

- Of W'estphalia, with the dialects of Upper Münsterland, of Lower Münsterland, of Osnabriiek, of the Upper Weser, of Sauerland, of Mark, and of Eisitern Berg.
3, Of the Lover Rhine between Neuwied and Düsseldorf, especially the dialects of the Eifel, of Cologne, and of Aix-la-Chapelle.
4, Of the Nefherlauds, containing the Dutch language, the Flemish language, and the dialeets of Jülieh, of Cleve, and of Geldern in Germany.

5. The dialeet of the Saxons in Transyleania.

0 , Of the antient IVendish countrics, colonized by the Saxons, containing the dialects of Mecklenburg, of Pomerania, of Brandenburg, of the Marks, and of East Prussia.
C. English braneh. [Sanons; Englano.]
111. Scaspixatian languages.
A. Old Norman branch, containing the dialects of the mountaineers of Norway, the leclandic language, and the idiom of the Farce islands.
B. Dauish branch, containing the Danish language, with the dialects of the islands, of Jitland, and of Northern Sleswig, and the modern Norwegian language.
C. Sicedish branch, containing the Swedish language, with the dialects of Gothland, of Dalecrarlia, of Stockholm and the edjacent country, of Finland, and of the Aland islands.
(Adelung und Vater, Mithridates; Balbi, Altas Ethnographique: Ober-Müller, Allas Ethno-gíographique de SLurope, Paris, 1841.)

TEUERO'NE. [Papal States.]

TEVIOTDALE. [Ronburghsulae.]
TEWKESBURY, an antient market-town and munieipal and parliamentary borough in the north-western part of Gloucestershire, close to the borders of Worcestershire. 3 miles from Gloueester and 103 from London. It is situated on the eastern bank of the Aron, near its junction with the Severn; and the small rivers Carron and Swilgate, which are tributaries of the Avon, flow through the parish. The immediate neigltbourhood of the town is subject to floods. Within half a mile of the town is a handsome iron bridge of one areh, 172 feet span, over the Severn; and there is an antient bridge of several arches over the Avon, with a eauseway leading from it to the above-mentioned iron bridge. The Carron is erossed by a stone bridge, and the Swilgate by two. The parish extends about 4 miles from north to south, and its width varies from 200 yards in the northern part, to 2 miles, its extreme breadth. Inmectiately to the north of the town the width of the parish is only half a mile. Here the Avon has been diverted ly an artificial eutting called New Ayon, or Mill Avoni. The parish coutains 1800 eeres, with the hamets of Southwiek in the southern part and that of Mythe in the northern part. Tewkesbury is a borough by preseription: it received its first charter of incorporation from Queen Elizabeth in 157. By the charter of William III., granted in 1698 , the jurisdiction of the borough magistrates was extended over the whole of the parish. It has returned two members to parliament sinee the 7 James 1. Before the passing of the Reform Act, parts of the town, partieularly on the cnstward, were not comprised within the limits of the parliamentary borough, but the whole parish is now included. The right of votine was formerly in the freemen and burgace holders, and inhabitants paying seot and lot. The number of eleetors on the parliamentary register in 1840 was 409 , including 89 who possessed double qualifications; and of the former number, 238 were oecupiers of houses rated at 101 . and upwards. The town is not divided into munieipal wards. The corporate body consists of a mayor, four aldermen, and twelve councillors, The old corporation
was composed of a high-steward, twenty-four principal burgesses, including in that number two bailiffs and the recorder; and there were besides several minor officers, and four justices for the borough. The appointment of twenty-four assistant burgesses was directed by the governing charter of William III., but none had been clected tor many years prior to the passing of the Municipal Corporation Reform Act. The twenty-four burgesses were clected by the bailiffs and burgesses out of the burgesses at large. The annual income of the old corporation did not exceed 22 ., and in 1828 it was in debt to the amount of 6000 l . The sum of 2000 l . was advanced by the recorder, and the property of the corporation conveyed to him, on which the creditors were paid $6 s .8 \mathrm{~d}$. in the pound. Quartersessions for the borough are held, and there is a court for the recovery of debts under $50 l$.

Tewkesbury is said to be of Saxon origin, and to derive its name from Theot, a Saxon, who founded an hermitage here in the seventh century. Early in the eighth century two brothers, dukes of Mercia, founded a monastery, whieh, in the tenth century, becaine a cell to Cranbourn Abbey in Dorsetshire. In the twelth century Robert FitzHaimon enlarged the buildings and liberally endowed the institution, in consequence of which the monks of Cranbourue made Tewkesbury the ehief seat ot their establishment. At the dissolution the abbey belonged to the Benedictines, and its annual revenue was 15981. A great battle was fought on the 14th of May, 1471 , within half a mile of Tewkesbury, when the Laicastrians sustained a most disastrous defeat, and botla Queen Margaret and her son Prince Edward were taken. The town was sueccssively in the hands of the royalists and parliamentarians at the commencement of the civil war; but in 1644 it was taken by the latter, and held until the close of the war.

The town principally consists of three good streets, wellbuilt, with a number of smaller ones branching from them. According to the eensus of 1831 , the population amounted to 5780 . The prineipal manufacture is the cotton and lambs'-wool hosiery. In 1810 the number of stockingframes in the town was 800 ; and in 1833 there were 600. The wages averaged $12 s$. in the former year, and $7 s$. in the latter. The number of men, aged 30 and upwards, employed in the stocking manufacture in 1831 was 300 (P op. Returns), and 44 were engared in the lace manufacture. Nail-making formerly employed a considerable number, but in 1833 there were only 50 persons so occupied. (Mun. Corp. Reports.) Tewkesbury was and is still the centre of an extensive carrying-trade on the Severn and Avon; but the improvement of the navigation of the Severn to Gloucester, by means of a ship-canal, is said to have been injurious to Tewkesbnry, and to the improved means of intercourse with other towns in the same district is also ascribed some decline in the attendance at the corn-market. The iron bridge across the Severn, which opened a communication with Hereford and Wales, counterbalances on the other hand the effects of the above-mentioned improvements. There is a branch railway from Tewkesbury rather more than two miles in length, which joins the Birmingham and Gloucester Railway. The collegiate chureh of the antient monastery is now the parish church. It is a noble and venerable structure, in the early Norman style, and consists of a nave, choir, and transepts, with a tower rising from the centre, supported on massive and lofty piers with circular arches. The roof is finely groined and carved. There are several antient chantry chapels in the east end of the choir, which is hexagonal. Some of the monuments are in memory of persons who fell at the battle of Tewkesbury. The living is a vicarage, of the gross annual value of 3761. A new church was opened in 1837. All the principal denominations of dissenters have places of worship. There is a grammar-school with an endowment of 52l. a year. The master is appointed by the eorporation. When the corporation comnissioncrs visited Tewkesbury in 1833, the master was a elergyman and one of the borough justices, and for many years the school had not been attended by more than three or four pupils. In 1833 there were, besides the above, and two boarding-schools, 12 daily schools in the parish, attended by 697 children, and several Sunday-schools, at which 388 children werc instructed. The national school is partly supported by an antient endowment for the instruetion of 20 children, and a Lancasterian school is dependent on voluntary contributions. There are almshouses for 10 poor persons, and several inedical and other charities of cons-
paratively reeent date. The fown-hall was built in 1786: the upper part contains an assembly-roon and a hall for meetings of the corporation; and the lower part is appropriated to the borough courts. A gaol, house of correction, and penitentiary were erected under a local act passed in 1812. The market-house is a landsome building, with Doric columns and pilasters supporting a pediment in front. There is a small theatre and public library and news-room. The town is paved, lighted, and watched under a local act passed in 1786. The market-days are Wednesday and Saturday: the former for corn, sheep, pigs, \&c.; and the latter for poultry and provisions. There are fairs in March, April, May, June, September, October, December; and a statute fair at Michaelmas.
(Dyde's Hist. of Tewkesbury ; Pop. Returns, 1831; Reports of Ecclesiastical Commissioners and of the Municipal Corporation Commissioners, \&c. \&e.)

TEXAS. Since the publication of the article on Mexico [Mexican States, the Uvited], Texas, which was then merely an insurgent province of that republic, has been recognised as an independent state by the leading powers of Europe and America. A suecinct statement of the revolution by which this change has been effected is neeessary.

A decree of the Constituent Cortes of Mexico, dated 7 th May, 1824, deelares that Texas shall be annexed to Coahuila until it possess the elements necessary to the formation of a separate state; but that as soon as it shall possess these elements, the connection is to be dissolved, and a separate state-constitution given to Texas.

At the time when this deeree was published, Texas probably, did not contain 4000 inhabitants of the European race. The district of Bexar, which in 1806 contained 6400 colonists from Mexico, was tound in 1835 to contain only 3400 of that class, scattered over the settlement of San Antonio, the missions, and frontier military posts; and this process of depopulation had reached its lowest ebb for some time before the latter date. In the districts of Brazos and Nacogdoches there were, in 1824, no inhabitants of European descent, except at the military posts.

The government of Mexico had made efforts, both while the country was a Spanish colony, and after the recognition of its independence, to promote the settlement of Texas by the Empressario system of colonization, i.e. by granting tracts of land to individuals, who were to forfeit the grant unless they settled a specific number of colonists on them within a limited period. In furtherance of this policy, permission was given by the supreme government of the eastern internal provinees, on the 17th of January, 1821, to Moses Austin, by birth a citizen of the United States, to introduce into Tcxas from Louisiana 300 families, 'being Catholics, or agreeing to become so on entering the Spanish territory,' and also agreeing to take the oath of allegiance to the crown of Spain; and a tract of land in the ricinity of the Brazos river was granted them to settle upon. Some difficulties arose from the disturbed political state of Mexico at that time; but in 1824 eolonising operations were begun by Stephen, the son of Moses Austin (his father having died in the interim); and on the 24th of March, 1823, a colonization law for Coaluila and Texas was promulgated. In the course of 1825 and 1826 , seven more Empressario grants were made, and the parties obtaining them beeame bound to introduce about 2000 foreign families, under the same conditions as had been preseribed to the Austins.

Under these grants the colonising of Texas from the United States proceeded with such rapidity, that in 183\% Colonel Almonte, a commissioner of the Mexican government, reported the population of the province to be as follows:-In Bexar, 4000 inhabitants of European origin, of whom 3100 were Spanish Mexicans and 600 Irish settlers; in Brazos, 8000 , of whom 1000 were negroes, alnost exclusively colonists from the United States; in Naeogdoches, 9000 , of whom 1000 werc negroes, also An-glo-American colonists. In addition to these, Texas contained about 15,000 Indians, of whom 4000 were friendly to the European race and 11,000 hostile. About 10,000 of the hostile Indians haunted the district of Brehar, the rest were scattered over the district of Brazos. The Mexican commissioner remarked in his report that the part of Texas which presented the greatest difficulties to travellers was that which lay between the frontiers of Coahuila and San Antonio de Bexar: the province was
ssolated from the rem of the Mexican provinees, and had an easy communcation with New Orleans. The balance of conmercial enterprise and wealth was also in favour of the two distriets which lay nearest to the Unlted States, and hat been colonised from them. The whole trade of Tevas in 1834 he valued at 1.100 .000 chllars of which Qusukn belonged to Brazos sin),000 to Nacomboches, $270,0 \times 10$ were invested in the smuggling trade of these two diltricts, and only 00,000 belonged to the Spanish Mexican dimitret of Bexar.
Various incidents had concurred between 1824 and 183: to excite repulsion and distrust belween the AngloAmerican colonists on the one hand, and the settlers of Spanish descent and the Mexiean govermment on the oither. It had been made onc of the conditions of the timpressario grants that schools for teaching the Spanish language should he crected in all the new settements. This had been entirely neglected. The wealthier settlers of Bmares and Nneogdoches sent their children to be edueated at New Orleans, and the poorer gave theirs no edtrvation at all. The system of settling some hundreds of fantion at alf. The system of sething some humareds of subject to a ecrlain degree of control from the Empressario, further contributed to prevent their amalgamating with the Spaniards. They continued thoronghly English in their language and custons. Religion too beeame a means of iucreasing the nutual repulsion: the new-comers had no oljection to call themselves Roman Catholics, but they were lax in their observance of religious duties, and this irritated the priests and brought the Sparish settlers to regare them as juersons of indifferent character. Ont the ither hand, the settlers from the United States were chafed liy. the stringent custom-house regulations and senimilitary government of Mexieo. The question of negro slayery, too, added to their sources of discontent. By the fiffecith article of the trenty of amity and commerce between Great Britain and Mexico, the government of the latter country engaged to prevent all its subjects from taking part in the external slave-frade. The rule was relaxed in favour of the colonis!s from the United States, so as to nllow their bringing their slaves with them; bit the restrictions under which this permission was granted oecasioned constant collisions between them and the offieers of the customs. The decree of 20th Seplember, 1820, abolishing slavery throumhout the Mexican dominions, oecasioned great discontent in Texas.
The government viewed the inerensing numbers and wealth of the Anglo-American culonisls with jealousy, partly on account of their demoeratie propensities, partly on accounl of its suspicion that the government of the United States was bent upon aequiring Texas. The Seoteh and New York masonic lodres at Arexico lad become in a great measure incre instruments of the federal and centralising factions; and Poinsett, the American envoy at Mexico, had not only been instrunental in fomding the New York lodge, but had persisted in tahing a part in the internal political contests and intrigues of Mexico, which was quite ineonsistent with his diplomatic character, and ultimately led the Mexican calbinet to insist upon his removal. The Eiscoces, the party attaehed lo a centrulised system of covernment, were then in the ascendant, and they not unnaturally regarded every Aneriean Hom the United Siates as a Jorkino, a demoerat or adherent of a constitution which left each individual state more independent of the central authorities in Mexico. The settlers in Texas seem lo lave taken little concern in polities. When Ipyden lidwards and his confederates made their mad attenpt to establish au independent repmblic in Nacogloches in 18:20, Stephen Austin and his colonists rendered prompt and efferent assistance to the Mexican authoritics. But on account of their origin they were viewed with the same suspicion as the rest of their countryinen.
The nyinion that the United States were auxious to annex Texas to their lemritory hal have appeanance of thunlation. Aatorn l3nrt's project of resolutionising S_{1} anish America in 180: lind not beedin firgoten. In 1823 the envoy of the United Siates at Mexico had been instructed to sound the govertinent on the quetion of trandeming the frontier between the two reppllies from the Shlint to the lzio Gramle of the Columd. In 1827 he hat limn ninthort d tis for the Mexicau covermment miltion of dollats for the fromtier of the Rid Grande, and
half that sum for the frontier of the Colorado. In 1890 he received direetions fis inerease lils offer to five mitlionss for the frontier of the ('olorads. This pertinaclity on the part of the government of the Uniled States naturelly led the Mexican govermment to siew with apprehenzion the growing strength of the singlo-American settlers in Texas.

In I8:30 the irritation on hoth sides was evidently bringing atoout a crisis. The military posts on the frontier were strengthened, and new ponts were established in the rettled districts and at the trading sfations on the coast. The number of Mexican soldiers in Texas was increased in about 1300, and placed nuder the command of the political chiefs of liexar, 13 razos, and Nacomdoches, the first-mentioned being intrusted with the supreme command. On the 6 ith of Λ yril, 1830, 13nstamente promulgated a decree prohibiting all citizens of comutries adjoinine the Mexican teritories to seftle as colonists in the territories of the republic immediately adjacent to these countries. By this edict the newly arrived settlers from the United States in Texas and those who were on their way were subjected to serious inconvenience and lost. ()n the remonstrance of Colonel Austin, the enforcement of the decree was mitigated by the local authorities: the colonists were allowed to take possession of their lands, but they received legul titles in only two of the seventeen settlements whell were already established in Texas.

After the govermment had thus unseftled the property of the most numerous and wealthy portion of the population, a revolution was incvitable; but as is generalty the ease, the first hostile collision between the citizensand the government forces was oecasioned by one of the minor grievances. An attenpt made by the governor of Ana huac to arrest an Anglo-Amerienn colonist arrayed the military and the settlers of Nacogdoches in arms against each other in Jnne, 1832. The insurgents besicged and eaptured the post at Velasco, intercepted the politieal chief of Nacogdoelhes on his way to relieve the garrison of Amalmae, and forced him to surrender, and obliged the governor of that fort to tly from the couniry. Santa Anna, who haul a short time before promulgated what has been ralled 'the plan of Vera Cruz,' and thus ty rallying the Federalist party around him obtained possessich of the reins of gorcmicut, had on the first intelligence of disturbances in Texas dispatelied Coloncl Mexia with 400 soldicrs to that province, who was aceompanied by Stephen Anstin, representative of Texas in the Mexicm legislature. Mexia was satisfied with the explanation that the victorions insungents gate of their prodeedings; and tranquillity being restored, the whole of Texas declared for 'the plan of Vera Cruz.'
In October, 1832, a conventlon assembled at San Feljpe de Sustin to frame a menorial io the Central Govemment for the separatiou of Texas from C'oalnuila and for the repeal of the law of 1830 which suspended the contracts of colonization. In 183:3 another convention net at the same place to frame a stale constitution to be subunitted for the approbation of the Cential Govemment. Colonel Austins was nppointed commiswoncr for the provinee to present and support those memorials. At Arexico he found everything in confnsion; and on the 2nd of October he wrote to his constituents, adrising them to organize an interm government. The contents of this letter havine come to the knowledere of Gomez Farias, the president, Austin was nrested on the 10th of Deeember on his way home, and carried back to Mexieo, where he was thromi into prison.
The Texaus nore attaehed themselies to the Federalists, Who had quarrelled with Santa Amma and his party. A state conventiont of Coahuila and Texas was nppointed to be held at San Antonio, in Noecinler, 1831, but owing to the mathy of the Spaniatds of Coahuila nothing cance uf it. The inore energetle Anglo-American population of Texas berant to feel themsclies impeded hy their mion with Coalmila, and a wisls for separation mined ground. In April. 1835, a mectiuse of the joint legislature of Texas and Coalmila was brot yht about, and a pectition in fasour of a Fiederal constitution agreed to. Santa Anna soon aner marelhed ogaitast Coahuila: the state authorities attempted to retreat wih thr arehives into Texas ; but the governor was taken pri oner, the goremment dissolved, and a military commlwion installed at Saltillo in its plaee? Texas was virtually len without any governmenl.

The appeal to arms was precipitated by a custom-house brawl. An attack was made under some pretext or another on the custom-house at Anahuac. Captain Thompson, dispatched by: the Central Government, in June, 183., at the request of the Ayuntamiento of that place, in the Correo war-schooner, to inquire into the affair, precipitately attacked and captured a Texan trading-vessel. The proprietors of the prize armed another trading-ship, took the Correo, and sent the captain to New Orleans under a charge of piratically interrupting the trade between the United States and Texas. In the month of August Santa Anna requested the Texans to deliver up Zavala, a leader of the Federal party, who had been his friend and supporter whilo he remained faithful to 'the plan of Vera 'Cruz,' but latterly his enemy. The request was rcfused, and reports soon after reached Texas that Santa Anna was mustering troops to invade it.
While affairs were in this position, Stephen Austin was entertained at a public dinner in Brazoria, on his return from his long captivity. Austin had, as long as lie could, done his utmost to prevent the discontents of the settlers assuming a political complexion, and when that was no longer possible, had stcadily opposed any projects that seemed to point at a separation from Mexico. The advice therefore which he gave on this occasion, to organise committees of safety and vigilance throughont the province, was at once and implicitly followed. He was himsclf appointed chairman of the committee of his own colony, to which a degree of control over the other committees was tacitly conceded. Before the organisation of the country was completed hostilities were commenced between the colonists and the military in the province : in consequence of which Austin, in the begining of October, assumed the command of an army hastily collected at Gonsalez, and Zavala was appointed chairman of the Austin committee in his stead.
On the 3rd of October, 1833, General Barragon issued a decrec abolishing the legislative powers of the several states and establishing a central republic in Mexico. A general consultation of Texan delegates was, in consequence of this measure, held at Anstin, which, on the 7th of November, issued a declaration in favour of state-rights; summoned a convention of delegates to be held at Washington in Galveston, on the lst of February next; and organized an interim government. Henry Smith was chosen governor and W. Robison lieutenant-governor; Samuel Houston was appointed major-general and con-mander-in-chief of the regular army of Texas; and Stephen Austin, B. T. Archer, and W. H. Wharton were appointed commissioners to the United States.
The new commander-in-chief immediately established his head-quarters at Washington. In January, 1836, Stcphen Austin reported that he had concluded a loan at New Orleans of 200,000 dollars, and had hopes of raising another of 400,000 . Volunteer troops in aid of the Texans were raising in Louisiana, Tennessee, Alabama, and Creorgia. The Convention met at Washington on the 1st of February, and on the 2nd of March it published a declaration of independence, signed by fifty delegates, of whoni Lorenzo de Zavala was one. In the election of officers of state which immediately followed, Zavala was ehosen vice-president.
${ }^{\text {S }}$ Santa Anna marched from Saltillo on the samo day that the Convention met at Washington. Ife was successful in his first encounters; but on the 21st of April he was defeated and taken prisoner by General Houston. On the 14th of May he signed a convention for the evacuation of Texas, and soon after not a Mexican soldier remained in the state. The constitution adopted by tho new state is a close imitation of the state government of the Northern Union; and, like its prototype, presents the anomaly of slavery existing under laws which profess to regard all men as equal.
Texas was recognised as an independent republic by the government of the United States on the 3rd of March, 1837. A motion was made in congress for receiving it into the Union, but after some discussion withdrawn. France recognised the independence of Texas and concluded a treaty with it on the 2 th September, 1839. A treaty of amity and commerce between England and Texas was signed in London, oul the 16 th of November, 1840, and ratified by the Texan government in February, 1841. The Mexican government has expressed a determination to reconquer Texas ; but it
is not likely that in the distracted and impoverished slate of that country it will be able to reduce a population almost inaccessible by land from Mexico, possessed of better harbours and more shipping, in a position to receive constant support from the United States even against the will of the government at Washington, and on terms of alliance and amity with England, France, and the United States. Nor is it to be desired that Texas should on any terms be re-annexed to Mexico: its Anglo-American population never could assimilate with the Spanish Mcxicans.
(Texas, by William Kennedy, London, 1840; Colonel Almente's Report on the Statistics of Texas, Mexico, 1835; Correspondence of the daily Papers of London and Paris; Dcbates in the British Parliament, the Congress of the United States, and French Chamber of Deputies.)
TEXEIRA, or TEXERA, JOSEPH, was born of a good family in Portugal, about the beginning of 1543. Aiter distinguishing himself at the University, he entered the order of St. Dominic in 1565, and obtained general respect for his learning and virtue. He was prior of the convent of Santarem in 1578, when King Sebastian undertook his expedition into Africa.
In the troubles which ensued, Texeira attached himself to the party of Don Antonio, and accompanied that prince to France in 1581, where he went to solicit assistance against Philip II. Texeira published at Paris, in the heginning of 1582, a compendium of the history of Portugal. The work is very scarce (it is deseribed as a thin quarto of 70 pages), and appears to have been published for the purpose of supporting Don Antonio's claim to the throne of Portugal. The author was taken - prisoner by the Spaniards in the naval battle off Terceira on the 26th of July, 1582, aud carried to Lisbon, whence he contrived to make his escape and rejoin Don Antonio. Duard Nonius à Leone, a converted Jew, employed by Philip II. to refute the 'Compendium of Portuguese History, asserts that Texcira, while a prisoner at Lisbon, denied to him that he was the author.
The partisans of the League having obliged Don Antonio to quit Paris, Texeira accompanied him as his confessor, first to Bretagne, and in 1586 to England. In 1588, having returned to France, he was introduced to Henri III. and the queen-mother: the former appointed him a court chaplain; the latter dispatched him on a confidential mission to Lyon, then in the possession of the Leaguc, believing that a Dominican friar was unlikely to be suspected of bcing an agent of the court. Texeira remained at Lyon from July, 1588, to January, lis89. During this iutcrval he prepared for publication a reply to the attack upon his History by Nonius i Leone. This pamphlet, or some indiscreet expressions in conversation, having given umbrage to the Leaguers, he was obliged to fly; the papers left in his cell were seized, and the whole impression of his pamphlet (with the exception of one or two copies) destroyed.
He rejoined Henri III. at Tours, and after the murder of that prince, in August, 1589 , was continued in his office of court-chaplain by Henri IV., to whose service he attached himself. After the entry of Henri into Paris, Don Antnnio was enabled to return to that eity, and Texcira appears to bave resumed his office of confessor. In Mareh, 1595, he published a new edition of the work which had been destroyed at Lyon, but his labour was in vain, for he was called, in the August following, to perform the last service of his church to the prince whose cause hc had advocated with such fidelity.

In 1596 Texeira was a witness of the public abjuration of Calvinism by the dowayer-princess of Condé at Rouen: The Papal legate selected him to instruct and confirm the princess in her new faith; and from that time till his death he continued attached to the service of the house of Condé. This engagement left him pretty mucli the command of his own time, and he employed it principally in his favourite study of genealogy. A list of his published works will be found at the end of this article : here it is only necessary to remark that to the sceond edition of his - Genealogy of the House of Condé,' published in 1598, he added an account of the public ceremonial of the princess's reconciliation with the Roman Catholic church.
In 1601 he published a narrative of the adventures of Don Scloastian, from his expedition ịnto Africa in 1578, till the 6th of January of this present year 1601.' We have
not been able to procure this work; lut the following passage from Etoile's 'Journal of the Reign of Henri 1V:' throws some light upon the expression quoted from its title-page:- F'riday, the lst of June, 1601, comes the intelligence that the false or true Don Sebastian (for as yet oue knows not which to call him) lins been sent to the galleys by order of the viecroy of Naples. . . . The Portuguese maintain that he is the true DonSehastian : they have solicited various courts to obtain his liberty, and published several works in his favour. Among others Joseph Texeira, a Doninican, has undertaken several journeys to Bavaria, England, Venice, and Rome, where he has disseminated liis writings; and finally, he has caused to be printed at Paris a collection of propheeies eurrent among the Portuguese, which foretold all that has happened to their king Sebastian.' That Texeira, whose writings show him to have been an recomplished scholar, whose eonfidential employment by Catherine de' Mediei is a strong testimony in favour of his abilities, and whose high moral eharaeter is acknowledged on all hands, should have believed the individual here mentioned to have been the real Don Sebastian appears upon first thoughts a strong testimony in his favour. But L.Etoile's account of the nature of the book weakens the presumption, and Texcira's inveteracy against the Spaniards renders it probable that the account is correct. He is said to have declared from the pulpit, when preacling on the duty of loving one's neighbour, that we are bound to love all men, of whatever religion, sect, or nation-even Castilians.'
Texcira died in the convent of the Jacobins at Paris, on the 29 th or 30 th of June, 1604 . I'Etoile, who mentions his death, stys, 'He had just returned from England, whither he had been sent by the king, who gave him a hundred erowns for the expenses of the journey: While there he had seen the king of England, to whom he presented his "Genealogy" which he had eompiled, and which was well received. Ife was on the eve of returning to England when he was talien ill.' Texeira's frequent visits to Fingland, both in the time of Elizabeth and James, gave rise to suspicions of his attachment to the Romish Chureh. For these there does not appear to have been any reasonable ground: he was opposed to the ultra-Romanist party of the League in Franee, because it was allied with Philip II., but his religious opinions never appear to have varied.
The published works of Texeira are-1, 'De Portugallace Ortu, Regni Initiis, denique de Rebus à Regihus universoque regno praeelare gestis Conıpendium,' Parisiis, 1582, in 4 to., \bar{T} pp., very rare; 2, De Electionis Jure quod competit viris Portugallensibus in augurandis suis Regibus ae Prineipibus, Parisiis, $1590,8 v o$.: this is a reprint of the answer to Nonius il Leone, printed and destroyed at I.jon in 1589: a third edition was published at Paris in 1595, with the title, 'Speculum Tyrannidis Philippi, Regis Castillae, in usurpanda Portugallia ;' 3, 'Exegesis Gencalogica, sive Explicatio Arboris Gentilitiac invietissimi ae potentissimi Galliarum regis II enrici ejus nominis IV.' This work was published at Tours in 1:500; at Leyden, with additions, in 1592; again at Leyden in 1617, with the title, - Stemmata Franciae item Navarrac Regum a prima utriusque Gentis Origine;' all the three editions are in $4 t 0 . ;$ 4. 'Fxplicatio Genealogiae Henrici II., Condeae Principis,' Paris, 1596. An edition in 4to., and another in 8 vo., and a translation into French by Jean de Montlyard, all appeared in the same year. To the edition of 1598 was appended ' Narratio in qua tractatur de Apparitione, Abjuratione, Conversione, et Synaxi Illustrissimae Prineipis Clarlottae C'atharinae Trimolliae, Prineipissac Condeae;' 5, - De Flammula, seu Vexillo S. Dionysii, vel de Orimphla aut Auriflanma Tractatus,' Paris, 1508, 8vo.: G, 'Adventure admirable par devers toutes autres des siéeles passés et prosents, qui contient un Discours tonehaut les Sueces du Roi de Portugal, D. Selastian, depuis son voynge d'Afrique, auquel il se perdit en la bataille qu'il eut contre les lufidèles ent $15 / \mathrm{F}_{1}$, jusqu’au 6 de Janvier prêsent, an 1601 ;' traduit du Castillan, Paris, 8vo.
(This sketch has been compiled from the dietionaries of Bayle and Moreri, and Nieolaus Antonins; trom the I'refaces to Texcira's 'Gencalogy of Henri IV.', and his Reply to Nonims a Leone; and from Pierre de l'Etoile's 'Journal of the Reign of 11 enri IV., vol. ii., pp. 509-61, and yol. iii., pp. 101-0, edition published at the llague in 1761, in 4 vuls, ४vo.)

1EXEIRA, or TEXERA, PEDRO, a native of Portu. gal, one of the carliest eultivators of modern P'ersian literature. The plaee and date of his birth and death are alike unknown. The author of the notice of lis life in the - Biomaphie Universelle,' snys that he was horn in 1570, but does not mention the authority on which he makes the statement.
Cotolendi, who translnted Texeira's work into French, states that his author, 'instigated hy a vehement desire to become acquainted with the history of Penia, passed several years in that country, aud liaving made himself perfectly master of the language, devoted himself, by the advice of some able and enlightened Persians, to the study of Mirkhond. [See the aceount of this historian in the artiele Persia, under the head Literudure.] Texcira himself has informed us that being at Malaeca, in the beginning of 1600 , he embarked in tle month of May for the Philippine Islands, whence he took shipping for Mexico, and ultimately arrived at lishon on the 20th October, 1601. His correspondents in the East having failed to transmit to him some money whieh he had left in their charge, he was obliged to undertake a voyage to Goa to recover it. Disgusted with the sea, he resolved to retum overland; and having in pursuance of his determination sailed from Goa, on the 9th of Febriary, 1C04, and arrived at Basrah on the bth of August (being detained some time at Ormuz), he travelled by way of Meshed-Ali to Bardad, and thenee to Anna, Aleppo, and Seanderoon, where he took shipping for Veniee. Anter a short stay in that eity, he made the tour of Italy, crossed the Alpsinto Franee, and then retired to Antwerp, where he spent his time in eompiling a hook, which he published in 1610. After that event we again lose sight of him entirely:
His work, the first book of which, we are told by Antonio de Leon Pinelo, was composed in Portuguese, hut translated into Spanish, and the rest written in that language with a view to publication, is entitled, 'Relacion de los Reyes de Persia y Ormuz: Viagi de la India Oriental hasta lalia por Tierra el año de 1604, Antwerp, 1610. (N. Antonio says it was published in 410.; Antonio de Leon that it was published in 8vo.) It consists of three parts: the first is a history of the kings of Persia, compiled from Mirkhond with a brief continuation, down to the age of the compiler ; the second is an abridgment of the listory of Ormuz, by Turan-shah, one of the kings of that district (a work which appears to be known in Europe only from Texeira's abstract), also with a continuation; the third, an account of Texcira's overland journey from India to Europe. Alfonso Lasor translated the work into Italian and inserted it in his Orbe Unicersal the same year in which it was published; Schikhart, in his 'Tarich, seuSeries Regum Persiae,' published at Tühingen in 1628 , speaks in the lighest terms of Texcira's learning and diligence; Van Laet appended a Latin translation of Texeira's Itinerary front Ormuz to Basrah and Bagdad to his ' Persia,' published at I,eyden in 16:33; Cotolendi published a French translation of the entire book at Paris in 1681, which the writer in the 'Biographie Universelle' justly eharacterises as 'assez mauvaise.' In short, down to the time of Tavernier and Chardin, Texeira appears to have been regarded as the principal authority respecting Persia. The historical part of his work is now of little infortance, but his voyage ull the Persian Gulf, and his route from Basrah to II eshed-Ali, Bagdad, Anna, Aleppo, and Scanderoon, may still be studied with advantage.
Antonio and Leon Pinclo mention a book entitled 'Nauframio de Jorge Albuquerque e Prosopopeia a seu lousor,' published nt Iisbon in 1601, by a Peter Texeira, hut do not identify him with our author. Λ 'Certifieacion del Discubrimiento de el Maraĩon,' by a Pedro Texeyra, 'C'apitan Maior del Parä,' is appended to the aecount of the cliscovery of that river, published at Madrid in 1641, by Christoval de Acuña: this was apparently a different person. A third geographer of the name of Pedro Texcira is mentioned by Antonio as alive at Madrid a few years previous to the publieation of his dietionary (1672): this one compiled a napp of Portugal and a Deseripeion de Ia Costa de Espania,' neither of which appear to lave been published.
(Voyares de Texeira, ou l'histoire des Rois de Perse, traduite d'Espagnole en Française, ì Paris, 1681, 12mo.; Epitome de la Bibliotheca Oriental y Occidental, Ninulica y Geografica, de Don Antonio de Leon Pinelo, en Madrid,

1738, fol. ; Bibliotheca Hispana Nova, Auctore D. Nicolao Antonio, rccognita, emendata, et aucta, Matriti, 1788 , fol.; Turich: h. e. Neries Regum Persiae ab Ardschir-Babekan, usque ad Jazdigerdem, a Chalifitiis expulsum, authore Withelmo Schikard, Tubingae, 1628 , 410. ; Persia, seu Regni Persici Status, Variaque Itinera in atque per Persiam, Lugd. Batav., 1633, 24mo.)

TEXEL, or TESSEL, is an island in the North Sea, at the northern extremity of the province of North Holland, from which it is divided by a channel called the Maas Diep. Including Eierland, it is 12 miles in length and 6 in breadth. It has a large and secure harbour, and a commodious roadstead on the east coast. The northern part of the island, called Eierland (i.e. Eggs-land, from the vast quantity of eggs laid by the sea-gulls), was a separate island till 1620 , but is now joined to Texel by a sand-bank. Texel is celebrated for a breed of sleep $(50,000)$ with a silky kind of wool, and many thousand lambs are annually exported to the different provinces of Holland. The inhabitants, 5000 in number, make great quantities of a green cheese from sheep's milk; many of them are engaged in the oyster fishery. Besides the petty town of Texel there are 6 villages in the island. Important naval battles have been fought off the coast of this island: in 1653, when Admiral Blake defeated the Dutch under Van Tromp; in 1673, between the Dutch and the combined English and French fleets, which was a drawn battle; and in 1799, between the English and Dutch fleets, when the latter, being disaffected to the republican government, surrendered without much resistance.
(Hassel, Geography ; Stein's Lexicon; Cannabich, Geography.)
TEXTI'LIA, Mr. Swainson's name for a subgenus of Conus.-Ex., Conus Ammiralis: (3fulacology.)
TEXTOR. [Weaver Birds.]
TEXTULA'RIA. [Foramivipera, vol. x., p. 348.]
TEZA, or TAZA. [Marocco.]
TEZCU'CO. [Mexican Statrs.]
TEZEL, or TETZEL, JOHANN, a Dominican monk, who lived about the end of the fifteenth and the beginning of the sixteenth century. His name would lave been forgotten but for the scandalous manner in which he carried on the traffic in indulgences, which roused the indignation of the better part of his contemporaries, and thus led to the reformation in Germany. He was a native of Leipzig, where he studici theology, and afterwards entered the order of the Dominicans in the Pauliner Kloster. In the year 1502 the pope appointed lim preacher of indulgences for Germany. He converted this office into a most lucrative traffic, and is said to lave made use of the basest means for the purpose of obtaining money. His conduct too was so bad, that he was condemued at Inspruck to be sewed up in a sack and to be drowned, having been convicted of adultery. But the interference of his superiors caused the sentence to be changed into imprisonment for life. He was accordingly conveyed to Leipzig, and confined in a tower which stood in that city near the Grimmagate (Grimmaer-Thor) until the year 1834, when it was pulled down. IIe had however not been imprisoned long before he was set at liberty at the request of Albert, arehbislop of Mainz, and other ecclesiastical dignitaries. Tezel now made a pilgrimage to Rome, and acted the part of a penitent so well, that Pope Leo X. not only absolved him of his sins, but appointed him commissarius apostolicus in Germany, in addition to which the archbishop of Mainz made him 'inquisitor haereticae pravitatis.' In his capacity of papal commissary he now carried on his traffic in indulgences more impudently than ever. He Iraversed Saxony in an open carriage, accompanied by attendants, and carrying with him two chests, onc of which contained the indulgences, and the other the money raised from their sale. This latter chest is said to have had the folloting inseription:-

> 'Solnitd das grld im kasten klingt,
> Solsald die seel' gen himmel springt.'
> (So sonn as the gold in the chest ringe,
> So soon the soul to heaven springs.)

His reputation for sanctity had become so great, that in scveral places the population of towns met him in solemn procession, and his entry was. accompanied with the ringing of the church-bells. He sold indulgences for all crimes, murder, perjury, adultery, and not only for crimes already committed, but also for those which a person l’. C., No. 1522.
might commit. . At last, in the year 1517, Luther openly opposed him, in the celebrated theses which he fixed on the church-door of Wittemberg. Tezel made a reply in another set of theses, which however were immediately burnt by the students in the market-place of Wittemberg. Tczel seems to have acted contrary to the intention of his superiors, and to have gone beyond his instructions, for Karl von Miltitz, who was sent by the pope to settle the disputes which had arisen out of his conduct, reprimanded him severely. In the year 1518 however Tezel, notwithstanding all this, obtained the degree of Doctor of Divinity at Frankfurt on the Oder. After this event, he returned to Leipzig to his convent, where he died, in August, 1510, of the plague, shortly after the celebrated theological disputation of Eek and Karlstadt. He was buried in the church of his convent (the present chapel of the university); but there is now no trace of his grave, as that part of the church which contained his remains was pulled down in the seventeenth century to make room for some fortifications. [LuTher.] Compare P. Melanchthonius, Historia Vitae M. Lutheri, i., p. 153, Sec.; Gieseler, Lehrbuch der neuern Kirchengeschichte, vol. iii., p. 20; Löscher, Vollständige Reformations-Acta, ii., p. 324; and more especially Hechtius, Vita Tezelii.

THAARUP, THOMAS, a Danish poet and dramatist, highly esteemed by his countrymen as one of the classics in their literature, was the son of an ironmonger at Copenhagen. He was born 21st August, 1749, the very same day as Edward Storm, another poet. This coincidence would hardly deserve notice, if something of the marvellous had not been founded upon it, it being said that Thaarup's mother dreamed that the wife of a clergyman at Guldbrandsdalen was delivered just at the same time of a son, who would be the rival of her own. If not great, both of them were popular and national poets; and though neither very numerous nor of very great extent, their productions, especially their lyric picces, earned for them a reputation which does not always fall to the lot of writers of nore ambition and of higher pretension. This was more particularly the case with regard to Thaarup, whose three little musical dramas, 'Höstgildet,' 'Peters Bryllup,' and 'Hiemkomsten,' are esteemed chefs-d'œuvre of their kind, and the songs and airs were known by heart by every one, and repeated all over Denmark. Their celebrity was not at all less than that of the 'Beggars' Opera' in this country. After the death of Storm [Scandinavian Literature, p. 3], Thaarup succeeded him as one of the directors of the theatre at Copenhagen, in which situation he remained till 1800. But though he survived Storm a full quarter of a century, Thaarup's literary life did not extend much beyond that of Storm. If he did not entirely lay aside liis pen at the commencement of the present century, all the productions by which he will bc remembered had appeared in the preceding one. He continued to reside at Copenhagen, where he died in the summer of 1821. Some of his hymns have been trans* lated into German by Voss.
(Skilderic af Kï̈benhavn, 1821 ; Neue Bibliothek der Schünemwissenchaften, vol. Iv.)
THA'BET BEN KORRAH; an eminent physician, philosopher, and geometrician, whose complete names, as given by Ibn Abí 'Ossaibiah (Fontes Relationum de Classibus Medicorum, cap. 10, §3), were Abú 1-Hasan Thábet Ben Korrah. He was born at Harrán in Mesopotamia, A.f. 221 (A.d. 83-5), where he at first carried on the business of a moncy-changer; lie afterwards however went to Bagdad to purste his studies, which he carried on with so much zeal, that he became one of the most celebrated literary and scientific men of his age. He belonged to the sect of the Sabians, but got entangled in some religious disputes, and was expelled from their communion. In consequence of this he left Harrán, where lie had been residing for some time, and went to Bagdad with the celebrated astronomer Mohammed Ben Músa. There he lived in his house, and was introduced by him to Mo tadhed Billah, sixteenth of the 'Abbaside Khalifs (A.H. 279-280, A.D. 892-902), who appointed him one of his astrologers, and ever afterwards, on account of his aequirements and his pleasing manners, continued on terms of great intimacy with him. He died on the 26th of Safar, A.1F. 288 (February 18, A.D. 901), aged sixty-seven.lunar, or sixty-five solar years. His sons Senán and Ibrahím, and their descendants, practised physic with much reputation at Bag-

Vol. XXIV, -2 N
dad for more than a century after his death. Thabet himself appears to ha ve been a rery learned man, and niso a cood practical physician, as he tells a story of the way in which he restored to life a man that was supposed to be dead. (Cesiri, Biblioth. Arabico-llisp. Iscur., tom. i., p. 349.) He was also a very roluminous author, as the bare titles of his works, as given by the anouymous author of the "Arabiea Philosophorum Bibliotheca,' take up atout two folio pages in Chsiris Catalogue. They consist of mathematical, medical, and zoological treatises, written in Arabic, besides Iranslations into that language of several of the works of Galen, Pholemy, Autolyeus, Euclid, \&e. . He wrote also sereral in Syriac, on the religions rites and ceremonies of the Sabinns; but none cither of these or of his Arabie works lave (as far as the writer is aware) been published or translated, though several of them still exist in manuseript in some of the European libraries. (Wiistenfek, Gerchichte der Arabischen Alerzte ; Casiri, Inco cit.; Nicoll and 1'tuses: Catul. ARSS. Arab. Biblioth. Bodl., pp. 257 , 295 ; De Rosii, Dizion. Stor. degli Autori Arabi.)
THA'BET BEN SENA'N the grandson of the preceding, whose names are given by lbn Λ bi 'Ossmibiait (Fontes Relationum de Classibns Medicorum, cap. 10, \$5) as Abu 'l-Hasan Thábet Ben Senán Ben Thábet Ben Korrah. He was celebrated, like the other members of his fanily, as a physician, philosopher, and mathematician, and was superintendant of the hospital at Bagdad during the reign of Al- Motteia, the twenty-thirt of the 'Abbaside Khalifs, A.21. 33-363 (A.d. 016-974.) He exponnded the writings of Ifippoerates and Galen ; but his prineipal work appears to hive been a History of lis Own Times, from the year A.11. 200 (A.D. 003) to the year of his own death, A.月. 363 (A.D. $973-4$), which is highly praised by Abú 'l-Furaj (Hist. Compend. Dynast., p. 208), and was continucd after his denth by his nephew Helá, and by other writers. Dr. Surenger, in the notes to his translation of El-Mas údis ' Meadows of fold and Mines of Gems, Yol. i.: p. $: 24$, L.ond., Sro., 1841, corrects an anachronism or Maji Khalfa, who aseribes this work to his grandfather Thabet Ben Korrah.
(Wüstenfeld, Geschichte der Arabischen Aerzte; Assemani, Bibioth, Orient., vol. ii., p. 317.)
TIAALAMITA. [Portusid.s, vol. xvii., p. H46.]
THALLAMUS (from 9üdrues, the bridnl clamber), a botanical term which was applied by Linneus to the calyx or outer whorl of flomal enyclopes. Toarnefort applied the term to a receptacle that is not fieshy, but surronnded by an involuere. In this sense it is used in common with the terms Clinanthium and I'horauthium. By some writers, as De Candolle, the term is applied to the receptacte of all plants or that point of the rachis or stem around which the floral envelopes are seated. Thus those plants in which the petals and stamens are inserted into the reeeptacle constitute the first subelass, Thinamiflore, of the Fixogens, in De Candolle's natural arrangement of plants.
Thalamus is also used in Cryptogamic botany, in common with Thallus, to express the bed of fibres from which many fungi spring up. It is also improperly used hy some writers to indicate the shields or apothecia of liehens. In fact it is a tern that has been applied in so many cases where others are used, that it is desirable it should be allogether dispensed wilh, or only used in a very obvious sense.
TIIALA'SSFRMA, Cuvier's name for a genus of footless Fchinoderms (Lichinodermes sans pieds)s phaed by him immediately after Bowvilis, and thus defined by hiur :-

Bonly oval or oblong, with the proboscis in form of a reflected lamima or spoon. but not forked. The intestinal caml is similar to that of Bonellia. But one aldominal filament had been discovered.
The genis is divided by Cuvier into the following secfions or sulugenera:-

1. The Thalassem: properly so called.

Theso liave only tro hooks placed very forward, and the ir posterior extremity lias no bristle-like processes (soinc).
Example, Thalassema Niphimi, Lumbricus Thalassema of Pallas, Divicil. Zowt, fisc. X., tab). 1, fig. 6.
2. The Kichiuri,
whose posterior extremity is furnished with some transversal rows of bristle-like processes.
Example, Lichiurus Iumbricus, Lumbricus Fehiurus, $\mathrm{Gm} .,-\mathrm{P}$ all., Miscell. Z.sol., xi. 1-6. Coumon on sandy
boltoms on the French consts, where the flishermen use it os a bait. It is also found on the cousts of Europe generally, and is said to form prat of the food of the cod-fish. 3. Sternasjis. (Otto.)

These, besides the bristle-like processes of the fichiuri, has. under their anterior pant a slighaty comeous disk surrolinded with cilia.

Example, Sternuppis thalasmemoides, Otto, Jonog.
1 N.13. - Cuvier states that a new cxamination of the anatomy of the Thalasseme had demonstrated to him that the place which he had asslgned to them was the ftue onc.
'THALASSSEUS, Hoie's name for one of the Terns.
THALASSIANTHUS, M. Rüppel's name for a genus of Actinida, familiarly known as animal-fouers, with rauified rentacula. [Acrinia; Zoartiamia.]

THAIASSI'DROMA. [1'ETRE1.s, vol. xviii., p. 43.]
THALASSINA. [Timbassiniass.] N.B. -The student should becareful not to confound the ennstaceous genus. Thalassina with the echinodermatous Thalassema.

THALASSINIANS. The genus Thalussina of Latreille consists of those macrurous deceapods whieh liave the four anterior feet temmated by two fingers; the lolintions of the lateral fins of the end of the tail narrow and elongated, without ridges; and tho last segment of the tail, or the intermediate piece, in the form of an elongated triangle. Sometimes the four anterior fect, or the fwo first fuet and one of the second, are terminated by two elongated fingers, foming a claw perfectly. The two anterior feet are the longest ; the lateral foliations of the fin terminating the tail are in the form of a revelsed triangle, or widest at the posterior border; the intermediate piece, on the contrary, narrows from the base to the fermination, and ends in a point.
M. Mihne Edwards arranges the fanily of Thalassinians, or Burroucing Macrura, between the Scyllarians and the Astaciuns.

The Crustacea of which this small lut interesting family are composed rescmble ench other in appearance, and nre remarkable for the extreme elongation of their abdomen and the smatl degree of consistence of their integuments.

Family Character.-Carapace small, and very nueh compressed laterally; terninated, generally, in fromt by n very short rostrum, but sumetimes entirely withont one. Byes ordinarily very small. Internal autennce tcrminated by two multi-articulate flaments; the external ones inserted externally and a little below the first; their peduncle slender, eylindrical, and without a spinimiform lamina, carries at most only one very small moveable spine, which represents that appendage. Disposition of the parts of the mouth rariable. Sternimm neaty linear thronghout its length, and not constituting a plastron. Antcrior feet large, more or less completely didactylous and triangular; the next pair raised on cach side of the thorax. Abdomen very long, and, in general, very narrow; rather depressed vertically than compressed laterally; the lateral bouders of the dorsal arch of its various rings are but little prolonged, and do not incase the base of the false feet as in the Surimps, nor does the abdomen itself diminish much in size towards its postcrior part. The structure of its appendages varies. The disposition of the respiratory appuratus varies also; sometines it only exists, as it ordinarily does in the Decapots, as thoracic branchiax, enclosed under the carapace in special cavities; sometimes, on the contrary, there are, besitles thuse thoracic branchia, aceessory branchial appeudages suspended under the abdomen and affixed to the inlse feet. Upon this important difference, M. Mitne Fidwards, who is the author of the character given above, founds his division of the fnmily into fwo fribes, the Cryptobranchids and the Geestrobranchids.

1. Cryplobranchids.

Under this group M. Nilne Edwarls arranges all the Thalassinians which are without respiatory appendages suspended under the abdomen. Their bruncliere are in ceneral composed of eytinders, united after the mamer of a brush. All the species whose habits are known live m the sand, in which they burrow deeply. Tfie following genera belong to this iribe:-Glawcotiöe; Callianussa; Axia; Gebia; and Thalassina.

Glaucolfiöe. (Edwards.)
Generic Character. - Caropace nearlyovoid, and without any rostriform prolongation. Liyes projecting, large, and nearly pyriform. Internal antennee sliort, eylindrical, and
bent (coudées), as in Pagurus; the third joint of their peduncle the longest, and carrying at its extremity two small multiarticulatc sppendages, which are very short and rather stout, one of which is furnished with many long hairs. External antenne inserted lower than the preceding, their peduncle bent, and presenting above a small scale, the vestige of a palp. External jaw-feet pediform. The last thoracic ring not anchylosed to the preceding. Anterior feet terminated by a stout, didactylous, wellformed hand: they are of very different sizes. Second and third pairs slender and very long: the two last pairs, on the contrary, short and elevated against the sides of the body, as in the Paguri; the fourth pair are flattened, rather large, and imperfectly didactylous, the immoveable finger of their hand being only formed by a slightly projecting tubercle; the posterior feet, still smaller than the last, are terminated by a small didactylons rather wellformed hand. The abdomen is narrow, elongated, and perfectly symmetrical : the first ring, much narrower than the succeeding ones, has no appendages; the four next segments, on the contrary, each give attachment to one pair of rather large false natatory feet, formed by a cylindrical basilary joint and two terminal blades, one of which is rery small and obtuse, and the other large, pointed at the end, and bordered with long ciliary hairs. Caudal fin moderate in size ; the middle blade, formed by the seventh abdominal segment, is rounded and ciliated, and the external blades are much longer than the middle ones. (M. E.)
M. Milne Edwards observes that this genus establishes the psssnge between the Pagurians and Cullianassa.
Example, Glaucothöe Peronii, the only species known. Its integuments have little solidity, its carapace is smooth, and its length 8 lines. M. Milne Edwards states that it appears to inhabit the seas of Asia. He is of opinion that Latreille's genus Prophylax approximates closely to Glaucothös, and ought not perhaps to be distinguished from it: if so Latrcille's name has the priority. The latter placed his genus among the Paguri, bnt after the publication of M. Milne Edwards's Glaucothöe, was uncertain, according to M. Edwards, whether these two generic divisions should not be united.

Callianassa. (Leach.)

See the article : but the student should refer to the accurate and elaborate description and figures of M. Milne Edwards, who records two species:-Callianassce subterranea

a, Intermediate antena; ; b, external antenna.
and uncinata ; and he adds that Callianassa major of Say seems to be distinguished from the two preceding species.

Axia. (Leach.)
Generic Character.-Carapace very much compressed, and terminated anteriorly by a small triangular rostrum. Ocular peduncles very small, cylindrical, and terminated by a hemispherical cornea. Terminal filaments of the internal antcnnce nearly of the length of the carapace. Peduncle of the external antenno having above a small moveable spine which represents the great lamellar palp observable in the Shrimps. External jaw-feet slender and pediform. Anterior feet compressed, and terminated by a well-formed claw ; carpus small. Second pair of feet nearly lamellar, and equally didactylous. The three next pairs monodaetylous. Abdomen slightly convex towards the middle, and terminating in a great fin, the five blades of which are nearly of the same length. First ring of the abdomen carrying a rudimentary pair of false fect, and the four succeeding rings provided each with a pair of very well-developed natatory false feet, each composed of a short and stout peduncle, which at its extremity carries a small styliform appendage within, and externally two great oval, very large blades, which are ciliated on the borders. (M. E.)
M. Milne Edwards observes that this genus much resembles Callianassa and Gebia, and he records the only known species, Axia Stirhynchus. Its length is "about three inches, and it inhabits the coasts of France and Fingland.
Gebia. (Gebios and Thalassina, Risso ; Gebia and Upogebia, Leach.)
Generic Character.-Carapace terminating anteriorly by a triangular rostrum, and sufficiently large to cover the eyes almost entirely ; on each side of its base is a tooth, which is continued with a crest, and forms the lateral border of the upper surfacc of the stomachal region. Internal antenne very short, but nevertheless their terminal filaments are longer than their peduncle. External antennee very slender, and presenting at their base no vestige of a moveable scale. External jaw-feet pediform. Antcrior feet narrow, terminated by an clongated and imperfectly subcheliform hand: their moveable finger is very large, and in bending downwards its base is applied against the anterior border of the hand, the lower angle of which is prolonged so as to constitute a tooth performing the office of the inimoveable finger. The feet next in suecession are compressed and monodactyle; the second pair have their penultimate joint large, widened, and ciliafed below; the succeeding pairs are more slender. Abdomen long and much narrower at its base than towards its middle, depressed and terminating by a large fin, whose four lateral blades are foliaceous and very wide. First abdominal ring with two pairs of yery small filiform appendages; the four next segments giving origin to three pairs of false natatory feet, composed of a stout and short peduncle, and two oval blades with strongly ciliated borders: the external one very large, and the other very small. Branchice brush-like and fixed on two rows, namely, one above the second foot, and two above the four anterior feet and the external jaw-feet. (M. E.)

Example, Gebia stellata. Length $1 \frac{1}{2}$ inch.
Loculity.-Coasts of England. M. Milne Edwards states that this species comes very near to Gebia littoralis.
M. Milne Edwards observes that the Gebiec cstablish the passage between the Thalassince and the Axice, which last they resemble in the general form of the body and disposition of the caudal fin, whilst they approach the first by the conformation of the feet.

Thalussinc. (Latretle.)

Generic Character.-Cirapuce short, narrow, and very mueh elevated. Somachut regiousinall and limited backwards ly a decp funow. Cardial and intestinal recions equally separated from the branchial regions, and representing by their junction a trianrle, the apex of which is direeted backwards. Front armed with a small triangular tostrum. Biyes small and cylindrical. Internal antenure inserted above thase organs; their peduncle of moderate size, and their terminal filaments slender and unequal, the longest about thrice the length of the peduncle. Externul antenne very small, their peduncle cylindrical, hardly peaeling begond the rostrum, and presenting above no vestige of appendages. ILzternal janc-feet moderate and pediform, their second joint armed with spiniform teeth on its internal surface, and nearly of the same form as the suceceding ones. First pair of feet narrow and moderately elongrated, but rather robust ; they are unequal, and the hand which terminates them presents at its anterior and lower angle a more or less strong tooth, whieh represents an immoveable finger, against which the base of the moveable finger, which is very large, is bent back. Sceond pair of feet very much compressed, and rather wide; their penultimate joint espeeially is large and ciliated below. The sueceeding fect have ncarly the same form, but they are narrower, and less and less compressed. Abdomen very long, narrow, semicylindrical, and nearly of the same size throughout its length. Terminal fin small ; the two pairs of lateral blades, formed by members of the sixth ring, nearly linear. Firlse feet fixed to the four middle rings of the abdomen; they are very slender, and composed of a eylindrical and elongated pedunele carrying two more or less ciliated multiarticulate filaments. (M. E.)
Example, Thalassina scorpionides. Length about six inclies. Culour brownish.

Lncality,-Coasts of Chili.
M. Milne Fdwards remarks that the abdomen of this species reminds the ohserver of the body of a Scolopendra. 2, Gastrobranchids.
M. Milne Fidwards observes that this small division of the Thalussiniuns is rery remarkable, for it establishes the pasage between the Cullivnassere and the siquille. In the genural form of the borly, the crustaeeans forming this
division differ, he remarks, but very little from the first, and the confornation of their thorucic branchie does not permit their separation from the macrurous decapods, nor their distant removal from the Thalassinians; but they have respiratory appendages fixed to their abdominal false-feet, exhibiting the greatest analogy with the mmose branchive of the Sromamods.
The type of this group, according to M. Milne Edirards. is a snall crustacean, to whiel he gives the generie name Cullianidea; but he also arranges in this same division the genus Isea of M. Guerin, under the name of Cullianissea, for he thinks that he perceives in this last an analogons mode of organization. If, he observes, the characters assigned to it by M. Guerin be exact, it would be difficult to place this new genus here, and it ought to be approximated to the Pagurians; but it appears very probable to M. Milne Edwards that there has been some error of observation, and that in reality the Isere and Callianidea differ but very little.
These crustaceans, M. Milne Edwards observes, liave all a very small oval thomx compressed laterally: the ir abdomen, on the contrary, is extremely long and slender. The disposition of the cyes and the antennæ is uearly the same as in Callianassa. The external jaw-feet are pediform, and carry externally a slender and multiarticulate palp. The two first pairs of fect are didaetylous; the anterior pair are long, very unequal, and terninated by a stout compressed hand; the sceond are snall and very delieate ; the third are enlaryed towards the end nearly as in Callimussa, and terminated by a very short tarsus, forming, with a tuberele of the preceding joint, an inperfect elaw. The fourth pair of feet are slender and monodactyle; and the firth pair, small in dimension, are thrown backwards. As in the Crpytobranchids, the abdomen is yery long, sufficieutly sott. and composed of nearly equal rings: of which the dorsal areh is not prolonged below so as to inease the lase of the false feet. The eaudal fin offers nothing remarkable ; but the false feet, inserted at its lower surface, are furnished with a multitude of branched filaments, which have a strueture very analogous to that of branchier, and which certainly must be destined to eoneur in the work of respiration.
M. Milne Edwards coneludes by observing that this tribe eomprehends two genera, one of whieh appears to him to be too mperfectly known to be conveniently charaeterized.

Cullianidea. (Edwards.)
Generic Character.-Body very delicate, slender, and elongated. Curapace hardly a third of the length of the abdomen, and not covering the last thoracie ring, contpressed and rather elevated, its lower border applied exaetly ngainst the base of the four first pairs of teet. No rostrunn, and the anterior border of the earapace notelied on each side of the median line for the reeeption of the base of the cyes, whose peduneles are very short, and formed as in the Callianassce. Four antenne, slender and inserted nearly on the same transversal line; the first pair terminated by two filaments uearly cqual in length, one of which however is the largest, and slightly convex towards the end. Appendages of the mouth very small, oecupying but little space; mandibles hardly differing from those of Calliauassa; valvular appendage of the second pair of jates very small; extemal jaw-feel slender and pediform, their second joint furnished internally with a row of dentiform tubereles covered with hairs, and with their three last joints very much elongated. Sternum linear throughout its extent. First pair of feet long, and one of them very stout, with the terninating land very large, and nearly of the same form as in Callianassa, exeept that the caypus is sinaller. The two suceceding pairs of feet are small and flattened; the fourth pair nearly cylindrical, and their basilary joint very much enlarged. Filth pair nearly as large as the fouth and terninating in an inperfect rudimentary elaw. Aldomen composed as ordinarily of seren segments, nearly of the same size throughout, and carrying bencath five pairs of fulse-feet : of these the first are rectuced to a simple narrow biade slightly cilinted at the end, but the four sueceeding pairs hare a very remarkable conformation. A peduncle is to be distinguished and three terminal laminx, two of whieh are very laige and one very small on the edre of the preceding ones; all round the border of the great laminar a kiud of tufted fringe is found. composed of a row of eylinders, ench of which gives otigin to wo smaller filaments, wheh again in their furn are hifurcated nearly in the same manner at the branchial filaments of the Squillse arc divided. The five blades of which the eaudal
fin is composed are wide and rounded. The thoracic branchice are enclosed as ordinarily in the carapace, and are each composed of cylinders ranged in parallel order on a stem, nearly as in the lobsters, only these organs and filaments arc less numerous, and the branchix themselves very small. There are only ten on each side of the body. (M. E.)
Example, Callianidea typa. Length about 10 lines.
Locality.-Coasts of New Ireland, where it was found by MM. Quoy and Gaimard.

Callianidea typu, magaifed.
a, natemana of the first parr; b, exterual jow-foot; c, extrenity of one of Ale prosterior feet; d, abdominal fallse feet, frist rair; e f false fect of one of the thar suiceceding pairs ; f, marginal friuge of those falise feet.
So much doubt exists relative to the genus Isea, Guerin, Cillianisea, M. Edwards, that we think we should not be justified in occupying space with the very long and elaborate description of M. Guerin, and the achite criticisms of M. Milne Edwards, who observes that Isea, having been previously employed to designate another erustaceous animal, cannot be retained. M. Guerin's deseription will be found in the 'Annales de la Société Entomologique de France,' tom. i., p. 295; and also in M. Milne Edwards's 'Histoire Naturelle des Crustacés,' tom. ii., p. 322. But though our linits do not permit the insertion of the details, they should be carefully perused by the student, for they are highly interesting and instructive.

Fossil Tifalassinians.
M. Milne Edwards states that the emistaceous fossil found in the chalk formation of Maastricht, and figured by M. Desmarest under the name of Pagurus Paujasii, belongs to the genus Callianassa.

TIIALASSIO'RNIS, Mr. Eyton's name for one of the ducks (Clangula, Sinith), subfamily Erismaturince.

THA! 1 SSIOPIITTES (literally 'sea-plants,' from 2α '$\lambda \alpha \sigma \sigma \alpha$ and $\phi \dot{r} \sigma \nu$) is the name given by Lamouroux to designate the vegetable productions of the oeean and of its rocks and sloores. It is equivalent so the term Hydrophytes of Lingbye, and the plants described by Agardh as Marine Algæ. This division of the vegetahle kingdom comprehends, in Lamouroux's system, six orders, viz., Fuenceex, Floridere, Dictyoteæ, Ulvaceæ, Aphlomideæ, and Phlomidere. [Sra-Wreds; Ulvace.e.]
THALES ($\theta a \lambda \bar{\eta} s$) was a native of Miletus, one of the chief cities of Ionia, and descendled from a Phoenician family. Apollodorus, as quoted by Diogenes Laertius, fixes the year of his birth in the first year of the 3uth Olympiad, or B.C. G40. Herodotus (i. 74) says that Thales the Milesian predicted the year of the great celipse which took place while the armies of Cyaxares and Alyattes king of Lydia were engaged in battle. Alyattes beeame king of Lydia in 3.c. 617. Herodotus also says (i. 75) that Thales was in the army of Croesus at the tine of the hattle of Plerie between Croesus and Cyrus b.c. 547 or 516 ; at which time lie would be ninety-four years old, if the date of his birth is correctly given by Apollodorus. Thore was a general tradition that he lived to a great age ; and Lucian states that Solon, Thales, and Pittacus all lived to be a hundred years old. (On the subject of the eclips see the article Alyatres, and Oltmanns, Abhandlungen der Akad. Berlin. 1812-13.)

In the Life of Thales by Diogenes we find numerous traditions attached to his name, the value of which it is sumewhat difficult to estimate. Thales is enumerated among the Seven Wise Men, whose wisdom was not the theoretieal wisdom of philosophers, but the wisdom of actual life. [Buss.] Accordingly we find that Thales took an aetive part in the political affairs of his native country. Before Ionia fell under the Persian yoke, he advised the Ionians to have one common council, and to establish it at Teos, for Teos was in the centre of Ionia; and he fur-ther suggested that all the other Ionian states should be reduced to the condition of parts dependent on the government at Teos. Sueh a scheme, if carried into effect, might have checked the progress of the Persian arms (Herod., i. 170.) Later writers say that he visited Egypt and Crete in order to improve his knowledge, and that lie derived from Egypt his aequainfance with mathematics. There seems no reason for thinking that Thales left any writings. Aristotle at least was not acquainted with any philosophical writings by Thales. Various sayings of Thales are recorded : they are of that sententions character which belongs to the proverb, and they embody truths such as the general experience of mankind recognises : and for this reason they cannot safely be considered as the product of any one mind. Thales is generally considered the founder of the Ionian sehool; but it is perhaps hardly proper to consider him in any sense as the founder of a school. [Ionian School.] His traditional yeputation rested on his physical diseoveries and his philosophical speculations. He is said to have been the first astronomer (among the Greeks) who predicted eelipses; and to have discovered the passage ($\pi \dot{\alpha} \rho o \delta 0$) from tropie to tropic, or, in other words, to have laid down the sun's orbit ; and to have fixed the length of the year at 365 days. He determined the magnitude of the sun to be 720 times that of the moon; which is apparently the true version of the corrupt passage in Diogenes. His knowledge of geometry was said to be derived from Eoypt, and Pamphila attibutes to him the discovery of the right-angled triangle of the circle
 probably means the demonstration that the angle in a semicircle is a right angle, a discovery attributed also to Pythagoras. Hieronymus says that he measured the height of the pyramids of Egypt by observing the shadow which an object east when it was of the same length as the height of the objeet.
The philosophical speculations of Thales, like the earliest efforts of philosophers in all countries, were an attempt to solve the problem that admits of no solution-the real nature of the universe. He is considered by modern writers as the originator of the dynamic philosophy, the nature of which, as opposed to the meehanical, is explained in the article Ionian Sciool. Aristotle (Metaph., i. 3) has explained in a short passige the general doetrine of Thales: 'There must be,' observes Aristotle, 'some Nature ((iverc), either one, or more than one, to which all other things owe their origin, this one still subsisting. The number however and the character of sucl a first principle are not conceived by all in the same way. Thales, the founder of this philosophy, says it is water, and aceordingly he taught that even the earth reposes on water, founding this notion probably on the ohservation that the nourishment of all things is moist, and that heat itself proceeds from water, and that animals live by it: but that from which things come is the origin of all things. IIe was thus led to this notion, and also by observing that the seeds of all things have a moist nature, and that water is the origin of their nature to all moist things.' Thus the universe contained an aetive principle by the power of which all things were developed. He considered that the magnet had life, beeause it attracted iron. The universe theirwas pervaded by life, or, as Thales expressed it, 'full of

The doctrine of Thales bears some resemblance to systems that have been promulgated in modern times, which have been viewed as alheistical. The assumption of an active power, such as gravitation for instanec (though it is not here meant to affirm that gravitation has ever been viewed as a power sufficient for the production and conservation of all things), which is sufficient to maintain all things in a permanent condition (clanges such as we observe in limited portions of time and being only continued derelopments), may be viewed as an hypothesis
made for the purpose of getting rid of the neeessity of admitting the existence of Corl. Those who propound such an hypothesis without further explanation, certainly do not latie much pains to avoid the imputation of afheism. It does not appear however that the doctrine of Thales was auything more than a pure physical theory; and the traditions recorded of him by Diogenes make him a believer in a Diety: 'The most antient of things existing is God, for he is uncreated; the most beautiful thing is the universe, for it is God's creation.'-lt was one of the masims of Thales, that death did not differ from life. "Why don't you die then? said an objector, more witty than wise. 'ISeeause there is no difference,' was the reply.
(Diogenes Laertius, i. 'Thales;' Ritter, Geschichte der Philosophic, vol. i.)
 of a genus of plants belonging to the natural order Ranunculaceae. It consists of herbs which have usually a fetid smell like rue, and hence are called meadow rues. The species have perennial roots with annual stems. The flowers are corymbose, panieled, and somewhat racemose, of a green, white, or yellow colour. They have no iuvolucre and no petals. The calyx is composed of 4 or 5 petal-like sepals. Carpels 4 -15 in number. Upwards of 50 species are enumerated, which are mostly natives of the temperate and colder parts of the world.
Th. aquilegifolium, the Feather Columbine, has ovate stipules, placed at the base of the ramifications of the petiole: and a corymbose panicle. It is a native of Europe, in woody distriets of Germany, France, and Italy. The stems and stamens of this plant vary in eolour, sometimes being greenish-white and sometimes purple. A variety is found in Austria with dark purple stems and stamens, and is ealled Th. a. atropurpureum. Another variety, formosum, has the stamens dilated at the apex; whilst another has the stems green and stamens quite white, and is named Th. a. albrm.
Th. minus, Lesser Meadow-Rue, las the stem round, mealy; the flowers panicled, droopiug, leafiets smooth, roundish, toothed at apex, glaucous, pericarps acute furrowed. It is a native throughout Europe. In Britain it is found in chalky pastures, and on the sea-coast where shell-sand abounds. The greater meadow-rue, Thalictrum majus, is also a native of Great Britain, thongh rare.
Th. farum, Xellow Mcadow-Kue, has an erect, branched, furrowed stem, fibrous roots, a somewhat corymbose panicle of cream-coloured flowers, with wedge-shaped, trifid acute leaflets. It is a native of all distriets in Europe. In Britain it occupies wet meadows, the banks of rivers and ditches. It has a root of a yellow colour, and is said to resemble, both in appearance and properties, rhubarb. It yields a yellow dye, which may be employed for dyeing wool, and was formerly used as a remedy in jaundice. Like many of the family to which it belongs, it is very acrid, and produces blisters upon the skin, when applied to it.

Th. fortidum, Foctid Meadow-Rue, has a simple stenn, naked at the base, leafy in the middle, and panicled at top; the leaflets are oltuse, loothed, and covered with a clammy pubescence. It is a native of France, Switzerland, Kusia, \&ce., and is found in valleys and on lifll sides, and in the fissures of calcarous rocks. It smelly more powernilly than any of the species-hence its specifie nante.
Th. Cornmi has dioccions or polygamons flowers, with elub-shaped filaments, ohovate roundish leaflets, glancous bencath. This ts a North American speeies, and is found on the banks of rivers and in woody distriets throughout the whole continent.
The character of the lenves of these plants and their thiekly-flowered panieles reuder them favourites in gardens. They are readily inereased by parting their roots and planting them out in autumn. They flourish best in moist sludy situations, but are not particular ; they are irce-growing plants and well adapted for borders.
THA'LLLPUS, Mr. Swainsun's name for a gents which he ylaces among the Aplysians, apparently upon the authority of onte of the tate Rev. Lansdown (iuilding's draw-ings.-EX., Thatlepus ornatus. (Malacology.)

THAlII'CEERA, M. Quoy's name for a genus or Gastropols, placed as the first subfamily (with Ω ?) of his Turbidle (Turbinidre, we suppose, is meant), by Mr. Swainson. It is immediately followed by the subfamily Ampullarince. © Dfalucology.)
THALLICE. [Epidote.]

THALIUS is a botanienl term used exelusively in eryptogamic botany, and is genernlly applied to the part of the plant which beans the reproductive organs, and constifutes the prineipal part of its vegetation. In Jungermanniaceas the thallus or frond is either a leafy branched tutt, as in mosses, with the cellular tissue particularly large and the leaves frequently furnished with lobes and appendages at the base, called stipule or amphigastria; or it is a flattened mass of vegetable natter seated upon the ground. In lichens the parts which bear the reproductive organs, and which eonstitute the great bulk of the plant, is cealled thallus or blastema. In the Algae the term thallus is applied to the whole plant; whilst in the fumgi it is used synonymously with thalamus, to express the mass of fibres from which many of the fungi arise. Thallodes is the adjective used to express anything arising from the thallus.
THAME. [OXFORDSHRE.]
THAMES, the most important river in Great I3ritan, rises in the central part of England, and flows eastward into the German Oceat. Our description will comprehend a notice of its basin, course, and afluents, and commercial importance.
Basin.-The limits assignable to the basin of the Thames will depend on the place at which the month is fixed. The opening between Sheerness in Kent and Shoebury Ness in Fssex, between five and six miles wide, is commonly regarded as the mouth of the Thanes; but it is preferable in some respects to consider as such the openur between Whitstable in Kent and the east extremity of Foulness Island in Essex, where the tideway has a breadth of eighteen miles. Here the Thames opens into a large bay separating Kent on the south from Essex and Suffolk on the north, and having for its extreme points the North Foreland in Kent and Orford Ness in Suffolk, finy miles distant from each other. Into this hay several rivers, besides the Thames, open: as the Crouch, the Blackwater, and the Colne, from Fssex ; the Stour, which separates Essex from Suffolk; and the Orwell, the Deben, and the Alde, from Suffolk.
The basin of the Thames, commencing at Whitstable, is bounded by the high grounds which there run down to the coast, and form the cliffs east of that town. The boundary runs in a very irregular line across the county of Kent anil the Weald district of Kent and Sussex to the liggh ground on the sonthern border of Ashdown Forest in the latter county. This part of the boundary is very irregular froms the manner in which the basin of the Thames is complicated with the basins of the Kentish Stour, the Rother, and the Sussex Ouse.
From Ashdown Forest the boundary runs west-north-weat across the high ground of Tilgate and St. Ieconard's forests to Leith Hill in Surrey, and thenee west-south-west, though in a very irregular line, past the head of the Wey in Woolmer Forest to the verge of the chalk downs near Alton, Hants. This boundary separates the basin of the Thames from the basins of the Sussex Ouse and the Arun. Nearly all the waters which rise along the boundary, from its commeneement to Tilgate Forest, flow into the Medway; those from Tilgate Forest to Leith Hill, into the Mole; and those from Leith Lill to Alton, into the Wey.
From the neighbourhood of Alton, the boundary of the basin is formed by the chalk downs which extend across Hants and Wilts by Basingstoke, Kingsclere, Highclere. and Burbage near Great Bedwin; and from thence ly the downs which run north-westward to the neighbourhool of East Kemnet and Abury. These chalk downs separate the basin of the Thames from the basins of the Anton or Test and the Hampslire Avon: that part of the basin of the Thames which they bound is drained by the Loddon and the Kennet.
From near East Kennet the boundary turns north and north-north-east along the green-sand hitls by Compton Basset, Clyffe Pipard, and Chadderton; and from thence west-north-west to the western extremity of the basin near the eommonly reputed head of the Thaines anid the Cotswold Hills between Cirencester and Tethury. The boundary between East Kennet and the Cotswolds separates the basin of the Thames from that of the Bristol Avon, or more correctly of the Severn, of which the Ayon is a tributary:
From the neighbourhood of Tetbary the boundary runs northward along the ridge of the Cotswolds, which here separate the basins of the Thames and the Severn, to the
head of the Churn (or true Thames), about three miles south of Cheltenham; and from thence north-11orth-east along by the same hills to the head of the Windrush near Campden, and by Long Compton Hill and Edge Hill to the Arbury hills near Daventry at the northern extremity of the basin. Here the basin of the Thames is conterminous with that part of the basin of the Severn which is drained by its affuent the Warvickshire Avon.

From the Arbury hills the boundary of the basin runs south to the neighbourhood of Bicester, and thence eastward across Buckinghamshire, Bedfordshire, änd Hertfordshire, along the Dunstable, Luton, and Royston downs, to the north-western corner of Essex ; the basin of the Thames being throughout conterminous with that of the midland or Norfolk Ouse. This part of the basin of the Thames is drained by its affluents, the Charwell, the Thame, and the Lea. An irregular line drawn through the county of Essex from its north-western corncr, first south-south-east by Dunmow and Brentwood, and then east by Rayleigh and Rochford to the coast, will complete the boundary.

The greatest extent of this basin from east to west is from the mouth of the Thames to the neighbourhood of Tetbury, about 136 miles; the greatest extent from north to south is from the neighbourhood of Daventry, Northamptonshire, to the neighbourhood of Alton, Hants, about 78 miles. The basin comprehends the whole or part of the following counties; its area may be cstimated as follows :-
Kent (considerably more than half the county;
the western part)
the western part) .
of some small portions along the southern
of some
border)
Sussex (a small part along the northern border)
Hants (the northern and north-eastern part)
Berks (the whole county)
Wilts (the northern and north-eastern part)
Gloucester (the south-enstern and enstern part)
Warwickshire (a very small portion along the
sonth-eastern border)
Northamptonshire (a very small portion along
the south-western border)
Oxon (the whole connty, with the exception of
two small portions on the north-eastern and
north-western borders)
Bucks (two-thirds of the county; the central
and southern part)
Bedford (a small portion at the sonthern extre-
mity)
Herts (the whole county except some portions
along the north-eastern borter)
Sq. Mites.
900
700
300
350
750
450
450
Middlesex (the whole county)
Essex (about one-third of the county; the
Essex (about one-third of the county; the western and southern borders)

Tótal 6600
We have used round numbers, as in such an estimate an approximation to the truth is all that can be attempted.

The basin of the Thames is occupied wholly by the secondary and tertiary geological formations. The sources of the river and the course of its upper waters are in the oolitic bods of the Cotswold hills. The valley through which the Thames itself flows from above Cricklade to below Oxford is occupied by the Oxford clay, and between Oxford and Goring (a little below Wallingford) the river flows over the formations (the coral rag, Aylesbury stone, Tefsworth clay, and greensand and chalk marl) which intervene between the oolific and cretaccous groups. It traverses the chalk range between Insley Downs ànd the Chiltern Hills by a winding valley, in which it flows from Goring to Maidenliead, below whiclist enters the chalk basin of London, and liab the remainder of its course through it. The affucnts which join the Thames above Oxfordhave their coursechicfly in the oolitic district; the Thame and the Ock flow through the district occupied by the groups betwcen the oolites and the chalk; and of the remaining affluents, those which join it on the north bank chicfly rise in the chalk hills, and have their course in the chalk basin of London: while most of those which join it on the south bank rise in the districts occupicd by the subcretaceous formations, and enter the clalk basin of London by openings in the chalk range of the North Dowis. Owing to the entire absence
of coal, the basin of the Thames has no manufactures except those of the metropolis; but it contains some of the richest agricultural distriets in the whole kingdom.

- Course and Affuents.-The spring which has commonly been regarded as the head of the Thames is abnut three miles south-west of Cirencéster, near 'a bridge 'over the Thames and Severn canal which is called 'Thameshead bridge ;' but that which is to be regarded as the true head of the Thames is about three or four miles south of Cheltenham. Two streans rise, one from fourteen springs at what is popularly called The Seven Wells, and the other from four springs near Ullen Farm, the westernmost of which springs is the real (i.e. the remotest) head of the river: both streams rise on the south-eastern slope of the Cotswolds, and form by their junction, about a mile from their respective sources, the river Churn (a name the element of which is embodied both in the antient and molecrn name of the town of Cirencester (the Corin-iun of the Romans), by which it flows; and in the name of two villages, North and South Cern-ey, which are near it. At Cricklade, 19 or 20 miles south-east from its souree, the Churn joins the commonly reputed Isis or Thames, the length of which above the junction is only about 10 or 11 miles.
From Cricklade the river flows 9 or 10 miles east-northeast to Lechlade, reeciving on the way the Ray (11 miles long) and the Cole (14 miles long), both on the south bank. Just above Lechlade it receives on the north bank a more important tributary, the Colne (23 miles long) from the Cotswold hills east of Cheltenham; and just below Lechlade it receives the Lech, or Leach (19 miles long), which also rises in the Cotswolds, and gives name to the towns of North Leach and Lechlade. From Lechlade the Thames flows ' 14 miles castward to the junction of the Windrush, receiving accessions of small brooks on cach side. The Windrush rises in the Cotswolds between Winchcomb and Campden, and has a course of 31 miles by Burford and Witney; it joins the Thames on the north bank. Below the junction of the Windrush the Thames makes a bend to the north and north-east, receiving on the north bank the Evenlode, which rises in the Cotswolds near Moreton in the Marsh, and has a course of 31 miles by Charlbury, and receives the Glyme which flows through Woodstock and Blenheim park. The Thames then turns south, and flows to Oxford, where it joins the Charwell. From the junction of the Windrush to that of the Charwell the length of the Thames is 13 miles. The Charwell rises in the Arbury hills near Daventry in Northamptonshire, and flows southward 44 miles by Banbury: it joins the Thames on the left bank.
From the junction of the Charwell the Thames flows 16 miles south-south-east to the junction of the Thame at Dorchester, making lowever a considerable bend westward to Alingdon, where it receives the Ock. This river rises at the foot of the chalk hills of Berkshire, between Compton Jeauchamp and Ashbury, and flows eastward 18 miles into the Thames, which it joins on the right or south-west bank : the Thame rises near Stewkley in Buckinghamshire, between Winslow and Leighton Buzzard, and flows 39 miles south-west by the town of Thame into the Thames, which it joins on the left or north-east bank. From Dorchicster the course of the Thames is sonth-east 22 miles in a winding channel by Wallingford to the junction of the Kennet near Reading. The K cnnet rises near Broad Hinton, a village to the north of Marlborough Downs, flows south to East Kelnet, and then turning eastward flows by Marlborougl, Hungerford, Newbury, and Reading into the Thames, which it joins on the right bank: its whole course is 53 miles. It receives the Lambourn and the Embourin or Aibborn.

From the junction of the Kennet the Thames flows eastward, though in a very winding channel, making first a considerable cireuit to the north by Henley, Great Marlow, and Maidenhead to Windsor; and then a considerable circuit to the south by Staines, Clicrtsey, Kingston, and Richmond to Brentford, from whence it proceeds by Hanmersmith, Putney, and Chelsea to the metropolis. The distance from the junction of the Kennet to London-bridge is 70 niles. In this part of its course the Thames receives several feeders. The Loddon, 24 miles long, rises in the chalk downs of North Hants near Basingstoke; the Coln, 38 miles long, rises, under the name of the Ver, in the chalk mowns of Hertfordshire, and passes St. Albans, Watford, Ricknansworth, Uxbridge; and Colnbrook; the Wey, 36
miles long, rises near Alton, Hants, pasees Firmham, Godalmine, and Guildiord, and joins the Thames at Weylridge ; the Jole, 41 miles long, rises on Si. 1.conarl's Forest, in Susex. phsses through Leatherhend, and joins the Tharues at East Monlsey; the Cran and the Brent, two small streams, each about 18 miles long, rise on the borders of Aiddlesex and Herts and join the Thames, the first at Isleworth, the second at Breniford; and the Wandle, a stream only 9 miles long, joins it at Wandsworth. Or these the Coln, ihe Cran, and the Brent fall into the Thames on the lef or north hank; the others on the right bank. The name of the Ver appears as an clement in the name of Ver-olamiun, an antient Roman town close to St. Albans.
Below London, up 10 whielz sen-bome vessels ascend, the siver flows eastward, but with various 'reaches' or bends, 56 miles 10 its month, or to the Nore Light (at the commonly reputed mouth) 48 miles. Between Depiford and Greenwich, about four miles below London-bridge, the Thames reecives on the south or right bank the Ravensbourne, 10 miles long, from K eston, near Bromley in Kent; about two or three niles farther down, on the north or left bank, the Jea, 50 miles long, which rises in Bedfordshire, and passes Luton, IJertford, Ware, and Waltham Abbey: four or five miles lower, the Roding, 38 miles long, from near Dunmow, also on the north bank; and six miles lower, on the south bank, the Darent, 20 miles long, which passes Dartford, and receives the Cray. The only remaining teeder of the Thames which here requires notice is the Medway, above 60 miles long, which rises in Sussex, and flows by Tunbridge, Maidstone, Rochester, and Chatham. The prineipal arm of the Medway joins the Thames at Sheerness just above the Nore ; but the smaller arni, called the Swale, which cuts off the Jsle of Shepry from the mainland of Kent, opens into the Thames just aliove Whitstable.
The whole course of the Thames, from its source to its mouth, is about $2 \because 0$ miles, which is the aggregate of the distanees already given.

The principal affluents of the Thames are more fully deseribed elsewhere: the Colne under Glovcestershine; the Windrush, the Evenlode, the Charwell, and the Thame, under Oxfordshare; the Kennet, the Loddon, and the Ock, under Berksmre; the Colne, the Brent, and the Cran, under Middlesex; the Wey, the Mole, and the Wandle, under Surrey; the Lea with its tributarics, under IIertrordsmre, Essex, and Middiesex; the Roding rinder Rssex; and the Ravensborne, Darent, Cray, and Medway with its feeders, under Kevr. The Thames, in the first part of its course, belongs wholly to Gloucestershire, but below Cricklade is almost entirely a border viver, dividing Glouecstershire from Wiltshire, Oxfordshire and Buckinghanshire from 13erkshire, Middlesex from Surrey; and Essex from Kent. Some part of its conrse is therefore deseribed in the articles on those counties.

Commercial Importance. -The navigation of the Thanes commences at I.echlade, where the river is abont $2 \overline{5} 8$ feet alonve low-water mark at London-bridge. Its importance was early appreciated, and there are acts of Jarliament relating to it as carly as the 2nd Hen. VI. The Thanes and Severn Canal, which follows the valley of the Churn and the Thames from near Cirencester, opens into the Thames at Lechlade, thus connceting it with the Severn and the western coast of the island. The navigation of the river formerly extended up to Crieklade, but since the opening of the canal the upper part, between Cricklade and Lpehlade, hins been abandoned. None of the tributaries above Oxforl are navigable. At Uxford the Oxford Canal joins the Thames, and opens a comnunication with the great canal system of the central enninties: it follows the course of the Charwelt (which river is not muigable) from above Banbury. At Abingdon the Wilts
and Berks Canal joins the Thames, and, ss well as the Kennet and Aron Canul, which joins the Kennet at Newbury (where the navigation of that river commences, 20 miles above its junction with the Thames), opens a communication with the Somersetshire (or Bristol) Avon, and hy it with the Severn. The Thame is navigable from the lown of Thame, about 17 miles above its junction with the Thames; but neither the Joddon nor the Coln is navigable. The Wey is navigable from Godalning, about 17 miles from its junction; and is connected with the Wey and Arun Canal, and the Basingstoke Canal, the former of which opens a communication with the river Arun and the Sussex coast. No other feeder above London-bridge is navigable; but the Grand Junction Canal, which unites with the Oxford Canal at Braunston in Northamptonshire, opens into the Thames by the month of the Brent, the lower patt of which is incorporated with the canal. Below London-bridge the Lea, which is navigable, chiefly by artificial euts, for 23 miles, and has one of its fecders (the Stort) also navigable, opens into the Thames; and just above the Lea, the Repent's Canal, whiel encircles the north and east side of the metropolis, and communicates with the Paddington Canal, and so with the Grand Junction Canal, also opens into the river.
The Medway is navigable below Rochester bridge for seaborne vessels, and from Penshurst, above 43 miles from its mouth, for river craft.
The navigation of the Thames, in its upper patt, is kept up hy locks and wears, the lowest of which is at Teddington, which is consequently the limit of the tide. Teddinyton is about 18 or 19 miles above London bridge. Highwater mark at 'reddington is about one foot and a half higher than at London-bridge, and the time of high-water is about two hours later. Low-water surface at T'eddington is about sixteen feet and three-quarters higher than at London-bridge.

At ebb-tide there is a depth of from 12 to 13 feet water nearly or quite up to London-bridge, and the rise of the tide is about 17 feet, or at the extreme springs about 22 feet.

Vessels of 800 tons get up to the St. Catherine's Daeks, and those of 1400 tons to Blackwall, about six miles below bridge. No river in the world equals the Thames in its eommercial importanee. The iver ior some two miles or more below bridge is crowd ed wilh vessels, chiefly coast ers, steamboats, and colliers, which moor alongside the quays or in ticrs in the stream; others are moored lower down, though not in such numbers; and for larger vessels there are several doeks exeavated on the bank of the river. There is a doekyard for the nary (now little used) at Deptford, about four miles below Jondon-bridge; one at Woolwieh, nine miles below; one at Sheerness, in the Jsle of Sheppy, at the junction of the Thames and Medway; and one at Chathan, the most important of the four, on the Medway. The fortiflcations at Sheerness defend the entrance to both rivers; the passage of the Thames is further protected by Tilbury Fort, and that of the Medway by Gillingham Fort.
The width of the river at London-bridge is nearly 700 feet. For nearly the whole way below London-bridge the river is embanked, and is almost throughont its lower course skinted with marsh-lands, which lowev er have nowhere a great extent. The width of the river at Woolwich is about a quarter of a mile ; at Gravesend, 26 miles below Jondon-bridge, and opposite Tilbury Fort, it is more than half a mile; about four miles below Gravesend it is nearly a mile; and then gradually increases to the width of abont six miles at the Nore, and to eighteen at the point where we have fixed the mouth.
It is a common opinion that this river in the upper part of its course is properly called Isis, and that it is only below the junction of the Thame that it is called Thames, which name is said to be formed by combining the two names Thame and Isis.. But Camden observed long amo that this is a mistake; that the river was antiently ealled Thames in its upper as well as in its lower part ; ihat the name Isis never oceurs in antient records, and was never used by the common people, but only by seholars. Carsar writes the name Tamesis (evidently Taines or Thames, with the addition of a Jatin termination. Taeitus writes it Tamesa, and Dion Cassius Tapion, which is the same name, with the appendage of a different ternination. Ptolemy has it 'Ia' $\mu \eta \sigma \pi$, or in some MSS. 'Iapeoais, and in some editions 'Iopesor; ; all which we suspect to le forms of the same name, 'I having been by the carelesshess of some carly
transcriber substituted for T. In Richard of Cirencester it is Thamesis.
(Ordnance Survey; M'Culloch's Statistical Account of the British Empire; Camden's Britannia.)

THAMES, a certain jurisdiction, though not undisputedly exclusive, appears to have been immemorially exercised over both the fisheries and navigation of a large portion of the Thames by the mayor and corporation of Londob. In early times, when fisheries were probably of much greater importance than they are at present, the same kind of encroachments upon them by private individuals which were so often made the subject of complaint in other parts of the kingdom were also practised in this river. In 1403 an order was issued from Sir John Woodcock, then lord mayor, enjoining the destruction of wears and nets from Staines to the Medway, in consequence of the injury which they did to the fishery and their obstruction of the navigation. By 4 Hen. VII., c. 15 (1487), the mayor of London and his successors were invested with the same authority as conservator of the fish in ' all the issues, breaches, and ground overflown as far as the water ebbeth and floweth from out of the river Thames,' as he had within the river itself. Before the river was artificially embanked and the adjoining lands drained, this extension was probably of considerable importance. During the reign of Elizabeth, in 1584, an order was put forth by the mayor for the purpose of settling the proper times in which various kinds of fish were to be taken. It prohibited fishing in certain parts of the river, and forbade the taking of the white-bait or "bloodbag." The right of the corporation however to the conservation of the river about this time was disputed by the lord-highadmiral, and some litization took place, in which the corporation were uniformly successful. James I. in the third year of his reign granted a charter to the city, in which the immemorial right of the city to the office of bailiff and conservator of the Thames is recited and confirmed. The same rights are also confirmed and scttled by various other charters and acts of parliament. The result of them is to vest in the corporation the eunservation of the river, the regulation of the port and harbour of London, and, as is said, the actual property in the soil of the river, subject only to the jus regium of the crown. By this is perhaps to be understood, that property with which the crown is held to be invested for the purpose of securing to the public the usc of the river for the purposes of navigation, fishing, and other purposes. The portion of the river over which the jurisdietion of the city extended seems to have been always much the same. It is described in the following terms, in an artiele entitled 'Antient Prescriptive Jurisdictions over the 'Thames,' by Joseph Fletcher, Esq., in the ' Quarterly Journal of the Statistical Society of London,' vol. iv., p. 104 :- 'The charters of James I. herc quoted are confirmed in one of the 14 th of Charles I. They remain to the present day the great record of the city's rights over the river, and it is as such that they are recited in this statute. The offices of meter and conservator are asserted from Staines to the mouth of the Thames, the commencement of the city"s jurisdiction being marked by a stone, with an a poeryphal date, called London Stone, placed on the north bank of the river, a short distance above the present bridge of Staines, and its termination on the soutli shore, by the formerly navigable crcek of Yantlet, separating the Islc of Grain from the mainland of Kent, and on the north shore by the village of Leigh, in Fssex, placed directly opposite, and close to the lower extremity of Canvey Island. The shore of the Isle of Grain, which separates the mouths of the Thames and Medway, are thus wholly exempt from the city's jurisdiction; notwithstanding that the right of conservancy is still asserted in the waters of the Medway, from the southern mouth of Yantlet Creck, upwards towards Rochester, as far as Cockham Wood, which is on the northern shore, opposite the marshy point below Chathann. At all events, the corporation of Rochester deny the right of the city of Jondon to conservatorial jurisdiction in the Medway bclow Yantlet Creek, any more than in the Thames; a limitation which appears to have arisen from this creek having anticntly been the customary channcl of navigation between the two rivers, and marked the mouths of both. But the passage through this creek being now completely stopped, so that the Isle of Grain is connected by a solid roadway with the parish of Stoke, the mouths of these rivers are properly at the P. C., No. 1523.
lower extremity of this island, opposite the Nore and Sheerness, while the city's jurisdiction, more antient than this geographical change, is completely cut by it into two separate portions. About twenty years agro it was attempted by the city officers, under the direction of a court of conservancy, to rcunite these portions, by cutting through the bank which prevents the navigation of fishingboats through Yantlet Creek; but the final decision of the Court of King's Bench, given July 8th, 1825, on the motion for a new trial, was against this procecding. The conservancy jurisdiction in the Medway extends a distance of only eight miles, but has little more than a nominal existence. In the Thames it extends a distance of eighty miles, over nearly the entire course of that river throngh the metropolitan valley; and this distance appears to be divided into thirty-four miles of inland navigation from Staines to Vauxhall Bridge, the towing-path ceasing at Putney; three of town thoroughfare, from Vauxhall to London Bridge ; and forty-three of seaport, from London Bridge to Yantlet Crcek.'

In their character of conservators of the Thames the corporation have the control and regulation of the fisheries, and are empowered to seize prohibited nets, fish, \&c. They have also the regulation and control of the watermen and of the shipping. They are entrusted with the cleansing of the river, the removal of obstructions, crection of stairs, licensing mills, and other such duties. The lord mayor, with the recorder and other civic officers, holds in person eight courts of conservancy in the year, two for each of the counties of Middlesex, Surrey, Kent, and Essex, and occasionally a court in London. The greater part of their functions are at the present time intrusted to a committee of the common council, called "The Thames Navigation and Port of London Committee.' Various acts of parliament saving the jurisdiction of the city of Londion have been passed for the purpose of preventing and punishing offences committed on the river, and the maintaining of a police and maristrates to administer the law. The latest of these is 3 Wm . IV., c. 19.
(Griffiths' Conservancy of the River Thames; Pulling, On the Laws, f.c. of the City and Port of London; Stow, Survey of London.)

THAMMUZ. [ADons.]
THAMNO'BIA, Mr. Swainson's name for a genus of birds (Sylvia, Vieill.) placed by Mr. G. R. Gray in his sulbfamily Saxicolina, of his family Luscinida.

THAMNOPHILI'N E, a subfamily of Shruees.

THAMNO'PHILUS, Vieillot's name for a genus of Shrikes.

THAMNO'SIA. [SFA VEEDS.]
THANE, in Anglo-Saxon Thegn, from thegnian, or thenian, 'to serve,' the same word with the modern German dienen, is frequently, in conformity with this origin, translated minister in the Latin charters of the Anglo-Saxon period. In other cases its equivalent is miles, or fidelis miles. So king Alfred, in his translation of Bede's 'Ecclesiastical History, renders the king's minister, the king's thanc, and uses thane wherever Bede has miles. In this general sense it may be considered as nearly the same with the Norman term liege or liegeman; and so it seems to have been sometimes used. The exact meaning of the term when cmployed as a title of honour is involved in considerable obscurity : the rank or dignity which it denoted was possibly not the same at different times, and there were also thanes of more than one kind. The king's thanes, in particular, are distinguished from the medemc (in Latin mediccres), or inferior thanes, who are otherwise designated the thanes of aldermen (the highest order of the Saxon nobility), earls, and other thanes, and who appear to have been very numerous. After the Conquest thanes (thaini or taini) are frequently classed with barons (barones): in the laws of IIenry I., the two words are apparently used as synonymous; and where the Saxon Chronicler has thanes (thegenas), the Latin amnalists have commonly barones. These were, of course, the superior or king's thanes. The class of common or inferior thanes, again, seems to have answered nearly to that of the barones minores, or landed gentry. One of the few things that are tolerably certain with regard to the rank of a thane is, that it implicd the possession of a certain amount of landed property. Such a qualification indeed seems in certain circumstances to have conferred the dignity of thane. One of the laws of Athelstane declares that if a ceorl (or commoner) slall have obtained
flve hiales of land in full property, witl) a chureh, a kitchen, a bell-house, a lurghate seat (or office of magistrate in a burgh), and a sfation in the king's hall (the menning of which last exprension is douhtful), he shall hencerorth be a thane by right. live hides of land was probably the amount demanded cren for a thane of the highe virler: although it appears from Domesday-lBook that this was also the quantity whieh made the owner a miles, or liable to be eafled ont on the king's militay service. Mny Iands are mentioned in Jomesday-l3ook os thane-lands (terre tainomun): and it is probable that the dignits, like the oldest of the Norminn baronies, was sometimes atinclied to a particular estate. Thanes were anong the members of the Saxon Witenagemot, or parlianent, but it is inatter of dispute whether they ant in their own right or an eleeted representatives. The principal facts connected with this dignity in England have been collected by Mr. Sharon 'Turner, in his ' Ilistory of the Anglo-Saxons, Svo., J.ondon, 1823, vol. iii., pp. 81, 167-200, 2:27-231; and ly Sir Francis Palgrave, in his ' Rise and Progreas of the Fnglish Connmonwealth,' $410 ., 1832$ i., $15,577-573$: nud ii., ccelxxsi. coclxxxvi.
There is little mention of the thames in Enmland atter the time of Henry I1. ; but Lord Hailes has shown (Annals, i. 28) that in Scotland thane was at recognised_title down to the end of the fifteently century: the 'Chartulary of Moray'mentions a thane of Cawdor in 1492. It appears from the first to bave implied in Scotland a bigher dignity than in England, and to have been for the inost part synonymous with carl, which was a title generally annexed to the tersitory of a whole county. It has been commonly assumed that thane is the more antient title, and that it began to be exchanged for carl in the reign of Maleolm Cammore; but, according to Pinkerton (Ilistory of the House of Stwart, i. 161), the title of thane was not introdueed into Scotland till after the time of Maleolm. 'Yet,' he adds, "the difference between a thane and baron is unknown; and some doubts arise that ignoranee may lave blended the Saxon thame and the Jrish tanist.'

THANET, 1SLF OF. [Kent.]

THANN. [Rhas, Havt.]

THA'PSACUS, or TIIA'PSACUM, w:s a very antient, populous, and commercial town in Syria, on the right hank of the Euphrates, about $2-1$ miles west of the junction of the river Cluaboras (the Araxes of Xenophon) with the Euplirates. Thapsacus, the Thiphsneh of the Bible (1 Kings, iv. 2t), the Taphsa of the Vulgate, and the Thapsa of Josephus (Anfiq.. ix. 11), was the most castern lown of the kingdom of Solomon after David had conquered the country as far as the Euplnates. At an equal distance from I'yr by land and from Babylon by water, Thapsaeus became nn entporium, where the Gerrinei kept stores of the commodities and spiees of Arabia, which they carried there on floats, or probably barks, and whichl were afterwards transported by land to Syria and Jhomicia and their commercial towns on the Meditermanean. (Strabo, xvi., p. 766, Cas.) Its military position was also of great importance. Λ t the time of the expedition of the younger Cymis (B.c. 401), there was a ford nt Thapsacus, but no bridge; subsequently there was a bridge. This town was the most southern prosage by which an army could penctrate, cither from Miesopotamie into Syria and Cilicia, or from these countries into. Nesopotamia and Persin, without being ob)liged to traverse the deserts of Arabia, which oceupy the whole tract between Jalestine and Mhomicia in the west and the lower part of the luplirates in the east. The younger Cyrus crossed the Fupbrates at Thapsacus (Xenophon, Cyroped., i. 4 : Darius also crossed the river at Thaywacus when he was ndvancing against Λ lexander in Cilicin; and Alexander, when he was pursuing Darius into Axsyria. (Arrian, 2, 13; 3, 7.) In the age of Strabo the bridge at Thapsacus existed no Innger, and the passage of the river was made by the bridge at Commagena. (Sitrabo, p. 747, Cas.) The circumstance of Thapsacus being a town from which inilitary and commercial roads run in every dircetion, was probably the canse why Fratosthenes chose it as the centre of his gcographical measurements in Λ sia Minor and the adjacent conntries, of whicl) Strabo gives an aecount (ii., p. $78-91$, Cas.). It has been said that the antienta did not agree on the situation of Thapsacus, Ptolemy (v. 19) putting it in Ambia Deserta, nad Pliny (IVist. Nut., v. 21) and Stephanus lByzantinus and Q . Curtius ($\mathrm{x}, \mathrm{1}$) in Spria. But the fown wra too well known to allow suly
such doubti, and the only fret which follows from these different statements is that the antient geographers did mot exactly agree as to the frontiera of Syria and Arabin Deserta whieb joinedinenr Thapsacha. Hliny suys that in lis time this town was called Amphipolis, but this is very doubtful; nor is it true that Selcueus Nieator founded 'lhupsacus; he perbapas rebuilt it or adomed it witl new buildings. Aceordine to Steplanus, the Syrians called it Tumneda; and D'Anville siates that there is now a manll town on the site of Thapasacs, which lias the Ambic name of ' lil-der,' or "the cloor,' in the Linuua Franen 'l'orta Catena.
(D'Anville, Ciengrayhie Ancienne, vol. ii., 111; ('rllarius, sutiliae Orbis Intiqui, vol, ii., p. 307, 30s:)

THIA'2SSLA, the mane of a genus of plants belonging to the natmol order Unbelliferae. The species are perennial herlsa, will cloubly or trebly pinnate leases, large compound mabels of many 1818 without involucra or involucells, und yellow flowers. The margin of the enlyx is otoollied; petals elliptie, entire; fruit compressed from the back; incricarps with 5 primary filiform ribs, 3 of which are dorsal, and " lateral ones in the commissure, and with it sceondary ribs, of whielt the 2 dorsal are filiform and the 2 lateral ones membranous and winged vitte in ench furrow modemeath the secondary ribs.

The species are mostly natives of the conntries of the Mediterranean, and are known under the generic name Deadly Carrot.
T. eillosa, Velvely Deadly Carrot. has a square giabrous stem; tri-pinunte leaves, many-parted leaflets, villous ou both surface, lower ones deflexed. This plant is found in Portugal, Spain, the south of liranee, in Italy, and the northern coasts of Africa. Poiret states that when fresh the root is acrid and corrosive. In Barbary it is used as a remedy for some forms of cutancous disease, but it appears to be a severe applieation and attended with inflammation and vesieation of the skin.
T. silphium, Silphiun: Deadly Carrot, bas a square ginbrous furrowed stom ; pinnate leaves, many-parted leaflets, all linear, lairy on both surfaces, with revolute margins. It is a native of the noth of Afrien, on the mountains of ciyrenaica, and is supposed to be the plant that prorlneed the juiec called Sifphium, and which was held in so ligh repute by the antients, that a district where it grew in ubundance was enlled 'Silphifera.' [Supul's.]
T. Gurganica, Garganina or Greek Deadly C'arrot, lins a square glahrous stem; bi- or tri-pinmate shining leaves; segments linemr, acute, clongated, quite entire along the margins; involucre with few leases; frut cordate at the base. This plant is a mative of Calaluia, Mauriania, Grecee, Sicily, Sardivin, Spain, Sc. Dr. Sibthoup fount it common in Grecee and the neighbouring islands, and concludes that it is the Daizata of Dioscorides, with whose deseription it agrees better than any of the rest. It is one of the most stately plants of the fanily, and was introduced into the gardens of this country as early as 1680 . There are seven other species of this genus referred to by Don they possess the actise properics of the above, but are seldom en ployed at the present day.

In their cultivation the species of Thapsia require but litlle care, as they will grow in any common garden soil. They may be propagated by seeds, which should be sown in autuhn as soon as they are ripe.

THASOS (Oáoos), now Thaso, or 'Tasso, an island situated off the const of Thrace, at a shont distance from the mouth of the river Nestus or Kamsou, and a little to the south-east of the Gult of Kavallo. Volgaro, which is nearly in the centre of the island, is in $41^{\circ} 4 i^{\prime} \mathrm{N}$. lal. and $2.1^{\circ} 40 \mathrm{~F}$. long.

Five generntions before the time of the Girecinn llercules, Thasos was peopled by Phocnicinns, who caus from Tyre in quest of Furopa, led by Thasos, son of Agenor, from whom the island is said to hase tatien its name. (Herol., ii. 41 ; Pausan., v. 2\%.) It was rlso called Aerin and Nthrin (Pliny, is. 12); and Chryc, from its gold vines (Eustath.. Ail Dionys. Perieget., 517), and it is also distimguished by the epithet Ogygia. It was atlerwards colonized by settlers from Puros (Tbucyd., iv. 10t), sinong whom was Arehilocbus the poet, in 708 or 720 u.c. (Cliston, liasti Mellen., Ω. 708 , who does not decide the question.) Thasos was enriched is very early times by the possession of gold-mines in the island, and ni Scapte Ifyle, on the opposile const of 'Thrace. Aceording to Herodotus, who visited them. the most considerable trere those whiel had
been worked by the Phomicians on the north-east side of the island, the excavations for which were very evident (1 i .47). Herodotus further states that from the proceeds of these mines, and of their continental territory, which must have extended for some distance along the Thracian coast, there acerved to the Thasians in his time from 200 to 300 talents yearly, of which sum the mines in Scapte Hyle produced 80 talents, and those in the island rather less. (See the remarks on this passage in Boeekh, Public (Eicon of Athens, ii. 21, Lewis's translat., who assigns the probable sources of the remainder of this revenue.)

Being unencumbered with any taxes on the produce of their lands, the Thasians were at this time very rich. About 13.c. 402 they were besieged by Histixeus of Miletus for a short time, and employed their wealth in consequence in building ships of war and strengthening their fortifientions. Their independence and growing power exeited the jealousy of Persia: they were reduced by Mardonius; and shortly afterwards, B.c. 491 , being suspeeted of meditating revolt, they were compelled by Darius to throw down their walls and surrender their ships of war. (Herodotus, vi. 46.) On the expedition of Xerxes into Grecee, the burthensome honour of receiving his army in their continental territory was imposed upon them, and on this entertainment they expended 400 talents of silver. (Herodot., vii. 118.) After the Persian war they became subject to Athens, and having a dispute with that state about their Thracian possessions, revolted, n.c. 465. (Thucy., i. 100.) Cimon, atter defeating them at sen, besieged their island, and took it in the third year of the siege, b.c. 463. The Thisians were compelled to destroy their fortifications, to surrender their ships, to pay a large sum of money at the time and tribute for the future, and to give up then mines and settlements on the continent, among which inust have been Stryme (Herod., vii. 108), Galepsus and CEsyme (Thuey., iv. 107), and Datos (Eustat., Aet Diony., 517).

On the ascendency of the party of Pisander at Athens at the close of the Peloponnesian war, Diotrephes was sent by him to Thasos, and established an oligarehy there. This injordicious policy furmished an imnediate opportunity of revolting from Athens; the Thasians fortified their eity, and communicating with an exiled party, ealled in the Spartuns, в.c. 411. (Thucy., viii. G4.) Mueh internal dissension ensued; the Spartan harmost Eteonicus and his party were expelled shortly afterwards, and the island, reduced by fanine and civil war, was finally restored to the Athenians hy Thrasybulus, B.c. 407 (Xenophon, Mellen., 1-4), with the aswistance of a party of the inhabitants under Ecphantus (see Demosthenes, Lepl., 474, 25, Reiske, who limher states that these Thasians reccived in reward from the Athenians exemption from taxes). Subsequently the Thasians appear to have regained some of their continental possessions, and b.c. 359 they fortified Crenides, probably as a frontier post for their Thracian territory: this was seized by Philip, son of Amyntas, king of Macedon, who placed a number of Macedonian settlers in it, and gave it the name Philippi; under his management its gold-mines were made much more productive than before. Little more mention of the Thasians oecurs in antient history. When attacked by Philip V., king of Macerlon, they submitted to lim, with the stipulation that they, should relain their own laws and be exempt from garrison, tribute, or other burthens, B.c. 202 (Polyb., xv. 21). They were shortly afterwards released from his rule by the Romans, n.c. $19 \mathfrak{7}$. (Polyb., xviii. 31.) Under the emperors Thasos is styled Libera, or a free state. In the Synecdemus of Hierocles it forms part ot the Provincia Iflyrica I., and is placed by Constantine Porphyrogennetus in the Prafecture, and afterwards in the Theme of Thrace. ('De Then. I1., Them 1., Bandur., Antiqui. Constantin.)

Thasos was celebrated amony the antients for its marble (Sencea, Epist., 86), its wine (Virg., Georg., ii. 91; AtheHicus, i. 5l), which was exported to the Pontus Euxinus, and for other proluctions inentioned by Athenreus.

The coins of Thasos are very numerous. The silver coins may be gellerally arranged under three classes: 1, those on which the type is a satyr carrying ofi a nymph; the execution of these is very arehaie; the limhs have a knotty, the hair a globular appearnnce. But this peculiarity of treatment gradually disappears in the inproved art of the later specimens. To this arehaic class atso belong some coins on which are two fish ; 2 , are a number ot inassive coins in a good but rather heavy style, with a head
of Bacchus on the obverse, and Hercules knealing, shooting an arrow on the reverse. The Thasians had a colossal statue of Hercules at Olympia, holding in one liand a bow. They originally worshipped the Tyrian Hercules, and atterwarks the Grecian (Pausan., v. 25) ; 3, the broad tetradrachms of the Macedonian period, with the head of the young Bacchus, and Hercules on the reverse: the inscription HPAKAHE ERTHP. These coins are aoundant, and many of them with letters and type ill executed are found in Transylvania, and were probably the work of barbarous Thacians in imitation of the originals. The head of Ceres occurs on these coins (Dionysius Perieg., 523, calls Thasos $\Delta \eta \mu$ йт ε gos ax $\alpha \dot{m}$, the shore of Demeter or Ceres). Tle inscription $\theta A \Sigma I Q N$ HIEEIPO on a gold coin implies, according to Eckhel (Doct. Vet. Nun., 'Thasos'), that it was coined from a continental mine, probably Crenides, which would account for the identity of its design with that of a coin of Philippi, on the supposition that a Thasian type was retained by the Macedonians, when they oecupied that settlement. No imperial coins are aseribed to this place in Mionnet, except those of Hadrian, Caracalla, and Geta. The type of Perseus mentioned by Pollux (Onomast., ix. 6) bas not been discovered on any Thasian coin.

Coin of Thasos.

British Museum. Actual size, Silver. Weight, $11_{\boldsymbol{\sim} / 0}^{\sim} \mathrm{g}$ grs.

The antient town of Thasos is situated on the North coast of the island, and oceupies three eminences. On the site are remains of the Greck walls, ningled in pieturesque confusion with towers built by the Venetians during their occupation of the island after the taking of Constantinople hy the Latins, and overgrown with various timber. Near it is a large statue of Pan in a niche in the rock, and upwards of 50 sarcophagi of white marble. Some inscriptions found in the island are given by Boeckh (Corpus Inscript., ii. 183). The longest, No. 2161, is written in the Ionic dialect, and speaks of the theori and hieromnemon of the place. The antient harbour appears to have bcen used hy the Venetians. No remains of Fnyra and Coenyra, and of the gold-mines situated between them on the east coast, according to Herodotus, now exist.

Thasos is about 40 Italian miles in circumference. (Carpacchi, Isole del Mondo.) Its greatest length is from north to south. In the northern and highest part of the island three peaks extend in a north-west and south-east direction. The inhabitants, amounting to 5000 or 6000 , are all Greeks, and live in nine villages, Volgaro, Cassawith, Sotiro, Kaikarahi, Moriess, Kastro, Potamia, Liman, or Panagia, and Theolog, the largest situated nearly in the eentre of the island. These contain in all 1020 houses. The chief produce of this fertile country is oil, maize, honey, timber; the last grows in great abundance and in picturesque variety everywhere, particularly on the southern and western sides, and forms the chicf article of export; much of it was used for shipbuilding by Mehemet Ali, by permission of the Potte, and much is wasted by the inhabitants in the fires kindled for elearing the land; the plane-trees in particular are of great size. Little wine is made here, and some is imported from Tencelos; the principal food of the inhabitants is maize. Large herds of cattle and flocks of sheep are kept in the island: asses and mules are more used than horses on account of the steepness of the roads. The inhabitants are hospitable, industrious, and simple in their nimners. They are governed by a Turkish Aga, whom they expelled during the late Greek revolution, but whom they speedily restored. They suffer from the invasions of pirates, to whom they pay a tribute.
(Denkưürdigheiter aus den Oroent, von Prokesh von Osten, Stuttgart, 1837, iii., 1p. 611-32; Cousinery, Foyage dans la Macedoine, ii. 85, p. 108.) For the antient history of Thasos, besides the authorities already quoted, see Raoul Rochette, IIstoive des Colorics Grecques, iii. 223.

THATClI is a covering of strm, ruclies, or reetts, as a substifute for tiles or slates for houses, barms, and prinei-
pally for sheds for eattle. The inerease of agrieultural produce on a farm makes the stacking of corn out-of-doors a matter of neecssity as well as convenience. The temporary thatching of these stacks, as well as of hay-ricks, has niade it necessary that some of the regular servants of the farm should be capable of thatehing in a neat and mubetantinl manner, that there may be no delay from want of a regular thatcher. TVe will first deseribe the mode of thatehing hay-ricks and corn-stacks, as the simplest.

The rick or stack laving been forused into a proper shape, either with a roof slanting from a ridge, or conical, ending in a central point, the straw is prepared by moistening it, that it naty more easily bend without breaking. It is then forked up in a loose leap. the straws lying in every direction, and somewhat matted. Portions nre now drawn out from this heap in handfuls, which lays the straws again in a more parallel order: these are plaeed in a forked stick, which will hold several of these bundles or handfuls, and are thus carried to the that cher on the top of the riek or stack. IIe seizes a liandful, and bending one end into a kind of a noose, he inserts this into the hay or straw near the bottom of the roof, at one end if it be a shuare roof, or at any courenient part if it be a round one. He presses down the straw which he has thus inserted to about half its length, in order to form the caves, whieh extend a little beyond the lower part of the roof. When he has thus laid several handtuls side by side so as to cover about a yarl in width, that is as far as he can conveniently reach without moving his ladder, he begins another row a little above the place where he began, so that the lower end of the straw now inserted may cover the upper part of the first row, as tiles do each other. Thus he proeeeds upwards till he comes to the upper ridge of the roof, or to the point of the cone in a round stack. In the latter ease the covering diminishes to a point so as to form a triangle. The ladder is now shifted a yard to one side, and the same operation is performed, eare being taken that each fresh handful put on shall be interwoven with that which lies beside it, so that no water can possibly pass between them. Thus the work proceeds till the roof is completed, and it only remains to seeure the upper ridge in a spuare stack, or the point of the eone in a round one. In the first case the highest layer of straw is made to extend beyond the ridge on both sides, and the ends are brought together and stand up like the bristles on a hog. A rope of straw has been prepared, and many small rods, about two feet long, and eut sharp at the point: these are inserted just below the ridge, in a line with it, and about a foot apart; one end of the straw rope is inserted into the stack, and twisted firmly round the projeeting end of the first rod; it is then wound once round the next rod, and so on the whole length of the ridge: this is done on both sides. The straws whiel form the ridge are now eut with shears horizontally, to give it a neat finish, and at each end a kind of omament is usually made by winding a straw rope round a landful of the projecting straw, forming a kind of knot or bow, aceording to the taste of the thatcher. Rods and straw ropes twisted round them are inserted near the edge of the slanting side and all along the eaves, which prevent the wind from blowing off the thatch.

The only difference in the thateh of a round riek is, that it is brought to one point, where it is tied with straw rope wound round if, and formed into a kind of bow; the rods are inserted a little below in a cirele, and a straw rope twisted round them, and likewise around the cireular caves. Barley is generally put into square stacks, and wheat in round ones. When the outside is neally trimmed and cut smooth, so that $n 0$ birds can lodge in it, wheat may be kept for years, without danger of injury or loss, much better than in a barn, or even in a granary.

In thatching sheds and buildings whel are to last many years, the straw is prepared in the same manner, but the ends of the handfuls, as they are put on a lathed roof, are kept down by means of long rods, which are tied to the laths of the roof by means of strong tar twine. A mueh thicker coat of straw is put on ; and ryc-straw, whichly las a solid btem, is preferred, as more lasting, and less liaole to lee filled with water than hollow straw. Instead of straw ropes, split willow is used, and the rods which are inserted are muelt nearer each other and more earefnlly sceured. As this kind of thatehing is a peetliar trade, it requires a tegalar apprenticeslifp to be naster of it. The thatehing
of temporary ricks may be done from mere deseription, and a very little practice will enable any one to protect his stacks sufficiently by athatched covering.

Thatehing is usually paid by the square of 100 square fect. The thateher takes a line and throws it over the stack; if it is square, the ends are pushed under the eaves on each sicle, to allow for the trimming, \&e., and this length is multiplied by the length of the raves, with the same allowance at the ends. The price varics from 2 . to 7s. or \&s. per square, according to the work. Round stacks are incasured by taking the circumference at the eaves, multiplied ly onc-third of the slant of the cone, with a similar allowance.

THAUMA'NTIAS. [Pr'L3IOGRADA, vol. xix., p. 122.]
THAUMASIA. [Sצa-Wとens.]
THANTED. [Essex.]
THEA, a genus of plants of the tribe Camellicse and natural family of Ternstrümiacese, which has been so named from the slightly altered Chinese name of the dried herh which now forms the almost unversil beverage of the British Isles. Thougl now so extensively employed, the intruduction of tea into Europe is of comparatiyely recent origin. Marepherson, in his " History of European Commeree with India, states that "tea (sah) is menfioned as the usual beverage of the Chinese by Solintan, an Arabian merchant, who wrote an account of his travels in the East about the year A.s. 85, $0 ;$, and that he had been unable to find any mention of it prior to the times of the Jesuit Missionaries, who entered China and Japan a little before the middle of the sixteenth eentury. Auderson, in his 'History of Commerce,' vol. ii., p. 178, quotes Botero as giving the earliest account in 1500 , when he says that 'they,' that is, the Chinese, 'have also an herb, out of which they press a delieate juice, which serves then as drink instead of wine.' Texeira, a native of Portngal, about the year 1000, saw the dried leaves of tea at Malacea, and Olearins found them used in 1033 by the lersians, who obtained them from China by means of the Usbeek Tartars. Tulpins, in his Observ. Medice, 1641 , celebrates the virtues of thea. Anderson says that no mention is as yet made (1660), in the new book of rates, of tea, eoffee, or chocolate, thoigh they are all mentioned in an act of parliament of the same Jear, whereby a duty of cight-pence is charged on every gallon of ehocolate, sherbet, and tea nade tor sale. But the use of it at that time nust have been new, for Pepys in his ' Diary', writes, Seplember 25, 1661, 'I sent for a eup of tea (a Chinese drink), of whieh I had never drank before.' The Duteh East India Company probably first introdued it into Europe, and from Amsterdam it was brought to London. In the year 1062 King Charles II, mamicd a princess of Portural, whence, Waller says, 'the best of queens and best of plants we owe to that bold mation,' $\dot{\text { c.e. But tea must have contimued to be brought }}$ in small quantities only, for in the year logt the East India Company purehased, for the purpose of presenting to the king, two pounds and two ounces of tea, and in the year 1678 they imported 4713 pounds of ten, which was then for the first time thonght worth their attention as a branels of their trade. (Maepherson, p. 131.)

Tea must have been used in China from very carly times. It is differently named in different parts of China, as tcha, or cha, also tha, whenee we have tsia, the, and tea. In Persian works in use in India, tea is called ela-khutai, or tea of Cathay.

The genus Thea is characterised by having a calyx which is persistent, without braets, five-leaved, leattets imbrieated, the outer ones smaller. Petals of the corol 6 to 9 , hypogynous, imbricated, the inner ones the largest, all adhermg tocret her at the base. Stamens mumerous, in several rows, adhering to the bottom of the petals; filaments filiform, anthers incumbent, zecelled, oblong, with a thickish conneetivum, eells opening longitudinally. Ovary free, 3 -celled. Ovules 4 in each eell, inserted altemately info the central angle, the upper ones aseending, the lower pendulous. Siyle trifid, stimmas 3, acute. Capsule spheroidal, two to three lobed, ihree or by abortion 2-ectled, with loculieidal deliscenee, or with the dissepiments fonned from the turned-in edges of the valves. Seeds solitary or rarely two, in eells, shell-like testa, inarked with the ventrul umbilieus. Cotyledons thick, fleshy, oily. No albumen. Radicle very short, very near the umbilieus, eentripetal.

The genus Camellia is usnally considered to be very dise tinet from Thea; indeed by Cambessedes the two are sepa-

THE

rated from each other by several intervening genera: they are however too closely allied to allow of this separation. Distinctions have been made in the fruit of the two genera. That of Thea is three-lobed with obtuse corners and opening along the middle of the lobes, that is, having the dissepiments opposite to the valves, or, as expressed by modern botanists, having a loculicidal dehiscence. Camellia, on the contrary, is deseribed as having its fruit obscurely triangular, without any tendeney to beeome deeply three-lobed, with the margins of the valves turned inwards and forming the dissepiments, which thus alternate with the valves, and have what is now called a septicedal dehiseence. Mr. Griffith, on the contrary, who is well qualified to form a correct opinion, states, from examination of the Assamese tea-plant and of two species of Camellia from the Khosiya Hills, that there is no difference between Thea and Camellia. The dehiscence in both, he says, is of the same nature, that is, loculieidal, and the only difference that does really exist is simply of specific value, consisting in the fruits of the tea-plant being three-lobed, of the Camellia triangular.
The species of the genus Thea are few in number; some botanists are of opinion that even these are varieties of a single species. Before proceeding to discuss the question of the speeies which yield the teas of eommeree, it is desirable to notice those which are usually described as distinet in systematic works.
T. viridis is a large, strong-growing, almost hardy plant, with spreading branches, its leaves three to five inelies long, thin, almost membranous, very broadly lancenlate, light green and wavy, with large and irregular serratures, the flowers large, usually solitary, mostly confined to the upper axil, with 5 sepals and from 5 to 7 petals ; fruit nodding. This species is figured by Dr. Lettson in his account of the tea-plant, t. 1, and by Dr. (now Sir W.) Hooker, Bot. Mag., t. 3148, and in Loddiges' Bot. Cab., t. 227, all from plants which have flowered in this country. Kampfer supplies a very good figure, Amon. Exot., p. 607, from a Japanesc plant. This speeies is found both in China and Japan, and is supposed to be the species which yields the green tea of commerce. It has been long introduced into this country; having been first sent from Japan in 1687 to the Cape of Good Hope, and thence into Europe. Lettsom, in 1712 , states that within these few years a few genuine tea-plants had been introduced into England, that the largest tea-plant was then at Kew, and the first that ever flowered was at Sion House, lut the sceds never germinated. Murray, App. Medicam. iv., p. 297, mentions that the green tea-plant was, in 1778 , sold in London for ten shillings and sixpence, but the black or bohea tea-plant for one guinea. The green tea-plants are much more hardy than the black in this climate, being kept out in the open air with little protection during the winter, as at Kew , at Messts. Loddiges, and even as far north as Forfar.
T. Bohea is a smaller plant than T. viridis: its branches are stiff and straight, its stem erect, the leaves not above half or two-thirds of the size of the former species, elliptical ollong, perfectly flat, more coriaceous, of a dark green colour, with small and even serratures; they are numerous, and have in their axils two or three flowers, of 5 sepals and 5 petals, these are smaller and have a slight fragrance, and flower later in the season than T. viridis. The plant is muell more tender than the green tea-plant, and unable to stand the cold of an English climate. It is supposed by some to yield the leaves which are converted into black tea, and, notwithstanding contrary statements, leaves similar to those of this plant may be recognised on infusing and spreading out the leaves of some of the black teas of commerce. \bar{A} variety of this is sometimes called T. stricta. It is figured by Lettsom, ed. 2, p. 41, who considers it only a varicty of the former. It is also figured by Loddiges, Bot. Cab., t. 226, who, as well as Sir W. Hooker and Dr. Royle, considers it to be a distinet species.

The Assam tea-plant, which has lately attracted so minch attention, seems to partake of the characters of hoth the foregoing. The Calcutta Tea Committee say, in 1835, - We are now enabled to state with certainty, that not only is it a genuine lea, but that no doubt can be entertained of its being the identical tea of China, which is the exclusive source of all the varieties and shades of the tea of commeree.' To this it may replied, that there are considerable doubts whether the teas of commerce are all derived
from one speeies of plant. Mr. Griffith says, in the size both of the plant and of the leaves, as well as in the texture of these last, and in its stations, the Assamese plant approaches to the green tea-plant of China; in its geographical distribution, so far as latitude is coneerned, it approaches to the black tea. The infloreseenee of the Assamese plant varies, but perhaps its usual state is to have the flowers solitary in the axils of the leaves, but the number of flowers varies from one to five. The plants introduced into this country have their leaves much larger and thicker than those of the green tea-plant, and Messrs. Loddiges find that it requires a much greater degree of heat, in fact that of the hot-house, while the others are in the open air for a great part of the year.

Two other species, described by Loureiro, are little known, as T. Cochinchinensis, about eight feet high, having lanceolate leaves, flowers of 3 to 5 sepals and 5 petals, solitary, terminal; found wild in the north of Coclinchina, where it is also cultivated, being used medicinally by the natives as a diaphoretie. T. oleosa is also a slrub of eight feet high, found in the fields in the neighbourhood of Canton, and named from its seeds yielding a large quantity of oil, which is used for burning and as an artiele of diet. The leaves are lanecolate, the flowers of 6 sepals and 6 petals, peduncles 3 -flowered axillary; fruit stated to be indehiseent, rather a berry than a capsule.
The speeies of Camellia, which are so closely allied to those of Thea, have already been mentioned under Camellia, as C. Japonica, malifora, reticulata. C. Sasanqua, and Euryoides are other Chinese species. C. drupifera is a native of Cochinchina; while C. Kissi and Caudata, with oleafolia and Seottiana, two doubtful species, are found in the mountains near Munnipore, Pundua, and Silhet, and in those surrounding the valley of Nepaul. A third genuine speeies oceurs on the Naga range, towards the eastern extremity of the valley of Assam. It is well known to the Assamese and Singphos by the name of Bun Fullup, or jungle tea, being used by them as a medicine. A fourth speeies was found by Dr. Wallieh aboct Tingrei.
Besides the characters of the several species of Thea, we have to notice the parts of the country where the cultivated species are found, as many practical questions of considerable importance are comnected with the subject. But here it is diffieult to be preeise in our statements, because we are without positive information from the tea districts of China, and also because it is still doubtful whether one or more species yield the teas of commeree in permanent varieties, or whether the differences in teas are owing solely to differences in manufacture. Tea is cultivated in China over a great extent of territory. Dr. Wallich mentions it as being cultivated in Cochin China, in $17^{\circ} \mathrm{N}$. lat. We know it is cultivated in the southern provinces of Yunnan and of Canton. If we proceed north we find the principal cultivation of teas for the foreign trade is between 27° and $31^{\circ} \mathrm{N}$. lat.: but tea is said to be produced in several places to the northward of 31°; even in 36°, and also in the Japanese Islands, which extend from 30° to $41^{\circ} \mathrm{N}$. lat. It has been disputed whether the tea-plant is cultivated in plaius or mountainous situations. It is generally stated to be cultivated in hilly situations. Grozier states that the songlo-tcha (our green tea) takes its name from the mountain Song-lo, situated in the provinec of Kiangnan, in $30^{\circ} \mathrm{N}$. lat., while the bou-y teha (bohea) takes its name also from a mountain called Bou-y, situated in the province of Fo-kien. Mr. Cunningham (when Chusan had formerly a British factory) collected specimens on the topss of mountains, where the tea-plant flourished along with pines. His specimens are still in the British Muscum. The deputation sent into Assam to examine the sites of the tea, saw it growing in the valley of Assam, and were thus led to think that it must grow in similar situations in China: but even in Assam it is also found on hills; and there is no doubt it is found in both situations in China, and in many whicl must be moist. There is nothing improbable in a plant heing so found which is so extensively diffused from north to south; but it is probable that the finest varieties of tea are cultivated in the drier soils, and in situations exposed to light and air: in fact, the Chinese tea-makers in Assanm state that in China the teas from the sunny tracts are the best. Some soils in which the tea-plant is cultivated in China yielded, on analysis, in 200 parts-of silex, 135 ; alumina, 36 ; carbonate of magnesia, 6 ; carbonate of lime, 4 ; oxide of iron, 13 ; roots and fibres of
plantes 2; water of nemorytion, 4. Dr, Abel thought that the diburs of granitic rocks would yield a tilting soil, and that the Cape of Good Hope would aflond a suitable climate. The clitme varies, no doubt, to a considerable extent in different parts of China, being warm in the southernt and cold in the northem provinces. Suow is said to lie upon the ground for days fokether upon the green teas, and the areen tea-plant is in this country able to bear a greater degree of cold than the black, whieh, in China, scens to be confined to the more southern provinees; but even in the Fokien liths M. Callery has mentioned to the writer of this article that he has walked on snow in the midst of the tea-plants. The culture of the tea-plant in China secms simple enough: the plants are raised from seclls, sown in the places where they are to remain. Several are dropped into holes four or five inches deep and three or four fect apart, sloortly after they ripen; or in November und December, as ihey do not preserve well, from their oiliness. The plants rise up in a cluster when the min comes on, and require little further eare, exeept that of removing weeds, tifl they are three yeans old, when they yield their first enop of lenves. They are seldom transplanted, but sometimes four to six planis are put close togcther, so as to form a fine bush. After growing seven or ten years they are cut down, in order that the numerous young shoots which then spring out mag afford a more abundant supply of leaves. In some disthicts the bushes grow unrestrained, in others they are regularly pruned, to keep thens low. The gathering of the leates is performed with great eare: they are usually gathered singly, tirst in March or May (according to the district), when the young leaves are scarcely expanded; the second about two months later, or May and June ; and the third in August, or about six weeks nfter the second; but the limes necessarily ditter in different districts, as well as the number of crops which nre obtained, some avoiding the third, for fear of injuring the bushes. When the leaves ase gathered they are dried in houses whieh contain small fumaces, on each of which there is a flat iron pan, and upon this, when heated, the leaves, partially dried by exposure to the sun, are thrown; the leaves require frequent shining and turning. When all are properly dried, they are quiekly removed either by the hand or with a shovel, and either thrown upon a mat or into baskets which are kept ready to receive them. They wre then removed to a table where they are rolled and cooled, and the process is repeated; utter which they are sifted and sorted into several varicties. The process has been very minutely described as practised in Assans and Java by the Cluinese lea-makers. We may therctore refer to the aecounts published by Mr. Brice, as well as to those of the superint endent in Java, translated by Dr. Horstield.

The most difficult part of this question is to determine whether the green and black teas are produced by one or two distinet species of plants, as the statements of apparently equally well qualified judges ure not only contradietory, but directly the reverse of each other. The diffculty is owing to no competent person having visited the tea distriets of China, and ulso to the Chinese in the neighbourhood of Canton beiug able to prepare a tea which cun be coloured and made up to imitate various qualities of grven tea, nud large quantities are thus yearly made up. The C'hinese tea-inakers in Assam and those in Java alike state that the black and green teas may be prepared from the same plant. But as there are plants of the genus Thea, of which the lenves resemble some of the black and green tens of commerce, and as these ditfer very considerably trom each other in their powers of resisting eold, and nis there are green tea and black tea distriets (the former to the north of the latter, it seems probable thint different plants are preferred for preparing the finer qualities of these dillerent teas. Whether these plants are one species or well-extablished varicties cans only be determined by botanists who have au opprotunity of visiting Clima, or by experiments made in the tea nurseries of Assan and of the Himalayas, by suwing the seeds of each kind in different soila, aspects, and clecutions, and compntiner the plants whieh are proxluced with ofe another.
Tea having beeome so extensive an artiele of commirce, and a source of considerable revenue, various a'templs hasc been made to introduce it into other eounIrien, fut the climates wre very different in which the several experiments have been inade, as in Hio Janeiro
and the warm jart of lirasil, and hitterly ha the hilly, partw of Java nnt 13razil, in P'enang, Astam, und the Ilimalay as. Dr. Abel recommended the Conpe of Cioud Hopee. It is requisite to lave not only a suitable soil and climate, but also cheap and abundant lahour. Many have been of opinion that tea eould be eultivated in the Ilimalayns, but the first published opinions seem those of 1)r. Royle I/lustr. Mimaluyan Bolany, p. 5and 107, und Produrlire Rersources of India, 1. 230), where, from a consideration of a siumiluity in latitude, climate, und veretation, as far as any information could be procured on those subjects, he was of opiniun that tea could be successinlly cultisated in the Himalayan mountains, 'for the ditterent clevations allow of every variety of elimate being selected, and the geographieal distribution of this plant is sufficiently extenderd, aud the natural sites sufficiently varied, to wament its being benetieinlly eultivated.' He recommended experiments being made in the traet of the Himalayas. extending from Almora nearly to the Sutledge, at vations elevations from the valkeys up to 7000 feef, and thought that nbout 5000 feet of clevation would afford n suitable elimate. Dr. Faleoner formed similar opinions at the same time in a report to govermment. The correctness of these opinions has been elearly proved by the lately recerved reports on the success of the lea plantations establislsed in the Kunaon and Gurhwal distriets of these mountains, which were fomed when the tea nurseries were established in Assam, and the seeds and plants sent up which had been obtained from China. In this report, forwarded by the Indian government to the Agrientural Society of Caleutta, we find that at clevations of 5000 and (ook) feet there are some hundreds of strong and healthy-lonking plants and seedlings, but none us yet of a growth to yield seed. At Almorah, elenuted 5000 fect, there are two gardens, one of three and the other of cleven and a half acres in extent, with 1000 tull-grown trees yielding seed, and 700 layers, and upwards of 20,000 seedlings. At Bheemtal, lower in clevation and nearer to the plams, the results are equally favoumble: 'On the whole the experiment, in as fir us the possibility of rearing the tea-plant in the provimes of Gurhwal and Kumaon is in question, may be safely pronounced to have completely succected." It is also said, "Assam has doubtless a great advantaig' over Kumanan as to facility of export, but the latter province will probably be found to yield a produce of a superior quality:" The quality of the tea which can the prepared here can only be ascertained when China teatpreparers have been sent there, as they no doubt will he sent, as soon as the plantations are sufficiently' ('xtended.

The value of these facts can only be properly estimaterl in connection with the suecess of the tea-eulture in Assam, which is several hundred miles distrat trom Kumanon and Curhwul, and it is probable therefore that the whole of the intervening part of the Himalayas will be favourable to this culture: probably also some of the mountains of the peninsula, "s in the Wynaad district and in Travaneore, will be found fuvourable.
The Assam tea-plant first nttracted public attention in 1834, in eonsequence of replies to the circulars which had been addressed to several gentlemen. Caplains Jenkins and Charlton, in May of that vear, wrote that a kind of teaplant was undoubtedly indigenous in Λ somm. Since then it has appeared that several gentlemen were well aware of the fact, tand also that Mr. David Seot had, in June, $18 \% 5$, sent leaves and seeds of a plant discovered origimally ly Anjor Brace, whielt he said the Burnese and Chine-e coneurred in stating to be wild tea. But the plant was thought to be a Camellia, and no turther notiee was taken of it. A scientiffe deputation, composed of Dr. Wallielt and Alessis. Griffith and MaeCleland, was sent for the proper investigation of Upper Λ ssam. Some valuable information has been elicited, which was published in the 'Trans. of the Agric. Soe. of India,' and in the papers respecting tea cultivation in India, published by the llouse of Commons in 1830 . Tea-plantations were subsergueutly establishocl, and Mr. Bruee appointed their superintendent. At first only a few ten-tracts were discovered: :Ir. Jruce in his latest aceount notices them as being no less than 120, some of them ery extensive, both on the hills and on the plains. Mir. MacCleland states that they ure found in Assmun, first on tha level phain nud secondly on mounds or hillocks, und that the former situations have a poobos structure which enables them to maintain n dry surface under exposure
to execswive moisture. As tea-plants are capable of bearing consiterable rarieties of temperature, tea may no doubt be eultivated in a variety of situations, and in Assam as well as elsewhere, but it is probable that hilly situations and the more open and elevated parts of Assam itself will be best suited for the production of the finer-finvoured teas. The tea which has been prepared in Assam has now been sent for four years to market, and in each year the quantities have increased and the qualities have improved. For the teas first sold in 1839, from the excitement and competition created by the novelty of the sale, extravagant prices were paid, as from $16 \times$. to $34 s$ s a pound. In 1810 the prices realized were from $6 s .10 \mathrm{~d}$. to $10 s .10 \mathrm{~d}$. The probable value was however from $2 s .11 \mathrm{~d}$. to 3 s .3 d . The produce of 1841 in the govermment plantations has been sold in Calcutta, and that from the Assam Tea Company sent to this country. Very favourable reports have been published by brokers of the quality of this tea, and of the probability, from its strength, ihat it may easily be improved as its nature is better understood. Experimental nurseries continue to be earried on by the East India Company, and much useful information of a practical nature will no doubt be obtained and promulgated. So mauy authors lave written on the subject of tea, that it is impossible to quote them. Dr. Lettsom, in his account of the tea-plant, has given a list of them. More reeent information may be found in the travels of Abel, Staunton, Ellis, Barrow-and for scientific information see Royle, 'Illustr. of Himalayan Botany,' and 'Essay on the Productive Resources of India,' also the papers of Messrs. Griffith and MacCleland, in the 'Trans. of the Agric. Soe. of Calcutta,' which likewise eontain the report of the brokers. For practical information on the manulaclure of tea, the papers of Mr. Bruce give much valuable information, derived from the China tea-makers; also the - Fssay on the Cultivation and Manufacture of Tea in Java,' trmislated from the Dutel by Dr. Horsfield.

THEA. Medical and Dietetical Properties of Tea. This article, the use of which was for a long time confined to two countrics of the East, China and Japan, has within the last two hundred years become known and almost indispensalle in every civilized country of the globe. It is therefore interesting to enquire what are the properties it possesses, which have induced so large a portion of the human race to forsake other articles of diet, and what are the effects of its extensive consumption.
Whether obtained from one species only of the genus Then, or from several, all the tea of China is in commerce brought under two distinct terms, green tea and blach tea, or rather brown tea. These are also distinguished as hyson and bohect. The European name tea is borrowed from the comnon language of the province Fu-kiant (Fokien of D'Anville), where this article is called Tiia in their patois: at Canton it is called Tscha or Tschai. Black tea is called IIe-tscha, green tea Lo-tscha. The best sort of the hlack kind has been long known in cominerce under the corrupted name of Bon-ui-Tselsa; hence by a transposition of the syllables, the Thea hohea of Linnarus, the Vou- - - 1 'scha of the Clinese, that is, tea from Vou-y-Selhan, which is in the province of Fu-kian, in $27^{\circ} 47^{\prime}$ N. lat. Hyson is chiefly obtained from Song-lo, which lies in the province of Kiang-11an, in $29^{\circ} 58^{\prime} \mathrm{N}$. lat.

The sulbwaricties owe their names to other circunstances, the number of which is endless. Thus there occur in the catalocues of the Chinese merchants at least one hundred and filty mames, many of which are synonymes of other sorts, or names invented to impose on foreigners and obfain a ligh price. The distinguished Oriental scholar Klaproth gives a list of about forty genuine varieties, with an explanation of the terms applied to them. (Jourmal dsintique, 1824, p. 121, and Abel Remusat, a Supplemint to it, p. 186 of the same journal ; or F'ee, Cours "I Hsistoire Naturelle Pharmucentigun, i.: p. 507.) Thus l'ak-loo, corrupted into Pekoe, or even Pekin, merely means - white down, being the first sprouts, or yet hairy leaf-buds of young plants, three years old, atter their first flowering. With us it is applied only to a black tea, but it is equially applicable to a green tea, and is by the Clinese applied to an expensive lind called Lonng-tsing, literally fru of the reellx of the dragon, 'which is never brought to Europe, as it is so delicate and slightly fired as to spoil ly the least damp.' (Davis.) 'The truc imperial tea, also called flos thea, not that it is the flower-buds, as some
suppose, but merely the perfection of tea, never reaches wurope, as the damp of the voyage and a northern climate would soon impair its qualities. That which is sold under the name of Imperial is Chulan, or Soulang, flavoured with the lan-hoa, which is the Chinese name for the Olea firagrans, Lin.

Though it is stated that black tea may be cured as green tea, and green tea as black, certain it is that the preparation of the respective kinds is carried on in different parts of the empire, and different practices pursued with the leaves from the first stage. In the grecu teas the leaves only are taken, being nipped off above the foot-stalk or petiole, while of the black teas the foot-stalk is always collected. 'Thus blaek tea contains much of the woodly fibre, while the green is exclusively the fleshy part of the leat itself; which is one good reason why it slould be dearer.' (Davis, ii., p. 351.) Besides this, the constant removal of the young leaf-buds, by which the plant is prevented from being clothed with full-grown leaves, which alone ean elaborate the sap, and contribute to the further growth of the shrub, causes it to perish earlier, and compels a more frequent renewal of the plantations. Indeed some cultivators restrict the gathering of the leaves to two harvests, instcad of three, to save their plants.

Those of the third gathering are large and coarse, and often so rigid that they cannot be rolled. This yields a tea so inferior in quality that it is consumed only by the poorest of the natives, or, when very bad, is, as are some of the finer kinds when spoiled, used for dyeing.

Such are the pains taken to ensure the excellence of the finest sorts, that for two or three weeks before the harvest commences the collectors, who are trained to this business from a very early age, are prohibited from cating fish or other kinds of food reckoned unclean, lest by their breath they should contaminate the leaves. They are also made to take a bath two or three times a day, and not allowed to gather the leaves with the naked fingers, but always with gloves. The finest tea may, if the proper tine for gathering it be neglected, be elanged into an inferior tea in one night. It is necessary to roast the leaves the same evening that they are collceled, for if kept till the following day they become black and lose much of their vitue. Previous to putting them into the iron pans or furnaces, which are heated by charcoal, some witers say that they are dipped for about half a minute into boiling water; others do not mention this. About half a pound or threequarters of leaves are put into the pan at once, and diligently stirred, to prevent them from being burnt. They are then removed with a shovel and thrown on mats or into baskets, and while yet hot the soft leaves are rolled between the palms of the hands, during which operation a quantity of yellowish green juice exudes from them. This process of roasting and rolling is often repented even to the sixth or seventh time. This method is ealled the dry way; but by the wet way the leaves are first exposed to the vapour of boiling water, after which they are rolled and dried on the iron pans like the others. Leaves prepared in the wet way have a bright green eolour; those by the dry, a dark green verging to brown. From the greent tea, when prepared in the dry way, less of the above-mentioned juice exudes, a circumstanee to which the greater power of green tea is in some degree owing. The larger leaves are generally selected to be prepared in the wet way. By the process of roasting the leaves lose two-thirds of their weight ; so that three pounds of fresh leaves dry into one pound of tea fit for preservation. It is by the process of roasting that the flavour is first developed, the leaves when tresh being as insipid as the bean of coffee before heat is applied. Siebold is of opinion that the agreeable violet-like flavour of tea is inherent in the leaves themselves, lut most writers ascribe the different flavours of the choicer kinds of tea to the admixture of the flowers, leaves, or oils of a variety of different plants. The chief of these are the Olea fragrans, Chloranthus inconspicuus, Gardenia florida, Aglaia odorata, Mogorinm (Jasminum) Sambac, Vitex spicata, Camellia Sasanqua, and C. oleifera, Illicium anisatum, Magnolia Fulan, and the Rosc Indica odoratissima, as well as with the root of the Iris forentina, and Curcuma lmga or tumerie, and oil of Bixi Orellana. A variety of tea called Sonchi is often found to contain a large quantity of ferruginous dust, but whether by accident, as Mr. Davis thinks (Chinese, ii., p. 462), or a fraud to increase the weight, is doubtful. Its
presence may easily be detecled by pasaing a magnet into a suspected sample, when some of the particles of iron will adhere 10 it.
"the Chimese annually dry many millions of pounds of the leaves of different jlants, to mingle with the gennine, such as those of ash, plum, ©.e., as the name Mei- 3ian, applied to one of the varicties of tea from the province of Kiane-nan, imports; so that sll the spurious leaves found it parechs of bad tea must not be suppowed to be introdnced into them by the dealers in this country. W'tile the tea-trade was cntirely in the hands of the East-India Company, few of thesc adulterated teas wore shipped for this country; as experienced and competcut iuspectors with large salaries were kept at Canton, to prevent the exportation of such in the Company's ships; but since the trade has been opened, all kinds find n ready. ontlet, and, as the demand often exceeds the supply; a manufactured artiele is furnished to the rival crews.

The object of the drying and rolling is both io diminish the bulk and to enable the leaves to preserve their flavour. No tea is thought fit for use till it is a twelvemonth old; and the rich and luxurious Chinese keep the fine tea in jars, made of the finest porcelain, some of which are thought to commmicatc an additional aroma to the lea, and all of which have very narrow mouths (as may be observed in those brought to liurope, and sold at a high priec), 10 retain the peculiar odour. If the tea contruets damp, it is taken out and roasted rogain.

The taste of tea is more or less astringent, and, before it is infused, unpleasantly aerid. To make the infusiou, the Chinese pour boiling-water on a small portion of the leares, but do not allow: it to stand or macerate, as is done in England, but instantly pour it off again, by whieh they ublain only the more volatile and stimulating portion of its principles. The ponrer Chinese indeed boil the very inferior and coarse leaves, which alone are within their reach, and drink the deeoction repeatedly during the day. This is dole not only to extract such virtues as the tea possesses, but to qualify the water, as little good drinking water is met with in China. Travellers find a supply of ten a very valual)le aceompaniment on long journeys, as it improves the most brackish waters. The exciting effects of fresh tea are such that it is rarely used till it has been kept twelve months, as already stated; and where iudulged in. it produces great disturbance of the mind, almost resembling inebriation, like the action of the Erythroxylon Coca among the Peruvians, and inducing a tremulous motion of the limbs. This property is diminished by repeated roastings, but as green lea is less exposed to leat than black, it retains nore of this power. Besides, the green tea for cxportation undergoes some process, which changes its colour, giving it a bluish-grecn huc. The Chinese themselves do not consume those kinds of grecu tca whieh are prepared for exportation. (Davis, Chinese, ii.468.) It is aliogether a mistake to suppose that the eolour of green tea is owing to its being dried on eopper pans, as none such are used, and the most searching chemical analysis is unable to deteet a trace of eopper unless as a constituent of the veretahle. The chemical analysis of tea does not shed much light on its action on the hmman system: Frauk and Sir II. Davy found moretannin in black than in green tea; but the results of Mr. Brande's rescarches. conducted on a nore extensive seale, give a different result. -Some years ago I cxamined the varicties of tea in common use (Suarterly Journal, xii. 301). and found that the quantity of astringent matter precipitable by gelatine is somewhat greater in grecil than in black tea, though the excess is by no means so great as the comparative flavours of the two would lead one to expeet. The entire quantity of soluble matter is also greater in green than in black tea, but the extractive, not prceipitable by gelatine, is greater in the Intter.'

The following table shows the respective cuantities of moluble matter in water and in alcohol, the weight of the precipitate by isinglass, and the proportion of incer woody tibre in green and black tea of varions prices. It is given, not as throwing any important light upon the cause of the different qualitics and effects of tea, but as coulainuig the results of actual experiments. It will be remarked that when lca-lcaves hase bcen exhausted by water repeatedly affused, alcohol is still enpable of exirncting a considerable quantity of soluble matter: the alcoholic exlract infnsed in boiling water, furnishes a liquid which smells and tastes
strongly of ten, and which, were it not ior the expense of the solvent, and the tronste attending ils separation, inight perhaps be protitably cinyloyed.

100 parts of Tra.	prer its.	S.bluble is Wincy.	Suluble in Precipil. Alonhol, with delly	Inert madiae.
Green 1lyson	1.15.	41	4, 31	50
.. .	12	34	43×2	57
- -	10	36	438	59
\cdots -	8	36	42 25	58
	7	31	11 21	57
IBlack Souchong	12	3.7	36 28	64
. . .	10	34	$37 \quad 23$	63
..	H	37	35 3\%	63
. . .	7	36	35) 2!	6
-• -	6	33.	$31 \quad 23$	C.5

(Brande's Manual of Pharmary, 5th ed., p. 121..)

The fall in the priees of tea docs not mueh affect thesc results, as the same relative proportions are preserved.

The alkaloid-like prineiple of tea can scarcely be eonsidered the eause of the peculiar action of lea; lunt it is very intcresting from the eircumstance of the identity of its composition with that of coffee, and of the guarana officinailis, as shown by liebig:-

	Cafteine. Pfaff and Lictig.	Theine. Jobst.	firarazine Martius.	Caleulabert. ($8,8,113 . \$ 2.0 \%$
Carbou	$49 \cdot \frac{17}{}$	$50 \cdot 101$	$49 \cdot 679$	$49 \div 98$
Hydrogen	5. 33	5.214	$5 \cdot 139$	$5 \cdot 082$
Nitrogen	38.78	$29 \cdot 009$	$29 \cdot 180$	28.832
Oxygell	$16 \cdot 12$	$15 \cdot 676$	$16 \cdot 002$	$16 \cdot 388$

IBergma obtained an oil, but this, as well as the distilled rater, he tound to lave little peculiar cflect on several animals: which is in opposition to the experiments of Lettson, who represents the distilled water of tea as a very powerful narcotic, paralysing the limbs of frogs, and ceell cansing their death when applied to the exposed nerves.

Before attempting to estimate the setion of tea on the huntan system, it is uecessary to eall to mind that some of the effects are due to the plants mixed with the real ten, several of which, such as the Chlorantlus ineonspieuus, are stimulants of the highest order; and in other instances deleterious chemical compounds are used by the Chinese to eonvert damaged black teas into saleable green teas. (1):vis, Chinese, ii. 466.) For the effects of these, tea is not justly ehargeable. A eorreet estimate of the action of tea is not easily formed; fet tle most dispassionate inquirers regard it as a mareotic, the stimulating period of which is the most conspicuous and of longest durarion. Tea has been preposterously praised by some writers, aml unjustly aecused by others as being productive of unmerous discases : above all it has been charged with cansing an increase of nervous discases. It would perlaps be more just to attribute the increase of such eomplaints to the more complicated state of our social relations, mising from an angmented population, and an advance in luxury; with the more frequent infringement of the natural laws, particularly turning night into diy, and not seldom day into night, as is the practice of the volaries of fashion. That the universal emplopment of tea has displaced some other kinds of food is certain, but if a diminution in the number of inflammatory discases be one of the consequenees, it is mueh 10 its credit, as however distressing nervous diseases may be, they are by no ineans so fatal as those of an inflammatory kind. That tea should not suit all constitutions or all ages is not remarkable. It is less suited tor young children than for adults; iudeed for very soung children it is extremely improper, prodncing, like all marcoties, a morbid state of the brain and nervous system. It is also msuited for those of an irrilable nature, and likewise tor those of a letcoplilegmatic constitution. Such persons can ill bear mueh liquid of auy kiud. parlicularly in the cvening, and prosper best on a very dry diet, 10 which growing ehildren of this constitution should be strictly confincd. [Juuents.] It may not be true that the use of tea, ns alleged by Dr. Lettsom, has been a main eause of the increase of serophulous diseases, still as discases of this class are the only diseases which are proved by the reports of the registrar-general to be stationary, or pertaps more frequent than others, whatever imparis the nervous power and ultimately the digestive function in strumous children should lee avoided. Ilis adviee is sound where lie says, "It ought by no means to be the common
diet of boarding-schools; if it be allowed sometimes as a treat, they should be at the same time informed that the constant use of it would be injurious to their health, strength, and constitution.' Those to whom it is most suited are the plethoric and sanguine. Upon the same principle it is a proper article of diet and perhaps the best common drink at the beginning of fevers and inflammatory complaints. In a peculiar state of brain, termed by Mr. Newnham (Observations on Medical and Dietetical Properties of Green Tea) sthenic excitement, a state clearly bordering on inflammation, especially if produced by alcoholic stimulants, or by intense and long-continued application of mind to any particular object of literary research, green tea acts as a salutary remedy. On the contrary, in states of diminished excitement, morbid vigilance and nervous disturbance follow its use. It is not an uncommon practice with ardent students, when pushing their studies lar into the night, to resist the claims of nature for repose, and keep themselves awake by the frequent use of tea. That it answers the purpose at the time cannot be denied, but the object is often attained at a fearful price, the destruction of health and vigour both of mind and body being the penalty. Less injury results in these cases from the use of coffec. There is this difference between the morbid states of the nervous system produced by coffee and those resulting from tea: that the former generally subside or disappear entirely on relinquishing its use; those from the latter are more permanent, and often incapable of being eradicated. Nevertheless many persons have immediately found their health improved by entirely relinquishing the use of tea, or even omitting it only at breakfast, for which meal it is certainly less proper than for the evening beverage. Those for whom tea is unsuited will generally find weak cocoa the most proper substitute.
Persons of a gouty and rheumatic nature, above all, those prone to calculous discases of the lithic acid diathesis, find weak tea the least objectionable article of common drink. They should take it without sugar, and with very little milk. (Prout, On the Stomach, p. 217.) Where the water is hard, the addition of a little carbonate of soda not only improves the tea, but renders it a more proper beverage for such persons. Tea should not be used till about four hours after any solid meal.
The medical uses of tea are not many. In fevers it is not only an excellent diluent at the commencement, but a tincture of tea made by maccrating tca in proof-spirit, and adding a tea-spoonful of this to a small cup of water, and given at short intervals during the night, after the neute symptoms have subsided, is often of great service. For this purpose, in hospitals and workhouses, the leaves which have been used for the ordinary infusion may be macerated in alcohol (as suggested above by Mr. Brande), and a spirit of sufficient strength for this purpose obtained at a cheap rate.
In some forms of diseased heart tea proves a useful sedative. It is nearly as valuable an antidote to poisoning by opium as coffee is. Some cases of poisoning by arsenic and tartarized antimony have been prevented proving fatal by the immediate administration of tea in the form of a very strong infusion. Here its power as an antidote depends upon its tannin decomposing the poisonous substances. [Astringents.]. But in poisoning by opium it is useful only in combating the secondary symptoms, and should not be administered till the stomachpump or other means have removed the opium from the stomach. (Lancet, 9th November, 1833.) Some cases of severe nervous headache are relieved by a cup of strong green-tea, taken without milk or sugar. But this should be sparingly resorted to; it is a wiscr plan to avoid the causcs of such headaches. Tca has been looked upon as the great means by which intoxication was to be banished, but it is certain that to relieve the tremblings and other unpleasant effects of the abuse of tea, a little brandy or other alcoholic stimulant is occasionally added to the cup of tea, and so a habit is acquired which can never afterwards be relinquished.

Tea has frequently been denounced as a useless article of dict to the poor, as it is assumed to be devoid of nutriment, and the milk and sugar which are added supposed to be the only beneficial ingredients. Dr. Lettsom has given a calculation, partly his own, and partly taken from 'Essays on Husbandry,' to show how much is, in his view, unnecessarily expended by them in this way. But the 1. C., No. 1524 ,
observations of Liebig, if correct, and in all probability they are so, offer a satisfactory explanation of the cause of the great partiality of the poor not only for tea, but for tea of an expensive and therefore superior kind. 'We shall never certainly be able to discover how men were led to the use of the hot infusion of the leaves of a certain shrub (tea), or of a decoction of certain roasted seeds (coffee). Some cause there must be which would explain how the practice has become a necessary of life to whole nations. But it is still more remarkable that the beneficial effects of both plants on the health must be ascribed to one and the same substance, the presence of which in two vegetables belonging to natural families, and the produce of different quarters of the globe, could hardly have presented itself to the boldest imagination. Yet recent researches have shown, in such a manner as to exclude all doubt, that caffeine and theine are, in all respcets, identical.

- Without entering minutely into the medical action of caffeine (theine), it will surely appear a most striking fact, even if we were to deny its influence on the process of secretion, that this substance, with the addition of oxygen and the elements of water, can yield taurinc, the nitrogenized compound peculiar to bile :-

To see how the action of caffeine, asparaginc, theobromine, \&c. may be explained, we must call to mind that the chief constituent of the bile contains only 3.8 per cent. of nitrogen, of which only the half, or 1.9 per cent., belongs to the taurine. Bile contains in its natural state water and solid matter, in the propertion of 90 parts by weight of the former to 10 of the latter. If we suppose these 10 parts by weight of solid matter to be choleic acid, with 3.87 per cent. of nitrogen, then 100 parts of fresh bile will contain $0 \cdot 171$ parts of nitrogen in the shape of taurine. Now this quantity is contained in 0.6 parts of caffeine; or $2_{\text {ti }}^{\text {最 }}$ hs grains ot caffeine can give to an ouncc of bile the nitrogen it contains in the form of taurine. If an infusion of tea contain no more than the foth of a grain of caffeine, still, if it contribute in point of fact to the formation of bile, the action, even of such a quantity, cannot be looked upon as a nullity. Ncither can it be denied, that in the case of an excess of nonazotized food and a deficiency of motion, which is required to cause the change of matter of the tissues, and thus to yield the nitrogenized product which enters into the composition of the bile; that in such a condition the health may be benefited by the use of compounds which arc capable of supplying the place of the nitrogenized substance produced in the healthy state of the body, and essential to the production of an important element of respiration. In a chemical sense-and it is this alone which the preceding remarks are intended to show-caffeine, or theine, asparagine, and theobromine, are, in virtue of their composition, better adapted to this purpose than all other nitrogenized vegetable principles. The action of these substances, in ordinary circumstances, is not obvious, but it unquestionably exists. Tea and coffee were originally met with among nations whose diet is chiefly vegetable.' (Liebig's Animal Chemistry, p. 178.) These facts show in what way tea proves to the poor a substitute for animal food, and why females and literary persons who take little exercise manifest such partiality for it. They also explain why the attempts, and they have been numerous, to find among other plants a substitute for tea have invariably failed of success. The first tea-leaves were procured from the Chinese in exchange for those of the Salvia officinalis, or garden sage, but they, like others, soon found out its inferiority, and refused to part with their own precious leaf except in exchange for solid coin. The poor Chinese make use of the leaves of a fern, and also of those of the Sagaretia (Rhamnus) theezans; but to this their poverty, not their will, consents.

Tea Trade.-The period when tea was first introduced into this country has already been noticed. How little was it possible at the time to lave foreseen that it would one day become one of the most important articles of foreign production consumed in Fngland, The first im
pratation ly the Englisls East India Company louk place in 1003 from the Conipany＇s factory at llantanh．The directors ordered their seriants to＂send home ly their sheps one luudred pounds weight of the hest tey they could get：In 10 os，as already noticeal， 1713 lbs ，were iupported，but in the six fullowing years the cutise imputs amponted to no more than 210 lbs ．The continutus official accounts of the frade do not commence before 17ぶ）；Lut， acconling to Nilburn（Oricutal Cimmerec），the comsomp－ tion in 1711 was $141,9951 \mathrm{lls} ;$ 120．695）lbs，in 1715；and ：97， 0041 b ，in $17 \cdot 30$ ．The following is a
Tibble showing the Quantrity of Tern retuintel for Cour－
sumption，and the late nf Duty in corl ）Cur，from sumprion，and
175 to $183 t$ ：－

1740	2，358．582		＂
1717	2，382，7\％．	181．183． $7 \frac{1}{2}$ d．	＂
17.4	2，40：3，811	．．	＂
1740	2，768，807	＂	＂
17.50	2，56\％，338	＂	＂
1751	2，774，809	．，	＂
1752	2．976，626	＂	，
1753	3，1：31， 38.7	，	，
1704	3，447，017	－	＂
173.5		．	＂
1756	3，728，53：3	．．	＂
1737	3，901，709	＂	，
17.58	4，20），301		
1759	3， $3,54,74$	23\％．18s． $7 \frac{1}{8}$ d．	＂，
17（i）	4，072，149	．＂	＂
1761	4，434，134	＂	＂
1762	4．2316，408	＂	，
1763	4，5\％9，432	，，	，
17．61	4，710，47．3	＂	，
170．）	4，636，040	＂	＂
1766	4，606，513	＂	＂
1767	3．762，830	＂	
17 \％	6，8，2，（r7\％	＂	25 p ．ct．on gross price．
176：）	（0，9（9）， 8 （30）	＂	．，
1710	7，141，215	＂	＂
171	5，912，21．5	＂	＂
1782	7，838，341	＂	
1773	1，427，616	＂	1 s ．a IV．and 25 p ．ct． on the gross price．
1771	（6，285，113	＂	＂，
175	5，618，184	＂	＂
176	5，138，218	＂	＂
171	4，741，434	＂	
1778	4，612，085		
1719	5，285，（0．2］	231．2y． $6 \frac{1}{2}$ d．	5 per et．additional on former duties．
1780	5，152309		
1781	$4,815.4 \%$	23\％．16r 34.	50 per cenl．addlitional
178.3	5，283，209	－1．Os．10a．	$0^{\text {o }}$ per cent，addtional
1781	$1,0+4,0 \times 3$		
1780	10，8040，378	12，$\frac{1}{2}$ per cent．	Excise duty repealed．
1783	12，530，380	5 p ．ci．un gross price．	7f per ceent．oll sross price．

Yort	He c	，－ter cene	Exrbec．
		enomuthar cem．	
1767	17，017，031	5 p．ct．on gross price．	7f percent on groes pirec．
1788	13，218，603	－	，，
178：	14，次H，601	，	＂
17（M）	14，603，209	＂	＂
17.11	15，096，8（1）	＂	＂
1702	15，8불， 01.	．．	
1713	15， 214.931	＂	＂
17 H	16，017，0963	＂	＂
1793	18，394，23：	＂	
1706	14，009，915		
1707	16，368，011	5 ur．et．on grusis price	15 pere ct．under Er．（6．1． per ill．， 25 per cic．abowe
1795	10，566，93！	－	15 peret．under $2 s .6 d$ ． per lh．，\％is）per el．ahowe
1799	10，906，510		
180）	20， $3 \times 38,7$ \％	＂	15 perct．under 2 s． 60% ． per lh．， 3 ．per el．abow
1801	20，2337，753	＂	15 per et，under $2 s, 64$ ． perth．，tī perct．above
180：2	$\because 1,848,24 \%$	＂	
1803	21，647，02ㅡㄴ	＂	60 per ct．under iss．6id． per $1 \mathrm{lb} ., 90$ per $\mathbf{c t}$ above
1804	18，501，904		
180：5	21，025，380	3．2．6\％．on gross price．	
1806	20，325，0，3．3	6\％．	90 percent．on all．
1807	19，239，31：	＂	＂
1808	20，830，920	＂	＂
1890	10，869，134	＂	＂
1810	19，033，24．4	＂	＂
1811	20，702，809	＂	
1812	20，018，251	＂	＂
1813	20，443，233	＂	＂
1814	10，221，154	＂	＂
1815	22，378，315	＂	．，
1816	20，216，111	－	
1817	21，822，926	－	＂
1818	22，600， 17		
1819	22， $23.31,407$	C＇nstons＇duty repealed．	Under 2：．ulb． 96 p p． ct ． above $2 s .100$ per 1.
1820	20，4520．50	）＂	－
18：21	22，802，21：3		＂
1823	23，011，881	＋	
1433	23，762，470	1	＂
18.1	23，781．838		．，
182\％	21，830，01，	，	＂
1826	25，238，067	7	－
1827	26，013，22：3	3	＂，
1823	26，790，336	；	
1823）	23，495，199	）	＂
1830	30，017，079	＋	＂
1831	23，997，101	1	＂
1832	31，548，402		＂
1833	31．829， 619		
1833	$34,069,0.51$	Boleta，1s．ficl．； Congou，＂＇wam－ Hyson，\＆ec．3s： per lb．	Excise duty repeateal
183	36，577，（0）4		
1836	49，142，236	After lst July， all sorts 2r． 1% ． per lls．	＂
$18: 37$	30．625，204	［	－＂
1838	32，351，503	3	
1839	35，1：27，287		＂
1840	32，252，623	Addl．$\%$ per ct．	－，
18.11	36，681，877		－

For above a century and a half the sole object of the East India Comprany＇s trade with China was to provide fea for the consuraption of the United Kingrom．The Com－ prny enjojed this trade to the exelusion of all other parties． ind were bound from time to time to send orders for tea， and to provide ships to import the same，and always to have a jear＇s consumption in their warehouses．The leas were disposed ol＇in Jondon，where only they could be im－ ported at quaterly sales，and the Company was bound to sell them to the highest bidder，provided an advance of one penny per lb ，was made on the price at which cach
lot was put up, which pree was determined by adding together the prime cost at. Canton and the bare charges of freight, insurance, interest on capital, and certain charges on importation; but by the mode of calculating these items. and the heavier expenses whicl always attend crery department of a trade nonopoly, the upset prices were greatly enhanced. The prices realised at the Company"s sales were however in still greater proportion beyond the upset prices, a result casily produced by a body who monopolized the sole supply, as it was only necessary that the quantity offered for sale should not be augmented in proportion to the growing demand of a rapidly increasing population. The 18 Geo. II., e. 26, passed immediately after a large reduction of the duty had taken place, provided for such a contingency as this, by enacting that if the East India Company failed to import a quantity sufficient to render the prices as low as in other parts of Europe, it shonld be lawful to grant licences to other persons to import tea. This would have constituted a rery effieient elleck if it had been acted upon; but eventually the inode of levying the duty gave the government almost the same interest in a restricted supply as the East India Company, the duties being collected ad valorem on the amount realised at the Company's sales ; and this the very circumstanec whieh enhanced the price raised the total amount of duty. The duty was nominally 90 and 100 per cent. und ralorem, but being charged on a inonopoly price, the difference on the cheaper teas consumed by the working and middle classes amounted to above 300 per eent. on the cost price of the same teas at Hauburg ; and in 1830 the difference between the priees realised at the Company's sales and the Hamburg prices amounted to a sum of $1,889,975 \%$. The sales in the last year of the East India Company's monopoly are shown in the following table:-

An Account of the Quantity and Prices of several sorts of Tea sold in England from May 1st, 1833, to May 1st. 1834:-

	lbs	
Bohea	6,170,963	1
Congou	18,653,83.)	2
Campoi	1,603	2
Souchong	$3.54,515$	-. 2
J'ekoe	514,811	2
Twankay	4,339,6\%2	- 2
Hyson Skin	141.610	2
IIyson	987,052	

Total . . 31,164.065
The Company's sales were in March, Jnne, September, and Decenlber, the latter being the largest. About $2.000,000 \mathrm{lb}$ s. were offered belonging to the officers of the Company, who were allowed to import a certain quantity of toa on their own account. In 1839 there were only 122.312 lbs . offered for sale by the East India Company; aud the change effected by the $3 \& 4$ Win. IV., c. 93 , which. on the 22nd of April, 1834, opened the trade to China, is now complete. The importation of tea is no longer confined to the port of T.ondon. In 1839 eighteen ships amived inwards trom China at different outports, ten of which were entered at Liverpool. In the four years ending 1831 the arerage annual number of ships intered inwards from Chima at the ports of the United Kingdon was 23 , in the four following years the average was 66 , and other commodities besides tea lave been exfensively imported, and a corresponding inerease in the quantity and variety of the exports to China has taken place. The exports of tea from the United Kingdom, which formerly did not exceed a quarter of a million lbs. ammally, amounted to $4,347,432 \mathrm{lbs}$. in 1811 , and lave averaged ahove threce million lbs. a year since the opening of the trade, a fact which shows that priees here are no longer so much above those of the prineipal continental ports. The quantity retained for consuniption has also considerably increased, although accompanicd by an extraordinary increase in the use of coffee.

The tea-duty produces about one-thirteenth of the total revenue; and only three articles, spirits, malt, and sugar, yield a larger sum. The tariff of 1842 lins made no altemtion in the tea-duty. As it was foreseen that on the opening of the tea trade there would be a considerable reduction of price, and that an ad valorem duty would not, even with the inereased consumption, be so productive as formerly, a fixed duty per lb. Was imposed,
whien, from 1831 , to July, 1836 , varied aceording to the different kinds of tea; but as this mode of collection was attended with considerable trouble and diffieulty, it was altered 10 an unvarying duty of $2 s$. $1 d$. per $1 b$. on all kinds without distinction. Since March, 1836, the tea-dealers have been relieved from the rexatious interference of the excise, the duty being collected entircly as an import duty by the offiecrs of the customs. Preriously, each of the hundred thousand tea-dealers in the United Kingdom were visited once a month by the officers of excise, wlo took all account of their stock; and no quantity exceeding six pounds could be sent from their premises without a permit, ot' which abore 800,000 were required in a year. In short, this system of supervision was very tronblesome, costly, and answered no useful purpose. The number of teadealers in 1839 was 82,791 in England; 13,611 in Scotland: 12,764 in Irelamd : total, 103,179. Tea is now sold by the importing merchants by public auction and private entes.
The following table shows the revenue which the tea duty has yielded in each year during the present century, and, to some extent, it is an index of the prices in each yeal:-
Net Amount of Duty collected upon Tea in the United Kingdom in each year from 1800 to 1811 inclusive :-

1801 . . . £ 1,423,660	1822. ... £3,941,484
1802. 1,632,467	1823...... 3,848,122
1803. 1,929,613	1824...... $3,865,477$
1804. 2,599,738	1825) 4,031,018
1805. $3,336,523$	1826. 3,738,042
1806 $3,446,670$	1827 $3,705,588$
1807.3,525,173	1828. 3,177,179
1808.3,305,295	1823. 3,321,722
1803. $3,502,70$)	1830. 3,397,097
1810. $3,647,737$	1831. $3,344,918$
1811. 3,7 , 2,111	1832. $3,509,835$
1812. $3,822,979$	1833..... $3,414,102$
1813. Records burnt.	1831. 3,589,361
1814. $3,958,0.74$	1835.3,832,432
1815. 4,058,091	1836.... . $4,674,535$
1816..... . 4,362,496	1837. $3,293,810$
1817...... 3,431,364	1838. $3,362,03$ \%
1818. 3,872,693	1839. $3,658,803$
1819. 3,689,803	1840. 3,473,964
1820. $3,484,226$	1841. 3,978,158
1821. 3,707,2\%0	

Between 1831 and 1841 the population increased 14 per eent., and the incrense in the consumption of tea was $16!$ per cent. The low prices of 1836, and the general prosperous condilion of the country, raised the quantity which paid duty for consumption to nearly $50,000,000 \mathrm{lbs}$. In 1840 priees were abont 2.5 per cent. lugher, large elasses of eonsumers were in a distressed state, and the consumption fell to $32,000,000 \mathrm{lbs}$. In $18 \frac{1}{1}$ the distress still continued, but prices were lower, and the consumption rose to above $36,000,000 \mathrm{lbs}$. On the 5 th of Jan., 1810, the stock of tea in London, Liverpool, 13ristol, Glasgow, and Leith Was $35,478,490 \mathrm{lbs}$; and at the corresponding period in 1841 the quantity was $46,545,610 \mathrm{lbs}$. The proportion of black to green teas consumed in England is about as y to 1 ; but in the United States the use of green tea is greatest.
(Papers issued by the Chinese and East India Association; Parl. Papers, \&ec.)

The total export of tea from Canton to Europe and Ameriea exceeds $50,000,000 \mathrm{lbs}$. Rnssia is supplied with 6,500,000lbs. vict Kiakhta; the United States of Anerica requirc about $8,000,000 \mathrm{ll} s$ s. ; France about $2,000,000 \mathrm{lbs}$; and Holland imports about $2,800,000 \mathrm{lbs}$. The green tea districts are about 700 miles, and those where the black tea is made about 200 miles from Canton. The artiele is brought fiom Canton by land camiage, chiefly by porters and by the canals; and the number of tea merclants who resort 10 Canton in the season when the trade is most active, that is, from October to Marcl, is said to be about 700. The functions of the Hong merchants, througl whom Europeans make their pureliases, have been already explained. [Canton.] The trade has not been inferrupled in consequence of the present dispute between England and China, nor is it likely to be, as it is one of the greatest importance to the Chinese ; and whenever, in former disputes, it has been temporarily suspended, no difficulty has occurred in obtaining the usual supply throngh the traders of other nations at Canton.

TIIEATINS, or TEATINS, an order of monks founded at Rome in 1524 , principally by Gianpictro Caraffa, who whe then archbishop of Cliefi, in Naples, the Latin name of which is Teate, and who anterwards became pope under the title of l'aul IV. The institution was confirmed at the time of its foundation loy the reigning jope, Clement VIl.; and a final rule, or code of regulations, drawn up by a general chepter of the onder, was authorised by Clement V111. in 160\%. The Theatins were prineipally established in Italy and in France, into which latter country, where they subsisted till the Revolution of 1789 , they were brought in lGit ly Cardinal Mazarin, who bought them their house at Paris, near the Jouvre, and at his death left them 800,000 erowns, with which they huilt a church. Their dress was a black cloak and cassock with white slecves; and the prineipal peculiarity of their institution was that they affected to subsist not only upon alms, but upon alms bestowed upon then without being asked for. They procured however considerable support in thisway, and they were at one time enabled to maintain missions in Georgia, Circassia, Mingrelia, and other parts of Asia. Their history has been written by John Baptist Tuffins, under the title of Annales Theatinorum.' There were also Theatin nuns (in French, Theatines), so called from having been placed by Pope Gregory XV. under the direction of the Theatin monks, their original and proper desimnation having been Sisters of the lmmaculate Coneeption. They were divided into two classes: the one called Theatin nuns of the congregation, founded at Naples ly Ursula Benincasa in 1583; the other, of later institution, called Theatin Nuns of the Hermitage. The latter were bound by vows of peetliar solemnity and strietness, professing to spend their whole time in solitude and prayer. The two societies however were intimately connected; their louses adjoined and communicated with one another, and the temporal concerns of those of the Hermitage were managed by those of the Congregation. In 1624 Urban VIII. withdrew these nuns from the jurisdiction or superiutendence of the Theatin monks, and placed them under that of the Neapolitan nuncio; but the former slate of things was restored by Gregory IX. in 1668. A notice of a controversy between the Theatins and the Jesuits, which was kept up for a great part of the seventeenth century, is given by Bayle, in a note to his article on "Ignatius Loyola,"
THEATRE (from the Latin thecitrum, whiel is from the Greek $2 \varepsilon a r \rho o n$, " a place for seeing '), a word adopted in all modern languages to sirnify a building appropriated to dramatic representations. The oldest edifices of this class are those of the Greeks and Romans, for it was with them that the European drama originated, and, in point of magnitude, they surpassed the most spacious of their temples. The enormous extent of many of them, and the prodigious solidity of their construction, are attested by the numerous remains of such edifices, which have been explored not only in Greece and Italy, but also in Λ sia Minor. Of some of them indeed little ean now be traced, but others are sufficiently perfect to convey a clear idea of the arrangement and general appearance of the structure in its original state; that is, however, merely as regards the space appropriated to the spectators, for searcely anything reinains to explain what is most diffieult, and, as regards the dramatic exhibitions, most important of all to understand, namely, the stage itself, including under that term the whole spaee requisite for the accommodation of the perfommers, and for the preparation of the exhihition before the audience. Owing to the want of any evidenee of the kind afforded by the buildines themselves, and to the very little that can now be fathered from the scanty notices of antient writers, we are ignorant of many things which can only be conjectured.

The very circumstanees that are mentioned for our admiration, and in proof of the magnificence and sumptuousness of some of the antient theatres, also prove how destitute of anything approaching to seenic illusion and stage effect the performances must have been. Whether it be at all exargerated or not, it is evident from what Pliny (Nat. Nish., $\times \times x$ i., c. 15, says of the theatre of Scaums at lome, that the scenu was a inere arehitcctural farade, unmenning in itself, though lavishly embellished with marble columns and statues, with no fewer than 360 of the former, arranged in three tiers, and 3000 of the latter, a most inere-
dibie number, surpasang that of a modern audience; for it
is difficult to conceive how they could all have possibly been introduced. l'liny puzzzes us still more when he says that the middle of the seena (meaning the second of the three orders) was of chlass. Without stopping to incpuire what ean be meant by 'glass,' perhaps mosnice, we inay' remark, that such a baekground to the stage conld have been no better than an extravagant absurdity, and that the actors must heve appeared mere pigmis's upon a slage of such enormous extent, with a number of statues behind them. This mart always have been in some degree the ease, sinee even in moderate-sized antient theatres the stare was enormously wide in comparison with what it is in the very largest nodem theatres. The seena too was always a plemmanent architectural crection, ineapable of change, and instcad of having reference to the particular performance, it inust frequently have been at variance with it. It has been suplposed that, besides the permanent scena, the antients ellployed, occasionally at least, moveable painted seenes, capable of being let down before it. Iet while this can be only varucly inferred, the presumption against it is founded both on its impracticability and its extreme inprobability. How is it possible to have had painted noveable scenes on canras, which on the avemge must have been 200 feet in width, especistly where the stage itself was so shallow and confined at its sides, and without any space for apparatus or machinery over it? If again there was any such scenery, it would have given rise to a branch of painting of which the antients appear to have been nearly altogether ignorant. They seem to have had no idea of other than figure-painting, with scarcely any attempt at expressing backgromnd, wherens scene-painting entirely excludes figures, consists entirely of background, either landscape or architecture, and sliy, and requires more than a moderate proficiency in linear and aërial perspective, in regard to both of which the antients appear to have been deficient. If we may judye from those sjecimens of their painting which have come down to us, they seem scarcely to have aimed at general pictorial effect, or at more than representing figures alone, without any scenic background to them. If, too, there liad been anything resembling our modern scenery, more explieit mention would probably have been made of it, if only on aceount of the enormous magnitude of such paintings, whose surinees must sonctimes hare confained a much greater number of square feet than the sides of the largest temples. Vitrivius does indeed make mention, in the proem to his seventh book, of Agatharehus as a scene-painter, and of Democritus and Anaxagoras as writers on scenography and perspee. tive; but it is with his usual dryness and obscurity, and with such ragueness of expression, that it is difficult to draw any conclusion from his words. Of the torner he merely says 'scenam fecit,' which probably means no more than that he was one of the first who introduced some sort of decoration on the scena, or back wall of the stage, where, if there was at any time painting at all, it could only have been very partial, and as accessory embellishment to that general thecale,-perhapls in such pieces as the '1अhiloctetes' somet hing was done to give to the centre doortway of the scena the appearance of an cultrunce to a eavern, just sufficient to indiente the locality intended to be expressed. The fixed arrangement of the scena itself, with three distinet entrances assigned to the performers aceorling to their rank in the piece, the centre one being for the principal characters, the others for those supposed to arrive on one side from the port, on the other from the country, was not only a puerile and awkward conventionalism in itself, but an expedient which shows how inperfect the antient stage must have been, how destitute of all contrivanee, notwithstanding its allered magnifieence. What there was of painted scenery at all nust have been confined entirely to two lersure (π !n itrot) at the sides or ends of the stage, which served as 'wings,' and whieh were upright triangular frames made to revolve upon a central pivot, so that any of the three sides could be turned towards the audience; a rery scauty elange of seenery at the best, and exceedingly limited in effeet, it being no more than sufficient to hint where the action was supposed to take place; whereas the seena itself bore no more resemblance to the intended locality of the pieee, than do the proscenium and stage-doors in those modern playlouses where the latter are sometimes made use of by the performers.

From the use of the term Aulcea it has been genemily
concluded that the whole stage was concealed by a curtain both previous to the commencement of the performance and whencver it was requisite to make any change in the decorations. But we agree with Winckelmann, that such could not possibly have been the case, because in the first place it could hardly have been practicable, and in the next it was quite unnecessary as regarded the permanent scena or architectural façadc. Whatever changes, says that writer, were made at all could have been only in the side-scenes or rersure, and it was merely before them that curtains or aulæa were drawn at such times; which circumstance says nothing in favour of what little stage machinery there was. The notion of there being painted moveable scenes like ours, capable of being let down or drawn up at pleasure, is completely contradicted not only by one, but by every circumstance that can be mentioned. Admitting the possibility of having scenes of such prodigious size, how are we to reconcile with the use of them the bestowing so much decoration upon the scena, or wall at the back of the stage, behind them?-to what purpose would have been the entrances through that wall, for the performers to come upon the stage, if there had been a separate painted scene before it? The stage itself again was so exceedingly shallow, that it would hardly have borne to be further contracted in depth, by other scenes bcing let down before the permanent one; nor would there have been space for them and the versuree also. There would also have been more explicit mention made of such scenes, and there would have been some particular term to distinguish them from what is now called the scena, if they had ever been used. What Vituvius says apon the sul)ject of stage decoration is not only very brief, but exceedingly obscure, and only proves his carelessness in omitting to describe or even mention much that is of real imporiance, while he goes altogether out of his way to give us a chapter De Harmonica, and to speak of many matters that have no connection whatever with theatres as a distinct class of buildings.

Even admitting that there was painted scenery, and that it was not at all inferior to that of our own theatres either in regard to truth of perspective or anything else, it still must have fallen very far short of the latter in effect, if only for the reason that the performances took place by daylight. At the best the illusion could have been but exceedingly imper-fect-a strange mixture of the artificial with the real ; and even what degree of effect there clse miglit have been, must have been more or less counteracted by the sun shining on some part of the stage and scene, while shadows would be thrown upon them, in others, by the wall at either end or side. Or if the stage itself was at any lime roofed in, all the upper part of the scenc must have been thrown into shadow. The natural lights and shadows and the painted ones must frequently have been in strange contradiction to cach other; nor was it possible to manage any effects of light, as in our theatres, by either increasing or diminishing it, or by concentrating it on any particular part of the scenery. The only thing in favour of the antient stage in this respect, is that there were no 'foot-lights,' and consequently the faces of the performers were not lighted from beneath. Yet cven this comparatively unimportant advantage was nullified by the use of nasks, some of them so extravagantly grotesque as to bear scarcely any resemblance to the human countenance. The most natural masks were in some degree distorted, and a fixcd expression of countenance was substituted for what could properly be only a momentary one. Hence one great excellence in acting was entirely suppressed: the face was as rigidly inanimate as in wax-work. It is truc this was of no very great consequence, because. owing to the vast extent of the theatres, the faces of the actors could hardly have been distinctly seen, or seen at ali by the great majority of the spcctators, more especially as such aids to vision as opera-glasses were then unknown. The whole space was so great, that in regard to it the actors could have been no more than as the figures put by a painter into a landscape. Neither does what is said as to their cothurni, or thicksoled buskins, being intended to make the actors appear taller, give us any very high
idea of the effect so produced; for while the increase of stature could have been scarcely perceptible-or if it had, it would have caused the limbs to appear strangely dis-proportioned-the means employed for it werc ill calctfated to give ease and gracefulness to the performer's movements.

On considering the audience part, and the accommodation provided for the spectators, although there the arrangement of an anticnt theatre was nearly perfect, and in some respects preferable to that of modern ones, it was not free from many inconveniences. The most obvious one is, that as there was no roof, there was no shelter from the weather, on which account awnings were sometimes made use of to screen from the heat of the sun, while in case of sudden and heavy rain the spectators were obliged to take shelter in the corridors behind and beneath the seats, where there were any, and in the porticos at the back of the theatre. Besides interruption to the performance, this must have occasioned considerable contusion in so numerous an assemblage of persons. Beautiful too as the arrangement of all the seats in concentric rows is in itself, it is attended with some disadvantage, as will be perceived on referring to the annexed plans, for instead of being placed, as in the pit of a modern theatre, parallel to and immediately facing the stace, a considerable portion of the audience must have sat sideways to it, with part of it behind them; and those at the ends of the further or upper benches could hardly hare had any view of the scena at all. at least not in the Greek theatre.

The Greek and Roman theatres so very nearly resemble

Greek Theatre.

cacll other in their general form and principal parts, that it is ouly by comparing the plans, for the purpose of seeing wherein they vary, that the difference between them can be clearly understood. Such difference however is ex-
credlogis slichif, the gencral amangenent and the essential parts beng the same ia both, -the (ixhlum (Koiloy),
 the Cate 2 , Dreh siria, and is min in the other. The cavea was the genemal term for the whole of tlie spuce approgriated to the seats of the spectators, which wete all concentrie with the orehestra, and which were intersected, in one direetion, by aseents or tlights of ste pre (edipazes) dividing the seats into so many comparmenta, terned repriirs: or C'anei, and separated into two or more 'fliglits' or 'tiess' be toroader spaces or landink-places, called ana*ipara, or i^{3} peenn timas. The number of the enjpmeng or aseents, and that of the sucisuate, or l'rececinefions, and also the brealth of the latter, appenr to have been regulated entirely acconling to the extent of the theatre and other eitrmanstances. lat semeral there seems to have been only one Praceinctiun between the sents, dividing them into two 'flights, not however so as to give an equal mumber of rows of seats to each. In the theatre near Epidaums, for instance, there were !at rows of seats, divided by a single Praciaction, and 34 of them formed the first or lowest tier thearkst the orehestrat ; while in that at Syracuse there were C2 rows, with only a single lrapeinction between them, and 41 were given to the speond or upper tlight, furthest from the orchestra. In the theatre it Dramysus, again, there were two Praxcinctions, dividing the entire number of sors, 51 , into 18,16 , and 30 respertively, reckoning from the orchestra. As regards the distinct 'flights,' of series of seats, there were two modes of disposing them: the more usual one was to break lnto separate slopes, retiring from each other, like the 'flights' in an aseent of steps; the other was to place them in a continned slope from the lowest to the highest seats. whereby at each preerinetion the next 'flight' was considerably elevated above the level of that landing, being raised upon a podium or wall, which showed itself between the lower and upper - fligh:. Besides the preepinctions befueen the seats, there was another surrounding the whole coelum, or auditory of the theatre, forming cither an upper nucovered termace as a standing-place for spectators, or a covered gallery with columns, as is shown in the plan of the lRoman theatre, where such portico was assigned to females.
Between the Grecian and Roman orehestra there was a very wide difference as regarls the purpose to which tlat space was appropriated. In the Roman theatre it was merely a continuation of the rest of the anditory, being ocenpied with seats und spectators, with no other difference than that the speetators were senators and other persons of dignity, and that benehes or ehairs must have been ranged parallel to the stage. The Greek orchestra, on the contrary, was, as its name imports, made use of for the dancen, musicians, and singers, whose performanees constituted so important a part ot the entertainment ; and so far nothing could have been better planned than the Greek thentre, for the orchestra was visible from every part, whereas the seena could not have been distinetly seen, or hardly seen at all by those on the upper seats at cither extreinity of the coelum. 13 y referring to the plans it will be seen that while the Roman orehestra does not exceed half a circle, the Greck forms threc-filths of one, or an arc of 216 degrees, its proportions and the depth of the stage being ascertained by merely ioscribing a spuare withio a circle, taking one side of that square as the boundary of the stage, and drasing parallel to it a tangent to the eircle, which langent coincides with the seena or back of the stage. Such plan therefore is simple enough, complex as it may appear in the cut, where two other squares are also drawn within the circle, and the points of the three squares determine how far the seats extend, and the situation of the steps (elipaxec) between the seats,-a fanciful operation, nothine more beine required after the first one than to divide the are or curved portion of the oreliestra into as many equal parts an trould he requisite aceorting to the number of ascents. In thet this last appears to liave been the mode practised, for there are as many examples which differ from as agree with that established by Vitruvius for the Greek theatre, Aecorling to that, the divivions, the mumber of eunci and stepa belween theol, woukl be uniformly the same, siz. meven of the former, sund eight of the latter, including those next the miage, as slown ith the cut. This howeler is so far fiono beile the ease. that very inaterial differences oceur 111 that repect. A1 Epidaurus, for instance, there are ten cunsi in the lower tier, nud eleven aseents, consequently an
even mumber of the former and an old one of the latter: At Dranyssus again there are nine comej and len a conls ; and at Sirncuse and 'Tauromeniun the same. The Roman orchestra and scena were also tlefined 1 y a circke, within Which was inscribsed an equiluteral triangle, one of "hos. sides 1) 1) tormed the secma, wite the dimmeter 111 if the eirele, prallel to the secon, fomned the hourd y between the pulpitme or stage and the orche.tia. The hat being alsuasisa perfect semicircle. The other three fiangen are merely tor the purpose of determining the pointa where the sealer, or steps between the cunci, are to be, tor whic ha nothing more is requisite than to divide the semicirele of the orchestra into as many equal parts nis there are to he: anci, whether the mumber be six or nay other; and the diameter of the orehestra 11 II being given, the distance of the seena from it would be recentained by making it equal to one-fonth of that line. After all, as lias been remarke-d by Wetter in his work on theatres, there is something more whionsical than rational in suct an arrangenens. It hat admatage is is, or what particular hamony of pars is produced ly the tront of scena exactly coinciding with the buse of an equilateral triangle inscribed withio a cirele of which only one-lalf is risible, while the triangle itself is not vixible it all. These ambirary arehitectural fancies were rather defects, and they show how inperfect the at of secnie representation must have been. Io addition to the diadrantages alrealy pointect out, as regards the want of moveable seenery, it was no slight inconvenience that the stage eould never be occasionally extended in depth. Ahallore as it wns. Taking 70 feet as the diameter of the orchatra alone, which dimensions are equal to the whole of the largent of our modern theatres, the deptlo of the stage in a Creeian theatre would be a little more than 10 feet, or one-serenth of that diameter; and in a Ronan one 1\%-4 feet, or just one-fourth. While so confined a space would admit of very little dramatic action, it would scarcely admit of any change of scenery. Yet shallowness of the stage was in some measure matter of necessity, that the performer's might be as near to the front of the stage as possihle, separated as they were, in the Grecian theatre at least, from the audience by the intervening orchestia.

Striet as were the rules for proportioning the depth of the stage to the size of the orehestra, the relative size of the oreliestra to the coelum or whole anditory does not appear to have been subject to any regalations: it saries considerably in different theatres, being in some nearly one-half, io others only one-finh, or even little noore than one-sixth of the entire diameter of the interior, as in the thentres of Epidaurus and Dramyssus, or Janima.

When it is said that the Grecian orchestra was com-ilemably larger than the Roman, there is some aomiguity in the expression, for it might be inferred from it that it was larger than the other in proportion to the coclum, whereas the meaning is that the orchestra of the Creeks formed a larger portion of a circle, extending to 2.20 degrees, while the Roman was only 180 degrees, or an exact semicircle. In the Greek theatre, therefore, the orche-t1:t cuts into the stage, and renders that part temed logeion by the Greeks, and Pulpitum by the Komans, con iderably narrower than the extremities, whereas in the Roman thentre the stage was of the same depth throughom, pulpitum being a mere technieal distinction apphed to that portion corresponding with the orehestra, and to which the actors confined themselves, in order that thes might he better seen and heard * by the whole of the andience than would otherwise have been the case. The plans above given are not drawn to any particular seale, but supposing them to be upon the sane seale, and the chameter of the orehestra in the Greck plan to be 100 fect. the diameter of the coelum or whole auditory will be 3un fect, the width of the stage and secua 180 , and the depth of the logeion only 15 feet, while in the other the dimensione wilf he, orcliestra 100, auditory 270, seema 195, depth of stage and pulpitum 25 .

Another point of difference between the Greeimn and Roman theatre is, that in the former the stage wias consi-

- The antierta alos were olligech to have recournc co what merms a atrange expertien for transmbuling the nemurs woiec to the furtimet part of the chealre, namely, that of placing in caviles firs thee purpose henmilh the scats hollow motal or carlien rawas, (ermed lichofn (uxpia), that he "enunding thing," Which augmented the sound. Mir. W. Mankes dierovered sommling of the klod in the thealre of tey thopolla tu Syria, imet what effect suet Vicheir, and
 is not possible now is Julge.
derably elevated above the orehestra, 12 feet or upwards, consequently there was a wall of that height at the back of the orchestra, to which was given the name of Hyposcenium ($v \pi$ orsijptov), or Lower Scena, and which formed a sort of architectural basement to the stage, and was adorned with niches and statues. This however is little more than conjectural, for what is known relative to this and other aecessory parts of the stage is derived not from any examples of them diseovered in antient structures of the hind, but merely from such mention of the terms applied to them as is comed in a few antient writers and commentators, whose explanations are all more or less obscure, and full of discrepancies. We shall not therefore attempt to say more relative to either the Greek or Roman stage and seena than we have already done. It seems to have been assumed that, because the theatres themselves were of extraordinary extent and solidity in their constructionthat beeause there were columns, and marble, and sta-tues-the stage exhibitions also must have been in the same degree superior to those in the eomparatively small theatres of modern times. Yet the truth is, that eapacious as the buildings were, being intended to aceommodate nearly the entire population of a city at each performance, the stage itself was not at all in proportion to the rest. There was so little space attached to it either behind or at its sides, that spectaele and scenic contrivance and effeet must have been almost impossible: when therefore we read that s not unfrequently a magnificent compilation of machinery gradually deseended with the divinities of Olympus,' though we do not doubt the faet of there being some contrivance for letting down performers from above-in which case, however, the stage itself must have been roofed in-we greatly question the 'magnifieence,' and rather suspect that the contrivance must have been somewhat chmsy, and the effect almost ridiculous.

An experinent has lately been nade (November, 1841) in the theatre of the new palace at Potsdam, towards reviving an antient dramatie performanee, with rigorous attention to costume. The piece selected for the purpose was the 'Antigone' of Soplocles, and the theatre and all the arrangements were made to conform as nearly as possible to classical example. The pit was converted into an orchestra upon the Grecian model, and it was here that the persons who composed the chorus remained until they had to appear on the stage, when they ascended to it in the sight of the andience, and descended again in the same manner, so catefully was all the antient practice observed. Equal regard to preeedent was shown in comparatively triting matters: for instance, instead of the curtain being drawn up, it was let down, as was supposed to have been the cuse in the antient theatres, a circumstanee which has alrearly been questioned by us; and it is said that the effect of the upper part of the scene being diselosed before the lower was not a little striking. Indeed, if we may believe all that the Berlin journals hase reported of this classical exhibition, it perfectly realized its prototype, and no doubt greatly surpassed it, if it were only because it took place by candle-light, and the actors did not wear masks.

Little nore remains to be said on the subject of antient theatres, exuept to remark that the form of the orehestra also determined that of the exterior of the building; while the Ronian theatres therefore did not exceed a semicircle, those of Greece had a greater eurve. In the Greek theatres however the orchestra was not always extended beyond a semicircle, by the curve being continued, but sometimes by straierlit lines at right angles to the chord (or parallel to BB , in the plan of the Roman theatre, whose general form is so shaped, the extemal semieirele being prolonged by the colounades). Grecian theatres were almost invariably built on the sloping side of a hill, so that, as regards the coelum, it was mercly necessary to shape it out, and erect the seats; consequently there was no other architectural exterior than that formed by the Paraseene (IIapaox $\dot{\eta} \nu \eta$) and colonnade bchind the stage; for which reason the degree of eurvature did not manifest itself. The Roman theatres, on the contrary, were erected on level ground, and therefore the curved part of the exterior was confined to a semicircle, a form which unites better with the rectangular one and its straight lines.

The theatre at Athens (ealled that of l3acchus) was by no means so spacious as many others, its diameter being only 250 feet, and that of the orchestra 72 , which are very moderate dimensions in comparison with those of some of the

Asiatic theatres. The Odeion of Regilla, also at Athens, though similar in its general plan to the usual theatre, was a musie-hall, and was covered in with a tent-like roof, with a semieireular eye or opening for light. Both structures were situated at no great distance from each other on the south side of the Aeropolis [Athens, Plan]; therefore the scena of the theatre had a northern ispect, and must have been in shadow while the performanees took place.

The following is a list of streh antient theatres as are known, together with the respective dimensions of their general diameter and of their orehestra; which we have for the most part taken upon the authority of a similar table given by Col. Leake, in his 'Tour in Asia Minor,' to whicl several other examples are here added.

Orange (scena only remaining, 336
ft. wide, 114 ft . high.)

Pola, about . . . 200
68
(destroyed 1636, but plan preserved by Scanıozzi)
Pompeii $190 \quad 62$
Pompeiopolis • . $219 \quad 138$

Rome, theatre Mareellus • $517 \quad 172$
Sardes • • . . 396
Selinus (in Cilicia) . . 114
Sicyon 313 100

| Side \quad. | 0 | 390 | 120 |
| :--- | :--- | :--- | :--- | :--- |
| Sparta . \quad. | 453 | 217 | |

Siratonicea : $\quad . \quad 390 \quad 106$

Syracuse $\quad 440$
Tauromenium
440
width of scena 132
Tralles : $\quad . \quad 540$
$540 \quad 70$
Of some of these theatres searcely anything remains, little more than their general shape and extent being now distinguishable; accordingly the statements of their dimensions are not to be strictly relied upon, though they are sufficient to enable us to estimate their comparative size.

Fortunately the antient theatre was not taken as a model for modern structures of the kind. The revival of theatrical representations took place before anything was known relative to that branch of arehitectural archeology, and under very different circmastances. Dramatic enter tainments were then either partly religious, and performed within churches, convents, and colleges; or were acted for the amusement of prinees and nobles on oreasions of state and festivity, in halls mercly temporaily fitted up for that purpose ; consequently spacious and permanent sfruetures, as publie theatres, were not required until long alterwards, when the drama had become a distinct profession. In the neanwhile a taste for scenic display had developed itself, which required a very different arrangement of the stage and its appuratus from that of the antients. Imperfect as they were in wany respects, the clramatic pageants and reeitations performed before Leo X. were 'got up' with great inagnifieence, and some of the greatest artists were employed upon the decorations; among others Baldassare Pervzai [Peruzz1], whose skill in architecture and perspective earried scene-painting almost to perfeetion at onec. Even in the preceding ecntury dramatic exhibitions had been produced at loorence in a style then unprecedented; and we are told that the first Italian theatre
was one crected in that city by Bernardo Buontalenti in 1581 ; but it does not a ppear to have been a public theatre, nor could it have been very spacious, as it now fomms merely a saloon in the building called the Ufizi. Theatres on the present system were not built until the carly part of the seventeenth century : just before which time an attempt had been made to restore the forn of the antient theatre and stage, with the permanent arehitectural scena and its entranees, by Palladio, whose celcbrated Teatro Olimpico at Vicenza is one of those things which have gained a Iraditional reputation far beyond their real nerits. Admired at first, because then superior to anything of the kind, it has continued to be adnired sinee, partly on aecount of the charaeter attached to $i t$, which few eare to dispute ; and partly perhaps on account of its singularity, and becanse it shows the peeuliarities of the antient theatre. By no means however is it a very accurate initation, though its chief merit lies in being a mere imitation; it is semi-elliptieal instead of semieireular, with the stage on the longer axis of the ellipse; wherefore it looks too much squeezed up one way, and stretched out the other, and produees the same kind of disagreeable effect as would arise from placing the stage on the longer side of a parallelogram of the same extent (96×45 feet). It is said that the space to which the architect was restricted compelled him to adopt that form, yet it hardly appears so from the published plans of the building, for it would not be difficult to show how a semicircle might have been brought in. With regard to the scena, for which unlimited admiration is claimed, nothing can be more tasteless: it abounds in almost as many architectural barbarisms and solecisms as could well be brought together. Even Robert Adam spoke of it as mere 'gingerbread;' and another architeet, Woods, says, 'The scene, which is the part most admired, borders upon trumpery;' and that although the building 'is too eclebrated to be omitted, for lum it might have slept in oblivion.' It is not however so much the scena or facciata itself, as the avenues seen beyond it through the centre arch and other openings which attract notice, and have been extolled by some as greatly superior to the 'flimsy' painted decorations upon eanvas used in modern theatres. Those avenutes represent as many streets, the fronts of the buildings being modelled or carved in relief, and attempted to be shown in perspective by the floor and ceiling sloping very much upwards and downwards, and the other horizontal lines aecordingly, and by the passages themselves being narrower at the further end. The contrivance is puerile at the best ; and instead of being more deceptive or natural than painted scencry, the imitative perspeetive becomes distorted when viewed from any other situation than the centre of the theatre and the level of the stage. It is also difficult to understand how these narrow enclosed passapes could have been properly lighted at the time of a performance; and although they are, in stage language, 'practicable,' hardly could they have been made use of, at least not for their whole extent, beeause at their further end an actor would appear gigantic. This structure is nevertheless entitled to notice as an example of a very defective and faulty system, and because it has been frequently mentioned for the purpose of recommending, on the inposing authority of the name of Palladio, what ought not to be initated.
We are not aware of more than one other attempt to revive the antient theatre in all its strietness, which was that built in 1588 at Sabbionctia, for the Duke Vespasiano Gonzara, by Scamozzi, who completed the Teatro Olinnpieo atter Palladio's death. Temanza, who gives a deseription of the structure, speaks of it as then no longer remaining; but Tiraboschi points this out as a mistake, saying that the building sthl existed, though very much out of repair. How far the theatre at Sabbionetta differed from that at Vicenza in size, Temanza has not stated; but it was superior to the latter in its plan, the speetatory being semicircular, and the orchestra somewhat more. There was likewise, as at Vicenza, a Corinthian loggia or colonnade around the upper part above the seats, but in mueh better taste, all the intercolunns, except one at each end containing a niche, being open; whereas in the other building the centre intercolunns are closed. Yet whatever inpprovement Seamozzi may have made upon his predecessor's work in these reopects, he attenipted none where it was most of all wanted, but copied the permanent scena, with its avetues of mock perspective in relief. We do not say
that the antient theatre offen nothing for imitation, or eapable of being applied to modern ones. On the contrary, the general form of the spectatory is the most clegant and commodious that can be devised; the absurdity lay in adopting, together with that, the antient seena and stage, than which nothing can be more ill-contrived, de fective, and inconvenient. Iu fact the antient model supplies no stage at all in comparison with what is now required for one, but merely a proscenium; and such acant scene, with merely a stationary architectural ' drop' [SCEN Es Pasmisic], would answer every purpose of dramatic re presentation, just as well as the Locreion of the Greeks, the Pulpitum of the Romans, and Palladio s 'elassical' architectural baekground, which will not enclure the slightest comparisoll with the drop-scene at Covent Garlen. For the plan of a complete theatre, the modern slage, with its extensive and conplex scenery and incehanism, should be combined with the form and arrangement of the antient speetatory, though not without very eonsiderable modifieation. This was done by Quarenghi in the Theatre of the IIermitage at St. Petersburg; in another private theatre in Prince Besborodko's palace, and in a design for a publie theatre intended to be erected at Bassano. After all, such plan and disposition of the seats are by no means well adapted for a modern public theatre and mixed audience: umless many ineonveniences were to be submitted to, great loss of space, or what would be considered such, would be ineurred, and the number of spectators would be mueh less in proportion to the width of the 'house' and stage. On the other hand, the form of the antient theatre may be applied to a concert-room with such very slight alteration, that it is rather surprising it should not have been taken as a model for publie rooms of the kind. There a permanent scena, either of painted or real arehitecture, behind the orchestra and singers, would be appropriate, beeause not intended to have any immediate reference to the performance itself.
In elaiming a deeided superiority for the modern theatre over that of the antients, we speak only as regards the respective systems; and as Ugoni, in his Life of Milizia, observes, to prefer the Grecian theatre, with all its inconveniences and the awkward expedients resorted to in it, as being of more elassical and digmificd character than our own comparatively small and fragile yet greatly improved structures of the kind, is to wish to limit art and sejence within their first bounds. There certainly was good reason at one time for exclaiming against nodern theatrieal arehitecture as very defective in regard to the audience portion of the ' house.' Till within a comparatively late period, searcely any study was bestowed on beauty and convenience of plan. The aceommodations were hardly so good as those in many very ordinary playhouses, where for want of space, there are no other seats than what directly face the stage. 'The 'house' was usually an oblong, either reetangular or elliptical, so that the greater part of the audienee, -at least those in the boxes,-were placed quite on the sides. Where the 'house' contracted towards the proscenium, as was frequently the case, the side-boxes were actually turned from the stage; and whether suels was the case or not, they were allowed to eneroach upon the stage itself in such inanner, that when the aetors advanced to the front of the stage or beyond the line of the curtain, they may be said to have mingled with the audienee, and those in the boxes on the acant-scene were actually behind them. If we may judge from the plans and other drawings of them, the two prineipal theatres in London were, cven less than a century ago, both as inconvenient and as ugly as ean well be imagined. The approaches, too, used fornerly to be exceedingly bad; not only mean and ineonvenient, but in ulany places most dangerously narrow. Such is strikingly the cease in most of the modern Roman theatres, for instead of the box-corridors following the curve of the 'house, and being of the same width throughout, they are so contracted where the other is widest, that more than two persons camnot pass.

Very great reforms have now taken place, yet there is still room for further improvements, obvious, though not likely to be adopted so long as it is considered a matter of course that the space before the curtain must be made to contain as many persons as can possibly be packed into it, and that an audience must be piled up around the whole house to the very cciling. We do not say that modern theatres are too lofty; the error does not lie there,
but in carrying up the boxes, tier after tier, to such a preposterous height that the uppermost box is scveral feet above the top of the curtain or stage-openings, and the back seats of the upper-gallery are actually on a level with the ceiling over the pit. Such aecumulation of diminutive stories gives a crowded appearance to the whole, and leaves no space for architectural decoration around the upper part. No doubt a very striking appearance of a different kind presents itself from the pit and from the stage, when the house is entirely filled to the very top; and if we consider merely the coup-d"ail from such points, it may be allowed to be imposing. But then, as regards that part of the audience who occupy the upper part of the house, the arrangement is bad. From the seats which are at all above the level of the top of the curtain, there is only a bird'seye view of the stage and the scenery, and that only from the front sests, and also facing the stage, for from those on the side of it it impossible at that height to olstain a sight of the scene or even the actors, unless when they come forward towards the foot-lights. There should be no seats at a greater height than midway that of the eurtain, or the level of what is now the second tier of hoxes in our large theatres; for, as the scenery can be painted only to one horizon,-generally that of the stage itself,-its perspective effeet is more or less impaired when it is seen from either very much above or below that level. No less preposterous is the practice of continuing the side-boxes up to the proscenium, and sometimes (as in the Opera-house at London) quite up to the very curfain, so that there is no proscenium at all, unless the space on the floor of the stage, between the curtain and foot-lights can be so called. While those so seated lose the scenery altogether, they lave the disadvantage of seeing between the wings on the side opposite them; and although the positive inconvenience resulting from such arrangement is felt only by a portion of the audience, the bad effect occasioned by it extends to the whole theatre. Not only ought there to be a distinct proscenium, serving as an architectural frame to the stage and its scenery, dividing that part of the theatre from the rest, but it ought to be of much ampler proportions than are now given it. It should extend so far as to leave some interval-a sort of neutral ground-between the curtain and the boxes, so as to remove the nearest spectator in them to a tolerable distance for properly viewing the stage as a picture; for it is possible to be as inconveniently near the stage as distant from it. Where, in order to contract the stage, or to render the pit and general diameter of the louse considerably greater than what is required for the width of the curtain, the plan is made to approach a circle (as is the case in nearly every theatre built within the last twenty years), the boxes should be confined to the semicircle facing the stage ; and, so far from being a blank, the curved space on each side between them and the curtain might be made to contribute very much to the architecftual appearance of the whole house. This would not take away anything from the pit, and if it materially diminished the number of the boxes and scats in them, it would be only where there ought to be nothing of the kind. The banishing of boxes from such situations, and making also no more than two tiers, wonld certainly greatly abridge the present capacities of theatres: it house of the same size would not contain the same number of persons as at present, when a large part of the audience are put where they cannot well see the performance. It is likely, therefore, to be objceted that such a system would be too expensive, since a large house would be requisite for a comparatively moderate audience; but curtailments might very well he made elsewhere, for at present the whole building is frequently very much larger and more costly than actual necessity requires, the 'house' itself, he its dimensions what they may, taking up a comparatively small area of the entire plan, while the rest is occupied by stately approaches and saloons, which, where ceonomy rendered it expedient, might be greatly abridged, and much plainer in style, and some of them omitted attogether as superfluous appendages.

In some of the modern continental theatres, the pomp displayed in such accessory parts of the building far exceeds anything of the kind in this country. In that at Berlin, besides several other spacious apartments, is a music-saloon 38 fect high, 44 wide, and 106 feet in length in its upper part, where there is a sereen of six Ionic columns at each part, where there is a se
P. C., No. 152 .
end; the whole highly decorated, and forming one of Sehin kel's richest pieces of interior architecture. The theatre at Münich has two staireases to the boxes, with flights of marble steps 13 feet wide; and besides two saloons for the publie (each 82×31 feet), there is a very magnificeit one communicating with the royal box-not a mere anteroom, but what would be termed a noble room even in a palace, its dimensions being 46×44 feet, and 25 in height. In both these theatres, and in that of Genoa, the royal or state box is itsclf a room of some size, about 15 by 18 feet, more or less; and according to the gencral eustom of the continental theatres, this box (which oceupies the leight of two tiers, and is adorned with caryatides in front) is directly in the centre of the house, facing the stage, consequently in the very best situation of all; whereas the situation assigned to royal visitors in our theatres is almost the very worst, as far as seeing the stage and the performance is coneermed.

In regard to the form of the 'house, a decided improvement has taken place of late years; and the circular plan, or one approaching to it (either extended by the eurtain being a fangent to the circle or somewhat beyond it, or reduced by the curtain intersecting and forming a chord to the segment), may now be considered the one established as being the most pleasing and commodious-t hat which is best adapted for affording a distinct view of the stage to the majority of the audience. But there is considerable difference of opinion as to its being the best form in regard to learing. In fact, the science of acousties is not yct brought to exactness as rcgards practical purposes in building: it is easy enough to ascertain beforehand how mu:ch of the stage will be visible from different parts of the theatre, but not so what will be the result as to sound, since that will depend upon a variety of circumstances, some of them counteracting each other, and not every one of them to be guarded against or forescen. The shape ot the house is but one of them out of many; much will also depend upon size, much upon the deptl of the boxes and galleries, and also upon accidental and such trivial matters, that any defect or advantage so oceasioned is not likely to be traced to them. ILere the chief guide is cxperience; and expcricnce seems at present to be in farour of, at least not at all against, the circular form ; for the new theatres at Mayence, Dresden, and other places where it has been adopted, are said to be perfectly satisfactory in regard to the actors heing distinetly heard in every part.

While in their internal embellishment and fitting up theatres afloorl very great scope to the architect, though not so much as they might do, they also afford opportunity for accomplishing much in regard to characteristic external design. Magnificent as are the exteriors and façades of the theatres at St. Petersburg, Berlin, Münich, Bordeaux, and Nantes, with their porticos and colonnades, there is nothing in them that very clearly expresses their particular purpose, because nothing that corresponds with or indicates the form of the 'house 'itself within. Moller, we believe, was the first who made the internal plan discover itself trom without, by making the anditory, at least the comerns and saloon surrounding it, project out as a spacious semicirele, in the ficade of the theatre at Mayence. The same form of exterior has been given by Semper to the new theatre at Dresden, which is also remarkable for the display it makes of seulpture.

After all it is the stage itself, with its multifarious contrivances and complex mechanism, its scenery and pictorial effects, whiel manifest the extraordinary perfection to which the moderns have carried the scenic, if not the dramatic art; nor can we exclude the latter, unless we choose to blot out the name of Shalispere. It docs not enter into our purpose however to speak of stage incchanism, which is a suhject and study by itself, and not otherwise eonnected with theatres and their architecture than as being made use of in the former. Those who seek for information of the kind will meet with many plates showing the stage construction and mechanism of Ilymouth theatre, in Foulstone's 'Public and Private Buildings ;' and, with more general and complete instructions, in Stephenson's work on the maclinery of theatres. Neither can we make any additions here to what has been already said on the subject of Scene-Pantixg. We will only obscrve that very great improvements and numerous contrivances for producing stage and seeaic effects had been introduced into theatres at the commencement of the seventeenth century.

Yol. XXIV.-2 Q

Praxce.

Paris, LOdeon .	Baraguey, restored	1820	$42 \frac{1}{8}$	62		51	$\begin{gathered} 66 \\ \text { deep } \end{gathered}$	An insulated strueture, about 172 $\times 118$ feet, originally built by
Paris, Prançais .	Louls, partly reluilt	1760	32	59		54		De Wailly and the elder Peyre.
	by Fontaine							
Prois, Acndémie Roy. de Musique, or Opera	Debret	$\begin{aligned} & \text { Opend. } \\ & \text { Augt. } \\ & 1821 \end{aligned}$	52 $2 \frac{1}{3}$	67		61	$\begin{aligned} & \text { jeep } \end{aligned}$	Saloon 98 by 21, and 21 feet hiph.
Paris, Ventadour .	Huvé		49	57		64		Insulated strueture, $17: 2$ by 114 fcet. Extcrior two orders, Doric and
Paris, Feydeau .	Legrand and Molinos	$\begin{aligned} & \text { About } \\ & 1790 \end{aligned}$	49	49			32 deep 78	21 , and 21 high. Front eurved.
Versnilles, in Palace			34	60	50	44	$\begin{gathered} \text { wide } \\ 70 \end{gathered}$	
							deep 48 wide	

THE
299

Greatest Breadth of Pit.	$\begin{gathered} \text { Height } \\ \text { from } \\ \text { Floor of } \\ \text { litit. }^{\prime} \mid \end{gathered}$	Stage.	
$62 \frac{1}{3} \mathrm{t}$. ditto	$57 \frac{1}{2} \mathrm{ft}$.	70 ft . deep	This splendid theatre restored and refitted up by Bonfin, 1832.
	52	36 deep 65	Insulated, about 124×100 feet
36	3.) $\frac{1}{2}$	wide 68	Insulated building, 180×130 feet
		deep 50 wide	This theatre has been rebuilt alter a different design.
49	51	47×65	Portico, Corinthian octastyle beforc tetrastyle in antis.

Germany and Belgium.

Russia.

England.

	Arebifere.	Dale.	Wideth of Curtaly.	
L.ondon, Drurg-lane	Ben. Wyatt Beazley	$1811-2$	$3 \geq \mathrm{ft}$.	6.15.
, Fnglish Opera	13 (azley	$1 \times 31-4$	312	inlit
Birmingham	Beazles		24	41
llymouth .	J. Fonlatune	$\begin{aligned} & \text { begun } \\ & 1811 \end{aligned}$	29	43

Several theatres, all more or lese worthy of notice, have been erected within the present century, but are omitted in the table, as we enmot specify the respective dimensions. The subjoined list of theni, with their architects' names, may lowever be useful:-

13rescia; Canonica.
Fermara; Ant. Foschini.
Florenec, Teatro Goldoni; Gius. del Russo, 1817. Theatre after antient plan; Anton. Comazi.
Nlantua; Canoniea.
Trento; Dueati, 1823.
Baden; Weinbrenner.
Breslau; Ianglans, opened Noveniber, 1841.
Camestadt; Ludw. Zanth, begun 1839.
Carlsruhe; Weinbrenner, 1807-8.
Coblentz; Von Kralie.
Darmstadt; Moller and Herer, 1818-19.
Gothr: Semper, 18:37-9. Opened May, 1810.
Minnich, Isar-thor Th.: Derienyen, 1811.
St. Petersbure; Alexandrinsky Theatre; Rossi. Opened August. 1832.
THEATKE. Before the reign of Elizabeth theatrical repuesentations appear to have been suljeet to no legal restraint beyond the liability of those who condueted them to the vagatat laws. Until the middle of the seventeenth century, players were always attached to the establishment either of the court or of some wealthy subject, whose badge and livery they wore, and whose superintendence was presumed to control any execsses which might be injurious to the publie; but when their services were not required by those to whom they especially beloneged, it was usual for sucla perons to wander about the country, exhibiting their performances for gain, and thas becoming strollers, and even mendiemuts. In the reign of IIenry VII. in instance is recorded of n gratuity given by that king to some 'players that berged by the way.' The chief restititions to which such persons were liable previously to the statute of Elizabeth in which they were expressly inentioned, were measures of police for preventing tumults and breaches of the peate by the assemblage of large numbers of people at their representations. Oceasionally however these popular cxlibitiona attracted the animadversion of the government by holding up matters of state to public censure or riclicule. Thus in lojs \boldsymbol{g}_{4} when the mpopular marriage of (queen Mary with Philip of Spain had ereafed great excitement thronghout the country, the council diecet the attention of the lord president of the Siorth to certain lewd persons maming themselves to be servants of Sir Francis Lake, and wearing his livery or badge on their slecees, lave wandered about these north parta, and representing certain plays and interludes reflecting on the queen and her consort and the formalities of the mass.' (Strype's biclesinstical Memorials, vol. iii., Appendix, p. 18j.) Rixcesses of a similar character, oceurring at the beginning of the following reign, aud directed amainst the Protestant religion, were cheeked by the stat. 1 Eliz., c. 2, s. 9, whiel intlicted a pembly of 100 marks upon 'persons who in plays or interludes declared or spote anything in derogation, depraving or despisiug of the Buok of Common Prayer.?

But atthough players, sis such, were in those days subject to no general legal restrictions, it is probalble thint the practice of granting lieenees from the crown to such persons prevailed as carly as the reign of 11 enry VII!. It nppearm 100 , from a curious paper published by Nalone, in fris "Ihitorical Account of the Finglish Stage;' that in Ihe"
reign of Elizabeth strolling players, though belonging to some great person, usually applied for a licence to the local authorities of any town in which they meant to perform. "When players of interludes come to the city of Gloucester,' says this document, 'the manner is, as in oiher like corporations, that they first attend the mayor to inform him what mobleman's servants they are, and so to get lieence for their publie playing.' The earliest theatrical licence from the crown now extant is that granted by Queen Elizabeth, in 1574, to James Burbage and four other persons, 'servants to the earl of leicester,' which contains a proviso that the performances thereby authorised, before they are publicly represented, shall be seen and allowed by the queen's master of the revels; a stipulation analomous to the licence of the lord chamberlain under the licensing Aet at t?:c present day. These licences from the crown were originally nothing more than authorities to itinerate. which exempted strolling players from being molested by proeecdings taken under the laws or proclamations against. vagrants, and also superseded the necessity of licenees fiom loeal magistrates. The statute 33 Eiliz., e. 4 , went a step farther, and by implieation authorised noblemen to license players, by enacting that 'all common players of interludes wandering abroad, other than players of interludes beloneing to any baron of this realm, or any other honourable personage of greater legree, to be authorised to play under the hand and seal of arms of stela baron or per sonage, should be adjudged rogues and vagabonds.' Thus statute lias been frequently misrepresented as denouncing all players as rogues and vagabonds (Prymne's Hiatriomasfix; Howell's state Trials, vol. iii., p. 567) ; whereas it is obvious that the enactment applies orly to strolling players.

Although theatrieal representations became much mo:c General in the reigns of James I. and Charles 1., no laws were expressly enacted fir their regnlation, with the single exeeption of the stat. 1 Car. 1., c. 1, whiels suppressed the performanee of 'interludes and common plays' upon the Lord's Day. An ordinance of the Jong Parliament, in 16:18, was tirected to the suppression of all stage-plays and interlutes, but though vecasionally enforeed with muela rigour, it fated to abolish these entertainments. The stat. 12 Ann., stat. 2, e. 23, in general terms, classed players of interludes as rogues and vagabonds; but the stat. lio Geo. $11 .$, e. 2s, s. 1 , expomeded the former statute by enacting thit ' every person, who should for lire, gain, or reward, aet, represent, or perform any play or other entertaiument of the stage, or any part therein, if he shall not linve any legal settement where the offenee should be conmitted, without authority by patent from the king, or licence from the lord Chambertain, should be deemed a rogue and vagabond within the stat. 12 Ann.' But this provision is now repealed by the stat. © (ico. 1V., c. 83, and players as such, whether stationary or itinerant, are at the present day not amenable to the law as rogues and vagabouls. By the and section of the above statute, 10 Geo. Il., e. 2s, Which, with the exeeptions just mentioned, is still in full opreation, and forms the law of the metropolitan theatres, it is enaeted grencrally, that every person who slabll, without a patent or licence, act or periorm any entertainment of the stage for hire, gain, or reward shall forfeit the sump of 50 !.' By the 3rd section it is declared, that ' 10 person sliall for hire, gain, or reward act, perform, or represent any new interlude, tragedy, comely, opera, play, faree, or other entertaimment of the stage, or any parts therein; or any new act, secne, or other pant
added to any old interlude, tragedy, comedy, opera, play, faree, or other entertainment of the stage, or any new prologue or epilogue, unless a true copy thereof be sent to the Lord Chamberlain of the King's household for the time being, fourteen days at the least before the acting, representing, or performing thereof, together with an aecount of the play-house or place where the same shall be, and the time when the same is first intended to be first aeted, represented, or performed, signed by the master or manager.' The 4 th seetion authorizes the Lord Chamberlain to prohibit the performance of any theatrical entertainment, and subjeets the persons infringing this prohibition to a penalty of $50 l$. and the forfeiture of their patent or licence. The 5th section provides, that 'no person shall be authorized by patent from the Crown or licence from the Lord Clamberlain to aet, represent, or perform for hire or reward any interlude, tragedy, comedy, opera, play, farce, or other entertainment of the stage, in any part of Great Britain, except in the city of IVestminster and within the liberties thereof, and in such places where the King shall personally reside, and during such residence only.' The 7th section enacts, that 'if any interlude, tragedy, comedy, opera, play, faree, or other entertainment of the stage, or any aet, seene, or part thereof, shall be acted, represented, or performed in any house or place where wine, ale, beer, or otlier liquors shall be sold or retailed, the same shall be deemed to be acted, represented, and performed for gain, hire, and rewarl.' Within a few years after the passing of this act of parliament, the clause which restricted the power of granting patents by the Crown to theatres within the city of Westminster and places of royal residence, was found to be productive of inconvenience ; and special aets of parliament were passed exempting several large towns, in which sueh entertainments were desired, from the operation of that elause, and authorizing the King to grant letters for establishing theatres in such places. Instanees of statutes of this kind oceur with respect to Bath in stat. 8 Geo. III., e. 10 ; with respeet to Liverpool in the stat. 11 Geo. III., e. 16 ; and with respect to Bristol in the stat. 18 Geo. ILI., e. 8.

A further relaxation of the rule established by the stat. 10 Geo. II., e. 28 , for the regulation of theatrical performances, was effected by the statute 28 Geo. III., c. 30 , in favour of places whiell could not be expected to bear the expeyse of a special aet of parliament. By this latter statute, the justices of the peace at general or quarter sessions are authorized to liecnse the performanec of any such tragedies, comcdies, interludes, operas, plays, or farees as are represented at the patent or lieensed theatres in Westminster, or as have been submitted to the Lord Chantberlain, at any place within their jurisdietion not within 20 miles of London, Westminster, or Edinburgh, or 8 miles of any patent or licensed theatre, or 10 miles of the kincrs residenee, or 14 miles of either of the universities of Ox ford or Cambridge, or 2 miles of the outward limits of any place having peeuliar jurisdiction.

The penalties imposed by the stat. 10 Geo. II., e. 28, being found in practice insufficient to prevent the performance of theatrical entertainments without licence, and great evils being experienced from the resort of the lower orders in London to such entertainments, the legislature in the year 1839 gave additional powers to the metropolitan police for their prevention. By the 46 th section of the stat. 2 and 3 Viet., c. 47 , 'the Commissioners of poliee are empowered to authorize a superintendent, with such constables as he may think necessary, to enter into any house or room, kept or used within the metropolitan poliee district, for stage-plays or dramatic entertainments into which admission is obtained by payment of money, and which is not a liceneed theatre, and to take into eustody all persons who shall be found therein without lawful exeuse: The same elause cnaets that 'every person keeping, using, or knowingly letting any house or other tenement for the purpose of being used as an unlicenced theatre, shall be liable to a penalty of 20%, or, in the diseretion of the magistrate, may be committed to the House of Correction, with or without hard labour, for two ealendar months; and every person performing or being therein without lawful excuse shall be liable to a penalty of forty slillings.'

It may be desiralle in this article to refer to a statute which was passed in the year 18333 for the protection of dramatie litcrary property, and which placed such property
upon the same footing as the copyright of published books. The stat. 3 \& 4 Will. IV., e. 15, enacts that the author of any tragedy, comedy, play, opera, farce, or any other dramatic piece or entertainment, shall have as his own property the sole liberty of representing the same at any place of dramatic entertainment; and that the author of any sueh production, published within 10 years before the passing of the act, or his assignee, shall, from the time of publication until the end of twenty-eight years, and, if the author be living at the end of that period, during the residue of his natural life. have as lis own property the sole liberty of representing sueh production. The infringement of this right is forbidden under a penalty of 'forty shillings for every unauthorized representation of such produetion, or the amount of the benefit detived from sueh representation, or of the injury sustained by the author therefrom, whichever shall be the greater damages.'
THEATRE, ENGLISH, FLENCH, \&e. [ENGLISII Drama.]

THEATRE, HINDU. [SANscrit Language and Literature.]

TIEEBAIA. [PARAMORPHIA.]
 nifies the territory or district belonging to Thebes, and is eonsequently applied to the whole territory subject to the eity of Thebes in Boeotia. [Thebes in Boeotia.] In a similar, though a much wider sense, the name was given to the whole of Upper Eoypt, the morlern Sairl, of which Thebes was the principal city. This territory extended from Hermopolis Magna southward as far as the first eataraets of the Nile, or to Philæ; or, aceording to others, as far as IXiera Sieamina. This great province was, aceording to Strabo (xvii., p. 787), originally divided into ten nomes (voнoi); but Pliny (Hist. Nat., v. 9) enumerates eleven, and others mention fourteen - the nomos Lyeopolites, Hypseliotis, Aphroditopolites, Tinites, Diospolites, Tentyrites, Phaturites, Hermonthites, Apollinopolites, Antaeopolites, Panopolites, Coptites, Ombites, and the nomos Dodecaschoenus. Respecting the nature of these nomes and the physical features of the Thebaid, see Egypt.

THEBES ($\Theta \tilde{\eta} \beta a t$, Thebae). Towns and eities of this name oeeur in several parts of the antient world, but the two which are most renowned in history are the Egyptian and the Boeotian Thebes, of which we shall speak separately, and subjoin a list of the other plaees of this name.

Thebes in Egypt, in the Bible ealled No, or No Ammen, was situated in the central part of Upper Egypt, which derived from this eity the name of Thebais. [TueBAD.] This city eonsisted of two main parts, whiel were divided by the Nile, one oceupying the eastern, and the other the westem bank of the river, and each extending from the river to the foot of the hills which enelose the valley of the Nile. This gigantic city, whose ruins still excite astonishment, was belicved to be the most antient town of Egypt, and the original metropolis of Egypt. Its foundation was aseribed by some to Osiris, who named it after his mother (Diodorus Sic., i. 15), and by others to the last king of the house of Busiris. (Diodorus Sie., i. 45.) According to other authorities, Thebes was an Ethiopian colony. Its original circunference is stated to have been 140 stadia. Its most flourishing period appears to have been about 1000 n.c., when it was the eapital of all Egypt, and whell, aecording to Herodotus and Aristotle, the whole country of Egypt bore the name of Thebes ($\theta \tilde{\eta} \beta a t$). During that period, which probably eomprises several centuries, Thebes was the residence of the Egyptian kings, whose tombs are still extant in the rocks on the western side of the eity, and extend even to the borders of the desert. (Strabo, xvii., p. 816, ed. Casaub.) Homer (Iliad, ix. 381, \&c.) speaks of the splendour, greatness, and wealth of Thebes, and ealls it "the city with a hundred gates,' each of which sent out two hundred men with horses and chariots. During the invasion of Egypt by the Persians under Cambyses, Thebes, like other towns, suffered very severely, especially the private dwellings, which were for the most part constructed of wood, while the great arehitectural works defied the flames as much as they have defied the slower influence of time. (Diodorus Sie., i. 46; IIerodotus, iii., 25; Pliny, Hist. Nat., xxxvi. 9.) After this eatastrophe the city appears never to have recovered her former greatness. During the time of the Ptolemies, when the seat of government was in the northern extrenity of the country, Thebes appears to have been neglected by

The Eigyptinn kings. In the reign of Piolemy Iathyrus, bout s.c. Sti, it ixvoltet, and alter a siege of three jears It was inhen and plundered hy the Greetis. As early as the time of Sirabo, when its name Thebes had heen changed by the Greckin intu Dimpolis (Dide rodage Jiospolis Magua, that is, the great city of Jove), and the circut of the city, whiels could still le imeed, amounted to eighty stadia, the place entasisted of a number of villages, and what remained of the antient city cousisted chictly of temples. Under the Roman dominion something aplears to have been dane to restore or preserve the vencrable eity; but new calamities luroke in upon it when Cliristianity was introduced into Upper Exyyt, and the Christians in their religious zeal destroyed and appropriated to themselves as much as they conkl of the works of the antient itholaters. At present the site of the city is oecmpied by four prineipal witlages, luyor and Carance on the eastern, and Gournou and Medi-net-Ahou on the western side of the river. The buildings and wenlptures still extant are the most antient of any that cxist in Fuypt, and are the best and most genuine specimens of Fify ptian art and architecture, for we have every reason to betieve that by far the greatest part of them were exeented before ligypt had yet experieneed the inflnence of the Greeks, that is, long before the Persian invasion. (B.c. $\mathrm{j}^{2} \%$.) The ruins, chiefly consisting of temples, eolossi, sphinxes, and obelistis, oceupy nearly the whole extent of the valley of the Nile, u spaee of six miles from east to west ; and on the western side, where the mins of the city end, there hegins, as it were, the eity of the dead, the tombs in the roeks, with their paintings, which are still as fresh as if they had been made only a few days ago. For an account of these remains, see the artieles Envipt, Carnak, Luxor; and nore especially the British Miseum, - Egyptian Antiquities,' 2 vols.; and Wilkinson's 'Topography of Thebes, in lis work 'On the Manners and Cusions of the Antient Egyptians,' chap. v.

Teseres as Bozotia, one of the most antient and most important cilies of Greece, was situated in the plain beI ween Lake Hyliee on the north, and a range of low hills on the south. The Acropolis of the eity, buit upon an eminence in this plain, was said to have been founded by lharnicians under Cadmus, whence it was ealled Cadmea (Kaipia; Sirabo, ix., p. 401 ; Pausanias, ix. 5, 1 ; Stephanus Byz., s. v. Kaipria). Around this citadel the eity arose at a later tine, and was so disposed, that the greater portion of it oceupied the part north of the eitadel. Accorling to an antient legend, the cily was fortified by Zethos, and Amphion, the wondertul lyre-player, who, by his musie, made the stones nove and form the walls round the cily. (Pansanias, ix. 5, 4, \&e. ; Homer, Odyss., xi. 262, \&e.) Previous to the Trojan war the eity was destroyed by the Epigoni, that is, the dessendants of the seven Argive heroes who had been defented by the Thelans, and from this destruetion it does not appear to have reeovered hefore that war, as it took no part in the expedition against Troy. In the time of llomer however, who ealls it 'a city with seven gates (izrátu $\boldsymbol{\lambda} \boldsymbol{\rho}$),' and gives it the attribute of ttpixopos, on recount of the extensive plain which formed its territory, it appears in have again been in a flourishing condition. The names of the seven gates of Thebes are still preserved in Ascelhylus, Piusanias, Apollodorus, and Slatius. In 33, B.c. Thebes was destroyed a second time, hy Alexander the Great. On his aceession to the throne of Maredonian it hat revolted, and att empted to slake off the Aacedoninn yole. Or the lower city nothing was left on this occeasion except the cates, the temples, and the honse of Pindirr the poet: (s)OK) inhabitants were killed, and 30,000 sold ns staves. Cossander reluitt the city in s.c. 316 , with the generous aid of the Athenians, Messenians, and APralopolitans. (Pransanias, ix. 7.) The city sufflered a third lime in 1.c. 291, under Deinetrius Poliorcetes. (Plutarch, Demetr., 39. ©e.; Dioclorus Sieul., Pragm., xxi., , p. 273, ed. Bip.) Dicaearchus, who saw Thebes nhout this time or slortly unfer, has left us an interesting descrip)tion of it. This city, says he, is about seventy stadia in circumferenee; its form is nearly circumr, and its appearance somewhat gloomy, It is plentifulty provided with water and pattures, and the gardens around it are better than any in Grecece. It is most ngreeable in summer, on recount of the plentiful supply of cool and treall water, and the beantifut gardens: in winter however it is very unpleasmnt, beeause it is destitute of fuel, and exposed to floods and cold winds. At this seenson heavy falls
of snow were frequent, and the eity was very dirty. (1)iestearchi Messenn, (Nuae sugrersunt, p. 143, 太ic., ed. Fuhr.) Its population about this time is mppposed to have been between finty and sixty thousand. Aiter the Mucedonian lime however the city declined still more, and Sulla secens to have given it the last blow by ilepriving it of half of its temitory, which he nasigned to the Jelplians (1'ansanias, ix. 7. f); and Strabo remarks that in his fime it had scarcely the appearance of a village (ix., p. 403, ed. Casamb.). In the lime of D'ausanias the citadel, then called Thebes, was still inlalsited, but the lower city was entirely abandoned; and he only saw the walls, gates, and temples, of whieh he gives a description. The place which now occupies the anticnt Cindnea is called Theba, or Pleba, and in Turkish, Stiva; and here, as well as in the surrounding plain, there are many remains of antient buildings, senlptures, and inscriptions. The inhahitants of antient 'lhebes were dissinguished above all the other Greeks for masticity, fierceness, and pasion. Hence ir Theban was always ready' to settle any dispute, either with a tellow-citizen or with a foreigner, by fighting rather than by the ordimary eourse of justiee. The women were celebrated for their gentleness and beauty. (Dicaearchus, as above.)
In early tinıes Thebes was governed by kings, who play a more prominent part in the mythical traditions of Greece than the eliefs of any other jart of the country. The last of these lings, Xanthus, was slain in single combrt by Andropompus. After this event the government of Thebes became an aristocracy, or rather an oligirchy. (Pausanias, ix. 5., 8.) This form of government, although it was frequently restored for a short tince, gave way to a demouracy. When we read that no one was allowed to hold any public offiee unless he had, at least for ten years, not been engaged in any trade, this rule seems to refer to the oligarchic period. (Aristot., I'olit., iii. 3. p. 80 ; vi. 4, 11. 209, ed. Gottling.) During the time of the Persian invasion, the government is again called an oligarcly; but it is added that this was not the constitution whicli the Thebans had inherited from their fathers. (Thueydides, iii. 62; Plutarch, Aristid., 18.) The demoeraey, which must have been restored soon after, was again abolished after the battle of Oenophyta, in B.c. 4.77. (Aristotle, Polit., v. $2, \mathrm{p} .15 \overline{5}$.) In the Peloponnesian war we arain find mention of an oligarehy at Thebes ('lhueydides, iv. 76 ; v. 31 ; Diodorus Sic., xii. 63) ; but this appears to refer only to the influenee of the magistrates, for thronghout that time, as well as afterwards in the time of Epaminondas and P'elopidas, it was the assembly of the people which decided the most important political questions, such as those relating to war and peace. (Xenophon, Ilellen., iii. 5, 8.) Heneeforth the demoeratical constitution appears to have continued at Thebes down to the time that Greece fell into the hands of the Romans, and Ω shadow of it remained even afterwards. Along with the assembly, which, at least in later times, was as tumultuons as that of Athens (Polybins, vi. 44), Thebes also had a senate; and the magisirates, who were eleeted anmually hy ballot, bore the name of polemarchs. As a state thebes was not eonfined to the city and its immediate neighbourhood, but comprised the whole territosy between the eastern coast of Iake Copais and Mount Cithaeron, and extencled to the north as far as the Little river Cephissus, which emplies itself in the sea between Euboea aud the mainland. This whole territory was called Thehais, and fontained a great mumher of : owns which were subject to Thebes. Among the fourteen confederate states of liocotia, Thebes was the first, whence it is generally called the (capital of Boeotia, which, in the strict sense of the word, it eerainly was not. [130 EOTIA.]

Besides the Jigy pition and Boeotian Thehes, the following towns of this unme are mentioned hy antient writers:-

1. Thehes in Phthotis in Thessaly (Oinzar ai mocurcies, Thebae Phthioticene, or Thebae Phihiac) was an implortant commercial fown with a good harbour. (Sirabo, ix., 11 . 4:31, 4:33, 43.5 ; Jivy, xxxix. 25 ; xxxviii. 7. \&c.)
2. Thehe ($0 \dot{\eta} / \beta \eta$) in Troas in Asia Minor was celebrated as a tortified place as early as the Trojan war. It was sitarted north of Adramyttimm, und taken and destroyed by Achilles. The glain in wheh the town lad been situated was known down to the latest times as the ldain of
 Strabo, xiii., p. 58t, \&e. ; Merolotns. vii. 42).
3. Thebes, in that part of Arabia Felix which was called the country of the Cinaedocolpitae.
4. Thebes in Lucania in Italy. (Pliny, Hist. Nat., iii. 15.) Stephanus of Byzantium (s. v. önßat) mentions several other towns of this name, of which however nothing is known.

THECA, a term in vegetable anatomy. It was applied by Grew to that part of the stamen which contalns the reproductive granules and which is now generally called the anther. [Anther.] It is also extensively employed in cryptogamic botany. Among the ferns, it is applied, in cominon with the terms capsule, conceptacle, and sporangium [Sporangium], to those little granules which constitute the masses called sori. In the Equisetacere it expresses the assemblage of cases, which are attached to scales arranged in a conical manner.

The same term is used to indicate the kidney-shaped two-valved cases that contain the reproductive matter of Lycopodiacea and also the urn-like organs that enclose the sporules of mosses. It is by some writers still further extended, and used to express the parts that contain the sporules in Lichens and Fungi.

THECA (in Anatomy) is a term commonly applied to the strong fibrous sheaths in which certain soft parts of the body are enclosed. Thus the theca vertebralis is the sheath of dura nuater in which the spinal chord is enclosed; and the canals through which many of the long tendons of the muscles of the hand and foot run are called thecre. These last are always lined hy a synovial membrane, and contain a small quantity of fluid [Srwovia], by which the sliding of the tendons is facilitated.
THECADACTYLS, Cuvicr's name for those Gcckns which have the toes enlarged throughout their length, and furnished below with transverse scales, which are divided by a longitudinal furrow, where the claw may be entirely hid. [Gecko.]
THECITEEA, or THECITDIUM. [Brachopoda, vol. v., p. 313.] Mr. J. E. Gray arranges the Thecideide as the fourth family of the Brachinpoda, placing it hetween the Productide and the Cruniadce, and making it consist of the single genus Thecidea.
THECODONTOSAU'RUS. [ThECODONTS.]
THE CODONTS. Professor Owen, in his 'Report on British Fossil Reptiles,' observes that among the inferior or squamate saurians there are two leading modifications in the mode of attachment of the teeth, the base of which may be either anchylosed to the sumnit of the alveolar ridge, or to the bottom of an alveolar groove, and supported by its lateral wall. These modifieations are, he remarks, indicated respectively by the terms 'acrodont' and 'pleurodout.' A third mode of fixation is presented by some extinct saurians, which, in other parts of their organization, adhere to the squamate or lacertine division of the order, the tecth being inplanted in sockets, either loosely or confluent with the bony walls of the cavity: these Professor Owen has, in his ' Odontography, termed the Thecodont Lacertians, the most antient of all saurians belonging to this group.
Commencing with the Thecodontosaurus of Dr. Riley and Mr. Stutchbury, described by them in the 'Geological Transactions ' of 1836, from remains fount in the dolomitic conglomerate of Redland, near Bristol, the oldest or lowest division of the now red sandstone series, I'rofessor Owen remarks that this reptile is allied to the typical Varanian Monitors, hut differs from them in having the tecth imbedded in distinct sockets; hut that tho Varani, among the squamate saurians, approach to this condition in the shallow cavities containing the base of their teeth along the bottom of the alveolar groove.

But, in the extinct genus now under consideration, the sockets are, he states, dceper, and the inner alveolar wall is nearly as high as the outer one; the teeth are arranged in a close-set scrics, slightly decreasing in size towards the posterior part of the jaw ; each branch of the lower jaw is supposed to have contained twenty-one teeth, which are conical, rather slender, compressed and acutely pointed, with an anterior and posterior finely serrated edge, the serratures being directed towards the apex of the tooth, as in G. Fischer's genus Rhopalodon; the outcr surface is more convex than the inner one; the apex is slightly recurvel; and the base of the erown contracts a little to form the subcylindrical fang. He then goes on to remark that the pulp-cavity remains open in the basc of the
crown; that, in their microscopic structure the teeth of the Thecodontosaurus closely correspond with those of Varanus, Monitor, and Megaloscurus; that the body of the tooth consists of compact dentine, in which the calcigerous tubes diverge from an open pulp-cavity at nearly right angles to the surface of the tooth; that they form a slight curve at their origin, with the concavity directed towards the base of the tooth; then proceed straight, and, at the periphery, bend upwards in the contrary direction. The diameter of the calcigerous tube he gives as 1-30,000th of an inch, and the breadth of the interspace of the tube as $1-8000$ th of an inch. The crown of the tooth is invested with a simple crown of enamel. This microscopic examination, which Professor Owen was enabled to make by the kindness of Mr. Stutchbury, satisfactorily establishes, in the Professor's opinion, the distinction between the saurian of the Bristol conglomerate and Labyrinthodon.
[SALAMANDRODES.] [SALAMANDROIDEs.]

Of Palesosaurus Professor Owen states that its tooth is compressed, pointed, and with trenchant serrated margins; but that its breadth, compared with its length, is much greater than in Thecodonfosaurus. The vertebre assnciated with these teeth were biconcave, with the middle of the body more constricted, and terminal articular cavities rather deeper than in Teleosaurus ; but, the Professor adds, they are chiefly remarkable for the depth of the spinal canal at the middle of ench vertebra, where it sinks into the substance of the centrum, and thus the canal is wider vertically at the middle than at the two ends of the vertebra: an analogous strücture, he obscrves, but less marked, obtains in the dorsal vertebree of the Rhynchosaurus from the new red sandstone of Shropshire.
l'rofessor Owen then points out that besides deviating from existing lizards in the thecodont dentition and biconcave vertebre, the antient saurians of the masnesian conglomerate also differed in having some of their ribs articulated by a head and tubercle to two surfaces of the vertebra, as at the anterior part of the chest in Crocodiles and Dinosaurs. The shaft of the rib, he tells us, was traversed, as in the Ichthyosaur and Rhynchosaur, by a deep longitudinal groove ; and some fragmentary boncs indicated obscurely that the pectoral arch deviated from the Crocodilian, and approached the Lacertian or Enaliosau rian type in the presence of a clavicle, and in the breadth and coinplicated form of the coracoid. The humerus, he observes, appears to have been little more than half the length of the femur; and to have been, like that of the Rhynchosaurus, unusually expanded at the two extremities.

After quoting the description of the femur by the discoverers of the present thecodont reptiles, Professor Owen remarks that the tibia, fibula, and metatarsal bones manifest, like the femur, the fitness of the thecodont saurians for progression on land. The ungual phalanges, he observes, are subcompressed, curved downwards, pointed, and impressed on each side with the usual curved canal.
The Professor draws the following conclusions from the knowledge at present possessed of the osteology of Thecodontosaurus and Palcoosaurus, whose antiquity the discoverers of these genera regard as being greater than that of any other vertebrated animals, excepting fishes :-

In their thecodont type of dentition, biconcave vertebrex, doublc-jointed ribs, and proportionate size of the bones of the extremities, they are nearly allied to the Telcosaurus; but they combine a laccrtian form of tooth and structure of the pectoral and probably pelvic arch with these crocodilian characters, having distinctive modifications, as the moniliform spinal caal, in which however the almost contemporary Rhynchosaur participates.

Professor Owen adds that it would be interesting to ascertain whether the caudal vertebre are characterized, as in the Thuringian Protosaur, by double diverging spinous processcs.
Cladyodon, Owen. - 'In the new red sandstone (keuper?) of Warwick and Leamington,' says the Professor, 'there ocenr detached, pointed, trenchant, recurved teeth, the crowns of which are sometimes 1 inch 4 lines in length, and 5 lincs across the base: they have been found in the same quarries as those containing the remains of Lubyrinthodon. In their compressed form, anterior and posterior serrated cdges, sharp points, and microscopic structurc, these teeth agree with those of the Saurian reptiles of the

Irisitol eonclomerate. In their brealth, as compared with their lenght and thickness, they are intermediate between the Theculontoomurus and Pdileosuurus platyoton; but they are larger, with longer and inore recurved erowns, and thus more nearly approach the form characteristic of the leeth of the Megalosumrus, From these teeth however they ditler in their greater degree of compression, and in anslight contraction at the base of the crown; 1 therefore indicate the genus, of which, as yet, only the teeth are known, hy the name of Cludyollon, and the species from the Warwiekshire sandstones by the name of Cladyodon Idoydii, in teatinuony of the friendly aid of Dr. Lloyd of Lemmington, to whose zealous co-opierntion I owe the malerials for the description of the teeth of the present genus, and the still more remarkable ones of the British species of Labyrinthodon, with which the teeth of the Cladyodon are associated.

In ecnelusion, 1 rrofessor Owen refers to a tooth of Cladyodon figured by Mr. Murelison and Mr. Strickland in their paper on the Warwick sandstones. (Geol. Trans., and series, vol. v.)
THIECOSO'MATA, M. de Blainville's name for his first family of Aporobranchiuta, the first order of his second seetion of his second subelass (Paracephalophora Monoica).

The Aparobranchiata, aecording to M. de Blainville, consist of those Malucozaria, or Mollusks, which have the bealy of a slightly variable form, but constantly provided with natat ory appendages which are equal and lateral, without any foot properly so called, and which otten have the errans of respiration but little evident.
The following genera are artanged by M. de Blainville under the fanily of Thecaromata:-
Ilyulea: Cleodora, divided into two sections; 1 , depressed speeies, Ex., Cleodora Brovenii; 2 , conical and not depressed speeies (genus Vaginella, Daud.), Ex., Vuginella depressa; Cymburlia: and Pyrgo (fossil).
The prineipal forms of this fanily are treated of under the artiele Hyaleid.a.
Mr. J. E. Gray, who makes the Thecosomata the first order of the class (4th) PTEROPODA, divides the forms which, in his opinion, should be arranged under that order, into the following families and genera :-

Fam. 1. Cleodorida.
Genera:-Ilyalra: Diacria; Cleodora; Bulantium; Pleuropus; Vaginellu; Crescis; Brochus; Psyche; Liuribia.

Fanı. 2. Limacinidæ.

Genus, Limacina.
Fam. 3. Cuxicride.
Genera:-Cuvieria; Triptercs.
Faın. 4. Cymbuliadæ.
Genus, Cymbulia.
THFDEN, JOHANN CIIRISTIAN ANTON, a eelebrated Gemman surgeon, was born Sept. 13, 1714, at Steinbeck, a small villaye not far from Wismar, in the duchy of Meeklenburg. His family had been ruined by the disnsters of war, and his father died when he was young, whieh two melancholy events had an unfavourable influence upon his education and his first entrance into life. He had hardly reeeived the bare elements of edneation, when, at the age of thiteen, he was reduced to the necessity of hiring limself out as a servant; but this occupation was so revolting to his feclings, that he determined to learn a trade. Accordingly his tlder brother, who was a tailor, received him as an apprentice; but Theden did not find this employment more suited to his taste and talents than lis former one, and, as he got nothing but reproofs from his brother, he finally deternined to devote lumself to the study of inedicine. He was first placed by lis friends with a surgeon at Butzow, where he spent four ycars in a barber's shop wilhout any real advantage; and as soon as lis apprenticeship was finished, he went to Rostock, Hamburg, fitibeck, nud Danzig. In this last eity he at length sueceeded in obtaining some employment in the troops of the king of Prussia, and was aftached as surgeon to a equadron of cuirassiers. The zeal and punctuality with Which he performed all his duties in this post soon gained hin the estecm and friendslip of his superior offieers: the jealousy however of the chiel surgeon (chirurgien-major) prevented his profiting ly the good-will shown him by king Frederick Willian I. at a review at Riesemburg, und the death of this prince put an end to all the hopers of promowon which he had at first cutertained. In 1742 lie went
to Berlin, where the eelebrated Schaarschmidt, who justly apprecented his talents, honoured him with his friendship, und procured for him the post of chief surgeon during the second war in Silesia. At the and of three years he returned to I3erlin, and devoted himself with unremitting attention to the study of ammony and surgery: The Seven I'ears" W'ar afterwards furnished him with uuncrous opportunities of displaying the skill that he had sequired, and also the execllent jualities of his heart. lirederick the Great raised him gradually from one post to another, till he became at last his chief nilitary surgeon. Theden, in this eminent position, improved all ihe branches of the service, and displayed an activity which contributed still more to gain him the good opinion of his sovereign. The suceessor of Frederick honoured him equally with his confidence, and Theden continued to enjoy to the end of his life un esteem and respect for which he was indebted only to his real nerit and eminent services. Ile died, October 21, 1797, at the age of cighty-three. The continual fatigue and agitation of war did not prevent his drawing up and putting in order the observations whieh an inunense field of netion had given him an opportunity of collecting. His works are not numerous, but they bear the stamp of experience, and one recognises in thein the firm and bold touch of a man who did not venture to take up his pen till after thinty years of most extensive practice. From this enlogiun we nust however except all the theoretieal parts of his writings, which, unfortunately, hold a prominent place in them, and which are only based upon the foundation of the antiquated pineiples of the humoral theory. The following is the list of his works mentioned by M. Jourdan in the 'IBiographie Médicale,' trom which work the preceding aecount has been taken :- Neue liemerkungen und Errahrungen zur Bereicherone der Wundarznevkunst und Medicin,' Berlin and Stettin, 1771-1795. 8vo.; - Unterrieht für dic Unterwundirzte bey Arnicen, Berlin, 1774, 8vo., and 1782, 8vo.; 'Sendschreiben an Richter, die neu erfundenen Catheter aus der Resina elastiea betreflend,' Berlin, 1777, 8vo.

TIEFT. [Larcliny.]
THEIN, or Theina, the peculiar prineiple of tea, which was procured and analysed by M. Jobst of Stuttgard. He prepared it by boiling tea-leaves in water, filtering and concentrating the solution, and adding to it aeetate of lead as long as precipitation occurred; after filtration the exeess of lead was precipitated by hydrosulphuric acid, and by subsequent evaporation erystals of thein were deposited which possessed the following properties after purification: they were sott, acieular, snow white, mueh more soluble in liot than in eold water, alcolnol, or mether; they dissolved readily in acids, and were decomposed when heated either in sulphuric or nitrie acid. Thein has no eflect on vegetable blues; alkalis do not precipitate it from solution in acids, and when boiled in a sirong solution of potash it is decomposed, and ammonia is evolved; it contans water of erytallization, which it loses at 212?. Thein may be sublimed.

According to the analysis of Jobst, thein is composed of

It is to be remarked that this analysis very closely resembles that of Caffein as given by Liebig.

THELICO'NUS, Mr. Swainson's name for a subgenus of Cosus. Ex., Conus mussutclla. (Malacology.)
THELIDERMA, Mr. Swainson's nime for a subgenus of Unio (Malucology.) [N゙alades.]
THELI'DOMUS, a form placed by Mr. Swainson under his family Trochide, in the subfamily Rotelline, with the generie name at the head of this article.
Fxample, Thelidomus Braziliensis.
Mr. Sivitinson thus deseribes it. - We have placed the Trochidee next to the 1helicide under the belief that they followed each other, although the links of connection were wanting. It is clear that of all the types of the Trochide, Rotclla is that which by its gencral form makes the nearest approtch to Ilclix: white the thickening of the inner lip, which spreads over the umbilicus, is found also, but in a less degree, in many of the land volutes, Lucer-
vonce. But a singular discovery reeently made has thrown an entirely new light upon this interesting question. Among a considerable number of freshwater Planorbi; (sic) 'all of one species, which were sent to us from Brazil, we picked out two helix-looking shells, so precisely of the same olive-brown eolour, and of the same size, as the others, that none but a conchologist would have been led to examine them. They appeared in fact like two little land-snails of the subgenus Zonites, that had fallen into the water where the Planorbi' (sic) 'had been found, their outside being discoloured, and covered with little particles of dirt and sand. On placing then however under the magnifier, a conchologist alone can judge of our astonishment at finding that the whole of the shell was actually composed of little stones and grains of sand only, agglutinated together, yet with so much skill by the animal, that the regular turns of the volutions of the spire, and the form of the umbilicus, were most accurately preserved; they were, in shoit, freshwater carriers-absolute counterparts of their marine brethren, Omustus. As we ean find no notice nor even allusion to such an extraordinary genus of shclls in any writer, we have considered it new, and affixed to it the name of Thelidomus. In regard to its affinity, we suspect that it fills the same situation among the Rotelline which Onustus does among the Trochince: this will inake it the most abcrrant type and eonsequently that which comes nearest to the IIelicide, whose form it actually possesses. The annexed figures are taken from the only two specimens, in our cabinet, which we have either seen or heard of. Thus, there is ground for supposing that the passare from the marine 'rochidec to the terrestrial snails is marked by one or more fluviatile types; just as is the passage, on the other side, of the IIelicides marked by the Limmacince. The accidental discovery also of this extraordinary slicll will probably iuduce naturalists to a more accurate examination of the fossil turbinated univalves; for it is clear that although Thelidomus opens the path to the IIelicide, there must be several other forms between the two, either extinet or undiscovered." (Malacalogy: Cubinet Cyclopadia, 1810.)

This so-called shell, whiel is twice figured and described as that of a mollusk in the work quoted, is the ease of an insect.
We notice the error, that a mistake in a useful book bearing the authority of a name so generally kiown and deservedly respected as Mr. Swainson's, may not mislead.

TIIELIDON'TA, a geuus of pulmoniferous gastropods, which Mr. Swainson apparently places among the Lucerniner, or Land Volutes, as he terms thens: but we do not find it in the 'Natural Arrangement' at the end of his vol. on Malarolosy, unless Thelidomus, which appears there for the third time, following Pusiodon at the end of the subfamily Lucernina, be a misprint for it.

THELLUSSON, PETER. He was the son of Isaac de Thellusson, ambassador from Geneva to the conrt of Louis XV. Ile fixed his residence in Jondon about the middle of the eighteenth century, and accumulated an immense fortune as a merchant. He died on the 2lst of July, 1797. His name has been rendered remarkable by the cxtraordinary nature of lis will. The capricious and extensive use of the power of disposing of his property, which the law, as then existing, placed in his lands, led to the restraints subsequently imposed upon testamentary dispositions.

The property whieh was the subject ot his will consisted of a landed estate of about $4000 l$. a year, and of personal property to the amount of about $600,000 l$. This property he devised and bequeathed to trustees upon trust for accumulation and investment in the purchase of lands during the lives of his sons, grandsons, and the issue of sons and rrandsons living, or im rentre sa mere, at the time of his death, and the Jives of the survivors and survivor of them; and after that period, to be conveyed to the lineal descendants of his sons in tail male.
It had been long understood to be the rule of lav that the absolute ownership of property might be suspended, and eonsequently the property rendered inalienable, during lives in being at the time of the creation of the trust, that is, where the trust is created by will, at the time of the deatl of the testator. This period was afterwards cxtended so as to allow for the cases of infancy, and of a child m ventre sa mere; but it was for some time questioned whether a term of twenty-one ycars might in all cases lie added to the period of suspen-
I.C., No. $15^{\prime 2} \mathrm{CJ}$.
sion, though it has since been determined that it may. [Setrlement.] Restraint on the aceumulation of income was unknown to the common law, exeept in so far as the rule against perpetuities necessarily prevented aeeumulation from being carried beyond its limits; and Mr. Thellusson's will, by confining the restriction to existing lives, escaped the question which then existed as to the allowance of an absolute term of twenty-onc years in addition to a life or lives in being at the time of the creation of the trust.

This will, which, in the events that happened, had the effect of postponing the usufructuary enjoyment of the bulk of the estate till the expiration of nine lives in being at the time of the testator's death, was, after many liard struggles, oceasioned rather by the immense value of the property implicated (which it was eomputed would have amounted, with the cxpected aceumulations, to upwards of $18,000,000 l$.), than by any new difficulty in the principle, finally established by the decision of the House of Lords on the 25th of Junc, 1805. ('Thellusson v. Woodford, 11 Ves., 112.)

The casc of Thellusson v. Woodford gave rise to the act of the 40 Geo. MII., c. 98 , for restraining all trusts and directions in deeds or wills whereby the profits or produce of real or personal estates shall be aceumulated and the beneficial enjoyment thereof postponed beyond the term therein limited.' By the provisions of this act no person can settle or dispose of property by dced, will, or otherwise, so as to accumulate the ineome thereof, either wholly or partially, "for any longer term than the life or lives of any such grantor or grantors, settlor or settlors, or the term of twenty-one ycars from the death of any such grantor, settlor, devisor, or testator, or during the minority or respective minorities of any person or persons who slaall be living or in ventre sa mere, at the time of the death of such grantor, devisor, or testator, or during the minority of respective minorities only of any person or persons, who, under the uses or trusts of the deed, surrender, will, or other assurances directing such accumulations, would for the time heing, if of full age, be entitled to the rents, issues, and profits, or the interest, dividends, and annual produce so directed to be accumulated. And in every ease where accumulation shall be directed otherwise than as aforcsaid, such direction shall be null and void, and the rents, issues, profits, and produce of sueh property so directed to be aceumulated shall, so long as the saine shall be directed to be accumulated contrary to the provisions of this act, go to and be received by such person or persons as would have been entitled thereto, if such accumulation had not been directed.' Sect. 2 provides, 'that nothing in this act contained shall extend to any provision for paynient of debts of any grantor, settlor, or devisor, or other person or persons, or to any provision for raising portions for any child or children of any person taking any interest under any such conveyance, settlement, or devise, or to any direction touehing the produce of timber or wood upon any lands or tenements; but that all such provisions shall he made and given as if this aet had not passed.' Sect. 3 provides that the act shall not extend to dispositions of heritable property in Scotland.
It has been sometimes thought that periods specified in the act might be taken accumulatively, and that aecumulation might be directed for them all successively. The language of the statute however is disjunctive, and therefore seems to give the option of selecting one only of the designated periods. (9 Ves., 136.) And it has been determined that the clause respecting the minority of persons entitled under the limitation in the instrument does not authorize a trmst for accumulation extending over the minority of an unborn person to whom at majority the accumulated fund with the principal fron which it arose is given. (4 Madd., 275.)

It is now settled upon this statute that a trust for aecumulation reaching beyond the allowed period is good for the period allowed by law. (12 Ves., 295 ; 4 Russ., 403.)

THELPHU'SA. [Tielphusians.

THELPHU'SIANS, M. Milne Edwards's name for a tribe of brachyurous crustaceans belonging to lis family of Catometopes, having, as he observes, considerable analogy with the Cancerians, and evidently forming the passage between them and the Gecarcinians, or Land Crabs. [Gecancinus.] The general form, in fact, lie remarks, of many of the Thelphusians differs but little

Vol. XXIV.-2 R
from that of Eripma, and the disposition of the organs of gemeration is the anme as in the two preceding families; but the structure of their respiratory apparatus and other characters place them at a distance from those natural gromps, and do not permit their neparation from the Cislomatopes. 'Thus, he observes, ench of the bramehial cervities occupies about a third of the carapace and is elevated into a vanlt at a vere considerable distance from the branchise. Sometimes the lining nembrane is covered with sponey vegelations. The branchiae are, it is truc, nine on each side, namely, two reduced to the state of vestiges and fixed to the jaw-iect, and seven lying on the vanlt of the sides us in the Cyclumpoopes: but their texture is softer, and they aro directed backwands so ne to cover nearly the whole of the vault of the sides, a disposition which is only met with in the family of the Cutometopes.

The curapace of the Thelfhusions has but little or no convexity, and is wider than it is Jong: its anterior border is straight, and oceupies about fwo-1linds of its transversal dinmeter: its lateral borlers describe a regular curse. The front is remarkably wider than the buceal lrame, and more or less curved downwards. The ryes have a stont and short peduncle, the length of whicll is never more Than double the diameter, and its Jower surface is oceupied by the cornea for about half its length. The orbits are oval, and always present at theirinternal angle a marrow gap filled by the external antenna. The imernal anlenne are horizontal, and, in general, nearly entirely hid ly the front. The basilary joint ot the exfernul untennae penctrates into the gap which occupies the internal angle of the orbit and separates this cavity from the antemary fossets ; it is but little developed, and the moveable stem which sprines from it in the same gajp is very small. The corstome is nearly linear, und placed on the same level as the lower horder of the orbit. The bucrul frame is nearly as large before as belind, and the fouth joint of the external jaw-feet is inserted sometimes at the internal nngic, sometinges at the middle of the enterior horder of the preeeding joint, and sometimes at its external angie. The nuterior feet are much stronger and nearly always Jonger than the suceceding ones; they are but little, it at all, compressed. The thind pair of teet are the knigest of all, but they are not twice the length of the post-frontad portion of the earapace, and they temminate, like the others, in a styliform tarsus. The second joint of the abdomen of the male covers the corresponding portion of the sternal plastron thronghout its width, and extends to the basilary joint of the posterior feet. The abdominal appendages of the second pair in the male are filiform towards the end, and at least as long as those of the first pair. (M.E.)

Hubits of the Tribe-These are very remarkable. All the known species live in the earth near the banks of rivers or in humid forests; bearing a strone nnalogy to the LandCrales. (M. E.)
M. Milne Edwards divides the tribe into three see-tions:-

1. Third joint of the extemil jaw-feet nearly square, and giving insertion to the suceceding joint by a noteh in its internal angle.
Genus, Thelphusa (Latreille).
Generic Churacter.-Carapace wider than it is Jong, narrowed behind and very slightly convex above. The regions generally scarcely separated, but the stomachal region, when it is distinct, is extremely wide forwards. The fronto-orbital or anterior border of the carapace oceupies about two-thirds of its 1 ransversal diameter, and its fateral borders are very much arehed in their two anterior third portions: the posterior border is equal in width to the half or two-fitths of its transversal diameter. The front is very little inclined, nearly stmight, and wider than the buecal frame. The arbits are oval; they present no lisqures above, and are furnished with a large vertieal tooth which rises from their lower wnll nenr the internal canthus of the ey.e. The antemuary fossets are very narrow. The Insilary joint of the external antennee varies in its form, but only reaches a little, or not at all, beyond the footh of the lower oblital wall agninst which it is applied. Fre erraal jure-feet clongated, and lleir third joint, neanly qua lrilatemal. carying the succeeding joint at its internal sugh". Which is truncated: Shernal pilastron nearly as long aso it in wisle, at approaching in its form that of the Can-
cerians. Antenor feet always nueh longer than the second pair, and uncqual in size: the liands slightly cursed inwards, and the claw which termimates them pointed, very much elongated, and finely dentilated. Suceeeding firet alf slightly chamelled above; their tarsun is quadrilateral and armed with very strong homy spines; the second pair are much shorter than the third, the length of whell last does not quite eqnal twiee the length of the carapace. Abdomen composed of seren joints in both mexes. (M. E.)

There are seveml species, Rad the Geonrapheal Distribution appears to bse wide. The form is found in laty, Greece, Eigyph, and Syrin. On the Coromandel cosst ; at the Cape of Guod 1Iope; and at l'ondiclrery.

Example, Thelfhuss fluriatilis. J.ength of inches. Colour yellowish.

Joculities, - Sonth of lialy, Grecee, Eyypt, and Syria.
This species is renerally considered to have becn well known to the antients, and to be that noticed by Jippocrates and Aristutle: \{leses Thelghusre are supposed to be the IJemeleotic Crabs (oi Itpasdrwtinoi кapkivor) of the latter (llist. Inim., iv. 2); and to be those reprebented on antient medals.

Thelphusa fluriatilis burrows in the carth on the banks of rivers.

2. Third joint of exterual jaw-feet nearly square, and giving insertion to the suceeeding joint towards the middle of its anterior border.
Genus, Boscia (Edwards; Potumiu, Latreille).
Generic Character.-General form nearly the same as in some of the Thelphusec ; but the front, wluch is sharply bent downwards, is vertical, and the third joint of the exfernal jau-feet, instead of beiug square and having the ordinary form existing in the Canceriuns, is marrowed forwards and earries the sueceeding joint on the middle of its anterior borter. (M. E.)
M. Milne Edwards remarks that this genus is terrestrial, Jike the Thelphusee,* and iulablits also the banks of rivers. He states that a disscetion of an individual well preserved in spirit by M. Andouin and himself, discovered to them a very remarkable disposition in the branchial apparatus of this crustacean: the cerities which enclose the breathing organs are elevated far above the upper surface of the branchix, and present a great vacant space, the walls of which are lined with a tomentose membrane covered with vegetations.

Exanuple, Boscir dentata, the onjy known species. Length about 2 inches.

Joculities.-The Antilles and South America.
3. Third joint of the external jaw-feet having nearly the fom of a reversed friangle, :und giving insertion to the suceecding joint by its extermal angle.
Gemus. Trichodactylus (Iatreille).
Generic Character.-Curapace nearly horizontal above and mueli lows wide than in Thelphuser. Front wide, Iamellar, and simply inclined; ordits nearly circular: Jateral borders of the carapace curved. Anlenne disposed nearly as in Thelphuss: but the torm of the externul joufeet is very different, their third joint is nearly trimgular, with its summit directed inwards, and it is articulated with the succeeding joint hy its auterior and extermal angle.

1, Antenuary region; 2, external jaw-foot
Feet nearly of the same form as in the preceding genera. (M. E.)

Example, Trichodactylus quadratus, the only known species. Length about 1 inch.

Locality.-Brazil.
M. Milne Edwards is of opinion that this species cstablishes the passage betwcen the preceding genera and the tribe of Grapsoidians. [Grapsus.]

Mr. W. S. MacLeay, in his interesting paper 'On the Brachyurous Decapods of the Cape' (Smith's Illustrations of the Zoology of South Africa), in a note to the sixteenth species (Thelphusa perlutu, M. E.), remarks that this crab is common in all the rivers of Southern Africa, and grows to the size of nearly three inches long. 'The male,' says Mr. W. MacLeay in continuation, 'has a much more convex shell than the female, and in aspect resembles much a Gpgarcinus. The pearly tubercles of the anterior margin of the shell are also still more small and evanescent than in the female. I may take this occasion to observe, that in my cabinet I separate those species of Thelphusa which, like the present, have a transversal crest in front of the shell, and call them Potamonautes. They are easily distincuished from true Thelphusce, of which the type is the European speeies Thelphusa fuciatilis.

THELWALL, JOHN, son of Josepl Thelwall, a silkmercer, was born on the 27 th July, 1764 , in Chandos-street, Covent Garden, London. He was the youngest of three children, two sons and a daughter. At an early age he manifested so much talent for drawing, that he was intended for an artist, but his father's decease changed his prospeets before he had completed his nintly year. He reeeived the ordinary education of a tradesman's son, but as he was rather slow in acquiring knowledge and was removed from school at thirteen years of age, his attainmients must necessarily have been limited.

The widow continued to earry on her deceased husLand's lusiness, and placed her son John in the shop, where he remained threc years, but spent his time chiefly in reading, which was of a miscellaneous character, consisting of poetry, history, the drama, moral philosophy, metaphysics, and divinity. A distaste for the business, joined to family discord, induced him to leave it, and although he caruestly desired to be an artist or an aetor, he yielded to his mother, who apprenticed him to a tailor, with whon however he remained only a short time. At the suggestion of Mr. Folt of the Chancery bar, who had married his sister, he turned his attention to the law, but after several years' study he abandoned it in consequence of donbts arising in his mind on the morality of a hired advocate pleading to support a cause rather than to discover the fruth; and now, in his 22nd year, lie embraced literature as a profession.

Iu 1787 he published by subscription poems on several subjects, in 2 vols., which introduced him to some valuable friendships and to the editorship of a magazinc. He was now a rising and prosperous nian, and on the 27th July, 1791, he married Miss Susan Vellum, of Rutlandshire, who was then 17 years of age. He took a house near the Borough hospitals, and ardently studied anatomy, physinlogy, and chemistry, under Mr. Cline, Dr. Haighton, and Dr. Babington.

He began his career as an orator, before he was twenty
years of age, at the Society of Free Debate held at Coach makers' Hall. He had been educated a churchman in religion and a tory in politics, but on both subjects his opinions were ehanging, and he now joined in the political struggles of the period by beeoming a member of the Corresponding Society, where his boldness and fluency of speech attracted the nofice of the leading men of the day. With Thomas Hardy and John Horne Tooke [Horne Tooke] he was tried for high treason, and acquitted. Thelwall's trial lasted five days. On his acquittal he leetured on politics and political history for several years, when, after a retirement of two years in Walcs, made in order to diseonnect himself from public affairs and to escape from extra-judicial persecution, he began his carecr in 1801 as a lecturer and tutor in elocution, and in the application of elocutionary science to the cure of stammering and other impediments to speech. His knowledge of anatomy and physiology, his habits of recitation, his practice of public speaking, and his accuracy of observation, eminently qualified him for his new profession. and his success was great. He communicated papers to the 'Medical and Physical Journal,' on defective and diffcult utterance, and to the 'Monthly Magazine,' on elocution and its kindred sciences.

In 1816 Mrs. Thelwall died, leaving a family of four children, two of whom are sons, and both are in the church. Mr. Thelwall afterwards married Miss Cecil Boyle, by whom he has left one son. He died at Bath after a few hours' illness, of disease of the heart, to which he had been lung subject, on the 17th February, 1834, in his 70th year.
The researches of Stcele, Herries, and Walker, on human speech, had left little room for new and brilliant discovery, although much accurate observation was yet necessary to give exactness and fulness to their knowledge. Thelwall, unaware of Steele's researches, found himself anticipated on rhythmus. Stecle had given the inquiry a musieal direction, which Thelwall ardently followed out, and the extent and precision of his observations nay he estimated by the fact that he anticipated nearly all that is new and valuable in Dr. Rush's 'Philosophy of the Human Voice:' Mr. Thelwall's immature ideas were first sketched out in the syllabus of his lectures on elocution.

Thelwall was of a mild and amiable disposition, of domestic habits, open-hearted and generous, of high moral feeling, and of inflexible integrity. His sentiments were exalted by poctic feeling, and he was buoyed up by hope.
Besides magazine contributions and pamphlets, he wrote poems on scveral subjects, in 2 vols., already mentioned; 'l'oems written in the Tower and in Newgate,' 1 vol.; 'The Tribune,' 3 vols., and 'Political Miscellanies,' 1 vol. ; 'A Letter to Mr. Cline, on Stammering,' 1 vol. ; 'The Peripatetic,' 3 vols.; and a novel, entitled 'The Daughter of Adoption.'
THEMEON. [Foraminifera, vol. x., p. 348.]
THEMIIS (θ erpes, a Greek divinity, was, according to Hesiod and Apolledorus, a daughter of Uranus (Heaven) and Gaea (Earth), or, according to Tzetzes, a daughter of Helios. She was a favourite of Zcus, and bore him several daughters, -the Hore, Eunomia, Dicc, Eirene, and the Moerac. (IIesiod, Theog., 135. 001, \&c. ; Apollodorus, i. 3, J.) These personified abstractions, which are represented as her daughters, slow the ideas which the anticnts had formed of her character, and consistently with these ideas she appears in Homer as a personification of the order of things sanctioned by usage or by law, and as the goddess who rules in the assemblies of the peoplc. (Homer, Odyss., ii. 68, \&ce.) According to the same poet she lived with the other great gods in Olympus, was on coorl terms with Hera, and occasionally assemibled the gods at the command of Zeus. (Homer, Iliad, xv. 87, \&ec.; xx. 4, \&e.) Diodorus (v. 67) states that she was belicved to have made inen acquainted with the will of the gods, the mode of their worship, and to have instituted laws, religious as well as civil. As a deity revealing the futnre she was believed to have been in possession of the Delphic oracle after her mother Gaea, and previous to the time that it came into the hands of Apollo, whence the act of giving an oracle was, even in later times, frequently called by a word derived from her name ($\left.\theta_{\epsilon} \mu \tau \sigma \varepsilon \varepsilon_{\varepsilon} \varepsilon \imath^{\prime}\right)$. She was worshipped as the goddess of law and order in various parts of Greece, as at Thebes, Olympia, Athens, Tanagra, and Troezen. She is frequently represented on coins in a torin
resembling that oi Athenn, int earning the horn of phenty it nue hand and a pair of scales in the other.
THE'AlSSON (hamown, an matient physician, who is probally heat known to most persons from Juchal's rome-

bint who was in reality the founder of a celehmated medical sect, and one of the inost cminemt physicians of his time. Tle was born at Iaodicen in Syria, in the first century before Christ, and, from luseml's line above inoted, may be conjectured io hase partised int Rome. Nhe was a pupil of Asclepiades, from whose oppinions however he nfterwards dissenterl, zund finished by founding a new nedical seet, called the Metholici. (1Pliny, Mist.
 (ap). 4, tom. xiv., p. 683, 6s1, edi. Kühn; Cramer," Aneci. Cr. Paris., , ol. i., p. 395, 1. ?(6.) The following is the :malysis of the opinions of this school, which is given by Celsus in the historical introduction to his work:- They assert that the knowlelge of no callse whatever bears the least relation to the method of eure ; and that it is sutficient to observe sonie general symptons of distempers; and that there are three kinds of disenses, one bound, muother loose, + and the third a mixture of these. For that sometimes the exeretions of sick peopple are too simall, sometimes too large ; and sometimes one purticular exeretion is defieient, while another is excessive. That these kinds of distempers are sometimes acute, ind sometimes chronic ; sometimes incrensing, sometimes at a strud if und sometimes abating. As soon then ats it is known to which of these classes a distemper belongs, if the body be bound, it must be opened; it it labours under a flux, it must be restrained; if the distemper be complicated, then the most ureent malady must be first opposed. And that one kind of treatment is required in acufe, another in invelerate distumpers; mother when disenses are increasing ; mother when at a stand; and another when inclining to health. That the observation of these things constitutes the art of medicine, which they define as a certain way of proceed-
 to be employed in considering those things that are common to the same distempers: nor are they willing to have themselves classed either with the rationalists (i.e. the Dogmatici), or with those who regard only experiments (i.e. the Empirici): for they dissent from the first sect, in that they will not allow medicine to consist in forming conjectures about the oceult things ; and also frons the other in this, that they hoth the observation of experiments to be a very small part of the art.' (Futroye's Trumslation.) What we know of his mode of treating diseases cloes not give us a very high idea of his skill in therapeuties. Ile thought he could cure the most violent attachis of puemmonia by means of oil and baths; in pleurisy he permitted the use of wine mixed with sea-water (C'ael. Aurel., De Morb. Acut., lib. i., eap. 16, p. 62,63); he recommended also violent exercise in several acute disenses. (ld., ibid., lib. ii., enp. $20, \mathrm{p} .144$.) He is said hy Sprengel (Ilist. de la Méd.) to have been the first person who inade use of lecelies. (ld., De Morb. Chron., Jitb. i., (ap. 1, p. 286.) He is also said to have been hiniself atticked with liydrophobia, and to have recoveren. (Id., De Morb. Acul., lib. iii., cap. 16, 12. 232; Dioseor., Theriac., cip. 1, 1. 423.) Ile wrote several medical works, of which nothing but the tittes remain. (Cael. Aurel., De Morl. Chron., lib. i., enp. 1, p. 2×8; ; i. 4, 1. 323 ; ii. 7, p. 387. . Ec.) His followers were wery numerous, of whom the inost eminent were Soramus [Soraves], Thessalus [Tuessulus]. Caclius Aurtianus, whose work 'De Norinis Acutis et Chronicis' is one of the most valuable of antiquity; and Mosechion, anthor of the
 sionibus.'
(Sprencel, Ilist. de la Méd. ; Fabricius, Biblioth. Greeca; Haller, Biliolh. Mrelic. Proct.; Biogr. Médicule; Diet. of Greek and Roman Antiy., att. ' Methodici.')

- In thite last parage the oama io written MsOijowy, which errur is lef unnotlead by the edilor, but may readily be aecounted for by recollecting that the sow els 6 and η have in tomale exaclly the same coind, and that for matoy centuries pasl (fieck wurde have licen pronnmeith hy the Creake aco conllag to the ercent and oot accorilit, to thin quantity; is llut a trangeriber
 dieflonetyond in tha origimal is gurns, that in, a ciforver attemiced whit soma
\#oon (hes anthor meana hero the sirfiy of a dineane, after which it increases no

THEMSISTIUS, of Paphlagonia, was a distinguished orator in the tourth century afer Christ, and was surnamed Fuphrades, on account of his skill in his profesion. Ife was numeh tavoured hy the Roman emperors. ('onstuntins made hin a senator; Julian nppointed him prefeet of Constantinople in 362, and corresponded with him by letters; and although he was a heathen, he was intrusted by Theodosius the Great with the edueation of his son Areadins. In the year $34 t$ he was appointed, for the second time, prefect of Constantinople; and thuing a peniod of atmost lorty years he was repeatedty employed in emhasies and other state business. 11 e was the teacher of libanius and Auguslin, and kept up a friendly, intercourse wilh Gregory Nazianzen, who calls him in his letters 'the king of arguments' (Baoticis λ о́y ${ }^{\circ} \nu$).

Thenistius had deeply studied the writings of Plato and Aristotle; and he taught the Peripatetic philosophy, ns well as rhetoric, at Rome nnd Constantinople.
Of thirty-six orations composed by lim which were known to Photins, thirty-three have come down to us in the original Greek, and one in a latin translation. They have reference for the most part to public affairs, and seveal of them are panegyries upon the emperors by whom the orator was patronised.

Falifions of soune of the orations were published by
 1605), l'etan (8vo. 1613, and 4to. 1618). The most complete edition is that of llarduin (Paris, 169 , lol.), which eontains thirty-fliree orations, thirteen of which had not been printed before. Another oration was discovered by Angelo Mai, and published by him at Milan, 1810, Rvo. W. Dindor' also published, in 1830, two orations of 'Themistius, corrected from a Nlian NIS.
The philosophical works of Themistius consist of commentaries, in the form of paraphrases, on some of Aristotle's works, in Greek, and lwo Latin translations of commentaries, one upon the work 'On Heaven;' and the other upon the tweilth book of the 'Nletaphysies.' The paraphrases were first published in a lath version by Hermolaus l3arbarus, 1481, which has been several times reprintel: the Greck text of them forms part of the Aldine edition of Themistius. The two commentaries in Iatin were printed at Venice in 15058 , $15 \% 0$, and $15 \% 4$. There are some letters by Themistius in the collection of 11. Stephens, 8vo. 157%.
(Schüll. Geschichte der Griech. Litt., iii. 96, 388.)
THEMISTO. M1. Guerin's name for a genus of Amphipodons Cruslaccans, placed by M. Milne Edwards in the tribe of Ordinary IIyperines, the second tribe of his fanfily Hyperines.
Example, Thenisto Guadichondii.
Localily.-Found by M. Gaudichaud at the Falkland Istands.
N.B.-M. Mihne Edwards distingnishes from this species Themisto Gundichandii of Ross (Enppl. to Sir John Ross's Voyage), naming it Themisto arclica. Capt. James Ross, R.N., found the northern sipecies near the west const of the peninsula of Buorma.
 n.c. 514. 1le was the son of Nicoeles, an Athenian of moderate forlune, who however was connected with the priestly house of the Lycomedne; his mother, Abrotonon, or, uecording to others, Euterpe, was not an Athenian cilizent ; and, according to most suthorities, not even a (irrel, but either a native of Caria or of Thrace. The edneation which he received was like that of all Athenians of rank at the time, but Thenistocles had no laste for the elegant arts which then began to form a prominent part in the ednention of Atheninn youths; he applied himself with much more zeal to the pursuit of practical and useful knowledge. This, as well as the numerous anecdotes about his youthlill wilfuiness and waywardness, ogether with the sleepless nights which he is said to have passed in meditating on the trophies of Miltiades, are more or less elesir symptoms of the character which he subsequently dispilayed as a general and a statesman. His mind was early bent upon great things, and was incapable of being diverted from them ly reverses, seruples, or difficulties. The sreat object of his life appears to have been to make Athens great, in order that he himself might be great. The Howers with which nature luat endowed him were guickness of pereeption, an aceurate judgment of the course
which was to be taken on sudden and extraordinary emercencies, and sagacity in calculating the corsequences of his own actions; and these were the qualities which Λ thens cluring her wars with Persia stood most in need of. His ambition was unbounded, but he was at the same time persuaded that it could not reach its end unless Athens was the first among the Grecian states ; and as he was not very scrupulcus about the means that he employed for these ends, he came into frequent conflict with Aristides the Just, who had nothing at heart but the welfare of his country; and no desire of personal aggrandizement. In the year 483 r.c., when Aristides was sent into exile by ustracism, Themistocles, who had for several years taken an active part in public affairs, and was one of the chief authors of the banishment of his rival, remained in the almost undivided possession of the popular favour, and the vear after, B.c. 482 , he was elected archon eponymus of Athens. The eity was at that time involved in a war with Aegina, which then possessed the strongest navy in Greece, and with which Athens was unable to cope. It was in this year that Themistocles conceived and partly carried into effect the plans by which he intended to raise the power of Athens. His first object was to increase the navy of Λ thens; and this he did ostensibly to enable Athens to contend with Aegina, but his real intention was to put his country in a position to mect the danger of a second Persian invasion, with which Greece was threatened. The manner in which he raised the naval power of Athens was this. Hitherto the people of Λ thens had been accustomed to divide among themselves the yearly revenues of the silver-mines of Laurion. In the year of his archonship these revenues were unusually large, and he persuaded his countrymen to forego their personal advantage, and to apply these revenues to the enlargement of their fleet. His advice was followed, and the flect was raised to the number ol 200 sail. (Herodot., vii. 144 ; Plutarch, Themist., 4.) It was probably at the same time that he induced the Athenians to pass a deeree that, for the purpose of keeping up their navy, twenty new ships should be built every year. (Böckh, Public Economy of Athens, p. 249, Engl. transl., Ind edit.) Λ thens soon after made peace with Aegina, as Xerxes was at Sardis making preparations for invading Greece with all the forces he could muster. $\Lambda 1$ the same time Thenistocles was actively engaged in allayin y the disputes and hostile feclings which existed among the several states of Greece. He acted however with great severity towards those who espoused the eause of the Persians, and a Greek interpreter, who accompanied the envoys of Xerxes that came to Athens to demand carth and water as a sign of submission, was put to death for having made use of the Greek tongue in the service of the common enemy. After the affairs among the Greeks were tolerably scttled, a detachment of the allied troops of the Grecks was sent out to take possession of Tempe, under the command of Themistocles of Λ thens and Euaenetus of Sparta; but on finding that there they would be overwhelmed by the host of the barbarians, they returned to the Corinthian isthmus. When Xerxes arrived in Pieria, the Greek fleet took its post near Artemisium, on the north const of Euboea, under the command of the Spartan admiral Eurybiades, under whom Themistocles condescended to serve in order not to cause new dissensions among the Greeks, although Λ thens alone furnished 127 ships, and supplied the Chalcidians with twenty others; while the Spartan contingent was incomparably smaller. When the Persian fleet, notwithstanding severe losses which it had sustained by a storm, determined to sail round the castern and southern coasts of Euboea, and then up the Euripus, in order to cut off the Greek fleet at Artemisium, the Greeks were so surprised and alarmed, that Themistoeles had great difficulty in inducing them to remain and maintain their station. The Euboeans, who pereeived the adbantages of the plan of Themistocles, rewarded him with the sum of thirty talents, part of which he gave to the Spartan Eurybiades and the Corintlian Adimantus to induce them to remain at Artemisium. (Herodot., viii. 4,5; Plutarch, Themist., 7.) In the battle which then took place, the Grecks gained considerable advantage, though the victory was. not decided. A storm, and a second engagement near Artemisium, severely injured the fleet of the Persians, but the Greeks also sustained great losses, as holf of their ships were partly destroyed and partly rendered unfit for furthe: service. When at the same time
they received intelligence of the defeat of Leonidas at Thermopylx, the Greeks resolved to retreat from Altemisium, and sailed to the Saronic gult. Xerxes was now advancing from Thermopylie, and Athens trembled for her existence, white the Peloponnesians were bent upon seeking shelter and safety in their peninsula, and upon fortilying themsclves by a wall across the Corinthian isthmus. On the approach of the danger the Λ thenians had sent to Delphi to consult the oracle about the means they should employ for their safety, and the god had commanded Athens to defend herself behind wooden walls. This oraele, which had probably been given at the suggestion of Themistocles, was now also interpreted by him as referring to the fleet, and his advice to seek safety in the fleet was followed. He then further moved that the Λ thenians should abandon the city to the care of its tutelary deity, that the women, children, and infirm should be removed to Salamis, Aegina, or Troezen, and that the men should embark in the ships. The fleet of the Greeks, consisting of 380 ships, assembled at Salamis, still under the supreme command of Eurybiades. When the Persians had made themselves masters of Attica, and Λ thens was seen in flames at a distance, some of the commanders of the fleet, under the influence of fear, began to make preparations for an immediate retreat. Themistocles and his friend Mnesiphilus saw the disastrous results of such a course, and the former exerted all his powers of persuasion to induce the commanders of the fleet to maintain their post : when all attempts proved ineffectual, Themistocles had recourse to threats, and thus induced Eurybiades to stay. The example of the admiral was followed by the other commanders also. In the meantime the Persian fleet arrived in the Saronic gulf, and the fears of the Peloponnesians were revived and doubled, and nothing seemed to be able to keep them together. It this last and critical moment Themistocles devised a plan to compel them to remain and face the enemy. He sent a message to the Persian admiral, informing him that the Greeks were on the point of dispersing, and that if the Persians would attack them while they were assembled, they would easily conquer them all at once, whereas it would otherwise be necessary to defeat them one after another.

This apparently well-meant advicc was eagerly taken up by the enemy, who now hastened, as he thought, to destroy the fleet of the Greeks. But the event proved the wisdom of Themistocles. The unwieldy armament of the Persians was unable to perform any movements in the narrow straits between the island of Salamis and the mainland. The Grecks gained a most complete and brilliant victory, for they only lost forty ships, whilc the enemy lost two liundred; or, according to Ctesias, even five hundred. Very soon after the victory was decided, Xerxes with the remains of his fleet left the Attic coast and sailed towards the IIellespont. The battles of Artemisium and Salamis occurred in the same year, 480 в.c. [Salasis.]

Coin of Salamis.
British Museum. Aclual Size. Silver
When the Greeks were informed of the departure of Xerxes, they pursued him as far as Λ ndros without gaining sight of his flect, and Themistockes and others proposed to continue the chase. But he gave way to the opposition that was made to this plan, and consented not to drive the vanquished enemy to despair. The Greek fleet therefore only stayed some time among the Cyclades, to chastise those islanders who had been unfaithful to the national cause. Themistocles, in the meantime, in order to get completely rid of the king and his fleet, sent a message to him, exhorting him to hasten back to Asia as speedily as possible, for otherwise he would be in dange. ot having his retreat cut off. Themistoeles availed himself of the stay of the Greek fleet among the Cyelades for the purpose of curiching himself at the eost of the islanders, partly by extorting money from them by way of punishment, and partly by accepting bribes for securing them impunity for their conduct. His fame, however, spread over all Greece, and all acknowledged that the country had
been saved through his wistom and resolution. But the confederate Greekw, actuated by jealouny, awarded to him only the second prize; at Sparta, whither he went, as Ilerodotus says, to be hononred, he reeeived n cliaplet of olive-leaves, - reward which they had bestowee upon their own admiral, Eur-biades, -and the best chariot that the eity possessed, and on his return 300 kuights escorted himi as far as Tegea in Areadia.

When the Persian army had been gain defeated at Platace and Myeale, in B.c. 47), and when the Athenians had rebuilt their private dwellings, it was also resolved, on the adviee of Themistocles, to restore the fortifieations of Athens, but on a larger seale than they had been before, and more in accorlance with the proud position which the city now oecupied in Greece. This plan excited the fear and jealousy of the rival states, and especially of Sparta, which sent an embassy to Athens, and under the veil of frieudship, which ill concealed its selfish policy, endeavoured to persuade the Athenians not to fortify their eity. Themistoctes, who saw through their designs, undertook the lask of defeating them with their own weapons. He advised his countrymen to disniss the Spartan ambassadors, and to promise that Athenian envor's should be sent to Sparta to treat with them there respeeting the fortifications. Ile himself offered to go as one of the envoys, but he directed the Athenians not to let his colleagues follow him, until the walls, on which all hands should be employed during his absence, should be raised to such a height as to aflord sufficient protection agaiust any attack that might be made upon then. His advice was followed, and Themistocles, after his arrival at Sparta, took no steps towards opening the negociations, but pretended that he was obliged to wait for the arrival of his colleagues. When he was informed that the walls had reached a sufficient height, and when he could drop the mask with safety, he gare the Spartans a well-deserved sebuke, returned home, and the walls were completed without any hindrance. He then proceeded to earry into effect the only thing which remained to be done to make Athens the first maritime power of Greece. He induced the Athenians to fortify the three ports of Phalerum, Munychia, and Piracus, by a double range of walls, and to connect the Pirecus by long walls with the city of Athens.

[ATHENS.]

When Athens was thus raised to the station on which it had been the ambition of Themistocles to place it, his star began to sink, though he still continued for some time to enjoy the fruits of his memorable deeds. He was conscious of the services he had done to his country, and never serupled to show that he knew his own valuc. His extortion and avarice, which made him ready to do anything, and by which he aecumulated extraordinary wealth, could not fail to raise enemies against him. But what perhaps contributed more to his downtall was his constant watchfulness in maintaining and promoting the interests of Athens against the encroachments of Sparta, which, in its turn, was ever looking out for an opportunity to crush him. The great men who had grown up by his side at Athens, such as Cimen, and who were no less indebted to him for their greatness in the cyes of Greece than to their own talents, were his natural rivals, and suceeeded in gradually supplanting him in the favour of the people. They also endeavoured to represent him as a man of too much power. and as dangerous to the republic. The consequence of all this was, that in 472 s.c. he was banished from Athens by the ostracism. He took up his residenee at Argos, where he was still residing when, in the same year B.C. 47, , Pausadias was put to death at Sparta for his ambitious and treacherons designs, and his fate involved that of Thenistocles. [Pausanias.] The Spartans, in their search to discover more traces of the plot of I'ausanias, found a letter of Themistocles, from which it was evident that he had been aequainted with his plans. This was sufficient for the Spartans to ground upon it the eharge that Themistocles had been an accomplice in his crime, and ambassadors were forthwith sent to Athens to demand that he should suffer the same punishment as Pausanias. This charge was no less weleome to his enemies at Athens than the discovery of his letter had been to the Spartans. Orders were consequently issued to arrest and consey him to Athens. But he had been informed in time of the proceedings at Athens, and foresecing that his destruetion would be unavoidable if he should fall into the hands of
his enemice, he fled to Coreyra, and thence to the opposite coast of Epirus, where he took refuge at the court of Admetus, king of the Alolossians. On his arrival, the kiny was absent, but his queeu Phthin received him kindly, and pointed out to him in what manuer he might win the simpathy of Admetus. When the king returned home, Themistocles, seated on the hearth and holding the child of Admetus in his arms, implored the king not to deliver him up to his persecutors, who traced him to the court of the Molossians. It is stated that Themistocles was here joined by his wife and children. The ling not only granted his request, but provided him with the neans of reaching the coast of the Figean, whenee he intended to proceed to Asia, and seek retuge at the court of the king of Persia. lirom Pydna he sailed in a merchant ship to the coast of Asia Minor. At Ephesus he received such part of his property as his friends had been able to wrest from the hands of his enemies at Athens, together with that which he had len at Argos. A few months after his arrival in Λ sia, Xerxes was assassinated (b.c. $4\left(h^{3}\right)$, and was after a short interval sueceeded by Artaxerxes, Various adventures are told of Themistoeles lefore he reachect the residence of the Persinn king. On his arrival he sent him a letter, in which he acknowledged the evils he had inflieted upon his predecessor, but at the same time elaimed the merit of having saved hint from destruction by his timely advice. Ile added that his present exile was only the consequence of his great zeal for the interests of the king of Persia. He did not ask for an inmediate interview with the king, as he was yct unaequainted with the language and the manners of the Persians, to acquire which he requested a year's time. During this period, he applied himself so zealously and with such succe.ss to these sfudies, that at the close of the year, when he was presented to the king, he is said to have excited the jealousy of the courtiers, and was most kindly reeeived by the king, to whom he held out prospects of eonquering Greece by his assistance. The king beeame so attached to him, that Themistocles was always in his conmany. After he had spent several jears at the court, he was sent to Asia Ninor, to wait there for an opportunity of carrying his promises into effect. A pension was now bestowed upoa him atter the Oriental fashion: three towns were given him, of which Marnesia on the Maennder was to provide him with bread, Myus with meat, and Lampsacus with winc. He took up his residence in the first of these towns, where he lived with a sort of princely rank. But death overtook liin at the age of sixty-five, before any of his plans were earried into effeet. Most of the ancient writers state that he put an end to his life by poison, or, aecording to another strange story, by drinking the blood of a bull, because he despaired of being able to fulfil his promises to the king. The motive for lis suicide is very questionable. Reffections on his past life and upon the glory of his former rivals at Athens are much more likely to have reudered hinn dissatisfied with life. Before he took the poison he is said to lave reqnested his friends to convey his remains secretly to Attica, and in later times a tomb which was believed to contain them existed in Piraus. In the market-place of Magnesia a splendid monument was ereeted to his memory, and his descendants in that place eontinued to be distinguished by certain privileges down to the time of Plutarch.
(Herodotus, vii. 143, \&e. ; viii. 4, Sve. ; Thueydides, i. 14, 13.), \&e. ; Plutarch, Themistocles; Diodorus Sieul, , i. 2 12 太e. ; C. Nupos, Themistocles; Pausanias, i. 1, 2 ; compare Thirlwall, Hislory of Greece, vol. ii.)
TIEMISTO'GENES. [XENOPHoN.]
TIIENARDITE-(Auhydrous Sulphate of Soda)-occurs erystalized. Primary form a right rhombie prism ; cleasare parallel to the primary planes; colour white or reddish; transparent ; translucent; opaque ; soluble in water; effloreseres on the surface; splecifie gravity 2.73 .
It oceurs in crystalline coatings at the boltom of some lakes, at a place ealled Les Salines Esparines, about five leagues from Madrid; it is used in the preparation of earbonate of sola. Aecording to the amalysis of Casaseca it is composed of

> Sulphate of solla $\quad: \quad: 90.7 \mathrm{M}$ Carbonate of sola $\quad: \quad 0.22$
100°
THENU'S, Dr. Leach's name for a genus of macrurons
crustaceans, formed at the expense of Scyllares oi authors. [Scyllarians, vol. xxi., p. 144.]
THEOBALD, LEWIS, was born at Sittingbourne, in Kent. We have no record of the date of his birth. His father was an attorney, and he was bred to his father's business. His first literary production was 'Electra,' a tragedy, which appeared in $1 \frac{1}{7} 14$. As the writer of twenty very indifferent plays, he is utterly forgotten. Those productions belong to an age in which the true spirit of dramatic poetry was for the most part lost, and Theobald possessed none of those brilliant qualities which could impart a lengthened existence to his attempts in portraying the manners of his age. But he has attained a celebrity of another description. He is most commonly known as the unhappy dunce whom Pope assailed with the most inveterate ridicule; but, after a century of prejudice against his name, he is now pretty gencrally acknowledged to have deserved an honourable reputation as an editor of Shakspere, having brought to that task diligence, knowledge, and judgment, beyond comparison superior to the critical talents of his rival the author of the 'Dunciad.' His 'bad eminence' as the original hero of that poem was earned by a pamphlet in which he pointed out many of the errors of Pope's Shakspere. 'Shakes pear Restored, or Specimens of Blunders committed and unamended in Pope's Edition of this Poet,' was published in 1726. The first notice which Pope took of this pamphlet was in his second edition of Shakspere, which appeared in 1728. 'Since the publication of our first edition, there having been some attempts upon Shakspeare published by Lewis Theobald (which he would not communicate during the time wherein that edition was preparing for the press, when we, by public advertisements, did request the assistance of all lovers of this author), we have inserted in this impression as many of 'em as arc judged of any the least advantage to the poet; the whole amounting to about twenty-five words.' In the same year came out the 'Dunciad.' The revenge of Theobald was the severest that could be inflieted, and it was unexeeptionalle. In 1733 he produced an edition of Shakspere which utterly destroyed that of Pope. It has been asserted that of Theobald's edition, which was in seven volumes, 8vo., nearly thirteen thousand copies were sold. (Steevens's 'Shakesperar,' 1703, vol. i.) In his preface Theobald thus notices the attacks of his distinguished rival: 'It is not with any secret pleasure that I so frequently animadvert 0.2 Ir. Pope as a critie, but there are provocations which we can never quite forget. His libels have been thrown out with so much inveteracy, that, not to dispute whether they should come from a Cliristian, they leave it a question whether they could come from a man. I should be loth to doubt, as Quintus Serenus did in a like case,
"Sive lomo, seu similis turpissima bestia nobie
Vulnera derate denlit."
The indignafion, pernaps, for beng represented a blockhead, may be as strong in us as it is in the ladies for a reflection on their beauties. It is certain I am indebted to him for some flagrant civilities; and I shall willingly devote a part of my life to the honest endeavour of quitting scores ; with this exception, however, that I will not return those civilitics in his peculiar strain, but confine myself, at least, to the limits of common decency. I shall ever think it better to want wit, than to want humanity; and impartial posterity may perhaps be of my opinion.' It is to be feared that it was rather a new hatred than a sense of justice, however tardy, which induced Pope in 1743 to dethrone Theobald from the heroship of the - Dunciad,'setting up Colley Cibber in his place. In the subsequent year both Pope and Theobald were at peace; death had for ever silenced their controversy. Theobald died in September, 1744 . On the 20th of the following October, his library, which included 295 old English plays, was sold by auction. He had collected these productions, now so rare and highly valued, at a time when our carly drama was neglected, if not despised; and he made a judicious use of them in his edition of Shakspere. When we speak of his edition with commendation, we of course look at those thinns which are of permanent value in it; and we pass nver those ebullitions of offended pride, venting itself in self-commendation and acrimonious ob, jection, which were natural to one who hatd been so hunted ly Entire as Theowald liad been. Dr. Jolnson says that Theobald, 'by the good luck of having Pope for his
enemy, has escaped and escaped alone with reputaton from this undertaking [the undertaking of editing Shakspere]. So willingly does the world support those who solicit favour against those who command reverence, and so easily is he praised whom no man can envy.' This, we think, is mere phrase-making, and does not represent the world's opinion of any man at any period: reputations are not made upon the compassion of the world. Johnson has, a little before, stated the case with greater correctness, although not wholly correct. 'Pope was succeeded by Theobald, a man of narrow comprehension, and small acquisitions, with no native and intrinsic splendour of genius, with little of the artificial light of learning, but zealous for minute accuracy, and not negligent in pursuing it. He collated the ancient copies, and rectified many errors. A man so anxiously scrupulous might have been expected to do more, but what little he did was commonly right.' The great merit of Theobald as an editor is that he did not attempt too much, that he did not 'do more,' and that thereforc he was 'commonly right.' The great fault of nearly all the editors of Shakspere has been that they set themselves up above their author; that they would exhibit their own 'native and intrinsic splendour of genius' in the improvement of what they did not understand, and the adaptation of the verse of Shakspere to the standard of another age. The most happy emendlations of Shakspere, almost the only admissible ones, have been produced by the caution of Theobald. In his own preface he says, 'I have not by any innovation tampered with his text, out of an ostentation of endeavouring to make him speak better than the old copies have done;' and then he adds, 'Where, through all the former editions, a passage has laboured under flat nonsense and invincible darkness, if, by the addition or alteration of a letter or two, or a transposition in the pointing, I have restored to him both sense and sentiment, such corrections, I ampersuaded, will need no indulgence.' All subsequent cditors have a debt to Theobald which has not always been acknowledged. Johnson himself says, 'I have sometimes adopted his restoration of a comma, withuut inserting the panegyric in which he celebrated himself for lis achievement.'

There is a curious matter connected with the history of Thcolbald, which needs here only a slight mention. In his edition of Shakspere in 1728, he printed a play, "The Doublc Falsehood,' as an original by William Shakspere, it having been a short time before produced on the stage. The play was stated to have been found in manuscript. One passagc, which is certainly not in the manner of Shakspere, is said to have been particularly admired:-

- Strike np, my masters :

But touch the strings with a religious softness:
Teach sonud to languish through the night's dull ear, Till melancholy slart from her lazy couch, And earelessucs* grow convert to attention.'
The admiration was too much for the vanity of Theobald: he came forward to state that he certainly had written those lines, but that all the rest was genuinc Shakspere. Dr. Farmer holds that 'The Double Falsehood' was not Shakspere's because the word aspect was wrongly accentuated, that is, not as aspect, aceording to the usage of Shakspere and of his time ; and he holds the play to be Shirley's. It is not worthy even of that writer. The probability is that Theobald had a greater hand in the matter than he was subsequently willing to acknowledge. The restless vanity and love of notoriety which, according to his own account, impelled Psalmanazar to his impostures, has perhaps in nearly every case been the great notive to literary forgery. Theobald was the author of a Life of Sir Walter Raleigh; and he also wrote the greater part of the periodical papers entitled 'The Censor;' which appeared as a separate work in 1717, having been previously published in Mist's ' Weekly Journal.'
THEOBALDUS, a bishop who probably lived in France, and whose nane is sometimes written Tebaldus or Tibaldus, the reputed author of a didactic and theological poen, entitled 'Physiologus de Naturis Duodeeim Animalium.' It is written in hexameter, sapphic, and other kinds of verse, and describes first some one or more of the natural habits of twelve different animals, and then draws from each sume moral and religious refleetions. The twelve animals chosen are the lion, eagle, serpent, ant, fox, stag, spider, whale, siren and centaur, elephant, dove, and panther; and the whole poem appears to be horrowed in a great measure
from the litte work in prose by Fpiphunius on the snine subject. The poen begins thus:-

Treo leo maturas et tres havee idode traras,
Quas exo. (2irlote. Tilf blo weno carmine wripal.
Alera diflal ramparast antmalla librt,
Te quibai apponal qume rursus mystica norl,
Trmeat diversis of luerm mribere mefrio.
Nism too stams fortis mujwr Blta cacumina montis. \&ic.
And ends thus:-

$$
\begin{aligned}
& \text { Cowlos acerpdess ulí reyzat cum I'atrn pracweas }
\end{aligned}
$$

Ant fuxtl atque latef nece in fyo bompure par
ios hino defeatob, iul recla per mania regurt.
Carmene flato sil lain et plorif Claristo.
Cui ad son mlil placennthme melra Tíbelds:

The last two rerses are not to be found in the old editioms, but only in Beaugendre's edition ot the works of Mildebert. With respect to the author of the poem, as it is found in a Paris manuseript of the thifteenth century, containing the works of Hiddebert, arelibishop of Tours (who lived in the twefth century), and has also been aseribed to IIIdebert himself, he may be supposed to have lived some time in the twelfth century, or even as early as the eleventh, if he is the person meant in an epitaph on Margister Theobaldus Dervensis, written by Ilidebert. (IIjdebert, Opera, y, 1323 edit. Beaugendre.) The first edition of this work to which a date is attached is that of Antwerp, 1482, 4to., but five othens are enumerated by Choulani (IIundbuch der Rücherkunde fïr die Aellere Medicin), which were probably printed before this year. The last edition, in a separate form, was publisher at Leipziry, 1510,410 . ; but it is inserted in. 'Hiddeberti Cenomanensis Episcopi, Turonensis Arehiepiscopi, Opera, edit. Ant. Beaugendre, J'aris, 1708, fol., and erroneously attributed to Hilbebert. The Proomium and the chapter De Mephante are inserted by Freytag in the 'Analecta Litteraria de Libris Rarioribus," lips., 1752, 8yo. In some of the old editions there is appended to the poem a theologieal commentary, written in the style of the selsolastic philosoplhy of the middle ages: the author is unknown, fut it was not composed by Theobaldus himself. (Choulant. (oco cif.)
THEOIBIRO'MA (from $\theta_{\text {Bós and }} \beta$ pew̃ a, the food of gods), the name of a genus of plants belonging to the natural order Sterculiacea, the species of which yield the cocon of commere. They are trees with large simple leaves and with the fowers in elusters. The calys is composed of 5) sepals; the petals are 5 , lengthened into a strap-like form at the apex; the stamens are 5 , each with double anthers and a horn-like appendage between each filament; the style is filiform, with a $\overline{\bar{v}}$-parted stiwma; fruit a 5 eclled eapsule without valves; seeds cmbedded in a soft pulp; no albumen, and thiek oily wrinkled cotyledons.
T. Cacan, Common Caeao or Chocolate-nut tree, has entire, elliptic, oblon's, acuninate, quite sinooth leaves, and oblong sniooth fruit. This tree is indigenous in South Ameriea, and is senerally found at a heiglit of 600 feet above the level of the sea. It is however extensively euttivnted in the West Indies, and in the tropieal patts of Asia and Africa. The Mexicans call the tree chocolall, lence our word chocolate for the prepared seeds. The eapsules of the fruit are large, and contain each about 2; seeds; the pulp in which these are enveloped has a sweet und not unpleasant taste, and is frequently eaten where the tree is growis. The trees are evergrechs, and bear fruit and flowers all the year through, but the usual times for gatherins the fruit are in June and December. The eotyTedons of the seeds coutain a hrore quantity of oily albumen, which has an agreeable thavour, and on this account they are not only used as a principal article of clict by the natives of the countries in which they grow, but are now used for the same purpose thoughont the civilized world. The conposition of these seeds, in whieh amylaceous matter is combined with oil, and a principle probably similar in its constitution to Thein and Caffen, is well adapted, when eombined with sngar, to form a valuable artiele of dief. The consumption of then for this purpose is already on the increase, and under the present greatly decreased sate of duty will probably go on in a greater rafio. The followins are the quantities consumed in this country since 1835:-

Before the alteration of the taritf in 18t?, the duty on cocon from British possessions was $2 d .$, and from forcimn eountries Gd. per ll. ; now redueed to ld . and 4 d . On luslis and sloelts the duty wus $\frac{1}{3} d$. und $1 d$., and remains umaltered. The duty on cocon paste and eliocolate, which was $4 d$. per 1 b . from British possessions, and 4 s . $4 d$. from foreign countries, has been redueed in the former ease to $2 d$. , and in the latter to $6 d$. per lb . The cluty on forcign coeor under the old tariff was nearly prolibitory.

The chocolate of different countries varies acenrding to its mode of preparation and the ingredients contained in it. The most eommon form however in which they are consumed in this country is what is called cocon, whicl consists of the seeds pressed uto flakes or reduced to a paste. It is to this paste whilst hot that the honey, sugar, and other things are added, wheh constitute it clocolate. The paste is frequently adulterated. Hogs lard and sago are added to make up weight, and red lead to give it a colour. On this account the flake-cocoa is the best to be used.

The largest quantity of the seeds that are used in this country are brought from the West Inclies, and of these the Trinidad nuts are considered the best. Of the $1,600,000 \mathrm{lbs}$. of eocoa consuned in $1839,035,000$ lbs. came from the West Indies, 375,000 from Columbia, 186,000 from Brazil, and 133,000 from Chili.

The oil contained in the seeds is sometines obtained separately, and called cocoa butter. It may be obtained easily by expression, especially if hot water is added. It is said to be very mutritive, and to act as an anodyne. 11 is particularly recommended for making ointments. (Ersch and Gruber, Allgrm. Elncycl., art. 'Cacao.')

In the cultivation of the Cacao a wet soil must be seleeted, is, wherever planted, if it has not a large quantity of water it perishes. The plants also require shade, and on this aecount. in Trinidad and other islands of the West Indies the seeds are plaed between rows of the Frythrina umbrosa, one, two, or three rows of the Cacao being planted between the Eryfluinas. In sowing them the seeds are placed two or three together in the suil, at about two yards distant in the rows; and when the plants are about two feet high, all except the strongest are removed. In rearing them the only further eare necessary is that all weeds are renoved. If this be not attended to, the plants will not flourisl.

There are several other species of Theobroma, yielding seeds possessing the properties of the above, but they are not eultivated or employed to the same extent. They are all of them natives of South America, and used by the inhabitants where they grow as food. The Thioboroma Gnazuma of Limmeus, the l3astard Ceclar or Ornce d'Amerique, now the Guazmma ulmifolia, is a native of the West Indies, and is a landsome tree resembling the clun. It has ovate, oblong leaves, smooth on both surfaces. In Jamaica eattle eal its leaves when fodder is searee. Its pods lave a sweet flnvour like green figs, and are trequently eaten in the West Indies. Its wood is muel used by coaclimakers on acenunt of its lightness. Its leaves and bark yied a nucilaginous decoctiou, which is reputed of much value in elephantiasis and in diseases of the chest.
(Don's Aliller's Dictionary; Dictionnaire des Sciences Naturellos: Parliamenfary Reporis.)

TIIEOLBROMA. (Coroa and Chocolate.) The species of thes genus which yield articles of nutrinent are chicfly natives of South America and the West Indies. They' are also found in the Ihilippine Istes. It is custonary to refer eocon to the species described by linnexus under the name Theobroma Cacao (Theobroma sativa, I.amarck), but this yields only a small portion of this most widely consumert artiele, and none of that used in Mexieo, where the T. Caeso does not even grow. Besides this species, the following furnish some of the different kinds, viz.: 'T. speciosum, Wildenow ; T. subineanum, Mart.; T. sylvestre, Mart. The Mexican cocoa is conjeetured by Decandolle to be yiclded by T. angustifolia and ovalifolia, as well as from some undeseribed species. That of Guatemala is certainly from an undeseribed species. The Columbian is yielded by a species called by the natives montaras or
symoron, whicl is cultivated like the T. Cacao. The cocoa of Guiana is yielded by the T. Guianensis. (Aublet.)
The fruits are collected both from wild and cultivated plants; from the latter two harvests are obtained, from the former one only. The cultivation is easy and unexpensive. The tree begins to bear about the age of seven or eight years, and one slave can superintend a thousand plants, the producc of which however is not more than from 1500 to 1600 lbs . of seeds. The statement of Labat is an exaggeration-that a tree in full vigour will produce 150 lbs . of sceds. Notwithstanding the small return from each tree, it is a very lucrative branch of culture. The produce is always greatest after the greatest floodings of the rivers. The seeds from the wild plants are termed by the native Brazilians cacao bravo or cacao do Mato.
The fruits of the different species yary in size, form, and the number of the seeds they contain. The seeds, which are the only part employed, vary in size and quality according to the species from which they are obtained. The general number is from twenty-five to thirty in each fruit, being more abundant, as well as of better quality, in the cullivated than in the wild plants. They vary much in bitterness and in the quantity of oil they yield, not only aceording to the species from which thicy are obtained, but the manner in which they are treated after being gathered and taken out of the pulpy fruit. In some instances they arc buried in the earth in heaps, and allowed to ferment for thirty or forty days; a process which greatly improves them, and destroys the germinating power of the seed. The different kinds met with in commerce derive their names either trom the plaee where they grew or from some corruption of the native designation. The avcrage size of good beans is that of a swect almond, but somewhat thickor. The most esteemed of the known sorts is that termed Soconuzco, or Mexican, with very small beans, with a remarkably fine flavour, and scarcely any acrid tastc. These beans are always buried. This sort never comes to Europe. The next most valuable comes from Psmeraldas, and has a very agreeable flavour: the chocolate ןrepared from it has a golden colour; it is seldom met with out of Mexico. The Guatemala cocoa consists of very large beans, very convex, often angular, and very minch pointed at the oue end. They contain much oil, and are mild, with a pleasant flavour. The beans from Guayaquil, which are three times as large as those of Soconuzeo, are less prized than those of Guatemala.
The Caracas or New Granada cocoa, which is among the more lighly prized kinds that reach Europe, is obtained from the Theobroma bicolor (Humboldt, Pl. Aequin., t. 30), called by the natives Bacao, and cultivated at Carthago. The beans are of nedium size, and very oily. But chocolate made of these alone is not very agreeable, and another kind is conmonly mixed with them, which are much smaller and harder. Berbice cocoa beans are not unfrequently mingled with those of Gramada. These are also snaller and thinner, but in other respects difficult to distinguish ; the shell separates very easily from the kernel, which is reddish-brown, and has a strong smell, but a pleasant flavour.
The Surinam and Essequibo cocoas are not unlike that from New Granada, but are harder, thicker, and not so swcet.
All the foregoing are carth-dried: the following are called sun-dried, being merely collected in heaps, and often turned over in the sun; they are consequently much cheaper.
Brazilian, called also of Para, and of Maranlam, is very extensively employed: the beans are small, smooth, long, somewhat flattened, externally reddisish-brown, with a bitter astringent taste: it is only worth half the amount of the former. The West Indian, called Cocoa des Iles or des Antilles, is still less valuable, and is employed to form the low-priced cocoas and chocolates.

Lampadius has aunalyzed the West Indian kernels, and found them to consist of, in the 100 parts, besides water, 53.1 of tat or oil, 16.7 of an albuminous brown matter, which contains all the aroma of the bean, $10 \cdot 91$ of starch, .75 of gum or mucilage, 0.9 of lignine, and 2.01 of a reddish dye-stuff, somewhat akin to the pigment of cocluneal. Thiese proportions vary very much in the different sorts, the West Indian kinds containing far more of the oil or butter of cocoa than the kind from New Granada. It is therefore most advantageous to employ the latter to
form cocoa or chocolate for nutriment, and the other to yield this solid oil, to form candles, soap, or pomades. This oil contains a large proportion of stearine, and is therefore solid at the ordinary temperature of the air, but it melts at 122° Fahr. When purified by long boiling in water, it is perfectly white, and does not readily become rancid. It is perfectly soluble in æther, a means of detecting adulterations with beef-fat, suet, marrow, or almond oil, wax, \&c. It is however less employed in this country than in France. Nevertheless it is a most valuable material, and a soap made with it and soda, which is preferable to potass, forms an article for the toilet of great service to those who are troubled with a rough harsh skin or chapped hands. The soap sold in this country under the name of cocoa-nut oil must not be confounded with that just spoken of, as this is obtained from the Cocos nucifera. The cocoa-nut-oil candles are likewise prepared from the latter.

The kernels of the Theobroma are used as an article of nutriment either in the natural state as they are received from America or prepared in various ways. The simplest and best form is that of the seeds roughly crushed, termed cocoa-nibs, which however require two hours boiling, as, owing to the peculiar nature of the endosperm, or inner seed-coat, which passes down into the substance of the cotylcdons, the prolonged application of heat and moisture is necessary to dissolve the contents. Flake cocoa is merely the seeds crushed between rollers. When chocolate is to be made, the beans, after being carefully pieked so as to free them from mouldy or worm-eaten ones, are to be gently roasted over a fire in an iron-cylinder, with holes in the ends to allow the vapour to escape. When the aroma begins to be well developed, the process is considered complete. The beans are then turned out, cooled, and freed by fanning and sifting from their husks. The husks, which often amount to 20 or 25 per cent. of the beans employed, should not be thrown away, as they contain half their weight of soluble matter of a mucilaginous nature, which furnishes a tolerable nutriment for the poor. The seeds are then to be converted into a paste, either by trituration in a mortar heated to 130° Fahr., or now almost universally by a machine impelled by stcam. (Sce Ure"s Dictionury of Arts, \&c., p. 293.) The paste is then put into moulds and sent into the market. It always improves by keeping. The colour is said to be owing to the addition of arnotto, but this is probably a mistake, for if the South American contain as much colouring-matter as the West Indian, any extrancous pigment is unnecessary. When the kernels alone are used, or only a little sugar added, the chocolate is termed 'Chocolat de sante.' But vanilla, cloves, cinnamon, and other aromaties are frequently added; as are also rice, almonds, starch, \&ic. Simple cho colate is mostly preferred in Britain, the perfuned sorts in France, Italy, and Spain, in which countries the consump. tion is immense. For invalids the plain chocolate is best, the perfumed being too heating. Where tea and coffee disagree, cocoa or choeolate is the best substitute. It is complained that it proves heavy and disturbs the stomach, and not unfrequently causes headaches. In almost all instances this arises from making the beverage too strong. The printed directions order far too much of the substance to be employed. Half the quantity is sufficient. The Spaniards do not reckon chocolate very nutritious, and even pernit the priests, who should fast for many hours before saying mass, to drink it. But this is a vesy convenient mistake. Schrader, who analyzed cocoa, regarded the bitter principle as similar to caffein. The analysis of Theobromine by Woskresensky shows how nearly he was correct, and also that this article, being one of the most highly azotised vegetable compounds, must be highly nutritious. Liebig considers that this principle contributes to the formation of bile, like thein. [Thea; Thein.]
THEOCRACY (9roкpatia, a government by God) is a term applied to the constitution of the Israelitish government, as established by Moses, on account of its being under the direct control of God. Michaelis enumerates the following particulars as those in which the theocratic form of govermment is most remarkable:-1. The laws of the Israelites were given by God. 2. The judges are represented as holy persons, and as sitting in the place of God. 3. The judges were nsually taken from the tribe of Levi, and the chief expounder of the law was the high-priest. 4. In difficult cases of law, relating both to
government and war, fod was to be consulled by Urim and Thummim. 5. In mniters which coneerned the welfare of the state, Gitel onen made his will known by prophets, and the people wre of course bound in duty to wbey their roice. G. Goul bound himself by promises and threatenines to reward then with prosperity, victory, nad phaty, if they kept the law of Muses, rud to punish them with ciefeat, and other public ealanities, if they dissegarled it.

In fret, in the carliest form of the Ismelitish constitution, God sras their king; mad the desire of the people to have \& king at the time when Sanl was mised to that office is expressly declared to be an aet of rebellion on their part. (1 siem., viii. 7.)

The theocracy did not supersecle the establishment of a vivible human government, consisting of jurlges and other ufficens, but all thene offeers were considered ow subordinate to Goal as the only supreme ruler of the state. [ComPare Moчes, p. 439-4ti.]
(Michaclis, Comnentiries on the Larus of Moses, sec. 35. ling. trans.)

TIIEU'ClRITUS (Etúrarog) was a son of Simichil las, or, atconding to others, of Praxagoras and I'hiliman. He was a native of Syracuse, where he also spent the greater part of his life. Me is said to have been connected with Pliketas of Cos and Aselepiades of Samos, and to liave been their papil, whence we may infer that he visiled these islands. Ilf was on very intimate lerms with Aratus the poet, and it is highly probable that he tomerl this acyuaintanee in the is anil of Cos. (Wiistemann, Argument. wit Thmorrit. Idyll., vii.) Ilis exact period is not known, and we can only say that he lived in the reign of Polemaens, the son of Jagus, and Piolemacus Philadelphus, and that the sime of his greatest reputation was about the year us.c. 277. Some years before this time, probably about b.c. 284 , he had visited Alexandria, and the influence of the court of that rity is manifest in several of his poems. It has further leen supposed that he spent some time at Croton in Sonthern lialy, beeause the scene of three of his poems is laid in that place. Beyond these circumstances, which are Jittle more than probabilities, we know nothing of the life of Theoeritus. The Alexandrine granmarians valued his work very highly, and assigued to hiun the sceond place in the pleiad of the seven miscellaneous poets, whieh comprised Iycophron, Theocritus, Callimacluts, Aratus, Apollonius Rhodius, Nieander, and one Homer, the son of Moero or Byzantium. Severni Greek grammarians also wrote commentaries on the works of Theocritus, some frayments if whith are still extant in the scholia on his poems. There is extant by Theneritus a collection of various poems, which are written in what the Circeli grammarians eall the new Doric dialect, which is softer than the old Dorie, and the softness of this new Doric is still inerensed in the poems of Theocritus by the ndmisture of epie and Ionie or Acolic forms. The pallicular species of poetry by which he has acquired most eclebrity are the Bncolics (μ id η Bousoduri). This pastoral poetry was very popular in Sicily, and having been orignally eultivatel loy shepherds and rustics, mas raised to a really artistie rank by several pocts before 'Ihcocritus. He however brought this kind of portry to pertection, and the antient crities regard him as the model of hucolie poctry, and Virgil for this reason calla this poetry Syracusan (Ificlog., y. 1). But the number of real bueolie poems still extant in the colle tion which bears the vague name of Tdyls (sidédata), is only ten; the remaining twenty poems are either epie pocms (such as idyl xiii., xxii., xxiv., and xxy.), or imitafions of mimes (such as idyl ii. and xy.), or are of a mixed nature, and belong either to the lyric kind, or are mere "xercises of a poetical imagination. Nine of these poems, xii., xıii., xviii., xix., xi., xxvi., xxvii., xxix., and xxx., suld some portions of others, have been eonsidered by mo-- erm crities not to be the work of Theoeritus: as to some there can be no doubt that they are spurious, though they are not withont great poetieal merit, if we except idy? $x \times x$. Besides these thinty idyls, there is a fragment of one poem ealled, Berenice, and twenty-two epigrams, which are ascribed to Theocritus.
All the poens which are genuine productions of Theocritus show him to have been a perfeet master of his art. His power over the lauguage is not less wouderful than his trste for the simple beautice of nature, and the skill with
which he handlal his subjects. His noems are indeed
founded upon the national shepherd songs of Sicily in the form of dialogues, but he has added features of his own, ancl iclealized his persons, without depriving them of their natural simplicity: We do not know whether Theocritus himself ever pubitished a collection of his poems, hut from an enigram in the 'Antholoxia Gracea' (ix., 11. 20.5). We uight rather suppose that the collection was made by Artemidorns the author of that epigram. It is however a curions fact that none of the MSS. of Theocritus contain all the poems which are published in our modem printed editions mimder his name. The editio prineeps, whel appeared at Milan in 1493, fol., only contains cighteen idyls of Theocritus, with the works of llesiod and Isocrates. The most important amone the subsequent eelitions are those of J. J. Reiske, with a Latin translation, the Greek scholia and notes, Leipziy, 1705,2 vols, $4 t 0$.; Thomas Warton. with additional scholia and notes, Uxford, 1770, 2 vols. 410 .; Valckenacr, Levden, 179 and 1781. The edition of Valclienaer, which also contains the poems of Bion and Mloschus, is still valuable. In 1773 Valckenaer had published an excellent edition of select idlyls of Theocritus. His complete edition was reprinted at Berlin, 1810. 2 vols. 8in., with additional notes by Brunek and Toup. After these followed the editions of Sehaefer (Leiprig, 1811, tol.), Kiessling (Leipzig, 1819), and J. (ieel (Amsterdam, 1821, 8vo.). The last edition, which is very usetul to stadente, is by E. F. Wiistemann, Gotha and Erfurdt, 1830, in one vol. 8vo. The introductory essay gives a good aecount of the liferature of Theocritus. The works of Theocritus have been translated into all the languages of modern Europe. There is an English Iranslation by Fankes, 8 vo., 1767 , and a translation, ineluding Bion and Mosehus, by Polwhele, 4 to., 1786, and in 2 vols. I 12 mo ., 1811. The best French translation is that of J. B. Gail, wilh explanatory and criticol notes, Paris, 1808,3 yols. 410 . The best German translations are those of J. H. Voss (Tübingen, 1808, 8vo.) and Witter (Hildburghausen, 1819, 8vo.). Respecting the character of the poems of Theocritus. see Kichstiadt, Adumbratio Quaestionis de Carminnun Theocriterum ad Gencra sua Rreocatorum Indole ne I irtutibus, Lipsiae, 1793, 410. ; and Reinhold, De Theocriti Carmunibus Gemuinis et Supposititios, Jena, 1819, 810.
THEODOLET, or THEODOLITE (the word is fouml in both forms), is the name generally given to the instrument used for measuring horizontal angles. In its simplest torm the theodolet consists of a divided circle, which is to be set parallel with the horizon, and a telescope which has so much motion in a vertieal plane as to enable the observer to view any ohject which he may require above or below the horizon. The derivation of the word is obseure, although the instrument and its name are comparntively of recent date. The earlier observers did indeed use divided eireles, which they ealled astrolabes, armillas, \&ce., for the purposes of surviying, but these were, generally speaking, very mole. The guadrant was employed in all accurate surveys up to the latter half of the last century, although Roemer had shown by reason and example the superiority of the entire circle. [Ciscle.] The finst instance of a survey conducted with an entire circle, on a considerable scale, was, so fir as we reeolleet, the Survey of Zenland by l3ugge,* in 1769-8. The horizontal cirele was two feet in diameter, and construeted by the Danish arlist Ahl.

Ramsden finished his great theodolite in 1787, the cirele of which is three feet in diameter. This was usel for a triaugulation, to connect the Observatories of Greenwieh and Paris. A very full deseription of it is given in An Arconnt of the Operations carried on for arcomplishing a Trigonometrical Survey of England and Wales, London, $1799, \mathrm{pp}$. 107-130, with four plates; a reprint, in a great measure, trom the 'Plil. Trans., yol. so ct sel. 'The prineipal triangles of the English, Irish, and Indian surveys have been observed with this instrument or with those nearly identical in size and consiruction; and though several minor additions and improvements have heen made, the great theodolite is still considered by the officers of the survey as a most efficient and almost infallible instrument. We helieve that the high reputation of the great theodolite deprends in a great degree on the superatitious eare with which it has been nsed and preserved: it is unclonbtedly a very fine, well-divided in-

* Soe Burge's "Ohervationon Antronomiens, p. E1, where lie refert in n descrigtion of thin instrument ta Laulah, and $\mu . G 1$, when he states its merles,
strumeni, but in common hands its want of solidity and firmuess sould probably have been felt. It would be impossible as well as useless to give an account of the various constructions of different artists at home and abroad. The general properties of a theodolite, that it should be firm, well balanced, \&ce, will be easily recogsused by a person who knows how to nake good use of the instrument, and we shall advert in the coursc of this article to some of the qualities which are, and to others which are not, cssential.

We have given here a sketch of the theodolite in its simplest form, such as would be proper for the secondary tiangulation of a national survey, or for the most accurate private survey. The tripod which carries the instrument rests with three foot-screws in brass notehes let into the top of a wooden stand. The legs of the stand are not tully cepresented, but the two parts of which each is composed end below in a strong and sharply-pointed metal socket. The cirele is fixed, and the upper works, telescope, verniers, levels, Ece., turn on a centre, which may be seen just under the cross of the telescope. The adjustments are very simple. The wooden stand is first set down with a good opening of the legs, and the top nearly horizontal. The foot-screws are placed in their notches, the plumb)Jine hung from its hook, below the centre of the circle, and the telescope turned round till one level is parallel to the line joining two foot-screws, while the other level is in a line from the thind foot-screw to the centre. Bring the bubble of the first-mentioned level into the middle by raising one of the two foot-screws and depressing the other, and then wdinst the cross-lcvel hy raising or depressing the third foot-screw alone. Now turn the telescope round 180°, and it the bubbles are not in the middle, bring them half way there by touching the foot-serews, and the other half by screws which adjust the levels themsclves. When this has been nicely done, the bubbles will remain in the nidhlle in every position of the telescope. If the objects to be obscrved lay all in the horizon, or in a plane parallel to it, the above adjustment would be sufficient; but when the objects are out of the horizontal plane they must be referred to it by a perpendicular, that is, the plane described by the telescope must be a great circle, and must also pass through the zenith. There are generally two wires at least in the focus of the telescope, one horizontal and the other vertical. Place the eye-piece to give sharp? visio! of the wires, and tum the milled screw, scen towards
the object-glass, until the objects you are going to observe are distinct. Place the vertical wire on any welldcfined object, making the biscction near the crossing of the wire; raise or depress the telescope until the object is ncarly at the bottom or top of the tield; if it ls still bisected, the wire is rightly placed, but if not, twist the tube carrying the eye-piece so as to effect a bisection. To make the telescope describe a great circle, select some well-defined object near the horizon, and bisect it: now take the telescope very curefully out of its Y's, reverse it, and look again at the object. If it is still bisected, there is 110 error ; but if not, the bisection is to be effected hal by the tangent-screw ot the instrument and half by the serews which earry the wirc-plate, screwing up one and releasing the other. Restoring the telescope to its first position, it will be seen whether the arljustment is correct, and it not, the process must be repeated until the bisection is the same in both positions of the telescope, the clamp and tangent-screw remaining fixed. For the adjustment of the axis of the telescope a level would be convenient, but in this instrument the axis is supposed to have been correctly placed by the malier, and the only mode of correcting any crror is ly filing the I's. It may be ascertained whether the axis is tolcrably correct as follows:-Bisect an object as far above or below the horizon as the motion of the telcscope will allow. Reverse the telescope, and if the object is still bisected, the pivots of the telescope are the same size: if not, the observer must deduce the difference of the pivots from the altitude and the error observed, whlch is not difficult: When this has been satisfactorily executed, bisect, as in the last instance, an objeet as far as possible from the horizon, and read off the verniors. Tum the instrument round 180°, return the telescope end for end, bisect the object again, and read off the verniers. If the niean readings differ exactly 180°, the axis is horizontal ; but if they do not, the observer will have sufficient data from this, and the altitude or depression, for determining the quantity and direction of the error, which he may correct by the file or by calculation, aceording to his pleasure. There is a much easier method of examining the position of the axis by observing an object directly and as seen lyy reflexion from a fluid, as mereury, oil, or water. The axis is truly horizontal when the vertical wire bisects the object and its refiected image without moving the tangent-serew. It must be recollected that the adjustments of the hoizontal circle already described must be previously and very scrupulously performed before attempting the examination or adjustment of the cross-axis.
As the oljects in a survey are at very ditferent distances, an adjustment is required for forming the innage exactly on the wires. The use of the milled screw, seen towards the object-end of the telescope for this purpose, has already been mentioned.

In use, this theodolite should be placed on a repeating table or tripod, such as is to be found figured and described in Reprative Cincle, and the repeating-tripod upon the stand. This was not done in the present plan for the sake of elearncss. To adjust the repeating tripud, place the levels as described in the tirst adjustment, and clamp the theodolite. Bring the foot-serews of the theodolite over the foot-serews of the repeating-tripod by the motion of the tripod, and then by touching the foot-screws of the tripod or theodolite set the level-bubbles in the middle. Tirn the upper plate of the tripod half-round, and again bring the bubbles into the middle, half by the tripod foot-screws, halt by those of the instrument, and repeat the operation until the resolution of the repeating-table does not alter the position of the lerel-bubbles. 'the repeating-stand is now clamped, and the instrument itself is to be adjusted cxactly as we have described above.

The course of observation after the instrument is adjusted is very simple. The problem is to measure the horizontal angle between two objects. Turn the telescope two or three times round in the direction in which you Intend to observe, then bisect one of the objects, read off the verniers, and take a mean; biseot the second object, read the verniers, and take a mean. The difference between the two means is the angle required. This is all that ean be done ly the instrument as usually mounted; but with a repeating-table the operation is continued thus. Bring the telescope back on the first object, by the motion of the repeating-table, using its clamp and tangent-screw, and by the motion of the instrument bring
the telescope on the second object. It is clear the motion of the repeating-table has merely restored the teleseope to its original direction, withont altering the readings of the circle: and that if the telescope be turned on the second object by its motion alone, without distributing the cirele, the difference between the mean of these new readings and the preeeding mean will also be the angle required. By continuing the process, the angle may be measured as often as the observer pleases. It is evident that all readings-off, execpt the tirst and last, are superfluous, save as checks, or as giving the means of estimating the aceuracy of the tinal result. The series should terminate after a whole number of revolutions as nearly as possible, when the excentricity of the repeating-table will be eliminated, a matter of possible importance if the objects are near and the repeat-ing-table carclessly nuade, or, if the objects are pretty distant and this caution superfluons, when the verniers are nearly at the divisions at whel you set out, which gets rid of or at least diminishes any errors of division. The latter condition is however rather a speculative than a practical one. As the error of division is divided by the number of observalions, and the casual error of observation only by the square-root of the same number, it is evident that a moderate number of repetitions in our excellently-divided cireles will reduce the error arising from mal-division to a much smaller guantity than that which belongs to the class of easual crror of observation.

The essential condition of repetition is, that the motion of the theodolite shall not disturb the repeating-table. The motion of the latter therefore should be as heavy as will admit of nicety in the tangent-screw, while the motion of the parts which move with the telescope should be as light and free as is consistent with firmness. There is, we believe, no difficulty whatever in effecting both these points; but lest any error should arise from repetition, we should recommend a careful observer to determiue his angles by two scries,-one by always moving the telescope and its tangent-screw forward, and the repeating-stand and its serew backwards; and another, by reversing the proeess. If the two results agree, as they should do within the limits of easual observation, the mean is probably free from all other error; and if they do not, the observation should be repeated and varied until the quantity and probable law of the error is ascertained. We sloould then be able to say clecidedly where, when, ancl under what precautions repeating was a safe as well as a convenient and cconomical process, which at present is rather a vexata questio, unless the decision be supposed to be against all repetition, to which we do not bow.

The foregoing deseription has been confined to a form of theodolite which is not in ordinary use, though from its simplicity and power it is well adapted to the purpose of explanation. The common theodolite is generally carsied by a pair of parallel plates, fixed on a three-legged staff. The lower of these cireular plates is screwed upon the staff, and las an aperture above the screw. The upper plate has a strong descending slank which passes loosely through this aperture. A button of a apherical form is fixed on the end of the shank, the curvature uppermost, and rubs against the under surface of the lower plate, which is dome-shaped to fit it. Four strong screws pass through the upper plate and abut with their lower ends agrainst the lower plate. When the serew's are furned the plates are separated until the button and the spherical surface on which it rubs are brought into squeezing contact. To level the theodolite, set the levels eacla parallel to a diagonal pair of screws of the parallel plates. Then serew one pair until you come to a bearing, and by releasing one serew and serewing up the other, but not very tight, set the corresponding level horizontal; leaving this pair and taking hold of the other pair set the second level also right, and if the first level is deranged, as it probably will be a little, restore its position by screwing up the proper serew. Turn the telescope half round and correct the error, hali by the parallel plate-screws, and the other half by the level-adjustments themselves. It is desirable that, when the tinal adjustinent is made, the serews should bite pretty hard, otherwise there is a great chance that the upper pinte will turn a liftle during the olmervation. This objection would seem fatal to the use of parallel plates where great uicely is required: they are
however very convenient and of very ready use, and perhaps if the serews are strong ant lite observer is careful $t 0$ give the telescope three or four turns round in the direction lie means to obscrve, before starting, and always t, move the telescope the same why, serions error may the avoided. The lirst olyect obseried should alway: he olserved at the end of the service, in order to see whether there has been any change in the original position. If one of the serews rest in a noteh, perlapss the tendency to twist may be wholly overcome.

Another contrivance which is to be found in almost all theodolites is mueh more objectionable. The surveyor wishes to save himself addition or subtraction, and requires an adjustment by which he can turn the whole circle about and lring the telescope ulon the first object, the verniers being previously set to zero. There is therefore a motion with a clampla and langent-serew for this purpose, which, as the clamp has usually a very short bearing, is particularly liable to yield and so to destroy all aceuracy. To remedy this unnecessary evil, a second or wateh telescope, as it is ealled, is attached to this part of the instrument and brought to bear upon a well-defined object. Any motion or wriggling of the zeroelamp is betrajed by the watch-telescope, and when an angle is taken, it must be first ascertained whether the watch-teleseope keeps its position, and the position if clisturbed must be restored to the zero tangent-serew, hefore the observation is finally made. In some theodolites mude for the Indian survey, under the direction of Colonel Everest, the zero and slow-inotion clamp take the form of a repeating-table, and may be so applied. It wonld be safer to have this motion inade considerably heavier than in the patterns we have seen, and if the instrument is likely to fall into clumsy hands the wateh-teleecope might easily be added for greater caution. Such a theodolite would, bu far as we can judge, have no limit to its aceuracy; execpt that depending on the diminutive telescope.
For many purposes of surveying it is desirable that the telescope should allow of being considerably elevated or depressed, and that means should be given for measurine this angle with considerable necuracy. A circle, or portion of a circle, is then fixed upon the telescope axis, and the necessary verniers and level may be seeured by a tailpiece or otherwise to the support. If the vertical anyles are to be measured as accurately as the horizontal angles, the instrument becomes an altitude and azimulh circle. [CarCLE.] But such instruments are rarely applicd to the measurement of terrestrial angles. The direction of the meridian was determined in the Ordnance Survey by observing l’olaris at its greatest elongations E. and W., and taking the middle of the two readings for the direction of the north. Hence the telescope required all the transit adjustments except that for azimuth [Trassir], and was considerably elcvated above the circle. Though the results were upon the whole satisfactory, yet we greatly doubt the prudence of ascertaining this fundamental and delicate point from sueh an instrument, or of risking the steadiness of the telescope supports by raising them so much above the body of the instrument. It would have been better, we coneeve, to have determined the direction of the meridian ly a series of careful transit observations, using more opticul power with greater steadiness, and to have kept the theodolite to its proper office, that of measuring horizontal anyles, greatly reducing the height of the tcleseope supports. The great theodolite had origimally a semicirele fixed to the axis of the telescope, for measuring alitudes and depressions. This has since, very properly, been removed, and a whole circle substituted.
Where a theodolite is merely used for surveying, the teleseope requires only a moderate vertieal mane. Mr. Iroughton fixed a portion of a circle (which may be more properly (alled a sluce than a sector) to one or two of his 12-inct theodolites, and this construction is olten tound in other makers. The telescope is thus kept lower, the instrument is firmer, and the larger radius qives the promion of the cirele a seenning advantage over the entire circte of sinaller radius. There is however something very unsalisfactory in a porlion of a circle, and we should prefer a sort of compromise, giving the supports such an elevation as would allow a vertical cirele of about lalf the dimensions of the horizontat eircle: if the direction of the meridinu is to be determined by this instrument, the supports mast be at least so high as to sec 2° or 3° above the latt.
tude of the place, and the vertical cirele nay be increased a ceordingly.

It is perhaps requisite to give some description of the mode of adjusting the vertical circle. Where the supports are high enough to allow the telescope to pasis when turned round in a vertical plane, all the adjustments are the same as in the altitude and azimuth eircle. [Circle.] When the telescope is too long for this, the eircle must be lifted out of its Y's in order to bring the line of sight again upon the object to be bisected, and then set down again. The operation is in fact the same, whatever be the nature of the vertical arch, and the adjustment is to be effected cither by altering the level or the horizontal wire until the reading is the same in both positions of the telescope. If the obscrver has a Y level or collimator, le can set the cross of his level-wires horizontal, and this being bisected by the telescope of the theodolitc, the vernier must be made to read zero, and the bubble of the level be brought to the middle by its proper screws. Or it the observer possess two stands (and there is a great convenience in having more stands than one in surveying), he may place the stands at a considerable distance from each other, and, fixing the instrument on one stand and a mark of cxactly the same height as the tele-scope-axis on the other, observe the mark, noting its elevation or depression. Now exchanging the instrument and mark, he inust reobserve the depression or elevation exactly as beforc. On drawing the figure, it will be seen that if liyht nove in a straight line, 90° - elevation at lower station $=90-$ depression at ligher station + the angle between perpendiculars to the earth's surface at each station, which last Iuantity is known from the distance between the stations, and may he easily ealculated, i.e. depression-clevation $=-a$ known angle. But if the zero is wrong, depressions will be increased while elevations are diminished, and verst rice, so that depression observed - elcvation obscrved - the known angle, instead of being $=0$, will be ± 2 error of the vernici, which may be corrected accordingly eitler by the adjustment of the level or of the horizontal wire. Or, lastly, if the telescope has so much motion as that a star can be observed directly and by reflexion from mercury or any other fluid, the index-error of the vertical circle may be most accurately determined thus. Take any star in the meridian, and having observed it directly, observe it immediatcly after by reflexion. If great nicety is required, the observations should be repeated alternately several times, and the partial results reduced to the meridian. The mean reading between the meridian altitude and meridian depression is the reading which corresponds to the horizon, and the difference of this from 0 , or 30°, according as the eircle reads altitudes or zenith distances, is the error of the instrument, which may cither be corrected or allowed for. This method, though very accuratc, requires some knowledge of the time, and is rather restricted by the choice of stars. It is nearly as safe to olserve a star not far from the east or west point, first directly, then by reflexion, and lastly directly, making the contacts at following whole ninutes, or at even or odd minutes if the interval of a minute is not sufficient. As the stars rise nearly uniformly in this part of the leavens, the mean of the first and third observations should give an aliitude equal to the depression obscrved midway; the discrepancy between these results will be the double indexcrror as before, which may be corrected or allowed for. By some of these methods, the index-error of the verticle circle or sector is to be found.

In some of the older theodolites the telescope rides in Y's at the top of the vertical areh, and is reversible as a level. The liorizontal position of the telescope Y's can thercfore be found as in any other lcvel, and the verniers of the vertical circle set to zero when the telescope is hori7.ontal. The vertical angles measured by these instruments are not however to be greatly depended on. They are usually grcatly out of balance in all positions of the telescope, except the horizontal position, and therefore they mule better levels than altitude instrments. This error may be partially got rid of by having a sccond level fixed to the instrument which is parallel to the plane of the vertical circle, and adjusted to the telescope level when that is horizontal. If this supplementary level is pretty well graduated, it will show the tilt which is given the plane of the instrument by want of balance, and so give the correction requircl.

It may be as well to mention here that the prineipal adjustment being that of setting the plane of the theodolite horizontal, or, more correctly speaking, the principal axis vertical, any horizontal level anywhere placed is sufficient for the purpose, though the cross-levcls are a little handier. A box-level is convenient, if a stand and repeating-table are used, to bring the planes nearly horizontal, and to make both ends of the bubbles visible at first.

Many surveyors give themsclyes and the instrument. maker a great deal of unnecessary trouble by being very difficult on the ehapter of excentricity, which they confound with error of division. The English dividingengines, up to the present time, do not divide the circles upon their centres; and therefore it frequently happens that the point round which the eircle turns is not the point round which it is divided. When this error is not absolutely monstrous, the only effect is that one vernier gains what another loses, and that the mean of two opposite, or of three, four, or more equidistant readings, is preciscly the same as if there were no excentricity. The advantage of a little excentricity is, that it gives you the benefit of an unbiassed reading at every vernier as well as the first: again, if all the vernicrs are recorded, it is a check on the dishonest observer, who might read onc vernicr and set down the rest. The instrument-maker must please his ignorant customer, and so either hammer his circle after it is divided, which may deform his work, or have an adjustment, whicl injures its solidity.

In Kamsden's great theodolite, and several others which have been made, the circle is read off by micrometer microseopes. Sometimes the microscopes revolve with the telescope (as the verniers do in our figure); sometimes the microscopes are fixed, and the circle revolves with the telescopes, as in Ramsden's theodolite.

Ertel of Münich has made several astronomical theodolites in which the rays entering into the telescope are rcflected along the homzontal axis by a prisn. The observer therefore looks in at the end of the horizontal axis, whatever the position of the star may be. The eye and body of the observer are more satisfactorily placed, and the supports are kept close and snug to the horizontal circle. The instrument is well adapted to one of its principal objects, observing stars at their passage over the prime vertical [Transit] ; but there is some trouble in finding an object when you have no better direction to look for it than your eye affords. Excellent latitudes have been determined by instruments of this class used in the prime vertical, and even the small vertical circle seems from some accounts to possess more power than from its dimensions we slould have thought probable. As a general rule, the greater the number of readings, the less the eftect of bad division, but beyond a limited number, the trouble and difficulty of reading-off is found in practice to counterbalance the advantage. Two opposite readings annul the effect of excentricity; three or four cquidistant readings destroy such an crror as would arise from the cireles becoming elliptic after it was divided, or any error which follows the same law. In small stoutly-made theodolites we think two the most convenient number, and tley can be much more conveniently read off than a larger number. When the circle is so much as 8 inches in cliameter and the telescope good, we should prefer three or four readings. The vertical cirele or sector may have two opposite readings. For many matters connected with surveying on the most extensive and accurate scale, see the memoirs published and to cone of the English, Scotch, and Irish Trigonometrical Survey; and the " Base Métrique, or account of the French neasurement of an are of the meridian, although that survey was conducted by a different instrument. Similar operations have been earricd on in many countries during the last half-century, and the memoirs which relate to these surveys contain the best information which ean be had on the subject.

THSODO'RA. [Justinian.]

THEODORE OF CORSICA. [CORsICA.]
THEODORE, or THEODORUS, of Mopsuestia, a learned bishop of the Oriental churcli. He was descended from a rich and distinguished family at Antioch, and was the brother of Polychronius, who became bishop of A panca. He studied rletoric, together with his friend Joln Chrysostom, under Libanits, who resided at Antioch from the year A.D. 35 J 4 . His teaclier of philosophy was Andragathus. After having finished his studies, he intended to prarry a
iady of Antioch about 36en, tut hit five il (This) ovotom, who was then a monk, perstaded him to chose tl emonastic life. Theodure was for some time a pritat at Antionh, and anerwads bishop of Mopsuestia, an untient town of Cilicia (304). In the same year he was present at the council of Constantinople. He died in 420, at a very ndsanced age, and aner he had diselharged his episeopml funetions during thirty-five gears. During fifty years he was hnown as one of the most distinguished writers of the Gieek church, eapecinlly by his works haninat the Nestorians, Pelagians, and other sectarians. lis zeal however for the Catholie faith did not save him from the charge of being an adherent of the doetrines of the Nestonians, and hee was nhliged to make a public apolozy.' After his death the Nestorians continued to quote his works, and to cail him the suppert of their laith; and this was the eanse of his works, or perhaps only part of hisworls, being condemned by the fith Conncil ($\mathbf{2}, \mathrm{i}, \mathrm{i})$. Theodore of Mlopsuestia is sald to have written largely on divibity and morals. Few of bis writings have come down to us: others exist in Syriac and Batin translutions, and of the grenter part there are only framments. A treatise on the Nagi of the Persinns, and lis commentaries on the l'sahas. the book of Job, and the Song of Solomon, are lost : liss commentary on the twelse greater prophets is preserved in MS., according to labricius, mider the title of Oeotiopov'Avrexiars
 which contain fragments of him is given in Pabricins, and the Syriac transiations are mentioned in Assemamms's - Bibliotheea Oifentalis.' Theodoms of Mopsuestin is still one of the first theological authorities among the Syrian Christialls.
(Fatricius, Bibl. Grueca, x., p. 340-362; ;346, note a; 377, note 0 ; $35 \cdots 2$ mont, Memor. lireles., vol. xii.; Cive, Srint. Eceles, sol. ii.

THEODORETUS, or THEODORITUS, a theologian and church historian, was born about $39: 3$ A.D. He was brought up uncler the eare of a pious mother, to whom he geknowledges his oblipations in his writings; and he had instruction from Theodore of Mopsuestia and John Chrysostom in a monastery, to which he was sent to receive his education when not quite seven years old, and where he had for his fellow-pupils Nestorins and lolu, who were afterwards patriarchs of Constantinople and Antioch. Theodoret beeame a dencon in the church at Autioch, and in the year 423 he was chosen bishop of Cyms, a city in Syria, near the Fuphrates. Ilis diocese nbonuded with Marcionites and pereans who held heretical opinions ioncerning the Trinity. Against the opinions of these hereties he direeted liis cfforts with so much success, that, according to his own statement, he baptized ten thousand Marcionites.

In the year 431 Nestorius whs condemued by the council of Ephesus [Nesturiass], whose decision gave great offence to many of the Uriental Christians, who, without being avowed fillowers of Nestorims, were supposed to be not unfavourable to lis opinions. Among these was Theodoret, who was a personal fizend of Nestorius; and he was one of those who assembled after the comecil of liphesus had broken up, and condemned its proceedings. A reconciliation was howerer effected between Cyril, putiareh of Alexandria, the great enemy of Nestorius, and Iohn, patriareh of Antioch, the leader of the Oriental prary, who signed an agreement ly which Cyril approved of Jolin's statenment of the controrerted point of doctrine, while John gave his apporad of the sentence passed on Niestorius. With this agreement Theodort and others of the Oriental party were greatly dissutistied. Theoduret approved en the whole of the doctrinal statements in the agreement, but he waruly protested against John's consent to the condemnation of N Cotorius, as an act of mmitigated mjustice. He expressed these feclings in a letter to Nestorius. But when Joln, armed with an inperial edict. proceeded to take mensmes agrainst the more decided partisans of Nestorins, Theodorel considered himself bound to submit, both for the sake of the peace of the church, and because of his own approval of the doctrime which it wam dolnis objeet to enforee. He therefone n ed every menns in his power to induce the friends uf Nestorims. namely, Meletine bishop of Mupsuestia, Alexander of lliprapolia, and Hellaclius of Tarsiss, to submit to John; ard, upon their rejection of lis advice, he offered no op-
position to their being deposed. But when, in the year 423 , new and severe cdicts were issued against the Nistoriuns, Theodoret renused to carry las nubmission any further; and, by his firmuess he incurred the hatred of Cymil, to whom he had already been uly oned in this controversy, mad between whom and Theoduret sued a lifter feeling existed, that when Cy ril died, in 444 , Theorlord made no secret of his joy ut the event.

If, as we are hound to conclude Irom the chameter of the mun and from the Clristian spirit with which he el-. where speaks of Cyril's death, Theodorel's joy on 11 is occasion spming from a belief that the divisions whech ham been kept alve by Cyril would dic with him, and peace be restured to the chured, he whs doomed to bitter disappointment. "'yril was suceceded hy Douscurus, a than is haughty and impeluous as himedf, and quite as unscmpuluns. The new bishop followed nip his predecessor's plan of enforcing upon the whole Ensten church the doctrine of the coalescence of the Deity mid lumanity into one natule in the person of Christ ; and perhaps he also kept in view the object of obtaining a kind of supremacy for the see of Alexandria. Determined to admit of no compromise, he made his first attack upon the moderate pirty in the Syrian churehes, which was headed by Theodorel. Dio curns was supported by a large party in Sy ria, chicfly cungisting of monks, whose leader was an abbot named liansumas: and at Constantinople many monhs, the mu b remarkable of whom was the abbot Eutjelces. were stremyly in favour of the Cyaillian doctrine. on the ground llat it alone was consistent with the simple lefter of Scriptur, 'the Word becane flcsh,' and other similar expresions.

These Constantinopolitan manks were in most important party in the dispute, parly dions their close comecetion with the anti-Nestorian monks of Syria, and still more from their great influence with the emperor Theodosius 11., whom they had indueed from the sery first to espouse the party of Cyril. Theoduret was, as usual, slow to take up the controversy. He wrote to Dioscunts in the lope of effeeting a reconeiliation letween the two panties. In this attempt he failed; and then, looking upon the doctrine of Dioscurus and his allies as the sure rond to the various heresies which denied the true hmanity of Christ, lie wrote a book against them in the year 4 , entitled "The Beggar, or the Many-shaped' (ipanatijs, or todipopposs). By this title he meant to imply that the Euly chian doctrine (as the views held by C'yril, Dioscurns, Barsumas, Eutyehes, and the monks, are generally numed for the salie of luevity) was borrowed from a variely of ambient heresies. The work consists of three dialogues: in the first, entitled arpetros, he treats of the impossibility of the divine ussence madergoing a ehange; in the second, aroyxuros, of the impossibility of the two natures (the divine und lmana) being ningled into one ; and in the thind, $a \pi a \$ f$ g. of the impossibility of the divine nature suflering or dying. This work displayed great learning and power, together with a moderation which drew ulon Theodoret the reproaches of the zealots of his own pary. Ilis opponents, huwever, saw in his duetrines nothing liss than a revival of Nestorianissm; and Dioseurus aeceused him before Domans, the patriarch of Antioch, of dividung the one Lond Jesus Chrint into two sons of God, and wrote al. o a severe letter to 'Heodoret, making the same charge, Theodoret replied with great mildness and moderation, conceding no mueh of the disputed doctrine as he could conscientionsly, mad praying Dioscurns to consult for the peace of the chareh rather than for the views of 10 party. This letter only the more ineensed Dioscurus, who permitted monks publicly to amathematize "Theotoret in the chureh, while he himself confinmed their anathemas. Ile aloo sent ambassadors to Constantinople to aceuse the whole Eastern chureh of Nestorianism before the emperor: Domnus also sent deputies to clear his ehurch of this charge, mid Theodoret wrote with the same object to some of the most buwerful ecelesiastics and statesment. No immediate decision of the dispme took place, but the emperor ondered Theorioret, as a troubler or the chureh, to contine himself within the linits of his own diocese. Theodoret bitterly complained of being thus condemmed sipleard.
lat the meantime the two purties grew more violent, and the inpecial court itself beenne the seene of their disputes. In the year 448 lintyches, in his zeal against Nestorianisn:,
incurred the charge of an opposite heresy, of whieh he was condemued by the synod held by Flavianus at Constantinople, but again acquitted by the seeond Council of Ephesus, under the presideney of Dioseurus (A.D. 449). [Eutrchats.] In convening this council every care was taken to exclude the anti-Eutyelian party. With respect to Theodoret, the emperor commanded that he should only be admitted in case his presenec should seem good to the Thole assembly. The hint iwas taken, and he was excluded. The emperor carried his dislike to Theodoret still further, and intimated to the council that such men as Theedoret should not only have no voiee in it, but that they ought rather to be visited with its censures. Accordingly the council deposed Theodoret from his bishopric, and he was compelled, by an imperial ediet, to retire into the monastery where he had becn edueated. As he had been peaceful and moderate in prosperity, so he was resigned and cheerful in adversity : indecd lis amiable spirit, and his firmness in obeying the dictates of his conscience, form a most agreeable relief to the strifc and ambition whieh unark the charaeter of most of the ecclesiastics of the age.
The only check to the trinmph of Dioseurus and the Eutychians was the influenee of Leo the Great, the then bishop of Rome, who had been already appealed to by Eutyehes, after his condemnntion by the synod of Constantinople, and whose aid was now sought by the opposite parly. Flavianus and Theodoret wrote letters to him, proposing to submit the whole controversy to an. ceeumenical conneil to be convened in Italy. To this nurangement the emperor (Theodosius II.) refused his consent, but his denth in the following year (450) changed the state of aflairs. In the next year (451) an œecunenical conneil was assembled, first at Nicera, but very soon removed to Chalcedon, to which Theodoret was summoned, and in whieh he was leceived by his friends with the greatest enthusiasm. Ife petitioned the council for restoration to liis bishopric : at the eighth sitting his petition came on for hearing: he rose to plead his cause; but the parly of Diosecurns cxelaimed that he innst first condemn Nestorius. Thendoret had never been a Nestorian, but lad all along held a mirldle course between the parties of Nestorius and of Cyril ; bnt he liesitated to pronounce the reguired condemnation till some clear definition of Nestorianism should be given. The bishops of the opposite party interrupted him with the shonit - He is a heretic: he is a Nestorian: thrust the Nestorian out!' Upon this Theodoret exclaimed :- 'Anathema on Nestorius and on every ane who denies Mary to be the mother of God, and who divides the only begotten Son into two sons. I have subseribed the coufession of finith, and the letter of the bislop L.eo ; and this is my fath-Farewcll.' He was pronounced to have established liis orthodoxy, and the unanimous vote of the council restored him to his bishopric.
In this transaetion we perceive that Theodoret's firmness had at length given way before the furious zeal of the Eutychians; and his courage appears never to have revived, for in his latest work, which was a history of here-
 friend Nestorins in the harshest terms.
Atter the council of Chalecdon, Theodoret returned to his diocese, where he devoted the rest of his life to literary lahours. He diell in the year 457. Even atter his death he was looked uplon as a formidable enemy by the Monophysites and the (rigenists, who procured the condemnafion of his writing against Cyril by the council of Constantinople (A.D. 5. 5in).
His works were:-1, 'A History of the Clurch,' in five books, from 325 to the death of Theodore of Mopsuestia in 429. Gennadius, a Latin writer, at the end of the fifh century, says that Theodorct's history consisted of ten books, and came down to the yenr 457, but no other writer mentions more than five hooks. It is a work of great learning and impartiality. 2, фiגóstos isropia, an account of the lives of thirly celebrated hermits, ten of whom were his contemporaries and in some degreo personally known to him. 3, The work against the Eutychians, already mentioned. 4, 'The History of Heresies,' also mentioned above. It is sometimes entitled, 'Against all Heresies, or a discrimination of falsehood and truth' (kard $\pi a \sigma$ öv
 of five hooks, and rellates almoss exclusively to the heresies respecting the person of Christ. 5, 'Ten Orations against the Heathen;' an 'Apology for Christianity;' besides 146
letters and commentaries on most of the books of the Old Testament and on all the epistles of Paul.
The best edition of his works is that of Schulze, in 5 vols. 8vo., Halle, 1768-74.
(Moshein's Ecclesiastieal History, by Murdock and Soames, i., p. 443 ; Neander's Geschichte der Christl. Relig. und Kirch., ii., passim ; Sehüll's Geschichte der Griech. Litt., iii. 318.)
THEODORIC or THEODERIC I., ling of the VisiGoths, was the eleeted suceessor, but was not the son, of king Wallia, who died A.D. 419. During the latter years of the reign of the emperor Theodosius II., Theodoric invaded Gaul, and in $42 \overline{5}$, just after the accession of Valentinian III., he laid siege to the city of Arles. Aitius however relieved this town, and made peace with the Goths, who wero obliged to come to terms beeause they were threatened by the Vandals, and they marelied against the Vandals together with the Romans. After a peace of ten ycars, a new war arose between the Romans and Theodoric, who in 436 besieged the city of Narbonne, whieh was only relieved in the following year, 437. The issue of this war proved unfortunate for the Romans, the inhabitants of their provinces in Gaul being redueed to despair by heavy taxes and other kinds of oppression, and tho Goths being superior to the Romans in courage. Aëtius therefore enlisted several thousand Huns, in order to cmploy them against the Goths; but these auxiliaries were more destructive to the inhabitants than their enemies. A body of the Romans, together with these Huns, commanded by Litorins, the best of the generals of Aëtins, having made some progress, laid siege to Toulouse in 439. Thcodoric proposed to conclude a peace, but Litorius, rememhering his former vietories over the Armorieans, refused all terms. Upon this the Goths made a sally; the Romans were entirely beaten, and Litorius himself was made a prisoner, and carried in trinuph through the streets of Toulousc.
The whole country as far as the Rhône was now open to the Goths, and the inhabitants being well-disposed, Theodoric mado fresh conquests. The remainder of the Roman army was disorganized and in the greatest consternation. Nevertheless Avitus, who was then Præfectus Prætorio in Gaul, found means to make peace, which was certainly favourable to the Goths, though the conditions are not known. In 4.50 Gaul was invaded by Attila with his Ituns and a numcrous body of Teutonic auxiliaries. Attila pretended that his object was only to attack the VisiGotlis, but the Romans also took arms, and the united forces of Aeptius and Theodoric met the Huns at Châlons-sur-Marne (451). Theodoric commanded his army in person, and he was accompanied by his two sons, Thorismund and Theodoric. The battle was short, but bloody and disastrous for Attila, who fled on the following day, and thus eseaped total destruction. King Theodorle was killed at the beginning of the battle. Prinee Thorismund was proclaimed king in the eamp of his father, whom he caused to be interred on the field of battle with great pomp. [Arrila.] (Naseov, llistory of the Antient Germans, 1x, 11. 14, 27, 28.)
THEODURIC, or more correctly THEODERIK, surnamed 'the Great,' king of the Ostro-Goths, was the son of king Theodemir by his concubine Eralieva (Ehrlieb). He was born in 450, and he was seven years old when he was sent to Constantinople to the court of the emperor Leo Magnus (4.7-474) as a hostage, peace having just been concluded between this emperor and Theodemir, who had engaged to assist the Romans for an annual payment of two thousand pounds of gold. Theodoric received his education at Constantinople, and returned to his father in 472 .
Without any orders from his father, he attacked and subjugated some Slavonian tribes on the Danube, and he afterwards aecompanied Theodemir in his expedition to Thessaly, which was undertaken for the purpose of obtaining a larger territory for the Goths. This happened at the same time as the death of Leo (January, 474); mid Zeno Isauricus the clder, who became emperor in the month of February, hastily made peace with the Goths, and ceded to them the country of Pautalia, that is, the south part of Pannonia and the south-west part of Dacia (474). Theodemir died in 475, and Theodoric beeame king of the Ostro-Goths.

Zeno having been deposed by another. Theodoric, the
son of Triarins, a Guthie prince who had great influence in the Byzmntine empire. hing Theodoric mirehed to his assistance, and by his aid Zeno was again acknowledged as emperor $(47(3-i 76)$. It seems that Zeno did not show himself so Erateful as he ought, for serious differences broke out between lim and the Goths. Theorloric, on the conimrys was loyal and gencrous, and he continued to be a fathful ally when the emperor had natisferd his just claims. Ite proved so serciceable, that \%eno erented him Patricius and Magister Nilitia Pressentis in 483, and subsequently promoted him to the consulship in $48 t$, a year Which is still distinguished in the annals by his name, Jornander affirms that Zeno adopted him as liis son, anel caused an equestrian statue to be erected in honour of him betore the imperial palace. (De Rebus Gothicis, e. 57.)

Notwithstanding the honours which Zeno conferred upon the king of the Goths, Zeno showed his insincerity Wherever le saw an opportunity. To avenge himselt, Thedorie insaded Thrace (in 188), dispersed the imperial troops, and besieged Zeno in Constantinople. It is said that Zeno saved himself by ceding to his adversary ltaly, or his right to lialy. which was then in the hands of Udoacer, the ehief of the Rugians. Perhaps he eeded only his elains on this country, hoping thus to get rid of a neighbour and friend whom he had changed by his own misconduet into n dangerons enemy. However this may be, the eonditions of agreement are obscurely known. The Greeks allerwards pretended that Zeno had sent the Goths to Italy to re-annex that country to the empire: the Goths, on the contrary, affirmed that he surrendered Italy to their king. (Procopius, De Bello Gothico, i. I.) Theodorie had certainly formed the plan of conquering Italy, and lie was bent on carrying it into execution. If therefore he found it advisable to use the name of Zeno, he prolmbly dit so for the purpose of gaining those among the Romans who, although they detested foreigners, would submit to any eenqueror whom they could eonsider as a delegre of the antient legitimate authonity.

Theodorie risembled his nation (489), that is, that part of the Ostro-Goths which obeyed the kings of the housie of the 'Amali,' of whieh Theodoric was a descendant. Some Gothie tribes only remained in Thrace and in the Tauric Chersonese. Λ whole nation, men, women, and children. carrying all their moveable property with them, left their homes and took the rond to Italy, following the Dumbe as far as the tract which lies between that river and the lake of Balaton in western llungary. Trapstila, the king of the Gepidse, appenred with: marmy to prevent them trom隹sing through his dominions; but he was routed by Theodoric on the river Ulea (the present Szala), which flows into the western corner of the lake of Balaton. Enduring lardships of all kinds, and fighting their way through the armed inhabitants, the Goths traversed the western part of I'annonia, crossed the Julian Alps, and reached isonzo, where they met with the army of Oloneer, who wis beaten in three battles-on the Isonzo, at Verona, and on the Addr (490). Odoneer, whofled to Ravenna, was forsaken by his best general, Tufa, and Frederik, a prince of the Rupians, and Epiphanias, bishop of Pavia, also came to Nilan to pay homage to the king of the Goths. Udoacer was blocked u1 in Ravenna by one part of the Goths, and Theodoric, with mother part, took possession of the whole peninsula of Italy, leaving Sielly, Sardinia, and Corsiea to the Vandals. The siege of Ravenna lasted three years; but at last Odoacer surrendered to Theodorie, who, notwithstanding his oath to spare the life of his prisoner, ordered him to be put to death in his own palace (493). Otloacer's son and his whole family shared the same fale.

Theodoric was now acknowledged as kiner of Italy by the emperor Anatavius, the snceessor of Zeno, who gave him the furniture of the palace at lavemua, which Odoacer had sent to Constantinople. Theodorie did not assume the imperial title althongh he adopted the name of Mavius. In 500 he went to Rome and eelebrated a triumph; le convened the senate 'ad palmam auream,' contirmed the immunities of the Romnits, and gained the atlicetion of the lower classes by his liberality and by the exhihition of anagniffeent spectncles.
Theodoric had alrenly confirmed his power by alliances with the neighhouring kings. Gunclobald ind Gorlegitel, the kings of the lburgundians, having made an invasion iuto Italy and carried away many of the iuhabitants,

Theodoric sent Fipiphanias, bishop of lanin, pul Victor, bishop of Turin, as ambasadors to liurgnody. They steeedecl in delivering the captives, and concluded an alliance between these kings nind Thendoric, who gave his Gnughter Ostrogotha in marriage to Sigismund, the son of Gundolsald. IIe likewise kept peace with the Vandals, and gave his sister Amalfrida, then the widow of a noble Goth, in marriage to their king Thrasimund. II is eldest dhachter, Theodichusa, was married to Alarie 11., king of the Visi-fuths; and lis niece, Amalaberga, became the wife of IIemmanfrid, the last king of the Thuringians. Theodoric himself took for his second wife Andofledn, the sister of Closis, king of the Franks.

In 504 Theodoric was at war with Trmarie, king of the Gepidu, who, alter many defeats, eeded his southern provinces as far as Simuium, now Mitrowiez on the Save, near its jumetion with the Dambe. The inhabitants of the eastern part of the Alemannian kingdom, whiels had been destroyed by Clovis [Alemanin; Teutonic Niations-Alemami,] acknowledged Theodoric as their protector, who summoned Clovis to desist from any further violence against the Alemanni. (His letter is contained in Cassiodorus, Variar., ii. 41.)

Meanwhile a war lad broken out between Clovis and Alarie II., king of the Visi-Goths. Alaric fell in the battle of Vougle in 507, in consequence of which the greater part of the dominions of the Visi-Goths in Ganl eame into the hands of the Franks. Alarie's only legitimate son was a child named Amalarie, whom he had by his wife Theodichusi. As there was danger of all Spain licing inviaded by the Franks, the Visi-Goths intrusted the guardianship of their young king to Theodorie, who thus beeame the ruler over the Ostro-Goths and the Visi-(ioths, or over Spain, southern Gaul, Italy with the dependent province of Illyrieum, and parts of Rhaxtia, Noricum, and Pannoma. Theodoric lad previonsly sent an army into Giaul, commanded by lba, who delivered Arles, which was besieged by the Franks (508); and the same general made a prisoner of Gesalie, the natural son of Alarie II., who was a dangerous rival of young Amalarie. Clovis was compelled to content himself with the northern and larger part of the Visi-Gothic clominions in Ganl. From this year, 511 , is dated the regency of Theodorie in the kingdom ot the Visi-Gaths, who howeverstyled himself king, and the corurcils which were held clurinir his government are dated acecording to the years of his reign. He took possession of the cities of Provenee, perhajs under the pretext of the expenses which he had been put to in saving the VisiGothie kingdon. He appointed Liberius his lieutenant in Gaul. and Thendis in Spain.

The relation between Theodorie and the emperors of Constantinople was maintained to the satisfaction of both parties, until Justin published a severe edict rgainst all who were not of the Catholic church (523), and soon atter deprived the Arians of their churches. About the same tinie this emperor had engaged with some menblers of the Roman Senate in designs against the Gothie dominion in Italy. Boëthins, then one of the lirstmenin Italy, was charged with being a principal consjuirntor. He was imprisoned in 022 , and churing lis eaptivity he wrote his Treatise on the Consolation of Philosophy. The conspiracy proved abortive, 130 öthius was put to dentle in $52-t$, and Synmachus, his finther-in-law, slared the same fale in the tollowing year at Ravenna. With regand to religious affairs, Theodorie, who was an Arian, like all the Goths, ordered Iope John with severml bishops to go to Constantinople and to obtain better conditions for the Arians in the Eastern einpire. The pope reluetantly obeyed, but it seems that in Constantinople he spoke rather according to his conscience than in fivour of the Arians; for he was inprisoned at his return, ly order of Theodorie, and died not many doys after, on the 18th of Mny; 526. On Theodoric's recome mendation, Feclix was elected yope, and his election was confirmed by Athalaric, the suecessor of Theodoric. This fact proves the great inflnence which Theodoric had in the alfairs of his time. Not having ubtained frourable conditions for the Arians in the East, "1heodorie was about to retaliate on the Cutholies in his dominions, when be died suddenly on the 2Gth of August, 520, in the Find year of his age. Ilis contemporaries have invented many fables about the sudden death of this great king. l'rocopius ('De Bello Gothico,' i. 1) says that the head of a large fish being served up at table, he fancied it to le
the head of Symmaehus, whom he had put to death, and whose participation in the conspiraey against Theodoric had not been proved; it is added that he was so terrified by his imagination, that he fell into a fever and shortly afterwards died. Others pretend that his death was the consequence of a divine judgment, because he had deposed and imprisoned Pope John: this story sawours of its origin. Others dreamt that the ghosts of Pope John and Symmaehus had east the soul of Theodoric into the hurning erater of a voleano. The ashes of Theodorie were deposited in a porphyry urn, whieh still exists in the wall of the eastle of Ravenna, and under it is an inseription on marblc, bearing the date 563 , whiel states that the urn onee contained his remains. Theodorie having left no male issue, Athalaric, the son of his daughter Amalaswinth, sueceeded him on the throne of Italy, and Amalaric became king of the Visi-Goths.
Theodoric generally kept his court at Ravenna, as the roman emperors had done after the time of Honorius, and thus Ravenna beeame a centre of the arts and scienees, of no less importance than Rome. Amons the high offieers of Theodoric there were several very distinguished men, such as Cassiodorus, who was his private seeretary, and Ennodius, who has written a eulogy of his master, which however is far from containing all the truth. He was celebrated as a hero in the old Teutonic songs, and in the - Niebelungen-Lied ' he appears as Diederich of Bern, that is, Verona.

Theodoric was not only a conqueror; he was also a legislator. [Teutonic Nations, Goths.] It is his greatest glory that he was a fiiend of peace, of toleration, and of justice ; a glory, however, which is somewhat obseured by some acts of rashness and violence. Whenever a war between Teutonic kings was threatening, he tried to prevent it by mediation; a taet which is proved by his letters to the kings of the Franks, of the Visi-Goths, of the Thuringrians, of the Burgundians, of the Heruli, and of the Warni. He always reminded them that they were of one common origin, and that they ought to maintain peace and friendly intercours. Theoloric was especially vigilant in preventing Clovis from invading the states of lis neighbours; he protected the Thuringians and the remnant of the Aleinanni, and he saved the kingdom of the Visi-Goths from destruction.
(Ennodius, Punegyricus Regis Theodnrici, ed. Chr. Cellarius, 1703, $8 v 0$. ; and also in lis Opera, ed. Jae. Sirmondus, Paris, 1011, 8vo.; Jornandes, De Rebus Gothicis; Isidorus, Chronicon Gothorum, \&e. ; Procopius, De Bello Gothicn; Cochlaeus, Vita Thendorici Reg. Ostrogoth., ed. Peringskjüld, Stockholm, 1699, 4to. Cochlaens has writtell without any just eritieism; and Peringskjöld has Hlown no historical ability in his additions, which however contain very interesting matter relative to the language and the antiquities of the Goths. Manso's Geschichte des Ost-Gothischen Reiches in Italien, Breslau, 182t, 8vo., is a very valuable work.)
TIEODOIRIC, a bishop and celebrated surgeon of the thirtecenth century, was a pupil of Hugo of Inceca. He at first belonged to the order of the Preaching Fiars (Firères Precheurs) ; afterwards he beeame ehaplain to the Bishop of Valentia, and penitentiary to Pope Innoeent IV.; and he was at last made bishop of Bitonti and Cervia successively. Towards the end of his life he settled at Bologna, where he died in 1298. He was especially distinguished from his contemporaries by not resting content with imitating his predecessors; on the contrary, he appears to have carefully studied the cases that presented themselves to his notiee, and to have recorded in a great measure the results of his own observations. He also introduced several useful imovations in the practice of surgery, and was the first person who ventured to lay aside the cumbrous and frightful machines which had hitherto been used in the reduction ot fractures and luxations. He left behind him a surgieal work, entitled - Chirurgia Secundum Medicationem Hugonis de Lucen, which was published at Venice in 1490 and 1519 , in folio. (Haller's Biblinth. Chirurg. ; Sprengel's Ilist. de la Méd. ; Biosraphie Médicale.)
THEODO'RUS (θ eóóupos), a native of Cyrene, was a Ihilosopher of the Cyrenaic sehool, who lived towards the end of the fourth eentury b.c. He was a pupil of Arete, the daugliter of Aristippus, and afterwards became the successor of Anniceris. His philosophical system, which
13. Cif, No. 1 j 28.
was a kind of medium between that of Aristippus and Anniceris, appeared so dangerous to his fellow-citizens, anong whom he had been held in very ligh esteem, that they banished him from their eity. Theodorus went to Athens, where he would have experienced worse treatment if Demetrius Phalereus had not interposed and saved him; for here too his doctrines soon came into disrepute, and a publie aecusation was brought against him of moral and religious indifference. After the fall of Demetrius Phalerens, Theodorus thought it advisable to withdravy from Athens, and he went to Egypt, where he soon gained the confidence of Ptolemaeus Soter, who, on one ocension, sent him as his ambassador to Lysimachus. On thi: mission Theodorus is said to have shown mueh courage and a strong feeling of independence towards Lysimaehus, who taunted him for having been obliged to leave Athens. The time of his death is unknown.
We do not possess a complete view of the philosophical system of Theodorus, but he appears to have been one of the forerunners of Epicurus. His ideas of the deity were explained in a book whieh he wrote on the gods (π epi $\left.\theta_{\text {tu }} \nu\right)$, and which earned him the name of atheist, tnough it is doubtful whether this opprobrious name was given him because he really denied the existence of gods, or merely because he was above the common prejudices of his countrymen. The following doetrines are espeeially mentioned as eharacterising his views of human affairs :-wisdom and justiee are desirable, because they procure us the enjoyment of pleasure: friendship, on the other hand, has no real existence; for, in a person who is not wise, it eeases as soon as he ceases to feel the want of it, and a wise man is in want of nothing beyond himself. Patriotism is not a duty, because it would be absurd to make it incumbent upon a wise man to saerifice himself for the ignorant, who form by far the majority of a state. His followers, who eonstituted one of the three branches into which the Cyrenaie sehool was divided, were called Theodorians.
(Diogenes Laert., ii. 86 ; vi. 97 ; Cieero, Tusculan., i. 43 ; v. 40 ; De Natura Deorum, i. 1, 23, 43; Suidas, s. v. 日é: Ewpos.)
From the philosopher Theodorus of Cyrene we must distinguish Theodorus the mathematician, who was a native of the same place, and is mentioned among the teachers of Plato. (Xenophon, Memorab., iv. 2, 10 ; Maximus Tyrins, Dissertat., 29.)
THEODO'RUS PRISCIA'NUS, the author of a Latin medical work, which is still extant, and which sometimes goes under the name of Octavius Horatianus. He was a pupil of Vindieianus, and is supposed to have lived at the court of the emperors of Constantinople in the tourth century after Christ. He belonged to the sect of the Empiriei, but appears to have also mixed up some opinions of the Methodiei, and even of the Dogmatici. His work, whieh is not of much value, is entitled 'Rerum Medicarum Libri Quatuor,' and is written in a barbarous Latin style. The first book treats of external disorders, the second of internal, the third of female diseases, and the fourth of physiology, \&c. It was first published in 1532, fol., at Strassburg, and also in the same year at Basle, 4to.; of these two editions, the former is the more complete, the latter the more correctly printed. A new edition was undertaken by J. M. Bernhold, of which the first volume was published in 8vo., without place or date, at Ansbach in 1791; but which, in consequence of the editor's death, has never been completed. Another work, entitled 'Diaeta, seu de Salutaribus Rebus Liber,' has been attributed to Theodorus Priscianus, but (as Choulant thinks) ineorrectly. It was first published together with ' Hildegardis Physica,' Argentor., 1533, fol. It first appeared in a separate form at Halle, 1632, 8vo., edited by G. E. Schreiner, and was afterwards inserted in Rivinus's collection of antient physicians, Leipzig, $16.74,8 \mathrm{vo}$. (Haller's Biblioth. Medic. Pract. ; Sprengel's Hist. do la Méd.; Choulant's Handbuch der Bücherkunde für dic Aeltere Medicin.)
THEODO'RUS, or DIODO'RUS, OF TARSUS, of a noble and very distinguished family, lived in the fourth century of our æra, and was most probably born at Antioch. He studied under Sylvanus Tarsensis; and after baving taken orders, he first beeame priest, and then Archimandrita at Antioch. The Catholic churches of this town having been shut up by order of the emperor Valens (A.d. 364-378), who was an adherent of frianism, Theodorus

Vol. XXIV,-2 T
weached in the felds round the town, and he was alway aurounded by a numerous congregation of Chtholies. Ife also defended the orthodox frith with great intrepidity Apminst the attackn of the Arians and the tyranny of Vinens. Immedintely after the death of Vilens, he was appointed bislop of Trirsus (378), Gratianus, the sucecssor of Valens, being a zealons Catholic. In 381 Theodoms was et the Council of Constantinople. The year of his death in not known, but as lhalerius was chowen bishop of Tarsus in 304, it is prohable that he died in this year. Theodorus whas unueh esteemed lyy his cuntemporaries for his plain and lucil eloguence, lum though he was known as the most zealous defender of the Catholic faith, he was aceused of having shown limkelf favourable to the heretical cloetrines of Nestorius. The sanse charge was made armanst his contemporary Thteodorts of Mopmentia. Theodorss of Tassis ispote numerons works on theology and morals, none of which have come down to us. It is said however that one of his warks on Politics, which Fabricius believes to be Identical with another work on Providence, exists in a Syriac translation.
(Cave, Ncript. Jiceles. Misisoria Literaria, vol. ii., 1. 206, 207 : Fabricius, Bial. Graca, p. 380, 381.)
THEODO'RUS I., a native of Greece, and son of Theodorms, patriarch of Jerusalem, was elected lishop ol leme after the death of Jolm IV., A.13. 6:11. Constans 11. was then entperor of Conatantinople, and Rotaris was king of the Longolbards in lialy. The heresy of the Monothelites was disturbing the church, and it was supported by the cmperor Constans, and by l'aulur, patriareh of Constantinople. Theodoms held a council at Rome in G48, in which Pmulus was excommunicated. It does not seem proved however that Theodorus condemned, as some have rsserted, the typus or ediet of the emperor Constans, in which he forbade all his clergy from dispmting on the subject of the two wills in Christ, the Monothelites asserting that there was only one will in lim. [Eutscmass.] Theodons built sereral elurches at Rome. He died in G19, nad was succeeded by Martin I. (Nluratori, Anmali TItalia; l'ansimo. l'ite de? Pontefici.)
THEODORUS II., a native of Rome, was elected pope afler the death of Romanus, in August, 897, nund died three weeks after his election, and was stleceeded by John IX.

TIE deseended from an antient and noble lByzuntine funily, the carly history of which is unknown. In Ilus he married Arina Angela-Comnena, the widow of Isane Come nenus Sebastocrator, and the second daughter of the emperor Alexis III., Angelus-C'omnenus, who usurpeed the throne of Constantinople, after having blinded and thrown into a prison the emperor Isaac Angelus (1193). Alexis, the son of Isaac, fled to Italy and implored the protection of the W'estern prinees, who, in 1203 , were assembled at Venice for the purpose of a new crusade. They promised him rassistance, and sailed to Constantinople with a powerful fleet, cominanded by Dandolo, the doge of Venice. They laid siege to Constantinople, but althourg Theodore Lascatis prepared a vigorous revistance, Alexis 111 ., who weu of a mean and cowardly character, speretly lett his eapital and fled to Conrad, inarquis of Montefermto, in Italy, who hal married his slster Sheodora. Assailed by bold and expericneed troops, and abandoned by their emperor, the Greeks were struck with alarm: they surrendored their capital, and did homage to the blind fatac and his son Alexis IV. (19th of July and lst of Angust, 19) who reigned together under the protection of the Latin prinees. Ilowever, Alexis Ducas Murzuphlus liad made a purty amones the Greeks, who were curagerl at the hanghtiwess of their loreign protectors. He murdered Mlexis IV., Issac died of grief, and Murzuphlus was prochamed emperor under the uame of Alexis V. (2sth of January and Rth of Felmury, $1: 2(1)$. The Iatins immediately laid siege to Constantinople, to arenge the nurder of thoir ally and friend ; and although the new emperor, assisted by Theodore lascaris, defended the eapital with skill and energy, the fall of this city became imminent. Sudcenly Alexis \mathcal{V}. fied with his frensurea (Λ pril, 1204), and the coisternation which had reigned alter the flight of Alexis III. once more disconraged the Greaks, and leel to anaschy. Jhuring π period of six montles, four, and as Isaae reigned twice, five emperors susceasively oceupied the throne; and such was the passion for ruling anoong the

Greek nobles, that in this eriticul moment, when the very existence of the cmpire was at stake, two candidates presented themselves to the people for the purpose of obtaining the erown.
These candidates were Theodore Lascaris and Theodore Ducas, who was of Imperin] descont. Lascaris was proelaimed emperor, hut fenring some sudden opposition from the atherents of the fugitive emperors, he deelined the Imperial title, and declared he would content himself with that of 'despote' until he had re-established tranquillity. However, while he encouraged the people to resist the besiegers, the latins made an assault and suceceded in taking the lown, the fireeks laving cowardly abandoncd their posta. During the confusion of plunder and violence, Theodore J,omearis escaped with his wife Anna, and fled to the opposite shore of Asia. The Latins eloose lBaldwin, count of Flanders, emperor of Constantinople, and gave him the: capital mad one-fourth of the empire ; the remaining threefourths were divided between Venice and the Frankibl berons.
Mleanwhile Theodore succeeded in raising troops in Asia, and, assisted by the Turks of Koniah, or Iconium, he made himself master of the important town of Nienea and the greater part of Bithynia, proclaiming that he acted only as despote, and in the name of his father-in-law, the lingitive emperor Alexis 111.: (Autumn, 1204). His conquests were soon taken from him by Louis, count of 13lois, who, in the division of the empire, had received Bithynia, and who defeated Theodore at Paemanenc, on the fiontiers of Mysia and Bithynia (6 th of Deceniber, 1204 . Theodore retired to Brusa, one of the few towns which had not fallen into the hands of the colnt of Blois; but he was pursued and obliged to fight with Henry, count of Flanders, tho brother of the emperor Baldwin, who defeated him.
Theodore would have been ruined but for the rietories of the king of the Bulgarians and the revolted Greeks over the troops of the emperor, who was obliged to call for the assistance of the comut of Jlois und the Latin troops in Bithynia. Theodore again became master of this country. aud his father-in-lav, Alexis 111 ., being then kept a prisoner by the marquis of Monteferrato. he himself assumed the title of emperor. He styled himself Bactivic sai Av́rorpritwp "Pwatav, which was the title of the empeross of Constuntinople, and he thus showed that he considered himself as the only legitimate emperor of the East. having a right to the crown by his wife Anna, the daughter of Alexis III., who was prevented from ruline on accot nt of his eaptivity, and all the other emperons of Greck extrace fion being ileth dead. In order to solemnize his acee'ssion to the Imperial throne, Alexis convoked a general assembly of the Greek bishops, who met at Nieaea. The new patriarch, Michael Autorienus, presided, who had been chosen patriareh for the special purpose of erowning 'Ilreodore, the patrinreh Didymoticus having resigned.

Meanwhile several Greek nobles, profiting by the deep hatred of the Greeks against the Latin conq̧uerors, had made themselves independent in 1 sia. Thendore, callect Morotheodorus, reigned at Philadel phia, and Manuel Manrozomus, supported by Chaiysith-ed-din, sultan of Koniah, beeame powerful in lihrggia; but they were both deleated by the emperor of Nienea, as Theodore Lasearis is generally ealled. A third mud more dangerous adversary was Alexis Connenus, who had reigned as emperor at Trebizond trom the year 120:, and whose luother Divid overran Asia Minor as fr r as the Propontis and the lonian Sea. Theodore and David wero equal in military skill, in activity, and In persererance: neither of them was diseouraged by defeats, nor made less vigilant by sudden suceess. After their first encounter, David, appreciatine the character of his adversary, concluded an alliance with Henry of Flanders, emperor of Constantinople. Who lad suceeeded his lirother Ilakdwin. Theodore however detented them both, and some time afterwards David was asain completely beaten by Grido Andronicus, the general of the emperor of Nicaca. After the truce betreen Theotore and Ifenry in 1210, David, who had hitherto carriced on the war wifl varions results, was compelled to give u!) , all hopes of keeping the field any longer. He lost all his conquests, and his hrother Alexis was obliged to cede them to Theodore (1214), who thus became master of the greater gart ot Paphlagonia.
The truec between Theodore and Henry was the con-
sequenee of various vietories obtained by Theodore over the troops of Henry. In 1207 the emperor of Nieaea was besieged by the Franks in Nicomedia, but in a sally he made prisoner Count Thierry de Los, or more correetly Diedrik van Looz, a powerful baron from the Low Countries, and a deseendant of the first dukes of Lower Lorraine. Henry ransomed the count by surrendering several fortified towns to the emperor of Nicaea, and arrangements were made which led to the truee of 1210 . In this year the old emperor Alexis 11I., who had escaped from the marquis of Monteferrato, fled to Asia, to the court of Sultan Glaaiyath-ed-din, and persuaded him to support his claims to the throne of Nieaca, or of any other part of the Eastern empire. The sultan summoned Theadore to restore his father-in-law to the throne, and left Koniah at the head of 20,000 men. He was attacked in the neighbourhood of Antioch by Theodore, who had only 2000 men, but who charged the Turks with such impetuosity that their lines were broken, and they were entirely defeated. G'haĩyth-ed-din himself was killed by Theodore, and old Alexis was made a prisoner (1210). He was confined to a monastery at Nieaea, where he died some years afterwards. Although Theodore had acted in his father-in-law's name while he was only despote, he had aseended the throne in his own name and at his own risk. Theodore's wife, Anna, the daughter of Alexis, was then dead.
It is said that in 1214 Theodore fell into the hands of Az-ed-din Key-kaus, the successor of Ghaiyath-ed-din : but this is an error, and Fallmerayer, in his work cited below, has shown that it was Alexis of Trebizond who was made prisoner by the sultan. Exeept one short campaign against Henry in 1213, which was followed by a truce in 1214, Thicodore reigned the last ten years of his life in peace, beloved by his fricnds and respected hy his enemies. Atter the death of Anna he married Philippa, an Armenian prinecss, whom he repudiated atter she had borne him a son; and in 1290 (?) he ehose for his third wife Maria, the daughter of Peter of Courtenai (Kortryk), emperor of Constaatinople after Henry, who was sister to Robert, the son and sucecssor of Pcter. Theodore wished to give his daughter Eudoxia in marriage to Robert, who was of a very mild and amiable eharaeter, but this marriage was stroncly opposed by the Greek patriareh Manuel, because the two emperors were brothers-in-law, and it was not carried into cffect.
Theodore died in 1222, being between forty-five and fifty years old, in the snme year with Alexis I. of Trebizond. Although he left a son, his suceessor was his brother-inlar Jolin Vatatzes. One of Theodore's daughters, Maria, was married to Λ ndreas, king of Ifungary.
(Nicetas, Alex. Comn., and Balduimus; Acropolita, especially cap. vi.; Historia Franco-Byzant., lib. ini.; Gibbon, Decline and Pall; Le Beau, Histoire du Bus Empire; Fallmerayer, Geschichte des Kaiserthums Trapezunt.)
THEODORUS, Senlptor. [Scur.pture.]
THEODO'SIUS of Bithynia or of Tripolis in Lydia, for it appears that both these descriptions are applied to him (though there is another Theodosius of Tripolis, the anthor of an obscure poem), was a mathematician, of whom there is some question whether he lived about fifty years before Christ, or some eenturies after. Strabo and Vitruvius both mention a Theodosius: the latter speaks of him as the inventor of a dial for every elimate (or latitude): if this be the suhject of our article, he must have lived before Christ. But on the other hand; Ptolemy does not mention him (though this tells little either way) ; and Suidas, enumerating under the head of Theodosius the works we shall presently mention, adds that he was also a commentator on some parts of Theudas: if this be the case, he must have lived after Christ. The balance of authorities seems to he in farour of the former supposition: if the writings only were looked at, there rould be little reason to doubt that thiev were composed before the time of Ptolemy.
We have left of Theodosius-1, £фatprà, Spherics, in
 $3, \pi \in \rho i$ oinninew. The first is a profound and accurate work on what we should now call spherical geometry; the second and third simply describe astronomieal phenomena as they appear in different parts of the world. It is hardly a matter of certainty that the three works have the same author: the second and third add nothing to the fame of the author of the first.

The Spherics were translated by the Arabs, and from their version a Latin one (of little worth) was made at Veniee in 1518, but whether it was published is not stated (Heilbronner). Another Latin version, probably also from the Arabie, was published by Vogelinus at Vienna, 1529, with scholia. John Pena gave tlie first Greek text; with Latin, Paris, 15557 ; and Barrow gave a Latin edition in 167.). But the best edition is the Oxford one, Greek and Latin, 8vo., 1707. The other works were published by Dasypodius, in Latin, Strassburg, 1572, 8vo. Joseph Auria published the third work in Latin, Rome, 1.587 : and (Biogr. Univ.) the second, also in Latin, Rome, 1591 (15̄87. according to Fabricius); but Heilbronner does not mention this last. (Weidler; Heilbronner; Delambre.)
THEODO'SIUS 1., FLA'VIUS, surnamed the Great, was the son of the general Theodosius who had signalised himself greatly during the reign of Valens and Valentinian in Britain and Africa, but was put to death in A.D. 376 at Carthage through the envy of the courtiers. The Theodosii were an illustrious family of Spain, of the town of Italiea, near the modern Seville. The great Theodosius was born in A.D. 315, and was edueated by the ablest men of the time, while his father, himself one of the greatest generals, instrueted his son in the art of war, and accustomed him to the strictest and severest diseipline: He took him with him in his eampaigns in Britain, Gers many, and Africa, and made him aequainted wlth all kinds of warlare, so that the bny became early neeustomed to the enduranee of hardship. The varions oceasions on whleh he distingnished himselt were not overlooked, and he was raised to the rank of duke of Moesia, with an independent command. Here again he distinguished himsèlf above all the other military commanders. He vanquished the Sarmatians, and it was only owing to his intrepid character that the province was not lost altogether. (Ammianus Mareel., xxix. 6 ; Zosimus, iv., p. 219, \&cc.) After the death of his father, in A.D. 376, he obtained permission to withdraw from publie affairs, and retired to Cauca in Spain, where he devoted himself to agrieultural oecupations on his extensive estates, and won the affeetion and esteem of all who eame in contaet with him, for he possessed no less the virtues of social and domestie life than the talents of a general. But he did not remain long in the enjoyment of his quiet happiness : his virtues and talents had made too deep an impression to be forgotten in the hour of need: and on the 16th of January, 379, the emperor Gratian raised Theodosius at Sirmium to the dignity of Augustus: with the eominand over Illyricum and all the eastern prorinees of the empire. The immediate oljeet of this clevation was the hope that he would save the cmpire from the Goths, who in the preeeding year had totally defeated thre Koman army near Adrianople, and were now ravacyiug the country. Theodosius established his head-quarters at Thessalonica in Maeedonia, strengthened the garrisons in those parts of the empire, and restored discipline amowg the troops; but he only ventured upon partial engagements with the enemy, and only on such oceasions when he was sure of suceess. He thus convineed his soldiers that the barbarians were not invineible, and revived theit eourage and their confidence. - The Visi-Goths were this gradually and without any great battle driven out of Thraee. While at Thessalonica, Thendosius was seizerl with a severe illness. He was of a Christian family, but had not yet been baptized, and he now eelebrated this soleminity by the adviee of his friends, in the hope that it would contribute to his recovery. When his illness had disappeared, he went to Constantinople, and the first acts of his administration were to expel alk the Arians from the capital, to assign the churelies they had oeenpied to the orthodox Christians, and to appoint Gregorius Nazianzenus arehbisfop of Constantinople (A.D. 380). His persection of the Arian sect was conducted with such zeal, that oithodoxy was soon restored throughout his dominions. He then held a couneil at Constantinople of 150 bishops to complete the system, the foundation of which had been laid at the eouncil of Nicaca, and a number of edicts werc suecessively issucd, inflicting the severest pu-nishments upon all kinds of hereties. The example of these rigid persecutions was imitated in the west by Gratian, and subsequently in the north also by the usurper Maximus.
As regards his Gothic enemies, Thicodosias was indebtet as much to his good fortune as his military talents; for
anter the death of Fritigern dissemsions and hostilities broke ont anong the Gothic tribes themmelves, and he succerded even in engaging some of their chiefs in the service of the empire. The greater part however of the subjects of loringern, tired of their slate of anarely; made Athanaric their king, who concluded a treaty with Theodasius at Constantinople (A.D. 381). Athanaric indeed did not long survive the eonclusion of this preace, bat his subjects, who were pleased with the kind treatment they had received from Theodosius, willingly submitted to lum, and mmbers of then enlisted under the Roman standard. The treuty of the bing aud the submission of his army was followed by successive separate treaties of the Visi-Gothie chiefs, who promised to become the fathful allies of the Romans. Lands were then assigned to the Visi-Goths in Thrace and Lower Moesia (A.D. 38:). The Ostro-Goths on the banks of the Danube were conquered several years later (A.D. 356), and received settlements in Phrygia and L.jdia. The conditions on which the Goilis became subjects of the Roman empire are imperfectly known: thus much only is eertain, that they acknowledsed the sovereignty of Rome without sulbmitting to her lass or the jurisliction of her magistrates; their clicets also still continued to have the command of their respective tribes in pence and war, and an army of 4000 Goths was maintained for the perpetual service of the empire. Theodosius, although lie had felt obliged, for the satety of his dominions, to make several concessions, yet succeeded in persuading the Goths that all were the voluntary acts of his own sincere friendship towards them. The conduet of the emperor, certainly the wisest that he could adopt under existing circmmstanees, was praised by some and blaned by others. There was certainly every reason for placing little contidence in the professions of the barbarians, although they called thenselves the confederates of the Romans. Their whole nation soon became divided into two parties: the nue, faithful to the empire, was headed by Fravitta; the other, which was only waiting in secret for an opportunity to revolt, was headed by Priulf, who, after he had disclosed his secret in the presence of Fravitta, was slain by him. Had it not been for the firm bnt temperate character of the emperor limself, the indomitable spinit of the barbarians could not have been restrained. On him alone the public safety depended.

In the year 383 Theodosius raised his son Areadius to the rank of Augustus: in the same year his benctactor Gratian was murdered in a rebellion. Naximus, supported by the troops in Britain, had set himself up as emperor, and had eonquered Gaul. Theodosius, who for the present was unable 10 earry on a war, concluded a pence with him, and left him in possession of the countries which he was occupying north of the Alps, on condition that he should not disturb Valentinian, the brother of Gratian, in his rule over Italy, Afriea, and western Illyricum. The empire was thus divided among three emperols. But Maximus had no intention to keep the peace, and his ambition stimulated him to make himself master of Italy also. In A.D. 357 he broke in upon Italy, and took Milan, the residence of Valentinian, by surprise. The young emperor, his mother Justina, and his sister Galla, fled to Thessalonica, 10 implore the protection of Theodosius. The emperor of the East received the fugitives kindly, and as his own wife Flacilla lad died, he married Valentinian's sister Galla, and thus established a direct interest for himself in proteeting the exiled family. The opportunity of chastising the faithless Maximus was very welcome to him, and preparations for war were nade throughout the whole extent of his dominions. In order to secure his empire on its south-eastern frontier, a treaty was coneluded with l'ersia. A large fleet assembled in the ports of Epirus and Greece, and Theodosinsplaced himself at the head of a well-disciplined army, with which he marched into pannonia to meet the enemy, who had pitched his eamp in the neighbourhood of Siscia, on the Drave. A battle was foncht, in which the Iluus, Alani, and Goths, who served in the army of Theodosius, greatly distinguished themselves. Maximus was defeated and put to flight. Theodosius, determined to get possession of his enemy, either alive or dead, pursuctl him as far as Aquilcia, in which town Maximns shat himself up. The usurper, who had no hold ou the affections of the people, was dragged forth from his palace into the lands of the
conqueror, who gave him upas a victim to the rage of the soldiers. Vietor, the son of Muximus, was killed in Gaul by the hand or at the command of Arbomastes, the Frank, who made himself master of Ganl (A.D. 388).
After having thus easily and guickly terminated a war which had threatened the empire with long and serions calamities, Theodosins slayed for three years in lialy to regulate the sate of the western provinces, and it was in this period that he showed his great and nuiable chameter in the most brilliant light. Ife not only spared the lives of the friends and relatives of Maximus, but aftorded them every support in their misfortunes, while, on the other hand, he restored to the oppressed people of the west their lands, and gave then compensation in money for the losses that they had sustained. In the year 359 hie entered Rome in triumph, toget her with his son Ifonorius and Valculinian.
During the period of his stay in Italy an insurrection broke out at Antioch, in which the people demanded redress of several grievances, especially a diminution of their heary taxes. When these demands were haughtily refused by the imperial officers, the populace destroyed the statues of Theodosius, his wife Flacilla, and of his sons Arcadius and Ilonorius. The insurrection however was soon put down, and when Theodosius was informed of the oceurrences, he sent Hellebricus and Cacsarius to intlict the most severe punishment upon the eity: But when messengers came soliciting a milder treatment, and assuring the emperor that the people sineerely repented of their erime, he generously granted them a general pardon. But this gencrous act was followed by another which was as rash as it was cruel. In A.D, 3:0) another insurrection broke out at Thessnlonica, in which Botheric, the commander of the garrison, and several other ufficers, were eruelly murdered by the people, beeanse they refused to give up a handsome boy to the nmatural lust of some dissolute favourite of the people. Theodosius was at first uncertain whether he should take vengeance upon the city or exercise clemency as lie had done towards Alltioch. Jufinus indueed him to do the fommer, and commissioners were aceordingly sent to purish the caiminal inhabitants. Theodosius however soon regretted his step, and countermanded his orders; but it was too late: a general and indiscriminate massac:e took place in the devoted eity, in which no less than 7000 lives were sacrificed to the manes of Botheric. When Ambrose, the archbishop of Milan, was inforned of this cruel massaere, he was seized with indignation and grief; and eight months later, when the emperor, on Christmas-day, wanted to attend the service in the grent church of Milan, he was stopped in the porch by Ambrose, and was not adnitted until he had promised to do public penance for his monstrous craclty. [Ambrose.] It was not till after the lapse of eight months from that day that the emperor, who had performed all the acts of publie penance which the archbishop had imposed upon him, was restored to the commmion of the faithful. An edict was at the same time issued that no eapital punishment should henceforth be inflicted on any one till thirty days after it had been pronounced. During his stay in Italy Theodosins acted as a kind of guardian of the young emperor Valentinian, whom he might have deprived of his empire with the greatest facility and perfeet impunity if he lad been less magnanimous. When he left laly ior Constantinople in A.D. 391, he left Valentinian in the apparently secure possession of the western pat of the empire. It was one of the characteristic features of Theodosius to carry into effect his great plans with the utunost vigour and energy, but when the object was attained he sank into a state of indolence, and gave himself up to the enjoyment of pleasures which. althongh harmless in themselves, in many cases prevented him tion deriving all the advantages from lis suecessful mudertakings that he might have done. This was also the case alter his return to Constantinople. The most important oecurrence in the year of his arrival there was the final and total abolitiou of paganisin throughout the Roman empire. In the following year (302) Valentinian was murdered at Viemma, in Ginul, by Arbogastes, who raised Eugenius, a rhetorician, to the imperzal throne, in whose mame he himself hoped to wield the seeplre. Thicodosius, who had allowed himself to be deecised by the professed taithfilness of Arbogastes, was deeply noved when lic heard of the fate of lis brother-in-law and of
the elevation of Eugenius. But he was at that moment not prepared for a civil war, and the ambassadors of Eugenius were consequently received with apparent favour and dismissed in a friendly manner. Preparations for war however, which lasted for almost two years, were immediately commenced, and Stilicho and Timasius were charged with reeruiting and disciplining the forees. In the spring of the year 394 Theodosius set out from Constantinople against Eugenius. The armies met in Pannonia, and, atter a long and dubious contest, Eugenius was defeated on the banks of the Cold River, near Aquileia. Eugenius was put to death, and Arbogastes in despair put an end to his own life. Theodosius was now sole emperor of the Roman world, and was cheerfully acknowledged by all the provinces, even by those which lad recently paid homage to Eugenius. The empire might now look forward to a period of peace and happiness under the administration of Theodosius. But he was suffering from dropsy, and his health was rapidly declining. He died on the 17 th of January, 395, at Milau, whence his body was conveyed to Constantinople, and buried there. His two sons Arcadius and Honorius had been raised to the rank of Augustus, and the father liad shortly before his death given to Honorius the empire of the West, while Areadius was to occupy the throne of the East. The Roman empire henceforth remained divided into the Western and the Eastern empire. [Rome, p. 110.]
(S. Aurelius Vietor, Epitome, c. 43; Orosius, vii. 34, 35; Sozomen, vii. 2; Paulus Diacon., ii. ; Compare Gibbon, Hist. of the Decline and Fall, c. 26, 27, and 38.)

THEODO'SIUS II., or the Younger, was the son of Areadius, and grandson of Theodosius the Great. He was torn on the lotly of April, 401. His father died in 408 at Constantinople, and left his son, then a cluild seven years old, at the head of the Eastern empire. There is a statement that Areadius in his will made Jezdegerd, ling of Persia, the guardian of his son and regent of the entpire duriug his minority. (Jornandes, De Bell. Pers., i. 2.) This isolated aceount however scarcely deserves credit, and it is a fact that Anthemius, the prefectus prectorio, from the very first assumed the government of the Eastern empire in the name of the young prince, and carried it on in a praiseworthy manner down to the year 414, when he voluntarily resigned it to Puleheria, the sister of Theorosius, who was only two years older than her brother, and had shortly before received the title of Augusta. This woman continued to exercise the sovereignty in the name of her brother, not only after he had grown up to manhood and down to his death, but even three years later, until she herself died. During the early part of Theodosius's life Pulcheria herself conducted and superintended his education; but the prince seemed to possess no ambition, and not to aspire to the glory of a monareh: he passed his whole lific in a perpetual infancy, surrounded by women and eunuchs, and he idled away lis time in hunting, painting, carving, and making elegant transeripts of sacred books. The whole government was carried on in his name; but whether its acts deserve praise or blame, he ean have no share in either, as he blindly aequiesced in all that his sister did. She also persuaded him, in A.D. 421 , to marry Eudocia (hefore her baptism her name was Athenais), the daughter of Leontius, an Athenian sophist. This woman, who was no less distinguished for her beauty than for intellectual powers, soon gave birth to a daughter, Eudoxia, after which she was raised to the rank of Augusta. She lived with her husband till the year 444, when, after having drawn upon herself suspicion of some improper conduct, she was obliged to quit the court, and withdrew to Jerusalem.

In 421 a war broke out with Varanes, king of Persia, which was'suceessfully coneluded by Ardaburius, a general of Theodosius, and a peace was concluded for a lundred years, which lasted at least for thirty. With this exception, the long reign of Theodosius was one of almost undisturbed peace. It was only during the last years of his Iffe that the European parts of the empire were harassed by Attila and his Huns. [Atrila.] The Asiatic provinces, by far the most extensive, continued to enjoy a profound and permanent repose. Theodosius died on the 28 th of July, 450.
(Paulus Diacon., iv. ; Zonaras; Socrates, Histor. Eccles., vii. 1, \&c. Compare Gibbon, History of the Decline and

The reign of Theodosius II. is memorable in the history of jurisprudence through the collection of laws that was made in it, and bears the name of Codex Theodosianus.

THEODO'SIUS 1II., sumamed Adramytenus, emperor of Constantinople. He succeeded Anastasius Il. in the year a.d. 715 , being proclaimed emperor in the fleet of his predecessor near Adramyttium in Troas. He was a man of ohscure birth, and aceepted the throne with reluctance. He is praised for lis unblemished conduct, and for the protection he afforded to the orthodox faith. He had not enjoyed his elevation much more than one year, when Leo III., a man of superior abilities, was proclaimed enperor. Theodosius willingly withdrew, and spent the remainder of his life, together with his son, in a monastery. (Theophanes, Chronographia; Georgius Cedrenus; Compendium IIstoriarum; Zonaras.)
THEODOSIAN CODE. In the year A.D. 429 Theodosins II. appointed a commission of eight persons, at the head of whom was Antiochus, to form a code out of all the constitutions and other laws which had been promulgated since the time of Constantine the Great. The code was to be formed on the model of the private compilations respectively called the Codex Gregorianus and the Codex Hermogenianus. Either nothing was done by this commission, or, for some reason, a renewal of it was thought necessary, and this renewed commission received its instructions in the year A.D. 435. This second commission consisted of sixteen members, with the same Antiochus at its head. In remodelling their materials the commission was empowered to omit the superfluous, insert the necessary, change the ambiguous, and reconcile the incongruous.
The code was completed and promulgated as law in the Eastern empire in the year A.D. 438; and it was declared that the laws enacted since the time of Constantine should only be in force so far as they were incorporated into this code. It was further declared, as it had been on the oceasion of nanning the first commission, that all the general eonstitutions which were made by the emperors of the East and West should be sent from the one to the other, but that each of them should have full power to adopt for the use of his own subjects, or to reject, what the other sent. The code was forwarded in the year 438 by Theodosius to his son-in-law Valentinian III., who confirmed it and laid it before the Roman senate, by whom it was received. In the year 448 Theodosius forwarded to Valentinian other constitutions which he had made since the completion of the code, as circumstances had arisen; and these new constitutions were promulgated in the Western empire in the same year. The new constitutions were ealled Novellae, and all such new constitutions which were interclanged between the East and West, and had reference to the code of Theodosius, were called by the name Novellae. This interchange subsisted as long as the cmpire of the West continued: the last constitution of the kind that we know is one of Anthemius, who was contemporary with Leo I. in the Eastern empire: it belongs to the year 468, and relates to Bona Vacantia.

This code consists of sixteen books, which are divided into titles, and the titles are subdivided into sections. The arrangement of the matter differs from that in the subsequent compilation of Justinian, also called the Code. The code of Theodosius treats of Jus Privatum in the first part, and especially in the second and fourth books, both ineluded, and in the beginning of the fifth: the following books treat chiefly of Jus Publicum. The first book treats of offices, and the sixteenth book treats of matters pertaining to the Christian chureh. The code of Theodosius was the first great compilation of the kind, and it was much used in the compilation of the code of Justinian. It also forms the basis of the code of the Ostrogoths, ealled the Edictum Theoderiei : it was incorporated into the code of Alaric Il., commonly called the Breviariun, in an abridged form, accompanied by a continual interpretation or explanation; and it was used in the compitation of the Lex Romana of the Burgundians, which is often incorreetly ealled Papiani Liber Responsorum.
The greater part of the Theodosian code and of the Novellae Constitutiones exist in their genuine state: the first five books of the code and the beginning of the sixth are chiefly found only in the Breviatium. The excellent edition of J. Gothofredus (6 vols. fol., Lyon, 166\%, reedited by J. D. Ritter, fol., Leipzig, 1736-1740), and also the cdition of the Jus Civile Antejustinianeum, Berlin, 1815,
have followed the text of the Breviarium for the first five looks and the beginuing of the sixth. Hut Cloasius and Perron have subsequently made additions to the first five books, and partienlarly io the first; the former from a Mitan ISS. of the Breviarium, and the latter from a Turin mimpeest of the Theortosian Code. (Thend s. Cond. Gemana Frugmentu, \&゙e., W. F. C'lossius, Tülı., 18i2l, Svo.; Cod. Throdos. Fragmant, ined l.. d.e.. Anad. 1"erron, 1823, atto.) Hiannel has also added to the later luehis. Ziminern, Geschichte des liöme. Privatrechls.)
THEODOTIIN, of Ephesua, the arthor of a Greck version of the Old Testanent, was an Vbionite, and lived in the former part of the second century afler Christ. IIe is nquoted by Justin Martyr, in his dialogue with Tryplron (A.n. 160, and by Irenirus (A.b. Jit). His version apjeans to have beeil undertalien for the purpose of furmisfiing the Ebionites with a more exact annslation of the Hebrew text than that of the Septuagint, and one therefore which wonld render them more service tlan the Septuagint in their disputes with the Jews. It agrecs almost exactly with the Scptuagint, except that it supples the deffciencies of that version, and omits those parts of it which are not in the Hebrew text. Theodotion had not a competent knowlelge of Hebrew. He has retained certain Hebrew words which appear 10 linve been in use among the Ehionites. Theodotion's version of lhaniel was substituted by the antient church for the Septuagint version of that book.
This version occupied one column of Origen's 'Hexapla.' [Origen bs.]
THEODOXIS, or THEODOXUS, Monf fort's name for a division of the genus Nerifa, type Theadorns Latefiamus; Syn, Nerita fluctutilis, Felix de Rnissy.
THEOGNIS (Oioypic), an elegiac poet of Megara, the capital of the small state of Megaris, was living at the close of the sixth century s.c.; and it appears from his own writings that he lived to the date of the battle of Salamis, u.c. 480. In one of those revolutions which frequently oecurred in the small Grecian states, the denocralic body at Megara overpowered the aristocratie, to which Theognis belonged. Theognis, who was then absent fiom his country, lost lis Ianded property in this revolution. which, with the rest of the 3legarian territory, was partitloned among the successfin party. It appears that he lived in exile at Thebes. The fragments of Theognis abound in alhasions to the revolution by which he had suffered, and he expresses in bitter languge his complaints against that base class which had usurped the station and property of the body to which he belonged. He had also the mortification of seeing a rich rivnl of mean birth preferred to him by the parents of a girl whom he compted. Yut he was in sone measure indemnified for his loss by retaining the affections of the girl after slie had mamied his ignoble rival.

It appears from lis verses that he had been in Sicily, Euboca, and Sparta; and it was in Sicily that he wrote one of his elegies which was addressed to the Sicilian Megarians, who were a colony from lis native state. There seems no reason to doubt that his elegies were composed on various oceasions and on particular subjects, and that so far they resembled the elegies of Tyrtans, Archilochus, and Solon. But as these elegies contained numerous reneral maxims or lessons for conduct, it is conjectured that in the course of time nearly cverything was omitted from them wheh had a partieular npplication, and thus the degies of Theognis were formed into that general collection of gnomae such as we now have it, consinting of above fourteen hundresl hexameter and pentameter versea. It is observed that nearly all the passanges in this collection whith have Ω political reference are addresecd to a person named Cymus, the son of Polypns. Syrnua appears to be a youth of noble family for whom Theognis has a tender regard, and whom he exhonts to the jpraetice of virtue, to prudence in conduct, and to the elljoynient of life.

The yerses of Theognis contain many allusions to the nynuposia, or entertainments, of the Grecke, in which it was Itwal, after the libation had been duly performed, for sonte of the guents to wing a proem, accompanied by the flute. This poem, or clegy, wns addressed cither to all the compray, or, as appcain to have been always the cense with the clegics of Theognis, it was addressed to a single person.

The fragments of Theogais lave been offen printed.

They were first printed in the Collection of Gnomic poots by Aldus. Veniee, 149.5 ; and they ure contained in Gaisford's ' Poetae Minores Gracei,' Oifurd, 1814-3). One of the latest and best editions is by F. T. Welcker, Frank-forton-the-Main, 1836. They were translated into German verse, with sloort noles hy G. Thudichum (IS28); and also by W. E. Weber ($183 / 2$ t?
(Müller, Distory of the Lit rature of Amtient Gireere, vol. i. ; Hofmann, Iexic. Bibliograph.: Fabricius, Rubliotheea lirreca, vol. i.)

THEOLOGY (3odoyia, the seience which relates to Gor).
In order to guard against any misconeeption of the objeet of this article, it seems advisable to state in the outset that it is designed to treat the subject of theology parcly in a spientilic and historical point of view. Aly discussion of the doctrines of Christian theology, or any attempt to frame a systent of Clristian theology, would be inconsistent with the plan of this work.

1. Depivition of Tbrass.

All that men know of the nature of God, considered absolutely, of the relations between God on the one hand, and themselves and other beings on the other, together with the consequenees resulting from those relations, and the duties arising out of those relations:-all this knowIedge is described by the word religion. To reduce this knowledge to a systematic form, is the province of the science of theology; and the truths of religion, when arranged in a scientilic form, constitute a system of theology. Theolniry stands to religion in the same relation as that in whels every other scienee stands to its subject: for instance, natural philosoplyy to matter, metaplysies to the mind, philology to language. By many writers the words theology and religion are used as synonymous terms; but such a usnge of them is incorrect. "Coinpare Religion.]
The above definition applies to the word as it has been understood for some centuries; hut its earlier use was somewhat different from this. The Stodoyia of the nu-
 of divine existences; and it included all questions relating to the origin, the nature, and the service of the gods. As relating to the urigin and morle ol cxistence of the gods, Alistotle uses the verle siodoyic (Milaghlys... i. 3); and Cicero the noun theologus (De Nat. Denr., iii. 21 . In a wider signification the word is used by Varro (Augusin., DeC゙ivitat. Dei, vi. 5 ; compare Euschius, Praepurat. Eraug., is: 130), who distinguinhes three different kinds of theology: (1) $\mu v \theta$ Uudov, or fubulosum, mythical or leyendary): (2) фvoixus, or naturale (physical, or rclating to the nnture of the gods) ; (3) тolerisiv, or cirile (political or popular). Of these the first is the theology of poets, the second that of philosophers, the third that of the people; or, as Varro expresses it, The first is chiefly adapted to the theatre, the seennd to the universe (ad mundum), the third to the city.

In the New Testament the word is not used. (The title of the Apocalypse, in which the word Otodoyos is applied to the author, is much later than the book itself. [Apocaivpse.] The sinuler terms knouledge (ywasac) and faith (siotic) are those which approach most nearly to the meaning of the word theology; but the fact being that theology, rs a system, is not faught in the New Testament, there is nothing surprising in the absence of the worl.
In the carly Christian chureh the word was sometimes used in the general ctymolagieal sense of the science which relates to God and divine things; but we also fini] it employed at a very early period in a peculiar sense. In the controversies respeceting the nature of Mrist, the orthodox party adopterl as a kind of uofto the dogma of the Evangelist. Feds inv of λ or oos (the Wiurl was God, Juhn, i , 1, and the menning whelh they atfached to that sentence was transferred by thein to the word Otohoyia, which therefore, in this use of it, may be defined as the doetrine concerning the divinity of the Word. [lumos.] It is in this sense that the epithet Sronoros is applied to the author of the Apocalyise. In a slort time the word acquired a meaning somewhat more extended, and was used to describe the whole teacling of the charch concerning the Trinity.
Lastly, the modern usage of the word, as expressed in
the a\%ove definition, was first adopted by Peter Abailard (olb. 1112), who drew 11p a system of scholastic divinity, to which he gave the title of 'Theologia Christiana.'
It should be remarked that instead of the Greek word theology, the Iatin word divinity is often used to describe the seience of religion.

II. Foundations of the Science.

Like every other science, theology consists in the application of the hurnan reason to certain ascertained truths. These truths are, as is plain from the definition, the truths of religion. If therefore the existence of God, of attributes belonging to him, and of relations subsisting betreen him and men and other beings can be proved, the toundations of theology are laid. Now all mankind, with the exeepfion of a most insignificant minority (if indeed, which has often been doubted, the existence of a real atheist be pos--ible, beliere cither that these subjects are within the natural compass of human knowledge, or that some kind of revelation respecting these subjects has heen made by God to men. [Religion; Revelation.] Therefore, according to the general sense of mankind, theology is a possible science, founded upon knowledge derived from nature, or from revelation, or from both these sources.
Now, it is true.that attempts have been sometimes made to frame a system of theology entirely out of the religious truths whieh may be learned from natural sources, that is, from the constitution of the human miud, and from the phenomena of the mental and material universe. Such truths constitute Natural Religion, and form the subject of the seience of Natural Theology. But the vast majority of religious systems are founded on the supposed existence of a divine revelation; and for this reason the science of theology is generally understood to have reference to Recealed Relizion. Morcover, if it be true that a divine revelation has been given from God to man, it will follow that that revelation camnot possibly be contradietory to any of the truths of natural religion : also many reasons might be urged to show that such a revelation, when completed, wrould contain in itself at least all the truths of natural religion, and, as a matter of fact, all the alleged revelations in existence claim to teach cyerything which might be learned from nature concerniner God; and hence the theology which is founded on revelation must include within itself the theology which is founded on natural religion. For this reason the grand foundation of theology is usually understood to be revelation, to which natural religion is a valuable but not nccessary auxiliary; and it has even been disputed whether it is an essential part of a theologian's duty to establish the consistency between the doctrines of natural and reyealed religion.

Henee, with reference to the Christinn religion, theology is founded entirely upon the eanonieal books of the Old and New Testanment.

III. Dintions of the Science.

1. With reference to its foundation, it is divided, as explained in the preceding paragraph, into Nuturel and Rerented, or positiec. The latter word is used to indicate that the foundations of revealed theology are the expressed will of God; just as we speak of positice laws.

The tern positive thealogy is also used to describe any system of theology which rests upon authority, as, for :xample, the system embodied in the formularies of a particular church. See below, under the head of $D_{0 \text { g- }}$ mutic Theologyle
2. According to the nicthot of treating the subject, $i t$ is divided into popitar or biblical, and systematic or scholaztic theology.
3. According to the part of the subject which is treated of, it is divided into theoretical and practical theolory. Of these the former includes - (1) The knowtedge of the documents which contain the revelation, the proof of their authority, and the explanation of their meaning, that is, Vineretical Theology; (2) the investigation, arrangeme nt, and discussion of the truthes so revealed, that is. Systemacic Thenlogy; (3) the workings and changes of religion anong those who have professed it, or Historical Theolog?! Prarticul Theology has for its subjects the duties of practical religion, and the various modes of enforcing then on raen; and with reference to the latter, it is divided intc (1) Homiletics, or preaching ; (2) Catechelics, or teaching; (3) Liturgics, or worship and the administration of the
sacraments, and (4) Pastoral theology, or the eare and government of a church.
IV. Of Dogmatic Theology, or Dogmaties.

This is a very useful term, which is ehiefy employed by German writers. It may be defined as the science of exhibiting clearly, and of tracing te their results, the doetrines taught by revelation. It means more than the term systematic theology. The province of the latter is simply to give to the seattered truths of revelation the scientifie form of a connected system, in whatever manner may seem most convenient to the framer of the system; but dogmatic theology aims at forming a system which shall be accepted as binding by a large body of religionists, and then vicws all religious tuuth in the light of that system: it is systenatic theology, with the idea of authority superadded.
This may perhaps be mude clearer by a reference to other branehes of science. The natural philosopher, for example, observes certain phenomena, which he soon finds to have in them some points of connction or similarity; and by arranging the phenomena with reference to those points, he has reduced his knowledge of natural philosophy to a sort of system. He may have been deecived in his observations; the analogies he thinks he has detected may not really exist: but still the system he has framed may be for him a convenient classification of the observed phenoruena: his system is a theory. But suppose him to proceed further, and to deteet (in his own opinion) the rea.l causes of the observed phenomena, and to trace them to further results: suppose that he frames a systen of natural philosophy upon the principles which he has thus detected; and that this system is received by a number of menn as furnishing a true explanation of the observed phenomena: then his theory has gained the element of authority, and it may be called a dogmatic theory. The former kind of theory may serve as an illustration of what is meant by systematic theology; the latter, of what is meant by dogmatic theology.
Now, in the ease of the Christian revelation, it is a remarkable fact that the documents which contain it present no systematic form. The truths revealed in them, considered separately, may be called dogmas, since they all conlain the element of authority; but as they are not svstematically arranged, they do not form a system of dogmatic theology. But to such a system they might be reduced by a person who fully understood them in all their bearings; and supposing his qualifications for the task contplete, his system would be a perfect system of dogmatics: absolutely true if the revelation were a trie one; and therefore absolutely binding on all who accepted the revelation as true. Now, as a matter of fact, such an attempt has been made again and again: many systems of theology have been framed, each claiming to give an exposition of the word of God at onee true and scientific. It is also a matter of fact that these systems have presented different and contradictory results : but many of them have been accepted as true by bodies of Christians; and they therefore torm, to those who accept them, systems of dogmatic theology: and in many cases these systems are emborlied in creeds, or confessions of taith, which then become for all future time the dogmatics, or positive theology, of those who accept them.
It has very naturally been usual for persons adopting a system of dogmaties to look upon their system not only as probably truc, but as absolutely trie ; and hence they have given to it the title of orthodoxy ($\delta \rho \theta 0 \delta_{0} \xi_{i}$, , the right belicf), applyine to every other system the name of heterodoary (ítegoiokia, another belict, i.e. than the right one). $13 u t$ it is deserving of notice that there are some subjects upon which a partieular opinion has prevailed so extensively among Christians, that the word orthodoxy is applied to that opinion, for the sakc of convenience, by persons who do not intend thereby to give their assent to the absw. lute truth of that opinion. Such a use of the word is found very convenient in ceclesiastical history. [Heresy.]
Illustrations of these remarks are furnislied by the manner in which we commonly speak of the dogmas of the Roman aut English ehurches, of Calvinistic and Arminian dogmas, of the orthodox and hetcrodox doctrines respecting the person of Christ.
Out of Dogmatic Theology springs Controversiul Theology, or that mode of treating the subject of religion in

Which ome paitienlar system of dommaties is definded, or some other sistem attactied.

V. IXistory of Tins logs:

It is by no menna intended to eive under this head a sketelt of the lifatory of the Chirstian elurelt, considered with reference to the development and discraties of theolorical apinions within it. Such s statement would be, properly speaking, a listory of theology, and indeed such a lisiory is at present agreat desidernitum in our liternture. But the information which would be given on this hend will be found for the most part alrendy scaltered through this ' 'yeloperdia' in separate articles, to which therefore the renter is referred. . Ill that will lee atiempted here is to point out the churacteristic elements ont of which the prevaibng theology of ditherent periods has been formed. The first thing to be done, then, is to elnssify those elements.

In the widest sense of the word Theology, including both natural and revealed theology, we lave among theologinns who reject revelation the systems of (1) Alheism, or that doctrine emeerning God which rejeets his existcuce ultomether ; (2) Deinm, or the system which leaches that God is the Creator of all things, but that havinge once created them and impressed upon them ecrlain laws tor the rectulation of their future existenec, commonly called the lues of mature, he las left them to the rovernment of those laws, and concerns limself no more with his creation; or in otler words, this system acknowledges the existence of God, but denies his providence. (3) Theism, the system which differs from Deism hy acknowledging the jrovidence of Got. The systems of Deism and Theism suppose the existence of an Almighty Creator, whose existence is independent of the unverse (principium ertramundanum); but there is another system according to which the luws of nature are in themselves the cternal self-existent causes of a!l the phenomena of the universe, and there is no eansative principle external to mature. This system takes two different forms: Materintism, whieh makes all the phenomena of nature to result from the physieal constitution of matter itself; and the various shades of Puntheism, which suppose an intelligent prineiple (anima mundi) to be inseparably connected with everything that exists, and to pervade the whole creation.

There is another system which stands apart both from Naturalism and Revelation, mamely Sceplicism; the leading principle of which is that in metaplysical inquiries, or in short in all subjects which do not admit of mathematical demonstration, certainty is unattainable, and consequently that neither trom nature nor from a supposed revelation can we derive a sure religious beliet nor a rational system of theology. [Scerticism.]

These systems deserve notiee in connexion with the history of theology, inasmucli as they relate to the same cliss of subjects as those which are embraced in theology: and they belong particularly to the history of Christian theology, inasmuen as at every period these systems lave been brought more or less into direct collision with Christianity itself. But according to our more restricted deffnition of theolazy, as the scienee whieh is founded 11 pon a divine revelation, and more especially as the science Which has for its subject the relimion of the Old and New Testaments, it will be tount that the principal varicties in theologieal systems have arisen ont of different opinions conceming that reselation itself, cither with reference to the degree of its authority or to the mode of its interpretation.

1. Witls reference in the former point, the authority if the N-riplurps, it would secm an axiom that every person who aceepts them as a divine revelation innst receive them as of full quthority in matters of faith, sond rousequently that everysystem of theology must rest upon the admitted and unquestionable aulhority of the Seriptures. For this reason it would appear that all guestions respecting the ant hority of the Scriptures are rather introdnctory to thenlogy than a part uf the science. But in point of fact diffirent opinions are held on this matter ly those who profie of leeceive the christinn religion, and therefore such 0, inions are considered to form a part of Cliristian theologr.
Now with referenee to this point every possible variety - thonogicul opinion may lie included unde; the two great divisions of Sugraneturalism and Antisupranutu-
ralinm or Rutionalism: the former word being used for that theolocy which resty puofe edly on a ppectal, supernaturnl revefation from (iod, and the latter for that system which rejects all that is supernatimal in such a resclation. The terms liatioualtsm and Nofarul Theology, though etymologically meaning the same thing, are cmployed to deseribe different theological systems. Both make the foundations of theulney to rest inpon the linowledge concerming God which may be leamed by mere naturnl means; but in natural theology the ides of a revelation is not even entertained, while rationalism (in the modern sense of the worl) professes to regard the Seriptures as possessed of some degree of anthority, and indeed ns upon the whole containing in some form or vther the elements of religious trath.
The great question between supranaturalism and rationalisin relates to the inspiration of the Seriptures. The adherents of the former system, though they difler respecting the mode in which sinpernatural information was eonveyed to the minds of the satred writers, agree in the great prineiple that they did reecive such inlormation as to preserve them from all crror in the statement of religious trath. Ratimalists, on the other hand, cither reject the dogina of inspiration altogetlier, or undesstand ly it nothing more than that by the ordinary providence of fiocl the natural faculties of the writers were brougltt into the best state for exercise while they were eomposing the Seriptures. Generally speaking. the mtionalists almit the writers of the Scriptures to lave had better means of information on the subjects they wrote about than any other persons could açuire : and therefore, while reserving to themselves the liberty of choosing what they will believe and what they will disbelieve, they upon the whole accept the facts and opinions contained in the Seriptures th the bajis of their theolory: [Reveration.]

There is also a diflerence between supernaturalism and rationalism respecting the mode of interpreting the Seriptures: the former holding that the aid ol the Spirit is still vouchsafed to the lumble inquirer into religious imith; the latter denying the existence of any other means of understandint the Scriptures than the hatural powers of the human mind.

Some of the many forms which rationalism lias assumed during the last century are nlmost indistinguislable from some of the forms of ninturalism. [R.stioviniss.]
2. Supposing the Scripture to be receeved as strictly a divine revelation, the questions arise:-By whom, and on what principles, are they to be interpreted?

The opposite opinions on this point may be ealled the Profestanil and Catholic, or the biblical and positive sys. tems of theolocy: The tundamental principle of the l'rotestant or biblical system is that the Seriptures are to be interpreted by each individual reader accordiner to the ordinary laws by which the meaning of uny other book is aseertained; while the Catlolic or ponstive systems mpposes the existence of a positive mode of interpretation, lumded down by a tradition in the visible clurel through all aces of Clirisianity, and forming in fact a system of dogmatie theology, from which no individual is at liberty to difler upon the evidenee deriver from his own rescatel. The Protestant theology may be supramaturalistic or rationalistic, aecording as it admits or rejects the dogma of the divine assisance granted to the inquirer; and it also branceles out into two great divisions, which may be called popular and crifical theolory. The popular theology professes to be derived from the obvious meaning of the lefter ot Scripture, withont any extermal aid: the eritical theology is based upon the principle that, although (ind has granted to every humble and diligent inguirer the power of learning trom the liblele itscelf all religious trnth which it may le neeessary for lis safety that lie should huon: yet that there is a body of religious truth in the linle whiclt ean only bediscovered by upplyine to its interpretation all the resources of human lemming and of eritical investigation, and therefore that these means must be cinployed in order to the construction of a complete syistem of theology.

One important difference lectween the Prolestant and Catholic systems is in the nse they matic of the lody of historical testimony to the doctines of ('hristianity.

The Cathotic system ustecms it the privilege of the tme churel to be the ererain possenar and the anthonised expositur of religious truth. In many of the antient Cliss-
tian writers it recognises members of the true chureh and authorised teachers in it; and therefore it regards the doctrines taught in their writings as the true doctrines of Christ. The obvious difficulty presented by the different opinions of various writers is removed in various ways. Vincent of Lirins has stated the Catholic dogma in the following form:-‘'That which has been held always, everywhere, and by all, is true.' (Quod semper, quod ubique, \&c.) But who are the all? All the orthodox: and it is the province of the church to determine who are orthodox and who are heretics; and if the deeision of the church on this point be doubtful, the appeal lies first to its authorised teachers individualty, and then to their colleetive voice as given in the decrees of a general council.

On the other hand the Protestant system recognises in the carly Christian writers nothing more than persons of various degrecs of ability and information, whose statements and opinions are to be aceepted or rejected entirely upon the grounds of ordinary critieism, and neither their teachings nor those of any other person whatever are allowed to have any authority beyond that duc to their intrinsic worth and to their agreement with Seripture.
The application of these principles to the canon of Scripture is an important point of difference between the Roman C'atholie and Protestant systems. The former rests upon the authority of those books which have been deelared canonical by the voice of the ehureh as expressed in general eouncils; the latter looks to historical and eritieal evidenee to determine the genuineness and authenticity of the books of Scripture, and then it finds the evidence of their inspiration, and consequently of their authority, in the statements and silaims of the writers themselves, which rest not merely on the eslablished honesty of the writers, but chiefly on the attestation of the miraeles they wreught. [Canon; Miracles.]
3. Another mode of interpretation leads to the systems of theology which are cmbraced under the name of mysficism, the great principle of which is, that within the nind of the true believer there exists a sense of truth which will always lead him to a surer and higher knowledte of religion than he eould ever gain from his own eritical inquiries or from the teaching of other men. [Givostics; Mystics.]
4. To trace the relation of one set of truths to another, and to show the coineidenee of the same trithis when proved by different trains of reasoning, is one of the highest objects of truc philusophy: and, on the other hand, an unwillingness to renounce a cherished belief when it is found opposed to a ncwly discovered truth, is onc of the strongest tendencies of the human mind. Hence lave arisen numerous theologieal systems aecording as men have brought the tenets of Judaism, the systems of heathen religion, and the reasonings of philosophy, into comparison with the statements of the New Testament. From the first of these processes arose the Judaizing sects of the first two or three centurics, from the seeond many of the early herenics, such as Manichæism [Heretics; Manicuees], and from the third the theology of the New Platonists and others of the early Alexandrian school, and that of the schoolmen of the middle ages.
5. Besides the classification, which we have thus attempted, of systems of theology, aecording to the fundamental principles on whieh they rest, there is another important division of them aecording to their actual differences of doctrine. On this subject, for the reasons above stated, the reader is referred to the several artieles in which an account is given of the tenets and history of the principal doctrinal scets.

It only remains to give a slight sketch of the influence of these different systems in the history of Christianity. At the rise of Christianity the popular biblical system was that which naturally prevailed, with a partial intermixture of the positive system, arising out of the great deferenee always paid to the first teachers of a new religion by their disciples, and more especially out of the authority with which the apostles were invested. The novelty and simplicity of the religion impressed its truths clearly on the minds of the first belicvers, who had no historical difficulties to solve, no contending sects to deeide between, and no leisure to speeulate on the ultimate consequences of the doetrines they reeeived, or on their relations to other supposed truths. If a difficulty arose, their teachers were at land to solve it. And accordingly the language of the
F. C., No. lij20.
apostolic epistles invites the believers to examine the truth for themselves and to receive it in its simplicity, though it also gives hints of the existence of a consistent system of truth, and claims on the part of the apostles to be the teachers of that system. But they did not teach it as a system, and it is only in the later books of the New Testament, the writings of John and some of those of Paul, that any tendency to reduce Christian truth to a system becomes apparent. The degree of freedom thus left to believers was abundantly used, and before the elose of the apostolic age different opinions had sprung up, exemplifying nearly all the principles above deseribed. [Hererics.] To restore unity to the church, and especially to settle the orthodox doctrine respecting the person of Christ, was the object of the Council of Nice, in the ereed of whieh we find the first appearance of a system of positive theology. [Nice, Council of; Nicene Creed.] The immediate consequence of this Council however was to exasperate the very controversy which it professed to settlc, and which continued to rage during the following centuries. [Arians; Nestorians; Theodoretus.] These and other controversies led to the frequent meeting of councils [EEvmevical Councils], and to the settlement of the canon of Seripture about the end of the fourth eentury [Canos]; while at the same fime the episeopal system became more and more firmly established; and from all these causes theology acquired more and more the form of a positive system, the most complete devclopment of which is presented by the Greek and•Roman churches. [Catholic Church; Greek Church.]
The positive system evidently leaves little liberty to the speculations of an active mind, or to the practice of serupulous or turbulent individuals. Those of the former class sought for satisfaction in the scholastic philosophy; those of the latter made repeated attaeks on the ruling system, which at last produced the Reformation in Germany and England. The scholastic philosophy was at its height from the 11 th esntury to the 14 th. It was for the most part a revival of the philosophy of Aristotle. The schoolmen were in profession firm belicvers of the Catholic doctrine, and generally suceceded in gaining rather praise than censure from the rulers of the church. But within the limits thus preseribed for them they pushed the application of their philosophy to theology to the utmost extent, and occupicd themselves especially with the most subtle questions on the nature of God and angels, and on points of casuistry.

The Reformation was far from abolishing the positive system in Protestant countries. To hold their ground against the power of the church of Rome, the reformed churches strove to make for themselves a visible and united constilution, and for this purpose they adopted symbols of faith and worship, which constituted for them respectively bodies of positive theology. The various dissenters from these reformed churches, though generally leaving them on the ground that their theology was not purely Protestant, still prescrved much that was positive in their theology, either by a tacit consent or by a formal confession of faith. And thus it has happencd that, to the present day, thcology is far less a system bascd upon and continuing to challenge scientifie inquiry, than the exposition of a body of positive law.
Still there have always arisen individuals and parties who have claimed for themsclves the utmost latitude of that right of private judgment which is the basis of the Protestant prineiple. Since the Reformation there has always existed, especially in England, a large amount of biblical theology, whieh has been chicfly of the popular sehool, but which, since the middle of the last eentury, has continually gaincd more and more of the critical elencent, both here, and still more in Germany; and it may be now safely affirmed, that with an admixture of the mystiead theology, the adherents of whieh have always formed a considerable minority among Christians, the prevailing theologieal systems of the present day are the catholic and the critical.
It would be impossible within the limits of this article to give a list of even the best writers on theology. The following arc taken at random as among the best, and as directing to other sourees of information. The 'Institutes' of Calvin; the worls of Turretin, Maestricht. Pictet, Doddridge, Bishop Watson, Richard Watson, Dwight, Ernesti, Bertholdt, Schleiermaeher, Bretschncider, Nitzsch, and
other recent German writers, umong which may be especially mentioned, as having been used in the composition of this article, Hahn's Lehrluch des Christlichen Glaubens. Jejpzig, 1823.
TIIEON, all eminent Greek painter, who was a native of Samos, and appears to have lived in the tirue of Philip and Alexander of Macedonia. He was reckoned one of the first masters of his age, on account of his powers of invention and the gracefulness of his execution. (Quinetilian, xii. 10.6.) We know the subjeets of only a few of his works, but the execution is spoken of in sucla a manner that the excellence of the artist cannot be doubted. Pliny (Hist. Niat., xxxy, $40 ; \$ 40$) mentions two of them, the one representing Orestes in the act of killing his nother (compare Plutarch, Do Audiendis Poet., . . 18, ed. Frankf.), and the other Thamyris playing the cithara. A description of a splendid painting by Theon representing a youthful wartior, who, animated by a martial spirit and eager to fight, is hastening to meet the enemy, is given by Aelian (Var. Higt., ii. 44).
TIIEON, AELIUS, a rhetorician and grammarian of Alexandria, who, according to some critics, lived about A.d. 500 , but, aceording to a more probable opinion, about A.d. 315. According to Suidas he wrote a commentary on Xenophon, on tho orations of Demosthenes and Isocrates, a work on rhetoric, one on the structure of language, Progymnasmata, and several other books. With the exception of the Progymnasmata ($\pi \rho \circ \gamma^{\prime} \mu \nu$ áapara), or practical rules on rhetorie, derived from the examples of the best Greek orators, there is no work extant that can be ascribed to him with certainty. Theon's Progymnasmatn excel those of Aphthonius in elegance, precision, and clearness, and were, like those of Aphíhonius, long used as a text-book in schools. The first edition appeared at Rome, 1520. 4 to. ; that of D. Ieinsius at Leyden, 1626, 8 vo. Selheffer's edition, Upsala, 1070 and 1080 , is incorrect. The best edition of the text, accompanied by Greek scholia, is in Walz's ' Rhetores Graeci,' vol. i., p. 145-202
Kuster (on Suidas, ii., p. 182) ascribes to Theon also the still extant scholia on Aratus, A pollonius Rhodius, Lyeophron, and Theocritus. The imigroduroi rimo which are contained in Aldus's and Cujacius's collections of epistles, are likewise attributed by some writers to Theon, while others assign them to Libanius or Proclus. A separate edition of them appeared at Leyden, 1614, 12 mo .
(A. Westermann, Geschichte der Griech. Beredtsamkeit, p. 230, \&ec.)

THEON. Theon, the Elder, of Sinyma, was the contemporary of Ptolemy (who cites one of his observations), but a little older. Theon, the Younger, of Alexandria, the commentator on Plolemy, and father of Hypatia, lived in the latter half of the fourtls eentury.
Of Theon the Elder, or Theon of Smyrna, we know nothing but that he was a follower of Plato, and has left a
 חגárwvos áváyvoov, or, on the parts of mathematics whiels are useful towards a knowledge of Plato. Other works have been mentioned written by some Theon (there are many of this name), but they are lost. This work consisted of four parts, treating on arithmelic, music, astro-
 áppovias). Bonillaud (Gr. Lat., Paris, 4to, 1G4t) published the first two of these parts, or what he found of then, from a manuseript which came from De Thous library; together with what he supposed to be a fragment of the thind, from the King's library. Isaae Vossius assured Bonillaud that the third part was to lee found in the Ambrosian library at Milan, but it has never appeared. Irofessor de Gelder, of Leyden, has recently (Gr. Lat., 8vo., Leyden, 1897) published the arithmetic, with ample notes and dissertations.
Of the private life of Theon tho Younger (who was also a Platonist) we know nothing, except that he professed the ancient heathen doctrines, which led to the memorable fate of his daughter Hypatia (a.d. 413), a crime which will exeito disgust and indignation to the end of time. The words of the ceelesiastical historian Socrates, from Wells's translation (1709) of the Latin of Valesius (IIenry of Valoss), are as follors; and his simple manner of narrating, in all its enormity. a circumstance which it was so much the interest of his party to conceal, or at least to soften, might lave been a leswon to his successors in the task of writing listory: - There was a woman at Nlexandria by name

Hypatin. She was daughter to Theon the phulosopher. She lad arrived to so eminent a degree of learning that she execlled all the philosophens of her own times, and succeeded in that Platonic school derived from Plotinus, and expounded all the precepts o. philosophy to those who would hear her. Wherefore, all persons who were studious about plilosoply flocked to her from all parts. By reason of that eminent confidence and readiness of expression wherewith she had accomplished herself by her learning, she addressed frequently even to the inagistrates with a singular modesty. Nor was she ashamed of appearing in a publie assembly of men, for all persons revered and adunired her for her eximious modesty. Envy armed itself against this woman at that time. For, beeause she had frequent conferences with Orestes,' the prefect of Alexandria, 'for this reason a calunny' was framed against her among the Christian populace, as if she hindered Orestes from coming to a reconciliation with the bishop. Certain persons therefore, of fierce and over-hot ininds, who were headed by one Peter, a reader, conspired against the woman, and ohserved her returming home from some place; and having pulled her out of her ehariot they drayged her to the eliurelis named Casareum, where they stripped her and murdered her with shells,' or broken erockery: 'And when they had torn her piecemeal, they carried all her members to a place called Cinaron and consumed them with fire. This fact brought no small disgrace upon Cyrillus,' the bishop [Cyar], 'and the Alexandrian clureh.' Damascius (the nuthor of the Life of Isidore, in Photius) says, that Hypatia was the wife of this Isidore, and that Cyrillus was the instigator of the murderers. Some particulars are added in Suidas ('`maria), who states that Hypatia was beautiful, and adds an meedote which it is not desirable to repeat, but which, if true, entitles her to be called the most singularly straight-forward of women. He says she wrote commentaries on Dioplantus, and the Conies of Apollonins, and also an astronomical eanon. A fuller account of her may be found in Nenage's 'Lives of the Female Philosophers.'

Theon of Alexandria is known as the commentator of Ptolemy and the editor of Fuelid. There is a commentary on Aratus which is said to have been his, but Grotins is of opinion that it is the work of several hands, for which he gives good reasons. The whole of the commentary on the Syntaxis is preserved, except one or two hooks. A full account of it is given in Delambre's Itistory of Antient Astronomy, who observes that it helps but little in the understanding of the Syntaxis, and gives none of that additional intormation which is usually expected from a commentator. This commentary was first printed in Greek, in tho Basle edition of I'foleny (1538). [System, Pronemaic.] J. Baptist Porta published two books only (Latin, Naples, first book 1588 , first and second $1 \mathrm{CO} \mathrm{O}_{5}$), and Halma gave an edition of these same books (Greek and French, Paris, 1821, 2 vols. 4to.). Besides the commentary, we have the каvoiveg т¢oxzepol, or manual tal)les, described by Delambre from the nianuseript, and since pullished by IIalma (Greek and Freneh, Paris, 18:2-23,2 vols. 4to.). They contain a description of the modes of astronomical caleulation in use at the time.
It only remains to speak of Theon as a commentator on Fuclid, n character which some still persist in giving him. The fact is, that Theon, as he himself informs us in the commentary on Ptolemy, gave an edition of Euclid, with here and there an additional proposition. [Grometre; p. 155.] Sone manuscripts of Fuclid call this a commentary, and our fathers of the middle ages got the notion that all the demonstrations were commentaries supplied by Theon, only the enunciations of the propositions being Euclid's. For instance, in the folio of 1516 (Stephens), in which the propositions are given twiee, namely, Adelard's translation (ealled Campanus's) from the Arabie, and Zambertis, from the Greck, in this work the enunciations are headed Euclides ex Campanoand Euclides er Zanberto, but the demonstrations are headed Camiqminus and Theon o.r Zamberlo. Again, in 'I quindiei Libri degli Flementi di Euclide, di Greco tradotti in Lingua 'Thoseann,' Kome, 154\%, we find nothing but the enunciations of the propositions. The editor has Fept his word, and given all he believed to bo Euclid's: had he meant to pive demonstrations, his title would have been 'Enelid, with Theon's Commentary.' Many editions professing to give Euelid in Greek and Latin liave the enunciations only in Greek, a necessary
warnugg to a person who wishes to buy Euclid in the original. Hence arises the pertinacious continuance of the assertion that Theon commented Euclid: so late as the article 'Theon 'in the 'Biographie Universelle,' we find this statement made; and even more, namely, that the commentary by Theon was published at the end of the Basle edition of 1533 , in Greek, that it was translated into Latin by Commandine, and has been often republished. Any one who looks into the Basle edition will see that the commentary at the end is by Proclus, not by Theon.
Rabert Simson, and uther editors who alter according to their own ideas of perfection, and then swear that they have restored Euclid, always lay the blame of the supposed altcrations upon Theon: Simson's phrase is, 'Theon, or some unskilful commentator.' There is no reason to suppose that Theon altered Euclid: all that is known is, that he added occasionally, and, if we look at those additions which it is certain he made, judiciously.

THEO'PHANES, a native of Mitylene, was a contemporary and fiiend of Pompey the Great. During the war between Rome and Mithridates, when the Mitylenæans supported the king and delivered up to him the Roman general Manius Aquilius, Theophanes, who refused to take any part in the revolt, was expelled, and went to the camp of Sulla. (Velleius Pat., ii. 18.) In Italy Theophanes became acquainted with Pompey, formed an intimate friendship with him, and henceforth accompanied him in all his expeditions. After the termination of the war against Mithridutes, Theophanes endeavoured to perpetuate the exploits of his friend. His history, which is now lost, appears to have been a work of no mean order, for Strabo calls Theophanes the most distinguished Greek of his age. Although he is not charged with having sacrificed the truth, yct he was undoubtedly anxious to wipe off any stain that was attached to the family of his friend. Pompey is said to have been so delighted witl the performance, that he procured Theophanes the rights of a Roman citizen. (Cicero, Pro Archia, 10.) Although Theophanes had been exiled from Mitylene, he bore no grudge against his country, and on the return of Pompey from Asia he availed himself of his influence with the conqueror, and induced him to restore to the Lesbians their liberty and the privileges of which they had been deprived for having supported the king of Pontus. In b.c. 59 Theophanes was sent by the senate of Rome as ambassador to Ptolemaeus Auletes of Egypt, to carry to him the decree of the scnate, which guaranteed him the sovereignty of his eountry. His conduct on this mission is blanied, because he is said to have endeavoured to direct events according to the secret wishes of Pompey. During the civil war Theophanes continued faithful to his friend, and supported him with his advice, and it was on his well-meant suggestion that after the battle of Pharsalus Pompey fled to Egypt, where he was murdered. After this event Theophancs returned to Rome, where he appears to have spent the last years of his life in retirement. After his death the Jeesbians paid divine honours to his memory for the benefits which he had conferred upon them. His son, M. Pompcius Macer, held the office of practor in the time of Augustus, and was afterwards appointed governor of Asia; but in the reign of Tiberius he and his daughter put an end to their own lives, in order to avoid the punishment of cxile to which they had bcen condemned.

Theophanes was the author of several works, both in prose and in verse, but very little of them has come down to 115. Plutarch's Life of Pompey is chiefly based on the listorical work of Theophanes, and we may thus possess more of it than we are awarc; but besides this we have four or five fragments of it in Strabo, Plutarch, and Stobael1s. The 'Anthologia Graca' (xv., n. 14 and 35) contains two cpigrams of Theophancs, and Diogenes Laertius (ii. 101) mentions a rrork of his on painting, but of its nature and contents nothing is known.
(Sevin, in the Mémoires de TAcadémie des Inscriptions et Belles-Lettres, vol. xiv., p. 143, \&c.)

THEO'PHANES NONNUS. [Nonnus.]

THEOTHILUS, a Constantinopolitan jurist, who lived in the reign of the emperor Justinian (A.D. 527-565). He was a distinguished teacher of jurisprudence at Constantinople (antecessor), and, at the command of the emperor, he was employed among those who compiled the 'Digest;' and afterwards he undertook, along with Dorotheus and 'Tribonian, to compose the 'Institutes,' that is, the elemen-
tary treatise on jurisprudence, which was part of Justinian's plan. This Theophilus is generally supposed to be the author of the Greek paraplrase of the 'Institutes,' though it is maintained that the paraphrase is not the work of Theophilus himself, but was taken down from his lectures by some pupils. It was discovered in the beginning of the sixtecnth century by Viglius ab Aytta Zuichemins at Louvain, who published and dedicated it to the emperor Charlcs V. (Basle, 1534, fol.). The work was frequently reprinted during the same century, but the last and best edition is that of W. O. Reitz, in 2 vols. 4to., Hagæ, 1751. It contains a Latin translation and the notes of previous editors, together with those of Reitz; and also a very interesting disscrtation on the obscure and much disputed history of Theophilus. Theophilus also wrote a commentary on the first three parts of the 'Digest,' which however is now lost, with the exception of a few fragments which are incorporated in Reitz's edition of the 'Paraphrase of the Institutes.' The value of the paraphrase of Theophilus in establishing the text of the 'Institutes' may be estimated by an examination of the edition of the 'Institutes' of Gaius and Justinian by Klenze and Böcking, Berlin, 1829.
(Institztionum D. Justiniani Sacrat. Princip. Proœmium; P. B. Degen, Bemerkungen über das Zeitalter des Theophilas, Lüneburg, 1808, 8vo.; Zimmern, Geschichte des Röm. Privatrechts.)
 roo $\pi a^{i} \theta a \rho(o s)$, the author of several Greek medical works, which are still extant, and some of which go under the name of 'Philotheus' and 'Plilaretus.' Everything connected with his name, his titles, the events of his life, and the time when he lived, is uncertain. He is generally styled 'Protospatharius,' which seems to have been originally a military title given to the colonel of the bodyguard of the emperor of Constantinople (Spath arii, or $\sigma \omega \mu a \tau \circ \phi \dot{\lambda} \lambda a \varepsilon \varepsilon s$). Afterwards however it became also a civil dignity, or at any rate it was associated with the government of provinces and the functions of a judge; they possessed great authority, and were reckoned among the Magnifici. (Further information respecting this office may be found in Brisson, De Verb. Signif.; Calvinus, Lex Jurid.; Du Cange, Gloss. Med. et Inf. Graecit.; id., Gloss. Med. et Inf. Latinit.; Carpentier, Gloss. Nov. ad Script. Med. Aevi; Goar, Note on Georg. Codin., p. 29; Guidot, Note on Theoph., De Urin., pp. 142, 143, 145; Meursius, Gloss. GraecoBarb.; Pratelus, Lex Juris Civ. et Canon.; Suicer, Thes. Eccles.) In some manuscripts however he is called ' Philosophus' (Lambec., Biblioth. Vindob., lib. vii., p. 352 , ed. Kollar.) ; in others, 'Monachus' (id., Ibid., lib. vi., p. 244, 491) ; 'Archiater' (Codd. MSS. Theoph. De Puls. ap. Ermerins, Anecd. Med. Gr.) ; or 'Iatrosophista'
 12 mo .)

Of his personal history we are told nothing: if, as is generally done, we trust the titles of the manuscripts of his works, and so try to learn the cverrs of his life, we may conjecture that he lived in the seventh century after Christ; that lie was the tutor of Stephanus Atheniensis (Lambec., Ibid., lib. vi., pp. 198, 223492 ; lib. vii., p. 352), who dedicated his work, 'De Chrysupueia,' to the emperor Heraclius (Fabricius, Biblioth. Greeca, vol. xii., p. 695, ed. vet.) ; that he arrived at high professional and political rank, and that at last he embraced the monastic life. It must however be confessed that all this is quite uncertain, for, in the first place, Freind, in his 'History of Physic' (Opera, pp. 448, 449, ed. Lond., 1733), after remarking how little credit is sometimes due to the titles prefixed to manuscripts, doults whether Theophilus was ever tutor to Stephanus, and thinks, from the barbarous words that he
 Fabr., p. 177, 1. 1, 2, ed. Oxon. ; हтохท́, rрàva, Ibid., p. 181,
 De Urin., c. 6, p. 266, 1. 34, ed. Ideler), that he probably lived later. And, secondly, even if Theophilus was the tutor of a person named Stephanus, still it scems probable that this was not the alchemist of that name. [Stephanus Atheniensis.] His date is equally uncertain. Some persons ('Chronologia inconsulta,' as Fabricius says, Biblioth. Greeca, vol. xii., p. 648 n., ed. vet.) think he was the person mentioned by St. Luke; others place him as early as the second century after Christ, and others ayain as late as the twelfth. He is generally supposed to have lived in the time of the emperor Heraclius, who reigned from A.D. 610
to 641 ; but this opinion rests only on the conjecture of his having been the tutor of Stephamis Atheniensis. The Oxfiond editor thinks, from the barbarous wonds quoted above, that he may posibly be the same person who is addressed by the title Proturpatharius * by Photius (IPisis., 123, p. lif, ed. Montae., Lond., 1Gil), and who therefore must hase lived in the pinth eentury. IIe was a Christian, and a man of Ereat piety, as appears from almost all his writmgas ; in his physiological work especinlly, he evergwhere points out with admiration the wisdon, power, and coorness ot God as displayed in the human body. (Sce De Corp. Hum. Fabr., pp. 1, 2, 25, 89, 127, 153, 185, 272; De Urin., Praf., p. 262 ; с. 10, p. 273 ; с. 23 , 1 . 2×3; De Excrem., c. $19, \mathrm{p} .40 \mathrm{~s}$; $D_{e} P^{\prime} u l$., in fine, p .7 T .) Ile appears to have cmbraced in some degree the Peripatetic philosophy. (De Corp. Ihum. lisbr... .p) 2 3, 4, 103, 105, 229, Ne.; Mart. Rota, Pref. to Puilotbei Comment. in Ilippocr. - Aphor.)

Five of his works remain, of which the longest and most anteresting is an anatomical and physiological treatise, in
 Cornoris Ilumani Iubrica. It contains very little original matter, as it is ahnost entirely abridged from Galen's great work, 'De Usu Partium Corporis IIumani,' from whom boweser he now and then differs, and whom lie sometimes appears to have misunderstood. In the fifth book he has inserted large extraets from IIppoerates, ' De Ge-
nitura,' and 'De Natura Pueri.' Ile recommends in several places the dissection of animals, but appears never to have examined a human body; in one passage he advises the student to disseet an ape, or clse a bear, or, if neither of these animals can he procured, to take whatever he can tet, 'but by all means,' adds he. 'let him disseet something. The work was first translated into Latin by J. P. Crassus, and published at Venice, 1536, 8vo., together with Hippoerates, 'De Purgantibus Medicamentis:' This translation was frequently reprinted, and is inserted by II. Stepheus in his 'Medicae Artis Principes,' Paris, 150, fol. The manuseript from which Crassus made his translation is probably lost ; but, though defective, it was more complete than that which was used by Guil. Morell in editing the original text, which was published at Paris, $15.55,8$ vo.. in a very beautiful type, but withont preface or notes. This edition is now leeome searce, and was reprinted, together with Crassus's translation, by Fabricius, in the twelth volume of his 'Biblioth. Greeca,' p. 783 , sq., IIamb., 1724 and 1740 . Two long passages which were missing in the fourth and fifth books were copied from a manuseript at Venice, and inserted by Andr. Mustoxydes and Demetr. Sehinas in their collection entitled $\Sigma \nu \lambda \lambda_{o y \dot{\eta}}$
 net., $1817,8 \% 0$. The last and best edition of this work is that by Dr. Greenhill, which has lately been printed at the Oxford University press, Gr. and Lat., 8 ro., 1842. The editor says in the preface that he has taken as the basis of his edition the manuseript at Veniee mentioned alove, as being more complete than any other that he had met with; that three other manusernpts at Paris have been collated; that several passages have been eorreeted by referring to the original parts of Galen and Hippocrates from which they were copied; that Crassus's Latin version has been retained, as representing the readings of a manuseript no longer in existence; and that the notes are intended rather to illustrate and explain the Greek teehnical terms, than to correct all the anatomical crrors and supply the detieiencies of the author.
Another of the works of Theophilus is entitled 'roju-
 pocratis Aphorismas, which also seemis to be taken in a great measure from Galen's Commentary on the same work. It was first published in a Latin translation by Ludov. Coradus, at Venice, 1549,8 vo., under the name of 'Philothens.' The Greek text appeared for the first time in the sceond volume of F. R. Dietz's 'Scholia in Hlippoeratem et Galenum,' Regim. Pruss., 8vo., 1834.

Mis treatisc Mepi oiphy, De Urinis, contains little or nothing that is original, but is a good compendium of
what was known by the antients on the suljeet and what was known by the antients on the suljeet, and
 of the Iranerilxf, and means II (1)

 mamusripe by tos lethet a, with a mort lino aboro 11 , thus ad.
was highly esteened in the middle ages. It first appeared in a datin translation by Ponturs (or Pontieus) Virunins (or Virmius), in several carly editions of the collection known by the name of the 'Articella.' It was first published in a scparate form at Hasle, 1533. 8vo., trauslated by Albamus Torinus, logether with the treatise "De Pulsibus;" and this version was repriuted at Strasshourg, 1035, 8vo., and inserted ly H. Stephens in his ' Medicae Artis Principes.' The Greek text was published without the name of Theophilus, under the title ' Iatrosophistae de Urinis Liber Singularis,' \&゙e., at P'aris, 1608, 12 mo., with a new latin translation by l'ed. Morell, which edition was inserted entire by Chartier in the eightl volume of his edition of the woiks of Hippocrates and Calen. The best edition is that by Thom. Guidot, Land. Bat., $1703,8 v o ., G r$. and Lat. ; and again with a new titlepage, 1731. The text is mueh improved by adopting the readings of a namuscript in the Bodician Library ai Oxiord: there is a uew Latin version by the editor, and also copious and learned prolegomena and notes. The Greek text only, from Guidots edition, is inserted by J. L. Ideler in his - Physiel et Mediei Graeei Minores, '13erol., 1811, 8vo.

A short trentisc, Hepi $\Delta x a \chi \omega \eta \mu a \dot{T} \omega \boldsymbol{y}$, De Lixcrementis Alrinis, was first published by Guidot, in Greek, with a Latin translation by himself, at the end of the edition 'De Urinis' mentioned above: the Greek text alone is inserted by Ideler in his ' I'hysiei et Mediei Graeci Minores.'

The last of the works of Theophilus that remains is a treatise, Ifthi Ľq:yucus, De Padsibus, which first appeared in a latin translation, under the name of '1'hilaretus,' 11 several of the old editions of the 'Artieella.' It was first published in a separate form at l3asle. 1533 , suo.; transInted by Albanus Torinus, logether with the treatise 'De Urinis ' mentoned above. It was reprinted at Strassburg, $1535,8 \times 0 .$, and inserted by II. Stephens in his 'Medicae Artis I'rineipes.' The Greek text was first published by F. Z. Ermerins in his 'Ancedota Mediea Graeea, Lugd. Bat., 8vo., 1810, together with a new Iatio translation. The text is taken from one manuscript at Leyden and four at Paris, and differs very considemably from the older Latan translation going under the name of Pbilarelus.
(Guidot's Notes to Theoph. De U'rinis: Fabricius, Biblioth. Graeca: Freind's Hist. of Physic; Haller's IBiblioth. Anat. and Biblioth. Medic. Pract.; Sprengel's Ilist. de la Mél.; Dietz's Preface to the second volune of his Scholia in Ilippocr. et Gal.; Ermerin's Preface to his Aneed. Med. Gr.; Choulant's Handbuch der Bücherkunde für die Aeltere Medicin; Greenhill's Notes to Theoph. De Corp. Ilum: Fibar.)

TIIEOPIIRASTA, the name of a genus of plants dedieated to Theophrastus. It was originally ealled Eresia by Plumier, but afterwards altered by Limmeus. It belongs to the natural order Myrsinacea, and is a small tree with a simple unbraneled stem, furnished with a tutt of long evergreen leaves at top, giving it a resemblance to a palnıtree. The flowers are of a white colour, and are arranged on terminal meemes, whieh are very short, and hidden amongst the leaves of the plant. The ealyx is eampanulate and cartilaginous. The corolla is also campanulate, with a short tube, and has a dilated throat, girded by an elevated angularly-lobed, fieshy, arehed riug: the limb is sprending. The stamens are five, combined with the tube of the corolla; anthers horned. The fruit is a erustaceous spherieal berry, about the size of a emb-apple, with the seeds halfimmersed in the placenta. There is but one species, named after Jussicu, T. Jussieut. This plant is the same as the T. Americana of Linnenes. It is a native of the mountains of St. Domingo, and is mueh eultivated on aceount of its long handsome holly-like leaves. It may be propagated by cuttings, and grows well in a soil of peat, loam, and sand.

THEOI'HRASTUS was born at Eresus, in the island of Lesbos, but the year of his birth is uneertain: some writers state it to be n.c. 371 ; others place it much earlier. Aceording to Hieronymus (Espist., 2, ad Nepotianum) he died in the year B.c. 285 , and, as some say, at the age of 85 (Diogenes Laert., v. 40), or, aceording to others, at the age of 106 years. These different accounts of his age leave the date of his birth mecrtain. When a youth his father Melantas sent him to Athens for the purpose of studying. IIere lie was first a pupil of Plato, and becane an intimate friend of Aristotle, who, charmed with his talents and his beautiful pronunciation, is said to have given lim the name of Theophrastus (one who speaks di-
vinely) : his real name was Tyrtamus. (Quinctilian, x. 1, 83; Cicero, Orator., 19.) After the death of Plato, when Speusippus had placed himself at the head of the Academy, Theoplirastus, with a number of the former disciples of Plato, left the Academy. Plutarch has preserved a bare account of an event in the life of Theophrastus, which must perhaps be assigned to the time which he spent away from Athens after his withdrawal from the Academy. Plutareh says that he and Phidias delivered their country twice from the oppression of tyrants. After the battle of Chaeronea, Theophrastus returned to Athens, from which he had been absent for many years; and as Aristotle had then just opened his school the Lyeeum), Theophrastus ranged himself among the hearers of his friend, and cultivated most zealously all the departments of philosophy and seience of which Aristotle was then the great master. When Aristetle himself withdrew, Theophrastus beeame his successor in the Lyceum, and acquired great reputation in his new sphere, not beeause he created any new system of philosophy, but beeause he combined the knowledge and profundity of Aristotle with the fascinating eloquence of Plato. The number of his pupils on one occasion is said to have amounted to two thousand (Diogenes Laert., v. 37), who flocked around him from all parts of Greeee. This popularity, and the influence which it gave him in the public affairs of Greece through the practical eharacter of his philosophy, roused the indignation and envy of those who saw in him an obstacle to their designs. The consequence was that Agnonides, who probably acted on behalf of many others, brought against him a charge of impiety. Theophrastus pleaded his own cause before the Areopagus with his usual cloquence, and convinced that court of his innoeence. His aceuser would have fallen a victim to his own ealumny, if Theophrastus had not generously interfered and saved him. After this event he enjoyed undisturbed peace for several years, and he saw his sehool, which was visited by the most eminent men of the age, daily inercase. The tranquillity which he enjoyed was however chiefly owing to the influence of Demetrius Phalereus, who had himself been a pupil of Theophrastus. After the fall of Demetrius the persecutions began afresh ; and, in 305 b.c., Sophoeles, son of Amphiclides, carried a law which forbade all philosophers, under pain of death, to give any public instruction withont permission of the statc. (Diogenes Laert., v. 38; Athenaens, xiii., p. 610 ; J. Pollux, ix. 5.) Theoplirastus left Athens; but in the following year, the law being abolished, and the mover condemned to pay a fine of five talents, Theophrastus and several other philosophers returned to Athens, where he continued his labours without any interruption until his death. The whole population of Athens is said to have followed his body to the grave. His will, in which he disposed of his literary and other property, is preserved in Diogenes Laertius. His library was very valuable, as it contained the works of Aristotle, which this philosopher had bequeathed to Theophrastus. Theophrastus bequeathed them, together with his other literary property, to Neleus of Scepsis.
Theophrastus, as already observed, did not develop a new system of philosophy, but he confined himself to explaining that of his master Aristotle. With this view he wrote numerous works on various branches of philosophy and on natural history. His philosophical works may be divided into works on philosophy, in the narrower sense of the word, works on historical subjects, and works on certain arts, sueh as oratory, poetry, and the like. It is to be lamented that most of his writings on these departments are now lost, and more especially those on politics (Π odituca a°),
 Cieero made great use, and his works on oratory, of which Theophrastus himself was so distinguished a master. A list of the lost books of Theophrastus is given in Fabricius (Biblioth. Graeca, iii., p. 445, \&c.). Andronieus of Rhodes, a Peripatetic philosopher of the time of Lucullus, made a list of all the works of Theophrastus, and arranged them in systematic order. The following philosophical works of Theophrastus are still extant:-

1. 'Characteres,' or $\dot{\eta} \theta$ ıкol χ apakr η peg, consisting of thirty, or, recording to Schneider's arrangement, of thirtyone chapters. In this work the author gives thirty eharacteristic descriptions of vices, or rather, of the manner in which they show themselves in man. The descriptions however are mere sketehes, and form a gallery of bad or
ridiculous characters. Many modern crities have maintained that the work in its present form is not to be regarded as a production of Theophrastus, but that it is either an abridgement of a greater work of this philosopher, or a collection of descriptions of vicious characters, compiled either from the writings of Theophrastus, or from those of others. Neither of these opinions is inconpatible with the statement of Diogenes Laertius, Suidas,
 among the works of Theophrastus; for the "Characteres' which we now possess may have been compiled and published under the name of Theophrastus long before their time. Either of these hypotheses would also account for the faet that nearly all the definitions of the viees that occur in the book contain some error, whieh, it must be presumed, would not have been the case if the work had been written by Theophrastus. Other eritics, on the contrary, have vindieated the 'Charaeteres' as a genuine work of Theophrastus, and have attributed all its defects and inaccuraeies to the bad MSS. upon which the text is based. This opinion has received considerable support from the diseovery of a Münich eodex, part of which was published by Fr. Thierseh in 1832, in the 'Acta Philologorum Monaeensium ' (vol. iii., fasc. 3). This MS. contains the titles of all the thirty chapters, but the text of only twenty-one. The first five chapters and the introduetion, which were edited by Thierseh, are considerably shorter than the common text, the language is perfeetly pure, and there is very little doubt that this is the genuine text of the work of Theophrastus, and that the common one is only a paraphrase, made perhaps by Maximus Planudes, who is known to have written a commentary on the 'Charactercs' of Theophrastus. The editio princeps of the 'Characteres' is by Wilibald Pyrckheimer, Niirnberg, 1527,8 vo. This edition, which contains only fifteen clapters, was reprinted with a Latin translation by A. Piolitianus, Basle, 1531, 8vo., and 1541, fol. Chapters 16 to 23 were first added by Camotius, who published the works of Theophrastus in the sixth volume of his edition of Aristotle (Venice, 1551-52). These twenty-three chapters were increased by five new ones from a Heidelberg MS. in the excellent edition of Casaubon, of 1599 (reprinted in 1612 and $1617,8 \cdot 0$.). The last two chapters were added in the edition which appeared at Parma, 1786, 4to. Λ still more perfect, and in fact the first complete edition, is that of J. P. Siebenkees, which was edited by Goetz, Nürnberg, 1798,8 vo. In 1799 there appeared two new editions, the one by Coraes (Paris, 8 vo.), and the other by Sehneider (Jena, 8.0.). The last edition, which is very useful, is that of Fr. Ast, Leipzig, 1816, 8vo. The 'Characteres' have been translated into Freneh by Jean de la 13ruyere (Paris, $1696,12 \mathrm{mo}$., often reprinted, and lastly edited by Sehweighaiiser, Paris, 1802), and by Levesque (Paris, 1782, 12 mo .). The best German translations are those of C . Rommel (Prenzlau, 1827, 12mo.), and of J. J. Hottinger (München, 1821, 8vo.). The reare scveral English translations: the latest is by F. Howell, London, 1824, 8 vo. That by Eustace Budgell, Iondon, $1713,8 v o .$, is generally called the best. There is also a translation into modern Greek by Larbaris, Vienna, 1815, 8ro.
2. A fragment of a work on Metaphysics, whieh consists
 $\left.\beta_{c} \beta \lambda \lambda^{\prime \prime}{ }^{\prime} d^{\prime}\right)$. This book was not inentioned by Andronicus of Rhodes in his catalogue of the works of Theophrastus, but it is ascribed to him by Nicolaus Damaseenus. It is printed in all the early editions of the works of Theophrasths in connection with those of Aristotle, as in those of Venice (1497), Basle (1541), Venice (1552), and in that of Sylburg (Frankfort, 1587). The last edition is that of Ch. A. Brandis, who annexed it to his edition of Aristotle's ' Metaphysics' (Berlin, 1823, 8vo.).
3. A Dissertation $\pi \varepsilon \rho i$ ai $\sigma \theta \dot{\eta} \sigma \varepsilon \omega$, that is, on the Senses and the Imagination. There is a paraphrastie eommentary on this work by Priscian, the Lydian, who lived in the sixth century of our zera. It was first edited by Trincavelli, Venice, 1536, fol., with Priscian's paraphrase, and - Quaestiones' by Alexander Aphrodisiensis. It is also printed in the above-mentioned collections of the works of Theophrastus, and in that published lyy Sehneider, Leipzig, 1818-21.
The fragments of other philosophical works are too brief and numerous to be notieed here.
The 'History of Plants,' by Theophrastus, $\pi \varepsilon \rho i$ фviడ̃ ν
ieroplas, in one of the earliest works on botany that was writton with anything like scientific precision. The work is divided into ten books, of the last of which only a fragment is preserved. The matter is arranged upon a eystem by whieh plants aro elassed according to their modes of generation, their localities, their size as trees or shrubs and herbs, and aceording to their uses as furnishing juices, potherbs, and seeds which may be caten. The first book treats of the organs or parts of plants; the second of the reproduction of plants, and the lines and mode of sowing. Here he mentions the sexes of plants, and deseribes the mode of reproduction in palnis, and compares it with the eaprification of figs. The third, fourth, and finh books are devoted to a consideration of trues, their various kinds, the places they come from, and the ceonomical unes to which they may be applied. The sixth book treats of undershrubs and spiny plauts; the seventh of potherbs; the eighth of plauts yiclding seeds used for food; and the ninth of those plants that yicld useful juices, gums, resins, or other exudations. In this work there is muel original and valuable observation, but at the same time it is intermixed with many absurd statements with regard to the functions and properties of plants. It is probable that much of the valuable natter recorded in this work was the result of his own observation, as he is known to have travelled about Greece, and to have had a botanle garden of his own, whilst he was probably dependent on the statements of soldiers and others connected with the arnies of Alexander for his information on lndian, Egyptian, and Arabian plants.
Theophrastus wrote also another work, 'On the Causes of Plants, $\pi \in \rho i$ peräy aircür. This work was originally in eight books, six of which remain entire. It treats of the growth of plants; the eanses whiel influence their feeundity; of the times at which they should be sown and reaped; the modes of preparing the soil, of manuring it, and of the instruments used in arriculture ; of the odours, lastes, and properties of many linds of plants. In this, as in the history of plants, the vegetable kingdom is considered more in reference to its economical than to its medical uses, although the latter are oecasionally referred to. In both works there is mueh valuable matter that deserves the attention of the botanist, and a very little knowledge of botany will enable the reader to separate the chaff from the wheat. Both Haller and Adanson complain of the errors whieh translators and editors of these works have tallen into for want of botanical knowledge. Both works have gone through several editions; they were printed together by the sons of Aldus at Venice, in 1552, 8vo.; aud again lyy Heinsius at leeipzig, in 1613. The 'History of Pants' has been published separately more frequently than the 'Canses.' The best edition is that of Bodxeus it Stapel, which was published by his father after his death. It ennfains n prefaee by Corvinus; the Greek text, with various readiuss; the commentaries and remarks of Constantinus and J. C. Scaliger; the latin translation of Gaza; very enreful commentaries by Stapel; a very copious indux, and the whole is illustrated by woodeuts. The cuts however are very inferior, and are copies of those in the works of Dodonzus, which seem to have been copied into nearly all the works pmblished on botany at this period. It appenred at Amsterdam in 1644, folio. The latest edition of thin work was published at Oxford, in 1813, by Stackhouse. This evition is accompanied with a Syllabns of the genem and speeies of the 500 plants described by Theophrastus, also a glossary, and notes, with a catalozue of the editions of the botanieal works of Theophrastus. The ' 1 listory of Plants' was translated into German by Kurt Sprengel, and published at Attona, in 1892, 8vo.

Besides his butanieal works Theophrastus wrote many others on various subjects of natural history, whieh are ennmerated with his philosophieal works in Diogenes
 from which Pliny, in his account of stones, derived the greatest part of his information, is still extant. De laet has prefixed it, with a Latin translation and notes, to his Work, 'De (icmmis et Iapidibus,' Leyden, 1617, 8vo. A separate edition, with an Jinglish translation, was pulslisheed by IIill, London, $1746,8 v o$. ; another, with a French translation, appeares at Paris, $1754,8 \mathrm{vo}$; and a third, with a German translation, by Bunnmzivtner, Nïrmberg, 1700 , Bro. The last edition is that of Sehneider, Freiburg. 1807, 8vo.

Of his two books on Fire (repl supóg), only one is now extant; of his other works on natural history, which are now lost, wo possess a considerable number of fragments.

The editio prineeps of all the trorks of Theophrastus is that of Aldus, Veniee, 1495-98, printed, together with the Works of Aristotle, in 5 vols. fol. Theodurus Gaza published a Latin translation, which wos nade from the same MS. from which the Aldine text was taken. The first edition of this translation is without date or place; a second appeared at Tarvisium in 1483. The last and best edition is that of Link and Schneider, Leipzig, 1818, 4 vols. 8 vo.
©Ialler, Bibliotheca Botanica, tom. j., p. 31 ; Schulte, Geschichte der Botunik; Adanson, Familles des Plantes; Bisehoff, Lehrouch der Botunik; Stackhouse, Thooph. Hist. "'lant.; Fabricius, Biblioth. Graec., iii., P. 408 , Sc.; Ritter, History of Philosophy; Krug, Geschichte der Philosophie, §09.)
THEOPHYLACTUS SIMOCATTA, of Loeri, an historian, sophist, and natural philosopher, who was living about 610-620 A.D. He wrote a 'Universal listory' (ioropia olkovpevi), in eight books, from the death of the emperor Tiberius II., in 582, to the murder of Maurice and his children by Phoeas, in 602. This work is known by the Latin title of 'Historiae Rerum à Mauritio gestarum Libri VIIl.' It was printed, with a latin translation, by J. Poutanns, at Ingolstadt, 1601,410 . An improved edition was published by Fabrotti, Jaris, 1688, fol., reprinted 1720. It is also contained in Niebuhr's collection of the Byzantine writers.

He also wrote 85 short letters, 'Epistolae Morales, Rustieae, et Amatoriae,' which were published in the collections of Aldus, Cujacius, and Henry Stephens; and a work entitled 'Problems in Natural Mistory' ('Aлорiat фvourai, Quaestiones Physicae), which was published at Leyden, 1500, and at Leipzig, 16i33. The two last-mentioned works have been recently edited by Boissonade, Paris, 1835.
(Fabrieins, Bibliotheca Graeca; Sehöll, Geschichte der Griech. Litt.)
T11EOPHYLACTUS, a native of Constantinople, was archbishop of Achris, the chief eity of Bulgaria, about the year 1070 or 1077 . He wrote a work on the 'Education of Prinees' (acaidia ßaoidıй), for the perusal of Constantinus Porphyrogennetus, the son of Michael V11. and the empress Maria. This work forms a part of the collections of Byzantine writers.

Theophylaetus is better known by his valuable eommentaries on the twelve minor prophets and the greater part of the New Testament, which are chiefly compiled from the works of Chrysostom. He also wrote 75 epistles and several tracts. These works were printed in Greek and Latin, at Veniec, 1754, fol.
(Tabricius, Bibl. Graec,, vii., p. 7 7 ; Iardner's Credibility, pt. ii., e. 1 (i3; Schöll, Geschichte der Griech. Litt., iii. 286.$)$

THEOPOMPUS, an eminent Greel historian, was a native of the island of Chios, son of Damasistratus, and brother of Cancalus, the rhetorician. He was bom about B.c. 380 , and was instrueted in rhetoric by Isocrates during his stay in Chios. (Plutarch, Vit. dec. Orut., p. 837 C: Photins, Cod. 260, p. 703.) Photius in another passage states thrat Damasistratus and his son wero obliged to quit their native island on necount of their partiality towards Sparta: this seems to have oceurred about в.с. 360 , when Chios was distracted by two plarties, the popular and the most powerful one being in favour of Thebes, while a sunhll number of aristocrats supported the interest of Sparta. To the latter belonged Theopompus and his father. The infllenee of the instruetion of Isoerates on Theopompus aplpears to have been very great, for although he did not upply his oratorical powers to politics or to speaking in the eonrts of justiee, yet he wrote, like his master, a considerable number of orations, whieh were recited at rhetorical euntests, and in which he is said to have even exeelled his master. When he was olliged to leave Chios, he went with his father to Λ sia Minor, where ho spent several years in travel and study, and acquired great celebrity for his eloquence. At the age of forty-five he obtained leave to return to his country through the interference of Alexander the Great. After this event he took an active part in the political affairs of lus native island,
and by his talcnts he became one of the principal supports of the aristocratic party. So long as Alexander the Great lived, his adversaries could not venture anything openly against him; but no sooner had the king died than the popular party again expelled Theopompus. He now took refuge in Egypt under the protection of Ptolemaeus, the son of Lagus, during whose reign he remained unmolested. But his successor Ptolemaeus Philadelphus was ill disposed towards him, and if Theopompus had not been advised by some friends to quit the country, he would have been put to death. Whither he now fled, what were his subsequent fortunes, and where he died, are questions to which no answer can be given, though it is highly probable that he died about or shortly after 308 a.c.

The loss of the works of Theopompus, of which we now only possess numerous fragments, is one of the greatest that antient history has sustained. The following list contains the works he is known to have written:-

1. An abridgement of the work of He rodotus ('Enetoun) Tजै้ "Hpoiórov iaraptüy). This epitome is mentioned by Suidas and several other grammarians. Modern critics think it highly improbable that Theopompus should have undertaken such a task, and that it was probably the work of some grammarian, who published it under the name of the historian. The reasons adduced for this opinion are not satisfactory, and it is not improbable that Theopompus may have made this abridgement as a first attempt at listorical composition. A few fragments of it are still extant.
2. A more important work was a history of Greece
 histury of Greece where Thucydides breaks off, b.c. 411, and carried the events down to the battle of Cnidus, 3.c. 304. The work consisted of twelve books, and many fragments are still preserved.
3. The history of Philip of Macedonia and his time (Φ ìıт $14 \kappa \alpha$, or simply 'I σ ropiat). It contained in 58 books the history of Greece from the accession of Philip, or more properly from the foundation of Philippi, down to lis death. Five books of it were lost as early as the time of Diodorus Siculus (xvi. 3), and they were probably the same which Photius (Cod., 176, p.390) mentions as being lost in his time, viz. books $6,7,9,30$, and 30 . This voluminous work not only embraced the history of Greece in the widest sense of the word within the period mentioncd, but also treated of those carlier parts of Grcek history and of the history of such barbarous nations as he had occasion to mention. These things formed numerous and long digressions in the work, and of their extent we may judge from the fact that Philip III. of Macedonia, after cutting out these digressions, reduced the work from 58 to 16 books. (Photius, Cod., 176.) We still possess many fragments of the work, which the antient writers refer to and quote.
Besides these historical works, Theopompus wrote many orations, and we know that he also composed Panegyrics on Mausolus, Philip, and Alexander. As regards his character as an historian, the antients praisc him as a Iover of truth, but they also state that he was extravagantly severe in his censure, and unbounded in his praise. His ardent and vehement temper did not allow him to preserve that calmness which becomes the historian. He is also charged with having been too fond of the marvellous, and with having for this reason dwelled too much upon the mythical stories of Greece wherever he had occasion to mention them.
The fragments of Thcopompus have been collected by Wichers: 'Theopompi Chii Fragmenta, collegit, disposuit, et explicavit, cjusdenque de Vitâ et Scriptis Commentationem praemisit,' Re., Lugduni Batavorum, 1829, 8vo. They are also contained in C. and J. Müller's 'Fragmenta Historicorum Graccorum ' (Paris, 1811), p. 2;8-333. Compare F. Koch, Prolegomena ad Theopompum Chium, Stettin, 1803, 4to.; A. J. E. Pflugk, De Theopompi Chii V Vita et Scriptis, Berlin, 1827, 8vo.; Aschbach, Dissertatio de Theonompo Chio Historica, Frankfort, 1823, 4to.
THEORBO, a musical instrument of tbe lute kind, which has long fallen into disuse. The latest employment of it that we can trace was in Handel's oratorio of Esther (1720), where it is introduced, with the harp, as an accompaniment to the air 'Watchful Angels.' This instrument has been called the Cithara Bijuga, its two heads having been erroncously considered as two necks: and it was commonly
known under the name of Arch-lute on account of its magnitude. The upper and middle strings were attacleed to the lower head or nut ; the lower, or base strings, to an upper or additional one. According to Maister Mace (1676), the Theorbo was the old English lute very much enlarged, and used chiefly, if not only, as an accompaniment to the voice. [LuTE..]
THEOREM ($\left.\boldsymbol{q}^{\prime} \omega_{\rho} \eta \mu \alpha\right)$ means properly a thing to be looked at or seen ; and is used in mathematics to signify any proposition which states its conclusion or makes any affirmation or negation ; as distinguished from a Problem, which demands or requires a conclusion to be arrived at, without so much as stating whe ther that conclusion is even possible. Thus,' Required to draw a tangent to a circle at a given point,' is a problem; but 'If a straight line be drawn at right angles to a diameter from its extremity, that straight line is a tangent to the circle,' is a theoerm. The problem asks discovery both of method and demonstration; the theorem asks demonstration only.
This distinction, as noticed in detail in Problem, was not made by the older Greek geometers; Theodosius is the first, as far as we know, who uses the word theorem, but none of his propositions are problems: Pappus is the first who uses both terms in the distinctive sense.
THEORIES OF MOLECULARITY. This important branch of science is directed to connect the known mechanical, dynamical, and hydrodynamical laws with those which govern the crystallization of solids, the operation of heat in producing liquidity and gaseity, the action of capillary tubes on fluids, and several other phenomena of constituted matter. The laws which regulate the motions of great masses taken as continuous bodies have been explored with success to an astonishing degree by the genius and labours of such men as Newton, D'Alembert, and Laplace. On the contrary, those laws which govern the constitution or elementary arrangement of such bodies are to a great extent absolutcly unknown. The ordinary senses of sight, touch, \&c. are sufficient to take cognizance of the facts from which the former laws are deduced; but for the latter it is necessary to apply the most delicate instruments supplied by nature, namely, heat, light, and electricity. The minute world is of more difficult research than the great, the plane sections of a crystal than the elliptic orbits of the planets, the infinitely small than the infinitely great.
It is not therefore wonderful that this branch of science, which should connect on one uniform basis the phenomena of chemistry, of crystallography, and of the mechanical action of masses, should have attracted the attention of the most able philosophers from the sixteenth to the nineteenth century; from Boyle to Berzelius, from Newton to Navier and Poisson ; and the present unsatisfactory state of our knowledge on this subject must to a great degree be attributed to the neglect of the inductive method, to the substitution of hypotheses for the results of observation.
The first theory on this subject may be thus stated, that the particles of matter possess the attraction of cohesion, but are repulsed by the action of heat or caloric: when the former preponderates, the body is solid; when both are equal, it is in a fluid state; and when the latter exceeds the former, the body is a gas, and prevented from total dispersion only by the action of gravitation. This is purely hypothetie, and forms no more ground for mathematical calculation in relation to the phenomena alluded to above, than does the definition of a straight line in Euclid's Elements for the properties established in geometry. The second hypothesis, which of late has been more generally received both by chemists and mathematicians, is that the, particles of matter are mutually attractive by a law analogous to that of gravitation, but are surrounded by atmospheres repulsive one of the other, in the same manner as the particles of elastic fluids. From this hypothesis the equations of equilibrium and of progressive and rotatory motions are deducible; but as the constitution of such atmospheres may be modified very much at the will of the calculator, su as still to obtain the same mechanical results (in the manner in which the distribution of the fluid of light in crystallized bodies has been by those analysts who have developed the undulatory theory), it seems probable that it will be long before the phenomena of crystallization, liquefaction, \&c. will from this hypothesis be explained, and the absence of all external action in solids, with the exception of gravitation. The difference of the calculations of Navier and

Polsson show how much this liypothesis may be adroitly stretched. A third methen of viewing the phenomena of matter is more strietly inductive, and is similar to that emploged in the investigation of the distribution of latent electricity, in Mr. Murphy"s 'Treatise on Flectricity,' Se. lhere we start from the fact that forces sufficiently powerful to prevent the penetration of solids by other solids, and which prevent their beine torn asunder without great force being employed, are yet insensible to bodics at very minute distances from then. Here we have ample data for analytical calculation, the chief difficulty lying in the imperfect state of unalytical calculation relative to definite integrals; nevertheles enough enn be deduced to show the distribution of attraetive and repulsive forecy within the varionsty-formed bolics. It however requires the highest strength of analysis of a nature somewhat similar to that employed by Laplace on the figure of the carth and the tides.

The best test of the truth of any theory on this subject is that which, with the forces supposed to exist, shall show that the locus of the points of least resistance, commeneing from a given point, shall be a plane surface, or several plane surfaces, as exhibited by erystals.
(Dr. Young's Lectures on Natural Philosophy: Various Papers in the Mémoires de l'Institut; and Poisoin's Trate sur l'Action Capillaire.)

THEORY, TIEORY AND PRACTICE. If articles upon the mere meaning of words be admissible, it is the consequence of the mamer in which they are used. Of all the fallacies which infest society, the most common is that of applying to one sense of a word ideas or associations derised from another; and of all the words in use, there are few which are more often subjected to such process than those which stand at the head of this article.

By theory, properly speaking, is meant the mode of making seen and known the dependence of truths upon one another: a theory is a connected body of such triths belonging to one or more common principles. The use of this word has enlarged with the boundaries of the scienees. For example, before the discovery of universal gravitation, all that was known of any one planet was the empirieal formula for one or two of its inequalities. This constituted the theory of the planet (then so ealled): thus the theory of the moon consisted in the statement of the laws of the inequalities called the equation of the centre, the evection, Ee. In our day the point of view is changed; it is no longer the mere exhibition of these inequalities wheh eonstitutes the theory, but the deduetion of them, as necessary eonsequences, from the principle of gravitation. The theoretieal astronomer now starts from this principle, and, taking only one position and velocity for his numerical data, finds out every inequality of the planetary motions, those which were previonsly known from observation and more, and shows how to form them into tables. The practieal astronomer makes these tables, computes places from them for the current year, compares these places with the results of observation, and returning the comparison into the hands of the theorist, elables him, if need be, to correct the original numerical data to which he applied his methods. The process is now dectuctive ; but hefore the time of Newton it was the other way. The observer had the first task; the inequalities were to be collected from eomparison of observations, and their laws, reduecd to their siuplest form, were the data for future tables.

Ayam, before the introduction of the undulatory hypothess, the theory of light consisted in the exhibition of the laws of refiexion and refraction, with a certain extent of explanation from the emanatory hypothesis of Newton. Since that time the theory of light has become, though at a distance, a resemblance of the theory of gravitation in its character: predietion has commenced, that is to say, the phenomena which would appear under certain new circumstances have been announced before any experiments were made to discover them: and correctly announced. This is the end to which theory ought to be constantly tending ; namely, the discovery of laws of action in so complete a manner that the necessary conserquences of these laws never fail to make their appearance, so that cvery thing which is seen is found to be a consequenee of the laws when exanined, and every eonsequence of the laws is seen in phenomena when looked for. Whatever fulfils these conditions nasy be called a perfect theory, or a jerfect mathematical theory.

The next step in the ehain of diseovery is one which may in most cases be menpable or attainment. For example, nothing is more certain than that the assumption of every particle of matter attracting every other particle, aceording to the Newtonian law, leads to the complete deduetion of the celestial motions, and gives the eomplete power of prediction just alluded to. But whether this attuaction does actually talic place, or whether any intermediate agent is employed, though it inatters nothing at present to the mathematical theory, is the nest object of inquirs. Could this point be aseertained, it is more than probable that the knowledge of the constitution of matter to which it would lead, would open hundreds of important conse guences even in the application of science to the alts. [Cause; Ilypothesis.]
Before coming to the distinction between theory and practice, we mist ohserve that theories may be divided into two classes, the more perfect and the less perfeet. We cannot say that any theory is absolutely perfect; but there are some of whieh the defects are hardly perceptible, and others in whieh the contrary is the ease. For example, the theory of the staties and dynamics of rigid bodies is tolerably perfect; but that of bodies composed of particles acted on by molecular forces is in its infancy. We know a great deal more of the eonnection of the planetary worlds with each other than we do of the particles which, when connected together, form a bar of iron or of onk. We know that the bar is not perfeetly rigid; that it bends and breaks: and the degree of bending which a given force will canse, and the amount of pressure necessary to produce fracture, inust be sought for in experiments, from which, imperfect as they are, the laws which would follow trom a good theory, if we had one, are to be dedueed. In such a sulyject our theory, instead of beng an all-sufficient guide, is ouly a help, the services of which are to be used to an extent which discrimination derived fiom practice and experience inust point out. Many a person who thinhs he is proceeding upon experience only, is really naking use of a mixture in which there is theory, though his own knowiedge of the process he uses, and of its listory, may not be suffecient to inform hinm of it.
A person who uses an impertect theory with the confidence due only to a perfeci one, will naturally fall into abundance of mistakes: lis preclictions will be crossed by disturbing circumstances of which his theory is not able to take account, and his credit will be lowered by the failure. And inasmuel as more theories are imperfect than are perfect, and of those who attend to anything, the number who aequire very sound habits of judging is snall compared with that of those who do not get so far, it must huve happened, as it has happened, that a great quantity of mistake has been made by those who do not miterstand the true use of an imperfect theory. Hence much diseredit has been brought uron theory in general; and the schism of theoretieal and practical men lias arisen. Fortunately there are many of the former who attend properly to the improvement of imperfeet theory by practice; and many calling themselses practical who seize with avidity all that theory can do for them, and who know that step by step theory has been making her way with giant strides into the termtory of practiee for the last century and a half.
By practice, as distinguished from theory, is incant (not hy us, but by those who contend for the distinction) the apllication of that knowledge which comes from ex perience only, and is not sufficiently connected with any general principles to be entitled to the name of a theory. The distinction of labourers in the field of sesence or ant into theoretieal and practical is not strictly a just one, for there is no theorist whose knowledge is all iheory; and there is no practical man whose skill is all derived from experience. But the terms will do well enough to distingutsh two classes whose peeuliarities it might be difficult to define exactly.
The praetical man, when he is really nothung more, is one who can just do what he has been taught to do, and who has aequired shill and judgment in a small range of oecupations. All who pride themselves npon the fitle would be displeased at this definition, and we readily admit that many of them are entitled to a higher chameter; but only because the naine by which they delight to describe themselves is a wrong one. They. desire, under the name of a workman, to claim the qualities of a matter. The tern theoretical serves, as one of contempt, to designate any-
thing of which they disapprove; and as there never is any fallacy which is not carried to a fool's-eap extent by the lower order of users, it would not be difficult to make a most amusing selection of instances of the manner in which the distinction has been worked by the large number who are at the bottom of the class, and in whose heads it runs that their own ignorance is practical, and others' knowledge theoretical. We remember seeing a theorist, as le was called, endeavouring to make the managers of a certain undertaking comprehend that their profits could not exceed the excess of the gross returns over the outlay, after they had been trying to cheat the equation by inventing names for what they would have liked to have, but which the theorist assured them they would not get, for the preceding reason. The answer was, 'That is very true theoretically, but now let us look at it practically.' We shall say no more of the gross abuse of the terms, except to remark that were it worth while really to make a contest between theory and practice, it would be difficult to say on which side the balance of absurdity would incline; or whether the man who is too confident in his theory, or too confident in his experience, has done most mischief for the time being.
Coning now to the higher class of practical men, and speaking as of the balanee between two methods, the value of both of which is admitted, we observe that there are obvious faults to which both parties are subject, both in conduct, and in argument respecting their pursuits. Great care is necessary to secure the theorist from pusling an imperfeet theory too far, and neglecting causes of disturbance; but at least as much is necessary to prevent the practical man from generalising into theory from imperfect experience, or from restraining inquiry by a notion formed from practice. This is his besetting sin, to such an extent that we should almost be inclined to say that the fault of a practical man is a tendency to form false theory, as that of the theorist is to make false applications. We have often been surprised at the boldness with which the former assert generalities, upon evidence which would only make a pure theorist look for further information. Analogies are of all things the most deceptive.
In argument there is onc mode which is common to both parties, and which is exceedingly detrimental. It is the selection of instances from the very highest minds of the two orders, to illustrate the effects of theory or practice upon the general mass of understandings: minds the supcrior calibre of which, and their power of adapting themselves to circumstances, and making the most of what they have, render them exceptions to all rules, and no proper examples of the most advantageous course of training. Every one likes, no doubt, to draw consequences about and concerning his own self from a contemplation of the minds and methods of the Newtons or the Galilcos of a higher sphere of intellectual existence, or the Arkwrivhts or Telfords of a better state of power of adaptation. 'What is your theory good for?' says the tongue attached to some head which holds about the same weight of conceit that Telford's did of sagacity; 'Telford knew nothing of it, and I may do without it too.' The answer is, Telford. The opinion of Bacon was, that, "the root of all the mischiff in the sciences is, that, falsely magnifying and admiring the powers of the mind, we seek not its real helps,' a maxim full of meaning, and a lesson to him who rates theory too highly, and also to the onc who thinks that the only use of his mind is to arrange the results of expericncc, his own or others. What are the majority of men, that they should look down upon any course of training, theoretical or practical?

Another fault of argument, but almost peculiar to the practical world, who have the force of numbers on their own side, is the habit of claiming all who ara successful in application as instances of their own metlod and knights of their own order. Suppose tlat one individual should discover a mine, work it with his own hand, purify the ore, and beat the metal into a horse-slooe; which is he, a geologist, miner, furnace-man, or blacksmith? He has done the work of all, but the community of blacksmiths would hardly be allowed to claim him as peculiarly belonging to themselves. When a person who fully applied them, he is free of both corporations; but those who attend to application only, never fail to appropriate his merits.* WATT is a striking instance ; he was a
highly accomplished theorist on every point on wheh he worked: and yet his name has been frequently cited as a proof that theory could be dispensed with. And his career, when compared with that of Telford, will illustrate theory applied to practice, as distinguished from practice alonc, however acute. It is impossible to contemplate the career of Telford withont a feeling of high interest, created by the comparison of his apparently inadequate education with his startling successes. Looking at the individual himself, there is everything for his age to admire; and as long as his structures last, each of them is the monumentum, but not are perennius. The time will come when his name shall be like that of the builder of the old London bridge, who was no doubt the Telford of the day, a stimulus to his contemporaries, useful and honoured, but not the remembered of succeeding ages. On the other hand, the discoveries of Watt, though equally startling in what is called the practical point of view, have the mind of the discovercr impressed upon them, and have been, and must be, the guide of his successors, not mercly to repetitions of what he did himself, but to enlargement of ideas, and to the conversion of principles into forms useful in art. Take away the honourable qualities which enabled the two men to outstrip their contemporaries, cach in his line, qualities which are the properties of the individual minds, and consider what is left, namely, their modes of proceeding: consider the effect of these two modes upon men in general, and there is nothing in that of Telford which would raise the workman above a workman, while in that of Watt there is the vital principle to which we owe all the mechanical triumphs of civilization and all the theoretical suecesses of philosophy.
This country has been long and happily distinguished for the great attention which has been paid to application ; but it is a mistake to suppose, as some do, that our supremacy in practical matters has been coordinate with, still less owing to, neglect of theory. It would be easy to show that though the comparative neglect of theory alone, as a pursuit, added to its diligent cultivation on the Continent, has given to foreign countries a decided prepouderance of theoretical inquirers and writers, yet that there has been no country in Europe in which a competent knowledge of the mathematics and their applications has been spread over so large a mass, or raised to so high an average. At any time since the beginning of the seventeenth century the total amount of theory in Britain has been larger than in any other European country, on account of the numbers who have possessed a useful amount of knowledge: the diffusion of education in Germany may have altered our position, but of this we are not sure. For ourselves we are perfectly satisfied, however little those most concerned may know it, that this greater diffusion of theory has been the original moving cause of the practical excellence to which we have alluded. If those who have become known for splendid achievements in the former are few, the same may also be said of the latter; but a country owes its excellence in either department, not to one or two of the highest, but to the mass of those who have competent knowledge, producing good habits of thought and action. It is a new thing to hear one branch set against the other, and would make our writers of a century back think that posterity had lost its senses: The only addition wanted has been some means of systematically nurturing the growth of theory, so that, well as we have done with what we have, we may do better with more. The efforts which are making on every side to extend education will, it may be hoped, do what is wanted in this particular; they will at least have the effect of making it clear that, whatever the force of genius may do for an isolated exception, the mass of mankind must place their best hope of progress in the union of theory, and practice.
There is also a mode of viewing what we may call the action of theory, which is absolutely necessary to a true conception of the value of their labours who employ their time in its advancement. Watch the arguments of a person who calls himself, distinctively, a practical man, and it will be always found that a well-established theory, filly years old, is practieal knowledge, so called. To this there cannot be the slightest objection in the non-distinetive sense: a well-established theory, which has been shown to be sufficient, is practical, as opposed to one of which

VoL. XXIV.- 2 X
the investigation is more recent, and the completeness not so well s-certained. But when the question is theory, as theory, against practice, as practice, the alvocates of the Intter frequently find it convenient to assume, for their own share of the matters in contest, all the liest theories plus the most recent practical knowledre, teaving to the other side the onus of supporting theory upon the most inpleerfeet part of the mass of doctrines which it contains, being that part which is not yet off the anvil. Suppose a metchant going into the bail court to prove his belng worth a certain sum; he is asked whether his business. all debts and risks allowed for, would produce that sum: he replies, that his ventures must be beyond record unsucceasful, if it would not be so, over and over ampain. -So then,' he is further questioned, 'you camot positively' swear that your busines will make you worth the sum in question.' 'I cannot,' he replies, 'positively swear any such thing ; but 1 have enough not cinployed in business, in land and mortgages, and in the funds, to pay twenty shillings in the pound five times over, upon every risk which I am liable to.' What would be thought of counsel who should retort, 'That is nothing to us; you are described as a merchant, and your solvency must be tried by the state of that part of your property which is now undergoing the fluctuations of trade ?' Such is and always must be the state of theory; the amount which is aetually realised is enormously greater than the floating balanee which is being worked ont. Those who are engaged in producing fixed capital from the latter, have a right to the credit which arises from the interest of the former: their labours for the time being are not to produce their return at the instant.

We have, in eompliance with common notions, not adverted to the consequences of theory upon the mind and thoughts of men, but have treated it as if its sole object were to adrance the mechanical arts and better the physleal condition of society. But this is under protest that ceen if it could not be proved that rational investigation of nature had added one single atom to the physical comfort of life, there would remain such an enormons mass of social ameliorations which can be traced to that source as would outwejgh even the trimmphs of steam.
THEORY OF COUPLES. The two motions of which any rigid system is susceptible are those of Thavshatron and of Rotation. Each of these has this peculiarity, namels, that one particular ease of its application yields the other kind of motion. Fvery motion of a systenn can, for any one instant, be resolved, at most, into a motion of translation of the whole system, combined with a mintion of rotation about an axis; and every application of a system of forces to any rimid hody, produces, zencrally speiking, this compound of translation and rotation. Also, if equal and opposite forees, such as would produce simple translation, be applied at the same point, or if equal and opposite forces, such as would produce rolation, be applied about the same axis, the result is that the equifibrium. or previous motion, of the system remains undisturbed.
But if the equal and opposite forees of translation be applied at different points, the result is rotation only, for the first instant ; and if the equal and opposite forces of rotation be applied about axes not coineiding, but only parallel, the effect, at the first instant, is translation only. And though the doetrine of motion is now properly ex cluded from stafics, yet the preceding theorems, together with others mentioned in Rotations, should be well understood, and viewed in connexion with the science of equilibrium, which is always illustrated, though it may not he demonstrated, by such considerations.
It was for a long time a curious hut barren exception, that though ant two forces acting in the same plane may, generally speaking, have their joint effect supplied by one single third force, yet if the two forces be equal in magnitude, and opposite in direction, no such single third foree will do. If indeed they be applied in the same line, as $O P$ Pand $Q R$ in the first figure, they equilibrate each other; but if not in the ame line, as OP and QR in the second figure, no

them, or produce their effect. About twenty years aco, M. Poinsot, alrudy mentioned for lis beatitul theory of Rotation, applied a remarknble theorem ennnected with such pairs of forces to the establishment of the theory of the staties of rigid bodies, in a manner which las made his system rapidly take its place among the fundamental bases of the science. We shall in this article point out the manner In which this can be done, without nuch demonstration, with a view to draw the aftention of those who have learned the doctrine of equilibrium in the old way: we cannot make it intelligible (without too great length) except to those who have Jearned the principles of analytical statics.
M. Poinsot callerl a pair of equal and opposite foreces. not equilibrating each other, by the name of a couple; 100 genernl a term perhaps: by it is to be understood a couple which cannot be made anything lout a couple, or eannot be replaced by one force: an inenmposible couple. The plane of the couple is the plane drawn through the parallel forees: the arm of the couple is any line drawn perpendicular to the forces from the direction of one to that of the other: the axis of the eouple is any straight line perpendicular to its plane. And it we consider any axis, it will be apparent that the moment or leverare of the couple [lageze] to turn the system about that axis is represented by the product of one of the forces and tho arm. For if, with reference to the axis, x be the arm of one of the forces, $x \pm a$ is that of the other, a being the arm of the comple. Hence if P one of the forces, the united leverage is $\mathrm{P}(x \pm a)-\mathrm{P} x$ or $\pm \mathrm{P} a$. This product Pa is called the moment of the couple.
The last-mentioned property will give a high probability of itself to the following theorems, which are the basis of the theory of eonples, and can be proved, the flist by aill of the composition of forces only, the second by the principle of the lever. Any couple may have the direction of its amn changed, and consequently of its forecs, in any manner whatsocver, either in its own plane, or in any plane parallel to it, provided only that the direction in which it tends to turn the system remains unaltered. Secondly, any couple may be replaced by aoother which has the same moment, the plane and direction of turning remnining unaltered; that is, the arm may be slortened or lengthened in any mamer, provided the forees be increased or diminished in the same proportion. If the system were in equilibrimm before, it will remaln in equilibrium, however its couples may be altered, in any manner described in the above theorems. Hence it follows that a couple is enfirely given when there are given:-1, Its axis or any line perpendicular to its plane, which is also perpendicular to any of the planes into which it may be removed. 2, The moment of the couple; specifie forces or arms are unneeessary for its description, so long as their product is given. 3, The direetion in which it tends to fum the system. The easiest way of describing a couple is then as follows; suppose for example a horizontal one: Take any vertical line for the axis of the couple, on that axis lay down a line proportional 10 its moment, and agree that vertical lines drawn upwards shall represeut moments tending to turn the system from west to east; and downwards, those tending to turn the system from east to west. But a slgn must also be rereed upon; positive moment must consist in tendeney to turn in one direction, and negative in the other.
The composition and resolution of couples is easily shown to be done in a manner which perfectly resembles that of Rotatioss. When the couples can liave a common axis (act in the same plane or parallel planes), the moment of the resultant is, in sign and magnitude, the sum of the moments of the components, with their proper sigas. To find the resultant of two couples which cannot nave a common axis, take axes to them which pass through the same pount, and on these axes lay down lines representing the moments of the couples in their proper dlrections. On those lines coluplete a parallelogram: the direction of the diagonal is the axis of the resulting couple, and its length represents the moment of that couple. Care must be taken to lay down the direetions of the moments properly on the axes; the best isolated rule (when reference is not made to distinct co-ordinate planes) is is follows: let the parts of the plane of the axes which lie in the angle made by the lines representing moments be tumed hy the two couples in opposite directions.

To the student to whom such a direction would be useful we should say, appeal in all cases to the perceptions derived from Rotation.

To apply the preceding theorems to the statics of a rigid body, we first take the following conventions:-Assume an origin and three rectangular axes of co-ordinates, as usual. Let the forces which act at each point of tbe system be decomposed into three, parallel to the axes of x, y, and z. Let each force be called positive, when it acts towards the positive part of the axis to which it is parallel; if for instance the axis of z be vertical, and if its positive part tend upwards, all forces in the direction of z, wherever they act, are ealled positive while they act upwards, and negative when downwards. As to couples, let their moments be called positive when; actiug in the planes of x and y, y and z, z and x, they tend to turn the positive part of the first-hamied towards the positive part of the second $(x y, y z, z x)$. Let P_{1} be the first point of the system; let its co-ordinates be x_{1}, y_{1}, z_{1}; let the forces in the three directions acting at that point be X_{1}, Y_{1}, Z_{1}. Let P_{2} be the second point; x_{2}, y_{2}, z_{2}, its co-ordinates ; $\mathbf{X}_{2}, \mathbf{Y}_{2},{ }_{2}, \mathbf{Z}_{2}$, the forces there applied: and so on. All co-ordinates and forces have their proper signs. At the origin apply the following pairs of equilibrating forces, \mathbf{X}_{1} and $-X_{t}, Y_{1}$ and $-Y_{1}, Z_{1}$ and $-Z_{1} ; X_{2}$ and $-X_{4}, Y_{3}$ and $-X_{2}, Z_{2}$ and $-Z_{2}$, and so on: which of course do not affect the equilibrium, and are over and ahove those already applied. Asain, at the extremity of x_{1}, in the axis of x, apply the equilibrating forecs Y_{1}, $-\mathrm{Y}_{1}$; at the extremity of y_{1}, in the axis of $y_{\text {., apply }} Z_{1},-Z_{1}$; at the extremity of z_{1}, in the axis of z, apply $X_{1},-X_{1}$, and so on fer the other points. Lastly, let the points ot application of the original forecs $\mathrm{X}_{1}, \mathcal{Y}_{1}, \mathrm{Z}_{1}$, be changed so that cach shall act at the projection of the point of application made by its co-ordinate: and the same for the other points. Nothing is done but the application of mutually destroying forces, or the change of the point of application of a force to another point in its direction, and the following figure will show the present arrangement for one point. The original forces, transferred, are marked X, Y, Z; the original point of application P, and the other forecs, equilibrating two and two, have great and small letters at their extremities.

We now see that the forees X, Y, Z, are equivalent to

1. The forces X, Y, Z (marked A, B, C) applied at the origin.
2. A pair of couples to the axis of $z(L, b)(X, n)$, the first positive with the moment $Y x$, the second negative with the moment $\mathrm{X} y$. These two are equivalent to one couple with the moment $\mathrm{Y} x-\mathrm{X} y$.
3. A pair of couples to the axis of $x(M, c)(Y, \zeta)$, the total moment of which is $\mathrm{Z} y-\mathrm{Y} z$.
:4. A pair of couples to the axis of $y(N, a)(Z, m)$, the total'moment of which is $\mathrm{X} z-\mathrm{Zx}$.
Apply this to every point in the system, and let $\Sigma \mathrm{X}$ stand for $X_{1}+X_{2}+$, \&c., and so on : hence it appears that the whole of the forces áre equivalent to forces $\Sigma \mathrm{X}, \Sigma \mathrm{Y}$, ΣZ, applied at the origin in the direetions of x, y, and z, together with coup!es in the planes of $x y, y z, z x$, of which the moments are-
$\Sigma(\mathrm{Y} x-\mathrm{X} y)_{0} \mathrm{\Sigma}(\mathrm{Z} y-\mathrm{Y} z), \Sigma(\mathrm{X} z-\mathrm{Z} x)$.
Let $A=\Sigma \mathrm{X}, \mathrm{L}=\Sigma(\mathrm{Z} y-\mathrm{Y} z)$
$B=\Sigma \mathrm{Y}, \mathrm{M}=\Sigma(\mathrm{X} z=\mathrm{Z} x)$
$\mathrm{C}=\Sigma \mathrm{Z}, \mathrm{N}=\Sigma(\mathrm{Y} x-\mathrm{X} y)$
$V=\mathcal{N}\left(A^{2}+B^{2}+C^{2}\right), W=\mathcal{N}\left(\mathrm{L}^{8}+M^{2}+N^{2}\right)$
Then it appears that all the furces can be rednced to one force, V , acting at the origin, making angles with the axes whose cosines are $\mathrm{A}: \mathrm{V}, \mathrm{B}: \mathrm{V}, \mathrm{C}: \mathrm{V}$; and one couple having a moment W, and whose axis makes with the axes of co-ordinates angles whose cosines are $L: W, M: W$ N : W. But when there is equilibrium, both the force and the moment of the couple must vanish, for the single force cannot equilibrate a couple... Consequently the cunditions of equilibrium are $\mathrm{V}=0, \mathrm{~W}=0$, which give $\mathrm{A}=0, \mathrm{~B}=0$, $\mathrm{C}=0, \mathrm{~L}=0, \mathrm{M}=0, \mathrm{~N}=0$, the six well-known conditions of equilibrium.
The forces will have a single resultant when V falls in the plane of the couple whose moment is W; that is, when the direction of V is at right angles to the axis of the conple. This takes place when $\mathrm{AL}+\mathrm{BM}+\mathrm{CN}=\mathrm{O}$, a wellknown condition.
For further information we may refer to Poinsot's Elémens de Statique; or, in English, to Pratt's Mathematical Principles of Natural Philosophy; or Pritchard's Theory of Couples.
THEORY OF EQUATIONS. Under this term is expressed all that part of algebra which treats of the properties of rational and integral functions of a single variable, such as $a x+b, a x^{4}+b x+c, a x^{3}+b x^{2}+c x+e$, and so on: a, b, c, \&e., being any algebraical quantities, positive or negative, whole or fractional, real or imaginary. Unless however the contrary be specified, it is usual to suppose these co-efficients real, not imaginary.
The great question of the earlien algebraists was the finding of a valuc for the variable which should make the expression equal to a given number or fraction: as what must x be so that $3 x^{3}+2 x$ may be 11 , or $x^{3}-x^{2}+6 x$ may be 40, and so on. In modern form it would be asked what value of x will make $3 x^{3}+2 x-11=0$, or $x^{3}-x^{8}+$ $6 x-40=0$, and so on. To find values of a variable which should make an expression vanish, or become equal to nothing, was then the first desideratum; and these values are now called roots of the expression. Later algebraists made the finding of these roots subservient to the discovery of other properties of the expressions.

The Hinclu algebraists communicated to tbe Arabs, and through them to the Italians, the complete solution of equations of the first and second degrees. The Italians added the solution of equations of the third degree, and of the fourth imperfectly. These last two degrees have been completed in more recent times, so that it may be now said that the equations of the first four degrees have been completely conquered : that is to say, having given the equation $a x^{4}+b \bar{x}^{3}+c x^{3}+e x+f=0$, an algebraical expresslon can be found, having four values, and four values only, and being a function of a, b, c, e, f, which being substituted for x on the first side of the equation, shall make that first side vanish. But the student would-look in vain through the books of algebra to see this expression: it is both complicated aud useless, and it is more desirable to indicate how it is to be found, than to find it.
The equation of the. fifth degree was attempted in all quarters, without success: means were found of approximating to the arithmetical value of one or another root in any one given equation; but never a definite function of the co-efficients whicli would apply in all cases. A piroot was given by Abel, in Crelle's Journal (reprinted in his works), that such an expression was impossible, but this proof was not generally received: it was admitted by Sir W. Hamilton, who illustrated the argument at great length in the 'Transactions' of the Royal. Irish Academy, vol. xviii., part ii.; but the singular comple xity of the reasoning will probably prevent most persons from attending to the subject. We do not mean in this article to enter inte the history of the theory of equations, but only to place its general state before the reader by exthibition of the principal theorems, mostly without proof. For works on the subject we may refer as follows:-Hutton, Tracts, vol. ii., Tract 33 , which" contains a full account of the earlier algebraists; Pcacock, 'Report on certain Parts of Analysis,' in the Report of the Third. Meeting of the British Association; or the recent works of Murphy, Young, or Hymers; all of which are good, and written. on such different plans that any one who makes a particular study of the subject will find it advantageous to consult them all. In French the standard works are those of Budan, Lagrange, and Fourier, which however all treat of partieular topics ; the
algelraical treatises of Bourion and l.cfebrre de Fourcy take it more gencrally:

The particular points relative to equations of the first four degrees are as follows:-

1. The expression of the first degree can be reduced to the form $a x+b$; it vanishes when $x=-b: a$, and has only this one root. And $a x+b$ is of the same sign as a or not, according as x is greater or less than the root.
2. The expression of the second degree is inore important. It can always be reduced to the form $a x^{4}+b x+c$, and its properties are best developed by transforming the preceding into

$$
\frac{(2 \pi x+6)^{2}+4 \pi c-b^{2}}{4.6}
$$

There are three distinct eases, according as b^{3} is greater than, equal to, or less than, 4 ac.

When $b^{2}>4 n c$, the expression $a x^{3}+b x+c$ has two real and differing roots, contained in the formula*

$$
\frac{-b \pm \sqrt{ }\left(b^{2}-4 a c\right)}{2 a}
$$

and has always the same sign as a, exeept when x lies between those roots. Every change of signs in passing from a to b and from b to c indicates a positive root, and cvery continnation a negative root: and when one root is positave and one root negative, the positive or negative root is numerically the greater, according as (a, b) shows a change or continuation. When $x=-b: 2 t$, the expression is at its numerieal maximum between the two roots, its then value being ($4 a c-b^{2}$): $4 a$.
When $b^{4}=4 a c$, the expression $a x^{2}+b x+c$ is a perfect square with respect to x, and absolutely so if a be a square. The two roots beeome equal, and each equal to $-b: 2 a$. The expression now never differs in sign from a.

When $b^{2}<4 a c$, the two roots bceome innaginary, the expression always has the sign of a, and is numerieally least when $x=-b ; 2 a$, being then $\left(\operatorname{tac}-b^{2}\right): 4 a$.
3. The equation of the third degree (or cubic) has been separately considered in the article Irreducibie Case.
4. Nothing belongs particularly to the equation of the fourth degree (or biquadratie) except the recital of the varions mocles in which the solution is reduced to that of a cubie. The various modes are distinguished by the names of ther inventors.

Ferrari. Let $x^{4}+a x^{4}+b x+c=0$. This can be transformed into

$$
\left(x^{2}+v\right)^{2}=(2 v-a) x^{3}-b x^{2}+x^{2}-c ;
$$

make the second side a perfect square ; that is, find v from $b^{2}=4\left(z^{2}-c\right)(2 v-a)$,
or $\quad 8 v^{3}-4 a v^{3}-8 c c+4 a c-b^{3}=0$;
the extraction of the square root then reduces the biquadratic to a couple of quadraties.

Des Curtes. Let $x^{4}+a x^{3}+b x+c=\left(x^{3}+\sqrt{\prime} p \cdot x+f\right)$ $\left(x^{8}-\sqrt{p} \cdot x+g\right)$, which gives

$$
\begin{aligned}
& g+f-p=a,(g-f) \sqrt{ } p=b, f g=c, \\
& p^{3}+2 a p^{2}+\left(a^{4}-4 c\right) p=b^{3}=0
\end{aligned}
$$

find a positive root of this $-4 c) p-b^{2}=0$:
find a positive root of this equation (it certainly has one). and from it find g and f; then the roots of $x^{2}+1 p, x+f$ $=0$, and $x^{3}-\sqrt{p} \cdot x+f=0$, are those of the given equa,tion.
Thomas Simpson gave à modifieation of Ferrari's method, and Euer one of that of Des Cartes. (IIurphy's Theory of Fquations ($L ., U . K$.), pp. 54, 55.)

The theory of equations of all degrees is to be divided into two distinct parts; the numerical solution, and the general properties of the roots and the expressions thenselves. The numerical solution inust be carefully distinguished from the general solution; the former term applying to any mode of approximating to a single root, the latter to any mode of exlibiting a general expression for the roots. We shall begin by the general properties of the roots: the expression in question being ϕx, or

$$
a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{n}
$$

1. If r be a root of ϕx, or if $\phi r=0$, then ϕs is divisible hy $x-r$, and the quotient is another such expression of the $(n-1)$ th degrec, every root of which is nlso a root of ϕx, and every number which is not a root (r exeepted) is

- Thie tormyla should bo committed lo memory, asd quadralie eqpations alway solvad by it. Notheg is mone amusing than sho vitalfyy of the old mathod of completlog the equare and axlracting the root in every particyint ence, No dorbt e otudeat should have worme lrainigg in thls Inve-weationed

not n root of $\phi \cdot r$. Hence ϕ er cannot have more roots than it has dimensions, or cannot have more than n roots.

2. When the expression $\phi . x$ is divisible by $(x-r)^{(1)}$, it is said to have m roots each equal to r; and when this is the case, the substitution of $r+y$ for x would give an expression in which y is the lowest power of y.
3. Eivery expression has as many roots as it has dimensions. This propesition is one which has only latterly been demonstrated in elementary works, and we shall here give a demonstration with the view of extending the knowledge of a remarkable theorem of M. Cauely, which is just such a theoretieal victory over the diffieulty of fincting how many roots in gencral lie between given limits, as Sturm's theorem is relatively to real roots. We shall assume the extended algebra explained in Negative, \&e.
Take any rectangular axes, and let x and y be the coordinates of a point, and consider the expression $\phi(x$ $+y(-1)$ which can be reduced to the form $P+Q \sqrt{ }-1$, where P and Q is each a real function of x and y. l.et the point move round the contour ABCD in the positive direction of revolution, and let the fraction $\mathrm{P}^{\prime}: Q$ be formed for all the points in the contour (or a sufficient number) in succession. Examine cvery case in which $P: Q$ passes through 0 and changes sign: let it change sign from + to ,$- k$ times and from - to,$+ l$ times. Next, whenever x and y have such values that $x+y \sqrt{ }-1$ is a root of the expression, or $\phi(x+y \sqrt{ }-1)=0$. let the point whose coordinates are x and y be called a radical point of the expression. The theorem to be proved is as follows: the number of radical points which lie within the contour ABCD is $\frac{1}{2}(k-l)$, neither more nor fewer. It must be understood that the contour is so taken that no radical point lies upon it.

Talie any point P rithin the eantour, and round it draw an infinitely small contonr, round which a point is to be first carried. Four cases arise: neither ${ }^{3}$ nor Q vanishes within nor on this contour; ${ }^{3}$ vanishes, but not $\mathrm{Q} ; \mathrm{Q}$ vanishes, but not P; or both vanish.
If neither P nor Q vanish, there is never change of sign in either (for being integral funetions, they eannot become infinite for any finite values of x and y), and the theorcin is true for the infinitely small contour; for k and l are both $=0$, and there is no radienl point.
If P alone vanish, the curve $P=0$ (remember that P is a function of x and y) passes through* the contour two or some other even number of times. The fraction $P: Q$ may vanish and change sign as often as the curve passes through the infinitely sinall contour: but there must be as many changes froin + to - as from - to + . For suppose \mathbf{P} to be positive at the commencement of the revolution; it is therefore positive at the end. Write down the sign + twiee, and between it write any signs. whatever, as

$$
+--++-+-+;
$$

it will always be found that $+\rightarrow$ and -+ oecur equal numbers of times. Hence the theoren is true in this case ; for $k=l$, and there is no radical point.
If Q alone vanish, the curve $Q=0$ passes through the point, and everything is as in the last, except that P : Q always beeomes infinite when it changes sign. Ifence the theoren is true; for k and l are each $=0$, and there is no radleal point.
Iastly, let there be a radieal point within, but not on, the infinitely small contour: which may be silpposed to contain not more than one distinet radical point. Let Z be the radius vector drawn from the origin to the point of the contour whose co-ordinates are x and y; so that, using the

- Prevent the curve $P=0$ from touchag the contour by enlarging the hatice - litilo if nervemary.
extended algebra, $\mathrm{Z}=x+y \sqrt{ }-1$. Again, let μ and ν be the co-ordinates of the radical point, and A its radius vector ; so that $\mathrm{A}=\mu+\nu \mathcal{N}-1$. Let R be the radius drawn from the radical point to the contour, so that $Z=A+R$, R being infinitely small. By hypothesis $\mu+\nu \sqrt{ }-1$ is a root of $\phi z=0$; let there be m equal roots belonging to the radical point (m being 1, or some other integer): then will $\phi(A+R)$ be capable of expansion into the form $\mathrm{BR}^{m}+\mathrm{B}_{1} \mathrm{R}^{m+1}+$, \&c., of which, R being infinitely small, only the first ferm need be considered. Now let B and R (taking the most general forms) be b (eos β $+\sin \beta \cdot \sqrt{ }-1)$ and $r(\cos \rho+\sin \rho \sqrt{ }-1)$, whence BR^{m} will be

$$
\operatorname{br}^{m}\{\cos (m \rho+\beta)+\sin (m \rho+\beta): \sqrt{ }-1\},
$$

and $P: Q$ will be $\cot (m \rho+\beta)$, its remaining terms being infinitely small. Let R make a complete circuit, or let ρ increase from 0 to 2π, whence $m_{\rho}+\beta$ will go m times through four right angles. In each revolution eot $(m \rho+\beta)$ will change from + to - twice, passing through nothing : but never from - to + exeept by passing through infinity. The theorem is then true : for $k=2 m, l=0, \frac{1}{2}(k-l)=m$, and there are m radical points (or one radical point belonging to m equal roots) within the contour.

The theorem is then true for every infinitely small eontour. Next, let the whole contour ABCD be divided into an infinite number of infinitely small figures, with no other limitation than that no radical point is to fall upon one of the lines of division. Let a point move round each of the infinitely small figures in the positive direction of revolution. It is clear that the expression $\frac{1}{2}(\Sigma k$ $-\Sigma l$) will not be altered if we remove all the internal division lines and leave only the external contour ABCD: for each internal line is described by two points moving in opposite directions, and wherever one point adds a unit to Σk, the other adds one to Σl. Hence the value of $\Sigma k-\Sigma l$ can be found by finding that of $k-l$ for the boundary only: and the theorem is proved.

If $\phi Z=A Z^{n}+A_{1} Z^{n-1}+\ldots$, and if we make the contour in question a circle with the origin as a centre, and a radius so great that the highest term $A Z^{n}$ need be the only one retained, we ean immediately prove that $\phi \mathbf{Z}$ has ncither more nor less than n roots. For, Z being $z(\cos \zeta$ $+\sin \zeta \sqrt{ }-1)$ and A being $a(\cos a+\sin a \cdot \sqrt{ }-1)$, we find as before that $P: Q$, or all of it that need be considered, is $\cot (n \zeta+a)$, whenee $k=2 n, l=0$, and $\frac{1}{2}(k-l)$ $=n$.
4. We may now refer to Sturm's Theorem, to Fourier's theorem (given in the artiele just cited), to Des Cartes' theorem, a very limited partieular case of Fourier's, and to Homer's adaptation of, and addition to, the old method of numerical solution by Vieta (an aecount of the history of this last problem is given in the 'Companion to the Almanac' for 1839). We have then, sinee the beginning of this century, a complete theoretical mode of determining the number of roots, real or imaginary, between any given limits; both exceedingly difficult in the complication of the operations which they require. Also, a mode of easy application, though not theoretically perfeet, of determining the limits between which the real roots lie; and a process for the numerical solution which places that question upon the same footing as the common extraction of square, cube, \&e. roots; making those extractions themselves, except only in the case of the square root, much easier than beforc.
5. The Newtonian method of approximation is in the following theorem. If a be nearly a root of $\phi x=0$, and if $\phi a: \phi^{\prime} a$ be small, then

$$
a-\frac{\phi a}{\phi^{\prime} a}
$$

15 more nearly a root. See Approximatron for the use of this, and Taylor's Theorem, p. 129, for a more extensive result. But the use of Horner's method is very much more easy than that of Newton: the former, in fact, ineludes and systematizes the latter. But this remark applies only to algebraical equations: for all others Newton's form just given remains praetically unamended.
6. We refer to the article Root for the solution of $x \pm 1=0$. The following equation, $x^{2 n} \pm 2 \cos 0 \cdot x^{3}$
$+1=0$, admits of complete solution on the same prinesples.
7. If ϕa and ϕb have different signs, one or some other odd number of roots of φx lies between a and b : but if they have the same signs, either no one or an even number of roots lies between a and b. Every equation of an odd degree has at least one real root, negative or positive, according as the first and last terms have like or unlike signs. Every equation of an even degree having the first and last terms of unlike signs has at least two real roots, one positive and one negative.
8. If all the coefficients of ϕx be real, and one of the two, $a \pm b \sqrt{ }-1$, be a root, so is the other: and if all the coefficients be rational, and one of the two, $a \pm \sqrt{ } b, a$ and b being rational, be a root, so is the other. If there be a rational fractional root, its denominator must be a divisor of the first coefficient, and its numerator of the last, as soon as the equation $\phi x=0$ is cleared of fractions. N.B. Among the divisors of a number we reekon 1 and itself.
9. In the equation $a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-1}$ $x+a_{n}=0$, the sum of all the roots is $-a_{1}: a_{0}$, the sum of the products of every two is $a_{2}: a_{0}$, that of the products of every threc is $-a_{3}: a_{0}$, and so on. Finally, the product of all the roots is $\pm a_{n}: a_{0}$, aecording as n is even or odd. And if $r_{1}, r_{2}, \ldots r_{n}^{n}$ be the roots, then $a_{0} x^{n}+\ldots$ is the same as $a_{0}\left(x-r_{1}\right)\left(x-r_{2}\right) \ldots\left(x-r_{n}\right)$.
10. If the preceding expression be called ϕx, and $n a_{0} x^{n-1}+(n-1) a_{1} x^{n-2}+\ldots$, its derived function; be called $\phi^{\prime} x$, we have

$$
\frac{\phi^{\prime} x}{\phi x}=\frac{1}{x-r_{1}}+\frac{1}{x-r_{2}}+\ldots+\frac{1}{x-r_{n}}
$$

and if ψx be any rational and integral algebraieal function of x, the sum $\psi r_{1}+\psi r_{2}+\ldots+\psi r_{n}$ is the coefficient of the highest poower of x in the remainder of the division of $\phi^{\prime} x \times \psi x$ by ϕx.
11. If S_{n} in all cases stand for the sum of the nth powers of the roots of the equation, we have

$$
\mathrm{S}_{0}=n, a_{0} \mathrm{~S}_{1}+a_{1}=0, a_{0} \mathrm{~S}_{3}+a_{1} \mathrm{~S}_{1}+2 a_{2}=0
$$

$$
a_{0} \mathrm{~S}_{3}+a_{1} \mathrm{~S}_{2}+a_{2} \mathrm{~S}_{1}+3 a_{3}=0
$$

and so on up to

$$
a_{0} \mathrm{~S}_{n}+a_{1} \mathrm{~S}_{n-1}+a_{2} \mathrm{~S}_{n-2}+\ldots+n a_{n}=0
$$

after whicl, in all cases,

$$
a_{0} S_{n+k}+a_{1} S_{n+k-1}+\ldots .+a_{n} S_{k}=0
$$

Hence also the coefficients of the expression may be found in termis of $S_{1} S_{2} \ldots . S_{n}$, as soon as a_{0} is given.
12. All rational symmetrical functions of the roots may be easily expressed in terms of $S_{1} S_{2}, \& c$., and thence in terms of the coefficients of the cxpression.
13. If it be required to find a function ψy the roots of which shall be given functions of those of ϕx, so that in all cases $y=\mathrm{F} x$, proeeed as in finding the highest common divisor of ϕx and $\mathrm{F} x-y$, and take for ψy the final remainder. But if this final remainder should be of a higher dimension than, from the known number of its roots, it ought to be, it will be a sign that some of the factors introduced in tae process have affceted the remainder, and these inust be cxamined and removed. The treatment of this case belongs to the general question of elimination, but the following partieular cases are almost all that are necessary.
14. To deerease all the roots of ϕx by a given quantity, or to make $y=x-a$, or $x=y+a$, observe that the resulting cquation must be

$$
\phi a+\phi^{\prime} a . y+\frac{\phi^{\prime \prime} a}{2} \cdot y^{2}+\ldots+\frac{\dot{\phi}^{(n)} a}{2.3 \ldots n} y^{n}=0
$$

where the coefficients $\phi a, \phi^{\prime} a, \frac{1}{2} \dot{\phi}^{\prime \prime} a$, \&e. may be most readily found by the process described in Involurion (p. 7). The same process may be applied, by using - a instead of a, to increase all the roots of ϕx by a given quantity. It is by this process that the second term of an equation is taken away: thus, the equation being $a_{0} x^{n}+a_{1} x^{n-1}+\ldots=0$, assume

$$
y=x+\frac{1}{n} \frac{a_{1}}{a}
$$

the sum of the roots of the equation in x being $-a_{1}: a_{0}$, that of the equation in y will be 0 .
15. To multuply all the roots of an equation by m, inultiply its successive tenus, beginning from the lughest, by $1, m, m^{0}, m^{3}$, \&cc. And to divide all the roots of an equation by m, uultiply all the terms by the same, beginning from the lowest. N.B. Terms apparently missing in an cquation must never be neglected. Thus $x^{4}-2 x^{4}+3 x$ $-1=0$ ought to be written

$$
x^{2}+a x^{2}+0 x^{3}-2 x^{4}+0 x^{3}+0 x^{2}+3 x-1=0
$$

This caution is of the nitmost importance: in fact no process onght to be applied to any equation without a monnent's thought as to whether all the terms are formally written down, and if not, whether the process about to be applied will not require it.
16. To change the signs of all the roots of an equation, change the signs of the coefficients of all the odd jowers, or of all the even powers, as most convenient.
17. To clange aul equation into another whose roots shall be reciprocals of the former roots, for every power of x write its complement to the highest dimension. Thus in an equation of the seventh degree, for x^{0} write x^{2}, for x write x^{3}, for x^{2} write x^{3}, and so on; lastly, for x^{2} write x°. N.B. Consider the independent term of the equation as affected by x^{0}. From the reciprocal equation can be found the sums of the negative powers of the roots of the original.
18. The old methods of finding limits to the magnitude of the positive and negative roots of an equation are so rapid that they can hardly be said to be superseded by those of Sturm or Fourier. In enuneiating them we speak of coefficients absolutely, without their signs, when mentioning any increase or decrease they are to receive.
If A be the greatest of all the quotients made by dividing the co-efficients by the first co-efficient, no root, positive or negative, is numerically so great as A+1. And if B be the grentest of all the quotients made by dividing the co-efficients by the last co-effieient, no root, positive or negative, is numerically so small as $1:(B+1)$. Better thus: if I, be the first co-efficient, M the greatest, and N the last, signs not considered, then all the roots, numerically speaking, lie between

$$
\frac{\mathrm{M}+\mathrm{I}}{\mathrm{~L}} \text { and } \frac{\mathrm{N}}{\mathrm{M}+\mathrm{N}}
$$

19. If L he the first eo-efficient, and M the greatest eoefficient which las a different sign from that of L, no positive ront is so mreat as ($\mathrm{M}+\mathrm{L}$) : L . . And if L be the last co-efficient and M the greatest which has a different sign, no positive root is so smal! as $\mathrm{L}:(\mathrm{M}+\mathrm{L})$. And to apply this to the negative roots, change the signs of all the roots of the original ($\$ 16$), and find limits to the positive roots of the new one.
20. If L be the first co-efficient, M the greatest which has a different sign, and if the first which has a different sign be in the m th place from the first term exclusive, or beleng to the $(m+1)$ th term; then no positive root is so great as

$$
i+\bar{N}\left(\frac{M}{L}\right)
$$

21. If each co-fficient which differs in sign from the first term, be divided by the sum of all whiel! precede and agree with the first tern (the first term itself included), the kreatest resulting fraction, increased by unity, is greater tha a any positive root of the equation.
22. Newton's method of finding a limit greater than the greatest positive root of any equation now merges in Fourier's theorem. It eonsists in finding a by inspection and trial, so that $\phi r i, \phi^{\prime} a, \phi^{\prime \prime} a$, \&ce." shall all be positive.
23. Any mode of ascertaining a limit greater than the greatest positive root of an equation may be thus treated. Apply it fo the reciprocal equation (\$ 17), and the reciprocal of the result attained is less than the least positive root of the original. Apply both to the equation of roots with sigins changed, and the results gire limits fur the negative roots of the original.
24. A celebrated mode of examining the roots of equations, but too complicated for ordinary. uise, consibts in forming the equation whose roots are the bquares of the differences of the roots of the original. Any quantity being found less than the least positive root of this new equation, its square root is less than the difference of any two roots of
the original. If such a quantity could be readily found, the theoretical imperfection of Fourier's theorem would be greatly diminished, and, practically speaking, much advantage would be gained in numerical solution. What is wanted to add to both EOurier's and Horner's methud, is a realy inode of tinding out when two roots aro nearly equal.
25. Lagrance's mode of approximation is as follows :Ilaving found that a root of an equation lies between the integers a and $a+1$, diminish all the roots of that equation by a, and take the reeiprocal equation to the result. Find a root of the last lying between the integers b and $b+1$, diminish all the roots by b, and take the reciprocal equation of the result. Find a root of this last between c and $c+1$, and proceed in the same way. Then the continued fraction

$$
\frac{1}{a t} \frac{1}{b+} \frac{1}{c+} \text { \&c. }
$$

is a root of the original.
26. When an equation has equal roots, those roots can be found by an equation depending entirely on the different sets of equal roots. If ϕx have en roots equal to $a, \phi^{\prime} x$ has $m-1$ of them, $\phi^{\prime \prime} x$ has $m-2$ of them, and so on; finally, ${ }^{(m-1)}$ found to have a o one of them. If than $p x$ and ϕx be mon measure enters in ox one time more than in the common measure itself.
27. When an cquation has an interer root, which must be one of the divisors of the last co-efficient, it may be diacorered by suceessive trial, as follows:-Suppose $a_{0} r^{-1}+a_{3}$ $x^{3}+a_{3} x^{3}+a_{3} x+a_{4}=0, a_{0}$. Sc. being integers. Let k be a divisor of a_{4}, and let $a_{4}: k=l$, an integer. Then if k be a root, we have $a_{0} k^{3}+a_{3} k^{3}+a_{2} k+a_{3}+l=0$, and $a_{3}+l$ is divisible by k, giving m, \&n interer. Hence $a_{0} k^{3}+a_{1} k+$ $a+m=0$, and $a_{2}+m$ divided by k gives an integer, say n. IIenee $a_{0} k+\dot{a}_{1}+n=0$, and $a_{1}+n$ divided by k gives $-a_{0}$. If all these conditions be fulfilled, k is a root. All the divisors of a_{4} being tried in this manner, settle the question of the integer roots entirely.
28. If the co-efficients of an equation read backwards and forwards the same, both in sign and magnitude, every root has its reciprocal also among the roots. By redueing it to the form

$$
p+q\left(x+\frac{1}{x}\right)+r\left(x^{2}+\frac{1}{x^{4}}\right)+\ldots=0
$$

which ean always be done by division, when the dimension is eren, and assuming $y=x+x^{-1}$, an equation of the inth degree can be reduced to one of the nth and n quadraties. But when the dimension is odd, either -1 or +1 must be in root; and the equation can be depressed to an even degree by division by $x+1$ or $x-1$.
The student who is acquainted with the preceding results, namely, such as are either stated or referred to in this article, will find no diffienlty either in reading on the history of this subject, or in its applieation. It is peculiarly in suluject on which selection should be made for the beginner.
THERA (Opipa), an island in the Grecian Arehipelago, and the chief of the gronp known by the nimie of Sporades, although called by some antient writers one of the Cyclades. Its modern name is Samta Thira, which is pronounced and nsually written Santorini. It is said by Simabo ($x .484$, Casaub.) to be 200 stadia in circumference, but by modern travellers thirty-six mises, and in figure exactly like a horse-shoe. It is opposite the Cretan island of Dia, and distant from Crele 700 stadia, and from the island of Ios, which lay to the north of it, 25 Roman miles. (Pliny, IIist. Nut., iv. 23.) When it tirst cmerged from the sea, it is said to have been called Calliste: Therasia, a sumall island to the west, and called at present. by the sane name, was torn away from it, according to Pliny. Volcanic action seems at one time to have been actively at work in this part of the sca. Strabo (i. 57) says, that on one oceasion flames burst forth from the sea between Thera and Therasia, which lasted for four days, and that an island was formed in consequence, twelve stadia in circumference. The same phenomenon has also taken place in modern times, and is partienlarly described by J. Thevenot in his 'Travels in the Levant' (part i.). Pliny also speaks of an island which arose between Thera
and Therasia, to which he gives the names of Hiera and Automate, and of another which appeared in his own age, called Thia. The former is now called Aspronisi, or the white island;', the latter Kaimeni, or 'the burnt.'
Thera was originally inhabited by the Phœenicians, who are said to have been left there by Cadmus. It was subsequently eolonized by Theras with a mixed colony of Minyans and Spartans (Herod., iv. 147, 148), and always remained faithful to its mother-city Sparta. This island and Melos were the only islands of the Cyclades that remained faithful to Sparta at the beginning of the Peloponnesian war. (Thueyd., ii. 9.) But Thera has aequired its chief importanee from having founded the colony of Cyrene in Africa, under the guidance of Battus, in в.c. 631. (Merod. iv. 150, \&c.)
The Doric dialect was spoken at Thera, as we learn from inscriptions, and the government was in the hands of the descendants of Minyans and Spartans, whho first settled there. We find mention in inseriptions of a senate and a popular assembly.
Coins of Thera are extant belonging both to the time of its independence and that of the Roman empire. Those of the former kind bear the letters θ H, with the head of a youth on one side and three dolphins on the other.
In the present day the island is eovered with pumicestone; and though the soil is dry and barren, it produces a large quantity of cotton and wine. The wine is strong, and is exported to all parts of the Archipelago. There is no wood in the island; and as it has to be imported, and is dear, the inhabitants hardly ever have new bread, but eat biscuits, composed of wheat and barley, which they make only three or four times a year. They have hardly any eatile, and very little fruit except grapes, and there is only one spring in the island. It contains a few castles, surrounded by some houscs; but the majority of the inhabitants live underground in caves ent out of the pumicestone, which are arched over with very light stones of a reddish colour. The island has a very desolate appearance, the coast being eraggy and rugged, and the rocks burnt and scorclied. It has only one harbour, in the shape of a half-moon; but no ship can anchor in it, as no bottom has yet been found by the plumb-line.

In the beginning of the eighteenth eentury, when Tournefort visited the island, there were 10,000 inhabitants, and two bishops, one of the Greek and the other of the Latin church. About two-thirds of the inlabitants belonged to the Greek ehurch, (Tournefort, Voyage into the Levant. vol. i., p. 202, \&e.)
THERA'MENES (Enpapiv η) was a native of Ceos, and the adopted son of Hagmon, or Agnon, an Athenian. He acted a very prominent part about the close and after the end of the Peloponnesian war. He first appears in the history of Greeee as taking a part in public affairs in в.c. 409 , when, in conjunction with Antiphon, Phrynichus, and Pisander, he endeavoured to upset the demoeratieal constitution of Athens. In घ.c. 410 he took part with Thrasybulus in the battle of Cyzieus, and, in B.C. $40 G$, in the eelebrated battle of Arginusae.: On this oceasion, on which the Athenians gained a glorious victory, many lives were lost in the wreeks of their ships, whieh it was thought might have been saved if proper care had been taken. Theramenes and Thrasybulus had been commissioned by the Athenian generals to take eare of the wreeks and to save the men, but they were prevented by a storm from acemplishing this object. The generals in their despatch to Athens conceajed the commission they had given to Thelamenes and his colleague, as it was elear that the latter would be severely puished for their apparont negleet. After the first report, the generals themselves were summoned to return to Athens, and in self-defence they were compelled to give an accurate account of the oecurrence, and the more so as they had reason to believe that Theramenes and Thrasybulus were instigating the people against them. That their suspieion was not unfounded became evident afterwards, for when six of the generals were actually brought to trial, Theramenes was basc enough to appear Coremost amons their reeuserso The generals defended themselves; and the late hour of the day rendering it impossible to take the votes of the assembly, the business was adjoirrned to another day. During the interval, Theramenes and the other enemies of the generale exerted themselves to excite the indignation
of the people. On the day appointed for the next meeting a number of persons hired ly Theramenes appeared in the assembly dressed in mourning, to ronse the sympathies of the people for the loss of their friends and exasperate them against the alleged authors of their misfortune. After various debates eight of the generals were condemned to death, and six of them, who were present at Athens, were executed immediately. The blame of this act of cruelty falls mainly upon Theramenes, who - had taken advantage of the uncommon forbearanee and 1 candour of his vietims, and of his own reputation, which had never before been stained by any atrocious crime, to effeet their destruetion.
Soon after the exceution of the generals, the eyes of the Athenians were opened, it is said, by Thrasybulus, to their innocenee, and it was decided that those who had misled the people should be proceeded against, and that they? should give security for their appearance at the trial. Theramenes, however, either by his skill or by accident, not only avoided the prosecution, bit retained his place in the popular favour. In the following year (b.c. 405), shortly after the battle of Aegos ${ }^{i}$ Potami, when an Athenian embassy had been rejected by the Spartan. ephors, Theramenes, who, though he belonged to the oligarchieal party, yet kept up the appearance of a friend of the people, offered to go as ambassador to Liysander, ' whol was blockading the eity, while famine was raging within. Theramenes promised to procure favourable terms, if the people would trust him. The majority readily aeceded to his proposal, and he went to the camp of Lysander. Here he stayed for upwards of three months, hoping that in the meantime the city would be redueed to such a state of weakness as to aecept any terms, or that in the interval the oligarchical party would gain the ascendeney. There is moreover no doubt that he made Lysander aequainted with the plans of the oligarchs. When he returned to the city, he declared that he had been detained by Lysander, who himself had no power to decide upon the terms of peace with Athens, and that at last he had been directed by the Lacedaemonian general to apply to the government at Sparta. He was accordingly sent thither with nine col-1 leagues, and invested with full power to negotiate peace on any terms. Deputies of the Spartan allies met the ambassadors, and several of thein insisted upon the total destruction of Athens; but the Spartans, with an air of generosity; deelared themselves willing to grant peace on condition that the long walls and the fortifications of Piraecus should be demolished, that all ships of war with the exeeption of twelve should be delivered up to them, and that Athens should join the Peloponnesian confederaev, and follow Sparta both by land and sea. (Xenophon, Hellen., ii. 2.) (When Theramenes and his colleagues returned to Athens with these tidings, the famine had reached its height, but there were still some who refused to submit. to the humiliating conditions. -Theramenes and hls party, anxious to get rid of these few before the report was laid before the assembly, gained over a man of the name of Agoratus to bring accusations against them and get them all arrested. The plan succeeded, and the assembly was held in the theatre of Piraeeus, where Theramenes urged the necessity of concluding peace on the terms proposed. Notwithstanding the opposition of some citizens to the treaty, and the taunts of others, who saw through the plans: of Theramenes, peace was ratified,' and Lysander entered ${ }^{\text {' }}$ Piraeeus. [Lysander.]

After the withdrawal of the Spartan general from Athens. 'Theramenes;' Oritias,' and their assoeiates, who had assumed the supreme power, wishing to upset the demoeratical constitution, but to maintain some appearanee of deeeney, invited Lysander to attend the assembly in whieh alterations in the Attic constitution were to be discussed. Theramenes undertook the management of the husiness, and proposed that the supreme authority should for the present be placed in thirty persons who should draw up a new code of laws. The presence of Lysarider and the neighbourhood of the Peloponnesinn troops overwheImed all attempts of the friends of the people to maintain' their constitution, and the proposat of Theramenes was adopted. Theramenes himself was one of the Thirty, and he nominated ten of the others. The outrages and atroeities committed by these Thirty spread general alarm in Attiea, and the future was looked to with fearful apprehensions. Theramenes, perceiving the state of feel-
ing at Athens, remonstrated with Critias, the most eruel manong his collearues. This was not from a feeling of humanity, but simply because he saw that the measures of the thirly would rin them. Critias was unconcerned about all consequenees, and Theramenes gave way. Repeated warnings on his part ereated sonie fear lest he should betray them and join the popular party, for he was notorious for his political ineonstancy, from which he is said to have received the nickname of Cothurnus (the shoe which fits either foot). At the same time the Thirty became sensible of their dangerous position, and in order to strengthen themselves they made out a list of 3000 Atherians on whon a kind of franchise was conferred, while all the remaining Athenians were treated as outlaws. Theramenes again was dissatisfied with thesc proceedings, but the tyrants insisted noon disarming the Athenians, with the execption of the three thousand and the knights. The reckless cruelty and avariee of the Thirty grew worse cvery day, and it was determined that each of them should select out one rich alien who was to be put to death, and whose property should be taken by his murderer. Theramenes refused to have any share in this erime. This refusal increased the fears of his collearucs, and exeited their hatred against him, and they resolved $t 0$ get rid of him belore he conld become a dangerous enemy. An accusation was brought against him in the name of the Thirty by Critias before the council. He was charged with being hostile to the existing govermment, and with betraying its interests. Theramenes defended himself, and made such an impression upon the couneil, that it appeared willing to acquit him. Critias perceiving this, called into the eouncil-chamber an armed band of his followers, whom he had kept in readiness outside, and conversed for a few moments with his colleagues. Hereupon he declared that with the eonsent of his friends he erased Theramenes from the list of the Thirty and of the three thousand, and that he might now be condemned to death without trial. Theramenes rushed to the Hestia (the altar of Vesta), and conjured the members of the council to protect lim, and not to allow Critias to dispose of the lives of citizens; but the herald of the Thirty ealled in the Eleven (the executioners), who apprehended Theramenes and led him away to punishment. The council was stnick with amazement at this bold movement, and Theramenes was huried across the Agora by Satyrus and the Eleven to prison. When he had drunli the poison which was administered to him, he dashed the cup with the last few drops to the ground, and said, "This is to the health of $m 5$ dcar Critias.' This happened in B.C. 404.

The manner in whiel Theramenes died has been admired by antient and modern writers. But his fortitude was not based on the conscionsness of a virtuous life, and he no more deserves admiration than a criminal to whom death 1s a matter of indifferenee. Thueydides (viii. 68) says of him that he was not wanting in eloquence and ability. Whether he wrote any orations is uncertain. (Cicero, ise Orat., ii. 22; Brut., 7.) He is said to have instritted Isocrates (Dionysius Hal., Isocrat., i.), and to have written on rhetoric. It may be truc therefore, as Suidas says, that he wrote declamations; but it is much more probable that Suidas confounds him with a late sophist, Theramenes of Ceos. (Eudocia, 231; Fubricius, Biblioth. Graec., ii. 748 ; Ruhnken, List. Crit. Orat. Gruec., p. 40, §e.)
(Xenophon, IIellen., ii. 3 ; Plutarch, Nicias. 2 ; Scholiast on Aristoph. Nub., 300; Ranae, 47, Fi6; Diodorıs Sic., xiii. 38, \&e. ; Thirlwall, IVistory of Greece, vol. is.; E. Ph. Ininiehs, De Theramenis, Critiae, et Thrasybuli Rebus et Ingenio, Hamburg, 1820, 4to.)
THERAPEUTICS constitute that department of medical scienee which relates to the composition, the application, and the modes of operation of the remedies for diseases. Its ehief objeets are the materia medica, or raedicines properly so called [Materia Medica]; but it includes as subordinate parts liygiene and dictetics, of which the particular purpose is the application of diet and atmospheric and other ordinary non-medical influenees, to the preservation or reeovery of health.

TIIERESIENSTADT (Maria-Theresienstadt, MariaTheresianopel, Szent Maria Szabatha, Szuloticza) is a very large town in the county of 13 aes, iti Hungary, 21 miles from Szegedin, in a plain called Teleestia, on the high road to Semlin, in $40^{\circ} \mathrm{E}^{\prime} \mathrm{N}$. lat., and $10^{\circ} 40^{\prime} \mathrm{E}$. long.

Aner the battle of Mohaes in 1526, the Turks built a fort on the place where the town now strurds. The Turks being totally defeated at Zenta, in 1606 , by Prince Fugene, the place was, by the emperor's order, surrounded with fourteen redoubts, and the defence of the frontiers towands Turkey confided to the inhabitants. In 1743 , as a recompense for eminent military services, it was made a free maskettown or borough, by the name of Szent-Maria, with many privileges; and the population continually inereasing by the immigration of Roman Catholics and schismatic Gree'is from Dalmatia and llosnia, and this borough having distinpuished itself by its loyalty to the empress (queen) Maria Theresa, it was raised to the rank of a fice city the 2end of January, 1719.
Next to P'esth and Debreczin Theresiensfadt is the largest town in Ilungary; yet it is not properly a town, but rather an assemblage of villages. It is new and clean, but built without any regularity, and so seaftered that many houses might be erected in the raeant sandy spots in the streets. Pirch says it is a good quarter of an hour's walk from one end of the market-place to the other: but, though new and clean, it has a melancholy, desolate appearanee. There are a few considerable buildings, viz. the principal parish church of St. Theresa, the Franeisean church, and the landsone Greek ehurch, the Gymnasium, the town-house, and the barracks. The town possenses a more extensive territory than any other town in the kingdom, the area being 550 , or, as some say, 7.0 E English square miles in extent. (Stein makes it only 340 square miles.) The whole population does not execed 40,000 , of whom 35,000 are in the town; so that the tertitory is very thinly peopled, there being onlj three villages in it. The southern part of the territory produces wheat, barley, oats, and maize; the northern part is sandy; but trees of various kinds have been planted under the direction of a competent person. The breeding of cattle is very flourishing, and numerous herds and flocks, and studs of horses, constitnte the riches of the inhabitants, who earry on a brisk trade in wool, cattle, horses, sheep, and raw hides. There are no manufactories, but the people work at their own houses, ehiefly for the supply of the town itself. Many follow the business of weavers or tanners, and the women make linen and carpets. They are peculiarly skilful in the art of dyeing: they extraet from a large weed or herb, the name of which is not known, the red, green, and black dyes for the worsted of which their carpets are made.
(Thiele, Das Kömigreich Ungarn; Blnmenbach, Die Oesterreichische Monarchie: Dia Oesterreichische National Encyclopädie ; Jenny, Intndouch.)
THERI'ACA (Opptaxa) was the name giren ongımally by the antients to all those medienes whieh were intended as antidotes to the bite of venomous animals (0 ýgua), as those which counteraeted poisonous drngs were called
 lib. iii., eap. 7, tom. xv., p. 279, ed. Kühn; id., Comment. in Ilippocr. 'De Morb. Vulgar. VI.' lib. vi., cap. 厄, tom. xvii., pt. ii., p. 337); afterwards however the word seems to have been somewhat restricted in its signifieation, or at least Onpaкin (in the singular number) is applied to one partieular compound,while at the same time this one drag was considered to be a safeguard not only against the bite's of venomous animals, but also a grinst poisonous drugs and unwholesome food. (Galen, De Antid., lib. i., c. l, tom. xiv., p. 1.) Many of these old preparations are preserved in the writings of the antient physicians, but of these it will be enough to mention here the two most famous, viz.
 and the Theriaca Andromachi.

The Mithridatium received its name from the great Mithridates, king of Pontus, who had a strange affectation of superior skill in the powers of simples. He tried the effeets of these upon condemned malefaetors, and, finding that different drugs counterneted different poisons, he thought that, by putting all of them together, he should be able to make a eompound that would render him secure against any poison that conld be given him. (Galen, De Antid., p. 2.). Aecordingly he is commonly snid to have so fortified his own body by the constant use of this antidote, that he afterwards tried in vain to put an end to lis life; but this, if tme, ' was probably;' as Dr. Ileberden says (Antither., p. 10), 'less owing to the strength of his antidote than to the weakness of his
poison.' However, Pompey seems to have been possessed with the vulyar opinion; and, after he had conquered this king, he took uncommon care to seeure his writings, in hopes of some mighty treasures of natural knowledge. He was soon convinced of what he might easily have foresecn; and is represented as laughing at the disappointment of his own credulity, when, instead of those great arcana, he only found one or two trifling receipts:
> - Antidotus vero multis Mithridatica fertur Consociata modis: sed Maynus, scrinia regis Quum raperet victor, rhem depreudit in illis ynthesiu, et vulgata satis medicamina risit; Bis denum rutae folum, salis et brest granum, Juglandesquo dians, Lotidem eum corpore
Hacc oriente die parco conspersa Lyaeo
> Haec oriente die parco conspersi Lyaed
> Sumebat, metucns dederat quae pacula mater.
> Seren. Samon. De Medic., cap. de Venen. Prohib.)

Soon after, however, there was published at Rome a most pompous medicine under the name of Mithridates, which was pretended to have been found among his papers: its principal virtue was made to consist in its being a most powerful preservative from all kinds of venom ; and whoever took a proper quantity of it in a morning was insured against being poisoned during that whole day. (Galen, $D e$ Antid., p. 3.) By these representations it gained so great a reputation that some of the Roman emperors prepared it for themselves with their own hands : several physicians among the antients eniployed their studies upon it in order to render it more pertect; and it has been the subject of niany volumes among the moderns, as well as the occasion of many unaccountable medieines made in emulation of it. But, notwithstanding the supposed improvements of the antients, the original Nithridatiunı continued for a long time to be preparecl according to a receipt of Servilius Damocrates, writter: in a short Greek iambic poem, which is preserved by Galen (De Antid., lib. ii., cap. 11., tom. xiv., p. 115, sq.), and which lias been published, together with his other poems, Greck and Latin, Bonnae, 1833, 4to., edited by C. F. Harless.
Andromachus the Elder (who was physician to the emperor Nero, and the first person who is known to lave received the title of Archiutcr) made considerable allerations in the Mitllridatium by omitting some of the ingredients, adding others (especially the dried flesh of vipers), and by increasing the proportion of opium. His receipt was embodied in a Greek elegiac poem, in order that it might be the more easily preserved withoat alteration; and this has been inserted by Galen in two of his works (De Antid., lib. i., cap. vi., et De Ther. ad Pison., c. 6), and has been frequently published in a separatc form. Andromachus likewise changed the name of the Mithridatium thus reformed to γ रaijp η; but in Trajan's time it obtained that of 'Theriaca,' either from the vipers in it, or from its good effects in curing the bites of venomous aninials. (Galen, De Antid., lib. i., cap. 6; De Ther. ad ${ }_{P i s o n}$ nials. cap. 5, tom. xiv., pp, 32, 232.) The reputation enjoyed by this drug was immense, and surpassed even that of the Mithridatium. The emperor Marcus Aurelius Antoninus was in the habit of taking a small quantity out of honey every morning, and was imitated in this practice by many of his courtiers (Galen, De Antid., lib. i., cap. 4, p. 24); but at last, finding that it made him drowsy and lethargic, he leff out the juice of the poppy. (IId., ibid., eap. i., p. 4.) From that time to the present it has more or less maintained its credit, though upon no principle of combination can this heterogeneous farrago be vindicated; and though it has scarcely ever continucd the same for a hundred years together. Celsus is the first who describes this medicine (De Medic., lib. v., cap. 23); and according to him it consists of thirty-eight simples. Before Nero's time, five of these were struek out, and twenty others added. Soon after, Andromaelus, leaviny, out six ingredients, and adding twenty-eight, increased the sum total to seventyfivc. Aelius, in the filth century after Christ (Tetrab., iv., Serm. i., cap. 87 , sq., p. 618 , ed. H. Steph.), and Nieolaus Myrepsus, in the twelth (De Compos. Medicam., sec. xxii., cap. 1., p. 639, ed. H. Steph.), give us very different descriptions of it; and since that time it has becn in a statc of perpetual fluctuation, the alterations that it has undergone by accident being as great as those which have been designcdly made in it. For of the simples that antiently composed it, several are utterly unknown; others are only guessed at with great uncertainty, and some very erroneously, as might casily he shown, and were so even in Pliny's
time (Hist. Nat., lib. xxiv., cap. 1). In the Pharnacopoeia of the London College of Physicians both the Mithridatium and the Theriaca Andromaclii retained their places certainly as late as the year 17\%1; and the edition of 1788 is the earliest in whicl the writer has found it to be omitted. Its rejection was proposed by the late Dr. Heberden (who wrote a little work on the subject, entitled 'Avcitnpouad': an Essay on Mithridatium and Theriaca,' 1745, 8vo., pp. 19); and upon the College dividing on the question, there were found to be thirtccn yotes for retaining and fourteen for rejecting it. (Dr. Paris's Pharmacologia, vol. i., p. 49,6 th cdit.) In the 'Codex Medicamentarius, sive Pharmacoppeia Gallica,' publishcd at Paris, 4to., 1818, this preparation appeared under the appropriate title of ' Electuarium Opiatum Poly.pharmacum? It consisted of seventy-two ingredients, which were arranged under thirteen heads,viz.: 1, Acria, of which therc were five species; 2, Amara, of which there were eight; 3, Saporis Styptici, vulgo Astringentia, five in number ; 4, Aromatica Exotica, fourteen, 5, Aromatica Indigena, ten; 6, Aromatica ex Umbelliferis, seven ; 7, Resinosa et Balsama, eight; 8, $_{\text {, }}$ Graveolentia, six ; 9, Virosa, 'seu quae Narcosin inducunt,' of which there was only one species, viz. Opium Thebaicum; 10, Terrca insipida et inertia, consisting also of only onc species, viz. Terra Lemnia ; 11, Gummosa, Amylacea, \&c., four in number; 12, Dulcia, consisting of Succus Glycyrrhizac and Mel Narbonense ; and, 13, Vinum, or Sherry. An analysis of two ounces of this compound, by M. Guilbert, is given, pp. 324, 325, note ; and we are told that one drachm of it contains rather less than one grain of opium. In the last edition of the 'Codex, Pharmacopée Francaise,' published at Paris, 4to., 1837, under the authority of a commission de rédaction, of which M. Orfila was the president, the medicine still appears, and under its old name Theriaca: and this, notwithstanding the many improvements that have been introduced, and the number of similar compounds that have been expelled. (Prefface, pp. xvi., xvii.) The composition appears to be very nearly if not exactly the same as in the previons edition, but the ingredients are not divided into heads as beforc. In some parts of Europe the mode of preparing this druy was reckoned among the mysteries of the state, which it was forbidden to divulge : and for some centuries that which came from Venice was particularly valued,
For further information see Helberden's Antitheriaca (fron which work great part of these observations are taken) ; Paris's Pharmacologia; and also Barth. à Maranta, De Theriaca et Mithridutio Libri Duo, \&c.. Francof., $1576,12 \mathrm{mo}$; Nic. Stelliola, Thericce et Mithridatia, Neap., 15T, 4 to. ; Jo. Bapt. Sylvaticus, De Compositione et Usu Theriacae Andromachi, Heidelb., 1597, 8vo.; Anton. Berthiolus, Idea Theriacae et Mithridatii, Venet.. 1601, 4to. ; El. Bonvinius, De Theriaca liber ex Andromachi Senioris MTente, V ratislav., 1610, 8vo. ; J. Assuerus Ampzing, De Morborum Differentiis, et de Theriaca Senioris Andromachi, Rostock, 1623, 8vo.; Angcl. Bolzetta, Theriaca Andromachi Senioris, \&c., Patav., 1626, 4to.; Charas, Traité de la Thériaque, Paris, 1668, 12mo., quoted by Choulant, Handbuch der Bücherkunde für die Aeltere Medicin.
THERIS'TICUS, Wagler's name for a genus of birds. Tantalus, Gm.
THERMLE. [Baths; Roman Architrcture.]
THERMO-ELECTRICITY is a name given to the fluid excited by heat in conducting substances, as wires or bars of metal, generally of different kinds, when they are placed in close contact with each other, end to end, and disposed so as to form a periphery or continuous circuit. Since the effects of heat applicd to the ends, or junctions, of the bars are made manifest by a magnctized and balanced needle deviating from its usual position in consequence of the application, thermo-electricity is considered as a branch of electro-magnetism; and it may be said to be brannected with the electricity which is excited by heat in tourmaline, boracite, and some other minerals. The discovery of the prineiple was made in 1822 , by Dr. Seebeck of Berlin, while engaged in researches concerning electroor Bernin, whis which butt two years before had been discovercd by Professor Ocrsted of Copenhagen; and the name was given to the fluid by the latter philosopher in order to distinguish it from that which is produced by the usual galvanic apparatus, which he proposed to call hydroelectricity.

Vol, XXIV.-2 Y

Sume of the most simple experiments by which the effects of thermo-eleetricity may be illustrated are those which, soon after the diseovery, were made by Professor Moll of Utrecht. (Lגlinburgh Philosophical Journal, No. xvi.) A slip of copper bent in the form of a semicircle was attached (in close contact), at its extremities, to the ends of a bar of antirnony about fineen inches long; and the bar being laid is the direction of the magnetic meridian with the wire above it, a small compass needle was suspended, or supported on a pirot between them. On heating the northern extremity of the bar by the flame of a lamp, the north end of the needle was observed to deviate towards the west. Again, when a slip of zine and one of eopper were bent so that, on the extremities being applied together, there was formed a parallelogram having the junctions of the slips in the middle of the shorter sides, and a compass needle was suspended within the eireuit, on placing the apparatus in a plane coinciding with the magnetic meridian, with the longer sides parallel to the horizon (the eopper slip being uppermost) and heating the northern point of junetion, the necdle deviated towards the west : the apparatus being inverted so that the zinc slip was uppermost, on heating the northern junction as before, the needle deviated towards the east. It follows from these experiments that the fluid current, if such it be, which affeets the magnetism of the needle, circulates about the eopper slip in such a manner that when the latter is in a horizontal position its direction is from west to east, passing above the slip, in a plane perpendicular to its length: this effect is similar to that which takes place, though in a contrary direction, when a magnetized needle is brought near a conducting wire joining the poles of an ordinary galvanic apparatus; for if the conducting wire be placed in a horizontal position in the direction of the magnetic meridian, with the eopper, or the negative end of the apparatus towards the north, and the needle be below the wire, the north end of the needle deviates towards the east; if above the wire, towards the west.
Effects similar to those which result from the application of heat take place when one extremity of the bar of antimony, or one of the junctions of the zine and copper, is made colder than the other by means of ice.
When both ends of the bar were heated, no deviation was produced in the needle; and after deviation had taken place by heating one end only of the bar, in proportion as the heat tended to a uniform diffusion, the needle gradually returned to the direction of the magnetic meridian.
Thermo-electric cireuits may be formed \ln a ring consisting of two curved bars of different metals, as bismuth and copper, each being in the form of a semieirele, and the two being attached together in the direction of a diameter; or they may be produced in a reetangle made by placing in close contaet four bars of metal, of two dilferent kinds, following one another alternately. M. Oersted formed a hexagonal eircuit wilh six pieces, three of bismuth and three of antimony, which were disposed in alternate order: on heating, by means of a spirit-lamp, one of the places of junction in the ring, or in the rectangle of four pieces, a compass-needle placed within or below the plane of cireuit was found to deviate ; and it deviated still more when the opposite angles of the rectangle were heated. In the experiment with the hexagonal cireuit the deviation was greater in proportion to the number of alternate joints which were heated. Similar effeets were produced when the altermate joints were arificially cooled; but the deviation was the greatest when the alternate joints were heated and the others were cooled.
By doubling the lengtlis of the bars in a reetangle composed of four, the deviation was less than that which was produced by the smaller rectangle; but when the larger reetangle was composed of eight pieces, the deviation was greater.
In this country the sibjeet of thermo-electricity has been diligently pursued by Professor Cumming of Cambridge, who appears to have entered upon it without any other
knowledge of the diseovery of Seebeck than the simple knowledge of the diseovery of Seebeek than the simple fact that clectro-magnetical action was produced by heating one end of a bar of antimony, to the extremities of details of his researeles are contained in a memoir which is published in the 'Cambridge Philosophical Transactions'
for 1823. From these it appears that all perfect conductors of electricity, on being heated or cooled in any part, exlubit in general magnetical phenomena; but the intensity of the action, which is indicated by the amount of the deviations produced in a magnetized needle, is not the same in all substances, and with some the direetion uf the current is contrary to that whieh is produeed in others. When a single bar, of symmetrical form, is heated lin the middle, it produces no effect on the needle, probably because the opposing currents counteruct each other; and in a ring formed of two metals, when heated at one of the points of junction, the fluid seems to pass from one inetal to the other; so that one loses positive electricity, or becomes negative, while the other becomes positive.
l'rofessor Cumming having aseertained from experiments on bars of bismuth, whiell were made alternately hot and cold, and were placed in contaet with each other (each pair of the hot and cold parts, and also the two extremities of the whole compound bar, being connected logether by wires), that the action of the whole bar on a needle was greater than that of any two portions, one hot and the other cold, was led to the discovery that electro-magnetism may be exhibited by the mere juxtaposition of an indefinite number of snall plates. He was also enabled to determine the thermo-eleetric relations of different metals by merely placing iu contact with each other a small portion of each of the two kinds of netal to be examined, and touching first one of them, and then the other, with one end of a silver or eopper wire which was conneeted with the heated bar. When the metals were bismuth and antimony, the former, on being fouehed, caused the com-pass-ncedle to deviate so as to indicate positive electricity, and the latter so as to indicate negative eleetricity ; and in the memoir above quoted there is given a useful table of the clectrical relations of metals in several different combinations. In the same memoir there is also an account of several curious anomalies which were observed in the magnetic action: one of these is, that when iron wire is used to touch the metals examined, of which one is iron, the needle deriates a certain number of degrees in the positive direction; then, as the heat of the wire is increased, the deviation in that direction gradually diminishes till it becomes zero; after which the deviation takes place in a nerative direction, and it becomes a maximum in this direction when the wire acquires a red heat.

If two parallel bars of bismuth are conneeted at one extremity of each by a bar of antimony, so as to form three sides of a square, and the opposite extremities of the bars of bismnth are connected with the two extremities of the bent wire forming an electro-magnetic multiplier [Electro-Magnetism, p. 342, vol. ii.], the needle of the multiplier deviates very little; but when those ends of the bars are connected by means of a fourth bar, the effect on the ineedle is considerable. Now the effect of the galvanie or hydro-electrical current, when produced by silver and zinc, with common water as a conductor, is very small; and hence it is inferred that the thermo-electrical current gives rise to a large quantity of that which is the eause of the magnetic aetion, the power being however in a low state of intensity.
THERMO'METER (from the Greek words Oeppos, hot, and μ irpov, a measure) is an instrument by which the temperatures of bodies are ascertained. It consists of a glass tube with a capillary bore containing in general alcolod or mercury, which expanding or contracting by variations in the temperature of the atmosphere, or on the instrument being immersed in the liquid or gas which is to be examined, the state of the atmosphere, liquid, or gas, with respect to ealorie is indicated by a scale which is either applied to the tube or engraven on its exterior surface.
The end proposed by a thermometer is the mersurement of the temperature of any body with relation to the temperature of some other substanee, as of water at the point of freezing: but the measure so obtained inust not be understood to express the absolute quantity or density of calorie in any body, it being well known that different substances, though exhibiting the same apparent temperature, contain very different quantities of caloric aecording to their cajacities for that element.
The thermoneter must have been in use in the beginning of the seventeenth century, but it is not known, preeisely, to whom the honour of the invention is due. A physiciau of Padua named Santorio, aud Cornclius Dreb.
bel of Alkmaar in Holland, are the persons to one of whom that honour is, with most probability, ascribed, and the former, in his 'Commentaries on Avicenna' (1626), actually claims it for himself: it may however have happened with this, as with other scientific discoveries, that the idea of the instrument occurred to two persons or more at the same time.

The first thermometers were intended to indicate variations in the temperature of the atmosphere merely; and the most simple of them consisted of a hollow glass-ball at one extremity of a long tube which was open at the opposite extremity: the air within the ball and tube being rarefied by the heat of a lamp, and the tube being in a vertical position, the open end was plunged into a vessel containing a coloured spirit ; the pressure of the atmosphere on this spirit caused it to ascend in the tube till the expansive force of the air in the ball and the upper part of the tube became equal to the pressure. In this state, an increase of the temperature of the atmosphere caused the air in the ball to expand and press down the spirit in the tube; on the other hand a diminution of temperature, by causing that air to contract, allowed the external pressure to raise the spirit. A scale was adapted to the tube in Original Airorder to express the degree of tempcrature by Thermometer. the number of the graduation at the upper extremity of the spirit.
An cffort was made to render the instrument portable by bending the lower part of the tube upwards and terminating this branch also with a ball; and a small aperture was made in the latter in order that the external air might have access to the lower surface of the spirit. Mr. Boyle subsequently modified the air-thermometer by making the tube quite straight and open at both ends: the lower end was immersed in a small glass vessel containing both air and coloured spirit, and the vessel being formed with a neek which elosely encircled the tube, it was hermetically sealed to the latter. The variations in the temperature of the atmosphere caused the air in the vessel to expand or contract, and thus to press with more or less force on the surface of the spirit; the latter was consequently made to ascend or descend in the tube.
The air-thermometer invented by Amontons (1702) eonsisted of a tubc nearly 4 feet long, open at both ends and curved upwards at bottom, where it terminated in a ball: this tube carried a column of mercury about $29 \frac{1}{2}$ English nehes high, so that the air in the ball was compressed by the weight of two atmospheres. A light body, in which was inserted the lower end of a wire, floated on the upper extremity of the column of mercury in the tube; and near the upper end of the wire was an index by which the number of the graduation on a scale was shown. The variations of the temperature of the air in the ball caused the mercurial column to ascend or descend in the tube; and thus were produced corresponding movements in the index. By this instrument it was proposed to measure high temperatures on a scale whose length was only half of that which was required with the simple air-thermometer.
The defeets inseparable from all the above thermometers are, that the dilatations of the air are not proportional to the increments of heat, that the length of the column of spinit or mercury varies with the temperature of the atmosphere, also that the air which is in contact with the surface of the spirit in the open vessel, in the first kind of instrument, or with the top of the column of the spirit or mereury, in the others, exerts more or less pressure according to its density; and thus the indications afforded by the thermometer are rendered erroneous, or require corrections which it is difficult to apply. The air-thermometer proposed by Dubuat, and of which the following is a brief description, posscsses some advantages above those which have been mentioned; but not being portable, it has never been employed.
It consists of a column of mercury in a tube, like that of a barometer, hermetically sealed at the upper end, and bent below so as to form a short branch inclined at about 40° to the straight part of the tube; this branch terminating witli a hollow ball. The mercury occupies the straight part of the tube to the height of about $24 t^{\prime}$ incbes above the bend; and at this bend it terminates without entering
into the ball, which, by the construction, is a little above the bend. The part of the tube which is above the column of mercury is free from air, and when the bend is plunged in boiling water the tube is to be in a slightly inclined position, so that a vertical line may pass through the two extremities of the mercurial column: then, upon the ball becoming cool, and the elasticity of the air in it being diminished, the weight of the mercury will cause it to descend in the long branch and rise in the other. The mercury is to be prevented from entering the ball by making the tube decline farther from the vertical position, so that the lower extremity of the mercury may remain in the vertical line before mentioned; and the temperature of the air is to be determined by the height of the top of the column of mercury above a horizontal line passing through the lower extremity, that is, by the cosine of the declination of the tube from the vertical. Since the air in the ball preserves constantly the same volume, the elastieity communicated to it by the caloric in the atmosplicre, or by the fluid in which the instrument is plunged, is always in equilibrio with the pressure of the column of mercury, which is the force acting against it, and is proportional to the vertical height of that column.
About the middle of the seventeenth century the members of the Accademia del Cimento caused thermometers to be constructed in which, instead of air, alcohol or spirit of wine was employed. The fluid was introduced, as at present, into a glass tube terminatíng at bottom in a hollow ball, from which the air had been expelled by heat: the opposite extremity of the tube was then hermetically sealed, and a scate was applied for the purpose of expressing the temperature of the atmosphere, or of the liquid which was to be examined. Alcohol dilates and contracts considerably with the variations of temperature to which it may be subject, though not in so great a degree as air. It is also capable of measuring very low temperatures, but as it is brought to a boiling state sooner than any other liquid, it cannot be employed to ascertain a high degree of heat. Spirit-thermometers were introduced into this country by Mr. Boyle, and they are still used both here and on the Continent.
Sir Isaac Nexton, being dissatisfied with the smallness of the range of spirit-thermometers, employed linseed-oil in tubes for the purpose of measuring degrees of heat: this liquid has nearly the same amount of expansibility by increments of caloric as alcohol ; and it is capable of bearing very high degrees of heat and cold without either boiling or freezing; but from its viscidity it adheres so much to the interior side of the tube as to render accurate obscrvations quite impossible, and on this account it has not since Newton's time been employed for thermometers.

The thermometer which is now in general use is a slender tubc of glass terminating in a ball containing mercury, the air having been expelled and the tube afterwards hermetically sealed. The idea of employing this fluid for the purpose of measuring degrees of heat by its expansion is supposed to have first occurred to Dr. Halley ; and the reason why it was not employed by that philosopher appears to have been that the range of its expansion is much less than that of alcohol. According to Boerhave (Elementa Chemia, 1732), the honour of having been the first to recommend a mercurial thermometer is to be ascribed to Römer, the discoverer of the motion of light, who is said to have invented it in 1709; but it was not till the year 1724 that such a thermometer was known in this country. In that year an account of a mercurial thermometer which had been invented by Fahrenhcit, of Amsterdam, in 1720, was read before the Royal Society, and was published in the 'Philosophical Transactions' (vol. xxxiii.). The adrantages 'of mercury over alcohol and air, as a measurc of temperature, are that its expansions are more nearly proportional to the increments of calorie than those which take place in cither of the other fluids; it is easily deprived of air, and its power to conduct heat being considerable, the changes of its volume by changes of temperaPahrenheit's changes of its volume by changes of tempcra-
Thermometer. ture in the surrounding medium take place more rapidly than those of any othcr fluid except the gases. At first the scales for measuring the degrees of heat were
arbitrarg, and consequently no two thermometers could be compared together: the scale of the 1 loreutine thermometer was determined by marking the place where the top of the spirit column stood in the tube when the latter was immersed in snow, and the place at which it stood at the time of the greatest heats in Florenec: the interval between the points was divided into 60 parts. Subsequently in this country, Mr. Hoyle and Sir Isaac Newton formed seales for deternining the expansion of the spirit or oil hy making the space ineluded in caelh deyree of the tube equal to a certain portion of the whole volume: thus, supposing the ball of the thermometerand part of the tulue to be divided into ten thousand equal parts, and to be wholly oceupied by the oil when the instrument is plunged in melied ice, Sir Isaac found that by the heat of the human body the oil expanded $=5$ such parts, and by that of boiling water. 725 parts; then, considering the point at whieh the top of the column stood in the tube, when the latter was placed in ice, as the zero of the seale, he divided the interval between this point and that at which the top of the column stood when the ball of the thermometer was placed under the arm of a man, into 12 parts. Afterwards by proportion he found that the distance from the iec-point to that of boiling water was equal to $3 t$ sueh parts (Phil. Trans., vol, xxii.): this method, being of diffenlt execution, was soon abandoned.

The seale which has been in general use in this country since the year 1724 , is supposed to have been invented by Fahrenheit. It is quite unknown on what ground he made choice of the fixed points on his scale, ar of the number of graduations between them; but it is thought that one of the fixed points was that of boiling water, and that the other, which is the zero of the seale, was that at which the top of the eolumn stood when the instrument was exposed to an intense cold in Iceland, in 1709. The extent of the scale between this last point and that of boiling water is divided into 212 parts, and the point of freezing water is at the thirty-sceond division from the zero point. See the seale on the right of the tube in the above figure.
M. Réaumur constructed a thermometcr in which spirit of wine was emploved, and he formed a scale in a manner nearly sinilar to that whieh had been put in practice by Sir Isaae Newton. He computed the volume of the glass ball, and graduated the tube so that the space between two divisions was equal to one-thousandth part of that volume: he then found the zero of the seale by marking the place where the top of the column stood when the thermometer was placed in water just freezing ; and afterwards, plunging the instrument in boiling water, he observed whether or not the spirit rose exactly eighty divisions. If not, he strengthened or diluted the spirit till it did so; and the point at which the top of the spirit stood became the point of boiling water. Of this instrument an aceount was published in the 'Mémoires' of the Academy of Scienees for 1730, but the construction has been long since abandoned; for, besides the diffieulty of giving a proper degree of strength to the spirit, it is welf known that the latter cannot be made to take the temperature of boiling water, so that the determination of the upper point in the scale must be very erroneous. That whieh is now ealled Rénumur's thermometer is an improvement on the former, by M. Deluc, who determined the points of freezing and boiling water by experiment, and divided the distance between them into eighty parts, the zero of the seale being at the former point. See the seale on the left of the tube in the above figure.

A third scale, called 'Centigrade,' has been much in use among the philosophers of the Continent within the lasi fifty years: it was invented by Celsius, a Swede, and it differs from that of Réaunur or Delue, only in the distance between the points of freczing and boiling-water being divided into 100 parts. The length of each degree in this thermometer, as well as in that of Reaumur, is greater than in the seale of Fahrenheit; and consequently The indications of temperature, when the top of the spint or mercury is between the lines of division, are rather uncertain, from the difficulty of estimating them aceurately by the eyc: also, the temperatures required to be determined being often below the point of freezing-water, the employmient of negative signs is of more frequent oecurrenee with these thermometers than with those of liahren-
heit. heir.
The following formulx will serve to convert any given
number of degrees on Fiahrenhecit's scale anto the corresponding number of degrees on Reaumur's and the Centigrade scales, and rier versa.
I.ct \mathbf{F}, \mathbf{R}, and \mathbf{C} express any corresponding numbers of degrees on the three scales respectisely: then-

$$
\begin{gathered}
\left(F-32^{\circ}\right) \frac{1}{9}=\mathrm{R}, \text { and }\left(F-32^{\circ}\right) \frac{5}{9}=\mathrm{C}: \\
\frac{4}{9} \mathrm{R}+32=\mathrm{F}, \text { and } \frac{9}{5} \mathrm{C}+32=\mathrm{F}: \\
\text { also, }{ }_{5}^{4} \mathrm{C}=\mathrm{R}, \text { and } \frac{5}{4} \mathrm{R}=\mathrm{C} .
\end{gathered}
$$

N.B. When F is between zero and 32°, the values of R and C are negative, and expreas the required number of degrees below zero on Ríaumur's and the Centigrade seale. Also, when F, R, or C expresses any given number of degrees below zero on its proper seale, it must be considered as negative.
The seale invented ly De l'Isle of St. Petersburg, in 1733, being still occasionally in ase, it may be necessary to mention that it is formed by making the space included in eaeh degree equal to one hundred-thousandth part of the whole volume of the merenty: the zero of the scale is at the point of boiling-water, and between this point and that of freezing-water the space is divided into lin0 parts.

It may be observed that the situation of the freezingpoint on the seales of thermometers can be deternined with great aecuracy if the ball and part of the tube be immersed in pounded ice; for it is known that water conlaining jee and snow remains of the same temperature till the ice is entirely dissolved, every aceession of caloric to The water being employed in promoting the dissolution. But the point of boiling water is far from being so precisely known, sinec it varies with the density of the atmosphere at the time of making the determination. Distilled water in an open vessel, and under a given pressure of the atmosphere, boils at an invariable temperature, execpt as far as the nature of the yessel may make some difference; for if the heat communicated to the water be increased, the only etfeet produced is that of driving off a greater quantity of steam in a given time: in a vessel exhausted of the air the water will boil at a temperature expressed by 98° or 100° of Fahrenheit's scale, while in a vessel construeted so as to prevent the steam from escaping it will remain in a liquid state at a temperature expressed by above 400°. In order therefore that the temperaturee indieated by different instruments may agree together, it is recommended that this point should be found from water boiling in the open air at a time, if possible, when the height of the mercurial eolumn in the barometer is 30 inches, and when the temperature of the air is indieated by 55° of Fahrenheit's seale.
This effect of the pressure of the atmosphere on the boiling of water was noticed by Fahrenheit in 1721, and M. Delue, in lis 'Recherches sur les Modifications de l'Atmosphère,' has investigated a formula for determining the height of the hoiling-point above the freezing-point of the seale in terms of the height of the mercury in the barometer; but the English artist Bird was the first who applied a correction on account of the state of the barometer, for the purpose of fixing the point of boiling water on the seales of thermometers.
The Royal Society having, in 176 , appointed a committee to consider the best means of adjusting the fixed points of thermometers, the formula of Deluc was verified and reduced to Englisla measures for the benefit of artists, in the event of their being obliged to make the instruinents under different states of the atmosphere with respeet to density and temperature; and the following are some of the eorrections which are given by Sir George Shuckburgh for determining the true place of the boiling-point of water. The first column contains the height of the bano-

meter in inches; and the secoml, the correction which is to be applied with its proper sign to the number 212 on Fahrenheit's scale, in order to give the correet number of
degrees at which the water will boil under the pressure expressed by the height of the mercurial column. The committec observe that in trying the heat of liquors, the quicksilver in the tube of the thermometer should be heated to the same degree as that in the ball; or if this cannot be done, a correction should be applied on that account. (Phil. Trans., vol. lxvii.)
Thermometer-tubes should have their bores very slender, and, if possible, perfectly equable in the whole of their length. When there is any inequality in the transverse sections, the best artists make the graduations of the scale vary so that they may correspond to the equal divisions of a cylindrical tube ; and in order to ascertain the relative dimensions of the sections, they cause a small quantity of mercury, about an inch in length, to slide along the interior of the tube, measuring its length in different places; then, since the lengths are inversely proportional to the areas of the sections, the variations of the former will immediately show the corresponding variations of the latter. It is usual to give to the bore an oval form with the broader side towards the front, in order that the mercury or spirit may be easily distinguished at a certain distance, as by approaching very near the instrument, the heat of the observer's person may affect the length of the column.
It is of course essential that the extent of the thermo-meter-scalc should be. great enough to comprehend all the temperatures at which the substances generally required to be examined exist in a state of fluidity; and this extent may be obtained when mercury is employed. According to the experiments of Mr. Dalton, mercury does not boil till it has acquired a temperaturc equal to 660° of Fahrenheit's scale; and it does not freeze till it is subject to a decree of culd expresscd by 39 divisions below the zero of that scale, or 71° below the freezing-point of water. Pure alcohol, on the other hand, has never been frozen, though it has been exposed to a degree of cold exceeding that which is expressed ly 91° below the zero of Fahrenheit ; and therefore a spirit-thermometer is to be preferred to one of mercury when it is intended to ascertain the temperature of the air in high northern or southern latitudes : but since the spirit boils in air with a degree of heat expressed hy 175° of Fahrenheit, it is unfit for many of the purposes for which a thermometer is required. For instruments capable of measuring very high temperatures, sec Pyrometrr.
In the construction of a thermometer, the air should be carefully cxpelled from the tube, and even from the mercury or spirit withinin it: the variations in the density of the atmospherc cannot of course affect the instrument, since the tube is hermetically sealed. It must be observed however that the indications of temperature are not precisely expressed in terms of the dilatation of the mercury or spirit only, but in terms of the excess of that dilatation above the dilatation of glass. The apparent dilatation of mercury in a glass tuhe is equal to $\frac{1}{64 \cdot 8}$ of its volume, between the temperatures of freezing and boiling water; and its true dilatation between the same limits is $\frac{1}{5.5}$ of its volume.
A perfect thermometer would be one in which the expansions of the fluid in the tuhe were exactly proportional to the increments of heat which it might receive from the substance whose temperature is to be determined ; but it cannot be said that any of the fluids which as yet have been employed in the construction of thermometers strictly possess this property. Mercury is the fluid in which it exists in the greatest dcgree; but from the accurate experiments of Deluc it has been ascertained that, between the points of frcezing and boiling-water, the temperature indicated by the mercurial thermometer is lower than the true temperature, the greatest difference, which however is only equal to $1^{\circ} .4$ of Réaumur's seale or $3^{\circ} .15$ Fahrenheit, being in the middle between those two points on the scalc. From the same experiments it is also found that when thermometers are regulated so as to agree at the points of freezing and boiling water, whether the liquid be oil, spirit, or water, the indications are always below those of mercury ; the difference being the greatest at the middle between those points. With oil of olives the difference is 1° of Réaumur's scale ($2^{\circ} .25$ Fahr.) ; with highly rectified alcohol, $4^{\circ} .9$ Reaumur ($11^{\circ} .02$ Fahr.); with half
alcohol and half water, $6^{\circ} .7$ Réaumnr ($15^{\circ} .07$ Fahr.); and with water, $19^{\circ} .5$ Réaumur ($43^{\circ} .87$ Fahr.). It nust be observed that great irregularities take place in the expansion of all fluids when near their boiling state, and that mercury contracts very suddenly when at the point of its congelation. The deviations of the spirit-thermometer from the true indications of heat are known to be rather greater than those of the mercurial thermometer: it nay be added that the alcohol in a thermometer-tube loses, in time, part of its strength; and that in consequence, the degree of expansion by a given increment of heat is not the same as when the instrument was made. The expansion of alcohol for temperatures greater than about 175° Fahr., at which the spirit boils, cannot be ascertained practically, because the spirit at that temperature passes into a state of vapour; and the comparison between the mercurial and the spirit thermometer ought not to be carried higher than that temperature; or the scales for mercury and spirit ought to be regulated so as to agree with one another at the freezingpoint of water and at the temperature of 175° Fahrenheit: if this were attended to, the differences between the indications of the mercurial and spirit thermometers, above that point, would be less than they appear to be by the tables of Deluc.
Water, like other substances, suffers a diminution of volume by the abstraction of caloric, but when it is cooled to a temperature between 39° and 40° of Fahrenheit's scale, it seems to have attained the maximum of density; and if the process of cooling be continued, it then increases in volume till it is converted into ice. Therefore if a thermometer were made with water, and the top of the column were at 50° Fahr., it would be impossible to know whether the temperature were 50° or 30°, the expansion being ncarly equal at equal distances within ten degrees above and below 40° of the scale. The cause is uncertain, but it is probably owing to a partial crystallization, which may begin to take place in water when at a temperature expressed by about 8 degrees above its freezing-point.
The mercurial and spirit thermometers, regulated as before said, differ very considerably at temperatures below that of freezing water: and at 39° below the zero of Fahrenheit, or 32° below the zero of Réaumur, when the mercury is frozen, the difference has been computed to be about 10° Réaumur ($22^{\circ} .5$ Fahr.), by which the spirit stands too low. By observations made during Sir Edward Parry's second voyage, the differences between the indications of the spirit and mercurial thermometers varied from $3^{\circ} .05$ to 8° Fahr. between the temperatures $+58^{\circ}$ and -30°, the alcohol being always too low.
Register Thermometers.-It is of great importance in meteorology that the observer shonld be able to ascertain the highest or lowest point of a thermometer scale at which the column of mercury may have stood during his absence ; and several contrivances have been adopted by artists in order to obtain this end. Of these, one, which is still preferred, was invented by Mr. Six, whose name the instrument bears, and is described in the 'Philosophical Transactions' for 1782 . It consists of a long tube bent so as to form three parallel branches, A, B, and C: the part A is an elongated bulb, and the rest of the tube has a capillary bore. The lower portion, b, contains mercury, which rises in B and C to certain points, as a and c, and the bulb is filled with spirit of wine, which passing over the bend at d, descends to the upper extremity of the mercury in B : above c the brancli C is also filled with spirit to near the upper extremity, which is hermetically sealed.

Two small indices of steel coated with glass, which are represented at m and n, are introduced in the branches B and C : these are capable of being forced upwards by the rising of the column of mercury in either tube, and they have about them a fine wire or a thread of

Six's Register
Thermometer. glass; so that they will remain stationary where they happen to be when the heads a and c of the columns recede from
them. Their lower extremities conseguently indieate the points at which the ends of the colnmens may have stood before such reeess.
It is exident that the expansion of the spirit in A by increments of heat, will canse that which is in B to pre-s down the column of mercury in that branch and toree up the extremity e, moving the index n before it, while by its friction the index m is prevented from dencending. On the other hand, the contraction of the spirit in A ullows the elasticity of the air in the ball D to forec the columen in C downwards, the index on remaining at the highest point to which it had been previously raised; the mercury in 13 then rises up, eartying the index m before it, tillan angmentation of temperature causes the spirit in A to expmad, and again force the mercury in IS downvards.
The graduations on the seale belonging to the lranels C are numbered upwards; while the graduations on the seale belonging to B are numbered downwards. The points a and c should alway's indicate the same degree on the fwo scales; and by means of a magnct the indices m and n may be brought down to those points: from thenee afterwards the former ascends by a decrease, and the latter by an increase of temperature.
An instrument of this kind is generally used for ascertaining the temperature of the ocean at considerable depths, or of the atmosphere at great heights.
Differential Thernometer. -This instrument, which was invented by M. Sturmitas, of Altdorf. before the year 1076 . and was revived by Professor Leslie in 1801, consists of tiro thermometer tubes, terminating, at one extremity of each, in a hollow glass ball, and containing coloured sulphuric acid: the opposite extremities are united by the flame of a blow-pipe, and an enlargement of the bore is made at the place of junction. The tube is then bent so as to form three sides of a rectangle, the two balls, which are of equal diameter, forming the upper extremities of two sides; and the instrument is on a stand with the branches of the tube in vertical positions. When the temperature of the air in the two balls is the same, the acid occupies one side and the base, and rikes a little way up the other side of the rectangle. To the latter side is attached a graduated scale, with the zero of which the upper extremity of the acid in that branch should coineide. In the event of this ad-
niflorential Tliermometer,
Invented by M. Sturmine, of restored by causing a small quantity of air to pass from one hall to the other, which-is done simply by the warmth of a hand applied to that ball from whenee the air is to be driven.
The variations of temperature in the apartment will evidently have no eflect on the instrunent, since the aetion upon the two balls will he equal: but if one hall alone be heated, the rise of the acid in the other will immediately indicate the difference between the temperatures of the media ahout the two balls by the excess of the expansion of the air in one ball above the expansion in the other. The delieacy of the instrunent is such that the least difference of temperafure is immediately made sensible by the movement of the acil.
Radiating Thermometer, or Actinometer.-For the purpose of measuring the intensity of solar or terrestrial radiation, an instrument, called an Actinometer, has been used. It consists of a hollow cylinder of glass, which is mited at one end to a thermometer-tuhe, the latter being terminated at the upper extremity by a ball, which is drawn out to a point, and broken otl so as to leave a very small orifice : this is stopped up with wax, which is to be removed when the instrument is to be cleaned. The nther end of the cylinder is closed by a silver cap furnished with a screw of the same metal, which turns tightly in a collar of waxed leather. The cylinder is filled with a deep blue liquid, and is enclosed in a hox, which is blackened on three sides interiorly, aul han a thiek glass in front. The use of the screw is to diminish or increase the capacity of the cylinder if necessary, driving a portion of liquill into the ball, or withdrawing momo from thence so as just to fill the eylinder and the whole stem of the thermometer with the liquid
in an unloroken column. When the instrument is to lee nsed, it is placed in a horizontal position with the glass face of the box upwards.
In making the ohservations, the instrument is disposed so that the sun may shine direetly upon its face, when the liquid will mount rapidly in the thernometer stem: it should he allowed to do so for three or four minutes, affer whieh, by turning the screw, the extremity of the liquid must be brought to the zero of the seale. At ten seconds before a complete minnte is indicated by the watch, the sun shining on the instrument, the observer begins to folJow with his cje the fop of the rising column of spirit, and, counting by his ear thie beats of the watch, when the sixtieth second has beat, he registers in a book the number of the graduation corresponding to the top of the column; then, waiting till the wateh is at ten seconds before the next minute, the observer follows the rising column as before, and, counting the beats by his ear, at the curl of the minute he recisters separately the height of the colnmn of liquid. The instnment being then drawn into the shade, or covered with a screcn, a pair of observations, at the interval of one minute, are made and registered as before, the liquid descending in the tube between the last. two observations. The instrument is again placed so that the sun may shine on it, and afterwards in the shede, when two other pairs of observations are made, and so on.
A mean of the two differences between the readings at two nearest observations while the sun shone on the instrument, added to the difference between the readings at the intermediate observations while the instrument was in the shade, is taken as a measure of the intensity of the sun's radiation at the middle time between the first and thind observations; and a mean of such results for all the triplets of observations is considered as the general mean.
An approximation to the measure of solar radiation may be obtained by simply exposing a register thermometer with a blackened ball to the direct action of the sun's rays. [Radiation.] The thermometer should be placed a few inches above the ground, and be sereened from currents of air; and the graduations should be made on the stens of the thermometer, in order to ayoid the crrors arising from the expansion or warping of the seale.

The force of terrestrial radiation may be measured by the minimum temperature of a register thermonieter, r.i ve ball is placed in the foens of a parabolieal mirror: tl_{1} ace of the mirror is to be furned towards the face of the wy, but array from the rays of the sun.
THERMOMETER, DIFFERENTIAL. [THERMOMETER.]
THERMOPYLLe. [Zeisoun, Gulf OF.]
THERMOSTAT, or heat-governor, an appratus inrented and patented in 1831 by Dr. Ure, for regulating temperature in the processes of vaporization and distillation, in leating baths and hothouses, in adjusting the draft of stoves and furnaces, in ventilating apartments, \&c. It acts upon the principle that, when two thin metallic hars, of different degrees of expansibility, are riveted or soldered together side by side, any eliange of temperature will cause a sensible flexire in the compound bar ; the side consisting of the least extensible metal becoming concave, and the other convex. By this flexure of the componnd bar, which takes place with considerable force a movement is effected, which, by the interrention of levers, may be made to open or close stop-cocks, dampers, ventilators, or any description of valves, and thereby to regulate the flow of heated liquids or the admission and emission of air. The compound bars frequently consist of thin pieces of stecl and hard hammered brass, riveted together; but varions other metals may be employed, and in some cases wood may he used for one part of the bar. The prineiple of the thermostat may be applied in many ditferent ways, of which the following may serve ns cxamples. In Fig. 1, q is the compound bar, which is firmly flxed at b, and, when exposed to the ordinary temperature of the atmosphere, remains in the straight horizontal position shown in the eut. To the other, or free end of the compound bar, is attached, by means of a conneeting rod, tho short end of a lever nuounted upon the axis of a cireular revolring valve, or ventilator, $c ;$ and from the longer pud of the lever is suspended a sliding valve, or daniper, d. By increasing the temperature of the chamber or vessel in which the thermostat is placed, the compound bar will assume the eurved form indicated
by the dotted lines，by which means the position of the lever will be altered，the valve c will be turned on its axis，and the damper will be raised．Fig． 2 shows another

arrangement，in which two compound bars，a, a ，fixed at b ，are made to open and close a valve c ，in a pipe through which air，water，or any other fluid is passed．By in－ creasing the temperature of the apparatus，the uppcr or moveable ends of the bars would recede from each other， and，consequently，alter the position of the valve．A similar contrivance may be placed in a chinney，to modify the position of a damper－plate movine upon its axis，and thereby to regulate the draft．The application of such an arrangement of compound bars to the admission of water to an water－bath is described iu the article Distillation， vol．ix．，p．26．Fig． 3 shows the principal part of a ther－ mostatic apparatus in which three pairs of compound bars， a, a, a ，arc used to give motion to a slicinc－rod d, d ，with which any kind of ralve may be connected by a rack and pinion，a chain and pulley，or otherwise．b, b ，in this figure，is a straight guide－rod，which is fixed at one end by a screw－nut c ；a milled head being added for the pur－ pose of adjusting the apparatus，so that it may act at any required temperature．The thermostatic bars，in this as well as the previous eases，are nearly or quite straight when cold，and become more or less curved by the action of heat；but in some modifications of the thermostat the

bars are always curved，and the action of the apparatus depends upon the increase or decrease of the ordinary flexure．Fig．4，for example，represents a thermostatic hoop，a, a ，which may be immersed horizontally beneath the surface of the water－bath of a still．The hoop is fixed at b ，and to its free ends are attached short links c, c ，whiclı impart longitudinal motion to the rod $d . e$ is a lever－ handle moved by the sliding－rod，and turning a valve on its axis f ．The outer end of this lever carries an index， which moves against a graduated scale．g is a serew－nut， moveable upon the sliding－rod，to adjust the apparatus before gradunting the scale or are traversed by the index． Some other forms of the apparatus are given in Dr．Ure＇s ＇Dictionary of Arts，＇\＆e．，pp．1237－1239；and on p． 643 of the same work is described a contrivance in whieh the same natural principle is differently applied．
THEROUENNE．［PAs de Calals．］
THESEIUM（ θ $\eta \sigma$ ciov $)$ ，the temple of Theseus at Athens， was situate in the north－west part of the city，at no great distance from the gate which led to Eleusis，and imme－ diately above the gymnasium of Ptolemy．It was built in honour of Theseus，soon after his bones had been brought from Scyros to Athens by Cimon，B．c． 469 ．（Plutarch， Thecscus，36；Cimon，8；Diod．Sic．，iv．62．）It possessed an inviolable asylum，where runaway slaves in particular were accustomed to take refuge，and was equalled in sanc－ tity only by the Parthenon and Eleusinium．（Plutareh， De Lixsilio，p． 607 A；Hesychius，and Etymolog．Mag．， under Θ 刀⿴囗⿱一一 serve sometimes as a place of military assembly．（Thueyd．， vi．Gi．）

The temple of Theseus is in a state of greater preserva－ tion than almost any of the antient monuments of Athens， and is used in the present day as a Christian church，dedi－ cated to St．George．It is built entirely of Pentelic marble， and stands upon an artificial foundation formed of large quadrangular blocks of limestone．Its architecture is of the Doric order．It is a peripteral hexastyle，or surrounded by columns，having six in each front．There are thir－ teen columns on each side，including those at the angles， which are also reckoned among the six belonging to each front，so that the whole number surrounding the temple is thirty－four．It consists of a cella forty feet long，having a pronaos to the east and a posticum to the west．The pronaos and the portico are together thirty－three feet in depth，and the posticum with its porticotwenty－seven feet．The breadth of the temple is forty－five feet．The columns are thrce feet four inches in diameter at the base，and rather more than eighteen feet and a half high，with an intercolumnia－ tion of five feet four inches．The height of the temple from the summit of the pediment to the base of the columns is about thirty－one feet．The platform upon which it is built，and which consists of only two steps，is about two feet four iuches in height．
The eastern front of the temple was the principal one． This is shown not only by the greater depth of the pronaos， but still more decisively by the seulpture．In the eastern pediment only are there any traces in the marble of me－ tallic fasteningss for statues；and the ten metopes of the eastern front，with the four adjoining ones on cach side， are exclusively decorated with sculpture，all the others on both sides and on the western front being plain．The only other parts of the temple adorned with sculpture are the friezes over the entrance of the pronaos and the posticum． In the British Museum there are casts of the greater portion of these friezes，and also of three of the metopes from the northern side，being the first，second，and fourth， commencing from the north－east angle．They were made at Athens，by the direction of the earl of Elgin，from the sculptures which then existed upon the temple，where they still remain．The marbles have been greatly injured since the time when Pars made the drawings for Stuart，but enough remains to show that they belong to the highest style of Grecian art ：they are almost equal，and，by some， considered even superior，to those of the Parthenon．The relief is bold and salient，approaching to the proportions of the entire statue，the figures in some instances appear ing to be only slightly attached to the table of the marble． It appears that all the sculptures were painted，as was tho casc in many other Grecian temples．Col．Leake says that vestiges of brazen and golden－coloured arms，of a blue sky，and of blue，green，and red drapery，are still verv apparent．
The subjects of the sculptures are the exploits of Thescus， and those of his firiend and companion Hercules．The metopes in front of the temple relate to the labours of Hercules，and those on the two sides to those of Theseus． On the friezc of the posticum is represented the combat of the Centaurs and the Lapithæ，in which Theseus was engaged；but the subject of the frieze of the pronaos is very doubtful，owing to the mutilated condition of the sculptures．Stuart supposes that it represents part of the battle of Marathon，and especially the phantom of Theseus rushing upon the Persians．Col．Leake thinks it probable that the pannel over the pronaos relates to the exploits of Hercules，in the same way as the other fricze relates to those of Theseus；and he supposes it to represent the battle of the giants，who are said to have been subdued ehiefly through the exploits of Hercules．Müller（Denk－ mäler der alten Kunst，p．11）conceives it to represent the contest of Theseus against the Pallantidæ，who wished to destroy him when he was acknowledged by Egeus as his successor．Mr．Hawkins（Description of Antient Marbles in the British Museum，part ix．）however is of opinion that not one aetion alone is intended to be repre－ sented，but three or four achievements are here recorded， the subjects being separated from one another by groups of seated divinities．
The interior of the temple originally contained three paintings on the walls by Micon，which Pausanias saw and describes（i．17，\＄2）．One represented the battle of the Athenians with the Amazons，the second that of the Cen－ taurs and the Lapithæ，and the third an action of Theseus in Crete．The stueco upon which these paintings were
executed is still apparent, and shows that emels painfing covered the whole wall from the roof to two feet nine inches short of the pavement.
There was also a sanctuary of Thescus in the Peirecus, as appears from an inseription. (Büchih, Corp. Inser., No. 1 13.)
(Stuart's Athens, vol. iii.; leake's Toprography of Athens; Description of Antient Durbles in the British Museum, part ix. ; Forchhammer, Topographie von dlhen, Kiel, 1811.)
THESEUS ($\begin{aligned}\text { novicg }) \text {, the great national hero of Athens, }\end{aligned}$ is said to have been born at Trazen, where his father Ageus, king of Athens, slept one nisht with Sithra, the daugliter of littheus, king of the place. Jitgeus, on his departure, hid his sword and shoes under a large stone, and charged A:thra, if she brought forth a son, to send lim to Alheus with these tokens, as soon as he was ahle to roll away the stone. She brought forth a son, to whom she gave tha name of Theseus, and when he was grown up, informed him of his origin and told lim to take up the tokens and sail to Athens, ior the roads were infested by rohbers and monsters. But Theseus, who was desirous of emulating the glory of Hercules, refised to go by sea, and after desiroying various monsters who had been the ferror of the country, arrived in safety at Athens. llere he was joyfully recognised by Egeus, but with difficulty escaped destruction from Medea and the Pallantids, the sons and grandsons of Pallas, the brother of Aggeus. These dangers howerer he finally surmounted, and slew the Pallantids in battle.

IIs next exploit was the destruction of the great Marathonian bull, which ravaged the neighbouring country; and shortly after he resolved to deliver the Athenians from the tribute that they were obliged to pay to Minos, king of Crete. Every ninth year the Athenians liad to send seven young men and as many virgins to Crete to be devoured by the Minotaur in the Labyrinth. Theseus volunteered to go as one of the vietions, and through the assistance of Ariadne, the daughter of Minos, who became enamoured of him, he slew the Minotaur and escaped from the Labyrinth. He then sailed away with Ariadne, whom he deserted in the island of Dia or Naxos, an event which frequently forms the subject of antient works of art. The sails of the ship in which Theseus left Athens were black, but he promised his father, if he returned in safety, to hoist white sai's. This however he neglected to do, and Aigeus sceing the ship draw near with hlack sails, supposed that his son liad perished, and threw himself from a rock.

Theseus now ascended the throne of Athens. But his adventures were by no means concluded. He marched into the country of the Amazons, who dwelt on the Thermodon, according to some accounts in the company of Hercules, and carried away their queen Antiope. The A mazons in revenge invaded Attien, and were with diffieulty defented by the Athenians. This battle was one of the most favourite subjeets of the antient artists, and is commemorated in several works of art that are still extant. Thescus also took part in the Arronautic expectition and the Calydonian hunt. He assisted his fitend Pirithous and the lapithae in their contest with the Centaurs, and also aecompanied the former in his deseent to the lower world to earry off Proserpine, the wife of Pluto. When Theseus mas fitty years old, according to tmdition, he carried off Helen. the daughter of Leda, who was then only nine years of age. But his territory was invaded in consequence by Castor and Pollux, the brothers of l.eda; his own people rose against him; and at last, finding his affairs desperate, he withdrew to the island of Seyros, and there perished cither by a fall from the cliffs or through the treachery of lyicomedes, the king of the island. For a long lime his memory was forgotten by the Athenians, but he was subsequently honoured by them as the greatest of their heroes. At the baitle of Narathon they thought they saw hini armed and bearing down upon the barbarians; and after the conclusion of the l'ersian war, his hones were cliseovered at Sejros by Cimon, who eonveyed them to Athens, where thex were received with great pomp, and deposited in a temple built to his honour. [Thesenva.] A fistival also was instituted, whieh was eelebrated on the cighth day of every month, but more especially on the eightli of P_{y} anepsion.
The above is a brief account of the legends prevailing respecting Theseus. But he is moreover represented by
antient writers as the founder of the Atic commonwealth, and even of its democratieal institutions. It would be waste of time to inqure whether there was an historical petsonage of this name who actunliy introduced the politieal changes ascribed to him: it will he conrenient to adhere to the antient account in describing then as the work of Thescus.

Before lis time Attica contained many independent townships, which were only nominally united. Thesetts incorporated the people into one state, removed the prineipal courts for the administration of justice to Athens, and grently enlarged the city, whieh had hitherto covered little more than the rock which afterwarls formed the eitulel. To cement their union he instituted several festivals, and especially changed the Athenasa into the Panathener, or the test i val of all the Atticans. He encoumared the nobles to reside at Athens, and surrendered a part of his kingly preroratives to then, for which reason lie is perliaps represented as the founder of the Athenian democracy, although the government which he established was, and continued to be long anter him, strictly aristocratical. For he divided the people into the tribes or elasses of Fupatridac, Gcomori, and Demiurgi, of whom the first were nobles, the second agriculturists, the third artisans. All the offices of state and those connceted with religion were exclusively in the hands of the first class. liach tribe wiss divided, cither in his time or shortly afterwards, into three pliratria, and each phmeria into thirty gentes (yivn). The members of the separate phratriae and gentes had religious rites and festivals peeuliar to themselves, which were preserved long after these communities had lost their political importance by the democratical clianges of Cleisthenes. [Cleistien Nes.]

- (Plutarch's Zife of Thesers; Meunius, Thesers, sice de ejus Vita Rebusque Gestis Liber Postumus, Uliraject., 1684, where all the authorities are quoted; Thirlwall's Ilistory of Grecce, vol. ii., p. 8, \&c.)

THESMOPIO'RIA (Deб价bpta), a festival with mysteries in honour of Demeter (Ceres), to whom all the institutions of civilized life, especially of civil and relicious laws, were attributed. The festival of the Thesmophoria especially referred to this jart of the character of the goddess, as is clear from several of the ceremonies observed at its celebration, and from the sumane of the godrless, 'Thesmophoros, from which the festival derived its name. It was celebrated in various towns in Greece, and in the Greek colonies, as Sparta. Thehes, Eretria, Kphesus, Syracuse, Agrigentum, and others. But the place where it was held with the greatest solemnity, and where the particulars of its celebration are best known, was Athens. It was iniroduced at Athens, according to some writers, by Orpheus, and aecording to Herodotus (ii. 171) by the danghters of Danaus from Erypt. Its celebration was contined to women, especially married women. It eommenced every year on the 1lth of Pyanepsion, and lasted according to some writers for four, and aecording to others for five days. The discrepancy in this ease, as well as in that of other Grcek and Roman festivals, seems to have arisen from the circumstance that the real festival was in many instances preceded by one or more days devoted to preparations and purificalions, and that some writers reckoned these days as belonging to the festival. Now that the Thesmoplioria were preceded by sueh preparatory days is expressly stated, and during these days the Athenian women underwent various kinds of purifieations. Wellauer, in his little work cited helow, has rendered it more than probable that the festival itself did not last more than three dinys.

Previous to its celebration the women of each demos elceted from among themselves two matrons to conduct the solemnities, whose husbands, provided they had reecived a dowry of not less than three talents, had to pay the expenses of the festival as a liturgy. (Isarus, De Cironis Iferedit., p. 308.) The first day of the festival was ealled duvos or káЭodos, that is, the procession, because the women went from Athens to Elcusis in a procession in which they carried on their heads eertain laws (Itopoi) written either in books or upon tablets. During the night between the first and second day the women solemmized their mysteries at lileusis. The second diy; called unozein, or 'the Fast,' was a day of mourning, on which the women were not allowed to fake any other food tlan cakes of sesame and hroney, and the greater part of it they spent sitting in mournful attitudes on the ground around the,
statue of the goddess. Meursius and others think that the procession to the Thesmophorion (the temple of Demeter Thesmophoros) at Athens, which is alluded to by Aristophanes (Thesmophor., 276, \&e.), and in which the women walked behind a waggon laden with baskets containing mystic symbols, took place in the afternoon of this day, the whole of which was a sacred day at Athens, on which neither the senate nor the people were allowed to hold their usual meetings. The third day was called кaג入ıy'vesa, a surname of Demeter, by which she was invoked on this occasion. (Aristoph., Thesmophor., 296, with the Scholiast.) On this day the women made up for the day of mourning, and indulged in various kinds of merriment in imitation of Iambe, who was believed to have created a smile on the faee of the goddess during her grief. Hesychius mentions a sacrifice called Zemia ($\zeta \eta \mu i \alpha$) in connection with the Thesmophoria, which was offered to propitiate the goddess for any neglect or fault that might have been committed during the celcbration of her festival; but whether this saerifice was offered at the closc of the third day or after the festival, cannot be decided.
(Meursius, Graecia Feriata, s. v. 日e $\sigma \mu$ oф́pea; Dictionary of Greek and Roman Antiq., s. v. Thesmophoria; Wellauer, De Thesmophoriis, Breslau, 1820, 8vo.)

THESPE'SIA (from $9 \varepsilon \sigma \pi$ icoog), the name of a genus of plants belonging to the natural order Malvaceæ. The speeies are trees with large entire leaves. The calyx is truncate, and girded by a 3-leaved deciduous involueel ; the fruit is a capsule with $\overline{5}$ cells, each cell is semi-parted, with 4 seeds at the base.
T. populnea, Poplar Thespesia, has roundish, cordate, pointed, 5-7-veined leaves, with dot-like scales beneath, with the peduncles equal in length to the petioles. This plant is a native of the East Indies, Guinea, and the Society Islands; and is known, where it grows amongst British colonists, as the umbrella-tree. It attains a height of about 40 fect, and has large yellow flowers with a dark red centre. In the tropies it has gained for itself a sacred regard, and is planted about monasteries and convents; henee the name Thespesia (divine). Therc are two species natives of South America: they are all trees, with handsome, showy flowers. In their cultivation they will thrive well in a mixture of loam and sand, and cuttings will strike freely in sand or nould under a hand-glass in a hot-bed. (Don's Miller, vol. i.)
THESPIS (0 eforcc), a native of Icaria in Attica, who lived in the time of Solon and Pisistratus, about 53^{5}, 3.c. The antient traditions unanimously represent him as the inventor of tragedy. The manner in which this invention is said to have originated is stated differently. According to one account, which is also adopted by Horace, it arose from Thespis travelling during the festival of Dionysus through Attica upon a waggon, on which he performed comie plays. This tradition however is based upon a confusion of tragedy with comedy, the invention of which is not ascribed to Thespis by any antient authority. The invention of Thespis consisted in nothing else than in introducins a person who at the Dionysiac fcstivals in the city of Athens entered into conversation with the chorus, or related a story to it. The designation of this actor was Hypocrites (iँокритis), that is, the 'answcrer,' because what he- said or acted answered or corresponded with the songs of the chorus. By means of masks, the invention of which was Jikewise ascribed to Thespis, he was enabled to act different characters one after another. Some writers who considered the clorus itself as a sccond actor, speak of two actors in the time of Thespis, and consequently state that Kschylus introduced a third actor. (Themistius, Orat., xxvi., p. 382, edit. Dindorf.) Whether Thespis wrote liis plays is not quite certain, although Donatus (De Comoed. et Tragoed., in Gronovius's Thesaurus, viii., p. 1387) expressly Eays so, but the tragedies bearing the name of Thespis in the time of the Alexandrines cannot be considered as genuinc. It is an historical fact that Heraclides Ponticus forged tragedies under the name of Thespis; and the few fragments of Thespis quoted by antient writers are unquestionably nassages of such supposititious works. The tragedies of Thespis must liave fallen into oblivion and have perished at the time when the Attic drama reached its perfection: some of his choral songs however appear to have been known as late as the time of Aristophanes, as we may infer from the concluding seene of the 'Wasps.' We know the titles of four of his tragedies: 'Pentheus,' 'The Funeral

1. C., No. 1 ³2.

Games of Pelias or Phorbas,' 'The Priests,' and 'The Youths;' but of their construction nothing is known, except that each seems to have commenced with a prologue. (Themist., Orat., p. 382.)
Respecting the history of Thespis very little is known. Solon was present at the performance of one of Thespis's plays, and highly disapproved of dramatic performances, as tending to lead men to falsehood and hypocrisy. Towards the end of the career of Thespis tragic contests were introduced at Athens, and Thespis probably contended for the prize with Choerilus and Phrynichus, who is called his disciple. Thespis is also said to have distinguished himself in orchestic, or the art of daneing (Athenacus, i., p. 22), which however can only refer to his skill in instructing the chorus.
(Bode, Geschichte der Dramat. Dichtkunst der Hellenen, i., pp. 40-57; Mïller, Hist. of the Lit. of Greece, i., p. 292, \&c.)

THESPRO'TIA (θ sonpuria), a district of the antient Epirus, around the river Acheron. Its boundaries are not distinctly sfated by antient writers, but the district seems to have included the coast from the mouth of the Ambracian Gulf northwards to the river Thyamis, and the country inland as far as Mount Tomarus. The south-enstern part of Thesprotia, south of the river Acheron, was called Cassopaea, and is sometimes reckoned as a distinct district; but the other statement appears more correct, since Hercdotus makes the Thesproti neighbours of the Ambraciots and Leucadians. (Herod., viii. 47.)

Thesprotia was one of the chief abodes of the Pelasgi. This is intimated by the legend which makes Thesprotus the son of Lycaon. In Thesprotia was the oracle of Dodona (Herod., ii. 56), the chief seat of the old Pelasgic religion. [Dodona.] In Thesprotia Aristotle found the Hellenes under their antient name of Graeci (rpaxoi, Aristot., Meterolog., i. 14.) From this country the Thessali migrated to takc possession of Thessaly, about sixty years after the Trojan war, having previously left their original seats in Thessaly, and proceeded into Thesprotia, about eight generations before the Trojan war. (Herod., vii. 176; Thucyd., i. 12; Plutarch, Pyrrh., c. i.; Velleius, i. 3; Clinton's Fasti Hellen., i. 19-20, 28.)

Its chief cities were Nicopolis, built by Augustus on the peninsula opposite the promontory of Acte, or Actium, in commemoration of his victory over M. Antonius; Charadra, on the west of the Charadrus; Bucheta, or Buchetima, on the coast. The above arc on the south-eastern side of the Acheron. Above the Acheron were,-Ciehyrus, formerly Ephyra, on the Acherusian Gulf; Pandosia, higher up the Acheron; Elatria or Elatia, and Batiac, inland; Chimerium, on a promontory of the same name, west of the mouth of the Acheron; north-west of this, Sybota: the positions of Bolurus and Torone are unknown. [Epirus.]
(Leake; Pouqueville; Cramer; Hoffmann's Griechenland.)
THESSALONIANS, Epistles of St. Paul to the. Christianity was introduced among the Thessalonians in A.D. 50, by St. Paul, when he first passed over from Asia Minor into Europe to preach the gospel. According to the account in the Acts of the Apostles (cll. xvi.), St. Paul was engagerd in communicating to the churches in Asia Minor the decree of the first council of the 'Apostles and elders which were at Jerusalem,' when on his arrival at Troas a vision appeared to him in the night, in the figure of a man of Macedonia, 'who prayed him, saying, Come over into Macedonia, and help us.' In obedience to this call, St. Paul, together with Silas and Timothy, visited the cities of that country, and among the rest Thessalonica, which was at that time the residence of the Roman governor of the province of Macedonia, and a city of great resort. St. Paul found there a synagogue of the Jews, 'and went in unto them, and for three Sabbath days reasoned with them nut of the Scriptures,' endeavouring to convince them that Jesus was the Christ or Messiah expected by them. Though some of them believed, his success with the Jews does not appear to have been great: but a considerable number of the 'dcvout Gentiles' were converted, and many women of distinction: so that the Christian church at Thessaloniea was composed both of Jews and Gentiles, of whom the latter were the more numerous. The Acts of the Apostles (ch. xvii.) informs us that St. Paul only spent threc Sabbath days in preaching to the Jews; but from some expressions in

VoL. XXIV. -2 Z
his own letters to the Thessalonians, coupled with the fact of his receiving money from l'hilippi more than onee while le was at Thessalonica (Philipp., iv. 16), it would seem that he remained for some time in that city. Still he was unable to carry his designs into exceution : the unconverted Jews stirred up a persecution against him, so that himself and his companions 'were sent away by night by the brethren' to the neighbouring city of 13eroea. Here again the Jews of Thessalonica stirred up a tumult against St. Paul, so that he was obliged to retire to Athens, leaving however Silas and Timothy at Beroea. At Athens he was subsequently joined by then, and being naturatly anxious about his recent converts at Thessalonica, and ' when he could no longer forbear'. (1 Thes., iii. 1), he sent Timothy from Athens 'to establish them, and to comfort them concerning the faith.' St. Paul then visited Corinth, and on the return of Timothy with 'good tidings of their faith and charity, and that they had a good remembranee of him always' (1 Thes., iii. 6), he wrote his first epistle to them, A.D. 52 , from Corinth, and not from Athens, as the subscription of the epistle imports.
It was one of the earliest, if not the very first, of all St. Paul's epistles, and in chap. v., ver. 27, he expresses his desire that it should be read not at Thessalonica only, but in all the churches of Macedonia. Its genuineness has always been admitted: together with the second epistle, it is quoted and recognised as the work of Si. Paul, by Irenæus, Clement of Alexandria, Tertullian, Origen, and all subsequent ecelesiastical writers. (Lardner, as quoted in Horne's Introduction, vol. iv., p. 372.) The immediate occasion of St. Paul's writing this Epistle was the favourable intelligence brought by Timothy of the steadiness with which the Thessalonians adhered to Christianity in spite of the persecution with which they were assailed by their own countrymen. Besides beng exposed to direct persceution, there can be little doubt that they were also in danger of being moved by the reasonings of their religious adversaries, to which the sudden disappearance of St. Paul from Thessalonica, and his apparent desertion of them at a eritical moment, might give sone plausibility and apparent confirmation. To counteract the natural result of all this was one of the chief objects of Timothy's mission, and the First Epistle to the Thessalonians was written with the same design. Accordingly in chap. i ., after a short introduction, in which he couples the names of Tinothy and Sylvanus (the IRoman form of Silas) with his own, he expresses his thankfulness for their 'work of faith and labour of love, and patience of hope in our Lord Jesus Christ,' and then (vers. $5-10$) reminds them of the proofs ' of power and of the Holy Ghost' with which the preaching of the gospel among them was accompanied, as evidences of its truth, and conimends them for the constaney of their faith. In chaps. ii., iii., ss a further confirmation of the truth of the gospel, he reminds the Thessalonians of the conduct and character of hinself and the other preachers of Christianity. That as a missionary and apostle of Christ, the had sutfered, and been shaincfully entreated'-that in preaching the gospel, he had sought neither temporal profit, nor favour, nor honour. He also explains and vindieates his own conduct in leaving them, and says that nlthough taken from them in presence, he was not in heart, -that he had endeavoured to see them again with great desire, but had been hindered; till at last, when he could no longer forbear, he sent Tiniothy to them, at whose good tidings of them he expresses the greatest satisfaction and joy.
In chap. iv. St. Paul exlorts them to persevere in the observance of the duties and practical virtues of Christianity, in conformity with the cominandments he had given them at first: and further enjoins thenat not to sorrow or lament over those that were dead, but rather (even as they believed that Jesus died and rose again) to look forwand to their resurrection, when the day of the lord Jesus, that is, the day of judgment, should come.
In chap. v. ($1-5$) St. l'aul warns the Thessalonians of the uncertainty of this event, and concludes the epistle with a variety of preeepts and admonitions addressed partly to the whole elsurch, partly to its pastors and teaehers, coupled with some reproofs, which, as we may suppose, where callerl for by the irregularities and faifings froin Which the Theeaulonians were not yet exempt.
The undesigned comncidences betweent this. Epistle and the 'Acts of the Apostles 'are commented upon by I'aley in

The Sccond Eipistle to the Thessalomans was written soon afer the fint, and from the same place. Silvanus med Timothy being joined with the apostle in the inseription of this Epistle, as well as of the former ; and as in chap. iii., ver. 2 , he requests the prayers of the Thessalonians for his deliverance from wicked men, it is not improbable that he wrote it soon after the insurrection of the Jews at Corinth, when they dragged him before Gallio, and accused him of persuading men to worship God contrary to the law.

This Epistle seems to have been oceasioned by the information which St. Paul received on the state of the church at Thesealonica from the messenger who conveyed lis fimt letter to the elders of the chureh, and his report of the effect produced by its contents. From some expressions in that Epistle (iv. 15 ; v. 4-6), compared with chapter ii. of the Second, it would seem that a number of Thessalonians had come to the conclusion that the day of judgment was at hand, and would happen in their gencration. To correct this misapprehension, and to prevent the anxiety and the neglect ot secular affairs which resulted from it, appears to have been the inain object and design of St. Paul in writing this Second Epistle to them.

Accordingly, in chap. i., after a short introduction, the apostle proceeds to commend the growing faith and charity of the Thessalonians, and to express his joy at their patience under tribulation, of which he had heard from the messenger who carried his first letter, and he assures them of his constant prayers for their welfare.
In chap. ii. he rectifies their mistake about the day of judgment, and wams them against those who might attempt to deceive them on that subject. By way of setting their minds at rest about it, he assures them that the event would not come to pass until 'a great apostacy' lad overspread the church, and the revelation of 'the man of \sin, the son of perdition,' should have taken place. These phrases have been variously interpreted, but the generality of Protestant commentators have agreed in referring them to the Roman pontiffs and the Romish church. Some indeed understand them to apply to the rise of Nohammedanism, and others to the revolt of the Jews from the Romans. The Romish church contends that one persou ouly is meant, and not a series or succession of persons.

Whatever the apostle meant by these phrases, he informs the Thessalonians that this nystery of iniquity was already secretly at work, though its full operation was prevented by a restraining power (kárexoy), which the early Fathers of the Clurch generally understood to be that of the Roman emperors and cupire. (Tertullian, Apolog., p. 31.)

In chap. iii. the apostle desires their prayers for himself and his fellow-labourers, and then reproves some of the Thessalonians for their idleness and irregular life. He concludes with his apostolic bencliction, and writes the salutation with his own hand, whieh, as he informs them, was a token of the genuineness of that and other Epistles similarly authenlicated.
This Second Epistle to the Thessalonians is the shortest of all St. Paul's Epistles, but not interior to any of them in style or spirit, and it is also remarkable as containing a distinct prophecy of the corruptions and delusions which were to arise in the Christian chureh.
The undesigned coincidenees between this Epistle and the 'Acts of the Apostles' are given in Palcy's 'IIora Pauline, pp. 312-322.
(Macknight, On the Apostolical Evistles, rol. iii., pp. 1-124; Home, Introduction to the Critical Sludy of the Scripiures, vol. iv., p. 372 ; Collyer, Sacred Interpreter, vol. ii., p. 275 ; Perey's Key to the Neto Testament ; If hitby, On the Nexn Testament.)

THESSALONI'CA (now Saloniki), an antient city of Macedonia, in the distriet of Mygdonia, was formerly called Therme or Therma : it is in $40^{\circ} 38^{\prime} \mathrm{N}$. lat. and $20^{\circ} 56^{\prime}$ E. long., about ten miles east of the antient river Eehedorus, at the lead of the modern Gulf of Saloniki, formerly called the Thermaic Bay, from the antient name of the city. It was at first an inconsiderable place under its old name of Therme, by which it ras known in the days of Herodotus and Thucydides, EEschines, and Scylax, who, in his 'Periplus,' makes mention of the Thermaie Gulf. IIerodotus, in his 'Ilistory' (vii. 128), speaks of it as a place where Xerxes made some stay on his mareli into Greece, and from which he had a commanding view of the mountains of Olympus and Osea in Thessaly. A
short time previous to the commencement of the Peloponnesian war (b.C. 432) it was taken and occupied by the Athenians, but it was soon afterwards restored to Perdiccas, the king of Macedonia. According to an account in Strabo (Epit., vii. 330), the name of Thessalonica was given to it by Cassander, the son of Antipater, in honour of his wife Thessalonica, who was the daughter of Philip, king of Macedon, and the sister of Alexander the Great. With a view to its aggrandisement, Cassander collected together (about B.C. 315) the population of several adjacent towns, so as to make it one of the most important cities of Northern Greece. (Strabo, l.c., p. 33a.) After the battle of Pydna (b.c. 168), in which the Romans defeated Perseus, the then king of Macedonia, Thessalonica, with the other Macedonian towns, surrendered to the Romans, and was made the capital of the second of the four regions into which Macedonia was divided by them. (Livy, lib. xliv., c. 10 and 45 ; lib. xlv., c. 29.) Livy speaks of it as being then a very celebrated city, to which its admirable position materially contributed. It possessed an excellent harbour, peculiarly well situated for commercial intercourse with the Hellespont and the Fgrean; and it had the additional advantage of lying on the great Roman military road, the Via Egnatia, which, commencing at Dyrrachium, on the western side of Greece, and extending to Byzantium, afforded the easiest land communication with Thrace, Asia Minor, and the shores of the Euxine. In St. Paul's time it was much frequented by people of different nations for commercial and other purposes, as appears from the fact of there being a synagogue of Jews there; and it was also the seat of the Roman government. Pliny (iv. 10) calls it a frec city; and Lucian ($A \sin ., 46$) speaks of it as the largest of the Macedonian towns. In later times, under the empire, it continued to be so flourishing and important a city, that it was selected as the residence of the prefect of Tllyricum, and the metropolis of the Illyrian provinces. (Theodoret, Hist. Eccl., v. 17.) In the reign of the emperor Theodosius it was the scene of a deplorable calamity: it was then protected against the assaults of the Goths by strong fortifications and a numerous garrison. Their commandant, Botheric, with his principal officers, was inhumanly murdered by the people of the town, in consequence of his having thrown into prison one of the popular characters of the circus, to the games of which the Thessalonians of that time (A.D. 390) were passionately devoted. The emperor Theodosius, in the excitement of his indignation, gave orders for the punishment of the people ; and, according to the most moderate accounts, no less than 7000 persons were massacred by barbarian soldiers in a promiscuous carnage, which lasted for three hours (Gibbon, Roman Empire, c. xxxvii.), a deed, the guilt of which, as Gibbon observes, was aggravated by the long and frequent residence of the emperor at Thessalonica. [Theodosius; Ambrose.]

For an account of the ruins and antiquities of Thessalonica, see Clarke's and Holland's Travets, vol. ii., p. 50 ; Dodwell's Tour in Greece, vol. ii., c. 19, p. 190 ; Cramer's Antient Greece, i. 238.

THE'SSALUS ($\Theta \varepsilon \sigma \sigma a \lambda o ́ s)$, an antient Greek physician, son of the celebrated Hippocrates, appears to have lived at the court of Archelaus, king of Macedonia, about 360 years beforc Christ. He was one of the founders of the sect of the Dogmatici, who also took the name of the Hippocratic school, because they professed to follow the doctrines of that great man. However, both he and his brother Dracon, and his brother-in-law Polybus, are accused by Galen in several passages of not only mixing np with the opinions of Hippocrates the principles of later philosophers, but also of altering and interpolating his writings. Several of the works that go under the name of Hippocrates are by many critics supposed to have been written by Thessalus, viz. 'De Morbis,' the second, fifth, sixth, and seventh books 'De Morbis Vulgaribus,' and the second book of the 'Praedictiones,' or 'Prorrhetica;' but this conjecture is uncertain.
(Le Clerc, Hist. de la Méd.; Fabricius, Biblioth. Graeca; Haller, Biblioth. Medic. Pract.; Sprengel, Hist. de la Méd.; Ackermann, Hist. Literar. Hippocr.; Choulant, Handbuch der Bücherkunde fiir die Aeltere Medicin.)
THE'SSALUS ($\theta \varepsilon \sigma \sigma \alpha \lambda \delta s)$, one of the founders of the antient medical sect of the Methodici, was born at Tralles in Iydia, and lived in the reign of the emperor Nero, in the first century after Christ. He was the son of a weaver,
and followed the same trade himself during his youth, by which means he lost the opportunity of receiving a good education, and was never afterwards able to overcome this disadvantage. He appears however to have soon given up this employment, and applied himself to the study of medicine, by which he acquired a great reputation, and amassed a large fortune. His whole character however, both intellectual and moral, is everywhere represented by Galen in a very unfavourable light; but it must be confessed that Galen himself appears to very little advantage in these passages, and goes beyond all bounds in his abuse of him.
Thessalus adopted the principles of the Methodici, but modified and developed them so much that he attributed to himself the invention of them. In fact on all occasions he appears to have tried to exalt himself at the expense of his predecessors; lavishing upon the antients the most insulting cpithets; calling himself by the title iarpovikns (conqueror of physicians), because he thought that he himself surpassed all his predecessors as much as medicine is superior to all othersciences; boasting that he could teach the art of healing in six months; and telling the emperor Nero, in the dedication of one of his works, that none of those who had been before him had contributed anything to the advancement of medical science. By his boasting he attracted a great number of pupils, whom he took with him for six months to visit his patients; but most of them are said to have been common artisans and persons of very low extraction. Galen accuses him of knowing nothing of the action of drugs, though he had written on the subject. He did not care for inquiring into the causes of diseases, and was satisfied with certain problematical analogies; nor did he admit the value of prognostic signs. He did not recommend tapping in cases of ascites. A further account of his opinions may be found in Le Clerc, Hist. de la Méd.; Haller, Biblioth. Medic. Pract.; Sprengel, Hist. de la Med.

THESSALY ($\theta \varepsilon \sigma \sigma \alpha \lambda i a)$, one of the principal divisions of Northern Greece, and the cradle of many of the inhabitants of Greece in general, is an extensive and generally unbroken plain, about 80 miles in extreme length and 70 in breadth, comprising an area of about 5500 square miles, and forming an irregular sort of square. This description applies only to what may be called Thessaly Proper, which is bounded on the west, towards Epirus and Athamania, by the range of Pindus; on the north, towards Macedonia, by the Cambunian Mountains; on the south by the range of Mount Othrys; on the east by a range of mountains running along the coast nearly parallel to Pindus, and including the summits of Pelion and Ossa. The basin of Thessaly is thus surrounded by mountain-barriers, broken at the north-east corner only by the valley and defile of Tempe (or the Cut), which separates Mount Ossa from Olympus, and presents the only road from Thessaly to the north which does not lead over a mountain-pass. At the eastern base of the mountain-range which runs from Tempe to the bay of Pagasæ, now the Gulf of Volo, there is a narrow strip of land called Magnesia, between the hills and the sea, interrupted in several places by lofty headlands and ravines, and without any harbour of refuge from the gales of the north-east. South of Othrys, the southern boundary of Thessaly Proper, lies a long narrow vale, through which winds the river Spercheius, and which, though generally considered as a part of Thessaly, is scparated from it by the range of Othrys, and is very different from it in physical features. It is bounded on the south by the range of $\mathbf{0}$ ta, which runs from Pindus to the sea at Thermopylx in a general direction nearly parallel to the Cambunian Mountains; and on its eastern side by the shores of the bay of Malia, now the Gulf of Zeitoun. According to Greek traditions, Thessaly was known in remote times by the names of Pyrrha, Emonia, and Bolis. The two former names belong to the age of mythology; the last refers to the time when the country was inhabited by the Eolian Pelasgi, previous to the occupation of any part of it by the Thessalians, who, according to Herodotus (vii. 176 ; Strabo, ix., p. 444), originally came from Thesprotia, a region in the west of Epirus, and settled in the country, which from them derived its future name. At what time it received the name of Thessaly cannot be determined. The name does not occur in the poems of Homer, although the several principalities of which it was composed at the time of the Trojan war are there enumerated, together
with the different chiefs by whom they were governed: it is from Homer (Ilied, ii. 700) that we derive the earliest information about this part of Grecee.
From very early times Thessaly was divided into four distriets, or ictrarchies. These tetrarelies were, a ecording to Strabo (ix., p. 430), Hestireotis, Pelasgriotis, Thessaliotis, and 1 hhthotis: and the division, though it was a very antient institution, existed in the Peloponnesian war (a.c. 404).

The finst of these tetrarchies, Ilesticootis, was the mountainous country between Pindus and Olympus; having genemlly for its southern linit the river Peneus, though this river did not form an exact boundary through all its course. Herodotus (i. 156) applies this name to the country in the neighbourhood of Oisa and Olympus, the original abode of the Dorians before they settled in Peloponnesus. From a statement in Strabo (ix., p. 437), it would seem that the name of Hestireotis was derived from a district in Eubcea, whose inhabitants were transplanted to this part of Thessaly by the Perthebi. The Perrhabbi themselves however only oceupied a small part of the territory, and as they are said to have been the original inhabitants of the country of the lapithe, they must at one time have been established in the lower valley of the Peneus. (Strabo, p. 441.) In historical times they dwelt in the valley of the Titaresius under Olympus, where they had shrunk into a small mountain-people. The north-western part of Hestizotis was in ante-historical times (Homer, Il., ii. 7 4) oceupied by a mountain-tribe of uneertain origin, called the Ethices. In the time of Strabo (ix., p. 434) seareely any trace remained of them.

The most remarkable towns of Hestixotis were as fol-lows:-Phaleria, or Phaloria, the first town of any importance on entering Thessaly from Epimis by the passes of Pindus (Liv., xxxii. 15); Oxyneia and Eyginium, the latter of which Livy describes as a place of great strength, and almost impregnable. Gomphi (the Wedges), an antient fortress, situated on the Peneus to the south of Phaloria: it was a place of great strength, and might be said to be the key of Thessaly on the side of Epirus to the north : it commanded the communication by the gorge of Clinovo, between this part of Thessaly and the Ambracian Gulf. In the time of Casar (Bel. Civ., iii. 80) it was a large and opulent city: it is supposed to be represented by the modern Stagous. Tricea, now Trikhala, on the left bank of the Peneus, about 12 miles south of Gomphi: it is celebrated by $110 m e r$ ($11 .$, ii. 729), and plaeed by him under the rule of the sons of Aseulapius, who was said to have been born in the neighbourhood. According to Straloo (ix. 437), there was a temple of Eseulayius there, which was held in great veneration: about 12 miles to the north of it is now situated the convent of Meteom, whose name (the Hanging) is deseriptive of its situation upon lofty colunns of rock. Metropolis, a town to the north of the Peneus, which contained within its territory the lands of three other plaees not so famous, but more antient, and which contributed to the formation of the new city. Metropolis, with Gomphi to the north-west, Trieca to the south-west, and Pelinna to the south-east, formed a square of fortresses, in the middle of which was the antient lthone, ealled by Honcr the 'preeipitous.' Pelinna, more commonly Pelinneum, was an important eity on the north of the Peneus, and about 10 miles east of 'Irieca. Ithone has been supposed to have oceupied the site of the convents of Meteora: but it seems to have been farther south. Qehalia, a eity celebrated in mythology, is coupled by Hoiner with Trieea and lthome. Goumus, or Couni, was a town of considerable importance and antiquity. It was situated on the left or north lank of the river Pencus, about 90 miles from the great city of larissa, and close to the entranee of the gorge of 'Tempe. Gonnocondylon, a stronghold in the windings of the valtey, was situated in the defile above Gonnus, probably not tar from the fortress of Roman eonstruction called Horaeo-Castro. The Pelagonian Tripolis, also, a district which ineludell the three towns of Pythium, Azorus, and Toliche, was situated in the north-east of Ilestireotis, and is also reekoned under Perrheebia by Livy.

Pelasgiotis was in the southern part of the lower valley of the l'encus, and ineludes the Pelasgian plains which streteh from Larissa to Pherre, near Pelion, having for its bonndary on the east the raige of Pelion and Ossa. According to Strabo (ix., p. 441) this part of Thessaly was ariginally occupied ly the Perrixebi, an antient tribe of
apparently Pelasge ongin. It was however wxested from them by the Lapitha, nother Pelasgic nation, whose original abode wis in Magnesia. They forcel some of the Perrhabli to retire northwards and aeross l'indus, white those who remained in the plains were incorporated with thenselves, under the common name of Pelasegiots. The principal torns of Pelasgiotis were as follows:-1/arissa: this was one of the inost antient and flourishing fowns of Thessaly, though not mentioned by Homer; it was situated in the most fertile part of the old country of the Perrlawi. The constitution of the city was demoeratical, the magistrates being eleeted and removeable by the people. (Aristot., Politic., v. 6.) Aceordingly in ihe Pelopounesiau war, the Larissexans supported the Athenians ayrainst the Lacedrmonians. The Xleuadie, nentioned by Herodotus as princes of Thessaly at the time of the Persian invasion, and one of the most distinguished and antient families of the country, were natives of lanissa. The territory of this eity was extremely rieh and fertile, but it frequently suffered by the inundations of the Peneus. Modern travelless are of opinion that the present larissa stands on the site of the old town. The name is Pelasgian. Cranon, or Crannon, to the south of Larissa, was one of the most antient and considerable towns of this part of Thessaly. The inhabitants of this town are supposed by the antient eommentators to he designated by Homer (ll., xiii. 301) is the Ephyri. The Scopade, a distinguished and prineely fanily of Thessaly, belonged to it. The inhabitants supported the Athenians in the Peloponnesian war, and therefore they may be supposed to have been uuder a democratieal form of government. Scotussa, to the enst of Cranon, though noticed by autient authors, does not appear to have been known to Homer. (Strabo, ix., p. 441.) Within its territory was the hill of Cynosecphala, or Doss'-Heads, where a vietory was gained by the Romans over Philip of Macedon (B.c. 197). It is one of the hills which separate the plain of Larissa from that of Pharsalia. According to some authors, the Thessalian Dodona was also within the district of Seotussa. Phere was near the southern extremity of the lake Boebeis. In the 1'eloponnesian war the Phereans assisted the Athenians, whence it is probable that they then liad a republiean form of government. Subsequently Jason made himself master of Pherre, his native town, and was suceceded in his authority by his brothers. In later times it fell into the hands of Alexander, who continued for eleven years to be the seourge of his native eity, and the whole of Thessaly, till he was eheeked by the Thebans, under Pelopidas and Epaminondas. He was at last assassinated by his wife and her brothers, who continued to tyrannise over the eountry till it was liberated by Philip of Maeedon. (Diodorus, xivi.517.) After many ehanges of fortune, it was taken by the Romans under the eonsul Acilius. (Livy, xxxyi. 14.) Strabo says of it, that the continued tyramy under which it had laboured hastened its deeay. Its territory, according to Polybius (xviii. 2), was most fertile, and the suburbs were surronded by gardens and walled enclosures. Its port was Pagasa, about 11 or 12 iniles distant. With respect to its modern features, 'Phere,' say's Dodwell, ' has hardly preserved any traees of antiquity: a few seattered blocks of stone and some Doric tivsta are the only antiquities remaining.' The fountain Hypereia, mentioned by Homer (Iliad, vi. 45\%), 'is in the suburbs of the motern town of Belestima, at the foot of the antient Aeropolis. A small lake of about 100 yards in diameter, and with water as clear as crystal, bubbles up out of the ground.' Sir W. Gell adds, thiat it runs through a coflechouse, or kiosk. The Dotius Campus is also in Pelasgiotis, on its castern side: it is a considerable plain encircled by hills to the north, and terminated to the south by the lake Boebeis, the most extensive in Thessaly, and included within the limits of Pelasgriotis.

Thessaliotis was so called, aecording to Strabo, from its having been first occupied by Thessalians, who came from Thesprotia, and inhabited the plains below Hestineotis, having the distriet of Pelasgiotis on the cast. Tnis tetrarchy contained towards the south-east the eity of Pharsalus, celebrated for the batile fought in its plains between Pompey and Cresar. It is situated not far trom the junetion of the Enipeus and the Apidanus, and was a eity of great size and importance, though no mention is made of it previous to the Persian invasion of Grecce. During the Peloponnesian war, the lharsalians generally favoured
the Athenians. Xenophon (Hellenic., vi. 1) speaks of it is an independent republic, but it afterwards fell into the hands of Jason, tyrant of Pheræ. There is a modern town called Phersale not far from, if not on, the site of the old Pharsalus; but there are only a few antiquities there. South-west of it there is a hill surrounded with antient walls, and on a lofty rock above it are other ruins of greater magnitude, showing a considerable portion of the walls of an antient Acropolis and remains of the Propylaea. Other towns of Thessaliotis were-Cierium, supposed by Miiller to be identical with the antient Arne, the chief town of the Eolian Bœotians; Ichnæ, or Achnæ, where the goddess Themis was especially worshipped; Proerna, not far from Pharsalus, mentioned by Strabo (ix., p. 434). Sir W. Gell observed between Pharsalia and Thaumako the ruins of an antient city, which he supposed might belony to Procrna. They are situated upon the projecting branch of a mountain, where there are many vestiges and walls.

Phthiotis, according to Strabo, included all the southern part of Thessaly, stretching lengthwise from the Maliac Bay on the east to Dolopia and Pindus on the west, and in breadth from Mount Gita on the south as far as Pharsalus and the Thessalian plains on the north, an average distance of about 30 miles. Homer comprised within its limits the districts of Phthia and Hellas properly so called, and the doninions of Achilles. Its inhabitants were the Achreans (Axatoi Ф日йтai), a double name under which they were generally enumerated in the lists of the Amphictyonic nations. The principal cities of Phthotis were Halos or Alos, on the west side of the Gulf of Pagasx, usually called the Phthiotic or Achaian, to distinguish it from a city of the same name in Locris. It contained a temple sacred to Jupiter Laplystius, which was visited by Xerxes as he passed through the city; some remains of the town are thought to be still existing. Iton, about six miles west of Halos, on the river Cuarius (Strabo), celebrated for a temple of Minerva I tonis, who was worshipped under the same name in Bocotia. The district of Arme, from which the Eiolian Bueotians were expelled by the Thessalians, is by some supposed to have been near these towns and on the shores of the Pagasaan Bay; but Müller (Dorians, ii. 47.5) adduces satisfactory reasons for believing that the Ame, which the Thessalians first occupied, lay to the north-west in Thessaliotis, and that it was identical with the antient Pierium. North of Halos and Iton lay Thebes, the most important town of this part of Thessaly. It was called Phthotic, to distinguish it from the Thebes of Bocotia. In a military point of view it possessed considerable importance, as it commanded the avenues of Magnesia and the upper parts of Thessaly. It was once in the occupation of the Ftolians, but was wrested from thein by Philip, the son of Demetrius, who changed its name to Philippopolis. According to Livy (xxxix. 25) it was once a city of great commercial importance. Some ruins between the modern towns of Armiro and Volo are supposed by Sir W. Gell to be those of Thebes. They consist of an Acropolis, with very antient walls constructed with very large blocks; some towers also are still standing. The port of Thebes appears to have been Pyrasus, about two miles and a half distant. A little south of Thebes was Larissa Cremaste, or the Hanging, so called from its position on the side of a hill; it was also called the Pelasgian. It lay in the dominious of Achilles, whence he is called Larissæus by Virgil (Eneid, ii. 198). The ruins of it still exist, and Sir W. Gell says of it, "The form of Larissa was, like that of many very ancient Greek cities, a triangle, with its citadel at the highest point. In the Acropolis are the fraginents of a Doric temple; and from it is scen the magnificent prospect of the Maliac Gulf, the whole range of Etta, and over it Parnassus.' Melitia was situated at the foot of Mount Othrys, on the river Enipeus. Its antient name was Pyrrha, and it boasted of posscssing the tomb of Hellen, the son of Deucalion. It was about a whole day's march from Pharsalus. (Thucyd., iv. 78.) To the north-west of Melitia lay the town of Thaumaki or Thomoko, so called (the Wonderful) from the singularity of its position on a lofty and perpendicular rock. It was on the great road leading from Thermopyla by Lamia to the north of Thessaly. "After a rugged route over hill and dale,' says Livy (xxxii. 4), 'you suddenly open on an immense plain like a vast sea, which stretches below as far as the eye can reach.' Dodivell
says of it, 'It is about five hours from Pharsalia. It nust always have been a place of importance. The view from it is one of the most wonderful and extensive I ever belield.'

On the west of Phthiotis, and close to it, but still separated from it, lay the territories of the Dolopians. According to Homer (Il., i. 480), Dolopia was at the extremity of Phthotis; but it does not follow that it was included in that distriet; nor are the Dolopians in early times ever mentioned as the vassals of the Thessalians. They occupied the extreme south-west angle of Thessaly, formed by the chain of Tymphrestus, a branch of Pindus, on one side, and Mount Othrys on the other. They werc a very antient nation, as appears from their sending deputies to the Amphictyonic council. At a later period they were subjects of Jason, the tyrant of Pheræ. (Xenophon, Hell., vi. 1.) Afterwards the posscssion of Dolopia was frequently contested between the Etolians and the kings of Macedon, but it was finally conquered by Perscus, the last king of that country. The limits of Dolopia were different at different times. Thucydides (ii. 102) seems to have extended it to the west of Pindus. It was a rugged mountainous district, with few towns of note. Ctemene, or Ctimene, was perhaps the most important.

The Enianes lived in the upper valley of the river Spercheius, being separated from the Dolopes by the hills of Tymphrestus and Othrys. They were also called Otteans from their position on the slopes of Mount OEta. They were a tribe ot great antiquity and of some importance, as appears from the fact of their belonging to the Amphictyonic council. Their origin is uncertain, and they made many migrations from one part of Thessaly to another. Plutarch says of them that they occupied in the first instance the Dotian plain ; after which they wandered to the borders of Epirus, and finally settled to the soutl of the Dolopes, with Mount (Eta for their boundary on the south. In Strabo's time they lad nearly disappearcd, having been exterminated by the 玉tolians and Atlamanes, their neighbours on the west. Their chief town was Hypata, on the banks of the Spercheius.
The Malians, or Melies, as they were called in the Attic dialect, were the most southern tribe comnected with Thessaly. They occupied principally the shores of the Maliac Gulf (the Bay of Zeitoun), from the Pass of Thermopyla on the south to the northern boundary of the valley of the Spercheius. Their country is generally fiat; the plains in some parts are extensive, in others narrow, where they are confined on one side by tlie slores of the Maliae Gulf, and on the other by the mountains of Trachinia. Thucydides divides them into three tribes, the Paralii or Shore-men, the Hierenses or Sacerdotal, and the Trachinians. The second of these classes probably dwelt near the Amphictyonic temple at Thermopylæ; the third on the rocky declivities of Mount CEta. They were always a warlike people, and those persons only who had served as heavy-armed soldiers were admitted to a share of the government. (Aristot., Polit., iv. 100.) The Amphictyonic council was held in their country, and the Malians are included in the lists of the Amphictyonic states. They always maintained friendly relations with the Dorians of Lacedæmon. The principal towns of the Malians were as follows:-Anticyra, at the mouth of the Spercheius: it was said to produce the genuine hellebore, considered by the antients as a cure for insanity. Lamia, four or five miles north of Anticyra: it was celcbrated as the scenc of the Lamian war, carried on between the Athenians and their confederates against the Macedonians under Antipater. It is generally supposed to have occupied the site of the noodern Zeitoun. Trachis, or Trachin (the 'rough'), was so called from the mountainous character of the surrounding country: it was once the chief town of the Trachinians, who were in such close alliance with the Dorians that Diodorus (xii. 59) speaks of Trachis as the mothertown of Lacedæmon. The friendship between Ceyx, a Trachinian hero, and Hercules, together with that of his sons, is the mythological expression for this connection. In later times Heraclea was the most important tuwin of Trachinia. It was a colony from Lacedæmon, founded (B.c. 426) at the request of the Trachinians, aljout threc miles from the sea. Their object in making the request was to gain additional strength against the Enianes, or Eteans, with whom they were at war: there was also an old cnmity between the ©teans and the Lacedamonians.
who were on this aceount the more readily induced to found the colony. It soon became an ohject of jealousy with the other Thesalian tribes, who frequently harassed it, and the Lacedremonians often sent reinforcenvents to its support. It was scized by Jason of Phera, who caused the walls to be pulled down; but it sgain became a flourishing city under the Etolians, who sometimes held the general council of their nation there. It sustained a long sicge from the Roman consul Acilius Glabrio, after the defeat of king Antiochus at Thermopyle (s.c. 101). The surrounding conntry was marshy and woody, but the ves tiges of the city itself, according to Sir W. Gell, are observable on a high flat on the roots of Mount CEta. On the const of Trachis, close to the mouth of the small river Asopus, which runs through a gorge in the mountain enelosing the Trachinian plain, was the village of Anthele, near to which was the temple of the Amphictyonic Ceres, and the place of meeting of the Amphictyons. This locality wha also fannous for the celebrated Pass of Themnopylie.
Magnesia is a country physically distinct from Thessaly, but in historical times was subject to it, and politically included within it. It is a narrow strip of country between the mouth of the Peneus and the Pagasamn Bay on the north and south, with the chain of Pelion and Ossa on the west, and the sea on the east. The people of this distriet were called Magnetes, and they were in possession of it from very early times. (Iliad, ii. 7ã6.) They were an Amphictyonic state. In the time of Thueydides they were dependent on the Thessalians, but they subsequently, with the rest of that nation, became dependent on the kings of Macedon, and continued so till the battle of Cmoscephalx, when they were declared independent by the Romans. The extreme northern point of Magnesia was Mount Homole, a limb of Ossa, celebrated by the poets as the abode of the antient Centaurs and Lapithre, and a favourite haunt of the god Pan. (Virgil, Sineid, vii. G74.) To the south, at the foot of Ossa, was Meliboea, a town on the coast, ascribed by Homer (Iliad, ii. 716) to Philoctetes. Still farther south was the promontory of Sepias, off which the fleet of Xerxes was wrecked. Beyond the southern promontory of Magnesia, now called Hagios Georgios, the coast takes a south-westerly direction to the entrance of the Pagasæan Bay, the Gulf of Volo. Among the principal towns of Magnesia were Iolcos, Demetrias, and Aphetr. The first of these was a place of great antiquity, and the birthplace of the mythologieal hero Jason and his ancestors. It was situated at the foot of Pelion, near the small river Anaurus: it was once a powerful city, but according to Strabo, its downfall was hastened by civil diseord and bad Government: its ruin was completed by the foundation of Demetrias in the neighbourhood. The adjoining shore was still ealled Ioleos in the days of Strabo, though the town no longer existed. Pagase, the port of Iolcos, and nfterwards of Phera, was famed in Grecian story as the harbour from which the ship Argo set sail on her voyage to Colchis: the name, accorling to Strabo (ix., p. 436), was derived from the number of springs (nayai) near it. The site is nearly oceupied by the present castle of Volo. Demetrias owed its name and origin to Demetrius Poliorcetes. It was founded about b.c. 290 , and the first population was derived from the neighbouring towns of Nefia, Pagasse, \&c., all of which were eventually comprised within its territory. It soon became a flourishing city, and was one of the most important fortresses in Greeee, being well situated for defending the approaches to the Pass of Tempe, both on the side of the molntains and of the plains. Its maritime position also contributed to its importance, Euboen, Attiea, and Peloponnesus being casily accessible from it. Aner the battle of Cynoscephalse it became the chief town of the Magnesian republic, and the seat of government : snbsequently it was attrehed to the house of Macedon, until the battle of Pylna, when it fell under the Romans. (Livy, xliv. 13.) In the time of Strabo it had lost much of its splendour, but it was still the most considerable town of that part of Thessaly. Sir W. Gell thus speaks of its modern state :- Pass the ruins of a gate and the walls of an wntient eity. Many other ruins mark the site of a large place (Demetrias).' The Magnesia of Asia Minor was a colony from the Thessalian Magnesia. [Avatolia.]
The prineipal mountain-ranges of Thessaly were-the Cambunian, on the north; Pindus, on the west; the ridges of Otlirys and (Etta, on the south; and those of Pelion and O)en, on the elast.

The Cambunian range was a branch from Mount Pindus, ruming in a direction nearly at right angles to it, and separating Thessaly from Maeedonia. Herodotus includes this chain under the name of Olympus. The principal rond between the two countrics over the mountains was by the Pass of Volustana, marked in modern maps as Volutza. Another important defile, leading from Thessaly into Macedonia, passed ly Pythium, a village with a temple saered to the Pythian Apollo, situate on Mount Olympus, at the north-east extremity of the range.
Through this latter defile many nrmies marched in antient times. Thus Xerxes is said by Herodotus (vii. 132) to have crossed over Mount Olympus from Upper Macedonia into the country of the Perrharbi in Thessaly. The road which led through Thessaly to this Pythium was ealled the Via Pythia; and, as Pouqueville states, the shrine of Apollo may have been succeeded by a chapel, erected on the highest summit of Olympus (A.D. 1100), and dedicated to the prophet Elias. The lefile is still much frequented by travellers going to Larissa from the northwestern parts of Macedonin. Mount Olympus itself is one of the most celebrated mountains of Greece, especially in mythology, the stories of which represented it as being the habitation of the Gods, where Jupiter sat shrouded in cloud and mist from the eyes of mortals. It divides the north-east of Thessaly, or 1Perrhabia, from Picria, the extremity of Macedonin on the south-cast. It rises to the height of about 6500 English feet, and the highest parts of it are scarcely ever entirely free from snow. The part of the Cambunian range which lies to the west of Olympus was ealled Mount Titarus, an outlier or limb of which, Mount Cyplus, rises in the upper valley of the Peneus.

Mount Pindus, the western boundary of Thessaly, was part of the range of mountains which issucs from the Thracian Scomius, and forms what may be called the Greek Apennines. On the north it joins the Illyrian and Macedonian ranges, and to the south it is connected with the branches of CEta and the Etolian and Acarnanian mountains. It separates the waters which fall into the Ionian Sea and the Ambracian Gulf (now the Gulf of Arta), from those which empty themselves into the northern part of the Agean. The most frequented pass over Pindus from Thessaly into Epirus lay over a part of it called Mount Cercetius, probably not far from the modern town of Metzovo. One of the lighest points of Mount Pindus was Tymplrestus, forming its southern extremity, from whieh branched the ridge of Mount Othrys, elosing the great basin of Thessaly on the south, and separating the waters which flow into the Pencus from those which run into the southern Spercheius. Its eastern extremity separates the Maline from the Pagaswan Gulf, sinking gently toward the const. It is often celelrated by the poets of antiquity. It is now known by the different names of IIellovo, Varibovo, and Goura. To the south of Othrys lay the ridge of Eta, which however has 110 conncetion with Thessaly Proper. It is a huge pile of mountaius streteling from Pindus to the sea, which it neets at the Pass of Thermopyle; it forms the inner barrier of Greece, as the Caubunian range does the outer, to which it is nearly parallel in direction and equal in height. On the west it branches out into the country of the Dorians and into AEtolia. On tho south-east, beginning from Mount Callidromus, the highest summit of the range, it is continued without interruption along the coast of the Eubcean Sea, till it sinks into the valley of the river Asopus. By means of nnother branch to the south-west, it is conneeted with Parnassus, and after skirting the Corinthian Gulf under the names of Cirphis and llelicon, it forms the northern boundary of Attica, under the names of Citharon and Parnes.

Pelion is a chain of some extent, running from the southenst extremity of the lake called Bocbeis to the extreme south of Magnesia, formines n part of the boundary of Thessaly on the east. Homer (llicud, ii. 743) alludes to it as the seat of the Centaurs, and it was associated with many remarkable events in Grecian story. A fragment of Dicaearchus contains a deseription of Mount Pelion, and its botanical productions, which appear to have been very numerous. It was exceedingly well wooded. To the north of Pelion and following the line of the const lies the chain of Ossa (now Kissovo), the ronts of which unite with one of the branclies of Mount P'elion. At its northern extremity it towers into a steep conical peak, and according to the songs of the country, rivals its neighbour Olym.
pus in the depth and duration of its snows, though it is 1100 feet less in height. Between Ossa and Olympus lies the celebrated Vale and Pass of Tempe (or the Cut), the Turkish name of which is Bogaz (or the Pass). [Tempe.]

The two prinoipal rivers of Thessaly into which the smaller streans fall are the Peneus and the Spercheius. The Peneus rises in the north-rest of Thessaly under Pindus, between the lower ridges of which and the outliers of the Cambunian range its upper valleys are confined. Near Meteora, not far from the. rocky Ithome of Homer, its basin opens somewhat towards the south. At Tricca it makes a turn to the east, and its valley expands into a vast plain towards the south-east, on the right of the river, though it is still confined by the hills on the left, till within about IO miles from Larissa, where there is a considerable flat on the north, the soil of which is said to be alluvial. Aftcr leaving Tricca the course is generally north-east, and passing along the Vale of Tempe, the only outlet for the waters of Thessaly, it empties itself into the Egean Sea. Though fed by the most considerable rivers of Thessaly, it is a very small stream, and generally sluggish and shatlow, except after the melting of the snows, when it sometimes floods the surrounding plains. The Marsh or Lake Nesonis, on the road between Larissa and Gonnus, is said to be caused by the floods of the river. The principal tributary of the Peneus on the north is the Titaresius, now the Saranta Poros. It was said to rise in Mount Titarus, a part of the Cambunian range, and it joins the Peneus a little above the Vale of Tempe. The waters of the two rivers did not however mingle; those of the Titaresius being impregnated with a fat unctuous substance, which foated like oil on the surface. (Strabo, ix., p. 441.) This river was also called the Eurotas, and supposed to be a branch of the Styx, one of the rivers of the Infermal Regions. At the present day the inhabitants of its banks are remarkable for their healthy complexion, while the Peneus is surrounded by a sickly population. Its waters also are said to be clear and dark-coloured, while those of the Peneus are muddy and white. (Müller, Dorians, b. i., c. 1, s. 6.) On the south the affluents of the Peneus were more numerous. The principal of them were, the Pamisus, the Onochonus, the Enipcus, and the Apidanus. The Pamisus joins the Peneus to the cast of Tricca, and is probably the modern Fanari. The Enipeus, rising in Mount Othrys, flowed from the south-west of Phthotis and fell into the Apidanus. It is now called the river of Gourn. The Apidanus is now the Vlacho Iani. Herodotus describes it as one of the largest rivers of Achaia, but still inadequate to the supply of the Persian army with water.

The second great river of Thessaly was the Spercheins, now the Hellada. It flows from Tymphrestus, a branch of Pindus, and after winding through a long narrow valc between the ridges of Othrys and Osta, it falls into the Maliac Gulf. It was much celebrated by the anticnt poets, and Homer mentions it as belonging to the territory of Achilles round the Maliac Gulf. Its bed and mouth have undergone many changes from the deposit of alluvial matter. (Gell, Itiner., p. 246.)

Roads of Thessaly. - The principal road was that which led from Larissa to Thermopylx, by Pharsalus, Thaumaki, and Lamia. From the same point another road branched off to Crannon, Therse, Demetrias, and along the shores of the Pagasacan and Naliac bays, terminating likewise at Thermopylæ. From Larissa again there was another route by the vallcy of the Peneus as far as Gomphi, the general direction of which was from east to west. From Gomphi it crossed the chain of Pindus by the Pass of Clinovo to Ambracia and Nicopolis.

The islands connected with Thessaly are very few. They consist of a group lying off the Magnesian coast, and stretching in a north-eastcrly direction towards Mount Athos and the isle of Lemnos.
The plains of Thessaly, with the exception of those of Bucotia, were amongst the most fertile and productive of Greece in winc, oil, and grain, but more especially in grain, of which it exported a considerable quantity. The Thessalians consequently became very rich, and luxurious in their mode of life (Alhen., xii. 624); and so notorious were they for it, that they were charged with having encouraged the Persians to invade Greece, with a view of rivalling them in sensuality and extravagance. Thessaly was also famous for its cavalry, the best in Greece: its plains supplied abundance of forage for horses.

The lands of Thessaly were not cultivated by the Thessalians themselves, but by a subject population, the Pe nestre. The account given of them is, that they were the descendants of the Eolian Bootians, who did not emigrate when their country was conquered by the Thessalians, but surrendered themselves to the conquerors on condition that they should remain in the country and cultivate the land for the new owners of the soil, paying, by way of rent, a portion of its produce. Many of them were richer than their lords. (Athenreus, vi., p. 264.) They sometimes accompanied their masters to battle, and fought on horseback as their knights or vassals. They formed a considerable portion of the population, and frequently attempted to emancipate themselves.

History of Thessaly.-The earliest information about the history of Thessaly is given by Homer (Iliad, ii. 710), who describes the country as divided into several independent principalities and kingdoms, and enumerates the chiefs to whom they were subject at the time of the Trojan war. This arrangement however was not of long continuance, and a new constitution, dating probably from that epoch, was adopted, as it would seem, by the common consent of the different states. They agreed to unite in one confederate body, under a president or Tagus, elected by the members of the confederacy. Strabo (ix. 429) informs us that this confederacy was the most considerable as well as the most antient society of the kind cstablished in Greece. Whether it was in any way connected with the Amphictyonic body cannot be determined with certainty, but it is deserving of remark that the majority of the Amphictyonic states were either Thessalian or in some way connected with Thessaly. It does not however seem that this confederation was productive of any great benefit to the country; for, except during a very short period, under Jason of Pherre, Thessaly never assumed that rank among the states of Greece to which it was by its position and extent entitled. Many of the cities moreover were from time to time in the power of usurpers, or under the sway of powerful families, so that the nation had no means of acting as a body. One remarkable instance of this occurred at the time of the Persian war, when the Thessalian house of the Aleuadæ, the princes of Larissa (Herodotus, vii. 6, calls them kings of Thessaly), either because they thought their power insecure, or with a view to increase it by becoming vassals of the Persian king, invited Xerxes to the conquest of Greece. That the Thessalian nation was in general opposed to their schemes appears from the fact that the Thessalians applied to the other states of Greece for assistance against Xerxes, and wished them, in conjunction with themselves, to oppose him at the Pass of Tempe. The confederate Grecks did not think it expedient to do this, believing it impossible to make any effectual resistance to the north of Thermopyla; and the Thessalians, being left to their own resources, submitted to the invaders, to whom they proved active and zealous allies. A few years before this they had sustained a severe defeat from the Phocians, which aggravated the rancour of an old enmity. The Thessalians, who were eager to take vengeance for this defeat, availed themselves of their influence with Xerxes to direct: his march through Phocis, and to stimulate his fury against the inhabitants (b.C. 480). After the Persian invasion, the Greek historians take little notice of the affairs of Thessaly, except on the occasion of the expedition undertaken by the Athenians for the purpose of reinstating Orestes, son of Echccratidas, a king of Thessaly, as Thutcydides (i. 111) calls him, who had been banished from his country. The Athenian general Myronides marched on that occasion as far as Pharsalus; but he was checked in his progress by the Thessalians, who were superior in cavalry; and he was forced to retire, without having accoinplished the objects of his expedition. In the Peloponnesian war the Thessalians did not as a nation take any part, though several of the towns were in favour of the Athenians, between whom and the Thessalians there was an old alliance. It would scem moreover that the bias of the nation was in favour of the Athenians, for Brasidas, the Spartan general, was obliged to march through Thessaly (n.c. 421) with secrecy and dispatch when traversing that country on his march towards Thrace. (Thucyd., iv. 78.) Not long afterwards, some troops which were sent out by the Lacedomonians to reinforce their army in that quarter, were so vigorously opposed by the Thessalians,
that they were compelled to return liome withont having rwached their destination. In B.C. 334 the Thesesplians were in leagne with the lkeotians and their allies, who had formed a hostile confeteracy against Sparta. The Spartans thought it nevessary to reeal irom Asis their great commander Agesilaus, and on his way home he had to march through Thessaly. The Thessalians, with their cavalry; endeavoured to harass and obstruct him on his marrl. His skifful manaensres however thwarted their designs, and Agesilaus gained considerable credit by defeating on their own ground, with horsemen of his own training, the most renowned cavalry of Greece. But while Sparta was struggliner against the coalition of which Thebes was the head, Thessaly was nsomining a new position anong the states of Grecec. To explain this we must observe, that though a kind of political and mational unity was nominally acknowledged among the states of Thessaly, still the country had very seldom been united under one government. A few great fanilies, such as the Scopadie and the Aleuadre, werc sometimes able to extend their influenec even beyond the cities of Larissa, Crannon, and I'harsalus, about which their possessions lay. Oecasionally one of them was raised to the dignity of Tagus; but their power was always liable to be overthrown, cren in their own citics. Towards the close and after the end of the Peloponnesian war, most of the cities acknowledged the aseendency of Pharsalus or Pherse, the latter of which was, about 8.c. 400 , under the dominion of I.ycophron. This prince endeavoured to extend his power over all Thessaly; and Xenophon (IIellen., ii. 4) mentions a victory which he gained over the Thessalians of Larissa us one of the events which happened in the year of the fall of Athens (B.C. 404); but he does not state what were the results of it. Ten years afterwards Lycophron was still engaged in a contest with Larissa, then subject to Medius, who was probably one of the Alcuadee. Lyeophron was supported by Sparta, and Medius by the Bocotian confederacy, by the assistance received from which he was enal)led to make himself master of Pharsalus, then oceupied by a Lacedxmonian garrison.
The surcess of Agesilaus on his return from Asia prodneed some change in the affairs of Thessaly, for Pharsalus soon recovered its independence, and rose to such eminence as to become a rival of Pherex. It did not however continue, as of old, under the power of the Seopada: it was divided between contending faetions, which, for the sake of peace, agreed to place thenselves under the power of a person named Polydamas, whose character and virtue had gained the confidence of all parties. (Thirlwall, Hist. of Greece, vol. v., p. 56.) Polydamas was accordingly entrusted with the citadel and the administration of the revenues of the eity, a trust which he diseharged with the strictest integrity.

At Pherat the supreme power passed into the hands of Jason, who was probably the son of Lyeophron, and certainly the inheritor of his ambitious views, which however he enlarged into more comprehensive sehemes, and, with superior energy and talents, possessed greater means of realizing. He kept a standing army of 6000 merecnaries, all picked men; and, notwithstanding the opposition of Pharsalus, he compelled most of the principal Thessalian cities to enter into alliance with him: morcover, his sway was acknowledged by several of the neighbouring tribes. The leading states of Greece were wasting their strength in a protracted warfare, and whichever way he turned his eycs he perceived, or imagined that he perecived, facilities for gaining the objects of his ambition, nanicly, the supremacy of Greece, and the overthrow of the Pcrsian cmpire in the Fast; the same sehemes in fact as were subsequently executed by Λ lexander, king of Macedon. The first objects which he had to gain were the title of Tagus, and the union of Thessaly under his authority. To accomplish the latter project it was necessary to gain by persuasion, or overpower by forec, Polydamas, the governor of Pharsalus. Jason ndopted the former method, and, after a frank statement of his views, presailed upon Polydamas to second them. A compact was then made between them; and Polydamas exerted his influenee so sueccessfnlly in Jason's behalf, that the I'harsalians were induced to enter into an alliance with lim, and to join in a general pacification, which immediately followed. Not long ailcrwards Jawon was either elected Tagus, or assumed the title, without any opposition, and, by lis influence and
talents, several important rities were inducud to join the contederacy. Ile thenfixect the contingents of infanty and eavalry to be furnished by the ditterent states, anil raised them to a greater amount than they had cier been before. The army which he could bring into the field consisted of 8000 eavalry and more than 20,000 henryarmed infantry ; and his light tioops, as Xenophon (Hellen., vi. 1, 6) observes, were enough to oppose the world. For their maintenance he revived the tribnte which had been inprosed on the subject tribes of the Thessalians by Seopas, one of his predecessors. The extensive eoasts of Thessaly, its forests of execllent ship-timber, and his large revenues, also enabled him to raise a considerable fleet, which he had no difliculty in manning from the I'enestre, or subject population of the country: Ifis resourecs in fact were in every respect so great, that Thessaly seemed destined, under him, to become both by sea and land the leading prwer of Greece, and cren his projected conguest of l'erba 110 longer impraeticable. But these schemes were ton vast for the ordinary duration of a human life, though he kept them constantly in view, and made all his actions subservient to them. An instance of this oceurs in his conduct after the battle of Leuetra, in wluch the Thebans defeated the Lacedmmonians, and then invited him to join them in overpowering Lacedrmon. Jason joined them with his forces, but he did not comply with their request. His policy was to keep an even balanee hetween the two states, so as to ensure the dependence of both on himself, and therefore, instead of atmililating the power of Sparta, he offered his services as a nediator between the contending states, and obtained a truce for the Lacedamonians, under favour of whith the remnant of their forces decamped by night (3.C. 371). In the following year Jason's carcer was terminated. He liad made preparations for an expedition to the south of Greece, and had ordered a levy of troops, declaring at the same time his intention of narching to Delphi and presiding over the Pythian games: but before the tine came lie was assassínated by seven young men; and the houours which were paid in many of the Grecian cities to the assassins, showed the alarm which his ambition had exeited. On the death of Jason, Thessaly relapsed into its former insignificance, though his dynasty survived hinn, and two of his brothers, Polydorus and Polyphron, for a short tiue shared his anthority between them. Polydorus was soon assassinated, and Polyphron beeame sole Tagus. By his administration the office was changed into a tyranny, and he put to death Polydamas and eight other principal citizens of Pharsalus. After a reign of one year, he was murdered by his uephew Alexander, who thus gained the governnient, in which he became infamous for his eruelty. The atrocities which he committed filled all his subjects with terror, but especially the antient families, who were likiely to be the objects of his jealonsy. The Aleuade of Larissa accordingly applied to Alexander, the then king of Macedon, who, on being thus invited by the Thessalians, complied with their request. He defeated the tyrant, and took possession of Larissa and its citadel, and afterwards of Crannon, and garrisoned both with lis troops. The affairs of his own kingdom however obliged lim to withdraw from Thessaly, and the Thessalians, being thus exposed to the vengeanee of Alcxander, solicited aid (B.c. 368) frons the Thebans, who accordingly sent l'elopidas to assist them. The tyrant granted him an interview, which ended in Pelopidas settling the attairs of the country on an apparently firm footing. But the order which he lad established was soon deranged by the conduct of Alexander; and the Thebans, on being applicd to again, sent out 'T'elopidas, with his friend Ismenias, but simply in the character of ambassadors, and without troops. They inpprudently put themselves into the power of the tyrant, who threw them into prison. To rescue them and avenge the insult, Thebes sent out an army, which however was reduced to such a strait by his eavalry, that it was obliged to retreat, and but for the interference of Epaminondas, who accompanied it, thongh not as general, it wonld have been destroyed.
In the following year (u.c. 307) an arny was again sent out under Epaminondas, through fear of whom the prisoners were released. Subsequently Alcxander renewed his attacks on the liberty of the Thesalian cities, and greatly extended his dominion in the tributary districts. The Thessalians again appealed to the Thebans, and Pelopidas was sent out to aid them (3.c. 304), who fell in his
first battle, in whieh however Alexander was defeated. The campaign ended in the tyrant being obliged to resign his conquests, withdraw his troops from Phthiotis and Magnesia, and enter into alliance with Thebes. Still Alexander did not cease to be an object of hatred and dread to his subjects and foreigners, by his eruelties and piracies, and at last his wite Thebe conspired with her three half-brothers to murder him. (b.c. 359.) They effeeted their purpose, and one of them, Tisiphonus, under the direction and with the sanetion of Thebe, assumed the government. But his reign lasted a very short time: for towards the end of b.c. 333 , we find Lycophron, another of the brothers, at the lead of affairs. The new dynasty however seems to have been as unpopular with the Thessalians as the old one, and accordingly, with the Aleuadæ at their lead, they applied to Philip, king of Macedon, and requested his assistance. Lycoplron applied to his allies, the Phocians, the antient enemies of the Thessalians, at that time under the command of Onomarchus. Philip invaded Thessaly, and, after gaining some suceess, was obliged to retire; but he shortly afterwards returned at the head of a large army, and made himself master of the whole country, Lyeophron withdrawing into Phoeis. Philip wished to be considered as a liberator; and accordingly he restored popular government at Pleree (Diodorus, xvi. 38), though he kept possession of its port Pagas:e, and garrisoned Magnesia with his own troops. The important services which he thus rendered to the Thessalians seeured their attaelment to his interests, and, in addition to this, afforded him the opportunity of gaining a strong footing in the country, of which lee did not fail to avail limself. It would appear however (Thirlwall, Hist. of Greece, vol. vi., p. 12) that about 13.c. 314, cither the tyrants of Pherse or their party there had regained their ascendeney, and Philip was again invited to dislodere them. This he effected with ease, and then availed himselt of the opportnnity to make Thessaly entirely subservient to his interests, and in faet to render it virtually a provinec of Macedonia. After expelling the dynasty of the tyrants, he garrisoned the citadel of Pheric with lis own troops, to prevent, as lie gave it out, any chance of their restoration to power. He also strengthened his own authority by effecting what was professedly a retum to the antient order of things in Thessaly. This was the revival of the tetradarchies as political divisions of the country, for though this antient division into four districts still subsisted, it had long been rather a geographieal than a political arrangement. At the head of the four governments he placed his devoted adherents, the chicfs of the Aleuad party, so that they were in reality his viecroys or deputies. The result is deseribed by Demosthenes (Olynth., i. 23) as amounting to a total subjection of the land to Philip, whom it supplied with exeellent and numerous troops; besides which, he not only received the harbour duties and customs of the country, but also appropriated to himself the tribute which had always been paid to Larisea by her subject Perrhæbian cantons. (Strabo, ix., p. 440.) On lis death the states of Thessaly passed a ducrec confirming to his son Alexander the supreme station which Philip had held in their councils, and also signified their intention of supporting his claim to the title of commander-in-clief of the whole Grecian eonfederacy. Immediately after the death of Alexander (B.C. 323), a confederaey was formed against the Macedonians by the Athenians and other states of Greeee, which the Thessalians were indueed to join. Antipater, the vieeroy of Maccelonia, was unable 10 raise an army sufficiently large to cope with the confederacy, and after a battle, in which some Thessalians deserted him and caused his defeat, he retired to Lamia, a town of Thessaly, where he was besieged for some time by Leosthenes, the Athenian general. The siege was however raised by Leonnatus, an eminent Macedonian general, and some additional reinforcement under Craterus enabled him to bring to a succeesful issue what was called the Lamian war, in which the Thessalians took a very prominent part, and which nearly proved fital to the Maccdonian influence not only in Thessaly, but over the wholc continent of Greece. Thessaly was thins preserved to the Macedonian crown till the Eeign of Philip, son of Demetrius, from whom it was taken ly the Romans after the battle of Cynoscephala (s.c. 197). All Thessaly was then declared free (Liv., xxxiii. 32) hy a decrec of the Roman senate and people, but from that time it may be considered as under the
dominion of Rome, though its posscssion was disputed hy Antiochus (Liv., xxxvi. Y), and agrain by Perseus, son of Philip, between whom and the Romans it was the arena oi more than one conflict. It was already a Roman province when the fate of the empire of the universe was deeided by the battle between Pompey and Cesar on the plains of Pharsalus.

The slave-merchants of Greeee were generally Thessalians. (Aristophanes, Plutus, 517.) Their ehief slavemarket was Pagasæ, the port of I'heræ.
(Clarke, Dodwell, and Gell's Thavels; Leake's Travels in Northern Greece; Thirlwall, History of Greece; Cramer, Antient Greece, vol. iii., p. 343 ; Wachsmuth, Hellenische Alterthumskunde, vol. i., p. 65.)

THETFORD, a small parliamentary borougl, partly in the hundred of Grimshoe, in the connty of Norfolk, partly in Lackford lundred, in the eounty of Suffolk, 88 miles from London by the Norwich mail-road throngh Woodford, Epping, Bishop Stortford, Newmarket, and Bury St. Edmunds; and 30 niles from Norwieh by Attleburgh. It has been eonfidently asserted that Thetford existed in the time of the Romans, or even anteeedent to their arrival; but it cannot be identified with any of their towns that have been mentioned in antient records. Plot and Blomefield attempted to fix here the Sitomagus of the 'Antonine Itinerary;' others have proposed to fix here the Iciani of the 'Itinerary,' but without any solid ground for their opinion. The Ikeneld or Ieknield Street or Way, and a road ealled the Peddar or Ieddar Way, erossed the Little Ouse above Thetford, but not very near it. Blomefield deseribes some traees of fortifications as cxisting in his time, but it is not elear that they were Roman. Some coins of the earlier emperors, from Claudius to Antoninus Pius, have been found. Under the East Angles it was a place of importange: a synod was held here A.D. 669. When the Danes invaded England in the reign of Ethelred I., they fixed their head-quarters, A.d. 870, at Thetford (ealled in the Saxon Chroniele, Theodford, Theotford, and Theotforda; and by other old writers Tedford and Thedford), whieh they sacked: and it is likely that the battle in which they defcated Edmund, ling of the East Angles, was fought not far off. There appears to have been an abbey near the town at an early period, for king Edred, the grand. son of Alfred the Great (A.D. 952), 'ordered a great slaughter to be made in the town of Theotforda, in revenge of the abbot, whom they had formerly slain.' (Saxon Chronicle: Florence of Worcester.) In the reign of Ethelred II. the town was burnt by the Danes (A.D. 1004) under Sweyne, but on their return to their ships they were intereepted by the Anglo-Saxons under Ulfkytel, and did not make good their retreat without serious loss. They burned the town again A.D. 1010. In A.D. 1075 the bishoprie of the East Angles was transferred from North Elmham to Thetford, but remained there not twenty years, being transferred (A.D. 1094) to Norwich. At this time Thetford was a town of eonsiderable sizc and importance; it was a burgh with 944 burgesses in the tine of Edward the Confessor; but at the time of the Domesday Survey there werc only 720 burgesses, $22 \pm$ houses being uninhabited. It gave name to the hundred in whieh it stood. After the removal of the bishoprie to Norwich, or perhaps before, a Cluniae priory was founded here, the revenues of which at the dissolution were $418 l .6 s .3 d$. gross, or $312 \mathrm{l} .148 .4 \frac{3}{4} \mathrm{~d}$. clear. There was also a liouse of canons, which was afterwards a nunnery, a Dominiean friary, and several smaller religious houses or hospitals. Thetford was the seat of one of the suffragan bishoprics established by Henry VIII. There have been as many as twenty churches; thirteen are mentioned in Domesday.

The borough of Thetford, aceording to the Population Returns for 1831, eomprehends three parishes, with an area of 8270 aeres, and a population of 3462 . The parishes of St. Cuthbert and St. Mary are very muelı intermingled, and are partly in Suffoik and partly in Norfolk: the whole of the other parish (St. l'eter) is in Norfolk. The town is chiefly on the north-east or Norfolk bank of the Little Ouse; a smaller part is on the opposite or Suffolk bank. The town is irregularly built, and is neither paved, watehed, nor lighted, but has a neat and elean appearance. It has no manufactures, but there is a good deal of malting, and the trade of the place is favoured by the river being navigable up to the town, by means of which an export of agricultural produce and P. C., No. 1533.
an import of eonl are carried on. St. Peter's churels conasts of a nave with two aisles, clancel, and lower; the last rebuilt A.d. 1783. The antient part is built chicfly of flint, whence it has obtpined the name of 'the black chureh.' St. Cuthbert's church is of ordinary strueture: it has an embatiled tower. Both these chnrehes are in Norfolk. St. Marg's is on the Suffolk side of the river, and is incanly buif. There are meetinghouses for Wesleyans, Independents, and Quakers; and a Roman Catholio chapel. Considerable remains of the Cluniac priory, espeeially the antient eateway, still exist on the north-west side of the town. There are also some considerable remains of the nunnery, comprehending the ehapel and the ruins of some other parts, at what is called Thetford-plaee Farm, on the Suffolk side of the river, south of the lown; and some relies of other religions struetures of the middle ages. The grammar-school is an antieut building.

The borough, as we have seen, is as old as the time of Fdwarl the Confessor: under the Municipal Reform Act it has four aldermen and twelve councillors, but is not to have a commission of the perce, except on petition and grant. It first sent nembers to parliament in the time of Fdward VI., and still returns iwo: the borough limits were not altered by the Boundary Act. There were 156 voters in 1835-6, and 160 in 1839-40.
The livings of St. Mary and St. Peter are reetories, of the clear yearly value of $83 /$ and $5 \overline{5}$. respeetively; that of $S t$. Cuthbert is a perpetual curacy, of the elear yearly value of 501 . : all are in the rural deanery of Thetford, and the archdeaconry and diocese of Norwich. There were in the borough in 1833 , thitteen day-schools, with from 357 to 367 scholars, namely, 123 boys, 69 to 79 girls, and 165 children of sex not stated; and three Sunday-schools, with 393 scholars, namely, 180 boys and 213 girls.
(Blomefield's llislory of Norfolk; Martin's History of Thelford: Purliamentary Papers.)

THETIS, Mr. Sowerby's name for a genus of fossil shells, said to resemble Muetra, but not to have the internal liganient. It is deseribed as having several sniall renninated teeth, but no lateral teeth; so that it in some clegree resembles Tellina without the posterior phicationt.
THENENOT, MELCHISEDEC, is said by all his biograpleers to have died at the age of 71 ; and as his death happened in 1692, this plaees his birth in the year 1621. An entry in the printed eatalogue of Thevenot's library informs us that he was uncle of the traveller Jean Thevenot, but beyond this we know nothing of his fanily or circumstanees. It is probable however, from the resplectable missions to which he was appointed at an carly age, from the large library he colleeted, and from his being able to devote himself to literary pursuits while apparently in the receipt of no pension, thint his family was wealthy and well connected.

It is stated that in his youth he visited several countries of Farope, but the earliest incidents of his life coneerning which we have positive and authentic aceounts are those mentioned in the brief autobiographieal sketel prefixed to the printed catalogue of his library. He tells us that on his return from travelling in 1647, he was nominated resident at Genoa, but that the troubles of the Fronde interfering to prevent his taking possession of the post, he continued to follow the court filf 1632. He was then sent to Rome, where he continued nearly three years; and being there at the commeneement of the conelave which eleeted Alexander VII., the royal instructions respecting the part Franee intended to take on that occasion were addressed to him till the time of M. de Lionne's arrival. Thévenot ulludes in mysterious phrase to a delieate and dangerous commission with which he was intrusted afer the termination of the conclave, whieh he says he discharged to the perfect satisfaction of Mazarin and the other nutinisters. He attended Mazarin during the campaign in Flanders, 1035.

On his retum to Paris, Thevenut devoted himself entirely to study. Freniele, a mathematieian, and Stenon, a naturalint, resided with him ; and in the house adjoining his own he entertained a person to eonduet chemieal experiments. The meetings of seientific men whieh had been held in the houses of lere Mersenne and Montmort were transferred to Thevenot's mansion. The expenses thus ineurred proved too heavy for his means, and he proposed 10 Colbert the evtablishment of a public and permanent asociation of scientific men under the patronage of
the king. The suggestion aecorded with the minister's inelinatious, and a grand academy was projected, intended to embrace every branch of knowletge. The king's library was to be the place of meeting: the historians were to assemble there on the Mondays and Thursdays of every week; the amateurs of the belles-lettres on the Tuesdays and Fridays; the mathematicians and natural philosophers on the Wednesdays and Saturdays; and geneml asecinlies of all the three elasses were to be held on the first Thusday of every month. The historical class was allowed to drop, it being feared that its inquirics might oecasion dangerous discussions; the Académie Fran. gaise, instituted by Richelieu, remonstrated against the foundation of another literary academy; and the only part of Colbert's plan that was realisel was the "Aeadémie des Sciences, which commenced operations in the month of June, 1660. Thevenot did not become a member of the Aeademy till 1685.

He had in the mean time however been diligently proseeuting his favourite studies. 'Each of our company," he says, 'had his task and oceupation: nine was to colleet and publish in Freneh whatever useful arts were practised among other nations. About this time I invented an airlevel, of which I caused the description to be printed, and it is now aeknowledged to be the most accurate that has yet been tried. To render geography more perfect, I eolleeted and prblished three large volumes of a collection of voyages, upon which I had been working for some time. I had the honour to present them to the king, who examined them for nearly lialf an hour, and, after asking several questions, commanded ine to coutinue the work. M. Colbert informed me that he had his majesty's orders to furnish me with everything necessary to carry out the design.' This distribution of Iasks took place about 1659 , before the Aeademy had reeeived its definitive constitution. The first volume of Thévenot's Voyages was pullished at Paris, in 1662. The author's preface announces a translation of the Voyaces and Travels published by Hakluyt and Purehas, with the addition of some translations from the Oriental languages. The second volunte appeared in 1664: the preface intimatos that for the use of the numerous trading companies that have of late been formed in the kingdom, he has added an account of the present state of the Indies, noting the principal cominereial establishments and places of resort of the Duteh and l'ortuguese; a report from one of the factors of the Duteh liast India Company to the directors; and an exfract of a letter from the governor-general of the East India Company of France. The third volume was published in 1666, and the fourth in 1672. In the preface to the fourlh volume Thevenot informs the reader that the constant diseovery of travels which had eseaped his research has obliged hin to abandon the attempt to classity the voyages inserted in his collection, so that all relating to one quarter of the world should appear toget her. These four volumes were in folio; and during the remainder of his life Thévenot published in the same form n number of separate aecounts of voyages, which, together with some left lialf printed at his death, were bulky enough to form a finh volume. The edition of his collection printed after his death at Paris, in 1696, professes to contain all these miscellanea, but a complete eopy is rarely to be met. with. In 1683 Thévenot published a small book in 12 mo ., entitled 'Reeueil de Voyages de M. Thévenot.' It eontains - A Discourse on the Art of Navigation, with some Problems which may supply in part the deficiencies of this useful art.' Among these problems he has inserted an aceount of the level above alluded to. The sume volume contains an account of the museum of Swammerdam, with some memoirs by that naturalist, said on the special title-page to be - Extracted, together with the travels which preeede it, from the Transactions of the Soeiety which met at the house of M. Thévenot.' It will be advisable to conclude the nurrative of Thérenot's life before attempting to pronomnee judgment on the merits of his publications.

Colbert died in 1683, and Lourois suceeeding to the office of superintendent of lmildings, suceeeded likewise to the management of the royal lilmary, which was regarled as lelonging to that ininister's deppartment. Louvois appointed his son, afterwarts known as the Abbe Louvois, who was then only nine years of age, librarian. It was neecssary to find a deputy for so juvenile an offieer: the Abbe Varts was first appointed, but he dying in Septen-
ber, 1684, the office was conferred upon Thévenot, on the understanding that such of his books as were not already in the royal library were to be purchased for it. The zeal which Colbert had manifested at the outset of his ministerial career for the augmentation of the royal collection had abated for some years before his death: from 1673 till his death no important acquisitions had been made. Thévenot found the library extremely deficient in English, German, and Dutch works, and he obtained permission to make arrangements for procuring from those countries their histories, laws, and accounts of their customs; in short, everything ealculated to convey information regarding their governments and transactions. The inquiry after Greek and Oriental MSS. in the Levant, begun by Colbert, was continued by Louvois; and Thévenot, by that minister's dircetions, prepared and transmitted instructions to Messrs. Girardin and Galland and the Pere Besnier for the prosecution of the search. It was also at his suggestion that a native of China, who had brought some Chinese books to Rome, was induced to visit Paris, and his books acquired for the king's library. On the death of Louvois a new arrangement was made for the management of the king's library, and about the same time Thévenot resigned or was dismissed from his appointment. There is reason to doubt whether he had given satisfaction as librarian: the listorical memoir in the first volume of the printed cataloguc of the king's library, which does ample justice to other officials, merely notices his appointment and resignation; and the notice of his life found in his own writing among his papers after his death, has very much the appearance of a detensive statement of his own merits.

Thévenot did not long survive the termination of his conneetion with the king's library: he died on the 29th of October, 1692.
Thévenot, in addition to most European languages, was able to rcad Hebrew, Syriac, Arabic, Turkish, and Persian. He commenced a series of observations on the variation of the magnetic needle in 1663, and prosecuted them with great perseverance till 1681. He suggested, in 1669, the measurement of several degrees of the meridian along the Gulf of Bothnia: he invented his air-level about 1660, and recommended its adoption to facilitate observations of the latitude at sea, and he cndeavoured to discover a natural unit of lincar measurement for all nations. He possessed however rather the taste than the talent for strict scientific observation and reasoning, and this peculiarity was the cause in the fint place of his anxiety to have men of science for his habitual visitors, and of his cagerness to collect books of travels, printed or in MS., such works being calculated to gratify a mind which, without a capacity for severe labour, was fond of acquiring linowledge. In books of travels he found information regarding statisties, history, commeree, natural history, and science; and he could relish all these branches of lnowledge and appreciate their importance, though he could not task himself to master any one of them. He undertook to publish a systematic collcetion of voyages and travels, as the task best suited to his turn of mind; but even this required more continuous effort than he was capable of: in the fourth volume the systematic arrangement was abandoned, and only some fragments of the fifth part were published at long intervals. Thévenot was one of those who promote science by imparting a contagious spirit of activity to others more than by anything they accomplish themselves. His taste for collecting books has been the means of supplying the king's library at Paris with some of its not least valuable MSS., some of which have yet to be turned to account. His collection of voyages too lias been the means of preserving some curious and valuable narratives. If he did not make a good practical librarian, he at least pointed out the way in which the library might be rendered more complete; and besides preserving materials for geographers to work upon, he dirccted attention to the means of rendering the science more perfect. Some of his suggestions mentioned above were not without their influence in promoting the application of mathematics and astronomy to geographical research; and he was the first, hy directing attention to the line of eommunication between the Caspian and China, and to the literature of China, to commence that series of investigations which has been so brilliantly carried on by the Jesuits of the seventeenth, and by the Remusats and Klaproths of the past and present century.

Sources from which this sketch has been compiled:-

1, 'Mémoire sur la Collection des grands et petits Voyages, et sur la Collection des Voyages de Melchisedec Thévenot,' par A. G. Camus, Paris, 1802, 4to. Owing to the incomplete condition of most copies of Thévenot's colTection, this work is necessary to enable the reader to know what he has published. 2, 'Bibliotheca Thevenotiana, sive Catalogus Impressorum et Manuscriptorum Librorum Bibliothecae viri clarissimi D. Melchisedecis Thevenot, Lutetiae Parisiorum, 1694, 12mo. This volume contains the autobiographical sketch above referred to: the catalogue of Thévenot's library throws light upon his studies. 3, 'Recueil de Voyages de M. Thévenot,' Paris, 1681. This volume contains the discourse on navigation, in which there are some incidental notices of Thévenot's pursuits. 4, 'Relations de divers Voyages curieux qui n'ont point été publiées ou qui ont été traduites de Hakluyt,' \&c., Paris, 1663-1672. The 'Avis' prefixed to the different volumes of this edition contain matter for the biography of 'Thévenot. 5, 'Histoire de l'Académie des Sciences.' Tome i. contains a corroboration of Thévenot's assertions regarding his share in the institution of the Académie des Sciences. 6, 'Catalogue des Livres Imprimez de la Bibliothéque du Roi: Théologie, première partie,' à Paris, 1739: supplies the dates of Thévenot's appointment as librarian, and of his demission of the office. 7, Le Long et Fontette ; 'Bibliothèque Historique de la France,' iv, 66.
THEVENOT, JEAN, was born at Paris the 7 th of June, 1633. In the dedication of the first volume of his travels to his mother, he attributes to her exclusively the great.care bestowed upon his education; and from this circumstance it may be inferred that his father died while he was a child. Thévenot distinguished himself as a student at the college of Navarrc. The author of the sketch of his life, prefixed to the second volume of his travels, states that his attainments in the languages, physics, geometry, astronomy, and all the mathematical sciences, were respectable, and that he had studied with partieular attention the philosophy of Descartes. But it is doubtful whether all these are to be understood as having been his college studies.
He left the college of Navarre before he had completed lis eighteenth year. Possessing an indcpendent fortunc, his attention was for some time afterwards engrossed by the manly exercises which were then deemed indispensable accomplishments in a gentleman; but having contracted a taste for reading books of travels, he caught the contagious spirit of adventure, and commenced traveller himself in 1652. He visited in succession England, Holland, Germany, and Italy; and, making a prolonged stay at Rome (1654-55), witnessed the solemnities of the installation of Alexander VII. He had taken the pains to preparc an account of his observations during this tour, but judiciously resisted all persuasions to pullish it, partly on account of lis youth and partly on account of the want of novelty in the subject.

At Rome he became acquainted with the celebrated Orientalist d'Herbelot, who, being a good many years his senior, and already distinguished for his learning, acquired considerable influence over him. D'Herbelot frecly communicated to his young friend the information he had collected regarding the East and its inhabitants, and the result of their conversations was that Thévenot determined to devote himself to exploring Asia. D'Herbelot proposed at one time to accompany him, but being prevented by some family matters, Thévenot set out alone.
Thévenot began his first journey from Malta on the 1st of November, 1655 : he arrived at Leghorn, on his return, on the 8th of April, 16:59. Having reached Constantinople in the beginning of December, 1655, he remained there till the end of August, 1666. Travelling through Brusa and Smyrna, and visiting Chio, Samos, and Rhodes, he arrived at Alexandria on the 29 th of December. He proceeded without loss of time to Cairo, which he made his head-quarters for two years, making in the course of that time two excursions, the first to Suez and Mount Sinai, the other to Jernsalem and some of the adjoining districts of Syria. During his stay at Constantinople and Cairo he made hiniself master of the Turkish and Arabic languages. On his way from Egypt to Italy he touched at Tunis.

From Leghorn Thévenot visited several parts of Italy which le had not previouslyseen, and in particular resided for a short time at the court of Savoy, before he returned to France. The first volume of his travels, he says, was
prepared for the press $t 0$ gratify his friends, and especially his nother; and these were not with him mere words of courne, for he was nore intent upon traselling and observing than publishing. Jefore lis book haul passed through the press, and without giving his friends any warning of his intention, he left Paris to renew his rescarches in the East, and sailed from Narscille on the Gth of November. 1603.

This time his oljeet was to visit Penia and the Indies. He arrived at Alexandria on the 4th of Febmary, 166t: from Alexandria lie sailed in a few days to Sidon; and from Sidon he visited Damnsens. After a stay of twentyfour days in that city he went to Aleppo, where he remained two months ; and then, travelling by Bir and Orfa to Mosul, deseended the Tigris to Magdad. From Bagdad he travelied to Ispahan by the way of Ilamaden. Having remained five months at Ispahnn, he left it, in company with Tavernier, for Schiraz and Gombroon, intending to sail for India from that port, but the jealousy of the Duteh agents obliged him to return to Sehirnz. After examining the ruins of Thelminar (Persepolis) he proceeded to llasrah, and einbarked at that port for Surat, where he arrived on the 12th of Jamuary, 1666. Surat continued his head-quarters till February, 160\%, during whieh time the made excursions to Guzerat, the court of the Bogrul, and to the Deccan. On his return to Persia he spent five months at Ispahan. He lad several attaeks of illnesis in India, and having been wounded by the aecidental discharge of one of his own pistols at fiombroon, hiseure was tedious. His constitution was probably undermined; for, atfaeked by fever on his way from Ispahan to Tabriz, he died at Miana, on the 28tlı of November, 1667. During this journcy he liad aequired a knowledge of the Persinn language.

The narrative of Thévenot's first journey to the East was prepared for the press by himself, but was not published tifl after his departure from Persia. The aecount of his travels in Persia, and that of his travels in India, were published (the former in 1604 , the latter in 1684) by an editor who is called, in the 'Privilege du Roi,' the Sieur J.uisandre, and who states that he was Thévenot's exceutor, and employs expressions which would lead 11 to believe that he had married the traveller's mother. The editing of these two volumes has been respectably performed.

Thévenot possessed a natural talent for observation, and the power of expressing himself accurately and unaffcetedly. Nothing of importanee nppears to have eseaped his notiee: lis manner of telling his story impresses the reader with a confidence in lis good faith, and his statements liave leen corroborated on many material points. Ilis mastery of the Turkish, Ambic, and Persian languages gave him an adrantage that seareely any other Oriental traveller of his day possessed. His practice of residing for sonme time in the principal towns of the countries he visited familiarised him witls the eustoms of the natives. lis descriptions of external objects are distinet, and his rontes aecurate. Ile had collected a Hortus Siecus in India, and lad laid beside each specimen an account of the hahitat and eharacteristies of the plant, along with its name in the Portuguese, Persian, Malahar, and (what his biographer terms) the Indian and l3anian languages. This collection came into the possession of Melehisedec Thevenot, and is mentioned in the printed eatalogue of his library. Jean Therenot had also made a collection of J'reian and Arabic manuscripts, of which Tavernier says the endi of Jiana kept the best to himsclf. The matured judgment, nnd tatent for observation nnd deseription, displayed in Thésenot's works, are astonishing in one who had been n wanderer from his twentieth year, and who died in his thirly-fourth. Ilis travels, originally published in three volumes, in quarto, which appeared respectively in 1665,1654 , nud 1634 , were reprinted at Amsferdam, in five duodecimo volumes, in 1640 , and at the same place, in the same form, in 170.5, 1725, and 1727. A Dutch translation of them was published in 1681, nn English translation in 1657, and a Crerman translation in 169:1.

This sketeh las been enmpiled from the account of Thevenot's life prefixed to the second volume of lis travels, from the iravels themselves, and from some ineidental notices in Tavemier.

THIENW, ROBFRT, was the son of an innkeeper in the small town of Patringion, in the East l iding of Yorkslire,
where he was born, in the year 175s. Ilis eduention was nemlected, and at stuitable age he was bound apprentice to a cooper. After the expiration of his apprenticeship Thew continned for a time to work at the business to which he was brought up; mud Chalmers states that, duing the American war of independenee. he served as a private in the Northumberland militia. Accorling to the Gentleman's Mngazine, his altention was fins directed to engraving about the age of twenty-six ; when, it is stated, he frappened to see nn cullgraver at work, and althourh he hiul never practised drnwing, he proeured a copper-plate, and engraved an otd woman's head, from a picture by Gerard Douw, with such ceximordinary skill that he wns, on the recommendation of Charles Fox, the Duehess of Devonshire, and Lady Duncannoun, appointed listorical eligraver to the Prinee of Wiales, Whatever foundation there may be for this story, it inust he received with some atlowanee, beeause n eonsidernble degree of meehanical slexterity is indispensable for the production of a pood copper-plate engraving. A more probable aecount is that about 1783 he settled at IFull, and became an engraver of shop-bills, cards, \&e. Chalmers sfates that lie encraved and pulilished a plan of Ilull, which is dated Jlay 6,1784 ; and that shortly afterwards he solicited subscriptions for two views of the dock at that place. The latter are large aquafint prints, drawn and engraved by Thew, with the assistance of F . Jukes in the aquatiuting department; and they were publithed in London by Thew limself, in Jiay, 1786. Copies of them are preserved in the collection of George III., now in the British Nusenm. In 1788 Thew was introduced to Alderman Boydell by the marguis of Catermarthen (afterwards duke of Jeeds), whose pat ronage lie had ohtained lys the construction of a eamera-obscura on a new prineiple; and Boydell immediately commissioned him to engrave Northeote's picture of the interview between the young prinees, from ' Richard 111.' aet iii., se. 1. This plate was puhlished in 1791, at whieh time Thew held the appointment above alluded to, of engraver to the Prince of Wales. He subsequently engraved eighteen other plates for the Shakspere Gallery, and part of a mineteenth. Several of these are among the best in the collection, and display a ligh degree of mechanieal slill, as well as nn unusual ainount of spirit and expression. That of Curdinal Wolsey entering Lecester Abbey ('Ilenry VIII.,' act iv., se. 2), from a pieture by Westali, is particularly and deservedly celebrated as a fine specimen of the style known among artists ns stipple engraving; and in collsequence of its superior beauty, proof-impressions of it were, aceording to the 'Gentleman's Macrazine, charged double the price of any other in the whole work. Thew died in July, 1802, at Stevenage (or Roxley, accordiner to the 'Gentleman's Marazine') in Hertfordshire. (Genf. Mar., Oct., 1802, p. 971 ; Chalmers's Biog. Dict.)

TlilA, Dr. Jeacli's name for a genus of emstaceans, placed by M. Milne Fdwards under the tribe Corystious, in the family Oxystomes.

Generic Character.-Carapace nearly cordiform, n good denl narrowed helind; its upper surface very smooth, and nearly horizontal from before backwards, but muchs eurvel transversely, and presenting no distinct remions. Front wide. lamellar, and rather advaneed; the lateral borders of the enrapace delicate and arched. Orbits very small. Internal aufoume? bent imansersely under the front ; external antennze inserted in the gap whieh separates the front from the floor of the orbit, large and strongly eitiated. Disposition of the buccal apparatus nearly the same as in Atelecyclus, a genus which immediately preeedes it in the arrangement of M. Milne Edwards. Thiril joint of the external jaco-feet advancing to the base of the internal antennx, but muel less elongated, and givius insertion to the sueceeding joint by n large noteln at its infermal angle. Sternal jlustron very uarrow. Auterior fect short and compressed, but less than in Atniecyclus; the suceeediug feet still shorter, and terminated hy a straight and very sharp point. Abdomen nearly of the same form in both sexes; only that of the male is rather narrower, and the three joints which preeede the last are anehylosed together. (M. M.).

Habits of the Genus.-Thia lives buried in the sans. at a small distance from the shore. M. Milne Edwards states that but one species is known withany eertainty, namely-

Thia prolita.-Colour rosy; length ten lines; loealities the Britsh Channel and the Mediterranean.
M. Mine Edwarls remarks that the aspect of these small crnstaceans is very peeuliar, and approximates them a little to the Anurous section. In other respects, he observes, they bear a strong analogy to Atelecyclus, and, as well as that genus, establish a passage between the Oxystomes and the Cancerians.

Thia polita.
THIAN SHAN MOUNTAINS. [Songaria.]
THIAN SHAN NANLU is the name of a Chinese government situated ncarly in the centre of Asia. European geographers generally call it Eastern or Chinese Turkistan, and also Little Bucharia. The name of Turkistan is applied to it because the bulk of the inluabitants in that part of Asia is composed of Turkish tribes; and as these tribes are frequently designated by the collective name of Bucharians, from the town of Bokhara, Eastern Turkistan is also called Little Bucharia, or rather Bokharia, to distinguish it from Western or Proper Turkistan, whieh is ealled Bucharia without any epitliet. Thian Shan Nanlu, in Chinese, signifies the "southern roarl of the Thian Shan Mountains,' and has been applied to the countries south of that monntain-system, because they are traversed by the southern of the two great commercial roads which comect China I'roper with the countries of Western Asia, whilst the countries north of the Thian Shan are traversed by the northern-commereial road, and on that account are called Thian Shan Pelu, 'the northern road of the Thian Shan.' Thie last-mentioned countries constitute the government of Ili, or Songaria. They have been described under Sowg.arti.

Thian Shan Nanlu lies between 36° and 44° N. lat., and extends from 71° to 96° E. long. From west to cast it extends about 1230 miles, and its width from north to south varies between 5.50 and 300 miles. Its area probably exceeds 500,000 square miles, so that it is ten times as large as England without Wales, and twiee and a half as large as France. It is mostly surrounded by countries belonging to the Chinese empire : on the north is Songaria, or Thian Shan Pcla, east the province of Kansi, and south Tibet. Only its western side is enelosed by countries independent of China. On the south-west is Ladakh, on the west Kunduz, including Badakshan and Bokhara, and on the north-ivest Khokan. The three last-mentioned countries are within Western Turkistan, or Great Bucharia.
Thian Shan Nanlu is a country entirely isolated from the rest of the world. On the north, west, and south it is enclosed by mountain-ranges of such extent and clevation, that the plaees whieh are permanently inlabited can only be reached by passing for several days over mountains, which are not inhabited except for two or three months in the year, when they are visited by a few families of wandering tribes of mountaineers. On the east of Thian Shan Nanlu is an extensive desert, which appears to be uninhabitable. The country enclosed by the three ranges and the desert receives an abundant supply of water from the mountains, a considerable portion of which is always covered with snow, and the numerous rivers whieh descend from them form a large river, called the Tarim, which Kitter compares with the Danube, but which does not reach the sea; it terminates in an extensive lake situated on the western edge of the desert. The basin of the river Tarim is the largest elosed river-basin on the globe, if that of the Caspian Sea and the rivers falling into it is excepted.

Morentains.-At the south-western angle of Thian Shan Nanlu stands an extensive mountain-knot, called Pushtikhur, which occupies the spaee between 36° and $37^{\circ} \mathrm{N}$. lat., and between 71° and $74^{\circ} \mathrm{E}$. long. From its western
side issues that elevated chain which is known in Afghanistan by the name of Findu Kush; from its northern edge another range, called the Tartashling, or Bolor Tagh, which extends not thward; and in the eastern part there begins a third range, which traverses the whole ol Central Asia, and extcuds through China Proper to the shores of the Pacific. This last-mentioned range is called hy the Chinese Kuenluen, but that portion of it which is contiguous to the mountain-knot of Pushtikhur goes by the name of Thsungling.

The Thsungling may be considered as that portion of the Kuenluen range which extends from the Pushtikhur on the west ($72^{\circ} \mathrm{E}$. long.) to the mountain-pass of Karakorum on the east (between 76° and $77^{\circ} \mathrm{E}$. long.), and occupies nearly the whole of the space between 35° and $37^{\circ} \mathrm{N}$. lat. Very little is known of this mountain-region, whieh eannot surprise us, when we learn that, aecording to an intelligent Mohammedan traveller, an eternal mass of snow oceurs in these parts, which occupies 200 eos (equal to more than 300 English miles) in length. An extraordinary phenomenon is stated to oceur on the northern declivity of the mountains, where the Thsungling and Pushtikhur are contiguous-the continuance of rain for three successive months. That portion of the Kuenluen range which is east of the Pass of Karakorum is still less known. As far as the Keriya Pass (84° E. long.) its snow-covered summits lower towards the north with a moderate descent, and a hilly tract of moderate width extends along their base, which is fertilized by the rivers descending from the range; but east of the Keriya Pass no watercourses are found along the base, which leads to the supposition that the declivities of the mountains are extremelysteep, and that they are in immediate eontact with the sandy desert whieh extends north of them. Two roads traverse the Kuenluen range. The most western leads through the Karakorum Pass from Hindustan and Cashmir by the way of Leh in Ladakh, to Khoten in Thian Shan Nanlu. The road runs from Leh north-north-east over a mountain-chain, and deseends to the valley of the river Shayuk, the course of which it follows upwards between the mountain-masses of the Kuenluen nearly to the source of the river. It passes by a narrow valley over the highest part of the mountains (between 36° and $36^{\circ} 30^{\prime}$), and descends on the north into the valley of the river Misar, whieh is a tributary of the Tarim. In the narrow valley of the Misar the road runs to Khelasten (north of $37^{\circ} \mathrm{N}$. lat.), where the mountains disappear, and eultivation begins to be general. This mountain-road certainly does not rise to such an elevation as those which traverse the Himalaya Mountains, for it is quite free from snow in summer, and, with the exception of the lighest portion, it does not rise above the line of vegetation, or even that of trees, as may loe inferred from the fact that fire-wood and fodder for beasts of burthen are generally abundant, and permanent habitations are met with in the vallcys of the Shayuk and Misar up to the immediate vicinity of the mountain-pass. The highest part of the pass probably does not exceed 12,000 feet above the sea-level. This road however is much more frequented in winter than in summer, beeause the melting of the snow on the mountains adjacent to the road renders travelling in summer almost impossible. We have no aecount of the eastern mountain-road that traverses the Kuenluen range. We only know that it connects the town of Lhassa in Tibet with Khoten in Thian Shan Nanlu, and that it traverses a very mountainous country of great cxtent, passing near the large lake of Tengri-Nor, and issuing from the mountains by the narrow yalley in which the town of Keriya is built. From Keriya it runs north-west through a hilly country to Khoten.
The western districts of the Thian Shan Nanlu are oceupied by several ranges, belonging to the Tartashling or Bolor Tagh. This mountain-system extends north of the mountain-knot of Pushtikhur, from 37° to near $41^{\circ} \mathrm{N}$. lat., where it descends with long slopes towards the valley of the river Sihoon or Jaxartes. Its extent from south to north therefore docs not much excced 260 miles. It is diffieult to determine its extent from cast to west, as nearly the whole eountry from 69° to 74°, between the upper courses of the Sihoon or Jaxartes and that of the Jihoon or Oxus, is almost entirely unknown, and appears to be occupied by widely-spread rocky masses of mountainranges, between whieh only narow valleys oceur, that are visited by the wandering tribes of the Kirghis only
dering the nummer. It does not appear that any of the sovercigns of the contiguous countries have extended their authority over this extensive mountain-region, or over any part of it, which may be considered ns a eertain proof that no portion of it is cultivated; and this supposition is stupporled by the fact, that it is not traversed by any commereial road, and that the two roads which conncet Thian Shan Nanlı with Western Turkistan run along the southent and northern base of the Tartashling in the upper valleys of the two riven Jihoon and Sihoon. We have some cecount of the mountains enelosing these valleys, which penctrate upwards of 200 miles into the mountam-region, but the these portions of the region are within Turkistan, they are noticed under that head. We shall only olserve, that in the interior of the monntain-region, and within the boundary-line of Thian Slan Nanlu, an extensive elevated plain ocetre, whicls is ealled the Table-land of Pamir. Aecording to Mareo Polo it takes ten days to traverse it from west to east; and, aecording to a Chinese traveller, it is 3000 li (equal to abont 350 miles) long, and in some places 100 li (or 35 miles) wide, whilst in others it narrows to 10 li (or between 3 and 4 miles). The elevation of this table-land is so great, that no trees are found on it, and travellers feel their respiration rendered difficult by the rarefaction of the air. The nomadie Kirghis, who visit this elevated region in summer on account of its excellent pastures, keep herds of eamels and sheep, and of kashgow or yaks, which latter are to the Kirghis what the rein-deer is to the Laplander of Northern Europe, serving them as animals of burden, and supplying them with food. Their milk is rieher than that of the common eow, but the quantity which the yak yields is less. The tail is the wellknown chowry of Hindustan. On the table-land of I'amir its hair, which is elipped once a year in the spring, is made into ropes, which forstrength do not yield to those manufactured of hemp. It is also woven into mats, and into a strong fabric which makes excellent riding-trowsers. Among the wild animals peculiar to this region are the kuteh-kar and the rass. The kutelh-kar, or wild sheep, attains the height of a two-year-old colt, and has two fine eurling horns: it eongregates in herds of several hundreds, and is hunted by the Kirghis for its hide and flesh. The rass is a different animal, having straight spiral horns; it is less numerous than the kuteh-kar, but equally prized as food.

The Thian Shan range extends along the northern boun-dary-line of Thian Shan Nanlu, whieh is separated by it from the govemment of Ili. This mountain-range has been notieed under Sowgaria, vol. xxii., p. 242 , where also the range is described which forms the southem border of the Sihoon river-basin, and connects the Thian Shan Monntains with the Tartashling range, and where also the road is mentioned which, leading over the Thian Shan Monntains, conneets Thian Shan Nanlu with the government of Ili.

Rivers.-The laryest supply of water is derived from the Tarlashling, in which three of the great branches of the Tarim river rise. The principal hranch originates within the mountain-region in a large lake, ealled Karnkol, which is situated near $39^{\circ} \mathrm{N}$. lat., and receives the drainage of a eonsiderable country which surrounds it on all sides. The river issuing from this lake runs eastward, and is ealled Iaman-yar. It leaves the mountain-region below Tashbalik, near $73^{\circ} 30^{\prime} \mathrm{E}$. long., and is soon afterwards joined from the north by the Kashgar Daria, which brings to it the drainage of the north-eastern part of the Tartashling. Near the point of confluenee the rivers are met by a third river, which flows in a dircetion from east to rest, and brines down the waters collected on the mountainchain whieh unites the Tartashling to the Thian Shan. This river, which is ealled Kezy! Daria, rums about 2,00 miles. After the union of these three branches the river continues to be called Kashgar Daria, and to flow eastward for 300 miles, without reeeiving any supply of water, until, between 80° and $81^{\circ} \mathrm{F}$. long, it is nearly at the same point joined from the north by the Aksu Daria, from the west by the Yarkiany Daria, and from the south by the Khotan Daria. The Aksin Darin hrings down a large volume of water, collected on the southern dechivity of the western portion of the Thian Shan, and mins about 200 miles. The sources of the Iarkiang Daria are near thomes of the Jihonn, or Oxus, south of $37^{\circ} \mathrm{N}$. lat., snd the upper course of the nver is within the mountain-region of the

Tartashling, where it runs eastward, but it issues from it abont 70 miles above the town of larkiang by a northern ceurse. Its course in the plain is first north-east, but below the town of Iarkiang nearly due east, and parallel to the Kashgar Daria for nearly $2 \dot{W}$ miles. After passing 80° F. long. it turns northward, and soon afterwards joins the Kashgar Dana. Its course execeds 400 miles; and among its numerous tributaries is the Misur river, which brines down water derived from the northern deelivity of the Thsungling. The Khotan Daria collects its waters from the nortliern deelivity of the Kuenluen range, east of ${ }^{\circ}$ 74° and west of $80^{\circ} \mathrm{E}$. Song., and runs more than 300 niles in a general north direction. In this river, and the mountains which are drained by its upper braneles, the yewstone or oriental jasper is found, which is held in great esteem in China, and exported in large quantities: it is mostly bought by the emirt of Peking, as the wearing of this stone distinguishes the liggler classes of the inandarins from the lower.

After the conflnenee of these several branehes the river is called Tarim, or Tarim-gol, and continues to flow in a nearly due east direction for 400 miles more, when, near $88^{\circ} \mathrm{E}$. long., it is lost in an extensive lake, Lop) Nor, whel is surrounded by still more extensive swamps. It ajperars that this lower part of its course is skirled by swamps, which extend to a considerable distance from its banks. The extent of Lop Nor from west to cast is said to exeeed 70 miles, but its width does not appear to be half these dimensions. No river joins the Tarim from the south, east of 81° E. long., but it receives a considerable supply of water from the Thian Shan Mountains, by two rivers, the Ukiat, or Chagar Daria, and the Barun Yulduz, or Kaidu River. The Ukiat Daria, which rises in that part of the Thian Shan Mountains which eneloses Lake Issekul on the east [Songaria], runs more than 200 miles in a south-east direction, and joins the Tarim near 84° E. long. The Kaiduliver is probably the largest of the confluents of the Tarim, as it collects the drainage of the Thian Shan Mountains between 80° and 87° E. long. Its upper course for about 100 miles is in an elevated valley, parallel to the Thian Shan range from east to west: issuing from the valley it turns abruptly to the cast, and draining another parallel valley about 200 miles long by an castern course it falls into a large lake, which is ealled Bostu Nor or Bosteng Lake, the dimensions of whicl are stated to be hardly inferior to those of Jop Nor. This lake is surrounded on the north and south by ehains of high hills, but on the east by a sandy desert. In the hills which enelose the lake on the south is a break by which the Bostu Nor discharges its waters into the Tarim. The channel by whieh this is effeeted is also called Kaidu, and reaches the Tarim about 80 miles above its influx into Lop Nor. The extensive swamps surrounding Jop Nor seem to begin at the conflux of these two rivers. The whole course of the Tarim amounts, according to the estimate of Ritter, to nearly 1200 miles in a straight line, and if its windings are taken into account, and the Yarkiang Daria consilered as its prineipal branel, it cannot fall short of 1500 miles. The upper parts of this river and its tributarics are probably too rapid for navigation, nnd the lower parts of most of the tributaries of the Tarim, and of this river itself, lic through countries which are probably uninhabited. It is also probable that during the latter part of the summer, and in autumas and winter, the cprantity of water is very small, the rains being very seanty, and the whole supply of water being derived from the melting of the snow on the momntains on whieh its branehes originate. But the water of all these branches is used for irrigation, though that of the Tarim itself is not.

The Pluin is of great extent, measuring on an average more than 300 miles from worth to south, and abont 900 from west to east. Its elevation is not known; but considering the peculiarities of its climate and its productions, it is presumed that it can hardly be less than 2000 feet above the sea-level. The largest portion of it is quite unfit for cultivation, and eamnot even be used as pasture-ground. This is especially the case with the eastern districts, whieh are a complete desert. This desert oceupies the whole country east of $88^{\circ} \mathrm{E}$. long., and surrounds the lakes of Lop Nor and Bostu Nor on the east. South of the river Tarim it extends westwand to the banks of the Khotan Daria ($81^{\circ} \mathrm{F}$. lat.), so that it covers about one-half of the plain. The worst part is that which lies
east of 88°, and is called Han-hai, or the Dry Sea : according to an hypothesis of the Chinese, it is the bed of a lake, whieh has dried up at some remote period. Its surface is covered with a very finc sand, which is frequently raised into the air by the wind, so that the traces of the caravans soon disappear, except where they are marked by the bones of the beasts of burden which have perished in this desert, through which the nearest road leads from China to Hami in Thian Shan Nanlu. It is however asserted that there are a fow places, renerally two days' journey from one another, in whieh drinkable water is found by digging. That part of the desert which lies west of 88°, between the Tarim river and the Kuenluen range, is called the Descrt of Lop. Though equally unavailable for agriculture or as a pastoral country, the surface is in many places diversified by large tracts of rocky and stony soil, in which a few animals, as wild horses and wild camels, find a scanty subsistence, and which are overgrown with low shrubs. Water however is scarce, except in spring time. On the north, where it approaches the Thian Shan range, this vast extent of desert is skirted by a narrow tract of hilly ground, which is fit for cultivation or used as pasturc-ground. Its width may vary between 20 and 30 miles, and it is in many places abundantly watered by rivers which descend from the mountains on the north, but which as soon as they have traversed the hilly region are lost in the sand of the Han-hai. Only a small portion of this tract can be irrigated, but it is cultivated with the utmost care. It produces rice, wheat, millet, and several kinds of vegetables, especially pulse: it is famous all over China for its excellent fruits, especially pomegranates, oranges, peaches, plums, but above all for its melons and grapes, which are sent in large quantities to Peking. In many places cotton is grown on a large scale. The greater part of this tract however is used as pastureground for horses, camels, eattle, and sheep.

The country west of $88^{\circ} \mathrm{E}$. long., and between the Tarirh river and the Thinn Shan Mountains, contains a much larger portion of cultivable ground, especially in the valleys of the Barun Fulduz, or Kaidu river. The upper vallcy, where the river runs from east to west, is probably very high, as it is mostly. used as pasture-ground for cattle and horses, which thrive exceedingly well. The pure and fresh air of this vallcy is much commended. The lower valley, where the river flows from west to east, is more extensive, and a large portion of it is under cultivation, producing riee, wheat, millet, and scsamum, and containing large plantations of fruit-frees. The hills enclosing the valley rise probably more than 1000 feet above their base, and are used as pasture-ground. Along the base of the southern ridge of hills are also considerable tracts of cultivated land which are irrigated by the strcams that descend from the hills, but at the distance of a few miles their waters are lost in the sandy plain which extends along the banks of the Tarim river.

Farther west, between 84° and 80° E. long., the hilly country is not 80 widc, extending only to the distance of 40 to 50 miles from the Thian Shan Mountains. The hills also have less elevation, and yield only a scanty supply of water for irrigation. The country is only well cultivated in the vicinity of the great mountain-chain, and grows more barren as it recedes from it, except along the banks of the Chagar Daria, or Ukiat River, where cultivation extends to abont 70 miles from the Thian Shan. A large portion of it is used as pasture-ground, but in approaching the Tarim the sandy descrt occurs. Farther west (between 80° and 77° E. long.) is the valley of the Aksu Daria, which is enelosed by high hills, and in its upper part contains very extensive tracts of fertile land, which are cultivated with great care. They produce every kind of grain, especially wheat, millet, and barley, lentils and beans, also cotton, mclons, and scveral kinds of vegctables. The orchards yicld peaches, apricots, pears, pomegranates, grapes, and mulberries, and the rich pastures feed herds of horses, shecp, camels, and cattle. The lower course of the Aksu Daria however lies through the desert and the swamps, which extend along the Tarim river and along the lower course of its principal branehcs. A few tracts are cultivated on the banks of the Jower Aksu Daria.

In the plain, west of the Aksu Daria, which cxtends between the Kashgar Daria and the Thian Shan Mountains, the cultivated land seems to be almost entirely limited to the bottom of the Kezyl Daria, where considcrable tracts
produee rice and other grain in abundanee, as well as rich crops of eotton. The uplands, which are north of the river, have a stony and rocky soil, covered with a thin layer of earth, sufficient to produce abundance of grass during some parts of the year, and conscquently they are used as pasture-grounds by the Kara Kirghis, or Black Kirghis, who go in summer with their herds of horses and camels to the Thian Shan Mountains. The uplands between the Kezyl Daria and the Kashgar Daria have a sandy soil, which for the greater part of the year is quite destitute of vegetation, and can only be used as pasture for a few weeks.

The western districts of the Thian Shan Nanlu, or those which extend at the base of the Tartashling, are not more favourable to cultivation than the northern districts which we have just noticed. Though the general direction of the Tartashling is from north to south, it seems that the ranges which compose it gencrally extend in the direction from west to east, and their wide rocky masses advance far into the plain, leaving only narrow and elevated valleys between them, which do not admit of cultivation. These high ranges extend much farther to the east near the Kuenluen, than in the vicinity of the Thian Shan Mountains, and terminate rather abruptly in the plain, so that only a very narrow hilly tract separates them from the level country. Cultivation is limited to this narrow tract, and even here to the banks of the several rivers which drain it. The cultivated grounds are most extensive on the Kashgar Daria and Yarkiang Daria, wherc these rivers issue from the mountains, and always yield an abundant supply of water for irrigation, especially in the countries surrounding the towns of Kashyar and Yarkiang. Farther down the country is not cultivated, the soil being sandy, and the means of irrigation scanty and uncertain. The principal objects of agriculture are rice, wheat, barley, and millet, with beans and vetches. Several plants are raiscd from which oil is extracted, among which is sesanum. The mulberry plantations are very extensive, and large quantities of silk are collected at Yarkiand, which is partly exported, and partly used in the manufactures of the country; cotton, hemp, and flax are also cultivated. Fruit-trees are abundant, and their produce, consisting of grapes, pomegranates, quinces, peaches, apricots, and apples, constitutes an article of internal commerce. Melons and cucumbers are of excellent quality. The greater part of the eountry, though unfit for agricultural purposes, is covered with grass, cspecially those tracts which are mountainous, and accordingly it abounds in domestic animals, among which the horses and shecp are distinguished. The wool collected in these parts is hardly inferior to that of which the shawls of Cashmir are made. There are also numerous herds of cattle and camels.

We are less acquainted with the produetive powers of the countrics which extend along the base of the Thsungling, where our knowledge is limited to the tracts that surround the town of Khotan, where a large district is under cultivation, and produces rice, wheat and millet, cotton, hemp and flax ; large quantities of silk of the first quality are collected. The vineyards are extensive, and the grapes grown here are mueh prized. Some plants are raised, which yield dyeing-stuffs, which are exported to China. Among the domestie animals the yak is numerous, and also the horses and sheep; cattle are rather searce. North of this cultivated tract is a desert, in which many bare rocks occur, but whose surface is mostly covered with sand. This descrt, which extends westward to the vicinity of Yarkiang, and northward to the banks of the Yarkiang Daria, is known by the name of Kara-kitai or Rikistan. From this rapid survey of the produetive powers of Thian Shan Nanlu it is evident that probably not more than one hundredth part of its surface is available for agricultural purposes. The deserts, and those tracts which are dcscribed as such, cover at least threc-fourths of the area, and the remainder is mainly occupied with high mountains, which produce a few trees and gond pasture. The utter sterility of the Han-hai seems to depend on the soil, but that of the other desert tracts appears partly to be the effect of climate.

Climate.-The climate of the Thian Shan Nanlu is distinguished by that dryness which is characteristie of all table-lands which are considerably elevated above the sea. As its elevation perhaps does not differ much from that of the table-land of Castile in Spain, there
would probably be a great similarity between the chimates if the table-land of Spann was not surromeded by asca, which is not far distant from it, whilst the Thian Shan Ninlu is 1500 miles from the l'ateific, which is the nenrest sen. The climate of Thian Shan Nanlu is consequently much drier thun that of Spmin. Though abundant rains are experieneed in the nowntain-ranges which enclose the plain, and snow falls every winter to the depth of several tiet, the quantity of show and rain which descends on the plain is very small. In the deserts no rint oecurs, and it is observed that when the atmosphere is charged with rapour, ant clistant objects are indistinctls visible, it does not produee any other effect than that of generating catremely heavy gales, which are often so strong as to throw down travellens and their beasts of burden. In the IIan-laa they mise a large quantity of sand to a considernble height above the surfacc. Along the Thian Shan Mountains only two or three showers of rain are anmually experienced, and gencrally they do not continue above an hour. The rain is very minute, and it hardly moistens the surface of the ground. Λ little snow falls in the westeru districts, but seems never to oecur east of the valley of the Kaidu river. The noisture required for the growth of plants is therefore entirely clerived from the mountains. The supply of water from this sourec is indeed very abuudaut, but only for about two or three months of the year, and it would only be sufficient for a very limited agriculture, if the inhabitants had not acquired a peeuliar sut in husbunding this supply. In the districts south of the Thian Shan Nanlu Mountains very large reservoirs have been made, which are filled by the watercourses after the melting of the snow, and from these reservoirs the greater part of the supply is taken, by which many tracts are enabled to produce aloundant crops. The western distriets do not naterially differ from the northem, except that a larger quantity of snow falls, though it is moderate in the plain. The temperature of these districts however is mueli colder in winter, and it is a remarkable fact that at Yarkiang the river is for three months covered with thick iec, and earavans pass over it with their beasts of burden. The heat in summer is very great all over the country, but the cold of the winter secms to clecrense as we proeced from west to east, as frost is hartly linown at Hani. The Chinese however state that the difference between the temperature of the summer and winter is very considerable. The country is subject to enrlliquakes, and several distriets suffered greally from them in 1832, when they were felt on both sides of the Tartashling Mountains. It is probable that this phenomenon also oceurs along the Thian Shan Mountains, as an cxtinct voleano exists in that range, and traces of volcanic action are frequently meet with.

Productions.-It is remarkable that Thian Shan Niaulu, though without doubt considerably clevated above the scalevel, produces all the grains and fruits which are cultivated in the nost southern parts of Europe, which are situated at the same distance from the equator, and are less elevated. The olive-tree however has not been noticed as growing there. Sesamum, which is enltivated in most parts to a great extent, supplies the place of the olive-trec. The plain, as well as the mountains which surround it, arculmost entirely destitute of trees, and even of shrubs. In a few plaees only some speeies of trees cover a smull extent of surfaee, but they are short and crooked, and only good for fire-wood. It is not certain, though it is so slated by soine travellers, that the true rhubarbplant grows on the mountains of the Thsungling.

All the domestic animals of Europe ahound, with the exception of hogs, whieh are only kept by the few Chinese settled in the country: ull the other inhabitants, being Mohammedans, hold this animal in abhorrence. Camels are kept in the plains and on the mountains. The rances of the Tartashling are considered the native place of the double-humped camel. In the same mountains the yak is reared by the Kirghis ; the larger species of the domestie suimals are found in a wild state in the deserts of Thian Shan Nanhli. This is expressly stated of the honse, the cannel, black cattle, and the ans; the last is probably the elshiktietei, or Equus hemionus of l'allas; of the wild sheep there appear to be several kinds, bist the species have not jet been uscertained. On the Thian Shan Mountaius the argali is found, and on the Tartashling the kutch-kar and
the rass above mentioned. The jaekal is found in great
numbers, and there are also tigens, wolves, lynxes, sud foxcs. On account of the want of natural toreals, birds are not numerons, except water-fowl, which slownd in the lakes of the desert and the swamps of the Tarim river. On the Thian Shan Mountains a black ensrle of great size is inet with, and on the Tartashling a still larger kind. ealled syrym.

Gold is said to be found in the affluents of the kliotan Daria, where some quantity is stated to be collected. It oceurs also, according tothe account of the Chinese, in the castern portion of the Thian Shan Mountains, where howcver it is not collected. Copper and iron are certamly found at several places, and are worked, but the localities are not known. From the voleanic portion of the Thian Shan Mountutus sulplur and sal-ammonite are obtained, and near the same places asbestor and salipetre. Diamonds are said to exist in the eastern part of the last-unentioned range. Several other precious stones are abundant, ind two of them, the jew and the agate, form considerable articles of commeree to China. The agate is only found in the castern districts ol Thian Shan Nanlu.

Inhabitants.-The bulk of the popuhtion is of Turkish origin, and it seems that this nation must be eonsidered R s the aboriginal stock of the country; as Thian Shan Nanlu constituted the principal portion of the powerful empire of the Hiongma, which was dentroyed by the Chinese in the first eentury after Cluist, and as the listory of almost all the different Turkish tribes, however widely spread over Asia and Farope, may be traeed to this country. 'Travellers genemlly call the Turkish inhabitauts of Thian Shan Niann, Uzbects, as they resemble them exactly in the formation of their body [Bominalua, vol. v., p. 71], and speat the same langunge, It is however observed, that the Turkish language of Thian Shan Nanlu is not intermixed, as that of the other Turkish tribe's, with terms derived from the Persian and Arabic languaces, and it is therefore considered the purest of the Turkish dialects. The Memoirs of Sultan llaber are written in this language. The Turks of Thian Shan Nimlu are decidedly superior in civilization to the Uzbectis of thokhara. They exhibit no less industry than ingenuity in the caltivation of the land, and the artieles which met made in their manufactories are of good quality nod much prized. Many of them are also engaged in commerce
They are at present divided into two tribes, Ak-tak and Fara-tak which late one another, and frequently inake war on each other, whiel circmmstanee is considered the prineipal reason of their inability to resist succeasfully the Invasions of the Ulüths and of the Chinese. Each of these two tribes was goverued by hereditary chiefs, who were independent of one another. When the Chinese oecripied the country, they left the internal affinirs in the launds of these chicts, reserving for themselves only the military department ind the police, as tar ats regarded the neighbouring independent states. The army which the Chinese keep in the eountry, aul which amomis to between $20,0 \times 0$ mad $30,000 \mathrm{men}$, is commanded by Mantelioo ollicers ; and at the places flirough which the earavan-ruads jass to foreign countries the eustom-officers are composed lialf of Chinese and half of Torks. But all the other offiecrs are appointed by the llakinn llegs, as the chiefs are called, but the llakim flegs themselves are chusen or confirnsed by the court of lekiner. The tribute which the Chinese government levies upon the inhabitunts is small, hut is somewhat inereased by the duty on the merchandise which is innported, and which, according to the latest infomation, is 31 per cent. The inltabitants however are much oppressed by their native chicfs, as the Chinese grovernment appenis to take no notice of the way in which they are governed. For this reason they are ill-disposed against the Chinese, and this hatred is still increased by the extensive fortitications which have lately been erected by the gratuitous Iabour of the natives. The Chinese merchants who are settled here are not permitted to go to the neighbouring countries which are independent of China, and the foreign commeree is therefore carried on partly ly the Turhs, but mostly by the Tajicks. The Jurks are Mohammedans.

The Thjicks, or Tadjicks, are that nation which considers the Persian us its native langmare, and which is widely spread over all the central comntries of Asia, but inherbits only a few momatain vallers exelusively. In otlier eountrics their industry is mostly directed to the cultivation of the soil, but in Thian Shan Nanlu they are chiefly engaged
in trade, aud therefore many of them are met with in all commercial places. They are known to Europeans by the name of Bolihariaus, as the merchants from Bokhara who visit the fairs of Nishnei Novogorod and other places are Tajicks. They are permitted even to trade in the western provinces of China Proper, in Shensi and Shansi, and some of them visit Kiachta. They conform in their dress and costume to the Turks, but preserve their language. They are Mohammedans.

Though Thian Shan Nanlu was subject to the Khalkas Mongols for a cōnsiderable length of time, no traces exist of this nation ever having formed settlements in the country. The Olöth Calmucks, when governed by the Galdan and his successors [Songaria, vol. xxii., p. 245], occupied it for a short time, and as they expelled the Khalkas wherever they met them, the total absence of Mongol colonies nay be accounted for. There are however in the eastern districts, especially in the town of Hami and its vicinity, a considerable number of Oloth Calmucks, who after the defeat of the Galdan quietly submitted to the sway of the Mantchoos. The number of Chinese is not large. Besides the officers of government, a small number are established in the large commercial towns as merchants; some of them also exercisc other trades; hut it does not appear that agricultural settlements have been made by then in this country, as in Songaria.

In the mountains at the north-west corner of Thian Shan Nanlu is a tribe of Kirghis, called the Kara Kirghis, and another tribe of that nation is met with in the ranges of the Tartastiling. Both are nomadic tribes, oceupying during the summer the highest portion of the moun-tain-region with their herds of camels, yak, horses, and shecp, and descending in winter to the lower regions.

Commerce, Towns, and Mamufactures. - Nearly 1800 years ago a commercial road was established, which traverses this country in its length from east to west, and by which the commerce between China and Western Λ sia has heen carried on nearly without interruption. After the downfall of the empire of the Ifiongnu under the dynasty of Han, when the dominion of the Chinese exteuded to the shores of the Caspian Sca, and ncarly met the eastern houndary of the Western or Roman empire, this road was first used for the purposes of commerce, and silk and other articles were thus brought to Western Asia. This road passes through the countries which lie along the base of the Thian Shan Mountains. Another road, which has probably been used for an equal length of time, connects Ilian Shan Nanlu and Chiua with the nothern parts of India, especially with Cashmir, and is also much used at the present day. As almost all our knowledge of the towns of this country and their manufactures is clerived from the accounts of the merchants who have passed along these roads, we shall follow their track in noticing them.

The caravans of China, hound for the western countrics, or Siyu, as they are called there, after leaving the town of Shatshcou and the gate of Kia-yu-kooan [Tangut, vol. xxiv., p. 32], pass through the desert of Han-hai and arrive after 20 days journey at $\operatorname{Hami}\left(42^{\circ} 53^{\prime} \mathrm{N}\right.$. lat. and $93^{\circ} 50^{\prime} \mathrm{E}$. lony.). Hami, or Khamil, as it is called by the natives, is a fortified place, being surrounded by high walls, which enclose a space about two miles and a half in circuit. The town is surrounded by large suburbs, where the caravans stop before they proceed for the west, and is populous. The strects are straight and regular, but the houses low and built of dricd clay. The country which surrounds the town is not distinguished by fertility, but it is cultivated with extraordinary care and industry. Grapes, melons, and other fruits are sent to China in great quantities.

About 240 miles west of Hami is Pidshan, a fortress which is nearly two miles in circuit, and near which the caravan road passes. About 60 miles farther is Turfan, a considerable place, which however suffered much in the wars of the last century. Karashar is 290 miles west of Turfan. Its fortress is not large, not exceeding one mile in circuit. The town is rather populous, and built on the banks of the Kaidu river, which is said to be navigable at this plaec. Its commerce is considerable, but manufactures are not mentioncd, except that the inhabitants excel in the art of embroidery. Kurli, or Kurungli, is situated on that portion of the Kaidu liver which connects the l3ostu Nor with Lop Nor, and contains a population of about 4000 individuals. The country round the town is
very fertile. The town is 50 miles distant from Karaslar to the south-west. Bukur or Bugur, nearly 200 miles distant from Kurli, contains 2000 families, or 10,000 individuals, and has a considerahle commerce in copper; oil, sheep-skins, butter, and furs, especially lynx-skins.

Kutshe, which is 100 miles distant from Bugur, is a large town which is three miles in circumference, and contains a great population, of which 6000 are Turks. The mountains north of the town contain several mines, from whicl copper, salt petre and sulphur, and sal ammoniac, are obtained. At this town begins the road which leads across the Thian Shan Mountains to Kuldsha in Ili, by the mountain-pass called Mussur Dabahn. Before it reaches the mountain-pass, it runs through the town of Sailim, which is built in an elevated valley, and near some mines. South-west of Kutshe is the town of Shayar, in a district producing abundance of rice, melons, and fruit. It contains a population of 4000 individuals.

In the valley of the Aksu Daria are the towns of $\Lambda \mathrm{ksu}$ and Ushi. Aksu is a large commercial and manufacturing town, which, according to one statemert, contains 6000 houses, and, according to another, a population of 20,000 families. It is not fortified. Its commercial importance is not only derived from its being one of the largest places of depôt on the great caravan-road from China, but also from another road, which leads in a north-eastern direction to the mountain-pass of Mussur Dabahn, by which it communicates with Kuldsha, the capital of Ili, and by which it not only receives the produce of that eountry, but also several articles brought from Russia. [Songaria, vol. xxii., p. 245.] Bucharian merchants from Tubolsk sometimes proceed as fur as this place, and it is likewise visited by traders from Khokand, Tashkend, and Bokhara. Its manufactures are numerous, especially those of cottonstuft:, among which one called bumaseya is in great request in Siberia and Turkistan, and a kind of stuff, half silk and half cotton. Several articles made of leather, especially those of deer-leather, as harness and saddles, which arc cmbossed with great art, are also highly valued, and exported to distant places. There are also some pottcrics, and many persons are employed in cutting and polishing precious stones. The Chinese garrison, consisting of 3000 nien, inlabits a separate quarter of the town. Ushi, which lies higher up in the valley of the Aksu Daria, is built in the centre of an extensive country of great fertility, and is stated to contain 10,000 families. This place lias a mint, in which copper coin is made, and it appears to carry on a considerable commerce.

The town of Kashgar is situated in the north-western angle of Thian Shan Nanlu, and at the commencement of the mountain-road which, traversing the chain that connects the Thian Shan with the Tartashling, leads to Ferglana and the towns of Khokand and Tashkend. This road rans in a north-north-western direction. At this place also begins the other caravan-road, which, running southcast and passing along the eastern declivity of the Tartashling, and passing through the towns of Yarkiang and Khotan, leads over the Karakorum Pass to Leh, Gertope, and Cashmir. Besides these two lines of communication and the great caravan-road to China, a fourth road, commencing at Kashgar, runs north-east over the Thian Shan Mountains by the Rowat Pass, and, skirting the western shores of Lake Issekol, leads to Kuldsha and the banks of the Irtish river. This last road appears to be much frequented by Russian merchants. The advantages derived from all these roads concentrating at Kashgar render this town one of the most commercial in the interior of Asia. It is said to contain 15,000 houses, and a population of 80,000 individuals. In the Chincse geography the population is said to consist of 16,000 persons paying a capitation-tax, which would carry it to rather more than is stated by Russian travellers. The Turkish and Bucharian merchants of Kashgar visit the countrics north of Hindustan, Bokhara, and Tobolsk; and numbers of merchants who are settled in the neighbouring independent states are always foumd in the town. All those who are of Turkish origin have free access to it; but the entry of Europeans is prevented by the Chincse authorities. In the middle of the town is a large square, from which four extensive bazars branch off: The Chinese garrison consists of 8000 men , wh, are stationed here to repress any invasion from the side of Khokand, and are quartered in a strong fortress, which is con-

VoL. XXIV.-3 3
tiguous to the town. The manufactures are numerous and extensive: the largest are those of silk, in which several kinds of stuffy, as satin, damask, Sce., are made, and some of them are interwoven with gold and silver thread. The uuanufactures of cottons are less important, but their colours are much praised. The jewellers are very expert in eutting the yew and in working gold. Many artieles are exported to China. The latest aceounts however state that Kishurar and its commereinl and manufacturing industry had sutfered mueh by the invasion and rebellion of the Kodjas (1827), and that Yarkiang had becone a much more commercial place than Kashyar. It is very probable that the town has recovered its former importance. South-west of Kashgar is the town of Tashbalig, which seems to be an unportant place, built on the bauks of the Yaman-yar river, where it issues from the inountain-region of the Tartashling. On the road leading from Kashgar to Yarkiang is Yengi IIisar, a place of considerable extent.

Iarkiang, or Yarkand, may be considered the capital of Tluan Shan Nanlu, as the Chinese military governor generally resides here. It consists of the city or fortress, which is surrounded by a high wall of stone, and is more than three miles in circumference, and numerous suburbs which lie round it. In the fortress a garrison of 7000 men is kept. The houses are mostly built of sun-dried brieks; but as rain is very rare in this country, they may be considered substantial. The river Yarkiang Daria is divided into two arms, and numerous canals have been made from them, by which all the streets are abundantly supplied with water. There are numerous public buildings, especially moxques and medrasses, or colleges: the number of the medrasses is stated to exceed ten. There are two large bazars, one in the city and the other in the suburbs, which are more than three miles long, and contain a great number of shops, well supplied with various articles of merchandise. Most of the shopkeepers are Chinese. There are also several large caravansaries. The country surrounding the town supplies it with three important articles of commeree, silk, tine wool, and horses, of which last great numbers go to other places, and as far as China. These horses are mostly of the Kirghis breed, rather small, but very strong, and much prized. The commerce with the countries north of Hindustan and with Tibet is very considerable. It is stated that there are several kinds of manufactures, but only cotton-stuffs are speeified. The number of inhabitants who pay eapitation-tax is stated to be between 30,000 and 40,000 , which would give a population of between 180,000 and 240,000 . Many foreigners are settled in this place. The number of Clinese nierchants is only 200 , but there are many others engaged in trade and inanufactures. A great number of merchants from Shensi and Shansi visit Yarkiang. There are also a considerable number of natives of Cashmir settled here; but only a small number of Ilindus, and no Jews or Armenians. The foreign merchants, who are net with in considerable numbers, are from Ferghana, Tibet, and Cashnir.
Khutan appears to lave been formerly the name of the town which at present is called llitsi or Eelchi, whilst the name of Khotan is applied to the country which extends along the northern base of the Thsungling. This country contains, aecording 10 the latext information, 700,000 persons who pay capitation-lax, which would give a population of between $3,5(x), 000$ and $4,000,000$ individuals. Thus it appears that this conntry is by far the most populous and important part of Thiau Shan Nanlu. A large number of the inhabitants are Buddtists, and it appears that among them are numerous descendants of Chinese, who settled there at a very early period. The town of llitsi is described as large and populous ; but we havo no peculiar necount of it. It derives its comulercial importance partly from the productions of the eountry, and partly from the circumbtanee that the great ronds meet at this place. The eastern road passes from litsi to Keriga, and through the pris of K eriya into Tibet, and seems to be the procipal line of communication hetiveen the last-mentioned country and the northern provinces of China. The western road joins the great caravan-road which leads from Yarkiang to lelh and Cashmir: The prineipal articles which the couniry nupplies lor exportation are the yew-stone and sitk, the last of which is grown in large yuantities. It seems, also that there are mines of copper in the neighbourhood, as vemele of copper are named among the articles manufac-
tured in this place. Silk and cotton stutfs are also made to a great extent, and there are claswhouses. Every week a fair is hell, which is sometimes attended by 20,000 persons. Ilorses are exported in great nunbers, and are not less prized than those of Yarkiang. Near the town of Keriya, through which the road pheses to 'Tibet, are some gold-mines.
The articles which are sent from Iarkiang to Cushunir are silver, goats' and sheep's wool, leather tanned in the manner of what is called Kussian leather, embroideries of gold and silver, rice, and some few artieles of Chinese manufacture; there are taken in return shawls of different qualities, cotton stufts, sheep)-skins and goat-skins, turd some minor articles.

Only one caravan goes amually from Yarkiang to lbadakshan, which carries a large quantity of tea and bome silver, and brings back slaves and precious stones, enpecially: rubtes. It appears from Wood's 'Juurney' that this intercourse has of late been interrupted by the unsettled state of lBadakshan and of Wakhan. [Trikistav.]
The intercourse wilh Khokand, which had also been interrupted for several years, has lately been re-established. The articles exported to that country are silver, china-ware, tea in boxes, and pressed tea, of which large quantities are consumed by the inhabitants of Turkistan. The imports from Khokaud are raw silk und different kinds of cotton stuffs.

The Bucharian merehants settled in Russia have sueceeded in advancing as far as Kutsh, Ahsu, and Kashyar, to which places they bring broad-cloth, brocades, sitver, gold coin, copper, iron, steel, and fur; urd they take hack several kinds of cotton stull's, tea, rhubarb, and sal ammoniac.
We are very imperfectly acquainted with the commercial intercourse between China I'roper and Thian Shan Nanlu. It does not however appear that the government puts any difficulties in the way of it, and it is stated that the comnerce of larkiang with the northern provinces is very active. The principal articles which are sent to China are raw sith, great numbers of horses and cattle, the yew and other precious stones, and some dyeing stuffs; in return there are sent to Yarkiang tea, china-ware, and several manufactured articles.

Llistory. - The country of Thian Shan Nanlu has never in any way been comected with the political events of Furope and Western Asia, but frequently with those of Proper China, and it is only from the Chinese and Mongol historians that we learn the political changes to which it has been subject. Thus we are informed that before and at the beginning of our aera this part of Central Asia formed a portion of the powerfil empire of the Hiongnu, a Turkish race, which for more than two centuries made war on China, and sometimes laid waste the northern provinces; but in the first century after Christ was overthrown by the dynasty of the Ian emperors. It seems that the Chinese this for the first time got possession of the country, and they soon afterwards sueceeded in extending their conquests over Ferchama and the deserts lying round the Aral, sa that at that period their empire extended to the Crispian Sen. But in the fith century after ('hist the Chinese were dispossessed of this country by the Tanc-hiang, a Tibetan race; and this and other races of the same origin continued to govern Thian Shan Nanlu up to the time of Gengis khan. From the tenth to the thirteenth eentury it formed a part of the extensive empire of the Hia or of Tangut ["ANeurt, p. 33], the overthrow of which, in 1927, was the last of the numerous and great exploits of the Mougol conqueror. [Gmans Kuas, vol. xi., p. 117.] As the Mongols soon afterwards got possessioin of China, Thian Shan was again united to that country, and reimained so as long as the descendants of Gengis Kluan were masters of China. But when the Iuan dynasty was overthrown, in the fonrteenth century (136is), ly the Ming dynasty, and the Mongol empire was split into several states, Thian Shan became independent, and several sinall savereignties arose under chiefs of Turkish origin. The Ming emperor would probably have suceceded in suljeeting them, but for the conquesis of Timur Beg, or Tamerlane, Who entered the comntry towards the end of the fourteenth, century, and brought it under his dominion. After his death the Turkish chiefts gradually resumed their independent station, and preserved it to the middle of the sixteenth
century, when the Galdan or emperor of the Olöth Calmucks, who subjected to hissway all the tribes north of the Thian Shan Mountains, began to extend his conquests to the south of that range. The petty Turkish sovereigns, not being able to make resistance, yielded, and became tributary to the Oioth Calmueks. When the Galdan had been defeated by the Chinese, and had died (1697), the power passed from the Olöth Calmucks to the Songares [Songaria, vol. xxii., p. 245], who soon established their anthority among the Turkish prinees in Thian Shan Nanlu, and even subjected Tibet. They kept it until their widely cxtended empire was destroyed by the Chinese in 1756, and their sovereign, Amursana, fled to Tobolsk, where he died (1757). The most powerful of the Turkish princes, the Kodjas of Yarkiang and Kashgar, considered this event favourable to the establishment of their independence, as they thought it impossible that the Chinese could send an army sufficiently numerous for the subjection of Thian Shan Nanlu througl the wide desert which separates Proper Clina from their country, and they refused to submit to the authority of the Mantchoo emperor. But the emperor sent two armies from Ili over the Thian Shan Nanlu Mountains. The first was only partly successful, and took Kutshe; lut the other, under the command of Tshaohoei, subjected the whole of the country, and in 1759 the Kodjas were obliged to retire to Badakslian.

In 1763 an insurrection broke out in the town of Ushi, but it was soon put down. In 1826 the descendants of the Kodjas, having insinuated themselves into the favour of the Khan of Klokand,' and obtained from him the support of a small army, entered Thian Shan by the Terek Pass, and sheceeded in taking Kashgar, Aksu, Yarkiang, and Khotan; but a Chinese army of 60,000 men being sent against them, they were defeated in three battles, and asain retired to Badakshan, where Wood, in his journey to the source of the river Oxus, found one of these Kodjas living in exile.
(Du Halde's History of China; Mailla's Histoire Genérale de la Chine; Klaproth's Magasin Asiatique; Wathen's Memoir on Chinese Tartary and Khokan, in Journal of the Asiatic Society of Rengal, vol. iv.; Wood's Narrative of a Journey to the source of the River Omus; Ritter's Erdkumde von Asien, vol. i., ii., and v.)
THIBAUT V., count of Champagne, and first king of Navarre of that nainc, occupies a respectable rank among the Troubadours. It has been pretty satisfactorily slown by recent writers on the subject that the scandalous stories told of this king by Matthew of Paris and others rest upon no satisfactory eviclence. They have however been nore successful in disproving the tales of their predecessors than in substituting anything in their place. They lave rendcred Thibaut's biography in a great measure negative.

He was born about the beginning of the year 1201, and has been called Theobaldus Posthumus, on account of his father having died before his birth. His mother, Blanche, daughter of Sancho the Wise, king of Navarre, took charge of and governed his extensive territories as regent for twenty years. A taste for literature was hereditary in the family of Thibaut. His grandmother, Marie of France, held, about the middle of the twelfth century; one of the most celebrated 'Courts of Love,' and some of her iudgments have been preserved by André le Chapelain. IIis mother Blanche indueed by her commands Aubein se Sezano to compose several songs, after he had solemnly renounced the practice of poetry. With such examples before him it was natural enough that the young count of Champagne should contract a taste for rhyming.

An attempt was made in the year 1214 to wrest the territories of Champagne from the widow and her son. The father of Thibaut was a younger son: his elder brother Henry followed Philippe Auguste to the Holy Land, and, marrying there a sister of Baldwin IV., king of Cyprus and Jerusalem, had by her two dauphters, Alice, gueen of Cyprus, and Philippa, who married Airard de Brionne. The father of Thibaut V., after his brother's departure for Palestine, took possession of Champagne and Bric, which were held without challenge by him, and by his widow in name of her son, till 1214. Airard de Brienne then claimed them in right of his wife. Philippe Auguste decided in favour of Thibaut, and the sentenco was confirmed by the peers of France, in July, 1216, on
the ground that Henry, when departing for the Fast, had ceded all his lands in France to his brother, in the event of his not returning. In November, 1221, the seigneur of Brienne was persuaded to abandon his claims upon receiving a compensation.

In the same year Thihaut took upon limself the management of his domains, which rendered him, by their extent, and the title of count palatine, which they conferred upon their holder, the most powerful vassal of the crown. During the brief and troubled reign of Louis VIII. (July, 1223, to November, 1226), Thibaut distinguished himself by nothing but the pertinacity with which he insisted upon his feudal rights. At the siege of Rochelle he consented to remain till the town was taken, but exacted in return a declaration from the king that hy so doing he did not render himself liable on any future occasion for more than the 40 days' service in arms due by the vassals of the erown. In the crusade against the Albigenses (induced probably by regard for the count of Toulouse, who was his kinsman) he resisted every entreaty of the king to remain with the arnyy after the 40 days had expired; and his departure from it was one of the foundations for the stories afterwards circulated to his disadvantage.

On the death of Louis VIII. a league was formed by a number of the most powerful French nobles to prevent the queen from acting as regent. Thibaut was at the outset a party to this confederacy. There are extant letters of Pierre, duke of Bretagne, and Hugues de Lusignan (dated March, 1226, which, as the year is now made to commence, wonld be called 1227), authorizing him to conclude in their name a truce with the king. The regent however found means to detach the count of Champagne from his allies; for an attempt which they made soon after to obtain possession of her person and the king's was frustrated by the opportune arrival of Thibaut at the head of a strong body of horse.

The duke of Bretagne and his coadjutors were much incensed at the desertion of the count of Champagne, and appear to have soon after formed the project of harassing him by supporting the claims of the queen of Cyprus upon Cliampagne and Brie. He was however, on account of his wealth, too desirable an ally to be lost without an endeavour to regain him. Overtures of reconciliation were made, in consequence of which count Thibaut engaged, in 1331, to take to wife the daughter of Pierre of Bretagne. Thibaut had been twice married before; in his 18 th year, to Gertrude, daughter of the count of Metz, from whom he was divorced, and afterwards to Agnes de Bcaujeu, by whom he harl a daughter. The regent, fearing the consequences of this reconciliation, interfered to break it off: The marriage-day lad been fixed, and the bridegroom was already on lus way to the place where it was to be celebrated, when letters from the king, forbidding him to conclude the engagement, were delivercd to him. He obeyed the royal mandate.

This insult determined the confederates to carry into execution their original project. They sent for the queen of Cyprus, and invaded Champagne, avowedly for the purpose of putting her in possession of it. The king marched to the assistance of Thibaut, and under his auspices a compromise was arranged. Thibaut ceded to the queen of Cyprus lands to the value of 2000 livres yearly, and paid lier in addition $20,000,000$ of livres in money. This sum was advanced by the king, who received in returi the estates of Sancerre and others. which Thibaut's father had held before he acquired Champagne.

Here seems the proper place to notice the stories told bv Matthew of Paris regarding the loves of Thibaut and queer Blanche, and the poisoning of Louis VIII., laid to the charge of the former. Matthew only mentions the aecusations as a rumour he had heard. No other historian o. equal antiquity mentions them. Had Thibaut been suspected of being the murderer of the king, the charge would probably have been urged against him by one or other of the rival factions, with whom he played fast and loose immediately after. There is not a passage in his poems that can be interpreted into a declaration of attachment to Blanche, who was moreover thirteen years his senior. But it is easy to see how the rumour mentioned by Matthew of Paris arose. A rhymed chronicle, appsrently of the age of Thibaut, represents him as going
about (1230) in disguise to learn how men spoke of him, and discovering he had no triends. About this time there were violent disputes between the univenity of Paris and the papal legate, and, the queen supporting the legate, the wild students made and sang ribald songs attributing this report to a guilty passion for his person. In times of eivil drssension it is generally found that parties otherwise totally uneonnected enteli up and spread each others' lies when it suits their purpose. The queen, the legate, and the count of Champagne were all unpopular ; the dissolute students had circulated imputations against the chassity of the two fonuer ; and the interference of the king to prevent the marriage of the last-mentioned with the daughter of the duke of Bretagne would, under such circumstances, be easily interpreted into a plot of the queen-mother to keep him for herself. It was amongst the students that the first story was invented, and that is the quarter whence Matthew of Paris most probably obtained much of his information regarding French affics.

In 1232 Thibant narried a danghter of Archambaud VIII. of Bourbon. In April, 1234, he succeeded to the thronc of Navarre, on the death of Sancho the Strong. In 1235 he quarrelled with Saint Louis abont the ternitories he had ceded to the king at the time of the arrangement with the queen of Cyprus, representing them as merely transferred to the king in secnrity for the money he advaneed, while the latter asserted that they had been sold to him for that sum. It came to blows, and Thibaut was beaten.
In 1239 Thibaut trok the cross, and set ont at the head of an expedition to the Holy Land. He displayed none of the talents of a general. Unable to procure ships to transport his forces to the scene of aetion, he marehed through Hungary and Thrace. Arrived in the neighbourhood of Byzantium, his treasure was so completely expended, that his followers had to support themselves by plunder. In an engagement near Caesarea the division of the army under his immediate command was beaten, although the other was vietorious. He got insolved in the defiles of Taurus, and lost two-thirds of his men. Lastly, at the final defeat near Asealon, he fled ingloriously before the battle was ended, leaving his followers to their fate.
He returned to Pampeluna, which he had made his capital, in 1242, and died in 1253, having done nothing worthy of notice in the interim, leaving a widow and six cluildren.
The poems attributed to Thibaut are in number sixtysix, and there appears no reason for questioning the authenticity of any of them. Thirty-eight are devoted to the expression of passionate complaints and eestasies; three recount his amorous adventures with peasant-girls; twelve are what may be called rhymed law-cases in matters of love; the rest are exhortations to engage in the Crusade, or invectives against the immorality of the age. The passion of the amorous poems is not very intense: there searecly needed the few lines appeuded to most of them, addressed to some brother-troubadour, to show that they are mere displays of the author's eleverness. The cases for the Court of Love are ingenions and insignificant, like all other compositions of that kind. The fifty-fourth song, an exhortation to join the Crusade, is spirited. The sixty-fifth, in which the God of Christians is compared to the pelican feeding its young with its blood, is characterised by a blended tone of toleration and enthusiasm. In the sixty-sixth he starts a theory that the law of God is ripe and wholesome fruit, and that Adam sinned by eating unripe fruit. Thibaut's versification is correct and sweet. There is a spirit of generosity about his poems that is creditable to himself: the neatness and finish of his verses are more attributable to the degree of perfection to which the art had been previously carried by others than to the author's own talents. Altogether his literary productions leave a more favourable impression of his character than the part he played as a warior and politician. There is tergiversation and something worse in his public conduct, but the disposition evineed by lis writings feals to the conelnsion that ho sinned more through want of firmness than from ill-will.
(Ins Pö̈sics du Roy de Navarre, par Levesque de la Kavalierc, Parie, 1712 , 12 mo ; Ilistorre de So Lnys, IX. du nom, loy de France, par Messire Jean, Sire de Joinville ;
par M. Claude Menard, a Paris, 1017, 4 to ; De Bello Saero Continuatae IVistoriue L.fori V'l., 13asilio Johanne Ilerede authore, Basiliac, 1500 , fol.; 13ayle; Moreri ; and Biographie Unirerselle, in voce ' Thibaut.')

TlliBET. [Thert.]
TIIEEL or TIEL, is the chicf town of a distriet in the province of Gelderland in the kingdom of the Netherlands. It is situated in $51^{\circ} 50^{\prime} \mathrm{N}$. lat. and $5^{\circ} 26^{\prime} \mathrm{E}$. long., on the river Waal, about 15 miles from Nimegen, in the fract ealled the Betuwe, which is celebrated for its fertility. The town of Thiel contains 5000 inhabitants ; the distriet of which it is the chief place, 48,300 . The chiet occupations of the inhabitants are agriculture and the breeding of eattle; they have also mamfactures of woollen, linen, and water-colours. (Stein, Jexicon; Massel ; Canuabieh.)
THIELEN, JAN PIHLJP VAN, was born at Mechlin in 1018. He was of a noble family, and lord of Cowenburg. Though he receised an education suituble to his rank, and was instructed in every branch of polite literature, his predilection for the art of painting undued him to become a disciple of Daniel Segers.

Having voluntarily placed himself under so able an instructor, his improvement, as might have been expected. was rapid. His subjects were usually in the taste of Segers, garlands of flowers, with some historieal design in the centre, or festoons twining round vases enriched with representations in bas-relief. Ife always copied from nature, and chose his flowers in the entire perfection of their beanty, grouping them with great taste. His pietures are very highly finished, with a light touch, perhaps less spirited than the works of Segers; but it is sufficient praise to say that his performanees rivalled those of his master.

He was much employed by Philip IV., king of Spain, and most of his finest performances are (or at least were*) in the Spanish roya! collection. Two of his capital pietures were at Mechlin; they represented parlands and flowers, and many insects of different kinds on the leaves, all finished with exquisite delicacy. The figure of St. Bernard is in the centre of the one, and that of St. Agntha in the other. Weyermann also highly commends one, which has in the centre a nymph sleeping, watehed by a satyr, the figures being painted by Poelemburg.

Von Thielen seldom inscribed his name on any of his works ; he generally marked them J. or P. Couwehburg.

THILELT is the chief town of the distriet of the same name in the province of West Flanders, in the kingdom of Belgium. It is about 15 miles sonth-west of Bruges, on the road from Ghent to Dixmuden. Thielt is a cheerful town, with two churehes, 1700 houses, sinong which are many handsome modern buildings, and 12 , (000 inhalitants, and is the chief market for the flax-trade of Flanders. At the weekly market there is a great sale for linen, corn, catte, and butter. The inhabitints have several cstablishments for bleaching wax and linen, six breweries, and many flourishing mannfactories. There are an academy, several literary societies, a musieal society, and several schools. [F'LANDERs, West.]
(Stein, Lexicon; Cannabich, Lehrluch; Iloffnamn, Deutschland und seine Bewohner, vol. iii.)

THIERS, a town in Franee, capital of an arrondisscment in the department of l'uy de Dôme, 273 miles from l'aris by Nevers, Moulins, and Roanne, and 24 from ClermontFerrand, the capital of the department: it is in $45^{\circ} 51^{\prime} \mathrm{N}$. lat. and $3^{\circ} 33^{\prime}$ E. long. Thiers originated in the middle ages. There was a strong eastle here in the earlier periods of the French monarehy, which becane under the feudal system the head of one of the principal fiefs of Auvergne. The town stands on the erest and side of a hill stoping down to the northern or right bank of the Durole, a little stream flowing into the Dore, which utself flows into the Allier. It is in a pieturesque situation, amid wild scenery, and commanded by lony and well-wooded hills on the north, down the side of which the road from Lyon to Thiers runs by a remarkably steep slope. The houses at this entrance

- Sn many raluable pletures were carrled nff or destroyed, nol naly during the Preuch occupalinn, turt in the disorikre of lite years, has it is dimentt w, peakk paitivoly. Thun tho lirench king, louts-1 Millypr, a few yearn ngo sent tho Clievalier Taylor to Spain to purelanse pleturee, at in timo when the rake of the propulace wan directel againat the coniveula. The chevaller accortingly went to Syinin, nud purchased foar hundred and meventy four pictures; many of which were thereby maved frum destruction. The Chevalier Taylor says that he maw somo fine picturns by l'aul Veroncese detroyed in spito of bif
urgeut enfrealies and oflern to purchase them.
of the town present a pleasing appearance, from their being painted in fresco in a manner similar to those of Nice; but on proceeding into the town the steep, narrow, dark streets, bordered by gloomy houses, disap point expectation. There is no public building worthy of notice, and no publie square or place except one at the entrance of the road from Lyon: the town is inhabited by workpeople, and presents very few (' not a score,' says one of our authorities) decent houses. The chief manufactures are of paper and playing-cards, finc cutlery and hardwares, leather, and candles. The paper-mills are on the Durole, in the steep rocky banks of which excavations have been made for the sites of the mills: this branch of industry has been established in the town from the sixteenth century. The quality of the paper manufaetured here is good, and a large portion of it is sent to Paris. The razors, knives, and scissors, though of ordinary quality, command a good salc, and are exported to Spain, Italy, the Levant, and the East and West Indies: the iron is brought from Nivernais, Berry, and Franchc Comté. There are in and round the town 600 manufactories or workshops for cutlery, employing, it is said, 6000 persons. The candles are made from the fat of the goats reared on the surrounding hills. There is a large poor-house, in which woollen eloths, lace, and trimmings arc made, and other manufactures arc carried on. These various manufactures employ threcfourths of the population of the town and the villages for many miles round. The population of the communc ot Thiers, in 1826, was 11,613; in 1831, 9836, of whom 6586 wcre in the town itself; and, in 1836, 9982. There are an inferior court of justice, a tribunal dc commerec, a chamber of manufactures, a council of prud'hommes; some fiscal or administrative government offices, an hospital or poor-housc, and a high school, or college. There are eight yearly fairs.
The arrondisscment of Thiers has an area of 332 square milcs, and comprchends only 39 communes, with a population, in 1831, of 67,870 ; in 1836 , of 70,657 : it is divided into six cantons or districts, each under a justice of the peace
(Vayssc de Villicrs, Itinéraire Déscriptif de la France; Maltc-Brun, Geographie; Dietionnaire Gôographique Universel.)
THIMBLE, a metallie cap, in the shape of a hollow truncated cone, worn on the finger in sewing, in order to allow the needle to le prcsscd through the work with adcquate force, without injury to the finger. Thimbles used by sempstresses usually have slightly convex tops, which, as well as the upper part of the circumference of the conc, are pitted with numcrous small indentations symmetrically arranged, which serve to prevent the end of the necdlc from slipping; but those used by tailors, upholsterers, and needlcmen generally, have no tops, but have the like indentations upon the sides of the cone, with which alone the necessary pressurc is applicd to the needle. Although occasionally made of otlicr materials, as porcelain and ivory, for ornamental purposes, thimbles are most commonly formed of sheet silver, stcel, white alloys, or brass; or of silver and steel so combined as to retain the advantage of the sulperior hardncss of the latter metal for the parts which come in contact with the needle, while those which are in contact with the finger are of silvcr. This is sometimes done by making tlic cap and upper part of the cone of stecl and the lower part of silycr; and sometimes by making the body of the thimble entirely of iron or stcect, and lining it with silver or gold. As thimbles form an indispensable part of the furniture of a lady's work-table, much ingenuity is often displayed in thcir dceoration by embossing, engraving, and inlaying with gold. They arc usually formed by means of a stamping-machine, but the following process, for the description of which we are indebted to Dr. Urc's • Dictionary of Arts,' \&e., p. 1239, has been practised by MM. Rouy and Berthier, of Paris :-Sheet-iron, one twenty-fourth part of an inch thick, after being cut into strips of convenient sizc, is passed under a panch-press, by which it is cut into circular dises of about two inches diametcr. These dises are then made red-hot, and laid in succession upon a series of mandrils, with hollows of successively inereasiug, depth, into which the softencd disces are forced by striking then with a roundfaced punch, about the size of the finger. After being thus brought to the required shape, the thimble is placed
in a lathe, when the inside is polished and the oufside is turned, cut with eireles for the reception of gold ormaments, and indented or pitted with a kind of milling-tool. After this the thimbles are annealcd, brightened, and gilt inside with a very thin cone of gold-leat, which is firmly united to the surface of the iron simply by the strong pressure of a smooth steel mandril. Gold fillets aro then fixed by pressure in the grooves turned to receive them.

Sail-makers, in those coarse kinds of sewing which require the application of considerable force to the needle, employ, in lieu of thimbles, circular plates of cast-iron, indented or pitted on the surface. These are called palms, and are secured to the palm of the hand by straps.
The name 'thimble' is applied to the metallic eycs, in the form of rings with a groove in their circumference to receive a rope, which are used in rigging where it is desired to form a loop or cye at the end of one rope, through which another may slide with very little friction.
 the family Chionidider, containing the gencra Altagis, J. Geoff. and Less. ; Ocypetes, Wagl.; and Thinocorus, Eschsch.

THINO'CORUS, Eschscholtz's name for a genus of birds placed by Mr. G. R. Gray in his subfamily ThinoCDRINA.

THION DE LA CHAUME, CLAUDE-ESPRIT, an eminent French physician, was born at Paris, January $16,1750$. His father, who was a banker, gave him an cxcellent education, and destined him originally for the bar, but he himisclf preferred the study of medicine. He commenced his studies at Paris witlı great suecess, but, for some unknown reason, took his doctor's degrec at Rhcims. In 1773 he was appointed physician to the military hospital at Monaco in Italy, which was then oceupied by a French garrison ; and in 1778 to that at Ajaccio in Corsica. His zeal and talents were rewarded by the rank of chief physician to the troops destined to lay sicge to Minorea and shortly afterwards to Gibraltar. Here he had to treat a fatal epidemic which prevailed among the combined French and Spanish forces in a typhoid form, the description of which same disease infmortalised the name of Pringle towards the middle of the last century. This same squadron liad already put ashore and left at Cadiz a great number of Frenchmen that had been attacked by the diseasc, when, in the beginning of Scptember, 1782, it came to the bay of Algesiras. Here the naval hospital could only receive fifty of their sick, while as many as fivc hundred were in want of admission; and to place these in private housesewas not only a very difficult, but also an undesirable procecding. In these embarrassing circumstances Thion de la Chaume conceived the lappy idea of making the sick cncamp under tents as soon as they landed, an arrangement which was dictated by the climate, the season, and the nature of the disease, and of which the boldncss was justified by success. La Chaume himself was attacked by the epidemic, and a great number of nicdieal officers of all ranks, as well as the nurses, were carricd off by it. When peace was concluded La Cliaume returned to France, and was received with distinction by the Comte d'Artois (afterwards Charles X.), who had been a witness of his self-devotion and sucecss at A lgesiras, and who appointed him to be one of his own plyysicians. Shortly afterwards he married, but in the winter of 1785-6 he found that, in consequence of the rapid progress made by a pulinonary disease which had for some time threatened him, it was necessary for him to go to the south of France. Here he met with the kindest attentions from the officers of the regiment which he had formerly taken charge of at Ajaccio, who were at this time in garrison at Montpellier; at which place he died, October 28, 1786, at the carly agc of thirty-six. Thion de la Chaume wrotc but little, though he is said to have carefully noted down cvery night whatcver he had scen during the day worth recording; he nevertheless occupies a high rank in the list of army surgcons. His writings consist almost entirely of articles in medical dictionaries and periodicals, of which the most interesting is the account of the epidemic at Nlgesiras, which was published in the second volume of the 'Journal de Médicinc Militaire.' (Bingraphie Medieale.)

THIONURIC ACID. When nitrie acid is made to act upon uric acid, both are decomposed, and alloxan, a compound of hydrogen, carbon, oxygen, and azote, is ob.
taned in cristals, If sulphurous aeid gas be passed through a safurated solution of alloxan in water, brilliant white erystals are obtrined, wlueh are thionurate of ammonia ; these are to be decomposed by aeetate of lead, and the thionurate of lead formed is to be decomposed by hydrosull phurio acil. liy separating the sulphuret of lead, and eraporating the liquor. thionuric acid remains.
Its properties are, that it is a white semi-crystalline mass, readily soluble in water, and the solution reddens litmus strongly ; it contains the elements of two equivalents of sulphurous acid, one equivalent of ammonin, and one of alloxan, or -

Seven equivalents of hydrogen :	7
Fiyht equivalents of earbon	
Fourten equivalents of oxygen	$: 56$
Three equivalents of azote	112
Tro equivalents of sulphur	$:$

Equivalent

When heated, it is deeomposed, mueh sulphurie acid remains in solution, and a crystalline compound is formed, which is termed uramil.
Thionuric acid combines with bases to form salts, which are termed thiomurates; they are not however of sufficient importance to require description.
thloNVILLE, an important town in France, eapital of an arrondissement in the department of Moselle, 208 miles enst-north-east of Paris, by Meaux, Clateau Thierry, Châlons-sur-MTarne, Ste. Ménéhould, Verdun, and Metz: it is in $41^{\circ} 29^{\prime}$ N. lat. and $6^{\circ} 11^{\prime} \mathrm{E}$. long.
Thionville (Latinized, Theodonis Villa) was a place of consequenee in the time of the kings of Franec of the Carlovingian dynasty, who had a palace here: several important eonneils were held at Thionville in the reign of Charlemagne and his son Louis le Débomair. After the extinetion of the Carlovingian dynasty, the place came suceessively into the hands of the counts of Luxembourg, the dukes of Bourgogne, and the house of Austria, passing to the Spanish branch of that family. The duke of Guise took it from the Spaniards, A.D. 15.). 8 , but it was restored the following year. In A.D. 1639 it whs besieged by the Freneh, who were entirely defeated by an ammy sent to its relief: it was however taken by the prince of Conde, A.D. 1643, after the battle of llocroy, and has ever since remasned in the power of the french. It was bombarded by the Austrians in A.D. 179a, and again by the allics in A.D. 1814. Thiouville is surrounded by strong fortifications, and is a fortress of the tluird class, and one of the lameriers of Franee toward the Rhenish provinces of Prussin. The tuwn is ou the left or west bank of the Moselle; the citadel on the right bauk: the two commmnicate by a laridre, the piers of which are of stone. and the upper purt of wood, removeable at pleasure. The town is skirted on the south-east side by the canal of Yutz, over which are two bridges of slone and one of wood. The entrance info the town is by six gates: the houses have little worthy of notice: there are a good parade, a parish clureh whieh deserves examination, a riding-school, a corn-market, a theatre, an arsenal, a college or high school, which nceupies the ex-convent of the monks of St. Augustine, an humpianl, and a military prison. There are some manufactures of hosicry, woollen eloth, hats, honsehold firniture, and eandles: there are breweriez, tan-yards, and oil and lark nills. There is one yenrly fair.
The population of the commune of Thionville, in 1826, was 5421 ; in 18:31, 50-15 (of whom 4142 were in the town); in 1830, 5igso. There are a subordiuate court of justicee, several fiscal and administrative government offices, and a mociety for the eneouragement of agrieulture and industry.

The artondissement of Thionville has an area of to *guare miles, and comprehends 117 communes: it had, in 1.31, a propulation of $\mathbf{y} 3,2,27$; aud, in 1836, of 87,530 : it is dividerl into five eantons or districts, each under a justice of the perace.
(Malte-13mu, Giographie Üniverselle: Dictionnaire Girneravhique Universel.)
THH1\}n, an interval in music, classed among the imperfuet coneurds, because liable to alteration; that is, the thind may be cither major or minor. The ratio of the Major Third is 5:4; of the Minor Thind, $6: 5$. The former compries one major and one minor tone, as C R.

The latter comprises a major tone and a semitore, as Ac. Kxample:-

Or, aecording to the mode of description adopted by many writers on the suhjeet, the Major Third conprises, melusively, five semitones; the Minor only four, Example -

THIRI,AGE, a tenure or custom formerly very comman in Scotland, by whieh the owners or opeupiers of certain lands were compelled to take their corn to a particular mill, to which the lands were said to be thirled or astricted. and to pay a certain proportion of it, varying in different eases, as a remuneration for the grinding, and for the expense of the erection and maintenance ol the mill. Covenants of thirlage also bound the oreuppiers of the astricted lands to the performance of ecrtain services for the maintenance of the mill and mill-dam, the carriage of millstones from the place at which they were purehased, \&e. Thirlage was of three kinds, of which the least oppressive was the thirlage of grindable grain, by which the tenants or possessurs of the astrieted lands, were merely compelled to earry to the mill such of their corn as they might require to use for food. The thirlage of growiug eorn extended to all the corn raised upon the thirled lands, with the execption of seed-corn, and sueh as might be used as food for horses on the farms in the state of grain. In some cases this kind of thirlage was modified by a provision to enable the farmer, on payment of a certain proportinn of eorn as compensstion, to sell the remainder of his grain without lations if to the mill to be converted into meal. The third hind of thirlare, ealled thirlase of intecta et illata, required that all corn brought within the thirled distriet, wherever it might have been raised, should be taken to the dominaut mill, that is to say, the mill to which the district is astriefed or bound. This kind of servitude, having hecome in many eases execedingly oppressive, has fallen into disuse, an amual payment in grain being substituted for it. Further partieulars respecting this tenure may be found in Rees"s • Cyclopardia,' art. 'Thirlage;' and in the article -Law' (elxx., 12-18) in the fourth edition of the "Encyelopredia Britanuiea.

THIRO'PTERA, Spix's name for a genus of Chesroptera which, aceording to Cuvier, secms to have many eharacters in common with Molossus: its thumb carries a small coneave palette which is peculiar to it, and enables it to hook itself better than it otherwise could.
Example, Thiropitera triculor, Spix, 36, f. 9.
Cuvier remarks that he places this subgenus with doubt, because the description is incomplete.
THIRSK. [Yorishmr.]
THIRST is the peculiar sensation which exeites the desire to drink. Water is the proper olject of this thesire. Of all the warn-blooded animals which are sulject to thirst, man alone is either disposed, or, by the circmmstances of his artificial mode of life, compelled, to satisfy it with any other liquid; and in all the variety of beverages which man has invented, the water with which other ingredients are combined is the only part which is essential to the satisfaction of thirst.
The fimes and degrees in which thirst is felt during health are, in general, such that, by satisfying it, the bods. is provided with the quantity of water necessary for the repair of its tissues and the inaintenanee of their proper moisture, and for the replacement of the fluid which is constantly lost by perspiration sum other discharges. But The quantity of water necessary for this purpose varies greatly, aceording to the difterent cireunstanees of age, sex, and temperament, and still more according to the nature of the food taken, the slate of the atmosphere, the mode of life, and the eustom of the individual. Dry aud
hard or salted food excites great thirst, probably beeause a large quantity of fluid is abstracted from the blood for its digestion; but fruits and soft vegetables assist, by the quantity of water which they contain, in quenching thirst; and infants, receiving their food and drink at once from the milk whieh is naturally provided tor them, are perhaps not sensible of thirst as a healthy sensation different from that of hunger. Strong drinks, again, excite thirst, but in a peculiar manner; either by their irritation of the nerves of the digestive canal, or by the great quantity of fluid which, by exosmosis, they withdraw from the blood.

As a general rule, the degree of thirst during health is directly proportioned to the rapidity of the exhalation of fluid from the skin and lungs. Hence the naturally greater thirst in summer, and the desire for the fresh fruits of the season, which both supply water and produce moisture of the mouth by exciting a flow of saliva; henee also the less natural thirst which is produced by remaining in hot and crowded rooms, and that which is so painfully felt by those who work about iron-forges and steam-engines, and which they ean satisfy only by frequent and enormous draughts of water. Of the same kind is the thirst which many have felt in ascending high mountains, on which, as the atmosphenc pressure diminishes, the evaporation from the skin is increased; and that which is produced by exposure to a dry brisk wind.

The sensations and other circumstances accompanying ordinary thirst need not be described. The sensation of dryness of the mouth and throat, which most strongly charaeterizes it, is not always the result of those parts being really deficient in moisture, nor is it removed by supplying the mouth alone with fluid. It is an example of that class of local sensations which are indicative of peculiar general conditions of the body, or of the state of some other part in which no sensation is perceived. These have been called reflex sensations; and one of the characters common to many of them, as well as to thirst, is that the animal perceiving them is impelled to actions which tend to the health of the body. For example, the irritation which is felt at the apper part of the throat, and which induces one to cough, is often due, not to a direct excitement of that part, but to the existence of some irritating substance, such as mucus, in a distant and insensible part of the air-passages. From the latter part an impression is conveyed to the nervons centre; thence, without direetly giving rise to a sensation, it is supposed to be reflected to the sensitive nerves of the glottis; and the sensation which is perceived through these excites the desire to cough, and thus leads to the expulson of the irritating substance. In like manner the sensation of dryness in the mouth induees one to drink, and so to remove not merely the sensation, but the inore important condition, such as a deficieney of water in the blood, of which it is a sign.

But as cough may be produced by a direct irritation of the upper part of the laryinx, so a sensation similar to that of thirst is often due only to a rapid evaporation from the mouth and thront, as in long speaking or singing ; but this may be removed by merely washing the mouth and throat, or by exciting a flow of saliva; means which are insufficient for the reniedy of real thirst. That the introduction of water into the blood is necessary for quenehing thirst has been often proved in persons who in attempting suicide have divided the pharynx or oesophagus, so that they could no longer swallow in the ordinary mode. Repeated washing of the mouth has been attogether unavailing to relieve their thirst; but the injecting of water through the wound into the stomach has quickly removed the sensation of dryness in the mouth, though none of the water passed through it. Similar facts have been observed in those who, being unable to swallow or to have liquids forced into their stomaehs, have been long immersed in baths, and in shipwreeked sailors who have had no fresh water and have relieved their thist by keeping their clothes soaked with seawater.

The thirst of many diseases, suel as acute fevers and important inflammations, affords another proof of the sensation peculiar to it being chiefly a sign of some general condition; for in these the sensation often continues not only when the mouth is moist, but after large quantities of water have been imbibed, being here probably dependent on some condition of the blood which dilution does
not remedy. In certain cases also the sensation seems to be entirely subjective, and dependent on a peculiar condition of the nervous system. This is remarkably the case in a disease of which the true pathology is unknown, and which has been named polydipsia, from its ehief symptom being an excessive and insatiable thirst. Several examples have been recorded, in some of which the thirst probably depended on a constant diseharge of fluids from diabetic blood, or by dropsical effusions, or otherwise: but in many it could not be traced to such an origin. One of the most remarkable of them is described by Mr. Ware, in the 'London Medienl and Physieal Journal' for 1816: the patient was a man 22 years old, whose health was in other respects good, but who was compelled to drink six gallons of water daily. He had been accustomed to drink nearly as much from his childhood; and, if deprived of a sufficient supply, his head was always affeeted, and fainting and dullness of the senses ensued. Nearly all the cases of the same kind which have been published are collected in a paper by M. Laeombe, in the French medical journal 'I'Expérience,' for May and June, 1841, and references to several are given by Tiedemann, in his 'Physiologie des Menschen,' Band iii., p. 71.

If thirst be long unallayed, it produces one of the most dreadful states which a man can be compclled to bear. Those who have attempted suieide by starration have been unable to resist the desire to drink, though they have endured many days of abstinence from food, and have been compelled thus for a time to protract their lives. The same tortures have been endured by sailors wrecked far from land. As the thirst increases, the mouth and throat become paintul and burning hot, the respiration grows diffieult, and the expired air teels hot and dry. The voice becomes hoarse, the speech thick and indistinct, and the pulse small and rapid. All secretion diminishes or is suppressed, the skin is hot and dry, and the eyes become painful and inflamed. The sensibility of every part of the body seems exalted, at the same time that the power of the muscles fails; the mind passes slowly from restlessness and anxiety to despair, and at last, as the body grows weaker, begins to wander in a low delirium. At the close of life there is an utter prostration of strength, and, in general, insensibility; but the inflammation of the mouth and eyes, and of all the parts that are not protected from the air by a thick euticle, increases, and procceds sometimes to gangrene. The time during which so miserable a state can be endured varies with the strength of the sufferer. Haller (Elementa Physiologire, t. vi.) has colleeted exaniples of men who lived for at least fifteen days without drinking; but the more ordinary period is eight or ten days.
THIRTV TYRANTS (of Athens). In the year 404 B.C., when, after the Peloponnesian war, Athens had falten into the hands of Sparta through the treacherous designs of the oligarchieal party, the Spartans themselves did not interfere in any direct way with the politieal constitution of Athens (Diodorus, xiv. 4), but their negotiations with Theramenes and others of the same party had convinced them that even without their interference the demoeracy would soon be abolished. In this expectation they were not disappointed, as this was really the object of the oligarehical party. But as this party did not sufficiently trust its own power, Lysander, who had already sailed to Samos, was invited to attend the Assembly at Athens, in which the question of reforming the constitution was to be considered. The presence of L_{y} sander and other Spartan generals with their armies, and the threats that were uttered, silenced all opposition on the side of the popular party, and on the proposition of Theramenes a dccree was passed that thirtymen should be clected to draw up a new constitution. (Xenophon, Hellen., ii. 3, 2.) Lysias (in Eratosth., p. 126, ed. Steph.) gives a more satisfactory aecount of the proeeedings on that memorable day than Xenophon. These thirty individuals were invested with tho sovereign power of the republic. Theramenes himself nominated ten, the Athenian ephors ten others, and the eleetion of the remaining ten was left to the people. The names of the Thirty are preserved in Xenophon (Hellen., ii. 3, 2). Their government, a real reign of terror, which fortunately did not last more than one year, was eallcd in Athenian history the year of anarchy, or the reign of the Thirty Tyrants. From the moment that they had thus acquired an apparently legal power, they filled the vaeancies in the
semate and the magistracies with their orm friends and creatures. The new code of laws which they were to draw up was never made, that they might not put any mostmints upon themselves, and might always be at liberty to act as they plensed. A similar bonrd, consisting of ten men, perhaps appointed by Lasander hinuself, was intrusted with the government of Pirxecus. The object of the tyrants was to reduce Athens to the condition of an unimportant town, aud to make the people forget the greatness to which it had been raised by'Themistocles and Pericles. The splendid arsenal of Athens was sold and pulled down, and several of the fortresses of Attica were destroyed. To establish their tyranny the Thirty found it necessary to get rid of a number of persons obnioxious to them. The first that were put to death were the syeophants, who during the time of the democracy lad coniributed most towards its overthrow by their shameful pretices; and the senate, as well as cvery well-meaning citizen, was glad to sec the republic delivered of such a pestilence. The senate acted in these trials as the supreme court of justice, and the Thirty presided in it. All the votes of the senators however were given openly; that the tyrants might be able to see which way ench senator voted. This mode of proceeding, though it was at first only directed against individuals equally obnoxious to all parties, became alarming when all the distinguished men, who liad been imprisoned before the day on which the new constitution was established, in order that they might not frustrate the plans of the oligarelss by their opposition, were in like manner sentenced to death. The apprehensions of the people were but too well founded, and Critias, the most cruel annong the Thirty, gave sufficient indications that the Tyrants did not mean to go on with the same moderation. That they might always have at hand an armed forec to support them, they sent an embassy to Sparta to ask for a garrison to oceupy the Acropolis. This was granted, and eame under the command of Callibius as harmostes. Ilis arival rendered the Thirty secure. They courted the Spartan larnostes in the most obsequious manner, and he in return placed his troops at their disposal for whatever purpose they might wisli to employ them in establishing their dominion more firmly. The assistance of the senate in the trials for political offences began to be dispensed with, and the number of the unhappy victims inereased at a fearful rate. Not only persons who opposed or showed any dissatisfaction with the rule of the Tyrants, but all who by their merits had gained favour with the people, were regarded as dangerous persons, who, is they could choose, would prefer a popular government, and were condemined to death in a yery summary manner. The reign of the Thirty now
began to display all its horrors, and no one could fecl becan to display all its horrors, and no one could fecl
safe. To be possessed of wealth, cspecially in the case of aliens, was sufficicnt to bring a man to ruin, for the tyrants, independent of all political considerations, began to murder for no other purpose than that of enriching themselves ly the confiseation of the property of their victims. The remonstrances of Theraneucs against this reekless system of bloodshed were not followed by any other consequenees than that the Thirty selected 3000 Athenians who were to enjoy a kind of franchise, and who could not be pat to death wifhout a trial before the senate. The rest of the citizens were eompelled to give up their arms, nnd were treated ns outlaws. By this expedient the Thirty; hoped to strengthen themselves, and to lecome more independent of the Spartan garrison. The' opposition of Theramenes to this arrangenlent involved his own destruction. [Tueuaresizs.] The horrors which were now perpetrated becanie every day more numerous and fearful, and numbers of Athenians fled from their native country to seek refuge at Argos, Megara, Thebes, and other places, where they met with an hospitnble und kind reeeption. The tyrants soon began to be uneasy at the erowds of exiles who thus gathered round the frontiens of Alticn, and applied to Sparta to interfere. The Spartans issucd a proclanation empowering the Thirty to arrest the exiles in any part of (irecee, and forlidding any Greek state to intertere on their belalif. This command was entirely disregarded by the Greeks, especially the Thelbans, who even declared that the Athenian fugitives should be reevived and protected in all the towns of Bocotia. Theles, whowe mode of netion was not dietated by a generous and
humanc feeling towards the unlappy Athenians, but rather arose frum jealonsy of Sparta, thus became the rallying point for a ereat inumber of exiles, among whom Thrasybulus was the most enterpmsing. In what manner the rule of the Thirty Tyrants was at last overthow'n, and the demoeratical constitution was restored at Athens, is related in the urticle Turasvarius.
(Xienophon, Hellen., ii. 3; Diodorus, גiv. 3, Se.; Thirlwall, llistory of Greece, iv., p. 174. \&cc.)
TIHLTY THKANTS (under the Roman Impire). This name has been given to a set of usurpers who sprung up in various parts of the Roman empire in the reigns of Valcrian (A.13. 253,3-2(0)) and Gallienus (261-268). This appellation of the Thirty Tyrants, in imitation of the Thirty Tyrants of Athens, is highty improper, and bears no analogy to the Thirly of Athens. They rose in ditferent parts, assuming the fitle of emperor, in irregular succession, and were put down one after another. Their number moreover does not amount to thirty, unless women and children, who were honoured with the imperial title, are included. 'Trebellius Pollio, who, in lis worl on the "Triginta Tyranni,' describes the adventures of each of them, has taken great pains to make out that their number was thirty. There were however only nineteen real usir-jers,-Cyriades, Macriamus, Balista, Odenathus, and Yenolia, in the eastern provinces ; Posthumus, Lolliauss, Vietorinus nnd his mother Victoria, Marius, and Tetricus, in Gaul, Britain, and the western provinces in general; Ingenuas, Regillianus, and 13ureolus, in llyricum nnd the countries about the Danube ; Saturninus, in Pontus; Trelecllianus, in Isauria; Piso, in Thessaly; Valens, in Achais; Aemilianus, in Egypt; and Celsus, in Africa. The majority of these usurpers were persons of low hirth, without any talent or virtue, und seareely any one of them died a natural death. The best among them were liso and Odenathus, and the latter, who maintained himself at Palmyra, received the title of Augustus from the Roman senate, and was enabled to bequeath his empire to his widow, the celebrated Zenobia.
(Trebellius Pollio, Triginta Tyranni; Gibbon, Ilist. of the Decline and Fall, chap. x. ; Manso, Leben Constantin's des Grossen, p. 433, Se.)

THIRTY YEARS' WAR is the name of that memorable contest which lasted from 1618 to 1648 , between the emperor and the Roman Catholie stales of Germany on one side, and the Protestant states, with their allies, Denmark, and afterwards Sweden and France, on the other side. Spain, Holland, and Transylvania atso took part in it, but their interference was less direct. This long struggle has generally been considered a religious war. It had indeed its origin in religious differences, but politieal ambition afterwards becanie the real motive of the contending pnrties, and religion was used to veil tic designs of the leaders, and to kecp up the enthusiasm of the people. The Thirty Years' Whar arose out of the state of political and religious confusion into which the German empire was thrown by the Retormation, and which in the beginning of the sesentcenth century lad become so incxirieable, that a civil war, without foreign interferenee, became apparently the shortest it not the only means to save Germany from ruin.

In order to faeilitate the understanding of the history of the "Thirty Years" War, we shall first give a short vicw of the state of religious and political affairs in Germany during the latter purt of the sixtecnth century.
When the war between Charles V. and Mauree clector of Saxony was terminated by the freaty of Passau (15.52), and after the conclusion of the Second Peace of Religion (10.5), the menory of the dangers from which Germany had escaped preserved the empire during a long period from the cnlamity of n new religious war. The P'rotestant religion was propagated, without any violence, in many provinees which had until then leen tailhful to Rome. As early as 1580 the most powerful hereditary princes of the empire, exeept the archdukes of Austria and the dukes of Bavaria and of Cleves, were all converted to the doetrines of Luther; the Roman Cntholic princes, and even the cmperors F'erdimand L. and Maxinulian I1,, were obliged to make many concessions in religious matters in order to keep their sulyjects in obedience.
by the Second Peace of Religion the prinees had aequired the 'ius reformandi,' that is, the right of protecting
their subjects in religious affairs, which right was gradually considered by them as a right of reforming the state of religion. For this purpose the Roman Catholic princes employed the Jesuits and the Capuchins; the Jesuits were active in the conversion of men distinguished by birth, by knowledge, or by their social position, and the Capuehins worked upon the mass of the people. Their zeal and success occasioned bitter complaints among the Protestants, who however gave causes of complaint equally numerous and equally well founded to the Roman Catholics. The dissatisfaction of the people was augmented by the selfish policy of their princes.
The ecclesiastical dignity of a bishop having lost all its signification in the Reformed religion, the Protestant bishops became mere temporal princes. Among their number were the archbishops and bishops of Bremen, of Magdeburg, of Verden, of Luibeck, of Osnabrück, of Ratzeburg, of Halberstadt, and of Minden. There being, at the same time, some hope that the Protestant bishops miglıt become hercditary princes in their bishoprics, the Roman Catholic bishops of Münster, of Paderborn, of Hildesheim, and the clector archbishop of Cologne, manifested their intention to adopt the Protestant faith. Availing themselves of the privilege granted them by the 'jus reformandi, they encouraged their subjects to adopt the Protestant religion. The Roman Catholic princes tried all in their power to prevent such changes, but the Protestant princes favoured them, and each party had its motive for doing so, as the younger sons of the princes and nobles of both parties were usually appointed bishops, abbots, and canons.

The Roman Catholic party recovered its political influence towards the end of the sixteenth century. The Protestant elector archbishop of Cologne, Gebhard, count of Truchsess, was driven from his see, and his successor, Ernst, duke of Bavaria, who held together the bishoprics of Cologne, of Liege, of Münster, and of Hildeshein, oppressed the Protestants in all his extensive dominions. The bishops of Würzburg and of Bamberg, assisted by the Jesuits, compelled their Protestant subjects to emigrate, and the arehbishop of Salzburg treated the Protcstants with unlieard-of cruelty. In Strassburg there were at the same time a Protestant and a Roman Catholic bishop, who, after a bloody feud, were both sustained by the einperor Rudolph II. in those parts of the bishopric which they had conquered (1593). The Roman Catholie people were equally persecuted by the bishops of Halberstadt and of Osnabrück, and the troubles were increased by the differences which arose in the Protestant party itself between the Lutherans and the Calvinists.

The leader of the Calvinists was the clector palatine Frederick IV., who, with a small number of Calvinjst princes, refused to appear at the diet of Regensburg (1504), which was assembled by Rudolph II. for the purpose of obtaining the assistance of the empire against the Turks. Frederick and his party declared that they would not assist Rudolph in the Turkish war, unless he satisfied all the claims of the Protestants, and at the same time they promised a subsidy of 400,000 gulden to Henri IV. of France if le would restore the Protestant bishop of Strassburg to the entirc bishopric. The Lutheran princes expressed the utmost indignation at the treacherous conduct of Frederick IV., and they sent their contingents to the Turkish war. But from that moment there was a Frencli party among the princes of the empire, and we shall afterwards sce how dexterously France managed her influence over Germany.

The diet at Regensburg was dissolved in 1608 without any results with respect to the peace of the empire. The Roman Catholic states claimed the restitution of all the territories, bishoprics, abbeys, and churches, which had been scized by the Protestants since the treaty of Passau (155̄2); but so far were the Protestant, and especially the Calvinist, princes from yielding to these claims, that they resolved to resist them by every means in their power. For that purpose they concluded the 'Protestant Union' on the 4th of May, leus, of which however the elector of Saxony declined to beeome a member. The elector palatine Frederick IV., a Calvinist, was the leader of the Union. The members of the Union immediately levied troops, and sent ambassadors to England, France, and Venice, thus giving the example of a well-organized rebellion, and giving the example of
showing that they would resist the emperor and break the constitution of the empire with the assistance of foreigners.

The confusion of political and religious intercsts increased after the death of John William duke of Jülich, Cleves, and Bcrg (1609), one of the most powerful princes of the Roman Catholic party. The succession to his rich and extensive territories was disputed between John Sigismund, elector of Brandenburg, a Lutheran; the count palatine of Neuburg, Philip Louis, a Calvinist; and Christian II., elector of Saxony, a Lutheran, but a triend of the emperor. Alarmed by this latter cireumstance, the elector of Brandenburg and the count palatine resolved to govern those duchies in common, until they could find an opportunity to settle this affair; and they immediately took possession of Jülich, Cleves, Berg, and the dependent counties. This act was declared by the emperor to be a breach of peace; he ordered the vacant inheritance to be seguestrated, and he appointed Leopold of Austria, bishop of Strassburg and Passau, to carry the measure into effect. He was assisted by the whole Roman Catholic party, which, alarmed at the loss of such a powerful member as the duchy of Cleves, concluded a union, to which they gave the name of the 'Liga' (11th July, 1609). This Liga was afterwards the strongest support of the emperor during the Thirty Years' War; Maximilian, duke of Bavaria, was at the head of it. But as early as the llth of February, 1610, the Union concluded an alliance with Henry IV. of France, and occupied the bishoprics of Würzburg and Bamberg. French troops entered the duchy of Jülich. King. Henry seemed to have found an opportunity of carrying into cffect his plans of a European republic, but he was murdered on the 14th of May, 1610. Frederick IV. died only five months later, and the Union concluded a peace with the Liga at Munich on the 24th of October, 1610. In the mean time a deadly personal animosity had broken out between the elector of Brandenburg and Wolfgang William, the son and successor of the count palatine Philip Louis, owing to their common government in the states of the late duke of Cleves. Wolfgang William, in order to obtain assistance against Brandenburg, adopted the Roman Catholic religion; and the elector of Brandenburg made himself a Calvinist for the purpose of obtaining the assistance of the Union, which was chiefly composed of Calvinist princes. The confusion which arose from these sudden changes became still greater by the interference of the king of Spain, Philip III. This king became afraid of new religious troubles in his provinces of the Netherlands, situated on the boundaries of the duchies of Cleves and of Juilich, and he therefore ordered his general, Spinola, to occupy them for the count palatine with a body of 30,000 Spaniards. But no sooner had his army entered these territories than the United States of the Netherlands, then at war with Spain, sent troops into the same countries under the pretence of occupying them for the elector of Brandenburg (1614). This was the first example of a war between foreign powers being carried on in Germany.

The empire was now on the eve of a general war. It was generally expected that it would begin on the banks of the Lower Rhine, but, on the contrary, it broke out in Bohemia.

By a solemn declaration of the emperor Rudolph II., liberty of religion had been granted to the Utraquists, a numerous Protestant sect in Bohemia (9th of July, 1609). The document containing this declaration lad the name of the 'Majestaits-Brief:' Civil troubles having broken out in Bohemia, and Rudolph II. having taken arbitrary measures to put an end to them, the Bohemians deposed him, and chose his brother Matthias king in his stead, in 1611. Rudolph II. died of gricf in the following year, and Matthias likewise succeeded him on the Imperial throne (1612). The number of Lutherans and Calvinists having greatly increased in Bohemia, they claimed the same religious liberties with the Utraquists. Matthias refused to yield to these claims, and serious differences arose between him and the Lutheran and Calvinist Bohemians. They were joined by the Utraquists, who were afraid the emperor might abolish the 'Majestäts-Brief.' Matthias sent commissioners to Prague, who assembled the deputies of the Bohemian states in the royal castle of the Hradshin, and declared to them that their king and emperor would not extend the 'Majestits-Brief' to the Lutherans and

Vol, XXIV.-3 C

Calvininds. Suddenly an armed party of Bahemian nobles, who belonged to the Utraquists, nished into the room where the commissioners and the deputies were awembled. They seized 1 wo of the commissioners, the counts Martinitz and Slawata, who were detested in Bohemia, nud they and their seceretary Fabricius were preeipitated troun the windows, a heirht of eighty feet ; but a heap of dung preserved them from beng dashed to pieces, and they all escaped and hastened brek to Vienua.
This lappened on the 21st of Mny, 1618, and this day is justly regarded as the beginning of the Thiryy 'ears' War.
The couduct of the Bohemians towards the In perial eommissioners was by no means an act of raslmess or anger. The party of the Utraquists hat previously resolved upon it, because they wanted to give the signal for an insurrection which had been secretly prepared among all the Protestants of Bohemia and leer dependent provinees Mosavia, Silesia, and lussatia, as well as among those of the archduchy of Austria. The insurgents immediately organized a regular administration of the kingdom. They also levied an arny, which was commanded by the count of Thurn, and which was reintoreed by a body of the troops of the Uvion, commanded by Clristian, prinee of Aulult, one of the greatest intriguers of his time. The einperor Matthias died soon afterwards (20th of March, 1619), and Ferdinand II., arelduke of Austrian Styria sueceeded him as emperor. Previously to the event of the 2lst of May, 1618, Ferdinand had been erowned as future suceessor of Mathias in Bohemia.
The leaders of the Union encouraged the IBohemians to furtier resistance. Although Ferdinand I1. promised religious liberty to all the Protestants of Bohemia, they nevertheless sent their troops against him, and declared the throne vacant. Frederick V., elector palatine, the son-inlaw of James I. of Eugland, was chosen ling of Bohemia, and he was crowned at Pragne on the $+1 h_{1}$ of November, 1619. In the mean time the count of Thurn had made great progress in Austria. In the month of July, 1619, he was under the walls of Vienna, and, although this city was relieved, he remained with his amy in the adjacent country. There he was joined by Betlen Gabibor, the sovercign prinee of Transylvania, who had overrun Hungary and who took up his winter-quarters in Moravia, together with the eount of Thurn. In the same winter (1619-16:20) the new king of Bohemia made a defensive and offensive alliance with the Protestant insurgeuts of Hungary, and he proposed a similar alliance to Sultan Ahmed 1. This imprudent and unpatriotic poliey made his eause unpopular anoong all parties in Germany.
Ferdiuand 11. took vigorous though arbitrary measures to recover Bohemia and her lependencies, those extensive and rieh countries which are now inhabited by upwards of ten millions of inhabitants. The pope, Spain, Bavaria, and even the Protestant elector of Saxony, promised their assistance to the emperor. In the autuniu of 1630 the Iower Palatinate was oceupied by the Spaniards under Spinola; the duke of Bavaria overran the Upper Palatinate and entered Bohemia; John George, elector of Saxouy, (sinee 1611), conquered Lusatia; and Austria was rescued by the emperor lumself, who had made peace with Betlen Gabor. At last the Bavarians, commanded by their duke and the celebrated Tilly, forced the Bohenians to make a stand on the Weisse Berg under the walls of Prague. There they were eompletely defeated on the sith of November, 1630. Frederick thed from his enpital, aul after a short stay in his second capital. Breslau, he abandoned his kingdom and took refuge in Ilolland. Towards the clase of 1621 Bohermia, with all her dependencies, was in the hands of the emperor, who rewardel his ally, the elector of Saxony, with the province of Iasatia. He punisherl the Ilohemians severely. A grent number of nobles were beheaded, and their estates, as well as those of a still greater ummber of fugitives, were confiscated; but an ampesty ('quoad vitamet honorem') was given on the 41 h of May, 1622 to all those who had not been eondemned before that day. The Lutheran and Calvinist ministers were banislied, and their churches were shut up; but not those of the Utraquista, notwithstanding the "Majestits-13rief" Whe abolished. The Roman Catholies were restored to all their rights; and the university of Prague and the whole national education were put huder the direetion of the Jewitu. The emperor then put king Frederiek under the
ban of the empire, deelared his eleetorship to be forfeited, and proposed the duke of Ilavaria to be chasen elector. This proposition however gave dianatisfaction to the other electors, who considered the bubidmment of Frederiels as illegal because the council of the eleetors had not formally pronounced it aceording to the constitution of the einpire.
The power of the emperor increased so mueh by his eonquest of Bohenia, and the Roman Cathotie states were so much eneouraged, that they claimed those bishopries, abbeys, and churches which had been reformed by the Protestants since the Second Peace of Religion.

Before the fate of Bohemia was decided, Christian IV., king of Denmark and duke of Holstein, several prinees of northern Germany, and the ainbassadors of England, Sweden, and the United States of the Netherlands, held a eongress at Segebery in Holstein for the purpose of forming an alliance against any ambitious sefienes of the emperor. After the battle on the Weisse llerg, king Frederiek also cane to Segeberg, and claimed the assistance of the northern prinees in order to recover his electorate. These prinees however had assembled exclusively for their own interests. The bishoprics of Lübeck, of Ifremen. of Verden, of Sehwerin, of I Falberstadt, and several others, had been bestowed oll younger sons of the reigning houses of Holstein and of Brunswick, and they were sure to lose them if the Roman Catholic parly had power enough to take them. Frederiek therefore found only one friend. This was Christian, duke of Brunswick and bishop of Halluerstadt, an unprineipled man, who loved Elizabeth of England, the wife of the unhappy king of the Bohemians, and swore he would die for her. With a strong body he entered the Palatinate. He was beaten by Tilly at Hoichst (6 (1) June, 1622). Cluristian now joined the count of Mansfeld, a man not less unprineipled than himselt, and they retired to northern Germany as far as East Friesland. They plundered and robbed friends as well as enemies, but, pressed by Tilly, they dishanded their troops, and fled to England (December, 1623). Maximilian of llavaria having been chosen elector at the diet of 16.3 , and Tilly leeing then in possession of several northern bishoprics, king Christian concluded an alliance with England and the United States of the Netherlauds for the purpose of obtaining subsidies for the war whieh he intended to declare against the emperor. Christian of Halberstadt and the count of Mansfeld promised their assistanee. The former went to France and levied troops there, and Mansfeld, who had obtained a comnission as an English general, levied a strong force in England. They united in the Netherlands, and, affer many adventures and dangers, Mansfeld suceceded in joining the duke of Meeklenburg, who was an ally of the king of Denmark. Mennwhile the latter king had been appointed commander-in-cluief of the united forces of the circle of Lower Saxony, and, though the greater part of the prinees of this eircle shortly afterwards made their peace with the emperor, the king advanced into Hanover, where Tilly was ready to receive him (1625).

The einperor was then in a very embarrassed situation. The war in northern Germany was carried on by the troops of the Liga, and prineipally by those of Bavaria, commanded by Tilly, who was at the same time com-mander-in-chief of the forces of the Union. The duke of Buvaria had consequently an immense influcuee in public affars; the einperor was obliged to cede to lim the revenues of a part of his archduchy of Austria as an indemnification for his expenses in the Bohemian war, and to appoint him his high commissioner in the clectorate of the Palatinate. On the other side, Ferdinand 11. was threatened by the count of Mansfeld, who was then at the head of a strong army in the dnehies of Meeklenburg, and tho was ready to invade Lusatia and Silesia, and to join Betlen Gabor, prinee of Transylvania. This prince had again taken arms against Austria, ned there was only a small body of Imperial troops to check him.

Albrecht of Waldstein [Wa Illevsteis], tha hero of the Thirty Years' War, saved the emperor and preserved the enuire. Known as a skilful general, and in possession of very large estates, he was created duke of Friedland in 1624. In 16\% Ferdinand 11. appointed him conmander-iu-clief of an Imperial army which did not exist, but which was created by Waldstein in a very short time.

Waldstein adyanced towards the Lower Elbe, and took a fortified position at Dessau. There he was three times attacked by Mansfeld. On the lst and on the 11 th of April, 1626, Mansfeld was beaten; on the 25th of the same month he was put to the route. He reinforced his army in Meckleuburg, and in June invaded Silesia with 20,000 men, in order to join Betlen Gabor. Waldstein marehed in a parallel direction, and weakened his enemy by skirmislies. On the 8 th of September Mansfeld was on the hanks of the Waag in north-western Hungary, with only one-fouth of his army, while Waldstein with fifty thousand men stood bctween him and Betlen Gabor. This prince made peace with the emperor, and Mansfeld, leaving the remainder of his army to the command of John Ernst, duke of Saxe-Weimar, fled to Venice, but died on lis way, in a village in Dalmatia. Christian of Halberstadt, his fellow-adventurer, had died before him, in the 27th year of his age.
While Waldstenn was victorious in eastern Germany, Tilly carried on the war in the country west of the Elbe aģainst the king of Denmark. In consequence of a fall from his horse, which had affected King Christian's mind to an alarming degree, he firmly believed that God had chosen lim to be the clampion of the Protestant religion. But half of his army was destroyed by the skilful inanouvres of Tilly, and at last the king was obliged to make a stand at Lutter am Barenberg, between Goslar and Hildesheim. A battle ensued, in which the Danes were completely defeated (17th of August, 1626), and Christian fled beyond the Elbe into his dominions.
Tilly employed the following year (1627) in besieging and taking the towns on the left side of the Elbe, which were oecupied by Danish garrisons. In the month of July he was joined by Waldstein, who, after his vietories over Mansfeld, had driven the Danes from the countries cast of the Elbe. Waldstein, after having put the dukes of Meeklenburg to \#light, attacked the king of Denmark, who had assembled a new army (1628), and in one campaign his troops conquered all the continental possessions of Christian IV., who was conipelled to beg for peace before the end of the year. A congress assembled at Lübeck, and on the 22nd of May, 1620, Waldstein granted peace to the king of Denmark, on eonditions unexpectedly favourable: Jutland, Sleswik, and Holstein were restored to Christian, who promised not to interfere in the German affairs nor to make any further claim on bishoprics on belialf of his kinsmen. Immediately after the peace of Lübeek, Waldstein was invested with the duchies of Meck lenburg, the dukes having previously been dispossessed and put under the ban of the empire for their adherenec to the king of Denmark.
One of the nost remarkable events in the Danish war was the siege of Stralsund on the Baltic, a town whiel belonged to the Hanseatio confederaey, though it was subject to the duke of Pomerania. Stralsund being oceupied by a Danish garrison, it was besieged by the troops of Faldstein, who conducted the siege during the months of June and July, 162s. On the 14th of July the town capitulated; but before the Impcrial troops had taken possession of it, a Swedibl flect appeared off Stralsund, and landed a strong body of troops, who took possession of the fortress. Although the inlabitants of Stralsund had pro-
mised obedience to the emperor, thic Imperial troops were mised obedience to the emperor, thic Imperial troops were
not allowed to enter the town, which remained under the command of a Swedish gencral. Of this most unfair and insulting interference on the part of the Swedes, Waldstein was previously aware; and this was one nf the reasons why he allowed such favourable terms to the
king of Denmark at the peace of Liubeck; another eause king of Denmark at the peace of Lübeck; another cause the Protestant religion. Eneouraged by the suceess of his armics, and misled by imprudent counsellors, Ferdinand II., on the 6th of March, 1632, issued the 'Edictum Restitutionis.' By this edict he deprived the Calvinists of their religious liberties; and he deelared that, conformably to the Sceond Peace of Religion, all the bishoprics, abbeys, and churches which had been taken from the Roman Catholics since that peace should. be restored to them; and that the Roman Catholic possessors of Protestant territories should not he hindered from the enjoyment of the privileges granted by the 'Jus Reformandi.' The ecelesiastical states which had been ceded to members of the house of
the elector of Saxony, who was still an ally of the cinperor, were alone excepted from this ordinanee. If the 'Edictum' Restitutionis' had been executed, a general civil war would have been the immediate consequence; but it met with much opposition. Only a few Protestant bishoprics were conferred upon Roman Catholic princes, and the legal execution of the Edict was made dependent upon the arbitration of a general meeting of all the states. This meeting was called thee 'Day of Composi-
tion,' and was fixed for the moath of Fchinary tion,' and was fixed for the moath of Fcb-1ary, 1631.
The religious troubles seemed now to be nearly at an end. All the states of Germany wished for peace; and all hoped that this peace was to be settled on the "Day of Composition.' The Protestant party was still powerful enough to obtait favourable conditions for their religion. The emperor's power had much increased, but the ambition of his counsellors and the haughtiness of his generalissimo, Waldstein, met with vigorous opposition among the members of the Liga, who obliged the emperor to deprive Waldstein of his rank as commander-in-ehicf of the Imperial forces (1630): Foreign interference was not at all neeessary. But foreign interference was nevertheless prepared by France and Sweden.
Gustavus Adolphus, king of Sweden, was master of all the countries which lic around the northern and eastern parts of the Baltic, and his favourite plan was to make this sea into a Swedish lake. He was also a pious man, and sinecrely attaehed to the Protestant faith. Deeply afflicted by the dangers to which this religion was exposed
in Germany, he formed the plan of becoming its protector, in Germany, he formed the plan of becoming its protector, and he pursued this plan with the more zeal and perseveranee, as he was convinced that by becoming protector over the Protestant religion he would also become master of the Baltic. Immense influence in Germany, and the possibility of being raised to the dignity of emperor, would have been the consequence of success in either of his ambitious desigus. (Extracts of documents contained in Breyer, Beiträge zur Geschichte des Dreissigjährigen Krieges, pp. 210, 219, 221, 252.) France, then wealsened hy eivil troubles, was unable to interfere directly in the German war, and her minister, Richelieu, employed every means in his power to persuade the king of Sweden to make the first attack. Gustavus Adolphus heing then at war with the Poles, Richelieu tried to negotiate a truce between the belligerent parties; hut the emperor, anxious to prevent any such peace, sent his general, Arnheim, to Poland, with those troops who had been employed in the siege of Stralsund. Although the Swedes had first violated the German territory by oceupying that fortress, they neverthcless considered the assistance which the emperor gave to the Poles as a deelaration of war. 13ut, instead of attacking the hereditary states of the emperor on the Polish frontier, Gustavus Adolphus, by the mediation of the French ambassador, Charnacé, made a truee with the king of Poland for six years, at Altmark, in the month of September, 1629. He then made great preparations for an attack on the German countries along the Baltic, and ordered his flect to blockade the towns of Wismar and Rostoek in Mecklenburg, which were oceupied by the troops of Waldstein. The king of Sweden was the niore active beeause he was cheeked in his designs on the Baltic by Waldstein, who had assumed the title of Imperial admiral of the Baltic, and who, by means of the Hanseatic towns, wished to restore the suprenacy of the German navy in the northern seas. But, having been deprived of his military command by the cmperor in 1030, Waldstein saw himself compelled to defer the exeeution of these gigantic plans.
French subsidies enabled Gustavus Adolphus to be ready for the new war as early as the spring of 1630. On the 2411 of June he landed 16,000 men on the island of Uscdoni, on the coast of Pomerania. He styled himself Protector of the Protestant Faith, and eame to Germany at a moment when the prinees werc asscmbled at Regensburg for the purpose of settling their religious affairs, and when the Protestant party itself had sufficient power to protect its faith. The first aet of Gustavus Adolphus was to compel Bogislav XIV., duke of Pomerania, a Protestant prinee, to appear in his camp, and to surrender to hime his capital, Stettin, a town equally importaut by its fortifications and by its situation near the mouth of the Oder. He then gradually oceupied all Pomerania, and on the 13th of January, 1631, concluded a treaty with France, by which
he engaged himself to earry on the war acminst Austria with 16,000 eavalry and 30,000 foot, on the condition of an annual subsidy of 400,000 thalers. Mcantime he summoned the I'rotestant prinees to join him, but when assembled at Ieipzig (10th of February to 12th of Λ pril, 1631) they declared the king of Sweden an intruder, and they pronised to nssist the emperor with all their forees. George, duke of Bunswick Litineburg, was the only prince who joined the Swedes, in the hope of obtaining some ecelesiastical territory as an addition to his hereditary states. Thus deecived in lis hoples, the protector of the Protestant faith attacked Gcorge William. elector of Brandenhurg, whe was his brother-in-law and one of the firs Protestant princes of the empire. Ile compelled lim to surrender his fortress of Spandau, and he then made an allianee with the city of Magdeburg.

This rich and populous Inperial town joined the Swedish party for the purpose of escaping the danger of being occupied by the limperialists, who were ordered to defend that fortress against the Swedes. For this eonduct Magdeburg was put under the han of the empire. Tilly having been charged to execute the ban, and to take the town by force, the citizens of Magdeburg hoped to be rescued by the king of Sweden, who had promised his assistanee, but Gustarus dunst not adrance as far as the Elbe, unless his rear was secured by an alliance with the electors of Brandenbure and of Saxony. Mardeburg was taken by storn by Tilly and Prpplenheim, whose troops plundered the town during three days and destroyed it by fire (20th of May, 1631). The unlapipy fate of this opulent town was made the sulject of a charge against the king of Sweden, who however had gained such influence over the princes of northern Germany, that his politieal credit was in no way weakened by this event. He foreed the elector of Brindenburg to conelude an elliance with him; he dmve the Imperial garrisons from Mecklenburg, and restored the dukes; and he ravaged the electorate of Saxony until the elector surrendered his fowns, and concluded a defensive and oflensive alliance with Gustavus Adolphus (14th of September, 1631). Previously to this, William V., landgrave of Hesse-Cassel, had voluntarily attached hiniself to the Swedes, for the sole purpose of brofiting by the confusion into whieh the empire was thrown ly their interferenee. Bernhard, duke of Saxe-Weimar, offered his services as general to Gustavus Adolphus, and he was immediately put at the head of a part of the Swedish army.

While the king of Sweden thus had his power increased by the forced or voluntary adherence of the princes, Tilly reinforced his army, and occupiecl Leipzig. But on the 17 th of September, 1631 (N. S.), Tilly lost the lattle of Leipzig against the united forees of the Swedes and Saxons; and such was the disorganization of the Imperial army, that Gustavus Adolphus found no enemy to oppose his marel to southern Germany: However, instead of invading the hereditary states of the emperor, the king of Sweden eonquered the bislopuries of Wuirzburg and Bamberg in Franconia, which he intended to keep for himself. Ife then took the archbishopric of Mainz and the Palatinate, but did not restore it to its legitimate master, the banished king of Bohemia, Frederiek V. At last he marched to Havaria, and foreed his way aeross the Lech after a bloorly victory over the Bavarians, who lost ther general, Tilly (5th of April, 1632). Aumburg, a free Imperial town, was forced to pay homarye to Gustavns Adolphus, who ont the Thl of Mar made his entrance into Minich, the eapital of Bavaria. During this time the Saxons, the compulsory allies of the Swedes, had occupied a considerahle part of Boluenia and Silesia. The great designs of Gustavus Ailolphus now became nanifest. Ile proposed to (ieorge Williain, elector of Brandenbury, that Frederick Williant, the elector's son, should marry his only daughter Christina. Frederick Wildan was thus to beeome master of Sweden, Finnland, angermannland, Esthonia Livonia, Curland, Prnssia, Brandeuburg, Mreklenburg. l'omerania, of the bishopries of llamberg. Wïrzburg, Mainz. Magdeburg, IIalherstadt, Speier, and Worms, of the Palatinate, and of all the countries which the king hoped to conquer in southern Germany. But this brilliant offer was refused by George William. It is said that this prinee, who was a realons Galvinist, would not allow his son to beeome a Lutheran. luat another condition of this marriage being to assist the king of Sweden in his desigus on the Imperial crown, it
seems that the eleetor refused the proposals, beeanse he would not make lumself the instrument of Swedish ambition.

The emperor wes then in the utmost extremity. IIe lad no arny to oppose to the Swedes, and if he had had one, the only general who, ntler Tilly's death, was able to lead it with suceess against Gustavus Adolphus, Waldstein, had been deprived of his rank as commander-in-cluief, and had become a deadly enemy of the eniperor. Furdinand was obliged to humiliate himself before his vassal, and at last Waldstein consented to resume the command of the Imperial army, not as its general, but as its supreme and independent master. This army however did not exist, but was to be ereated by WValdstein.
When Gustavus Adolpluss oceupied Münich, Waldstein had already levied a strong loody of troops, with which he expelled the Saxons from Boliemia. The defeat of his ally obliged the king of Sweden to relinquish the attack on Ausfria, to leave Bavaria, and to hasten to the assistance of Saxony, then exposed to the victorious Imperialists. Ile made a stand at Xïmberg, in onler to ohserve the linperial army (January, I632). In the month of July Waldstein arrived at Fürth, near Nürnberg, and took up a strong position, ly whieh he checked the king, and intercepted the supplies of provisions which were destined for the Swedish camp. Gustavis Adolphus assaulted the eamp of his adversary on the 2.4th of August, but his troopls were driven back with great slamglter; and the king, secing his army exposed to hunger and disease, left lis canmp on the 8th of September, and retired to Saxony. Waldstein followed him, and in the month of October loth the armies were in Saxony. Waldstein divided his army into two lodies, in order to enter into winter-quarters, thinking that the king of Sweden had renounced hostilities for that winter. llut on the 6 th of November he was suddenly attacked loy the Swedes at Jiitzen, a small town in the environs of Leipzig, and he lost the battle in consequence of a part of his army having been separated from the main body. This vietory however was fatal to the Swedes, on aceount of the death of Gustavus Adolphus, who was killed; aul the battle was gained by Bernliard, duke of Saxe-W'eimar, who immediately took the command of the Swedisll army: Waldstein retired to Bohemia, where lee remained, strangely inactive, although he soon repaired his losses at the battle of Liitzell.

The death of Gustavus Adolphus did not lessen the power of the Swedes, nor change their polities: the chaneellor Oxenstierna directed their affnirs with the same views and the same skill as the late king; and the new generalissimo, Bernlard of Saxe-Weimar, was one of the mort distinguished eaptains of his time. In 103:3 Oxenstierna coneluded an alliance with the states of the circles of Suabia, of Franeonia, of the Upper Rhine, and of the lower Rhine, snd duke lemhard got possession of Regenshurg. Waldstein however clestroyed the Swedish army in Silesiit, conquered Lusatia, and entered into negotiations for the purpose of eoncluding a seprate peace with Brandenburg and Sitxony, those compulsory allies of the Swedes, who were afraid of the dangers to which Germany was exposed by the Sivedish protection of the Protestant chureh. But Ifaldstein, whose pride beenme insupportable, and whose poliey was erooked, was accused of high trenson hy his numerous enemies; and he was assassinated in the midat of his army, on the sith of Fehruary, 163t. Ferdinant of Austria, the son and heir of the emperor, suceeeded Wraldstein as commander-in-chief of the Imperial and lavarian armies: lis lieutenants were Gallas and John von Wertl, hoth experienced generals. Reinforced by a coorps of Spaniards, he attaeked the Swedes nt Nördingen, on the Th of September, 163\%. The Swedes were routed. their general, iforn, was made prisoner, and southern Germany fell into the hands of the Imperialists, who, thourh they exacted heavy contrihutions from the I'rotestant inhabitants, respected the liberties of the Protestant chureh. The Protestant princes of southern Germany, who lioped to aggrandize their states by means of the Swedes, were disappointed by the defeat of their protectors; but they found snother powerful ally, who was always ready to eneourage the German princes in their rebellious undertakings against the authority of their emperor. This ally was France. Löffer, the viee-chancellor of the ditke of Würtemberg, and Streif, a privy counsellor of the margrave of Baden, negotiated an allianee between their
sovereigns and France (11th of November, 1634). The king of France being one of the first Catholie princes, he durst not assume the title of protector of the Protestant church, as the king of Sweden had done, and he therefore styled himself the proteetor of the liberties of the states of Germany acainst the tyranny of the emperor. His policy was nevertheless severely blamed by his fellowLelievers. Jacob Keller, a German Jesuit, wrote a book concerning the policy of Luuis XIII., who, at the same time, protected the Protestants in Germany, and persecuted them in his own kingdon: but this book was burnt in Paris by order of the Sorbonne. Duke Bernhard of SaxeWeimar at the same time having sold himself and his army to France, Saxony and Brandenburg saw at last that any longer adhcrence to the Swedish allianee would be the ruin of themselves and of all Germany. Saxony eoncluded peace with the emperor on the 30th of May, 1635, at Praguc; and Brandenburg gave in its adherence to this peace on the 2 th of August following: the favourable conditions which they obtained proved that the emperor had given up all schemes of oppressing the Protestant ehurch. The landgrave of Hesse-Darmstadt, the dukes of Mecklenburg, of Brunswich, and of Saxe-Weimar (duke William), the eities of Frankfort, of Erfurt, \&e., the Hanse towns, and at last the whole circle of Lower Saxony, became parties to the peace of Prague in the course of the same vear. Among all the Protestant states of importanee, Hessc-Cassel, Würtemberg, and Baden were the only states whieh continued their alliance with the foreign invaders. This fact also proves that the Swedes had not armed for the sake of the Protestant religion, as they pretended; and that their sole purpose was conquest. If they had taken arms for the liberty of their faith, they would have made that liberty a prineiple, and they would have withdrawn from Germany as soon as this principle had ceased to be interfered with. Such disinterested eonduet is indced rare in history, and is often regarded as contrary to the substantial welfare of that nation which adopts it. But is the rarity of the fact a proof of its absurdity? To veil ambition with moral or religious pretexts is a common practice, but it deserves to be stigmatized with the name of public hypocrisy ; and such was the Swedish interference in the Thirty Years' War.
The most important event from the year 1635 to 1639 was the conquest of Alsaec by duke Bernhard of SaxeWeimar, who hoped to possess that Austrian province as an hereditary duchy. His plans however were contrary to the policy of Franee, who hersclf aimed at the possession of Alsaee, and had bribed the duke for the sole purpose of cmploying him as an instrument. No sooner had the duke's intentions become manifest, than he fell suddenly ill, and died on the 8th of July, 1639. His army, a strong and experienced body, was bought by France, who immediately oecupicd Alsace. The Imperialists however, reinfored by the Saxon troops, gained a victory at Haselünre over the Swedish general Knyphausen, who was killed (December, 163.); and they foreed Magdeburg to surrender (163G). They and the Saxons were beaten in their turn at Wittstock by the Swedish general Banér (24th of September, 1636); and duke Bernhard defeated them at Rheinfelden (21st of February, 1638), and made prisoners generals Savelli and the eelebrated John von Werth. Previously to this the cmperor Ferdinand II. died (15th of February, 1637, and was suecceded by his son Ferdinand 1II.; who had been king of the Romans since 1636. Leopold William, the brother of Fcrdinand III., was appointed generalissimo of the Imperial army; and as carly as the spring of 1640 he suceeeded in driving the Swedes, under Banér, from Bohemia, and he pursued them as far as Hesse and Hanover. In the autumn of 1640 the emperor issued a proclamation, granting to the rebellious Protestant prinees a general amnesty and the sovercignty over their iemporal dominions on the status quo of 1630, and over their ecclesiastical territories on the status quo of 1627. But these princes treated the proelamation with neglect, still hoping that by their allianee with the foreigners they would acquire some privileges and some little territory more. They sent new eontingencies to the army of Banér, who, in January, 1641. advanced as far as Regensburg. He was reinforced by a French corps, commanded by the Marshal de Guebriand, but their united forces were defeatea by the Imperialists, and on their retreat they lost
half of their troops. Baner died in the month of May, 1641, and his suecessor was Torstenson, irho led the Swedes to new triumphs.
The war had now lasted for twenty-three years. Swedes, Danes, Spaniards, Dutchmen, Frenchmen, halfsavage warriors from Hungary, Transylvania, and Croatia, had ravaged Germany from one sea to the other. Adventurcrs from all the countries of Europe floeked to Germany to learn warfare, and to enrich themselves by the plunder of the eountry. The foreigners pretended to protect the ehurches, but the churches were laid in ruins; they professed to defend the liberties of the cities, but the eities were deserted; they promised to maintain the privileges of the princes, and they robbed them of their dominions, and led them to disobedience and anarchy.
Before the war commenced, the people were told that they were on the eve of a religious contest, but they hesitated to believe it ; no deep religious hatred, no fanaticism disturbed their domestie peaee. After the war had lasted some years, their passions were roused, and their warlike spirit excited them to take up arms, some for the defence of their hearths, and others to follow Waldstein or any other leader of the time. The pretext which the princes made of religion was shown by theirattacks on the property of the chureh, and thus the people lost their respect for religion. The example of Christian of Halberstadt, of Mansfeld, of Waldstein, who supported their armies by robbing indifferently Roman Catholics and Protestants, eorrupted both peasants and citizens ; and eommeree and industry being ruined, and agriculture becoming an uncertain means of living, they formed bands of robbers, who ravaged the country. From these bands the Swedes reeruited their troops, who, after the death of Gustavus Adolphus, were chiefly composed of Germans. The armies presented an aspect like those of the Goths when they invaded the Roman empire. One-third and often only onefifth of them were soldiers: the remainder were vagabonds, women, and children, who followed the army, earrying with them on carts the property whieh they had stolen on their march. The greater part of the women were prostitutes, who, in the army of Waldstein, had a perfect military organization. They were divided into regiments, companies, and sections, each body being commanded by a prostitute, and the women having the same rank among these female adventurers which their lovers had in the army. The provinees which were the principal theatre of war were laid waste, and the inhabitants fled, or were killed, or died of hunger and disease. Of 500,000 individuals, the population of the duchy of Würtemberg in 1618, only 48,000 remained at the end of the war in 1648.
Torstenson, the new generalissimo of the Swedes, conquered, or rather traversed, in the spring of 1612, Saxony, Silesia, and Moravia, and his light horse appeared in the neighbourhood of Vienna. At the same time the Marshal de Guébriand penetrated into Suabia, in hope of joining the Swedish army under the walls of the emperor's capital. The Imperial generals however sueceeded in delivering the hereditary states of Ferdinand; and while Torstenson retired to the north, where his presence became urgent on aecount of a new war with Denmark, the French army was compelled to cross the Rhine. Guétriand was killed in an engagement ncar Rotweil, and his successor, the count of Rantzau, a German nobleman in the French serviee, who had again appeared on the right bank of the Rhine, was surprised by the Imperialists under John von Werth, Mercy, and the duke of Lorraine. The battle was fought on the 24th of November, 1643, near Duttlingen, and the Freneh army was almost annihilated. Christian IV. of Dennark was not more fortunate in his war with the Swedes than he had been against Tilly and Waldstein; but while he was fighting with Torstenson in Jutland, Gallas, the general of the cmperor, suddenly appeared in Holstein, with the view of placing the Swedes between two fires. From this dangerous position Torstenson escaped by a bold manceuvre, which he executed with his usual rapidity. He advanced as if to attack Gallas, but suddenly turned to the right, crossed Holstein, and penetrated by rapid marches into the heart of Germany, thus obliging the Imperial ariny to follow him in order to protect the hereditary states of the emperor. The Swedes often made a stand to engage in skirmishes which proved disastrous to the Imperialists, and Gallas brought only half his army baek to Austria. In the mean time

Franee had levied a new army, which was put under the command of Turenne, and which was reinforced by a body under l.ouis d'Enghien, afterwards prince of Condes. They attacked the lmperalists under Mercy, who, after a gallant resistance and various success, was ut last obliged to retire to the enst of the Black Forest, leaving the Palatinate, Alsace, and Baden in the hands of the French (autumn, 1644). The Imperialists were still more unfortunate in castenn Germany. Torstenson defeated them and the Saxons at Jaukiau in a bloody battle ($6 \mathrm{H}_{2}$ of March, 1645), and their general, Intzfeld, was made prisoner. In one campaign Torstenson made himself master of Silesia and Moravia, and encamped near Vienna; and his lieutenant, Königsmark, conquered the bishopries of Bremen and Verden. The elector of Saxony, and the elector of 1 randenburg, Frederick William, who had succeeded his father George William in 1610, renounced their alliance with the eniperor, and made their scparate peace with Sweden; and their cxample was followed by Maximilian, elector of Bavaria. This hitherto faithful ally abandoned the emperor in 1647, after the victory of Turenne at Allerheim, and after the conquest of Suabia by Turenne, who advanced towards Miunich. The defection of the elector of l3araria excited the discontent of his army, and was considered an act of high treason by his generals. John von Werth, the idol of the soldiers, concelved the plan of putting the Bavarian army under the command of the emperor, and of seizing the elector and his ministers for the purpose of confining them in order to sceure their fidelity. The plot was betrayed at the moment when it was to liave been carried into effect. But John von Werth cscaped, and Ferdinand created him a count of the empirc. This event was followed by a victory of the Swedes at Susmarshausen, near Augsburg (7th of May, 1648). Künigsmark, their general, now invaded Bohemia, and on the 81 st of July conquered that separate part of Prague which is ealled the Kleinseite. This conquest was the last important cvent of the Thirty Years' War, which began and ended at Prague.
Peace of Westphalia.-As early as 1640 the Diet at Regensburg was occupied in putting an cud to this awful war, and in 1641 prelininaries were prepared at Hamburg under the mediation of Denmark. Münster and Osmabrick were aflerwards chosen for the places of congress, and the meeting was to be held in the spring of $16-12$, but it was not organised before the spring of 1643. The count of Auersberg was the emperor's ambassador at Osnabrück, where he was to negotiate a peace with the Swedish ambassador, John Adler Salvius ; and the count of Nassan met at Münster the count d'Avaux, the ambassador of the king of Franee. The states of Germany sent likewise ninisters or agents to both thesc towns; ambassadors of Venice and of the pope came as mediators; and Spain and the United States of the Netherlands sent their plenipotentiaries for the purpose of settling their private differences, and interfering in those or Germany. The nerotiations lasted three years: the various chances of the war prevented the parties from acting upon in invariable principle, and the troublesome intervention of the German States were an obstacle to private interests being made subordinate to the general interest. At last the count of Trautmannsdorf, 'the most honest among all the ambassadors,' arrived from Vicma with full powers, and on the 14-21th of Oetober, 1648, a double peace was concluded at Münster and at Osnabruck, which was legally considered as one, under the name of the Peace of Westphalin. Previously to this Spain and the United States of the Netherlands lad likewise made peace at Münster, on the 30 -30th of January, 1648. These are the principal conditions of the perce of Westphalia :-

I. Conditions concerning the cession of territories and rights io foreign powers.

1, Sweden, as 'an indemnification for her expense in the war and for eeding several of her conquests to their former possessons,' acquired Pomerania, except a part of Pomerania Citerior (duke Bogislav XIV, had died in 167); the town of Wismar in Mecklenburg; the archbishoprie of Bremen, and the hishopie of Verden, as hereditary duchies; a sum of five millions of thalers, whec was not to be paicl by the emperor, hut by those circlen whero Gustavus Adolphus had promised to protect
the Protestant church. In respeet of these territories Sweden became a member of the empire.
2, France aequired the sovercignty over the bishopries of Metz, Tonl, ind Verdun, the possession of which had been eeded to king Henry II. in 1050; the sovereignty over Jignerol; the town of Breisach, and the right of kecping a garrison in Philippstburg ; the landgraviats of Upper and Lower Alsace, the Sunigau, and the Imperial rights over ten free towns in Alsace, but not over Strassburg. These territories were ceded to France in full sovereignty, and the king of France consequently did not become a member of the enipire.
3. The United States of the Netherlands and the confederacy of the eantons of Switzcrland were acknowledged by the emperor as independent states; legally speaking, these countries werc parts of Germany until the peace of West phalia.
II. Conditions concerning the cession of territories and rights to members of the empire.
(These indemnifications were effeeted by secularising bishoprics and other eeclesiastieal territories.)
1, Hessc-Cassel acquired the abbey of Ifersfeld, some of the fiefs of Sclauenburg, and six hundred thousand thalers which were to be paid by Roman Catholic hishops.
2, Brandenburg aequired the bishopries of Malberstadt, of Minden, and of Camin, as hereditary prineipalities; and the archbishopric of Magdeburg as an hereditary duchy.
3, Mecklenburg acquired the bishopries of Ratzeburg and of Schwerin as hereditary principalities, and the commanderies of Mirow and Nemerow, which were taken from the Knights of St. John.

4, Brunswick acquired the convents of Walkenried and Groningen, and the privilege of apponting a prinee of the reirning house bishop of Osnabriuck; on this eondition, however, -that the bishopric was to be governed alternately by a Protestant hishop of the House of l3runswick, and by a Roman Catholic bishop, who was to be chosen by the chapter.
5, The duke of Bavaria was confirmed as elector, and rewarded with the Upper Palatinate and the county of Chanl.

0, Charles Louis, the successor of the banished eleetor palatine Frederick V., was restored to his dominions, except that part of them which was ceded to Bavaria ; and as the electorship of his father was forfected, an eighth electorship was created and bestowed upon him.
III. Conditions concerniner religion and the constitutions of the empirc.
The principle of these conditions was, a general amnesty with regard to those who had relelled against the emperor, though the word 'rebel' was not emploged; and the maintaining of the status quo of 1618 , hefore the beginning of the lloleminn war, with regard in the restitution of bishopries, churches, \&ce., which had been seized by either of the praties.
A. Religion.

1, The treaty of Passau and the Second l'cace of Religion were confirmed.

2, Tho religious quality of a territory or state was to be decided after the status quo of the lst of January, 1624 (N.S.).
3, Equality of politieal rights hetween the Roman Catholics, the Lutherans, and the Calvinists or Reformed.
4, The Jus Reformandi was reduced to its oriminal meaning as a mere protection of religion. This prineiple was checked by numerous and complieated exceptions, which afferwards led to many complaints.
5, The eeclesiastical jurisdiction of the bishops was conferred upon the l'rotestant princes as a riglit of sovereignty; in the Roman Catholic tervitories it remained in the hands of the blshops.
13. Constitution of the empire.

1, The princes acquired the right of concluding separate defensive aud offensive alliances with foreign states; and they becane almost sovereign with regard to their subjects.
2. The German empre was ehanged into a kind ef confederacy of almost sovereign states, the euperor becoming a mere director of the public affairs.
IV. Conditions concerning the relations between Germany and foreign powers.
1, The peace of Westphalia was guaranteed by Sweden and France.
The Thirty Years' War was the Peloponnesian War of Germany, and by the Peace of Westphalia the German princes prepared the destruction of their independence and the downfall of the empire. The German princes were originally rich landowners appointed by the emperors as high judges (graven, comites) and military commanders (herzoge, duces). From the eleventh century they endeavoured to obtain possession of these functions as hereditary ngnts. During five centuries they carried on a system of rebellion against the Imperial authority, and gradually usurped rights and privileges which the emperors were compelled to confer upon them in due form. Thus both legisfation and administration became hereditary in the princes. Having sueceeded with regard to political rights, they eonsidered the Reformation of Luther as an opportunity of usurping ecelesiastical legislation. It was granted to a great number of them by the Peace of West phalia. Luther's reforms gave birth to the Protestant faith, but this faith required to be supported by a church. A Protestant church did not exist before the Peace of Westphalia, nor was it established by this peace, nor is there now any gencral Protestant church in Germany. The princes considering themselves as legal successors of the bishops, the episcopal rights became a part of political sovereignty, and the ministers of the faith gradually became functionaries of the prinees. Their first duty was to obey them; they not only obeyed, but they crouched before them and their ministers; their abject behaviour is shown by numerous works published during the latter part of the seventeenth century and the eighteenth century. When the people saw the dependence of the ministers on the temporal authority, they confounded the commands of their faith with the laws of their princes, and, not discovering any divine character in these laws, they forgot the divine origin of their religion. Thus they fell into that remarkable indifference concerning religious matters which now prevails in the greater part of the Protestant countries of Germany. This religious state is a consequence of the 'Thirty Years' War.
The political consequences of that war are still more evident. Germany was a wilderness-its material strength was ruined-its political power was broken-its intellectual development was checked-and the fierce and manly spirit of the nation was broken by their thousand arbitrary rulers, who themselves became slaves of the French. Divided into factions by the private interests of the princes, Germany became the theatre where the armies of all Europe met to settle the differences of their kings. This state of things lasted a hundred and fifty years, and ended with the destruction of the German empire by Napoleon.
(K. A. Menzel, Geschichte des Dreissigjährigen Krieges, 2 vols. 8vo., Breslau, 1835-37; Breyer, Geschichte des Dreissigjührigen Krieges nach ungedruckten Papieren, lst vol., Miunchen, 1811, 8vo.; Breyer, Beiträge zur Geschichte des Dreissigjührigen Krieges aus bisher ungedruckten Papieren, München, 1812, 8vo.; Schiller, Geschichte des Dreissigjährigen Krieges: this work, distinguished by the beauty of its style, contains the most interesting description of the Thirty Years' War; but its historical value is not very great; Leo, Lehrbuch der Unicersal Geschichte, vol. iii. : the author's description is remarkable for the applicatiou of philosophical principles to history; Eichhorn, Deutsehe Staats-und Rechts-Geschichte, vol. iv.: the author starts from a legal point of vicw, but he treats political and religious rights rather as a lawyer than as a publicist; Woltmann, Geschichte des Westphälischen Friedens, Leipzig, 1808-9, 2 vols. 8vo.; Meiern, Acta Pacis Westphalisae publica, oder Wesiphälische Friedenshandlungen, Güttingen, 1731-6, 6 vols. fol.)
THISTIE, the common name of Cardurs, a genus of plants belonging to the large natural order Compositre. From the time of Theophrastus down to that of Caspar Bauhin, all plants that possessed a spiny involucre were comprehended in the genus Carduus. The artichoke (Cynara) and the tcasel (Dipsacus) were included in it by Tragus and Lobelius. Morison confined the genus to
those plants that had spiny scales of the involucre and a crown of feathery down (pappus) surmounting the seed. Plants resembling them, but without a spiny involucre, he called Cirsium, and those without the feathery pappus Carduus impropriè dictus. Tournefort adopted these distinctions. Vallant defined Carduus more accurately, giving it to plants with a globular involuere composed of spiny scales, with compound flowers, tubular florets; stamens united by the anthers, a hairy receptacle, and a hairy pappus on the seeds. If the pappus was feathery, he called the genus Acama; and when the receptacle was not hairy, but honeycombed, he used the term Onopordon, a name previously applied to thistles by Pliny. When the scales and receptacles were fleshy, he named the genus Cynara. Linnæus adopted these gencra, but changed Vaillant's Acama into Cnicus, a name which had been previously employed by Tournefort for another genus. The genus Carduus, Common Thistle, consists of upwards of 30 species, most of which are inhabitants of Europe. None of them are found in the New World.
C. nutans, Musk-Thistle, has decurrent spiny leaves, with handsome drooping flowers; the seales of the involucre cottony, the outer ones spreading. It is a common plant on waste ground, in dry, stony, or chalky soils, in Great Britain. It gives out, especially in the evening in warm weather, a strong smell of musk.
C. marianus, Milk-Thistle, has spinous leaves embracing the stem; the scales of the involucre leaf-like, recurved and spinous at the margin. It is a native of England; scarce in Scotland. The leaves are distinguished by the milky whiteness of their veins. This milkiness is said, according to an absurd story, to have been produced by a drop of the Virgin Mary's milk, just as the Milky-Way was supposed to arise from that of Juno. This plant is an esculent, and may be eaten young as a salad, or boiled and eaten as greens. The young stalks, when peeled and soaked in water, are also excellent.
The root may be prepared like salsify and skirret, and the receptacle may be cooked and eaten as the artichoke. When cultivated, the sceds should be sown in spring, and the plants kept at a foot and a half distance firm each other, and the earth thrown up round them till they are etiolated.
The genus Cnicus, Plume-Thistle, is known by the feathered down that crowns the seeds. It is a large genus: nine of the species are inhabitants of Great Britain.

The Cotton-Thistle is the Onopordon, which is known by its honeycombed receptacle. The O. Acanthium is a British specics. The leaves are ovato-oblong, sinuated, spinous, decurrent, and woolly on both sides. It attains a height of from four to six feet. It is cultivated in Scotland as the Scotch Thistle; but it is doubtful whether this national badge has any existing type, as the representations of the Scotch Thistle on ancient wood-carvings, coins, and armorial bearings, differ more from each other than any known species of thistlos. The receptacle and stalks of the Cotton-Thistle are sometimes eaten, in the same manner as the artichoke and cardoon. [CyNARA.]
The Carline Thistle forms the genus Carlina, which obtained that name from a tradition that the root of the Common Carline (C.vulgaris) was shown by an angel to Charlemagne as a remedy for the plague whieh prevailed in his army. The genus is known from the others by the inner scales of the involucre being spreading and membranous, and of a yellow colour. The Common Carline is a frequent plant in Great Britain on dry hilly pasture and in fields. It is about one foot high.
The Blessed Thistle is the Centaurea benedicta, the Carduus benedictus of old writers. The involucre of the genus Centaurea is not spiny, and the seeds have a very simple pappus, or none. The Blessed Thistle is a native of the Levant, and in the middle ages was held in extravagant estimation on account of its supposed virtues. It is still cultivated in some places on account of its medical properties.

For Sow Thistle, see Soncrus.
Some of the species of thistles are admitted into gardens. They form a pretty variety for borders, and require little care in their cultivation. They sow themselves very extensively by means of their winged seeds. On this account they are great pests to the farmer. In fields the annual kinds may be got rid of by the weeding. hook, but
the perennial kinds must be ploughed and the roots picked ont. The Carduas arrensis has got the name of Cursed Thistle, on aecount of the diffieulty of eradieating it where it lins once grown. Although injurious to iman, by exhausting the soil of that mutrinent which plants supplying food require, their seeds are generally eaten by binds, and the larve of many insects live entirely on their leaves.

THISTL.E. The thistle, with its strong prickly leaves and stem, establishes itself in the meadows and corn-fields, when it is not very carefully eradieated, and occupies the place of more useful plants. There are many varietics of the thistle, some of which are not destitute of elegance when in full blossom. Considered as a weed in our fields, our prineipal object is to cradicate it, which, in consequence of the ready dispersion of the seeds by the wind, is not easily done, as a slovenly farmer may sced the whole couniry around ; and where the thistles are not eradieated trom the hedges and sides of roads and paths, it is impossible to destroy them entirely: wherever the soil is newly turned up. especially when it is of a nature where wheat will grow well, thistles invariably arise: hence the saying of the blind man in choosing land, ' Tie me to a thistle.

Those crops which are usually hoed can readily be eleared of thistles: but where the seed is sown broadcast, the labour of weeding them out is much greater. If they are not extracted with the root, they will soon grow again with redoubled vigour. In a moist season they may be pulled up by means of a wooden or iron forceps, which grasps them strongly near the crown of the root, and, as it has a projection which scrves as a fulcrum, a pressure on the handles draws the root out when they are brought together. When a field has been long intested with thistles, the best way of clearing it is to watch when the thistle is in full bloom and the seed is just forming ; if it be then eut off at the root it will die. Thus in two years a field may be entircly cleared of thistles.

It is chiefly in arable land that thistles are most troublesome. In pastures it is sufficient to cradicate them once, and to permit none to grow along the hedges and ditches. The seed does not readily vegetate, unless it finds a loose soil ; and little birds are so fond of it, that they will leave none that is not covered with earth, espeeially in the beginning of winter. In some countries there are penalties inflicted on those who allow thistles to remain in their hedges or along the high road which borders their land; and a man may complain to a magistrate of a neighbour who will not destroy the thistles on his land, when the delinquent will be admonished or fined, as the case may require. Such a law would be very advantageous in many parts of the country, where no attention is ever paid to the weeds whicl grow in the hedges or in waste spots.

THISTLE, ORDER OF THE, an antient Scottish order of knighthood, sometimes called the order of St. Andrew. The early history of this order is involved in some obscurity, and the most absurd attempts have been made to establish its claim to high antiquity, of which it is sufficient to allude to the legendary account recited in the warrant for the restitution of the order in 1687, and given most ninutely lyy several Scottish antiquaries, attributing its formation to Aehaius, king of the Scots, in commemoration of a victory obtained by himself and Mungus, king of the Piets, over Athelstan. Nicolas observes, as a fitting illustration of this legend, that Achaius died upwards of a century before the reign of Athelstan; and he further shows that the thistle was not the acknowledged hadge or syinbol of Scotland until the latter part of the fifteenth century. Even after it became a national ornament, and formed a distinguishing feature of a collar resembling that now worn ly Knights of the Thistle, it is by no means certain that it was consideved the badge of an order of kuighthood; and the seareling investigation of Sir Nicholas IIrris Nicolas, which is detailed at great length in the thind volume of his recently published "History of the Orders of kinghthood of the 3ritish Empire, Jeads him to the conclusion that it is difficult to believe in the existence of the Order of the 'Mistle, as an organized fraternity, until the reign of James VII, of Scotland and II. of England. Whether it had any such prior existence or not, 'it is admitted,' he adels, 'even by the assertors of the antiquity of the order themselves, that, after the Reformation orders of knighthood being considered in Scot-
land as relics of popery, it fell into desuctude ; and consequently it is not pretended that there were any "knights of St. Andrew," or "of the Thistle," after the accession of King James VI., in 1567: The warrant of James 11. For the re-institution of the 'most ancient and honourable order of the Thistle, which is printed at full by Nieolus, and whieh asserts that by authentic proots, docunients, and records, the order ' contimed in great glory and splendour for many hundreds of years,' bears date Windsor, May 으, 1657; but, although statutes were issued, and eight knights were nominaterl by James II., the patent or diploma for the restitution of the order never passed the great seal. Owing to the abdication of James, the order again fell into abeyance, until it was finally revived by Anne in 1703. In the warrant of I687 it is stated that the order consisted originally of the king and twelve brethren (in allusion to the Saviour and the twelve apostles), and the sane number was ordained as the full complement by Anne, although it was not filled up for several years. This continued without alteration until July 10, 1821, when, in consequence of the coronation of George IV., an ordinance was issuled for the appointment of four extra members, who should become regular knights as vacancies should oecur; and in May, 1827. the number of knights brethren was permanently extended to sixteen. Origilally none but Scottish noblemen were admitted to the order; but sinee the time of George I. it has also been eouferred upon several English peers. No foreigners have been admitted to the order; nor have any commoners, exeepting a few who were heirs-apparcut to dukedoms. It is usual for knights of the Thistle to resign the ensigns of the order when clected into that of the Garter, although the statutes contain no express provision to that effect ; but in a few instances this custom has been dispensed with, as a special mark of myal favour. The decorations worn by the knights consist of a collar of enamelled gold, composed of sixteen thistles, interlaced with sprigs of rue, tastened to the mantle by a white riband; a small image of St. Andrew, also of enamelled gold, suspended from the collar; a medal or badge of gold, haviug an image of St. Andrew within a circle containing the inoto of the order, 'Neso me impuis laCEssir' (No one provokes me with impunity'), and a thistle; a green riband, to which the medal is attached, and which is thrown diagonally over the left shoulder; and a star, consisting of a thistlc enamelled in its natural colours upon a ground of gold, and surrounded by the motto and rays of silver. The star is worn on the left shoulder, on a mantle or green velvet, which, with other parts of the dress, are minutely deseribed by Nicolas. Although the original statutes of the order, which were printed by Sir N. H. Nicolas in I828, do not strietly define the method of adnission, it was ordained by George I., in 1717, that waeancies should be filled up by election in a chapter of the order; but the usual practiee has been for the sovereign to appoint to vacancies without summoning a chapter. IIs late Majesty, William IV., re-established the practice of election in a chapter of the knights brethren, but it has been again dispensed with by her present Majesty. The officers of the order are the clean, the chancellor, the secretary, the king-at-arms, and the usher, each of whom receives an amunl salary, and a fec on the eleetion of a knight, excepting only the chanecllor, that officer never having been appointed, although he is mentioned in the stafutes of $1657,1703,1717$, and 1833: his datics are performed by the secretary. Λ complete list of knights of the Thistle, from the revival or creation of the order in 1657 to 1840, is given in the work above cited, from which this brief account is condensed.

THLASPI'DEA, a tribe of plants of the natural order Cruciferre, having for its type the genus Thlaspi. It is also called lleurorlizar, from having the radicle of the embryo at the side of the cotyledons. The siliele opens with a very marrow dissepiment, and las keeled unvicular valves. The seeds arc oral, with flat aecumbent eotyledons. The principal genera of this tribe are, Thlcospi, the Bastard Cress; Iberis, the Candy-tuft ; Ilutchinsia ; and Biscutella, the Buckler-Mnstard. They are most of them insignifeant plants, possessing the acrid liting properties of the whole order. The genus Thlaspi is known by its silicles being emarginate at the apex with the valves winged at the back; the petals are equal, the pedieels bractless, and the flowers are white. Some of theur, as the Thlaspus arvensis,

Penny Cress, have a strong alliaceous odour. They grow on rocks and barren places, and are frequently found amongst collections of rubbish from mines, \&e., and are inhabitants of most parts of the world in cold and temperate regions.

Hutchinsia was named by Sir J. E. Smith after Miss Ifutehins of Belfast, who contributed many observations on marine plants to the 'English Botany.' It has an elliptical silicle with wingless valves, equal petals, entire leaves, bractless pedicels, and variously-coloured flowers, bnt never yellow. All the species are mountainous plants. They possess no active properties, but are pretty little plants, and will grow on rock-work or in small pots. They are best grown in a soil composed of sand, loam, and peat. The annual kinds may be propagated by seeds; the perennial, by dividing the roots or by cuttings.

The Candy-tuft is known by two of its petals being larger than the other two ; they are of a white or purplish colour, but never yellow. They are mostly mountainous plants, but grow well in gardens; and, if the seeds are sown at different periods, will blossom all the summer, and even through a mild winter. The shrubbery species are also well adapted for roek-work, and may be propagated by euttings. [Imeris.]

Biscutella las a flat silicle with one-seeded cells, a long permanent style, a compressed seed, and yellow scentless flowers. They arc also alpine plants. In the garden they form a pretty variety with the other plants, on account of their yellow flowers. 1 dry sunny situation in a light sandy soil suits them best. They are best propagated by sceds, and may be kept in blossom during the summer by sowing at different periods of the year.

THOA, a genus of Polypiaria; included by Linnæus in Sertularia.
 xi. 16 ; xx .24), one of the twelve apostles of Christ. (Matt., x. 3.) The Hebrew and Greeli names both signify a twin. St. Thomas is presumed to have been a Galilean ; but no particulars of his birth-place or call to the apostleship are given, and the first notice of him individually is in John, xi. 40. Christ having expressed an intention of returning to Judæa, in order to raise his friend Lazarus from the dead, Thomas encouraged the other a postles to attend him, although he regarded death as the certain consequenee of this step. The impulsiveness of character thus indicated was not long after very differently displayed. Thomas happened to be absent when Chirist, atter his resurrection, first appeared to the apostles; and when made acquainted with the fact, he expressed an incredulity which could only be satisfied by the manual evidenee of inserting his finger in the holes which the spear and the nails had made in the body of his crucified master. Eight days after, when Christ again appeared, Thomas was present; and the reaction in his mind was very strongly expressed by him, when he was pointedly ealled upon by Jesus to stretch forth his hand and take the desired proof. (John, xxi. 21-29.) Thomas is not again mentioned in the New Testament. Doubtless he laboured, like the other a postles, in the propagation of the Christian doctrines: and ecelesiastical traditions make him one of the apostles of the Gentiles. It is alleged that he travelled eastward, and laboured among the various nations which then composed the Parthian empire. (Euseb., iii. 1; Rufin., x. 9 ; Recognit., ix. 29.) There is a singular coneurrenee of Oriental and Western testimony (which may be seen in Assemanni and Baronius), to the effect that St. Thomas extended his labours farther castward, and then southward, until he reached the coast of India and Malabar, where, having exereised his apostolie labours with success, he passed on to the coast of Coromandel; and having made great conversions to the faith in those parts, he proceeded over to some coast on the east, ealled C'hina (which may possibly have been the country now called Cochin-China), and afterwards returned to Corumandel, where, having suffercd martyrdom, he was buried in the mount since called St. Thomas's Mount.
In the quarters indicated there are Christian ehurches which bear the name of St. Thomas, and clamn him for their founder. If they derive their existence as a church uninterrupted from the apostolic: age, this fact may be taken as a eorroboration of the above traditions. But if the
effects which resulted among them from the labours of Mar Thoma and other Nestorian missionaries, at the commencement of the sixteenth century, were really an original conversion, or at least a re-conversion, and not, as is olten supposed, the revival of a fallen but not extinct churchthen this claim is to be regarded only as an echo of the tradition which has always prevailed in the Syrian churches, and which must be estimated by its intrinsic probability and value.
(Besides Assemanni and Baronius, see Tillemont, i. 397, sq.; Cave's Antiq. Apostolica; ; Winer's Biblisches Realu'orterbuch, art., Thomas; Buehanan's Christian Researches; Yeate's Indian Church History; and Principal Mill's Letter to the Society for the Propagation of the Gospel (July 29, 1822), inserted in Christian Remembrancer for Nov., 1823.)

THOMAS A' KEMPIS. [Kempis.]
THOMAS AQUI'NAS. [AQuivas.]
THOMAS, ANTOINE LE'ONARD, was born at Clermont in Auvergne, on the 1st of October, 1732. His father, it has been generally believed, died while Thomas was an infant, leaving a widow with three sons and a daughter. The eldest son, Joseph Thomas, who embraced the clerieal profession, died in 1741: he composed a dramatic piece, entitled 'Le Plaisir,' which was acted with success in 1740 . The second, Jean Thomas, died in 1755, professor in the college of Beauvais: he publishied some Latin verses, and introduced into his college an improved nuethod of teaching Latin. It appears therefore that the taste for literature was common to the whole family.

Antoine Léonard was educated at home till he had completed his nintl year, and was then sent to prosecute his studies at Paris, where his brothers preceded him. In a letter which he addressed, in 1767, to Madlle. Moreau, he mentions that his second brother had taken great pains with his education. They were an attached family: Antoine retained all his early devotion for his mother till her death, in 1782; and his sister, the only member of the family who survived him, lived with him till his death.

Antoine Léonard Thomas distinguished himself at the university. In 1747 he carried off two of the prizes distributed in his class in the college of Duplessis: in 1748 and 1749 he studied rhetoric in the college of Lisieux, and obtaincd four prizes: from October, 1749, to August, 1751, he studied philosophy with equal distinction, at first in the college of Lisieux, subsequently in that of BeauvaisWhen he finished his university carcer, his friends wished him to study for the bar, and he did so far comply with their desire as to attend law classes and the office of a solicitor. This continued till the death of his second brother, in 1755, at which time he had retired, apparently on account of his health, which was always infirm, to his native district. A short time after he accepted the offer of a professorship in the college of Beauvais. He continued to discharge the duties of his appointment till 1761, when, finding them injurious to his health, he resigned, and was appointed private secretary to the Due de Praslin.
Thomas commenced his career as author in 1756 by publishing - Reflections Philosophiques et Littéraires sur le l'oème de la Religion Naturellc.' This was throwing down the gauntlet to the whole school of Voltaire: the patriarch himself took no notice of the publication, and Grimm spoke of it as the work of 'a silly lad just escaped from the school of the Jesuits.' In the same year Thomas addressed an ode, full of hyperbolical compliments, to Sechelles, controller-general of finance: the flattery was successful; it obtained from the minister an addition to the revenucs of the college. In 1757 Thomas composed, on the occasion of the great earthquake at Lisbon, a 'Mémoire sur les Causes des Tremblemens de Terre,' which was crowned by the Academy of Rouen. In 1759 he published 'Jumarville,' a poem in four cantos, on the death of a French officer, killed, as the French alleged, under circumstances of peculiar atrocity, in the war between the French and English, in the backwoods of Amcrica. Fréron praised this poem in the 'Année-Littéraire,' a tribute of thanks to the young author who had ventured to attack Voltaire. These early works of Thomas are remarkable only for their turgid style, commonplace ideas, and for the eagerness of the author to avail limself of the popular topic of the day.
P. C., No. 1536.

Ahout this time the French Aeadeny, rith a viers in render the prize-es-ays of its members wore popular, begmen to propose the Aloges of great men as the subjects. Thomas entered the lists three suecessive years, and was suecesful every time. Ilis ' Floge de Maurice, Comte de Save. sras crowned in 1759; his 'Floge de IIenri Frangols d'Amuessean,' in 1760t; and his 'Eloge de 12 sne du Guny-Trouin.' in 1701. In 17 (a) he alvo competel for the pinze of poetry: his E.pitre au Peuple' was dectared next in merit to the poem of Marmontel, to which the medal was rasigned. In these compoations a narked improvement can be traced. There is no greater orizinality of thought than in his tirst produc-tions-nothing of genius in then ; but more matter, more of artistical finish, and less of boyish inflation of style.
The connection with the Due de Praslin was less advantageous to Thomas than it promised to be at the outset. The duke procured for him the sinecure appointment of secretary-interpreter to the Swiss cantons. but a vanancy oecurming soon after in the Academy, this minister, who thad a personnl quarrel with Mamnontel, sought to obtain it for his seeretary. Thonias had the magnanimity to refuce the appointment, urging the superior claims of Marmontel. This act of honesty lost him the favour of the Duede Praslin, and closed the carcer of office which was opening to him. The admission to the Academy was not however lons deferred. He delivered bis imnugural address to that body on the 2end of January; 1767 .
Between 1761 and 1767 he composed- 'Eloge de Sully., crowned in 1763; "Eloge de Descartes," erowned in 1765; in 1766. 'Floge de Louis, Dauphin de France,' composed and published at the request of the Comte d'Angiviller; and his inaugural discourse. In Oetober, 1767, his opera of 'Amphion' was brought out, but without success. These works are all characterised by a progressive improvement in execution. They differ also from his juvenile productions in an attempt to adopt the sparkling and antithetical style of the Eneyclopaedists, and in the complete appropriation of their hold satirieal lone in respect in polities, altbough much of the author's juvenile respect for religion remained with him to the last. As a natural consequence of the change, (irimm had by this time pegun to praise Thomas, and Freron had cooled in his Admimtion ot him: Voltaire had written a complimentary letter on the 'Eloge de Descartes,' but bad on the other hand remarked to his friends that they ought now to substitute the word galithonas for gralimathias: Diderot continued moplacable. It was rumoured that the court, enraged at the free strain of the 'Epitre au Peuple,' and the sarcasms launched against itself and the reudal system in the 'Eloye den Jauphin,' threatened the libeity of Thomas.
The principal publications of Thomas, from the time of his admission into the Academy till bis death, are- Eloge de Mare Aurile, read to the Acallemy in 1770, and published in 1775. ITis reply, as director of the Aeademy, to the inangural discourse of the arehbishop of Toulouse, also in 1770. Fssai sur le Caractère, les a Iours, et l'Exprit des Fenmes, dans tous les Siecles,' 1772. 'Essai sur les Floges ; on IHistoire de la Littérature et de l'Floquence appliguses it ce genre d'Ourrage,' published in 1773 , in an eltion of his collected works. Ile commenced a poem on the ezar Peter I. ; hut only four books and part of a fith were completed at the lime of his death. The incereased fechnieal skill of the anthor continues to show itself in thene works; but the inereased boldness of his attempls serves also fo show the witural mergreness and feebleness of his genius. Tie was utterfy devoid of impassioned imagination. His: Eloge de Mare churctle' is an attempt to personity a Stoie of the age of that emperor: it is alike deticient in interest and dramatic trulh. Itis essay on the charater and mamers of women is a colleclion of passages which would huve swelled his didaetic essay on 'Closee' io too sreat a bulk. It was kaid at the time that this panegyrical cosay un the sex pleased them less than the vituperations of linusseau. No wonder the treatise of Thomas is colel and unimpaissioned; it was forced work; but the ravings of Ronsweat are the seoldings of a jealous man who has been anxions but mable to please. The treatise on 'Sloges' is a worthy consmmation of the author's labours in that emply and artiticial branch of literature which hay all the falsehool of oratory without the interest
which attaehes to the eloquence of the har or senate from its power of producing great practieal etlects. The partially completed poem of 'The Clar' is sencible and the ecrsification smooth, but the four hooks are four separate poems, in the manner (thongh not so grood) of Goldsmith's 'Traveller.' They never could have been made parts of an epic.

Thomas died on the 17th of September, 178.). Ilis health, always delicate, had been undermined by incessant study. His end is supposed to linve been hastened by the shock he received from an accident which bappened to one friend and the death of another. That he was capable of generons feeling and disinterested action he showed when lie forteited the favour of the Due de Jraslin by refusing to aecept a seat in the Aendemy to the exelusion of Marmontel. That he was capable of sincere affeetion is proved hy the footing on which he sloorl with his tamily and friends. The insinuatious against his sincerity ant veracity thrown out by Diderot seem to have no better foundation than the change of tone in his later from his earlier publications. The fruth is, that, like many other inferior lilléralcurs, Thomas was a mere echo of the society by which he was surrounded. He took his colouring in youth from his preceptors, most of whom were ecclesiastics; in after-life, from the sceptical literary conversation of the salons of Paris. His ́loges are his most characteristic works, a kind of composition too imaccurate to have value as history, too cold and remote from the real business of life to impress as oratory. He stands however high amongs his clas of writers. Tlie high finish and some of the britliancy of the French school cannot be denied him; though for this he was indebted quite as much to the company he kept as to natural talent, or even his unquestionable painstaking.
(Ciurres de M. Thomas, Paris, 1792 ; Geurres Posthumes de M. Thomas, Paris, An x. (1802); 'Slietch of Thomas,' hy Saint Surin, in the Riographie Universelle.)

THOMAS, ST. (Santo Thome), an island in the Gulf of Guinea, extends from 1^{\prime} to $25^{\prime} \mathrm{N}$. lat., and from $6^{\circ} 25^{\prime}$ to $6^{\circ} 43^{\prime}$ K. long. It is about 140 miles west-north-west from Cape Lopez. The island is of an oval shape: its grentest length is about 30 miles, and its greatest lreadth ahout 18 miles. Its area may be estimated at about 420 square miles. It is of basaltic formation, and mountainous: The Pico de Santa Anna de Chaves is 7000 feet high. The monutains are mostly eovered with wood, and there are numerous streams well supplied with fish. The vegetation is abundant. The chicf exports are sugar, indigo, and potton. The island helongs to the Portuguese; and the inhabitants, who are chiefly composed of P'ortuguese and of negro slaves, amount to about 18,000 . A number of runaway negroes live in the mountaius. The chief town is called Santo Thome.
THOMAS, ST., Island. [Virgin Islaviss.]
THOAIASN, or TOMASIN, suriamed 'Tirkeläre, Clär, or Zerkler, a German poet of the thirteenth eentury. He was a native of the Italian province of Friuli, and horn about the year 1186 . Being thus an latian lyy birth, or, as he himself says, a Walich, he wrote in lis earlier days an Halian work, probably a didactic poem, 'On Courteons Manners,' which is no longer extant. In the course of the year I2lf, when he had just reached his thirtjeth year, he wrote in the space of ten months a great didactic poem in German, which from his native country lie called . The Welsh Guest ' (Der Welsehe Gast), and whieh consists of ten books. This poem, of which there exist many excellent manuseripts, is one of the most splendid productions of German literature during the thirteenth eentury, and, althongh the muthor is a foreigner, the work breathes throughout a pure Gernan spirit, and displays all the depth and infeltity of German thought and feeling. In the beginning of his poem Thomasin admits that he is not a perfeet master of the language whieh he used; but still the peculiarities are so few and slight, that it requires a profonnd knowledge of the old German language to discover the foreigner. Fschenburg therefore supposes that the author's statement respecting his mative country is a mere fiction. But this supposition, as well as another, that the 'Welsh Givest' is merely a German thamslation of the Italian work 'On! Court cous Maunens, is without fonnclation, and contradicted by numerous passages ot the tormer work. The object of this poem is to show in what virtue.
piely, aud grod coilduct consist; and why man should strive after them. It shows that a remarkable progress had taken place in the mind of Thomasin during the Interval between thé composition of the Italian and that of the German work. In the former, as he himself states, he had proceeded from the idea that courteous conduct and nobility of bith were always combined with à noble mind, or, ln other words, that the changeable rules respecting grood mainners were of greater value than the eternal law of morality which is implanted ini every mann's heart. This prejudice is altogether given up In his German poeri, where he declares that a man is foolish who thinks himself great because he is of noble birth and possesses courtoous manneirs, and that it is ouly a hinan's heart and real character that make him worth anything. Virtue witli him is now a fundamiental principle, and not a mere expedient. He describes virtues and vices, and their respective consequences, with a truly Socratic spirit and dignity. Thomasit was well acquainted with the history of antiquity, and it is among the antients that he found his best models of really virtuous men. The whole poem is a sublime and altogether practical system of morality : it is a philosophy in the garb of poetry and occaslonably embellished by figurative language. But he does not write lil the spint of any partieular school ; his object is in general to instruct man on matters concerning his physical and spiritual welfare.
This masterpiece of early Germian poetry and philosophy has rever yet been publishied entire, but it, is said ithat Frommann is preparing an edition of it. Fragments of it are printed in Eschenburg's • Denkmäler Altdeutschè Dichtkulst' ${ }^{\text {' }}$. 12i, \&c.; compare Gervinus, 'Geschichte der Poetisehen National Literatur der Deutschen,' vol. i ., p. 450, \&c.

THOMA'SIUS, CHRISTIAN. The real name of thts author is Thomas, and in the works which he published in his mother tongue he always calls himself Christian Thomas. He was boril at Leipzig, on the 12 2th of January, 1655, and was the son of Jacob Thomasius (1622-1684), a distinguished professor of philosophy, and soinc time rector of the celebrated Thomasschule at Leipzig, under whose ausplces Leibnitz was educated. The education of Christian Thoniasius was conducted ly his father, whose knowledge of philosophy and its history gave his mind at aun early age a decided turn. Christian had scarcely attained his fourteenth year when he was fouind sufficiently prepared to enter the university. In his sixleenth year he obtained the degree of bachelor of arts, aind the year after that of master of arts. The chlef subjects of hus studies were philosoply and law, more especially the law of nature, which he regarded as the basis of all other laws. The instruction of his father and his own experience at the nuiversity had couvinced him that the methods of teachiug then followed were pedantic and deficient, and he deterrmined to remedy these defects as much as was in his power. In 1675 he went to Frankfort-on-the-Oder, where he beran a course of lectures on law, but they do not appear to have been well received by his colleagues, and a few years after, in 1679, after having obtained the degree of doctor of laws, he left Frankfort, and niade a literary journey to FIolland. On returning to Leipzig he commenced the practice of the law. But this occupation did not offer sufficient scope for hitn, and he again became an acadenical teacher, in which capacity he brought about the most beneficial reforms. The law of nature, wlich had until then been almost entirely nerlected in the universitles, continued to be the principal subject of his studies. The older professors, who found themselves disturbed in their routine of teaching by the energy and boldness of the young nian, began to clamour against lim. So long as his fathcr lived, violent outbreaks were prevented, partly because he restrained his son's eagerness for reforms, and partly because the other professors csteemed hira too much to hutt his feelings by open attacks upon his sori: When howevet his father died, in 1684, the bittcrness and boldncss with which young Thomasins attacked antiquatcd prejudices of all kinds together with their charripions, involved hirri in numerous disputes. This enmity was not only provoked by the matter and the manner of his tedching, but also by several publications which tended to destroy established opinions. Une of them, on polygamy, especially gave great offertec ;
he asserted that polygamy was at least not contrary to any
law of nature. law of nature.
Up tô this time it had been the general custom in all German universities to deliver lectures in Latin, and to make all public announcements of them in the same language. In the year 1687 Thomasius published his program in Gerrian, and announced that he would deliver a course of lecturres in German, and on a subject which appeared altogether foreign to a university, -viz, on the manner in which the Germans should follow the example of the French ('Discours; welcher Geistalt man denen Franzosen im gemeinen Leben und Wandel nachahnen soll', published at Leipzis, 1687, 4to..). 'This daring innovation was regarded by his colleagues as a perfect heresy, though, after the example was once set, it was gradually followed by other professors, unfil it became the universal practice in all Gërman universities to lecture in German. It was a neeessary consequence of this that books of a scientific character now began to be written in German. Notwithstanding both the open and secret attacks to which Thomasius had thus exposed himself, he continued to combat prejudice, pedantry, and errior. He was mnsparing in his censure, which was usually combined with wit and satire, and even his former feachers did not escape. In the year after, 1688 , he established a German Monthly Review, under the titte, 'Freimithige, jedoch vernunft- und gesetzmässige Gedanken über allerliand, fürnemliclı aber neue Bücher,' which he conducted from 1688 till 1690, and which gave him iminense influence in all parts of Germany, and the means of chastising his enemies. His enemies in their turn tried every mieans to avenge themselves; and although Thomasius at first suc; ceeded in averting the daniger that was gathering around him, yet the disputes became daily more rehenent and serious, cspecially with two divines, Pfeifer and Carpzovius, who charged him with atheism. The theological faculty of Leipzig was likewise gained over to their side. H. G. Masius, court preacher to the king of Denuark, who had been rather severely dealt. with by Thomasius in his Journal, and who made a reply, to which Thomiasius answered in a very energetic manner, persuaded the king of Denmirk to have all the published parts of Thomasius's Journal burnt in the market-place of Copenhagen by the hangman, 1689. Such proceedings iu a toreign country were treated by Thomasius with contenpt ; but the storm was gathicring over his head. In the same year he became involved in disputes with the Pietists, and also came forward to justify mairiages between two pecisons of different religions, which enraged the divines of Wittenbërg to such a degree, that the chief consistory was induced by various charges which were made against him to issue an order for the apprelhension of Thomasius. He escaped the danger and fled to Berlin, where he inet with a kind reception and the protection of Frederick III., the great elector of Brandenburg (afterwards King Fred.erick I.), who not oilly permitted him to settle at Halle, but also to lecture in the Ritteracademie (academy for young noblemen) of that place. He began lis lectures here in 1690, and met with the same approbation on the part of the student's as at Leipzig; and the increase in the number of students induced the clector in 1694 to found the university of Halle, in which he appointed Thomasius professor of jurisprudence, and conferred upon him the title of councillor, with a salary of 500 thalers. In this new position too Thomasius continued to be annoyed by numerous disputes, partly with his former adversaries and partly with others. In the year 1709 he had the satisfaction to receive an invitation to the chair of jurisprudence in the university of Leipzig, which however he reflused. King Frederick I. of Prusia, pleased with the determination of Thomasius not to leave his service, rewarded him with the title of privy-councillor. In 1710 Thomasius was elected rector of the university of Halle, and dean of the faculty of jurisprudence. He died on the 23id of September, 1728, in the seventy-third year of his age.
If ever a man exercised a beneficial influence upon his age and country, an influencé whieli will extend to the latest posterity, it is Thomasius. He was one of the few men, like Luther and Lessing, who now and then rise up in a nation, give it an impulse, and deternine its course. At the tlme when Thomasíus began to make himself known, philosophy and theology were studied and taught in such a
manner that it was evident that the spirit which had been eraated by the Reformation would sown vanish altogether. All philosophical and seientifie works were written in Iatin, whieh formed an inadequate metium ior communicating new thoughts and idens, which were trequently crippled and imperiect on that account, or the language itself was barbarous. In the universities also Latin was the ordinary language for communicating knowledge, which thus renained in the exclusive possexsion of a smali mumber, and without infuence upon the nation at large. Thomasins prepared the way for better things, first by communieating knowledge in his native language, and by extending the sphere within which speculation had until then been earried on. At the same time he urged the necessity of writing in a elear and intelligible style, which many of his countrymen in recent times have greatly neglected. His own style, though not always pure, is precise and vigorous. As in places of learning Thomasius destroyed old prejudices and pedantry, he also boldly combated superstition and hypocrisy in the affairs of common life. such as the belief in ghosts, spectres, and witeheraft; and it is almost entirely owing to his exertions that trials for witcheraft and torture were abolished in -Germany. In reference to this, Frederick the Great says of Thomiasius, - He denounced trials for witcheraft so loudly, that persons began to be ashamed of them, and from that time the female sex has been permitted to grow old and die in peace.' All this would alone be sufficient to imnortalize his name, even if he had no claim to it by what he did in philosophy. Ilere he indeed found things in such a state, that it required all his energy to elear the field from the weeds wifh which it was overgrown, before it was fit to receive the seed, and accordingly his philosophy is more of a destrnctive than of a constructive character. But in this negative way he has done incalculable service to his nation, and Frederick the Great justly says, that, among all the philosophers of Germany, none have contributed more to render its name illustrious than Leibnitz and Thomasius.

The number of works of Thomasius is considerable. Besides those mentioned above, the following must be noticed: 'Finleitung zu der Vernunftehre, worinuen durch eine leichte, und allen vernïnftigen DIensehen, waserlei Standes oder Gesehlechts sie seyn, verstandliche Manier, der Weg gezciget wird, ohne die Syllogistica, das Wahre, Wahrscheinliche und Falsehe von cinander au entscheiden und neue Wahrheiten zu erfinden,' Halle, 1691, 8vo. The finh and last edition of this work appeared ut Halle, 1719, 8vo.; it was the first readable book that had ever been produced in Germany on logie. Von der Kunst vernünftig und tugendhaft zu lieben, als dem einzigen Mittel zus cinem gluiekseligen, galanten, und vergnügten Leben $2 u$ gelangen, oder Einleitung der SittenFehre,' \&e., IIalle, 1692,8 vo. ; an cighth edition of it appeared in I '26. This work contains a system of cthies better than any that had appeared before him. "Ilistorie der Weishest und 'Thorheit,' in three parts, Malle, 1693, 8vo. Weitere Erliutering durch untensehiedene Exempel, anderer Menschen Gemüther kenuen zu lernen,' Halle, 1693,8 vo., reprinted in 1711. 'Der Kern wahrer und nitzlieher Weltweisheit,' Halle, 1003, 8vo.: this is a translation of Xenophon's ' Memorabilia of Soerates,' which Thomasius strangely enough took from the French translation of Charpentier, although he himself was well aequainted with the Greek. "Versueh vont Wesen des Geistes, oder Grundlehren die einem Studioso Juris zu wissen und auf Universitaiten zulemen nüthig sind,' Ialle, 1699, 8vo., reprinted in 1709 . Ernsthafte aber doch muntere und vernünflige Gedanken und Erinuerungen über allerhand auserlesene juristische Händel,' 4 vols., Halle, 1730-21. His miscellaneous and smaller eways appeared in a collection under the title "Kleine Deutsehe Schriften mit Fleiss zusammengetragen,' Halle, 1701, 8 Yo. A eomplete list of his works is given in Iaden's Christian Thomasius nach seinen Schicksalen und Eleriften durgestellt, with a preface by Johannes von Müller, Berlin, 18(0), 8vo. ; and in Jürden's Jexikon Deutscher Dichter und P'ronaikten, vol. v., p. 3\%.59.
THOMA'SIUS, JACOB. [Thomastus, Christian.] THOMASTON. [MANE, p. 3 \% .]
THOMOND, THOMAS, an arehiteet who practised at St. Petersburg, and held the rank of a najor in the Russian service, was a native of France, and form at Nancy,

December 2I, I70. Searely had he completed the professional education at Paris, when the Revolution rendered it unsafe for him, he and his family leing roynlists, to remain in the country, and he accorlingly emigrated 10 Russia, where he at first supported himself by ihe profluctions of his peneil, which not only found purchasers, but made him favourably known to the St. 'letershurg public. The taste he displayed in arehitectural subjeets fed at length to his heing employed by the government in that branch of art whieh he had originally intended to follow, and one of the first works of any importance intrusted to him was the Great Thentre (ereeted ly the German arelitect Tischbein, 1782-83). Which he was commissioned to improve and partly remodel, in 1804. Although not altogether tree from the peculiarities of the French sehool, the tiecade and octastyle lonic portieo which he added to that stmeture is one of the nohlest pieces of arehitecture in the northern eapital of Russia, and, of its kind.and date, in Europe. Mad he executed nothing else, that alone would have entitled him to rank higher in his profession as an artist than many who owe their eelebrity as much to the number so to the merit of their works. But he had also the opportunity of displaying lis taste and ability in another very striling public edifice at St. Petersburg, namely; the Imperial Birzha, or Fxchange, erected by him between the years 1804 and 1810, which is an insulated structure (ahout 256 by 300 fect) of the Roman Doric order, peripteral and decastyle at each end (although withont pediments), and having altogether 41 columns. Situated at the sonthern point of the Vassilievskii Island, immediately facing the Nevr, it stands in the centre of a spacious plotchud, or 'place,' upon a rich architectural terrace, which sweeps out so as to form a semicircular esplanade in front, at crech extremity of which is a flight of steps leading down to the river, and a massive rostral column 120 feet high. Taken altogether, the arehitectural combination thus produced is exceedingly pieturesque, and may be said to be unique.

Thomond also erected some private mansions and other buildings at St. Petersburg, the nausoleum of the cmperor Paul at Pavlovska, the theare at Odessa, and the Pultava monument. In 1808 he published some of his buildiners and arehitectural designs in a quarto volume, very unvitisfactorily exceuted howeser; and he also wrote a treatise on painting, an art to which he was greatly attached. He died August 23, 1813.
(Kukolnik, in Khudlozhestrennya Gazela, 1837.)
THOSIPSON, SIR B. [RUMFORD, Col'NT.]
THOMSON, JAMES, was born at Ednam in Roxburghshire on the lith September, 1700. His finther was clergyman of the place, and distinguished for his piefy and pastoral character. James was first sent to the grammarseliool at Jedburgh, and completed his edueation at the University of Edinhurgh, where in 1719 he was admitted as a student of divimity. In 1720 his father died, 'and this,' says Dr. Murlach, ' affected him to an mneommon degree, and his relations still remember some extraordinary instances of his grief and filial duty on that occasion.'
Thomson turned from divinity to poctry owing to the following incident :- The Rev. Mr. Hamiton, who then filled the chair of divinity, gave as a subject tor an exercise a pasalm in which the majesty and power of God are described. Of this psalm Thonson gave a paraplirnse and ilhistration as the exercise required, hut in so poectical and ligurative a style as in astonish the audience. Mr. Hamillon complimented the pertormance and pointed out to the students its most striking points; but, turuing to Thomson, he surgested that if he intended to become a minister lie must kepp a stricter rein over lis imagrination and learn to be intelligible to an ordinary congregation.
Some eneouragenent held out to lim by Lady Grisel. Bailie following this intimation of the Professor, he determined to give up divinity and try his fortune in London. Slender as this pretext of 'encouragement' was, there have been many poets who have thus sought their fortune from no stronger reason. The truth is, Thomson wanted to try his eapacity in London, and scized on this as a pretext. Arrived there, say's Dr. Johnson, he was one day loitering abont 'with the gaping curiosity of a new-eonser, his attention upon eyerything rather than upon his poeket,' when lis handkerchief, containing his letters of reconmendation to several persons of consequence, was stolen from him. And now the lonely' poet in the vast city first
felt his inexperience and his poverty. A pair of shoes was his first want; his manuscript of 'Winter' his only property. A purchaser for this poem was found with great difficulty; but Mr. Millar consented to give a trifle for it, and it was published in 1726. It was little read till Mr. Whately and Mr. Spence spoke so favourably of it that attention was attracted, and it rose rapidly into popularity, and one edition very speedily followed another.
This success procured him many friends, among whom was Dr. Rundle, who introduced him to the lord chancellor Talbot; and some years after, when the eldest son of that nobleman made a tour on the contirent, Thomson was appointed his travelling companion. Meanwhile his poetical powers were fully employed, and in 1727 appeared his 'Summer;' in 1728, his 'Spring ;' and in 1730, his ' Autumn.' Besidas these he published, in 1727, ' A Poem sacred to the Memory of Sir Isaac Newton,' and 'Britannia,' a poetical invective against the ministry for the indifference they showed to the depredations of the Spaniards in America. By this piece he declared himself a favourer of the opposition, and therefore could expect nothing from the court.

The tragedy of 'Sophonisba' was acted in 1727, Wilks taking the part of Masinissa, and Mrs. Oldfield that of Sophonisba. So high were the expectations raised, that every reliearsal was dignified with a splendid audience collected to anticipate the pleasure that was preparing for the public. Its sucecss however was very equivocal. ' There is,' says Johnson, ' a feeble line in the play:-

" 0 , Sophonisisa, Sophonisba, 0 !"

This gave occasion to a waggish parody,
" O. Jemmy Thomson, Jemmy Thomson, O!"

Which for awhile was echoed through the town.'
At this time long opposition to Sir Robert Walpole had filled the nation with clamours for liberty, and Thomson, instinetively seizing the poct's office to utter in verse the wants of the nation, determined on writing a poem on ' Liberty.' He spent two years on this undertaking, and viewed it as his noblest work, probably because it had cost him the most trouble. It was divided into five parts, which were published separately, thus: 'Antient and Modern Italy compared; being the first part of "Liberty," a poem,' 173.\%. 'Greece; being the second part, \&c.,' 1735. 'Rome; being the third part, \&c.,' 1735. 'Britain; being the fourth part, \&ic.,' 1736 . 'The Prospect; being the fifth part, \&e.,' 1736. The pocm of 'Liberty' does not now appear in its original state, having been shortened by Sir Georrc (afterwards Lord) Lyttelton. Of all Thomson's works this is the least read, and descrvedly so ; for, indcpendent of the feebleness of its execution, it is obvious, as Johnson remarked, that 'the recurrence of the same images must tire in time; an enumeration of exainples to prove a pnsition which nobody denied must quickly grow disgusting.'

His friend Talbot appointed him seeretary of bricfs, a place requiring little attendance, suiting lis retired indolent way of life, and equal to all his wants. When his patron died, Lord Hardwicke succeeded him, and kept the office vacant for some time, probably till Thomson should apply for it; but either his modesty, pride, or clepression of spirits prevented his asking, and the new chancellor would not give him what he would not request. This reverse of fortune increased his literary activity. In 1738, besides editing his own works in two volumes and writing a prefnce to Milton's "Areopagitica," he produced the tragcly of 'Agamemnon, with Quin for his hero. For this he got 'no inconsiderable sum,' though it had but puor success. Johnson says that on the first night Thomson seated himself in the upper gallery, and was so interested in its performance, that ' he accompanied the players by audible recitation, till a friendly hint frighted him to silence.'
Thomson's next tragedy was 'Edward and Eleonora, which was not allowed to be represented on account of certain pretended allusions. IIe then wrote, conjontly with Mallet, the masque of 'Alfred, which was represented before the prince and princess of Wales at Clifden in 17.40. This masque contains the national song of 'Rule Britannia,' which Mr. Bolton Corncy aseribes, 'on no sliglat evidence,' to Mallet.

Thomson's next work was another tragedy, 'Tancred and Sigismunda,' which, being taken from the interesting story in 'Gil Blas,' instead of the Grecian mythology, as were his other pieces, had more success. Garrick and Mrs. Cibber played the principal parts. His friend Sir George Lyttelton now appointed him surveyor-general of the Leeward Islands, from which, after paying a deputy, he received about 300l. a year.
The 'Castle of Indolence,' which was many years under his hands, was now finished and published (1748). It was at first little more than a few detached stanzas, in the way of raillery on himself, and on some of his friends who reproached him with indolence, while he thought them at least as indolent as himself. But the subject grew under his hands till it became his masterpiece.

A violent cold, which from inattention became worse, at last carried him off, on the 27th August, 1748 . He left behind him a tragedy of 'Coriolanus,' which was brought on the stage by Sir Gcorge Lyttelton for the benefit of his family. A considerable sum was gained, which paid his debts and relieved his sisters. The remains of the poet are deposited in Richmond churchyard.
Thomson was 'more fat than bard beseems;' of a simple, unaffected, indolent, sensual character; silent in company, but cheerful among friends, of whom he had many and true. This character is discernible in his writings. His simplicity is seen in the purity and warmth of his sentiments, sometimes even childish; his indolence in the slovenliness of his versification, and the inappropriateness of so many of his epithets: he never seems to have thought anything worth the toil of polishing, and hence the perpetual use of pompous glittering diction substituted for thought or description ; his sensuality appears in the gusto with which he describes all luxuries of the senses, and the horrors of deprivation. Amidst much that is truly exquisite both in feeling and expression, he mingles the absurditics of a schoolboy's trite commonplaces and mechanical contrivances to piece out his verse. A swect line of almost perfect beauty is followed by a bombastic allusion, or some fecble personification as tiresome as the first was bewitching. A touch of nature is overloaded by superfluous epithets-a picturesque description is often marred by pedantry or carelessuess. Hazlitt says that 'he is affected through carclessness-pompous from unsuspecting simplicity of character. He is frequently pedantic and ostentatious in his style, because he had no consciousness of these vices in limself.'
In spite of these drawbacks, Thomson is a charming poet, and one whose works have always been the delight of all classes. The popularity of his 'Seasons' cquals that of any poem in the language, and it is said that some one, finding a shably copy of it lying on the window-seat of a country ale-house, exclaimed, 'That's true fame!' Thomson's beauties are genuine : his descriptions of nature often come with the force of reality upon the mind; and no one ever painted more successfully the 'changing scene' and the 'rustic joys' of England.

His 'Castle of Indolence' may be regarded as his bestsustained cflort, for, although separate passages of the 'Seasons' may be superior, yet on the whole it has fcwer defects, while some of the stanzas, especially in the first canto, fill the mind with lazy luxury,
Of his tragedies we need say little: their neglect has been so signal, that we may accept so unanimous a verdict without further examination; indeed the genius of Thomson was cminently undramatic.
(Dr. Johnsun, Lives of the Poets; Murdoch's Life of Thomison; Thomson's Seasons, edited by Bolton Corney; Hazlitt's Lectures on the linglish Poets; Campbell's Specimens of the British Poets.)

THONSONITE. This mineral occurs generally in masses. Structure fibrous and radiatcd, the filbres prolonged into small columnar crystals in the occasional cavifies. Primary form a right rhombic prism. Cleavage parallel to the diagonal planes of the primary form. Fracture uneven. Hardness-scratches fluor spar, or $5 \cdot \mathbf{0}$. Colourless, translucent, and in small fragments transparent. Lustre vitreous. Brittle. Specific gravity $2 \cdot 35$ to $2 \cdot 37$.

Before the blow-pipe it intumesces and becomes opaque, but does not fuse ; at a red heat it loses water.
It occurs at Kilpatrick, near Dumbarton, in trap associated with analeime and prehnite.

THONON. [Chablals.]

TlIORACLC DUCT is the prineipal trunk of the lymphatic or absorbent system, and the canal through which the greater part of the chyle and lymph is conveyed into the blood. It commences, below, at what is called the receptaculum chyli, which receives all the principal absorbent vessels from the intestines and from the lower exiremities, and lies at the posterior and middle part of the abdomen, on the upper lumbar vertebra and on the right side of the aorta. In man the diameter of the receptacuhum is but little greater than that of the thoracie dnet, which is continued from it; in most other anmals it is considerably greater, and the duet seems in them to comnence in a large pouch. From the reeeptaculum chyli the thoracic duet passes upwards, on the right side of the aorta, and belind it, from the abdomen into the chest, being joined in its course by the lymphatic vessels of the adjacent organs. Opposite the sixth dorsal vertebra it begins to bend to the left, and, after passing behind the arch of the aorta, it ascends to the level of the seventh cervieal vertebra, curves forwards and downwards, and opens into the left subclavian vein, ustially near its junetiun with the left jugular vein. At this orifice of the thoracie duct there are two valves, like those of the veins, which open to permit fluid to pass from the duct, but close when any is forced aigainst them from the vein. Other valves in tuncertain number are fund in different parts of the duct, and have all the same direction as those of veins. [Ahsorbents; Chyle; Digestion.]
TIIORAX. [Resplration.]
TllORDO is the Latinized name of a celebrated Danish lawyer, whose real name was Thord, or, more completely, Thord Deghn. He lived in the reign of Waddemar III,, king of Demmark, and was descended from an antient family of that eountry. Coneerning his life little is known beyond the fact that he was chief judge of the province of Jütland. Ilis natue has come down to us through a collection of Danish laws which he formed into a kind of code. It contains the carliest Danisti laws, to wlüch no historieal origin can be asslgned, as well as the subsequent laws which were passed between the years A.v. 1200 and 13%, by the Danish parliament, and sinctioned by the kings. They are not arranged in chronological order, but systematically, and comprise civil as well as constitutional laws. They are of very great value to the stident of the social and political history of Denmark. Danish editions of this small eode appeared at Ripen, $1504,4 t 0$. ; and at Copenhagen, 1508, tho. Ludewig, in his 'Reliquare Manuscriptornns omnis aevi diplomatur ac monumentorum ineditormin; vol. xii., pp. luie-2lf, has published a Latin translation of this cole of lavs. In the fitle to them Thordo calls himself, 'Thordo legifer Daciae,' whete Daciue must mean Daniae, that is, Denmark.
THORDSON, STURLA, belonged to the velebrated Ieclandie family of the Sturla; his name Thordson indicates that he was a son of Thordo. Ile was a nephew of Snorri Sturluson. and born about A.b. 1218. Being a man of high muk and great knowledge, he was nppointed to the most important offices by the Danish kings Iheon and Magma, atd it was at their command that he wrote the history of lecland. Demmark, and Norway, from the time where the work of Snorri Sturluson broke olf. This history bears the title of 'llistoria Sturlungormu,' but the work which is now extunt under that name is only un abridgment of the original history, and the latter part is altogether lost. The substance of the work is given in Torfacus, 'Historia Rerum Norvegicarum,' who, in his Prolegomena, also gives an account of the 'Historia Sturlungorum.' Thordson died in A.D. 1224, at the age of seventy.

THOHERR. [Toanses.]
THORESBY, IRALPH (born 1058, died 1725), a viMuoso
and suntiquary, and an early Fellow of the Royal Society, whe the son of a merchant at Leeds, and born in that town. Ile had his early ellucation in the leeds grammarochool, but, being intended by his thther tor commercial life, he did not pass to any of the lipher seats of leaming. Ife had however what may be called a liberal commercial edueation, being sent by lis father to Holland for the purposo of becoming acquainted with the mode of eonducting business in that comutry, and of acquiring the modern languages; and atlenvards to loondon for a similar parpose. He settled in his native town, where his funily was counected with some of the principal persons whothen furned the society of leeds, und where he had a businens preparell for him, which had been successtully conducted by his father, who died when the son was just twenty-one.

Thoresby possessed from a very early period of life an eager curiosity respeeting the things and persons around him shich presented any teatures of historical interest, and a desire of collecting objects of curlosity, natumal or urtificial. His father liad something of the same taste, having purchased the collection of coins and meduls which had been formed by the family of Lord Fairtix, the parliamentary general, and this collection was the basis of the museum formed in a few years by the son. This museun was a lucans of bringing him acquainted with all the celebrated antiquaries and naturalists of the time, and was a perpetual attraction io persons of euriosity, who olten risited Leeds for no other purpose than to see it. It is not too mueh to say of it that it was perhaps the best museum ever formed in England by a gentlemen of private and rather small fortune; containing, it is true, some things which would now be exteemed of not the smallest value, but also many objects of very high value, especially in the two grand departmeuts of manuseripts and cuins.

As he advanced in life, the euriosity which liad at first been directed upon the objeets uore inmediately around him became expanded so as to comprehend objects of more general interest, and in faet the whole range of what is usually understood to be comprehenderl in the term antiquariau literature. In the department of nutural history he was also not merely a collector, but an observer, and he made many communieations, esteemed of value, to his private fricinds or to the Royal Socicty.
With this furn of uind, it will hardly be supposed that he was very suceesstinl in his mercantile atlinins. He had however the good sense to withdraw from business before his fortune was entirely lost to him, and about the fortysixth year of his uge he seems io have wholly retired from it, and to have formed the deternination of living on the little iucome which the portion of his property that remained would afford him.
Besides amassing such manuscript matter as he could by any means become possessed of, he was himself a lathorious transeriber, and was also aecustomed to commit to writing notes of things, which he observed, or information collected from his friends or the old people of his time. When released from the cares of business, he had leisure to make use of these notes, and he entered upon the preparation for the press of two works, which it was intended by him should contain nll that he had gathered in what had been from the first his favourite suljeet, the illustration of the history, and whateser belonged to it, of his native town. One of them was to bo in the form of at topographical survey of the whole of the large parish of leeds, and of a few of the smaller parishes which are supposed to have been comprehended under the very antiont loeal term - Fhmete:' the olher, a history of the varions transactions of which that district had been the seene, of its more eminent inhabitants, of the publie benefactors, and of the changes which had talien phee in the state or fortunes of its inhabitunts. The first of these designs only was accomplished. The work appeared in a folio rolnune in 1715, under the title of 'Dueatus Leodiensis, or the 'Topography of the Town and Parish of Lecels.' This work feaves little for the inhabitmons of the town to desire in this kind, exeept that he liad prepared the 'historical part' also, to which the author is perpetually referring the reader. The work is more than its title pronises, since it containsu large body of genealogical intormation, comprehending the descents of nearly all the fanilies of consequence who inhabited the central parts of the West Riding. There is also
a very large descriptive catalogue of the treasures deposited in his museum.
The 'Ducatus' is the principal literary work for which we are indebted to him. As a kind of supplement to it, he published, in 1724, a history of the Church of Leeds, under the title 'Vicaria Leodiensis,' which, like his former work', has many thines not strictly belonging to his subject, but, in themselves valuable. A new edition of the 'Ducatus,' containing also all the matter of the 'Vicaria' which properly belonged to Leeds, was published by Thomas Dunham Whitaker, IL.D., in 1816.
The writings of bishop Nicolson, bishop Gibson, Obadiah Walker, Calamy, Strype, Hearne, and many ather persons, show how willing Thoresby was to give assistance to any of his literary friends in their various publications.
Thoresby kept during the greater part of his life an exact diary of each day's occurrences. Large extracts from the portions which remain of it were published in two octavo volumes in 1830, and two more polumes were published at the same time of selections from the letters of his various friends; these were published under the care of Mr. Hunter. They exhibit the peculiar features of a somewhat remarkable character, and the particular incidents of his life. A large account of him may be found in the 'Biographia Jritannica,' and another prefixed to Dr. Whitaker's, edition of his topographical work.
THORITE, a mineral in which thorina was discovered to exist by Berzelius. It occurs massive and compact. Fracture uneven, very brittle, and full of cracks. Hardness about 5.0. Lustre resinous; vitreons; opaque. Colour black. Sperific gravity $4 \cdot 63$ to $4^{\circ} 80$.
Before the blow-pipe, gives off water, and becomes yelbow, but does not fuse.
It is found in syenite, in Norway. It contains nearly 58 per cent. of thorina, mixed with thirtcen metallic and other bodies.
THO'RIUM, or THORI'NUM, a metallic body discovered by Berzelius in an earth to which he had given the name of thorinu. When this was converted into chloride of thorium, and treated with potassium, after washing the mass a heavy metallic powder was left of a deep leaden-grey colour, which, when pressed in an agate mortar, acquired an iron-greytint and a metallic lustre. It is not oxidized by water, either hot or cold, but when leated in the air it burns brilliantly, and is converted into oxide of thorium, or thorina, which is perfectly white, and devoid of any trace of fusion. Thorium is scarcely at all acted upon by nitric acid, and slowly by the sulphuric; but hydrocloric acid dissolves it readily with the eqvolution, of hydrogen gas.
Orygen and Thorium combine to form oxide of thorium, or thorina, by heating the metal in the air; or by decomposing the chloride by means of an alkali. When it has been strongly heated, its density is $9 \cdot 402$, and it is then insoluble in any acid but the sulphuric, and in that with difficulty. It is precipitated in the state of hydrate from its solutions by the alkalis, and in this state it is readily soluble in reids, and is converted into carbonate by exposure to the air. The alkaline carbonates dissolye the lyydrate, carbonate, and subsalts of thomia; thorina is jrecipitated from solution by the ferrocyanide of potassium. Thorina probably consists of -

One equivalent of oxygen
One equivalent of thorium

Equivalent

$-\frac{60}{68}$
-68
Besides combining readily with oxygen, as already mentioned, thorium unites energetically with chlorine, sulphur, and phosphorus; but the compounds which they form lave not heen minutcly examined.
Thorn. [Crathequs.]

TIIORN-APPLE. [DATURA.]

THORN (in Polish, Trumia) is a celebrated fortress in the government of Marienwerder, in the province of Prussia. It is situated in $53^{\circ} \mathrm{N}$. lat. and $36^{\circ} 25^{\prime}$ E. long., on the right bank of the Vistula, over which there is a bridge, which is the only standing bridge over the Vistula in its whole course. (The others are floating bridges.) It consists of two parts, the German and the Polish bridge, whicl are separated by an island called the Mazarkänpe. The German parh, from the town to the island, is 1246 feet long; the Polish part is 927 feet long. The wholc distance
from Thom to the opposite bank of the Vistula (including 296 feet for the island) is 2469 feet: the breadth of the carriage-way is 18 feet; it is 17 feet above the river at its
ordinary level. ordinary level.

Thorn is divided into the old and the new fown. There are two Lutheran and three Roman Catholic churches, two monks' convents and one of Benedictine nuuns, a celehrated Lutheran gymnasium, a Roman Catholic school (formerly a 'Jesuits' college, four elementary schools, one girls' school, four hospitals, an infirmary, and a house of correction. The most considerable buildings are the cathedral, built in the Gothic style; St. John's church, containing the monument of Copernicus, who was born here in 1473; the town-house, buili in 1602, on the model of that at Amsterdam (the doors, inlaid with ebony and ivory, the marble tables, and the paintings on the walls are memerials of former splendour') ; the well-known leaning tower, Jike that at Pisa; and the house in which Copernicus was borm.
Thorn is indebted for its foundation to Herman Balk, master of the Teutonic order, who immediately on his arrival, in 1231, fortified the antient castle of Turno, at Old Thorn, about fiye miles from the present town. In the following year he founded the town, but, finding the situation inconvenient, pulled it down in 123.5, and chose another site eight miles farther up the Vistula. At the commencement of the fourteenth century Thorn joined the Manseatic League, and during the dominion of the Order becamie rich and flourishing through its extensive commerce. It atterwards joined "The Union of the Prussian Cities,' and with it threw off the authority of the Knights: it took an active part in the sanguinary war arising from this step, which ended with the peace coincluded in its walls in 1466, by which West Prussia yas annexed to Poland. Commerce continued to flourish under the Polish government, but the city suffered severely, partly from the internal troubles of the kingdom, partly by the wars with Sweden, during which it was twice plundered by the Swedes (165J, 1703). Charles XII. entirely destroyed the fortifications. The Reformation was favaurably received at an early period, but led to very harsh measures on the part af the Roman Catholies, and to interinal troubles. "These dissensions continued from the time of Sigismund I. ($1506-1548$), through the sixteenth and seventeenth centuries; and at the beginning of the eighteenth century occasioned what is called the 'Thorn Tragedy,' a persecution excited by the Jesuits, which ended, on the 7 th Deceniber, 1724, with the execution of the burgomaster John Rossner and eleven of the principal citizens.
When West Prussia was separated from Poland in 17t2, Thorn and Danzig remained under the Polish government, but their prosperity declined in eonsequence of the many obstructions to their commerce caused by the regulations of Prussia for the navigation of the Vistula. Alter its innion with Prussia, on the second partition of Poland, in 1793, its commerce and prosperity revived: Since 1809 it has been again converted into a fortress. It is also important as a commercial port for the exportation of the produce of the country, corn, timber, linen, raw hides; especially however corn. The population, including the garison, is nearly 12,000 inhabitants.
(A. E. Preuss, Beschreibung von Preussen ; Brockhaus, Conversations Lexicon, 7th edit.; Hassel; Cannabich; Hörschelmann.)
THORNBURY. [Gloucestershire.]

THORNE: [Yorkshire.]

THORNEY. [CAMBRIDGESHIRE.]
THORNHILL, SIR JAMES, an eminent painter during the reigns of Queen Anne and George I., and, says Walpole, 'a man of much note in this time, who succeeded Verrio, and was the rival ol Taguerre in the decorations of our palaces and public buildings,' was descended of at very antient lamily in Dorsetshire, and was born at Weymouth in 1676 . Through the extravagance of his father, who disposed of the family estate, Thomhill' was compelled to support himself by his own exertions. He adopted the protession of a painter, and, hy the liberality of an uncle, Dr. Sydenham, the eminent physician, he was enabled to pursue his studies in 'Loondon, where hie placed hinselt with a painter, whose name is not known,' with 'whom however he did not remain long. Thornhill appears to
mave made rapid progress in the public favour, for in his Surtieth year, when he made a tour through Flanders, Holand, and Franee, he was sufficiently wealthy to purchase many valuable pietures of the old masters and others. Upon lis return he received the commission from Queen Anue to paint the interior of the cupola of St. I'aul's cathedral, in which he executed cight pietures illustrating the history of St. I'aul, painted in chiar'useturo, with the lights hatehed in gold: for this work he was appointed listorical painter to the queen, yet was paid only forty shillings the square yard for his production. Thomhill's reputation was now established, and, through the favour of the earl of llalifax, he received the commistion to paint the prineess's apartment at llampton Court, which the lord ehamberlain, the Duke of Sherwsbury, had intended should be painted by Sebastiano Kieei, then in rreat favour with the court in England; but the Earl of Halifax, who was then first commissioner of the treasury, declared that if Ricei painted it he would not pay him. Sir James exeeuted many other great works, as the stairease, the gallery; and several ceilings in the palace at Kensington, a hall at Blenheim, the chapel at Lord Oxford's at Wimpole in Cambridgeshire, a saloon for Nr. Styles at Moor Park in Hertfordshire, and the eeilings of the great hall at Greenwich Hospital. Sir James commenced the last work in 1703, and was oceupied upou it for several subsequent years, but it was not entijely painted by his own hands. The paintings are allegorical: on the ceiliner of the lower hall, which is 112 feet by 56 , are represented the founders of the institution, William 111, and Queen Mary, in the centre, surrounded by the attributes of national prosperity; in the other compartments are figures which represent the zodiae, the four seasons, and the four clements, with nayal trophies and cmblens of science, among which are introduced the portraits of famous mathematicians who have adranced the seience of navigation, as Tycho Brahe, Copernicus, Newton, and others. On the eeiling of the upper hall are represented Queen Anne and her husband Prinee George of Denmark; other figures represent the four quarters of the world; on the side walls of the same apartment are the landing of William III. at Torbay, and the arrival of George I. at Greenwich; on the end wall facing the entrance are portrait groups of George 1. and two generations of his family, with aceessories, and Sir James Thomhill's own portrait. These works, whieh are exceuted in oil, lave little to recommend them besides their vastness; yet in invention and arrangement they are equal to the najority of such works in the great buildings on the continent: in design and colouring however they are inferior.

Walpole las preserved some interesting details respeeting the remuneration Thomhill received for some of lis works: he says, 'High as his reputation was, and laborious as his works, he was far from being generously rewarded for some of them, and for others le found it diffieult to obtain the stipulated prices. His demands were contested at Greenwich; and though La Fosse received 23000 . for his work at Montague House, and was allowed 500%. for his diet besides, Sir James could obtain but forty shillings a square vard for the euppla of St. Patul's, and I think no more for Greenwich. When tho aflairs of the South Sea Company were made up, Thornhill, who had painted their staircase and a little liall, by orker of Mr. Knight, their cashier, demanded 1500 l ., but, the directors learning that he had been paid lut twenty-five shillings a yard for the hall at Blenheim, they would allow no more. Ile had a longer contest with Mr. Styles, who had agreed to give lim 3500 l., but, not being satisfied with the exeeution, a lawsuit was commenced, and Dahl, Richardson, and others were appointed to inspeet the work. They appeared in court bearing testimony to the merit of the performance; Mr. Styles was condemned to pay the money, and, ly their arbitmation, 500l. nore, for decorations about the house, and for Thomhill's acting as surveyor of the building.: Thomhill obtained permisaion, through the earl of Ilatifax, to copy the Cartoons of Raphact at Ilampton Court, mpon which he bestowed three years' labour; he minde also a smaller set, one-fourth the size of the origimals, and distinct studies of the heals, hands, and feet, intending to publish sne exact account of the whante for the une of students, but the work never appeted. These two sets of the Cartoons were sold the year alter lis denth,
with his eollection of pictures, among which were a few capital specimens of the great masters: the smadler set sold for seventy-five gumeas, the larger for 200l, ouly, a wice, says Walpole, which cun have been owing solely to the eircumstance of few persons having spaces in their houses large enough to receive them. They were purchased by the duke of Bedford, and were plaeed in his gallery ut lserlford llouse in Bloomsbury Square, where they remained until that house was pulled down, when they were presented loy the owner to the Royal Aeadeniy.
Thormhill painted also several portraits and some altarpicees: he painted the altar-piece of the chapel of All Souls at Oxford; and one which he presented to the church of his native town, Weymouth. There is also at Oxford, necording to Dallaway, a good portrait of Sir Christopher Wren by Thorntill ; and in the hall of Greenwich Ilospital there is by him the portrait of John Worleg, in lis ninety-eighth year, one of the fint pensioners admitted into the lospital: it is painted in a bold careless siyle, and was presented to the hospital by Thornhill hisnself. In 1724 he opened an academy for drawing at his house in Covent Garden. He had previously proposed to the earl of Halifax the foundation of a Royal deademy of the $\mathrm{Ar} t$ s, with apartments for professors, but without result: Sir James estimated the cost at 31391 . f for, amongst his other oceupations, he occasionally "dabbled ' in architecture. At the end of his life he was afflieted with the gout, and in the spring of 1751 he retired to his paternal sent at Thornhull, near Weymouth, which he had the satisfaction of repurehasing; but his perind of repose was extremely short, for, says Walpole, four days after his arrival, he expired in his ehair, May 4, 1734 , aged fiflyseven, leaving one son named James, whom he had procured to be appointed serjeant-painter and painter to the navy; and one daaghter, mamied to that onginal and unequalled genius, Hogarth.
Sir James Thomhill amassed considerable property, was a man of agreeable manners, was a Fellow of the Royal Society, and represented his native town, Weymonth, in parliament for several years until his death. He was knirhted by George 1.: his widow, Lady Thormhill, died at Cluswick in 1757.
(D'Argenville, Abrigé de ia Vic des plus fameux Peintres; Walpole, Aneclotes of Painting in linglund; 1'ilkington, Dictinnary of Painters.)

THORNTON, BONNELL, was born in London, in the year 1724 . He was educated at Westminster Sehool, and at Christchurch, Oxford. In compliance with the wish of his father, who was a physician, he studied medicine, but he seems not to have liked the profession, and left it for literature. George Colman the Elder was his fellow-student both at W'estminster Sehool and at Christehureh, though about nine years younger than Thomton. Similarity of taste led to friendship, and they commenced in conjunction the series of periodical essays called 'The Comnoisseur,' which was comtmued from January 31, 170.1, till Scptember 30, 1750. The papers are chicfly of a humorous character, and the wit and shrewd observation of life which they display well entitle them to the place which they stifl retain amourg the works of Britisll essayists. Thornton contributed largely to 'The St. James's Magazine,' ' The l'ublie Advertiser,' 'The Covent-Garden Joumal,' and other periodical works. He published separately - An Ode on St. Cceilia's Day, adruted to the antient Britinh music, viz. the salt-box, the Jews-harp, the mar-row-bones and cleavers, the hum-strum or hurdy-gurdy, Se., with an Introduction giving an aceount of those truly British instruments.' London, 176

In 1767, in conjunction with Colman and Riclard Warner, he published two volumes of an Enylisli tramslation of l'lautus, The Comedies of Plautus, translated into familiar Blank Verse.' Of the plays contained in these two volumes, Thornton translated 'Amphitryon,' "The Bragcart Captain" "The Treasme," 'The Nliser, and 'The Shipureck;' "The Merchant' was translated by Colmitn, and 'The Captires' by Wamer. The rest of the plays were tramslated by Warner, and were published, after Thomton's death, in two additional volumes. In 1768 Thornton publ) ished "The Bittle of the V'igs, sil additional Cantolo Dr. Garth's Poen of The Dispensary! London, Aio.

Thornton, who appears to liave injured his constitution by habitual indulgence in drinking, died May 9, 1768, at
the age of 44. There is an inscription to his memory, by Thomas Warton, in the cloisters of Westminster Abbey. (Baker's Biographia Dramatica, by Reed and Jones.) THOROUGH-BASE, the art of playing (on keyed instruments, and according to the rules of harmony) an accompaniment from figures representing chords, sueh figures being placed either over or under the notes of the instrumental base staff. This is one of the many absurd terms employed in musie, and its meaning is altogether arbitrary.

The figures used in Thorough-Base are the nine units. These represent certain intervals or sounds. Thus a 6 placed over a c in the base, points out a as an aceompaniment : and that figure also implies two other notes attendant on it, namely, the 3rd and 8th, which are ealled the accompaniments of the 6th. A 6 and a 5 placed under it $\binom{6}{5}$, indicate the intervals of the 6 th and 5 th played together ; and also, as accompanying notes, the 3rd and 8th. The figures 3,5 , and 8 , singly, or together, represent the perfect or common chord. But in Thorough-Base a base note without any figure is supposed to earry a periect ehord. The chords are, as a general rule, assigned to the right liand of the performer, and the intervals are, in most eases, counted from an oetave above the figured note. This will be more clearly understood by refering to the articles Accompaniment, Chord, and Harmony.

The following is a tabular view of the figures used in Thorough-Base to represent ehords, together with those, not written, but understood, representing the accompaniments which, with the base, form the chords:-

Some other ehords of an extroordinary kind are occasionally formed; but they are always clearly denoted, in Thorough-Base, by an ample number of figures.

The above chords excmplified.

Wlieh two figures are placed in succession over onc bas P. C., No. 1537.
note, the time of the latter is divided between them. Example:-

A sharp, or flat, or natural, placed alone over a base note, relates solely to the 3rd. Example:-

When other intervals are to be raised or lowered, the proper charaeters for the purpose are prefixed to them. A dash through a figure is equivalent to a sharp.
The practice of figuring a base staff, whether in a seore or in the part assigned to a keyed instrument, has fallen into disuse, the harmony being now fully and elearly presented to the eye of the accompanyist in notes placed in a treble staff over the base. But a knowledge of what is yet too commonly misnamed Thorough-base, that is to say, harmony, is absolutely indispensable to the good musician, and very mueli abbreviates the labour of those who, as amateurs, only aspire to a practical skill either as vocal or instrumental performers. The rules of harmony stand in the same relation to music as those of grammar do to language.
The invention of a Figured Base (Basso Cifrato, as the Italians so well denominate it) has been stated to have taken place in 1605 , and is commonly attributed to Ludovieo Viadana, Maestro di Citppella at the eathedral of Mantua. But this kind of musieal abbreviation was earlier praetised, and by an English composer. Richard Deering, who, in 1597, published his Cantiones Sacrec, at Antwerp, in which a figured base appears. And we have now before us Jacopo Peris serious opera Euridice, printed at Florence in 1600 , in which the base is figured throughnut. I.ying by us also is Caccini's Nuove Musiche, likewise printed at Florence, but one year later, and here we find the base regularly figured. The edition of the latter work referred to by Dr. Burney, is dated Venezia, 1615; it is to be presumed therefore that the aetive historian of music was not so fortunate as to have met with the first edition of Caceini's remarkably curious and now very rare work.
THOU, JACQUES-AUGUSTE DE (or, as lie called himself in Latin, Jacobus Augustus Thuanus), was born at Paris, on the 8th of Oetober, 1553: he was the third son of Christophe de Thou, first president of the parlement of Paris, and of his wife Jacqueline Tuellen de Celi. Besides their three sons and four daughters, who grew to be men and women, De Thou's parents lost six children in infaney; and he himself was so weak and sickly a child till he reached his fifth year, that he was not expeeted to live. In the exemption which this state of health procured him in his ehildhood and carly boyhood from severer taskwork, he amused himself in cullivating a turn for druwing, whieh was hereditary in his family; and in this way, he tells us himself, he learned to write before he had learned to read. Although originally intended for the church, he went in his early studies the whole round of literature and scienee as then taught; and while yet only in his eighteenth year he had coneeived from the perusal of some of his writings so great an admiration of the celebrated jurist Cujacius, that he proceeded to Valenee in Dauphiné, and attended his lectures on Papinian. Here he met with Joseph Scaliger, with whom he contracted an intimate friendship, which was kept up for the thirty-eight remaining years that Scaliger lived. In 1572, after he had been a year at Valenee, he was recalled home by his father; and he arrived in Paris in time to be present at the naarriage of Henry, the young king of Navarre, and to witness the horrors of the massace of St. Bartholomew which
VoL. XXIV. -3 E
followed. He relates that he saw the dead body of Co ligny hanging from the gibbet on Montmartre. The next year he embracell an opportunity of visiting Italy, in the suite of Paul de Foix, who was sent by Charles 1 X . on a misoion to ecrtain of the Italinn courts; and he remained in that country till the deatls of Charles, in May; $15 \mathrm{~F}^{2} 4$, and the neeession of IIenry H11. The news of which reached them at Rome, recalled De Foix home. In 1556 he made a journey Io Flanders and Ifolland. In 1585 he sueceeded Jean de la Garde, Sieur de Saigne, as one of the eeclesiastical counsellors of the parlement de Paris-an entrance into public life whieh, he says, he made with reluetance, as withdraving lim in part from the society of lus books and the cultivation of litemature, in whieh he would lave been much better pleased to spend his clays. The next year he lont his eldest brother; and from this time it began to be proposed that, for the better chance of continuing the family, his original destination should be changed, and that he should guit his ceclesiastical for a eivil eareer. Some years clapsed however before this seheme was finally determined upon. Meanwhile he continued to pursue his usual studies; and he states that he had already conceived the projeet of his great historical work, and begun industriously to collect materials for it wherever he went.
It was in the year 1582, while on a visit to Bordeaux, that he made the aequaintance of Montaigne, whose character as well as genius he has warmly eulogized. The same year his father died; and huving also by this time lost his second brother, he, in 1584, resigned his rank as an ecclesiastical counsellor, and on the 10th of April was apppointed by the king to the office of master of requests, which then was wont to be held indifferently by eeclesiastics or laymen. Two jears after he obtained the reversion of the place held by his mele, of one of the presidents au mortier in the parlement de Paris; and in 1587 he married Marie, daughter of François Barbanson, Sieur de Cani. When, in the next year, in the increasing distractions of the state, Henry III. found himself obliged to leave I'aris, De Thou, who, as well as his father and his brothers, adhered steadily thronghout the troubles of the time to the royal party, recompanied his inajesty to Normandy, and afterwards to Pieardy. At Chartres, in August, [5̄88, he was admitted a counsellor of state; and from this date he took a leading part in all the principal public transaetions which followed. When the estates of the kingdom were assembled at Blois, in Oetober of this year, De Thou, as he tells, was there courted with much blandishment by the duke of Guise, but steadily resisted the attempt to seduce him from his loyalty. He had left Blois and was in Paris when the news of the murders of the duke of Guise and his brother the eardinal (on the 23:d and 2th of December) reached the capital; and he had great difficulty in effecting his escape from the popular fury. He succeeded however in rejoining the king at 13 luis; and having soon after been dispatched on a mission into Germany and Italy to raise succours of men and money for thie royal eaise, he was at Veniee when lie heard of the death of Menry, in August, 15s9. He immediately set out by the way of Switzerland for France, and met the king of Navarre, now ealling himself Henry IV., at Chateaudun. He way reecived very graciously; and for sonte years from this time he was constantly with Ilenry, or employed on missions to different quarters in his service.
In 1591, while Henry whs at Nantes, he received aecounts of the death of Ainyot, bishop of Auxerre (renowned for his franslitions of Plutarch and other Greck authors) ; upon whieh his majesty immediately bestowed his othee of keeper of the royal library on De Thou. It was in the year 1503, as he has notel, that he at last aetually commenced the composition of his llistory, which he now states he lad conceived in his mind so long as fiftecn years before. In 1584 the death of his unele opened to him his reversionary office of one of the presidents of the parlement dc Paris.
Among other important transactions in which he had a part aner this, was that of the Edict of Nantes, published in 1598, which he was greatly instrumental in arranging. He has lef an account of his own life, in ample detail, down to the year 1601, in which the last event he notices is the denth of his wite, in August of that yerr. In 160-4 he published the first elghteen hooks of lis 'Ilistory.' The
work was received with general applause by the literary public throughout Europe, and, allhough some thines in it gave umbrace to the more zealous friends of the Roman Catholic faith, it was not till several years afterwards, when a second portion of it had been published, that it was formally stimmatized by being inserted in the " Index Expurgatorius.' De 'Thou however severely felt this authoritative condernuation of his performanee, when it did take place, In November, 1609. The death of Henry 15., in 1610, did not deprive De Thnu of his place in the ministry; but he had 110 louger the same influenee as before; and a new appointment, which he received the following year, of one of the three directors charged with the management of the finanees, on the retirenent of the great Sully, was felt by himself to be not so inuch an aceession of power or honour, as a burdensome and obnoxious office forced upon him, for whicla he was fitted neither by tastes, hahits, nor qualifieations. In this sume year lis brother-in-law, Achille de llarlay, resigned his office of first president of the parlement de Paris, in the hope that De Thou would be nominated his successor; hut the place wasgiven to another. These disappointments and disumsts torether with the loss of a sccoud wife, are supposed to have shortened the life of De Thou, who died at Paris on the 5th of May, 1617, in his sixty-fourth year. 130 his sceond wife, whose fanily name was de Bourdeilles, he lett three sons and three daughters, one of the former of whom, Françis Auguste de Thou, the inheritor of his father's virtues and of a considerable share of his talents, fell a saerifiee to the inexomble revenge of Curdinal Richelint, one of whose last acts was his putting this unfortunate young man to death for his alleged participation in what was called the conspiracy of Cimpmars:-he was executed at Lyon, in his thirty-fitith year, on the 12th of September, 1042, not three monihs before Richelien's own death.

The president De Thous is the author of a number of Latin poems, one of the prineipal of which, entitled 'De ke Aecipitraria' (on Hawking), was published in 1584 ; but his fame rests upon his 'Ilistona sui Tempporis,' or 'History of his own Time,' written also in fatim, in 138 looks, of which the first 80 appeared in his lifetime, the remainder not till $162($ The space over which it extends is from the year 1514 to 1007 , comprehending the closing years of the reign of Franeis l., the entire reigns of Henry H., Francis II., Charles IX., and Henry III., and nearly the whole of that of Ilewry IV. For about one-half of this period of sixty-flirec years it has the value belonging to the narrative of one who was himself a principal actor in many of the aflais which he relates, and who with regard to niany others was so placed as to have arr opportunity of secing much that was coneealed from the common eye; but in truth, from the author's family connections, and his extended acquantance anong the eminent and remarkable. persons of his time, this is an advantage which belongs in sonne degree to the earlice as well to to the later part of the work. It is also admitted to have throughout the merit of a rare impartiality: with no deficiency of patriotle feeling, and perlect steadiness to his own political prineiples, De Thou is always ready frankly to reeognise the high yualities, of whatever kind, that may have belonged either to the eitizen of a rival slate or a party opponent. As for religious prejudiee, he shows so little of that, as to have explosed himself to the imputation of having no religion, or at lenat of not being real) $\mathrm{Y}^{\text {a }}$ a belieser in the form of Christiauity, the Roman Catholic, which lie protessed. But tor either of " these charges there seems to be no ground. The repulation of his 'Ilistory' however stands not so much upou the fiets contained in it that are not elsewhere to be found, as upon the skill displajed in its composition-hent so much upon the material as upon the workinanship?; and it is very evident that with alf the pains he took in the collecting of information, this was the praise of which he was the nost ambitions, as indeed may frernaps be said to have been the ease with the mont famone historians of every are and country, from Iherodotus and 7hucydides among the Greeks, and Livy and Treitus among the Catins, to IIune and Gibbon anoner ourselves. But De Thou's manner of writing, though flowing and eloynent, is not yely picturesque; and of coume he aloo loses something in meiness and natural grace, case, and expressiveness, by writing in a dead language. De Thou's Iatin style, with all its nerit, is not admitted to be faulleas, though he has
taken great pains to give it as uniformly classical an air as possible, not unly by metamorphosing all his modern names, both of places and persons, so as to give them antique forms, often to the no small perplexity and hindrance of the reader, but, what sometimes produces still more obscurity or ambiguity, by gencrally endeavouring to describe modern proceedings and transactions in the established legal, political, and military phraseology of the old Romans. The best edition of De 'Thou's 'History' is that published at London in 1733, in scven volumes, folio, under the supcrintendence of Samuel Buckley, Esq., and at the expense of Dr. Mead. The last volume of this edition contains De Thou's autobiographical memoir (first published in 1620 , and also written in Latin), in six books, together with a mass of additional materials illustrative of the history of his life and works.
THoUARS. [Sevres, Deux.]
THOUARS, LOUIS MARIE AUBERT DU PETIT, an eminent Firench botanist, was born at the chateau de Boumois, in Anjou, 1756 . His family was wealthy and noble, and being destined for the army, he was early sent to the school of La Flèche. He was made a lieutenant of infantry at the age of 16 . This was in a time of peace, and he occupied his leisure in studying the science of botany and its literature. At the time of the loss of La Perouse and his companions, Aristide du Petit Thouars proposed to his brother Aubert that they should go in search of him. To this he willingly consented, hoping to add to his stock of plants and his fame by the voyage. The two brothers sold their patrimony, raised a subseription, and having secured the patronage of Louis XVI., were ready to start on their voyage, when a curious accident separated them. The ship that was to have taken them lay at Brest, and Aubert, with his vasculum (the tin box which botanists carry to put their plants in) at his back, intended to botanise on his way from the capital to the port. He was however found by some gens d"armes in the woods, and being suspected as an encmy of his country in those days of disorder, he was arrested and thrown into prison at Quimper. He was however soon released, but too late, as his brother had sailed. He followed him to the Isle of France, but his brother had again departed; and being here without money and without friends, his only resource was his botanical knowledge, and he accordingly applied for employment to some of the rich planters of that island. He quickly obtained an engagement, and remained in the island nearly ten years. On this spot he was very favourably placed for making those observations for which his previous studies had so well prepared him; and during his stay here he collected nost of the materials for the numerous works which he published on his rcturn. Whilst a resident in the Isle of France he made a voyage to Madagascar, and collected plants from that island. He returned to Paris in 1802. Many of the results of his resenrches in the Isle of France and Madagascar were communicated to the Institute and other scientific bodies in Paris. His first work on the botany of the islands which he had visited, was published at Paris in 1804, with the title P Plantes des Iles de l'Afrique Australe formant des Genres nouveaux,' \&e., 4 to. He also publislied on the same subject the 'Histoire des Végétaux des Iles de France, de Bourbon, et de Madagascar,', 1804, 4to. In the same year Bory St. Vincent gave an account of the vegetation of the African islands, in his Voyage dans les quatre principales Hes des Mers i'Afrique,' Paris, 4to., although lie did not go out till Du Petit Thouars hiad returned. In 1806 Du Petit Thouars was appoointed director of the royal nurseryground at Paris, which office he held till the closing of this institution a sloort time before his death, which took place in May, 1831. In 1806 he published another work on the plants of Africa, with the title 'Histoire des Veretaux recueillics dans les Iles Australes d'Afrique,' Paris, 4to. In 1810 his 'Genera nova Madagascariensia' appearcd, in which the Madagascar plants were arranged according to the system of Jussieu. His latest work on systematic botany was one on the Orchidacere of the African islands, - Histoire des Plantes Orchidkes recueillies dans les trois Iles Australes d'Afrique,' 1822, Paris, $8 v o$. His publications on vegetable physiology are equally numerous. Most of these had their foundation in observations and experiments which he made whilst in the Isle of France. In 1805 he published his 'Essai sur l'Organisation des Plantes,' Paris,

8 vo .; in 1809, another essay on the vegetation of plants; in 1811, 'Mélanges de Botanique et de Voyages,' Paris, 8vo. ; in 1819, a kind of botanical miscellany, passing in review his own labours, under the title 'Revue générale des Matériaux de Botanique et autres, fruit de trente-cinq années d'observations,' Paris 8vo.

As a systematic botanist the views of Du Petit Thouars were uncertain and speculative, and the delay in the publication of his works on African botany deprived him of the merit of introducing to the world many new species. In his physiological works his vicws are ingenious, but in most cases wanting in sufficient data to establish them. His vicws on the formation of buds, the motion of the sap, and the origin of wood, are those which have excited most attention. But each of these is perhaps more indebted to the speciousness of its reasoning than to the correctness of the facts, for the importance that botanists have attached to it. But at the same time his great activity of mind, his extensive erudition and original observation, lave had a great influence on the progress of botany in, the present century. He was a contributor to the 'Biographie Universelle,' and wrote the lives of many of the botanists in that work. The genus of plants Thouarea was named after him, and Bory St. Vincent named Aubertia in honour of him.
(Biog. Univ., Supp.; Bischoff, Lehrbuch der Botanik.)
THOURET, MICHEL-AUGUSTIN, an eminent French physician, was born in 1748, at Pont-l'Evêque, in the antient province of Normandy and the modern department of Calvados, where his father was royal notary (notaire royal). His education was commenced at his native town, and finished at the university of Caen. He afterwards went to Paris, and in 1774 was admitted gratuitously by the Faculty of Medicine in that city to the degree of M.D., an honour which was gained by public competition (concours). A few years later, upon the foundation of the Royal Society of Medicine, Thouret became one of its earliest members, and enriched the Memoirs of the Society by several valuable essays. The most important publie work in which he took a part was the exhumation of the bodics in the cemetery of the Holy Innocents, of which he drew up a most interesting report. This cemetery, together with a church of the same name, stood on the spot now occupied by the Marché des Innocens, and had become in process of time so unhealthy from being the prineipal burial-ground in Paris, that it was absolutely necessary to destroy it. This great work had been several times attempted, but as often abandoned on account of the dangers and difficultics of the undertaking ; at last however, in 1785, a committee was named for directing the works, which were carried on without any intermission by night and by day for more than six months, and which were at length completely successful. Thouret afterwards filled several public situations with equal zeal and integrity; and in the midst of the labours of his numerous employments was carried off, after a few days' illness, by a cerebral affection, at Meudon, ncar Paris, June 19, 1810. Great honours were paid him after his death by the Faculty of Medicine at Paris, of which body he was dean. His works consist almost entirely of cssays published in the "Histoire et Mémoires de la Société Royale, of wbich perhaps the most interesting are the 'Rapports sur les Exhumations du Cimetière des SS. Innocens,' mentioned above. These were afterwards published in a separate form at Paris, 1789, 12mo. (Biographie Mćdicale.)

THOUROUT is a town in the province of West Flanders, in the kingdom of Belgium, in the district of Bruges, on the high road from that city to Menin and Courtray. It is a well-built town, with a population of 8000 inhabitants, who have a considerable trade in linen, flax, and linseed. They also manufacture hats, starch, and wooden shoes. [Flanders, West.] (Stein, Lexicon; Schulz, Allgemeine Erdkunde, vol. xvii.)
THRACE ($\theta \rho$ qír $^{\prime}$, Thracia) was in earlier times the name of the country bounded on the north by the Danube, on the south by the 1ropontis and the \&gean Sea, on the east by the Black Sea, and on the west by the river Strymon and the chain of mountains which form the continuation of Mount Rhodope. This country is divided into two parts by Mount Hæmus (now the Balkan), which runs from west to east, separating the plain of the lower Danube from the rivers which flow into the Egean Sea. This mountain probably derived its name

3 E 2
fom its cold and snowy top, since Henus seems to contain the same root as the 'Sanserit hima, 'snow.' whence also comes the name of the Hinalayn Momntains. Two extensive ranges braneh olf from the southern side of Mount llemus: one at about a hundred miles from the Fuxine, which runs in a south-eastern direction towards Constantinople; the other, whielh is far larger, branches off near the sources of the Hebrus, and likewise runs to the south-enst. The latter bore the name of Rhodope, and is now called the Despoto Mountains. Between these two ranges there are inany plains, whieh are drained by the Helints (the Naritza), the prineipal river of Thrace. and its tributaries. For a further acconut of the physical geography the render is referred to the articles Balkan Movitaniss and Martza.

In ameient tines there was a great quantity of corn and wine grown in the valley of the Helirus. In the "Iliad, the ships of the Aclimans are described as bringing wine every day to Agamemmon from Thrace (ix. 72) ; hud the Maronean wine, which retained its reputation in the time of I'liny (Hist. Nut., xir. 6), is spoken ot in the 'Odyssey' (ix. 197). In the mountainous parts of the country ihere were also mines of precious metals. (Justin, viii. 3.)

The Thracians were divided into many separate and independent tribes; but the name of Thracians seems to have been applied to them collectively in very carly times. Thraee, accorling to Stephanns lByzantinus (s. i. Opgir η), was previonsly called Perce (IIipan η). It signifies any country in the north, according to Ukert (Geographic ton Gricclien und Rümer, 1., i., p. 282), who quotes the remark of Andron of Haliearnassus (Schol. ad Lycophr., 894, 12833), that Oceanus had four daugliters, Asia, Libya, Europa, and Thrace, from whom the four parts of the wordd were named; and thence he conchndes that Asia signified the east, Libya the south, Europa the west, and Thrace the north. This concluwion however hardly a mounts to a small probability. Josephus and many Biblieal scholars suppose that the name is derived from Tiras (חתּס), the
son of Japhet (Genesis, x. 2), but this opinion rests on little more than an apparent similarity of sound.
The Thracian nation, according to Herodotus (v. 3), was, next to the Indians, the most numerous of all, and if united under one head would have been invincible. Ile observes that the usages of the different tribes were similar, with the exception of the Getae [Getse], the Trausi, and those who dwelt above the Crestonai. The account which he gives of the most striking national peculiarities of the Thracians, represents them as a barbarous and savage people, which is supported by other antient writers, though the districts on the southern coast seem to lave attained to smme degree of civilization, owing to the numerous Greek eities which were fonnded there at various times. The Thracians, says Merodotrs ($ヶ .6$), sell their children to be carried out of the country as slaves; they do not guard their young women, lunt permit them to have intercourse with whatever men they please; threy purchase their wises with great sums; they puncture or tattoo their lodies, which they regard as a sign of noble birth; agriculture they despise, and consider it most honoumble to live by war and robbery. Deep drinking prevailed among them extensively, and the quarrels over their cups became almost proverbial. (IIor., Carm., i. 18 and 27.) In earlier times, however, there must have been a greater degree of eivilization among some of their tribes at least, than prevailed at a later period. The earliest Greek poets, Orpheus, Linus, Musseus, and others, are all represented as couning from Thrace ; and Eumolpus too, who founded, according to tradition, the Eleusinian mysteries at Altica, is also said to have been Ω Thracian. At an early period likewise the Thracians spread extensively over southen Greeee. Thucydides (ii. 29) says that they once dwelt in Phocis: Strabo (ix. 401, 410) speaks of their settlement in Berotia; and their invasion of Attica under Fumolpus, who fought against Erechtheus, is nentioned by many writers. (Sirabo, vii. 321 ; Thucyd., ii. 15; Pausan., i. 38.)
The Thracians are said to have been sulbdued by Sesostris (Herod., ii. 103), and sulsequently by the Nysians and Teucrians, who crossed over into Furope before the Trojan war, and penetrated as far as the Ionian Sea and the l'encus. (Herod., vii. 20.). But the first real historical eveut respectine them is their conquest by Megabazus, the general of Darius, who conquered all the separate
tribes, with the exeeption of the Satree, who were tie only Thracian people that had retained their independence down to the time of Herodotns. (Herod., , .2 ; vii. 111.) Alter the failure of the expedition of Xerxes, the Whrscians appear to have recovered their independenee; and in the time of the leloponnesian war we find a powerful natire empire in Thrace, which was under the dominion of Sitalces, who is called by Thucydides (ii. ©9) king of the Thmeians. This empire was fornded by the father of Sitalees, Teres, the king of the Odryse, one of tire mont powertul of the Thracian tribes. It extended alonge the coast from Ablera to the mouth of the Danube, a dintanee of four days' and four nights' sail with a favonrable wind. and was by land a journey of eleven days ly the short est road for an active man: it extended inland from 13yzantium to the Laroi and the Strymon, a journey of thírteen days. The tribute paid to Seuthes, the successor of Sitalces, was 400 talents, besides a great number of presents to limself and the Odrysian nobles. Thueyddes says that of all the kingdoms between the Ionian (iulf and the Fuxine, this was the greatest in revenue and opulence. but that it was inferior to the Scythians in military strength and numbers. In the third year of the Peloponne ian war, u.c. 429, Silalece, who had formed an alliance witls Athens, invaded the tenitories of Perdiccas, king of Macedonia, with an army of 150,000 nien; but belug disappointed of the co-operation of an Athenian flect, he was persunded by his neplrew Seuthes lo accept the overtures of Perdiceas, and return home with his army, after remaining in Macedonin thirty lays. In the year 13.C. 421, Sitalces fell in battle against the I'riballi, the nost powerful Thracian people between Mount Hemus and the Daube, and was succeeded by his nephew Seuthes. The power of the Odrysian empire however did not last long. In little more than twenty years from the death of Sitatees it had lost its former greatness ; and when Xenoplron crossed over into Thrace, in n.c. 400 , he found Medorus, the reigning king of the Odrysians, unable to command the obedience of his Thracinn sulbjects. (Compare Auab., vii. 2, s. 32, \&e.) In the reign of Plilip, the father of Alexander, Cotys was the nost powerful of the Thracian chiefs. and is usually ealled king of Thraee; but he was deprived by lhilip of almost all his dominions between the Strymon and the Nestus, and became little else than a vassal of the Macedonian kingdom. He was a savage and vindictive barbarian, and was assassinated in B.c. 358 . His son Cersobleptes succeeded to the throne; but he was erentually stripped of all lris territories by Philip, who reduced, in b.c. 343 , the whole of Southern Thrace at teast, and compelled it to pay tribute. (Diodorus, xvi. 71.) On the death of Plilip there was a general novement among the Thracians to throw ofl' the Nacedonian supremaey, at the head of which the Triballi placed themsclies. But Alexander, ly his activity, suppressed this risin!: he crossed the Hemus, marehed into the comitry of the Triballi, und, after defeating them, advanced as far as the Danube, which he crossed, and offered up a sacrifice on its right bank. (Arrian, Anab., i. 2, 3; Struho, vii. 301.) On the death of Alexander, Thiace fell to the slare of Lysimachus, who ereeted it into an independent monarchy; but it sulbsequently eane under the dominion of the Macedonian kings. They seem however to lave left the country under the government of its mative rulers, and were probably contented with what the Greeks called a lregemony. In the Koman war ngainst Perseus, Cotys, king of the Thracians, is inentioned as an ally or Perseus; though the Thracians, just before the war broke out, had souglit the alliance of the Romans. (Livy, xlii. 20, 51; compare xtii. 19.) On the conclusion of the war, however, Cotys was allowed to continue in possession of his kingdom, notwithstanding the assistance he had rendered to Perseus. (Livy, xly. 12. .) At what time Thrace was reduced to the form of a Roman province is meertain, but it seems not to have constituted a distinct province till a late period. Under Augustus, the part of Thrace north of the Hamus was con quered ly the Romans, and was afterwarls erected into a separate provittee under the name of Mresia. [Mo:sia.] The name of Thrace was then confined to the country soutls of the Hamus, and between the liuxine, the Propontis, ard the Wegcan Sea. Its boundary on the west differed at varions times: in the time of Ptolemy (iii. 11) it seens to have been the Nestus; lut as the Strymon was anticntly the boundary between Macedonia and Thrace, it will be
convenient, in the following description of the prineipal places in Thrace, to consider the district between the Strymon and the Nestus as belonging to the latter country.

Beginning then on the left bauk of the Strymon, the first town we come to is Amphipolis, which was founded by the Athenians, and was one of the most important towns in Thracc. [Asmphipolis.] It was situated in the country of the Edones, who dwelt between the Strymon and the Nestus, but originally inhabited the Macedonian district of Mygdonia. (Thucyd., ii. 99.) The next town of importance, cast of Amphipolis was Philippi, which was founded by Philip of Macedomia: it was previously called Crenides, but was then only a small place inhabited by the Thasians, who settled there for the purpose of working the gold and silver mines in its neighbourhood. West of Philippi the country was an extensive plain stretching towards Amphipolis, which has become memorable on account of the battle fought there by Antony and Octavius (Augustus) against Brutus and Cassius. Under the Romans Philippi became a colony, and was the chief city in that part of the country, when it was visited by the Apostle Paul. (Acts, xvii. 12.) It still retains the name of Filibi, but is only a village.

West of the Nestus the first town of importance on the coast is Abdera. [Abdera.]. Next comes Dicaa or Dicaopolis, which was a Greek city on the shores of the lake Bistonis (Herod., vii. 109) ; and then Maroneia and Ismarus, which were both in the country of the Cicones, where Ulysses landed and was defeated by the inhabitants, after lie had taken their city. (Odys., xi. 39, \&cc.) The Maroncan wine has been already mentioned, and the city was in consequence sacred to Dionysus, as may be seen from its coins. It was originally called Orthagoria. Its ruins are still named Maroni. Ismarus is not mentioned by later writers as a city, but only as a mountain celebrated for its wine. Following the coast we next come to Stryme, a colony of the Thasians; then to Mesenubria, bnilt ly the Samothracians (Herod., vii. 108); and next to Doriselus, situated in a large plain. in which Xerxes nuntbered his army. (Herod., v. 59.) Crossing the Hebrus we come to Enos, which, accordiug to Virgil (Ain., iii. 17, \&c.), was founded by Eneas, but it is mentioned under this name by Homer, as the place from which Pirous came to the Trojan war (1l., iv. 520). It was a place of considerable importanec in later times, and under the Romans was a free town. (Pliny, Nat. Hist., iv. 18.) It is still called Enus.

After passing ronnd the head of the Gulf of Melas, now the Gulf of Saros, we come to the Thracian Chersonese
 which was very early colonized by Greek settlers, and thouglı but of small extent is of considerable importance in antient history. In early times it was inhabited by the Dolonci, a Thracian tribe, who being hard pressed in war by the Apsinthii, were led to invite Miltiades, the son of Cypselus, an Athenian, to be their king, in consequence of an a nswer given them by the oracle at Delphi. This was about the year b.c. 560. Miltiades complied with their request, and took with him to the Chersonese a colony of Athenians. On his death he was succeeded by his nephew Stesagoras, and he by lis brother Miltiades, the son of Cimon, who fled to Athens to escape the vengeance of Darius, on aceount of the advice he had given to the Ionian chicfs in the Scythian expedition of Darius. (Herod., vi. 34, \&c.) [Miltiades.] When the Persians were driven out of Greece, the Chersonese came into the hands of the Athenians, who retained it till the end of the Peloponnesian war. Shortly afterwards the Lacedæmonians, at the request of the inliabitants, built a strong wall across the isthmus to protect the country from the incursions of the Thracians. (Xenoph., Hell., iii. 2, s. 8-10.) It subsequently came under the power of Athens, who wrested it from Cersobleptes, the son of Cotys, when he was deprived of his other dominions by Philip. Afterwards it formed part of the kingdom of Lysimachus, who founded the city of Lysimachia on the isthmus, which he made his capital. It was on the western side of the isthmus, not far from the antient Cardia, the inhabitants of which he removed to his new city. (Diodorus, xx. 29; Pausan1., i. 9, s. 10.) South of Lysimachia were Agora, Ide, Pæon, and Alopeconnesus, the last of which only was of any importance. It was an Kolian colony, and was one of the chief towns of
eastern side of the Chersonese, upon the Hellespont, the most southerly town was Cynossema, near which the Lacedæmonian fleet was defeated by the Athenians under the command of Thrasybulus and Thrasyllus, in в.c. 411. (Thucyd., viii. 104, \&c.) Above Cynossema was Madytus, which was also one of the chief towns of the Chersonese in the time of Demosthenes (Demosth. pro Cor., p. 256); and north of Madytus was Sestos. [Sestos.] North of Sestos was the small river of Aigospotamoi, with apparently a town of the same name at its mouth, near which the Athenian fleet swas totally defeated by Lysander, in b.c. 405, who was enabled in consequence to obtain possession of Athens and put an end to the Peloponnesian war. Above Agospotamoi were Callipolis, now Gallipoli, whieh has given its name to the peninsula, and Pactya, opposite Ly= simachia.

As the other towns are not of so much importance as the preceding, a brief notice of them will be sufficient. On the Propontis the chief seaport was Perinthus, afterwards called Heraclea, and sometimes also Heraclea Perinthus. (Zosimus, i. 62; Diodorus, xvi. 76.) On the Bosporus (not Bosphorus, as it is frequently, but ineorrectly, written in modern maps and works), whieh connected the Propontis and the Euxine, the antient Greek city of Byzantium was situated, which occupied part of the site of the modern Constantinople. [Byzantium.]

On the European coast of the Euxine the chief towns were Salmydessus, Apollonia, and Mesembria. The two former were colonies of the Milesians, and the last of the Megarians. (Strabo, vii., 319.)
In the interior of the country the towns most worthy of mention are Trajanopolis, on the Egnatian road to the west of the Hebrus ; Plotinopolis, so called in honour of Plotina, the wife of Trajan, to the north of Trajanopolis; Hadrianopolis, on the Hebrus, originally called Orestias, and now Adrianople [Adrtanople]; and, lastly, Philippolis, also on the Mebrus, now called Filibi. The names of these towns sufficiently show by whom they were built or cnlarged.

The Via Egnatia, which was the great road of communication between the Ionian Sea and Byzantium, and which is spoken of under Macedovia (p. 243), entered Thrace at Amphipolis, and passed by the towns of Philippi, Neapolis Abdera, Maxinianopolis, Trajanopolis, Cypsela, Apri, Heraclea, till it reached Byzantium.
Xenophon, in his 'Anabasis' (vi. 4), speaks of Thrace in Asia, which he deseribes as extending from the junction of the Bosporus and the Euxine along the Asiatic coast as far as Heracleia: the country within these limits was ihhabited by Thracci Bithyni. The harbour of Calpe was about the middle of this coast-line. [Bithynia.]
THRA'CIA, Dr. Leaeh's name for a genus of testaceous mollusks described as intermediate between Anatina and Mya, and as having some resemblance to Corbula.
THRAPSTON. [NORTHAMPTONSHIRE.]
THRASÄ'ETOS, Mr. G. R. Gray's name for a genus of Eagles, Harpyia, Cuv., Falco destructor, Daud. [FalcoNID.E, vol. X., p. 174.]

THRA'SEA PAETUS. His prænomen is uncertain ; some writers call hin Lucius, and others Publius, but he is generally called simply Thrasea Paetus or Thrasea. He was a native of Patavium, Padua (Tacitus, Anial., xvi. 21 : Dion Cass., lxii. 26), and, like most men ot talent at the time, he went to Rome, where he afterwards became a senator and a member of the priestly college of the quindecimviri. The first time that Thrasea came prominently forward in the senate was in A.D. 50 , when a senatusconsultum was passed by which the city of Syracuse obtained pernission to employ a greater number of gladiators in the public games than had been fixed by a lav passed in the time of J. Cæsar. (Tacitus, Annal., xiii. 49 ; Dion Cass., liv. 2; Sueton., Caes., 10.) Although the matter was of no importance, Thrasea took an active part in the deliberation, merely to impress upon his colleagues the necessity of paying attention even to the smallest matters belonging to the administration of the senatc. In the same year Nero determined to carry into effect his design of getting rid of his mother Agrippina. [Nero; Agrippina.] When the crime was committed, and when the emperor sent a letter to the senate in which he endeavoured to exculpate himself, the degraded senators congratulated him upon having got rid of so dangerous a woman. The only man who on that occasion had the
courace to show his delestation of the crime was Thrasea. Dion Cam. Ixi. 15 ; Treit., Annal., xiv. 12.)
In the year A.r. 62 , when the practor Antistins was charged by Cossutianns Capito with ligh treason for having composed and read at a mumerous parly of friends some libeltous veries upon the enperor, and when the emperor showed an inclination to interfere in the trial, Thrasea boldly claimell for the senate the riglit to try the case according to the existing laws. The firmness of Thrasea indureed most of the semators to follow his example and to vote with him. Cossttianms was thwatted in his hope of getting Antistius sentenced to death, and the emperor, though highly annojed, endearoured to disguise his anger. (Tacitus, Annal., xiv. 48, 49.) A short time aferwards Thrasea again attracted general altention in the senate by a speceh against the assumption and insolence of wealthy provincials. If had at that time become customary with the provincials to request the Roman senate, by cmbassies to offer puthie thanks to the proconsuls who returned from their province, and who had condneted the administration to their satisfaction. The ambition to gain this distinction often deprived the proconsuls of their intependenec, and degraded them into flatterers of influential provincials, who thus obtained an improper power. Thrasea proposed to the senate a measure to remedy the evil, but although it inet with general approbation, he did not sueceed in making the senate pass a decree, which was however done shortly after on the proposal of Nero himself. (Tacitus, Aunal., xv. 20-22.) Nero already hated Thrasea, and envy now began to inercase the hatred. When therefore, in A.D. G3, Poppaca, the wife of Nero, was expecting her coufinement at Antium, and all the senators flocked thither to watt for the event. Thrasea was forbidden to go there. The Stoie philosopher bore this insult with lis nsual calmness. Nero afterwards indeed deelared to Seneea that he was reconciled to Thrasea, but this was probably no more than an expression of his fear. The inflexible character of Thrasea, his refusal to take any part in the degrading proccedings of the senate, and the estecm which he enjoyed among his contemporaries, inereased the hatred of Nero, who only waited for a tavourable opportunity to get rid of him. It appears that froun the year A.D. 63 Thrasea never attended the meetings: of the senate. Three years thus passed away, when at length, in A.D. GG, his old enemy Cossutianus brought forward a number of charges against Thrasea, the substinec of whicli was, that he took little or no part in publec athirs, and that when he did so, it was only to oppose thu measures of the government; that he Has a secret enemy of the emperor, and fulfilled neither lis political duties as a senator nor his religious duties as a priest. Thrasea first requested a personal interview with the emperor, which was refused. He then wrote to hime, anking for a statement of the charges against him, and declaring that lic would refute then. When Nero had read this letter, instead of which he had expected a confession of guilt and an humble petition for pardon, he convoked the senate, to decide upon the charges against Thrasea and others. Some of Thrasea's friends advised him to attend the meeting, but most dissualed him from it. One young and spirited friend, Rusticus Arulenus, who was tribune of the people, ottered to put his veto upon the senatus-consultum, which however Thrasen prevented. The philosophernow withdrew to his countishousc. In the senate, whinch whs surrounded by armed bands. the quaestor of the emperor read his oration, whereupon Cossutianus and others began their nttacks upon Thrasen. The wishes of Nero, and the presence of armed soldiers reaty to enforce them, lef the senators no choice, and it was deereed that Thrasea, Soranus, and Servilia shonld choose their mode of denth, and that Ilelvidius, the son-in-law of Thrasea, and Paconius, should be banished from laly. The accusers were munifieently rewarded. Towards the erening of this day the quaestor of the consul was sent to Thravea, who had assembled around him a numerous party of friends and philosophers ; but before he arived, a friend, Domitius Crecilianus, came to inform him of the decree of the senate, which spread consternation among all who were present. Thrasea's wife Arria, Who was a relative of P'enins the poet (Iita A. P'ersii Flarel), was on the point of making away with herself, but her husband entreated her not to deprive her danghter of
the last support which now remained to her. When at
length the quacstor arrived and officially announced the decree, Thrasea took He-vidius and his friend 1)emetrins to his bect-rooln, and had the reins of both his arns opened; and when the blood gnsthed forth, he called out, - Jove, mydeliverer, accept this libation.' (Tacitus, Annal., xvi. 21 -35; Dion Cass., Ixii. 26.)

Thus died Thrasea, aecorting to the unanimons consent of the antients a man who professed the genuine and stern virtues of the olden time in the midst of a degenerate age. Tacitus calls him virtue itself, and even Nero is reported In lase sadd, 'I would that Thraser liked me as muels as he is u just judge.' (Plutireh, Rei Publicar gerembure pruecepta, p. 810, A. ed. Franlif. ; comp. Martial, i. 9 ; Juvenal, y. 36 ; Pliny, IPist. viii. 23.) The principles which gnided him throngh life he liad imbibed from the Stoie philosoply. Cato the younger was his favourite elaracter in the history of the Roman republic; he wrote a Life of Cato, which Mlutarelh made use of in his biography, and thus we probalily still possess the substance of it. (1) utarch, Cato Mino, 25 and 37 ; compare Ileeren, De Fontibus Plutarchi, p. 168.) Rustiens Arulemus wrote a work on Thrasen and Helvidius, in which he characterised them as men of the purest integrity-an expression which became fatal to the author. (Sucton., Domit., 10 ; Ticitus, Agric., 2 and $4 \bar{J}$.
THRIISIING. The separation of the grain from the ear in com has always been one of the most laborious operations on a farm. Where the quantity grown is merely sufficient to sulply fool for the cultivators of the soil, the simplest methods answer the purpose suffeiently: The corn taken by handfuls may le benten on a pileve of woul or a table, and by repeatedly turning the straw the whole of the grain may be readily beaten out. This mode of thrashing is still culopted in order to obtain the finest and ripest grains for seed; but then the strans is afterwarls thrashed over again with the phail, which is the instrument most generally adopted for thrashing corn. It is needless to deseribe this instrument, whieh is so generally known. It requires some practice to use it clleetually and to avoid aceidents to the thrasher hiniself or the bystanders. The flail being swung ronud the head, the leating part of it is made to fall horizontally on the straw which is sprend on the thrashing-floor; and, liy inserting this part occasionally under the straw, it is turned over and a fresh portion is brought up to be heaten. This is done without losing the stroke or time when several men are thrashiag together. If it were not that thrashing is mostly done in winter, when no ont-door work could well be done, few labourers would subuit to its toil ; and it is very diffeult to cusure the entire separation of the grain without great vigilanee and attention on the part of the master or overseer. If the labour is paid by the day; much time is usually lost ; and if it be by the quantity of grain thrashed or by the number of sheaves, there is i great temptation for the men to hurry over the work, as more grain is thrashed out at first when the ears are full than afterwards.
Where the corn is thrashed out immediately after harvest, to be put into a gramary, as is the case in those comtries where extensive fracts of rich laud are sown with corn two or three times without much tillage or manuring, and then len to be recruited by seveml years' rest and pasture, the most cominon practice is to level a portion of a field, and laying the corn in the straw in a large eirele, to drive oxen and hosses over it fill it is all trodden out. This is the method alluded to in Seripture, and can only take place where the climate is sereme and dry. Till ingenuity had produced machines to supersede the finil, this was the only instrument in use. The first idea of a machine for thrashing was that of imitating the motion of the tlail, but so mueli depends on the eye of the thrasher, that no mechanism could well imitate the motion of his arms. This was consequently given up, and an imitation of the rubbing of the grains from the ears betweea the hands, combined with the beaters of a flax dressinganachine, gradually produced the present improved thrastio ing-machinc.
Vifithot a figure it would be diffieuld to deseribe the different parts and motions of a thrashing-maehine. They are however now so common, that it will sutfice to give the general principle of action, and to mention some of the fatest improvements in it. A rapid motion is given to a hollow cylinder round a horizontal axis ; on the outer surfice there are projecting ribs parallel to the axis at
equal distances from each other; the width of these is from two to six inches. Around half the cylinder is a case the inner surface of which is lined with plates of castiron grooved in the direction of the axls. The ribs or beaters como quite close to these grooves, so that an ear of wheat or other corn cannot well pass between them without being flattened. The sheaves of corn, having been untied, are spread on a slanting table, and in some machines are drawn in between two iron rollers, of which one is plain and the other fluted. The motion of these rollers is slow, while that of the cylinder or drum is very rapid. The beaters act on the straw as it comes through the rollers, and beat out most of the corn; but what remains is carried in between the beaters and the fluted ease, and when it has made half a revolution all the grain has been beaten and rubbed out. It falls on a sieve which lets the grain througl, but retains the straw, which is raked off by hand or by circular rakes moved by the machinery. Some of the best inplement-makers in England have found the two rollers superfuous; and have accordinoly dispensed with them. The straw is at once subjeeted to the beaters, and the machinc may be fed more or leas rapidly according to circumstances. It requires a little more attention in the person who fceds the machine, but more work is done and some power saved. The great perfection of a thrashing-machine is to rub out every grain and to break the straw as little as possible; the larger the scale of the machine the better it docs this. Hand-machines have been made on the same principle, but they do not effect any saving in the expense, requiring many men to produce the effect of one horse, The great advantage of hand-machlnes is that men and women can be employed to thrash who could not use the flail sklifully. Moveuble thrashing-machines are very generally in use in England where farms are small. They are often the property of an industrious labourer or mechanic, who undertakes to superintend the work, the farmer finding horses and men. Thus he goes from farm to thim and eams his livelihood from a small capital laid out in the purchase of a machine. The price of thrashing in this way is about half of what is usually paid for thrashing with the flail; it is more rapidly done, there is less chance of pilfering, and fewer grains remain in the straw.
Un very large farms it has been found economieal to erect a steam-engine to work the thrashing-machine, chaff-cutter, and other domestic implements. Where coals are cheap there is a great saving. A steam-engine costs little to keep it in order. When not working, the interest on the original price is the only loss, whereas horses nust be fed whether they work or not. The price of steam-engines is so much reduced and their construetion so simplified, that they will probably soon form an essential part of the implements on every farm.
There are some thrashing-machiues on a new principle which are said to work well. The drum is furnished with rows of spikes, and similar spikes are fixed into the cover, which work in the intervals between the first. The corn in the straw is drawn in by the spikes on the drum, which revolves rapidly, and the ears being beaten in all directions by the fixcd and the revolving spikes, the grain falls out of the ear and is colleeted below. Such a machine was exhibited at the Agricultural Meeting at Cambridge in 1840, but it scemod to break the stiaw more, and to be morc apt to clog, than the machines in gencral use. These will no doubt be made gradually simpler and chenper, till they entirely supersede the flail, even in very simall farms.
THRASEBU'LUS' (Opaoijßovios), the son of Iycus, was born at Steiria in Attica. In the year b.c. 411 the oligarchal party at Atherss gained the asceendency, and formed a new senate of 400 members. The oligarchs in the fleet stationed at Samos endeavoured to bring about a similar revolution there, but their cfforts failed; and among the men who exerted themselves to maintain the democratical constitution, Thrasybulus, who then had the command of a trircme, was foremost. He and his friend Thrasyllus compelled the oligarchs to swear to keep quief, and not to attempt any alteration in the constitution. The generals who were known to lelong to the oligarchs were removed, and Thranybulns and Thrasyllus were appointed in their stead. The army under their command assumed the rights and power of the people of Athens, and in an assembly of the c'amp Thrasybulus got a decree passed, by which Alcibiades, wio had lately feen the chiel support of the demo-
cratical party, and who was living in exile with Tissaphernes, should be recalled. Thrasybulus set out to feteh him to the camp. (Thucydides, viii. 81.) In 410 1.c. he greatly contributed to the victory which the Athenians gained in the battle of Cyzicus. In B.c. 408, when Alcibiades returned to Athens from Byzantiun, Thrasybulus was sent with a fleet of eighty galleys to the coast of Thrace, where he restored the Athenian sovereignty in most of the revolted towns; and while he was engaged here he was elected at Athens one of the generals, together with Alcibiades and Conon.. In b.c. 406 Thrasyluulus was engaged as one of the inferior officers in the Athenian fleet during the battle of Arginusae; and after the battle he and Theramenes were commissioned by the generals to save the men on the wrecks: but a storm prevented their cxecuting this order. Respecting the fate of the generals and the conduct of Theramenes on this occasion, see Theramenes. Thrasybulus is not charged with any improper act during the proceedings against the generals, and for two years after his name does not occur in the history of Attica. During the government of the Thirty Tyrants at Atliens, he was sent into exile, and took refuge at Thebes. The calamities under which his country was suffering roused him to exertions. The spirit which prevailed at Thebes against Sparta, and against its partisans at Athens, emboldened him to undertake the deliverance of his country. With a band of about seventy, or, according to others, of only thirty fellow-exiles, he took possession of the fortress of Phyle, in the north of Attica. The Thirty, sure of victory over so insignificant a garrison, sent out the 3000 Athenians whom they had left in the enjoyment of a kind of frauchise, and the knights, the only part of the population of Athens who were allowed to benr arms. On their approach to Phyle some of the younger men, eager to distinguisli themselves, madc an assault upon the place, but were repelled with considerable loss. The oligarehs then determined to reduce the fortress by blockade; but a heavy fall of snow compelled them to return to Athens. During their retreat the exiles sallied forth, attacked the rear, and cut down a great number of them. The Thirty now sent the greater part of the Lacedacmonian garrison of Athens and two detachments of cariblry to cneamp at the distance of about fifteen stadia (nearly two miles) from Phyle, for the purpose of leeping the exiles in cleeck. The small band of Thrasybulus had in the meantime increased to 700 , as the Athenian exiles flocked to lim from all parts. With this increased force he one inorning descended from Phyle, surprised the cnemy, and slew upwards of 120 hoplites and a few lorsemen, and put the rest to flight. Thrasybulus erected a trophy, took all the arms and military implements which lie found in the enemy's camp, and returned to Phyle.

The Thity now began to ve alarmed at the success of the exiles, and thought it necessary to secure a place of refuge in case the exiles should succeed in getting possession of Athens. For this purpose they, or rather Critias, devised a most atrocious plan. By fraud and force he contrived to secure 300 citizens of Eleusis and Salamis eapable of bearing arms; and after they were conveyed to Athens, he conipelled the 3000 and the knights to condemn them to death. All were accordingly executed, and Eleusis was deprived of that part of its population to which it inght have looked for protection. In the meantime the number of exiles at Phylc had continued to increase, and now amounted to one thousand. With these Thrasybulus marched by night, to Piræeus, where he was joyfully received, and great numbers of other exiles imnicthately increased his army. The Thinty no sooner heard of this movement than they marched against Pirreus with all their forces. Thrasybulus, by a skilful manouvre obliged the enemy, who was superior in numbers, to occupy an unfavourable position at the foot of the hill of Munyehia. In the ensuing battle the army of the tyrants was put to flight and driven back to the city. Critias fell in the contest.
The consequences of this success showed that there had been little unity, among, the oligarchs, and that an open breach .had only bcen prevented by fear of Critias. Some of the Thirty and a great many of the 3000 were in their hearts opposed to the atrocities which had been committed, and had avoided, as much as they eould, taking part in the rapine and bloodshed. They also were aware that the haticd and contempt under which they were

Inhouring were owing mainly to the violence of their colleacurs ; and for the purpose of mnintaining their own poner they now resolved to saerifiee their collengues. An niscembly, was held in whieh the Thirty rere deposed, and a college of ten men, one from cacls tribe, was nppointed to conduce the goverument. Two of these ten had fommerly belonged to the Thirty, and the rest of the Thirly withdrew to Fleusis. As regards the army of eailes uuder Thrasybulus, the new govenment of Athens was no lesy determined to put them down than the Thirty had been. Thrasybulus therefore continued to strengthen himself, and to prepare for firther operations. His army had gradually become nore numernus than that of Athens, for he cagaged aliens in his serviec, and promised them, in case of their suecess, the same immunities nt Athens as those enjoyed hy the citizens (iaoriגua). Arms, of which he was still in want, were generally supplied hy the wealthy ritizens of Piraceus and other places, and by the ingenuity of his own men. As the danger from the exiles became at last very imminent, the Ten of Athens applied to Sparta for assistance. At the same time the faction at Elcusis also sent envoys to Sparta; but the government of Sparta refused to send an army for an undertaking from which it could reap no advantages. However I.ysander, as harmostes, obtained leave to levy an army, and his brother Liby's was appointed admirel to blockade Piraceus. Lysander went to Eleusis, and got together a numerous army. Beiug thus enclosed by land and by sea, Thrasybulus and his army had no prospeet except to surrender.

But their deliverance came from a quarter whence it could have lenst been expected. The power and intluenee which Lysander had gradually acquired, had excited the envy of the leading inen at Sparta, cren of the cphors and kings, and they were now loent upon thwarting his plans. King Pausanias was accordingly sent out with an army to Attica, arowedly to assist Lysander in his operations, but in reality for the purpose of preventing the accomplishment of his designs. He encanped near Piracens, as if he designed to besiege the place in conjunction with Jysander. After several slam mancuvres against the exiles, Pausanias gained a vietory over them without following it up. He now sent secretly an embassy to them, requesting them to send a deputation to him and the ephors; and he also suggested the language whieh the deputies should use. At the same time he invited the paeific party at Athens to meet and make a public declaration of their sentiments. Hereupon a truce was concluded with the exiles, and a deputation of them, as well as of the pacific party at Athens, was sent to Sparta to negotiate a general settlement of affairs. As soon as the Ten of Athens heard of this, they also sent envoys to Sparta to oppose the other embassy. But this attenpt failed, and the ephors appointed fifteen commissioners with full powers, in conjunction with king Pausanias, to settle all the differences between the parties in Attica. In accordance with the wishes of the exiles and the peaceful party of the city, the commissioners proclaimed a general amnesty, from which none were to be excluded except the Thirty, the Fleven, and the Ten who had formed the government of Piraceus. Any one who might not think it sate to return to Athens was permitted to take up his residence at Eleusis. This clause is unintelligible, unless we suppose that the Spartans still wished to sece Elcusis in the hands of a party which might check the reviving spirit of independenee among the Athenians. Sparta guaranteed the execution of the proelamation. Pausanias withdrew his forces, and Thrasybulus at the head of the exiles entered Λ thens in trimuph, and inarelied up the Acropolis to offer thanks to Athena. An assembly was then held, in which Thrasybulus impressed upon all parties the necessity of strietly olserving the conditions of the peace.
Fileusis was now the seat of the most violent of the oligarclical party, and they still indulged some hope of recovering what was lost. They nssembled a body of merecnaries to renew the civil war; but Athens sent out a stront foree against them. Xenophon says that the lenders of the lileusinian party were drawn to a conference and then put to death. This isolnted statement is rather surprising, as in all other respects the popular party showed the greatest moderation, and immediately after the quelling of the Eileusinian rebellion Thranylulus induced the Athenians to procluim a second amnesty, from which no one was to be excluded. This arnnest! ' was faithfully observed. The first
step afer the abolition of the oligarelyy was the passing of a decree which restored the democratic form of govermnent. Thrasylulus acquired the esteem of his fellow-citizens by the courage and persevcrance which he had shown in the deliverance of his country; and although for many years lie cloes not come forth very prominently in the history of Attica, he was no less active in restoring Athens to her former greatness, than he had leeen in wresting lier from the hands of her enemies. His last military undertaking belongs to the year B.c. 383. when the government of Athens placed a fleet of 40 galleys at his command, with which he was to support the democratical party in the island of Rhodes. On his arrival there he found that no protection was needed, and he sailed to the north part of the Aigean. In Thrace he settled a dispute between two princes, and gained them as allies for Athens. At Byzantium and Clialeedon also the influence of Athens was restored, and with it new sources of revenue to the republic were opened. After this he sailed to Mitylene, the only town in the island of Lesbos in which the Spartan party had not gained the ascendency. Thrasybulus here fought a battle with Therimachus, the Spartan harmostes, who was defeated and slain. Several towns were now reduced, and ater he had plundered the lands of those who refused to submit to Athens, he prepared to sail to Rhodes; but before he landed there, he sailed along the southern coast of Asia Minor to levy some contributions there. His fleet cast anchor in the mouth of the river Eurymedon in I'amphylia, near Aspendus. In consequence of some outrage contmitted by lis soldiers on land, the Aspendians were exnsperated, and during the night they surprised and killed Thrasybulus in his tent, in B.c. 389.
(Thueydides, viii.; X'enophon, Hellen., i. I, 12; i. 6, 36 ; ii. 3,$42 ;$ ii. 4,2 , \&e. ; iv. 8,2$)^{\text {, }}$ \&e. ; Diodorns Sie., xiv. 32, \&c.; 94 and 99 ; C. Nepos, Thrasybulus; compare E. Ph. Hinriehs, De Tharamenis, Critiae, et Thrasybuli Rebus et Ingenio, Hamburg, 1820, 4to. ; Thirlwall, Itistory of Greece, vol. iv.)
THRASYBU'LUS (ρ pasíßovioç), of Collytus in Attiea, was a contemporary of Thrasybulus, the deliverer of Athens, from whom he is usually distinguished by the epithet of the Collytian. He was one of the Athenian exiles who joined his namesake at l'hyle and afterwards at Pireens. (Demosthenes, in Timocrat., p. 742.) In the war against Antalcidas he commanded eight Athenian galleys, with which he was taken prisoner by the Spartan admiral.
(Xenophon, Ifellen., ₹. 1, 26, \&e.; comparc Aschines in Clesiphont., 1. 73, ed. Steph.)
THRASYBU'LUS (θ рariß ${ }^{2}$ Ile was a son of Gelo, and brother of Hiero the Elder, who ruled over Syracusc till the year B.c. 466 . Hiero was sueceeded by his brother Thrasylulus, who was a bloodthinsty tyrant, and oppressed the people still more than IIfero: great numbers of eitizens were put to death and others sent into exile, and their property filled the private coffers of the tyrant. In order to protect limiselt against the exasperated citizens, he got together a large forec of mereenaries, and relying on this new support, he earried his reckless cruelties so far, that at last the Syracusans deternined to rid themselves of their tyrant. They chose leaders to give them a military organization, that they might be enabled to resist the mercenaries of Thrasybulus. The tyrant at first endeavoured to stop the insurrection ly persursion, but this attempt failing, he drew reinforcements from Catana and other places, and also engaged new mercenaries. With this army, consisting of about $15,000 \mathrm{men}$, he occupied that part of the city which was called Achradina, and the fortified island, and harassed by frequent sallies the citizens, who fortified themselves in a quarter of their city called lyyec. The Syracusans sent envoys to several Greck towns in the interior of Sieily, solieiting their aid. The request was readily complied with, and they soon had in army and a fleet at their disposal. Thrasybulus attackerl them both hy sea and land, but his fleet was compelled to sail back to the island after the loss of several tiremes, and his army was obliged to retrcat to Acluradina. Seeing no possibifity of maintaining hiunself, he sent ambassadors to the Symeusans with offerrs of terms uf peace, which was granted on condition of his quitting Syracuse. Thrasybulus suhmitted to these terms, affer liaving searecly reigned one year, and went to Locri in Southern Italy, in B.c. 46G,
in exile. After the Syracusans had thus delivered themselves of the tyrant, they granted to his mercenaries free departure, and also assisted other Greek towns in Sicily in recovering their freedom. (Diodorus Sic., xi. 67 and 68. .)
THRASYMENE LAKE (Trasiménus Lacus, in the best Iatin MSS.; in Greek writers, $\dot{\eta} \lambda i \mu \nu \eta$ T $\rho a \sigma v \mu \hat{k} \eta \eta$, or $\theta \rho \alpha-$ $\sigma(\mu i \nu \eta)$, the antient name of the Lago di Perugia in Italy. It was in Etruria, and was the secne of the third defeat of the Romans by Hannibal after he had crossed the Alps. r!invibal.] The lake itself is fully described under " yrvgla.
IHRAULITE. Hisingerite. Hydrated Silicate of Iron. Occurs in roundish nodules. Fracture uneven or imperfect conchoidal. Structure curved, foliated. Brittle. Splendent. Nearly opaque. Lustre vitreo-resinous. Colour brownislı-black.
Gives out water when heated in a glass tube; imperfectly fused by the blowpipe, and is, after heating, attracted by thie magnet.
It occurs at Riddarhyttan in Westmanland (1) and at Bodenmais in Bavaria (2), accompanying iron pyrites. Analysis by

(1) Hisinger.	(2) Kobell.
$36 \cdot 30$	$31 \cdot 28$
44.39	$50 \cdot 86$
$20 \cdot 70$	$19 \cdot 12$
$101 \cdot 39$	$101 \cdot 26$

THREAD (French, Fil; German, Zwirn ; Dutch, Garen; Italiau, Refe; Spanish, Hilo, Torzal; Russian, Nitki, a small line formed by twisting together fibres of vegetable or animal substances, as flax, cotton, or silk. Sewingthread, and the various kinds of thread used in the manufacture of bobbin-net, lace, and some other kinds of textile fabric, consist of two or more yarns, or simple spun threads, firmly united together by twisting, just as a rope-strand consists of several yarns or distinet cylinders of hemp. [Rope, vol. xx., p. 1o34; Splvming, vol. xxii., p. 349.]
In a paper on the manufactures of Paisley, printed in the Appendix to Anderson's ' Iistory of Commerce' (edition of $1787-9$), it is stated that ' the nanufacture of thread was first attempted in this country by Mrs. Millar, of Balgarran, in 1722, on having received some information and machinery from Holland.' Her example was speedily followed by several families in Paisley, where the manufacture soon became of considerable importance. The first manufacturers imitated the kind called Nuns' or ounce thread, which was made up in hanks of forty threads each, recled upon reels a yard in circumference; but when the profits of the manufacture were diminished by competition, it was injured by the surreptitious practices of some of the manufacturers, who reduced the number of threads in each hank from forty to thirty, and when this became notorious in the market, put but twenty-cight threads in the lank, or reduced the diameter of their recls, and consequently the length of the threads. These frauds were earried to such an extent that it became necessary, in 1788, to pass an act of parliament requiring all manufacturers of this description of thread to use uniform standand reels of thirty-six inches in circumference, and to put thirty threads or rounds of the recl in each hank. From the statement above referred to, it appears that the number of machines employed at Paisley in twining thread, in 1784 , was not less than 120 ; and that the number employed in the thread manufacture in the whole of Scotland at that time was at least 500 , of which about 200 were engaged in the production of the different species of ounce threads. These consumed upon an average 2400 spindles of yarn each, or 480,000 in the whole; and these spindles, valued at 4\%. 6d. each, when manufactured into thread, amounted to 108,000 / The 300 machines employed in making other kinds of thread consumed upon an average 2003 spindles each, or 600,000 spindles in the whole, which, estimated at 3 f. 9 d. each when manufactured, amounted to 112,000 . This the total annual value of the thread manuractured in Seotland ahout $178+$ was 220,000 l.; and it is stated that the manufacture gave employment in its various operations, from the spinning of the flax to the finishing of the thread, to upwards of 20,000 women, besides 4000 or 5000 men.

The manufacture of thread from fibres of cotton-wool, for sewing and nther purposes, is one of the many important depart ments of lintisli industry called iuto exercise by the
improvements effected by Arkwright and his suceessors in spinning-machinery, and forms a considerable branch of business both in Manchester and in Scotland, for expertation as well as for home consumption.

The operation of combining yarus of cotton or linen into thread is performed by a macime called a doubling and twisting frame, somewhat resembling the throstle of the cotton-spinner. Engravings of this machine, with a minute description, are given in Dr. Ure's 'Cotton Manufacture of Great Britain,' vol. ii., pp. 226-234, and 'Dictionary of Arts,' pp. 1239-1241, from which authorities the following account is derived. Along the centre of the machine is an elevated creel or frame-work, which supports two parallel rows of cops or bobbins of yarn, one row towards each side of the machine. The cops or bobbins are placed vertically, or nearly so, and the lower ends of their axes rest in oiled steps or hollows, while the upper ends are supported by wire eyes, so that they may revolve with facility. The number of cops or bobbins of yarn is twice as great as that of the twisting spindles when the thread is to consist of two yarns, three times as great for thread formed of three yarns, \&e.; and the yarn with which they are charged is frequently gassed, or passed quickly througlı a series of coal-gas flames, to singe off any loose downy fibres, before it is taken to the doubling and twisting frame. From the cops the yarns are conducted over horizontal glass rods, which are fixed parallel with the creel, and thence downwards into troughs filled with water or very thin starchpaste, which by moistening the yarns facilitates the subsequent process of twisting. To ensure the equal moister ing of the yarns they are, while being drawn through the troughs, made to pass either under a glass rod, or through eyes which may, if necessary, be lifted out of the trough without wetting the fingers, by means of upright stems provided for that purpose. The wetting-troughs and other apparatus are alike on each side of the machine; but in further tracing the progress of the thread we shall confine our attention to one sidc, and to the apparatus necessary for producing one thread, although a great number of such trains of apparatus are combined in one frame, and set in motion by one train of impelling machinery. After being wetfed the yarns pass over the rounded edge of the trough, which is covered with flannel for the purpose of absorbing the superfluous moisture; and thence under and partly around an iron roller, which is made to revolve with any required velocity by a train of wheel-work. Upon this roller rests another, of box-wood, which revolves solely by contact with the iron roller, its axis playing in vertical slots. In passing under the iron roller, then between it and the wooden roller, and finally over the latter, the yarns required to form the thread are brought together and slightly compressed; but although thus prepared for a more intimate union, they are not yet twisted together. The action of the winding and twisting apparatus may be illustrated by a diagram, in which none but the essential parts are shown. In this figure a a represents the untwisted thread, or rather the united yarns which are to form the thread, and b is a fixed eyelet through which they are conducted to the flyer c, which is mounted upon and revolves with a long vertical spindle set in motion by a whorl or pulley and strap at d. e is the bobbin upon which the tinished thread is wound by the revolution of the flyer, which also gives to it any predetermined degree of twist. The spindle passes freely through a hole in the

centre of this bobbin, which rests upon a bar called the copping-rail, the transverse seetion of which is indicated
by a tint in the cut; and the copping-rail, which extends the whole width of the naehine, is supported at intervals by verlical rods, one of which is shown at s. To these rods, and consequently to the copping-rail and hobbins surplorted by them, a reciprocating vertical motion is imparted through the eomecting pieces 5 and h, from the hent lever it, which ls pivoted at k, and receives its motion through the adjustable friction-roller l, from an eccentric or heart wheel m. Thus by the combined rotntory motion of the spindle and fyer, and rising and falling motion of the boblbin, the thrend is at once twisted and wound regularly upon the bobbins, which may be easily removed when tull. It is unneeessary to delail the contrivanees by whicll motion is comnnunieated to various parts of the manclime, and it is sufficient to add that, by changes in the relative sizes of some of the toothed wheefs by which the moving-power is distributed from the uain slian, the spindles, which always revolve much faster than the rollers, may be made to do so to any required degree, so as to impart a greater or less degree of twist to the threal.
Silk thread is, according to Dr. Ure, commonly twisted in lengths of from finty to a hundred feet, with hand-reels somewhat sinnilar to those enployed in rope-making.
(Anderson, History of Commerce, vol. iv., pp. 703-4; Dr. Ure's Cotton Manufacture of Great Brilau, vol. ii., pp. 220-234; Dict. of Arls; \&ec.)
thireats and threatening letters. By the eriminal law of England, threats of perional violenee, or any other threats by which a man of ordinary firmness and prudence may be put in fear, and ly means of which money or oller property is extorted from him, amount to the crime of robbery. [Ronsery.] And by the statute 7 Will. IV. \& 1 Viet., e. 87 , sect. 7 , a person denanding ly menaces any property of another with intent to steal the same, is declared to be guilty of felony, and is liable to impprisonnent for any term not exceeding tliree years. Besides these offences, it is a misdemeanor at common law to threaten another in order to deter him from doing some lawful aet, or to compel hini to do an unlawful one, or to extort money or goods from him, or to obtain any other bencfit to the person who makes the threat.
The offence of sending or delivering letters or mitings, threatening to kill or injure the person to whom they are sent or delivered, or to burn his house, or to aecuse limm of some heinous crime for the purpose of extorting inoney, was formerly considered to be liigh treason (stat. 8 Heli. V., e. 6); and under the stat. 9 Geo. I., e. 22, continued for more than a century to be punishable as a capital felony. By the stat. 4 Gco. IV., e. 54 , s. 3 , it was deelared to be desirible that a less punishment should be substituted for that of death; and it was enaeted that, 'if any person shall knowingly and wilfully send or deliver any writing, with or without any name or signature subscribed thereto, or with a fictitious name or signature, threatening to kill or murder any person, or to burn or destroy his house, outhousc, barns. or stacks of corm or grain, hay or straw, the offender slanil be guilty of felony, punishable with transporntion tor life, or not less thanis seven years, or imprisonment for any term not exeecding seven years.' By a more recent statute, $7 \& 8$ Gco. IV., e, 29 , sect. 8 , it is cnacted that, 'if any person shall knowingly send or deliver any letter or writing, demanding of any person with menaces, and without any reasonable or probable cause, any chattel, money, or valuable security ; or if any person shall acense, or threaten to accuse, or shall knowingly send or deliver any letter or writing accusing or threatening to necuse, any person of any crime punishable by law with death, tran\&portation, or pillory, or of any assault with intent to commit any rape, or of any attempt or endenvour to commit any rape, or of any infamoius crime (the meaning of which fermi is specially defined in the 9th section of the saine statute), with a view or intent to cxtort or gain from mucl person any chattel, money, or valuable security'; every such offender shall be guifty of felony, and shinll be punishable with transporiation for life or not less than seven jears, or with imprisonment not exceeding four jean, with or without whipping.

Tiree kule of, the technieal name of the rule in arithrnetie by which, threc quantities being given, the first and second of one kind, a fourth is found such that the four afe in proportion, or that the first is the same
multiple, part, or parts, of the second, whieh the thind is of the fourth.
In the carliest modern treatises are found the explanatory headings of this process, from which the denomination rule of threc has been formed by abbreviation. Almost all such abbreviations date from the time when systems of commercial arithmetic began to be written, that is, about the beginning of the sixteenth century. Before that time, such books as were writen always contained demonstrations from full definitions; and if was not judged necessary to provide the simple ease of finding a foutth proportional to three given mumbers with a sepmante name, or to divide the rule for doing it from others. This however was done by traders in their daily practice, who so parated the rule of three from the other parts of arithnetic, and called it the golden rule, an older term, probably, than rule of lirce. Bislop Tonstal ('Ars supputandi,' 1E22i) begins his chapter on the ' Regula de tribus notis quartunn ignotum commonstrantibus' in this manner: '1hrecipua omnimm regula est quie de tribus notis quarlunn ignotunn in noticiam educentibus ab) Arithmeticis traditur, Vulyns regulam auream vocat; quia have cateris Arithmeticae regulis velut eateris metallis aurum prastet.' Robert Recome (1540) calls it the feate of the rule of proportions, whiche for his execllencie is called the golden rule.' Humphrey Baker (1562) uses thie plrase ' rule of three,' nud says that the pliilosophers did nanie it the golden rule...but nowe in these latter dxies, by us it is called the rule of three.'
The immense variety of questions which are to be solved by finding a fourth proportional defics all classifieatiun: but they may all be rediued to one form, though it may in particular cases not be easy to see the mode of reduction. That form is : $-\Lambda$ produces B; what will C produce? It may be that it is monej whicl produces goods, or goods whicli produce money, or money whielh produces interest, or nioney of one country which produces money of another, or time which produces distance travelled, \&c. \&c. \&e. The difficulty to beginners is the reduction of the question given to the above simple form, whiell must be done before what is (or used to be) ealled the statement of the question can be made, namely, the writing down the numbers A, B, C, in the proper order, with the marks of proportion between then:

A: B:: C : the answer required.
It is proper enough to say that this is a question of proportion when numbers only are considered: but absurd when the things represented by the nunbers are nsed instead of the numbers. Thus, if 5 pence buy 10 apples, 7 pence will buy 14 apples, and the nunber 5 is to 7 as 10 is to 14 , or 5 is the same fraction of 7 as 10 is of 14 . But it is absurd to say that 5 pence bear the snme proportion to 10 apples that 7 pence bear to 14 apples: sinply bceause 5 pence are not any assignable fraction of 10 apples. That there is a relation is true: but that relation is not proportion. Thus, it is not absurd to say, in the common language of the rule, As 5 pence are to 10 apples, so are 7 pence to 14 apples ; for the firxt does stand to the second in the sanio relation as the third to the fourth: in pence must, at all rates, do as nuch towards the pprrchase of 10 apples as 7 pence towards that of 14 apples. With this undertanding there is no oljection to the common mode of stalconent, and the proof of the rule is as fol-lows:-If A of the first produce 13 of the second, then, at the same rate of prodnction, 1 of the first must produce $\frac{B}{A}$ of the seeond; whenee C of the first must produce $C \times \frac{B}{\Lambda}$, or $\frac{C l 3}{\Lambda}$ of the second.
The importanee of the rule of three induced arithnetieinus to attach two other rules to it: the inverse rule of three (called by Recorde, Baker, \&e., the backer rule) ; and the doulle rule of three. Some of the writers of Cocker's sclool, apparcntly by an abbreviation of his worls, tell us that the rulc of three inverse is used ' when less requires more and more requires less;' meaning that the greater the third of the given numbers, the less will be the answer, and vice versa. Thus, sulppose that 101. has been lent me for 3 months, and 1 want to kinow how long 1 ought to lend a given sum (other than 101 .) in retum: evidently the nore 1 lend, the less the time for which 1 orght to lend more $1 f$ the suma be 15%., then 3 months is to the time re-
it.
quired, not as 10 to 15 , but in its inverse ratio, as 15 to 10 , or $15: 10:: 3: 3 \times 10 \div 15$, or 2 ; and 2 months is the answer required.

The double rule of three (at least in the class of questions which are usually considered as falling under it) is applied where time is an elcment in the production which the question supposes. For example: supposing it known that A men can pave B square feet in C days, it may be asked how many men can pave b square feet in c days, or how many square . feet cañ a men pave in c days, or how many days will it take a men to pave b square feet. If we write down the data and answer in two lines, and in the following order-force employed-effect produced-time of production-thus,

A	B	C
a	b	c

the rule is-Take such an answer as will make the extremes of cach line multiplied by the mean of the otlier, the same in both. That is, let $\mathrm{A} b \mathrm{C}=a \mathrm{~B} c$, and aecording as a, b, or c is to be found, the mode of worling is is fol-lows:-

$$
a=\frac{\mathrm{A} b \mathrm{C}}{\mathrm{~B} c}, b=\frac{a \mathrm{~B} c}{\Lambda \mathrm{C}}, c=\frac{\mathrm{A} b \mathrm{C}}{a \mathrm{~B}}
$$

The proof is as follows:-One man in Cdays could pave $\frac{1}{A}$ square fcet, and in one day $\frac{B}{A C}$ square fect. By similar reasoning one man in one day could pare $\frac{b}{a c}$ square feet. Hence

$$
\frac{\mathrm{B}}{\mathrm{AC}}=\frac{b}{a c} ; \text { or } a \mathrm{~B} c=\mathrm{A} b \mathrm{C}
$$

The principal caution which a beginner requires is;-not to suppose that the rule of three (or the rule of finding a fourth quantity which, with three others, shall constitute a proportion) is to be applied in all eases in which three quantities are given to find a fourth. That such a caution is necessary arises from the defect of works on arithmetic; which frequently exhibit this rule without any mention of proportion, and leave it to be inferred tliat there is but one way of obtaining a fourth quantity from three others.

TIIREE RIVERS. [CANADA.]
THRIO'THOIRUS, A!. Vicillot's name for a genus of birds, Sylija, Lath., and placed by Mr. G. R. Gray in lis subfamily Troglodytinse, of his family Cerihide.
TIIRIOTHU'RUS, M. Vicillot's name for a genus of Birds (Sylvia, Lath.), placed by Mr. G. R. Gray in lis subfamily Troglodytivis.

THROCMORTON, SIR NICHOLAS, was descended from an antient family in Warwickshire, and his ancestors had been employed in the higher offices of state for some centuries. His father, Sir George Throcmorton, had been in firvour with Ilenry VIIl., but, being a zealous papist, he incurred the king's displeasure by refusing to take the oath of supremaey, and about I538 was imprisoned in the Tower of London, where he remained several years.

Nicholas, who was Sir George's fourth son, was born about the year 1513. Having been appointed page to the Duke of I'iehmond, the king's natural son, he accompanied lis master to France, and reuained in his service till the duke's death in 1536 .

Sir George Throemorton was released from the Tower in 1543. His son Nicholas was then appointed sewer to the king, in which it was his duty to attend the

$$
\begin{aligned}
& \text { marshalld feast, } \\
& \text { wow or and senesclial. }
\end{aligned}
$$

\ln Ijtt he headed a troop in the armament against France which Henry VIII. commanded in person; he assisted at the siege of Boulogne, and after his return received a pension from the king as a reward for his services. After the king's death he attached himself to the queendowager Catherine Parr, and to the Princess Elizabeth. In $\mathrm{I} / \mathrm{H} 7$ be distinguished himself in the campaign in Scotland under the Protector Somerset; he was present ut the bat:le of Pinkey (or Musselburgh), and Somerset sent him to London with the news of the vietory. He was soon afterwards ereated a knight, appointed to a place in the privy-chamber, and admitted to great intimacy with f.dward VI. The king bestowed upon lim some valuable manors, and made him under-treasure of the Mint. He sat in parliament during Edward's reign as member for Northampton.

A short time before the king's death, Sir Nicholas married the daughter of Sir Nicholas Carew, and on taking his wife to visit his father at Coughton in Warwiekshire, he was received with coldness by the old knight; partly perhaps on account of his Protestant principles, but chiefly becausc he had been knighted before his eldest brother. To remove this cause of offence, he took his brother back with him to court, and, at the request of Sir Nicholas, the king raised him to the dignity of a knight.
Sir Nicholas Throemorton was present when Edward VI. died at Greenwich in 1553. He was aware of the designs of the partisans of Lady Jane Grey, but, though a Protestant, he was too much attached to law and legritimacy to give the least sanction to them. He therefore came immediately to London, and despatched Mary's goldsmith to announce to her the king's demise.

On the 2nd of February, 1554 , Sir Nicholas Throemorton was arrested and committed to the Tower on a charge of being concerned in the rebellion of Sir Thomas Wyatt. On the 17 th of April he was brought to trial at Guildhall, London. This trial is the most inportant and interesting event in his life. A report of it, taken from Holinshed, is given in the 'Library of Entertaining Knowledge-Criminal Trials.' It is certain that he was acquainted with Wyatt's intentions, and there is little doubt that he was to some extent implicated in the rebellion. He was tried beforc commissioners, some of whom werc bitterly inimieal to him, and who seemed to regard his trial as merely a form neeessary to be gone through previous to his execution. Sir Nicholas however conducted his own defence; and this he did with such admirable adroitness, such promptness of reply and coolness of argument, intermixed with retorts, spirited, fearless, and reitcrated, in answer to the partial remarks of the Jord chief justice and other commissioners, and followed up by an impassioned earnestness of appeal to the jury, that, in defiance of the threats of the chiet justice and the attorney-general, he obtained a verdiet of aequittal. Sir Nicholas was directed to be discharged, but was remanded, and kept in prison till the 18th Jan., 1555. The jury werc made to suffer severely for their independent verdict. Two were fined 2000%. each, six were fined 1000 marks each, and four, who expressed contrition, were not fined. All were remanded to prison, where they remalned till the 12th of December, when five were discharged on payment of the reduced fine of 2202 . each, three on payment of $60 l$. each, and four without fine.

Sir Nicholas Throemorton, after his release, avoided the approaching storm of persceution by going to France, where lie remained till 1556 . Though he afterwards served in Queen Mary's army under the Earl of Pembroke, he devoted himself chiefly to the princess Elizabeth, whom he visited privately at Hatfield. When Queen Mary died, he was admitted to see her corpse, and, as Elizabeth had requested, took from her finger the wedding-ring which had been given to her by Philip, and delivered it to Elizabeth. Elizabeth gave him the office of chief butler of England, a situation of some dignity, but inconsiderable emolument, and afterwards made him chamberlain of the exchequer. In 1559 he was sent on an embassy to France, and remained at the French court as resident ambassador till the beginning of 1563. Dr. Forbes las published the greater part of Throemorton's correspondence with his own government while he was in this confidential situation. It displays great diplomatic skill and management, but perhaps rather too much tendency to intrigue; and lee supported the cautions aud somewhat doubtful policy of Cecil with zeal and discretion. Indeed he was on the nost confidential terms with Cecil during the whole of this period, but after his return a coolness arose between the two statcsmen, which increased till it became a strong personal animosity.
In 1563 Thromorton was sent on a special embassy to Scotland, to remonstrate with Mary Queen of Scots against her intended marriage with Darnley; and when Mary was imprisoned at Lochleven in 1567, Throcmorton was commissioned by Elizabeth to negotiate with the rebel lords for lier release.

In 1569 Throcmorton was sent to the Tower on a charge, which indeed appears to have bcen well founded, of having been engaged in the intrigue for a marriage between Mary Queen of Scots and the Duke of Norfolli. Though he was not kept long in confinement, he never afterwaris: regained the confidence of Elizabcth, and the diefress of
mind ocensioned by the loss of her favour has been thought to have hastened his death, which took place at the house of the Farl of Incicester, Feb. 12, 157I, in his 58th year.

Sir Francis Walsingham, in a letter to the Farl of Leieester, on the oceasion of Throcmorton's death, says of him that 'for counsel in peace and for conduct in war he hath not len of like sufficiency that I know.' Camden says he was a man of large experience, piereing judgment, and singular prudence; but he died very luekily for himself and his fanily, his life and estate being in great danger by reason of his turbulent spirit.'
(Criminal Trials, in Library of Eintertaining Ḱnowleelge: Pistorial Ilistory of Eingland.)

THROMBUS is a tunour formed by blood effused from a vein after bleeding, and coagulated in the adjaeent eelIular tissue. It is a kind of intense eechymosis or bruise, and usually arises from the puneture in the vein not having lecen made exactly opposite that in the skin, so that some of the blood, instead of flowing out, is infiltrated between the vein and the surface. It is rarely of suffieient importance to require treatment, and is usually removed like the effused blood of an ordinary bruise. Sometimes however inflammation ensues around the tumour, which should be freated by lecches and cold; or, if it proeeed to suppuration, should be managed like a common abseess.

THirOSTLE. [TMuUshzs.]
THRUSH, or Aphthe, is a disease which commonly appears in the form of ininute oparque-white vesicles seattered over the interior of the month and fauecs. Vesicles or blisters of this kind often appear in a suecession of cruptions, those whieh were first formed busting and leaving tender and raw surfaces, while others are breaking ont; and thus continuing through the whole course of some general disorder of the system.

The only variety of thrush in which the eruption is the most obvious sign of disease is that which is called milkthrish, or aphthe infantum, or sometimes, in the supposition that it is the primary disease, idiopathic thrush. This however is almost always connected with disturbance of the digestion and other functions, and is usually traecable to some error of diet. It is nost frequently observed in children that are brought up 'by hand;' and, in ordinary eases, requires only the means adapted to correct the disturbed digestion, such as small doses of magnesia and gentle purgatives. In very weakly ehildren however, and in those that are ill led and clothed, the surface of the mouth and fauces, exposed by the bursting of the vesicles, may slough or ulcerate; and this condition is always a sign of the necessity of administering tonies, nutritious food, and even powerful stimulants, such as wine or brandy. It is this form of thrush which is usually described as aphtha maligua.

In adults, thrush is a very common oecurrence in the advanced stages of many diseases, such as typhoid and other acute fevers, the hectic fever aecompanying phthisis, diabetes, \&e.: in short, in nearly all eases in which there is great prostration of strength, thrush may oceur. In these casces, the only treatment that can be applied peculiarly to it is local. Great relief is often alforded by lighty sponging the affected surfaces with a solution of nitrate of silver, in the proportion of eight or ten grains to au ounce of water. Gargles, consisting of a drachm of slum to a pint of water or acidulated intusion of roses, or of one or two draehms of sub-borate of soda to half a pint of water, are often beneficial; and so is the mel boracis of the Plarmacopecia, when a small quantity of it is held for a few minutes in contaet with the affected part.

THRLSLIES. Under this name many ornithologists freat of the whole of the Merulides, in which article the views of Mr. Vigors, Mr. Swainson, and the Prince of Musignano, now Prince of Canino, with regard to this fanily, are giyen.

Sinee the article Merutide was written, Mr. G. 12. Gray lass published his ' List of the Genera of Birds,' and we proceed to lay hefore our readers his arrangement.

Mr. G. R. Gray nakes the Turdidee (Turdus, Limu.) the seeond family of his third tribe (Dentirostres) of his second order (Passeres). The Dentirostres are placed by him between the Tenuinontres and the Conirostres, and the Turvirlen between the Juscinidee and the Mfuscicapidee.

The following are the subfamilies and genera into which Mr. G. IR. Gray divides the Turdides :-

Subfam. 1. Formicarine.

Genera:-Notodek, Less. ; Juprles, Temm. ; Ajux, Less.; Dasycepihala, Sw.; Pithys, Víeill.; Formicivora, Sw.; Myrmecizu, G. R. Gray; Urotomus, Sw.; Mulurio, Less.; Curythopis, Sundev.; Brachyptery.x, Hors.; ; Macronus, Jard. and Selby ; Tinactor, Pr. Max. ; Formicirius, IJodd.; Chamreza, Vig.; Grallaria, Vieill.: Cissa, Boie; Brachynrus, Thunb.; Myiophoneus, Temm.; Ilydrobusa, Vicill.

Subfam. 2. Turdinæ.
Genera :-Pelrocossyphins, Boie ; Orocetes, G. 12. Ciray; Larvivora, Hodgr.; Bessonornis, Snith; Naricolides, Less. ; Chuëtops, Sw. ; Geocichla, Kuhl ; Zoothera, Vig.; Myiophuga, Less.; Oreacinclu, Gould; Turilus, Linu. ; Merula (Ray), Boic; Mimus, Briss. ; Toxostoma, Wagl. Subfam. 3. Timalina.
Genera:-Donacobius, Sw. ; Pellornewn, Sw.; Aipunemia, Sw. ; Cruterupus, Sw. ; Gurrulax, Less. ; Actinodura, Gould ; Cinclosoma, Vig. and Horsf. ; Suya, Hodjs.; Sibri, Hodgs.; Tesia, IJodgs. ; Mulucoccrcus, Sw. ; Timalia, Ilons. ; Pomatorhinus, Horst. ; —? Puluthcola, Hodgs. ; Ictcria, Vieill. ; Turnagra, Less.

Subfan. 4. Orioline.
Genera:-Dulus, Vicill. ; Sphecotheres, Vicill.; Oriolus, Linn.; Mimeta, Vig. and Horsf.; Analcipus, Sw. ; S'riculus, Sw. ; Oriolia, J. Geoff.

Subtam. 5. Pyenonotime.
Genera:-Microscelis, G. R. Gray; Microtursus, Eyton ; Malacopteron, Eyton; Trichophorus, Tcmm. ; Ilypsipetes, Vig. ; Yuhina, Hodgs. ; Phyllastrephus, Sw.; llemutornis, Sw. ; Pycnonotus, Kuhl; Andropudus, Sw. ; ? Trichixos, Less. ; ? Setornis, Less.
Mr. G. IR. Gray, with his usual diligence and aecuraer; gives the synonyms of all these genera; and observes, with regard to some of them, that Drymophili, Sw., has been used in botany; that Leplorhynchus, Menestr., was previously employed; Petrophila, Sw., used in botany; Cossypha, Vig., used in entomology, only the termination is there in us; Cichla, Waglo, previously used in ichthyology; Paludicola, Hodgs., previously employed in herpetology; and Aficropus, and Brachypus, Sw., previously used in other branches of natural history.
Some of these forms have already been noticed in detail in this work, and we shall here confine ourselves to the true thrushes, or those so nearly allied to them, that, in common parlance, they are so termed.

Europeas Turusines.

The following thrushes are European:-
Black Ouzel, or Brackbird, Merula valguris, Ray; the Ring Ouzel, Merula torquata, Briss.; the Migratory Ouzel, Merula migruloria, Sw.; the Black-throutced Thrush, Turdus atrognlaris, Temm.; the Fieddare, Turdus pilaris, Linn.; the Reduing, Turdus lliacus, Jinn.; the Missel Thrush, Turdus viscirorus, Linu.; the SoncThrush, or Throstle, Turdus musicus, Limu. ; Numamis Thrush, Turdus Nammanni, Temnı.; the Pallid Thrush, Turdus pallidus, Pall.; White's Thrush, Turdus II Thitei, Eyton; the Siberian Thrush, Turdus Sibcricus, Pall.; the IIuter Ouzcl, or Common Dipper, Cinclus aquaticus, Bechst. ; the Bluck-bellied Witer-Ouzel, Cinclus melunogaster, Brehm; 1 Pallas's Wutcr Onzel, Cinclus Pullusii, Temm.; the Rock-Thrnsh, Pctrocincha saxutilis, Vig.; and the Blue-Thrush, Pctrocincla cyanens, Vig.
Of these, the Water Ouzel, or Common Dipper; the Missel Thrush; Whites Thrush (occasional only); the Song Thrush; the Ficldfare; the Reducing ; the Blackbird; and the Ring Ouzol, or R1vg Blackhind, are British.
We select as an example the sweetest songster among this tribe, in our opinion at least, and we write it withont disrespect to the rich mellow whistle of the blackbird, or the loud stirring notes of the missel thrush.

The Throstle or Song Thrush.
This well-known bird needs no descrption. It is the Grive and Pctite Grive of the French; Tordo, Turdo communc, and Tordo Bottuccio of the Italians; Sing-drossel, or Weiss-drossel, of the Germans; Muris, with the other names above given, of the modern British;* and Aderyn bronfraith of the antient 13ritish.

Geographical Distribution.-Inhabits every eountry in Europe, haunting gardens and woods near streains or mea-
dows. Beehstein says that in Germany, as soon as the autumnal fogs appear, the throstles colleet in large flights to seek a warmer elimate, the principal time of passage being from the 15 th of Sept. to the 15 th of Oetober, and the return about the middle or end of Mareh, when each pair sceks its own district. In Britain it is permanent, and spread over England, Wales, Ireland, Seotland, and its islands. Russia, Denmark, Siveden, and Norway possess it. In the south, besides Germany, France, Italy, and Greece have it. It has been seen in winter at Smyma and Trebizond. Professor Nilsson states that it leaves Sweden for the winter, and comes farther south. Mr. Selby observes that such visitors arrive in Britain with a north or north-east wind, and, after staying a few days to reeruit, move southward.

Hubits, Food, fcc.-Worms, inseets, snails, and fruits form the food of the throstle. The common garden-snail, Helix hortensis, and the wood-snail, Helix nemoralis, are killed and eaten in great numbers by this speeies. The hird beats and breaks the shells against a stone to get at the animals. The nest is made of green moss generally, and finc root-fibres on the outside, and is lined within with cow-dung and deeayed wood, the lining forming a cement, so perfectly spread that it will hold water. Eggs four or five, of a light blue, the larger end having a few small hlack specks or spots. Time of ineubation thirteen days. The first hatch generally comes forth in April, but the young have been known to be out at the end of March. There are generally tiro broods in the year. Both the eoek and the hen sit, but the former less than the latter. IIc often feeds her on the nest. A holly, a thick bush-a tall one is mostly preferred-a dense and somewhat high slirub or a fir, is usually selected; but the bird has been known to breed in an open shed or tool-house, and dees not seem to shun the neighbourhood of man. In 1833 a pair huilt their nest in a low tree at the bottom of Gray's Inn Gardens, near the gates where passengers are going by all day long. The hen laid her complement of eggs, and was sitting on them, when a eat climbed up and killed her on the nest. The cock immediately deserted the place.

Bechstein states that in captivity the Throstle is easily taught to perform airs. For taking it he recommends a perch with a limed twig as the best mode of eapturing a fine-toned male : but in September or October he says that they may be eaught in the water-traps, where they repairat sunrise and sunset, so late that they sometimes cannot be seen, and the bird-eatcher is only guided by his ear. He observes that, when the birds enterthe water, there must be no haste on the part of the fowler, beeause they like to bathe in company, and assemble sometimes to the number of ten or twelve at once, by means of a peculiar eall. Bechstein tells us that the first which finds a convenient stream, and wishes to go to it, cries in a tone of surprise or joy, 'sik, sik, sik, siki, tsac, tsar, tsac: then all the thrushes in the ueighhourhood immediately reply in coneert and repair to the place. The bath is entered however with a good deal of circunispection on their parts, and they seldom venture fill they have seen a Red-breast bathe without danger. lhut the first that bathes is soon followed hy others, and they begin to quarrel among themselves if the bath is not large enough to accommodate all satisfaetorily. Bechstein further remarks that it is a good plan to have a tame bird running and fluttering on the banks of the stream, as a decoy to altraet them.

Asiatic Thrusies.

Example, Turdus erythrogaster.
Description.-Male.-Grey-caruleseent above; the cheeks, the sides of the neck, and the quills black; breast, abdomen, and rump red; beak and tarsi blaek.

Female differs in being creruleseent-brown, the lower pait of the back obscurely banded with brown; neek in front whitish narked with dark brown; breast, abdomen, and rump reddish-white marked with undulations. Length $8 \pm$ inehes.

Mr. Gould (Century of Birds from the Himalaya Monntains) states that this beautiful speeies exhibits a marked departure in the style of colouring from its more typieal congeners; and were it not that its form dictated the situation in which it is retained, it would otherwise seem to be allied in many respeets to the genus Petrocinclu.
Inculity. - The rocky districts of Himalaya; never found in the low lands.

Turdus cr throgaster, male and female. (fivulh.;

African Thrushes.

Example, Turdus strepitans, Smith (Meruhu Letsitsirupa of the same).

Description.-Mule.-Front and top of head brownishgrey; occiput, upper aspeet of neck, interseapulars, seapulars, and shoulders deep yellowish-grey, faintly shaded with brown ; back, rump, and upper tail-coverts dirty ashgrey. Under parts white, tinted in plaees with oehreyellow; sides of the neck, whole of the breast, flanks, and belly variegated with blaekish-brown pyriform spots, one on each feather, the large end reaching nearly to its point. Sides of the hcad white, slightly tinted with oehre-yellow, variegated below the eyes with three blaekish-brown bands; the foremost proceeds from the base of the lower mandible, the second from the middle of the under eyelid, and the third from the outer angle of the eye; the first extends nearly horizontally, and the two others obliquely downwards and backwards till they unite with the horizontal onc. Primary wing-eoverts and primary quillfeathers deep brownish-red, the latter tipped and edged externally with yellowish-white; the first two-thirds at least of the inner vanes of these feathers are of a clear buff-colour, darkest towards the shafts; secondary wingcoverts and secondary and tertiary quill-feathers dark greyish-brown, the outer vanes lightest, all margined externally and tipped with dirty white. Eyes reddish brown; upper mandible and tip of lower inferiorly as well as the claws liver-brown; lower mandihle elsewhere, and the cutting edge of upper, pale saffron-yellow. Feet and insides of the hill deep straw-yellow.

Figure robust and rather short. Bill long, and moderately strong; upper mandible broad and slightly depressed towards the base, narrow and distinetly notched near the tip; culmen between nostrils elevated and rounded, towards the point of the bill strongly curved; nasal fossze large and membranous, the nostrils narrow longitudinal slits near to the edges of the mandible; wings short and rounded, and when folded they reaeh over tirst half of the tail ; the first quill-feather rudimentary, the third rather the longest; the second and fourth of equal length, and seareely shorter than the third; the fifth a little shorter than the fourth, and the remaining primaries dininish in length suecessively: Tail short and slightly forked. Legs long, tarsi robust, anteriorly indistinetly seutellated, posteriorly entire; toes strong, the inner and outer toes of the same length; elaws strong, mueh eurved and pointed. Lengtly from point of bill to tip of tail eight inches six lines

Female differing but little in colour, if at all, from the malc. (Smith.)
Locality, Habits, Foorl, Sr.-Dr. Smith staten that inimediatcly upon reaching Kurichane, this thrush began to appear in the thickets, and he continued to aequiro ocensionally a specimen even in the vieinity of the tropie. It secks, he says, its food upon the ground, andl, when so oceupied, its resort is readily discovered by the mutives from the noise it makes in serntching the ground, or In displacing rubtish and deeayed leaves whieh conceral the insects it is seeking. The mane by which it is known in the country it inhubits is, he infornis us, charncteristic of the vigour with which it employs its feet, and the nearest translation he can give is 'Ground-Scraper.'
Dr. Suith further remarks that the form of its bill, particularly towards the base, the length of its legs, and the shortness of its tail, are all characters which remove it from the more typieal species of the genus Thrdus; but yet there is in its structure and habits what necessarily constitutes it a true thrush. (Illustratious of the Zoology of Soult drica.)

Turdus atrepitans, male. (Smith.)

American Turushes.

Fxample, Turdus mustelinus, Gm.
Deseription.-Above, bright cinnamon brown, hrightening into rufous on the head, and inclining to olive on the rump ned tail. Beneath, whitish, thickly narked with peucil-shaped dusky spots. Vent pure white. Orbits of the cye white. Bill dusky brown, slightly notehed, lower mandible flesh-coloured towards the buse. Legs and class very pale flesh-colour. Jris dark chocolate. Length 8 inches; alar extent 13 inches. (Nuttall.)
This appears to be the Turclus melodus of Wilson and Tincry Thrush of Pennant, and is generally known ns the IVond Thrush.
focality, Hobits, Fond, fec.-Nuttall states that this solitary and retiring soncster inhabits, cturing summer, the whole continent from Hudron's Bay to Florida, and, necording to his fiend Mr. Ware, breeds ns far south as the vicinity of Natchez, in the State of Mississippi. He remarks that it Is not satisfietorily ascertained whether the speeles quits the boundaries of the United States in winter, becmise the bird is then silent, and always difficult of necess. He thinks it probable that this Throsh maty winter in the Southern States, as a young bird, glenning insects and beries, had been caught in a garden in lloston on the 2fith Oetober.
But, wherever the Wood Thrush may winter, it arrives in the Middle States from the lst to the $15 t h$ of Δ pril. Nuttall thus describes its song and habits:-

- At the dawn of morning lie announces his presence in the woods, and froin the top of some tall tree, rising through the dark and shady forest, be pours out his few clear and harmonions notes in a pleasing reverie, as if inspired by the enthusiasm of renovated nature. The
prelude to this song resembles almost the double lonzuing of the flute, blended with a tinkling, shrill, and solemn warble, which re-cechoes from his solitary retreat, like the dirge of some sad rechuse who shuns the busy haunts of lifc. The whole air consists usually of four parts or bars, which sueceed, in deliberate tine. and fínally blend together in impressive and soothing harmony, becoming more mellow and sweet at every repetition. Kival performers seem to challenge each other from varions parts of the wood, vying for the favoiur of their mates, with sympathetic responses and softer tones; and, some warcing a jealous strife, terminate the warm dispute by an appeal to combat and violence. Like the Robin and the Thmsher, in dark and glomy weather, when other birds are sheltered and silent, the clear notes of the Wood Thrush are heard through the dropping wools, from dawn to dusk, so that, the sadder the day, the sweeter and more constant is his song. His clear and interrupted whistle is like wise ofen nearly the only voice of melody heard by the traveller, to mid-dny, in the heat of summer, as he triverses the silent, dark, and wooded wilderness, remote from the haunts of men. It is nearly inpossible by words to couvey any iden of the peculiar warble of this vocnl hermit, but amongst his plirases the sound of 'airoree, peculiarly liquid, and followed by a trill, repeated in two interrupted hars, is readily recognisable. At times their notes bear a considerable reseniblanee to those of Wilson's Thrush, such as eh rhehu'rrehu, then varied to 'ch villis villia, 'ch villia vrehu, then, 'ch villn villu, high and slrill.
- The Wood Thrush is alway's of a shy and retiring disposition, appearing alone, or only in single pairs, and, while he willingly charms us with his song, he is content and even solicitous to remain conecaled. Ilis favourite. haunts are low shady glens by watereourses, of en renclered dark with alder-bushes, mantled with the trailing grapevine. In quest of his insect prey he delights to follow the meanders of the rivulet, through whose leafy shades the sumberams steal only in a few unintermpted rays over the sparkling surface of the rumuing brook. So partial is this bird to solitude, that I have known one to siug almost uniformly in the same place, though nenrly half a mile from lis mate and nest. At times, indeed, he would venture a few faltering low notes in an onk near his consort, but his mellowest morning and evening warble was always delivered from a tall hickory, overtopping a grove of hemlock firs, in whleh the dimness of twilight prevailed at noon. The Wood Thrush, like the Nightingale, therefore, feels inspired in darkness, but, insteact of waiting for the setting sun, he chooses a retreat where the beams of day can seldom euter. These shady retreats lave also an additional attraction to our Thrush; it is here that the most interesting' seene of his instinetive labour begins and ends, here he first saw the light, and breathed into existence, and here he now bestows his nest in a sapling onk, or in the next thick laurel or hlooming alder, whose berries afford him an ample repast in the coming autunn. Outwardly it presents a warm hed of withered beach or oak leaves, above these a layer of coarse old grass and leaf-stalks is laid, tempered with a mixture of muld and decayed wood smoothly plastered, so as to form a crust like the nest of the Robin. The whole is then surmounted by a thin lining of the black fibrous radicles of the fern.'

The narae author states that the egge, which are four or
five in number, are searcely distinguishable from those of the Robin, and of an uniform bright greenish blue destitute of spots. Beetles, caterpillars, and other insects, and in autumn berries, constitute the principal food of the speeies. Nuttall further states that the young remain for weeks around gardens in quest of berries, and that they are partieularly fond of those of the various species of corneI and viburnum. At this season, he says, they oeeasionally leave their favourite glens, and in their devious wanderings, previous to their departure, sometimes venture to visit the rural suburbs of the city. The young, it appears, are easily reared, and, like our Throstle, sing nearly as well in the cage as in their native wilds. (Manizal of the Ornithnlogy of the United States and of Cunada.)

THUA'NUS. [Thou, De.]
THUCY'IDIDES (Oovkvdiòns), the son of Olorus, or Orolus, and Hegesipyle, was a native of the demus of Alimus in Attica. He was connected by his mother's side with the family of the great Miltiades, and the name of his father was a common one among the Thracian prinees. If he was forty years old at the commencement of the Peloponnesian war, according to the statement of Pamphila (Gcllius, xv. 23), he was born in n.c. 471. In his own work he nowhere mentions his age or the time of hls birth, but he says that he lived through the whole of the l'clopomesian war, and that he was of the proper age for observing its progresa (v. 26).

Our principal information respecting the life of Thucydides is a biograplyy of him written by Mareellinus, whieh is however full of contradictions and doubtful stories. There is also an anonymous biography of him prefixed to many editions of his works, which is still worse than that of Marcellinus. Thueydides mentions incidentally a few facts concerning himself, which is almost all that we know with certainty about his life.

There is a well-known story that when a boy he heard Herodotus read his History at Olympia, and was so mueh moved that he burst into tears. But there is good reason for helieving that this recitation of the History of Herodotus never took place at the Olympic games [Herodotus]; and if there is any foundation for the story of Thucydldes having heard him read it, we would rather refer it to a later recitation at Athens, which is mentioned by Plutarch and Eusebius. Suidas is the only writer who says that Thucydides heard Herodotus at Olympia; Marcellinus and Photius relate the same tale without mentioning where the recitation took place.

There seems nothing improbable in the accounts of the antient biograplıers that Thucydides was taught philosophy by Anaxagoras and rhetoric by Antiphon; but their statement that he accompanied the Athenian colony to Thurii is probably a mistakic arising from their confounding him with Herodotus, who, we know, was of the eolonists. But whether he went to Thurii or not, it is eertain that he was' in Athens in the second year of the Peloponncsian war, n.c. 430 , when he was one of those who had the plague. (Thucyd., ii. 48.) In the eighth year of the war, B.c. 424 , he was in command of an Athenian fleet of seven ships, which lay off Thasos. Brasidas, the Lacedremonian coinmander, made an attempt to obtain posscssion of $\Lambda \mathrm{m}$ phipolis on the Strymon, which then belonged to Athens; and Thucydides, as soon as he heard of it, sailed to protect Amphipolis, but was only in sufficient time to save Eion, a seaport at the mouth of the Strymon. Amphipolis hiad fallen before he could arrive there. (Thucyd., iv. 102, \&c.) For this he was either condemned to death or banished by the Athenians in the year following, n.c. 423 ; and in consequence of the sentence passed upon him he spent twenty years in exile, namely, till b.c. 403. (Thucyd., v. 20.) This year coincides exactly with the restorntion of the democracy by Thrasybulus, when a gencral amnesty was granted, of which Thueydides seems to have availed himiself. Where he passed the time of his exile is not mentioned by himself. Marcellinus says that he first went to Eyina, and afterwards to Scaptc-Hyle in Thrace, opposite the island of Thasos, where he had some valuable gold-mines. (Compare Plutarch, De Excilio, p. 605.) It appears however not improbable that he visitcd several places during his exile: the intimate knowledge which he shows respecting the history of the Italiotes and Siceliotes almost inclines one to suppose that he may have visited Italy and Sicily after the failure of the Athenian expedition in the latter island. His property in Thrace would however naturally lead him
to pass the greater part of his time in that country. This property, which was very eonsiderable (Thucyd., iv. 105), was probably derived from his family, which eame from Thrace, though Marccllinus says that he obtained it by marrying a Thracian heiress.
How long he lived after his return from exile, and whether he continued at Athens till the time of his death, is quite uneertain. Aceording to some aceounts he was assassinated at Athens, according to others he died at Thasos, and his bones were carried to Athens. He is said to have been buried in the sepulehre of the family of Miltiades.

The Peloponnesian war forms the subject of the History of Thucydides. He tells us that he foresaw it would be the most important war that Greece had ever known, and that he therefore began eollecting materials for its history from its very commencement; that, where he had to rely upon the testimony of others, he carefully weighed and examined the statements that were made him; and that he spared neither time nor trouble to arrive at the truth, and that in eonsequence of his exile he was enabled to obtain information from the Peloponnesians as well as his own countrymen (i. 22; v. 26). Though he was engaged in collecting materials during the whole of the war, he does not appear to have redueed them into the form of a regular history till after his return from exile, since he alludes in many parts of it to the conclusion of the war (i. $13 ; \mathrm{v}$. 26, ©c.). He did not however live to eomplete it : the eighth book ends abruptly in the middle of the year n.c. 411, seven years before the termination of the war. Even the eighth book itselt does not seem to have received the last revision of the author, although there is no reason at all for doubting its genuinencss, as it bears on every page indubitable traces of his style and mode of thought. Some antient writers however attributed it to his daughter, others to Theoponipus or Xenophon. As the work of Thucydides is evidently incomplete, it would appear that it was not published in his lifetime ; and there is therefore great probability that the statement is correct which attributes the publication of it to Xenophon. Nicbuhr has brought forward reasons whieh seem to render it almost eertain that Xenophon's 'Hellenies' consist of two distinct works, and that the last five books were not published till long after the first two. The first two, which seem to have borne the title of the 'Paralipomena' of Thucydides, eomplete the history of the Pcloponnesian war, and were not improbably published by Xenophon, together with the eight books of Thucydides. (Niebuhr, in Philological Museum, i. 485,8 e.)

The first book of Thucydides is a kind of introduction to the history. He commences by observing that the Peloponnesian war was more important than any that had been known before ; and to prove this, he reviews the state of Greece from the carlicst times down to the eommencement of the war (c. 1-21). He then proceeds to investigate the causes which led to it, of which the real one was the jealousy which the Peloponnesians entertained of the power of Athens; and interrupts his narrative to give an account of the rise and progress of the Athenian empire down to the commencement of the war (c. 89-118). He had an additional reason for making this digression, since this history had either been passed over by previous writers altogether, or had been treated briefly, without attention to chronology (c. 07). He resumes the thread of his narrative at c. 119 , with the negotiations of the Peloponnesian confederaey previous to the declaration of the war; but the demand of the Lacedxmonians, that the Λ thenians should drive out the accused, which was answered by the Athenians requiring the Lacedæmonians to do the same, leads to another digression respecting the treason and death of Pausanias (c. 128-134); and as proofs were found implicating Themistocles in the designs of the Spartan king, he continues the digression in order to give an account of the exile and death of Themistocles (e. 135-138). He then resumes the narrative, and concludes the book with the speech of Pericles which induced the Athenians to refuse compliance with the demands of the Peloponnesians. The history of the war does not therefore begin till the second book; bat it would be out of place to give here an abstract of the remalnder of the work.

Thueydides had formed a high opinion of the value and importance of the work he had undertaken. It was net his object to afford amusement, like former writers, but to
fire such a faithful representation of the past as would merve as a suide for the future (i. 22). Ilis observation of human elaraeter was profound; he penetrates with extraodinary clearsightedness into the motives and policy of the leading actors of the war; and he draws from the events he relates those lessons of political wisdom which have always made his work a favourite study with thoughtful men of all countries.
IHe claims for himself the merit of the strietest aceumey, and it is impossible to read his History without being convinced of the trustworthiness of his statements. Mis impartiality also is conspicuous: although he had been banished from his native city, he does not. like Xenophon, turn renegrade, and try to misrepresent the conduct and motives of his own countrymen. Although a contemporary, and one who had taken an active part in public affairs, he writes as free from prejudice and party-fecling as if he had lived at a time long subsequent to the events he narrates.
1 lis Ilistory is constructed on entirely different principles from those of his predecessors. He confines hinself strictly to his subject, and seldom makes any digressions. Ife feels decply the importance of his work, and constantly strives to impress the same feeling upon his readers. He had proposed to himself a noble subject, and writes with the consciousness of the value of his labours, and the presentiment that his work will be read in all future ages. There is consequently a moral elevation in his style and mode of treating a subject, which is scarcely to be found in any other writer except Tacitus.
In narrating the events of the war, Thueydides pays particular attention to chronology. Ile divides each year into two portions, the summer and the winter, and is careful to relate under each the events that took place respectively during that time. The specelies which he introduces are not mere inventions of his own, but contain the general sense of what the speakers actually delivered, although the style and the arrangement are his (i. 22),
The style of Thneydides is marked by great strength and energy. Not only his expressions, buit even single words seem to have been well weighed before they were used; each has its proper force and signiticance, and none are used mercly for the sake of ormament and effect. The style is not easy, and it is probable that Thucydides never intended it should be so, evell to his own countrymen: his work was not to be read without thought. Still his style is open to serious objections. He does not sufficiently consult perspienity, which is the first virtue in all writing. Ifis sentenees too are frequently unnecessarily long, and the constructions harsh and involved. These remarks are more espeeially applieable to the speeches inserted in the History, which Cicero found as difficult as we do. (Orator., 9.)
The Greek text was first published by Aldus, Venice, 1502 and the scholia in the following year. The first Iatin translation, which was made by Laurentius Valla, appeared at I'aris in 1513, fol. The first Greek and Latin edition was that of Ifenry Stephens, the Latin being the translation of Valla, withi corrections by Stephens, 1ā64, fol. Among the modern editions, those most worthy of notiee are Poppos, whiel coutains two volunes of prolegomena, with the scholia and muncrous notes, Leipzig, 10 vols. 8ro., 1821-1838; Hanck's, with selections from the Greek scholia and short notes, which the student will find yery useful, 2 vols. 8 ro., leipzig, 1830, reprinted in London, in 3 vols. 8vo. 1823; Gülleris, 2 vols. 8vo., Leipzig. 1836, 2nd edition, reprinted in London; and Arnold's, 3 vols. 8 vo., Oxford, 1830-1833, of whiel a seeond edition is in course of publication.
There are translations of Thueydides into most of the modern European languages. In Englisll the first translation was inade by Thoinas Nicolls, from the Freneh version of Seysel, and was published in London, 15:0, fol. This was succeeded by the trmnslations of Hobbes and William Smith, whieh have been frequently reprinted. The most recent is by S. T. Bloomfield, 3 vols. 8ro., London, 1890. The most recent iranslation in German is by Kicin, Miunchen, 1826, 8vo. ; and in French one of the best is said to be by Gail.

Respecting the life of Thucydides, the reader may consult Dodwell, 'Annalen Thucydidei et X'enophonteii,' Ec., Oxf., $150 \geq 410 .:$ and Krüger, ${ }^{-1}$ Untersuehungen über das Leben des Thucydides,' Berlin, 1832.

THUG (from Ifindustance thagnu, to deceive) means a deceiver, and is the specind appellation of seeret inurderers in India, whou since the year lisio it has been the endeavour of the l3ritish government to root out. Of their origin nothing ean be said with any degree of cettainty. The Thugs thentselves refer it to the remotest antiquity, and there is 110 doubt that the ecremonies with which they carry on their murderous trade can be traced as far back as the Katika Purina, where we find them deseribed with the utmost aceuracy. 13ut before we proceed to investigate their seeret history, of which we have only a slight and unsatisfactury knowledge, we shall describe them as they were at the time of their discovery. Their gangs, consisting of from ten to two or three hundred men of all races, eastes, sects, and religions, yet all joining in the worship of Kali, moved abvut all parts of lndia, sacrificing to their tutelary goddess every victim that they could scize, and sharing the plunder among themselves. Still they shed no blond, except when forced by circumstances; murder being their religion, the performance of its dutics required secreey, and the instrument of death was a rope or a handkerchief, which could excite no suspicion. They were stranglers. Every gang had its leater, the Jemadar or Sirdar; its tencher, the Guru, whose duty it was to initiate the novice into the secret of using the roomal, or handkerelief. Then come the Bhuttotes, that is stranglers, and the Sothas, or cultrappers, and at last the Lughaees, or gravediggers. In a country like India, the striking character of whose inhabitants is an almost incredille apatly;, it was easy for them to connmit the most outrageous murders without exciting the interest of the victim's relations. The immense jungles which border the roads afforded the Lughaees every facility for effectually concealing the bodies; and the prevailing eustom of travelling in parties prevented the designs of the Sotha from being suspected, whenever he sueceeded in offering the protection of his Jemadar to travellers whom their wealth indueed him to entrap. The Thugs generally assume the appearance of merchants, which inereases the confidence of their vietims, whom they despatelh with the greatest eelerity whenever they find a convenient place. Whilst the Bluttotes arrange themselves in a manner to effect their purpose with facility, the Lughaces dig the hole; and at a given signal the noose is passed round the neek of the traveller, and, being taken unawares, he is strangled without being able to make any resistance. Ifc is then thrown into the hole, and large incisions are made in the abdomen to prevent the corpse from swelling, and the whole is covered over with a layer of dry sand, another of thorns and bushes, and over all is thrown the earth which had been dug out, which they smooth down so as not to attract the notice of travellers. After every murder they ofler a sacrifice to Kall, which they call Tupmence. It is perforned in the following manner:-A large sheet is spread over the eleanest spot they ean select, and on this is east a pile consisting of one rupee and four annas worth of coarse sugar; near this they place the conscerated piek-axe (an instrument saered to Siva and Bhâvanî), and a piece of silver as a ripu darsana, or silver offering. The leader then sits down on the sheet, and the leest stranglers place themselves on each side of him with their faces to the west. They then distribute the sugar and eat it in solemn silence. But for this as well as other ceremonies we must refer to the works of Colonel Slecman and Captain Meadows, as well as to an artiele in the 130th number of the Lidinburgh Recieic. Here it will suffice to state that many ceremonies to whiels the Thugs attach the greatest importance are serupulously performed by them both before and after the murder is committed; such as consulting the omens, propitiating Dev?, thanksgiving, \&c.

We have alrealy observed that Thugs were found exercising their fearful rade in all parts of 1ndia. In the Decean they are called I'hânsigars (from Sauserit pâva, a noose) or noosers, and on them we have a very interesting paper in the 131 h volume of the ' Asiatic Researches.' The ir customs are the same as those of the northern Thugs; but, having fewer Molammedans among then, they are more strict olservers of the duties which their religion inposes; they kill neither women, nor old men, nor any of the suljeets which the Kilika I'urana (in the Rudhira Silyâya) declares to be unfit for a sacrifice to Dev?. In the same volume of the 'Asiatic Researehes' there is mother article on then, by Mr. Shakespear: both were written in 1816.

TH U

The origin of this atrocious worship is undoubtedly Hindu. The Thuys maintain that their oceupation is represented in the caves of Ellora, as well as all other trades: Moreover the terms they use are chiefly of Sanscrit origin ; and the worship of Kali corresponds so well to the religious ceremonies of the Thugs, that there can be no doubt as to their identity. To satisfy the reader on this head we refer to the 5 th volume of the ' Asiatic Researches,' where a chapter from the Kalika Purâna has been translated and communieated by Mr. Blaquiere.
All the ceremonies of the Thugs are fixed by this Purîna, the date of which it is difficult to aseertain, but, frequent allusions being made to it in the Vira Charita, a drama of Bhârabhuti, who lived at the court of king Bhoja in the beginning of the eighth century of our æra, we have sufficient reason to refer it at least to his time, if not to a previous period.
The Thugs then are a degenerate sect of Kâlî worshippers. They are very numerous in Bengal ; but they offer only buffaloes and kids (Colebrook, 'Essays,' i. 111), and slied their blood, which they present to the idol in cups that arc kept for that purpose. In like mauner as the Saktas left the pure worship of Siva in order to indulge their gross sensuality, the Thugs abandoned the original worslup of Killi to get a livelihood by plunder. Both nevertheless adhere strictly to the injunctions of their religion, which is taught in the Tantras of the Saktas and in the tradition of the Thugs, and thereby convert crime into a saered duty. As well may be expected, secrecy was dictated by prudence, and hence it is that we find the Thugs seldom mentioned by travellers.
Thévenot, in his Travels (part iii., ch. 22), is the first to notice them; he describes them as infesting the road from Agra to Delhi, and using a long rope furnished with a noose, which they throw with great dexterity round the traveller's neck, and he relates that their Sothas were frequently women. About ten years after Thévenot, Dr. Fryer found them at Surat, where a gang of them were executed. He describes them as Thévenot does, and it appears from the description that they belonged to the Monttaneas, a peculiar class of Mohaminedan Thugs.
Although the whole of the ceremonial is Hindu, the Thugs themselves, whether Hindu or Mohammedan, maintain that they descend from seven Mohammedan clans, Thugs, Bbys, Bursoté, Kachunee, Huttar, Ganoo, and Thundee (' Ramaseenar,' p. 11); the seven clans are admitted to be the most antient and the original stock on which all the others have been engrafted. This eireumstance mny lead ns to suspect that Mohammedams were indeed the first to give a sort of political system to the Thugs; and the seven clans of Ismailis, whose occupation was murder as dreadiul as that of the Thugs, may, when persecuted in the last days of their political existence, have joined themselves to the Hindu Phânsigars, and, adopting their ritulal, have given rise to their present institution. This point is investigated with mucl ingennity in an article on the 'Secret Societies of Asia,' in the 49th vol. of 'Blackwood's Magazine' (part civ.). Shah Jehan and Aurengzebe instituted criminal proceedings against them. After this we again lose sight of them until the time of Hyder Ali, who proceeded against them in a summary way. Mysore howerer seems to have been their favourite residence ; for in order to suppress them, in the reign of Tippoo Sultan, many of them were apprehended and sentenced to hard labour, and others suffered mutilation. It was in Mysore also that the English government first discovered them soon after 1799 ; but it was not before 1810 that any measures were taken for their extermination ; and a plan for their suppression, whieh promises stceess, was adopted in 1830 by the then governor-general, Lord William Bentinck. Sinec that time their numbers have rapidly diminiished, and it is to be hoped that they will soon be totally extinct.
(Ramasecana, or Vocabulary of the Peculiar Language used by the Thu g, Calcutta, 1836; this work is written by Col. Slceman; The Confcossions of a Thug, by Captain Meadows, 1840, L.ondon; Illustrations of the Ilistory and Pructices of the Thugs, London, 1837.)

THUJA, or THUYA, the nanic of a genus of plants belonging to the natural order Conifera. This name is derived from Өiw, as, on aceount of the pleasant odour given out hy the wood in burning, it was used in antient saerifices. The species of the genus are nore commonly known by the I. C., No. 1539.
name of Arbor Vitce, but why this name has been given to it is a matter of uncertainty. Clusius, who wrote in the sixteenth century, gives it this name, and Dr. Royle says that the Cypress, an allied genus, is called the tree of life in the East. It belongs to the section of Conifere called Cupressinæ hy Richard, in which Cupressus, Callitris, Taxodium, and Juniperus are also ineluded. The pistils and stamens are in separate flowers on the same tree. The male catkins are terminal and solitary ; the pollen of eaeh flower is included in four eases that are attached to the imner face of the seale towards its base. The female catkin is terminal ; the ovary is united to the bractea, forming together a kind of receptacle ; each receptaele has two ovules; the reeeptacles are semipeltate, imbrieated, and smooth, or, in some cases, have a recurved beak near the tip; the seeds in some are slightly winged. The leaves are scale-like, closely imbrieated or compressed. The species are evergreen, either trees or shrubs, and are inhabitants of Asia, Afriea, and Nortl_ Ameriea.
T. occidentalis, the Western or American Arbor Vitæ, has the branchlets 2 -edged ; the leaves imbrieated in four rows, ovato-rhomboid, adpressed, and tuberculated; the cones are obovate with the interior seales truncate and gibbous beneath the apex. This plant is a large shrub or small tree, and is a native of North America, from Canada to the mountains of Virginia and the Carolinas. It is not so frequent in the Southern states, and is found there on the steep banks of mountain-torrents. In the Northern states of America it is sometimes called the white cedar, but more commonly arbor vita. It grows best in cool moist places, on the borders of rivers and lakes, and in swamps, some of whieh it covers to the extent of 50 to 100 acres. The stem of this tree seldom rises straight from the ground, but makes a short bend before it beeomes straight. On this account it is difficult to obtain trunks of any length, and, although the timber is very durable, it is not mieh used in building. It makes good posts and rails, which last three or four times as long as any other species. Its branches are used for making brooms, a reeommendation of whiel is, that they exhale an agreeable odour. In Great Britain the American arbor vitæ is planted as an ornamental shrub, for which purpose it flourishes best in low moist and sheltered situations. It will bear eutting well, and henee is employed for making hedges. It grows slowly, making 6 or 8 inches of stem in a year; the largest specimens in this country have attained a height of from 30 to 45 feet.
T. orientalis, the Oriental or Chinese Arbor Vitæ, has 2 -edged branchlets ; imbricated, ovato-thomboid, adpressed leaves, furrowed in the middle and in 4 rows; the cones are elliptic with the interior scales blunt, and mucronate heneath the apex. It is a native of rocky situations in Siberia and China, and on the mountains of Japan. It is a low tree and easily distinguishable from the American species by its denser foliage and lighter green eolour. It has a straight trunk, and seldom exceeds 18 or 20 feet in height. It is a hardy plant, and flourishes in the gardens about London, where it was first introduced by Miller in 1732.
T. pendula, the Pendulous or Weeping Arbor Vite, has opposite, decussating, spreading, lanecolate, mueronate, keeled, somewhat distant leaves; globose cones; convex smooth scales; filiform pendulous branches. It is a native of Tartary, and is an elegant slrub, but only a few specimens exist at present in this country.
T. articulata of Desfontaines is now called Callitris quadrivalvis, four-valved Callitris. The genus Callitris differs from Thuja in having the seales of the female catkins, from 4 to 6 in number, opening likc the valves of a regular pericarp, and the seeds at the base of these seales winged on the margin. The four-valved Callitris has flattened articulated leaves ; the female catkin with four oval pointed valves, two of which have seeds. It is a native of Barbary, and attains a height of from 15 to 20 feet. It was first diseovered by Desfontaines on Mount Atlas in 1706. The gum-sandarac of commerce [SANDARAC], according to 13roussonet, Brongniart, and of hers, is the produce of this tree, although it is often ascribed to the Juniperus communis. This substance is brought into the market in tears, which are clear, shining, and diaphanous, and of whitish-yellow colour. When redueed to a fine powder, it makes an excellent pounce. Dissolved in spirits of wine, it forms a delieate varnish. Under the name of alerce, the wood of this tree is in great repute in
the Fast for building religious edifiees. Captain S. E. . Cook ascertained that the roof of the celebrated mosque, now the eathedral of Cordova, which was built in the ninth century, is construeted of the wood of the alerce. It apjears to be a hanly tree, and would probably grow well in this climate in the open air.
(loudon, Arboretum et I'rusicetum Brifannicum; LindJey, Nutural System; Burnett's Outlines of Botany.)
THULDEN, THEODOR VAN, born at Bois-le-l)uc in 1007 , was one of the most distinguished seholars and nssistants of Jubens, with whom he was also a finvourite. Ile was with Rubens in Paris, and is said to have cxecuted the greater part of the celebrated series of the so-called Gallery of the Luxembourg, painted in honour of Mary de' Medici. Van Thulden is distinguished both as a painter and as an etcher. As a painter lie execlled in various styles. There are several large jictures, both historical and allegorical, by him, dispersed over Germany and the Netherlands; he painted also small pictures from eommon life in the manner of Teniers, sueh as markets, fairs, and the like; and he was frequently employed by architectural and landseape painters to embellish their pietures with small appropriate figures, in which he was exeellent; he painted many such in the pietures of Neefs and Steenwyck.

Van Thulden's style in his greater works is altogether that of Rubens, and, although inferior in boldness of design and eolouring, his works may easily be mistaken for those of Rubens; the Martyrdom of St. Andrew, in St. Michael's church at Ghent, was long thought to be a work of Rubens. In chiaroscuro, Van Thulden was quite equal to his master. A St. Sebastian, in the ehureh of the Bernardines at Mechlin, and an Assumption of the Virgin, in the church of the Jesuits at. Bruges, were considered two of his best altar-picees. While at Paris he painted twentyfour pictures of the Life of St. John of Matha in the elurch of the Mathurins, which he himself etehed on copper in 1633; the pictures have since been painted over. Van Thulden's etchings are numerous, and in a masteriy style: he published a set of 58 plates lrom the paintings of Niccold Abati at Fontainebleau, after the designs of Primatiecio, which are greatly valued, for as the paintings were destroyed in 1738, they are all that remains of the original designs. They have been copied several times; the original set appeared under the following title: 'Les Travaux d'Ulysse, desseignez par le Sieur de Sainct-Martin, de la Jaçon quils se voyent dans la Maison Royale de Fontainebleau, peint parle Sieur Nicolas, et gravts au cuivre par Theodore van Thulden, avec le suject et l'explication morale de chaque figure.' Ife etched also 42 plates after Rubens, of the entrance or Ferdinand the Cardinal-Infant into Antwerp: 'Pompa introitus Ferdinandi,' \&e. The eight plates of the History of the Prodigal Son, to which he put Rubens' name, are now said to be from his own designs; they are entitled, 'De verlooren Soon, door P. P. Rubens. Th. Van Thulden fec.' Van Thulden died in his mative place, Bois-le-Due, in 1676.
(Descamps, La Vie des Peinires Flamands, \&e.; Fiissli, Allgemeines Ḱïnstler Lexicon.)
THULITE, a mineral, the texture of which is usually granular. Listre vitrcous. Translucent on the edges.
Hardness betwren 5, and 6 ; but the grains separate 50 Hardness between 5, and $6 ;$ but the grains separate so easily that it is rather difficult to determine it. Colour rose-red ; streak greyish-white. Specific gravity $3 \cdot 100.5$.
Before the blowpipe fuses with carbonate of soda into a greenish-white bead; with horax forms a colourless transparent bead; but on the addition of nitre becomes violet.
It has been found in Norway; and, aecording to Gmelin, consists of-siliea, 42.808; aluminn, $31 \cdot 144$; lime, 18.726 ; soda and a trace of potash, 1.891 ; oxide of iron, $2 \cdot 889$; oxide of manganese, 1.635; water, $0 \cdot(340$: total, 90.732 .
TIIUMMEL, MORITZ. AUGUST VON, a German writer who was greatly adjuired by his contemporaries, and who still continues to hold a high literary rank with his non conntrymen. He was born at Schönteld, near Jeipzik, May 27 th, 1738 , where his father possessed considernble property, but lost much of it by the plundering of the Pruesian froop in Saxony, 1745. Moritz, who was the sccond amon a family of ninetecn, was sent to the univensity of Jeiprig in livis. There le found in ciellert not only an instruetor, hut a friend; and he ulso formed an neruaintance with Weisse, Rabener, von Kleist, \&e., and. amone others, with an old alvocate named Balz, who at his death. in 1760 , lelt him the whole of his fortune,
twenty-four thousand dollars. This aceession of wealth enabled Moritz to give up the plaees he held under Duke Ernest of Saxe-Coburg, first as Kamuncr-junker, and, from 1768 , as privy councillor and minister, and to retire in 1783 to Sonneborn, an estate of his wife, at which place and at Gotha he continued chiefly to reside until lis death, which linppened white he was on a visit at Colsurg, October Obt, 1817 . Thiimmal's literary reputation was established lyy lis "Willselnine, a 'comic poens in prose," first published in 1764. This short production, for it is in only five cantos or chapters, was received as something altogether new in German literature, and as a masterpicce of polished humour nod playful satire. It was translnted not only into French, but Dutch, Iralinn, and Russian; and it las been reprinted entire in Wolft's 'Encyclopädie' (1812). His poetical tale, 'Die Inoculation der Licbe,' 1751, and other pieces in versc, did not add much to his fame; but his last and, longest work, 'Reise in den Mittagliehen Provinzen von Frankreich' (Travels in the Southern Provinees of France), in 9 vols., $1709-180$, is also his literary chef-d'œuvre. Instead of being, as its title would import, the mere reeord of his tours in that country, it is, like Sterne's 'Seutimental Journey;' to a great extent, a work of fietion, interspersed with fragments in verse, which breathe more of poetry than lis other productions of that kind. It abounds with satiric humour and pleasantry, with witty and shrewd observations, and shows the author to have been an aecomplished man of the world, intimately acquainted with human nature. That it is a work of no ordinary merit and pretension may he sulpposed from the notice it has obtained from Schiller, in his cssay 'Ueber Naive und Sentimentalisehe Diehtung;' who, if he praises it with greater reserve than other crities, admits that, as a work of amusement, it is one of a superior kind, and will as sueh continue to enjoy the character it has obtained. A portrait of Thimmel, after Oeser, is prefixed to the 6 th volume of the 'Neue Bibliothck der Schönen Wissensehaften,' a eomplete edition of his works, in six volames.
(Jürden's Lexicon: Schiller's Kleinere Prosuischa Schriften: Wachler's Vorlesungen.)
THUN, a town in the canton of Bern in Switzerland, situated on the river Aar, nbout a mile below its egres from the Iake of the same name. I'art of the town stand on an island formed ly the river, and part is on the right bank, at the foot of a hill, on which is built the castle, the keep of which was, in the middle ages, the residence of the counts of Thun. On the opposite or southern side are seen the Alps of the Oberland, covered with perpetual snow. The parish church, with its lofty tower, is a remarkable building. There are also a handsome townhouse, an hospital, an orphan asylum, a public library of 7000 volumes, and a military seliool tor the artillery and engineer corps of the federnl service. [Switzeriand.] The population of Thun amounted, by the last census, to 4833 inhahitants. (J.eresche, Dictionnaire Gengraphique Sta fistique de la Suisse, 1836.)
The lake of Thun, Thunersee in German, is 14 miles long from south-cast to worth-west, about three miles in its grentest width, and ahout 700 fect decp. Its surface is 1780 feet above the sen. The Aar, coming from the lake of Brienz, enlers it at its south-east end, and issues from it at the opposite extremity. The Kander, swelled ly the Simmen, also cuters the Jake from the south. The lake abounds with fislı; and its banks, planted with vineyards in some places, and rising abruptly to steep mountains in others, afford a variety ol' scenery. A steam-boat plies on the lake.
TIUNBERG, CARL PETTER, an eminent Swedish traveller and botanist, and professor of natural history in the university of Upsal, was born on the 11th of November, 1743, at Jönkoping in Sweden, where lis father was a clergyman. Ife was carly sent to the unitersity of Upsal for the purpose of sthdying medieine, and beeame a pupil of the great Linnmus. Under his instruction he acquired that tate for uatural history whiel so remarkably dislinguished the sehool of Linneus, nud which has given to the world so many famons naturalists. Ilaving completed his course of study, he graduated in 1760, and wns honoured hy having bestowed upon him the Kohrean pension for the space of three years. Although the sum whs small, aloout fiffeen pounds perannum, he determined to use it for the jurpuses of improvement, and aeeordingly
left Upsal for the purpose of visiting Paris and the universities of Holland. Whilst in Amsterdam, he became acquainted with the botanists and florists of that city, and, they suggested to him the desirableness of some person visiting Japan for the purpose of exploring its vegetable treasures. Thunberg immediately offered his services, and a situation as surgeon to one of the Dutch East India Company's vessels having been obtained for him, he left Amsterdam for Japan in the year 1771. He landed at the Cape of Good Hope for the purpose of learning amongst the Dutch settlers there the Dutch language, which is the ouly European language spoken extensively in Japan, and also in the hope of adding to his knowledge of natural objects by researches in Africa. Here he made several exclursions into the interior, visiting various of the native tribes, and after having remained at the Cape three winters, where he collected much valuable information, he set sail in 1763 for Java and the Japan Isles. He remained in these islands five years, making large colleetions of the plants of these countries, as well as observations on the habits, manners, and language of their inhabitants. His ability to labour, however, during his residence both in Afriea and Asia, was very much diminished by a frighful accident which he met with on first leaving Holland. The keeper of the stores in the ship, having inadvertently given out white lead instead of flour, it was mixed with flour and used for making paneakes, of which the whole crew partook. All were ill, and inany suffered very severely at the time, but none was so bad as Thunberg; he only gradually recorered his health, and through his long life always laboured under the debility and derangement his system had thus received. He returned to his native country in 1779 , making first a short stay in England. Here he formed the aequaintance of Sir Joseph Banks, Dryander, and Solander, and availed himself of the extensive collection of plants from all parts of the world, and valuable library of Sir Joseph, for the purpose of adding to his botanical knowledge. During his absence he had been made demonstrator of botany at Upsal in 1711 , and in 1781 was installed in the chair of the great Linneeus as professor of botany. In 1788^{5} he was made a knight of the order of Wasa, and in 1815 commander of the same order.

On gaining his home, Thunberg immediately commenced arranging the vast mass of materials he had collected in his travels for the purpose of publication. His first important work was a description of the Japanese plants, whieh was published at Lcipzig in 1784, with the title, 'Flora Japonica, sistens Plantas Insularum Japonicarum, seeundum Systema Sexuale cmendatum,' 8vo., and illustrated with thirty-nine engravings. In this work a great number of new plants were deseribed and arranged aceording to the Linnæan system, in which he ventured to dispense with the three classes ealled Monœecia, Diœecia, and Polygami. He subsequently published some botanieal observations on this 'Flora,' in the second volume of the 'Transactions' of the Linnzean Society.

In 1788 he commeneed the publication of an aecount of his travels, under the title, 'Resa uti Europa, Africa, Asia, forattad ürcı1 1770-1779,' Upsal., 8vo. This work was completed in four volumes, and contains a full account of his eventful life, from the time he started from Upsal with his Kohrean pension, till he returned to the same place laden with treasures from a hitherto unexplored region. In these volumes he has taken great pains to eollect all possible information on the medicinal and dietetie properties of plants in the countries he visited, as well as their uses in rural and domestic economy. He recommends scveral new plants for cultivation in Europe as substitutes for those in present use. This work also gives a simple and pleazing aecount of the original natives of the places in which he sojourned, as well as of the European settlers.
It has been translated into German by Groskund, and published at Berlin in 1792. It appeared in English at Londun in 1793, and in French at Paris in 1796. His next work was \& 'Prodromus Plantarum Capensium, Annis 1772-1775 collectarum,' Upsalix, 1794-1800; being an account of the plants he had collected at the Cape. From 1701 to 180.3 he published in folio, under the title ' Icones Plantarum Japonicarum,' U'psalix, a series of plates illustrative of the botany of the Japan Isles. These were fullowod by the 'Flora Capensis,' Upsalix, 1807-13, 8vo. In this work the most complete view of the botany of the

Cape of Good Hope is given that has hitherto been published. In 1807, in conjunction with Billberg, he published the 'Plantarum Brasiliensium Deeas Prima,' Upsali: $\%$, 4to. In this work the plants colleeted by Freireiss and Sauerländer, in the province of Minas Gcračs in Brazil, are described; but the subsequent parts were published by other hands.

Besides the above works, on which the reputation of Thunberg as a traveller and a botanist mainly rests, he was the author of almost countless memoirs and aeademical dissertations. The subjects of these were chiefly those which his long residence in Africa and Asia afforded. The majority of them are upon botanieal topics, not a few however are devoted to a consideration of zoolegical subjects. Although botany was his primary object in his travels, lie yet lost no opportunity of obtaining a knowledge of the new animals he met with, and several of his papers are descriptions of these. He published several memoirs in the London 'Philosophical Transactions,' and the 'Transactions' of the Linnæan Society, also in the Transactions of Russian, German, Frencl, and Dutch seientific Societies and Journals, and a much greater number in those of Sweden. The academical dissertations bearing his name, and presented at the university of Upsal, are nearly one hundred in number, and were published between the years 1789 and 1813.
Thunbery was eleeted an honorary member of sixty-six learned socicties. He died at the advaneed age of eightyfive, on the 8th of August, 1828.
Retzius nanied a genus of plants in the natural order Acanthaceæ, in honour of him, Thunbergia. The following genera of plants have species named after him:Ixia, Isolepis, Cyperus, Imperata, Spatalla, Convolvulus, Campanula, Gardenia, Atriplex, Hydrocotyle, Rhus, Crassula, Berberis, Erica, Passerina, Thalictrum, Coeculus, Equisetum, Hypnum, Fissidens, Cystoseira, Gyalecta, and. Endocarpon. Of insects, the genera Harpalus, Lygæeus, Pyralis, and Tinea have specific names after Thunberg.

Thunberg was an amiable kind man, and highly esteemed by his friends and pupils. The great additions that he lias made to our knowledge of the plants of the world, as well as their uses to man, place him amongst the most distinguished batanists of the last and present century. He was not great as a vegetable physiologist, nor did he attempt anything more in systematic botany than a slight emendation of the system of Linneus. In this he was followed by very few; and those who at the present day have recourse to that system for arranging plants, generally adopt the primitive plan of Linnæus. As a traveller, Thanberg is remarkable for the accuracy of his observations on the manners, habits, and domestic economy of the people that he visited.
(Bischoff, Lehrbuch der Botanik; Resa uti Europa, \&e.; Kongl. Vetensk: Acad. Fandlingar, 1829.).
THUNDER is an explosion accompanied by a loud noise, which is heard after a discharge of lightning from the clouds. The eharacter of the noise is variable: it sometimes resembles that which is produced when a single pieee of ordnance is fired; at other times it is a rolling sound like the successive discharges of several great guns; and oecasionally it may be compared to a series of' sharp reports from a fire of musketry.
The identity of lightning with the electric fluid is now well known [Ligerning], but the physical cause of the detonation whieh accompanies the flash is still the subject of conjecture; in gencral it is considered that lightning, by its heat, creates a partial vacuum in the atmosphere, and that the sudden rushing, of air into the void space produces the sound; but various reasons have been assigned for its prolongation. It was formerly supposed that the rolling noise is merely the result of several echos eaused by the sound being reflceted from mountains, woods, buildings, or clouds, or from the latter alone when a thunder-storm takes place over the ocean: this opinion secms to have been founded upon the faet that the report of a fire-arm discharged in a mountainous tract is prolonged by the echos during at least half a minute, which is about the time that the rolling of thunder continucs. But though the reflections of sound are, very probably, in part, or at times, the canses of the prolongation of the report arising from the explosion, yet it must be admitted that these will not always afford a satisfactory explanation of the phenomena. It may happen, for example, that, when the sky is
unifurmle eoverel with clouch, at fash of lightning will dart from the zenith, and, aller a few seconds, the erash of thunder will take plaee aceompanied by a rolling sound: soon, a second flah may pierce the elouds in the zenith and thunder may follow, but now the erash, though loud, may not be prolonged. It is justly observed by NI. Arago that this is very different from the phenomena of eehoes ; and the explanation which was first proposed by Dr. IIooke (' Posthumous Works,' 1705) is perhapas that which possesses the highest degree of probability. The flashes of lightning, Dr. Houke observes, are either sinple or inultiple: the first oeeupies but one small portion of space, and gives rise to an instantaneous report ; the multiple flash takes place at different parts of onc long line: if these parts should be situated in a eireular are, and the observer shonld be in its centre, all the reports would arrive at his ear at the same time, and still one lourl erash only would be heand; but if the parts were nearly in a straight line, and the observer were at one of its extremities, the reports, whether they take place at the same instant or in suceession, would arrive at his ear at diflerent times, depending wholly or partly on the distanees. It may be considered theretore that the rolling arises from the eireumstance that the points of explosion are at different distances from the observer; and it will follow that the duration of the noise is equal to the time in which sound travels through an interval equal to the difference between the lengths of two lines drawn from the observer to the two extrenities of the flash. The flash of lightning and the report of the thunder take place in rcality at the same noment ; but sinee sound travels at the rate of 1100 feet per second, while the passage of light from the eloud to the observer may be eonsidered as instantaneous, it follows that, on eounting the number of seconds whieh clapse between the time of seeing the flash and hearing the report, the distanee of the thunder-cloud from the observer may be ascertained if 1100 f'eet be multiplied by that number of sceonds.
The experiments of Lavoisier and La Place have shown that the inoleeules of water, in evaporating, convey away from the earth a portion of the electricity wheh it contains, and which the water has acquired in being converted into vapour. This electricity becomes diffused in the upper regions of the atmosphere, and, when the vapours again beeome condensed so as to form globules of water, the elcetrieity disposes itself on the surface of the globules in different quantities according to their magnitudes. When these globules have equal volumes, those quantities are equal ; and, an equilibrium then subsisting with respeet to cleetricity, no sensible effeet is produced: but when a considerable difference takes place between the quantities of electricity on the different globules, the tendeney of that element to return to a state of equilibrium causes it to pass rapidly in flashes from those globules which lave more, to those whieh have less, than their mean quantity; and thus, if the condensation be great and take place suddenly, vivid flashes of lightning and loud peals of thunder may take place. The effect is probably the greatest when two masses of elouds in opposite states of eleetricity are carried rapidly against one another by winds blowing in eontrary directions.

An opinion prevails that thunder has been heard when the sky was without a eloud, but the fact can seareely be said to be satisfactorily established; for the sounds which, in eountries subject to carthquakes, have been supposed to be thunder, proceed from under the ground, and may result from a different cause. Volney however relates that, being one day at Pontehartrain near Y'ersailles, when no cloud was visible, he hearl distinctly four or five clapis of thunder: he alds that about an hour aflerwards the sky became overcast, and a violent hail-storm followed. On this relation M. Arago observes that the sounds eould not have been heard if they had eome from elouds at a greater distance than six leagues; and if the clouds had been at, or a little within, that distanee, they must have been visible, unless it be supposed that they were not more than a few yards above the ground: but the laill which followed the thunder moust have proceeded from elouds having great clevation, thrugh at the time the clapss were heard they were too remote to allow any sound from theni to reach the ear; and therefore he coneludes that the sounds must have been produced in the air itself. For an seeount of death caused by electricity in the air when the thunder-cloud was very distant, and
for the theory of the returning stroke, see the Philusplical Trumsactions, vol. Ixxvii.; and Sta yhopr, Charles, Eabl.
From the met corological observations made by Dr. Scoresby; and Captains 1hipps, Parry, and Ross, it nppears that neither thunder nor lightning is known to take place heyond the 75 th degree of north latitude: even so low as the TOth degree those phenomena are very rare ; and in the tables of Captain Parry the oceurrence of thunder and lightning is mentioned but once between June, 1821, and September, 1823. Captain Franklin also, in $671^{\circ}{ }^{\circ} \mathbb{N}$. Iat., heard thunder on one day only between September, 183%, and Augus, 18:6.

THUNDER-ROD, a bar of metal atlached generally to a side of a building, and extending from below the level of the ground to a point several feet above the highest part of the roof, or of the steeple, if the building have one, in order to secure the edifice from the effects of thunder or lightuing: the upper extrenity of the rod or bar terminales in a point.
When a thmuder-cloud passes above an elevated object, it produees in the nearest part of the objeet the kind of electrieity which is opposite to that of the eloud itself, so that a rapid and abundant communication takes place; either the eleetrie matter in the eloud rushes towards the carth, or that of the earth rushes towards the cloud: and if the materials of the building are not good conduetors of the fluid, the latter in its passage exerts an explosive action by which the building is destroyed or greatly injured. The thunder-rod, from the condueting property of its metallic substance, serves to eonvey the fluid harmlessly to the earth or air. When it las happened that there is an interruption of the commmication, by the rod being broken, or even by being mueh diminished in magnitude in some part of its length, the electrie fluid has been observed to pass between the parts of the rod above and below the place of fracture.
Buffon, and Dalibard, at his suggestion (17:52), appear to have been the first persons who drew lightning from the atmosphere by means of pointed rods of metal; and in the following year M. de Romas elevated a paper kite to the height of $5: 0$ feet for the like purpose: this was about twelve months before Dr. Franklin, without any knowledge of what had been done in Europe, performed the like experiment in Ameriea. The object of the French philosophers was merely to obtain by those means, eleetrical sparks or flashes of firc ; but it is to Dr. Franklin that the world is indebted for the idea of raising pointed rods in order to seeure buildings from the effeets of atmospherical electricity; and the reeommendation was immediately adopted both for edifiees on land and ships on the water.

Soon after the first employment of thunder-rods in Europe, an opinion prevailed that when their extremities were pointed they created a danger which did not exist before, and that they attracted lightnings whieh would, without the rods, have discharged themselves at a distanee; and in order to diminish the risk, it was proposed to crown the summits of the rolls with knobs or balls of metal. This notion was entertained by the Abbé Nollet, in France; but in the Royal Society of London the question eonceming the relative efficacies of pointed and knobbed conductors was agitated with great vehemenee, chiefly through the obstinaey of Mr. Wilson, one of the Fellows, who, in 1778, inade himself the head of a party in support of the Jatter kind of conduetors, in opposition to the president. [Puivgle, Jonn.] It is remarkable that both George 111 . of Enyland and Frederick of I'russia placed thenselies on the side of the opponents of Franklin; the first king giving the preference to balls over points, and the other, white he eonsented to have conduetors raised on his barracks and powder-mayazines, prohibited the ereetion of them on his palace of Sans Souci. It is now admitted that the prejudiee against pointed thunder-rods was entirely without foundation: those conductors have been found not only to proteet buildings when struek, but also to diminish the number of shocks whieh in a given time they have experieneed. An experiment which was made by l3ceearia, in 1753 , might have shown the superiority of pointed eonductors over those with balls; for that distinguished electtrician set up on the roof of the church ef San Giovanni, at Turin, a metallie rod bent near the top and terminating in a point: the upper part was capable of being turned round by means of a silk line, so that the point could be
directed upwards or downwards at pleasure, and the lower part of the rod terminated upon substances which were imperfect conductors of electricity. On directing the point towards the sky when a thunder-cloud passed over the church, electrical sparks issued in abundance from the foot of the rod; but when the point of the rod was reversed so that the bend was upwards, few or none were obtained. The conducting-rod set up by Professor Richman, at St. Petersburg, may be said to lave been the cause of his death (in 1753); but the house would most probably have been struck if there had been no conductor. The immediate cause of the melancholy accident was that the rod led into the apartment, and the unfortunate Professor was standing too near its lower extremity. (Phil. Trans., vol. xlviii.)

Some doubt however still exists concerning the distance to which the protecting influence of the rod extends, but it is generally supposed that this influence is linited by the circumfercnce of a circle described about the rod with a radius equal to double its height above the top of the building.

When the magazinc at Purfeet was struck by lightning in 1777 , the shock took place on an iron cramp which united two stones of the cornice, at the distance of 24 feet from the thunder-rod, measured horizontally; and the upper extremity of the rod was 11 feet above the top of the roof on which it was erected. Again, in 1781, the workhouse at Heckingham in Norfolk, though provided with eight rods, was struck by lightning at a spot which was distant 5.5 feet incasured horizontally from the nearest rod, while the pointed summit of the latter was 22 feet above the level of the part struck; and many other instances might be cited in confirmation of the supposition. It may be inferred therefore that large buildings ought to be secured by several rods, and that the less these are elevated the greater ought to be their number; also that no point of the building ought to be at a greater horizontal distance from the nearest rod than twice the height of the rod above the top of the building. Mr. Cavendish, Dr. Pricstley, and other English philosophers, recommend them to stand 10 fect above the roof; but in France their heiglit is sometimes more than 30 feet.
The most elevated objects are not always those which are struck by lightning; for in 1829 , the sails of a mill at Toothill in Essex being at rest, the cleetric fluid left untou ched the arm, which was in a vertical position, and fell on a knob of iron at the middle of one of those which was inclined to the horizon in an angle of 45°; and it las frequently happened that buildings containing in their walls conducting substances have been struck much below their summits by a latcral action of the fluid; bars or plates of metal in the side walls having served to attract it more powerfully than the matcrials on the roof. This happened to the cathicdral at Lausanne in 1783.
In order that the points of rods may not become blunt by rust, they are generally made of copper and covered with gilding; but it appears to be the practice of late to make the upper part of the rod of platinum, this metal being not only unaffected by the corrosive power of the air or rain-water, but also incapable of fusion by heat. As the ercetion of a thunder-rod requires in general an expensive scaffolding, the latter metal, even though more costly than iron or copper, will from its durability be in reality more cconomical than either of the others.

Thunder-rods are frequently made to terminate at the upper extremity with one point in a vertical position, and about this a number of points diverge from the rod at different inclinations to the horizon: by this construction there is not only a probability that some of the points will be acute when others may have been blunted by the action of the atmosphere, but also among them there will always be one which presents itself in the most favourable position for attracting the electric fluid. Observations have not yet however been sufficiently multiplied to cnable philosophers to decide whether conductors so terminated have any advantage over the more simple rods of Franklin.
The thunder-rod should be thick enough to carry the electric fluid to the ground without being melted by it; in gencral a cylindrical rod about half an inch in diamcter will be sufficient to prevent this effect from taking place; whether of iron or copper, it should be covered above ground with a coating of paint; and the part under ground
facilitate the passage of the electric fluid into the earth. It must be observed however that, if the lower part of an iron thunder-rod descends into water, it is liable to become corroded by rust; and a dry soil is not a good conductor of electricity. On the Continent it las been the practice to let the lower part of the rodenter into a pit filled with ashes of burnt wood or powdered coke. If the rod is made of a kind of metal which does not become corroded in water, its lower extremity nay be allowed to enter about three feet below the surface: the water should be that of a natural pond, for, if it be in an artificial reservoir, the walls of the latter, being sometimes formed of, or eovered with, conducting substances, may prevent the electric fluid from diffusing itself in the earth.
When a building is provided with scveral rods, each of these should be continued quite to the ground: at the level of the parapet the several rods slould be connected together laterally by slender iron bars; and the plates of iron which enter into the construction of roofs sliould in like manner have a metallic communication with each other. As the thunder-rod is necessarily made to follow the outline of a cornice and roof, the part below that which projects above the roof may be made of metallic cords, in order to avoid the formation of angles in its length; for experience has shown that lightning in descending a rod has quitted the latter at its angles, and, after passing through the air, has struck objects which were situated in the line of its first direction. In the expectation of being able to attract the lightning entirely away from powder-magazines, or any building containing explosive materials, thunder-rods have been attached to masts at the distance of a few yards from the building: this practice has many advocates, and the only objection to it is, that it is attended with considerable expense.
Many lofty buildings contain in their construction the means of sccuring them from the effects of lightning, and such is the case with the Monument on Fish-Street Hill; this building, whose height is more than 200 feet, is crowned with a metallic ball surrounded by bands which terminate in points tending upwards. From the ball descend four bars of iron which serve to support a flight of steps, of the same metal, and one of them is in connection with the iron railing which extends from the balcony to the ground. In 1764 lightning struck the stceple of St. Bride's Church in Fleet Street, and descended from thence along an iron bar about 20 feet in length and two inches in breadth, which was almost buricd in the stoncs: the electric fluid left no traces of its passage along this bar, but at the place where the metal terminated the damare commenced, the stones being destroyed or thrown to a considerable distance. A similar accident has this summer (1842) occurred to the church of St. Martin in Westminster.

A ship at sea, like an edifice on land, may, when there is an accumulation of electric matter in the upper part of the atmosphere, be struck aloft; or, when the atmosphere is in a contrary state, the lower part of the ship may be struck, the liglitning in the latter case ascending along the mast: and ships unfurnished with metallic conductors have frequently suffered serious injury during thunderstorms, while those which have been so provided have generally escaped. When Captain Cook was at Batavia, lightning fell on the ship with such force that the shock resembled an earthquake; the conductor, which was very slender, appeared to be on fire from the mast-head to the sca, yet no damage was done to the ship. In 1814, while a great storm raged at Plymouth, of all the ships then in port only one was struck by lightning, and this alone was not provided with conductors. And in the roads at Corfu, three violent flashes struck the ship Etna, which had conductors, without doing any injury, while two ships not far distant, being destitute of such protection, were much damaged.
The rigid bars of Franklin are considered inapplicable, as conductors, to ships, and instead of them chains of copper have been generally employed; these are attached to the masts at their upper extremities; and, following the standing rigging, they pass down the ship's sides into the water. Objections have been made to them on account of their want of continuity, and their liability to be injured or broken during storms; and copper links attached to the masts by flexible spiral wires were suggested by Mr. Singer. M. le Roy also recommended a chain of copper rings which were to encircle the main-topmast backstay; but neither of these methods has been put in practice. In

18:20 Mr. Snow Ilarris proposed (.Observations on the effeets of Iightning on Floating Bodies'), and subsequently caused to be executed for ships, conductors vonsising of alipe of eopper, of sufficient thickness to prevent them from being fused; these slips are inserted, in two layers, in a grouve eut Iongitudinally along the mast, the joints of one Jayer being opposite the middle parts of the other, and they are fastened to the mast by copper screws. The whole line of metal passes down from the copper sjuindle at the top of the mast-head. and at the junctions of the upper and lower masts the slip is made to join a eytinder of copper which lines each sheave-hole: the lower part of the line is connected with a plate of eopper whieh is fixed on the keelson, at the step, and from thenee there is a communication with the water by three copper bolts which pass quite through the keel.
THURGAU, a canton of Switzerland, bounded on the north partly by the Inkie of Constance, and partly by the Rhine, which divides it from the canton of Schafthausen; on the east and south by the eanton of SI. Gallen, and ort the west by that of Zürich. The river Thur, wlueh comes from the canton of St. Gallen and is joined by the Sitter from Appenzell, has given its name to the eanton 'Thurgau,' or 'distriet of the Thur,' the river crossing the middle part of it from east to west. The valley of the Thur is separated from the basin of the lake of Constanee by a suceession of hills which rise in terraces on both sides, and are intersected by several valleys. Ou the south and west sides other hills divide the Thurgan from the valler of the Toss in the canton of Zürich. The whole country belongs to the plateau or table-land of Switzerland, and is a considerable distance from the Apine region. The climate of the Thurgau is comparatively suild; a great part of the country is planted with fruit-1rees, especially apple, pear, and eherry: the vine also thrives in several localities. The produce of corn is not sufficient for the consumption. Aceurding to a late return, there were in Thurgau about 28.000 head of horned cattle, 3500 sheep and goats, and 2×50 horses. The rivers and the lake abound with fish. The area of the cauton is estimated at about 36_{5}^{5} English square miles ; and the population in 1835 was 84,124 inhabitants, of whom about 68,000 follow the tenets of the Reformed or Protestant communion, and the rest are Roman Catholies. German is the language of the country. About oue-thind of the population is employed in trade and manufactures. The principal manufactures consist of cotton goods, in which above 3000 looms are employed. The average wages of a workman are about $7 \frac{1}{2}$ baizen, or cleven pence sterling per day. About 3000 pieces of tine linen from native flax are made anmally; but this mannfacture is on the decline. There are also spinningfactories whieh produce yarns of the quality from No. 40 to 60 . The tariff of the German commercial league has much diminished the exportation of manufactured goods. Some silks are manufactured for the French market. The other exports consist of wine, cattle, oals, dried fruit, and eider. The prineipal imports are-iron and metal ware, chiefly from England; coarse woollen goods from Germanjo; fine woollen from France and Belgium; fine cotton yarns from England ; salt from Bavaria and Wïrtemberg ; colonial articles, and wheat.

The reveme of the eanton amounts to about 102,000 florins, or 8500%. sterling, and is derived from cluties on salt and other articles imported, stamps, transfers of property, and an income-tax.
Elementary edueation has been improved of late years. There are about 244 sehools, 200 of which are for Protestauts, 58 for Roman Catholies, and six mixed of both communions. About 17,000 children attend the sehools. A sehool for teachers lias been established at Kreutzlingen.
There is a fund, the eapital of which amonnts 10 about lasif a million of florins, for the support of the poor, besides which there is a small poor's rate on propery. Tlie annual expenditure for the poor varies from lif,000 to 30,000 forins. There is a special fund for hospitals and also a benevolent fund. Switzerland in general is a country remarkable for its charitable spirit.
Thurgan is divided into eight distriet:-Frauenfeld, Arbon, Biachofzell, 'Tobel, Weinfelden, Gottlieben, Steckborn, and Dietenhofen. The principle towns are-1. Franenfeld, which is the heal towin of the eanton, situated ins fertile valley nemr the conflumee of the river Niurg with the Thur. It eonsigts of 162 howken, besides other
buildings, forming three wide streets; the inhabitants anount to about 1300. The old castle, formerly the residence of the Swiss vogten or governors of Thurgau; the town-house, where the Ifelvetic diet used to assemble in the time of the old confederation; the arsenal; and the Protestant and Roman Catholic churches, are the chief buildings. II Stecktom, a small busy towir pleasantly situated on the banks of the Zellersee, or sinaller basin of the lake of Constauce, has several manufactories, and about 1900 inhabitants. In the neighbourhood of Steckborn is the fine country-residence called Arenaberg, which was purchased by the countess of SI. Leu, daughter of Josephine Beauhariais and wife of Louis Bonaplarte, ex-liug of Hollnad, and in whieh she died in 1840. 3. Dicasenhofen, on the left or southern bark of the Rhine, is a place of considerable trade in agricultural produce, and has about 1000 inhabitants. 4. Bischofzell, at the confluenee of the Sitter and the Thur, is a walled town, with a collecgiate chureh of the minth century, an old cnstle, a long bridge on the Thur, several schools, and about 1000 inhabitants. 5. Arbon, a small town on the southern bauk of the Bodensee, or lake of Consfanee, of which it enjoys a splendid view, is said to be built on the site of a Roman station named Arbor Felix.
The canton of Thurgau is a representative democracy with a legislntive assenibly, 'Grosser Rath,' and an executive council, 'Kleiner Kath.' The right of voting for elections of members of the legislature is subject to some qualifications; but by the last aceounts we have seen the constitution was undergoing a revisal.
(Leresche, Dictionnaire Géographique Statistique de la Suisse; J. Bowring's Report on the Commerce and Mumufuctories of Sucitzerland.)

THÜRINGER WAID. [Gersmans; Pressia.]
THURINGIA (Thüringent) is the antient name of an extensive tract of country in the central part of Germany, situated between the Harz Momitains, the rivers Saale and Werra, and the Thüringervald. These however are not the boundaries of the great lingdom of Thüringia, which extended to the Elbe, and northwards nearly to Mingdeburg, southwards to the vicinity of the Danube, and comprehended on the west the greater part of the eountry afterwarls called Franeonia. It cannot he positively ascertained what people originally possessed Thuringia. According to Galetti, it was formerly inhahited by the Catti; nceording to F. Wachter and Withelm, by the Cherusci. Vegelius mentions the Thuringi about the year 404. Varions conjectures have been made respecting the derivation of the name; nud anthors, misled by a similarity of names, have confounded then with others. The history of the country is very intricate, and has heen the subject of numerous works, such as Galetti's 'Ilistory of Thuringin,' 6 vols. ; and Wachfer's Iristory, in 3 vols. Thuringia long gave the title of margrave to the elector of Savony. Properly speaking, there is no coumfy now ealled Thuringia: it is divided among I'russia, Saxe-Weimar, Saxe-Coburg, Schwazburg-Sonderhausen, and Selwarz-burg-Rudolstadt. The name is still preserved in Thit ringerwald, a continuation of the Fiehtelgebirge, from which it branches out near Minnehbery and Geffees, in the kingdom of Bavaria: near Eiseuaeh, Marksuhl, and Salzungen it rises above the Verrathal; muns sontheat along the frontier of the former circles of Upper Sixony and Franconia, till it turns, near Lobenstein, into the Saalthal (where however it receives the name of Frankenwald), and declines, near Kronach, into the Manthal. The length is To English miles, and its breadth varies from 9 to 18 miles. It covers about 3100 square miles, and has a population of 220,000 inhabitants, lising in 28 towns and $5 \overline{70}$ villages. It is a long mountain-chain with a narrow ridge, and it is only near the Schneekopf, on the road between Suhl and Ohrirnf, that there is a plateau two or three miles across. The two highest points are the Schncekopf, got feet, and the Inselsberg, 2601 feet, above the level of the sea. The highest points eonsist of granite, elay-slate, and principally porphyry: the whole chain is clothed to the very summit with pine-forests, mixed in a ferr places with oak and other timber. Numerous rivers rise in this ehain, which flow on one side into the Elbe, and on the other into the Wescr.
(Inssel, Cieograph. Ifxicon; Stein's Lecient; Brock haus, Conversations Lexicon.)

THURLOE, JOHN, who held the office of secretary of state during the Commonwealth, was born in 1616, at Abbots Roding, in Essex, of which place his father, the Rev. Thomas Thurloe, was reetor. He was designed for :he profession of the law. Through the interest of Oliver St. John, who was his patron through life, he was appointed, in 1645 , one of the secretaries to the parliament commissioners for conducting the trenty of Uxbridge. He was called to the bar after this, in 1617, by the society of Lincoln's Inn; and in March, 1648, he received the appointment of receiver or clerk of the cursitors' fines, 'Worth at least $350 l$. per annum,' says Whitelocke ; 'and in this place was Mr. Thurloe servant to Mr. Solicitor St. John.' (Mernorials, p. 296.)

Thurloe has left behind him a distinet denial of knowledge of or participation in King Charles's death, which took place, as is well known, in January, 1649. Writing to Sir Harbottle Grimston for the purpose of contradieting reports that St. John had been Cromwell's counsellor on that and on other oceasions, and ' that I was the medium or hand between them by which their eounsels werc eomnunicated to each other,' he says, 'I was altogether a stranger to that fact and to all the counsels about it, having not had the least communication with any person whatsocver therein.' (Thurloe's State Papers, vol. vii., p. 914.) It was rery unlikely that a person in Thurloe's subordinate position at that time should have been eonsulted; and if it were a question of any importanee whether he approved of the king's death or not, lis subsequent confinual identifieation with the authors of that event is more than sufficient to fix him with responsibility.

On the 11th of February, 1650, Thurloe was appointed one of the offieers of the treasury of the Company of undertakers for draining Bedford Level, a new effort to drain this tract of country having been set on foot the year beforc. [Bedpond Lirvel.] In a letter from St. Jolin to Thurloe, dated April 13, 1652 (State Papers, vol. i., p. 20.3), which is interesting as showing the terms on which Thurloe and St. John were, we find that Thurloe was then on'an official tour of inspection: "Now you are upon the place, it wonld be well to sce all the works on the north of Bedford river to be berun. Pray by the next let me know whether Bedford river be finished as to the bottoming.' In the same letter are direetions from St. John, now lord-chief-justice, for the purchase of a place for lim in the neighbourhood of london, from which it would appear that Thurloe was in the habit of managing St. John's private affairs for him. The same letter contains St. Johu's congratulations to Thurloe on his appointment as secretary to the council of state, which appointment lad just taken place: 'I hear from Sir Hen. Vayne, and othervise, of your election into Mr. Frost's place, with the circumstanees. God forbid I should in the least repinc at any his works of Providence, much more at those relating to your own good, and the good of many. No, I bless him. As soon as I heard the news, in what eoncerned you, I rejoiced in it upon those grounds. No, go on and prosper: let not your hands faint : wait upon Him in his ways, and he that hath called you will cause his presence and blessing to go along with you.' In the course of the previous year, 1651 , Thurloe had been to the Hague, as secretary to St. John and Strickland, ambassadors to the states of the United Provinces. When Cromwell assumed the Protectorship, in December, 1653 , Thurloe was appointed his seeretary of state. In eonsequence of his attaining to this distinction, he was, in the February succeeding, elected a bencher of the society of Lincoln's Inn. Thurloe was elceted member for the Isle of Ely in Cromwell's second parliament, called in J Junc, 16.54 , and framed on the model preseribed by the Instrument of Government. He was re-elected for the Isle of Fly in the next parliament, called in Septemher, 1656. Cromwell obtained from this parliament an act scttling the office of post of letters, both inland and foreign, in the state for ever, and granting power to the Protector to let it for eleven years at such rent as he should judge reasonable; and it was let by him to Thurloe, at a rent of 4000 l. a ycar, as we learn from a memorandum drawn up ly him when the Rump Parliament had eancelled the grant. (State Papers, vol. vii., p. 788.). It is to le inferred that he made much profit by this farming of the postage. The salary of his secretaryship of state was solol. a year. He is described in a "Narrative of the Late L'arliament,' reprinted in the 'Harleian Miscellany' (vol. iii.,
p. 453), as "secretary of state and ehief postmaster of England, places of a vast ineome.

There is the following entry in Whitelocke's 'Memorials,' under the date of April 9, 1657:- A plot discovered by the vigilancy of Thurloe, of an intended insurrection by Major-General Harrison and many of the Fifth-Monarchy men' (p. 655). Thurloe afterwards, by Cromwcll's desire, reported on the subject of this plot to the parliament, and received in his place the thanks of the house, through the Speaker, for his detection of the plot, and 'for the great services done by him to the commonwealth and to the parliament, both in this and many other particulars.' On the 13th July, 1657, he was sworn one of the privy council to the Protector, appointed in accordance with the "Humble Petition and Advice." Honours now came thick upon him. In the year 1658 he was elected one of the governors of the Charter-House and chancellor of the university of Glasgow.

In September, 1658, Cromwell died, and his son Richard was proelaimed in his stead. In the parliament that was called in December, Thurloe was solicited to sit for Tewksbury, in a letter which is worth extraeting, as showing his estimation and position at this time, and the spirit of con-stituencies:- Noble Sir, We understand that you are pleased so much to honour this poor corporation as to accept of our free and unanimous electing you one of our burgesses in the next parliament, and to sit a member for this place. Sir, we are so sensible of the greatness of the obligation, that we know not by what expressions suffieiently to demonstrate our acknowledgments; only at present we beseech you to aceept of this for an earnest, that whomsocver you shall think worthy to be your partner shall have the second election; and our zeal and hearty affections to scrve and honour you whilst we are, as we shall ever strive to bc, Sir, your most humble and obliged servants,' \&ec.: signed by the bailifis and justices of Tewksbury. (State Papers, vol. vii., p. 572.) He was not after all chosen for Tewksbury. He was elected for Wisbech, Huntingdon, and the unirersity of Cambridge. His election for the last was communicated to him in a letter from the eelebrated Dr. Cudworth, who wrote to him in this strain:- We being all very glad that there was a person of so much worth and so good a friend to the university and learning as yourselt, whom we might betrust with the care of our privileges and concernments.' (State Papers, vol. vii., p. 587.) Thurloe made his eleetion to sit for the university of Cambridge.

The meeting of this parliament was the beginning of discontents and of Riehard Cromwell's fall. We find Thurloe, in a letter to Henry Cromwell, viewing the eomplaints of the army and of the opposition in parliament as pointed principally against himself, and stating that he had asked the Proteetor's pcrmission to retire from his office. 'I trust,' he adds, 'other honest men will have their opportunity, and may do the same thing with myself with better aeceptance, having not been engaged in many particulars, as I have, in your father's lifetime, which must be the true reason of these stirmings; for they were all set on foot before his now highness had done or refused one single thing, or had received any advice from any one person whatsoever.' Thurloc remained however seeretary of statc. It was one of the objeets set before themselves by the royalists in this parliament, who, by uniting with the republican party, formed a most troublesome opposition to Riehard Cromwell's government, to impcach Thurloe; but this object was yet undeveloped when the parliament was dissolved. Thurloe appears to have given strong counsel against the dissolution.* .The immediate consequenec of the dissolution was the summoning, by Fleetwood and the couneil of officers, of the Rump of the Long Parliament, and Richard Cromwell's deposition.

- It is generally stated otherwise, on the authority of tho following passage Whitelocke:- Richard ndvised with the Lord Broghill, Fiennes, Thurloe, Wo Whitelocker, and some others, whether it were not fit to dissolve the pre. Wolsey, mysent: most of them were for it; I doubted the success of it (p. 677). Those mentioned are very few of the conncil, aza, oren there hat (p. 6 no. others, it wonld be guito consistent with the worns of mis passage that Thurloe should have sided with Whitelocke. That Thurloe strelmonsty op posed the dissolution 18 distinetly stated, and with circumstantial man of the antlority, in Calamy's Life of Howe, pretixed wom urged ou Richard Crom. 1724 , fol. We know further that the hssolntie which were united arainst well by the Reprblican and Royalist partes, of the dissolution, that it Thurloo. Whiseiocke says, a hitlo anerwy of monest the Cavaliers and - caused much trouble in he minds of 'many hunest men' was doubtless Republicans rejoiced at ati One 'State Ingers,' vol. iii., pp. 420.60.

The lettens written during Richard Cromwell's short Protectorate, in the third volume of Clarendon's 'State I'apers,' are full of neknowledgments of Thurloe's infuence with Richard Cromwell, and of the importance attached to him by the intriguing Royalists. Thus, Cooper, one of Hyede's spies, writes to him, February 13, 1609, - Cromwell is governed by Thurloc, whether for fear or love I know not ; but sure it is, he hath power to dispose him against the sense of right, or indeed his own interests. Thurloe's malice, I doubt, will never suffer him to do us frood ' ($\mathrm{f}, 42 \mathrm{~F}$). Arain Ifyde writes to another of his agents, Brodrick, 'There is nothing we lave thought of more importance, or have given more in charge to our frends since the beginning of the parliament, than that they should advance all charres and accusations against Thurloe and St John, who will never think of serving the hing; and if they two were thoroughly prosecuted, and sone of the members of the High Court of Justice, Cromwell's spirits would fall apace' (p. 428). 'It is strange,' Myde writes a month after, March 10, 16:3, 'they have not in all this time fell upon Thurloc and those other persons who advanced Croniwell's tyranny' (p. 436). Then overtures to Thurloc to aid the king are thought of. I do confess to you,' Hyde writes, 'I cannot comprehend why Thurloe, and even his master St. John, should not be very ready to dispose Cromwell to join with the king, and why they should not reasonably promise thensclyes more particular advantages from thence than from anything else that is like to fall out' (p. 449). After the dissolition of the parliament, serious thoughts seem to have been entertained of soliciting Thurloe's and St. John's aid (p. 47is). But Thurloc afterwards becomes again an object of fear to IIrde. During the government by the army, he writes, - I do less understand how Thurloe shapes, and is in danger to be exempted out of the Aet of Oblivion, and at the same time employed in the greatest secrets of the government, for I have some reason to believe that he meddles as much as ever in the foreign intelligence ' (p. 532).

On the 14th of January, 1660, Thurloe was succeeded in lis office of secretary of state by Scot, one of the republican party; but he was reappointed on the 27th of February: His patent as chief postmaster had been eancelled in the interval, on the 2nd of February. (Commons' Journals, vol. rii., p. 533.) In the movements that followed for the restoration of Charles 11., Thurloe made an offer of his services to those who were bringing about that event. Sir E. Hyde writes to Sir John Grenville, A pril 23rd, 1660, -We have, sinee I saw you, received very frank overtures from Secretary Thurloc, with many great professions of resolving to serve the king, and not only in his own endeavours, but by the services of his friends, who are easily enough guessed at. This comes through the hands of a person who will not deceive us, nor is easily to be deecived himself, except by such bold dissimulation of the other ${ }_{3}$ which cannot at first be discerned. . . . The king returned such answers as are fit, and desires to see some effects of his good affection, and then he will find his service more aceeptable.' (Thumoe's State Papers, vol. vii., p. 897.) And Hyde goes on 10 instruet his correspondent to consult Monk as to Thurloe's elaracter, and as to his power to be of use, supposing he were sineerely willing. On the 150 h of May Thurloe was aceused by the parliament of high treason, and ordered to be secured; lut on the 2 oth of June a vote was passed allowing him - liherty to attend the seeretary of state, at such times as they [the Hotse] shall a ppoint, and for solong a time as they shall own his attendance for the serviee of the state, withoirt any trouble or molestation during such lis attendance, and in his going and returning to and from the sceretary of state, any former order of this IIouse notwithstanding.

Aner his release from imprisonment, he retired to Great Iilton in Oxfordshire, where he generally resided, exeept in term-time, when he oceupied his ehnmbers in lineolnsInn. It is said that he was often solieited by Charles II. to resume public business, and always refused, telling the king that he despaired of serving him as he had served Cromwell, whose rule was to seek out men for places, and not places for men. (Birch's Life of Thurloe, prefixed to State Papers, p. xix.) Thurloe died at Lineoln's-Inn on the 21st of February, 1668.
Ile lind been twice married, and len four sons and two daughten, all ly his second wife, a sister of Sir Thomas Overbury. Ile was possessed, during the days of power,
of the manors of Whittlesey St. Mary's and Whitlesey St. Andrews, and the rectory of Whittlesey St. Mary"s, in the Isle of Ely, and of Wisbech Castle, which he rebuilt. But afer the Restoration they reverted to the lishop of Ely. There is an entre in the Commons' Journals of the 18ih of May, 1660 : 'Mr. Secretary Thurloe put out of the ordinance for assessment of the isle of Ely :" (vol. viii., p. 36.) Dr. Bireln says he had an estate of about 4001. a-year at Astwond in Buekinghamshire. In a monumental inseription to the memory of lus son-in-law in St. Paul's Chureh, Bedford (Cole's MSS., vol. iii., p.43), Thurloe is described as of Astwood, Bueks.
Thurloe does not appear to have possessed any striking qualities, either moral or intellectual, to impress the minds of his contemporaries; and we know little else of him than that he had great powers of lousiness. Burnet describes, him as 'a very dexterous man at getting intelligence.' (Hisl. of his oun Times, i. 66.) From a story in Kurnet relative to Syndercomb's conspiracy against Cromwell, and from what is said by I'epys of Morland, when assistant to Thurloe, who played his master false, and gained a baronetey from Charles II. for his treachery, it might appear that he was not of a very generous disposition, or much liked by those who were under him. Morland attributed lis miseonduct to 'Thurloc's bad usage of him.' (Pepys, vol. i., p. 133.) [Morland, Sir Sasurl..] Burnet's story is, that Thurloc treated lighty information which had been given him of the design on Cromwell's life, and that when, on the subsequent discovery of this design, Cromwell became aware that information had been given to Thurloe, on which he had not acted, and blaned Thurloe for his conduct, Thurloc availed himself of his influence with the Protector to malign his informant; 'So he (the informant) found,' says Burnet, 'how dangerous it was even.to preserve a prince (so he called him), when a minister was wounded in the doing of it, and that the ininister would be too hard for the prince, even though his own safety was concerned in it ' (rol. i., p. 79).
Thurloe's 'State P'apers!' 7 vols. fol., 1742 contain a large mass of records of his official transactions, together with a number of private letters and papers. They were edited by Dr. Birch, who gives the following history of Thurloe's papers: 'The prineipal part of this collection consists of a series of papers discovered in the reign of King William, in a false eciling in the garrets belonging to Secretary Thurloe's chambers, No. xiii., near the chapel in Lincoln's-Inn, by a clergyman who had borrowed those chambers, during the long vacation, of his friend Mr. Thomlinson, the owner of them. This clergyman soon afer disposed of the papers to the Right Monourable John Lord Somers, then lord high chancellor of Encland, who caused them to be bound up in 07 volumes in folio. These afterwards descended to Sir Joseph Jekyll, master of the rolls; upon whose decease they were purchased by the late Mr. Fleteher Gyles, bookseller.' They were published hy Mr. Gyles's executors. Dr. Bircl, the editor, received many other papers from ditferent individuals, especially from lord Shelburne and the then archbishop of Camterbury, which he has ineorporated in the collection. For historieal purposes this is an invaluable collection.

THURLOW, EDWARD, LORD, was bom in the year 1732, at Little Ashfield near Stowmarket in Suffolk. His fallier, Thomas Thurlow, was a clergyman, and held suceessively the livings of Iittle Ashficld, and of Stratton St. Mary's in Norfolk. Anter receiving the rudiments of his edueation from his father, young Thurlow was sent to the grammar-school nt Canterbury at the suggestion of Dr. Donne, who sought (as Mr. Southey states in his 'Life of Cowper' upon the authority of Sir Figerton Brydges) to gratify a malignant feeling towards the head-master, hy placing under his eare ' a daring, refractory, elever boy, who would be sure to torment him.' The motive aseribed to Donne is far-fet elied, andl seems improbable ; but there is no doubt that Thurlow was edueated at the Canterbury sehool, and that he continued there reveral years, and until he was removed to Caius College, Cambridge. Fis character and conduct at the university did not promise any meritorious eminenee in fiture life. He gained no academical honours, and was compelled to leave Cambridge abruptly in consequence of turbulent and indecorous behaviour towards the dean of his college. Soon after he quitted Cambridge he was entered as a member of the Society of the Inner Temple. In Michaelmas term, 1754,
he was called to the bar, and joined the Western circuit in the ensuing spring.
Thurlow immediately applied himself to the practice of his profession with great assiduity; and althouglo he brought with him an indifferent character from the university, he attained unusually early to reputation and employment both in Westminster Hall and on the circuit. His name appears frequently in the Law Reports soon after he was called to the bar; and his success in the profession he had chosen was clearly ascertained in less than seven years from the commencement of his practice. In 1701 he obtained the rank of king's counsel; and it may perhaps be inferred from an anecdote which is related by his early friend and associate Cowper, in one of his letters (Cowper's Works, vol. v.. p. 254, Southey's edit.), and which refers to this period, that Thurlow had then acquired a degree of reputation which suggested the prediction that he would eventually rise to the highest office in his profession. A more convincing proof of his position in the law is however recorded in the Reports, from which it appears that immediately after his appointment as ling's counsel his practice in the courts rapidly inereased, and, during ten years preceding his appointment as solicitor-general, was exceeded only by that of Sir Fletcher Norton, and one or two others of the most eminent advocates of his time. To have succeeded so early and to so great an extent, without adventitious aid from influence or connection, and in competition with advocates of unquestioned ability and learning, is a substantial argument of professional merit. His employment in preparing and arranging the documentary evidence for the trial of the appeal in the House of Lords against the decision of the Court of Session in the Great Douglas Cause (whieh, according to professional tradition, resulted from mere accident) may have had the effect of bringing his talents, industry, and legal acquirements under the immediate notice of persons of power and influence, and of thus opening the way to his subsequent elevation.

In the new parliament called in 1768 he was returned as member for the borough of Tamworth, and became a constant and useful supporter of Lord North's administration. Upon Dunning's resignation of the office of solicitorgencral in March, 1770 , and Blackstone's refusal to accept it ('Life of Sir William Blackstone,' prefixed to Blackstone's Reports),Thurlow rcceived the appointment, and in January, 1771, he succeeded Sir William De Grey as attorncy-general. Soon after his introduction to office, he attraeted the particular notice of George III. by the zeal and energy displayed by him in supporting the policy of Lord North's government respecting America, and in which the king is known to have taken the warmest interest. Thurlow's strenuous and steady support of the minister in the great parliamentary contest which ensued respecting that policy, procured for him a degree of confidence and even of personal regard on the part of the king, which continued unabated for upwards of twenty years, and had unquestionably great influence in the remarkable vicissitudes of party whieh occurred in that period.
In the summer of $17 \% 8$ lord ehancellor Bathurst resigned his office ; and on the 2nd of June in that year Thurlow was appointed his successor, and raised to the peerage with the titlc of Baron Thurlow of Ashficld in the county of Suffolk. Four years afterwards, in March, 1782, when Lord North was removed from power, and the ephemeral Rockingham administration was formed, Thurlow remained in possession of the great seal by the express command of the king, and in spite of Mr. Fox's opposition to his continuanec in office; thus furnishing an instance without a parallel in the history of English party, of a lord chanecllor retaining office under an administration to all the leading fcatures of whose policy he was resolutely opposed. Nor was he content in this inconsistent association to differ from his colleagues in opinion only; on the contrary, he took no pains to conceal his hostility to their principles, and even opposed in the House of Lords with all his characteristic energy the measures which they ut, animously supporterl. Thus, after the bill for preventing government contractors from sitting in the House of Commons had been introduced into the House of Lords, where it was supported by Lord Shelburne and all the ministers in that house, the lord ehancellor left the woolsack, and himself moved that 'the bill be not committed,' denouncing the measure as 'an attempt to deccive and betray the people,' and designating it 'a jumble of con-
tradictions.' (Hansand's Parl. Hist., vol. xxii., "pp. 13.5G1379.) The inconvenience produced by this embarrassing disunion of councils was deeply felt, and was one of the principal reasons for Mr. Fox's retirement from administration on the death of the marquis of Rockingham; and when the administration was dissolved in February, 1783 , upon the coalition formed between Lord North and Mr. Fox, Lord Thurlow was compelled to retire from office, notwithstanding the exertions of the king to retain him. But though no longer chancellor, he still continued to be one of those who were described by Junius as 'the king's friends,' and was supposed to have been his secret and confidential adviser during the short reign of the Coalition ministry. Upon the dissolution of that ministry at the end of the same year in which it was formed, the great seal was restored to Lord Thurlow by Mr. Pitt, who then became prime minister. He continued to hold the office of lord chancellor for nine years after his reappointment; and until the occurrence of the king's madness in 1788, appeared to act cordially with the rest of the cabinct ; but when that event rendered a change of councils by means of a regency probable, he was suspected, with good reason, of some intriguing communications with the Prince of Wales and the Whigs (Moore's Life of Sheridan, vol. ii., chap. xiii.), and was always subsequently regarded with distrust by Mr. Pitt and his colleagues. On the other hand, Lord Thurlow took no pains to conceal his dislike of Mr. Pitt ; and that minister felt himself so embarrassed by the chancellor's personal hostility to him, that in 1789 he complained to the king, who immediately wrote to Thurlow upon the subject, and obtained from him a satisfactory answer. His angry feeling however still continued, until at length, in 1792 , probably relying upon his personal influence with the king, he ventured to adopt a similar course to that which he had followed in very different circumstances under the Rockinghan administration, and actually opposed several measures brought into parliament by the governinent. In particular he violently opposed Mr. Pitt's favourite scheme for continuing the Sinking Fund, and voted against it in the Housc of Lords, though he had never expressed his dissent from the measure in the cabinet. This kind of opposition, though submitted to from necessity by a weak government like that of the marquis of Rockingham, eould not be endured by so powerful a minister as Mr. Pitt ; and on the next day he informed the king that either the lond chancellor or himself must retire from the administration. The king, without any struggle or even apparent reluctance, at once consented to the removal of Lord Thurlow, who was acquainted by eommand of his majesty that he must resign the great seal upon the prorogation of parliament. Lord Thurlow is said to have been deeply mortified by this conduct on the part of the king; and he is related to have declared in eonversation that 'no man had a right to treat another as the king had treated him.' Subsequently to his notice of dismissal, and before he quitted office, his ili humour was displayed by his opposition to another measure prepared and supported by Mrs Pitt, the object of which was the encouragement of the growth of timber in the New Forest. On this occasion he reflected severely upon those who had advised the king upon this measure, and went so far as to say that his majesty had been imposcd upon. (Tomline's Life of Pitt, vol. iii., p. 398-9.) One of lus latest acts as lord chancellor was to sign a protest in the House of Lords against Mr. Fox's Libel Act. The opportunity of his retirement from office was taken to grant him a new patent, by which he was created Baron Thurlow, of Thurlow, in the county of Suffolk, with remainder, failing his male issue, to his three nephews, one of whom afterwards succeeded to the title under this limitation.
After his retirement from office in 1792, Lord Thurlow ceased to take any leading part in politics, and having little personal influence with any party, became insignificant as a public charaeter. He occasionally spoke in the House of Lords on the subjects of interest which were discussed at the period of the French revolution; and it is worthy of remark that he frequently opposed the measures adopted by the Tory government at that time for the suppression of popular disturbances. Instances of this occur with respect to the Treasonable Practices Bill and the Seditious Meetings Bill, in 1795 ; and a comparison of the sentiments expressed by him on these occasions, with his Vol. XXIV.-3 H
speeches respecting Amerien during Lord Norlis admiuistration, affords a striking exmuple of politieal inconsisteney. Λ eircumatance is recorled in the ' Memoirs of Sir Samuel Romilly' (vol. ii., $\mathrm{l}^{1 .}$ 124), which proves that till within a few montls of his death Iard Thurlow was still confidentially consulted ly members of the royal family. On oceasion of the first columunication of the charges made by Lady louglas against the princess of Wales in 1805, the prinee (anerwards George $1 V$.) direeted that Thurlow should he consulted, and the proticulars of the interview between him nnd Sir Samuel Romilly are characteristic and interesting.

Lord Thurlow died at l3righton, on the 12 h of September, 1836 , aner an illness of two years.

THURMER, JOSEPH, a German architeet of some note, was bom at Münich, November 3, 1783, but did not begin to apply himself to architceture professionally until 1817, when he becane a pupil of Professor Fiseler's, and had for his fellow-students Gärtner, Ziebland, Öhhnuller [Öhlmeller], and many others who have since rendered themselves more or less distinguished. At the end of the following year (after a previous visit to lRome at the commeneement of it) he joined Hibbsch, Heger (died 1837), and Koch, in a professionnl excursion to Greece, where he spent five months in studying and drawing the remains of buildings at Athens, some few of which he published on his return, with the title of 'Ansichten von Athen und seine Denkmaler,' 18:3-6. He did not however confine himself to the studj of the Grecian style, nor was he sueh a prejudiced admirer of it as to have no relisls for any other; on the contrary; he considered the lialian style of the time of l.eo \mathcal{X}. to be equally worthy of the nrelitcet's attention, and to deserve to be far better, more faithfully and tastefully, represented by mems of engravings than it previonsly had been. He aecordingly joined with Gutensoln in bringing out a 'Sammlung von Denkıaler,' \&ic., - Collcetion of Arelitectural Studies, and Decorations from 13uildings at Rome, of the fifteenth and sixteenth centuries,' the first number of whiel? appeared in 1826 ; but, unfortunately, it did not meet with the encourngement it deserved, and was therefore given 111, when very little progress had been made with it. The publieation however was so far advantageous to Tharmer, sinee it recommended him to notiec, and led to his reeeiving (1827) at the same time two different invitations, one fiom Frankfort, the other from Dresden, to which last he gave the preferenee. Ile was there made professor-extraordinary nt the school of architecture, and in 1832 was promoted to be first professer of architecture, in which capacity he did very muel for the advaneement of the art and the improvement of taste. Though he has left very little exceated hy himself in that eity, the only public building in it entirely by hin being the postoffice (ior though the 'llauptwache,' or guard-house, wns erected by him, it was nfter Schinkel's designs), his opinions had a very beneficial influence. That he should have had so few opportunities for displaying his ability, is not very surprising, nor does it detract irom his reputation, since he did not long survive the completion of his first edifiec : he died November 13th, 1833. While staying at Minich. What he might have done, had a longer life been granted him, is Nown by the number of designs he left, all more or less stamped by originality and artistical feeling. That the grateful regard expressed for his memory and his talents ly his friends and pupils was not a mere temporary effusion, is proved ly their having erected a bronze thust nnd monument to him, in 1838, at the Aeademy of Arts.
(Conrers. Ler. der Nenesten Zeit: Morgenblatt, 1838.)
THURNEYSSER ZUM TIUIRN, LEONARD, a celebrated nlehemist and astrologer, was bom in 1530 nt Basle, where his father carried on the trade of a goldsmith. He Tas hinself bronght up to this employment, but lie was obliged to leave his native place whion cighteen yeara of age, on account of lanving sold to a Jew a piece of gilt lead for pure gold. He first went to England, thenee to France, and afervards to Germany, where he enlisted among the troops of the margrave of l3mndenburg. The following yetr he was iaken prisoner; from that time he gave up a military life, and having risited the mines and foundries of (temmany and the north of Furope, he came baek in $15 \% 1$ to Nüriberg, Strasburg, and Kostnitz. 1lere he again carried on the trade of a goldsmith, and made much money
by it, till, on aceount of his reputation for skill in the art of mining, he was sent for to the Tyrol to superintend different mineral works. Accortingly in 130% he went to Terenz in Upper Innthal, and establisted on his own aeconnt in that place, as well as at St. 1comard, foundries for the purifving of sulplar, the success of which contributed still more to his celebrity. The Arehduke Ferdinand had so muels confidence in him that he sent kim to travel in Scotland, the Orkney 1slands, Spain, and Portugal. Thumeysser also visited the coasts of Barbary, Ehniopia, Ergpt, Arabia, Syria, and lalestine, and retirned to the Tyrol in 1567 . Two years anterwards, at the request of the same prince, he agains visited the mines of liungary and Bohemia. The publication of his works made linn determine to go to Ntinster and Frankfort on the Oder, nt which latter place he became acquainted with the eleetor of Brandenburg, whose wife he eured of a dangerous illness, and who resolved to attach him to his service in the hope that he might diseover in his estates some unknown minemal treasures. Thurneysser aceepted the offiee of physician to the prince, and aceompanied him to Berlin, where, from his skill in profiting by the prejudiees and weaknesses of his contemploraries, and from being acquainted with nil the resources of charlatanism, he soon suecceded not only in alequiring eonsiderable wealth, but also in passing himself off for one of the most learned and scientific men of his age. At length however, by the enyy of others, and still more by his own imprudenec, his deceptions were diseovered, and he was, in 1584, obliged to leave Berlin. Ile went to Prague, Colome, and Rome; and aner having thus led a wandering life for some years, he died at last in a convent at Cologne, at the age of sixty-six, in 1596 . He was an adrocate for the pretended sciences of alchemy and uromaney, and his whole history (like thint of most similar characters) is n pruof of the imfluence that may be acquired in an ignorant age by a hold and enterprising man, when he nossesses some little information above the generality of his contemporaries. His writings were numerous, hut of little worth, and they are now very seliom looked into. The titles of twelre of them are given in the Biographic Medicale, from which work the preecding aecount is taken.

TIUUROTZ, or TIIUROCZ, is a small county in Ilungary, in the eirele on this side the Danube. It is hounded on the north by Arva, on the east by Lepinn and Soln, on The south by l3ars, and on the west by Neitra and Trentsin. Its area is 443 square miles, and the population 42.000 in habitants, chiefly Slowaes, of whom about two-thirds are Lutherans and one-third Roman Catholics, exeept about 500 Jews. This country is justly called a beautiful garden' (says the anonymous author of the deseription of Hungary, Croatia, and Slavonia), for it is surrounded on nll sides with lony mountains, as with walls, within which mature has been lavish of the most licautiful seenery. This garden has only two entrances in the northern purt, through whieh the river Waat enters and leaves the enuntry. The first entrance is between the two mountainclains called the Grent and the Little Finfa, and the other near Satreesno. The Great Falra has two summits, the Stock, 4876 feet light, and the Throcz Krivan, 5300 feet high.: The elimate is cold, but healthy. Though the soil is fertile, there is no superfluity of natural jroductions: it produces no wine, but nearly sufficient com (chictly buckwheat) for the cousumption of the inhabitants; and so mueh barley and nats, that some portion can be exported. l'ulse of different kinds abounds, especially large and excellent peas. Potatoes are extensively cultivaled, and also a species of tumip peeuliar to this country. The inhabitants collect a considerable quantity of a balsam from the inountain-pines, whiel is sold to the common people, and extolled as possessing great medieinal virtues: it. is exported to Germany, and even to America. There nre numerous flocks of fiheep on the mountaius nnd in the numerous valleys. Of $1.58,820$ aeres of productive land, only 62,412 aeres are amble, and $83,7,8$ arres are covered with forests. The chief town is St. Martin, on the river Thurocz, whiel has about 2000 inhabitants. It las a handsome county-hall, and five large Roman Catholic elurches. (Hassel, Geography; Blumenbach, Oesterreschische Monarchie.)
THURROCK. [EsSEX.?
THURSDAY. [WERK.]
THUTRSO. [CATTINESS.]

THUS. [Boswella.]
THYATEIRA. [LyDIA.]
THYLA'ClNUS. [MarsUPialia, vol. xiv., p. 455.]
THYLACOTHE'RIUM. [Marsupialia, vol. xiv., p. 461.7

THYME. [Thysus.]
THYMELA'CEE, a natural order of plants belonging to the tubiferous group of Incomplete Exogens. The name of this order is derived from Thymelæa, a plant spoken of by the antients, and which some have supposed to be the Daphne Gnidium, a plant belonging to the present order. This order consists of shrubs or small trees, very rarcly herbaceous, with non-articulated, sometimes spiny branches haring a very tenacious bark. The leaves are entire, simple, without stipules, and alternatc or opposite. The flowers are capitate or spiked, terminal or axillary, occasionally solitary. The calyx is tubular, coloured, 4-cleft with an imbricate astivation; the stamens $2-4$ or 8 in number, inserted into the tube with 2-celled anthers, dchiscing lengthwise in tbe middle; the ovary is solitary, with a solitary pendulous ovile ; the fruit is hard and dry, or drupaceous; the seed has litfle or no albumen, a stralght embryo, with a short radicle and entire cotyledons. This order is related to Santalacee, from whieh it differs in its inferior calyx. It is also allied to Elæagnaceæ and Proteaceæ, from both of which it is distinguished by its pendnlous ovules. Lindley refers to this order Bartling's Anthoboleæ, on account of their superior fruit. [Exocarpus.] The species are found in Europe, but are not common; they occur in greatest abundance in the cooler parts of India and South America, at the Cape of Good Hope, and in New Holland.

The most prominent property of this order is their causticity, which resides in their bark. When applied to the skin, it produces vesication, and pain in the mouth when chewed. The bark of several of the species is very tougb, and may be manufactured into cordage. Passerina tinctoria yields a dye which is used in the south of Europe to colour wool yellow. The various species of Daphne pos sess active properties; some are used for dyeing, some are poisonous, and the Daphne Lagetta is the Lace-bark-tree of Jamaica. [Daphine.]

1. Culting with novers; 2, ditho with fruit: 3, ningle fower; 4, calyx op ned, thuwitg the insertion of the stamens; 5 , section of orary, showing the siogle pendrlous seed.

THYMUS ($0 \dot{\mu} \mu \mathrm{os}$), the name of a genus of plants belonging to the natural order Lamiaceæ or Labiatz. It has an ovate bilabiate calyx with thirteen ribs; the upper lip is trifid, the lower lip is bifid with eiliated subulate segments, and throat villous inside; the corolla with the upper lip ereet, nearly plane, notched, lower patent and trifl ; stamens straight, cxserted; authers 2 -celled; styles bifid at apex. Al the speeies are small under-shrubs
with usually purplish flowers. Between twenty and thirty species have been described by botanists, most of them inhabitants of Europe, especially the region of the Mediterranean: one only is a native of the British Isles.
T. vulgaris, Common or Garden Thynac, is an erect plant, or sometimes procumbent at the base, or clothed with a hoary pubescence ; the leaves are sessile, lincar, or ovato-lanceolate, acute, with revolute edges, fascicled in the axils; the teeth of the upper lip of tbe calyx are lanceolate, but the segments of the lower lip are subulate and ciliated. This plant is a native of the south-west parts of Europe, in dry plains and on hills, and uncultivated places frec from woods. The-plant is very much branched, and has purplish flowers. This speeies is cultivated for cullinary purposes, and many varieties of it are met with in gardens. It has a pungent aromatic odour and taste. These properties are communicated to water by infusion only to a slight extent. They depend upon an essential oil, an ounce of which may be obtained from thirty pounds of the plant.
T. serpyllum, Wild Thyme, or Mother-of-Thyme, is a suffrutieose plant, with capitate flowers, branched decumbent stems, with plain, ovate, obtuse, entire, petiolate leaves, more or less ciliated at the base. It is a native of Great Britain, on hills and in dry pastures, and throughout Europe and the north of Asia. This plant has the same sensible properties as the last, but is more inclined to produce varieties, several of wbich have been described as specics. Thesc vary prineipally in the colour of the flowers and the size of the leaves and plant. Onc of the varieties, T. s.citratus, is known by the name of LemonThyure on account of its scent resembling the leman. The seeds will not however maintain this property: if required to be preserved, the plants must be propagated by means of slips or cuttings.

Both this and the former speeics, when cultivated, are best raised by means of seeds, although they may he easily propagated by parting the roots or planting slips and cuttings. The seed may be sown in March or April, in a light fine soil, and when the plants are two or three inches high, they should be transplanted. Roots or slips should be planted in the autumn. The plants produce abundance of secds in the summer and autumn, whieh, when gathered, should be rubbed ont, and preserved for planting in the following spring.

These plants are not so mucl used in medicine as for culinary purposes. The volatile oil is frequently used as an application to carious teeth. Linnæus recomniends them as a remedy for dissipating tho effects of intoxicating liquors, and a decoction is used in France as an application for the itch.
T. mastichina, Mastich-Thyme, or Herb-Mastich, has ovatc or oblong, obtuse, petiolate leaves, narrowed at the base and not ciliated; the calyx is villous, with feathery subulate teeth, whicl are longer than the tubc. It is a native of dry, sandy, uncultivated places in Spain, Portugal, and Barbary. It exhales a scent resembling masticli. It is the Marum vulgare of older botanists, and at one time had some reputation as an errhine. Several other speeies of thyme are cultivated; they do not require much care; the more delicate and rarer kinds are found amongst collections of alpine plants.
THYMUS GLAND, wbich in the calf and lamb is called the sweetbread, is an organ situated 'behind the sternum, in the anterior mediastinum, in front of the pericardium and the large vessels arising from the base of the heart. In the embryo and the infant it has, in proportion to the rest of the body, a very considerable size; in afterlife it becomes comparatively smaller, and at last nearly disappears. It is of an elongated form, its greatest dimension being from above downwards, and is composed of two chief portions, which, by careful dissection, may be separated in tbe middle line. At each end it bears two processes or horns, of which the upper arc longer and more slender than the lower, and the right are usually longer than the left. It is supplied by several branches from the internal mammary, inferior thyroid, and mediastinal arteries, to which veins of considerable size eorrespond. Its alsorbent vessels are numerous and large, but not more so than in other glands of equal vascularity.

The thymus gland is composed of a grcat number of sinilar şmall masses or lobules, which may be separated
by dissection, and are held together by fine cellular tissue contlnued fiom that which iuvests the whole glund. The lubules vary in size from half a line to three lines in diameter, and have simple or complex cavities filled with a nithy fluid. Sir Astley Cooper (The Anatomy of the Thymus Gland) says that the lobules are arranged in spiral lines, so that the gland may be unravelled into a sort of kuotted rope of lobules, which are wound around a central cavity' or reservoir, with which the cavities of the lobules communicate. But the existence of suela a central eavity is not generally admitted.
The fuid contained in the eells of the thymus gland is, in young and healthy animals, opaque und creamy. It has been partienlarly examined by Mr. Gulliver (Appendix to Gerbers General Anatomy), who has found that both in its chemical composition, and in the abundance and structure of the clobules which it contains, it closely resembles the fluid of the lymphatie glands.
Of the function of the thymus gland searcely anything probable is known. Whatever it be, it is performed most actively during fotal life and the first year of extra-uterine life: for during this time the thymus gland grows at the sainc rate as the rest of the body, its cells are full of fluid, and the fluid is thick and abundant in globules. From the end of the first to the end of the third year its size does not materially vary; but aner this time it gradually diminishes, and affer the twelfth or fourleenth year it is rare to meet with more than a slight trace of it. . It is also of considerable size and is full of fuid in hybernating animals : and this, together with its activity during foetal hife, has suggested that its office is in some way connected with the preparation of the blood, when respiration is either inacfive or has not commenced. But, in these same circumstances, digestion is not going on, and it is therefore just as probable that the thymus gland may have the office of preparing a fuid and clobules, like those or the ehyle, from the materials which lave served for the nutrition of the body and have been re-absorbed; in other words, that its function is analogous to that of the lymplatie glands. This was the opinion of Hewson (Experimental Linquiries); it is supported by the observations of Mr. Gulliver and many others, and is on the whole .more probable than any other yet advanced.
The thymus gland is rarely diseased. The only affections of it yet described are an unnatural enlargement of it, and its persistence in the dimensions which it has in foetal life. When it is enlarged there is generally a more than usual development of all the lymplatie glands; and not unfrequently there are at the same time signs of serious general disorder of the health, such as rickets, hydrocephalus, \&c. It has been supposed, espeeially by the German pathologists, that a peentiar affection of the respiration, whiel2 has been called Thymic Asthma, is the general result of enhargement of this gland; but the conneetion of the two affections is not yet elearly established.

THYO'NE. [Hol.othuria, vol. xii., p. 269.]

THYROID GLAND is an organ situated in the middle and fore part of the neck, in front and by the sides of the thyroid cartilage of the larynx (from which it has its name), and of the cricoid cartilage and the upper part of the trachea [Larysx], to which it is closely fixed by cellular tissue. It is composed of two chief lateral portions or lobes, and a smaller portion or isthmus connecting them. A fourth portion, which is long and slender, gand is named the middle colunn or horn, usually passes upwards from the isthmus in front of the larynx. The lateral lobes are of a somewhat pyramidal form, about two inches long, and an inelh wide at their bases. The whole gland is proportionally larger in the embryo than in the adult, and in women than in men.
'The substance of the thyroid gland is firm, fleshy, and very vascular. it receives a copious supply of blood from two superior and two inferior thyroid arteries ; the former are branches of the external carotid, the latter of the subclavian arteries; their branches communiente freely in the gland, and they are accompanied by veins and lymphatics of corresponding size. The interior of the gland contains numerous very minute cells, lined by polished membranes, and in joung persons filled by a clear albuminous fluid, in which. or in the walls of the cells, there are numerous granular corpuseles.
Of the function of the thyroid gland no more is known than of thuse of the spleen and thymus gland, between
which it seems, in structure, to hold an intermediaio piace; resembling the spleen in its vascularity; which is lar greater than is required for its nutrition, and the thymus in the existence of cells containing a fluid, and in its development during early life. What has beens said of their probable functions might be repented here.
The thyroid gland is subject to several changes of structure, most of which, being attended with enlargement, are comprehended in the name of bronchocele or goilre [38onchockle], to which the reader is referred. In many eases the cells of the gland are enlargei, aud its structure, which in health is with diffieulty discernible, may in these be easily demonstrated.
THP'SANO'PODA. [Stomarods, vol. xxiii., p. 81.]
TIARA (riápa or riápac), a high kind of hat, which was in antient times worn by the inhabitants of Middle and Western Asia, especially by the P'ersians, Parthians, Armenians, and Phrygians. There were two kinds of tiaras: the upright tiara was only used by kings, priests, and uther persons of the lighest rank, and the npper part had fre quently the shape of a crown; the tiara worn by other people was of a soft and fiexible material, so that it hung down on one side, as in the case of the so-called Phrygian bonnet. (Hesyehius and Suidas, δ, ε. raipa.) The tiaras of persons of high rank were of the most costly colours, such as purple, and adorned with gold and precious stones. (Uvid, Metamorph., xi. 181;. Valerius Flaceus, vi. 699 ; compare Dictionary of Greek and Rom. Antiq., under 'Tiara.')

In modern times the term tiara is applied to the headdress of the popes, which is worn on solemn oceasions, and consists of a triple crown. Hence it is also used in a figurative sense to designate the papal dignity.
TIA'RA, Mr. Swainson's name for a genus of 'Mitrinæ,' his term for the subfamily of testaceous mollusks, the shells of which are termed ' Mitres' by collectors. [VoluTids.] N.13. This generie name comes too near to Turis. TIARI'NI, ALESSANDRO, one of the most celebrated painters of the Bolognese school, was born at Bologna in 1577. He first studied under Prospero Fontana, and, after Fontana's death in 1597, under Bartolomeo Cesi; but having in a quarrel discharged a pistol or similar weapon at a fellow-scholar, without however doing him any injury, he was obliged to fly from Bologna. He went to Florenee, and there engaged himself with a portrait-painter, for whon lie painted hands and draperies, and some of his performances having attmeted the notice of Domenico da Passignano, he was admitted loy that painter into his studio as a scholar. Tiarini remained with Passignano seven years, and by that time acquired so great a reputation, that he received invitations from 13ologna to return to that city. In IBologna his works excited universal admiration for their invention and earnestness of elaracter, and for their boldness of foreshortening, corrcetness of design, and propriety of colouring: the tone of Tiarinis pictures is sombre; he used little red, and avoided gay colours generally. His works, which are very numerous, consist chiefly in oifpaintings; he exceuted comparatively little in fresco: those in public places alone, in IBologna and its vicinity, and in Mantua, Modena, Reggio, Parma, Cremona, and lavia, amount to upwaids of two hundred: their subjects are generally of a melancholy or serious nature. The following are the most celebrated:-A Miracle of St. Dominie, in the Capella del Rosario, in the church of San Domenico at Bologna, painted in competition with Lionello Spada, in whicle the saint restores a dead child to life; the exhumation of a dead noonk, in the convent of San Michele in Bosco; and St. Peter repenting his Denial of Christ, stauding outside the door of the liouse of the high priest, with the Mocking of Clurist in the background, illuminated by torchlight.

Ludovico Carracei, whose style Tiarini ultimately adopted, was a great admirer of his works: when he first saw Tiarini's pieture of the Miracle of San Domenico, lie is reported to have exclaimed that he knew no living master that could be compared with Tiarini. Many of Tiarini's pietures, out of Bologna, have been altribuled to one or other of the Carracei: such was the case with the celebrated Deposition from the Cross, now in the Gallery of the Academy of Bologna, formerly in the church of the college of Montalto: it is engraved in the work of Rosaspina, Ia Pinacoteca della Ponteficia Accademia delle Belle Arti in Bologna.'

Several of Tiarini's pictures have lost their colour, owing to his practice of glazing; in some the colouring consists entirely of glazed tints, the design being executed in grey. He opened a life academy in Bologna, and had many seloolars. Malvasia has preserved the name of a famous model that he used frequently to engage, Valstrago. Tiarini died in 1668 , aged ninety-one.
(Malvasia, Felsina Pittrice; Lanzi, Storia Pittorica, \&c.)

TIA'RIS, Crestlet, Mr. Swainson's name for a genus of Fringilidide, placed by him in the subfamily Coccothraustince, between Amadina and its subgenera and Carduelis.
Generic Character.-Bill perfectly conic, entire ; commissure sinuated, and consequently angulated. Nostrils nlmost naked, round. Wings moderate ; first quill rather shorter than the second, third, and fourth, which are equal and longest. Tail even or slightly rounded. Feet moderate. Middle toe and tarsus of equal length; lateral toes equal ; hinder toe much shorter than the tarsus. Claws small, fully curved. Head crested. Locality, South America only.

Example, Tiaris ornatus. Pl. Col., 208 (Classification of Birds).

Mr. G. R. Gray arranges this genus in the subfamily Fringillina, between Pytelia, Sw., and Carduelis (Antiq.), Briss. (List of the Genera of Birds.)
Tibaldeo. [Tebaldeo.]
TIBALDI, PELLEGRINO, otherwise called Pellegrino Pellegrini, or sometimes Pellegrino da Bologna, distinguished himself both in painting and in architecture. He was hom in 1527, at Bologna, where his father, who originally came from Valsolda in the Milanese territory, was only a common mason. How, so circumstanced, the father was able to bring up his son to a protession requiring means beyond those of his own condition in life, does not appear; neither is it known from whom Tibaldi received his first instruction in painting. In 1547 he visited Rome, with the intention, it is said, of studying under Pierino del Vaga, but as the latter died in that same year, he could hardly have received any lessons from him. Whether he became a pupil of Michael Agnolo is unknown : he certainly studied his works very successfully, for while he caught from them grandeur of style and energy of forms, he so attempered their scverity by the freedom and grace of his pencil, that he afterwards acquired from the Carracei the name of 'Michelagnolo Riformato,' and may be considered as the originator of that style which they perfected. We must, however, conclude that although he was cmployed there in the church of S. Lodovico di Franecsi, he did not display any great ability with his pencil during his residence at Rome, it being related of him tliat he felt so discouraged as to have determined to starve himself to dcath, from which desperate resolution he was withheld only by Ottaviano Mascherino, who advised him to give up painting and devote himself entirely to architecture, for which he had shown considerable taste. In all probability this aneedote has been strangely exaggerated, nor are we informed how he set about putting Mascherino's advice into practice. That he partly adopted it, is certain, and equally certain that if he renounced painting for a while, he returned to it: in fact, not very long after the circumstance just spoken of, he was sent to Bologna by Cardinal Poggi to adorn his palace (afterwards occupied by the Academia Clementina), where he painted the history of Ulysses. For the same prelate he also painted the Poggi Chapel, which had been erected after Tibaldi's own designs, and it was those productions which excited the admiration of the Carracci. He was next employed at Loretto and Ancona, where he executed several works in fresco, and among them those with which he adorned the Sala de; Mercanti, or Exchange, in the last-mentioned city.
His reputation as an architect in the meanwhile increased, and after being employed to design, if not to execute, several buildings at Bologna, and the Palazzo della Sapienza, or Collegio Borromeo, at Pavia (which last was begun by Cardinal Carlo Borromeo in 1564), he restored the Archiepiscopal Palace at Milan, and was appointed chicf architect of the Duomo, or cathedral, in that city (1570). He suggested the idea or first design of the modern façade attached to that celebrated Gothic structure,-a design which has obtained him both praise and censure in alnost equal degree. Among other buildings by him at Milan
áre the church of San Lorenzo, that of S. Fedele, and that of the Jesuits. But the work which, if less celebrated than some of his others, is considered by one of his critics his chef-d'œuvre, and a masterpiece for the contrivance and ability shown in it, is the 'Casa Professa,' or that of the Jesuits at Genoa, with its church, \&c.., where he completely mastered all the difficulties arising from the inconvenience of the site. Neither his fame nor his works were confined to Italy, for the former caused him to be invited to Spain in 1586, by Philip II., where he was employed both in his capacity of architect and in that of painter, in which last he executed many admirable frescoes in the Escurial. Liberally rewarded by Philip, who also conferred on him the title of Marquis of Valsolda (his birth-place), Tibaldi returned to Italy after passing about nine years in Spain, and died at Milan in 1598; such at least is the date assigned by Tiraboschi, though some make it much earlier, 1590 or 1591 , and others about as much later, viz. 1606.
(Tiraboschi ; Lanzi; Milizia; Nagler.)
TIBALDI, DOMENICO, younger brother, not son of the preceding, as he is sometimes called, was born in 1541, and was, if not equally cclebrated, like him both a painter and architect, but ranks far higher in the latter than in the other character. He executed many buildings at Bologna, the principal among which are the Palazzo Magnani, the Dogana, or custom-house, the chapel in the cathedral, so greatly admired by Clement VIII. as being superior to anything of the kind at Rome, and the small church of the Madonna del Borgo. Domenico also practised engraving with success, and in that branch of art was the instructor of Agostino Carracci. He died at Bologna in 1583.
(Milizia; Nagler.)
TIBBOOS. [Sahara.]
Tiber. [Paral State.]
TIBE'RIAS. [Palestine ; Syria.]
TIBE'RIUS CLAU゚DIUS NERO was born in Rome, on the 16 th November, 42 в.c., according to Suetonius. He belonged to the gens Claudia, an old patrician family of great distinction, which was known for its aristocratical pride. Tiberius belonged to this house by the side of his father, Tiberius Claudius Nero, as well as his mother, Livia Drusilla, who was the niece of her husband, being the daughter of Appius Pulcher. This Appius Pulcher was a brother of Tiberius Claudius Nero the elder, and they were both sons of Appius Cæcus. His father was quaestor to C. Julius Cæsar, and distinguished himself as commander of the fleet in the Alexandrian war. He became successively praetor and pontifex, and in the civil troubles during the triumvirate he followed the party of M. Antonius. Being compelled by Octavianus to fly from Rome, he escaped by sea, and hastened to M. Antonius, who was then in Greece. His wife and his infant son accompanied him in his flight, and they happily escaped. Tiberius the elder soon made his peace with Octavianus; he gave up to him his wife, Livia Drusilla, who was then pregnant with Nero Claudius Drusus, and he died shortly atterwards (38 в.с.). Thus Tiberius the younger and his brother Nero Claudius Drusus became step-sons of Octavianus, who from the year 27 b.c. was Augustus.
The great talents of Tiberius were developed at a very early age. In his ninth year he delivered a public speech in honour of his father; in 29 в.c. he accompanied Octavianus in his triumph after the battle of Actium, and rode on his left side, Marcellus being on the right. After having assumed the toga virilis, he distinguished himself by splendid entertainments which he gave to the peoplc. He married Vipsania Agrippina, the daughter of Agrippa, and the granddaughter of Cicero's friend T. Pomponius Atticus. She brought him a son, Drusus, and she was again with child when Tiberius was obliged to sacrifice her to the policy of Augustus, who compelled him to marry his daughter Julia, the widow of Marcellus and of Agrippa, and the mother of Caius and Lucius Cæsar. (12 b.c.) Tiberius obeyed reluctantly, but he never ceased to love Vipsania. Such was his affection for her, that whenever he saw his repudiated wife he would follow her with tears; and accordingly an order was given that Agrippina should never appear in sight of Tiberius. For some time Tiberius lived in harmony with Julia, and had a son by her, who died young. But the scandalous conduct of Julia soon disgusted him, and he withdrew from all intimate intercourse with her.

During this time Tiberius took an active part in publie affuirs. Ite defended the iuterests of king Archelaus (of Judra, or of Cappradocia), of the Tralliani, and of the Thessalians: he was aetive in obtaining relier for the inhalitants of Laodicea, of Thyatirn, and of (Chion, who, having suffered from an earthquake, had implored the asustance of the sennte; he plended ayaint Finnius Carpio, who had conspired against Augustus, and who was eondermed for high treason; and he was twice intrusted with the 'cura annonae.' Tiberius mnde his first campaizn as Tribunus nuilitum in the Cantabrian war. From Spmin lic went to Asia Minor, and suceeeded in restoring Tigrancs to the throne of Armenia, nnd iu forcing the Partlinans to surrender the engles which they had taken froni M. Crussus. He returnefl to Rome in 18 n.c. During a year he had the command in Gallin Comata, the peace of which provinee was troubled by disputes between the princes and by incursions of the barbarians.
ln 15 B.c. . lie and his brother Drusus brought the Alpine nations of Rhaetia to oberlience. IIc also put an end to the war in Pannouia, which had lasted since 18 B.C., and which lie terminated by subduing the Breuci, the Scordlisci, and the Dalmatae, who were allied with the Pannonians. (14 b.c.) The Germani liaving defeated M. Lollins and taken the eagle of the fint legion in 10 B.c. (Velleius Paterculus, ii. 97), Drasus was sent to the Rlune, and Tiberius returned to Rome, where he celebrated his first triumph. In the Khactian war Tiberius had shown great military skill, but the Romans carried on the war with unheard of cruelties against the inhabitants, of whom the majority were killed or carried off as slaves. In memory of lis victorics, a monument was erected at Torba (now Monaco, in the neirhhlourhood of Nizza), on which the names of forty-fiye Rhactian tribes were inscribed. (Plinius, Hist. Nat., ;iii. 244.) In 13 s.c. Tiberius was appointecl consul, together with P. (Puintilius Varus. Meanwhile Drusus carried on the war in (iernany with great success; but in 9 s.c., on his retrent from the banks of the Ellbe to the Rhine, he had a fall from his horse, whieh proved fatal. Tiberius was then at Pavia, but as soon as he was informed of this aecident, he hastened to Germany, and arrived in the canmp of his brother, near the Yseel and the Rhine, just before he died. Tiberius led the arnny to Mainz (Moguntiacum). He ordered the body of his brother to be carried to Rome, and he nceompanied it on foot. After discharging this pious duty, he returned to Germany. In the new war with the Germani, Tilberius at first defeated them, and transplanted 40.000 Siganbri fron the right bank of the lower Shine to the left bank; but he afterwards employed peaceable measures, and by negotiation he obtained miorc influence over them than his brother Drusus by all his victories. (Velleius Paterculus, ii. 07 ; Taeitus, Annal., ii. 26.) He left the command in Germany in 7 u.c., and returned to Rome, where he celebrated his second triumph, and he was consul for the second time in the sane year.
Tiberius was now at the height of lis fane ; he was respected by the army, and admired by the people; and he enjoyed the coufidenee of the emperor. He nevertheless suddenly abandoned his important functions, left Rome, rnd, without communieating his motives to anybody, retired to the inland of Khodes. So firm was lis resolution to retire from public alfairs, that he refused to take any nourishment for four days, in order to show his mother that her prayers and teais could not keep lim any longer in Rome. (Suetonius, Trberius, c. 10.) During eight years he led ${ }^{2}$ private life nt Khodes, renouncing all honours, and living in the Greck style, and on terms of equality with those around him, with vinom he kept up a friendly intercourse, especially Greek philosophers and poets. The Romans were surprised to see the step-son of their emperor retire to a distant island; and yarious hypotheses were raised to explain the motive of his voluntary exile. The disgusting conduct of his wife Julia was supposed to be a sufficient cause for this extraordinary resolution; but Tiberius himself aftenvards avowed that he had renounced public business in order to escape all charges of having formed ambitious schemes argainst his steprons, CCius and Lueius Cesear, who were erented 'principes juventutis,' and appointed succeesors of Auplastus in the very year in which Tiberius went to Rhodes. It seems that ho was dissatisfled with the elevation of these two young men, and that there was discond between
him and them; for when he afferwards wished to go back to Rome, Augustus would not allow it until Caius Cresar had consented, and it was also oll condition that he should take no part in the government of the state. Frou all this we may conclude that 'Tiberits and lis mother Livin Ind perhaps been intriguing to exclude Caius and Lueius Cresir from the suceession, and that he preferred a voluntary exile to a compulsory banishment, such as was inflicted by Augustus upon his own daughter Julia. But this is inere supposition, and there are no tacts on which a direct accusation against Tiberius can be sustained. With regard to his banished wife Julia, Tiberius aeted with great delieacy, notwithstanding her conduct, and he besought Augyistus to leave her all those presents which he had formerly given to lier. (Suctonius, T'berius, c. 12, 13.) At last Tiberius returned to Rome (A.D. 2), and was received by the people with demonstrations of great joy. In the same year Lucius Cresar died at Massilia (Marseille), and his cleath was followed by that of his brother, who died in 4 A.D., in consequence of a wound which he had received is the Parthian war. Augustus then adopted Tiberius as his future shecessor, in 4 A.D., and Tiberius in his turn was compelled by Augustus to adopt Drusus Germanicus, the son of his late brother Drusus Nero. Augustus also adopted M. A crippa, the posthumous son of Agrippa and Julia, but he did not designate him as a successor in the empire. The imperial throne was thus secured to the house of the Clandii. In the same year (4 A.v.) Tiberius was appointed commander-illchief in Germany, and he was acconipanied by the historian Velleins Paterculus, who was prefectus equitum. After having subdued the l3ructeri, and renewed the alliance with the Chatti, Tiberius in 5 A.D. made a eampaigul against the Longobards ; who were defeated, ant he obliged the whole north-west of Germany to acknowledge the Roman authority. In the following yenr (6 A.D.) he led 70,000 foot and 4000 horse ngainst Maroboduus, the ling of the Marcomauni, who was saved from ruin by a rising of the inhabitants of Pannonia and northern fllyricum, who intercepted the communieations of the Roman army with ltaly. Tiberius emiployed fifteen legions and an equal number of auxiliaries against these nations, and, in spite of slifficulties of every description, he quelled the outbreak within three years. This war was especially dangerous because the Germani threatened to join the lannoninns, but Tiberius prerented their junction by neqotiations and by the suceess of his arms. After linsing celelrated his third triumph, le was again sent ngainst the Germani, who had slain Varus and his army (9 A.D.). Tiberius, who was recompanied by Germanicus, suceceded in preventing the Germani from invading the eountries on the left bank of the Rhine, and he then celebrated his fourth triumph. Vellcius Paterculus, an able judge of uilitary talents, gives us a most favourable idea of him as a general. Suctonius says also that, sharing in all the hardships of the common solkliers, lie maintained a severe cliscipline, but that at the same time he carefully watehed over the security and the comfort of the soldiers.

Augustus died at Nola on his return from Naples, where he had aecompanied Tiberins, who was going to conduct the war in Illyria (29th ot August, A.D. 14). Anxious to see herson at that seritical moment in Rome, Livia concenled the emperor's death until 'riberius, who was informed of it hy mesengers, had arrived at Nola. (Dio. Cassius, vi. $30,31$.

Tiberius became emperor in his fifty-fifh year, at an age when both the virtues and the vices have aequired strength from habit, and when a manis charncter seldom changes. Until that time he was generally supposed to be a virtuous man; his virtues were inbued with the severe gravity of his character. Anong his bjographers none has blamed his early life; yet no sooner was he emperor, than he was charged with erimes the most dreadful and disgusting. His former life is represented as dissimulation and hypoerisy. An example of sueh dissimulation is known in Mistory. Sixtus V. coneealed his real intentions for thirty years; however, it was not his real character which he thus concealed, but by retiring from affairs, and by simulatimg disrase and infirmity, be made the cardinals believe that by choosing him jope they would make hin their instrument, because his infrmities would not allow him to act with energy. Tiberius however, except the eight years that he spent
in Rhodes, was constantly employed in matters which, although they would have allowed him to conceal his real disposition, he could never have managed with such success, unless his conduct had been directed by the force of his real charaeter.

Augustus succeeded in making himself master of the republic by acemmulating in his person the different high functions of the state. Tiberius, proud and energetic, abolished even the shadow of the sovereignty of a nation which he despised. The Romans being sufficiently disposed to obedience, the only obstacles in his way were the worn-out institutions of the antient republic. Immediately upon the accession of Tiberius, Agrippa Postumus was put to death, probably by order of tiberius (Suetonius, Tiberius, c. 22; Tacitus, Annal., i. 6.) About this time the supreme power was offered by the troops on the Lower Rhine to Germanicus, who however refused it; and the mutiny was quelled by him and by Drusus, the son of Tiberius, who commanded in Pannonia. Tiberius began by some enactments which tended to ameliorate the state of morals; he abolished the comitia for the election of the various officers of the state, and transferred the election to the senate, the members of which were subservient to lum. It has been already said that Tiberius intended to destroy the last remnants of the antient sovereignty of the people, and to supplant the majesty of the Roman nation by the majesty of the emperor. Augustus had already employed the Lex Julia Majestatis to punish the authors of libels against his person (Tacitus, Anmal., i. 72); and his example was followed by Tiberius, who established the Judicia Majestatis, by whiel all those who were suspeeted of having impugned the majesty of the emperor, either by deeds or by words, were prosecuted witl the utmost severity. The number of the delatores, or depouncers of such crimes, daily increased, and a secret police was gradually established in Rome, as well organiserl, and as well supported by spies, as the secret police of Napoleon. The property, lionour, and life of the citizens were exposed to the most unfounded calumnies, and a gencral feeling of anxiety and moral disease prevailed through the empire. The natural severity of Tiberius gradually degenerated into eruelty, and he showed symptoms of that misanthropy and that gloomy state of mind which increased with years. In the mean time Germanieus, the favourite of the army, had avenged the defeat of Varus, but Tiberius recalled him from Germany, and sent him into the East (17 A.d.). Germanicus conquered Cilicia and Commagene, and he renewed the alliance with the Parthians, but he died suddenly at Antioch (19 a.d.): public opinion accused Cneius Piso, the commander in Syria, of having poisoned Gcrmanicus by order of the emperor: but before Piso could be sent to trial, he was found dead.

Seianus, the son of a Praefectus Praetorio, succeeded in obtaining the confidence of the emperor (19-22 A.D.), who henceforth gradually abandoned to him the direction of public affairs, of which Scianus became the absolute master from the year 22 A.D. Drusus, the son of Tiberius, who had govemed the Roman part of Germany with great ability, was poisoned by Seianus (23 A.D.), and this crime was followed by a great many others, with which it is possible that the emperor was very imperfeetly acquainted. His practice was to shut limself up within his palace, and to spend his time in the most revolting debauchery. After the death of Drusus, Tibcrius recommended to the senate as his successors, Nero and Drusus, the sons of the unfortunate Germanicus and of Agrippina, who was still alive. In 26 A.D., Scianus at last persuaded him to retire from public affairs. Tibcrius followed his advice and went to Capua and Nola, until at last he fixed his residcnce on the island of Capreae in the Gulf of Naples. The life which he led at Caprene was a series of infamous pleasures.

From this time all public affairs were directed by Seianus; the cmperor was inaccessible. T. Sabinus, a friend of Nero, was put to death; statues were erected to Seianus, and reecived divine honours. After the death of Livia, in 29 A.D., the authority of Scianus was at its height; but at last Antonia, the aged mother of Germanicus, penetrated through the barriers of Capreae, and informed the aged Tibcrius that Seianus had left him only the name of emperor. She was supported by Macro, the commander of the Practorian guard. In consequenec of this information, Tiberius
ordered the senate to condemn Scianus; and the senate obeyed: Seianus, his family, and his friends were put to death in 31 A.D. Some time after this event, Tiberius retired from Capreae, and took up his residence at a villa near Misenum, which had formerly belonged to Lucullus. (Suetonius, Tiberius, c. 73.) On the 16th March, 37 A.d., he fell into a lethargy, and everybody believing him to be dead, Caligula, the third son of Germanicus, the favourite of old Tiberius, was proclaimed emperor. However Tiberius recovered, and Macro, in order to save himself and the new emperor, ordered him to be suffocated in his bed. Thus died Tiberius, at the age of seventy-cight, after a reign of twenty-three years. (Tacitus, Annal., vi. 50; Suetonius, Tiberius, c. 73.)
There is little doubt that the crimes said to have been committed during the reign of Tiberius, either by himself or by others in his name, are real facts. But the question is whether they are all to be imputed as crimes to Tibcrius. His insanity is a fact which can hardly be doubted ; a dark melancholy, disgust of life, and misanthropy, had taken possession of him, and his struggle with the idea of self-destruction often threw him into wild despair. He found consolation in the sufferings of others, and thus gave those bloody orders which he afterwards regretted. The unnatural pleasures to which he was addicted were only another mode of soothing the despair of his soul. It is probable that his insanity was complete when he retired to Capreac. Sometimes he had lucid intervals, in whicl he wrote those letters of which Suetonius gives some extracts (Tiberius, c. 67), and in which he confesses the wretched state of his soul. His physical healtly was excellent, until some days before his death. Tiberius loved the arts and literature. According to Suetonius he wrote a lyric poem, 'Conquestio de L.. Cæsaris Morte;' he also wrote poems in Greel, choosing for his models Euphorion, Rhianus, and Parthenius, the author of an erotic poem which has come down to us.
(Suetonius, Tiberius; Velleius Paterculus, ii., c. 94, \&c. ; Tacitus, Annal., lib. i.-vi.; Dion Cassius, lib. xlvi.-xlviii.; Horn, Tiberius, ein Historisches Gemälde. The character of Tiberius has been defended by Buchholz, Philosophische Untersuchungen, vol. ii., p. 49, \&c.)

TIBE'RIUS II., ANI'CIUS THRAX, FLA'VIUS CONSTANTI'NUS, one of the greatest and most virtuous emperors of the East. He was born in Thrace towards the middle of the sixth century A.D., and belonged to a rich and very distingtushed family, the history of which is nnlinown to us. He was educated at the court of Justinian, whose successor, Justin II: (565-578), loved hin as his son, and employed him in various civil and military offices. In 573 Tiberius, who was then general of the Imperial guards, commanded the army against the Avars, who were powerful rorth of the Save and the Danube. His lieutcnant having neglected to watch the passages of the Danube, Tiberius was surprised by the Avars and lost a battle. However, he recovered this loss, and concluded a peace, by which the possession of the important fortress of Sirmium, now Mitrowicz, on the Save, near its junction with the Danube, was secured to the Romans. This was one of the few advantages obtained by the Grcek armies during the unfortunate reign of Justin II. Italy, which had been conquered by Justinian, was overrun by the Longobards; the Berbers ravaged the kingdom of Carthage, which had been taken from the Vandals; and on the Persian fronticr Chosrocs (Khosrcw) made rarious conquests. Justin, fceling his incompetency, and having lost his son, looked for a coregent, and his choice fell upon Tiberius. The great talents of Tiberius, his amiable character, his generosity and love of justice, and his sincere piety, had won him the hearts of the nation, and the estcem of the emperor and his ministers. Justin was confirmed in his choice by the empress Sophia, whose private views on this occasion harmonised with the interest of the state. Tiberius was the handsomest man at the court, and it seems that Sophia intended to marry him on the death of Justin. Howerer this may be, before slic declared in his favour, she asked him whether he was married. Tiberius immediately guessed the motive of the question, and ansmered that he was not, although he was secretly married to a lady named Anastasia. He thus gained the protection of the empress, and was proclaimed Cæsar by Justin on the 7 th of Deeember, 574, in a most solemn assembly of
the civil and military offieers, and of the clergy under the presidency of the patriareh Eutychius, by whon Tiberius was erowued with the imperial diadem. In this assembly the emperor Justin addressed to his future suceessor the followint remarkahle speeclı (Theophylactus, iii. 11), whieh Gibbon translates thus:- You behold the ensigns of supreme power. You are about to receive them, not from my land, but from the hand of God. Honour them, and from them you will derive honour. Respeet the empress your mother-you are now her son-before, you were her servant. Delight not in blood, nbstain from revenge, avoid those aetions by which I have incurred the public hatred, and consult the experience rather than the example of your predecessor. As a man, I have sinned; as a sumer, cren in this life I have been severely punished: but these servants (his ministers), who have abused my confdence and inflamed iny passion, will appear with me before the tribumal of Christ. I have been dazzled by the splendour of the diadem: be thou wise and modest; remenuer what you hare been, remember what you are. To this speech of n dying sinner, Tiberius ansivered:'If you consent, I live; if you command, I dic: may the God of heaven and earth infuse into your heart whatever I have neglected or forgotten.:

The burden of government devolved upon Tiberius, whose anthority was never checked by Justin. The war with Persia prevented Tiberius from expelling the Longobards from Italy; but he sent there all the troops he could dispose of, and suceeeded in maintaining the iniperial authority in the Exarchate of Ravenna, on the Ligurian coast, in the fortified places in the Cottian Alps, in Rome, in Naples, aud in the greater part of Campania and of Lucania. Ife sarel Rome and pope Pelacius II. from the Longobards by sending a fleet laden with provisions (713). Some years later he concluded an alliance with the Frankish king Chilperic, who checked the Longobards in the north of Italy, and Tiberius succecded in bribing several of the thirty Longobardian dukes, who, after the murder of king Clepho (573-574) and during the minority of Autharis, imilated in Italy the Thirty Tyrants of Athens. The daughter of king Alboin and Rosamond, who lad fied from Italy, was then living at the court of Constantinople.

The most important event in the reigns of Justin and Tiberius was the war with Persia. Khosrew, the king of Persia, had made extensive conquests in Asia Ninor during the reion of Justin. In 575 Tiberins coneluded a partial truce for three years with him, on eondition that hostilities should ecase execpt on the trontiers of Armenia, where the war was still earried on. These fronticrs being easily defended on aecount of the great number of defiles in the Armenian mountains, Tiberius levied a strong army while Khosrew lost time in forcing passages or in besicging small fortified plaecs. For several centuries the Eastern empirc had not seen suela an army as was then raised by Tibcrius. A hundred and fifty thousand men, among whom were many Teutonic and Slavonic barbarians, crossed the Bosporus in 576 , under the eommand of Justinian, and advanced to the relief of Theodosiopolis, the key of Srmenia. Theodore, the Byzantine gencral, defended the fortress against the whole army of Khosrew. At the approach of Justinian the Persian king left the sicge and adraneed to mect the Greeks. The encounter took place near Melitenc (in the distriet of Melitene in Armenia Minor). The Persians were routed, and many of them were drowned in their retreat across the Euplirates; twenty-four clephants, loaded with the treasures of Khosrew and the spoil of his camp, were sent to Constantinople. Justinian then advaneed as far as the Persian Gulf, and a peace was about to be conchuded in 578 ; but Khosrew broke off the negotiations on account of a victory which his general Tamehosroes (Tam-khosrew) unexpeetedly obtained over Justinian by surprising him in Armenia. Tiberius now recalled Justinian, and appointed in his place Mauritius, who was afterwards emperor. Mauritius restored the old Roman precaution of hever passing the night exeept in a fortified camp; he advaneed to meet the Persiaus, who had broken the truce of 5iJ. and attacked the empire on the side of Mesopotamia (577). The Iersians retired at the approach of Mauritius, who took up his winter-quarters in Mesopotamia ($577-8$).

On the 26th of September, 578, Tiberius beeame sole emperor by the solemn abdication of Justin, who ilied on
the 5th of Oetober next. After the nuneral of Justin, when the new emperor appeared in the Hippodrone, the people became impatient to see the empress. The witlow of Justin, who was in the Ilippodrome, expeeted to be presented to the people as empress; but she was soon undeccived by the sight of Anastasia, who suldenly appeared at the side of Tiberius. In revenge, Sophia formed a plot against Tiberius, and persuaded Justinian, the former eonmander in the l'ersian war, to put himself at the head of the conspiraey. Tiberius however was informed of this design. Justinian was arrested, and the emperor by pandoning him made him for ever his faithful friend. Sophia was deprived of her imperial pension and palaees, and she died in neglect and obscurity:

A quarrel broke out between Eutychius, the patriareh, and Gregorius, the apocrisiarius of Constantinople, who could not agree nu the state of the soul after deatle. The Grecks were then the most disputatious people in the world about rehigious matters, and their disputes oftell led to serious trouble. The emperor aecordingly undertook to settle this dispute. Adhering to the opinion of Gregorius, he convinced the patriarch that he was wrong, and he persuaded him to burn a book which he had written on the corporeal nature of the soul after death.

Khosrev died in 579, after a reign of forty-cight years. He had entered into negotiations with the Greeks, but his successor, Hormisdas (Ormuz), broke them off and recommenced the war. Hormisdas was defeated by Mauritius and his lieutenant, Narses, a great captain, who must not be confounded with Narses, the victor of the OstroGoths. They overran Persia in one eampaign (579), and in 580 they routed the armu of Ilormisdas in a bloody battle on the banks of the Euplırates, and took up their winterquarters in Nesopotamia. At the same time the Greeks obtained great advantages in Africa. Gasmul, king of the Mauritani or Berbers, had defeated and killed three Greek generals, Theodore, Theoctistes, and Amabilis. But in 580 he was defeated by the exarch Gemadius, and put to death. Tiberius was less fortunate in Europe, the A vars having surprised and taken the town of Sirmum. But in the following year (581) Mauritius destroyed the Persian army in the plain of Constantine, and their general, TauKhosrew, lost his life. Mauritius had a triumpls in Constantinople, and on the Eilh of August he was created Casar by Tiberius, who was then worn out ly illness, and who had no male issue. After having given his daughter, Constantina, in marriage to Mauritius, Tiberius died on the 14th of August, 582 and, since the time of the great Theodosius, no emperor's death caused regret so universal. It is a remarkable circumstance in the reign of this emperor, that he was always provided with money without oppressing the people by taxation; and yet lis liberality was so great that the people used to say that he had ail inexhaustible treasure. But all these resourees did not enable him to save Italy, which may be accounted for thus :-During the invasions of Italy and other parts of the Roman empire by the barbarians, many rich inen saved great quantities of gold and silver, which they earried to Constantinople, then the only safe place in Europe. This city being the centre of the arts, and the commeree and industry of the East being very extensive, even the money whieh fell into the hands of the barbarians gradually fonnd its way into the Greck empire, where the barbarians purchased all those articles which they had not skill enough to fabricate themselves. This view is corroborated ly the fact, that notwithstanding the immense tribute whiel the Greck emperors often paid to the barbarians, there was always a want of coin in the barbarian kingdoms. On the other hand, the Greeks having lost their martial habits, the emperors were obliged to reeruit their armies among the barbarians. These people however were as ready to figlit against the emperors as for them; and it wonld have cudangerd the existence of the empire if too large a number had been engaged in its service. Thus Tiberins preferred bribing the Longobardian dukes to raising, a large army of barbarians, who would probably have joined the Longobards as soon as they had got their pay.
(Cedrenus; Theophanes; Theophylactus; Zonams ; Gregorius Turonensis; Paulus Diaconus; Gibbon, Decline and Fall: Le l3eau, Histoire du Bas Eimpire.)
TIBE'RIUS ALEXANDER, prefect of Egjpt, was the son of Tiberius Alexander who was alabarcha, of Alexandria, and the brother of Lhilo Judxeus, the well-known
writer. Tacitus calls him an Egyptian, but this only means that he was a native of Alexandria; for he was a Jew, though he afterwards adopted paganism. Nero appointed him governor of Judaea, where he succeeded Cuspius Fadus, and he made him a Roman eques. In the last campaign of Corbulo against the Parthians, Tiberius Alexander and Vinianus Annius, the son-in-law of Corbulo, were given as hostages to king Tiridates, who came to the Roman camp for the purpose of settling his differences with the Romans (A.D. 63). Tiberius Alexander was afterwards appointed prefect of Egypt, in which capacity he quelled a dangerous insurrection of the Jews of Alexandria, who were jealous of the favour which Nero showed the Greek inhabitants of that town. The resistance of the Jews was so obstinate, that Tiberius was obliged to employ two legions and five thousand Libyan soldiers against them; and it is said that more than fifty thousand Jews perished on this oceasion. On the lst of July, 60, Tiberius Alexander proclaimed Vespasian emperor, pursuant to a scheme which had been concerted by Vespasian, Titus, and Mucianus, the proconsul of Syria. In consequence of this event, the 1 st of July, 69 , is regarded as the beginning of the reign of Vespasian, who showed great regard for his governor of Egypt. When Titus, the successor of Vcspasian, was about to undertake the siege of Jerusalem, which resulted in its capture, he was aecompanied by Tiberins Alexander.
(Joseplus, Antiq. Jud. and De Bello Jud.; Suetonius, Vespasiunus; Tacitus, Annal., xv. 28; INist., i. 11; ii. 74 , 79 ; the notes of Ernesti to Suctonius and Tacitus.)

TIBERIUS (Tißipoos), an Alexandrine grammarian, who probably lived in the fourth century of our æra. Suidas (8.v. Ti(ifipoç), who calls him a philosopher and a sophist, ascribes to him a long list of rhetorieal works, all of which are lost, with the exception of one, which formerly used to be called $\pi \epsilon \rho \dot{i} \tau \tilde{\omega} \nu \pi \alpha \rho \dot{a} \Delta \eta \mu \circ \sigma \theta \dot{i} \nu \epsilon \iota \sigma \chi \eta \mu \dot{\tau} \tau \nu$, and which is one of the best works of the kind that were produced at the time. The editio princeps of it, which is ascribed to Leo Allatius, appeared at Rome in 1643. The next edition is that of Gale, who incorporated the work of Tiberius in his 'Rhetores Selecti'' Oxford, $1676,8 \% 0$. A reprint of this collection of rhetoricians was edited by J. F. Fischer, Leipzig, 1773,8 vo. In all these editions the work of Tiberius contains only 22 short chapters, which treat on Schemata, that is, those forms of expression which are not the natural forins, but are adopted for ornament or use. In the year 1815, J. F. Boissonade published at London a new edition, in 8vo., from a Vatican manuscript, in which the
 are 26 chapters more than had ever before been published; and this second part of the work treats on the socalled ' figurae elocutionis,' or the ornamental forms of clocution. This edition of Boissonade also contains a work of Rufus, entitled rixxy $\dot{\rho} \eta$ торик \hat{y}, the author of which has only become known through the Vatican MS. containing the complete work of Tiberius: in the editions of Gale and Fischer it was called the work of an anonymous writer. A few tragments of other works of Tiberius are preserved in the scholiast on Hermogenes, ii., pp. 383 and 401, edit. Aldus.
(Groddeck, Initia Historiac Graeeorum Literariae, ii., p. 173; Westermann, Geschichte der Griech. Beredtsamkeit, p. 271, \&ie.)
TIBE'IRIUS ABSI'MARUS became emperor of the East, in A.D. G98, under the following circumstances:-Leontius dethroned and banished the tyrant Justinian II., and having assumed the imperial title in 695 , continucd the war with the Arabs in Atrica. Notwithstanding the Greeks were assisted by the Berbers, they lost Carthage in 697 ; they reeonquered it shortly afterwards, but in 698 the Arabs retook the town from the Grecks and entirely destroyed it. A powerful fleet, commanded by the patrician John, was then off Carthage ; but although John entered the harbour with a division of his flect, and landed a body of troops, his measures had only a partial effect, and he was obliged to leave Carthage to her fate. The destruction of this famous town was attributed by the Greek officers to the incompetency of John, and they were afraid to return to Constantinople without having prevented the ruin of Carthage. Absimarus, the commander of the Cibyratae, or the troops of the province of Cibyra, then the collective liame of Caria and Lycia, turned the diseontent of the soldiers to lis own profit. He persuaded his men that the
emperor would punish them severely for not having obtained some advantage over the Arabs, and that they ran the risk of suffering for the faults of their commander-in-chief. When the fleet was off Crete, a mutiny broke out. The Cibyratae proclaimed Absimarus emperor, the rest of the fleet followed their example, and John was massacred.
Absimarus having arrived at Constantinople, cast anchor in the bay of Ceras (now the Golden Horn), between this city and the suburb of Sycac. . Leontius prepared a vigorous resistance; but the courage of his soldiers and of the inhabitants was weakened by an epidemic disease, and at last Absimarus found his way into the town by bribing some sentinels.
Absimarus assumed the name of Tiberius and was acknowledged emperor: his rival, Lcontins, had his nose and his ears cut off, and was confined in a monastery. Tiberius Absimarus continued the war with the Arabs, and appointed his brother Heraclius commander-in-chief. This experienced general conquered Syria in 699 and 700, and treated the Mohammedan inhabitants most barbarously : it is said that two hundred thousand of them lost their lives by the sword of the Greeks. This war continued during 701, 702 , and 703; and, although the Greeks did not recover Carthage, they obtained many signal advantages. Tiberius Absimarus had great influence in Italy, where popes Sergius and John VI. were continually harassed by John Platys, and afterwards by Theophylact, the Greek exarch of Ravenna.

Tiberius Absimarus lost his crown by a sudden revolu. tion. When Leontius dethroned Justinian II., this prince had his nose cut off, and was banished to the town of Cherson, in the present Crimea. Some years after, he fled to the khaghan, or khan, of the Khazars [Tartars, Khazars], who receised him respectfully, and assigned for his residence Phanagoria, once an opulent city, on the island of Tamatarcha. [Tasian.] The khaghan, whose name was Busirus, gave him in marriage his sister Theodora; but Tiberius Absimarus bribed the khan with a large sim of gold, and Justinian was only saved by the affection of Theodora, who discovered to him the treacherous design of her brother. After strangling with his own hand the two emissaries of the khaghan, Justinian rewarded the love of his wife by repudiating her and sending her back to her brother Busirus; and he fled to Terbelis, or Terbellus, the king of the Bulgarians. He now formed the plan of recovering his throne, and he purchased the aid of Terbelis by promising him his daughter and a part of the imperial treasury. At the head of fifteen thousand horse, they set out for Constantinople. Tiberius Absimarus was dismayed by the sudden appearance of his rival, whose head had been promised by the khaghan, and of whose escape he was yet ignorant. Justinian had still some adherents in Constantinople, who introduced his troops into the city by means of an aqueduct. Tiberius escaped from Constantinople, but he was seized at Apollonia on the Pontus Euxinus (705), and Justinian ordered him, his brother Heraclius, and the deposed Leontius, who was still alive, to be dragged into the Hippodrome. Before their execution, the two usurpers were led in chains to the throne, and forced to prosirate themselves before Justinian, who had sworn not to spare one of his enemies. Planting his feet on their necks, the tyrant watehed the chariot-race for more than an hour, while the people shouted out the words of the Psalmist, " Thou shalt trample on the asp and basilisk, and on the lion and dragon shalt thou set thy foot.' He then gave orders to behead Tiberius, Leontius, and Heraclius. Justinian II, reigned till 711 . The Greeks gave him the surname of Rhinotmetus, that is, 'he whose nose is cut off.' Tiberius Absimarus had two sons, Theodore and Constantine, who probably perished with their father. It is said however that Theodore, who is also called Theodosius, survived his father, and became bishop of Ephesus and one of the leaders of the Iconoclasts; but this is doubtful.
(Theophanes; Cedrenus; Zonaras; Gibbon, Decline and Full; Le Beau, Histoire du Bas Empire.)
TI'BET is the most southern of the three great tablelands of Middle Asia. The name Tibet is derived from ' Thu-pho,' that is, the country of the 'Thu,' who founded an empire in Northern Tibet in the sixth century A.d. The name 'Thu-pho' has been mutilated by foreigners, and especially by the Mongols, into Thupo, Tobut, Tüböt, Vol. XXIV.-3 I

Tcbet, and Thibet. The orthography Tibet was introduced by the Jesuit miscionaries. Samuly Selsen, the historian of the Mongols and the modern Chinese, write it Tilibet, and this latter orthography has been adopted by kitter. Anather uatne of this eountry is ' P'ue-Koa-chim', which, aecording to Turner, signifies the 'snowy conntry in the north." Sanang Setsen ofen calls it "Gaug d'yau-jul, which signities the 'comutry of the snow' in the Mongol langrage, a name which is analogous to 'Ieveland.
Our knowledge of Tibet is very imperfeet. We are only acquainted with some lines of road and certain points which lave heen visited by travellem. The Clinese geographers have furnished very valuable notiees concerning this country, but the Tibetan sources are almost unk nown to Enropeans. Mareo P'olo visited Tibet; in the beginning of the eighteentls ecutury (from the 17 th of August, 1715 , to the 18th of Mareh, 1716) Futher Desideri travelled throngh nearly the whole extent of Southern Tibet, from Leh in the west, to IILassa or Iasisa in the east; Fr! her de la Penna was also in Tibet; and in: our own days Turner, Mooreroft, and Gerard lave visited parts of it.
Boundaries.-Tibet, in the largest sense of the word, has the following froutiers. The Bolor Momtains, a branch of the Hindu kush, whieh stretehes towards the northwest, in $7: 2^{\circ} 30$ E. loug., form the western boundary. The length of this frontier is about 87 miles. It is bounded on the south-west by the Mindu Kush, from Mount Tutukan Mutlami and the north-western part of the Ilinnalaya as far as the western frontier of Nepal; a clistance of aloout 450 mules. The southern boundaries are formed by the range of the Himalaya from the western frontier or Xepal to the eastern frontier of Bootan, a distance of about 740 miles, and by the northern boundaries of Assan, Burma, and part of the Chinese provinee of Yunnan. This latter nart, whieh is nearly unknown, runs in a south-eastern direction, and most probably as far as the jnnetion of the Yu-leang-110, or Jotehou, with the Kineha-Kiang, or Yang-tse-Kiany, in Yunnan, between 102° and $103^{\circ} \mathrm{E}$. Dong. The length of this part of the frontier in a straight line between the two extremities is about 320 miles. The whole length of the southern frontier, aceording to a rough estimate, is 150.40 miles, but as this frontier forms a curve, its real length is much more. The eastern frontier of Tibet is formed by the western boundaries of the Clinese provinees of Süteluang (Setehucu), Shensi, and Kansu. This frontier has been fixed by the Chinese, but Furopeans only know some points of it which are marked in the ltineraries of the Chinese geographers. Fron the junction of the liu-leangHo with the Kineha-Kiang it streteles northwards, and probably along the river Ya-long-Kiang as far as the 30th degree of \mathcal{N}. Iat. It then takies a north-eastern direction, and streteles as far as Kiai, along a range of wild and snowy mountains, which, on some mps, are ealled the Fun-ling Mountains. At Kiai it takes a north-west direction, crosses the Ifoang-Ho, or Yellow River, rins to the cast as far as Hongehin, and then takes a north-west direction as far as a point situated in the mountains of Amecrangar, in $38^{\circ} 25^{\prime}$ N. lat, and $100^{\circ} \mathrm{F}$. long. That part of Tibet however which lies south of the 29th derree of N. lat., and east of the Kineha Kiang, or the monntains of latang, was eeded to Clina in 1727, and is now nuder the immediate sovereiguty of the emperor of China. The whole extent of the eastern frontiers of Tibet is at least 000 miles. We have no positive knowledge of the nothern frontiers. They begin in the Bolor Mountains, east of which they were traversed by F. Desideri (Nout. Journal Asialique, tom, viii., p. 117) on his way from Yarkand to Lell. From thence they are said to streteh east-south-east along the mountains of Kitrakorum as fur as a point situated in the mountains of Kuenlun (Oneuta, or Kulkoun), in $35^{\circ} \mathrm{N}$. lat. and $8 i^{\circ} \mathrm{E}$. .ong., aeross the deserts of Khor and of Katehi, or Katehe. Thence they run norlli-east and east, until they reach the eastern fronticr at that point which we have mentioned above, as situated in $39^{\circ} 25^{\prime} \mathrm{N}$. lat, and $100^{\circ} \mathrm{E}$. long. The whole length of the northern frontier, including the larger bende, amounts to about 1300 miles. 11 is however doubtel whether the extensive eomentry of Kin-khu-Nor, in north-eastern Tibet, belongs to Tibet in the political rense of the worl ; and if so, the northern frontice of Finstern Tibet will not extend begond $36^{\circ} \mathrm{N}$. lat. (Ritter, ivo, p. 173.) But geographically speaking, Khu-khu-Nor belongs to Tibet. It. is a very rentarkalsle faet that the northern frontiers, as whey liase been liere described,

Corm a curve almost parallel to the eurve of the Ifinalnya, although they diverge in proportion as they stretch towards the eat. From this prablelisun we may conelude that thene northern frontiers are perhaps ideutical with the natural fromtier of the Tibetan table-lund. Thus "Iibet is boumded on the west by Independent Turkistan; on the suuth-west and south by Punjab, British 1 İinlustan, Nepanl, Bootau, and Assam; on the south-east by Assim umt Chinn; on the east by Clina; and on the nortli by the desert of (iolni and Chinese Turkistan.

Tibet, comprised between these limits, resembles ant immense comucopia, the handle of which is in the west, between the Hindu Kish and the mountains of Kirihorum, and through its wide opening, l5(0) oniles to the cast, the largest rivers of eastern Asia flow, and carry fertility anol abundance to l3urma, Siau, a nd China.
Mountains. - Tibet is a talle-land, the highest plains of whieh are more than 10,000 feet above the level of the sen. This table-land is divided into three great and dis tinet parts. The first, which is long, and not very wite, begins in the east, near Mount Kailasa, in the Ilimalay i, and stretches to the north-west, between parls of the Himalaya and of the IFindu Kush in the south-wett, mat the range of the mountains of Karahorum in the northeast. It is traversed in its whole length by the upuer purt of the Indus. Its lower or north-westerin part, Balti or Baltistan, is also called the First Tibet, or Litile Tibet, and is an independent state. Its upper or south-castern part has the name of Iadalilh, and is also ealled the Second Tibet, or Great Tibet, because it is larger than Bualtislan. Sometimes the name of Little Tibet is given to the whole valley of the Indus. Iadalih is also an independent state, but the most castern part of it, as far as Teshigang on the 1 ndus, belongs to China. Baltistan and Ladakh have been deseribed under the heads of ITimalava and IEindustan (rol. xii., p. 210, See.). Baltistan and Ladakh belong only to Tibet in the most extensive sense of the word. The second great division of Tibet begins in the south, near Mount Kailasa, and is an immense elevated desert, the western part of which is ealled Khor, and the castern jart Katehi. Its boundaries are the range of Kifrikorm on the West; the Kuenlm mountains on the north; the snowy mombains aronnd the sourees of the kincha Kiang, the Om-Tsiu, and the late of Tengri-Nor in the east ; and the mountains of Dzang and Nyari in the south. Khor and Katehi have never been visited by Europeans, though the eastern part is traversed by the great road which leads from IITassa to Yarliand, in Clinese Turkistan. The third great division of Tibet contains the remainder of this eountry, which lies east and south of Khor and Kateli.

The seend and third natural divisions have the common name of Eastern or Third Tibet, or Tibet in the propers sense of the word. Eastern Tibet is subjeet to China.

All that we can say about Khor and Katchi is that they are an immense table-land, some parts of which are 10.000 feet above the level of the sea. This table-land, however is not a level plain. It is a country traversed by chains of monntains, which have a height varying froin 3000 to 4000 feet above their base, or from 13,000 to 14,000 feet above the sea. The middle part seems to be less elevated than the boundaries, as the country contains several rivers which terminate in the tahle-land; and the southern and western parts are higher than the eastern and northurn parts, the direction of the greater number of those risers being from the west to the east, and from the south to the north.

The aspeet of the southern and eastern parts of Thinl Tibet is very different from that of Khor and Katchi. Third Tibet is trasened by numerous ranges of lufty mountains, the direction of whieh is from west to enst and from noth-west to south-east. From these rances lateral bramehes rin out in different direetions, und contain deep valless between them. In proportion as the prineipal chains advance towards the sonth-east, they comerge towards one another, and thus the valleys between them gradually beenme narrower, until at last, on the frontiens of Funnan and l3urma, they are inere mountain-passes. On this spont there are four parallel valleys, tras ersed by four of the greatest rivers of the world, and the breadth of these four valleys torether seems not to be more than one hundred miles. But the range of the mountains of Neari and Dzang diverges from the Himalaya; and the valley between them, which is Iraversed by the Dzanglo, bo.
comes broader as it advances towards the east. The chain which, in the south-eastern corner of Tibet, separates the Kincha-Kiang in the east from the Lang-tsanc-Kiang in the west, has the name of Ning-tsing-Shan, or Mang-li (Moung-lan); and, since 1727, the frontiers between Tibet and China run along the foot of this clain, the summits of which are covered with eternal snow. The height of the mountains in south and eastern Tibct is much greater than in the northern and central parts of the country, and the whole tract towards China, Nepaul, and Bootan, is an immense alpinc country. Several passes in the Mang-li mountains are from 10,000 to 11,000 fect abore the sea; the region of perpetual snow seems to begin at 12,500 feet, and as the snow always covers an immense number of summits and whole ranges, it is evident that the number of summits which lave an absolute elevation of above 12,500 feet must be very eonsiderablc. Some of them probably attain the fieight of 26,000 feet abore the sea. The extent of the Mang-li mountains between Bathang on the Kincla-Kians, and Tsiamdo on the Lang-tsan-Kiang, according to the Chinese itineraries, is 1405 li , of 250 to a degree. (12itter, iv .202 .) All this country is intersected by deep valleys and chasms. The sumnits of the mountains are covered witl eternal snow, and the traveller crosses the clasms by means of bridges which are enveloped in the clouds. The mountains north of the Mang-li, around the sources of the Lan-tsan-Kiang, in the province of Tsiando, are no less elevated, but they fave never been visited by Europeans. A very extensive range begins at Mount Kailasa in the Iimalaya, and stretches to the east as fir as the ninetieth degree of east longitude, in a direction diverging from the Himalaya iu Nepaul and Bootan. These are the nountains of Ngari and Dzang, the most western part of which is called Gangdisri, or the country of the snow mountains. At the beginning of this westernmost part, and in the north-eastern part of the province of Ngari, is situated the celebrated Mount Kallasa, which is said to be higher than the Dhawalagiri. The Kailasa is steep on all sides, and is 140 li in circumference; its summit is always covered with snow, and the water tumbles down from it in eataracts into the surrounding valleys. This mountain has also the name of Oncuta. East of the Kailasa are situated four mountains, or perlaps groups of mountains, the K'labhabhs, each of which resembles a diflerent animal. The first is the Ilorse-mountain, or Tam-tsiogh-K'habliabh; the second is the Elephant-mountain, or Lang-tsien-K'h; the third is the Jion-mountain, or Sengghe-K'h; and the fourth is the Peacock-luountain, or Mabghia- K 'h. The lengtly of these four mountains is snid to be 800 li , and with respeet to the valleys which begin at their foot and stretcli in different directions, they resemble Mount St. Gothard in Switzerland. The mountains on the southernmost part of Tibet have been deseribed in the article Mimalaya.

Rivers.-The sources of the Dzangbo are on the east side of the K'habhabhs, in the province of Ngari. Its complete name is Yaru-Dzangbo-tsu, that is, the pure fromtier river of the west. According to the Chinese geugraphers, the source of the Dzanglo is on Mount TamLsiogh, in $30^{\circ} 10^{\prime}$ north latitude, and $79^{\circ} 35^{\prime}$ longitude east of Paris. It flows in an east-south-eastern direction, through the whole of Southern Tibet, a distance of about 700 miles, aud waters the provinees of Ngari, Dzang, and Wei. The valley of this river is formed by the Himalaya on the sointli, and the nountains of Ngari and Dzang on the north. The country through whieh it flows being very extensive, and all the mountains being covered in winter with snow, of which an immense quantity melts in the summer, the volume of water in this river must be very considerable. The tributary rivers of the Dzangbo, on its left or northeruside, are : the Nauk-Dzangbo; the Dzangtsu, or Galdjao-muren, that is, the 'furious river', which has its sources in the $n o r t h-c a s t$, about 200 miles from its junction with the Dzangbo near H'Lassa, and which is sometinies confounded with the Dzangbo itself. There are five considerable rivers between the Nauk-Dzangbo and the Dziang-tsu. The tributary rivers on the riglit or southern side are: the Guyang, which has its souree near Mastang, in the IFimalaya (there are five other considerslale rivers, which come down from the Himataya of Nepal); aud the Pai-nom-tsu, or Fuang-dze, along which Turner travelled, from its souree at Phasi to its junction
with the Dzangbo, and which has a fine iron bridge of thirteen arches. An iron suspension-bridge is thrown over the Dzangbo, south of H'Lassa, on the great road from the west to this town. The course of the Dzangbo is known as far as a point which is situated about 100 miles east of H'Lassa, in $26^{\circ} 30^{\prime} \mathrm{N}$. lat. according to D'Anville ; in $28^{\circ} 30^{\prime} \mathrm{N}$. lat. according to Klaproth; and in $22^{\circ} 15^{\prime} \mathrm{N}$. lat. according to Berghaus. It has been conjectured that the Brahmaputra is the continuation of the Dzangbo [BrammaPUTRA], but it is now known that they are different rivers, The continuation of the Dzangbo is the Irawaddy. We owe this discovery to Julius von Klaproth, who published several memoirs on the course of the Irawaddy, of the Brahmaputra, and the Dzangbo.

All that we know about the Southern Nu-kiang is conjectural. Ritter says that the Nu-kiang is a southern tributary river of the Dzangbo, but this is impossible, and instead of 'southern' we must read 'northern,' (Ritter, iv., pp. 212 . 223.) The sources of the Gakbo-dzangbo-tsu, or the clear river of Gakbo, are situated in $31^{\circ} 30^{\prime} \mathrm{N}$. lat,, between tho mountains of Sangtsen-sum-do-ri and Barkala, on the frontiers of the provinces of K'ham and of Wei. Its upler course has the name of Sang-chu or Driangbo-tsiu. Its direction is at first south-east. The great road from China to H'Lassa crosses this river some rlistance east of the celebrited temple of H:Lari. The Gakbo-dzangbo-tsu then enters the eountry of Gakbo, where it receives a considerable river called Bo-Dzangbo, which enters it on the left or castern side. After having entered the country of H'Lokba, it probably takes a southern direction, but we have no positivo knowledge of it. According to the Chinese map of the emperor Khien-Long, of which the 'Carte de l'Asie Centrale ' of Klaprotl is a reduction, the Galibo-dzangbotsu enters the Chinese province of Yunuan, and there receives the name of Lung-chuan-Klang: As to the Om-tsur, or Oui-tsu, another great river, there is great difference of opinion. According to the Chinese maps, the Om-tsu is formed by the junction of three rivers, the Ser-Sumbu, or Sertsu, in the cast, the Uir-chat in the west, and the Kirat-us-su, the largest river, in the middle. The source of the Karit-us-su is said to be in the table-land of Middle Tibet, about 32° $30^{\prime} \mathrm{N}$. lat. and 90° to $91^{\circ} \mathrm{E}$. long. The Om-tsu has a southeast course, and flows in a very deep and narrow valley, enclosed by steep rocks of an immense height; it enters the province of Yunnan in China, where it receives the Chinese name Nu-Kiang, that is, 'the river of the barbarians.' The latter part of its course within Tibet is unknown to European geographers. The Lang-tsang-Kiang traverses exniost the whule extent of eastern Tibet, from north-west to south-enst. Two rivers, the Om-chu in the west, and the Dzo'chu in the east, the sources of which are situated north of the upper part of tho Om-tsu, in the province of K'ham, join at Tsiamdo, and thus form the Lang-tsang-Kiang, the direction of which is from north-west to soutl-east. From the 30 th to the 27th degree of N . lat. the Lang-tsang-Kiang traverses a country quite unknown to Europeans. This river is also ealled La-chou, La-tsu, Lo-tsau, and Lo-tsu. After having traversed Yunnan, it enters Lao, forms the frontier between Siam and CoclinChina, and flows into the Chinese Sea in $10^{\circ} \mathrm{N}$. lat., after a course of more than 1700 miles. The sources of the Kincha-Kiang, or Yang-tse-Kiang, which traverses Chind from west to east, are situated between 37° and $38^{\circ} \mathrm{N}$. lat., and between 89° and 92° E. long., on the table-land towards the north-western frontiers of Eastern Tibet. Its upper part is called Muru-us-sui by the nomadie Mongols of that country; its middle part has the Tibetan name of Bourei-fsu; and it is only in China that it is called Kincha-Kiang. Its direction is east as far as $95^{\circ} \mathrm{E}$. long. ; from this point to Batang the direction is south-east and south; from Batang to its junction with the Litehsu (the old frontier of Tibet), it is again south-east. This latter part of the Kineha-Kiang forms a part of the present frontier between Tibet and China. The Ya-long-Kiang is an important tributary of the Kincha-Kiang. Its sources aro about $29^{\circ} \mathrm{N}$. lat. and $97^{\circ} 30^{\prime} \mathrm{E}$. long., in the Bayan-Khara, a range of high and wild mountains stretehing in a southeast direction, between the Kincha-Kiang and the Ya-long-Kiang in the south, and the sources of the Hoang-Ho in the north. The direction of the Ya-long-Kiang is at first south-east for about 200 miles : east of $100^{\circ} \mathrm{E}$. long. it muns southward for about 300 miles: during the latter part. of its course the direction is at first east, as it seems,
and then again sonth for about 100 miles. But all this is conjectural. The IIomn-IIo, or Yellow River, has its murces north of the Bayan-Khara, in the provinee of sifan. Ouly its sourees and a part of its upper couse are in Tilet and in Khu-Kin-Nor (Küke-Nor), the most northem part of Tibet, of which we have already spoken. The deseription of this river has been given under Cimsa. The whole country between the upper part of the IloangIlo in the norll and in the west, the Yn-long-Kinate in the south-west, and the frontier of China in the enst, or the eastern parts of Sifn and Khu-Khu-Nor, is tratersed by ranges of high mountains covered with perpetual snow; it is an unknown country to us.

Lakes.-The Tengri-Nor, the largest lake of Tibet, is nine dnys' journey north of Il'Lassa. The Chinese call it Thinn-chhi, or the Celestial Lake. This lake appears to be surromded by high momntains and roeks covered with snow and iee. It receives the Turku-Dansbo, a river which eomes from the west. The lake of Palte, which is situated south-west of IHLake, in the valley of the Dzangbo, resembles a large diteh surrounding an extensive island which fills up the middle of the lake. On the Tibetan maps it has the narse of IBhaldi-Yumtso, and the Chinese eall it Yar-brok-Yumtso. Aecording to the Chinese geographers there is a munnery on that island which lins the name of Dhordze-phayh-mo, or the 'Palace of the Holy Sow, which is said to be one of the finest in Tibet. It is said that north of this lake there is a ligh mountain called Kambala, from the summit of which extensive ranges of high snowy Alps may be seen to the north. These are most probably the mouataias which surround Iake Tengri-Nor. In the extreme north of Tibet is situHed the Lake Khu-Khu-Nor, or Küke-Nor, that is, "the Blue or the Celestial lake,' which name has been given 10 all the surrouadiag country. The lakes of Kailasa, in the southem part of Tibet, have been described-under Himalaya.
Climate.-Tibet is known in India aad China ns a country of hunger and misery, and as such it is represented ly the Mongol historian Sanang Setsen. However cold and barren the table-lands and the mountains may be, on atecount of their extreme elevation and of the snow whieh perpetually covers whole tracts, the elimate of the valleys, and especially of the valley of the Dzangbo, is hot. From Maroh to September the weather is fuir, interrupted only ly some showers; the winds are not regular, as in India. In II'Lassn the trees bud at the end of April and in the beginning of May. Com and peas are sown towards the end of the spring and in the beginning of the summer; and the harvest is reaped in the months of August and September. Dew falls in the summer nights; it hails ofen; the snow is not deep in the winter. Oa the high table-lands the climate is very different. Tumer, who visited a part of them on his way from Bootan to Teshu Lumbu, gives an interesting description of it. From May to Oetober the sky is always clear, and the sun shincs with uneommon brighiness. From Oetober to May there sue violent gales. The surface of the weather-bepten roeks breaks in pieces, which the air dissolves into fragments as small as dust; and clouds of this dust, raised by whirlwinds, are driven from the plain to the summits of the mountaias, and from the mountains down to the houses of the iulabitants. The air is excessively dry, and its effects resemble those of the dry heat of the Sahara: The trees wither; their leaves may be ground to powder between the fingers; planks and beams break, and the inhabitants cover the timbers of therr houses with wet towels in orler to preserve them against the destructive effeets of exeessive dryness. The timbur never rots. The fleshl of shicep exposed to the open air becomes dry, and mas be ground like bread, and thus preserved during years. This fleshbread is a very common food in Tibet.

Produrlions.-Anong the minerals there are pold, silver, copper, tin; salt, which is taten from the salt-fakes of Jayek and Deng-taviva ; corundum stone, lapis lazuli, turguois, and agate. I İesides a great number of grasses which are common in Europe, Tibet produces a kind of grey barley, grapes in Bathang, and, near I'Lassa, Ingwe!, amafoctida, rhubarb, madder, saffinwer, apples, nuts, apricots, penchec, pomermates, and figs in the valleys. The cedar krows in Tibet. Among the animals there are wildoxen with long hair, buffaloes, the huffalo which is called 'he jak, goats with a verg fine fleece, goats with long
fine hair, silk-worms, wild-cats, tigers, leopards, lynxes, argali with homs of one bundred pounds weight, pig\%, white eacles, and swans. All our domestic amimals are known iu Tribet, and the horses are excellent. Fish are abundant in the rivers, but they are not eaten, beiag prohibited by the religion of Buddha.

Political Dirision.-I. The territory of the Dalai-Iama eontains the eastern and north-eastern parts of Tibet. The enpital, Hllassa or lassa, is situated in a benutiful plain on the loanks of the Dzang-isu, about twelve leagues from its junction with the Dzangbo. It is a populous aad very eomanercial town, and distinguished by many fine public huildings, especially convents, among which there is the first temple of the Buddhists. There are a smallpox hospital, a printing-offiee, and several schools, espeeially for divinity. The fown has walls and five fortified gates. In the neighbourhood of the town, in the north, the east, the south, aad the west of it, are four magnificent convents, the largest among the 3000 convents of Tibet, a great number of which contain several thousand monks. The residence of the Dalai-Lama is in the convent of Pobrang-Marbu (the red town) on Mount Botala, northwest of I'Lassa. It is said that the principal building of this residence, or the Lapranga, is 307 feet high, and that it contains 10,000 rooms. (Ritter, iv. 243.) On the walls of one of its large rooms are most probably suspended those chorographical tables which Father de la I'enna admired when he was in I'Lassa. The environs of IILAasa are full of conveats aad palaces, of which the most magaificent is that of Dzundzio-lu-Khang. Besides the eapital we only know some points on the great ronds whieh lead to H'Lassa from the east and from the west, but no considerable towns are mentioned on these roads, except Yiga-gung-yhar, a town which is inhalited by 20,000 familics, and whieh is situated east of I'Lassa on the Dzang-bo.
2. The territory of the Teshu-Lama contains the provinees of Dzanc and Ngari, and perhaps also the countries of Khor and of Katehi. His residence is at the palace, or rather the convent of Teshu-H'Lumbu, in $29^{\circ} 4^{\prime} \mathrm{N}$. lat. and $89^{\circ} 5^{\prime}$ E. long., aceording to Tumer, who visited this place in 1783. It was founded in 1447, on a small plain surrounded by lofty mountains; but as this plain is a part of the high table-land, the environs are cold aad desert. Teshu-H'Lumbu lies alhost opposite to a pass across the Ilimalaya of Bootan, which is defended by the fortress of Drigadre-Jeung. 'Teshu II lumbu, or, more correetly, Iachi H'Lumbo, contains from 300 to 400 houses, convents, temples, and palaces, which are surrounded by a wall, and all communicate with each other. The ehief building, where the Lama resides, has the name of Lapranga, the most remarkable part of which is the mausoleum of the Teshu-Lama, who died in Peking in 1781. This mausolcunt, of which Torner gives a eareful description, has a most beautiful apicarance, and is a fine specinen of Tibetan scul pture. It is said that 3700 Gylones or monks are daily oecupied in the jerformance of their various religious cluties in the palaee of Teshu IITambu. The greater part of the country between Teshu Il'Lualbu and IILassa is a fertile and beautiful tract, which extends along the river Dzangloo from west to east. At one day's journey east of Teshu II Lumlu) is Pina (Bainam), a smat town with a fortified castle. Baldi or Bedi, anotlier small town, lies on the northern bank of Lake Palte.

Inhabitants and History.-According to the legend Tibet was originally inhabited by animals and demons. At a eertain period Goll sent to Tibet the kiug of the monkeys, who Ied there the life of a hermit: his oxelusive occupas tion was the perforaanee of religious duties, and he was absorbed in the pursuit of the knowledge of nonentity. When he was just on the point of attaining the nlject of his pursuit, he was disturbed in his contemplations hy the visit of a female Manggus. The Mangrus, whose Sanscrit name is Rakslas, are ugly demons, who however can adopt any figure they please. The Manggus who came to the king of the monkeys had assumed a beautifol tlgure, and proposed to the king to marty her. The king at first alleged his monastical duties, but at last he married the Mangyus, and their descendants are the people of Tibet. (Schuidt, Forschungen, 12. 211.) This account however, ridiculous as it may appear to a European, is allimportant to a mation which believes in the metempsychosis, and is prond of its descent from a monkey, brenuse be is one of the most cunning of animals. The first ac-
counts of the history of Tibet are in the annals of the Mongols and of the Chinese. The Tibetans belong to the Mougol race: they were at first divided into many independent tribes which led a nomadie life, like all the other Mongol tribes before the time of Genghis Khan. The first king of Tibet, aceording to Sanang Setsen, was Seger-Sandilitu-Khaghan-Tül-Esen, whose youth resembles that of Moses, for he was exposed by his father, and afterwards found in a copper box swimming on the river Ganga. He became king in 313 b.c., and united the four great tribes of Ngari, of Dzang, of K'ham, and of H'Lassa or Wei. One of his descendants was H'latotori, who was born in 348 A.D., and who became king in 367 A.D. In the fortieth year of his reign (407) Buddhism was introduced into Tibet. [3uddha.] The history of Tibet beeomes more certain from the reign of king Srongdsan-Gambo, who was born in G17, and who ascended the throne in 629. He founded the town of H LIassa, where he held his residence, and he built a splendid palace on Mount I'udala. His reign is particularly remarkable for the invention, or rather introduetion, of the Tibetan alphabet. Tongmi Sambhoda invented this alphabet, which is only a modification of the Sanscrit alphabet; and lie made the first Tibetan grammar. Srong-dsan-Gambo, who is also renowned as a legislator and administrator, died in 699. His suecessors earried on war with China, in which they were often suceessful; but in 821 Tibet was compelled to pay tribute to China. Under king Dharma, who aseended the throne in 901 , Buddhism was almost destroyed, the king having adopted the Blaek religion, or the Islam. Buddhism again beeame the dominant religion after Dharma had been murdered by a priest in 92\%.

In the begiining of the eleventh century each of the seven grandsons of king Blamgur-Dzang became an independent prinee; and from this event dates the entire decline of the kiugdom of Tibet, the power of whieh had been already broken by the civil troubles which aceompanied the persecution of Buddhism. One of the new kingdoms was Tangut, in the northern part of Tibet. Genghis Khan subdued all'Tibet in 1206, aecording to Sanang Setseu, but Sehmidt affirms that the Chinese and Mohammedan historians do not mention this fact. It is nevertheless a faet that Tibet was conquered and ravaged by the Mongols; and it was not before the end of the thirteenth century that the country recovered fiom the calamity of the Mongol war by the careful administration of Khublai-Khan. The easternmost parts of Tibet, which during the middle ages extended much farther to the east than they do at present, were gradually conquered by the Chinese in 1125, 1253, 1362, and 1371 ; and in 1727 another part of Tilset was ineorporated with China, whiel has been mentioned above. Since the year 1720 all Tibet has been a vassal state of China, and Chinese garrisons are in its towns, and they watch the passes in the frontier mountains: the number of Chinese troops in Tibet amounts to 64,000 men. The tribute which libet pays to the emperor of China is composed of a great many diflerent artieles, which Ritter (ir., p. 2x3, 234) enumerates. The national government of Tibet is stipported by a perfectly organized hierarchy. The name of the chicf priests is Lanar; and the DalaiLama is the first of them. The second is the Teshu, or l3ogrlo-Lama. The people are kind, tolerant, polite, and mueh more eivilized than the Mongols, although they are generally poor. They live in a state of polyandry, that is, several men cohabit with one woman; but it is only brothers who are allowed thus to have one woman in commori. Arfs and literature are cultivated, but the works and the lanyuage of the Tibetans are alnost unknown in Fiurope. The extreme north of Tibet is inlabited by nomadic Mongols, and Turkish hordes sometimes appear in the deserts of"Khor and of Katehi. Both the Lamas are abso lute prinees in religious matters, but their sovereignty is cheeked by the authority of the emperor of China, who las two lieutenants or generals in Tibet, who control the Jarma, and who have the command of the army and the direction of temporal affairs. The high functionaries are almost all Chinese. A great number of officers are employed in the administration of the studs for breeding horses, and of the stores for the army.
(Ritter, Eirdkunde, vol. iv.; Turner, Embassy to the Court of Teshon Lam: in Tibet; Moorcroft, in Asiat. Journt, 1826, vol. xxi.; Klaproth, Tibleaux Historiques de l'Asie; Abel Remusat, Recherches sur' les Langues

Tartares, vol. i.; Kireher, China Illustrata, cap. iv.; Sanang Setsen, History of the Mongols, ed. Sehmidt ; Schmidt, Forschungen im Gebiete der Völker Mittelasiens.)
TI'BIA. [Skeleton.]
TIB1A'NA, a genus of Polypiaria. [Sertularitea.] TIBULLUS, A'LBBIUS, lived in the time of Augustus, and was a friend and eontemporary of Horaee. He was of equestrian rank, and originally possessed considerable property, of which he lost the greater part (Tibull., i. 1, 19, Se. ; iv. 1, 128, \&e.), probably, as it is conjectured, in consequence of the assignments of lands among the veterans of Augustus; and this supposition is rendered still more probable by the circumstance that Tibullus never celebrates the praises of Augustus, like the other poets of his time. He was not however redueed to absolute poverty; the estate on which he resided at Pedum (Horace, ET., i. 4), a town between Præheste and Tibur, appears to have been his own, and to have deseended to him from his ancestors. (Tibull., i. 10, 15, \&cc.) Here he passed the greater part of his time in the enjoyment of a quiet eountrylife, which had for him the greatest charms. He left it however to aceompany his patron, Valerius Messalla, into Aquitania, and was present with lim through the eampaign, either in s.c. 28 or 27. (Tibull., i. 7, 9.) He afterwards set out with him to Asia, but was taken ill at Corcyra; but that he died at Coreyra, as is stated by some modern writers, is only a conjecture, unsupported by any antient authority, and is direetly contradicted by what Ovid says. It appears from an epigram of Domitius Marsus (in Tibull., iv. 15), who lived in the age of Augustus, that Tibullus died soon after Virgil; and as Virgil died in 3.c. 19, we may perhaps place the death of Tibullus in the following year, B.c. 18. It has been already mentioned that Tibullus was the friend of Horace; two poems have come down to us addressed to him by the Latter (Carm., i. 33; Epist., i. 4). Ovid too laments his death in a beautiful elegy, from which it appears that his mother and sister were present at his death (Amor., iii. 9).

It is diffieult to determine at what time Tibullus was born; and we can but at best make some approximation to it. In the epigram of Domitius Marsus, already referred to, he is called juvenis, and Ovid deplores his untimely death. We must not however be misled by the expression juvenis into supposing that he was quite a young man, in our sense of the word, at the time of his death, sinee the antients extended the meaning of juvenis to a time which we consider to be that of mature manhood. Several eircumstances tend to show that he could not be mueh less than forty at his death. Ovid speaks of Tibullus as preeeding Propertius, and of Propertius as preceding himself; and as Ovid was born b.c. 43 , we must place the birth of Tilbullus a few years at least before that time. Again. Horace in the first book of his Odes addresses Tibullis as an intimate friend, which hardly allows us to suppose that Tibullus was a merc youth at the time. If Bentley's supposition is correet, that the first book of the Odes was published about b.c. 30 or 28 , Horace was then about 33 , and Tibullus may have been a few years younger. Moreover he does not appear to have been a very young man when he aecompanied Messalla into Aquitania in B.c. 28 or 27. We may therefore perhaps place his birth at about B.c. 57. There are indeed two lines in Tibullus (iii. $5,17,18$), which expressly assign his bith to b.c. 43 , the same year in which Ovid was born; but these are, without doubt, an interpolation derived from one of Ovid's poems (Trist., iv. 10, 6).
We have thirty-six poems of Tibullus, written, with one exeeption, in elegiac metre, and divided into four books. The first two books are admitted by all critics to have been written by Tibullus, but of the genuineness of the last two, considerable doubts have been raised. J. H. Voss and others attribute the third book to a poet of the name of Lygdamis, but the style and mode of treating the subjeets resemble the other elegies of Tibullus, and there do not appear sufficient reasons for doubting that it is his composition. There, are however stronger grounds for supposing the first poem in the fourth book, written in hexameters, not to be genuine. It differs considerably in style and expression from the other poems, and is attributed by some writers to Sulpicia, who lived inder Domitian, by others to a Sulpieia of the age of Augustus; but we know nothing with certainty respeeting its author. Of
the other poems in this book, almost all bear tracea of being the genuine works of Tibullus.
The cleqies of Tibulhs sre chiefly of an amatory kind. In the earlier period of his life Delia seems to hisve lieen his favourite, nud aferwards Nemesis, and their names oceur most freqnently in his poens. Several of his elegies are devoled more or leas to celebrating the praises of his patron Messalla. but these are the lenst pleasing parts of his works, for he does not appear to have cxeclled in panesyrie.
Tibillus is placed by Quinetilian at the head of the Roman elegiac poets (Inst. Orub., x. 1). Ifis poems are distinguished by great tenderness of feeling, which sometimes degencrates into efferninacy, bat they at the same time excite our warmest sympathies. He seems to have been of a melancholy temperament, and to have looked at things from a gloomy point of view ; hence we find the subjeet of death frecpuently introduced, and the enjoyment of the present interrupted by clark forebodings of the finture. IIc constantly deseribes the pleasures of a commtrylife and the beauties of nature, for which he had the most exquisite relish; and there is in these descriptions a naturalness and truthfulness which place hin above his confomporary l'ropertins. Ifis style too is not of the artificial character whieh distinguishes the elegies of Propertins ; and his subjeets are not, like the latter, mere imitations or Iranslations of the Greek poets, but essentially original works.
Tibullus was formerly edited together with Catullus and Propertius, the earlier editions of which are mentioned under Proprrtius. The prineipal separate editions are ly Brockhusius (Amst., 1708, 410.), Vulpius (Padua, 1740, 4to.). Iteyue (Leipz., 1\%/1, 8vo., often reprinted, of whieh the fourth edition, containing the notes of Wunderlich and Dissen, Rppeared in 1817-11, 2 vols. Svo., Leipz.), J. 11. Voss (IHedelbers, 1811, 8vo.), Bach (Leipz., 1819, sivo.), Goldbery (Paris, I82G, 8vo.), Lachmanu (Berlin. $1829,8 v o$), and Dissen (Göttingen, 1835,2 vols. 8 vo.), of which the two last contain the best text.
Tibullus has been translated into Euglish by Dart (17:2)), and Grainger (1759). The most modern German translations are by J. H. Voss (Tübingen, 1810), Giinther (Leipz., 182)), and Riehter (Magdeburg, 1831). There are also French and Italian translations.

Respecting the life of Tibmllus and the Roman elegy in general, the reader may consult with advantage Gruppe's ¿Die イömische Elegie, Léipz., 1838.
THBKR. [TIMLL.]
TIC DOUIOUREUX. [NEURA_.OA.]
TIOHFIELD. [TiTCIFIELD.]
TIClióDlROMA. [CREEPER, vol. viii., p. 147.] Mr. Swainson places the genus in the subfamily Trogtodytince (fanily Certhialle). (Classification of Birds.) Mr. G. IR. Gray arranges it under the subfamily Certhince, between Climucteris, Temni, and Geobates, Sw. (List of the Genera of Birds.)

TICI'NO, CANTON OF (Tessin, in Freneh and German), one of the cantons of the Swis Confederation, is situaled south of the Lepontine and Rheetian Alps, and the surface slopes towards and merges in the great plain of Lombardj: It is the only ltalian centon in the Contederation ; and the inhabitants speak a Lombarl dialcet resemblines the Milanese, and are Italian in their habits and manners: they are all Roman Catholice. The eanton lakes its name from the river Ticinn, which has its sourees in the great central group of the SI. Gothard, flows southward alung the Val Leventina, pawes by lBellinzona, and then enters the lago Macgiore at its northern extremity, and issues out of it at the opposite end by the town of Sesto in Lombardy. [Po, Basis or.] The canton is very mountainous, beine intersected hy severul ollsets from the great chain of the lepontine and Rhatian Aps. A number of valleys, large and small, lie between these offsets, the largeat minining nearly parallel to eneli other, and sloping towarls the sonth. The principal valleys are -1 , the Y 'al Jeventina, already mentioned, ealled livinen Thal in German, which runs in a southern direction through the centre of the cauton. Fast of the Val Leventina are2 the Val blegno, drained by the river of the same name, which flows from the southern wlope of the Grisons Alps ant joins the Tieino below Polngion 3, the Val Moess, which is a coutinuation of the Val Miwoeco, belonging to the canton of the Grisons ; 4 , the Val Morobbia, which
slopes down from the lier Berg on the fronliers of Valtel. lina, and the water-drain of which falls into Teino below Bellinzona. West of the Tieino are-si, the Val Maggia, one of the largest in the eanton, which in its upper part is called Yul Lavizzara; it is drained by the river Naggia, a mpiul Alpine strumm, which enters the Lago Mampiore neur locarno; 0, the Val Verzalca, whieh hes betireen the Val Leventina and the Val Magyia, and nuns parallel to them, but is not so large as either; 7 and 8 , the fal d'Onternome and the Centovali, weat of the Val Maggin, which thej both join at its lower end near the Lago Maggiore.
A ridge called Monte Cencre runs across the sonthern part of the canton of 'licino from north-east to south-west. It detaches itself from the löri Bers, and runs to the cast bunk of the Lago Maggiore. South of this ridge lies the basin of the hake of Lugano, which is thus separated from the rest or northern part of the canton, the waters ol which fun into the Lago Maggiore. The lake of Ligynu, called also Ceresio, lies within the territory of the cauton, with the exeeption of its nuth-east extremity, which strelches into Austrian Lombarly. Its form is cery irrecular: its tength is about 20 miles, but the breadth is little more than a mile, except in front of the town of Lngano, where it is about two mites wide: the surface is about sol feet above the sei, and the greatest depth is 500 feet. A number of trading-boals ply on the lake. Its outlet is formed by the river Tresa, which runs into the Lago Naggiore, The lake of Lugano separates the southern. part of the canton, consisting of the district of Mendrisio and the eirele of Ceresio, which form part of the district of Larano, from the rest of the eanton, which lies north of the lake.

Only the northern extremity of the Lago Maggiore belongs to the canton Ticino. [Laco Mageroke.] The eanton of Tieino is bounded on the north by the cantons of Uri, Valais, and the Grisons; on the east partly by the Grisons and partly by the province of Como in Anstrian Lonibardy, on the south by the provinee or Milan, and on the west by the Sardinian states. The surface of the cauton of Ticino may be divided into five regions: 1 , the region of the rine, the fig, and the peach, which includes the lower valleys and hilfs, and extends to the lwight of 2400 fect aboie the fago Maggiore. The olive, orange, and lemon-trees thrive in some favoured spots. 2 The region of the chestnut, the pear, the apple, and cherrytree, which rises about 1000 teet higher. 3, The region of the fir-lree, which rises to about 4.50) teet alove the level of the lake. 4, The Alpine pastures, which reach as high as 6000 feet. 5 , The region of perpetual snow, which includes several Alpine summits between so00 and 9000 feet high. There is consequently a great variety of climate as well as of productions in the canton, but the people are not, generally speaking, as industrious as they might be. The horned cattle amoment to about 52,000 head, the shrep) to 23,000 , goats to 75,000 , and pigs to 27,000). The number of horses and mules is about 2000 . Wolves and bears are hunted in the inountains. The rivers and lakes abound in fish. The principal articles of export are cattle, cheese, wine and fruita, hay; hides, and marble from the numerous quarries. Corn is imported from Lombardy. The nanufictures are of no very grent importance; they consist chiefly of coarse cloth, leather, phated straw, and tobacco. The silkworm is reared in some localities.

The population of Tieno amounted in I833 to 109,000 . The area is computed at about 1100 square miles. Several thousand people emigrate every year to work in other countrics, as masons, porters, glaziers, chucolate-makers, and sellers of barometers. Many of them return home afler a year or two, bringing with them some savings.
The canton is divided into cight districts, which are subdivided into circles. The districts are-1, Val Leventina, the northernmost part of the cauton, lying at the fout of the high $\mathrm{N} / \mathrm{ps} ; 2$ Bellinzona, south of the Val Leventina; 3. locario, at the northern extremity of the lago Margiore ; 4,Val Maggia; 5, V:al 13legno or Blenio ; 6, Riviera, on the borders of the canton of the Grisons ; 7 , lugano, which stretches on both banks of the lalie of the sanse nane ; 8 , Mendrisio, south of Lupano, aud which borders upon the lowland of Lombarly. The principal towns aro -1, Lmgano, a prety-looking thriving town on the northwest bank of the lake of the same name, in a lovely situation, enjoying an Italian climate, has some fine churehes
with paintings by Luvini, a pupil of Leonardo da Vinci, some large mansions or palaces, as they are called in Italy, an hospital, a theatre, manufactories of silk, paper, tobacco, leather, and iron and copper works, and 4500 inhabitants. There are at Lugano many merchants, it being one of the great high roads bet ween Switzerland and Italy. The fair, which is held in the month of October, is well attended. Lugano has a college under the directiou of the Fathers Somaschi, which is attended by more than one hundred pupils, several elementary sehools, a school of drawing, a reading-room, and three newspapers in the Italian language. The country around Lugano is planted with vincs, olives, and other southern trees, and full of country-houscs. 2 , Bellinzona, a walled town situated in the valley of the Ticino, on the high road of the St. Gothard, has a very fine church, a college, an arsenal, and about 1500 inhahitants. There are several ruined castles of the middle aqes in the neighbourhood. 3, Locarno, a small town with a fort on the Lago Maggiore, in a romantic situation, has several churches worthy of notice, a caslle, which is now the government-house, and about 1700 inhabitants. It was onee a thriving town with 5000 inlabitants, but many of the principal families, being banished about the middle of the sixteenth century, for laving embraced the doctrines of the Reformation, carried away their fortunes and their industry to Zürich and other places, and Locarno has never since recovered from the blow. The families of Orelli and Muralt, long establishcd at Zürich, were originally from Locarno. 4, Mendrisio, a town of 1700 inhabitants, in a fertile country, and on the high road to Como and Milan, has a collcge, several ehurches and convents, a printing-press, and some silk manufactories. 5, Capolago, at the southern extremity of the lake of Lugano, known for its printing-press, wherc many Italian works are printed to avoid the censorship of the yoverument of taly.
The vallcys and highlands of which the eanton of Ticino consists were inhabited in the ante-Romantimes by the Lepontii and other aboriginal tribes of mountaineers, who were finally reduced to subjection under Augustus. After the fall of the empire, the Longobards spread their dominion over the country. After sevcral morc vicissitudes in subsequent centuries, we find the country partly under the dominion of the Visconti, dukes of Milan, and partly under the feudal barons of Sax and other Rhatian lords, till the fifteenth century, when the Swiss of the Forest cantons conquered the Val Leventina, and soon after acquired Bellinzona and the country north of Mount Cencre ly a formal cession from the barons of Sax. In the Italian wars of Louis XII., at the beginning of the sixtecuth century, the Swiss obtained possession of Locarno, Lugano, and the rest of the country, which they formed into several Landvogteyen, or bailliages, some of which were under tbe exelusive dependence of the three Forest cantons, and others, such as Lugano and Locarno, were subject to the whole Swiss confederation. This state of things continucd till the French invasion of Switzerland and the dissolution of the old confederation in 1798; the Cisalpinc republic attempted to annex them by force to its territory, but the people of Lugano stood firm to their Swiss connection and repulsed the Cisal pincs, and took from them several standards, which are still scen in the church of San Lorenzo of Luyzano. The distinction between sovereign and subject states having at the same time disappeared from Switzerland, the whole district was united into one canton of the new' Swiss confederation by the name of Ticino, and as such it was acknowledged by Bonaparte in lis Act of Mediation, and afterwards by the allicd powers in 1814. In June, 1830, the eanfon of Ticino changed its constitution and adopted one by which the franclise is given1 to all natives of the canton not younger than twenty-five years, and who are burgesses of a communc and are possessed of real property or capital placed at intcrest of the valuc of at least 310 irancs. The qualification required for members of the Great Council is four thousand francs. The Great Council, or legislature, consists of 114 members, elected for four years, and appoints the menbers of the Little Council, or Exeeutive, as well as the judges of the various couts. In ecclesiastical matters the canton of Ticino depends partly on the bishop of Como and partly on the archbishop of Milan. The public revenue amounts to about 800,000 franes, derived chiefly from customs, stamps,
salt monopoly, and other taxes. There is a public debt of about four millions of francs. New codes liave been lately framed, but much remains to be done to ensure thic proper administration of justice in the canton, where venality, eorruption, and infractions of the laws are evils of antient date, and still of not unfrequent oceurrence. The standard of the intellectual and moral condition of the peoplc in general is considered to be lower than that of most other cantons of Switzerland. Yet the canton of Tieino has produced several distinguished men in various branches, such as Professor Soave, the Abbé Fontana, Franscini, who is still living, the arcliteets Fontana, Borromini, Maderna, Albertolli, and Bianchi, several sculptors and painters, several members of the family of Quadri, one of the principal fanilies in the canton, and others. The people of Ticino are not deficient in intelligence, but they want instruction.
(Leresche, Dictionnaire Géographique Statistique de lat Suisse ; Franscini, Statistica della Svizzera, and his more especial description of his native canton.)
TICINO, River. [Po, Basiv of the.]
TICKELL, THOMAS, an English poet of unblemished mediocrity. He was born in 1686, at Bridekirk in Cumberland. He was sent to Queen's College, Oxford, and he took his degree of Master of Arts in 1708. Two years afterwards he was chosen fellow of his college, and as he did not comply with the statutes by taking orders, he obtained a dispensation from the crown for holding his fellowslip, till he vacated it by marrying in 1726 .
His praises of Addison were so acceptable that they procured him the patronage of that writer, who 'initiated him,' says Jolnson, ' into public affairs.' When the queen was negotiating with France, Tickell published ' The Prospect of Peace,' in which he raised his voice to reclaim the nation from the pride of conquest to the pleasures of tranquillity. This, owing perlaps.to Addison's friendly praises of it in 'The Spectator', had a rapid sale, atd six editions were specdily exhausted.
On the arrival of King George I. Tickell wrote 'The Royal Progress,' which was printed in' the 'Spectator.' Johnson says of it that 'it is neither high nor low, a very equivocal criticism, considering Johnson's habitual tastes.
The translation of the first book of the 'Iliad' was the most important thing in Tickell's poetical eareer, having becn published in opposition to Pope's; both appeared at the same time. Addison deelared that the rival versions were both excellent, but that Tickell's was the best that was ever made. This praise ceases to surprise us when we find strong suspicions of Addison himself being the translator, as Pope, Young, and Warburton asserted. Dr. Johnson says, ' To compare the two translations would be tedious; the palm is now universally given to Pope. But I think the first lines of Tickell's were rather to be preferred ; and Pope seems since to have borrowed sometling from them in connection with his own.'
During the disputc on the Hanoverian succession Tiekell assisted the royal cause with his 'Letter to Avignon,' of which five editions were sold. Addison now employed him in important public business, and when, in 1717 , he limself rose to be secretary of state, he made Tickell under secretary. On Addison's dcath, Tickell published lis works, to which he prefixed an elegy on the author, which Johnson pronounces to be cqual to any funeral poem for sublimity and elegance in the English language. Considering that we lave the 'Lycidas' of Milton, this sounds oddly: on turning to this elegy, we are forced to admit, with Stcele, that it is only 'prose in rlyme,' and very bad prose too. Such lines as-

- O'er my tim eyeballs glance the sudden teats.'
indicate the substitution of sound for sense, which writers like Tickell delight in. He never asked himself whether it was his eycballs that were dim or whether tears glaneed: all he knew was that dim, eyeballs, glance, tears, wcre common poetical phrases, and therefore suited his purpose. In 1725 Tickell was made secretary to the Lords Justices of. Ireland, a place of honour in which he continued till his death, on the 23 rd April, 1740.
(Johnson's Lives of the Poets; Campbell's Specimens of. British Poets.)
TICKHILL. [YorRshire.]
TICONDERO'GA., [NEW YORK,]

TICOZ7.I, STE'FANO, born in 1762 in the Val Sasoina, in the prosinee of Como, studied at Milan, and afterwards at Pavia, took priest's orders, and afterwards was appointed ineumbent of a country parish near leeeo, in his native prosince. When the French invaded Lonsbardy in 1796, le and his brother Cesare Francesco, who was an alroeate, favoured the revolutionary movement ; but when the Austrians eance back in 1799, Ticozzi was obliged to enierate into france, and his brother was seized and sent prisoncr to Cattaro. Tieozzi returned with the vietorious French in the following year, and was appointed to several politieal offices under the Italian republie, and in 1846 was made sub-prefeet of the department of the Piave under Napoleon's administration. In 1810 he publishled some disquisitions on monastie institutions: 'begli Istituti Claustrali Dialoghi Tre,' 8vo., IBelluno. IIe lost his situation on the fall of Napoleon, and retired to Milan, where he lived mainly by literary labour. He translated into Italian Sismondi's 'History of the Italian Republies,' IJorente's 'Ilistory of the Inquisition, Agineourt's 'History of the Arts,' and other works. In 1818 he published his - Dizionario dei Pittori dal Rinnovamento delle Arti fino al 1800,' which he afterwards merged in his larger work, - Dizionario degli Architetti, Seultori, Pittori, Intagliatori in rame e in pietran Coniatori di Melarlie, Musaicisti, Niellatori, Intarsiatori d'ogni Elú e d'ogni Nazione,' Milan, 4 vols. 8vo. This is a really aseful eompilation, although not alway's exact about dates. IIe also published-1, - Memorie Storiche,' Florence, 12 vols. 8vo., being a series of historienl tales taken from the history of Italy in the middle ages; 2, Viaggi di Messer Franeeseo Novello da Carrara, Signore di Padova, e di Taddea d'Este, sua consorte, a diverse parti d'Europa' 2 vols. 8ro., a work also illustrative of the same period; 3, a continuation of Corniani's biographical work, 'I Sécoli della Letteratura ltaliana,' down to our own times, and also a continuation of 13ottari's collection of letters conecrning the arts: ' Raccolta di Lettere sulla Pittura, Seultura, ed Arehitettura, seritti dai più eclebri Personaggi dei Seeoli xr., xvi., e xvii., eontinuata fino nd nostri Giorni,' 8 vols. 8vo.; and likewise a continuation of Verri's 'IVistory of Milan:" 'Storia di Milano del Conte Pietro Verri, dai suoi piil rinoti Tempi fino al $159 \overline{\mathrm{~N}}$, contimata fino alla presente Eta,' Milan, 6 vols. $12 m o .$, besides several dissertations upon various paintings and other minor works. He left inedited and unfinished a Life of Correggio, and 'A Treatise on the Art of distinguishing Copies from the Originals in Paintings.'
Ticozzi died in 1836. He married a granddaughter of the historian Giannonc, by whom he had several children.
(Tipaldo, Biografía degli Ituliani Illustri.)
THDE-Mllif, a kind of water-mill in which the machinery is inpelled by the altermate flow and cbb of the tide, instead of a stream eontinually flowing in one direction and at a nearly uniform level. Although tide-mills have never been brought into very conmon use in this or in other conntries, they are by no means of reeent origin. Beckn:ann, in his ' History of Inventions' (English edition of 1814, vol. i., p. 24.), states that 'at Veniee and other places there were nills which righted themselves by ebbing and flowing of the tide, and which every six hours changed the position of the wheels;' and he adds that - Yanclli has shown, from some old charters, that sueh mills existed about the year 1041, and with still more cer1ainty in 1078,1079 , and 1107 .' Behdor, in his 'Architeeture itydraulique', describes a tide-mill which was ased at Dunkerpue earty in the last eentury, and attributes the invention to a master-carpenter of that plaec, named Perse. The expense attending the construction of tide-mills renders their adoption unadvisable in ordinary cases; but in many situations in which other mills are inapplieable, owing to the want of a sulficient current, or the nceessity of avoiding any interference with the navigation of a strean. they may bee ereeted with advantage. The water required for impelling their maehinery may be admitted either from the side of a tidal river or immediately from the sea.

The late Dr. Gregory, in the second volume of his - Treatise on Mechanires, has levoted several pages to an aceomit of various plans for obtaining a moving-power from the riving and falling of the tide; and, althongh he does not pretend to notice all the contrivances whiel liave been proposed for the purpose, he divides the most im-
portant into four classes, varying from each other in the manner in which the notion of the water-wheel is cffected and applied to the machinery of the mill. In the finst oi these the wheel turns in one direction while the tide is rising, and in the opposite direction while it falls; in the second the passage of the water is so regulated by sluiees, that the wheel may always turn in one direction; in the third the wheel itself rises and falls with the tide, so as to preserve a tolerably equal degree of immexion, or a uniform head of water to act upon its float-boards; and in the fourth the axle of the wheel is permanently fixed at one level, and the wheel is so construeted as io revolvo Whether partially or completely immersed in the water. Or these conditions it is observed that the first and third have been usually exemplified in one machine, and that the second and fourth may readily be united in another. Dr. Gregory therefore treats of tide-mills under two heads, which are as follow:-1. Tide-mills in which the water-wheel rises and falls, and turns one way with the rising tide, and the contrary when it ebbs; and, 2. Tidemills in which the axle of the water-wheel neither rises nor falls, and in which that wheel is made always to revolve in the same direction.

Of the first of these varieties of tide-mill a good example is given from a corn-mill erected on the bank of the Thames. at East Greenwich, by Mr. Lloyd. The details of the mechanism are fully explained by Gregory, and also by lPofessor Barlow, in his 'Treatise on Manufactures and Maehinery' in the 'Enevelopiedia Metropolitana:" but the essential features of the contrisance may be briefly deseribed. The side of the mill whieh is parallel to the river is forty feet wide, and is eapable of being opened to the river by sluice-gates, which are earried down to lowwater mark. Thus there is a water-way forty feet wide through the mill, by which the rising tide enters a reservoir, which eovers about four acres of land. A smalter reservoir beyond the prineipal one affords the means for eleansing the whole apparatus by flushing or scouring at low-water. The water-wheel is a eylinder twenty-six teet long and eleven fect in diameter, with thirty-two floatboards, arranged in four divisions on the same principle as the divided paddle-wheel deseribed under Steam-V bssel, vol. xxii., p. 509, in order to equalize the aetion of the water; and its axis is laid in a position parallel to the side of the river, so that it may be furned with equal ficcility by a strean flowing from the river into the reservoir, or from the reservoir into the river, aecording to the direction in which the tide is moring, and the positions of the sluices for admitting the head of water on one side, and allowing free vent for the fail-water on the other. At each end of the water-wheel is fixed, upon the same axis, a large bevil-wheel, from which the rotatory motion is comnuunieated to an opright shaft, by means of two small horizontal bevil-wheels, called wallowers, either of which may be readily thrown into conneetion with the large wheel, while the other revolves frecly, without coming in contact with it. Thus, by throwing the cipper wallower into gear while the water-wheel revolves in one direction, and the lower one when its motion is reversed, the vertieal shaft is made to revolve continually in one direction. The waterwheel, and the parts immediately conneeted with it, forming an apparatus of the weight of nearly twenty tons, are so mounted as to rise and fall by the action of the water, with very little attention; the bottom of the wheel-franse being connected with a kind of horizontal folding-door, which prevents any communieation between the river and the reservoir, execpting in the required direction, whatever may be the position of the whecl-frame. The motion of the vertical shafts is communieated to the machinery of the mill lyy large horizontal whecls whieh turn with the shans, but do not rise and fall with them. The weight ot these horizontal wheels is supported by a scries of trictionrollers resting upon a stationary part of the maclinery, so that the vertical shafs, which are squared to fit the maves, may slide freely up and down, although they caunot turn round without turning the wheels.
Of the means for effeeting the olyjects required in the second of the above-nnentioned varicties of tide-mills, a very slight notice will suffice. Belidor deseribes a waterwheel contrived by MM. Gosset and De la Deuille, in which the float-boards are linged in such a manner that, while at the bottom of the wheel, they would press against
the radii or arms of the wheel, and would present thens full surface to the action of the eurrent, while in any other position they would, by turning on their hinges, present little more than their edges to it. Such a wheel will revolve when completcly immersed in water, although an ordimary water-wheel would be quite stationary. Gregory deseribes also a bucket-wheel invented by Mr. Dryden, which will work with nearly equal force, whether the head of water be within one or two feet of the top of its periphery, and the tail-water above the level of the axle, or the tail-water level with the bottom of the wheel, and the head at a proportionate elevation, but below the level of the axle. The float-boards, or divisions between the buekets, are all set at one angle with the radii of the wheel, and a small space is left between each float and the drum-boarding, or soling of the wheel, to allow air to enter the buckets freely as they rise out of the water, and thereby to prevent the loss of power oceasioned by the formation of a partial vacuum in the rising bueket, causing it, in the language of the miller, to 'suek up the tail-water.' The uniform notation of the wheel in one direction must be provided for by having two passages, provided with sluices, from each end of the water-way in which the wheel is placed; one passage leading to the river, and the other to the teservoir. By opening and elosing the sluices alternately, the enrrent, whether from the river to the reservoir or from the reservoir to the river, may always be made to pass under the wheel in the same direetion. M. Navier, in his notes to the new edition of Belidor, published at Paris in 1819 (in which tide-mills are treated of at considerable length), states that the former kind of wheel, with hinged floats, had been tried suceessfully in Spain, by M. Dussaussoy, an officer of artillery. A work by MIdini on the tide as a moving-power for mills was published early in the present century.
TIDEMAN, PHILIP, was a native of Niirnberg, where he was born in the year 1657. Me studied first under a painter named Nicholas Raes, with whom he remained cirht years, and was distinguished by his diligent applieation to his art, in which he attained great profieieney. Desiring however to improve his knowledge and taste, he wellt to Amsterdam to study the eapital works of the great masters in the collections in that eity.
Lairesse being at that time in great esteem at Amsterdam, Tideman resolved to place himself under his direction; and so gained the good opinion of his teacher by his pleasing manners and his talents, that Lairesse conecived a great affection for him, and not only gave him the best instruction in the art, but employed frim to assist in some important works on which he was engaged: In exeeuting these works Tideman gave such evident proof of his abilities, that he soon obtained sufficient employment independent of Lairesse.
His compositions of fabulous history and allegory indiente a lively fancy, genius, and invention; insomuch that in this respect his designs have been recommended as models to succeeding artists. Two of his eapital compositions were Venus complaining to Jupiter of Juno's persecution of AEneas, and Juno applying to Aolus to destroy the Trojan flect. He died in 1715, at the age of fifty-cight, leaving a very great number of sketches and designs, which afford proofs both of his industry and the fertility of his in. veution.

(Pilkington; Fuseli ; Bryan.)

TIDES [WAve.]
TlDFSWELL. [Derbyshire.]
TTDORE, one of the Moluecas, is situated in the strait which divides the island of Gilolo from that of Celebes, and is traversed by $45^{\prime} \mathrm{N}$. lat. and by $127^{\circ} 25^{\prime} \mathrm{E}$. long. It is only about 21 miles in eireumfereuce. Near the southern const rises a mountain in the form of a cone, which is of volcanie origin. According to an estimate its summit may be about 4000 feet above the sea-level. The soil is composed of volcanic matter mixed with a considerable portion of vegetable mould, and abundantly watered by numerous rivulets which descend from the mountain: it is of great fertility, well cultivated, and produces rice in abundance. The sago-tree, as well as the clove and nutmegtree, grow wild, though the Dutch have leen at great pains to extirpate the frees, to secure the monopoly in spices. The island is very populons, and governed by a sultan, who also possesses the southern and middle portions of Cilic! w,where the towns of Maba, Wida, and l'atang P. C., No. 1512.
velong to him. He claims also the islands which are situated hetween Gilolo and Papua, namely, Wareeow, Battanta, and Mysole, and lives in great state. The inhabitants are Malays and Mohammedans. At the tlme of Forrest's visit (1774) there were twenty-five mosques on the island.
This island was first visited by the vessels with which Magalhaens sailed round the globe in 1521, and the Spaniards loaded their ships with spiees. They returned five years after, and found that the Portuguese had hegun to establish their authority on the Moluecas. This gave rise to a war between the Spaniards and Portuguese, which ended, in 15:2, by the emperor Charles V . renouneing his rights to the Moluceas, and reeeiving from the king of Portugal as an equivalent a loan of 350,000 ducats. Tidore was visited by Sir Franeis Drake in 1579. In 1613 the Duteh took all the Portuguese settlements on these islands, and began to subjecttheir sovereigns to a more strict obedience for the purpose of establishing their monopoly in the spice trade. They treated: them for some time with great harshness. In 1788 the sultan of Tidore was dethroned and exiled to Batavia, but he was afterwards re-established. In 1796, when the British took Amboyna under Admiral Rainier, Tidore, being dependent on its government, fell also into their power: it was restored by the peace of 1801 . In 1808 the sultan of Tidore, disagreeing with the Duteh at Amboyna, was expelled and obliged to fly to Papua. He applied to the English for assistance, and with their aid he reeovered the greater part. of lis possessions. Soon afterwards (1810), the English having again taken possession of Amboyna, the sultan of Tidore beeame dependent on them; but in 1814 all the settlements on the islands of the Indian Archipelago which had been taken by the English, were again restored to the Dutch, and the sultan of Tidore is now dependent on the Dutch government.
(Forrest's Voyage to New Guinea and the Moluccas; Stavorinus, Voyages to the East Indies.)
TIEDEMANN, DIETRICH, a German philosopher, was hom the 3rd of April, 1748, at Bremcrvörde, near Bremen, where his father was burgomaster. He reeeived his carliest education at home, and as he was seareely allowed to have any intercourse with other children, his leisure hours were spent in reading. His father sent him in 1763 to Verden, where he was chiefly engaged in acquiring a knowledge of the antient and some modern languages. After a stay of two years there he entered the Athenrumof Bremen. The system of education and the distinguished masters of this institution had great influence on young Tiedemaun. It was here that he first conceived a love for philosophy and its history, and he began his philosophical studies by reading the works of Deseartes, Locke, Helvetius, and Malebranehe. After spending eighteen months at Bremen, he entered the university of Güttingen, with the intention of studying theology pursuant to his father's wish; but he eontinued the study of elassieal literature, mathematies, and philosophy. The study of philosophy raised in his mind strong doubts respecting eertain main points of the Christian religion, which he was unable to overcome, and this led him to abandon the study of theology. He now tried jurisprudence, but not withstanding the entreaties of his father to devote himself to some profession, he abandoned the study of the law also, and at last determined to follow his own inelinations, and to give himself up entirely to philosophy and its history. His father, dissatisfied with his son's conduct, refused to send him further means of subsistence. After having spent two years and a half at Göttingen, Professor Eyring proposed to him to take the place of tutor in a nobleman's family in Livonia, which Tiedemann aceepted very reluctantly:" In 1769 he entered his new situation, in which he remained four years, although he was shut out from all means of prosecuting his own studies, and had to devote almost all his time to his pupils. Nevertheless he found time to write a little work on the origin of language, a favourite topic with the philosophers of that time. It was published under the title, ${ }^{\text {' V Versuch einer Erklïrung des Ur- }}$ sprungs der Sprache.' Riga,' 1772 , 8 vo. In the year following he returned to his native place, and after having spent a year there in studying various subjects which he had neglected in Livonia, he again went to Göttingen. His friend Mciners, who was now a professor in the university, mtroduced him to Heyne, who immediately made him a member of the philological seminary. The small income VoL. XXIV. -3 K
derived from this institotion and from private instruction, together with what he got by writing, cuabled lim to live in indepenclenee. 11 is work on the Stoie philonophy apjremed under the title of "System der Stoischem l'hitomophie: lociprig, $1 \% 6$, svo., with a preface by Dleyne, who furd recommended the publieation. In this year lieyne is mas applied to in order to recommend a competent person fur the professonship of anticat literatore at the Curolinum in Cassel. Heyne recommehded Tiedumann, and accepted the place for lim without telling him of it. Tiedemann wus delighted with the place, us it dicl not oreupy too mueh of his time, and pat him in conncetion with some of the most distingrished men in Germany. The stody of philosophy! and its history was now prosseuted with fresh zeal and vigour. The philosophieal iews which he had insbibed from the authors whom he hal most studied tendell townrls materialism; but his friend Tetens vigorously counterneted them, and at length sueceeded in turning his mind in a different direction. In the jear 1780, when the Carolinum was broken up, Tiedemann was transferred with the other professors to Marburg. Here he lectured at different times on logie, metaphysies, the law of nature, on moral philosophy, psyehology, universal history; history of philosophy, and sometimes also on some clasisical Greek writer. Ifis leetures were very popular, and lis kind disposition made his hearers look upon him more as a friend ihan as a master. Sometimes, especially during the last period of his life, he did not conduct himself with the calmnes and dignity of a philosopher in combating the plitosophy of Kant, to which ho was opposed. Ite died in the nidst of literary undertakings, after a short illness, on the 2th of Atay, 1803.
Tiederuann was beloved and esteemed by all who knew him. His life was spent in intellectual oceupations and hodily exereise, of which he was very tond. His striking qualities were great self-control, cheerfulness, and a total absence of ali pretension to literary superiority, although lis works wero extremely popular. Besides the works already mentioned, the following deserve notice:- Untersuefnuggen über den Mensehen.' Leipzig, 17t, \&e., 3 vols. 8vo.; 'Griechenlands erste Philosophen, oder Leben und Systeme des Orphens, Phereegdes, Thales, und Pythagoms, Leipzig, 1780, 8 vo. ; 'Hermes Trismegists loemander, oder yon der guttlichen Maeht und Weishiet; Berlin and Stettin, 1781, 8vo. This work is a transtation from the Greek of Hlernes Trismegistns. 'Geist der Speeulativen Philosophie,' Marburg, 1791-97, G vols. 8vo. This work is a history of philosophy from the time of Thales down to Leibnitz and Christian Woltf, and is still useful for the materials which it contains. In slyle and arrangement it is detieient, and the author did not possess that critical and profound knowledge of philosophy which would have enabled him to pereeive the organie conneetion and the neeessary suceession of the various phitosophical systems. "Thenctet, oder über das mensichliche l'issen,' Fraukfurt, 1791, Bvo.; 'IIandbuch der Psyehologice.' This work was edited alter the author's death (Leipziy, 180t, 8vo.) by L. Waehler, who has prefixed to it a hiographical memoir of Tiedenam. Besides these greater works Tiedemann wrote numerous smaller treatises and inade many translations from the Freneh; he also contributed papens to several periodieals. He is the nuthor of some latin dissertations, anong whieh we may men(ion three jrograns: ' De Antiquis (tubosdam Mhsei bivdericiant Simulacris,' C'nssel, 1778-80, 410، ; 'Dialogormm Platonis Argumenta exposila et illustrata, Bipont, 178%, Sro. ; • lissertatio de Quaestione: quae fuerit artimm magicarim origo, guomodo ithe ab Asíae populis ad Graeeos atpue Komanos et ab his ad cacteras gentes sint propagatae,' Sec., Marburg, 1787, '410.
(b. Wachler's Memoir of Tiedemann, in his Handlouch $^{\text {a }}$ elor D'aycholugic; Creuzer, Memoria Dilerici Tiedemanni, Marhorg, 1803, 4to. ; and Jorden's Lerikon Deutseher Dichter und P'rowriston, vol. v., p. Tit-MG.)
TIFIDGE, CHRISTOPH AUGUST', 'The Nestor of German Poetry, and one who has now taken his place among the German elassics, was horn at Garlelegen in Almark, Dec. 14th, 17.2. Ilis early prospects in life were by no means flattering, for the death of his father (Conrector at the Maydebury gymnasium), in 1772, left luin aud a fanily of younger ehildren in a very destitute yituation. He completerthowever his legal studieb at Ilalle; but notwithstaudng the favourable opinion his talents
had acquired for him, he soon abandoned the protession for which he had prepared himself; and, in 176(i, aceopted the situation of private teacher in the Arnstadt family at Eirich in lloherstcin. The choiee he had made proved a fortunate one, since it eventually led to connections and friendships that proved very alvantagenus. The immediate result of the course he had adopted was an intimacy with Gükingh, Gleim, and other literary persons of that day, including the Baroness von der Recke. The friendships thas formed, laid the foundation of the prosperous and unsuffed tenour of his after-life. On quitting Eirrich he was invited ly Gleim to reside with him at Hallerstadt, which ho continned to do until 1792, when he became private secretary to Domherr von Stedern; and though he died in the following year, Tiedge remained in the family upon the same footing during the lito of Madame von Siedern, who, at her death, in 1799, secured to him a handsome eonpletency. Being thus placed perfeetly at case in his circunstanees, he travelled throngh the north of Germany; and visited Berlin, where it was his good fortune agmin to meet with Madame von der Recke, and the intinaey thus resumed continued for life. Though not in aecordance with the ordinary usages of society, it was entirely freo from the sliglatest suspicion of impropriety, and no moro open to it than was the similar domestication of Cowper with Mrs. Unwin. 'This union, of a kind so exceedingly rare that no name has been invented for it, was that of two noble and pure ininds, congenial in their tastes, and equally inspired with a fecling for poetry anl those pursuits which, while they refine, also elevate our nature. The author of 'Urania ' was as well shielded from scandal as was the author of the "Task;' for allhough very different in form, the first-mentioned poem is, like the other, deeply tinged by religious sentiment; and its merits were more immediately recognised, for it went through several editions within a very short time from its first appearance in 1801.

In 1804 Tiedge and his female triend visited lialy, where they remained about two years; and of this journcy we have an account from the pen of Madame von der Recke herself', 'Jugehuch einer Reise,' Se., 4 vols. 8vo., with a preface and notes by Büttiger, which, besides being very superior to the general elass of tour-books, attords evidenee of her being a zealous though candid l'rotestant, and a woman of striet piety. On their return to Germany; Madame von der Recke made Berlin, and afterwards (18!i!) Dresden, her chief plate of residenee, passing the summer months at Teplitz or Carlsbad. The only change Tiedge lieneeforth experieneed was that oceasioned by the loss of his companion and benefaetress, for sho had taken care that her denth (1833) should cause no ehange whatever in his ontward eircumstanees, not even that of his residence; as she directed that her establishment shonld be kept ip for him precisely as before, and that he should continue to enjoy the luxuries and comtorts he had so long been acenstomed to. Nor was her anxions solicitude for her iriend's welfase ciseless; for so pre-eminently was Tiellew favoured beyond the ordinary lot, that he not ouly attained an unustal age, but nearly free trom all infirmities of either hody or mind. In his eighty-ninth year, says one who appears to have known him personally, he did not seem to be much more than sixty: the only alteration in him was, that for some years he could not take exercise on foot, or stir out exeept in a earriage or a wheel-chair. Even but a weck before his death (March 8ih, 1841) he was at the birth-day fete of one ot his friends.
Soonster lis death, his 'Life and Literary Remains' were given to the world by Dr. K. Falkenstein, in 4 rols.; and all cutire edition of all his works, in 10 volso, is nuw in course of publication. After his 'Urauia,' his most original production is perlaps his 'Wanderungen durch den Marlit des Lebens, 1836, which, like the other, may be said to be lyric-didactic, and similar in tendency, thongh of a less deeidedly religious character, the serioushess of its moral precepts being reliesed by the tone of playful irony which pervades many parts of the poem. llis principal other prodoctions are his 'Portical lipistles,' his - Filegies,' and his 'Franenspliegel,' all which have contri buted to his reputation. The esteem in which the poet of - Uranin ' is hefd is proved by the fact that, in honour of his memory, a 'Tiedge Verein,' or Tiedge Institution, has just been established at Dresden, one ohject of which, it appears, is to give a literary prize every five years, and
another to make some provision in their deelining years for meritorious writers who may lave fallen into adversity in eonsequence of age and infirmities.
(Conversutions Lexicon; Wolff's Encyclopädic; Morgenblatt, 1842; Litteraturblatt, 1842.)

TIEL. [THiEL.]
TIE'POLO, GIOVANNI BATTISTA, a celebrated Italian painter of the eighteenth century, was borns of a good family at Venice in 1093 . Ticpolo, says Lanzi, was the last of the Venetians who aequired a European fame; celebrated in Italy, in Germany, and in Spain. - IIe studied as a boy under Gregorio Lazzarini, painted at first in his manner, then imitated the style of Piazzetta, but atfaehed himself eventually to that of Paul Veronese. Already at the age of sixteen he was known even out of Venice, and when still young he received invitations from various Italian cities to decorate their churehes and their publie buildings. His works in the north of Italy, both in oil and in freseo, are numerous: one of his first works of note was the Shipwreek of San Satiro, in the chureh of St. Ambrose, at Milan: he excelled chiefly in fresco, and his colouring and the folds of his dmperies bear great resemblance to those of Panl Veronese. In Germany also Tiepolo exeeuted several works: at Würzburg he painted the stairease and the saloon of the bishop's palace and two altar-pieces. IIe was atterwards invited by Charles III. to Spain, where, in Madrid, he painted the eeiling of the saloon in the new palace of the king, and the hall of the royal guard, hy wilich he is said to have exeited the jealousy of Mens: : he exeeuted also the chief altar-piece in oil for the convent church of St. Pischal, at Aranjuez. He died in Mradrid in 1769 or 1770 .

Tiepolo's style was slight and brilliant, yet his colouring was not glaring: the effect of his paintings was not produced by a recourse to bright eolours, but by a judicious contrast of tints: his drawing was however feeble, ye't this weakness was nearly concealed by the gracefulness of his attitudes. One of his best pictures in oil is the Martyrdom of St. Ayatha, in the chureh of St. Antonio, at Fadua. He etched several plates in a very free and spirited manner. He left two sons, Giovanni Domenico and Lorenzo, who were both painlers: the elder etched some of his father's desims.
(Zanetti, Della Pirtura Veneziana, Ee.; Lanzi, Storia Pittorica, \&e.: Fiorillo, Geschichte der Mahlerey, vol. ii.)

TIFLIS, or TEFL.1S, the capital of the Russian province of Georgia, is in alsout $41^{\circ} 43^{\prime} \mathrm{N}$. lat., according to Capt. Monteith. In 1829 Mr. Federof, who accompanied Professor Parrot on his visit to Mount Araint, found the latitude of the cathedral church to be $41^{\circ} 41^{\prime}$. The longitude, aecording to Birlin, is $62^{\circ} 34^{\prime} \mathrm{E}$. from Ferro, or $44^{\circ} 50^{\prime}$ E. of London. Professor Parrot fixes the elevation of the' stone bridge over the river Kur at exactly 1100 feet above the level of the Black Sea, and 31 feet above the mean level of the river. The Kur flows through a valley confined between two ranges of lofty mountains. The river enters the valley on the north, and 'at the extremity of the defile,' says Sir R. K. Porter, 'we saw the capital of Georgia, the massy towers of Tillis rising on the precipitous and sul)lime banks of the Kur. But the effect produced here is of a deeper tinge. The town itself stands at the foot of a line of dark and laarren hills, whose hiyh and eaverned sides gloomily overshadow it. Every house, every building within its walls, seems to share the dismal bue of the surrounding heights; for a deep blackness rests on all. The heavy battlements above, and the still majestic towers of the ancient citadel, the spires of Christian churehes, and other marks of European residence, could not for some time erase the horrible dungeon inpression of Asiatic dirt and barbarism received at first view of the town." This was written in 1817.

The town is built on both sides of the river; but the larger portion, which is on the right or west bank, contains the houses of thz wealthiest inhabitants, the great bazar, the principal squares, the finest churches, the pulslic offices, the residence of the military govemor, and of the com-mander-in-clief. This is the eity properly so called, whiel again is divided into two parts, the old and new town. The limits of the old iown are distinctly marked by the ruins of the anfient fortifications. The new town extends to the north and west heyond these walls, and is distinguished from the old town by its new luildings in the European style and broader streets. The greater part of it
is ealled by the Georgians Goretuban, that is, the street out of the city. On the left bank is the extensive suburb Awlabar, a large earavansary, the barrneks, a long row of honses inhabited by colonists from Southern Germany, and the fortress or citadel, built by the Turks in 1576 . Toward the south the town leans against the chain of hills running from the south-west, on the summit of whieh are extensive ruins of a very antient fortress; its highest point at the western end of the old wall is 392 feet above the bridge; towards the west it rises higher, and from thence a small stream of water is conducted to the city the bed of which however is generally quite dry, except immediately after rain.

There are in Tiflis 15 Greek churches, 20 Armenian, and 2 Roman Catholie, some of which are very handsome. At, a point where the river in its course through the town is hemmed in by locks, a bridge of a single arch conneets the town with the suburb of Awlabar. Here also are the ruins of an antient fort, chureh and houses, and abont two miles farther from this side of the eity stand the remains of another sacred edifice, on the summit of a lofty hill.

The houses in Tiflis are ill-built, and the streets so narrow that only one carriage ean pass through the widest, and in the smaller streets there is searcely room for a honseman. We must not liowever derive our ideas from the deseription of travellers, before or for a few years after the incorporation of Georgia with the lussian empire in 1801. The letters on the Caucasus and Georgia in 1812, written by the wife of a Russian envoy, speak of Tiffis as ' a mass of ruins, melancholy monuments of the ravages of Aga Mahomet and the Persians.' Sir Robert Ker Porter, in 1817, says that the governor was making great improvements, orderiny all ruinous houses to be repaired, or elltirely pulled down to make way for the erection of new ones. Among these improvements are the alterations in the great bazar, a long narrow winding street with shopss on looth sides, which lie had caused to be entirely roofed in, with circular apertures to admit air and light. Professor Eichwald, who visited Tiflis in 183. and 1826, and gives some particulars as late as 1829 , says', 'Since the year 1801. tranquillity and seeurity have returned, and are now firmly established in Georgia; civilization and conmeree increase every year; since that time Tiflis has been improving in. its appearance, is continually enlarged by new buildings, and its inhabitants have easily become familiar with all the comforts and even the Inxuries of Emropean life.' I'rofessor Parrot, who was there in 1829, speaks in similar terms of the improvements introdueed by the Russian government, but does not appear to be so satisfied with the introduction of European fashions.

One of the worst effects of the habitual intereourse with Europeans is the change that has heen made in the nianners of the women, who have thrown off their former Asiatic restraint, without adopting the reserve and de.cormm of European manners. This effect is much nore decided among the lower orders, beeause the troops are quartered in the houses of the inhabitants, so that the eustomary line of separation between the women and the men could no longer be preserved. This circumstance greatly disgusts the Georgians, and they accordingly haled with delight the judicious ukase of 182!, by whielt the proprictors of newly-built houses are exempted from receiving soldiers into their houses for six years.

Tiflis has been chiefly indebted for its celebrity to its warn baths, and its Georgian name, Tphilisk Alaki, is equivalent to 'warm town.' Parrot says, ifs name is derived trom the Georgian word tbili, warm, which may have been given it either on account of the warm springs, ol from the contrast of the great warmth of the climate of Tiflis, with the preceding residence of the Georgian kings at Alzchet, which lies on the declivity of the Cancasis, and has a much cooler temperature. The buthling of Tifis and the transferring of the royal residence to this place were effected about the year 45%, by king Waktang 1 ., Gork-Aslan. (Klaproth, Reise, i. -15; ii. 164.) The mineral springs rise in considerable numbers at the sontl end of the city, between the strata of limestone, whence they are condueted into the eavern excavated in the solicl rock, under one immense roof, divided into different apartments for the men and the women, into which not a ray of day-light is admitted, and which are merely reseued from total dakness by the faint glimmerings of a tew
twinkling lamps strugeline with the vapour arising from the water. The stench of the place and the disorder and filth which this meagre illumination rendem (ixible, show. najs: Sir R. K. Porter, sufficient argunent for the whole hasiong been lell in shade. He observes however that this want of order and elcenliness is not to be wondered at, since the entranee to the butlis is free to all, sund they crowd indisetiminately into every' chumber. Sir Robert went to look at these linths, und was muel surprised at 1xing urged by a gentleman who arccompanied him, to view the haflhe of the women, to which they were shown by an old woman. Their entrmee did not seem to canse any ulann or astonishurent. These waters are repputed to be very benefficinl in rheumatic complaints and cutaneous disorlers. No chemical analysis that can be depended on has yet been made. Profesior Parrol, who examined 17 aprings in four different baths, states the hottest at 37°. and the coolsest at 19° Risumur. There are ouly two springs below 30°; the temperature of the air in the shade, out of the baths, was from 15° to 16° Remumur.
The situation of Tifisis would certainly make it one of the most delightfint spots in the world, if the mountains between which it lies were not totally destitute of trees. They now only refleet the rays of the sun from the southern slope of the Caneasuss (which also keeps off the cooling nerth and uorth-east winds), and thus produce in the valleys an oppressive heat, which oftn strikes like the Elow of a furnace, and may perhaps be the cause of the bilious diseases prevalent here. The greatest heat during the residenee of Professor Parrot was on the 28 th oi July, between 3 and $\overline{5}$ in the anernoon, $30^{\circ} 4^{\prime}$ Reaumur.
Though Professor Parrot states that ' notwithstanding, the grent advanlages held out hy the Russian govermment, which entiees many persons from Russia and other commtries, yet all, from the counsel lor of state and general down to the elerk and comnoon Cossack, ollen long in a few weeks to return to their mative country as to a lost paradise ; ' Jet the population is constantly and rapidly inc creasing. In 1830 it was stated not to exceed 15,000 , and is now probably nearly 45,000 , it having been 40,000 three years ago. Full one-half are Armenians, the remainder chicfly Georgians, that is, old Greck Christians, some Roman Catholics, and about a hundred Mohammedans. It is the residence of a Georgian parriarch, a Georgian metropolitan, and an Arnemian archlishop. There are some manufaet ories of woollen, colton, and silk.
Tifin is most favourably situnted to be the inedium of an extensive trade between Europe and Asia, lut it is only since the arrival of the Russinns and the pence of Gulistan that there has been any direct cominerce with Georgia. At first, and till the enperor Alexander granted free trate to the trans-Caueasian province, the Arnenians merely purchased such goods ns they wanted for eonumon IIse at the fair of Nishlnei Norgorod, to which they brought Peninu gools, raw silk, Cashmere shawls, nud peanls, which they exclanged for woollens. linen, printed calicoes, \&e. : they often bourlit with ready mone. In 1892 the ukase graiting freedom of trade was published, and commeree kreally inerensed. In 1823 a rich Armenian went to Odessa, where he purchased goods to the amount of many thousand pounds, which he disposed of to great advantage at Tiflis.
In the following year for the first time, six Armenian merchants came to leiprig fair, where they purchased European manufactures to the amount of ciotiono rubles bateo ($23,0(00 \%$). which they conveyed through Galicia and the south of Russin to Odessa, where they were emliarked for Redout Kale. Int the year 1825 the value of the goods purchased at Leijluig was 1,200, (row rubles, and in the following year twice as nuch. Irofessor Eichwald says it is, mueh to be wished that some European merchants might settle in Tiffis, and endeavour to improve the trade from that eity to I'ensia, Afglanistan, Bokliara, and Tilbet. Then the caravans from Caslumere, Cabbul, and Tibet would no longer go to Tauris and Ispahan, but eross the Caspian Sen, and so up the hur to Tiflis, whence the goods would be forwarded over the Black Sea to Europe.
The trade with P'enia is very important, and is almost entirely in the hauds of the Armeninns of Bushire on the P'ensian Gulf and of Tiniis. The former trade chicelly to the Fant Indies: the greater part of the ships which navigate leetween Buslire mand Bumbny belong to the Inmum of Muscat : only a few English shipm come to Bushire. The
value of goods brought frouz Indin to I'ersia was two millions of ducats in 189G, and the exports from I'ersia to India reo,tho ducats. A cou-iderable prett of this trade takes the way of lhasrah, from which place the namufactures of England and India to up the Fuphateso und are disposed of in ruvkey. The transit trade of tioreign gouls, which chicfly cone from Leipriy, is un important branch of the trale between Tillis ant Persia. On the whole the commerce of Tiffis is increasing every yenr in extent and value.
(Sir Robert Ker Porter, Tracels in Georgia, \&e.; Leltres sur le Cuncuse el la Géorgie, 1812; Klaprotli, leeive in den Cincusus und Georgie; Parrot, Reise zumn Ararat. Berlin, 1831; Eielwald, Reise in den Kiuhkusus, Stultgarl), 1837.)

TIGA, Professor Kinup's name for a gemis of hirrls (Chrysomotus, Sw. ; Picus, Horsf.), placed lyy Mr. (G. R. Gray in the sulufamily Celeinae (the ath), of the Picitce. [Woodprckers.].
TIGER-HITTERNS. [Tigrasoma.]
TIGER-CATS. [TIGKs.]
TIGERS. Although there is but one speeies of Tiger. properly so called, the Tiger-Cats, or those species of the genus Frelis in whiel the ligerine character predominates, may be also treated of under the title before us.
The Royal Tiger, Felis Tigris, clains our first notice ; and, although poets and poetical zoologists, have joined to elevale the lion with his majestic mane to the sor ereiguty. it may be doubled whelher the Tiger is not the type of the ferocious and blood-thirsty genus Fehis.
Sone have thought that this speeies was hut little known to the antients; bul, we think, with no sufficient grounds. The numerous passages in which the word Tigris (riypac) oecurs in Greek and Latin authors, Ieave litlle roonl for doubting this howledge ; and Hyreania, with which it is so frequently associnted ly the latter, is a locality well suited to what we now know of its geograplical distributron.
When Aristotle (IIist. Anim., viii. 29), treating of hybrid animals which spring from an intermixture of dittierent inees, says that people pretend that the dogs of India are bred fron the tiger (roù riyeras) and a bitelh, not indeed at the first union, but at the third, we see no reason, considering the locality wlich he assigns to the ligris, and the opportunities wlich the conquests of Alexander gave him of kinowing the animals of India, why the word should be rendered otherwise than by Tiger in our present acceptation of the term. 'The tiger:' writes Pliny (Nat. Hist., viii. 18), ' is produced in Hyreania and India;' following this up with an sllusion to the 'tremendous swifiness ' of the animal, and the strong atlachment which the Tigress, not withstanding accidental exeeption, is known to manifest for her eulss. Again (lbid., vi.: 2n), he notiees the Indian nations as abounding in wild tigers. Of conrse he does not omit the story of the origin of the Indian doyss from the Tiger, and the rejection of the two first litters as too ferocious, while the thind is 1:aken and brought up. (Ibid., viii. 40.) But, further, it is quite clear from the same authority, that the Tigris had been exhibited at Rome, and that Pliny and others well kinew the distinction between that species and lempards and panthers. Atter mentioning the two last, and referring to an noncient decree of the semate that Afrienn bensts should not be imported, but stating that the tribune Cneius Aufidins cansed a plebiseitum to he passed which permitted their importation for the Circensian games, he states the numbers brought, first by Senums, and then by Pompley the Great and Augustus; adding that Augnstus was the first who showed a tame tigress (ligrin) in a den at Rome, upon the dedication of the Thentre of Mareelhus, during the consulslip of Q. Tuleero and Fahing Maximus; 'nnd that the emperor Claudius showed four torether. (Ihid, viii. 17.) Suetonius (Aug., xiiii.) states that it was the habit of Augustus, besides the exhibitions at the great spectaeles, 10 show to the publie any warity that was hrought over, 'ut rlinoeerotem apud septa; ligrim in scena; anguens quinqunginta cubitorum pro comitio:' and Dion remarks that lite likers (rippets) first seen by the Romans, and, as he thinks, by the Greeks also, were those sent by the Indians as gifts wheu they were suing for pence from Angustus. The emperor Philip on one oceasion exhibited ten tigers, together with thirty-two elephauts, ten elks, sixty lions, thirty
leopards, ten hyrenas, one hippopotamus, one rluinoceros, forty wild horses, twenty wild asses, and numbers of deer, goats, antelopes, and other beasts; the brutal exhibition being crowned by the mortal combat of two thonsand gladiators.
Gordian III. also exhibited ten tigers, and they were present in the shows of Antoninus aud Elagabalus. Aurefian, in his triumph over Zenohin, slowed four, together with a giraffe, an elk, and other rare animals.
Oppian cannot be mistaken when he writes (Cyneg., iii. 130),

for here we have leopards and tigers in the same line, and the epithet urodóruros (having a variegated back) is quite applicanhle to the latter.
The Latin poets abound with allusions to the Tigris, that, in most instances, can hardly be allotted to any animal but the Royal Tiger; for, though Virgil, in lis fourth 'Georgic' (1.407), applies the epithet 'atra' (black) to 'tightis' in the passage where Cyrene is warning Aristieus as to the forms into whieh Proteus will transform himself, the word, evidently, does not there allnde to colour, but to feroeity. In the tourth 'Eneid,' Dido, in her exelamation against Aneas, says,

Cameasus, Dyreanceque admorunl ubera tigres."
The tigers of Baceluus may he considered more doubtfnu. In the 'Gemmae et Sculpture Antiquese there is a representation of a large female Felis with the thyrsus from a carnelian (corgnola), with the superscription, 'Tigre di Bacho;' but thongh the figure, generally, might pass for a Tiger, the tail of the aniunal is terminated by a shaggy tuft, and no tiger's tail is. Claudian comes much nearer to the mark where he deseribes lacchus as marehing crownel with ivy, and clad (in the skin) of the Parthian Tiger. When Virgil describes Orpheus, as ‘mulcentem tigres' as 'soothing tigers' (Georg. iv., 1. 510), and Horace, with nearly the same thought, addresses Mercury,

Tu poles tigres comitesque syivas
 Ducere:

(Curm. iii.. Ode ii.) ; and again, in his epistle to the Pisos (' 1)e Arte Pocticâ,' 1. 343), says of Orpheus,

- Dietua ab hoc lenire tigres, mhidocrutue leones ;
they make the Tiger personify the greatest ferocity, and they certainly could not have chosen a more apt representative.
Martial speaks of the Tiger in the time of Titus and Domitian. (Spect., Fpig. 18, and lib. i., Epig. 105.)
To conclude this branch of the subject, we shall advert to oue more literary proof, and one picee of pictorial evidence: and we think that no doubt can exist that, although the Rojal Tiger was not so abundant in the Roman shows, particularly the carlier ones, as the leopard and the panther, its form and colouring, as distinguished from the other great cats, were as well and faniJiarly known to that people.
Pliny; in liis chapter 'De Allantls Arborihus et Cedrinis Mensis,' \&c. (Nat. Hist,, xiii. 13), speaking of the grain or paltern of these tables, says that where it was oblong or lengthened, they were ealled tigrine, but where it was wreathed or eurled (intorto), thes were termed pantherine.
The pietorial evidence (so to speak) was furnished by the mosaic found at llome near the arel of Gallienus. In this work of art, executed not inprobably in commenoration of the exhibition of Clandus above noticed, four loyal 'Tigers, ench' devouring lis prey, are well repressented.
Onr Zoological Societies and menageries have so increased in number during a long period of peace, that it becomes almost superfluous to describe a form so well known. But as a description of an animal holding so inportant a rank in the animal kingdom may be expeeted, we select that of Mr. Bennett, who, in the Tower Menugerie, remarks that the Tiger, closely allied to the Lion in size, in power, in external form, in interual structure, in zoologieal characters, in prowling habits, and in sanguinary propensities, is at onee distinguished from it, and froin every other of their common genus, by the peeuliar markings of its coal. 'On a ground which exlibits in different individuals various shades of yellow,' says Mr. Bennett, , he is elegantly striped by a series of transverse black bands or bars, which occupy the sides of his head,
neek, and body, and are continued upon his tail in the form of rings, the last of the series uni.ormly oceupying the extremity of that organ, and giving it a black tip of greater or less extent. The under parts of his body and the inner sides of his legs are alnost entirely white ; he has no mane ; and his whole frame, though less eleyated than that of the Lion, is of a slenderer and more graceful make. His head is also shotter and more rounded.'

There is a paler varicty, almost approaching to whitish, and with the stripes visible only in partieular lights: this has been exhibited in this country. Aecorling to Du Halde, the Chinese Tiger (Lou-chu, or Lou--hut) varies in colour, some being white, striped with black and grey.
The size of the Tiger varies also; but the dimensions of the form, when fully developed, are, if we are to give eredit. to some accounts, the veracity of which has not been impugned, most formidable. Buffon notices an indivividual which was (tail ineluded) 15 feet long; and it is on record that Hyder Ali presented to the Nabob of Arcot one which measured 18 feet in length. The average height varies from about four feet to about three feet, and the length from about eight or nine feet to six.

Geographical Distribution.-Asia only, and not the, south of Afriea, as Buffon erroneously states; but authors generally agree that the Tiger is now rarely, if ever, met with on this side of the Indus. It is said to be found in the deserts which separate China from Siberia, and as far as the banks of the Oby ; and in the soith of China, and, the larger East Indian Islands (Sumatra, for instance), it is ${ }^{\prime}$ common. Pennant states that it is found as far north as China and Chinese Tartary, and about Lake Aral and the Altaic Mountains. © It inlabits Mount Ararat,'says the same author in continuation, 'and Hyreania, of old famous for its wild beasts; but the greatest numbers, the largest, and the most eruel, are met with in India and its istands. In Sumatra the matives are so infatuated that they seldom kill them, having a notion that they are animated by the souls of their ancestors. They are the scourge of the country; they lurk among the bushes on the sides of rivers, and almost depopulate many pinees. They are insidious, blood-thirsty, and malevolent, and seen to prefer preying on the human race.' Hindustan may be considered the head-quarters of this destructive animal; there it is that he reigns unaved even by the lion, with which he disputes the mastery, and which is eomparatively rare in that peninsula.
Habits, Chase, \&c.-The bound with which the ambushed tiger throws himself upon his prey is as wonderful in its extent as it is terrible in its effects. Pennant justly observes that the distance which it clears in this deadly leap is seareely credible. Man is a mere puppet in his gripe ; and the Indian buffalo is not only borne down by the ferocious heast, but carried off by his enormous strength. If he fails, it has been ssid that he makes off. This may be true in certain instances, but in general he does not slink away, but pursues the affighted prey with a specdy aetivity which is seldom exerted in vain. This leads us to the observation of Pliny celebrating its swiftness,* for which the Roman zoologist has been eensured, most unjustly, apparently; nor is he the ouly author among the ancients who notices its speed. Oppian (Cyneg., i. 323) speaks of the swift Tigers as being the offspring (y vie $\theta \lambda \eta$) of the zephyr. ' 'Pliny,' says Pennant, ' has been frequently taken to task by the moderns for ealling the Tiger "animal tremendæ veloeitatis;" they allow it great acility in its hounds, but deny it swifness in pursmit. Two travellers of authority, both cye--vitnesses, confirm what Pliny says: the one indeed only mentions in general vast fleetness; the other saw a trial between one and a swift horse, whose rider eseaped merely by getting in time a midst a cirele of armed men. The clase of this animal was a favourite diversion with the great Cam-Hi, the Chinese monareh, in whose company our countryman Mr. 13ell, that faithful traveller, and the Pere Gerbillon, saw these proofs of the tiger's speed.'
In the 'Ekacoovrás, seu Centuria Imaginum Hieroglyphicarum' (CIo. Ioc. xxiii.) is a wood-cut (here copied) that may refer to such a seene.
Ferocious as the Tiger is, and much as it may deserve the odium heaped upon it, the general ehorus of the herd of authors who eulogize 'the courace, greatness, elemency, and generosity' of the lion, contrasting it with the unpro-

Tiger pursuiag a man on harsehach.

voked ferocity, unuecessary eruelty, and poltroonery of the Tiger, becomes ridiculous, thrugh led hy suel names as Buffin and l'ennant. The lion las owed a yood deal to his mane and his noble and dlignified aspeet; but appearances are not always to be trusted. Mr. Barrow, with muels more truth, charmeterizes the king of beasts as nowerful but ireacherous. 'Happy;', says that traveller, * For the peasantry, the Hottentols, and those animals that are the objects of tits destruetion, were its noble and generous nature, that so of has fired the imagination of poets, renlized, and that his royal praw dischined to stain itself in the blood of any sleeping ercature! The lion, in fact, is one of the most indolent of all the beasts of prey, and never gives limiself the trouble of a pursuit unless lard pressed by hunger.'
Pennant gives the following as an instance, after stating that there is a sort of eruelly in the devastations of the tiger unknown to the generous lion, as well as poltroonery in its sudden retreat on auy disapppointment: 'I was informed by very good authority, that in the beginning of this century some gentlemen and ladies, being oin a party of pleasure under the shade of trees, on the banks of a river in Bengal, observed a tiger preparing for its fatal spring; orne of the ladics, with amazing presence of nind, laid hold of an umbrella and furled it full in the animal's fuee, which instantly retired, and cave the company an opportunity of removing from so terrible a neighbour.?
This is a very pretty story, and the leroine deserves all praise, though it is not very clenr what is meant by furling an unihrella, so as to make the alleged aet square with the context, and the tiger was undoubtedly very polite. But tigers spring from a considerable distance, 15 or 30 feet, and from ambush; and we suspect that a eross-examination of the parties conecried night have slightity damaged the ancedote. Granting, howerer, that this bold lady walked up to a erouched tiger, and suddenly opened an mumbella in its face (for that, we presume, is the action meant), we may casily conceive that the surprise may have utterly confounded him; ; but this is not poltroonery. Indeed the same nuthor iminediately afterwands gives a tolerable proof of the animal's daring: 'Another party had not the same good fortune : a tiger darted among them while they were at dinner, seized on one gentleman, carried him off, and he never was mure heard of:"
But there is another story, a rery sad one, which is pregnant with proof of the tifer's's harlihood; we allude to the distressing death of Sir Hector Monro's son. Mr. Woorl (\%ongraphy) relates the horrible ocenrrence in a fetw morls:-
' This unfortumate gentleman,' says Mr. Wood, ' accom. panied ly three of his friends, went on slore, Decenber 22, 1702, on Sankgar sland to bhoot deer. They continued their sport till the anternoon, when they refired to the edge of a jungle to refrest theniselves; where they had not rentinaed tong before one of the party, who was leaving the rest to shoot a deer, henril a dreadful roar, and saw a large liger apring on poor Mouro, and rusth with him into the Jungle with the greatest ense, dragging lim through everything that obstructed lis counse, as if all were made to yield to lif amazine strength. All that his companions could to to reseue their friend from this slocking situation was to fire at the tiker; und it is evident that their slots took place, since, in a few minntes afer, Mr. Monro staggerell up to them covered with blood, and fell. Every inclienl ansistanee that the ship aflomled was procured for hime immediat ely. but in rain; he expired in the course of twenty-four hours in the greatest agonies. Mis head was tori, his skull lractured, aull his neek and sloulders covered with wounds anade by the claws of the savage
beast. It is worthy of olservation, that neither the lage fire that was llazing elose to them, nor the noise and laughter which it seems they were making at the time, could divert this determineel animal from his purpose.' Contrast this with the story told liy Sparman, of the ailventure of Jacol) Kok, of Zee-kne-rivier [Lıon, vol. xiv., 1. 32], in which the Iion, though warmed with the artour of chasing the lerified Jacol, whs daunted when, in his extremity, he faced the infuriated beast from a sniall hemp of stomes, presenting the butt-cud of his shotless gun to his brutal eneny:. This ueas poltroonery, if suela a term be applicable te beasts.
But if any doubt as to the eourage of the tiger be entertained, Father Tachard's account of a comhat between that beast and two clephants at Siam will be sufficient pronf. He relates that a lofly bamboo palisade was erected, oceupying an area of about 100 feet square. Into this enclosure two elephants were introcheed with their heads and trunks shichded by a kind of mask. A large tiger was now brought from its den, and held with cords till one of the elephants approaehed and inflicted two or three blows on its back with his trunk, so heavily laid on that it fell stunned, as if dead. Then they loused the tiger. No sooner did he recover than he sprang will a drendful roar nt the elephant's trunk stretehed out in act to strike him; but the wary elephent drew up his truak, and receising the tiger on his tusks, hurled him into the air. This checked the fury of the tiger, as it well minhth, and he gave up the contest with the eleplant; but he ran several times mund the palisade, frequently springing at the spectators. Afterwards three elephants were set upon lim, and they in turn dealt him suel heary blows that he again lay senseless, and would lase been killed, if the combat, as it is mont ineorrectly ealled, had not been stopped. Nothing eould be more unfair towards the tiger than the whole of this proceeding; and we will venture tosay that no quadruped except a British bull-dog could have shown more 'phock,' to use a vulgar but expressive torm, than this shamefinly treated beast.
The older authors generally state that after the tiger has secured its prey it plunges its head into the body of the animal up to its very cyes, as if to satiate itselt with blood till the corpse is exhansted, before it tears it to pieces. The best modern accounls tend to prove that the tiger is not more bloolthirsty and has no more blondsucking propensities than the other great eats; and that this blood-drinking habit is grossly exaggerated.
The tigress brings forth three or four, or four or five cults at a time; and she is a very fond mother, bravinge every danger for them, and turiously attacking man and beast in their clefence. The antieuts knew this well. See Martial (lib. iii., Epig. 44):-

> - Non tigris catulla citata raptis," \&c.;

and Juvenal (Sat., vi.) :-

- Tuncesravis tili viro, lunc orba sigride proor:"

and though it is on record that a tigress in inodern times devoured her cub, one shonld remember that this unnatural act was done in captivity, and that rabbits, sows, mind eats have clone the same. But that in a sate of nature the inaternal feeling is very strong in the tigress, there c:un be no doubt. Captain Williamson, for example, relates that tho tiger-culss were brought to him when he was stationed in an Indian district. The couniry-people hamd found four in the absenee of the tigress. The two bronght to the enptain were put in a stable, where they made a loud noise for several nights. The bereaved muther arrived nt last, replying to their cries with fearful howhing:, and the cubs were let loose under- the apprehension that the infuriated tigress might break in. In the moning it was found that she had cerried then nway.
For an necount of the hylorids between the Jion and Tiger, see the artiele Isos, vol. xiv., p. 35.).
Various devieces bave been put in requisition to take or anmililate this destruetire quadruped, and we shall men. tion one or two of then before we advent to the chace of the anitnal upon a grander seale. Ten nuperes were formerly offered by the East India Company for every tiger destroyed within the provinces where their jower and influence extended: a small rewnrd, but sufficient, conjointly with the depredations of the animal, to stimulate the poorer elasess to destroy it.
A kind of spring-bow was formerly laid in its way and
discharged a poisoned arrow, generally with fatal effect, when the animal came in contaet with a cord stretched aeross its path, and this method is said still to be in use in sume places. Again, a heavy beam was suspended over the way traversed by the tiger, which fell and erushed him on his disengaging a cord which let the beam fall. A Persian device is said to consist of a large spherical strong interwoven bamboo cage, or one made of other suitable materials, with intervals throughout, three or four inches broad. Under this shelter, which is picketed to the ground in the tiger's haunt, a man provided with two or three short strong spears takes post by night, with a dog or a goat as lis companion, wraps himselt in his quilt and mees 10 sleep. A tiger arrives, of whose presence the man Is warned by the dog or the goat, and generally, after smelling about, rears himself up against the cage, upon which the man stabs him resolutely with his short spear through the interstiee of the wicker-work. It seems ludicrots to talk of taking a tiger with birdlime; but it is said to Le so eaptured in Oude. When a tiger's track is ascertained, the peasants, we are told, collect a quentity of leaves rescmbling those of the sycamore, and common in most Indian underwoods; these they smear with a kind of birdlime which is made from the berries of an indigenous and by no means searce tree, and strew them with the adhesive substance uppermost in some gloomy spot to which the tiger resorts in the heat of the day. If he treads on one of the limed leaves, he gencrally begins by trying to shake it from his paw, and not succeeding, proceeds to rub it against his jaw in order to get rid of it. Thus his eyes and ears become agglutinated, and the uneasy animal rolls, perhaps among many more of the smeared leaves, till he becomes enveloped: in this state he has been compared to a man who has been tarred and feathered. The tiger's ingitation and uneasiness find vent in dreadful howlings; on which the peasants liasten to the spot, and shoot him withont difficulty.
The plan of the box-trap and looking-glass, a deviec to be found in antient sculpture according to Montfation, is said to be practised among the Chinese at the preseut day.
So much for the trapping of the Tiger. The tiger-hunt is perhaps the grandest and most exciting of wild-sports. Upun such oceasions the whole neiglibourhood is on the move, and two hundred elephants have been known to lake the field; from ten to thirty of these gigantic animals, cach carrying sportsmen armed with rifles, have not unfrequently started for the jungle.
Captain Mundy gives a short but spinited deseription of a tiper-hunt. The party, he tells us, found immense quantities of game, wild-hogs, hog-deer, and the Neilghie;* they, however, strictly abstained from firing, reserving their whole battery for the nobler game of which they were in pursuit. They had to pass through a thick forest, and the nuthor gives a very interesting description of the power and dexterity of the clephants in overtlirowing trees to make a road :-' On clearing the wood,' says he, 'we entered an open space of marshy grass, not three feet high; a large herd of cattle were feeding there, and the herdsmau was sitting singing under a bush, when, just as the former began to move before us, up sprang the very tiger to whom our visit was intended, and cantered off across a barc plain dotted with small patches of bushjuugle. He took to the open country in a style which would have more become a fox than a tiger, who is cxpected by lis pursuers to fight and not to run, and as he was flushed on the flank of the line, only one bullet was fired at lim ere he eleared the thick grass. He was tuhurt; and we pursued him at tull speed. Twiec he threw us out ly stopping short in small strips of jungle, and then heading back after we had passed; and he had given us a sery fast trot of about two miles, when Colonel Arnold, who led the field, at last reaehed him hy a capital shot, liss clephant heiny in full career. As soon as he felt himseli wounderl, the tiger crept into a close thieket of trees and bushes, and crouched. The two leading sportsmen overran the spot where he lay, and as I came up I saw Inim, through an aperture, rising to attempt a charge. My maliout had just before, in the heat of the chase, dropped his ankors, or goad, which I had refused to allow him to reeover, and the ejephant being notoriously savage, and further initated by the goading he had undergone, became consequently unmanageable; he appeared to sue the tiger
as soon as myself, and I had only time to fire one shot, when he suddenly rushed with the greatest fury into the thicket, and falling upon his knees, nailed the tiger with his tusks to the ground. Such was the violence of the shoek, that my servant, who sat behind, was thrown ont, and one of my guns went overboard. The struggles of my elephant to crush his still resisting foe, who had fixed one paw on his eye, were so energetie, that I was obliged to hold on with all my strength, to kecp myself in the houdah. The second barrel too of the gun, which I still retained in my hand, went off in the scuffle, the ball passing close to the mahout's ear, whose situation, poor fellow, was anything but enviable. As soon as my elephant was prevailed upon to leave the killing part of the business to the sportsmen, they gave the roughly used tiger the coup-de-grace. It was a very fine female, with the most beautiful skin I ever saw.'
In the 'Asiatic Annual Register,' for 1804, a gentleman who had been present at the killing of above thirty tigers gives an account of a lhunting-party of the Nawab Asuf-ud-Dowlah. After describing the immense cavaleade of the Nawab, he says :-'The first tiger we saw and killed was in the mountains; we went to attack him about noon; he was in a narrow valley, which the Nawab surrounded uith above two hundred elephants; we heard him growl horribly in a thick bush in the middle of the valley. Being accustomed to the sport and very eager, I pushed in my elephant ; the fieree beast charged me immediately; the elephant, a timid animal, tumed tail, and deprived me of the opportunity to fire. I ventured again, attended by two or three other elephants; the tiger made a spring, and nearly reached the back of one of the elephants on which were three or four men; the elephant shook himself so forcibly as to throw these men off his back, and they tumbled into the bush; I gave them up for lost, but was agreeably surprised to see them creep out unlurt. His Excellency was all this time on a rising ground near the thicket, looking on calmly, and bechoning to me to drive the tiger towards him. I made another attempt, and with more suceess; he darted out towards me on my approach, roaring furiously and lasling his sides with his tail. I luckily got a shot and hit him; he retreated into the bush, and ten or twelve elephants just then pushed info the thicket, alarmed the tiger, and obliged him to run towards the Nawah, who instantly gave him a warm reception, and with the assistance of some of his omras, or lords, laid the tigersprawling on his side. A loud shout of veha! vcha! proclaimed the victory.'
There is in Bishop Heber's 'Journal' a most graphie description of a tiger-hunt, but our limits will not permit us to indulge in more of these stirring accounts.
Those who have represented the tiger as untameable have no ground for the assertion. It is as capable of being tamed, and of attachment, even to fondness, for its keeper, as any other animal of its kind. We have scen many instances of this mutual good understanding between the man and the beast, and Mr. 33 ennett mentions a remarkable exantple in his 'Tower Menagerie.' A tigress of great beauty, in the Tower when he wrote, and scarcely a year old, had been, during her passage tiom Calcutta, allowed to range about the vessel unrestricted, and had become perfectly familiar with the sailors, showing not the slightest symptoms of ferocity. On her arrival in the Thames, the irritation produced by the sight of strangers instantly changed her temper, rendering her irascible and dangerous. So sulky and sayage was she, that Mr. Copss, who then lept the lions in the Tower, could hardly be prevailed on by her former keeper, who came to see her, to allow him to enter her den; but as soon as the tigress recognised her old friend, she fawned on him, licked him, carcssed him, and manifested the most extravagant signs of pleasure; and when, at last, he left her, she eried and whined for the remainder of the day. The tame ligers of the mendieant priests, or Fakirs, of Hindustan, are well known.
But whilst there ean be no doubt of the tameable qualities of the tiger, and indeed of all the great cats, they are not to be incautiously trusted. The natural disposition is always ready to hreak out ; and the mildest of them, though

Will have a wild triek of his ancestors.' and lock'd up,
Thus Bontius states that, in 1628 , a liger at Batavia, which had been brought up from a cub, and aceustonsed

10 men wll its life, eacaped from its eace, fastened on a bome which was feeding near, and killed it; so that the clizens ruse upon the tiger with fire-arms and slew it in its turn, to prevent further inischief.

We ronclude this part of our slietel with the aceount given by John Jnson, who formerly kept the bensts in Fvelor Change. to Mr. Wood, of his tearful eneounter with one of these enplives.

About the jear 1802 a tiger had been purehased ly Mr. Alpey 10 send to the emperor of Germany, and placed in the Power, there to remain for a few days, till the slip destined to convey the nnimal abrond was ready. The thenat was confined in a large, sufficiently ventilated, wooden case, lined with iron hoops, some of which he ripped off dnring the first night of lis confinement, and gnawed the ease patly through. This beine pereeived, the next day the crse was repaired by the addition only of a strong piece of wood mailed on the outside. The eonsequence, suys Mr. Wood, mloht well be expected. The tiger renewed his effiorts, ant in the course of the following night made his eseape, and sprung upon a wall ten feet high, where he remained till Mason cance in the morning. The fear of loming such a valuable animal indueed this poor fellow, for a rewanl of tell guineas, 10 hazard his life in an attempt to secure the liger. For this purpose lie engaged a sergeant and some other persons to assist him, whom he placed in a room, the door of which opened upon the feals, from whence he could reach the animal. He then provided himself with a strong rope, one end of which he gave through the window to lits companions, and with the other, laving a running noose upon it, he slowly appuached the tiger, and threw it over its neck. This was thes eritienl moment: the prople within were direeted to pull the rope and secure the beast: unfortunately the Hoose slipped off, and the enraged animal immediately sprung upon the keeper, fixine his teeth into the fleshy phat of his arm, and tearing his breast and land in a dreadful inanner with his claws. In this shoeking situation the poor man lay under the tiger; while the sergeant cut a Lullet into four parts, and, having loaded his musket, he fired throurh the window at the animal; who, the moneent he received the shot, quitted his hold; and, after stargering for a few mimutes, expired. The bullet however which destroyed the tiger had nearly been equally thal to the man, one of the quaters having glanced against his lemple, and deprived lim of all sense and motion for a considerable tine. Nevertheless, afler keeping his bed a tornimht, he gradually recovered, and is now (1807) perfectly well, though lie will carry the marks of his enemy about with him as long as he lives.' (Voography, vol. i.)

In the Fast the tiger is associated emblematieally with power. Thuts the Chinese mandarins covered their seats of justice with its skin. In pl. 17 of the atlas 10 Sir George Siannton's 'Embasy to China,' representing a military post, two swordguen are habited and shiclded so sas to cxfirbit a ligerine aspeet. The tiger soldiers of Hyder Ali and Tippoo Snib were anong the cloocest of their troops. 'The tiger's head. gorgeous with jewels, that formed the prineapal urnament of the throne of Iyder and Tippoo, and was taken by the British among the spoils of the latior at Seringapitan, is well known; as is the antomatic representation, clumsy enough it mnst be adinitted, of a
royal liger tearing to picees a soldier in the pay of the British, and initating the growling of the lreast and the cries of the man, tuken also upous the same oectsion. (See the Mascun at the Indir llonse.)

The term 'Tiger' is locally and erronconsly applied to the Jaguar. [I.xopakds, vol. xiii.,]1. 436.]

Fossil Tigers, Sce.

Profescor Buekiand notices the renains of the Tiyer in the cave at Kirkdale, at l'ymouth, and in the brececia of Antibes. The great fossil Tiger or lion (1 ilix syulete. Goldfuss), and other extinct cats, lived before man was in existunce. The following fossil cats are enumerated by Von Meyer, besides the great species above-mentioned :Felis anfigut, Cuv.; F. Issiodurenxis, Croiz. and Jol). ; I. Urecirostris, Croiz. and Job. ; Il. I'ardinensis, Croiz and Job. ; F. Arvernensis, Croiz. and Job. ; \mathbb{I}. Merranlerinn, Brav. ; F_{0} cultridens, Brav.; F, uphunistes, Kiaup; F. Ogygin, Kaup; and H.prisca, Kaup. [Feludes, vol. x., p. 2.24.$]$

Dr. Lund, in his "View of the Fauna of 13razil previous to the last Geological Revolution, remarks that the Ifunting leopard (relis jubuta, Linn.; Cynailurus, Wingl.), which differs from the rest of the Cats in many essential characters, has been very properly formed into a separaie genus; for its claws are not retractile, it is gregarious, and of so mild a disposition that it is frequently tamed and eniployed in the ehace. IBut, he observes, as ormarkable contrast to this, that its dental system is upon a more murderons plan than that of the true Feles, not having the flat projection on the large tearing molar of the upper jatw, which is found in all the other predaceous genera, aud the development of which is in inverse proportion to the animal's carnivorous propensities. Dr. Lund reeognised this form of dentition in a small animal of the extinct Fauma of the Brazilian region, which was the seene of his valuable labours, not exceeding a domestic cat in size; and he has named it Cynallurus minntus. Besides this he discovered the remains of two species of the normal feline form, one as large as the long-tailed tiger-eat (Fclis mucroura, Mr. Max.), the other lirger than the Jaguar (Velis Onç, Linn.), and comparable to the Tiger and the Lion, the largest speeies of the Old World.

Tiger-Cats.
Under this title may be classed all those lesser slriped and spotted Asiatie, Atrienn, and Ameriean Cats which do not come under the well-understood denominations of Tigers, Ieopards, and Panthers.

Betore we proceed to any description or illustration of this beauliful group, it will be advantageous to the student to be put in possession of M. Temminck's well-ensidered and digested monograph of the genns Irdis divided into two sections according to their geographical distribut lion.

Section 1.
This comprises the lelide of the Old Continent and its arclipelago.

Species.

1. Felis Ien, ineluding the three varicties of Borlutry, senegul, aud Persia. [Liov.]
2. Pelis Tigris, the Royal 'riger (here treated of).
3. Frlis jubufa, the Hunting I.eopard. [l.zopsims, vol. xiii., 1., 433.]
4. I'elis I'urdus, the l'auther. [Lzopatus.] Of this M. Temminck gives the following character:-When adult, less than the Leopard: fail as Iong as the boxly and the head, its extremity when turned back reaching to the tip of the nose : eolonr of the fur decp yellowish fitlous, its internal part marked with rose-like spots of the same lue as the ground-colour of the fur; the numberous spents elosely approximated; the rose-like spois from 12 to 14 lines at the ntmost in diancter: caudal vertebres 28. N.13. The number of eaudal vertebre asigyned io the leopard by M. Temminek is 23 . It would appear that there is no correet figure of the true Panther:
The Black Tiger, Felis meias, Riman Kímbong of Sir Stamford Raftles, is considered as only a dark varicty of the Leopard.

Pelie Unciut is considered as also to be erased from the list of species, as it is only the young of the leopard or l'auther.
6. Felis macrocrlis, the Rimar-Duhan. [Leorards, vol. xiii., p. 433.7
7. Felis Serval, comprising F. Serval and F. Capensis, Linn., the Chat-pard of Desmarest, and the Caracal of Bruce.
8. Felis cervaria. For the eharaeters of this and the seven speeies of Lynx which follow it in M. Temminek's monograph, see Lywx, vol. xiv., p. 217.
10. Felis Cutus. [Felid.玉, vol. X., p. 221.]
17. Felis maniculata. [Fridde, p. 222.]
18. Felis mimutu, identieal with the Felis Javanensis of Horsfields ' Zoologieal Researches in Java, and therefore not to be adopted.

Section 2.

This comprises the Felider of the New Western World. 19. Fel is concolor, the Puma. [Lion.]
20. Felis Onga, the Jaguar. [Leopards, vol. xiii., p. 434.1
21. Fel is Jaguarondi.
22. Felis celidogaster. Bought by M. Temminck at the sale of Mr. Bullock's eollection, for the museum of the Netherlands.
23. Felis rufu, Guldenst. Bay-Cat of Pennant: with this M. Temminek deseribes also a specimen brought from Mexieo, which may prove distinet. Bought by M. Temminck at Mr. Bulloek's sale for the museum of the Netherlands.
24. Felis pardalis, the Oeelot.
25. Felis macroura.-N.B. These two last confounded together by linnæus under the name of F. purdalis. The Mexican Tiger of Pennant is said to appear to be a representation of F. macroura.
26. T'elis mitis, the Chati, F. Cuv.
27. Felis tigrima.

This monograph, as far as it goes, has been of great benefit; but the student should examine the menageries and museums, as well as the works of other authors, and he will find several cats noticed both before and since the publiention of M. Temmench's eatalogue. Amnng other authorities the publieations of d'Azara, of Sir Stamford Raflles, of M. F. Cuvier, of M. Desmarest, of MIr. J. E. Gray, of Dr. Horsfield, and Mr. Vigors in the Zoological Journal, of Dr. IForsfield in the Zoological Researches in Jnea, of Prince Maxinilian, of M. Lesson, of Sir William Jardine (Naturalist's Library, Muntmalia, vol. ii., Felince), and of Mr. Darwin (Zoology of the Beagle), may be consulted with advantage.

Dr. Horsfield and Mr. Vigors (Zool. Jour., vol. iv., p. 380) remark that they are not of M. Teinminek's opinion, that the determination of species in such groups as these rests upon any examination, however acute, of preserved speeimens in cabinets, or in any research, however extensive, into the stores of funiers. Such examination, they think, leads to conjecture ; probable and plausible conjecture, it may be trie, but still conjecture, and not facts. They add that we are in this way as likely to fall into the error of confounding true species as into that of ereating nominal ones, and they express their opinion that the truth ean be satisfactorily attained only hy diligent researehes in the native country of these animals, or by aecurate observations on their changes and differences as to sex, age, and season, when in a living state and in confinement.
M. Temminek, in his Tableau Méthodique (1897), states that then there were known thirty distinet speeies of cats and seven or eight other doubtful indications.

Aspitic Tigrr-Cats.

Example, Felis Nepalensis, Horsf. and Vir.

Description.-Size of Felis Javanensis, Horsf., but its habit more slender, the tail and neck proportionally elongate. Ground-eolour grey, with a very slight admixture of tawny; bands and spots of the head, back, neek throat, abdumen, and thighs, deep black; superior longitudinal hands resembling those of F. Jucanensis. Ground-eolour of throat and abdomen nearly white; the lower flanks marked with a faint tawny longitudinal streak. Cheeks streaked with two parallel longitudinal lines, at the termination of which follows a transverse lunar mark which passes with a bold eurve to the angle of the nouth, near which a very narrow band erosses the throat. Sides of the neek appearing marked with two broad waving bands, at the termination of which stands an oblong regularly transverse band. Neck underneath nearly immaeulate. Shoulder and flanks exhibiting irregular, diversified marks,
the anterior oblong, the posterior angular, of a mixed tawny and black, and, individually, above or posteriorly with a broad dash of saturated black: they are seattered over the sides without any regular longitudinal disposition; but they have generally an oblique direction. Abdomen marked throughout with uniform oval spots; anterior thighs within exhibiting one, the posterior thighs two broad blaek bands. Rump and thighs marked externally with roundish or oblong spots. Tail above, to within about an inch of the tip, with uniform roundish spots, arranged posteriorly in regular transverse bands. Head above and ears agreeing generally with those of F. Jovanensis. Length from extremity of nose to root of tail, 1 foot 10 $\frac{1}{2}$ inehes. Length of tail $10 \frac{1}{2}$ inehes. (Vig. and Horsf.)

Dr. Horsfield and Mr. Vigors observe that the distinguishing eharacters of this spectes are, its comparatively lengthened habit; the slenderness and proportional length of the tail; the disposition of the marks on the flanks, and the character of these marks as far as regards their diversified form; and the saturated black patch with which they are individually marked at their upper or posterior edge.

In the Bengal Cat,' say those zoologists, 'these marks have a different disposition; they are oblong, and arranged on the flanks in regular suecession longitudinally. The materials contained in the museum at the India House have enabled us to make this statement, whieh is founded on the examination of a speeinen brought by General Hardwicke, and on a careful drawing prepared under the eyes of Dr. Hamilton. We have thus two distinet speeies oi small cats from India, and the elucidation of this point is of some importance, as it appears, from the following remark in M. Temminck's monograplis, "lexistence de eette espèce dans l'Inde n'est pas constatée," that he entertained some doubts on the existence of the Bengal Cat. It is not our intention, at present, to give a comparative analysis of all the speeies whieh resemble our animal. The discrimination of many speeies of Felis is at all times a difficult subject; and on many of them naturalists still disagree. Our immediate objeet is to indicate a new form of Felis, from the upper provinces of India, differing essentially from that which is feund in the plains of Bengal; and so direct the attention of naturalists in that country to a more eareful investigation of the various Oriental species of this interesting genus.'
The same authors state that the specimen in the collection of the Zoological Society of London was presented by Captain Farrer, of the East India Company's service. It eame immediately from Caleutta, where it was said to have been sent from Nepatl. It lived some time in the Soeiety's gardens, but was extremely wild and savage. It generally remained in a sitting posture, like that of the conmon Domestic Cat, and never paced its den in the manner of most other animals of the group. (Zool. Journ., vol. iv.)

Feis Nepalensis. African Tiger-Cats.
Example, Felis Serval, the Serval.
Description.-Upper parts clear yellowish, with black spots; lower parts white, with black spots also, but they are less numerous. Upon the head and neek the markings are most conspicunns, and form symmetrieal lines on each side direeted towards the shoulders. On the other parts of the body they are plneed irregularly. On the haek they are lengthened, and show a disposition to form four rows; on the body and thighs they are larger and round, and they are smaller but equally round on the extremities. Upon the face and muzzle they are minute,
YoL, XXIV, 3 I

Back of the cars black at the hase, sueceeded by a transverse white bar; tips of the ground-colour of the body. On the inside of the fore limhs two conspienons black transserse bars; the hind limbs with simular markings, but fesudeflued; last joints of the limbs of a puler tint than the rest of the body, the spots on them ronnd and very small. Tail with eight black rings, tip of the same colour. Length, exclusive of tail, 1 foot 11 thenes; tail 9 inches. Height when standing ereet, about 12 inches at the shoulder, and 15 inches at the hind quarters. (F. Cur.)

The animal from whel the above deseription was taken was a rers young male. Its temper was nuld and gentle, and its disposition sportive. It played like a domestic eat, or rather kitten, elasing its tail, and amusing itself with anything that it conld roll with its puw.

Tocality. -The Serval is a native of sonthern Africa. There are generally some tiving speeimeus in our menateries. It has been exhihited in that of the Zootogieal Sueiety of London, and maj be seen there now (1812).

Americay Tiner-Cats.

But it is in Amerien that the tiger-eats are most numerons and beautiful, and there their maness have been best noticed by competent observers: we select three examples of the varieties of form and colouring exhibited by this group in that quarter or the globe.

Friif pardalis, Linn. The Ocelot. This, the most beauliful perhaps of all the tiger-cats, almost defies deseription. Mr. E. Bennett has however given a very faithfut account from two living specimens, one existing when he wrote in the Tower of Londou, and the other in the garden of the Zoological Society in the Regent's Park.

Description.- l3ocly when full grown nearly three feet in lengtt; tail rather more than one ; medium height alout 18 inches. Ground-eolour of tur, grey, minglecl with a slight tmee of fawn, elegantly inarked with numerous longitodinal bands, the dorsal one eontinuons and entircly black, the latern (six or seven on each side) consisting for the most part of a series of elongated spots with black inargins, sonictimes completely distinct, sometimes muming together. The eentre of eneh spot of a decper fawn than the ground-colour external to them; this deeper timge is alan conspicuons on the hend and neek, and on the outside of the limbs, all of whieh parts are irregularly ninrked with full black lines and spots of various sizes. From the lop of the heall, between the cars, there pass hackwards, towards the shoulders, two, or more frequently four, uninterrupted diverging bands, which are full blaek anteriorly, but generally biturente posteriorly, and enelose a marrow fawn-coloured space with a black margin; between these there is a single Jongitudinal, somewhat intermpted, narrow black line, occupying the centre of the neck above. Finss short and rounded, externally markined with blaek, surrounding a large cenfral whitish spot. Under parts of the body whitish, spotted with black, and the tail, whieh is of the same ground-colonr with the body, also eovered with black spots. (13enneth, Touer Menagerir.)

Mr. Bennett remarks that he has, in the above deseription, stated the length of the tail nt more than a foot; and that in all the known ocelots, ns well as in all the speeies (or whleh there aro severnl) that approach it in form and colouring, the proportionate length of the tall is at least
equal ta that whieh he has given as its average measurement. The tail howeser of the Tower specimen did not exceed six or sesen inches; its extremily was overgrown with hair, amd there was no cicutrix. Still its equality throughont and its almupt stumpiness indneed the belief that this abbreviation was purely accideutal; and lie felt by no means inelined to regarl that specimen os a new species, to be distinguished by the excessive shortness of that appendage, by the unusually pale colour of its markings, and by some slight peenliarity in the motle of their arrangement, which, fhe observes, varies in every individual that he had scen.

Lerality-Mexieo, Paraguay; and prohably Peru.
Habits, fe. - The ocelot remains in the decp forests during the day, sallying forth at night in quest uf small quadrupeds and birds, the latter of whieh it suecessfulty cheses in the trees, for it is a very expert climber. If it be, as is generally supposed, the Tlaceozelotl, Tlalocelotl, Cutus Pardus Mexicanus of Hernander, it is said to stretch itself out as if dead on the limb of some tree when it spies monkeys in the neighbourhood. Ther, urged by curiosity, procced to examine the supposed delunet, and fall vietims to their curiosity.

The Ocelot has been so completely tamed as to be left at liberty, and it is stid to be capable of strong attachment to its master. Mr. Bennett states that the specimen in the Tower, a male, was perfectly good-tempered, excecelingly fond of play, and had mueh of the character and manners of the domestic cat. Its food consisted prineipnlly of rabbits and birds; the latter it plueked with great dexterity, and always commeneed its meal with the head, of which it seemed partieularly fond ; but it did not cat with the ravenous avidity which characterizes nearly all the animals of this tribe.

Felis mitis, F. Cuv.; The Chati. Chibiguazu of D'Azara. Pelis Chibiguazu, Desm.
Description.-Abont a third larger than the domestic eat: length, exclusive of tail, rather more than two feet; tail eleven inches, height to middle of loack, about one foot two inches. Ground-colour of fur on the upper parls, pule yellowish: on the lower, pure white: at the roots, dull grey, and very thick and close. Body covered with irregular dark juaches; those upon the back entirely hlack and disposed longitudinally in four rows; those upon the sides surrounded with black, with the centres of a clear fawn, arranged in nearly five rows. Spots upon the lower part of the hody, where the ground-eolour of the fur is white, full, and arranged in tro lines composed of six or seven patehes on each side. Limbs covered with nearly round spots of smaller dimensions: on the fore-legs, near the body, two transverse bands. On the throat a sort of half eoflar, and on the under-jaw two erescent-sluaped spols. Behind each cre two bands about two inches long. terninating opposite the car. Forchead bordered by two lincs, between which are numerous spots, and, at their origin, a blackish mark from which the whiskers spring. Ontside of the ear, black, with a white spot upon the small labe. Base of the tail spotted with sinall blotehes, which towards the end mun into half-rings, which are broadest on the upper surfacc. Pupilround. (F. Cuv.)

This animal (a temale) was extremely gentle; and if those with whom it was familiar passed its cage or did not approach it, it would cexpress its discontent by a short cry. It manifested great delight when it was caressed. . It lived

in the Paris menagerie, and was procured from a dealer in Brest. Locality.-South America.

Desmarest and otliers identify this animal with the Chibiguazu of D'Azara. Temminek, who received a skin from Rio de Janeiro, consides it distinct.

- B'Azara's description comes very near to that above given as far as colouring is concerned; but he gives the average length as three fcet six inches; the individual which he described, the largest male he had scen, was four feet all but an inch in length; tail thirtecn inches; height at shoulders one foot and a half, and behind one foot scven inches and a half. It was so fat that immediately after death it weighed five-and-thirly pounds; the females, lie says, are rather less.

The same acute observer, speaking of his Chibigrtazu, remarks that some of the Guaranese call the domestic cat Chibi, and others Mbracaya. In the same manner, he says, some give the wild aninal of which he is treating the name of Chibi-guazu, and others that of Mbaracayiguazu; both appellations signifying Great Cat. Many Spaniards, he adds, call it Onza (Ounce).

He states that the species is so common, that his friend Noseda captured eighteen iudividuals in two years, within two lcagues of his pueblo; but he adds that, notwithstanding this abundance, few are aequainted with it, the huntsman and dogs never falling in with it, and being unable to penetrate to its haunts: he very nuel doubts whether any quadruped hides itsclf more effeetually. He describes it as remaining by day in the most inipenetrable plates, and as coning forth after dusk, especially on dark stormy nights, when the chibiguazus daringly enter the corrals and court-yards, though no instance is known of their deteetion by the dogs. When the moon shines they abstain from visiting inhabited spots, and never are trapped: to lie in wait for them with a gun is hopeless, so sharp a look-out do they keep. They carry off domestic fowls from trees which they elimb, sometimes six in one night, and often leave several dead. Men and dogs are avoided by them with extreme eaution, and cach pair is supposed to live in a separate district, for a male and female, and no more, arc always caught in the same place. Noseda formed a trap of strong stakes, with three divisions: in the middle division he placed a white fowl, so that it might not only be hearl but seen at a distance: the other divisions were so framed as to slut by the falling of the planks as soon as the chibiguazus entered. This trap was set in the plaees to whieh they resorted for prey, and those caught were turned into a great den in Noseda's eourt-yard. Some of these got away, and were taken again two or threc times in the same trap, they were recognised by ear-marks and other proofs: D'Azara infers from this that the idea of danger was obliterated from their recollection by their desire to possess the fowl. He remarked that all whiclı were kept in the den deposited their excrements in their drinkinc-place, and when he substituted a narrow-necked jug to prevent this, they mounted to its edge for that purpose, and never missed the vessel or its immediate neighbourhood. Nearly the whole day was spent by them rolled up in a ball, and, when a chibiguazu wished to stretch himself, he first licked the one at liss side. When straw was put iuto their den, or so that they could reach it by thrusting their paws tlirough the bars, it was always found that on the day following they had placed it in a
heap, after having divided it into bits some quarter of an inch long, and on this they reposed. The small sticks and twigs with which the inside of their den was furnished were broken and torn to pieees in like manner. Twilight and night were passed in pacing to and fro close to the sides of their den; and if crossed or interrupted by ant other, they fuffed and gestienlated like an angry cat, but without using their paws. They never quarrelled, unless they were very much iritated, and then they struek at cach other with theur fore-paws. They devoured five pounds of flesh per day when first caught, but afterwards three sufficed. A portion was prepared for each of the twelve or fourteen individuals confined, and they took it with their paws according to the lengtly of time they had becn there, without any interference on the part of the others. If however the animal whose turn it was did not take his portion, or disregarded it, another immediately snatched at it without any defence on the part of the right owner except by sneezing, and sometimes by blows with its fore-paws. A walk was made for them, enelosed by a sort of hurdle, so that rats, fowls, dueks, or young dogs could be introduced into it: upon opening the cage it was observed that usually one only went out for each victim, and almost always according to the order of their confinement. Cats and dogs they seized with their mouth by the nape of the neek, overlaid them, and then kept them so that they could not stir, till they were dead. Cats' ficsh appeared to produce the mange, fretting the chibiguazus, naking them mew like eats, and at last destroying them. Snakes, vipers, and toads were also eaten by them, but this dict occasioned violent and continual vomiting; they wasted to skeletons, and died in a few days. If the doy introduced equalled them in size, they touched him not, for it appears that they do not assist cach other. If a chibiguazu camnot master any prey alonc, he lcares it. Birds were caught by the head and neck, and thoroughly stripped of their feathers before they were caten. No unnecessary crueliy was manifested. Noseda observed that one did not kill a fowl put into his den till the third day. D'Azara and his fricnd frequently closed the doors of the yard, and opened the den that the chibiguazus might. leave it:'those most lately caught went first; and sometimes the old ones would not go out even when their den was catered that it might be swept. They were left at liberty for several hours, during which they examined every crevice, and then lay down to sleep. When boys persecuted them with sticks, they retreated to their den without turniny on their persecutors, even when severely beaten. A male on one occasion becoming very lazy, on entering his den he was abused and bitten by his female, as if to punish him. Some individuals were incarcerated for more than a year without exhibiting any sign of love. In the night their eyes shone like those of a domestic eat, and they resembled that animal in their form and habits, in lying down, licking and eleaning themselves, washing their faces with their paws, fuffing, sneczing, in fact in cyery way. D'Azara coneludes by stating that his friend caught a young one, and it became so thoroughly tame that it slept in the skirts of lis clerical gown, and went about loosc. He affirned that no animal could be more tractable : but it devoured the poultry of lis neighbours, and they killed it.
Felis Pajeros.-The Pampas Cat, Pajero, or JungleCat.
Description.-Fur of great length: longer hairs of the batk upwards of 3 inclies, and those of the hinder part of the back from $4 \frac{1}{2}$ to $4 \frac{3}{4}$ inches in length. General colour palc yellow-grcy. Numerous irregular yellow or sometimes brown stripes running obliqucly from the back along the sides of the body. On caeh side of the face two stripes of yellowish or einnamon commencing near the cye, and extending backwards and downwards over the eheeks, on the hinder part of which they join, and form a single line, which encircles the lower part of the throat. Tip of the muzzle and chin white; a spot in front of the cye, and a line beneath the eye, of the same colour; belly, inner side and hinder part of fore-legs, white also. An irregular black line running across the lower part of the chest, and extending over the base of the forc-legs externally: above this line two other transverse dark markings more or less defined on the chest. On the forc-legs three broad black bands, two of which encircle the leg: on the posterior fegs about five black bands externally, and some irregular dark
spots intemally: Feet yellowish, and under side of tamus of a slightly deeper live. On the belly numerous large irmmular hlack spols. Fars motemate, with long white hain intemally : caternally of the same colour as the head, oxcept at the apex, where the hairs ure black, and form a slicht fun. Tail shoit, somewhat hushy, and devoid of dark rings or spots-the hairs are in fiet coloured as those on the back. On the upper part of the body each hair brown at the tase, then yellow, and at the npex biack. On the hinder paitt of the back the hairs almost black at the base, and, on the sides of the body, eaeli hair grey at the base; there is then a considerable space of yellowishwhite colour: towards the apex they are white, and nt the apex black. The greater number of the hairs of the moustaches white. Length from uose to root of tail, 26 inches; of tail (fur ineluded), 11 ineles. 1eeight of body at shoulders, 13 inches. Size abont equal to that of the common wild-cat of Earope ; but the Pampas cat is stouter, its head smaller, and its tail shorter. (Waterhouse.)

Mr. Waterhouse (Zoology of the Bengle) observes that the markings of this animal vary slightly in intensity: those on the body, he remarks, are generally indistinet; but the black rings on the legs are always very couspicuous.
Locality.-D'Azara says that he knows not, nor las he heard, that this species exists in Paraguay, although it formerly may linve been seen there; but as the country became tolerably well peopled, and there were fewer plains, the inhabitants probably extirpated it. He ceurht four in the 1 Pampas of Buenos Ayres, between 35° ant $36^{\circ} \mathrm{S}$. Iat., and three others on the river Negro. He says they are found on both sides of the la Plata.

Darwin (loc. cit.) gives as its habitat Santa Cruz, Patagonia (April), and Bahia Blanca (August). He states that it is conmon over the whole of the great plains which compose the eastern side of the southern part of Ameriea; and he says he has reason to believe, fron the necomis he received, that it is found near the Strait of Magellan, which would give it a range of nearly 1400 mites in a north and south direction, D'Azara having stated that it extends northward as far as $30^{\circ} \mathrm{S}$. lat. One of Mr. Darwin's specimens was obtained in 50° S. lat., at Santa Cruz.

Habits, Food, of.-D'Azara says that the natives call this animal gato pajero, because it lives on the plains, conecaling itself in jungles, without entering into the woods and thickets. Apereas, or suinea-pigs, aecording to him, form its principal food. Mr. Darwin states that it takes its name from 'paja,' the Spanish word for straw, from its habit of frequenting reeds. The specimen taken by him at Santa Cruz was met with in a valley where thickets were growing. When disturbed it did not run away, but drew itself up and hissed.

We here conclude our notice of the liger-cats, a race evidently appointed as the prineipal agents for keeping down the birls and smaller manmalia, which abound in warm climates.

Tl'GIIUM. [Croton.]
TIGIRA'NES, king of Armenia, the ally of Mithridates the Great, who gave him his claughter Cleopatra in marriage. He was master of the large tract between Egypt in the south-west and the Caspian Sea in the north-cast, which was bounded by Assyria and Media on the east, and by the kingtoms of Pontus and of Cappadocia on the west
and north-west. The earlier history of Tigranes is little known ; Strabo (p. 5:33, C'as.) und Justin (xxviii. 3) state that he was sent in his youth as a hostage to the king of the l'arthians, who afterwarls restored him to liberty. He conquered Gordyene and Nesopotamia, and the Syrians chose him for their king in b.c. 84 , or, aceording to Λ ppun (De Reb. Syr., 70), in 13.c. 80 . Before B.C. 74 he concluded an alliance with Mithridates, who was then about to begin his third war with the Romans. The condtions of this alliance were, that Mithridates should be master of the countries which they hoped to conguer, and that Tigranes should have the inhabitants and all the moveable property that he could carry ofl. IPhtareh states (Lucullus, p. 509, Xyhund.) that the army of Tigranes was composed of 260,000 men, 20,000 archers, 55,000 horse, $1.50,000$ foot, and 35,000 pioneers and train,-and that Arabs and warlike Albani from the Caucasus abounded in the Armenian camp. The enmpaign was opened in B.c. 74 . Cappadocia and Bithynia were conquered, and Mithridates lud siege to Cyzicus in Bithynia, but Lueullus came to relieve it, and after various reverses Mithridates was compelled to fly to Tigranes (69). The conduct of the Armenian king had been inseneere during these events, and, the Romans heing now victorious, he not only refused to receive his father-in-law, but set a prize of a hundred talents on his head, on the pretext that the king had persuaded his son, who was likewise called Tigranes, to rebel agninst his father and to join the Romans. Mithridates nevertheless suceecded in pacifying his son-in-law, and they joined their armies to meet Cucullus, who hal crossed the Euphrates and the Tigris, and had laid siege to Tigranocerta, the new capital of the Ammenian kingdom. [Tigranocerta.] A battle ensued near this town, in which Tigranes was completely defeated (6th October, 69), and his capital fell into the hands of the Romans. Tigranes and Mithridates having entered into negotiations with Mhrates III., king of the Parthians, for the purpose of drawing lim into their alliance, Jncullus, who had now carried his eonquest in Armenia as lar as Artaxata on the upper part of the Araxes, marehed to Mesopotamin to attack the Parthians. But a mutiny of his soldiers compelled him to retreat to Cappadocia, where they dispersed, as it seems, by the instigation of Pompey, who anned at the supreme command in the war (67). The Romans lost Cappadocia, and Tigranes carried off a great number of the zuhabitants of this province, as well as of Cilicia and Galatin. Pompey entered Asia Minor in b.c. 66, and in the same year he defeated Mithridates in a great battle on the Euphrates. Mithridates, having experienced the faithless character of his son-in-law, fled to Phanagoria in the island of Taman, while Tigranes humiliated himself before the Romans, then encamped in the neighbourhood of Artaxata. Ile went to the tent of Pompey, and, kneeling before his vietorious enemy, took off his royal diadem, whieh Pompey however would not aceept. The policy of the Remans required an independent kingdom between their dominions and the dangerous power ot the Parthians. Tigranes therefore was reinstated in Armenia, except the districts of Gordyene and that of Sophene, or the westernmost jart of Armenia Magna, which he was obliged to cede to his rebellious son Tigranes, then an ally of the Romans. Besides these distriets, lee eeded to the Romans his kingdom of Syria, including Phonicia and all his concuests in Cilicin, Galatia, and Cappadocia; he paid six thousund talents, and he gawe half a mina to each Roman sotdier, ten mine to each centurion, and sixty mine, or one talent, to each tribnne. (Plutareh, Iucullus, p. 637, Xyland.; comp. Appian, De Bello Mithrid., c. 104.) It seems that aller. this lmmiliation Tigranes led an obseure and trancuil life, for his name disappears from history, and the year of his

British Museum, Actual aize, Silver. Welght, 215s grails.
death is unknown. His suecessor was Artavasdes. [Mithridates; Pompelus; Lucullus.]
(Valerius Maximus, v. 1, 9 ; Velleius Patereulus, ii. 33, 1, and c. 37; Cicero, Pro Lege MInilia; Woltersdorf, Commentatio Vitam Mithridatis M. per annos digestam sistens, Goettingae, 1812.)

TIGRA'NES, prince of Armenia and lord of Sophene, was the son of Tigranes, king of Armenia. During the last war between the Romans and Mithridates aided by his ally king Tigrancs, prinee Tigranes forsook his father and went over to the Romans. When his father humiliated himself before Pompey, he sat by the side of the Roman general, but he did not rise before his father, nor did he show hin the slightest degree of filial respect. Having been created lord of Sophene and Gordyene, he refused to surrender the treasures of Sophene to Pompey, who suspected him of being in seeret communication with Phraates, the king of the Parthians, whose daughter he had married. Tigranes also became suspected of having formed a plan for seizing or putting to death his father, and accordingly he was arrested by order of Pompey, who sent him to Kome. He figured in the triumph of Pompey.
Appian (De Bello Mithrid., c. 10э and 117) states that Tigranes was afterwards put to death in his prison. [Ttgranes.]
TIGRANO'CERTA (Tiypavórepra), for some time the capital of Ammenia, was built by king Tigranes after he had extended his dominion over Mesopotamia, Syria, and Phœenicia. Artaxata, the old eapital on the Araxes, being situated in the north and the neighbourhood of the Caucasian nations, then the allies of Armenia, Tigranes seems to have thought it eonvenient to have his capital near those countries, which often required his presence on account of their possession being still inseeure. This danger arose prinelpally from the neiglibourhood of the Romans, who, from the time when Attalus left them his kingdom of Pergamus by testament (b.c. 133), formed designs on all Asia Minor, and at the time of the foundation of Tigranocerta (between 81 and 74 н.c., but nearer tu 84) were at war with Mithridates, the neighbour and ally of Tigranes. Tigranoeerta was situated a short distance from the Upper Tigris, on the Nicephorius, a river of considerable breadth, as Tacitus states. Seert or Sered, a small town, surrounded by antient ruins, is generally supposed to be on the site of Tigranocerta. Sered is situated on the banks of a small river, the modern name of which is unknown, and which flows into another river of considerable lenyth, the Bedlis of Háji Khalfah, which has its sources south-east of lake Van, and flows into the Tigris. This latter river is called Khabur by D'Anville, but this is a mistake, the Khabur, aecording to Hajji Khalfah, cited by Rennell, being another tributary river of the Tigris nearer its middle course. It las been supposed that the river Centrites was also called Nicephorius, and this opinion is principally founded on the circumstance of the river whicll passes Sered being a very small stream, while the Niecphorius at Tigranocerta was of a considerable breadth. This opinion however is rejected by Rennell, and indeed no ruins have been found on the banks of the Centrites, though it has not yet been shown that there are none. We are likewise ignorant as to the changes which may have taken place in the direction of the Centrites, which, atter having left the mountains at the village of Kala Zerke, flows through an open and level couptry at some leagues distance east from Sered. According to Tacitus, Plutarch, and Appian, Tigranocerta had very strong fortifications; its suburbs contained gardens and fish-ponds. The town was inhabited partly by barbarians, and partly by Greeks, the inhabitants of twelve Greek towns who were transplanted thither by Tigranes after he had ravaged Cappadocia. The military position of Tigranocerta was admirably chosen. By its situation opposite the passage formed by the narrow valley of the Centrites in the Carduchian Mountains, it commanded one of the principal roads which led and still lcads frum the valley of the Tigris into Armenia aeross the mountains. It was also opposite the gorge in the Carduehian Mountains, which, is short distance south of the junction of the Centrites with the Tigris, came so close to the ligris as to render it impossible for an army to move alony the len bank of the river. Xenophon, in conducting the retreat of the ten thousand, apparently intended to enter Armenia by the valley of the Centrites,
but he found this passage between the Tigris and the Carduchian Mountains impracticable; and taking suddenly a north-east direetion, he ascended the steep Carduchian Mountains, and crossed the Centrites in its upper part
Master of Tigranocerta, the king of Armenia could suddenly invade Cappadocia, Mesopotamia, and Syria; and in ease of defeat he could retreat under the walls of Tigranocerta and defend the defiles in the mountains against a superior army. Lucullus, in his campaign against Mithridates and Tigranes, laid siege to this key of Armenia before he ventured to enter the defiles. The united kings hastened to relieve the town, but they were beaten, and Tigranocerta with immense treasures fell into the hands of the victor (6th October, 69 b.c.), who sent the greater part of the Greek inhabitants back to their homes in Cappadocia. After the fall of Tigranoeerta, all Armenia was open to the Romans, who overran the country as far as Artaxata. But no soouer was Lucullus informed that Phraates, the king of the Parthians, was about to attack him, than, instead of deseending , the Araxes and making an attack on the northern part of Media, he hastencd back to Tigranocerta. If he had remained a little longer on the Araxes, the Parthians would have forced the position of Tigranccerta, and the Roman army would have been shut up within Armenia. Strabo (p. 532, Cas.) says that, when Lucullus took Tigranocerta, it was only half finished, and that after its destruetion there was nothing but a little village on the spot. However it soon became again a town, and in the wars of Corbulo, 63 A.D., it was a considerable and well-fortified place. (Tacitus, Annal., xv . 4.) Hesychius, s. v. K $\dot{\ell} \rho \tau a$, says that к' $\rho \tau a$ signifies a town, in Armenian, and this opinion is corroborated by
 the language of the Parthiaus, Trypavóкртa is the same as Tiypavointoles in Greek. The sword 'eerta' also oecurs in Carcathiocerta, a town which is also called Amida, and is now known by the name of Kárá-Amid and Diyárbekir. Soping, in his notes to Hesychius, says that képra or képra is the root of Carthago. [Tigranes; Lucullus; Pompey.]

Strabo, p. 532, 539, 747, Cas.; Appian, De Bello Mithrid.; Plutareh, Lucullus; Pompeius; Tacitus, Annul., xii. 50 ; xiv. 24 ; xv. 4, \&c. ; Rennell, Illustra'tions of the IFistory of the Expedition of Cyrus, und the Retreat of the Ten Thousand Greeks; Rennell, Geography of Asia Afinor.)

TIGRiS; River. [See End of Letter T.]

TIGRISO'MA, Mr. Swainson's name, for the TigerBitterns.

Subgeneric Character.-Bill as in Ardea. Face, and sometimes the elin, naked. Legs almost feathered to the knces. Inner toe rather shorter than the outer. Claws short, stout, regularly eurved. Anterior scales retieulate or hexagonal. Mr. Swainson considers this to be the rasorial type, and he arranges it as a subgenus of the family Ardeadee [Herons], between Butor, Antiq., and Nyctiurdea. Example Tigrisoma lineatum, 'Pl. Col.' 860.
(N.B. According to the principle generally received among zoologists, neither Butor nor Nyctiardea can be retained as generic names. The first is identieal with the Botaurus of Brisson and Stephens: for the reasons against admitting the second, see Nycticorax.)

TLJU'CA, M. Lesson's name for a genus of birds (Chrysopteryx, Sw.; Attila, Less.; Ampelis, Nordm). Mr. G. R. Gray arranges it between Calyptomena, Raff., and Procnias, Hoffm., under the Ampelina, Mr. Gray's third subfamily of the Ampelide.

TILBURG is an inland town in the kingdom of the Netherlands, in the province of North Brabant and district of Bois-le-Duc: it is situated in a heath on the banks of the river Ley, 13 miles east of Breda, 14 south-west of Bois-le-Duc, and 38 north-east of Antwerp. It has three churches, a large castle, and 12,000 inhabitants, of whom between 5000 and 6000 are employed in the manufaeture of fine woollen cloth and kerseymeres. They likewisc manufacture calmucs, beaver eoating, baize, and cloth for the army. Extensive barracks have been built by the present king of Holland. Lying out of the great road from Flanders to Holland, it is little visited by travellers.

TILBURY FORT, a fortification erceted on the north bank of the river Thames, opposite to Gravesend, for the purpose of commanding the navigation of the river. It was originally formed as a mere block-house in the time of Henry VIII. ; but after the Dutch fleet, under De Kuy-
ter, had adrancell into the Thames and Medway in 1607, Charles 11. conserted it into a regular fortitication, to which considerable alditions lave since been uade. The fort atands prineipally. in the parish of Weat Tilbury, but partially in the adjoiving parish of Chadwell. It is surrounded by a deep and wide tosse, which may be filled with water when necessary ; and its rumparts present formidable batteries of heavy cannon towart the river. The fort is chiectly of brick; but it has a massive stone portal, the elevation of which renders it a prominent object from the upposito side of the river, which is here about a mile wide. Within the fort are commodions barracks and other arcommodations for the garrison, which ordinarily consists of a fort-najor and a detachment of invalids ; and piers toward the river afford facilities for the landing of troops, stores, die. Owing to the flatness of the shore, the fort is liable to overtlowing during floods and spring-tides, and its situation is by no menns salubrious. A view of Tilbury Fort, frum the river, is given in No. $1: 20$ of the ' Penny Magazinc.

TILE, a kind of thin briek, or plate of baked clay; used chictly for covering roofs, but oecasionally for paving floors, constructing drains, \&e. The English name, and those by which tiles are known in other European languages, are derived from the Latin tegula, whicla contains the same element as ter, o, to cover. This becomes, in Sinxun, tiegle or tigel; in Duteh, legel, leghel; tichel, or lichgel; in German, ziegel or duchziegel; in Italian, tegnlu; in Spanish, teju, tega, or regilla; and in French, tuile.
An account of the usc of tiles among the antients, illustrated by engravings of roofing-tiles found at Pompeii, is given in the 'Dictionary of Greek and Roman Antiquitics,' art. 'Tegula, in which it is stated that roofing-tiles were originally made, like bricks, of baked clay ($\gamma \bar{\eta} s$ ōriy̆s), and Lhat byzes of Naxos introduced tiles of marble about the vear 620 n.c. In addition to the superior beanty and durahility of such tiles, they were made of nuch larger dimensions than was practicable in clay, and consequently the effect produeed by their parallel joints might be brought into harmony with the rest of the building. A still more exprensive and macnificent method of roofing oceasionally adopted consisted in the use of tiles made of bromze and gill. Tiles were originally made perfectly flat, or with notling more than the look or nozle underneath the upper border, whieh finfflled the purnose of fixing them upon the rafters. They were subsequently forned with a raised border along each side, on the upper surface, and The sides of the tile were made to converge towards the lower end, in order that the raised sides or ledges might not prevent the successive rows of tiles from overlappling each other neatly. The lines of junction hetween the flat tiles were covered by small seni-eylindrical tiles, called imbrices, the rows of which, extending from the ridge to the gutter, divided the surface of the roof into a series of elammels, aloug which water descended to the gutter. Both the tegulue and the imbrices terninated at the edge of the roof in ormamental pieces; and the whole appearance of the roof was haudsome. Another kind of antient tiling, mentioned by Pliny under the name of paronuepum, consisted of tiles of a semieireular form at their lower edges, which, when laid in overlapping rows, somewhat reembled the feathers in the train of a peacock.
The proces of making tiles is so similar to that of brick-making [13etck, vol. Y., p. 407], that it will be sufficient to otserve that only the best qualities of brick-earth are fit for the purpose. Since the year 1833 no exciseduty has been levied unon the mannfacture of tiles, the duty having been found very prejudicial, especially after The repreal of the duty on slates, although it produced a very trifing revenuc. The roofug-tiles used in this comtry are chicfly of two sorts, plune-tiles, which are flat, of a rectangular form, und usually about ten inclics and a half long, six inelhes wide, and five-cighths of an inch thick; and jxen-tiles, which also have a rectangular ontline, but are bent in such s manner that, when laid on the rouf, the gereater phat of their surface forms a cuncave chanall for the desceut of water, while one side forms a marrow convex ridge, which overlaps the edge of the adjoining tile. These are usually thirteen and a half or fourteen and a lalf inches long, and about nine inches wide, measured in a straight tine from side to side. Plane-tiles are made with a hole near their upper extremity to reeeive
a wooden peg, by which they are hung upon the laths of the roof, and they are laid either with or without mortar in such a manner that the successive rows overlap each other about six inches. Pan-tiles have no holes, but are hung upon the laths by ledges formed at their unker edges; they do not require so great an overlap, as planetiles, and consequently form a lithter covering. The comparative weight of the two kinds of tiling, nud of other kinds of roofing, and the stitalle angles of inclination for each, are givon under Rook, vol. xx., p. 1-43. Tiles of a semi-cylindrical form, laid in mortar with their consex or concase sides unpermost, respectively, are uscd for covering ridges and gutters,
Drain-tiles are most conmonly made in the form of an arch, and laid or bedted unon Hlat tiles called soles. Sone useful information will be found in a paper ' On the liconomical Manufacture of Draining-Tiles and Soles,' by Alr: Robert lieart, in the sceond volume of the 'Journal of the Royal Agricultural Socicty; ; and in the sance volume is a notice or the admirable the-making machinery invented ly the marquis of Tweeddale, which has been recently brouglit into extensive operation, paving-tiles are usually square, and of greater thiekness than those used for roofing. In antient as well as in more recent times paving-tiles were frequently decorated with ornamental devices in various colours, so as to produce an effect resembling that of mosaic parcment.
TILE'SLA, a genus of Polypiaria mentioned by Lamouroux.
TILGATE BEDS, A portion of the great series of strata in the Weald of Kent and Sussex, interposed between the green-sands and the P'ortland oolite, is thus naned by Dr. Mantell, who has described the numerous and interesting organic remains which it contains. The reptilian species are described in Professor Uwen's ' Report to the British Association,' 1811.

Tl'LIA, the name of a genus of plants belonging to the natural order Tiliaeca). The trees in linghund are called Lime-trees, in Swedish Linn, and in German and Dutels Linden. They are characterised by possessing a 5 -parted deciduous ealyx ; 5 petals ; numerons free or someswat polyadelphous stanens; a glokose, villuus, 1 -styled, 5-eelled ovary. All the species are handsome trees, with alternate, heart-shaped, acute, serrated, deciduous leaves, and fragrant jellowish panieled flowers. The wood is light, smooth, and white, and their sap possesses a considerable quantity of sugar. They are prineipully natives of Europe and America.

T, Europeca, the European or Common Lime-tree, has petals without scales, and cordate, acuminate, scrrated leaves, which are smooth, with the exeeption of a tuf ot hair at the origin of the veins beneath, and-are twice the length of the petioles; the cymes are nany-flowered, and the fruit is coriaceous and downy. This tree is abundant in the middle and north of Furope. It is very common in Great Britain, although some douhts have been expressed as to its being truly indigenous. It is however adnitted into all British Floras; and there ean be no doubt, from its wide diffusion, that it is truly naturalised in this country: It was well known to the antients, and is spolsen of ly both Theoplomatus and 1 liny, It is a very general favouritu in Europe, nud is planted in public places, parks, and approaches to residences, in France, Germany; Ilulland, and Great Britain. For this purpose its larere size, handsome appearanec, and proftision of sweet flowers well adapt it. The woorl is also in considerable request: it is white, close-grained. soft, light, and smooth, and is used by the cabinet-miahers for a variety of purposes. It is easily worked, as well as durable, and on this account has been employed for earving. Most of the flue carvings in this country, as those at Windsor Castle, the library of Trinity College, Cambridge, and at Chatsworth, are of this wood. It is also 1 nsed for wood-culting. The fibres of the bark ure very fough, and ropes and mats are manufactured from them. They are cmployed for this purpowe in anany parts of England, but in Russia and Sweden this mannfacture forms a considerable branch of commerce. When used for this purpose the trees are peeled in the beginning of the yeur, and the bark is steeped in water, after which it is lung up to dry; and the layers of bark, being reparated, are ent into ribands for making mats, or the fibres are twisted into ropes. The Russian nists used by gardeners and upholsterers are thus made. The flowers secerele
a large quantity of nectar, and exhale a delicious seent. On this account they are great favourites with bees, and when expanded they are constantly beset with these insects. The honcy thus procured is in great repute, and has given celebrity to the honey of Kowno, on the Niemen, in Lithuania, a small town which is surrounded by a forest of limes. It is chicfly used for making liquteurs. The seed of the lime possesses a large quantity of albumen, which is nutritions and perfectly innocuous. It was proposed by Missa, a French physician, to use it in the same way as that of the cocoa-tree. It was found to answer this purpose, but when prepared it will not keep; hence any extensive inanufacture of it, although it was attempted in Germany, has been abandoned. Cattle will eat the leaves ef the lime, but it is said to cominunicate a bad flavour to the milk of cows. The flowers were considered anodyne and antispasinodic by older physicians, and were administered in fevers when the Cullenian doctrine of spasm prevailed. Hoffman strongly recommended them, and relates curcs effected by them, and they entered as an ingredient into most of his prescriptions. They are not much used In modern medicine.

The linden attains a great age ; and many specimens, cclebrated for their age and size, exist. 'At Neustadt, in Wirtemberg, there is a prodigious lime-tree, which gives Its name to the town, which is called Neustadt an der Linden. This tree is said by Evelyn to have had in his time a trunk above 27 feet in circumference, and the dianueter of the space covered by its branches to lave been 403 feet. It was 'set about with divers columns and monuments of stone (82 in number, and formerly above 100 more), which several princes and noble persons have adorned. and which as so many pillars serve likewise to support the unbrageous and vencrable looughs; and that even the tree had been much ampler, the ruins and distances of the colnmns declare, which the rude soldiers have greatly impaired.' Evelyn adds copies of many of the inseriptions on the columns, the oldest of which is dated 15.00, and the column on which it is inseribed nows supports one of the largest limbs, but was at a considerable distance from the tree 300 years ago. (Loudon.) This tree is still in existence. There are many other very aged individuals in this country and on the Continent. The tamily uance of Linnæus is said to have bcen derivid from an anfient lindeu that grew near their residence. The principal street of Berlin is called Unter den Linden, from the limefrces which are planted on each side.

Many varictics of this tree are described; and, as is usual in these cascs, some authors have elevated them to the rank and importance of species. The following are found in collections: T. E. laciniata, in which the leaves are smaller than those of the common species, and are deeply and regularly cut and twisted. It seldom attains a large size. T. E. aurea, which differs only in its twigs having a bright yellow colour. T. E. dasystyla, possesses a tomontuse style, and differs from the species in the form of its fruit. Some botanists admit only one European species, the Tilia Europaca. Koch, in his 'Flora Gernuanica,' lias two, the T. grandifolia and T. parvifolia, and gives T' Europea as a synonyme of the latter. Hooker, in the 'British Flora,' admits all three; and De Candollc, in liis ' 'l'rodromus,' has three species, besides the European, which are as follows:-
I'. microphylla, Small-leaved Lime, has its petals without nectaries or seales, cordate, roundish, acuminated, serrated leaves, smooth'above and glaucous beneath, with scaltered as well as axillary hairy blotehes, and compound many-flowered umbels. This is identical with the T. parrifolia of Ehrhart and other writers. It is a native of subalpine districts in the north of Europe. In Great Britain it is common in the woods of Essex and Lincolnshire; and Mr. F. Forster thinks it probable that this is the only true British species.
T. rubra, led Lime, has cordate leaves, unequal at the base, hairy beneath as well as the petioles, with a tuft of lasir at the basc of the veins ; the fruit globose and smooth. It is a native of Taurida, and some few specimens are growing in England. The young branches arc of a beautiful coral-red colour, thence it has leen called T. corallina. This species is by most other writers considered a variety of T: Liuropea or T. grandifolia.
T. plutyphyylht, Broad-leaved Lime-tree, has petals witllout ncetaries ; cordate, serrated leares, downy beneath;
origin of the veins, woolly; branches, hairy; umbels, three-flowered; fruit woody; downy, turbinate, with prominent angles. This is the T. grandifolic of Ehrhart and other botanists. It is more common than the other species in Switzerland and the south of Europe. There ard several specimens of this tree in England and Scotland, but they can seareely be said to be wild. Specimens of this tree exist in the ehurchyard of Seiditz in Bohemia, with leaves contracted to the form of n hood. They are said to have miraculously assumed this character from the tine that the monks of a neighbouring convent were all hanged upon them.
All the foregoing species are distinguished by not having nectaries or scales at the base of their petals; there arc six other species characterised by possessing nectaries. Four of these are inhabitants of North America.
T. alba, the White or Silvery Lime, has cordate, serrated leaves, unequal at the base, clothed with white down beneath, but smooth above, and four times longer than the petioles; fruit ovate, with five obscure ribs. This is the T. argentéa of Desfontaines; T. panonica of Jacquin; and T. tumentosa of Moench. It is a native of the woods of Hungary, and is very readily distinguished from thic other species by the whiteness of its leaves, which becomes especially evident when ruffled by the slightest breeze. It was introduced into this country in 1767 , and there are now existing several very fine specimens, one at Walton-on-Thames, 60 feet high, and a number at Highclere in Berkshire. T. petiolaris was described by De Candolle from dricd specimens sent to him from Odessa, wherc the tree is cultivated in gardens. The leaves are twice the length of the petioles, and their under surface downy like the last.
T. glabra, the Black or Black American Lime-tree, has leaves decply cordate, serrated, and somewhat coriaceous and smooth; the petals are truncate and crenate at the apex, and equal in length to the style; the fruit ovate and somerwhat ribbed. This tree is a native of North America in Canada and the northern parts of the United States; in the Southern states it is only found at a considerable elevation on the Alleghany mountains. In external character it very much resembles the European species; its flowers and leaves are however larger. Although it was introduced into this country by Miller as early as 1752, it is not much grown, and very few specimens exist. In America the wood and bark are uised for mueh the same purposes as that of its representative in Europe.
7. Laxiflora, Loose-flowered American Lime, has cordate, serrated, smooth leaves, loose panicles of flowers, emarginatc petals, and globose fruit. It is a native of America, from Maryland to Georgia. It has been known in this country only since 1820 , and but few specimens are at present planted. Loudon, in his 'Arboretum' (vol. i., p. 374), states his conviction that this and the other specics of American limes are only varieties of T. glabra, and he has arranged them accordingly. He has however assigned no other reason for this opinion than their general resemblance.
T. pubescens, the pubescent American Lime, has somewhat cordate and oblique leaves, truncate at the base, and pubescent beneath; the petals emarginate, shorter than the style, and the fruit globose. It is a native of the southerin parts of the United States, from Virginia to Georgia, where it is found principally on the banks of rivers. It is a much less vigorous tree than the two last, and has much smaller leaves and more slender branches. There is a varicty called by Ventenat T. p. leptophylla, which has very thin leares and delicaté serratures.
T. heterophylla, the White Ameriean Lime, has ovate leaves, downy beneath, sometimes cordate at the base, sometimes obliquely or equally truncatc; globose fruit with 5 ribs. This tree is abundant in Maryland, Delawarc, and the Western states of America, and is found on the banks of the Susquehanna, Ohio, and Mississippi. The leaves and flowers of this species are larger than any other. It seldom attains a height of more than forty feet in its native districts, and spccimens in Europe do not exccect more than twenty feet. It is a handsome ornamental trec, and deserving of cultivation. It has been known in France nearly a century, but was not introduced into England till 1811.

In the cultivation of the lime it should be placed in moist situations, in an argillaceous, loamy soil. It grows
lelte: on plains than liils, and in moist than dry places. The trees may be propagated hy seeds, which should le sown as soon as they are gathered; bat this is a very slow procese, and the more frequent mode of propagating them is hy layers. In Franee a tree is ent down to the roots, and the shoots are eneournged to grow, and in the cousse of two or three years they may be planted in the positions in which they are to stand. Ihme-trees will bear transplanting at a greater age than most trees; when Iarge trees are transplanted, they should have their roots ent round tliree or four feet from the stem the year before they are taken up. This stunts their growth, and makes them bear removal better.
(Loudon, Aibor. et Frut. Brit., vol. i. and iv.; Bischoff, Lehrbuch der Botanik: Koch, Flora Germanica; Hooker, British Illora: Don's Miller's Dict., Se.)
TIIIACEJE, a natural onder of plants belonging to the synearpous group of polypetalous Dicotyledons. This order consists of trees or shrubs, seddom of herbaceous plants, with simple, toothed, alternate leaves, furnished with stipules. The flowers are axillary. The calyx consists of four or five sepals, which are valvular in astivation; the petals four or five, with mostly a littie pit at their base ; the stamens are hypogynous, mostly indefinite, with oval or roundish two-celled anthers bursting lengthwise; the disk is forned of glands, which are equual in number to the petals and opposite to them; the ovary is single, composed of from four to ten carpels, with a single style and stigma divided into lobes aceording to the number of the caryels; sceds numerons, with ereet embryo, and abundant albumen. This order is nearly allied to Sterculiacee and Malvacer, from which it differs in its glandular disk, distinct stamens, and two-eclled anthers. The speeies, of whieh there are about two hundred and finty, are arranged in thirty-two genera, and are generally ditfused throughout the tropical and temperate parts of the globe.
Tiliaece possess no aetive properties; they abound in a mueilaginous wholesome juiee. The fibres of the imner bark are very tough, and are used for a variety of economieal purposes. [Tius.] The wood is generally white, light, and lough; that of Greuiu elastica is used for making hows in India. The Trineomalee-wood used at Madras for making the Massoola boats is the proluce of Berrya Ammonilla. The Corchorus olitoritus is eultivated in ligypt for use as a pot-herb.

1. entti 28 , wh fower and teaf; 2, section of ovary, showing the celle:
2. anglo flower ; 4. घtamess.

for the vegetation of the seeds committed to it: its object also is the destruction of noxious weedls.
The whole art of eultivation consists in tillage and manuring, and the profit of the husbaudman depends on the perfection of the tillace and the economy of labour in producing the effeet. A defeet in tillage will eause a great defieiency in the crops in ordinary years. To ensure good crops, the soil should be in such a state that the mans and dews may readily be ditfused through it, without giving it a wet appearance, or evaporating too rapidly: It requires great knowledge and experience to give any particular soil the exact portion of tillage which is suited to it. A fine garden-tilth, as it is called, is the most perfeet for light soils which lave been long eultivated and manured; when they ean be brouglat to such a state that after continued rains the surface dries without formine a crust, and erumbles of its own aceord, the tillage has heen good; and the deeper this soil is stirred, the more it will produce: but where elay abounds in the soil, which in dry weather ean be readily pulverised by emsiling the dry clods, and be reduced to the finest powder, too much tiflage may do more harm than good. The tine clay is soon eonverted into mud at the surface by the least min, beeause it is not sufficiently porous to let the water through it; it dries into a hard crust, whiels effectually precludes the aceess of air, and consequently stops the vecetation of the seed. It is only by abundant manuring with organic matter, especially of animal oricin, that this natural tendency in clays to colere can be oreccome; and until this is cifeeted it is best to stir clay soils as deep as possible by neans of subsoil-plonghs, but they should not be pulverised so that the water camnot run down between the lumps and elods, and especially the surface should be left in such a state of rougliness that heary rains cannot euver it with a coat of mud. The elods which are left on the surface imbibe the moisture more gradually, and in drying fall to pieces, by which the yomy plants are invirorated, and, as it were, moulded up. This is particularly the case in winter after a frost, as all clay-land farmers are well aware. It is very easily asecrtained whether a soil will bear much tillage or not. It is only necessary to try some of it in a large pot or box; make the surface very fine by breaking the clods, then water it abmedantly, and let it dry in the suns if a crust is formed in drying, that soil will not bear too much harrowing and pulverising, and should be left in a moderately rougli sfate after sowing or drilling the seed; but if, after it dries, the surface is loose and porous, then the finer the tillage the better the seed will vegetate. The whole depends on the ready admisuion of air or its exclusion. When grass-seeds are sown, the surfaee should be well pulverised; but this eannot be safely done if the soil is apt to run together when much rain falls soon after the seed is sown. Some plants, like lecans, will force their way through a very hard surface; but small seeds are too weak to do so, and their growth is entirely stopped by the least crust on the surfice. Besides the preparatory tillage of the soil before sowing the seed, there is a great advantage in the stirring of it as the plants are growing. On this depends all the merit of the row-enture for every kind of plant, especially those which have escrulent roots or extensive foliage, and which are chiefly enttivated for the sustenance of cattle. The effect of deep tillage is lere most remarkable. If rows of turnips or calbbages he sown at such a distamee that a suall plough or other stirring implement can be used between them, and the intervals be stirred more or less, and at different depths, it will he fomb that the deeper and more frequent the lillage, until the folinge covers the whole interval or the bulles swell to a great size, the heavier and more aloundant the produce witl be. It is worth while to try the experiment:-Sow Swedish turnips or mangold-wnrzel in rows three feet apart: let some ot the rows be mercly kept clear of weeds ly surface-hocing, and the plants be thinned out to the distance of a foot apart: let other intervals be stirred to different depths; some 1 lree inches, some six inches, and some nine inehes or more. The result will be, that the first rows will appear to have been sown much too far from each other, not half the ground being eovered with the foliage of the plants; the others will be covered more and nore as the tillage has been deeper, and the last will completely cover the whole intervals. The roots or bulbs will be in exaet proportion to the riehness of the foliage, and the weight of the deeply

T I L

tilled rows will far exceed that of any of the others, while the first will, by comparison, appear a poor and seanty crop, however clear of weeds the surface may have been kept. The soil best suited for this experiment is a good light loam on a dry or well-drained subsoil; for stagnant moisture under any soil will chill the fibres and eheck the growth of the plants, however dry the surtace may be. It was this which-led Tull, the father of drill husbandry, to the eonclusion that tillage was all that the soil required to maintain perpetual fertility. He earried his eonclusion too far; but we shall not be wide of the truth if we assert that with proper tillage the soil will be gradually improved, and a much smaller quantity of manure oceasionally added to recruit the waste produced by vegetation will render the soil mueh more tertile than it would be with more manure and less tillage: and as tillage can be increased by mechanical contrivances where labourers arc scaree, whereas the supply of manure must generally be limited, it follows that, as a general rule, the land should be well and deeply tilled, due attention being paid to the nature of the soil and its property of retaining or transmitting moisture. Very loose sands should not be mueh stirred until they are consolidated by the admixture of marl, elay, chalh, or well-rotten dung; but in all eases the manure should be mixed as intimately as possible with the soil, and as deep as the tillage has gone, not ineluding the stirring of the sulbsoil; for the roots will always penetrate thus far, and find the nourishment which they require. Thosc plants which throw out roots from the bottom of the stem, as wheat, barley, and oats, require the surface to be most pulverised and enriched to allow these roots to spread; a spring tillage is therefore highly advantageous, which ean only be given when the seed has been deposited in rows by drilling or in patches by dibbling. This last method is found to give much finer erops, from the eireumstance that the hoe not only loosens the earth between the rows, but also between the different patches of the growing corn: by which the coronal roots are strengthened and the tillering of the stems so much ellcouraged, that it is not uneommon to sce twenty, thirty, or more strong stems al! bearing finc ears arising from one tuft of plants, the produce of one or more sceds, whose roots are matted together and send out fibres in cyery direction. The erowding of scveral plants docs not prevent their growtli, provided the fibres can spread around in a rich mellow soil, well pulverised, and admitting the air and moisture readily.

As a perfect tillage requircs much lahour and minute attention, and in many situations where the farms are large labourcrs cannot be procured at moderate wages, nor can they always be dcpended upon to perform the work with sinficient eare, mechanical ingenuity las been taxed to invent implemeuts of tillage by which it may be more perfectly accomplished, and at a smaller cxpeuse, by using the power of horses instead of that of men, and making implements which will till a considcrable breadth at onee, and thus save time.

The old plough, and which, however it may be improved, still acts on the same prineiple of turning up a fresh portion of the soil, burying that which has for some time been at the sirfaec, will probably always continue to be the chief implement of tillage ; but the minuter operations, which are taken from garden culture, require particular eontrivances to effect them by instruments. The harrows are but an imperfect substitntc for the garden rake, and do not.stir the soil to a sufficient depth. Other implements have therefore been invented, which by means of wheels can be regulated so as to act at a greater or less depth. These have reccived the different names of scarifiers, grubhers, cats'claws, or cultivators, according to the fancy of the inventors. Many of these answer the purpose well, and save labour. They can be used in all directions so as to pulverize the soil to any degree. Heavy rollers with and without spikes around them are used when many clods require brcaking; and, although not yet adopted in this country, the Belgian trainearc, a strong frame of wood boarded over, and loaded with weights if required, is a most effectual instrument in levelling the surface and erushing clods, without pressing them into the soil as the roller frequently does.

It would be endless to enumerate all the implements of tillage which are daily invented: some of the nost uselul have been already deseribed. [Arable Iand; Plovgu.]

As the cultivation of the soil approaches more to that of the garden, more perfect instruments will be used ; such as ean be direeted with great aecuracy between parallel rows of growing plants without danger of injuring them. When the width of the stetehes or beds aceurately eorresponds with the width of the instrument, so that the whecls will run in the intervals and the horses step in the same, the soil may be tilled perfectly, although the rows of plants have but a small interval between them: and the largest field will thus present to the eye extended seed-beds or equal rows of growing plants, as we are aceustomed to see in a kitehen-garden. The result will be the same as when for the sake of experiment we sow the eommon grains and leguminous plants of the fields in a plot of garden-ground. in such case the produce is so far greater, that it quite baffles our ealeulation when exterided to a large surface, and hence the incredible results which we continually meet with in the reports of experiments on some new produce lately introduced: everything is on a magnified scale, owing to superior tillage. No doubt many fields possessed of fertile soils might, by attentive tillage, be made as productive as the lest garden-ground. The Chinese have, as we are told, already aceomplished this by their ineredible numbers and indefatigable lahour ; but scienec and mechanical contrivance are a substitute for millions of labourers when judiciously applied-as our manufaetures fully prove. The same ingenuity applied to tillage might increase the produee of the earth, if not indefinitely, at least far beyond what we may now suspect.

In the early ages of agrieulture tillage was almost ennfined to the ploughing of fallows to elean the land, which was very imperfectly cxecuted, and in ploughing the stubble of one crop to prepare for the seed of another, as long as the land would give a return for the labour. The idea of tillage for the sake of a permanent improvement of the soil was only entertained by a few men who refleeted, and that of encouraging the vegetation while the crop was growing was not even thought of. The plough to stir and the harrows to eover the seed were the only instruments in use, and they were very rude of their kind. A return of three or four times the seed sown satisfied the farmer and the landlord; and yet the first was hardly repaid for his toil, and the landlord received for rent what now wonld searcely satisfy the lithe-owner. The present state of anriculture may be contrasted with this, and perhaps herealter the comparison may be as disadvantageous to us as it now appears in our favour when we look back a few centuries.

TILLA'NDSIA, the name of a genus of plants belonging to the natural order Bromeliaceae. Linnzus says of the jlants belonging to this genus, "Tillandsiæ cannot bear watcr, and therefore I have given this name to the genus from a professor at $A b o$, who in his youth having an unpropitious passage from Stockholm to that place, no sooner set his foot on shore than he vowed never again to venture himself upon the sea. He changed his original name to Tillands, which means on or by land; and when he lad subsequently oecasion to return to Sweden, he preferred a circuitous journcy of 200 Swedish miles through Lapland to aroid, going eight miles by sea.' Dr. Elias Tillands, whose name and idiosyncracy have thus been perpetuated, was professor of plysic at Abo, and died in 1692, at the age of fifty-two. He published in 1683 an alplabetieal eatalogue of plants in the neighbourlood of his residenee, which was afterwards followed by wood-cuits of 158 of the plants in the catalogue.

The genus Tillandsia of Linnæis comprehends the plants described by Sloane as viscum caryophylloides, and by Plumier as Caragata, and is characterised by possessing a persistent calyx divided into three oblong, lanceolate, pointed segments; a corolla tubular, longer than the calyx, with the limb divided into thee serments; six stamens not so long as the corolla, and inserted into it, and the anthers sagittate; the ovary superior, surmounted by, a style with a trifid obtusc stigma; the fruit, a trilocular capsule containing several seeds, cach of whieh is supported on α long stalk of aggregate fibres, which in the cnd eonstitutes a feathery wing. The species are most of them parasitical, and are natives of South America.
T. utriculuta, the Wild Pine of the eolonists of Jamaica, has linear, channclled, recurved, dilated leaves, inflated at the oase ; stem closcly panicled. "It is found growing on old and decaying trees in the forests of Jamaica. The stein is three or four feet ligh, and the leaves are a yard long,
Vor. XXIV. -3 M
and placed withon one another in such a, way that the water whieh mus down then is retained in their expmeled baves. The hases then swell out and form a renerioir or bottle, which, being oontmeted at the neek, prevents the hent of the sum from evaporating the water. Theae reservoirs will ench hold about a quart of water, and cluring the dry semanon they are the resort of all kinds of animals fur the sake of the water, and travellens arc often ahle to obtain a supply of water from this source when all others fail, Dampier, in lis Travels, gives the followin! account of this plant:- The wild pine is a plant so called because it somewhat resembles the bush of leaves which surround the true pine-apple. The wild pines commonly grow from some bunch, knot, or exerescence of a tree, where they take root and spring upright. The root is short and thick, from whence the leaves rise up in folds one within the other, spreading ofen to the top of the tree. They'are of a gooxl thick substanec, and so compact as to eateh and hold the rain-water when it falls. They will contain a pint, or a pint and a half, or a quart; and this water refreshes the leaves and nourishes the root. When we find these pines, we stick our knives into the leaves just above the roots, and let out the water, which we eateh in our hats, as I have done many times inyself to my great relief.' The seeds of these plants are furnished with wings, by which they are blown from tree to tree, on whieh they grow. Unless they possessed such means of tmansportation, they would falt to the ground, where, being parasitical, the young plants would perish.

I': usneoides, the Long-Moss Tillandsia, or Barbe de virillard of the French. the Fiscum carynphylloides of Sloane, has a twisted, thread-shaped, sealy stem, much branched, with channelled leaves. This plant is a native of the forests of North America, from Virginia to Elorida, also of the West Ludia Islands and the Brazils. It has very minute roots, and its long wiry contorterl stems creep over the stems and branches of old trees, sometimes lianging down in a bunch like the hairs of a horses tail. The flowers are small and of a blue colour, and are developed at the ends of the branches. This plant crows on other trees in dry and arid plains, as well as in alpine districts. It attains a larger size in the more temperate localities. Its filamentous stems, when deprived uf their bark, nay be used for the same purposes as hossehair, and are used in this manner in Ameriea. They are also in some places made into cordage. The only preparation they require previous to being used is being put into water for a tortnight or more, aceording to the temperature, when, on being taken out and dried, the bark easily separates from the fibres, and they are fit for use. In medicine this plant has been recommended as a remedy in hemorrhoids, also as an effectual rliaphoretic.
T. monastuchyo, Single-spiked Tillandxia, has the radiele leaves linear, chamelled, recurved, bruad, and sheathing at the base; the stem simple, clothed with imbricated seales; the spikes simple; the bracteas ovato-concave. This plant is a native of the West ladies. The flowers are of a snow-white colonr, appearing in the axils of the bracts, which surround a rachis two or three inches long, and this arises from a mass of leaves atranged in the forin of a rosette. As the leaves and bracts are colonted variously, green and red and white, the whole plant looks at a distance like a large flower; and when numerous upon the trees oll which they grow, they produce a very handsome and remarkable appeatance. The leares of this as well as most of the other species rerve as reservoirs for water. About thirty species have been enmmerated by botanists: most of them are inhabitants of South America, espeeially of Pern, and of the great forests of the Andes; two or three of the species have been found in the southern states of North America.

TIILEMONT, SEBASTIEN LFNAIN DE, an historieal writer of considerable note, was hom at Jaris 30 th November, 1637. He was the son of Jean Lemain, master of the requeats, and his wife Marie le lagois. Tlis exeelbence of character was manifested very early; and even as a child he always alsitainel trom those mischievons pranks in which children commonly indulge. When between nine and ten years of age he was placed muder the charge of the members of the reliusious fociety then established it the vacant abbey of Port Koyal, and under these instructors he devoted himself to the excreises of learning and piely. Ills favourite author, while at sehool, was livy;
a preference indleative of the bias of his mind io historical studies. He studied logic and eecelesiastical hi-tory under Nicale; and his questions on the latter subject at once evinced the carnestness with which he pursned it, and put the knowledge of his instructor to a severe lest. He studied the theology of Estius, from which, when alont cighteen years of age, he turned with much satisfaction to the study of the Scriptures themselves, and of the liathers; and while thus engnged he began to collect the historical notiees of the Apostles and Apostolienl Fathers, and to arrange them after the plun of Usher's ' Annales.'
The tenderness of his conscienee, and the strictness of his notions of duty, kept him for some time undetermined an to the elivice of a profesvion. At the age of 23 he cutered the Episcopal seminary of 13 eanvais, where he was received with such respeet from his reputution for historical knowledge, that, fearing it might he a smare to his lumility, he contemplated lenwing it, but was persunded to remain by Isaac de Sacy, one of the members of the Society of Port Royal, whom he had chosen for his spiritual «uide. He remained three or fonr years in the seminary of Beanvais, and then spent five or six with Godelroi Hermant, canon of that city. He was much respected and beloved by the bishop of Beauvais, Cloart de Buzanval, and fearing still that this estimation would make him vain, he suddenly left the place and returned to Paris, where he remained two years with his intimate friend and school-fellow at Port Royal, 'Thomas du Fossi' ; but not finding in P? that retirement which he desired, he withdrew to St. IanJest, a country parish in the neighbourhood of that eity:
In September, 1672, at the mature age of thirty-five, ho beeame subdeacon, and fifteen monthe afterwards deacou. The following extract from a letter addressed in lis brother (Pierre Lenain, then or ntterwards subprior of La Trappe, evinecs at once his piety and his humility. After shatintthat it was at the desire of Isaac de Sacy, his friend and guide, that he had become subleacon and was about to takie on him the deaconship, lie goes on, ' I nasure you, my dearest brother, that it is with great agitation ancl fear that I hare resolved to comply with his wisl, for 1 feel thint I am far from those dispositions which I myself sees tu be necessary for entering upon this office; and above nill, 1 an obliged to confess thant I have profited little from the grace which I might lave received from the order and duties of the subdeaconship. But on the other hand I could not resist one whom I believe I ought to bley in everything, and who, I am well nware, has the greatest love for me. I beg of you then, my dearest brother, to pray to God for me, and to ask him either to cause M. de Sacy to see things in a different light, or to give to me such dispositions that the advice of my friend may be for my salvation and not for my condemnation.'

In A.D. 1676 he received priest's orders, at the further persuasion of De Saey, who contemplated makiug him his successor in the office of spiritual director of the Bemardine nuns, now re-established in their origitall sent, the abbey of Port lloyal, to the immediate meighbourhood of which establishment Tillemont rentoved. Ho was howover, in 1679 , obliged to remove, and he took nj his residence at the estate of Tillemont, a short clistance from Paris, near Vincennes, which belonged to his family, and from which he took his name. In A.b. 1681 be visited Flanders and Holland: and in A.D. 1682 madertook the eharge of the parish of St. Lambert, where he had formerly resided, but soun gave it np at the desire of his father, to whom he ever paid the greatest respeet und obedienes.
Having prepared the first volume of his great work un ecelesiastical history, he was about to pulb)ish it when it whe stopped ly the censor, under whose notice, as a work ennnetted with theolory; it had to pass, and who raisecl some objections of the most frivolous character. Tillemont refused to alter the parts specified, deeming them not justly within the censor's provinee; and chose rather to suppress the work, upon which however he continued to labour diligently, though without any immediate intention of publishing it.

This exercise of the eensonship) leed in an alteration of his plan: he determined to separate from the rest of his worls the listory of the Roman cmperors and other prinees whose actions were interwoven with the affairs of the Christian church, and to publish it separately: the first volume of this work, which, as not heing theologiral, was exempt from the censorship, appleared in 1000 , and was
received with general approbation. It exeited a desire for the appearanee of his Chureh history, and the ehaneellor Boucherat, in order to remove the obstaele to its publication, appointed a new eensor. Thus eneouraged, he brought ont the first volume in 1693, under the title of ' Mémoires nour servir à l'Histoire Eeelésiastique des Six Premiens Sièeles.' A note to this volume, on the question whether Jesus Christ celebrated the Passover the evening before his death, in which he examined the views of Bernard Lami, a lenrued priest of the Oratory, on that question, insolved him in a controversy with that writer, who read Tillenoont's note before publication, and examined the arguments coutained in it in a subsequent work of his own. Tillemont in consequenee addressed to Lami a letter, which is printed at the close of the second volume of his ' Mémoires,' and is remarkable for its spirit of modesty and meekness. Lami replied, but Tillemont declined to continue the discussion, thinking that he had said enough to enable those interested in the question to form a judgment. Faydit de Riom, an eeclesiastic whom the Congregation of the Oratory had expelled from their body, a man of considerable talent, but of jealous disposition, published at Bâle, A.D. 1693, the first number (28 pp. 4to.) of a work, to be continued every fortnight, entitled 'Mémoires contre les Mémoires de M. Tillemont.' It contained several violent and unjust strietures on the work, to which Tillemont did not reply, though some of his friends with needless a, prehension procured the stopping of Faydit's work, which never proeeeded beyond the first number. Faydit repeated his attaek in a subsequent work, but it produced little effeet.
The remainder of 'Tillemont's life was passed in the quiet pursuit of his studies. He was attacked by a slight cough at the end of Lent, 1097, and in the course of the suinmer was seized with fainting, owing to a sulde. 1 ehill while hearing mass in the chapel of Notre Dame des Anges: toward the end of September his illness inereased so as to excite the anxiety of his triends. He eonsequently removed to Paris for the sake of medical advice; and there, after an illness which rendered his piety and subnissiveness to the divine will more conspicuous, he breathed his last, on Wednesday, 10th January, 1698 , aged sixty years. He was buried in the abbey of Port Royal, in which the Bernardine or Cistertian nuns, to whom the abbey had originally belonged, were now again established.
The works by whieh Tillemont is known are, his ' Histoire des Fimperenrs,' and his 'Mémoires pour servir a 1Histoire Ecelepiastique.' The first was publlished in 6 vols. 4 to. ; the first four during the author's life, at intervals from 1690 to 1697 : the remaining two after his death, in 1701 and 1738. The earlier volumes were reprinted at Brussels in 12 mo ., in 1707 , et seq., and a new edition appeared at Paris, in $4 t 0 .$, in $1720-33$, with the author's latest corrections. He explains his plan in the 'Averlissement' to the first volume: his intention "was to illustmate the history of the Church for the first six centuries; but instead of conmencing with the first persecutor, Nero, he goes hack to Augustus, whose ediet oceasioned the journey of Joseplh and Mary to Bethlehem, and thus determined the place of our Lord's nativity. The history ends with the Byzantine emperor Anastasius (A.D. 518). The style is unpretending, and consists for the most part of a translation of the oricinal writers with slight modifications, and with such additions (marked by brackets) as were needed to form the whole into one continuous narrative, or such reflections as the author deemed requisite to correet the falsc morality of heathen writers. To each volume are appended notes rclating to diffieulties of history or ehronology which requirc discusssion of a kind or extent unsuited for insertion in the body of the work. 'There is nothing,' says Dupin, ' which has escaped the exaetness of M. Tilleniont ; and there is nothing obscure or intricate which his criticism has not cleared up or disentangled.'
The 'Memoires,' \&c. extend to 16 vols. 4to., of which the first appeared in 1693; thrce volumes more during the author's lifetime, in 1694-5-6; and the fifth was in the press at the time of his death. These five volumes rame to a second edition in 1701-2, and were followed in 1702-1711 by the remaining eleven, which the author liad left in manuseript. This great work is on the same plan as the former, being composed of translations from the oriminal writcrs, connected by paragraphs or sentences
in brackets. Dupin claracterizes it as becing not a continu-
ous and general history of the Churell, but an assemblage of partieular histories of saints, persecutions, and heresies, a deseription accordant with the modest title of the work, - Mémoires pour servir al l'Histoire,' \&c. The author eoneerns himself chiefly with faets, without entering into questions of doctrine and diseipline; and notiees not all the saints in the calendar, but only those of whon there are some antient and zuthentic records. Each volume has notes of similar character to those given in 'LJHistoire des
Empereurs.' Empereurs.'
Tillemont supplied materials for several works published by others, as for the Life of St. Louis, begun by De Sacy and finished and published by La Chaise ; for the lives or St. Athanasius and St. Basil, by Godefroi Hermant; of Tertullian and Origen, by Du Fosse, under the name of Lis Mothe, \&c.
(Vie de M. Lenain de Tillemont, by his friend Trouchay, afterwards canon of Laval, Cologne, A.D. 1711 ; Dupin, Bibliothìque des Auteurs Ecclesiastiques du Dixsentieme Sic̀cle; Biographie Universelle.)

TILLOCH, ALEXANDER, LLL.D.; was born at Glasgow on the 28th of February, 1759, and was educated with a view to following the business of his father, who was a tobaceonist, and for many years filled the office of magistrate in that city. He was, however, more inelined to the pursuit of scientific knowledge than to the rontine of business. His biographer states that in early life his attention was greatly attracted by the occult seicnces, and that although he was not long subject to their delusions, he never was inclined to treat judicial astrology with contempt. Onc of the earliest subjects to which Tilloeh applied himself was the improvement of the art of printing; his experiments have been alluded to in a previous volume. [Stereotype, vol. xxiii., pp. 42 and 43.] After carrying on the tobaceo bnsiness for a time in his native city in conneetion with his brother and brother-in-law, Tilloch abandoned it, and for several years exereised that of printing, either singly or in partnership with others. In 1787 he removed to London, where he subsequently residecl; and in 1789 he, in connection with other parties, purchased the 'Star,' a daily cvening newspaper, of which he beeame editor. This office he continued to hold until within a few ycars of his death, when bodily infirmities and the pressure of other engagements compelled him to relinquish it. The political opinions of Tilloch were temperate. For many years he devoted aftention to means for the prevention of the forgery of bank-notes, and in 1790 he made a proposal to the British ministry on the subject, which met with an unfavourable reecption. He then offered his invention to the French government, who were anxious to apply it to the printing of assignats ; but, after some experiments had been made, and negotiations had been urgently songht by the French anthorities, all communication on the subject was cut short by the passing of the Treasonable Correspondence Bill. In 1797 he presented to the Bank of England a specimen note, produced by bloek or relief printing, which was certified by the most eminent engravers to be impossible of imitation; yet nothing was donc towards the adoption of his or of any similar plan.

Considering that therc was room for a new seientific journal, in addition to that published by Nieholson, Tilloch published, in June, 1797, the first number of the 'Philosophical Magazine,' a periodical whieh has ever sinee maintained a high reputation as a record of the progress of science, and a digest of the proceedings of learned societies at home and abroad. Of this work he was solc proprietor and editor until a few years before his death, when Mr. Richard Taylor, who sueceeded him in its management, became associated with lim. In the earlier numbers of the 'Star' Tilloeh published several essays on theological subjects, some of which, relating to the propheeics, were subsequently colleeted into a volume by another person, and published with the name ' 13ihlicus;' and in 1823 he issued an octavo volume entitled ' lissertations introduetory to the study and right understunding of the language, structure, and contents of the Apucalypse, in which he endeavours to prove that that portion of Scripture was written much earlier than is usually supposed, and before most of the apostolical epistles. His views on this and other points are discussed at length in a nolice of this work, published soon after his death, in the 'Ecleetie Review.' The last work undertaken by 'Tilloch was a weekly periodical entitled the 'Mechanic's Oracle,' devoted
principally to the instruction and improvement of the working elasses. The fint number appeared in Jnly, 182t. and it whs discontinued somin after his death, which took pasee at his residence at Islington, on the edth of January, 183.7.

Thloch married early in life. His wife died in 1783, Ieaving a daughter, who became wite of Mr. Joln Galt. Ilis religious opinions were peculiar, suld he was one of the elders who aeted as ministers of a small body who took the name of Christian Disaculers, and met for worship in a private house in Goswell Strect Road. He was Ω nember of nany leamed societies in Great Britain and elsewhere, and was proposed, about twenty years before his death, as a fellow of the Royal Suciety of London ; but his name wis withdrawn before coming to the lallot. in consequence of an infimation that he would be objected to, not on account of nny defeiency in talent or chameter, but solely because lre was proprictor of a newspaper. A memoir of Dr. Tilloch appeared in the "Imperial Magazine' for March, 182), from which, with the assistance of other obituary notices, the above account is condensed. This was reprinted in the last number of the 'Mechanic's Oracle," with a portrait.
TILLOTSON, JOILN, D.D. (born 16:30, died 1634), a prelate and one of the most celebrated divines of the Churel, of England. He was born at Sowerby in Yorkshire, a menter of the great parish of Halifax, of a Puritan family: Fis father, who was engaged in the clothing trade, belonged to that extreme section of the luritans who were for establishing a genernl system of Independeney, and he belonged himself to an Independent church, of which Mr. Rool was the pastor. Atter having been a prpil in the grammar-schools in the enuntry, the writers of his Life not having told us what schools they mean, but doubtless the granmar-sehool at Ialifax was one, he beceme a pensioner of Clare Hall, Cambridge, in 1017, and a fellow of the college in 1151. It appears that he remained in the University till 1635. Puritansm was at that period in the aseendency at Cambridge; but 'illotson very early freed himself from his educational prejudices, became a great admirer of the writings of Chillingworth, and soon showed himself one of a class of pensons who were then beginning to be considerable in England, who, takine their stand on the Seriptures, opposed themselves at once to Romanism on the one hand and to Calvinism on the other. This position he ever after inaintained, and his celebrity arises principally from the ability with which he illustrated and ctefended. both from the pulpit and the press, the principles of Protestantism, and of a rational and moderate orthodoxy. It may be added also, that so much of the effects of his original Puritan edueation remained with lim, that he was in politics a Whig, although it must be owned that he entertained and occasionally expressed notions of the duty of smbmission, which, if aeted upon, would have maintained the House of Stuart on the throne.
Before he entered holy orders, lie was tutor in the family of Irideaux, the attorney-general to Cromwell. This led to his residence in London, and brought him into acquaintance with several eminent persons. He was thirty years of age before he received ordination, and the service appears to have been performed with some derree of privary, is it is, we believe, not known when or where it was performed, and only that the bishop from whose hands le received it was not a hishop of the English clurch, but the bishop of Galway in Scutland, Dr. Thomas Sydserf. All the supposed irregularities and imperfections of his early relicions histor; for amongst other thiurs it was even asserted that he had never been haptized, were hrought befure the public ly the nou-juriug party, when they sank him elevated to the primacy, from wheh Sancerof had retired.

It is sinid by his hiographer, Dr. Thomas Birch, that he was not perfectly sntisfied with the ternis of ministerial conformity required hy the act of 1662 , which restored the Frisenpal chnrel of England; yet on the whole he juded it proper to accept of the tetme, and to become a rezular and comformable minister of that clurelh.

Ile was for a sloort time curate at Cheshunt, and also for a short time rector of Ketton in Suffolls, a living to which he mas presented ly Sir Thomas Bamardiston, one of this l'uritan friends. But he was soon called to a wider aphare of duty, being appointed, in 1661 , the preacher at Lineoin's Inn, and hecturer nt St. Lawrence's Clurch in
the Jewry. Here it was that those sermons were preached which atiracted crowds of the most accomplished and the learned of the time, and which have been since read and studied ly many suceceding divines of eminence, and are at this day the basis of his fime.
The coirse of his preferment in the church during the reign of Charles 11 . was- l6C:), a prebendary in the chureh of Canterbury; 1672, dean of Canterbury; 1675, a prebendary in the chureh of St. Paul; and $1077, a$ canon residentiary in the same eathedml. But as soon as Kince William was established on the throne he was made denan of St. l'aul's and clerk of the closet ; and in April, 16:)1, he was nominated by the king to the archbishopric of Canterbury, an appointment which appears to have been really received ly him with reluctance, and which exposed him to no sinall share of envy from wery different parties. The truth is, that besides lis eminent merits as having been the ablest opposer both of popery and irreligion, in a reign when the tendencies of ton many persons in exalted stations were in one of these directions, he lad ustrong personal interent in the new king's affeetions, who is said, on credible authority, to have declared that there was no honester man than Dr. Filloston, nor had he ever a better friend. He was archbishop ouly three years and a half, dying at the age of sixty-four. He was interred in the chureh of St. Jawrence Jewry, whel had been the chief scene of his high popularity.
Ile died poor. Ile had survived both his eltildren; but he left a widow, who was a niece of Cromwell and the stepdaughter of Bishop Wilkins, without any provision except the eopyright of his works, which it is snid produced 2,002. The king granted her a pension, first of tuol., and afterwards of $200!$. more, which she enjoyed till her death in 1702.
An account of the Life of Dr. Tillotson was pullished in 8io., 1717. There is a much larger life of hinn by Dr. Birch, prefixed to an edition of the works of Tillotson, and published also in an 8vo. volume, the second edition of which was printed in 1733, containing additional matter. There is also an nccount of him in Le Neve's 'Lives of the Protestant Arelibishops of England.' Birch's edition of the W orks is in 3 vols. folio, $17 \overline{15} 2$.
THIXY, or TILLI, JOHN ISERCLAS, Count of, was the son of Martin Tserelas, of Tilly. The Tserclas, whose name is also written TSerelaes, were an old patrician fanily of Brussels; John, a member of this family, acquired, in 1tis, the lordship of Tilly, in South Bribaut: John Tilly was born in 15.59, at the castle of Tilly, and ho early entered the orler of Jesuits, from whom he aequired that spint of fanaticism, of blind obectience, and of alsolute command, which distinguished him during his whole life. II soon abandoped his eeclesiastical protession, and entered the army of Philip II., king of Spuin and loud of the Netherlands, and le learned the principles of war mider Alba; Requesens, the governor of the Netherlands, Don Juan of Austria, and Alexanter Farnese. In the war of the Spaniards against the Protentant inhabitants of the northern Netherlands he acquired that hatred of hereties and that warlike enthusiasm for the Roman Catholic religion, which became one of the most prominent features of his character. Towards the end of the sixteenth cembry he entered the service of the emperor RadolphiII., and distinguished himself, first as lienteuant-colonel, and afterwards as colonel and commander of a regiment of Walloons, in the wars against the IJungarian insurgents and the sultans. Murad III. and Almed I. Atter the peace of Sitvatorok in 160\%, between Rendolph II. and Almed I., he was appointed commander-in-chief of the army of Maximilian, duke of 13nvaria, whel was in a very disorganized stale. In l603 Tilly commanded the expedition against Donanwerth, an imperial town which had bect1 put under the han for having persecuted the lonnan Catholics, and which surrendered to Tilly without detence. The liga, or the union of the Roman Catholic states in Germany, appointed hime commander-in-chief of their froups, and lie held this ligh office until his death. Tilly צained the first great victory in the Thirty Years' War, which broke out in 1618. [Thinty Years' VAr.] After. haviner conquered the Upper l'alatiuate with the troops of the liga and those of the dulke of liavaria, he proposed to the Luperial generals to pursue the army of Frederick, king of Bohemia, instead of taking winter-quarters and thus losing all the fruits of their conquests. Warfare in

T I L

winter was, in the seventeenth century, a very uncommon thing, and Tilly met with much opposition to his plan; but at last the Imperial generals consented to continue the war. Tilly attacked the Bohemians, who had taken up a fortified position on the Weisse Berg, near Prague, and in a few hours the Bohemian army was nearly destroyed (8th of November, 1630), while only some hundreds of the Bavarians were killed. Several of the Bohemian nobles, who lived at Prague or resided in their castles, were warned by Tilly to fly if they would avoid the vengeance of the emperor ; but they paid no attention to this generous advice, and were surprised: twenty-seven of them were beheaded.

After the brilliant victory on the Weisse Berg, Tilly hastened to the Rhine for the purpose of preventing the count of Mansfield from joining the margrave of Baden. He succeeded in this object by his skilful manœuvres. The margrave of Baden-Durlach was attacked in the defiles of Wimpfen, and defeated, after an heroic resistance (1622). On the 2nd of June, 1622, he defeated Christian of Halberstadt at Höchst; he pursued Christian and Mansfield to Westphalia; defeated them at Stadt-Loo, near Münster, in a battle which lasted three days (4th to the Cth of August, 1623), and foreed them both to disband their troops and to take refuge in England. For his vietory at Stadt-Loo, Tilly was created a count of the empire. It has been related, in the article Thirty Years' War, how skilfully Tilly first weakened and then destroyed the army of king Christian IV. of Denmark; but the principal glory of this eampaign was earned by Waldstein, who, after having joined Tilly on the banks of the Lower Elbe, persuaded Tilly to turn his arms against Holland, and to leave him the conquest of Deumark. After Waldstein had been deprived of his command in 1630, and Gustavus Adolphus, king of Sweden, had landed in Germany, Tilly was appointed field-marshal and commander-in-chief of the imperial army. He appreciated so justly the military talents of his new opponent, that in the assembly of the electors at Ratisbon he declared Gustavus Adolphus to be so great a commander, that not to be beaten by him was as honourable as to gain victories over other generals.
The first great event of the new campaign was the capture of Magdeburg, on the 10th of May, 163 . The Croats and the Walloons in the imperial army committed unheardof cruelties against the unhappy inhabitants; 30,000 of them were killed, and the town was entirely destroyed after three days' plunder. It has generally been believed that some Intperial officers besought Tilly to stop the atrocities of the soldiers, and that he coolly answered, 'Let them alone, and come baek in an hour.' But this is a mere invention, and however severe Tilly was, he cannot be charged with having urged the commission of cruelty, although he considered the plunder of a eonquered town as the fair reward of the soldier. On the $14 t h$ of May Tilly made his entrance into the smoking ruins of Mardeburg. In a letter to the emperor he said that since the destruction of Troy and Jerusalem there had been no such spectacle as that which Magdeburg presented. Six months later Tilly, who was in a forlified camp at Breitenfeld near Leipzig, was forced, by the impetuosity of his lieutenant, Pappenheim, to engage in battle with Gustavus Adolplus before his reinforcements had arrived. Tilly himselt was successful in lis attack on the left wing of the Swedes, which was broken, and the elector of Saxony, who commanded it, fled as far as Eilenburg. But Gustavus Adolphus, who had beaten the left wing of the Imperialists, under the command of Pappenheim, stopped the progress of Tilly, and after a long and bloody strnggle the imperial army was routed. When Tilly saw the flight of his soldiers, he swore that he would not survive the day on which he, the victor in thirty-six battles, was to fly for the first time in his life. Alone on the field the old field-marshal, bleeding from three wounds, shed tears of despair, and looked for death as his ouly consolation. However Duke Rudolph of Saxe-lauenburg persuaded him to withdraw; and Tilly, putting himsell at the head of four regiments of veterans, fought his way through the main body of the Swedish army. He narrowly eseaped from the bold attack of a Swedish captain, called 'Long Fritz,' who was killed by a pistol-shot at the moment when he was seizing the field-marshal (17th of September, 1631). After the loss of the battle of Leipzig, iortune abandoned Tilly for ever. Nthough he afterwards succeeded in driving the

Swedes from Franconia, Gustavus Adolphus compelled him to retire beyond the Ieech. In order to prevent the Swedes from penetrating into Bavaria, Tilly took up a very strong position near Rain, on the right bank of that river. Gustavus Adolphus, having arrived on the left bank opposite Rain, opened a fire from all his batteries on the Bavarian camp, while his pontooniers endeavoured to construct a bridge over the river (5̄th of April, 1632). Tilly made the most aetive resistance, but a ball broke his thigh, and he was removed from the field and carried to Ingolstadt. After the fall of Tilly, the elector of Bavaria abandoned his invincible position, and the Swedes crossed the river. Tilly died on the day after the battle, in his seventy-third year, without leaving any issue.

Tilly was a little ugly man, with red hair, large whiskers, a pale face, and piercing eyes. He continued to lead a monastic life in the midst of the noise and the licence of his camp; he boasted that he had never touehed wine nor women; he spoke little, but thought much; he despised honours and nooney; the emperor wished to confer the duchy of Brunswick-Calenberg upon him, but Tilly refused it, and he died poor.
(Julius Bellus, Laurea Austriaca; Breyer, Geschichte des Dreissigjährigen Krieges; Schiller, Geschichte des Dreissigjahrigen Krieges; Leo, Universal-Geschichte.)
TILSIT (more correctly TILSE), the chief town of Prussian Lithuania, is situated in $55^{\circ} 4^{\prime} \mathrm{N}$. lat. and $21^{\circ} 56^{\prime} \mathrm{E}$. long., in a fertite country on the south bank of the river Memel (called in Russia the Niemen). The little river Tilzele (pronounced Tilshelé) forms on the south side of the town a large basin, and discharges itself, between the town and the suburbs, into the Memel, over which there is a bridge of boats, which is 1150 feet long without the approaclies. The thirty-six boats or pontoons are removed at the approach of winter into the Tilzele, and replaced in spring. The master of the Teutonic Order built the old castle in 1289, which was repaired and enlarged in 1356; but the present castle, to the east of the town, was not built till 1537. In process of time a considerable town grew up round the castle; favoured by its excellent situation it became the channel for the great trade between the interior of Russian Poland and the port of Memel, so that it was one of the most flourishing towns in the province. The principal buildings and public institutions are, the castle, the town-hall (built in 1752-55), the German Lutheran church, with a very lofty and eurious steeple, the very pretty Lithuanian chureh, the Calvinist chureh, and the Roman Catholic chapel on an eminenee at a short distance from the town; the gymnasium, founded in 1586; a Lutheran and a Roman Catholic hospital, a poor-house and infirmary, and other charitable institutions. The barracks, 600 feet in length, 36 in breadth, and two stories high, were erected in 1794-1800, by a soeiety of the citizens, that the troops might not be quartered in the houses. The inhabitants, about 12,000 (exclusive of the garrison), chiefly draw their subsistence from the trade in corn, linseed, and timber; many are engaged in agriculture (the town possesses lands of its own, and many of the citizens have considerable estates); and there are likewise breweries, distilleries, tanneries, and all the trades usually carried on in large towns. The shoes of Tilsit are celebrated for durability and neatness, and great quantities of them are exported. There are many good gardens in the town and environs; particularly those of the Horticultural Society.

Tilsit has aequired historieal celebrity by the treatics of peace concluded on the 7 th and 9 th of July, 1807, betweeu France, Russia, and Prussia, the terms of which are too well known to be stated in this place: yet in five years after this peace, which seemed to have laid continental Europe prostrate at the feet of Napoleon, a part of that immense army which was to have subdued Russia (Macdonald's division) was seen to return desponding, silent, and miserable over that same river whieh had so lately wit-, nessed the triumph and splendour.of the conqueror.
(Müller, Handbuch; Preuss, Beschreibung von Preussen; Hassel, Geogr.-Handbuch.)
TILT-HAMMER, a large hammer worked by machinery, impelled either by a water-wheel or a steam-engine. Such hammers are extensively used in the manufacture of iron and steel, and the name tilt-mill is sometimes applied to the mechanism of which they form the principal teature.
In the process of shingling or blooming [Iron, vol.
xiii., 1. 31], the heated iron is subjected to a very heavy liammer, the strukes of which not only lring it into a nev form, hut also forec out from its sulstance considerable qumulties of dross. The kind of tilt-hanmer formerly tised for this purpose is represented hy Molland, in lis treatse on 'Sanufactures in Metal,' in Iariner's 'Cabinet Cyelopadia.' He deseribes the shat or helve of the linmmer as nine feet in length, and thirly or forly inches in eircumference, made of ash, and clamped at intervals with stout iron hoops. This shaft passed through the head of the hammer, which was a mass of enst-iron, weighing seven or eight ewt., and was secured at the opposite end to a massy collar of cast-iron called the hurst, the projections or pivots of which formed the axis or centre of motion, and were sustained by a sifong frame-work of timber. Above the hammer was placed a yery strong but elastic loanm. formed of tough ash bound with iron hoops, and against thls, which acted ns a spring to increase the furee of the descending stroke, the head of the hammer was thrown up by the revolution of a ponderous circular frame of iron, with four projecting arms or teeth, which came in contaet with the shaft very near to the head of the hammer. This cireular frame, or arm-case, was fixed immediately upon the axis of the water-wheel which supplied the moving-power. In modern iron-works the shingling-hammers are usually formed entirely of iron, the piece forming the actual head of the hammer being inserted into a ponderous enst-iron helve in such a manner that it may be removed when worn out. The spring-beam is frequently dispensed with, and the hammer is lifed either by cons or arms acting upon the extremity of the helve, beyond the hammer-head, or by an eceentric, or cam, revolving in contaet with a projection from the under side of the helve, hetween the hammer-head and the axis or centre of motion. IIolland represents a tilt-hammer of the latter construction, which is about six tons in weight, and nine feet five inches long from the axis to the centre of the head. The hammer-head liself is circular, and weighs albout cight ewt. Such a hammer makes about one liundred and fifty strokes per minute.
The tilt-hammers used in the manufacture of steel are smaller and much more rapid in their action. Instead of receiving the impulse of the cams near their head, such hammers are set in motion hy tappets or cogs striking downwards upon the tail of the lielve or shaft, which is prolonged beyond the axis. The tail of the helve is thus thrown down foreibly upon an anvil, from which it rebounds with great velocity, causing the hammer to make from three to sesen hundred strokes in a minute. Tilthammers are applied with great advantage to the forging of anchors axles, Sce.

When tilthammers are impelled by water-wheels, it is advisable to fix the cams or arms upon a separate shaft, which may revolve at any reguired velocity without increasing the velocity of the water-wheel itself, by the interveution of suituble cogged-wheels. Without such an arrangement much of the useful effeet of the water may be lost, owing to the neeessity of urging the wheel to a high spered.

TIMAELS (Tiparoç), the son of Andromachus, was born at Tauromenium in Sicily, whence he is sometimes called a. Tauromenian, and sometimes a Sicilian, to distinguisli lim from other persuns of the same name. The year of his liorll was n.c. 3.)2. He was a diseiple of Plhiliscus of Miletus, who had limself been instrueted hy I socrates. IIe was driven from his native country ly Agathocles, the tyrut of Syracuse, whereupon he went to Athens. This seems to have happened in the year p.c. 310, when Agathereles, after the battle of IIimera, and before taking his army over to Afriea, confiscated under various pretexls the property of his wealthy sulpjects, and endeavoured to secure his possessions in Sicily lyy putting to death or nending into exile such as he thought ilf disposed towards him. (Diodomis Sic., xx. 4.) Timacus spent finty years at Athens in readincand studying. (Jolybing, xii. 23.). Alout the yenr n.c. 24,0, when Athens wrs taken! by Antigonus, Timaens returned to his native country, either to Tauromenium or to Syracuse, where he spent the remainder of his life, and died, b.c. $2 j 0$, at the advanced are of ninet y-six.

Timaens wrote a grea* listorient work, the inain suhjeet of which was a history o. Sicily. It began at the carliest timea, and brought the events down to Olynupiad 120 (B.c. 20t), where the work of Polybius begins. (Polybius,
i. 万.) How many books the history contained is uneertain, though we know that there were more than forty. It appears to have been divided into large sections, each of which formed in itself a separate work, whence they are spoken of by several writers as so many independent works.
 contained the early listory of Sieily in connection with, that
 tained the history of Sieily and Greeee during the time of the Athenian expeditions to Sieily. Another part acaln contained the hisfory of Agathocles; and the lant the history of Pyrthus, especially his eampaigns in Italy and Sicily. This last section was, according to the testimony of Cicero (Ad Framil., ,. 12), a separate work, though, as regards the period whieh it eomprehended, it may be viewed as a continuation of the great historieal work.
This history of 'Tinacus, which, with the exception of a considerable number of fragments, is now lest, was enmmenced by him during his exile at Atheus, and at a very advaneed age; but he did not complete it till after lis retum to his own country ; and it was here that he added the history of the last years of the reign of Agathocles and wrote the history of Pyrrhus. As regards the character and value of the work the antients do not agree. Polybius is a vehement opponent of Timaeus, and complains of his ignorance of political as well as military antairs; he further states that Timacus made blunders in the ceography even of places and countries which he himself had visited. Itis knowledge, he says, was altogether derived from books; his judgment was puerile; and the whole work bore strong marks of credulity and superstition. But this is not all that Polybius hlames: he even charges hin with wiffully perverling the truth. The fondness which Timacus himself had for censuring others is snid to have drawn upon him the nickname of Epitimatus (fault-finder). (Athenacus, vi., p. 2f2.) Mnst parts of this severe criticism of l’olybius may be perfeetly just; but in regard to others we should remenber that these two historians wrote their works with such totally different views, that the work of Timacus, who knew the world ouly from his books, must in many respects have appecared absurd to the author of n 'pragmatical' history, and to a statesman and general like Polyhius. But the loss of the work of Timacus, even if he did no more than make an uncritical compilation of what others had told before him, is one of the greatest in antient history. Other ancient writers, such as Diodorus, Agatharchides, Ciecro, and others, judge far more favourably of Timacus. The style of the work, as far as we can judge from the fragments, is justly censured by some anfient crities for its rhetorical and declamatory character; although others, like Cicero (De Orat., ii. 14 ; Rrutus, 95), speak of it with praise. Tinaeus is the first Greek historian who introduced a regular system of clironology, that is, he regularly recorded events aceorting to Olympiads and the arehons of Athens; and atthough, in the early period of his history. his want of eriticism led hin into gross chronological errors, he set the example which others found very useful and convenient. It must lave been with a view to an accurate study of chronology that lie wrote a work on the victors in the Olympian Games, of which we still possess a few fraginents.

The fiagments of Tinneus are collected in Göller's work, ' De Situ et Oricine Syracusarnm,' p. 207, \&ec., which also contains (pp. 179-306) an claborate dissertation on the life and writings of Timacus. The fragments are also contained in C, and T. Müller, 'Frasmenta Historicorum Graccorum,' Paris, 1841, pp. 193-233. Compare Vossins, De llistoricis Graccis, p. 117 , edit. Westermann ; Clinton, Fust. ITellen., iii., 1. 489, \&c.
TIMAEUS (Tipatos), a Greek Sophist, who, recording to the supposition of Ruluken, lived in the thired eentury of the Christian ara. Concerning his life nothing is known; lis name has only come down to us in connection with a little voeabulary containing the explanation of words and phrases whielh oceur in the isritings of 1"lato. It beas the
 Gentianus, of whon likewise nothing is known. Whefler we possess the genuinc and complete Vocabulary of Timacus is doubtrul ; and from the title, as well as from certain artieles in it which have no referenec to Plato, and must undoubtedly be regarcled as interpolations, one might feel inclined to consider the work as it now stands
as an abridgment of the Glossary of Timaeus, if Photius, who must have had the genuine work before him, did not
 $\lambda \dot{0}(\psi)$. But notwithstanding its brevity, the work is very valuable; and Ruhnken owns that he has not diseovered in it a single instance of a word or a phrase being explained incorrectly. There is only one MS. of this Glossary, whioh appears to have been made in the tenth century of our aera, and which was unknown until Montfaucon drew attention to it. It ${ }^{\prime}$ was first edited, with an excellent commentary, by luhnken, at Leyden, $1754,8 v o . ;$ a second and much improved edition appeared in the same place, 1789,8 vo. Two other editions have since been published in Germany, with additional notes by G, A. Koeh (Leipzif. 1838 and $1833,8 \%^{\circ}$.).

Suidas (s.v. Tipatos) ascribes to Timaeus, the Sieilian
 μ env, in sixty-eight books, which Ruhnken, with great probability, attributes to Timaeus the Sophist, who wrote the Glossary to Plato.
(Ruhuken, Praefatio ad Timaei Glossariam Platonicum.)
TIMAEUS (Tipctos), of Locri, a Pythagorean philosopler. He was a contemporary of Plato, who is mentioned among liis pupils, and is said to have been connected with him by friendship. (Cieero, De Finibus, v. 29; De Re Publ., i. 10.) There exists a work, Пєрi тijs roṽ róq μ оv $\psi v \chi$ ỹs (De Anima Mundi; or, on the Soul of the Universe), written in the Doric dialcet, which is usually aseribed to Timacus the Locrian. It contains a brief exposition of the same ideas which are developed in the Dialogue of Plato, which is called after him Timaeus. (Tennemann, System ctor Platonischen Philosophic, i., p. 93, \&e.) Separate editions of it have been published by D'Argens, at Berlin, 1762, 8vo., with a French translation; and by J. J. de Gelder, at Leyden, 1836, 8 yo.
This Timaens of Locri is said by Suidas to have also witten the Life of Pythagoras; but the usual carelessness of Suidas renders this a doubiful point, as lee may possibly lave ennfounded the J.ocrian with the Sieilian Timacus, who in his great historical work must have treated of the Ilistory of Pytharoras at considerable lencth.
(Fabricius, Biblinth. Graec., iii., p. M4, Zze.; Göller, De Silu ef Drisine Syrarusarum, p. 200, \&e.)
TIMA'LIA, a genus of birds cliaracterized by Dr. Ilorsfield.

Cieneric Character--Bill strong compressed, deep (altum). Nostrils subrounded. Wings short, rounded. Tiuil elongrated and graduated. Feet strong: hind-elaw twice as large as the middle anterior claw.
1)r. Horsfield states that a peeuliar eharacter is exhibited in bothdte speeies of Timalia recorded by him, in the structure of the plunes, which eover the baek and the upper parts of the neck, as well as the breast, belly, vent, and thighs. He remarks that the separate filaments (rudii of Illiger), which constitute the vanes or webs of those plumes, are not in close contact, as is generally the ease, but, being inserted into the shaft at a small distance from each other, they diverge with perfeet regularity. 'The parts which they cover,' says Dr. Horsfield in continuation, 'are aceordingly marked with delicate parallel lines, and wherever several plumes lie over each other, they form a beautiful reticulation. On the posterior part of the abdomen, the vent, and the thighs, the plumes have a similar structure; but the filaments are greatly elongated and pendulous, so as to envelop those parts with a lax plumose covering, which on near inspection appears covered with delicate hairs. This appearanec is produced by a scries of very minnte parallel villi, on each of the separatc filaments, arranged with great regularity and leanty: Plumes in which this structure can be discerned with the raked eye are named decompound by Illiger, and deseribed as those whose radii are pinnated with smaller lateral radii; and the effect which the arrangement of these decompound plumes has in the appearance of the bird is exhibited with aceuraey both in the figure of Timalia pileata and Timalia guluris.'

Example, Timalia pileata.

- Description.-Body ovate, rather stout. Ceneral colour above, brown with an olivaceous tint; underneath, testaceons inclining to grey. Head erpped with saturated chestnut. Throat and cheeks white. Breast white inclining to grey, marked with intensely black stripes by the
shafts of the plumes. A narrow white band commences at the forehead, near the base of the bill, passes backward, encireles the eye, and unites with the white plumes of the eheeks, Axilla white; which colour also shows itself in a narrow border of the wing. Quills and tailfeathers of a more pure brown eolour than the other parts; very narrow transverse undulations, of a darker colour, observable on the tail-feathers by close examination. Plumes of the hypochondriæ, thighs, and vent, long, pendulous, decompound, and villose. Lesser wing-coverts, as well as the plumes which cover the nape and back, greyish-blue at the base; which colour shows itsclf on the separate filaments or radii, if the plumes are aecidentally deranged. Tail underneath brown, with a hoary tint. Bill black and shining. Feet brown. (Horsf.)

Locality, Habits, \&c.-Dr. Horsfield observes that the species is not unfrequent in the groves and small woods which abound throughout Java. It often, he says, approaches villages and plantations, construeting its nest in the hedges ; and he speaks of it as one of the social birds that delight to dwell in the vicinity of cultivation. In large forests he did not notice it. . He describes its flight as Jow and interrupted, and adds that wherever it resides it is a weleome neighbour, in consequence of the peculiarity and pleasantness of its note, which consists of a slow repctition of the five tones of the diatonic scale (C, D, E, \mathbf{F}, \mathbf{G}), which it chants with perfect regularity, several times in succession, and at sinall intervals of time. Dr. Horsfield further remarked that the sixth tone was sometimes added; but as this required apparently an extraordinary effort, it was by no means so agreeable to a musical ear as the simple repetition of the five notes, which appeared to be the natural compass of the bird's organs. (loological Researches in Java.)

Timalia pileata, (Horsf.)
 family of Turdida. [Thrushes; Timalia.]

TIMANEES. [Sierra Leone.]
TIMANTHES, a native of Sicyon or of Cythnos, was one of the most eelebrated painters of Greece; he was contemporary with Zeuxis and Parrhasius, and lived about 400 B.C. The works of Timanthes were distinguished particularly for their invention and expression, and one of the chief merits of his invention was, that he left much to be supplied by the imagination of the speetator. There is a remark in Pliny (Hist. Nat., xxxv. 36), probably a quotation, which bestows the highest praise upon Timanthes: it says, though iu exeeution always excellent, the execution is invariably surpassed by the coneeption. As an instance of the ingenuity of 'Timanthes' invention, the same writer tells us of a pieture of a slceping Cyelops, painted upon a small pancl, but in whiel the painter had conveyed a perfect idea of the giant's huge sizc, by adding a few satyrs measuring his thumb with a thyrsus.

Though Timanthes was evidently one of the greatest painters of antiquity, antient authors have mentioned muly five of his works: Pausanias makes no mention of him at all, and Cicero classes him among the painters who used only four colours.* He painted a celebrated picture of the

- Seo " Dictionary of Greek and lioman Antiquities,' art. ' Colores.'
stoning to death of the unfortunate Palamedes, the vietion of the ignoble revenge of Ulysses for having proclaimed his apparent insanity to be feimned: a sulject worthy of the pencil of a great master. This pieture is said to have made Alexander slunder when he saw it at Ephesus. (Tzetzes, Chil., viii. 198 ; Junius, Cat. Artif., s. 'Timanthes.') Timanthes entered into competition with l’arrhasius at Samos, and gained the victory; the subject of the paintings was the contest of Ajax and Ulysses for the arms of Achilles. [P'arriansius.] Ihs most celebmied work however was that with which he bore away the palm from Colotes of Teos; the subjeet was the Sacrifiee of Iphigenia ; and perhaps no other work of antient art has been the object of so much critieism, for and against, as this painting, on account of the concealment of the face of Agnmemnon in his mantle. The antients have all given the incident their unqualified approbation, but its propriety has been questioned by several nodern erities, especually by Falconet and Sir Joshua Reynolds; Fuseli however, in an claborate and excellent criticism in his first lecture, has probably finally settled the matter in favour of the painter. The Saerifiee of lphigenia was given as the subjeet of a prize-pieture to the students of the Royal Academy in 1718 , and all the candidates imitated ine 'trick' of Timanthes, as Sir Joshua Reynolds terms it, which was the origin of his criticism upon the subjeet in his eighth leeture: he says, 'Supposing this method of leaving the expression of grief to the imagination to be, as it was thought to be, the invention of the painter, and that it deserves all the praise that has been given it, still it is a trick that will serve but once; whoever does it a second time will not only want novelty, but be justly suspeeted of using artifiee to evade difficulties.'

The shallow remark of Falconet about Timanthes' exposing his own ignorance by coneealing Agamemnon's face, is scarcely worthy of an allusion. It may be questioned whether $X_{\text {ganeminon, under such cireunstanees as he was }}$ placed, could have been well or even naturally represented in any other way: although many things nuight combine to render his presence at the sacrifice absolutely neecssary, still it is not to be supposed that he conld calmiy stand by and be an cye-witness of his own daughter's immolation; notwithstanding his firm conviction that his attendance was necessary to sanetion the deed, he could not look upon it; it would be unnatural. The eriticism of Quintilian, Cicero, and others, that the painter, having represented Calchas sorrowful, Ulysses much more so, and having expressed extreme sorrow in the countenanee of Menelaus, was in consequence compelled to conceal the face of the father, is not more pertinent than that of the modem critics. 'They were not aware,' says Fuscli, 'that by making Timanthes waste expression on inferior actors at the expense of a principal one, they call him an improvident spendthrift, and not a wise economist.'

Falconet observes that Timanthes had not even the merit of inventing the incident, but that he copied it from Euripides: upon this point Fuseli remarks- It is observed by an ingenious critic that in the tragedy of Euripides the procession is described; and upon Iphigenia's looking hack on her father, he groans and hides his face to conceal his tears: whilst the pieture pives the moment that precedes the sacrifice, and the liding has a different object, and arises from another impression' (v. 15in)).

- 1 am not prepared with chronologic proofs to decide whether Euripides or Timanthes, who were contemporarics about the period of the Peloponnesian war, fell first on this expedient; though the silence of Pliny and Quintilian on that head seems to be in favour of the painter, neither of whom could be ignorant of the celebrated drama of Euripides, and would not willingly have suffered the honour of this master-stroke of an art they were so much better aequainted with than painting, to be transferred to another from its real author, had the poet's claim been prior.' Λ s far as regards priority, the 'expedient' was made use of by Polygnotus long before cither Timanthes or Euripides; in the Destruction of Troy, in the Lesehe at Delphi. an infant is holding his hands over his cyes, to avoill the horrors of the secne. (Pausanias, Phoc., x. 26.)

The finh work of 'Timanthes mentioned by the antients was the pieture of Ω hero, preserved in the time of lliny in the Temple of Peace at Kome, an admirable performance.

There was another antient painler of the name of Timanthes; he was contemporary with Aratus, and distinguished himself for a painting of the inattle of Pellenc, in Areadia, in whiels Aratus gained a vietory over the Aitolimes, Olym. 135.1 ($240 \mathrm{~B} . \mathrm{c}$.). Blutarch praises the picture; the terms it an exact and animate representation (Aratus, 32).
TIMI3ER-TRADF. Several centuries ago the woods and forests of Enyland were sufficient to supply all the timber required for the building of ships and loouses, as well as for fuel. In the sixteenth century we begin to hear complaints of their exhanstion. An act havine been phissed in 1531 rectuiring coopers to sell their harrels at fixed prices (23 Hen . V1II., c. 4), they were allowed by another at (35 IIen. V1II., c. 8), passed twelve years afterwards, to increase their prices. Various cireumstances rendered this change necessary; but at the time, the greater scareity of timber, though only one eause of the rise of the material, was regarded as the sole enuse, as is evident from an act passed during the sime session, 'for the preservation of woods' (3i) Hen. VIII., c. 17), in the preamble of which ' the deeay of timber and woods universally within this realm of England' is said to le so greal, that unless speedy remedy in that behalr be provided, there is great and manifest likelihood of scarcity and lack as well of timber for building, making, repairing of houses and slips, as also for fuel and fire-wood." The act relating to the price of barrels required, amonyst other things, that the exporters of beer should import clapboarts sufficient to replace the barrels sent out of the country ; and the other act was designed to enforee certain restrictions respecting the felling of trees, and to prevent the conversion of woodlands into pasture or tillage. The wealds of Kent, Sussex, and Surrey, where iron-works had been carried on from very antient times, were excluded from the provisions of this aet. In 15.58 however an act was passed (1 Eliz., c. 15), entitled An Act that timber shall not be felled to make coles for the making of iron, which prohibited the use of timber one foot square in iron-works within fourteen miles of the sea, or within the same distanec of eight of the principal rivers of England, or any navigable stream having an cutlet on the coast: but the three southern counties previously mentioned were exempt from the operations of the act. The design seems to have been to eneourage the trade in timber fit for building, and to benefit those parts of the country which did not possess a sufficient supply. Iron-works having been subsequently crected not far from London, nud within the prescribed distance of the Thames, as well as within other limits, and which required so much fuel that the woods 'daily decay and become seant,' an act was passed in $1580(23$ Eliz., c. 5) to prevent the erection of new iron-works within the linits mentioned by the act of 1558, and the restrictions respecting felling frees were renewed. In 1592 the subject again attracted notice, ancl an act was passed (3i. Eliz., c. 11), whieh, amongst other things, prohibited aliens exporting fish, unless they imported clapboards; and altogether prohibited the exportation of winc-easks. In the following century the scale of prices turned in favour of pit-coal. Before the diseovery of the proeess of smelting iron with pit-coal, the transfer of this brunch of industry to the colonies in North Aneriea was seriously entertained, and was carried into cllect to some slight extent. It was also suggested that the waste lands of England should be planted; and the woods of lrelaud being less exhausted than those of Fingland, a considerable quantity of iron was for some time smelted there.
During the decline in the internal supply of timber, it gradually became an arlicle of cxtensive demand from other countries. In 1830, according to a statement of Mr. Huskisson, the fir timber used in England for buildug purposes was nearly all bronght from abroal. The proportion of timber of native production used for similar oljects is not known or even guessed at. The north of Europe, especinlly the countries on the Baltic, and our colonies in llritish North Ameriea, are the great somrecs of supply. Teak is brought from the west coast of Afriea, maliogany from the 13ay of Ilonduras and other places, and faney and dye woods from a number of other quarters; but none of these come into competition with the building timber of the Baltic or of our North American possessions. The timber of the north of Europe is generally of excellent
quadity, and much superior to the colonial timber. Sir Robert Seppings, formerly, surveyor of the navy, stated before a parliamentary committee, "that Canada timber is peculiarly subject to dry-rot; that frigates built of fir, the growth of North America, did not average half the durability of other timber; and that the Royal Navy had suffered so much from the use of Canada or North American timber, that its use was now altogether discontinued, except for deals and masts.' A number of timber-merchants, builders, and carpenters gave evidence before the same committee as to the inferior quality of the colonial timber. One of the witnesses said:- 'It is not allowed to be used in government buildings, nor is it ever used in the best buildings in London. It is only speeulators who use it, from the price of it being much lower than the Baltie timber.' The inferior colonial timber is forced into use by enormous differential duties, which, before the recent alteration of the tariff, amounted to a bonus of 1000 per cent. in some eases, as the following table shows :-

	Dnty on Fureiga Timber.	Ditto from british possessions.	ifferential duty per cent.
Buttens, per 120		$\begin{array}{llll}\text { f. } & 8 . & \text { d. } \\ 1 & 0 & 0\end{array}$	1000
1 leals dituo	$\because 2$	20	1000
Luth-wood, per futhmm	4	015	5665
Mavts, 12 inclues and npwards, each	215	010	550
Staves, a verage duty per 120.	30	06	1000
O.ak planks, pur load	40	015	5331
Fir timber, ditto.	215	0100	550
Okk dith, ditto	2150	0100	550
Wrinsent logs	3150	0120	623
Unenumerated timber .	180	050	560

In 1787 the duty on foreign timber was only $6 s .8 d$. the load of fifty eubic feet, but it was raised at different times, until, in 1804, it amounted to 25 s . In 1810 the duty was raised to 54 s .8 d. ; and from 1814 to 1820 it was 64 s .11 d . and 65s. the load. The trade in colonial timber had searcely any existence before 1803 , although until 1798 it had been admitted free of duty; and the duty imposed in that year was only 3 per cent. ad valorem, which was changed in 1803 to a specific duty of $2 s$. the load. In consequence of the war there was a great rise in the price of European timber, and Meniel fir advanced from 78 s . to 320.r. the load. In order therefore further to encourage the supply from our own colonies, North American timber was again, in 1800, admitted duty frec. The stimulus was no doubt justifiable, but it was continued after the temporary eauses in which it originated had passed away. The following table shows the effect of the differential duties in substituting colonial timber for that of the north of Europe:-

Iveritge Quantities				Per Centage
in perivela of	13 ltic .	N. A. Colonies.	Total.	proportion.
Fire Years.	LAs.	Lis.	Lals.	Balic. Colonial.
1788 to 1792	219.396	2,660	222,057	99
1:9\% 1797	164,009	1.225	165,825	99
1:98 1802	178,019	$\underline{.916}$	180,935	99
18031807	231.477	16,5\%3	249,070	94
14031512	73.718	120,5:7	191,253	3862
18141818	125.835	147,59\%	273,453	4654
18191893	116,600	335,536	452,158	26 \% 4
1824 1803	191.890	410,903	602,193	3263
19291333	19\%,783	412.682	533,466	$24 \quad 76$

The return to a sounder prineiple of taxation has been very slow. In 1821, in consequence of recommendations from both Honses of Parliament, the duty on European timber was reduced from 6iss. to 5.j.s. the load, and a duty of $10 s$. was imposed on colonial timber, leaving a preference duty of 4.58 s still in operation. In 1831, the government of Earl Grey proposed, by gradual reductions, spread over three years, to lower the duty on European timber 158 ., which would still have left it at 40 s.; or $30 s$. higher than eolonial ; but the measure was defeated in the Honse of Commons by a majority of 230 to 190 . A committee of the House of Commons which inquired into the timber duties in 183.5, recommended a very inadequate reduction (similar to that proposed by Earl Grey's government), but it was not followed by any result; and in 1841 the government of Lord Melbourne proposed a reduction from 5.is. the load to 45%. on forcign timber, and an increase from 10 e the load to 15 s . on colonial ; but subsequent party changes prevented this alteration being effected. In the taritf of 1812 (5) \& 6 Vict., c. 47), the duty on colonial timber has been reduced to a merely nominal sum, namely, 18 . the load, and to $2 s$. on deals, and 6 d . on lathwood. The reduction on foreign timber is partly prospective. Until the loth of Oefober, 1843, the duty will be 30 s. the load on timber, and after this date 258. ; on foreign 1'. C., No. 1545.
deals thereduction in the first instance is to 3.5 s., and after October, 1843 , it will be $30 s$., and the duty on lath-wood is at once reduced to los. the load. In 1841 the duty on timber produced $1,566,291 l$., and, without allowing for an increase of consumption in the first year, the loss of revenue is estimated at 601,491l.; and for the year ending October, 1844, when the reduced duties will be fully in operation, the loss to the revenue will be $589,991 l$. according to the estimate of the minister, who allows for an increase of 12 per cent. on foreign and 20 per cent. on colonial timber, and 20 per cent. on foreign and 24 per cent. on colonial deals. (Speech of Sir R. Peel, 11th March, 1842.) The mode of charging the duty has been improved and rendered less complex under the present arrangement. Planks deals, and battens were formerly charged by the great hundred (120) in classes, and the duty was disproportionably heavy on the smallest and least valuable kinds. In measuring timber in logs, or unsawn, the cubic contents were; it is alleged, not fairly calculated, but were over-estimated to the extent of from 10 to 20 per cent.; and the sawyers complained that timber partly cut up was charged with a lower proportional duty than in the log, by which their interests were needlessly injured. The public however have still reason to complain that the duties are calculated, as before, to interpose restrictions on the use of superior timber, in order to benefit those who are engaged in supplying the inferior article. The direct loss sustained previous to the recent alteration of duty was estimated at $1,500,000$. annually ; and a great sacrifice of revenue has now been made without attaining the benefits which might have attended a return to a better policy, though the disproportion will be only $24 s$. instead of $45 s$. the load. Prussia, Norway, Sweden, and other countries are still restricted in the means of exchanging their products for British manufactures; the preference duty on Canadian timber prevents a supply of timber being derived from the forests on the banks of the Danube and on the countries bordcring the Black Sea; and the general shipping interests have been sacrificed to the owners of six or seven hundred half worn-out ships. In the colonies the monopoly duty has diverted industry from agriculture. It has been repeatedly shown that neither to any portionof the shipping interest here nor the timber interest of the colonies would a complete equalization of the timber duties be more than temporarily injurious. "The fixed eapital embarked in saw-mills does not, it is believed, exceed 200,0001 ., and some descriptions of Canadian timber wonld command the English market under any circumstances, while there is a growing demand for all kinds in the Northern states of the American union. The floating. capital now engaged in the trade of 'lumbering' could of conrse be transferred with little difficulty to the cultivation of the soil, and the export of flour, tobacco, hemp, flax, and ashes, would fill $11 p$ the vacuum occasioned by the diminished export of timber, and would require the slipping which had not found full employment in the new channels to which the timber-trade would be directed.
The consumption of timber in the United Kingdom in 1841 was as follows :-

	reat Hund	Gross Revenu
Battens and Batten Ends	18,969	£156,120
Deals and Deal Ends from 1,3		
British America	44,148	90,113
Deals and Deal Ends from		
Staves .	89,699	40,777
Timber 8 in . sq. and upwards	L. nats.	
from British America	613,679	337,795
from other parts:	131,479	370,302

Other sorts are technically called 'woods,' meaning fancy woods for furniture, \&ce., and dye-woods. Of mahogany the consumption was 18,170 tons in 1841, having been 20,451 tons in 1840. (Report of Committee on Timber Duties, 1835; British and Foreign Reviet, No. 4; Porter's Progress of the Nution, vol. ii.)
TIMBER AND TIMBER-TREES.-Timber-trees are those the wood of which is used for building or repairing houses. Oak, ash, and elm, of the age ot twenty years and upwards, are the trees most generally included under that denomination; but there are many other kinds of trees, such as beech, cherry, aspen, willow, thorn, holly, horsechesnut, lime, yew, walnut, \&e., which are, by thio

Voc. XXIV.-3 N
caston of ceflain parts of England, considered as timhertrees, as being thosc used In building. (Cruise, Dig., t. 3, c. 2, s. 6, 7.) Most of the cases ujon the question as to what trees are to be considered timber, have arisen in reference to the stat. 40 Edir. III., c. 3, whereby it was enected that great or grose wood of the age of twenty, thirty, or forty years, or upwards, whould not be titheahle, but that syliu cadiur, or underwood. should be titheable. Lord Coke say's that two doubts arose on the construction of this statute : first, what should be considered as high or great wood; and secondlv, of what age those grosse or timber trees should be. As to the lirst, the answer was, that in this act the word grosse signifled such wood as had been or was, either by eommon law or the custom of the country, timber; for the act did not extend to other woods that had not been or would not serve for timber, though they were of the bigness or greatness of timber. Is to the second question, of what age those grosse or timber trees should be, the statute resolved this doubt in these words: 'Great wood of the ave of twenty years or upwards;' which words ivere considered as declaratory of the common law on the subject. (2 Inst., 642, 643 ; \$1 Rep., 12.) It appears now to be settled, though there have beencontradictory decisions on the point, that trees of the growth of twenty years and upwards, sprung from old stools or roots, are within the exemption of this statute, and are consequently to be considered as timber. (4 M . \& C. c. c00.)

The timber-trees growing upon land belong to the orrner of the inheritance. A tenant tor life lias only a qualified interest in them. in so far as they afford him shade and shelter, and a right to take the mast and fruit. If the termant for lifefells timber-trees on the land to any amount greater than he is entitted to as estovers, that is to say, the rallowance of wood necesery for the reparation of honses and fenees, he becomes liable to an action of waste [1/ASTE]; and the trees, which by these or any other raeans, accidental or otherwise, have beeome severed from the land, may be seized by the orner of the inheritance, or ant action may be brought by him for them. (3 P. W. 267.) If, however, the estate of the tenant for life be without imperchment of waste, he has the full right to fell timber, and also the property in all timber-trees felled and blown down during his life.
The Court of Chancery has sometimes directed the timber growing on an estate, whereof a person was tenant for life, to be cut down, for the purpose of paying debts and legacies charged upon the inheritance. (2 V cra., 152.) The Court of Chancery has also directed timber in a state of decay to be cut down for the benefit of the person entitled to the inheritance, provided no damage were done to the tenant forlife. (2 V ern., 218.) The practice in these cases is to order the money alising from the sale of the timber to be invested, and the interest of it paid to the tenant fur life.
In leases for lives, when timber is included, if the lessor fells the trees, the lessee may maintain an action of trespass against him, because the lessee, though he may not cut down the trees withont being subjeet to an action of waste, has an interest in them for shade and sbelter, and a right to take the mast and fruit, and may also lop them if they be not thereby injured. But where the trees are execepted in a lease, which is usually done, the lessee has no interest whatever in them. and the lessor may bring an action of trespass against him it he fetts or damages them. The lessor has also n power, incident to the exception, of entering on the land in order to fell and take away the trees; though this poreer, for, the sake of avoiding questions, is often expressly reseryed.

The timber growing on copyhold estates is, by the general custom of most manors, the property of the lord, who may cut it down, provided he leaves a sufficient quantity for the repairs of the copyhold, which the eopyholder is entitled to of common right. But the general right of the copyholder to have timber for the reparation of houses and for ploughbote and hedgebote may be restrained by custom, namely, that he shall not take it withont assignment from the lord or his bailitf. (13 Rep.. 68.) Where the custom of the manor is that the copyholder shall employ the timber cut down in the reparation of his tenements, he may sell the tops and bark towards detraying the expenses of the repair. (3 Buls., 382.) A copyholder in fee may, by the particular custom of the manor, have a
rimht to eut timber-trees growing on his copylold, and sell them at his pleasure; and the same right may helong by custon to a coppyholder fior life, who is entitled to noininate his successor, as being a quarsi copyholder in fee; but a custom that a copyholder for life may cut down timber is mureasonable and void, as heing a destruetion of the inlieritance, and contrary to the natare of at life ustate.
F.eclesiastical persons being considered in nost respects as tenants tor life of the lands lield hy them jure ecelesice. are not permitted to cut down timber except for repais; ; but by the 56 Geo. 111., e. 5Ω, the ineumbent of any benefice, with the consent of the patron and bishop, is enabled to pay the moneys to arise by sule of any timher cut from the glebe-lands of such benefice, cither for equality of exchange, or for the pilce of houses or lands purchased by him under the statutory powers vested in him for such purposes.

Trustees to preserve contingent remainders are bound to preserve not only the limitations of the settlement under which they are trustecs, but also the inheritance of which the timber is part; and the Court of Chancery will interfere at their suit to prevent the owner of the particular estate joining with the person entitled to the inheritance for the time heing to cut down the timber on the estate (2 Swanst., 144.)

TIABRLSL, a musical instrument of the highest antiquity; the fympanum leve of the Roman poets, and, in the opinion of all writers of any atithority, the same, in an almost unaltered state, as that now known in every part of Europe under the names of tabor, tambourine, tambour de Busque, 太c.

TIMIBUCTU' (TEMBOCTU, TOMBOOKTOO, \&e.) is placed ly Mr. Arrowsmith, after careful criticism and eollation of a number of routes, in $17^{\circ} 8^{\prime}$ N. lat. and $\approx^{\circ} 58^{\prime}$ W. long. Mr. M'Qucen, to whon we are so much indebted for the extension and correction of our geographical knowledge of Aficion, had placed it in $17^{\circ} 40^{\circ} \mathrm{N}$. lat. and $2030^{\prime} \mathrm{W}$. Jong.; but 'readily vields the palm of accuracy to his (Mr. Arrowsmith's) researches in preterence to my own." The position assigued loy Mr. Arrowsmith may be assumed to be as exact as can be obtained until the point is fixed by aslronomical observations on the spot: or creat then, unless they may be made by more competent observers than the discrepancies among the statements of those who have attempted to ascertain the positions of places on the Lower Niger show some or all of these gentlemen to have been.
The position of Timbuctur is one which is most important to liave ascertained, not merely on account of its being the centre of so many routes, and therefore a useful start-ing-point whence to calculaté the horizontal bearings and distances of many places; but also as being, what the circumstance of so many routes meeting there might of itselt have shown, the index of the comparative clevations, slopes, and depressions of the interior of Western Africa. It is for the same reason an important position relatively to the history of the migrations of African tribes, of the development of the trade of Afriea, and of its progress in general civilization.

The rude map of the northern curve of the Kowara by the schoolmaster of Sultan Bello, the sketch of the position of Timbuctú given to Mr. Purk by an old Somonin Moor, and the delineation of central Libya accordin! to Ptolemy, all concur in representing the Niger nt the most northern point of its course as forming a great curve-flowing first to the north, then to the east, and ultimatcly to the south. The discoveries of modern English travellers on the Uppes and Lower Niger place it beyond a doubt that these representations must be in the main accurate; and the routes between a great number of different places obtnined from Arab travellers from the coast-lowns of Maroce: Algiers, Tunis; and Tripoli, to the interior, as well as from the natives of the interior themselves, all harmonize with and corrobornte these conclusions. It is because the statements of M. Cuillie ngree with this vicw that we fecl assured he has not intentionally deviated from veracily, and because we phee a reliance on his accome of the nppentance and condition of individual phacesand persons which we can by 110 means accord to his bearinger and distances.
Timbuctir appears to sland on the declivity of an incon siderable eminence about cight miles north of the Niger. 'Notling,' says Caitlie, ' is to be seen in all directions
but immense plains of loose shifting sands of a yel-lowish-white colour.' From the point where Caillis quitted the Niger, to Cabra, the port of Timbuctú, a distance of three miles, he passed along a narrow cunal, and as he remarks that 'the negro slaves hauled the canoe along by a rope, as the pole would not have been sufficient to move it,' the natural inference is that he was proceeding up the stream. Between Cabra and Timbuctú he passed two lakes. These appearances coincide with the statements of Arabian geographers that a wady, filled during the rainy season with a stream of water, extends from north-east of Timbuctú, and, passing to the south of that town, disembogues into the Niger to the south-west. of it. The same authonties mention a number of similar wadys at a distance of eight or ten days' journey to the north-east of Timbuctú, extending over a tract of country nearly 60 miles in breadth, and all apparently converging as they descend towards it as to a central point. The Gozen Zair, which falls into the Niger a short way to the southeast of Kabra, fiows from the west. All these circumstances concur to indicate a strong analogy between the great northern curve of the Niger south of Timbuctú and the great northern bend of the Hoangho. Both rivers, descending from elevated mountain ridges in a general northerly direetion, are encountered by the slope of an extensive elevated plain, run some time in a direction from west to east at its side, and then turning to the south flow off through mountain defiles. It is this peculiarity in the structure of the plain on which Timbuctú is situated that has rendered that site from a remote antiquity the meetingplace of so many converging lines of traffic. It is the nearest point at which the traders from the commercial districts that skirt the coasts of the Mediterranean west of Barca, and of the Atlantic north of Cape Nun, can strike, after crossing the great desert, the fertile lands extending to the south-east and south-west along the Upper and Jower Niger.

Leo Africanus states that Timbuctii was built by Mansa Sulciman, about the year 610 of the Hejira (A.D. 1214), and that it soon became the capital of a powerful state. Seeing however that Plolemy places towns of the name of Kủpha (Kaфŋ) and Nigeira Metropolis (Nıytıpa M $\eta r \rho o ́ \pi о \lambda ı s)$, the former nearly in the probable meridian of Timbuctú, and the latter somewhat to the east, at the confluence of a tributary with the Niger, therc can be little doubt that the town built by Mansa Suleiman was not the first important commercial station in those regions. Indeed an author quoted by Cooley (Negroland of the Arubs, p. 68) would lad us to believe that a town bearing the name Tombuti existed in those regions as early as the year 297 of the Hejira. Rulers with the title Mansa continued to govern Timbuctil from 610 to 792 of the Hejira.

The chief's of Maroceo and Fez rendered Timbuctí tributary, and from that time the communieations of the Arabs with that country beeame more frequent and regular. Leo Africanus nientions that the grand mosque of the town and the palace of the king werc built by an architect from Granada. The Arab eonquerors allowed however the native dynasty to remain on the throne. The cxpulsion of the Arabs from Spain, and the weakening of the Arab power in North Africa by the Turkish conquests in Tunis, Tripoli, and Algiers, in the course of the fifteenth century, increased the impunity of the predatory nomade hordes; and about the same time, or a little later, the formation of settlements on the west eoast of Africa, first by the Portuguese and afterwards by the English and French, by creating a new line of traffie with the interior, diminished the importance of Timbuctú as a commercial entrepot. About the year 1500 a negro general of Soniheli, king of Timbuctú, raised the standard of revolt on the death of his master, overtumed the Moorish stıpremacy, conquered a number of the neighbouring provinces, and recalled to Timbuctú a part of the trade whieh had left it for Jennes on the Niger. When Leo Afrieanus visited this part of Africa, the territories of Abu-Bekr-Ishieh, the ncgro conqueror, extended from A gadez on the north to Kaslinah onithe south. Marmol (1573) describes the commerce of Timbuctú as in a fluurishing condition in his day. According to the information collected by Mr. Jaekson, Timbuetú would appear, about 1668 or 1670 , to have fallen under the dominion of the king of Bambarra; for Mullah Arshid, of Tafilet, having driven Sidi Ali of Suz from his ferritories, the fugitive was protected by the king of Bambarra, and created
by him eommandant of 'Timbuctű. Sidi "Ali made his' peace with Mullah Ismael, successor of Mullah Arshid, and the consequence was that Timbuctú became tifibutary to the prinee of Tafilet. This connection terminated with the death of Mullah Ismael (1727), and since that time; Timbuctú appears to have been governed by a negro ruler, that is, by one who is neither an Arab, nor a Tuarik, nor a Fellatah. The security of person and property, and the commerce of Timbuctú, appear to have fallen off since the accession of the negro dynasty.

Caillié estimates the permanent inhabitants of Timbuctúat from 10,000 to 12,000 . After the arrival of the earivans the town assumes for a portion of the year a much mores populous and probably a much more bustling appearance.' During his stay it was dull and listless. The streets are clean, and wide enough to allow three horsemen to pass. abreast. The houses are of sun-dried bricks, and consist' entirely of a ground-floor; in some a sort of closet is constructed over the entrance; the apartments are built on the four sides of an open court in the centre. Both within the town and round about it there are numerous straw huts of a conical form. The town is not walled. In the centre of the town is a square surrounded by circular huts, and planted with a few trees: in the middle' of it a large hole is dug as a receptacle for filth. Two enormous heaps outside of the town appeared to be aecumulations of rubbish. Some buildings on the east side of the town are overwhelmed with sand. There are seven mosques; two of them large, and part of the largest apparently of considerable antiquity; each is surmounted by a brick tower. To the west-south-west of the town are large excavations from 35 to 40 feet deep, which collect in the rainy season the supplies of water whieh serve the inhabifants tor drinking and culinary purposes throughout the year. There is no spontaneous vegetation near the town exceptsome stunted mimosa-trees. Near the reservoirs are some small planta tions of bad tobaeco. The inhabitants of Timbuctif draw from Jenné their supplies of millet, riee, vegetable butter, honey, cotton, Soudan clotl], pépper, onions', dried fish? pistachias, \&zc. Fire-wood and timber for building', and provender for cattle, are brought from Cabra. They purchase cattle from the nomades of the tiibe of Zawat, who possess the country two days' journey distant from Timbuctú to the north-east; from the people of Sala, ten days jonrney to the east; and from the Tuariks, who are the nost powerful race, on all sides. They procure salt for their own consumplion and for'the trade with Soudan from Tadcini, which lies twenty days' journey noith-west of the toivn.

The negro and Arab inhabitants of Timbuctú are exclusively engaged in trade. Great part of the Moors are from the sea-coast; 'they start with'an adventure to' Timbuctư, reside for some years there, and when they have aequired enough, return to theirnative country! The negro inhabitants dress like the Moors, and are zealous Mohammedans. They have several wives, whom', as well as their slaves, they employ in menial affuirs. The Moors, who are only temporary residents", cohabit with their slaves. Caillié represents all classes of the inhabitants as cleanly both in their persons and houses. Several villages on the Niger arc subject to Timbuctú! Cabra, the port of Timbuetu, is secured against the inundations by being slightly elctated above the marshes; the sandy desert commences immediately to the north of it. This place appeared to Caillie to contain abont 1000 or 1200 inhabitants, "all of the poorer class, engaged in the service of the merchants of Timbuetú. The dwellings are either mean houses or small huts; the street is neat, but the landing-place is dirty: The merchandize is conveyed between the port and Timbuctú on asses and camels: these belong in general to the inhabitants of Cabra; 'but sometimes the poorer Tuariks hire their camels for the purpose. The Tuariks are the terror of the surrounding country: they exact tribute from the inhabitants of Timbuctí, and tolls from all merchants. who pass to the town overland or by the Niger. The nomade Arab tribes appear to stand in awe of them: the Fellatah to the south keep their ground against them; but as 'they surround Timbuctú for some distance on al! sides, "they hold the entire trade of these regions at their mercy.
(C. Ptolemaei Geographia, lib. viii.; James M'Queen, A Geographical Survey of Africa; C. A. Walckenaer, Recherches Goographiques sur l'Intérieur de l'Afrique;

Cooley. Negroland of the Arabs ; Trazels of Park, Lyon, Deuham, Clapperton, Caillié, \&c. 太se.)

TLME. This worl may be considered either with reference to our abstract jdea of the thing signified by it, or to the measures of it which have been contrived for use in the business of life. Something on the first point of view will be found in the aticle Space and Time, to which the following may be added.
When we think of time in the usual manncr, it is of a real thing external to ourselves, which we cannot help, imagining to have an existence and a measure, both of which would remain though those who now speculate upon the eonception were annihilated. A little more consideratiun show: that we are indebted for the idea to successions of obscrved events, or at least for the power of applying the idea to external objects. No description can be adequate; if we say that change necessarily implies sime, and that the pereeption of that which is being different from that whiels reas, suggests the notion of an interval, we see that we have already' fully assumed the idea of time in the words is and reas. ISut we may say that space and the objects which fill it exist independently of ourselves, and would undergo changes though we were not in existence to perceive them, and that therefore the times which those changes require would also exist; this involves the whole of the most abstruse part of metaphysics, and is much beyond the scope of our article. We shall therefore turn to the mode of measuing time; we have a thorough conviction that time is a magnitude, that is, has its more and less. We must ask ourselves in the first instance what we mean by a greater or a smaller time.

In the perception of time as a magnitude, that is, of intervals of time as containing more or less of duration, we refer in the first instance to a habit derived from continual acquaintanee with those great natural successions on which the usual actions of our lives depend, with which we can constantly, though unconsciously, compare the duration of our thoughts and actions. There is no more an absolutely long or short time than there is an absolutely great or little space; these words are only comparative. If, for example, any onc were to affirm that the universe was continually growing less and less, all its parts altering in the same proportion, and the dimensions of the human race with the rest, in such manner that the whole solar system would now go into a nut-slicll, such as nut-shells were a thousand years ago, it would be impossible either for him to prove it, if true, or for any one else to prove the contradiction, if false. In like mannerifany one were to say that the revolutions of all the heavenly bodies were contmually accelerating, but that the properties of matter were also continually altering, and the specd with which ideas are formed and communicated, and muscular efforts made, continually increasing: it would be impossible to prove a contradiction. The oriental story is the best illustration of this:-A prince was ridiculiug the legend of Mohammed being taken up by an angel, and holding many long conferences with his Creator, and laving many views of heaven and hell to the smallest details, in su short a time, speaking with reference to things upon eartlh, that on his being brought back, the water liad not quite flowed out of a jug which he had dropped from his hand when the angel cauglit him. A magician at the court of this prince checked his laughter ly offering to prove the possilisity of the story; if his higlness would only dip his head into a basin of water. The prnce consented, and the instant his head was immersed, found limself lying by the sea-shore in a strange country. After a reasonuble quantity of malediction upon the magician, he found himself obliged by hunger to go to a neighbouring town, and seek the means of support. In time lie became independent, married, and brought up a family, but was gradually stripped of all his substance by losses, and buried his wife and children. One day he threw himself into the sea to hathe, and on lining his head out of the water, found that he had only liffed it out of the basin, the magician and the other courtiers standing round, On his bitterly reproaeling the magician, the latter assured him, and was confirmed by all the bystanders, that he had done nothing but just dip lijs hend into the basio, and lift it out again. Of course the Wrince, oxpressed no more doubts about the story of
may think that neither is truc, a little reflection will show that either might be so. Perlhups the allegory might have been suggested by what is known to take place in dreams; there is evidence enough that many of the longest of thesc illusions really oecupy no more than, if so much as, a second or two by the pendulum. [Dreas , p. 143.]

In the laws of motion it seems ns if, so to speak, matter took comnizanee of time; a particle of matter will continue to deseribe equal spacess in equal times, until acted on by foree from without. Yet it would be possible to state this law as follows, in such a manner as to avoid the comparison of quantities of duration. If two particles aeted on by no external forees, are at A and a nt the same epoel of duration, and at 13 and b at the same subsequent epoch, then if A C be m times A B, and if a c be m tinces a b, the law of motion is that C and c will be respectively attained at the same instant. The mathematician will readily see that the equations of motion do not depend upon the alsolute recognition of tine as a measurable quantity, but that any moving particle, as Λ, being acted on by no foree, the distance A C , deseribed in the time 1. might be introduced into all formuls instead of the time. without any question as to whether, time being physically considered, the space 1 C varies as the time. It is ehough that the uninfluenced motion of any other particle should be connected with that of the standard particle by the law above described. But though we can thus avoid the idea of measurement of time, we eannot get rid oi its existence or of the notion of succession of epochs; grant that we can reduce dynamies to a theory of simuliuneous positions of particles of matter, without reference to the absolute length of tine employed in passing from one position to another, there is still the notion of time in the notion of simultaneous. But, nevertheless, the idea of succession thus introduced is hardly, if at all, more physical than that which comes into most of the lranehes of pure mathematics, a point on which it will be worth while to dwell for a monient.
When Newton, in his doctrine of fluxions, or flowing quantities, imagined length, space, solidity, and even nun\}ber, to be generated by a continual and cradual flow, as a line by the motion of a point, a surface by that of a line, and so on, it was objected that he introduced the ideas of time and motion, both of which were foreign to pure mathematics, and properly belongerl to mechanics. To get rid of these intruders, the theory of limits, which the notion of fluxions immediately requires, was attached, not to flowing quantities, but to variable guantities. Let x be a variable quantity, is one of the most common plirases of the systems which have superseded that of Newton. Now variation means change; it is never pretended that a variable has two values at once. All the differenee is, that by Newton the ohject of consideration is supplosed to grow larger or smaller, while the moderns pass in thought from a larger quantity to a smaller, or rice versa, taking one first and the other aftervards. If so slight a diffurence as this be worth a contest, the distinction of pure and mixed science must be trivial enough: the fact is, that both systems consider sucressive values, and succession is time. If two computers were to quarrel which was the purer arithmetician, the one who stood still and counted the carriages as they passed by him, or the other who walked from one to another and counted them as they stood still, they would, to 1 m, much resemble some of the disputants for and against the principle of tluxions.
The actual measure of time depends upon our being abre to secure successions of similar events which shall furnish epochs separated by equal intervals of time. We caunot do this by our thoughts, except approximatelj, and fos short periods. The menory of a musician, aided by the sentiment or feeling of time which is part of a good car for musie, will do semarkably well for a short period: a person who could not well preserve the division of a second into eight parts at least would make a poor figure in an orchestra. As to the jurlgment of considemble periods of time, it is materially influenced by the manner in which it has been spent : a time which seems to have been long through weariness has been long, and the contrary, on grounds already alluded to. Thus a year of mature age is really, to the thoughts, of a differcit length from one of childhood. Again, when we talk of a long period of time having passed quickly or slowly, we speak not of the time, but of our mode of remembering it. A person of rayid
recapitulation always says that time has passed quickly, another of a contrary habit the contrary; and this whether the rapidity is a consequence of quickiness of ideas, or of having little to recall.

In all the more eorrect machines which have been invented to measure time, there is but one principle: a vihration is kept up by the constant application of forces only just sufficient to counteract friction and other resistanees, and machinery is applied to register the number of vibrations. The remarkable law noted under Isochronism and Vinramion makes it comparatively immaterial whether the vibrations are of precisely the same extent. But the imperfections of such instruments, or rather, our ignorance of the precise action of disturbing eauses, and particularly of changes of temperature, renders them comparatively useless for measuring long periods, so that if we could not have recourse to the motion of the heavenly lodies, there would be no permanent measure of time. And even in astronomical phenomena there is no absolute recurrence at equal intervals, though nearly enough for common purposes. The value of such phenomena for the most accurate measures eonsists in most of their irregularities being truly distributed about a uniform mean, so that the excesses of some periods are compensated by the defects of others, giving, in the long run, power of determining that mean with as much accuracy as our modes of measurement can appreciate. The determination of time for eivil reekoning may be divided into two parts: first, the mode of making the different periods derived from the sun and moon agree with each other so as to afford an easy method of reckoning co-ordinately by both [Periods of Revolution]; seeondly, the mode of procuring true and convenicnt subdivisions of the natural unit consisting of a day and night. To the second of thesc we now turn onr attention.
The actual revolution of the carth, as measured by the time clapsed between two transits of the same star over the meridian, is called a sidereal day. It is divided, as are all other days, into twenty-four hours of sixty minutes each, \&c. The time so given is called sidereal time. If the sun were a fixed star, this sidereal time would be the common mode of reckoning. But the sun having its own slow motion in the ecliptic, in the same direction as the revolution of the earth, the interval between one meridian transit of that body and the next is [Sywodic] longer than the simple revolution of the earth, for just the same reason that the time which the minute-hand of a watch moves from coincidence with the hour-hand to coincidence again is longer than the hour, or simple revolution of the minutehand. If the sun moved uniformly, and in the equator, the real solar day, which means the interval between two meridian transits of the sun, would always be of the same length, and a little longer than the sidereal day. But the sun neither docs move uniformly, nor in the equator; and each of these circumstanees causes a slight irregularity in the absolute length of the solar day, or, as it is called, the real solar day. This is the reason why the time shown by a sundial does not agree with the watch. To remedy this inconvenience, a fietitious sun is supposed to move in the ecliptic, and uniformly, while another fictitious sun moves in the cquator, also uniformly. Both the fictitious bodies have the average motion of the real sun, so that the years of the threc are the same; and the fictitious sun of the ccliptic is made to coincide with the real sun at the perigee and apogec, or nearest and farthest points from the earth; while the fictitious body in the equator is made to coincide with the fictitious body of the ecliptic at the cquinoxes (from which it arises that there is also a coincidence at the solstices). This fictitious sun of the equator is that to which clocks are adjusted; the interval between two of its transits, which is always of the same length, is called a mean solar day, which is divided into twenty-four mean solar hours, \&ce. The difference between time as shown by the real sun and the fictitious sun in the equator, is called the equation of time.

The determination of the equation of time is a mathematical problenn of some complexity: what we have hcre to notice is, that awing to the joint action of the two sources of difference, it presents a very irregular series of phenomena in the course of the year. If the sun moved regularly, but in the eeliptic, there would be no equation of time at the equinoxes and solstices: if the sun moved with its elliptic irregularity, but in the equator instead of
the ecliptic, there would be no equation of time at the apogee and perigee. Between the two the equation of time vanishes only when the effect of one cause of irregularity is equal and opposite to that of the other; and this takes place four times a year. In this present year (1842) the state of the equation of time is as follows :-January 1 , the clock is before the sundial 3 m 51 s , and continues to gain upon the dial until February 11, when there is $14 \mathrm{~m} 35^{\mathrm{s}}$ of difference. This then begins to diminish, and continues diminishing until April 15, when the two agree, and there is no equation. The dial then is before the clock until May 14, when the equation is 3 m 55 s , which diminishes until June 15, when there is again no equation. The clock is now before the dial, and the equation increases till July 26, when the equation is $6^{\mathrm{m}} 10$ s, which diminishes until the lst of September, when there is no equation, for the third time. The dial is now again before the clock; and by November 2 the equation has become $16 \mathrm{~m}^{\mathrm{m}} 18 \mathrm{~s}$, from which time it falls off until December 24, when it is nothing for the fourth and last time. The clock then gets gradualiy before the dial till the end of the year. The phenomena of the next year present a repetition of the same circumstances, with some trivial variations of magnitude. There are several slight disturbing eauses to which we have not thought it worth while to advert in a popular explanation : in particular, the slow motion of the solar perigee [Year; Suv], which will in time wholly alter the phenomena. For instance, when the perigee comes to coincide with the equinox, there will be only two periods at which the equation of time vanishes, mamely, when the sun is at either equinox.
The sidereal day is $23^{\mathrm{h}} 56^{\mathrm{m}} 4^{\mathrm{s}} .09$ of a mean solar day, and the mean solar day is $24^{\mathrm{h}} 3 \mathrm{~m} 56^{\mathrm{s}} .55$ of a sidereal dayWe have in this article only to do with the mode of obtaining a uniform nueasure of time, or of intervals of time ; this being premised, the subject will be faken up again in the: article Year.
TIME BARGAIN. [STocks.]
TIME OF DESCENT, the technical term for the time employed by a material particle in falling down an are of a curve under the action of gravity, the mode of obtaining which is explained in Velocity. When any number of eurves are drawn from a given point, and another enrve iss so drawn as to eut off from every one of them an are which is described by a falling particle in one given time, that curve is called tautochronous, or a tautochron. But when a curve is such as the eycloid, namely, that a particle, wherever placed, will fall to the lowest point in the same time, such a curve is also called tutochronous by various writers, and isochronous by others. Our only object in inserting this article has been to note this confusion of languaye.
TIME (in Music) is:-
I. The measure of the duration of sound.
II. That which divides a bar into two or three equal parts, and subdivides these.
III. The movement-i.e. the quickness or slowness-of: a composition.

1. The degree of sound, or pitch, is shown by the place: on the staff of any one of the characters called notes; but: its duration is known by the particular note; that is, as minim, or crotchet, \&cc. The longest note, in relation to: time, used in modern music, is the senibreve, which is considered the measure-note, and its average length is about four beats of a healthy man's palse. The five other notes are proportionate parts of this. Thus the minim is in duration $\frac{1}{2}$ of a semibreve ; the crotehet is $\frac{1}{4}, \& c \mathrm{c}$. : consequently two minims, or four crotchets, \&c., arc equal to one semibreve, as exhibited in the annexed table:-

2. Time is either duple or triple. The former divides every bur, or measure, into 2 or 4 , S.e. equal parts: the latter into 3 , or U , \&c. Times are narked by the letter c.-also by this letter barred (\mathcal{C}), and by figures. The C, whether barred or not, indicates Common Time; that is, duple time, having one semibreve, or its equivalent in notes, in eacli ber. Figures represent the fractions of a semibreve, the upper figure the numerator, the lower the denominator. When the numerator is 2 or 4 , the time is duple ; when 3 , it is triple; when 6 or 12 , it is compoundcommon; and when 9, it is compound-triple. But in reality, there are ouly two times,-binary and ternary; or, duplo and triple; a fact which would long ago have been recognised and acted on, had music, es a system, made those adrances which have long been witnessed in the other arts and seienees.
3. The tern Time has litherto had a third meaning annexed to it in musical language, by its employment in the sense of movement, a practice which has produced some confusion. The ltaliau word Tempo, signifying the same, is now growing into use -a manifest improvement, which, it is to be hoped, will not have to encounter those professional prejndices under which music has so long laboured. [METRONoye.]
On the subject of Time (Tems) Rousseau has well remarked, that a surecession of sounds, however skilfully arranged as to high and low, produces only vague effeets. It is measure, the duration, relative and proportional, of sounds, which fixes the true charaeter of the music, and endows it with all its energy. Time (under whieh temn he, of course, includes rhythm) is the soul of song. Airs whose movement is slow make us pensire; but a gay, spirited, and well cadenced nir inspires us with joy, and our feet ean hardly be restrained from daneing. Break the measure, confound the relative times of the sounds, and the very same airs which proportion had rendered so agreeable, at once lose alI their charneter, all their charms, and are ineapable of exeiting the slightest degree of pleasure. Time, on the contrary, possesser a force, a power, in itself, and acts independently of a diversity of sounds. The drum furnishes a proof of this, rough and inperfect as the instrument is, because (the author ought to have said) its bents are in rhythm, though the sound is unvaried.
TIMOLEON (TupoN(wy), a Greek general and statesman. He was a native of Corinth, and the son of Timodemus and Timariste. Respeeting his youth we know nothing, except that he was no less distinguished by his noble character and his love of freedom than by his illustrious descent. Wheu he lad grown up to manhood, his elder brother Timophanes, who had been elected general by the Corinthians, assumed the tyrannis in his native eity by the help of his friends and his mereenaries. Timoleon at first only remonstrated with his brother, but when this was useless, he formed a plot against him, and 'Timophanes was killed. Soon after this event, which threw all Corinth into a state of violent agitation, some extolling the conduct of Timoleon as magnanimous and wortly of a reat patriot, others cursing and condemuing him as a fratricide, there arrived at Corinth ambassudors from Syracuse soliciting the aid of the Corinthians against its oppressors. This was a favourable opportunity for the party hostile to Time leon to get rid of his followers, while at the same time it opened to Timoleon a field of action in Sieily, where he might aet according to his principles and deliver the island from its oppressors. Cimoleon was accordingly sent to Syracuse with a small band of nercenaries, which he himself had raised, $3+1$ 8.c. Syracuse was then divided into three parties: the popular party, which liad engaged the service of Timoleon; a Cart haginian party; and the party of Dionysius, the fyrant, who had returned from Italy in s.c. 346. Dinnysius had already been driven out of a pait of the city by Hicetas, the tyrant of leontini, who supported the Carthaginian party. On the arrival of Timolenn, Hicetas was compelled to withdras to leontini, and Dionysius, who was rednced io surrender himself and the citadel to limoleon, was allowed to quit the island in safety, and he withdrew to Corinth, iu b.c. 313. [Diovysius.] Syraeuse had almost become desolate by the snecessive revolutions and party warfare. Daring the winter and the spring following his vietory over Dionysius, Timoleon endeavoured as much as Was in hisp poner to restore the prosperity of the city by reealling those who had beell exiled, and by viting celonisfs
from other parts of Sicily and assigning lands to them. After this he cont nued to carry on petty warfare partly against the Carthagininns and parly againt Hicetas. The Cnrthamnians in the meantime collected a nevermy, which is said to have consisted of 70,000 foot and 10.000 horse, and wheh was conveyed to Sicily ly a large fleet. Timoleon could muster no more than 3000 Syracusans and 0000 mercenariea, but in order to strengthen himself he concluded a peace with Hicelas, some of whose troops now joined his army. He marched out against the enemy, and ly his superior generalship he suceeeded in gaining a brilliant victory over the Gartharinians on the banks of the river Crimessus, and cond fined them to the part of Sicily between the river Haly'us and the western coast, y.c. 339. Afer this victory and the conclusion of a peace with Carthage he directed his arns against the tyrants in other towns of Sicily, whom he compelled to surrender or withdraw, partly by the terror of his name and party by force of arms. Ilicelas was made prisoner, and condemmed to death by the Symeusans, with his wife and family.
After freedom nnd the aseendeney of Syraense were thus restored in the greater part of Sicily, Timoleon directed his attention to the restoration of the prosperity of the towns and the country. The former, especially Syracuse, were still thinly peopled, and he invited colonists from Corinth and other jarts to settle there, and distributed lands ainong them. He himself, with the consent of the Syracusans, undertook to revise and amend their constitution and laws, and to adupt them to the altered wants and cireumstances of the state. Althourh it would have been easy for him to establish himself as iyrant and to secure to his descendants the kingly power at Syracuse, he fulfilled the duties of the office entrusted to him with a fidelity which has rarely been equalled. He had no ofher end in view but the establishunent of popular liberty, for which he prepared nid trained the people. Some acts of cruelty and apparent injustice with which he is charged, find their excuse in the character of those whom he had to deal with, for the Syracusans at that time were a motley and demoralized peoplo, who could not be managed without Timoleon's assuming at times the very power which it was hiss wish to destroy. But Syracuse and Sicily felt the benefls of his institutions for niany yeans after his cleath, and eontinued to enjoy inereasing prosperity.
During the latter part of his life Timoleon was blind and lived in retirement, respected and beloved by the Sicilians as their liberator and benefactor. He died in the year अ.c. 337 , and was buried in the Agora of Syracusc, where subsequently his grave was surrounded by porticocs and adorned with a gymnasium called the Timoleonteum. (Plutarch, and C. Nepos, Life of Timoleon; and Diodorus Sieulus, lib. xvi.)

Dreadrachm of Sy racuen, incerted as a sample of the Coins of Syracume. Britivh Mnpensm. Actual alze. Silvot. Weight, 65 grains.
TIMO'MACHUS, a celebrated antient painter, a native of liyzantium, and said to have been the contemporary of Julins Cessar. Pliny (Nut. Histo, xixy. 40) informs us that Cosar purchased two piefures in eneanstic hy Timomachus, for 80 Attic talents, abont 17,2901 ; one representing Ajax the son of Telamon brooding over his misfortunes; the other, Medea about to destroy her chitdren: he dedieated them in tho temple of Venus Genetrix. These pictures have been mueh celebrated by the poets; there are several epigrams upon thein in the Greek anthology, nad they are alluded to by Usid in the fwo following lines:-

- Verue rodel rultir fesene Telamualins fram.

Iuque oculis facinus larlutta mater haber." (Trim., 3i. 525.)

- We learn from Pliny also that the picture of Medea was not finished; its completion was interrupted apparently by the death of the painter, yet it was admired, he says, more than any of the finished works of Timomachus, as was the case likewise with the Iris of Aristides, the Tyndaridæ of Nicomachus; and a Venus by Apelles, which were more admired than any of the finished works of their respective masters. This picture is noticed also by Plutarch (De Aud. Poet., 3) in a passage where he speaks of the representation of improper subjects, but which we admire on account of the excellence of the execution.
In the common text of Pliny, Timomachus is said to be the contemporary of Cæsar ('Julii Cæesaris aetate'), but Duraind, in his "Histoire de la Peinture Ancienne," \&c., expresses an opinion that the word aetate is an addition of the copyist, for which he assigns several reasons. The conjeeture has much in its favour; the price of these pictures ($17,350 \%$) is enormous, if we suppose it to have been paid to a living painter; but on the contrary it is a case with many parallels. if we suppose the money to have been paid tor two of the reputed masterpiece's of antient painting. The fact of the Medea being unfinished puts it beyond a doubt that the picture was not purchased of the painter himself; and from a passage in' Cicero (In Verr., 1. iv., c. 60) it seems equally clear that both pietures were purchased of the cify of Cyzicus ; and from the manner in which they are mentioned with many of the most celebrated productions of the antient Greek artists, it would appear that they were works of similar renown, and were likewise the productions of an artist long since deccased. Timomachus was therefore most probably a contemporary of l'ausias, Nicias, and other encaustic painters'; about 300 b.c. Phinyhimself, elsewliere speaking of 'Trmomachus, mentions him together with the more antient and most celebrated painters of Greece, with Nicomachus, Apelles, and Aristide's, as in the passage above quoted.
Pliny mention's also the following works of Timomachus: an Orestes; an Iphigenia in Tauris; Lecythion, a gymnasiast ; a 'cognatio nobilium;' two philosophers or others, with the pallium, about to spcak, one standing, the other sitting; and a very eelebrated picture of a Gorgon. TIMON (Tip $\omega \nu$), a Greek poet and philosopher who lived in the reign of Ptolemaetus Pliladelphus, about 270 B.C. Ife was the son of Tinarchus, and a native of Phlius in the territory of Sicyon. He studied philosophy under Stilpo, at Mlegara, and under Pyrrho, in Elis. He subsequently spent some time in the countries north of the AEgean, and thence went to Athens, where he passed the remainder of his life, and died in the ninetieth year of his age.
Diogenes Laertius, who has written an account of Timon (ix., c. 12), iscribes to him cpic poems, 60 tragedies, satyric dramas, 30 comedies, silli (iathot;, and cinaedi (kivactot) or licentious songs. The silli however appcar to have been the kind of poetry in which he excelled. They were satires directed against the arrogance aind pedantry of the learned. Timon wrote three books of silli (Athenaeus, vi., p. 251; vii., p. 279), in which he parodied all the dogmatic philosophers of Greece: he himself was a Scaptic. The metre of these pocms was the hexameter, and it appears that sometimes he took whole passages from Homer which he applied as parodies. In the first book Timon spoke in his own person; in the second and third the form of the poems was that of a dialogue, in which he conversed with Xenophanes of Colophon, who was supposed to have been the inventor of the silli. (Diogenes laert., ix. 111.) We now only possess a few fragments of these poems, which show that in their way they must have been admirable productions. They are collected in H. Stephanus, 'Poesis Plilosophica;' in F. Paul, 'De Sillis Graccorum,' Berlin, 1821, p. 41, \&c. in in Brunck's Analecta,' ii. 67 ; and iv. 139. Respecting the other works ascribed to him we possess no information.
(J. F. Larigheinrich, De Timone Sillographo, in 3 parts, Lipsiac, $1720-23$.)
TIMON (Ti $\mu \nu \nu$), surnamed the Misanthrope, was a son of Echecratides, and a native of Colyttus, a demos in Attica. (Lucian, Timon, c. 7; Tzetzes, Chil., vii. 273.) He lived during the Peloponnesian war, and is said to have been disappointed in the friendships he had formed, in consequence of which, he conceived 'a bitter latred of all mankind. His conduct during the period that his mind whe in this state was very extruordinary: He lived almost
'entireiy secluded from society, and his éccentricities gave rise to numerous anecdotes, which were current in antiquity. The sea is said to have separated even his grave, which was on the sea-coast, from the mainland, by forming it into an island and thus rendering it inaccessible. (Plu-
 poets, such as Phrynichus (Bekker, Anecdota, p. 344), Aristophanes (Lysistr., 809, \&c.; Aves, 1548), Plato, and Antiphanes, ridiculed him in their comedies. Antiphanes wrote a comedy called ' Timon,' which perhaps furnished Lucian with the ground work for his dialogue in which this misanthrope acts the most prominent part. His name has remained proverbial to designate a imisanthrope down to the present day, and is immortalized by the genius of Shakspere.
(Hemsterhuis, On Lucian, vol. i., p. 99, of the smaller edition.)
TIMOR. [Súnda Istands, Lessere.]
TIMORLAUT. [Sunda Islands, Lesser.]
TIMOTE'O DA URBI'NO, or DELLA VITE, a cele brated Italian painter of the Roman school, was born at Urbino in 1470 , or rather 1480 . In, about his 20 th year, by the advice of a brother living in Bologna, he repaired to that city to learn the business of a jeweller, \&c.; but displaying a power of design worthy of a greater purpose, he devoted himself to painting, and according to Malyasia attended the school of Francia in Bologna for about five years: Vasari however says that Timoteo was his own master. At the age of 26 he returned to Urbino, where in a sliort time he so far distinguished himself, says Vasari, as to receive an invitation from his cousin Raphael in Rome to repair thither and assist him in some of his extensive works. This statement creates a difficulty, not easy to be cleared up: Vasari says that Timoteo died in 1521 , aged 54 ; yet we find him in his 27 th or $28 t \mathrm{~h}$ year, consequently in 1497 or 1498, going to Rome to assist Raphael, yho however did not go to Rome himself until 1508: 1524 was very probably therefore a misprint for 1531 in the original edition of Vasari, and the error has found its way into all the later works. By this supposition and by allowing a year, or two to have elapsed between his return to Urbiuo and his visit to Rome, the various dates may be casily reconciled, and, what Vasari says about Timoteo's assisting Raphael to paint the Sibylsin the. Chiesa della Pace, which were painted in 1511 , becomes quite eonsistent. He did not remain long in Rome, but returned to his native place at the solicitation of his mother, much to the displeasure of. Raphael. He remained however quite long enough to learin to appreciate and to imitate the beauties of Raphael's style, and to become one of the most distinguished painters of the Romain school; yet there are in, all his works traces of the style of Francla, a certain timidity of design, a delicacy of execution, and a richness of colouring. His chief works are at Urbino, at Forli, and in the neighbourhood; he executed many of them in company: with Girolamo Genga, as a chapel at Forli and part of the paintings in the chapel of San Martino in the Cathedral of Urbino; the altar-piece was painted entirely by Timoteo": he executed also some excellent, works in fresco at Castel Durantc. Further, in Uxbino there are-in the Cathedral, a Magdalen; in San Bernardino, outside the city, a celebrated picture of the Annunciation of the Virgin; and another fine picture with several figures in Santa Agata; also in the residence of the Dukes of Urbino, an A pollo and two of the Muses, extremely beautiful ; besides many other works. Vasari remarks .that he left some works unfinished at his death, which were afterwards completed by others, and he adds that there could not be a more satisfactory evidence of the general superiority of Timoteo. He was of a cheerful disposition, and used to play every kind of instrument, but especially the lyre, whick he accompanied with his voice, with extraordinary grace and feeling. Lanzi says that the Conception at the Observantilies at, Urbino, and a Noli me tangere in the church of Sant' Angelo at Cagli, are perhaps the best of his ivorks that remain. The same, writer observes that, Pictro della Vite, the brother of Timoteo, also a painter, was probably the priest of Urbino mentioned by Baldinucci (vol. v.) as Raphael's cousin and heir.
(Vasari, Vite de' Pittori, \&c.; Lanzi, Storia Pittorica della' Thaliu.)
TIMOTHEUS (T μ óvtoges), son of Conon of Athens. He inherited from his father a considerable fortune, and if we
may julge from his intimeey with Isoerates, Plato, and wher men of talent, and from the manner in which others sprati of him, he received a most exeellent edncation; but no infrortant particulars are known respecting. lis carlier life. The first time that he comes pronimently forward in the history of his country, was during the war between Thelres and Sjpata. In the year 3.c. $37: 3$, nfer the battle of Naxns, the Thebans, who were threatened with an inrasion by the Lacedamonians, requested the Athenians to avert this danger by sending a fleet round Peloponnesus, as they had done at the beginning of the Pcloponnesian war. The request was readily complied with, and Timotheus was appointed commander of a fleet of sixty ships, with which he was to sail round Peloponnesus and along the western comes of Greece. In this expedition he first look Coreyra, which he treated with the utmost inildness and without inaking any use of his right as conqueror. The consequence was, that he had very easy work with Cephalenia and Acaruania, and that even Alectas, king of the Molossians, was induced to join the Athenian alliance. But while Timotheus was thus reviving the nower of Athens in that part of Circcee, the Jaccdemonians sent out a fleet against him, under the command of Nicolochus. A battle was fought near the bay of Alyzia, in which the Spartans were defeated. Soon after Nicolochus offered another battle, but as the fleet of Timotheus had suffered too much to allow him to aceept it, Nicolochus raised a trophy. But Timolheus soon restored his fleet, which was increased by reinforeements of the allies to seventy ships, against which Nicolochus could not venture anything. The original object of the expedition however was now accomplished, as the Spartans lad not been able to make their projected invasion of Bocotia, and Thebes was thus cnabled to direet her forees against the Bootian towns whieh asserted their independence. Timotheus at the head of his large fleet had no means of maintaining it, for Thebes herself had contributed nothing towards it , and Athens, which was not in a very prosperous condition, had been obliged to bear all the expenses of the fleet, with the execption of what Timotheus himself had furnished from his private purse. Athens therefore concluded a separate peace with Sparta, and sent orders to Timotheus to return home. On his way thither he landed at Zacynthus a body of exiles who probably leelonged to the democratical party of the place, and who had sought his protection. He provided them with the means of opposing and annoying their enemies, the oligarchical party of Zacynthus, which was in allianee with Sparta. The oligarehs sent cnvoys to Sparta to complain, and Sparta sent envoys to dihens to remonstrate against the conduct of her adniral. But no satisfaction was given, as the Athenians would not sacrifice the Zaeynthian exiles for the purpose of maintaining the peace. The Spartans therefore looked upon the peace as broken, and prepared for new hostilities.
Soon after these occurrences Coregra was hard pressed by the Peloponnesian fleet, and implored the Athenians for protection. Timotheus, who, on his former expedition, had given such great proofs of skill and talent, was again entrusted with the command of sixty ships. But Athens. which was itself in great financial diffieufties, had not the means to equip them, and Timotheus in the spring of 373 s.c. sniled to the coasts and islands of the Eyean to request the Athenian allies to provide him with the means of assisting the Coreyreeans. Ae appears to have received some support from I3cotia (Demosth. in Trmoth., p.11世8), and in Macedonia he formed friendly relations with king Amyntas. His procecdings however went on very slowly, and apparently without much suecess, for he was of too gentle a disponition to force the allies to furnish what they could not give conveniently. At last however he had sailed ns far as the island of Calaurea, where his men began 10 murmur becauso they were not paid. The state of affairs in Coreyra had grown worse every day. His encmies at Athens seized upon the slowness of his progress as a favourable opportunity for niming a blow at him. Iphicrates and Callistratus came forward to accuse him, whercupon he was recalled, and the command of his fleet given to his accusers and Chabrias. His trial was deferred till late in the antumn; hut he was acquitted, not indeed on account of his innocence, though it was well attested, but on account of the interference of Alcetas, the Molossian, and Juson of Pherac, who had come to Athens to protect him.

In b.c. 361, after the removal of his rival Iphierates, Timotheus reccived the command of the fleet on the coast of Maecdonia. He took Potidrea and Torone from Olynthus, and thesc conquests were followed by the reduction of all the Chalcidian towns. From thence he proeeeded to the Hellespont, where, with the assistance of A riobarzanes, he again gained possession of several towns. In the year following he commenced his operations against Amphipolis, in which however he had no suceess at all, probably on aecount of the interference of the Macedonians, who supported the town, and Timotheus was nearly compelled to take to flight.

In the year isi7 a.c. Timotheus and Iphierates, who had for some time been reconeiled to each other through the marriage between a claughter of the former and a son of the latter, obtained the command of a fleet of 60 sail against the rebellious allies of Athens, especially against Samos. But the Athenian arms were unsuecesstul, and a treaty was concluded between the belligerents, which put an cud to the Social War. The Athenian gencrals how cver, Timotheus, Iphierates, and Menestheus, were eliarged with having caused the ill-luck of the Athenians, and brought to tria. Timotheus in partieular was acensed of having reccived bribes from the Chians and IRhodians. His colleagues, who were themselves in the greatest danger, were so convineed of his innoeence, that they deelared they were willing to take all the responsibility upon themselves. But he was nevertheless condemned to pay a finc of 100 talents. As he was unable to pay the sum, he withdrew to Chalcis in Eubrea, where he died soon after, in в.c. 354 . The injustice of this sentence was tacilly acknowledged by the Athenians after the death of Timotheus, by the nanner in which his son Conon was allowed to settle the debt of his father.
Timotheus was no less distinguished as a man than as a general. He was of a very humane and disinterested charaeter. He saerificed all his property in the service of his country, while other men of his age used public offices only as a means of enriching themselves. When Alcetas and Jason eame to Athens to protect him, they lodged in his house, at which time he was so poor, that he was obliged to borrow furniture to receive his illustrious friends in a manner worthy of their station. Fien his cnemies, when they came to know him, could not help feeling attachment and estecm for him.
(Xenophon, Hellen., v. 4, 63, \&e. : vi. 2, 11, \&e.; Isocrates, De Permulatione; C. Nepos, Timotheus; Diodorus Sie., Xv. and xvi. ; compare Thirlwall, Hisfory of Greece, vol. v.)
TLNO'THEUS ($\mathbf{T} \mu \boldsymbol{\mu} \mathfrak{z} \neq \mathrm{\varepsilon}$)) of Miletus, a (ireek musician and lyric poet. The time when his reputation had reached its height was about the year B.C. 398. (Diodorus Sic., xiv. 46.) He was a contemporary of Euripides, and spent the last years of his life at the court of Macedonia, where he died in 8.c. 357, at the advanced age of 97 . IIe increased the number of the strings of the lyre to eleven, an innovation which was considered by the Spartans, who would not go beyond the number of seven strings, to be a corruption of music, and a decree was passed at Sparta, which is still extant in lloëthius, condemuatory of his innovation. (P)utarch, De Mus., p. 1141, ed. Frankf.; Athenacus, xiv., p. 636.) Suidas inentions a great number of poetical compositions of Timotheus, which were in their time very popular in Grecee; among them are nineteen nomes, thirty-six prooemia, cighteen dithyrambs, and Iwenty-one liymus. All these works are now lost, with the execption of a few fragments wheh are preserved in Athenaens and the grammarians.
(Vossius, De Portis Gruecis, p. 46 ; Bode, Geschichte der Lyrischen Dichtkunst der Mellenen, vol. ii., p. 305, \&.e.)
TiNIOTIIEUS (Tyuseos), an Athenian poet of the socalled middle comedy. Suidas mentions the titles of several of his plays, nud Athenaeus (vi., p. 243) has preserved a fragment of one which bore the fitle The Little Dog.' (Compare A. Meinelse, Mistoria C'ritica Comicorum Griecorum, p. 428.)
'1IMOTHY, EPISTLES OF ST. 1AUL. TO. Timothy, to whom these Epistles are addressed, was a native of I.ystra, a city of I,ycaonia, in Asia Ilinor. Ilis father was a Greek, or (ientile, but his mother, Funice, was a Jewess. l3oth his mother auk grandmother loois were Christian believers (2 Timoth., i. 5), who were probably converted
to the faitl by the preaching of Paul and Barnabas on the occasion of their first apostolical joumey among the Gentiles. Whether Timothy was himself converted by St. Paul or by the teaching of his mother does not appear; but it is certain that she had taken great pains with her son's education, for from a child, as St. Paul says, ' he had known the Holy Scriptures.' (2 Timoth., iii. 15.) His devotion to his new faith was so ardent, and the progress he made in the knowledge of the gospel so great, that he gained the esteem and good word of all his Christian acquaintance. Accordingly when St. Paul paid his second visit to Lystra, the believers both of that city and Iconium commended him so highly to Paul, that he 'would lave Timothy go forth with him' as the companion of his travels. Previously to commencing them however St. Paul circumcised Timothy, 'beeause of the Jews, who were numerons and powerful in those parts, and likely to take offence at the preaching and ministration of an uncircumcised teacher. (Acts, xvi. 1-3.) He was then solemnly admitted and set apart to the office of an evangelist, or preacher of the gospel, by the elders of Lystra and St. Paul himself laying their hands upon him (1 Tim., iv. 14; 2 Tim., i. 6), though he was probably not more than twenty years of age at the time. From this period (A.D. 46) inention is frequently made of Timothy as the companion of St. Paul in his journeys, as assisting him in preaching the gospel, and in conveying his instructions to the different Christian churches. His first mission was in company with St. Paul and Silas, when they visited the churches of Phrygia and delivered to them the decrees of the council of elders at Jerusalem, by which the Gentiles were released from the obedience to the law of Moses as a requisite for salvation. From Phrygia he procceded in the same company to Troas, and thence to Macedonia, where he assisted in founding the churches of Philippi, Thessalonica, and Beroea, at the last of which eities he and Silas were left when St. Paul was driven from Macedonia by the persecution of the Jews, in that country and retired to Athens. In this city St. Paul was subsequently joined by Timothy (l Thess., iii. 1), who gave him such an account of the afflicted state of the Thessalonian Christians as induced him to send Timothy back to 'establish and comfort them, concerning their faith': a charge both of difficulty and danger. From Athens St. Paul went to Corinth, where lee was joined by Timothy and Silvanus, who both assisted him in converting the Corinthians and establishing the Corinthian church, for a period of a year and a half. (2Cor.,i.) When St. Paul left Corinth, Timotly appears to have accompanied him on his return to Asia, where they resided nearly three years, without interruption, except during the visit of St. I'aul to Jerusalem, to keep the feast there, in which however it does not appear that he was accompanied by Timothy. Towards the expiration of their residence at Fiphesus, St. Paul despatched Timothy and Erastus together to precede limself on a journey to Macedonia. (Acts, xix. 22.) It would also secm (1 Cor:, iv. 17) that St. Paul at the same time charged Timothy to visit the ehureh of Corinth. On returning from Corinth to Macedonia, Timothy was joined by St. Paul from Ephesus, and henceforward they were frequently together, till Timothy was appointed ly St. Paul to govern the chureh of Ephesus. In the interval between St. Paul's joining Timothy in Macedonia and the appointment of the latter to the superintendence of the church at Ephesus, Timothy appears cither to have accompanied St. Paul on his first journey to Rome, or to have visited him there. St. Paul, as is well known, was a prisoner at Rome, though under but little restraint, and from Hebreves (xiii. 23) we may conclude that Timothy also suffered imprisonment either at Rome or elsewherc in Italy; and that he was released before St. Paul left that city. The subsequent history of St. Paul and Timothy is not clearly given either in the Acts of the Apostles or the Epistles of the New Testament; but it is reasonable to suppose that when they were both set at liberty, they rcnewed the journeys made for founding new churches and revisiting old. (See ITebreus, xiii. 23; Philipp., i. 1; ii. 19; 1 Tim., I. 3.)

Timothy was eventually left with the charge of the clurch at Ephesus, where St. Paul had made Juis headquarters in Asia. How long Timothy exercised this office is not known, nor can we determine the time of his is not known, nor can we determine the the the he suffered martyrdom, being killed with stones and clubs (A.D. 97) P. C., No. 1546.
while he was preaching against idolatry in the neighbourhood of the temple of Diana at Ephesus. His supposed relics were removed to Constantinople, with great pomp, A.D. 356 , in the reign of the emperor Constantine. Shortly after Timothy's appointment to the superintendence of the chureh at Ephesus, St. Paul wrote to him his first Epistle ; the date of which was probably about A.D. 64, after St. Paul's first imprisonment at Rome. Some critics indeed assign to it as early a date as A.D. 56, supporting their opinion by 1 Tim., i. 3, from which it appears ' (1:) that Timothy was in Ephesus when the Apostle wrote his first letter to him ; (2.), that he had been left there when Paul was going from Ephesus into Macedonia. A carcful examination however of the narrative in the Acts will convince the reader that the contenplated journey into Macedonia, of which the Apostle speaks (1 Tim., i. 3), is some journey not mentioned in the Acts, and therefore subsequent to St. Paul's release from his first confinement at Rome. But whatever doubt there may be as to the date of the first, there is none about the genuineness of either of the two Epistles to Timothy. They have always been acknowledged to be the undisputed production of the Apostle Paul. The object and design of the First Epistle to Timothy were such as we might have expected from the relation between St. Paul the writer, and Timothy, to whom it was addressed. It was written with the view of guiding and directing the latter in his responsible and difficult ministry as the head of the church at Ephesus, to instruct him in the choice and ordination of proper officers, and to warn him against the false teachers (Michaelis thinks they were Essenes) who had 'turned aside' from the simplicity of the gospel, to idle controversies and 'endless genealogies,' and who, setting themselves up as teachers of the Law of Moses, had insisted upon the necessity of obedience to it as a requisite for salvation.

In chap. i., accordingly, St. Paul alludes to the commission given by him to Timothy at parting, and specifies the particular errors which he was to condemn, together with the truths which he was to inculcate.
In chap. ii. the apostle describes the manner in which the public worship of the church at Ephesus was to be conducted.
In chap, iii. St. Paul explains the qualification of the persons whom Timothy was to ordain as bishops and deacons, and tells him that he had written the letter with a view of teaching him 'how he ought to behave himself' in the louse of God, which is the chureh of the living God, the pillar and the ground of truth.'
The last verse of this chapter has oceasioned much controversy respecting the reading of the word erós, or ' God,' for which one MS. has "os, ' who,' and another ë, 'which.' The majority of the MSS. read Өzos, or 'God,' and several of the antient versions express the $\ddot{0}$ or ' which,' instead of θ हós.
In clap. iv. St. Paul foretells the heresies which were to arise in the chureh in after-times, and strongly condemns them. He also exhorts Timothy to a faithful and exemplary discharge of his duties, and to a steadfast continuance in the doctrines of the Gospel.
In chap. v. St. Paul instructs Timothy in the right method of admonishing the old and the young of both sexes. He also describes the age and character of such widows as were to be employed by the church in teaching the younger women the principles of religion, for which it would seem that the former received some recompense from the funds of the church.

In chap. vi. St. Paul describes the duties which he wished Timothy to inculcate on Christian slaves, as owing from them to their masters, whether infidels or believerb. He also reprobates strifes about words, and perverse disputings, which seem to have been rife in the Ephesian church; condemns an inordinate love of money, exhorts Timothy to charge the rich to be 'rich in good works,' and concludes with a most solemn charge before God and Jesus Christ, that he should keep 'the commandment,' without spot and unblameable.
The Epistle was written from Nicopolis in Macerlonia (Titus, ii1. 12), and not from Laodicea, as the subscription informs us. The undesigned coincidences betwcen it and the Acts of the Apostles arc given in Paley's 'Horte Paulinæ,' p. 323-338.

The Second Epistle of Paul to Timothy.-From clap. i.,
sers. 8, 12, 17. it appeans that this 1:pistle was written by St. l'aid Whle he was a prisoner at Rome; but whether lie wrote it durmg lis first inuprisonment, recorded in Acts, axviii., or during a seiond imprisoument, has been much guestioned. According to the uniform tradition of the antient church, it was written during the second confineinent. The molern erities, who refer to the time of the first, are for the most part unti-episcopalians or Roman10fs: the former being concerned to deny the permanency of Timothy's charge at E.phesins ; the latter not knowing how to necount for the onission of Peter's name in the salutations from Rome. 'The arguments allduced ly Macknight (l'reface to 2 Timothy) in support of the opinion of the nutient church are, we think, conelusive. St. Paul, it is generally asteed, returned to Rome after his first imprisomuent, carly in a.v. $6 \overline{\text { an }}$; where, after being kept in bonds as an 'evil dour' for more than a year, he is believed to have suffered martyrdom, A.D. CG. As therefore the Apmastle requests Timothy (iv. 21) to come to him at Rome betore winter, it was probably writton in July or August, a.D. $6 \overline{5}$; and it is generally supposel that Timothy was at Ephesus when St. Paul addiressed it to him.
The inmediate design of St. Prul in writine this Epistle was, it would seem, to apprise Timothy of the circumstanees that had recently happened to fimself at Rome, and to request his immediate presence therc. Accordingly we gather from the last chapter of this Epistle, that Sil P'aul was closely confined as a malefactor for some crime laid to his charge; that when he was brought belore the Roman magistrates to make his first ansiver, 'no man stood by him, but all men forsook him;' that only Luke was with him: that being thus deserted by almost all, he was greatly desirous of seeing Timothy, "his dearly beloved son in the gospel,' before the 'time of his departure,' which he knew 'was at hand.' He therefore requested him to come to Rome immediately, but bcing uncertain whether he should live to see Timuthy again, he gave him in this Epistle a varicty of admonitions, charges, and encouragements. This Epistle in fact is an appropriate and affecting sequel to the first, the principal injunctions and warnings of which it repeats, hut with additional carnestness and fervour. St. Paul, as if for the last time (ehap. i.), conjures Timothy to apply hinself with all his gitts of grace to his holy work, to liold fast the doctrine which he hast reecived from him, and not to be ashamed either of the testimony of the Lord or of St. l'aul's own sufferings.

In chap. ii. St. Paul again cautions Timothy against hereties and 'foolish questions,' and exhorts him to personal holiness. In chap. iii. he gives a deseription of the 'perilous times which should come,' and which were to be anticipated by cvery possible exertion in performiner the duties of a Christian minister. To this work, in chap. iv., he exhorted him by a solemn charge before 'God and the lord Jesus Christ, the judge of the quick and the dead.' Me thendepieted his own present state, and his presentiment of an approaching martyrdoin; and after requesting the immediate presence of T'imothy, concluded by sending to him the greetings of some of the brethren of the Church at Rome. Whether Timothy arrived at Rome in time to find St. Paul alive, does not any where appear: the latest nuthentic information we have concerning him being given in this letter.

The Epistles to Timothy, in conjunction with those to the Thessalonians and Thitus, are extremely valuable, as furnishine very strong evidence to the truth of many of the fiacts related in the Acts of the Aposilles. The madesigned coineidenees between the second bispisle to Timnthy and the Acts are given ly Paley, in lis ' 11 ora Patlinse' pp, 339-350. Their value in another respect is thats described by MacJinight, Preface to 1 Timrathy-'These Epistles are like wise of great use in the church, as they exhibit to Christian bishops and deacons in every age the most perfeet idea of the duties of their functions: teach the mamer in which these duties should be performed: describe the qualifications nceessary in those who uspire to such officere, and explain the ends for which they were instituted, and are still continued in the church.'

To the IIpmstle to T'imothy, that addressed by St. I'aul to Titus, nearly at the same cime, is both a companion and an illustration. The subjeet matter is nearly the same in both, and it is important to obscree, that in none of these Epind los, addresmed to intimate and tried friends, do we perecive any doctrine or precept at all different from what
is enfored in the lipistles addressed to ennd dexigned for whole churches. The views and hopes and motives of action are the same in both: a prove of the spostle's sincerity, and sul evidence that he did not teach a double doctrine, one for the learned and the other for the vulgar.
(llome's Introduction to the Criticat Study of the Scriptures, vol. iv., p. 37\%; Macknight, vol, iii. , Benson, 1'retace to 1 and 2 Timothy; Evans's 心ripiure BuErapmi.:
TISOÓTHY-GRASS, so called from a penon of that naine who suceessfully cultivated it in Nurth Amerien. Where it seems to grow more luxuriantly than any other kind of grass. Its lotanienl name is Dhleum pratense, and its common Englisha name is Meadore Cat's-fuil Grasr. It has been highly extolled by many agriculturists for the profusion of hay whieh it makes, and also for its rapid growth when depastured. It is but a coarse grass when allowed to stand till it is fit for hay; and in raiay weather it so readily imbibes moisture, that the harvest is very precarious. This is a principal reason why its cultivntom has not been much extended in England. It is said to give a very sweet and carly herbage for sheep in spring. and, mixed with other grasses, may be very useful in laying duwn land to pasture for a few years.

The soil which suits timotlyy-grnss best is a good moist and rather stitf loam. On gravel or chalk it soon dies off. It is scareely to he recommended without a mixture of other grasses, although very heavy crops of it have been grown; and from its strong stem, when full grown, it shoukd always be fed off when young, or ent for soiling lorses and cattle before the stem has acquired its full growth. That it is not a grass naturally suited to the elimate of Great Britain appears trom its not-being generally found in the best natural pastures. In rich Iund which is tired of clover it may form a very good substitute, to cut up green and depasture afterwards. The experiments whicls have been made with timothy-grass are nut susticiently satisfactory to form a decided opinion of its real merits, and it well deserves the attention of experimental agrieulturists.
TI'MUR, SUITAN, KIAMRAM KOTIB-ED-DI'N GURGAN' SAHEIS-KIRA'N JIHANG1R, that is, 'Sultan Timur, the fortunale, the axis of the taith, the great wolf, the niaster ol time, the eongueror of the world.' Timur, a mame which frequently oecurs among the princes of the Eastern Turks, signities 'iron' in the Jagataï dialect, and corresponds to the Usmanli 'demur.' Timur was horn on the 5 th or 25 th of Sha'bán, 736 A.if. (A.D. 1335), at Sebz, a suburb of Kesh, a town south-east of Sammrkand. Ho was the son of Táraghaï-Nowian, who was chief of the Torkish tribe of the Berlas, which inhabitect the district of Keslı. Timur was descended from a younger son of Bardani-Khan Behadir, or Baghatur, whose eldest son, Yessugaï, was the father of Genghis-khan, and he was a direct descendant of Genghis-Khan on the female side. He was consequently of Mongol orivin, and, being of royal blood, he held a high rank amone that Mongol nobility which was foundet by Geughis-Klaan among the Eastern Thrlis. [Tantars.] This rank is expressed by the title Nowian, which was added to the name of his father. let the power of lis family was not greal. Timur was a soldier at the age of twelve years, and he spent his youth in the continual feuds between the nohles of those different kingdoms and prineipalities into whieh the empire of Genglis-Kilian was divided by his stuecessors. After the death of his father, his uncle Seiffecd-din beeame chief of the Berlas, heing the eldest of the family; but a war having broken out between Husein, khan of Nortlern Khorastun, and Mawerainnehr (Mawar-el-ualır), or Jagataï, und Timur-Togluk, khan of the Getes (Getae), in Northen Turkistan, young Timur actively support ed Ilusein, and was appointed clier of the tribe of the Berlas in A.11. 76.3 A.D. 1:361). In this war Timur received a wound in his thigh, in consequence of which he became lame. From this he was called Timur-lenk, or the lane Timur, which has been corrupted by Europeans into Tamerlane, by whichs name Timur is as well known in Europe ns by lis real name. Ilusein rewarded him also with the hand of his sister Turkan, A.17. TCis (A.D. 1363). Notwithstanding these favours, Timur intrigued against his protector; and afler the death of his wife he openly rebelled against him, A,11, 707 (A,D. 1365). With a body of only 250 horsemen
he surprised and took Nakhshab, a town which was defended by a garrison of 12,000 men, among whom there were most probably a great number of traitors. In A.h. 768 (A.d. 1366) he defeated Husein near his capital, Balkh, and this prince was murdered by some emirs, who, seeing their former master forsaken by fortune, endeavoured to obtain the favour of Timur by putting his rival to death. Balkh, which was defended by the adherents of Husein, was taken by storm and destroyed by fire after a siege of three years, A.H. 771 (A.D. 1369), and Timur was proclaimed khan of Jagataï in the same year by the Kurultaï, or the general assembly of the perrple. He chose Samarkand for his capital. Husein-Sofi, khian of Khowaresm (Khiwa), having imprisoned Timur's ambassadors, was attacked by Timur, who, after five eampaigns, at last succeeded in taking the town of Khowaresm, in A.H. 781 (A.D. 1379). The town was destroyed, and the principal inhabitants, cspeeially artists and seholars, were transplanted to Kesh, which became the second eapital of Timur's empire. Previously to this the khan of the Getes, who was master of the country between the Sihun, or Jaxartes, and the Irtish, had likewise been compelled to pay homare to Tinur, who thus beeame master of a part of Siberia and of the whole country which we now call Turkistan, and which was formerly known by the name of Great Tartary. After these eonquests Timur thought himself strong enough to carry into effeet the plan of naking himself master of all those countries which had onee obeyed his aneestor GenghisKhan. He first attacked Khorisín, or the north-eastern part of Persia, which was then divided between Gaiyáth-ed-din-Pir-'Ali, who resided at Herat, and Khojah-'Ali-Murjid, whose capital was Sebsewír. Khojah-'Ali-Murjid, whose dominions were on the boundaries of Jagataï, paid homage to Timur' as soon as he was summoned; but the master of Herat prepared a vigorous resistanee. Timur took Herat by storm, but did not destroy it. IIe earried off as his only trophy the iron gates of this town, which were noted for their beautiful workmanship, and which he ordered to lee transported to his birthplace, Kesh. The larger towns of K horásún surrendered without resistance, and Timur was only ehecked by several strong fortresses, such as Shaburkín, Kabushán, and especially Kahkáha, between Balkh and Kelat, in the mountains of the Hindu-Kush. When thesc fortresses fell, all Khorásán was under his yoke. The inhabitants of Sebsewar having revolted, Timur took the town by storm: two thousand of the inhabitants were placed alive one upon the other, till they formed a mass fike a tower, and each layer of human beings was fastened to the rest by mortar, as if they were so many bricks.
Beginning his career at an age when other conquerors are satisfied with their laurels, Timur had employed twenty years in reflecting on the principles of warfarc. He led his armies with the prudent boldness of an experienced general, but not with the superiority of genius. The differences between the numerous successors of Gen-ghis-Khan enabled Timur to attack them one after another, and each was pleased with the fall of his rivals. He employed the same policy in his war against Persia. This country was governed by several princes. Shah-Sheja, of the dynasty of Mozaffer, who reigned in Fars and southern Irak, or in that part of Persia which was most exposed to any army from the east, submitted to Timur without resistance. Thus Sultan Ahmed, of the house of the Ilkhans, the master of Northern Irak and Azerbiján, or Western Persia, had alone to sustain the attacks of the Tartars, A.H. 788 (A.D. 1386). Timur entered the dominions of Ahmed by following the coast of the Caspian Sea. In one campaign he conquered the provinces of Mazanderán, Rei, and Rustemdar, and took the towns of Sultania, Tabris, and Nakhshiwhn. He crossed the Araxes at Julfa on a nagnifieent bridge, which was strongly fortified on both sides, but which is now destroyed. Kars, now the key of Eastern Turkey, fell into his hands; Tiflis surrendered, and the prince of Georgia purchased his protection by adopting the Mohammedan faith. The prince of Shirwán sent tribute to the camp of Timur, nine pieces of each thing sent (nine was a holy number among the Mongol princes), but only eight slaves; the ninth was himself. On these terms he was allowed to remain in possession of his doninions. Taherten, king of Armenia, submitted to Timur without any resistance; but Kárá-Yúsuf, prince of Diyarbekir, and master of the eountry round Lake Wan, prepared
to defend himself. A body of Tinur's army marehed against him, and took the fortresses of Akhlat and Adiljuwáz by storm; and Timur himself conducted the siege of Wan. This famous fortress fell after a siege of twenty days, the garrison was east from the steep rock on which this town is situated, and the fortifications were razed by ten thousand miners and pioneers. Ready to cross the Carduchian Mountains and to descend into the valley of the Upper Tigris, Timur was obliged, by a revolt of the inhabitants of Ispahan, to march suddenly to southern Persia. He took Ispahan by a general assault: he spared the lives and the houses of artists and scholars, but the remainder of the city was destroyed, and the inhabitants were massacred. More than 70,000 heads were laid at the feet of the conqueror, who ordered his soldiers to pile them up on the public places of the town, A.1. 789 (A.D. 1387).

Satisfied with having conquered the greater part of Persia, Timur turned his arms towards the north, and overran the kingdon of Kiptshak, which was then governed by Toktamish-Khan. This war lasted from A.H. 789 to 799 (A.d. 1387 to 1396). [Tartars, Kiptshuk.] We shall here only mention the march of Timur in the campaign of A.H. 793 (A.d. 1391). According to Sheref-ed-dín, Timur started from Tashkend, on the Jaxartes, on the 13th of Safer, A.н. 793 (19th of January, 1391). He marclied in a northern direetion, and passed by Kárú-suma, Yázi, Kárá-chuk, and Sabrán, untíl he reached Sárik-Uzen, on the river Arch: thence he proceeded as far as Mount Kuchuk-dagh, and subsequently crossed Mount Ulu-dagh, or the range of the Altai. He then took a north-western direction untal he reached the upper part of the river Tobol in Sibersa, and thence procecded westward, crossing the Ural Mountains, and the upper part of the river Ural, or Yaik, where he drew up his army on the banks of the Bielaya, a southern tributary of the Kama, which flows into the Wolga. Toktamish, who awaited Timur in the environs of Orenburg, was not a little astonished to find him so far advanced towards the north; but being informed of his having taken that direetion, he hastened to the country of the Bielaya (Bashkiria), and fought that dreadful battle which took place on the l5th of Rejeb, A.11. 793 (18th of June, 1391), in which his whole army was slaughtered.

In the following year (A.1r. 794; A.D. 1392) Timur returned to his residence at Samarkand, and he left the war with Kiptshak to his lieutenants; he only appeared in the field in A.H. 797 (A.D. 1315) in order to stop the progress of Toktamish in the Caucasian countries. Meanwhile troubles broke out in northern Persia, which were put down by Timur's generals, who committed unheard-of cruelties, especially in the town of Amul, where the whole tribe of the Fedayis was massacred. Timur himself attacked southern Persia after his first return from Kiptshak. The country of Fars was governed by scveral princes of the dynasty of Mozaffer, vassals of Timur, who aimed at independence. After having occupied Loristán, Timur cutered Fars by the mountain-passes east of Shiraz, which were defended by the stronghold of Kalaï-zefid; but this fortress and the capital Shiraz were taken, the princes were put to death or fell in battle, and Timur's son MiranShah was invested with the government of Fars and Khuzistán. From Shiraz Timur marched westwards to attaek the king of Bagdad, Ahmed Jelair, of the house of Ilkhan. Bagdad surrendered without resistance, and Sultan Alımed and his family fled towards the Euphrates, accompanied by a small body of eavalry. Timur and forty-five emirs mounted on the swiftest Arabian horses pursued the sultan, and came up with him before he had reached the Fuphrates. In the engagement which ensued Ahmed was again defeated and compelled to fly, leaving his harem and one of his sons in the hands of the vietor. The scholars and artists of Bagdad were transplanted to Samarkand; Timur remained at Bagdad for two months, allowing so little licence to his soldiers that he ordered all the wine which was found in the town to be thrown into the Tigris.
During this time Kárá-Yúsuf, prince of Diyarbekir, had recovered part of those districts round Lake Wan which Timur had taken from him in a former campaign; and several princes in Armenia and Georgia were still independent. Timur resolved to bring them to submission, and after having succeeded in this, to attack the kingdom of Kiptshak on its boundaries in the Caucasus. Starting from Kiptshak on its boundaries in the Caucas. 797 (A.D. 1394), he marched to the Upper
302

Tigris be Tekrit, Roln or Fidessa, Ho-su, and Keif, all situaterl in Mesopotamia. He laid siege to Mardin, a strong place in the mountain-passes south-enst of Diyathekir, but not being able to take it, he contented himself with the promise of an annual tribute which Sultan Iza, the master of Mardin, engaged to pay, and he marched to Diyarbekir. This town was taken and plundered. From Diyarbekir Timur marched to Akhlat, north of Lake Wan, crossing the mountains, as it seems, by the passers of the Bedlis, or Centrites. [Tigranockuta.] After having subblued all Armenia and Georgia, Timur reached the liver Terek in the Caueasus, and there fought nother bloody battle with the khan of Kiptshak. In A.D. [395 and 13316 Timur conruered all Kiptshak, and penetrated as far as Moscow, whereupon he left the command of these coumtries to his lieutenants, and returned to Samarkand, in order to prepare for a campaign against India.

After the death of Firns-Shah, the master of India between the Indus and the Ganges, seseral pretenders made claims to the vacaut throne. At last Mahmud sucreeded in making himself master of Delhi, and in establishing his authority all over the empire of Firus-Shali. Under the pretext of supporting the rivals of Mahmud, Timur deelared war against India; nnd such was the renown of his name, that aumassadors from all the countries of the Enst arrived at Samarkand and congratulated him on his new conquests before he had obtained any tuiumph. Timur len his eapital in A.11. 801 (A.D. 1398). Ife took his way through the passes in the Ghur Mountains, or the western part of the Hindu-Kush; and on the 8th of Moharrem, A.11. 801 (19th of September, 1398), he erossed the Indus at Attock, where Alcxander had entered India [Alexaideer the Great], and where Genghis Khan had been compelled to give up his plan of advaneing farther. Timur traversed the Punjab in a direction from north-west to south-east, erossing the rivers lBehut, Chunab, Ravee, the Beeah, the II yphasis of the antients, where Alexander terminated his conquests, und the Sutlej, the easternmost of the five great rivers of the Punjab. Although no great battle had been fought, the Tartars had already made more than 100,000 prisoners; and as their number daily increased, Timur ordered them all to be massacred, to prevent any mutiny, which might have become fatal to him in ease of a defeat. At last the Indian army was defeated in a battle near Delhi, and this town, with all its immense treasures, fell into the hands of the conqueror. Delhi was plundered, and a part of it was destroyed, the inhabitants having set fire to their houses, and thrown themselves with their wives and children into the flames. Several thousands of artists and skifful workmen were transplanted to Samarkand. Timur pursued the army of Mahunud as far as the sources of the Ganges, and atter having established his authority in the eonquered countries, returned to Samarkand in the same year in which he had set out for the conquest of India.

Meanwhile troubles had broken out between the vassal princes in Persia and the countries west of it ; and Timur's own sons, who were governors of this part of his empire, had attacked each other, and one of them was aecused of having made an attempt to poison his brother. These events became as nany oceasions of new conquests for Timur, who overran the whole country between Persia and Syria. Siwas (Sclaste), one of the strongest towns of Asia Minor, which belonged to the Osinanlis, was taken after a siege of eighteen days. The Mohammedan inhabitants were spared; the Christians, among whom were more than 4000 Armenian horsemen, were interred alive. (A.11. 803 ; A.D. 1400.) Among the prisoners was Firtoghrul, the son of Ilayarid, sultan of the Osmanlis, who defended the town for his father, and who Was put to death afler a short eaptivity. The fall of Siwas and the murder of Eirtoghrul were the signals for war between Timur and layazid, who had filled Europe with the terror of his name, and who was then besieging Constantinople. The rapidity of his marehes and the impetuosity of his charges had proeured lim the surname of 'Ilderim,' or the 'Lightning;' and aceustomed to victories over the knights of Hungary, Poland, Franee, and Germany, he did not dread the Tatars of Timur. Previously to the siege of Siwas, he had negotiatel with Timur about wome Turkish emirs in Asia Minor, und especially about Taherten, king of Armenia, a vassal of Timur, who had been deprived ly liayazid of acveral of their best towns, and
whon Timur protected. To humble his pride, Barazid inprisoned the Tatarian ambassadons, and Timur in revenge carried devastation into the dominions of the Osmanlis.
Before Bayazid had erossed the Bospomis, Timur, offended by Ferruj, Sultan of Egypt, overran Syria, then a dependence of Egypt. The army of Ferrij was routed with dreadful slaughter at Maleb, and this populous town whs taken by the Tatars, who entered it with the flying Eyyptians. Plunder, bloodshed, and cmelties signalized this ness conquest (11 th to 14 th of Rebuil-ewwal, A.11. 803; 30 h of Oetober to 2nd of Novenber, 1400 A.D.), which was followed by the fall of Damaseus (9 Dh of Sha'bin, A.11. 843 ; 25th of Xarch, 1401). Artists and workmen were as usual earried oft to Samarkand and other towns or Turkistan. Ferruj became a vassal of the Tatars. Bagdad having revolted, Tiunur took it ly storm on the Zith of Zilkide, 8013 A.11. (2 th of July, 1.101 A.D.), and 00,000 human heads were piled up on the public plaees of the fown.
Hitherto negotiations had still been earried on between Timur and Bayazid, who had advaneed into Asia Minor with a well-diseiplined although not very numerons army. But Bayazid having discovered that Timur had bribed several regiments of Turhomans that were in the army of the Osmanlis, the negoliations were broken off, and the two greatest conquerors of their time advanced to meet each other in the tickl.
After the fate of Ilaleb, Damaseus, and Bagdad, Timur had assembled lus army near Hateb, and, erossing the range of the Taurus, he had proceeded north-westwards to the northern part of Anatolia. At Angora he met with Bayazid. The battle, one of the most eventful which have ever been fought, took place on the 19th of Tilhije, 8(4 A.H. (20 th of July, [402 A.D.). After an obstinate resistance the Osmanlis, who were much less numerous than the Tutars, were routed. Old Bayazid, to whom flight was unknown, despised every opportunity of saving limself, and so strong was the habit of victory in him. that he could not conceive his defeat even when he saw the general rout of his warriors. At the head of his janissaries, Bayazid maintained himself on the top of a hill; his soluiers died of thist or fell by the sword and the arrows of the Tatars ; at last he was almost alone. When the night eame he tried to eseape ; his horse fell, and Bayazid was made a prisoner by the hand of Mahmud Khan, a descendant of Genghis Khan, and who was under-khan of Jagataï. One of his sons, Muza, was likewise made prisoner; another, Mustafa, fell most probably in the battle, for he was newer more heard of; three others, Soliman, Mohammed, and 1za, eseaped with part of their troops. Timur reecived his royal prisoner with kindness and generosity. Atterwards, when some faithful Osmanlis tried to save their master, he was put into chains, but only at night. Accompanying Timur on his march, he sat in a 'kafes,' that is, in a sedan hanging between two horses, and this was the origin of the fable that Timur had put Bayazid in an iroll "cage' like a wild buast, a fable which has chiefly been propagated by Arabshah and the byzantine Phranzes (i.. e. 26). Bayazid died in his captivity at Akshelr, about a year after the battle of Angorn (14th of Sha'bin, 80.5 A.11. ; 8 th of Mareh, 1403 A.D.), and Timur allowed Prince Muza to carry the body of his father to l3rusa.
The sons of Timur pursued the sous of Bayazid as far as the lBosporus, but having nofleet, they did not eross this channel. They ravaged the eountry, and afterwards joined their father Timur, who with the main body of his army look Ephesus and laid siege to Smyrna. This town, which belonged to the Knights of St. John at Rhodes, fell after a gallant resistanee, in the month of December, 1402. Hlowever, the eonquest of Asia Minor from the Osmanlis was only a temporary triumph, for a short time afterwards it was recorered by Mohammed 1 ., the son and suecessor of the unfortunate Bayazicl. After having thus earried his arms as far as the shore of the Ionian Sea, Timur withetrew to Persia to quell an insurrection, and then retired to Samarkand. He was preparing for the conquest of China, but he died on his marel to that country, at Oirar on the Jaxartes, on the 17 th of Sha'bta, 807 A .11 . ($19 t h$ of February, 140.5), in his seventy-first year, after a reign of thirty-six years, leaving thirty-six sons and grandsons, and serienteen granddaughters. A considerable part of Timur's western and northem conquests, Asin Minor, Baydad, Syria, Georgia, Armenia, and the whole kingdon or Kiptshak, were lost ly his suecessors almost immediately atter his death. In

Persia and Jagataï his deseendants reigned for a century; and for three centuries they ruled over Northern India under the name of the Great Moguls.
Timur has been compared with Alexander, but he is far below him. It is true, that except in India, Alexauder found only effeminate nations on his way, while Timur fought with the most warlike nations of the world ; but the enemies of Alexander formed great political bodies which were governed by one absolute master, while the warlike nations whieh were subducd by Timur were divided into a multitude of tribes and governed by numerous princes, each of whom was jealous of his neighbour. Timur overran the territory of two mighty nations, the TurlssOsmanlis, and the Tatars of Kiptshak, but he was not able to subdue them. Both Alexander and Timur protected the arts and seienees, but Timur could only transplant them by foree from one place to another, while poets and scholars flocked to Alexander beeause he could appreciate their talents. Timur's eruelty was the eonsequenee of his savage and barbarous temper; Alexander only forgot the laws of humanity when he was overpowered by wine or by passion. Timur was a man of extraordinary talents, who aecomplished great things after long experience and severe struggles: Alexander, a true genius, came, saw, and vanquished. The greatness of Timur inspires awe, and we shrink from it with terror; the greatness of Alexander attracts us beeause it is adorned with the amiable qualities of his charaeter.
The life of Timur is the subject of many valuable works. Sheref-ed-din-'Ali wrote the history of Timur in Persian, which has heen franslated into French by Pétis de la Croix, under the title ' Histoire de Timur-Bee, eonnu sous le nom dı Grand Tamerlan,' \&e., Paris, 1722. This is the best work coneerning Timur, although the author often flatters. Arabshah, a Syrian, on the contrary, depreeiates the character of Timur; his history, or rather his epie, has been translated under the fitle 'Ahmedis Arabsiadae Vitre et Rerum Gestarum Tinuri qui vulgo Tamerlanes dieitur, Historia,' Lagdmi-Batavorum, 1636. Longdit, Arcote de Molina, Petrus Perundinus Pratensis, Boekler, Richerins, \&e., have also written the life of Tinur. Among the Byzantines, Ducas, Chalcondylas, and Phranzes contain many valuable accounts, though Phranzes is less critical than the others. A very interesting book is 'Schildtberger, eine Wunderbarliche und Kurzweilige Historie,' \&c., 4to. The samc book was translated into modern German by Penzel, Münclıen, 1813. Schildtberger, a German soldier, was made prisoner hy the Turks in the battle of Nieopolis (1396), when he was only sixteen years old. In the battle of Angora he was taken by the Tatars, and became a kind of seeretary to Shahrokh and Miran-Shah, the sons of Timur. He finally returned to Germany in 1427, after a captivity of thirty years, and then wrote the history of his adventures.
Gibbon gives a splendid view of Timur's eonquests in the 'Decline and Fall,' chap. lxv. Another most valuable work is Clavijo, 'Historia del gran Tamerlan, c Itinerario,' \&c. Clavijo, ambassador of king Henry III. of Castile at the court of Timur, was present at the battle of Angora. (Desmuignes, Histoire des Huns, vol. ii.) Timur may be eonsidered as the author of the "Tufukat, or the Code of laws.' This work was originally written in the EastTurkish lang̣age, and was translated into Persiau. The Persian version, with an English translation and a most waluable index, was puhlislıed by Major Davy and Professor White, Oxford, 1783, 4to.; and Langles has translated the Persian version into French, under the title, 'Instituts Politiques et Militaires de Tamerlan,' Paris, 1787. This work is of great importance for the history of Timur ; we sce that this Tatarian conqueror was provided with napps and works coneerning geography, which were composed by his order.

TIN. This metal is one of those which were carliest known, though it occurs in eomparatively few countries: the acquaintance of the antients with this metal, though it docs not oceur in the native state, is aecounted for by the circumstances that the ore is found frequently near the surface, and is easily reduced by charcoal and a moderatc degree of heat to the state of metal.

According to Berzelius, tin is found in England, Saxony, Bohemia, Ilungary, the isle of Banca, the peninsula of Malacca, in Cliili, and Mexieo: Malacea turnishes the purest tin, and Cornwall the largest quantity.

Tin oecurs in two states of combination, the peroxide and double sulphuret of tin and eopper: this last is rather a rare substance, and it is from the former that the metal is almost entirely obtained.
The peroxide of tin is found in Cornwall in two forms:1. In veins in primitive countries, where it is intimately mixed with several other metals, as arsenie, copper, zinc, and tungsten: this is common tinstone. 2. In loose rounded masses, grains, or sand in alluvial soil, in whiels state it is ealled stream-tin. The former, when redueed to the metallie state, yields block-tin; while the latter yields grain-tin, which is the purer of the two.
Oxide of Tin-Tinstone-Oceurs in attached and imbedded erystals, and massive. Primary form a square prism, which is commonly terminated by four-sided pyramids. Cleavage parallel to the lateral planes and both diagonals. Fracture uneven or imperfectly. eonehoidal. Hardness 6 to 7: gives sparks with steel, and is brittle. Colour white, yellow of various shades, red, brown, and black. Streak paler. Lustre adanantine, vitreous. Transparent, translucent, opaque. Specifie gravity 6.96. Insoluble in acids. Before the blow-pipe, in powder on chareoal, it is reduced to the metallie state. Fine erystals of this substanee oceur, more especially in Cornwall and Saxony.

Analysis of the oxide of tin of Cornwall by Klaproth :-
Tin
Oxygen
Iryn
Sili
77.5

Oxygen
$21 \cdot 5$
Silica
0.75
$100 \cdot 0$
The Mussive Varieties of oxide of tin are called streamtin. What is termed wood-tin is found in reniform and botryoidal masses, or in wedge-shaped pieces, which have arisen from their partial destruetion: the strfaces are generally water-worn. Wood-tin exhibits various shades of brown, whieh sometimes appear in coneentric bands, giving it a ligneous appearance, whenee its name.
Stream-tin has evidently been derived from the destruetiou of tin veins or lodes, the lighter portions of stony matter having been carried away by the water, which has rounded the fragments of the ore.

At Finbo in Sweden oxide of tin has been met with containing nearly 2.5 per cent. of oxide of columbium.

Tin Pyrites.-Sulphuret of Tin, a double Sulphuret of Tin and Copper, is a rare substance, having been found only in Cornwall at Luel Rock, in the parish of St. Agnes.

Oecurs crystallized and massive. Primary form of the crystal a cube. Cleavage parallel to the faces of the primary forn. Fracturc uneven, with a metallic lustre. Hardness: readily scratched and redueed to powder; brittle. Colour steel-grey, mixed with yellow. Speeitie gravity $4 \cdot 3$.
Massive Variety.-Fraeture granular and uneven, with a metallic lustre. IIardness 4. Brittle. Opaque. Specific gravity $4 \cdot 35$ to $4 \cdot 76$.

Analysis by Klaproth :-

Tin	\bullet	0
Copper	\bullet	34
Iron	\bullet	36
Sulphur	\bullet	\bullet
		25

Having now deseribed the ores, we proeced to state the Properties of Tin.-This metal is of a silver-white colour, very soft, and so malleable that it may be redueed into leaves $1-1000$ th of an inch thick, called tinfoil : it suffers but little change by exposure to the air, and that which does occur arises rather from impure sulphurous vapours than from oxidation; for it is not oxidized even by the combined action of air and noisture. Its tenaeity is but slight, so that a wire 1-15th of an ineh in diameter is capable of stupporting only about 31 pounds: a bar a quarter of an inch in diameter was broken by 296 pounds weight. Tin is inelastic, hut very flexible, and when bent it produces a peculiar crackling noise. When rubbed it imparts to the fingers a peculiar smell, which remains for a considerable time. Its specifie gravity is about $7 \cdot 29$; at 442° Fahr. it fuses, and if exposed at the same time to the air, its surfaec is tarnished by oxidizement, and eventually a grey powder is formed. When
healed to whiteness it takes fle, and burns with a white flame, and is converted into peroxide of tin. If slowly cooled after fusion, it exhibits a crystalline apperurance on swhdifying.

Orygen and Tin do not readily combine at common temperatures: they unite in three promortions, forming the protoxide, sometimes called stannous neid, the sesquioxite, and the per-or bin-oxide, frequently fermed stamnic acid. l'rotoxide of tin cannot be procured perfectly pure ly direet action: the best method of preparing it is to procure n solution of protochloride of tin, evaporate it crefutly to dryuess, and then titurate it in a moriar with excess of crystallized carbonate of sode, which decomposes the chloride, and lenves the protoxide of tin.

When this lias been washed, and dried carefnlly on the sand-heat, it is of a fine bluish-black colour, is very soluble in lydrochloric acid, and when hented in the nir it takes fire, burns, and is eonverted into peroxide: the density of protoxide of tin is $6 \cdot 606$: it is soluble in solntion of potash and soda, but not in ammonia, nor do the alkaline carbonates dissolve it. It is composed of -

$$
\begin{array}{rrr}
\text { One equiralent of oxygen } & \bullet & 0 \\
\text { One equivalent of tin } & 58 \\
\text { Equivalent } & & \frac{8}{68}
\end{array}
$$

Equivalent

The alkaline solutions of this oxide gradually deposit inefallic lin, and peroxide remains in solution. Its salts very readily absorb oxygen from the air, and form contpounds which readily yield oxygen; and it is on this necount that it eonverts the sesquioxide of iron into protoxide, and precipitntes silver, mereury, and platina in their metallic state. With gold a purple compound is formed, known hy the name of the purple powder of Cassius. The liydrate of this oxide of tin is white.

Sesquidride of Tin is formed by mixing fresh precipifated and moist hydrate of peroxide of iron with a solution of protochloride of tin, as free as possible from hydroc.lloric neid: by the mutual action of these substances a stimy grey matter is thrown clown, which is generatly slighty yellow, from the preseice of a little peroxide of iron. It is composed of-

$$
\begin{array}{ll}
\text { One equivalent and } n \text { half of oxygen } & 12 \\
\text { One equivalent of tin } & 58
\end{array}
$$

Equivalent

It is soluble in hydrochloric acid, and also in anmonia, which last property distinguishes it from the protoxide; and it is distiugushed from the peroxide by giving a purple precipitate with the salts of gold.
Peroxide or Binoxide of Tin, or Stannic Acid.-This is readily preprared by the action of strong nitric acid slightly dilnted upon tin: violent action oceurs, and the binoxide formed remains in the state of hydrate: after washing and drying and exposure to a red heat, the binoxide remains pure, and is of a straw-yellow colour: the perclilorite of lin, when decomposed by an alkali, also yields binoxide of tin: when it has been rendered red-hot it is quite insoluble in acids, and acts as an acid by forming soluble compounds with the alkatis, which are called stannates: the moistened hydrate aets as an neid also in reddening lifmus-paper. When melted with glass it forms a white enamel.

It is composed of-

$$
\begin{array}{rcc}
\text { Two equivalents of oxygen } & : & 16 \\
\text { One equivalent of tin } & : & 58 \\
\text { Fijuralent } & & 74
\end{array}
$$

Fijuvalent
Chlorine and Tin combine to form the protochloride and the perehtoride. The protochloride is prepared by dimolving the metal in hot hydrochloric acid till the evolution of hydrogen gas ecases: the solution is colourless, and deposits erystals, which sometimes are neienlar, and at others prisms of considerable size. They consist of-

Once equivalent of chlotine
36
One equivalent of tin 58
Three equivalents of water
Erpuiralent
121
When luated 10 about 212°, the whole of the water is wearly expelled; at a ligher temperature bydrochloric aeid is evolved, and oxichloride of in remans. It is whable in a small quantity of water, but decomposed by a large quantity; oxichloride of tin being precipitated.

The protochloride of in is used as n morelant in calicoprinting, and in chemical investigrations as a de-oxidizing agent, acting in the mode already dewerjtad.

Protoclaloride of tin may atso be obtained by distilling a mixture of equal weights of ganulatel tin and hichloride of mereury, or of protochloride of mercury, or by transmitting hydrochlorice acid gas over tin heated in a glisss tube; in all these enses it is procured free from water, and is a grey solid, of a resinous lustre, which fuses below redness und sublimes at a ligh temperafure.

Jichloride of Tin may be prepared in several modes: first, by heating the protochloride in chlorine gas ; second, by dissolving the hydrated peroxide in hydrochloric neid ; third, by putting tin into the mixture of hydrochloric and nitric acid, called uque regio, whiel yields nascent elilorine; fourth, when a mixture of 1 part of tin with 4 parts of bichloride of mercury is distilled with a gentle heat, a colourless limpid liquid is obtained, which fumes strongly in moist air; this is the bichloride of tin, formerly known by the name of the fuming liquor of libavius; it boils at 218°. is rendered solid by the addition of one third of its weight of water, nud dissolves in a larcer cuantity; by the action of nlkalis it is deeomposed, hydrated peroxide of tin being. precipitated.

It consists of -

> Two equivalents of chlorine One equivalent of tin

Equivalent:
130
A solution of this salt under the name of nitromuriate of tin is extensively used in dyeing and calico-printing.

Sulphur and Tin combine in three proportions: the protosulphuret is prepared by adding to melted tin an equal weight of sulphur, and stiming the mixture till combination is effected; the product is to be powdered when cold, mixed with nu equal weight of sulphur, and thrown in small portions into a hot crucible and eventually heated to redness. Its properties are, that it is of a blnish-black colour, lias a metallic lustre, fuses at a red heat, and when cooled has a lamellated texture. When hydrosulphuric acld gas is passed into a solntion of protoclaloride of tin, a similar compouml is obtained; lydrochlorie acid dissolves protosulphuret of tin with the evolution of hydrosulphuric acid gas, a solution of the protochloride of tin being formed.

It is composed of-
One equivalent of sulphur
One cquivalent of tin
One equivalent of tin
58

Equivalent

74
Sesquisulphuret of Tin.-To prepare this, finely powdered protosulphuret of tin is to le mixed with a thirs of its weight of sulplur, and the mixture is to be lieated to moderate reduess mutil sulphur is no loncer volatilized. It has a deep greyish-y ellow colour, and when stronerly heated is reconverted to the state of protostlphuret; when heated in hydrochloric acid, hydrosulphuric gas is given out.

It is constituted of-
One and n half equivalent of sulphur 21
One equivalent of tin
Equivalent • 82
58

Bisulphuret of T'in may be prepared in different morles: when hydrosu]phuric acid or hydrosulphate of ammonia is added to usolution of bichloride of tin, a bulky precipitate of a dirty yellow colour is obtained ; this is hydrated bisulphuret of tin: in the dry way it is procured by heating in a refort twelve parts of tin amalgamated with six parts of mercury, rubbed up with seven parts of sulplaur and six of hydrochlorate of ammonia; the mereury facilitates the combination of the tin and snlphur, and the ammoniseal salt, by its evaporation, appears to prevent the femperafure beeoming so figh as to decompose the bisuljhuret of tin formed. This substanee, fomerly known to the aleliemists hy the name of Aurum musieum, or Mosaic gold, is in erystalline seales, nud sometimes in six-side plates, of a golden-yellow colour and metallice hustre. It is not soluble in any weid, but nascent chlorine, in the form of what was formerly called aqua regio, dissolves it ; it is soluble also in solution of potash nnd soda, forming wlat have been called sulpihur salls.

It eonsists of-

> Two equivalents of sulphur One equivalent of tin $\quad 32$

Equivalent
90
Phosphuret of Tin is readily formed by adding phosphorus to the melted metal ; it is ot a silvery-white colour, and soft enough to be cut with the knife. After fusion it crystallizes on cooling; when thrown upon a red-hot coal, the phosphorus burns. This compound does not appear to liave been accurately analyzed; but when pliosphuretted hydrogen is nade to act upon a solution ot protochloride of tin, a terphosphuret is formed, which is readily oxidized by the action of the air.

It consists of -

> Three equivalents of phospliorus One equivalent of tin

Equivalent
106
Iodides of Tin. - To prepare the protiodide, two parts of granulated tin are to be heated with five parts of iodine; the resulting iodide is a red translucent substance, very fusible, soluble in water, and volatile at a high temperature.

It consists of-
$\begin{array}{llr}\text { One equivalent of iodine } & \quad & 126 \\ \text { One equivalent of tin } & & 58\end{array}$
Equivalent • 184
The Pernodide of Tin is formed by dissolving the hydrated peroxide of tin, precipitated by an alkali from the solntion of the bichloride, in hydriodic acid; it forms erystals of a silky lustre, which are resolved by boiling water into peroxide of tin and hydriodie acid.

Seleniuret of Tin.- When tin is fused with selenium, they combine with the evolution of light. The eompound formed is a spongy mass, of a grey colour and metallic lustre; when heated, selenium is expelled and peroxide of tin remains.

Oxisalts of Tin.

Protonitrate of Tin is formed by dissolving either the metal or the protoxide in dilute nitric acid; a yellow unerystallizable solution is obtained; by exposure to the air it absorbs oxygen, and peroxide of tin is precipitated.

It is probably composed of -

$$
\begin{array}{ll}
\text { One equivalent of nitrie acid } & 54 \\
\text { One equivalent of protoxide of tin } & 66
\end{array}
$$

Equivalent

120
Pernitrate of Tin.- When tin is acted upon by strong nitric aeid, the peroxide formed remains entirely insoluble in the aeid; to procure the pemitrate it is best to cause the hydrated peroxide to dissolve in dilute nitric acid. The solution is colourless and yields no erystals; when diluted or heated, it is rendered turbid.

Sulphates of Tin.-By boiling excess of tin in sulphurie acid, a solution is obtained from which colourless acicular crystals of sulphate of tin are deposited. When, on the other hand, tin is boiled in excess of sulphuric acid, or hydrated peroxide of tin is dissolved in the acid, persulplate of tin is obtained in solution, but it eannot be made to crystallize.

Carbonate of Tin.-When carbonate of potash is added to protochloride of tin, a white precipitate is forned, which, supposing it to contain carbonic acid while noist, loses it during washing and drying; it appears therefore that a permanent carbonate of this metal is not attainable.

Phosphates of Tin.- When phosphate of soda is added to a solution of protochloride of tin, an insoluble white precipitate of protophosphate is obtained; the perphosphate, also an insoluble eolourless precipitate, may be protured by adding the phosphate of soda to a solution of perchloride of tin.

Having deseribed the principal and best known oxisalts of till, we shall mention the characters ot the salts of tin, as given by Dr. Thomson; they are as follows:-The protosalts of tin are white, and the solutions of them are usually eolourless; their taste is astringent and metallic, and highly disagreeable; when in solution, they rapidly absorb oxygen, and are converted into the corresponding persalts.

When a plate of lead or zine is put into a solution of tin, it is thrown down in the metallie state. Ferrocyanide
of potassiunı oceasions a white gelatinous preeipitate when dropped into these solutions, and sulpliuret of potassium oceasions a coffee-brown preeipitate in the salts of the protoxide of tin; but neither gallie acid nor infusion of galls occasions any precipitate. When chloride of gold is poured into solutions of protoxide of tin, a purple-coloured precipitate falls. A solution of potaslı throws down a white precipitate, which dissolves in excess of tle allali. If the solution be boiled, a black powder falls, which is metallic tin; while a compound of peroxide of tin and potash remains in solution. Anmmonia throws down a white precipitate, not soluble in excess of the alkali.

Alloys of Tin.

Most of the malleable metals are rendered brittle by alloying with tin; it combines readily with potassium and sodium, forming brilliant white alloys, which are less fusible than tin; the potassium alloy burns readily when it contains more than one-fifth of potassium. With arsenie it forms a metallic mass which is whiter, harder, and more sonorous than pure tin. With antiniony tin forms a white, hard, and sonorous alloy. Bismuth forms with tin an alloy which is more fusible than either of the metals separately, a mixture of equal weights melting at 212°; this compound is hard and brittle. Copper and tin form alloys which are well known and highly useful ; they are bell-metal and bronze. With mercury tin readily amalgamates, and the compound is used for silvering mirrors. With iron tin forms white compounds which are more or less fusible according to the proportion ot iron they contain; tinplate is of all the alloys of tin the most useful, and the preparation of this and of pewter are the most extensive applications of this very valuable metal.

TIN, MANUFACIURE OF. Under this head may be noticed, first, the processes required to bring tin into a marketable state, embraeing the smelting and refining of the metal ; seeondly, the manufacture of tin-ware, or of articles of tin-plate; and, thirdly, a few of the manufactures of eompound metals in which tin forms the principal ingredient. The process of Tivnive, or of eovering plates of iron, the inner surfaces of vessels of iron or copper, \&ce., with a thin coat of tin, forms the subject of a separate article.

Smelting and Refining of Tin; preparation of Block and Grain Tin.-The processes by whieh tillores are mechanieally separated from the grosser impurities which are usually found with them, and broken into tragments convenient for the subsequent operations, are briefly noticed in the artiele Minivg, vol. Xv., pp. 244 and 245 . After being thus reduced to a coarse powder, the ore is roasted or calcined in a reverberatory furnace, until it ceases to exhale arsenical vapours, by which, togetleer with some subsequent processes, it is further cleansed from the admixture of foreign matter and prepared for snelting. A very full account of all the processes conneeted with the preparation and smelting of tin-ore, as practised about sixty years since, is given in the 'Mineralogia Cormubiensis' of 'lryce, of Redruth; but, although most of the processes are still performed with little alteration, we have depended more for the following aecount of them upon an extensive article on 'Tin,' in Dr. Ure's recently published 'Dietionary of Arts, Manufactures, and Mines,' in which the previous opcrations of mining are also minutely described.

The ores of tin raised in Cornwall and Devonshire are always reduced, or smelted, within those counties, their exportation being prohibited; but this amangement is stated not to be injurious to private interests, because the vessels which bring the fuel from Wales for the smeltingfurnaces return 10 Swansea and Neath laden with eopper'ores. The smelting-works do not generally belong to the proprietors of the mines, but to other parties who purchase the ore from them, their value being determined by a kind of assay. When several bags of ore, of nearly uniform quality, are taken to the smelting-works, a small sample is taken from each, and these samples, after being blended together, are mixed with about four per cent. of ground coal, placed in an open earthen crucible, and heated in an air-furnace until the ore is reduced. As the furnace is made very hot before the erueible is introduced, the assay is finished in about a quarter of an hour ; after which the melted metal is poured into a mould, and the drossy substances which remain in the crucible are pounded
in a mortar, in ordet to seprate, and to add to the ingot, any minute gramules of tin remaining mung them. Dr. Ure observes that a more exact assiy woukd be obtained by fusing the ore, mixed with five jer eent. of ground glass of borms, in a erueible lined with had-mummed charconl. A gentle heat should be applies to the erueible during the first hour, a stronger heat during the seeond hour, and, finally, an intense heat for at quarter of an hour. This process brings out from four to five jer cent, more tin 1lian the other; hut it is stated that if las the ineunvenience of redueing the iton, if any be present, which may be readily ascertained by subsequent solntion in nitrie acid. 'This mode of assaying, it is admitted, would be too tedious for ordinarg adoption, as the smetter may have oceasion to try several sanyples in one day; and that flist deseribed, while imperfect in a chnmieal point of view, affords a similar result to that renlised by the smelter on a large scale.

The smelting of tin-ores is effected by two different methods, which may be briefly described by stating that in the first and most common, the ore, previously nixed with culm, is exposed to hent unon the hearth of a reverbemtory furnace, in which pit-coal is used as fuse; while in the second, which is applied merely to stream tin (the tin procured from stream-works), and which is followed in order to obtain tin of the finest quality, the ore is fused in a blast-furnace, ealled a blowing-house, in which woodchareoal is used for tuel.

In the former process the prepared ore, which is ealled schtich, is mixed with from. one-fiftls to one-righth of its weight of powdered anthracite, or culm, 10 which a little slaked lime or fluor-spar is sometimes added as a flux. These substances are earefully blended together, and a little water is added to the mixture to facilitate the operation of clarging the furnace, and to prevent the eharge from being blown away by the draft at the commencement of the smelting process. From twelve to sixfeen ewt. of the above mixture forms an ordinary charge; but in the smelting-furnaces at St. Austle, or Austel], in 'Cormwall, of whieh representations are given by Dr. Ure, each charge amounts to from fifteen to twenty-four cwt. The eharge is spread upon the concave hearth of the funace, and then the apertures by which it is inserted are elosed and lufed, and the furmace is gradually heated, and kept hot for six or cight hours, by which time the reduction of the ore is momplete. The gradual application of the required temperature is necessary to prevent the tin oxide from miting with the quartz of the gangue, or refuse portion of the ore, and forming a kind of enamel. When the fusion or reduction of the ore is considered to be finished, one of the apertures of the furnace is opened, and the melted mass is stired up to complete the separation of the tin from the seorice, which are then dmwn out by means of an iron rake. These seorim consist principally of masses of refuse matter from which no more tin can be profitably extracted, and which are therefore immediately thrown away; but among them are pieces which yet retain a considerable guantity of tin, and which are separated and reserved for further processes. So soon as these refuse matters are removed, a channel is opened, by which the melted tin flows from the hearth into a large vessel ealled the basin of reception, where it is allowed to rest for some time, in order that the impurities yet remaining with the metal may separate, by their diflerent specific gravities. When it has sellled, the tin is ladled into moulds, so as to form it into large blocks or ingots.

The ingots produced by the above process frequently contain portions of iron, copper, arsenie, sund tungsten, together with small yuantities of sulphurets and arseniurets that have escaped decomposition, unreduced oxide of tin, and earthy matters which have not passed ofl with the georie. fo remove these the tin is snbseguently exposed to the process of refining, which conmences by placing the blocks or ingots on the henth of a second reverberatory furnace, simitar to that used for reducing the ore, and applyint a moderate heat, which catuses the fin to melt, and to flow into a basin provided for it, leavine upon the hearth a residunm which consists of a very ferruginous alloy. Fresla blocks are then placed in the furnaee, withont removing the unmelted remains of the former, until about five tons of tin have flowed into the basin. This part of the process is termed a liquation, and is followed by the actual refining, which is usuatly effected by plung-
ing bitlefs of green wood info the melted tin in the refining bain. by means of an apparatus crected by it. The heat oceasions the disengagement of considerable volumes of gas from the wood, and thus n kind of ebullition is produced in the tin, which eauses the lighter impuritie's to rise to the surface in \& frothy form, ind the hetvier to fall to the bottom. The froth or scum, which consists chiefly of the oxides of tin and foreign mefals, is skimmed oif and returned into the furmace; and when the tin is suffieiently boiled, the green wood is lifted ont, and the whole is allowed fo settle, in doing which the purest tin rioes to the lop, Inat with a trifintr adnixture of foreign metals remains in the middle, while the fonlest portion sinhs to the bottom. When the mass becomes so cool that no further separation can take place, the tin is agnin ladled into monds; the quality of the blocks thas produeed varying accorving to the order in which the moulds are filled. The blocks formed from the lowest part of the tin are usually so impure as to need a repetition of the refinine proeess. The operation as ubove described reguires five or six hours; of whicll the first is oceupied in filling the basin, the three following in boiling the tin with the billets of wood, and the remainmg time in subsidence. A similar effeet is sometimes produeed by an operation called tossing, in which, instead of the cbultition produced by the green wood, the mass of melted tin is agitnted by a workman repeatedly lifting a quantity of tin in a ladle, and letting it fall into the basin from a considerable height. After contimuing this agrifation for some tince, the surtace is slimmed earefully; and if the upper part of the tin be yet too impure for the market, the refining is renclered more perfeet by liecping the metal in a fused state, without agitation, until the impurities separate spontancously. After refining, the tin is cast into blocks of about three ewt. each. The moulds used for this purnose are frequently made of granife; and the tin thus prepared is sold as block tin. From in vely remote period, alinost to the present tinne, a duty wis paid upon all tin raised in Comwiall to offieers appointed by the duehy, who reguived all blocks, before being sent to nurkel, to be taken to them for the purpose of being coined, or marked with a distinguishing slamp. The mode of collecting the duty on tin was very ineonrenient, ns it required all tin to be const into blocks for coining, although it might have to be subsequently re-cast into some other form for sale in foreign nuarkets; besides which the miner or smelter had to bear the expense of sencling it to one of the places appointed for coining, and the inconvenience of watiner for one of the periodieal coinages, which were usually three months apart. These duties were abolished by 1 \& 2 Vict., eaj). 120, which settles a prepetual amuity on the duchy of Cornwall equal to the average produce of the tim duties for ten years previous to its coming into opreration.

It lias been stated that the richer portion of the seorise left by the process of smelting is reserved for further operations. Such as connain small grains of tin among the slag or refuse are taken 10 a stamping-mill, and broken and washed in a similar manuer to the ore; while those whieh contain mueh tin are re-snmelted without any previous preparation. From these scoris, which are called prillion,* an inferior kind of tin is produeed by a second smelling. The inferiority of this product may be readity imagined, observes Dr. Ure, since the metal which forms the granulations antong the seorize is what, beang less fusible than the pure tin, solidified quiekly, and could not flow off into the metallic bath, or basin of reception. The dross or residuum of the refining furnace is fused by inereasing the fise after the removal of the refined 1 in, and is then sum out into a separate basin, in which it is atlowed to sett'e. The apper poition is then cast into moulds as impunc tin, which needs thecond refining, and the interior pat of the mixture becomes deposited on the bottom and sides al the vessel in the form of a brittle white alloy, with a eryatalline facture, which contuins so large a jroportion ol foreign mefals that no use is made of it.

The average quality of the tin-ore, th prepared for the smelting-lurnaces, is such that 20 parts of it yicled from $12 \frac{1}{2}$ fo 13 parts of metallic in , or from $62 \frac{1}{2}$ to (is) pes cent., and the quantity of eoal required for producing onc ton of

- So Dr. Vre; Imt Pryee, in his ' Mhemalaghis Cornnbleavin,' uses the nord

 Ile applifes the natap prill w corpger io stmilar state.
tin is about a ton and three-quarters. Respeeting the time when this eeonomieal fuel was substituted for woodcharcoal in the smelting of tin-ores, authorities are at variance. Pryee, in his 'Mineralogia Comubiensis,' p. 282, says that "Necessity at last suggested the introduction of pit-coal for the smelting of tin-ore, and, among others, to Sir Bevil Granville, of Stow, in this county (Cornwall), temp. Car. I., who made several experiments, though without success;' and he adds that the 'effectual smelting of tin-ore with pit-coal' did not take place till the second year of Queen Anne, 'when a Mr. Liddell, with whom Mr. Moult, a noted chemist, was concemed, obtained her majesty's patent for smelting block tin with fossil coal in iron furnaces.' "The invention of reverberatory furmaces built with brick, stone, sand, lime, and clay, soon followed this diseovery ; the form of which,' he states, writing about 1778, "has admitted little improvement to the present time.' Holland, after observing that the commencement of this important substitution is generally supposed to have been about 1680 , states that the question as to the diseovery of the fitness of pit-coal for the purpose lies between Pryce's account, as above cited, and that of Beeher (whose name he incorrectly gives Beecher), an ingenious German who, in consequence of persecutions in his own country, visited England in the reign of Charles II., and introduced scveral improvements in the art of mining; and he quotes a passage, but without referring to his authority, in whieh Becher claims for himself the credit of the introduction of coal for smelting tin. Whatever may have been the preeise time or manner of this improvement, its importance is indisputable; and such is the effect of the slpperior ceonomy of this and other metallurgic operations as performed in England, that experiment has shown the possibility of bringing tin-ore from the Malay countries to this island for the purpose of smelting, and sending the tin back to the East at a lower price than it can be produeed for on the spot.
The smelting or reduction of tin by the blast-furnace, with wood-charcoal, is practised on a limited seale for the production of tin of the greatest possible purity. The finest ores supplicd by stream-works, and the finer tin sands, are selceted for this operation, and as these are free from many of the impurities found in other ores, they do not requirc calcination. The works in which blast-furnaces are cmployed are commonly ealled blowing-houses. The furmaces uscd are about six teet high, from the coneave hearth to the throat, or commeneement of the long narrow climney, whiel, after proeeeding for some distance in an oblique dircetion, contains a chamber in which the metallic dust earried off by the blast is deposited. The fumace is lined with a vertical cylinder of cast-iron, coated internally with loam; and it has an opening called the tuycire near the bottom, by whieh the blast is introduced, either from large bellows or from cylinders. No substanec is added to the ore and ehareoal, unlcss it be the residuary inatter of a previous smelting; and the proportion of charcoal consumed is about one ton and six-tenths for every ton of tin produeed. The melted tin runs from the furnace into an open basin, whence it is run off into a large vessel in which it is allowed to settle. The seorix which run with the metal into the basin of reception are slimmed off, and separated into two portions, one consisting of such as retain tin oxide, and the other of such as have no oxide, but contain in in a granulated state. The subsequent operations of refining by allowing the mass of metal to rest, and then submitting the upper and purer portion to the refining basin, and re-melting the lower part, and of agitating the tin by the green-wood ebullition, are much the same as with bloek tin prepared in a reverbcratory furnace with pit-coal. In order to convert the blocks of tin produecd by the blast-furnace process into the form known as grain tin, or, according to the more appropriate French term, etain en larmes, 'tears of tin,' they are heated until they become brittle, and made to fall from a considerable height in a semi-fluid state, thus producing an agglomerated mass of elongated grains.
l'rom a comparison of the results of the two methods of smelting above described, Dr. Ure shows that the reverberatory furnace with pit-coal oecasions less loss of metal than the blast-furnaee, and is by far the most ceonomical. To produce a ton of nectal by the former process requires, as before stated, a ton and three-quarters of pit-coal, while a ton and six-tenths of wood-chareoal is eonsumed in pro-
dueing the like quantity of metal by the blast-furnaee; and as one ton of wood-charcoal is about equivalent, in ealorific effect, to two tons of pit-coal, the difference in favour of the reverberatory plan is very great. The supcrior quality of the tin produeed by the other process is attributable partly to the greater purity of the fucl, and partly to the finer quality of the ore selected for the purpose.
Manufacture of Tin-ware.-It is unneeessary here to enumerate the various purposes to which tin is applied in the useful arts, either as an ingredient in many useful alloys, for whieh its ready fusibility, its cleanliness, and its beautiful appearanee render it especially valuablc, or as the basis of chemical eompounds uscd in dyeing, \&e. It is rarely employed alone in our metalline manufactures, but when laid in a thin coat upon the surface of sheet-iron by the process of Tinning, it produces a material of such extensive use in the manufacture of eulinary and other articles, that a morc detailed notice may be given. Holland observes that in this country the greater portion of the tin uscd in the manufacture of artieles composed exclusivcly of that metal is that which is expanded by rolling or hammering, or by a combination of the two operations into leares or sheets barely one-thousandth part of an inch in thickness, under the name of tin-foil. This is the substance which is laid upon the back of glass mirrors, and there amalgamated with mereury, so as to form what is called the silvering.

The art of tin-plate working, or of forming shects of tinned iron into an almost endless variety of useful vessels and utensils, depends more, observes the author just cited, on the manual dexterity of the workman than upon any peeuliarity in the tools which he requires, whieh are few and simple, consisting of bench and hand-shears, mallets and hammers, stecl heads and wooden blocks, solderingiron and swages. In the formation of a vessel the first operation is to cut the plate to the proper size and form with shears; and when the dimensions of the article require it, to join them together, which is done either by simply laying the edge of one plate over that of the other, and then soldering them together, or by folding the edges together with laps, and then soldering them. Similar joints aro required when gores or other pieecs are to be inserted, and also at the junction by which a cylinder is elosed in. The usual method of forming laps, bends, or folds for this or other purposes is to lay the plate over the edge of the bench, and to bend it by repeated strokes with a hammer; but as it is impossible by this means to make the bend as even, or at as true an angle as is desirable, Mr. J. Basset, of Birmingham, contrived a simple and effectual apparatus for the purpose, for which he was rewarded by the Society of Arts in 1831. An cnd view of this apparatus is given in the subjoined cut, in which a a represcrits a metal bloek screwed down firmly to a beneh, and having a longitudinal cylindrieal cavity, within which is laid a long iron cylinder, the end of whieh is distinguished in the eut by a tint. The

diameter of the cylinder is such that it will turn freely upon its axis within the cavity in which it lies, and whiel has a slit or opening about half an inch wide along the top of the cylinder at b. A squared axis projeets from each end of the cylinder to receive a handle $c c$, which, when the instrument is at rest, lies in an horizontal position, and is supported by the bloek d. These handles are not fixed to the square axes of the eylinder, but are capable of being
P. C., No. 15.17.

Vot. XXIV, $-3 \mathbf{P}$
taken off and put on again in any position of the eylinder, the length of which slould he cqual to that of the longest laps or bends. Longitudinal euts, wide enough to receive the eilge of a tin-plate, are masle in the cylinder from the circunference towards the eentre to any required depth or at any required angle, as at b, e, and f. In oriler to make a right-angled lap, sucl as is shown in the marginal figure G, the eylinder is turned into the position shown in the figure, with one of the radial crits onder the longitudinal oprening in the block a a ; the handles are put on, and the edge of the tin-plate g is inserted in the upperniost slit in the cylinder. The handles are then moved in the direction indieated by the arrow and dotted lines, and the plate is forced to assume the position of the dotted lines g^{t}, receiving at the same time the required lap or bend. By returning the handles towards their original position, the plate may be easily remored. If, in addition to the making of the lap, the plate is to be bent so as to forma a loollow cylinder or tube, the motion of the handles is continued until the cylinder is turned completely round, by which means the plate will be wrapped or rolled round it. The cavity in the block a a is made large enough to reeeive the eylinder with this addition to its thiekness ; and if this operation be intended, one side or cheek of the carity is made moreable on a pivot, so that it may be opened for the purpose of lining out the eylinder. The pipe is subsequently removed from the cylinder by detaching the handles and sliding it of longitudinelly. Appended to the deseription of this apparatus, in the Society's ' Transactions,' is an account of a method of bending pipes of tin, copper, or brass, by filling them with hard solder, and pasing them through two thick rings of the same substance, one of which is fixed in a vice or work bench, while the other is attrehed to a handle of such length as to give the operator sufficient leverage for bending the pipe in that portion which intervenes between the rings. As the solder is sofer than the material of the pipe, the rings will give way to any dangerous pressure sooner than the pipe itseli. When the required eurvature is obtained, the solder is melted from the inside of the pipe. It is observed that in performing this operation upon brass pipes, they should be previously tinned on the inner surface, in order to secure a perfect union between the tube and the core of solder.

Aner a tin vessel has been rounded upon a block or mandril, by striking it with in wooden mallet, and the seams finished as above deseribed, all its exterior edlyes are strengthened by bending a thick iron wire into the proper form, applying it to what would otherwise he the ravy edges of the metal, and dexterously folding them over it with a hammer. By this means the appearance of the artieles is improved, and their durability and strength are greatly inereased. A superior kind of tin-ware, commonly known as block-tin, is carefully frished by beating or planislling with a polished stect hammer upon a netal stake; by which means the surface, which otherwise appears somewhat wavy; is made very smooth and silvery, especially after it has been polished with dry whiting. It is prineipally in the production of block-tin wares that suraging is resorted to as a ready means of producing grooved or ridged borders or other embossed ornaments. This process consists in striking the metal between two steel dies or swages, the faces of which bear the desired pattern, and are made counterparts to each other. The mouldings round the edges of dish-covers and other similar artieles are produced in this way; the swages embossing the pattern in shoort lengths, and the artiele being gradually turned round until every part of its circumference has been submitted to their action. It was formerly usual to make such mouldings separately for large artieles, and to attach them with solder; and Molland states that the practice of suraging them was introduced ly Mr. King, a tinman in Holborn, who execulted very hold and handsome mouldings by placing the outside of the artiele upon a coneaye bed of lead, having a hollow line or groove sunk into it, into which the rim of the cover or vessel was forced hy the application of a huge hammer on the inner side, until the required degree of projection was obtained. The borler way then completed by the application of sivages, as before descrihed. The lower die is usually fixed in an appuratus 10 which moveable guides are attached to insure the correct position of the article to be operated on, and the upper is made in the form of a hammer, the handle
of which is pivoled so as to instre its descent in precisely the right position. Sometimes the regulsite power is applied ly simply working the upper swage or swage-hammer itaerf; limt in other cases the hend of the swage-liammer is struck with a mallet. Very many ormamental articles are produced by embosink or stamping tin-plate, in the anme manner as other metallic strects, with a nypress or other machinery. Many cleap eoffin-plates are manufetured nt Birminyham in this way; and these and similar artieles are sometimes lacquered, painted, or japanned. A very beantiful method of omanienting fin wares ly producing a crystallized appearanec on the surface was much practised a few yeary since, under the name of moirce metalique, or erystallized tin-plate. It consists in applying diluted nitro-muriatie acid to the surface of the plate while slighty hented, and then washing with water, and eovering with a lacquer varnish, without which the lustre of the erystalline a ppearance is apeedily lost hy the aetion of the air. Dr. Ure observes that it would seem that the aeid merely lays bare the crystalline strueture really present on every sheet, lut maskel lyy a film of redundant tin;' and he gives the following directions for performing the process:- The tin-plate, sliphtly heated, is to be placed over a tub of water, and to have its surface rubbed with a sponge dipped in a liquor eomposed of four parts of aquafortis and two of distilled water, holding one part of common salt or sal-ammoniac in solution. When the erystalline spangles appear to be thoroughly liroucht out, the plate should be immersed in water, washed with a feather or a little cotton (taking care not to rub so hard as to disturb the erystallized film of tin whieh constitutes the feathered surface), dricd with a gentle heat, and immediately coated with laequer. If the whole surface be not plunged at once in cold water, But partially cooled by sprinkling cold water upon it, the erystallization will be rariegated with large and small figures. : Similar results will be obtained,' he adds, ' by blowing cold air through a pipe on the timned surface, while it is just passing from the firsed to the solid state; or a variety of delineations may be traced by playing over the surface of the plate with the pointed flame of a blow-pipe.' (Dict. of Arts, p. 863 and pp. 1233, 1254.) By using coloured vairnislies very beautiful boxes and other ornamental artieles nay be produced by this process.

Manufacture of Tin Alloys.-Britunnic Metal.-Tin forms the principal ingredient in various kinds of pewter and other white inetallic alloys, which are manufnctured into doniestie utensils by casting, stanping, and other processes in which much ingenuity is displayed. Holland gives an interesting accomint of the manufacture of teapots and similar articles of Britannia metal, which may be briefly noticed here. This manufneture was commenced on a large scale at Sheffield, where it is still carried on, about the year 1 Tr0, ly two individuals of the names of Jessop and Hancock ; and the brillianey, lightness, and cheapness of the wares, which, when well made, greally resemble silver, have secured for them a very extensive sale in this and other comitries. The extreme facility with which such alloys may be worked into any shape leads however to the manufarture of many artieles of so fimsy a clanacter that they speedily lose their form and beauly. Tarious authorities differ greatly as to the composition of Britannia metal, limt the proportions given by Holland are $3+$ cwts. of the best block-tin, 28 lbs. of martial regulus of antimony; 8 llss . of copper, and 8 lhs. of brass. The lin is first melterl and raised to a red heat in a stout enst-iron pot, and then the antimony, copper, and brass are suecessively poured into it from the crucibles in which they have been meltect; the mass being stirred during the operation, to complete the mixture. The fusion being completed by the continued application of fire minder the pot, the metal is removed ly ladles to east-iron hoxes or motilds, in which it is cast into slabs fifteen inches long, six inches wide, and one inch thick; or it for casting small erticles, into smaller moulds to form it into convenient ingots. The thiek slabs of metal are then extended by passing them between polished steel rollers until they are redoced to the required degree of tenuity. This operation is performed without any annealing or soffening; and the edges of the sheet beeome a little shattered or cracked by it.

Although most artieles manufactured in silver are also produced in Britannia metal, and in other alloys of similkr
character, the principal consumption is in candlesticks, tea-pots, coffee-biggins, and other vessels for containing liquids. The feet of candlesticks, the bodies of tea-pots, and other articles containing embossed work, are stamped between dies; and when the shape of the article will not allow it to be stamped in one piece, as in the case of a cylindrical vessel with raised work upon the sides, it is sometimes stamped in halves, which are subsequently fitted and soldered together. Articles approaching the globular form may in like manner be stamped in three or more pieces. In stamping brass, silver, and plated metal the dies must in almost every case be of stcel, and the patterns upon them are executed at a very great expense, but in the manufacture of Britannia metal a cheaper process is followed. Plaster casts are produced of the required patterns, either from original models or designs, or from manufactured articles of silver, and from these are made moulds or dies of fine hard pig-iron, which, with a very little finishing, form dics fit for stamping so tractable a metal. When very thin, it may even be stamped in dies of brass or of spoon-metal.

The great facility with which this alloy may be moulded to any required form is illustrated by the operation termed spinning, by which the bndies of tea-pots with concentric circular swells are usually formed. A wooden chuck or model of so much of the intended vessel as may be slipped off the chuck when completed is fixed in a lathe worked by steam-power, and to this is applied a circular piece of sheet-metal cut to the proper size with shears. This is pressed against the centre of the chuck by a circular piece of wood with a blunt centre-pin; and as the whole revolves rapidly, the workman bends the plate over the model-cluck by pressing it with tools of hard wood or polished stcel until it is brought into precisely the same form. The tools are applied at first very gently, so as to avoid crumpling or lacerating the metal; and such is the dexterity accquired lyy some workmen, that Holland states that some individuals can spin twenty dozen of these teapot bodies in a day. The form is perfected upon a second chuck; and in some cases articles are partially formed by a stroke in a dic previous to the spinning. Spherical articlos are, as in the case of stamping with dies, usually formed in two or more parts; but in some instances they are made to overlap the model, which is then composed of several segments, that may be taken out of the finished vessel by removing a centre-piece, in a similar manner to a boot-last.

Many small vessels, spoons, and other srticles aro cast in an alloy somewhat harder than that which is rolled into sheets. The facility with which Britannia metal may be nun into any shape and cut in the lathe, as for turning measures and small vessels previously formed by casting, is a great recommendation to the manufacturer. Articles of this metal are cleaned from the oil, rosin, and other impurities acquired during their formation, by boiling in water containing sweet soap; after which they are polished, cither by hand, or more commonly by the buff and hrusls set in motlon by a steam-engine. The buff is a solid cylinder of wood, rescmbling a grindstone in form, the rim or periphery of which is covered with buff leather dressed with finc sand from the bed of the river Trent, which, after being dried and sifted, is mixed with oil. The brush is a similar but smaller circle of wood set all round with four or five rows of bristles; it, as well as the buff, is dressed with sand and oil, and afterwards for finishing with powdered rotten-stone and oil. The brush is used gencrally for such articles as from their form camot be applied to the buff, and also for all stamped or embossed work. After buffing and brushing, the articles are boiled in a solution of pearlash, and finally hand-brushed and hand-polished by an application of soft soap, a little oil, and powdered rotten-stonc. This operation is usually performed by females, as it is found that no instrument can supply an effectual substitnte for a soft hand, which is one of the first requisites inquired into when persons apply for work in this department.
(Ure's Dictionary of Arts, \&ec.; Manufactures in Metal (by Mr. IIolland), in Iardner's Cabinet Cyclopedia, vol. iiii.; Transactions of the Society of Arts, vol. xlviii., pp. 241-248.)

TIN TRADE. The history of the trade in tin commences with the very earlicst records of commerelal interconse with the British islands. [Cassirerioes; and Picl.]

History of England, vol. i., pp. 91-05.] We shall only notice this trade as it has existed within the last two centuries. Davenant gives some interesting information concerning it soon after the middle of the seventeenth century. In 1663 our exports of tin to all foreign countries amounted to 153 tons; in 1669 to 240 tons; in the three years of peace, from 1698 to 1700, on an average to 1297 tons; and in the ten years of war, from 1700 to 1710 , on an average to 1094 tons. In these last ten years the annual purchases of the Dutch amounted to 300 tons, of the estimated value of 21,374l. Davenant accounts for the great increase in the exportation as follows :-'All our neighbours,' says he, 'as well as ourselves, have increased in the luxurious way of living; such who heretofore were content with pewter are now served in plate; and such as made use of trenchers, wooden platters, and earthenware, will now have pewter; all which is visible within forty years, and has occasioned this great call of a commodity almost peculiar to us.' But the produce of the mines more than kept pace with the increased demand; and when Davenant wrote, Queen Anne had between 4000 and 5000 tons of tin on hand, a quantity equal to four or five years' consumption. 'As the case stands at present,' he adds, "Holland is the great magazine for tin: the necessities of such as have it upon their hands, either in merchandize or security, drive it thither, and the Dutch set what price they please upon this rich product of England, to the damage of the public.' He proposed that a thousand tons of the dead stock should be coined into tin half-pence and farthings. The produce of the mines went on increasing, and the accumulation to which Davenant alludes is only about a year's produce of the inines at present.

In the 'Journal of the Statistical Society of London' (vol. ii., part iv.), therc is a valuable paper, by Joseph Carme, Esq., on the 'Statisties of the Tin-Mines in Cornwall, and of the Consumption of Tin in Great Britain,' from which we borrow some of the following statements. From 1750 to 1780 the produce of the mines varied from 2273 tons, the lowest amount, to 3005 tons, which was the greatest quantity in any one year: the average production for this period was 2757 tons, and the average price 64 s , 6 d . per civt. From 1789 to 1816 the annual average quanity was 287.5 tons, at 79 s .9 d . per cwt. From 1817 to 1837 inclusive, the annual average was 4211 tons, and the average price paid to the tinner was 73 s. the cwt. In 1787 Banca tin was imported into this country for the first time, and the price of Cornish tin soon fcll to 58s. the cwt., and would have declined still further if a new market had not been opened. It appears that the purser of an Indiamon, who took some in from the Molucea islands to China in 1787 , found the speculation so profitable that the East India Company were induced to direct their attention to the trade, and the Company shortly entered into arrangements with the Cornish tinners for an annual supply. The purchases of the Company were made at low prices, but the tinnets were indemnified by the artificial searcity which raised prices in the home market. At first the Company paid only 681. 13s. 4d. the ton, delivered on board in London; in 1792 they gave 716 . ; and on the renewal of the Company's charter they agreed to purchase 800 tons annually at 750 ., and offered to take half as much more at 68l. 13s. 4 d . In 1809 the difference between the prices paid by the Company and the prices in the home market was so great that the tinners retused to supply the Company, and their exports ceased; but in 1811 they agreed to pay 78l., and in 1812, 80l. per ton. The connection finally ceased in 1817 , as the supply of the home market had beconie more profitable.
The gradual increase in the consumption of tin in Great Britain is shown in the following table: -

Until 1838 all the Cornish tin paid a duty of 4 s. per 120 lbs. to the duchy of Cornwall, which, with the fees, was equivalent to $5 s$. This duty is now abolished. About $10,000 \mathrm{men}$, women, and children are supposed to be employed in the Cornish mires.
From 1783 to 1790 the proportion of British tinexported
was 7 -10the of the produec of the mines; in the next ten yeare it was 3 -hthe; from 1810 to 1830 one half; from 1520 to 1830 it had diminished to $2-5$ the ; and from 1830 to 1837 to 1-vth. The quantity of foreign tin imported, the greater part of which is intended for re-exportation, sinee 1815, was as follows:-From 1815 to 1831 the annual average quantity imported was 213 tons; exported annually during the same period 204 tons. From 1831 to 1838 the imports of foreign tin averaged annually $13 \geqslant 7$ tons, and the exports were 1482 tons. This foreign tin can be supplied cheaper in Europe and Ameriea than the Cornish tin. In 1841 the imports were 29,434 ewt., or 1421 tons, of whieh $17,915 \mathrm{cwt}$. were from Singapore, $\mathbf{6 1 9 7}$ ewt. from Java, and 3324 ewt. from the Enst IndiaCompany's territories, In the same year the exports of foreign tin were 25,314 ewt., or 1207 toms, prineipally to the United States, Holland, Russia, France, Italy, and Germany. The exports of British tin in 1841 were 1207 tons. France took 8905 ewt.; Turkey, 4061 ewt. ; Russia, 2780 ewt. ; the United States, 1753 ewt. ; and Italy, 1320 cwt. ; being more than three-fourths of the whole. In the Custom-House records the quantity of tin manufactures exported is not distinguished, but in 1840 the exports of 'tin and pewter wares and tin plate' were valued at 360,8161 . Under the tariff of 1812 (5 \& 6 Viet., e. 47), foreign tin-ore will be admissible for the first time, on paying a duty, which is 10 s . the ton if from a British possession, and if of a foreign, 50 s. But as none of the British possessions contain tin likely to be brought into the English market, the real duty is 50 s. The former duty of 10 s. the ewt. was prohibitory. The quantity of tin annually produced in Banca is estimated at $: 2700$ tons, and in the Malayan peninsula about 1300 tons; and these are the parts from which a supply of ore, if any, is likely to be reeeived.

TIN (Medical Properties of). It eannot be confidently asserted that tin in a metallie state has no influence over the human system, as many respeetable writers nffirm that tin-filings are deeidedly anthelmintie, and that this is not owing to mechnnieal irritation of the worms causing them to be detached from the surface of the intestines; it is stated that water in which tin has been boiled, and wine digested in a tin ressel, are also anthehnintic. Others, denying to tin anyiuherent power over worms, have attributed these effects to the presence of a sinall portion of arsenic. Be this as it may, it is a very crude method of treating worms to exhibit such a material as tin-filings. [Anthelmivics.] Even oxide of tin is of doubthu] efficacy, as might be expeeted from its extreme insolubility. Its powers may be heightened by oceasionally meeting with aeids in the stomach, suel as the hydrochlonce, nnd therewith forming a chloride. Two courpounds of chlurine with tin are known, one the protochloride, the other the bichloride. Both of these are exceedingly soluble; the latter so much so that it can with difficulty be kept in the solid state, and more frequently neems in the liquid state, and is then called the spiritus furnans Libavii, or butter of tin. The former is much used by dyers, among whom, when in the solid state, it is called sall of tim, and when liquid, spirit of tin. In the former condition, it has sometimes been mistaken for common salt : it has thus been the source of poisoning, though it is not very active when introduced into the stomaeh. A few grains of it injected into the jugular yein prove rapidly fatal to doms. In ease of any of it being swallowed, emeties or the stomach-pump, demuleent drinks, and, if necessary, moderate venesection, may be employed, followed after a time by vital stimulants. It has been thought by some to be dangerous to allow fluids containing acids, sueh as the weak acid wines, or eyder, or even fatty, saline, or nllnnminous substances, to remain long in tin-vessels, as an injurious action of these on the till is supposed to occur. If any serious effects have ever followed from sueh a eause, it is most likely that these vessels were only coated superfieially with tin, which being rubbed off, exposed the more potent metal beneath to the solvent power of these substanees. It is there fore prudent to examine from time to time all eopper and other vessels to see that the finmng is entire.

TIN PLATE. [Tinsino.]
TIN PYRITESE, [TIN.].
TINACTOLR, l'rince Maximilian's name for one of the Ant-Thnshes (Fornicarince, G. 12. Gray). This genus is the Orypyga, Menetr. (1831), and belongs to My iothera, Cuv., and Thamnophilus, V'ieill.

Example, Tinactor fuscus, Guer. Mag. de Zoul., 1. 10. [Turusues.]
TINAMCD.A. [Tinamou:]
TINAMOTLS, Mr. Vigors's nume for a genus of binds (Eindromia, D'Orb. and J. Geoffr.). [Tivanou.]
TINAMOU (Tinamus, Lath., Tetroo, Linn., Tridactylus, Lacép., Crypturus, 111., Peaus, Spix), a genus of birds plaed by Cuvier, Mr. Vigors, and Mr. Swainson among the Terraoniu.s, in which artiele the account given ly the last-mentioned zoologist of their habits and utility to man will be found.
The Prinee of Canino (Birds of Lurope and North America) has a family Crypluridee, noticed in the article T'sruanids: (vol. xxiv., p. 255), and, we presume, woukd there place the Tinamous.

Mr. G. R. Gray nakes the Tinamidec, the sixth family of the Gullines, necording to his arrangement, consist of the following subfamilies and genera:-

> Subfin. 1. Turncinte.

Genus :-Turuix, Boun. Subram. 2. Tinaminar.
Genera:-Tinamus, Lath.; Nothuru, Wagl.; Rhynchotus, Spix; Tinumotis, Vig.
This family is placed by Mr. G. R. Giray (lor, rit.) next to the Chrovidider, and at the end of the Gallinee, the next order to which is formed by the Siruthiones.
We proceed to illustrate the present naticle by one of the Tinamons properly so called.
Generic Character of Tinamus.-Bill moderate, depressed, broader than high, tip obtuse, back broad. Nostrils lateral, medial, ovate, expanded, and open. Feet four-toed, cleft ; hind toe very short. Tail none, or very short, concealed by the runip-feathers. Wings shori. (Sw.)

Example, Tinamus Thtaupa, Var.
Description. - Tinamou with the body above dusk;rufous, immaculate. Ilead and neck dusky-black; clin white; throut, neck, and breast einereous; hody beneath whitish; rent and flanks rufous-black, the feathers margined with white. Bill and irides red. Total length is inches. (Sw.)

Mr. Swainson, in his work on the 'Classification of Binds,' expresses his opinion that the Tinamous probably represent the group of Bustards in the New World ['1emraovid.x, vol. xxiv., p. 255]; but in a previous publication (Zoological Illusirations, lst series), he says that they there scem to hold the same scale in creation which the partridges do in the Old Continent.' He refers, in the book last mentioned, to the work of M. Tenminek (Pig. et Gall.), who, he obscrves, has deseribed twelve speeies; and he states that the bird under consideration is the smallest of its family. He found it only once in the interior of Bahia, where, he says, it must be very rare, or frequent in partieular districts only. Though differing in some respects from M. Temminck's deseription, he is itielined to consider it only a variety.

Mr. Darwin. in his graphie description of the country around Maldonado, when he had reached the farthest
point which he was anxious to examine, says:- The country wore the same aspect, till at last the fine green turf became morc wearisome than a dusty turnpike-road. We everywhere saw great numbers of partridges (Tinamus rufoscens). These birds do not go in coveys, nor do they conceal themselves like the English kind. It appears a very silly bird. A man on horseback, by riding round and round in a circle, or rather in a spire, so as to approaeh closer each time, may knock on the head as many as he pleases. The more common method is to catch them with a running noose or little lazo, made of the stem of an ostrich's feather, fastened to the end of a long stick. A boy on a quiet old horse will frequently thus catch thirty or forty in a day. The flesh of this bird, when cooked, is delicately white. (Journal of Researches in the Countries visited by H. M. S. Beagle.

TINCA, a genus of fishes founded by Cuvier, and which has for type the common tench, Cyprinus tinca, Linn.; Tinca vulguris, Cuv. This fish belongs to the carp family (Cyprinidre), and is separated generically on account of the small size of the scales with which the body is covered, combined with the small antcro-posterior extent of the dorsal and anal fins, both of which are destitutc of the anterior bony spine or any such as are observable in some allied fishes-as in the dorsal fin of the barbel for instance ; the barbules to the mouth are very small.

The tench, obscrves Mr. Yarrell, inhabits most of the lakes of the European continent. In this country, though frequent in ornamental water and ponds, it is but sparingly found in the generality of our rivers. There is some doubt whether, like the carp, its origin be not foreign, and whether those rivers that can now boast of it are not indebted for it to the accidental escape of fish from the preserved waters of neighbouring gentlemen. The rivers it is mostly in are those which are slow and deep, and in such situations it docs not appear to be so prolific as in ponds. Cuvier obscrves that the tench inhabits by preference stagnant waters. This is in aceordance with the observations of Mr. Yarrell, and, rivers being an unnatural habitat for the fish, will account for their being less prolific in such situations.
The author of the interesting work on British Fishes, just mentioned, quotes the following account illustrative of the habits of the tench and of its tenacity of life: it is from Daniel's 'Rural Sports:'-A piece of water which had been ordered to be filled up, and into which wood and rubbish hatl been thrown for years, was directed to be cleared out. Persons were accordingly employed; and, almost choked up by weeds and mud, so little water renained, that no person expected to see any fish, excepting \AA few eels, yet nearly two hundred brace of tench of all sizes, and as many perch, werc found. After the pond was thought to be quite free, under some roots there seemed to be au animal which was conjectured to be an otter; the place was surrounded, and on opening an entrance among the roots, a tench was found of most singular form, having literally assumed the shape of the hole, in which he had of course for many years been confined. His length from eye to fork was thirty-three inches; his circumference, almost to the tail, was twenty-seven inches: his weight eleven pounds nine ounces and a quarter; the colour was also singular, his belly being that of a char, or vermilion. This extraordinary fish, after having been inspected by many gentlemen, was carefully put into a pond, and at the time the aceount was written, twelve months afterwards, was alive and well.'

Experiments have shown that a tencl is able to breathe when the quantity of oxygen is reduced to a firc-thousandth part of the bulk of the water: ordinary river water generally containing one per cent. of oxygen.

The general colour of the tencl is greenish brown, or olive having a golden hue, which latter tint is most conspicuous on the under parts of the fish. From the carp it is readily distinguished by the small size of its scales, and also the small extent of the dorsal fin: its form is rather less deep in proportion to the length. It spawns usually about the middle of June, and deposits its ova on weeds.

TINCTURES are solutions of the active principles, mostly of vegetables, sometimes of salinc medicines, and more rarely of animal matters, in certain solvents. From possessing more or less of colour, they have obtained this name. They are distinguished according to the kind of solvent entployed. When aleohol is used, they are termed
alcoholic tinctures, or morc gencrally simply tinctures; when sulphuric æther is used, they are denominated atherial tinctures. When winc is used, though differing little from pure alcohol, the term medicated wines is applied to them; and when the process of distillation is employed to aid the extraction, particularly of volatile oils, the result is termed a spirit, such as of rosemary. Ammonia is sometimes conjoined, and the proceeds termed an ammoniated tincture. In some cases less of the principal ingredient is taken up or dissolved when ammonia is used, than when simple alcohol is employed, as in the tinctura guaiacum ammoniatum. Formerly some tinctures were called essences, from the term esse, it being thought that they contained only the purer or more refined portion, the alcohol leaving all the baser principles, such as the starch, gum, woody fibre, \&c., undissolved: quintessence was a still higher degree of this. These terms are now disused by pharmaceutists, though retained by the people. Elixirs differ only from being of a greater consistence : they are not unfrequently turbid trom the extractive matter suspended in them. Tinctures are further distinguished into simple and compound. They are called simple when one substance only is submitted to the solvent ; compound, when two or more are. Another important distinction among tinctures is founded upon the degree of strength of the alcolol employed. Where the active principle is nearly pure resin, a strong spirit is needed; when much gum is associated with the resin, a weaker is required. Hence some tinctures are prepared with proof spirit, as the greater number; a few with spirit above proof; and some with rectified spirit.
Λ well-prepared tincture should be clear, possessing the colour of the article which is its base, and partaking in an eminent degree of its characteristic odour and taste. As a gencral rule, five or six parts of the liquid chosen is to be used for one part of the solid material, which is to be bruised or comminuted before being submitted to maceration. The maceration, which should be conducted in well-stopped glass vessels, is generally continued for fourteen days, during which the ingredients are to be frequently shaken, and at the end strained. The pure tincture is then to be preserved in a tightly-stopped bottle, which should be opake, or sheltered from the light. From several tinctures a deposit falls down, either from some slow chemical change taking place among the ingredients, or from the evaporation of some of the spirit. This renders old tinctures not unfrequently turbid, and of variable strength. Thus tincture of opium when newly prepared contains one grain of opium in nineteen minims, but after some time one grain of opium is contained in only fourteen minims. This inconvenience may be avoided with all recent vegetables, by forming what are termed 'vegetable juices.' These are merely the juices of the fresh plant cxpressed by a powerful wooden press, and the juice allowed to stand twenty-four hours, during which a eopious precipitation of feculent matter takes place, which is further promoted by adding alcohol 56° over proof, in the proportion of four fluid ounces to every sixteen fluid ounces of the juice. After standing for twenty-four hours, the juice is to be filtered through bibulous paper (prepared from wool), when it will keep unimpaired for a length of time.
These vegetablc juices always retain their purity, and are of the same degree of strength at last as at first. By this means not only is the process simplified, and the time required for their preparation greatly abridged, being reduced from fourteen days to two; but their medicinal efficacy is greater than that of the ordinary tincturcs, and, from containing less alcohol, they can be given in cases where the stimulating action of this principle interferes with the effect of the substance dissolved in it, or renders its cxhibition improper, as in the case of young children.

In preparing the officinal spirits, the directions of the Pharmacopœia are rarely complied with. Most chemists content themselves with dissolving some of the essential oil of the plant in alcohol of the requisite strengtly, by which much expense and troublc, as well as loss of time, are avoided.
(See a pamphlet on The Best Method of Obtaining the Most Powerful Vegetable Preparations for Medical Use, by Edward Bentley.)
TINDAL, MATTHEW, LL.D., was the son of the Rer.
John Tindal, parish clergyman at Beer-Ferres in Devon-
shire, where Mather was hom about the year 10.77. In 1072 he was admltted of Linooln College, Oxford, where Dr. Hieker was his tutor; but ho hifterwards removed to Fixeter College ; and he was finally elected to a law fellowship at Alt Sonls soon after he had taken his degree of 13.A., in 1070. Ho proceeded L.L.B. in 1079, and was crated I.L.D. in lus\%. If we may believe certain charges which were long afterwards made in print by the opponents of his theological opinions, his debaucheries white he resided at Oxford were so scandalous as to trave drawn down upon him oll one oceasion a public reprimand from his college. Soon after he obtained his doctor's degree he went over to the Charch of Rome, not without subjecting himself to the imputation of having an eye to the wortdly aulvantages which such a step might scent to pronise under the popish king just come to the throne. It cloes not appear however that ho actually obtained any court favour or patronage by his change of religion; and, according to his own account, given in a pamphlet he published in his own defence in 170s, he reverted to the Charch of England some months before the Revolution, having attended mass for the last time at Candlemas, 108s, and publicly received the sacrament in his coltege chapel at Easter following. He asserts that his mind, which cante at tubula rasa to the university, had been prepared for being seduced by James's Homish emissaries by the notions as to the high and independent powers of the clergy which then prevaited there, and which he had adopted without examlnation. Aecordingly, when he threw off popery, he abandoned his high-church principles at the same time; or rather, as he puts it, he diseovered that these principles were unfounded, and that at once cured him of his popery. 'Meeting,' he says, 'upon his going into the world, with people who trented that notion of the independent power ns it deserved, and finding the absurdities of popery to be much greater at hand than they appeared at a distance, he began to examine the whole matter with all the attention he was eapable of; and then he qutckly found, and was surprised at the discovery, that atl his fill then undoubted maxims were so far from having any solid foundation, that they were built on as great a contradietion as can be, that of two independent powers in the same society. Upon this he returned, as he had good reason, to the Church of England, which he found, by exanining into her constitution, disclaimed all that independent power he had been bred up to the belief of.' The Revolution having taken place, he now also, naturally enongh, became a zealous partizan of that settlement. The hlstory of the rest of his life, during which he appears to have resided mostly in London, consists almost entirely of that of his successive publications and of the controversies in which they involvet him.

He first appeared as an anthor in November, 1693, by the publication, in 410 ., of 'An Fasay concerning Obedience to the Supreme Powers, and the Duty of Subjects in all Tlevolutlons, with some considerations concerning the present juncture of affairs.' This was followed in March, 1634, by 'An Eseay concerning the Law of Nations and the lRights of Sovereisns,' a second edition of which, with additions, was hrought out in the same year. This year also he prablished 'A I.etter to the Clergy of both Univernities. in recommendation of certain alterations which there was then some talk of making in the Liturgy; and in 1605 another pmophlet in support of the same views. lut the finst work by which he aftracted general attention was an 8vo. volume which he published in 1706, entitled - Thre Rights of the Christian Church Asserted, against the Romish and all other priests who claim an independent power over it.' This work, which is an elaborate attack upon the theory of hierarchical supremacy, or what are commonly salled high-church principles, immediately raised a vast commotion. It is related that to a friend who found him one day engaged upon it, pen in hand, he said that he was writing a book which would make the clergy mad. Replies to it were immediately published by tho celchrated William Wotton, by Dr. Hiekes (Tindal's old college tutor), and others ; the eontroversy continited to rage for keveral years: a bookseller and his shopman were indicted for selline the book. In 1707 Tinda published 'A Defence' of his work, and, a few months after, 'A Serond Defence,' both of which lic republished-together, with additions, in 1709: tho same year he also reprinted his two Pssays on Obedienee and the Law of Nations, aloug
with • A Discourse for the Liberty of the l^{1} ress, and an Fisany conceming the Rights of Nankind in matters of Religion:" about the same time he cane forth with a fresh pamphlet, entilled 'New High Churelh turned Old Presbyterian,' in exposuro of the pretensions put forward by Sacheverell and his party ; upon which the Honse of Comimons, which the day before had condenned Sacheverell's sermons to be burned, on the 33 th of Mareh, 1710 , impartially ordered Tindal's 'Rights of the Christian Church' and the sceond edition of his two 'Defences' to be continitted to the flames at the same time. This proceeding diew from Tindal the same year three more pamplrlets:the first, entitled ' A High-Church Catechlsm ;' the second, - The Jacobitism, Perjury, and Popery of the High-Church Priests;' the thirt, "The Mercifil Judgments of High Church triumphant, on Offending Clergymen and others, in The reign of Charles I.' The next jear, on the Lower House of Convocation having drawn up and printed A Representation of the present statc of Religion, whth re gard to the late excessive growth of Infdelity, Heresy, and Profaneness,' Tindal forthwills replicd in "The Nation Vindicated from the Aspersions cast on it' in the said representation. The second part of this performance is occupied with an explanation and defence of what has since been called the doctrine of philosophical necessity, in opposition to the assertion of the Convocatlon, that such views went to overturn the foundations of all morality, and of all religion, natural as well as revealed. For some years from this date Tindal's active pen was exchasively oceupied with the politics of the day; fut his performanecs do not appear to have been very effective at the time, ancl have been long forgotten. It is remarkalble however that in so volunuinous a work as Coxe's 'Memoirs of Sir Robert Walpole,' no notice should be taken of a personal controversy in which Tindal became involved with that ministor after his resignation in 1717, and which produced various pamphlets on both sides. Tindal considered himself to have been ill-used by Walpole, who, according to his aecount, had first courted lis alliance, and then suddenly dropped him after he had so far committed himself in writing that it was imagined his hostility in print was not to bedreaded. Walpole, on the other hand, or his friends, accused Tindal of a treacherons desertion to the opposite faction as soon as he found that Walpole had been or was about to be deprived of power. It is probnble that there was some misunderstanding on both sides. In any case this ministerial rupture was merely a personal quarrel, in which little or no public principle was involved; and it implies therefore no political versatility or inconsistency in Cindal that a few years after this, in $17: 1,1722$, and 1723, when Walpole was at the head of the ministry, he eame forward as a strenuous defender of his government in a succession of pamphlets. He did not return to his original field of theological polemies till 1728, when he published 'An Address to the Inhabitants of the two great Cities of London and Westminster,' in reply to a pastoml letter which the bishop of London, Dr. Gibson, fiad ad dressed to the people of his diocese on the subject of Anthony Collins's "Scheme of Litcral Prophecy Considered, and other recent deistical writings. A'Second Jastoral Letter,' soon nfler published by the bishop, ealled forth a 'Second Address' fion Tindal; and both addreases were reprinted the same year, in an 8 vo. volume, with alterations and addlitions.
From this date Tiudal seems to have remained quiet till the gear 1730, when he procluced, in a 4to. volume, the work by which he is now chiefly remembered, his 'Christisnity as Old as the Creation, or the Gospel a Republication of the Religion of Nature.' The object of this work, as is indeed sufficiently cleclared in its title, is to contend that there is nothing more in Christianity, properly understood, than what the human reason is quite capable of discovering for itself, and by implication to cleny that any special revelation has ever been made by the Deity to man. It did not however contain any expreas denial of the truth of Christianity; of which indeed the author and his jartizans rather professed to think that he had found out a new defence stronger than any that had been previously thought of. 'Tindal,'said W'aburton, some years after, 'a kind of bastard Socrates, hat brought our speculations from heaven to earth; and, under pretence of advancing the antiquity of Christianity, Inboured to unctermine its original.' The book made a great noise, and
various answers to it soon appeared, the most noted of which were-Dr. Waterland's 'Scripture Vindicated,' 1730 ; 'The Usefulness, Truth, and Excellency of the Christian Revelation defended,' by Mr. (afterwards Dr.) James Foster (the eminent dissenting clergyman), 1731; 'A Defcnee of Revealed Religion,' by Dr. Conybeare (afterwards bishop of Bristol), 1732; and 'An Answer to Christianity as Old as the Creation,' by the Rev. John (afterwards Dr.) Leland (another learned and distinguished dissenting divine), 1733. The book is also discussed in the last-mentioned writer's more celebrated work, his 'Yiew of the Principal Deistical Writers,' published in 1754 . Tindal defended himself in 'Remarks on Scripture Vindicated, and some other late Writings,' published along with a new edition of his 'Second Address to the Inhabitants of London and Westminster,' in 1730. But this was his last publication; his health now began to give way, and he expired on the 16 th of August, 1733, at a lodging in Cold Bath Fields, to which he had been prevailed upon to remove a few days before from his chambers in Gray's Inn. Tindal never held any preferinent except his fellowship; but it is stated, in the 'Biographia Britannica,' that in the reign of King Willian he frecuently sat as judge in the Court of Delegates, and had a pension of 200\%, a year granted to him by the crown for his services in that eapacity. It is added that he 'rarely, if cever, practised as an advocate in the courts of civil or ecclesiastical law ;' which wonld seem to imply that he had been called to the bar, or been admitted an advocate at Doetors' Commons, although that fact is not mentioned. A new edition of his 'Essay on the Lav of Nations' was published the year after lus death; but the publication of a second part of his 'Christianity as Old as the Creation,' which he left ready for the press, is said to have been prevented by the interference of Bishop Gibson. A will, in which he left nearly all he had to Eustace Budgell, in whose hands he was for some time before his decease, was contested by his nepliew, the Rev. Nicholas Tindal, and was at last set aside: the will was printed in a pamphlet, with a detail of circumstances connected with it, in 1733.

Of the amount of talent and learning shown in Tindal's writings very diff'erent estimates have been formed by his admirers and his opponents. Waterland, in the Introduction to his 'Scripture Vindicated,' characterises his antagonist in the following terms :- His attacks are feeble, his artillery contemptible; he has no genius or taste for literature, no acquaintance with the original lauguages, nor so much as with common critics or commentators; several of his objections are pure English objections, such as affect only our translation : the rest are of the lowest and most triffing sort.' Dr. Conyers Middleton, on the other hand, in a letter which he addressed to Waterland immediately after the latter had published his book, says, 'For my own part, to observe our English proverb, and give the devil his due, I cannot discover any such want of literature as you object to him; but, on the contrary, see plainly that his work has been the result of much study and reading; his materials colleeted from a great variety of the best writers; his pages decently crowded with citations; and his index of authors as numerous as that of most books which have lately appeared.' Tindal's English style is unaffected and perspicuons.

TINDAL, REV. NICHOLAS, was the son of a brother of Dr. Matthew Tindal, and was bom in 1687. Having studied at Exeter College, Oxford, and taken his degree of M.A. in 1713 , he was afterwards elected a Fellow of Trinity College in that university. In 1722 he was presented hy his college to the vicarage of Great Waltham in Essex ; in 1738 Sir Charles Wager, then first lord of the admiralty, with whom he appears to have some years before sailed for a short time as chaplain, appointed him chaplain to Greenwich Hospital ; in 1740 he is said to have been presented to the rectory of Colbourne in the Isle of Wight, upon which he resigned Great Waltham ; and very soon after he appears to have obtained his last preferment, the rectory of Λ iverstoke in Hampshire, from the bishop of Winchester (Hoadley). He died at Greenwieh Hospital on the 27 th of June, 1774.

Mr. Tindal's first literary attempt was a work published in monthly numbers in 1724 , under the title of ' Antiquities, Saered and Profane, being a Dissertation on the excellency of the History of the Hebrews,' \&c., which is described as a translation from the lrench of Calmet. This was fol-
lowed by two numbers of a History of Essex, which was then dropped. He then engaged in his most memorable undertaking, the translation, from the French, of Rapin's 'History of England,' which appeared in a successson of octavo volumes in 1726 and following years, and was reprinted in two volumes folio in 1732 . This second edition was dedicated to Frederick, prince of Wales, who in return presented the translator with a gold medal of the value of forty guineas. In 1744 a Continuation of Rapin, by Tindal, began to be published in weekly folio numbers, which was completed in two volumes (commonly bound in three), in 1747, the history being brought down to the end of the reign of George I. A second folio edition of this Continuation appeared in 1751 , and a third, in 21 vols. 8 vo ., in 1757, with the addition of the reign of George II. down to that date. The translation and continuation of Rapin were very successful speculations; and the publishers, the Messrs. Knapton, of Ludgate Strcet, evinced their gratitude by making Tindal a present of 200 l . It is generally stated that he was assisted in both undertakings by Mr. Philip Morant, to whom solely is attributed the Abridgment or Summary of the History and Continuation given at the end of the latter, and also printed in 3 vols. 8 vo . in 1747; but it does not appear upon what authority it is asserted by Coxe, in the Preface to his 'Mcmoirs of Sir Robert Walpole,' that the Continuation, though published under the name of Tindal, 'was principally written by Dr. Birch.' There is no hint of this in the very full and claborate Life of Birch, in the second edition of the sBiographia Britannica,' which is stated to be compiled from his own papers and the communications of surviving relations and friends. 'His papers,' Coxe proceeds, 'in the Museum and in the Hardurcke Collection, which I have examined with scrupulous attention, and various other documents which were submitted to his inspection, and to which I have had access, prove great accuracy of research, judgment in selection, and fidelity in narration. He derived considerable assistance from persons of political eminence, particularly the late Lord Walpole, the late ear of Hardwicke, and the Honourable Charles Yorke. The account of the Partition Treaty was written by the late earl of Hardwicke. The account of Lord Somers's argument in Barker's case was written by his great-nephew the late Mr. C. Yorke. I can also trace numerous communications by Horace Walpole, though they cannot be so easily specified. Birch was a stanch Whig, but his political opinions have never led him to forget his duty as an historian. He has not garbled or falsified debates, or misstated facts; he has not wantonly traduced characters, or acrimoniously reviled individuals because they espoused the cause which he disapproved; but in his whole work, whether he praises or blames, there is a inanly integrity and candid femperance, which must reeommend him to the discerning reader.' This is a sufficiently just character of the Continuation of Rapin : but, although in some parts the work has a claim to be considered as an original authority, it is in the greater part not only a compilation, but a mere transcription from preceding writers. The authors indced frankly state in their prefatory notice that they have not serupled to copy or imitate any part of the scveral authors they have made use of, when conducive to the uscfulness of the work, or where there was no occasion to alter or abridge. The numerous documents inserted at full length make the Continuation a convenient repertory of authentic information; and the notes which accompany the translation of the preceding part of the work add greatly to the value of the originaf text. Tindal's other publications were-the pamphlet relating to his uncle's will, an abridgment of Spence's 'Polymetis,' under the title of 'A Guide to Classical Learning for Schools,' and a translation, from the Latin, of Prince Cantemir's 'History of the Growth and Decay of the Othman Empire,' which appeared in a folio volume in 1734.
TINIAN is one of the Ladrone or Mariane Islands [vol. xiii., p. 269] : it lies near $15^{\circ} \mathrm{N}$. lat. and $146^{\circ} \mathrm{E}$. long. It is uninhabited and of small extent. It owes its name in the world not to its real importance, but to the circumstance that Lord Anson, just one hundred years ago, remained there nearly two months, from 26th of August to the 21st of October, 1742, and that in the account of his voyage a description of the island is given in glowing colours. It extends about 12 miles froni south-south-west
to north-north-east, and the breadth is about half as mneh. The soil is somewhat sandy, but very dry and healthy. The lanil rises in gentle slopes from the beach to the middle of the island, but the ascent is often interrupted by small level valleys, many of which wind irregularly through the country. These valleys and the gradual swellings of the ground are most beantifully divensitied ly an alternation of woods and lawns, which traverse the island. The woods consist of tall and well-spread trees, mostly without under-wood, nnul the lawns are covered with a clemnturf composed of very fine trefoil and internixed with a variety of flowers. There are 110 running streams, but gool water is found by digging a few feet below the surince, nnil near the middle of the island there are three small lakes. Black enttle, in a wild state, are numerous, and at the time of Anson's visit the number was computed to amount to at least ten thousand. Our commondomestic fowl is plentiful in the woods, and several kinds of wild fowl are found in the lakes. There is also an abundance of wild hogs. Besides the cocoa-nut palm and the bread-fruit tree there are guavas, limes, and sweet nod sour oranges, and antiscorbutic plants in great abundance, by the use of which the erew of the Centurion, the vessel commanded by Lord Anson, which suffered much by the seuryy, was restored to health in a short time. There is no harbour, but only an open roadstead near the southwestern extremity of the island, which is dangerous during the prevalence of the western monsoon, from June to Oc tober, but tolerably safe during the remainder of the year.
(Anson's Voyage round the IVorid; Kotzebuc's Voyage of Discovery into the South Sea, fer.)
TINNEVELLY. [HMDUsTaN: p. 203.]
TINNLNG, THN-ILATE MANUFACTURE. The art of tinning, or of conting other metals with a thin layer of tin, so as to protect thens from oxidation, was known to the antients, although it does not appear to have been yery extensively practisel. I'rofessor Beekniann, in his investigation into the carly history of tin and tinning (Ihistory of Inventions, English edit. of 1814 , vol. iv., pp. 1-45), states that we have no account of the process antiently emploged in tinning, although the use ot the words incoquere and incoctilia by Pliny seems to indicate that it was performed by immersing the veasels in melted tin. The degree of perfection to which the process was carried is indiented by his statement, accompaniel by an expression of wonder, to the effect that the tinning did not increase the weight of the vessels, which shows that the tin must have been applied, as at present, in a very thin layer.
The art of tinning plate-iron is more modern than that of coating copper vessels with tin, and is supposed to have been invented cither in Bohemia or in Germany. Mr. Pnrkes, in n paper on the manufacture of tinpinte, or tinned shect-iron, addressed to the Literary and Philosophical Society of Manchester, in 1818, which was published in their 'Memoirs' (Second series, vol. iii., pp. $347-380$), states that our ancestors, from time inmemorial, procured that article from Bohemin ant Saxony, where the manufacture was established near the tin-mines of the Erzyebirge mountains, which were the most extensive in Europe after those ot Cornwall. From the time of the invention of tin-plate down to the close of the scventeenth century, if not later, both England and the whole continent of Europe depended upon the above-namel countries for their supply of tin-plate; but about the year 1663 an attempt was made to introduce the manufacture into England, by some gentlemen who sent the ingenious Andrew Yranton into Saxony to obtain information respeeting it. Varranton's account of the experiment, which is quotel at length ty Parkes, was published in 1681, in the second part of his curious work entitled 'England's Improvement hy Sea and Iand,' now very rare. He was allowed freely to inapect the tinning establishments, and he became so well acquainted with the process, that after his return to Eingland lie made many thousand plates of iron, from the Forest of Dean, tinned with Comsh tin, the quality of which was admitted io be even superior to that of the German tin-plntes, which they surpassed in toughness and flexilility. Before however the new manufacture could be fairly established, its promoters were stopped by a patent, which Yarinnton says was 'trumped up' for the purpose by parties possessing court influence. The patentees did not understand the art sufficiently to enable
them to succeed, anil thus England remained dependent for some years upon the Continent for a mannfathure for which slic possessed the greatest facilities. Parkes bintes that he does not find that any mannfacture of tim-plate was established in this country until between 1720 and 1730, and that the first was nt l'ontylool, in Mommouthshire, where, according to Watson's "Chemical Fssays,' it was practised as early as 1730 . Shortly before that time the art was introduced into France by M. Kiaunur, who communiented an zecount of the process, as practised by the Ciermans, to the French Acaulemy of Sciences in the year 172. in a paper which was translated by Rutty, and published in the 35 s h wolume of the 'Philosophical 'transnctions' (No. 406, published in December, 1723). In lis introductory remarks Rutty states that the making of tinplates, or, as they were sometimes called, fitten or latsin, was not commonly practised in England, notwithstanding the great consumption; and that we were oblized to export our own tin to Germany, and to receive it back again when manufactured. Anderson (Ilish. of Commerce, vol. iii., p. 220) states that about 1740 the manufacture of tinplate was brought to such perfection in lingland that very little was imported from foreign countries, and that the British manufacture was superior to the forcign in glossiness of surface, owing to the plates being drawn under n rolling-mill, instend of being hammered, as was common in those made beyond sea. The diffeculty of extending iron, in what may be deemed the infancy of the manufacture, into thin uniform sheets, with a perfectly smooth nnd clean surface, which is essential to the adhesion of the tin in nn equal film, was one of the principal nbstacles to the progress of this department of the art ot tinning.
The process of tinning depends upon the strong affinity which exists between tin and the metals to which it is applied, and it consists, essentially, in rendering the surface to be tinned periectly elean and free from oxide, and then bringing it into contact with melted tin, which forms an alloy with the harder metal, imparts to it a bright silvery appearance, and protects it from oxidation. The tinning of sheect-iron, as the inost important application of the process, will be first noticed. This operation is minutely described by Mr. Jarkes, in the paper above cited, from which, with oceasional reference 10 more recent accounts, the following deseription is condensed. R'aumur's account of the German process, in the 'Philosophical Transactions,' may also be consulted by those who nre curious as to the detnils of the earlier method of tinning, which resembles that about to be described in all essential points.

The finest English or Welsh bar-iron, prepared with charcoal, instead of mineral coke, nnd known to the tracle as tin-iron, is used for making tin-plates. This materinl is first made into flat bars, or slabls, aloout thirty inches long, six inches wille, and weighing eighty pounds. These bars are made red-hot, and extended by passing them repeatedly between rollers, until they are reduced to about three-eighths of an inch in thickness. When conled, these pivees are cut by shears, workel by machinery, into plates about ten inches by six, which are repeatedly re-licated and rolled, until they are reduced to as thin a state as the proeess will conveniently allow. The sheet is then doubled and agnin rolled until reduced in thickness one-half, after which it is doubled again, and rolled until still further diminished in thickness. When thus brought to the required tenuity, the thin sheet is cut into plates of the sizes required to suit the market (most commonly about thirtcen incles by ten), noll then the several thieknesses or lamina: are separated,-an operation which needs the application of considerable force, as the compression of the rollers causes them to adhere strongly together. Parkes states that the cutting of the plates was, when lie wrote, usually performed with hand-shears, but that nn ingenious whitesmith in Glamorganshire had invented a macline for the purpose, which was impelled by a water-wlueel, and would eut a qunntity equal to a lundred hoxes (of two hundred and twenty-five plates each) in a day, which is four times as mueh as a hanul-shearer could accomplish. After shearing, the plates are piled in lienjs, one being laid tross-wise at intervals, to sepnrate the numbler required to form a box. That nanie is technically applied to the number of plates just mentioned in nll the sutbsequent processes, although it is not until they nre completed that the plates are actually placed in boxes.

S'he next operation to be performed is the remoral of every particle of oxide or other impurity from the surface of the plates. For this purpose each is bent to an angle of about 60°, so as to bring it into the form of an inverted Λ or Ω, and then steeped for a few minutes in a leaden trough containing a weak solution of muriatic acid. Four pounds of acid to three gallons of water makes a mixture of the proper strength, and sufficient for eighteen hundred plates. After being immersed for four or five minutes in this cleansing liquid, the plates are taken out, arranged on the floor in rows, and then removed, by means of an iron rod, to a reverberatory furnace or oven, in which they are submitted to a red heat. The reason for bending the plates now becomes obrious, because if they were flat, the two sides could uot be cqually exposed to the flame by which the furnace is heated; whereas by bending them, and placing them upon their edges, the flame is allowed to play upon both sides. The heat to which the plates are exposed, combined with their previous washing in the acid, causes them to throw off a scale of rust or oxide, whence this operation is termed scaling. If well performed, it gives to the iron a mottled blue and white surface, somewhat resembling marbled paper. The plates are then flattened by beating them upon a cast-iron block, and submitted to a second or cold rolling, which removes any warping aequired in the previous processes, gives a high degree of smoothness to their surfaces, and imparts elasticity to the iron. The rollers, or rolls, employed in this operation are formed of cast-iron, rendered very hard by casting in thick cold iron boxes or moulds, and their surfaces are carefully polished. Parkes states that rollers of about thirty inches diameter are mucli better than those of smaller dimensions for this purpose : the length of the rolls is usually seventeen or eighteen inches. After the cold rolling the plates are immersed singly, in a vertical position, in an acidulous preparation called the lyes, consisting of water in which bran has beell steeped for nine or ten days, until it has fermented and become slightly acid. In this the plates are kept for ten or twelve hours, and occasionally turned, to insure an equal exposure of every part of their surface; and from the lye-trough they are transferred to a lcaden vessel containing diluted sulphuric acid, the strength of which is varied according to the judgment of the workmail. This trough is divided into compartments, which will contain a box of plates each; and both it and the lye-trough are slightly heated by flues, to assist the action of the acid menstrua. Parkes states that a temperature of 90° or 100° Fahrenheit is sufficient for this operation, which is called pichling, and which requires some niecty, to prevent the plates from being strained or blistered by remaining too long in the acid. They are usually agitated in the weak sulphuric acid for about an hour, until they become bright and free from black spots. They are then removed into pure water, in which they are scoured with hemp and sand, to remove any remaining oxide; and in this bath of pure water the plates remain until wanted for timning, because, even if lett for months, they will remain perfectly free from rust.

As the sole object of these operations is to cleanse the iron plates from rust and dirt, it is evident that the details may be varied considerably; but it is not necessary to notice particularly any deviations from the usual process. The timning of the plates is effected in a range of castiron pots lieated hy flues, and forming together an apparatus called the stow. The plates are removed one by one from the last-mentioned bath of pure water, and dried by ruhhing with bran, after which they are immersed singly in a pot filled with melted tallow or grease, in which they are leff for about an hour. The grease preserves the surface from oxidation, and appears also to increase the affinity of the iron for tin; and for this purpose burnt grease, or any kind of emprereumatic fat, is found preferable to pure fresh tallow. From the grease-pot the plates are removed, with the grease which adheres to their surfaces, into the metallic bath, which contains a mixture of block and grain tin, covered with a quantity of grease sufficient to furm a layer four inches deep. Parkes states that the mixture of hlock and grain tin usually contains about equal quantities of each; but he conceived that manulacturers would find it advantageous to use grain-tin alone; since, althougli it would be rather more expensive, its g:eater purity and fluidity would occasion it to adhere to tne iron in a thinner film. The tin-bath or pot is heated
P. C., No. $1 a ̆ 18$.
to such a degree as almost to inflame the fatty mixture upon the surface of the tin; and its dimensions are such that it will receive two or three hundred plates standing upright on their edges. The precise size is immaterial, so that the number of plates put in is such as to prevent any from falling down; but it is convenient to malie it large enough to hold a box and a half of plates, or about three hundred and forty. When the plates have remained in the tin-bath a sufficient time (usually about an hour and a half, but more for thick plates), they are lifted out with tongs, and placed upon an iron grating, to allow the superfluous tin to drain off; but as there still remains upon them much more than the proper quantity of tin, they are afterwards subjected to a process called vocshing, which consists in dipping them into a pot containing a quantity of pure grain-tin in a melted state, then rubbing them with a peculiar kind of brush made of hemp, plunging them again for a moment into the melted tin in the washpot, and then into a pot filled with clean melted tallow, or lard free from salt, which contains pins, to prevent the plates from touching each other. The heat of this second tin-bath melts and detaches the superfluous and coarser portions of the tin from the plates, and the drossy impurities rise to the surface; while the other portions unite with the grain-tin, and so deteriorate its quality, that, after washing sixty or seventy boxes, it becomes necessary to remove about three ewt. of tin from the wash-pot, and to supply its place by a block of pure grain-tin. The impure tin thus removed from the wash-pot is put into the bath in which the plates receive their first tinning. As it is desirable, in the final dipping of the plate, to preserve it from contact with the dross or scum which collects upon the surface of the bath, a partition is inserted in the washpot, to keep one compartment free of scum. The last dip serves to eradicate the marks of the brush, and to replenisfy the coat of tin wherever it may have been rubbed too thin; and the subsequent immersion of the plates in the greasepot causes any superfluous metal to run off. The heat of the tallow-bath, and the period of immersion in it, must be regulated with care. Thick plates require the tallow to be cooler than for thin ones, because they retain more heat in themselves; and if a thick plate were placed in a bath of proper temperature for thin plates, it would come out of a yellow instead of a silvery-white colour; while, on the contrary, a bath intended for thick plates would be too cool to effect the required purpose upon thim sheets. Too short a period of immersion has a similar effect, and leaves too much tin upon the surface, and that in a wavy irregular film ; while if left too long in the grease-pot, the tin would run off to such a degree as to render another dipping necessary. So soon as the workman employed in washing las placed five plates in the grease-pot, a boy lifts the first from it into a draining-pan with a grated bottom; and when the man has placed the sixth in the tallow, the boy removes the second. Notwithstanding the apparently complicated character of the operations just described, they are performed so rapidly, that an expert wash-man will wash and brush twenty-five boxes, or five thousand six hundred and twenty-five plates, in twelve hours.

Owing to the vertical position of the plates during the preceding operations, a selvage of tin accumulates along their lower edge, which is removed by the process called listing. This is performed by taking the plates one by one, as soon as they are cool enough to handle, and dipping their lower edges into a pot called the list-pot, or listingpot, which contains enough melted tin to form a layer a quarter of an incli thick. The selvage of tin being thus melted, is slaken off by a smart blow with a stick, leaving only a faint stripe, which may be discerned upon all finished tin-plates. After listing, the plates are cleaned from grease by rubbing them, while yet warm, with dry bran; after whicla they are packed in boxes of wood or sheet-iron.
The tinning of the inner surfaces of cooking utensils and other vessels of capacity is performed by scouring the smiface until it is perfectly bright and clean; then heating the vessel, pouring in some melted tin and rolling it about, and rubbing the tin all over the surfaee with a piece of cloth or a handful of tow: powdered rosin is used, as in soldering, to prevent the formation of oxide, which would impair the mutual affinity of the metals. l'ure grain-tin should he used for this purpose, but it is frequently adulterated with lead. By this mearis vessels

Vor. XXIV.-. 3 (
of copymer. lonas. and ehst-irom are lluned internally, mud therely rendered fit tor the most delicate entinary operasions ; and in a similar way any small portions of ironphate miny be coated with tin. Bridle-bits, slirrups, and many other sunall articles, are tinued by immersing them in thid tin. Mr. Gill, in the eleventh volume of the ' Technical Repository;' p. 230, describes an ingenlous methot of tinning nails or lacks and other small wares, which consints in cleanimg the surface by pickling the articlels in diloted sulphuric, muriatic, or nitric ackd, washing them antemwards in water, aid thea potting them into a gelton hottle of stone-ware, with an oval body and a narrow neck, tugether with a quantity of ber or grain tin, and of salammoniac. This vessel is then to be elosed, and laict on its aide over a chareonl fire, made upon a forge-hearth, and by furning it round, and trequently shaking it, the tin is to be uniformly distributed over the surfaces of the inclosed articles. When timed they are taken out, washed in water to remove the sal-ammoniac, and dried in trarm savilust. The great advantage of the process consists in the employment of the stone-ware bottle, which prevents the dissipation of the fumes of the sal-ammuniac. and gives up the whole of the tin, which no metallie vessel would do. The method of timing pins is deseribed under Pis, vol. xviii., p. 161.
(Hemoirs of the Literary and Philosophical Society of Munchenter, second series, vol. iii., pp. 317-80; Philosophical Transactions, December, 17:38; Manufuclures in Metal (in Lardner's 'Cabinet Cyelopsedia,' vol, iii.); Ure's Dirlionary of Arts, \&ec.)

TINNI TUS AU'lRIUM, ringing in the eurs, may arise from many different conditions. It is sometimes due to an unnatural state of the circulation in some part of the ear, the movement of the blood produeing a ribration of the nerve which the mind does not distinguish from that protueed by sonorous vibrations of the air. But nost frequently the sensation is due to some disordered state of the auditory nesve, and is entirely subjeetive. It is thus pereeived in some diseases of the brain, in nervous puesons, and in those who are much debilitated; anct is a coommon sign of organic disease of the suditory nerve itself. It $1 s$ analogous, in these cises, to the suljeetive sensation of sparks and flashes of light which is pereeived in cases of disease uf the retina or optic nerre. It may therefore be a sign of a dangerous condition, or : a prelude to coinplete deafiness; but in the great nimiority of eases it is unlmportant, depending on some loeal temporary affeetfon of the ear, or on some disturbance of the digestive organs with which part of the bran sympathizes.
TINNU'NCULUS, Vicillot's name, after the anticnls, for a genus of Fulconide. Type, Tiunuculus alaudarius, Briss. Fralco Tinnuncaluts, Linn., of which we proceed to give M. 'Temminek's
Description.-Wings reaching to three-fourths of the length of the tail; upper phumage of the male varled with numerous black spots; puills striped internaily; claws always black.
M. Tenminek states that this short indieation is inserled to enable the observer to distinguish at the flrst glance this species trom the Fialco tinnunculoides (Cressercleflc, or Jesser Kestrel), and he then proceeds to give the fullowing details relating to the former:-
Mule.-Top of the head bluish-grey; upper parts red-dish-brown, regularly sprinkled with angular black spots; lower parts white, slightly tinged with reddish and with? ollong brown spots ; tail ash-coloured, whe a vide black band lowarls its extremity, and termlnatel with white; bill bluish; cere, space aromat the eyes, iris, and feet yelluw. Lengtla about 14 inches.
Pemule, larger than the male; all the upper piarts of a lwighter reddish; lower parts yellowish rusty, with oblong black spots; tail reddish, with nine or ten narrow black lands, and with a large band of that colour near its cxtremity, which is terminated with reddish-whilte.
Variefien.-With the upper parts of n reddish hute spotted with black; the top of the head more or less donded with bright blue; the phanage variegatel with white; sometimes entirely white.
The Joung have the top of the head, the aape, and the mantle brown-rusty streaked with black; these streaks form the angle of the back; on the fist quills are seven reddish and whitish sprots; tail reddish, undulnted with grey-ash and transversely striped as in the female; thront
retdish-white; at the opening of the bill a small black saripe which is prolonged on the upper jart of the neck; the rest of the lower parts whitish-rusty with oblong black spuls ; iris lrown; cere yellowish-green.

This is, there can be little or no doubt, the rexpnic (Cenchris) of Aristotle (Hist. Anim., ii. 17; vi. 1; vi. 2 ; viii. 3), and so most zoologists are disposed to conslder it, is well as that it is the Tinnunculus of the antient Italians. (lliny, Nat. Ifist., x. 37.7 It is the Fousivento, Cimbello, Tristunculo, Acertcllo Falchetto di Torre, Ghepprio, and Gavinello of the modern Italians; Cercrelle, (Lueveerelle, Cresserclle, and Epervier des Alouelles of the French; Thrmfulke, Rowhcl-geyer, Miussfalke, IVinulocechl, Rith'reyer, and Wannen-techer of the Germans; Kyrko-fulh of the Swedes; Kestrel, Stannel, Stonegall, nud H'indhover of the modern British; and Cudyll coch of the antient British.

Gengraphical Distribution.-Furupe generally, but not habitually beyond the regions of the aretic circle, where its phace is ocenpied by the Merbiv. Engind, Scotland, and Freland. Smyraa, in winter at lenst (Strickl.). Atrica, from the north to the sonth, according to Temmanck. Senegal, necording to the same nullority. The Zoological Sociely have reccived it from the Cape of Good loppe. Asia, India (Selby); banks of the Ganges (Yart1l): Jivia (Homf.) ; Japan (Siebuld and liiirger). Mir. Jiurell states that figures of it occur in dawings trom Chima.

Hubils, Food, sec.-The provincial mane "Winlhover" well expresses the most striking characteristic of this hawk. With its head to windward, whence Mr. Mudic suggests that one of its designations should be writlen 'Standgale,' not 'Stouegall,' it' remains with outtyread tail and winoowing wings suspended high in air, so that its plercing cye may include a consillerable area, in which 110 field-mouse is safe: when the bitd sees one, it drops unerringly oll the surpuised prey. When thus poiserl ahove the fields, It sometimes is within the range of a gun. and we have heard farmers exult in bringing one down, little thinklng that the bind was then on the wateh for one of their greateat enemies. Mr. Waterton has pleaded the canse or the Kestrel rell, and shown how greatly it is the friend of the agriculturist. But though miec are its staple, it undoubledly preys upon small birls, and also on beetles and their larvo, and carthworns. Mr. Selby saw one hawking after enckelifers (Melolontha vilgaris) late in the evening. He watched one with a glass, and gaw the
bird dart through a swarm of those insects, seize one in each claw, and eat them on the wing. The kestre] returned to the charge again and again, and Mr. Selby ascertained the fact beyond doubt, for he afterwards shot the bird.

If a kestrel can find the nest of a crow or a magpie as a receptacle for its eggs, it will not talse the trouble to make one; indeed, it probably never does build: sometimes it lays upon the bare ledges of rocks and in old ruined towers. The number of eges is four or five, and their ground-colour reddish-white, which is mottled closely with dark reddish-brown and sometimes blotehed with reddishbrown. The young come forth from the egg towards the end of April or beginning of May, and are covered with a yellowish-white down.
In the Portrails d Oyseaux, the following quatrain sums up the qualities of the Kestrel :-

> Mulots, Laezars, Rats, et autre remmino Some In tinnde a notre Cressenlle.
> Elle est amse avec la Colomhelle,
> Qu'elle deftend des ovseaur de rapine.

The allusion here made to the friendship of the Kestre] for the Dove is probably taken from the passage in Pliny to which we have above called attention.
N.B. M. Brehm would make three distinct specics from this hawk, under the names of, 1st, IIochköpfiger (liighheaded); 2nd, Mitllerer (middle); and 3rd, Plattköpfiger (nat-headed). Upon this M. Temminek drily observes, that those who wisll to nultiply the catalogue of names and of species in favour of each accidental or local variety, may consult the work of M. Brehm. [Faiconides, vol. x., p. 182; Kestrel.]

TINO. [TEvos.]
TINO'PORUS. [Foraminipras, vol. x., p. 348.]
TINTAGELI. [Bossin Ex.]
TINTERN ABBEY. [MONMOUTHSHRE.]
TINTORETTO, JA'COPO, one of the most eelebrated painters of modern times, and one of the heads of the Venetian school, was the son of a dyer (Tintore), whence the agnomen of Tintoretto: luis family name was Robusti; and he was born at Venice in 1512. He exhibited a remarkalle facility for drawing at a very early age, which induced his parents to place him in the school of Titian. Ten days however after young Tintoretto had entered the sehool of the great painter, he was sent home again to his parents; Titian's attention being attraeted by some very spirited drawings he saw in his studio, he inquired who did them, andl upon Tintoretto's acknowledging himself the author, Titian ordered one of his seholars to conduet the boy home.
This re markable rebuff in the career of the young painter secmis to have added vicour to his energies, and he commenced a course of indelefatigable application. He purchased some easts from the antique and some from the models of Danicl da Volterra, from the statues of Michael Angelo of Morning, Twilight, Night, and Day, at the tomb of the Medici, in San Lorenzo at Florence, resolving to follow the style of Nichael Angelo in design; and to combine with it the colouring of Titian.-whieh intention he proelaimed to his visitors by the following line, which he wrote upon the wall of his apartment:-

- Il disegno di Michel Angelo, e 1 colorito di Tiziano.'

By day he copied pietures by Titian; and by night he made drawings ujon coloured paper, with chalk, from his casts, lighted nierely by a eandle; by which means he acquired a taste for strong contrasts of light and shade, a peculiarity for which all his works are conspicuous. To These studics he added the oceasional study of the living model and of anatomy ; and to attain a still greater mastery of chiarnescuro, he used to make models of figures in wax, and place them in pasteboarl cases, making apertures for the light as he required it : he also suspended models and casts from the eeiling, for the purpose of becoming familiar will various perspective views of the figure. In addition to these studies, lie is soid to have received much gratuitons assistance from Sehiaxone in colouring. Tintoretto's first picture whieh attracted notice was one containing portraits of himself and his brother, by candle-light, himself holding a east in his hand, and his brother playing the guitar. He exhibited this picture in public, and shorlly atterwards lhe exliibited a large historieal piece upon the Kialto, which gave him a rank amongst the great painters of Venice. Yre undertook every commission which offered itself, aud frequently painted large works merely for the price of the
materials. It would be impossible to enumerate all his werks here; they amounted to many hundreds. One of his first great works in fresco was a facade in the Arsenal, which ho painted in 1546, representing Balshazzar's Peast and the Writing upon the Wall. Of his first oil pictures, the following were most remarkable:-The Tiburtine Sibyl, for the church of Santa Anna; the Last Supper, and the Washing of the Disciples' Feet, for the ehturch of Santa Marcola; for San Severo, a Crucifixion, very large ; and in the ehureh of the Trinita, the Temptation of Eve and the Death of Abel, besides some others."
Tintoretto was so eager for employment, and so desirous of publie notice and applausc, that rather than be inactive or unoccupieá with any public work, he frequently volunteered his services, or at most required no further outlay from his employer than would cover the cost of the materials. He painted upon such terms the façade in fresco of a large house near the Ponte dell' Angelo; on the lower part of the housc he painted a very spirited representation of a cavalry battle, above which he placed an ornamental cornice in bronze; over this he painted a large historical composition containing many figures; between the windows he introduced various figures of women; and at the ton a rieh frieze: the great extent and the boldness of these paintings astonished the Venetian painters of that period. Upon very similar terms he exceuted two of his greatest works, at Santa Maria dell' Orto, where he painted, for 100 ducats, two immense pictures fifty feet high. In one was the Procession of the Jews with the Golden Calf, and Moses upon a rock in the background receiving the Tahles of the Law, which were supported by a group of naked angels; the other was a representation of the Last Judginent, containing an immense numler of figures; an extraordinary work, which, in the opinion of Vasari, would have been perhaps without its rival as a work of art, if the execution of the parts had been equal to the conception of the whole.
The following works also are aeeounted amongst Tintoretto's masterpieces:-Saint Agnes restoring to life the son of the Præfect, painted for the chapel of Cardinal Contarino ; the Miracle of St. Mark, called II Miracolo dello Schiavo,' where the saint delivers a Venetian, who had become a Turkish slave, from a punishment ordered by his master, by rendering him invulnerable, so that hammers and other instruments of torture were broken upon his body without hurting him; this pieture, which is generally considered the best of all Tintoretto's works, was painted in his thirty-seventh year, for the brotherhood of St. Mark, and when it was finished and put up, the worthy friars disputed with one another about the price, a dispute which Tintoretto settled by ordering the picture to be taken down and sent home, and telling the brotherhood that they should not have it at any price. He however, after some entreaty, restored it to its place and received his own price, and the friars further gratified him by ordering him to paint three other subjects from the life of the same saint,-the Exhumation of the Body of the Saint at Alexandria, through the two Venetian merchants Buono da Malamoceo and Rustico da Toreello ; the Transport of the Body to the Ship; and the Miraculous Preservation at Sea of a Saracen Sailor through the Saint: the miracle of the slave is in the Academy of Venice; it has been engraved by J. Mathan; the other three are in the Scuola di San Marco. Pietro di Cortona is reported to have said, that if he lived in Venice, he would never pass a holiday without going to see these works; he admired chiefly the drawing. The pictures he painted for the Scuola di San Roceo are equally celebrated: they consist of the famous Crucifixion, which was engraved by Agostino Carracei, to the greatest satisfaction of Tintoretto; the Resurrection of Christ, engraved by E. Sadeler; the Slaughter of the Innoeents and the Miracle of the Loaves and Fishes, engraved by L. Kilian; and several others of less note. To these must be added three painted for the Padri Crociferi, an Assumption of the Virgin, and a Cireumeision of the Infant Christ, painted in competition with Schiavone; and a Marriage at Cana, now in the ehurclo of Santa Maria della Salute. The Miracolo dello Schiavo, the Crucifixion at San Rocco, and the Marriage at Cana, are said to be the only pictures to which Tintoretto put his name. There is an engraving of the Marriage at Cana, by Volpato, and a spirited ctehing by E. Fialetti.

Tintoretto executed many great works for the govern
ment of Venice, both in oil and fresco ; and such was his activity, perseverance, and success, that lee len little to be done hy others. He wes always oreupied, and he worked witl suela mexampled mpidity that he used to be called Il Finioso. Sehastian del I'iombo said that Tintoretio could do as much in two days as he could do in two years. Ife painted for the senate, in the council-lall, the Coronadion of Frederick Barbarossa, by Pope Adrian IV., at lRome; aud in conseguence of Paul Verohtse painting a picture in the sane half, Tintoretto procured permission to paint another, in which he represented Pope Alexandrer III. surrounded by cardinals and prelates, excommunieating the sane emperor: the pope was represented throwing the extingmished candle amongst the populaee, and a crowd of prople was mishing forward to endeavour to eateh it. He pminted also for the senate, in the hall dello Scrutinio, the celebrated naval victory of the Venetians over the Turks in 1571. He painted many other works in the dueal palaee, historical and allegorical, commemorating the history of Venice, of which the most famous are the eapture of Zare by storm; and the great picture of Paradise, upon canvas, $7+$ feet by 3 , containing a surprising number of figures. This was lis last great work; he eommenced it in several preces in the Scuola Vecehia della Miscricordia, and finished it, with the help of lis son, in its plaee on the eciling of the great council-lall of the Senate, now the library.

Tintoretto painted at Veniee eight friezes for the duke of Mantna, recording the duke's fents, to be plared iu his eastle, and he visited the duke at Mantua, with all his family, and was splendidly entertained by'lim. Ife painted also the portrait of Ilenry. III. of France and Poland, when that king visited Veniee; of which pieture Ridoln relates a curious listory. Tintoretto was engaged with Paul Veronese in painting some figures in chiar'oseuro upon the arch of Iriumpli erected by Palladio at Venice in honour of the landing of IIenry Ilt., king of France and Poland; but wishing to take a portrait of the king as le landed, he prevailed apon laul Yeronesc to eomplete the arch; and he dressed limself as one of the doge's attendants, and went in the Jhucintoro, the state barge, with the others to receive the king, whose portrait he drew in small, in crayons, unknown to the king, whilst he was proceeding in the harge to the landing-place. This portrait he afterwarls enlarged in oils, and proeured permission from the king to retomeh it from life. The king expressed himself very much pleased with the portrait, and aceepted it from the painter, whom he wislsed to create a cavaliere; but Tintaretto declined the honour, upon the plea that to bear a title was inconsistent with his lialits. Fienry 111. afterwerds presented the portrait to the doge Luigi Mocenigo. Tintoretto painted many portraits, all in a remarkably holl style; lie painted several of the series of doges portraits along the frieze of the great eouncil-lall.
It las been said above that Tintoretto was a remarkably mpid painter: he was however hs eareless about the exceution of the parts as lie was bokl. There are pictures by him painted in lis youth that are extremely carefully finished, Ont these are very few: Susama at the Bath with the two Eiders, is of this class; severnl of lis large pictures are merely dead coloured, and many of them were painted off without the slightest previous preparation. Ifis rapidlyexueuted and low-priced productions were a frequent souree of complaint to his fellow-artists. Upon one oceasion, when the brotherhood of San Roceo requested l'aul Veronese, Salviati, Zuccaro, Sehiarone, and Tintorello to send them designs for a picture of the Apothcosis of San Rocen, that they misht seleet the hest of them, Tintoretto sent his finished picture as soon as the others sent in their designs, aftiming that he had no other wny of drawing; and to ensure its being tixed in its destined place, he made the institution a present of the work. Althougl Tintoretto professed to draw in the style of Michel Angelo, and to colour like Titian, there are few traces of either quality in the great majority of his works; they are however all conapicuons for lis own peculiar style of ehiaroscuro, which is frecpuently both heavy and cold. In lis larger compositions a principal characteristic is the number of figures, which are often crowded and eonfuser, and the spectator looks in vain for a spot of repose to relieve the mind : this is hovever not the case with sueli piefures as the Mrascolo dello Schisvo and other eartier productions. Anmbal Carracei las eloguently expressed the linequality of
this great painter-that if he was sometinues equal to Titian. lie was ofien iuferior to Tintoretto. The Venctinns issed to say that he had three pencils, one of gold, one of silver, and the other of iron. In his design "lintoretto was nuseular, but lean, and often ineorrect; and in the casts of lis draperies frequently mean and confused; his colourin: was not gaudy, like that of many of the Yenetians, but was oftell even cold, and shadow predoninates in perhaps all his pietures. He was onee asked which were the prettiest colours, and he answered 'blaek and white.' It was also a maxim of his that none but experieneed artists should draw from the living model, as they were not capable of distinguishing between the beaties and the impericetions of an individual model. Tintoretlo painted Aretin's portrait, and Ridolfi relates the following anealote connected with it :-Aretin was a great friend of 'Titian's, and was in the habit of abusing Tintorcto occasionally': the latter one day mecting the poet, invited him to coune and sit to lina for lais portrait, to whieh Aretin assented; but he liad no sooner seated himself in the painter's studio, than Tintorv"so pulled out with great violence a pistol from underneall fis vest and eance towards him: up jumped Aretin in a great fright, and eried out "lacopo, what are you about !" -Oh! don't alarm jourseli,' said Tintoretto, 'I amonly' coins to measure joun; and suiting the aetion to the word, lie said, 'you are just two pistols and a laalf'. What a monntebank you are l' returised Arctin; 'you are ulways up to some frolic.' The poet was allemvards more cautions, and they became friencls. Ridolti recomls a few other whimsical feats of Tintoretto's. He died at Venice in libll, aged eighty-two. He had two children-a son, Domenic:o, and a daughter, Marietta-who both practised paintinp. Domenico was born in 1562, and died in 1637 . Ife followed in the steps of his father both in history and portrait; but, says Janzi, as Ascanius did those of Aneas, llon passibus acquis. Marietta was born in 150), and died before her father, in 1500. She painted very exeellent portraits.
(Ridolfi, Le Maraviglie dell' Arte, overo le File degli Illustri Pillori Veneti, e dello Stato: Zanelti, Della Pitturn l'eneziana, e delle Opere pubbliche de' V'encziani Marslri, \&c.)

TIOOMl:N. [SHERIA.]
TIPERAII MOUNTAMNS. [HINDUSTAN, ן. 216; Silnहा. $]$

TIPPERARY, an inland county of the province of Munster in Ireland. It is on the worthern horder of the province, and is loounded on the north-east by Kings Commty and Queen's County, and on the enst by the connty nf Kilkenny, all in the provinee of Ieinster. On the southcast and south it is bounded by the eounty of Wiaterforl, on the sonth-west by that of Cork, and on the west ty the e of Limerick and Clare, all in Mumster. On the nomhewest it is hommed by the county of Galway in Comaught, from which. as well as from Clare, it is seprarated by the river Shannon or the lakes throngh which it flows. It is one of the largest of the lrish eounties, being execeded only by those of Cork and Kerry in Munster, Galway and Mayn in Conmanght, and Donegal in Ulster: its greatest lemgth is from north to south, from the junction of the lower Brasun with the Shamon to the Arra glen, 68 miles; the greatest breadth is from the border of thee ounty of Limeriek, between Tipperary and llruff (in Iinnerick), to the border of the county of kilkenny, north of Carsiek-on-Suir, about 41 miles. 'The area is rarionsly estimated. In the Population Retums (Parl. J'apers, 1833, vol. xxxix.), and in the table annexed to the Usefnl Kuowledge Society's Map of Ireland, it is given at 831,910 English aeres ($=130$. scpuare miles) ; by Dr. Benufort (Memoir of a Map of Irelamd). at 882,398 English acres ($=13$-9 square miles) ; and by Mr. 12. Gritfith, in lis evidence before the I.ords' Conmiltce on 'lithe (Lords' Sevional Papers, 1831-2), at 1.1)13.173 neres $(=-1583$ square miles); comprehending aecording 10 this last estimate 819,698 acres $(=1231 \mathrm{sq}$ are miles of enltivated land), 182,147 aeres ($=28.4$ square niles) of unimproved inountain or bog, und 11,32 ninceres ($=18$ square miles) of lakes. The execss of thas last estimate above the previous ones is remarkable, fand would render it liable to suspicion if it were supported ly a less eminent authority. The population, in 1831, was $102,50 \%$, piving 308, 202, or 2is inlabitants to a square mile, respectively, to the three estimates of the area of the county. Clonmell or Clommel, the chief town, is on the Suir, 20 miles
in a dircet line sonth-south-west of Dublin, or 103 miles by the road through Naas, Castle-Dermot, Carlow, Leighlin Bridge, Kilkenny, and Callen.
Surface; Geology ; Bogs.-The Knoekmeledown Mountains, on the south border of the county, where it is conterminous with Cork, rise to the height of 2700 feet above the level of the sca. They are placed in ' a table-land of clay-slate, partly bordered on the flanks by sandstone, and on the higher grounds sustaining isolated caps of the same, rock, or upholding more continuous mountain-masses.' The position of the sandstone on the flanks is generally conformed to the inclination presented by the surface of the subjacent clay-slate, but the masses on the higher grounds approach more and more to a horizontal arrangement. This tract (of clay-slate) is surrounded by floetz limestone on the north, the west, and the south: 'this limestone traet on the north separates the Knoekmeledown Mountains from the Galtees, of which the principal summits (3000 feet high) are in this eounty. The general direction of these two ranges is nearly east and west: the intermediate limestone plain or valley is watered by two streams (with their respective affluents), one, the Tar, flowing eastward into the Suir ; the other, the Funcheon, westward into the Blaekwater. North of the Galtees, from which they are separated by a narrow valley (the Glen of Aberlow), rise the Slievli-na-Muek Mountains, which form a subordinate and lower range, and have the same general direction of east and west. Both the Galtees and the Slieyh-na-Muck are composed wholly of sandstone, and the intermediate valley or glen appears to be occupied by the same formation. The nortliern face of the Galtees, towards this narrow valley, is in many parts extremely precipitous, and even inaccessible : the southern face, towards the broader valley or limestone plain, whieh separates them from the Knockneledown Mountains, is of a tamer character. The strata of the sandstone are, in the upper region of the Galtces, almost horizontal, yet gently curved, following the form of the summit, and precipitously broken off on the sides, where they frequenfly erop out. On the flanks, where they are not abriptly broken off, they become more inclined, and appear to be conformed to the surface of the clay-slate on which they rest. The sandstone varies much in charaeter, but in general it is a fine-grained rock, composed of crains of quartz closely aggregated. The sandstone orslievli-na-htuck yields excellent flags.

In the south-eastern corner of the county, north of Clonmell and Carriek-on-Suir, is a group of hills called Slierh-na-Man, the geologieal character of which is similar to that of the mountains already described: the group - consists of a nueleus of elay-slate, surrounded and surmounted by sandstone.

In the eentre of the county is another important range. It commences in the county of Limeriek, north of the little river Mulkerne, or Bilboa, whieh joins the Shannon a sloort distanec above Limeriek. At this extremity the range is known as the Doon Mountains; but as it extends north-east ward into Tipperary, the most important summits are known as the Bilboa and Keeper Mountains (the latter 2100 feet high) and the Devil's Bit : it crosses the county of Tipperary in a north-eastern direetion by Templederry and IRoserea, becoming narrower as it advances, and enters Queen's County and King's County, which it separates from eacl other, and where it is known under the designation of Slicvh Bloom. The gcologieal character of these mountains is similar to those already described: Keeper and Bilboa and the adjacent parts of the range consist of clay-slate, generally flanked by sandstone, exeept for a small space on the north-west side, near the village of Silvermines, where, at the foot of the hills, the clay-slate comes in contact with and immediately supports the floetz limestone. To the north-east of Templederry the range is entirely composed of sandstone. The direction of the stratn of the clay-slate varies in this mountain-range. The sandstone in one part, ncar Newport, on the west side of the range, is a coarse red conglomerate, and rests unconformably on the clay-slate. Copper was formerly dug in these mountains, at laekamore, five miles east of Newport. There are three veins, one of them thicker than the rest, and bearing rich copper-ore in bunchcs. The workings on this vein extended above 700 feet in length and 150 feet in depth. An attempt was made early in the present century to renew the works, but the machinery was insufficient to lreep the mine frce from water.

Considerable quantities of lead mixed with silver were obtained last century in an opening at the junction of the clay-slate with the floetz limestone, near the village of Silvermines. This opening had been filled with clay, sandy clay, sand, decomposed slate, and seattered blockis of limestone, Lydian-stone, and sandstone, the whole nats being penetrated or cemented by metallic depositions of various linds; and in this 'softness,' as the miners termed it, the operations were conducted.
Near the lower part of Lough Derg, one of the lakes through which the Shannon flows, are the Arra Mountains, a group oecupying a small part of this county on the western side, and extending across the Shannon into the county of Clare (where thcy are known by the name of Slievh Bernagh) ; they consist partly of clay-slate and partly of sandstone. There are quarries in these mountains which yield slate not inferior to that of North Wales.
The rest or the county is occupied by the floetz limestone, except a portion of the district between the southern groups of mountains (Slievh-na-Man and the Galtees) and the Central range, which is oceupied ly the coal-field of Killenaule ; and one or two small tracts on the western side of the county, where trap rocks appear interstratified with the limestone. This floetz limestone presents in its connection with other rocks and in its organie remains several features similar to those of the menntain limestone of Derbyshire and the north of England; but differs in this, that the tract occupied by it forms an extensive plain, marked only by slight undulations.
The coal-field of Killenaule extends about eighteen miles in length from north-east to south-west, from near the river Nore to the neighbourhood of Cashel, and about six miles in breadth. It is partly in this county and partly in that of Kilkenny. There are two very small outlying purtions near Cashel. This coal-field forms a low range of hills, placed upon the floetz limestone, and elevated above it. It varics in its elevation, being lighest and most abrupt on the north-western side, where the hills rise from 300 to 600 feet above the limestonc plain. On this side the dip both of the limestone and superincumbent coal strata is greater thau on the other side. Towards the south-east the surface declines gradually, and the streams which water the fract mostly flow in that dircetion. The strata are more gently inclined here. The aspect of the hills varics, but they arc commonly rounded with intervening hollows. The junction of the limestone with the coal-formation is generally at the foot of the hills, but sometimes half-way up their side. Immediately above the limestone, shale and gritstone alternate, there being two beds of each: the upper gritstone, when not eovered by the superior beds, constitutes the main body of the elevated part of the coal-hills: it is narked by repeated undulations, forming unequal ridges, with intervening hollows or troughs, having their greatest extension or length generally from north-east to south-west. In these troughs the coal-beds are found resting upon fire-clay, which intervencs between them and the gritstone and forms the floor of the coal, and covered by slaale, grit, and then shale again. Sometimes this series is repeated so as to give two seams of eoal. The troughs are generally from fifty to seventy yards deep from the surface to the coal, near the centre of the trough, and from 500 to 700 yards wide at the surfacc. The coal is of the nature of blind-coal or anthracite. The coal-works have been carried on with increased activity of late years: belore 1825 the yearly produce was valued at about $12,000 l$. ; since that period it has been nearly doubled.

The principal bogs are in the eastern and central part of the county : one continuous line of bog extends from near the border of the coal-field, near Killenaule, to the southeastern foot of the central range of hills at Roscrea, a distance of nearly 30 miles; and there are smaller detached bogs westward of this, and some in the northern part of the county, between the Lower Brusna and the Shannon.
Hydrography and Communications.-The greater part of the county is comprehended in the basin of the Barrow and the Suir, two rivers which unite in Waterford Haven. A small part on the eastern border is drained by the Minster, or King's River, a small affluent of the Nore, which itself is an affluent of the Barrow. The Nore rises in this county, lut has its course chiefly in that of Kilkenny. But most of the waters flow into the Suir, which nises north of Templenore, on the south-eastern slope of the mountains that there eross the county, and flows by Thurles, Golden,
and Cahir, to the junction of the little river Nier; alter whirh it flows along the bonder of this county and Waterfort, first northwari, sud then westuanl. by Clonmell and Carrick, below which it quits the suamts: $10-$ Et ther. Ils course in Tipperary may be estimated at ahout 76 niles. It receives a number of tributarics, most of them mmall. On the right benk the Multeen joins it sbove Goiden Bridge; and the river which waters the glen of Aherlow, between the Galters nad Stievh-ma-Muek, and the Tar, which dmins part of the linestone valley bet ween the Galtees and Knuelimeledown, join it lower down. The Nier, which joins it on the border of the county, on the same hank, belongs to the county Waterforl. Two streams join it on the left bank, one below Clommell, and another on the border, below Carricts. The Suir is navigable by larce barges up to Clonnmell.
That part of the county whieh lies north-west from the central chnin of mountains (the Kecper, Bilboo, and Devil's 13it) belongs to the basin of the Shannon. The Shannon itself, and Lough lerg, through which it flows, shirt the north-western lionder for about 4.5 miles, being navigable throughout. The streams which fow from the north-westen slope of the central chain are affluents of the Shannon, but none of them are navigable: the prineipai are the Nenagh, which passes the town of Nenagh, and the Lower Brusna or 13rosua, which skirts the northeastern horder, and unites with the Shannon at the northern point of the county.
There are no lakes in this county; hut Lough Derg is on its border. There are no navigable canals. The road from Dublin to Cork enters the south-castern side of the comnty, and insecs through Clonmell and Clogheen. Another road from Dublin to Cork by Athy passes through Cashel aud Cainir. The road from Duillin through Kildare and Maryborough (Qucen's County) to limerick crasses the northern part through Roscrea, Toomerara, and Nenagh: another road from Dublin through Tullamore and Parsonstown (hoth in King's County) unites with the foregoing at Nenagh. The road from Waterford to Limerick enters the counly on the south-east at Carrick-on-Suir, and passes throumh Clonmell, Cahir, and Tipperary. There are roads from Cionmel! to Cashel and to Cahir, and from Tipperary In Cashel, besides other roads of less importanee, which do not requike deseription. In the evidence laken before the Irish Poor Commissioners (Parl. Papers, 1836, vol. xxxiii.), the roads in the barony of Middlethird-which, as comprehending part of the mountainous country (including Sliesh-na-Man) and part of the valiey or plain between the central sud zouthern mountains, may be taken 10 represent the county at large-are described as good and sufficiently numerous:

Asrientimen and Condition of the People. - The information which we give under this head, extracted from the Appendix to the lrish Poor Commissioners' Report (J'url. Pupers for 1836. yol. xxxiii.), has reference to the barony of Middlethird, from which alone witucsses were examined; but it may probably be regarded as in a great degree spplicable to the rest of the county.
The land iu the barony was estimaterl in the county books (though the measurement was old, and regarled as inaccurate) at 58, 83.333^{2} plantation aeres: the plandation or Irixh acrebeing equal to Bhout an Euglish statute acre and five-cighiths, or gecurately, 101 la .2 r . 19 P hp . The land was held as follows:-

70 persons	held	ahove	100 neres.
\because	"	from	80 to 100.
127	"		50 to 80.
$0 \cdot 1$	"	-	20 to 50.
759	"		10 to 20.
745	"		\% 1010.
10.56			1 to \%.
20	"	1ess th	amm 1 nere.

The soil of the barony is chicfly a rich loam of some depth on a subutratum of limestone, and is equally adapted to tillame or parture ground. There is no public common land, nor any, woodiand except from 150 to 300 acres in sentiemen's demesiups: there are only Rbout 500 or 600 acres of bon, and that in the nortiem part of the harony: in the southern part the want of fuel is severoly fult. Of the remainder of the berony, after these Irining deductions, one-lhind or one-fourth is pasturelaud, and the rest in tillage. Grazing-farms are chiefly
large, and are occupied by gentiemen, imh, there are 10 d many of them: the qquantity of grazins-land had however ituereased in the five years preceding the inquiry; thonglo previously to that perioil the consemve liad takien place, pasture having been converted into tiflage. Farms are pencrally hounded by double ditchen; firide are divided by single ditches. These fences are generally in good condition, and the loss from calle frespaseng is tritling. The quantity of land wasted in fences in this barony is grenter than in others.
lients have been decreasing: it was estimaterl that they hau fallen in the twelve years preceding the inquiry from 2) 1030 per ceut. The Irish aure is in general use. Farms at the time of the inquiry were generally held under lease, but the granting of leases was goine inta disuse, and farms of which the leases had fallen in during the preeeding six years were generally held by tenants at will. The ordinary ierm of farm leases is thirty-oue years, or three lives. Cottage and giebe lands are commonly let for twenty-one yeans. Since the subletfing act, it has not been usual to grant leases to tenants in common; such leases had been found injurious; they had prevented draining and inclosing, and other improvements. About one-fourlh of the barony was at the time of the inguiry held under middle-men, but the systems is going info disuse; and though leases do not usually contain any prohibioory clanse, yet there is an underatanding that the lessee is not to sublet. There has been a disposition in the landowners to consolidate small holdings: but where ejectments have taken place they have been resisted by the peasantry, and threats have heen used and outrages committed upon those who sncceed to the occupation of the vacated laud: considerable difficulty has thus been placed in the way of consolidation.

The average rent of lend is not given; the competition for small holdings is however so great that when a vacancy occurs men will bid more than will allow them to make a subsistence from the land: and in most cases the coftier tenant cannot obtain more than a bare subsistence. The rent of these small inoldings is generally paid in labour. This competition for land has been a dinntful source of crime. Good land may probabiy be worth from 2l. 10)s. 10 3. per ace ; but when let as con-acre it brings in a hicher rent, which is usually paid in moncy, except when a farmer lets land to his own labourers. Dairy-land is worth 108 . an acre more than tillage-land, and grazing-land is yel more valuable.

The usual rotation of crops is threefold ; potatoes, whenth and nats form the series, and if the land wifl bear it, this is repeated. The potatoes are manured cliefly with 'town manuro, which sells in the towns for 2 s . and 2 s . Gd. for 1.5 ewt. The farmers, especially the smaller ones, licep very liftle stoek; and stall-feeding for the purpose of niakfug manure is not practised in the distriet ; but weeds, firze, and ing-earth are carried to the dung-yard to be troditen down. Manure is the great want of the farmer, and various expedients are resorted to in order to proeure 11. The potatoes grown both by the farmers and the peasantry are commonit the white potatoes, because, though of interior quality, they grow more frecly and on more exhausted land. Potatocs are generally cultivated with the spade, but the practice of drilling them in by the plough is becoming more common: Aallows are oceasionally resorted to, though as much to give rest to the land exhausted by the frequency of the potato crop as 10 elean it from weeds: fallows are generally manured with lime, which is burned with culn or small-coal from the collieries in the county.

Wheat is more commonly grown after potntoes than after fallow: the sced is generally steped it brive to preserve it from smut ; and the crop while growing is usually sweeded once, and rolled. Many of the smatler fammers break the lumps with a wooden mallet. None of the wheat is of the first quality: a good deal is threshed out hy the small farmers immediately after harvest to pay their rent or other deits: the iarge farmers do not off thresti any liefore November.

The cullivation of clover, rye-grass, and vetches has much increased of late years; but weither turnips nor mancel-wurzel are cultivated: the potato is generally used for feeding cattle. The clover is lett on the ground only one year, and is mown twice and then ploughed iu.
After the common rotation of crops has been taken once or twice, or on some of the best lands three or four times, the ground is left in grass for six or eight yerrs.

Grass or clover seeds are usually sown with the oats the last erop of the tillage course ; and for the two following years the produce is mown, and then grazed until the land is again broken up by the plough. Small farmers frequently do not sow any grass seeds nor mow the crop; they also break up the ground after a shorter interval. Owing to the warmth and moisture of the climate, and from the later period (the month of August) at which they are cut, the crops of hay arc heavier than would be produced by land of equal goodness in Great Britain ; but it is probable that from its more succulent nature the liay will not support or fatten cattle better than a smaller quantity of English hay.
The long-homed Leicester breed of cattle was introduced many years ago; but the Durham and Hereford breeds are more in request. The common Irish (Limerick) breed is however most generally used, as being the most hardy. The stock of all kinds is very good. There are not so many cattle fattened for export as there were formerly, still some are fed for the English market, and are exported from Waterford to Liverpool. Cattle are fit for slaughter from three years and a half old ; they weigh when fat from four cwt. to six ewt. Many young bullocks are sold at a year old to Roscommon and Galway men; others for grazing are bought in the neighbourhnod or at Ballinasloe. The Ayrshire and Kerry cows are not much used except by gentlemen. The quantity of butter made is not great, but the quality is in gencral good, and the mode of preserving it is improving: Clonmell is the principal market. Very little cheese is made.
There are not many sheep kept: they are in general a cross of the Leicester breed, and are large well-made anlmals. There are no large flocks, and folding sheep is not in use; the small farmers keep two or three sheep for the sake of the wool; and those who have dairies nix some sheep in their pastures with their horned stock.
The horses are of an active light-boned sort, very useful for all farming purposes. Oxen are never enplloyed in labour. Pigs are numerous, and of an improved breed: they are eonsidered to be still improving.

Agricultural implements have undergone much improvenuent of late years. An iron plough, after the form of the Scotch plough, has superseded the old-fashioned one, which is now seldom seen in use : the harrows, though not so well made, yet, from the friable nature of the soil, do their work efficiently: rollers are getting more common every year; and these, as well as the harrows, are borrowed by the farmers foom each other. The carts are of chean construction, with narrow wheels and low sides formed of rails; they carry only a small load, and are drawn by one horse.' The plongh is used in the cultivation of every crop except potatoes, for which, among the small farmers, the spade is used; but the use of the spade is diminishing every year. The flail is used in threshing, except when the straw is wanted for thatching, and then the corn is often knocked out ayainst a board by the hand.
The dairy-farmers have in general more capital than other farmers. They liave better houses, and these, with their cattle-sheds and other farm buildings, arc usually in good condition. Mud-walls are found to answer best for dairies, and little air is admitted.

Many of the resident gentry have set an example of superior cultivation, and have been the means of introducing improved stock and implements. They crop the land less severely than the common farmers, and give it longer intervals of rest or more manure, in which they are followed by the larger farmers.

The con-acre system is common; these allotments are commonly taken by the cottiers to raise their own food, but a considerable number are taken by servants and women with a view to profit from the sale of the produce. The nsual quantity taken by a family is a quarter to half an acre; and the labouring class are always anxious to obtain it.
The demand for labour at the time of the inquiry was considered to have decreased, while the population had inereased. Wages, which had in the course of ten years undergone a diminution of about two-pence per day, were usually for men od. a day with food, and in harvest 1 s . a day with food; or when hired for a whole year, $7 \frac{1}{2}$ d. n day in summer, and $6 d$. a day in winter, without food. Boys under sixteen received Bul. a day in harvest-time, or if hired by the year 15 s . per quarter, of in some baronies 20 s. per
quarter. If a labourer worked 250 days in the year, at $8 d$. a day, he received $8 \% .6 s .8 d$. , which may be considered as the full average of the yearly earnings of the class. In the seasons when work is slack, mid-winter and a month before harvest, many of them resort to begging. To this the labourer may add a little by eggs and about $3 l$. by his pigs. When food is dear, the labourcr has to work sometimes for six weeks in July and August, merely for his food, conisisting generally of potatocs and milk. When a farmer foeds his labourer, he gives bim commonly better fool than he would have at home. If à labourer has a cottage, potato-garden, and milk from his employer, às is usual, these are considered equivalent to a third or a hall of his wages. The labourers in the richest grazing districts are the worst off. The labourers when they obtain permanent employment, at fixed wayes, exhibit generally increased cleanliness and deeency of appearanse, and their cabins are better furnished.
There is no employment for women, except in some of the baronies in harvest-time, and perhaps in the potatoplanting and digging seasons, when they earn about $6 d$. a day. Formerly they spun wool for their own clothes, but this practice has ceased for several years, probably because the manufactured article can now be purchased eheaper. The rearing of fowls is the source of some profit; and a couple of pigs will bring in about $3 l$., which is depended upon to pay the rent of the potato-garden. There is no work for children under fourteen years of age: they are not employed in hoeing or weeding corn or other crops.
The cottier tenants, occupiers of léss than ten àcres of land, are enabled to feed and clothe therr families better than a labourer, but are themselves worse fed than the labourets who are dieted by the farmers. Cottiers seldoni keep a cotv; they hold their land from year to year, and are generally in arrear for rent; which is always (ii a nran holds five acres or more) expected to be paid in money.
The potatoes which the labotrer or small cottier, grows constitute the food of his family; he himself is frefuently fed by his employer. Milk is not used in more than one half of the fanilies. The greatest expenditure on tobacco is 6 d . a week. Candles for six months amount to $3 J$. per week, and other necessaries, under the general designation of ' kitchen,' cost from $1 l .10 s$. to 22 . 10 s. for the year. The labourers do not consume any description of groceries. The fees to the Roman Catholic clergy form an imporiant item in a labourer's outlay. The fee for marriage is $2 * 5$. for churching a woman 2s. 6d., and for blessing the clay and saying mass at a funeral 5 s.; at confession at Easter and Christmas 1s. is expected: but these lees arc often remitted.
The divellings of the labourers are of the most wretched description, nor has any perceptible improvement taken place of late years. During the alam of cholera they were whitewashed, but that is now neglected. They are gencrally 20 feet long by 12 broad, with walls from 7 to 8 feet high, divided into two or perhaps three very small apartments, and never having a second story; covered only with a thateh of straw, and having nothing but the bare ground for the floor, and that often full of holes, which in wet weather become little pools of water. A hole in the roof allows the escape of the smoke, and their windows, 15 inches square, are more commonly without glass than with it, and almost universally destitute of shutters. They have rarely any outhouse except a pigsty, and in many cases where they have not even that, the pig sleeps in the house. These wretched hovels usually cost in erection about 10 . and the tenant pays from 20 s. to 30 s. a year as rent ; with a rood of land, the rent is near 2%. $10 s$. The cabins are always kent in repair by the tenant. They are usually bnilt separate, not grotiped in villages or hamlets, and for convenience near the road-side.
It rarely happens that there is more than one bed for the whole family; a bedstead, a dresser, two clairs, a large iron pot, and some crockery, all of the worst description, tisually complete the catalogue. In some wretehed cabins tven these are not found, and the fanily lie on the floor.
The chief article of food is the polato: the peasantry grow this in preference to corn, because it yields a more abundant supply with less care and less manure. A labourcr, when employed, gets three inenls of potatoes a day, his wife and children only iwo. In July and August, when the old potatoes have beeome unfit for food, and the
new crop 2 s not ready; colic or other bowel complaints are produced by the unwholesomeness of the diet; and the failure of the protato crop is always proluctive of great distress: the labiurer is then oblized to procure provision upon credit, which he obtains wifh great difficulty and by phang double the market-priec.
In respect of elothing, considerable improvement has taken place, though the peasintry are still very inditterently" clad. No material for eluthing is of home manufacture, but the women generally make up their own dresses: sonetimes however they are unable to do this, and liave to pay for gettiny them inade. The use of shoes and stockings is incruasing. Old clothes, brought from Iondon and Liserpool, are much worn. The yearly expenditure of a labourer's fauily on clothes is seldom less than a pound.

The ordinary fuel is turf: near the bogs this is chenp, but to one living at a distance of 8 or 10 miles from a turlary, the cost is doubled. When fuel is scarce, pilfering nud the destruction of woods and fences are common. Straw and dried cow-lung are used ns a substitute for turf. The counfy has always been one of the most disturbed in Ireland; "nlthough there is an ebb and flow of erime in other counties, Tipperary has always kept up steadily to high-water-mark.' This was the stitement of the resident puliec magistrate of Cashel. (See Parlianentary Papers for 1836, vol. xxxii., p. 357.)

Dirisions, Touene, s.c. The county is divided into eleven laronies, as follows:-

Masony. Clanıilliam.	Situntion W.	Pop, in 1831. 48,152 4.51
Eliogarty	Central	38,531
Iffa und Off (East)	S.E.	38,702
Itfa and OIfa (West)	S.IV.	40,102
1 kerin.	N.E.	27,077
Kilnemannglı	IV.	30,774
Middlethirl	Central	44,103
Ormond (Lower).	N.	45,006
Orinond (Upper)	Central	$2.1,807$
Owney and Arra. $^{\text {a }}$	W.	32.4.4
Slievardagh	E.	32,765

It contains the county-town of Clonmell or Clonmel [Clonmel]; the eity of Cashel [Cashal]; the ex-borough (formerly parlianentary) of Fethard; the makettowns of Calir, Carrick-on-Suir [Carrack-niv-Sume, Cloglieen, Killenaule, Neuamh, Roscren, Temphemore, Thurles, and Tipperary ; the post-towns of 13uinis-0'-I, earh, Burriso'Kane, Cloghjordan, Golden, Littl⿶ion. New Birminghan, and Nemport ; and the villages of Ballina, Emly. Mrullinahonc, Silyormines, Tooonavara, and others. Sone of these are described as referred to above: of the others we give some neeount here.

Fethard is in the harony of Middlethird, 100 miles from Dublin by Kilkenny and Callen, and 9 miles north trom Clonmell. The town contained, in 1831, 582 houses, inbathited by e8s tamilies; 39 houses uninhabited, and :5 luilding, with a population of 310. : the whole parish contained 678 hnuses, inlabited by 757 families; $4 t$ houscs uninlabited; and 7 building; with a population of 40.50 . The tuwn is irregularly laid out on both banks, but chiefly on the lett or north-eastern brak of a small stream, the Glashall, which ultimately joins the Suir below Clonmell. Fethard is an antient and decayed town, in a bye situation, with little trade. Of the houses nbout 120 are slated, and chictly of two storios: the rest are thatelhed eabins, and of the poorest deseription. There are a parish ehureh; n l'resbyterian and a lrimitive Methodist mecting-house; two Roman Catholic chapels, one the regular parish clapel, the other attached 10 an Augustinian triary. The parish church, of which the chancel is in ruins, and the frary chapel, are antient structures. There is a good slated seliool-house. The town was formerly walled, and some portions of the walls and of the gateway towers remain. There are (or were lately) four niills and a tan-yard or two: the prine:pal trade is slinemaking; but the ehief oceupatimn of the labouring clase is ayriculture.
The town was inenrporated at an early periocl: the oldest known charter is dhated 49 kilward 111., A.D. 1.376 ; but the corporation has , been dissolved Lyy the late lrish Municipal Refurna Act. Tlie borough sent two members to the lrish parliament, but was disfranchised at the Union. There is a niarket on Saturday, but it is of minor inpor-
tance: the yearly sale of whent is alsout 8000 harres, of oats about 30010 or 3500 harrels. There are a dispensary and a charitable loan-fund: and (by returns to the llonse of Cominons, 1 minted in 14.3:) Pen sidnols of all kinds, including a mational sehool with 1SC boys on the books, nud an average daily attendance of 130 .

Cahir, or Caher, is in the lurony of 1 ffa and Offa (West), 111 miles south-west from Dilhlin by Clonmell, from which it is distant 7 miles west. The fown had, in $143 \mathrm{t}, 5.5 \mathrm{5}$ loouses, inlabited by 706 families; 61 honses uniulabited, and 16 building, with a population of $3+08$: the whole parish had 1291 houses, inhabited by 1623 (amilies; $4: 3$ houses uninhabited, and 23 building, with a population of 8.,94. Cahir is pleasantly situated on the banks of the river Suir, at the eastern end of the valley, between the Galtees and the Knockmeledown Mountains: it is, for an Irish town, very clean, and has been steadily inereasing, thoush not rapidly: the new houses are chiefly of a good descuption, worth from 10l.10 40l. per annmm, and are reapectably tenanted. There are a parislı church, a Koman Conthulic clapel, and a Qunkers" meeting-house. Near the town are cxtensive cavalry barracks; and on the banks of the Suir are the demesne and residence of the Earl of Glengall. An attempt was made many years ago to establisis the linenmamutincture, but it failed: since then the straw-plat has been introduced, and gives employment to n mumber of females: there are also some extensive flour-mills. The market is un Friday, and is an imporiant com-market: the yearly sales of wheat had inereased from 23,662 barrels in 1826 , to 56,131 in 1835 : the sale of oats had continued steady through the same period, at 37,010 barrels. There is a bridewell, and a body of constabulary are posted in the town: there are also a dispensary and tever-hospital, and (by returns to parliament in 183.3) fitteen schools of all kinds; one of them a national seloool, with 286 children (boys and girls) on the books, and an average attendanee of 150 ; and two others on Erasmus Smith's foundation, one with 51 girls on the books, and an average attendance of 2 ; ; the other containing 11 boys. Near the town, on an island of the Suir, are the pieturesque ruins of the castle of Cahir.

Clogheen is in the barony of Iffa and Offa (West), 120 miles south-west of Dublin through Clonmell, and $14 \frac{2}{2}$. miles trom Clonmell. The town is chiefly in the parish of Slaanraghan: it contained, in 1831, 291 houses, inluabited by 357 families; 17 houses uninhabited, and 3 building. with a population of 1923 : the whole parish had 1047 houses, inhabited by 1199 families; 39 honses uninlabited, and 4 building: the parish of Tullaghnrton, into which the town extends, had 297 honses, inhabited by 30 is tanilies; 5 houses uninhabited, and 5 huilding, will a p:opulation of 196i). What portion nf these belong to the inwn we have no means of asecrtaining. There is a Roman Catholie chapel in the fown: the parish church of Shan raghan is in the inmediate meighbourhood. Tullaghorton parish has no elureh. A large corn-mutrket is hekd on Saturday, at which the yearly sale of wheat had increased from 42,125 barrels in 1826, 1002,824 in 183.3; but that of barley had deereased trom 3200 barrels in 18:20, to 224] in 1835: there are seven flour-mills in and round the town, the flour from which is sent by land to Clonmedl, and fimn thence down the Suir to Waterford, where it is shipped. There is also a large brewery. A body of comatalbulary are posted in the town; and there are a small casalry harrack, a small bridewell, and a dispensary and fever-hospital. Near the town are the ruins of an antient prish churels and of an antient abbey. Shanbally Castle, the seat of Lord lismore, is also in the neighbourhood. By the returns to parlianent in 183.5 there were in the two parishes cight private schools, but not any mational or other school supported by subscription or endownent.
Killennule is in the barony of Slicvardagh, 02 miles south-west from Dublin by Urlingford, and 16 north from Clonmell by Fethard. The town, in 1831, contained 2:5 houses, oeenpied by $32 t$ families; 34 houses munhahited, and 2 building, with a population of 1578 : the rest of the parish had 279 houses, inhalited by 300 fanilies; 9 houses uninhalited, and 3 building, with a pmpulation of 1839; making a total population of 346%. There are a church, n loman Catholic chapel, and a dispensary: the chureh is small and antient. There is a weekly market, and several yearly fairs are held : a portion of the county constabulary is stationed in the town. Several of the collieries of
the Killenaule coal-field are in this parish. By the returns to parliament, A.D. 1835, there were in the parish six schools, all supported by the payments of the children: school-houses had been built by subscription for two of these schools.

Nenagh is partly in Upper Ormond, but chiefly in Lower Ormond barony, between 95 and 96 miles south-west of Dublin, on the road to Limerick. ${ }^{\text {a }}$ The town contained, in 1831, 1382 houses, inhabited by 1703 families; 53 houses uninhabited, and 9 building, with a population of 8466 : the remainder of the parish contained lot houses, inhabited by 104 families, and 2 houses uninhabited, with a population of 693; making a total population of 9159 . This town antiently belonged to the Butler family, who had a strong castle here: it had two ecclesiastical foundations; an hospital for the canons of St. Augustin, founded A.D. 1200; and a friary for conventual Franciscans, deemed the richest foundation of that order in-Ireland, founded in the reign of Henry III. The town was burned, A.D. 1550 , hy the natives under 0° Carrol, and the friary was included in the destruction, but the castle was saved by the garrison. The town was repeatedly taken and retaken in the great civil war in the reign of Charles I. It was taken by the native forces of James II., A.D. 1688, but after a time abandoned and burned by them. The town stands on the river Nenagh, which flows with a circuitous course from the Keeper Mountains into Lough Derg, and consists of four streets mecting in the centre. The ruins of the castle, consisting chiefty of a large circular donjon or keep, called Nenagh Round, are on one side of onc of the streets, Castle Street. There are a barrack for cavalry; a feverhospital and dispensary ; a church, rebuilt some ycars since; a Roman Catholic chapel ; and a bridewell, unless it has been disused since the completion of the county gaol, lately erected here. Some remains of the Franciscan fitiary may be traced. A portion of the county constabulary are stationed here. There is a well-attended market on Thursday for con and cattle. The number of barrels of wheat sold on the average of the years 1826 to 1835 was above $4 \overline{5}, 000$, of barrels of oats about 4500, and of barrels of barley 1300. The sale of bere, which was about 1000 barrels in 1826, lad quite ceased before 1835.5. There are in or near the town a brewery, a flour-nill, and a small stuff manufactory. There are several yearly fairs. There were in the parish, by the return made to parliament in 183.), eight schools of all kinds, including a national school, with an average attendance of 190 boys; a parish free-school, with an average attendance of 40 boys and girls; and a school on Erasmus Smitl's foundation, with an average attendance of $2 s$ boys and girls.
IRoscrea is in the barony of Ikerin, 75 miles west-southwest of Dublin, on the road to Limerick, and about 50 to 52 north of Clonmell. A monastcry for regular canons is said to have been founded here by St. Cronan as early as the beginning of the seventh century, which became subsequently the seat of a bishopric, afterwards united to Killaloe. According to Keating (History of Ireland) there was antiently a great fair held at Roscrea on the festival of St. Peter and St. Paul, at which fair, about the middle of the tenth century, an army of Danes, collected from Jimeriek and Connaught, attempted to surprise the natives; but these, having some suspicion of the attack, had brought arms with them, and made so stout a resistance, that they repulsed the enemy, with the loss of their leader and four thousand men. In 1213 King John erected a castle at Roscrea, of which a circular tower remains; and there is in the centre of the town a square castle of the Ormond family, occupied as a depôt for the troops quartered in the infantry barracks. About A.D. 1490 a Franciscan friary was founded.
The town of lZoserea is in a fertile and pleasant situation: it consists of scveral streets, irregularly laid out, and had, in 1831, 907 houses, inhabited by 1136 familics; 61 houses uninlabited, and 6 houses building, with a population of 5.512 : the whole parish, which extends into the baronies of Ballyhrit and Clonlisk in King's County (Leinster), had 1510 louses, inhalited by 1797 families; 79 houses uninlabited, and 12 building; with a population of 9199 . The parish church is an antient building, with Norman doorways and niclies, and several sepulchral crosses and curious architectural decorations. Near the church is a round tower 80 feet ligh and 15 feet in diameter, with a window with an arch of the usual form, 15 feet from the ground,
and a window witl a pointed arch, abont 30 feet from the ground. There are some remains of the antient monastery of canons of St. Augustin, consisting of the western gahle, having an arclied doorway, which forms an entrance to tle, present churchyard. There are also some remains of the Franciscan convent, which are (or at least were some years since) in good preservation: the tower of the conventual church forms the entrance to the prosent Roman Catholic chapel. There are a Primitive and a Wesleyan Methodist chapel and a Quakers' meeting-house in the ecclesiastical union of Roscrea (comprehending the parishes of Roscrea and Kyle), but we are not aware whether they are 'in the town.

The town has considerable trade as the mart for the surrounding district. Formerly there was a considerable manufacture of woollens, especially serges and stuffs, in which a thousand looms are employed; but this had so fallen off about 183 , that it gave employment only to a hundred looms. There were at that time a distillery and three breweries. There are two weekly markets and several yearly fairs for cattle and farming stock: there are public slambles and a commodious market-house. The sale of grain at the markets is considerable: the average yearly sale of wheat had increased in the ten years from 1826 to 1835 , both inclusive, from 4140 barrels to 6700 ; and that of oats from 18,500 to 22,100 barrels; the yearly sale of barley had continued stcady at 13,000 barrels. There is a savings' bank, the deposits in which had (in 1835) considerably increased: the depositors werc chiefly farmers, small tradesmen, and scrvants: there were at the same time a fever hospital, a cholera hospital, and a dispensary. The number of places where spirits were sold was very great, amounting to above two hundred in the town alone; of these nearly half were licensed public-houses. There are a sinall bridewell, an infantry barrack, and a station of the county constabulary. There were, by the Parliamentary Returns for 1835, ten day-schools in the parish, including a national school, with an average attendance of 52 boys; a school on Erasmus Smith's foundation, with an average attendance of 91 boys; and a day-school for young gurls in connection with the Ladies' London Association and the Hibernian Societ y, with an average attendance of 45 .

Templemore is in the barony of Eliogarty, about 87 miles south-west of Dublin, and about 39 or 40 north of Clonmell. It is supposed to derive its name from the Knights Templars, who had a house here, of whieh the remains form an entrance to the demesne of the Carden family. There were in the town, in 1831, 404 houses inhabited by 609 families; 12 houses uninhabited and 7 building ; with a population of 2036 : the whole parish had 664 houses, inhabited by 88% familics; 15 houses uninhabited, and 18 building; with a population of 4583. The town is pleasantly situated near the right or west bank of the Suir, and is (comparativcly at lcast) a well-built and neat town. The church, which has a handsome tower and spire, was rebuilt about fifty or sixty years ago; there are a handsome and spacious Roman Catholic chapel, a good market and court-house, a bridewell, extensive barracks, a fever hospital and dispensary, and ball and news-rooms. The town is approached on all sides by avenues of ash-trees; and therc are several gentlemen's seats and the remains of some very antient castles in the neighbourhood. There were, according to the returms of 183., seven schools in the parish, including a free-school on Erasmus Smith's foundation, with an average attendage of 47 scholars, boys and girls.
Thurles is in the barony of Eliogarty, 96 miles southwest from Dublin by Templemore, and about 32 from Clonmell. It is a place of considerable antiquity, and was in the tenth century the scene of a severe battle between the native Irish and the Danes. There is a tradition that the Knights Hospitallers liad a house here, but no record of it has been discovered. A Carmelite monastery was founded here about A.D. 1300 ; and in the fourtecnth century a castle was built by the Butler family, which in the civil war of Charles I. was garrisoned by the Royalists and taken by the Parliamentary forces. Of these buildings there are some remains : a tower and some part of the north transept of the church of the monastery stand on the east side of the Suir; and there are considerable portions of the walls of the castle, inclosing an extensive area, and flanked by towers, some round, others square. •There were not long since (and perhaps still arc) some remains of St. Mary's church, built in the fifteenth century, and very P. C., No. 1510.

Vol, XXIV,-3 R ,

much dilapidated ; there is an extensfie mansion, formerly lelonging to the carls of llandaff, now converted into as linarack. There are a neat motern church, a handsome Roman Catholic chapel, which is the cathedml of the Catholic archbishop of the diocese of Cashel and Y:mly, a Roman Catholie college, two nomeries, one of Unulines, the other of the order of the Presentation, it llaputist neet-ing-house, a good markct-house, a small brrack for hnfantry, a neat sessions-house, a well-arranged bridewell, mul i dispensary. Conslderable trade is carried on in the Qown: there are fwo market-days in the weck, a monthly fair, and three yenrly fais: the salc of com in the market is considerable; the wheat sold in the year increased from 30.400 barrels in 1826 to 50,000 in 1835; and that of barley from 9400 barrels in 1820 to $11,0(x)$ in 183is: that of oats had continued kitationary at from $3(0) 0$ to 4000 barrels. Some brewing and tanning are carricd on. "here were, by the Parliamentary Returns of 1833 , seventeen schools; including one of 300 girls, taught by the nums of the Presentation convent; a boarding-school of $\mathbf{6 0}$ girls, and a day-school of 120 egrls, kept by the ntins of the Ursuline convent; a day-school with an average attendance of 200 boys, under the direction of the leligious Brothers; and a day-school under the superintendence of the curate of the established church and some of the parishloners, with nearly 40 ehildren.

Tipperary is in the barony of Clanwilliam, 110 miles sonth-west of Dublin, and 23 miles west-north-west of Clonmell. A monastery for Eremites of the rule of St. Augustin was founded here in the reign of Henry III. In the reign of Edward III. (A.D. 1339) the town was burned by the natives under lirien O'Brien. Its former importanec is hadicated by its having given name to the county, and by the fact of its haviny been untiently ineorporated; but it no longer possesses the same relative importance, and the corporation has long eensed to exist. The town is chicfly in the parish of Tipperary, but extends into those of Curdangan and Kilhane: it had, in 18:31, 08s houses inhabited by 1232 families; 36 houses uninhabited and 18 building; with a population of 6972 : the whole parish of Tipperary had 1113 houses, inhablted by 1379 famties; 30 heuses uninhabited, and IC building; with a popmation of 7956.

The town of Tipperary stands hear the little river Arra, which flows into the Suir, and consists of one principal street, from which sinaller streets branch off at right angles. Sevemil of the honses are well buik, and of liandsome appearanee: many old buildings have been taken down and new ones erected in their place, so that the town has a neat and thriving appearance. The inhabitants are supplical with water from a public fountain. The church is a modern structure, and there is a Bomari Catholic chapel. There are some remains of the Augustinian monastery, ehicfly consisting of an arched gateway in front of the building occupied by Erasinus Smith's classical school, which has obtained from this circumstance the popular designation of 'the abbey school.' The principal trade is in butter, of which a large quantity is sent to Limerick and to Waterford for exportation. There are two weekly markets (for which there are a neat market-house with is news-room over it, In the eentre of the town, and shambles) and four yearly fairs. The sale of wheat is small; but it lad inerensed in the ten years from 1826 to 1835, from 1123 to : 3160 barrels; that of oats had inereased from 708 to 10,075 barrels: but the sale of binrley had dectinced from clo to 236 barrels. There ure a dispensary, a fever hospital, a temporary barrack, and a small bridewcll: a portion of the county constabulary are stationed here. There were in Tipperary parish, aecordiny to the return made to prarliament in 1835, nineteen schools of all kinds, inchuding \AA classical boarding school on Frnsmus Smith's tonndation (the Abley Sehool), with mbout 30 scholars, another school on the same foundation with about $3 t$ children, boys and girls, and national sehools for boys and for girls, attended cach by about 110 seholars. Kilshane parish had no sehool, and Curdangan ouly onc, a hedge-school, with 21 scholars in winter and about 70 in summer.
Burriseo- -Leagh, or Burrisillegh, is in the parish of Glankeen, fin the barony of Kimemanagh, 92 miles south-west of Dublin. It had, in 18:31, 210 houses, iuhabited by 260 familics, 14 houses uninhalited and 4 buikding, with a population of 1301 . The parish church and the Ronian Catholic chapel are both in the town, There is as small
brewers: threc yearly fain are held, one of them a considerable fair for pigs. A body of the county eonstabulary are posted in the town, and there is a dispensary. There were (Purl. Refurns, 1833) in the whole paniwh cleven schools, inchuding three national schools, with an average attendance of from 210 to 220 children; and another sehoo! whth 23 childreu, partly supported by private contributions.
Burris-0'-Knne, or llurris-o'-Kcan, or Burros-0'-Keane, is in the barony of I.ower Ormond, 91 miles west-sonth-west or Dublin. The town had, in 1831, 206 houses, inhabited by 217 farnilies; 14 houses unimhabited and 1 buildine; with a population of 1185 : the whole parith had 46 homses inhabited by 477 familice, 24 houses uninhabited, and 2 building; with a population of 20i3t. The town las been much improved of late years; many new houses have been built. There are a Roman Catholic chapel aud a Westeran chapel, besides the parish chureh, a plain modern building ; a dispensary and ferer hospital, and a small bridewell. There are some remalns of a square castle of massive construetfon, called Thmbricane. Four fairs are held in the year. There were in the parish, by the returns of 1833, , six schools, including three frec-schools, one with about 35 children, connccted with the Baptist Irish Socicty; another with 30 bors, in comection with the Society for discountenancing Viec; and a third, with an attendance in summer of 80 girls, supported by private subseription.
Cloghjordan is in the parish or Modereny, in the barony of Lower Omnond, nearly 90 mites west-south-west of Dublin. It had, in 18:31, 129 houses inhabited by 144 families, 6 houses uninhabited and 3 building, with a population of 82t. There are a district church of the establishment, of light and elegant architeeture, built A.D. $18 \$ 30$ and meeting-houses for Baptists, Weslcyans, and Primitive Acthodists; also a dispensary and fever hospital. There is a considerable distillery. Three yearly falrs are held. A socicty for the relief and diminution of pauperism, ealled 'the deacons' poor thun,' exists in this and the adjacent parishes. There were no schools in the distriet parish of Cloghjordan in 1835; but in the whole of Modereny parish there were fire day-schools, iueluding two parochial schools, one with about 50 boys, and the other with about 00 girls; there were also three Sundayschools for religious instruetion.
Golden is in the parish of Relickmurry, or Religmurry, in the barony of Clamwillian, about 102 miles S.W. of Dublin, between Cashel and Tipperary. There were, in 1831, in the town, 101 houses inliabited by 105 families. 2 houses uninhabited, and 5 building; with a popnlation of 684. It is a neat and improving place, situated in the Golden Vale,' one of the most fertile distriets of the county, and is divided into two parts lyy the river Suir, over which is a stone bridge. It has the rulns of an old eastle; and in the neighbourhood are the remains of Athassel Augustinian Abbey; originally ohe of the most splendid ceclesinstical structures in the kingdon; the ruins are extensive and wortly of notice. The parish church and a Roman Catholic chapel are in the fown. There are flour and ontneal mills; and four fairs are held yearls. There is a dispensary. A body of the connty constabulary are posterl here. The united parishes of Reliekmurry and Athassel had, in 18.3.) six day-schools; one, with cu children, partly supported by Iady Elizabeth Mathew.
Littleton is in the paish of liontslegh, in the barony of Eliogarty, 90 miles S.W. of Dullin, It contained, in 1831 . 44 houses inhabited by 54 families, 3 houses uninhabited, and 1 building; with a population of as3. It is a place quile of modern origin, chicfly crected by the late Rev. Thomas Grady: The parish-church, a handsome building. is in the town; and there is also a dispensary: a boily of the county constabulary are stationed herc. There were, in 183\%, five day-sehools; one of them was the parishsehool with about 30 ehildren; one of the others sas held in a school-room erected by subscription.
New Birminghan is in Kileooley partoh, in the barony of Slievardagh, 9., miles S. W. of Dublin. This fown owes its origin to the late Sir Vere IXunt, who obtained patents For two weekly markets and twelse \}early tiins; but these have been discontmued, and the place is compratively deserted. There are a Roman Catholic chapel and a small prison. There were, in 1831, 48 louses inhabited by 62 fromilics, and 1 louso uninhabited; with a population of 298.

Newport is in Kilvolane, or Killevolane, parish, in the barony of Owney and Arra, 109 miles S.W. of Dublin, on the road to Limerick. It had, in 1831, 127 houses inhabited by 162 families, 24 houses uninhabited, and 12 building; with a population of 852 . The houses are for the most part neatly built. The parish-church is in the town; and there are a Roman Catholic chapel, a bridewell, a dispensary, and infantry barracks. There are four yearly fairs, one of them a large cattle-fair.

Ballina is in Templeichally, Temple lehally, or Templekelly parish, in the barony of Owney and Arra, on the bank of the Shannon, near where it leaves Lough Derg, opposite Killaloe. This village is eonnected with Killaloe, of which it may be considered as a suburb, by a bridge of nineteen arches over the Shannon. The population of the village, in 1831, was 832. There is a Roman Catholic chapel; and a body of the county constabulary are posted here. There is a yearly fair for pigs. Near the bridge are the remains of a castle erected to defend the passage of the river.

Emly is in the barony of Clanwilliam, near the western border of the county, about 9 miles west of Tipperary. It is of great antiquity. An abbey of regular canons of St. Augustin was early founded here; and the town subsequently became the seat of a bishop's see. Some of the prelates appear to have exercised temporal power as well as spiritual; and one of thein in particular, in the ninth century, distinguished himself as a warrior against the Danes. King John granted to the town the privilege of holding markets and fairs; but the privilege of a market, if ever used, is now disused. The diocese was united to that of Cashel A.D. 1508 , and the removal of its episcopal seat caused the decline of the place. It had, in 1831, a population of 701. A body of the county constabulary are posted here; and there are two yearly fairs. The parish church is in the village, and there is a Roman Catholic chapel. There are the ruins of a church and a large stone cross. Some antiquities have been duy up in the neighbourhood.
Mullinalione is in Kilvemnon parish, in the barony of Slievardagh, on the road between Callen and Fethard; it is also between Carrick-on-Suir and the Killenaule coal-district, so that it is a common resting-place for the car-drivers in their way from Carriek. A considerable quantity of butter is sold here in a weekly market (though the place ranks only as a village), held on Thursday, and sent to Kilkenny, Clonmell, or Carrick. There are several well-attended yearly fairs for cattle and pigs, and a body of the county constalulary are posted here. There are a Roman Catholic chapel and a dispensary. The population of the village, in 1831, was 1175.

Silvermines is in the parish of Kilmore and the barony of Upper Ormond, about 5 or 6 miles south of Nenagh. It is at the foot of the north-western slope of the central hills, and takes its name from the lead-mines formerly worked, the produce of wfich yielded an unusual quantity of silver. The population, in 1831, was 791. Some of the houses are neatly built: the parish church and a Roman Catholie chapel are in the village, and there is a dispensary. There are four ycarly fairs.
Toomavara, or Toomavarra, is in the parish of Aghnameadle, in the barony of Upper Ormond, between Nenagh and Bunis-0'-Leagh; it had, in 1831, a population of 790 : there are a Roman Catholie chapel, a national school, and a dispensary in the village. There are at least two yearly fairs, and a body of the county constalulary are posted here.

Divisions for Feclesiastical and Legal Purposes.-This county was formed at what is commonly decmed to be the first establishment of counties in Ireland, by King John, A.D. 1210; though Sir James Ware has shown that counties or some equivalent divisions must have existed before that time. The county was subsequently enlarged by the annexation of what was called 'Cross-Tipperary, a district having a sheriff and other officers distinct from the county. Antient reeords speak of the 'Viec-Comes Croceae Tipperary.'

It contains the whole or part of a hundred and sixtythree parishes. (Pop. Returns for 1831.) These parishes constitute or are comprehended in one hundred and nine unions or other eeclesiastical benefices, in several dioceses, as follows :-

Cashel was an archbishopric, having in its province the united dioceses of Cashel and Emly, the diocese of Cloyne, the united dioceses of Cork and Ross, of Killaloe and Kilfenora, of Limerick, Ardfert and Aghadoe (which last two were incorporated), and of Waterford and Lismore. By the Act 3 and 4 William IV., c. 37, a further union of the dioceses of Cashel and Emly with Waterford and Lismore was enacted, to take place on the next avoidance ; and this union has now been effected. The greater part of the county is in this united diocese. The same Act deprived Cashel of its archiepiscopal rank, on the decease of the then existing holder of the see, and added the province to that of Dublin: this change has been effected. The only part of the county in the diocese of Meath is the parish of Eglish, which is partly in this county and partly in King's County, and is comprehended in the ecclesiastical union of Fircal. The diocese of Meath is in the ecclesiastical province of Armagh; but with the exception of the small part included in that diocese, the rest of the county is in the ecclesiastical province of Dubliu.
In the Roman Catholic church the archbishop of Cashel retains his dignity, and is primate of Munster. His cathedral is at Thurles. His province includes the united dioceses of Cashel and Emly, of Cloyne and Ross, and of Waterford and Lismore, and the dioceses of Cork, Kerry, Killaloe, and Limerick. In which of these dioceses the county is included we have no means of ascertaining exactly; but the greater part, if not the whole, is includeck in those of Cashel and Emly, Killaloe, and Waterford and Lismore.
The county is included in the Leinster circuit ; the assizes are held at Clonmell : the county-gaols are at Clonmell and Nenagh, the latter very lately crected; and there are bridewells at Cahir, Clogheen, Tipperary, Cashel, New Birmingham, Thurles, Templemore, Roscrea, Nenagh (we are not sure if this is continued since the completion of the county-gaol), Burris-o'-Kane, Newport, and Carrick-on-Suir. The county-gaol at Clonmell comprehends a gaol, house of correction, and sheriffs'-prison: the house of correction is under very good management ; the silent system of prison discipline is acted upon, the prison not being adapted for the introduction of the separate system. Considerable improvements had been made in the slieriffs'prison according to the "Nineteenth Report of the Prison Inspectors ' (1841), the last we have seen; but a complete system of discipline could not be introduced until the removal of part of the prisoners to Nenagh gaol, which was not then completed. The bridewells are many of them in a bad state; those of Cahir, Cashel, and Templemore are miserably dilapidated, and that at Cahir very badly managed ; those of New Birmingham, Burris-0 - Kane, and Tipperary, insecure and altogether insufficient: Carrick bridewell, though new, is badly finished and ill-managed by the keeper; and that at Clogheen, though in tolerable gooid order, falls very far short of the well-regulated bridewells of other counties: those of Newpor, Nenagh, Roscrea, and Thurles (the last a large prison) are in good order. (Inspectors' Report, 1841.) It is stated in a note to that Report, that great improvement has been-made in several of these prisons since the inspectors' visit.
The number of criminal offenders committed for trial in 1839 was 2110 , being greater than in any county of Ireland, except the metropolitan county (including the city) of Dublin; and more than twice as great as in any otlier county, except only Cork (including the city of Cork) : Galway (including the town of Galway) ; Limerick (including the city of limerick), and Kerry; and of these the only one which approached it was Cork (1932 committals), which had more than twice the population; the others barely exceed half the number in Tipperary, thougl Galway rather excceds it in population; Limerick las about threc-fourths of the population of Tijpicrary, and Kerry nearly two-thirds. So far therefore as the number
of committals is a test of the state of crime, Tipperary that year exceeded all other counties in Ireland, execpt that of Dublin, and in most cases very far execeded them. Of the 2110 persons committed, 446 were convieted, and $116 t$ nequitted or discharged; 9 of the convictions were for capital offenees, and 4 of the criminals were exceuted. In 1840 the munber of committals was 1012 , the county still retaining, or nearly so, its unhappy pre-eminence: of the persons committed, 718 were convieted, and 924 acruitted or discharged; 5 of the convietions were for capital olfences, but no persons were executed. A large proportion of the offences were murders, inanslaughters, assaults, riots, and other violent offences, indieative of the prevalent tendeney to disturbanee aud insubordination.
The county returns two members to parliament, who nre elected at Clonmell; and one nember each is returned from the borough of Clonmell and the city of Cashel. The sumber of registered electors for the county in February of ench of the years 1835, 1837, and 1841, was as follows:-

	501.	201.	201.	101.	101.	Hoklens of	
	Frec-	Fre-	Lense-	Freo	Lease	asent-	
	holders.	hiolders.	hohlers.	hulders.	holders	clarge.	Tota.
183)	60	361	2	1459	2	1	2185
1837	8 8\%	437	13	1773	51	5	313.$)$
1811	792	316	13	$1: 17$	120	44	2302

The number of voters in Clonmell and Cashel, in the same three years, was as lollows :-

	101. 13ouselsoldora	Clonarfle. : 1. Ihweltolders.	Frewmen.	Total.
183)	(a)1	. .	81	CS\%
1×37	695	-	96	79.3
1811	587	.	100	687
		Cashel.		
1835	302		6	308
1837	353		. .	3.3
18! 1	207	-•	.	207

1 lefore the Union the county refurned eight members to the Irish parliament, namely, two for the county itself, and two ench for Clonmell, Cashel, and Fethind, but the last was disfranchised at the Union, and Cashel and Clonmell reduced to one member each: no change in the number of members was made by the Reform Act.
The amount of grand jury presentments for the years 1833 and 1840 was as fo!lows :-
New roads, bridges, \&c. .£ 2,219 13 万 $\quad £ 3,1840.130$ Repanirs of ronds, \&e. $\quad . \begin{array}{lllllll}10,471 & 17 & 7 & 21,831 & 8 & 1\end{array}$ Court and Sessions honses,
erection and repaiss of. Gaols. Iridewelly, \&e., erection and repais of a County saol and bridewell, Salaries to officers in grols Constabulary police, paymeats to witnesses, 秫c. Salaries to county ofbeers,
collectors poundare,
collectors poundage, \&ic. $5,07 \cdot 1 \quad 3 \quad 3 \quad 5,518$ of 1
 Repayments to govermment $1,0: 91111 \quad 2,30711 \quad 9$ Niscellancous 2,338 13 (3

$$
£ 07,527 \quad 3 \quad 10 \quad £ 82,219 \quad 211
$$

The commly constabulary on the lst January, 1810, and 1811, consistid of the following :-

Cumnty			Nubr	1 cma					Hurses.
			axelors.	Constal	Ifes.	natablea.	Coms	blice	
	2nd	1st	ctul 3nd	14	2 ml		1 lnt	2nd	
	rate	rate.	rabe, rate.	tate.	rale.		rate.	ratc.	
1830	02	4	45	2	15	103	181	170	rot
1811	11	3	73	2	14	122	531	79	17

Tle whole expenditure on the constabulary forec in the
 The monount of the consinbulary foree and the cost of maintaining it are greater than in any other county in Irelind.

There is a county lunatic ssylum at Clonmell; which in the jear from Marelı.]\&(1, to March, 1til, contained bt 1raienis, aud was maintained at au expense of 2ay. 7.3 s .3 l ., or 234 . Gis. 9). for each patient. There is a county in-
firmary at Cloomell, anto which the following number of patients were adruitted:-

There are fever hospitals at Burris-o'-Kane. Cahir, Carrick-on-Suir, Cashel, Clogheen, Clonmell, Cloghjordan, Nenagh, Koserea, Templemore, and Tipperary: and dispensaries at Ballingary, Ballymackay, Ballymonty and Kilcooley, Ballyporecn, Birdhill, Bourney, Burris-0'-1.eagh, Burris-o'-Kune, Calhir, Cappaghwhite, Carrick-on-Suir, Clogheen, Clonmell, Cloghjonlan, Drangan, Nundrum, Fethard, Golden, Grangenockler, Killenaule, Kilshelan, Little!on, Lorrha, Mullimahone, Nenagh, Neweastle, Newport, Portroe, Poulmueca, Roserea, Rosegreen, Silvermines, Templemore, Templetuohy, Thomastown, Thurles, Tipperary, and Toomavara.

Ifistory and Antiquities.-Sir James Ware supposes that the Coriondi (Koptóviou) and the Udiae, or rather Uodiac (Ovoiiat), of Holemy, oceupied this county and the adjacent ones to the west and south-west. We think it not improbable that the Brigantes (Bpiyayres) may have occupied the south-eastern parts, while the Uodiae occupied the south-western.
In the division which previled before the English conquest the following teritories are noticed by Sir James Ware as corresponding to portions of this county:-

Aradh-Cliach: probatbly the half-barony of Arm, in the western part of the county, on the bank of Lough Derg and of the Shannon.

Corca-Hathrach: the territory, round Cashel, comprehending part of the Vale of Goulin, or Golden Vale. Some writers cousider the territory of North Desies to be identical with this.

Eigganacht: a name commnn to a sept or clan, and to the territory oceupied by them near Thurles.
Hy-logurla: the country of the scpt ol O Fogarty, in the neighbourhood of Thurles.

Hy-Kerin : the comntry of the sept of O'Mengher. This territory has retained its mame will little alteration, being now the barony of Ikerin.
Museraige-Thire, or Mruscraighe-Thire: the country the sept of Kennedy, now the haronies of Upper and Lower Ormond, a name which signifies East Munster.
In the carly periods of Irish history these ferritories appear to have been divided between the kingion of Thomond or North Munster, governed by princes of the Dalcussian race; and Desmond, or South NIunster, held by prinees of the Eoganacht or Eugenian family; the princes of which two kingloms appear to have possessed jn alternate suceession the paramount dominion of Munster. Early in the ninth century, soon after the landing of the Northmen or Danes (or as they are usually termed in Irisha history, from the position of their nriginal country with reference to Ireland, the Ost-men, or Enst-men) under their king 'lurgesius, Feidlim Mac-Crimthan, king of Desmond, held the paramount sovercignty of Munster. The capital of his kiagdom was Cashel. His course, which was one of violence and tyranny, was marked by suecess: le was vietorious over the elieflains of Connaught and over the king of Meath, the nnninal sovereign of all Ireland. At the commencement of the tenth century the regal and saecrelotal characters were united in Cormas MacCulinan, bishop of Cashel and king of Munster, of the Eoganact racc. He was not the first of his family in whom these eliaracters had been combined. In 907 he defeated l'lann-Siona, king of Meath and titular monarch of Irclaud, on the heath of Moylena, in King's County; Jut having attempted to enforce the tribite which the people of Jeinster had been compelled relnetantly to pay to tho kings of Munster, he was defeated and slain (A.D. 908) by the leinster forees, supported by the monareh of Ireland and the princes of the northern part of the island. Cormac built a chapel at Cashel, which still retains his name, and was the reputed author of the history cominonly called - The Psalter of Casliel.

Callachan, who was king of Cashel towards the middle of the tenth century, appears in the history of this troubled period as an uctive but umprineipled warrior. He was sur randered by his nwn subjecels iato the hands of Murliertach, heir apparent to the monarchy of lretand. In the latter part of the same century the throne of Munster was oceu.
pied suecessively by Mahon and his brother Brian Boromh, or Borimhe, or Boru, two princes of the Dalcassian family, the iatter of whom acquired the monarchy of Ireland. At the commencement of the twelfth century (A.D. 1101) Murkertach, king of Munster, gave over the city of Cashel to the church, dedicating it to God and St. Patrick. The holders of the see of Cashel had previously assumed the rank of archbishops.
In the English invasion, Henry II. (A.d. 1172) summoned an assembly of the Trish prelates and princes at Cashel, where the sovereignty of the English king was recognised, and various regulations made, increasing the power of the clergy, and more completely assimilating the practices of the Irish church to those of the church of Rome. Tipperary, or part of it at least, seems to have remained under the dominion of Donald of the sept of OBricn, native prince of Thomond and Ormond, subject to the nominal sovereignty of the English king. In the irregular warfare which followed Henry's departure from Ireland, a body of Anglo-Normans under Richard, earl of Strigul, surnamed Strongbow, and governor or commander in Ireland, and of Hervey of Mount-Morris, entered the county (A.D. 1174) to attack Donald OBrien, and advanced as far as Cashel, where they were to be joined either by a department from the Anglo-Norman garrison of Dublin or by a body of Ost-men from that city: but this detachment was surprised near Thurles by Donald, and put to the sword almost without resistance ; and Strongbow and Hervey retreated to Waterford. The invaders appear to have crossed the county again the same year, in their march to Limerick (which was also under the dominion of Donald), which they succeeded in taking. In A.D. 117 J a considerablc Anglo-Norman force with a body of native allies entered the eounty under Raymond Le Gros, marehing to the relief of Limerick, to which Donald O'Brien had laid siege. The Irisl, licaring of their approach, advanced, and entrenched themsclves in a defile ncar Cashel, where they were defeated with great slaughter: the garrison of Limerick was relieved, and on the banks of the Shannon or of Iough Derg, near Killaloe, the victorous Raymond received the submission not only of Donald O'Brien, but of Roderick 0 Connor, titular king of Ireland; aud exacted hostages from both for the faithful performance of the engagements into which they entered.
This county was probably included in the grant of the principality of Thomond to Philip de Braosa (a.d. 1177), but the prudence or the cowardice of that noble prevented his disposscssing Donald O'Brien, who still retained possession. In A.D. 1185 , while prince (afterwards king) John was in Ireland, sent over by his father, as lord of the island, the Anglo-Normans erceted castles at Tipperary and Ardfinnan in this county; that of Ardfinnan was however soon taken by Donald, who, in A.D. 1190, defeated the Anglo-Normans under William, earl-marshal (wlio had married Strongbow's only child and succeeded to the Irish estates of that nobleman) near Thurles. Donald died A.D. 1194. The oldest part of the present cathedral of Cashel was luilt by him. Tipperary appears to have passed in the coursc of a few years afterwards into the hands of the Anglo-Normans, as it was one of the counties erected by King John (A.D. 1210), during his expedition to Ireland, at the head of a considerable army. It is probable that the northern part at least of the county was part of the seat of war (A.D. 1274-1277) between the O'Briens, who retained a portion of Thomond, and the Anglo-Norman, or fis we may now term them, Anglo-Irish family of the De Clarcs.

It is probable that the Scots and their Irislı allics were in this county (A.D. 1317) in the invasion of Ireland by Fdward Bruec and his brother King Robert, since they ravaged the country from Kilkenny as far as Limerick. In A.D. 1328 the royal privileges in the county were granted to James Butlcr, carl of Carrick, now created also varl of Ormond; these royalties were long retained by the earls of Ormond. In A.D. 1330 Brien OBrien, prince of Thomond, ravaged the county and burned the towns of Athassel (near Cashel) and Tipperary to the ground. In the period of anarchy which was contemporaneous with the war of the Roses in England, and continued long after that war was closed, the county was included in the seene of the frequent contests between the rival septs or families of the Geraldines, to which belonged the earls of Desmond and Kildare, and of the Butlers, at the head of which was
the earl of Ormond. The burming of the cathedral of Cashel was onc of the charges brought against the Earl of Kildare in his examination before the privy couneil (A.D. 1496). His reply to the charge was characteristic: 'Sparc your evidence,' said he; 'I did burn the church: for I thought the bishop had been in it.'
In the great civil war in 1642, Clonmell, Cashel, Carrick-on-Suir, Fethard, and all the other towns in Tipperary, werc seized by the insurgents, or, as they were termed, 'the Confederates,' almost at the first outbreak in the central and southern provinces. At Cashel, Fethard, and Silvermines there were some murdcrs committed: those at Cashel were perpetrated by the relatives of some persons recently put to death by Sir W. St. Ledger, president of Munster, who had previously cntcred the county with two troops of horse and exercised great severity. The Earl of Inchiquin, who commanded in Munster for the parliament, invaded the county A.D. 1647, took Cahir by capitulation, and stormed Cashel, where he mercilessly slaughtered twenty priests and an unresisting multitude who had taken shelter in the cathedral. He levied contributions in all the neighbourhood, and was prevented from taking Clonmell only by want of provisions. When Cromwell invaded Ireland, and (A.D. 1649) was opposed by the Royalists and Confederates, now united under the Earl of Ormond (to whom Lord Inchiquin, shocked at the execution of the king, had joined himself), a detachment from his army took Carrick-on-Suir, where Cromwell himself crossed the river to besiege Waterford: A body of Royalists under Lords Inchiquin and Taafe, attempting to retake Carrick (24th October), was repulsed with severe loss. Ormond with the main body of his army was about this time near Clonmell watching Cromwell, whom sickness and the approach of winter obliged to raise the siege of Waterford; soon after which Ormond withdrew to Kilkenny, having posted a considerable body of Ulster men at Clonmell.

About the latter end of February, 1650, Cromwell opened the campaign by talking Cahir, Cashcl, Fethard, Clogheen, and other places in this or the adjacent counties; and in the course of the following April laid siege to Clonmell. This siege cost him more trouble and loss than any other part of his Irish expedition : he lost above 2000 men in a fruitless assault; however after a siege of two months the place was obliged to surrender for want of ammunition: the garrison had previously withdrawn to Waterford without Cromwell's knowledge, and the townsmen obtained good conditions, Cromwell supposing that the garrison was still in the town. In 1651 Ireton, who was after Cromwell's departure, general-in-chief for the parliament, concentrated his army at Cashel and marched to the bank of the Shannon, over which he forced a passage at Killaloe. On the restoration of royalty in Ircland, which rather preceded its restoration in England, Clonmell was one of the towns occupied by the Royalists.
In the war of the Revolution Clonmell was abandoned by the Jacobites on William's advance toward the south after the battle of the Boyne (A.D. 1690). William, after his unsuccessful siege of Limerick, retired with his army to Clonmell, and there leaving them, proceeded to Duncannon and embarked for England.

In the rebellion of 1798 this county was not involved; and though it has been the scene of much agrarian disturbance, there has been no serious outbreak to require particular record.
(Map of Ireland, by the Society for the Diffusion of Uscful Knowledge; Second Report of the Irish Riuilway Commissioners; Geological Transactions; Lewis's and Carlisle's Topographical Dictionaries of Ireland; The Traveller's New Guide through Ireland; The Scientific Tourist in Ireland; Parliamentary Papers; Ware's Ihistory and Antiquities of Ireland; Cox's Hibernia Anglicana; Moore's IIistory of Ireland; Gordon's History of Ireland; Dr. W. C. Taylor's Civil Wars of Ireland; \&c.)

TIPPOO SAIB, sultan of Mysore, was born in the year 1749. His father Hyder Aly Khan [Hyder Aly], sensible of the disadvantages under which he himsclf laboured from want of education, procured for his son the best masters in all the sciences which are cultivated by the Mohammedans. But Tippoo, although he had acquired a taste for reading, did not makc any considerable progress, and he preferred martial exercises, into whicl he was initiated at an early age. The Fronch officers in the employment of his father instructed him in taeties; and in 1767, when

BIyder Aly overran the Camatic, Tippoo was entrusted with the eommand of a corps of cavalry. He was at that time nineteen yeans of are; but the suceess with which he carried on the war in the neighbourhood of Madras sufficiently. proved how much he had profted by his European lerchers. Buring the war with the Mahratias, which lasted from 37.5 to 1770 , Tippoo necquired the universal estem of the army; anil he rose so high in the favour of his father and his counsellors, that the left divisiou of the Mysore army, consisting of 18,000 envalry and 0000 regular iniantry, was put under his command. With this force Tippoo atlacked Colonel Bailey in the neighbourhood of Perinbakum, on the 6th of September, 1780. He was obliged toretire; but on the 101 h of the same month an engagement, in which 'Tippoo Saib is said to have talien an active part, ended in the entire defeat of the English army. The whole of the war in the Carnatic gave him opportunities of perfecting himself in the art of war; and on the 18th of Hebruary, 1782, he showed his skill in the attack and complete defeat of Colonel Braithwaite, on tho banks of the Kolerun. This was undoubtedly his greatest 8 soke of generalship. A few months afterwards he was obliged to move towards the south, in order to meet the English troops in the provinces of Tanjore and Malwa, under the command of Colonel Humbertson. On the 50th of November Tippoo found the English at Paniany. He made a vigorous attaek, but was repulsed and compelled to retreat. He crossed the river Paniany, and prepared himself for another engagement, when, on the 11th of December, 1782, he received jutelligenee of the death of his father. On the 90th he was at Seringapatam, where he mounted the musnud without nmeh display or ceremony. He had scarcely performed the funeral nites of his father when he returned to Arent, and assumed the command of his army. But whilst he was engaged in the Carnatic General Matthews took Onore. and the country of Bednore was in the hands of the Eng: lish. In order to regain these more valuable possession:, Tippoo was obliged to relinquish his conquest in the Carnatic, and by the end of March, 1783, scarce a Mysorean was left in that country. His operations were so rapid and suecessful, that on the osth of April Tippoo Saib had alrendy reduced the garrison of Bednore to the neeessity of capitulating. General Matthews and several of the prineipal officers were barbaronsly put to death. After the reduction of this city, it was Tippoo's object to repossess himself of Mangalore, the prineipal seaport in his dominions. But the place was well defended; and in the midst of his preparations for the assault accounts were received in the camp of peace having been concluded between England and France. It was early in July, 1783, when M. de Bussy, in consequence of this news, deelined to pet any longer against the English. Ic quitted the camp with lis detachment. A considerahle reinforcement having arrived under General Macleod, Tippoo agreed to a suspension of arms ; and early in the year 1784 Sir Gcorge Staunton and two other anbassadors from Madras arrived in the camp, and on the 11 th of March a trealy of penec, which stipulated for the liberation of all the prisoners and the restitution of all places taken by either party during the war, was concluded. About the end of the same year Tippoo concluded a treaty of peace with the court of Poonah. He then returned to Seringapatam, and assumed the titte of Sultan, thereby throwing off all dependenee on or alleginnce to the captive lkaja (imprisoned by his father) or the Great Mogul.
In 1786 lie oceupied himself with internal regulations; and from an inventory made at this period we find that the treasure, jewels, and other valuable articles were catimated at eighty millions sterling. He had alsn 700 elephants, 6000 camels, 11,000 horses, 400,000 bullneks and cows, 1000,000 butfaloes, $600,(X) 0$ sheep, 300,000 firelocks, 300,100 matehlocks, 200,000 swords, and 2000 pieces of eannon, and an immiense quantity of gunpowder and other military stores. His regular ariny consisted of 10 , (x)0 caralry, 10,000 artillery, and 70,000 infantrg: He had also fry00 rocket-men, and 40,000 irregular infantry.
During the years 1787 and 1788 the attention of the Sultan was prineipally engaged in the conversion and subjection of the Nairs, or chitefe of Malabar. He is said to have earried away from that province 70,000 Christians, and to have made Mrusulmans of 100,000 Hindus. This lic effected by forcible circumeision, and compelling them to cat beef.

It was about this time that he pullished an ediet for the destruction of all the Hindu temples in his dominions, excepting those of Seringapatam and Mail Cottah. Fortunately his offieers did not entorec this barbarous regulation.
Although Tippoo Sultan did not show any overt hostility toward the English after he liad signed the treaty of 1784, yet in 1788 he sent an emhassy to France, to enter into an oftensive and defensive allianee, and to stimulate the court of Versailles to a speedy renewal of hostilitics with England. The ambassadors returned to Serineapatam in the month of May, 1780, without having obtained their object. The disappointed Sultan vented his mge by pulting two of them to death as having betrayed his interests. Tippoo hated the British power in India, nud he took every opportunity to annoy such of the native kings as were under its protection. The Raja of Travaneore had by the treaty of Mangalore stipulated for the security of his territories. In April, 1790, Tipproo invaded the country and subjected the whole of the northerm district. The reasons assigned by Tippoo for the infraction of the terms of the treaty were fliat two forls, Cranganagore and Jyaeotta, which were on the northern bonndaries of the Raja's possession, had belonged to his father. This aggression was considered ly the English cquivalent to a deelaration of war, and Colonel Hartley was sent with a considerable detachment to the sssislanee of the Raja. At this intelligence Tippoo withdrew his army from Travancore, and returned to Scringapatam, when, to his dismay, he heard that the Mahrattas und the Nizam had promised the English a zealous co-operation with their furces.
On the 15th of June, 1700, the English troops, under the command of General Medows, entered the Sultan's territory, and took possession of the fort of Carur without resistance. Daraporam and Coimbatore were shortly atterwards reduced. About the same time a detachment, under Colonel Stuart, captured Dindigul and Paligautchery. The movements and operations of the English forces were so well conducted, that Tippoo found himself unable to oppose thein, and he resolved to follow the plan of warfare adopted by his father: instead of detending his own territories, to lay waste those of his enemy. This he did with considerable albility; for in the beginuing of 1701 the English, instead of being masters of great part of Mysore, as they had expeeted, found themselves attacked and annoyed in the very neighbourhood of Madras.
On the 29th of Junuary, 1791, Lord Cornwallis assumed the conmand of the army, and on the 111h of the same month he was at Vellore. On the 21st of Mareh the fort of Bangalore was taken by storm. On this event Tippoo retired to some distance, and wrote to Lord Coruwallis, requesting a truce. This was refused, and he procecded to Sefingapatam, leaving his army under the command of one of his generals, to wateh the notions of the English1. On the 3rd of May Lord Cornwallis was at Arakery, within sight of the Sultan's capital; but his (roops had suffered a great deal from want of food and forace, and he was compelled to retreat lowards Bangalore. The Mahrattas canio however to his assistanee, and the warfare was carried on with great success.
However, whilst the English were earying on their successnil operations in the north-west part of Mysore, the Sultan made a diversion towards Coimbatore, situated to the south of Scringapatam; and Dientenaut Chalmers, with the whole of his party, were made prisoners. The skill of Tippoo Sultan enabled him to protruet the war till the month of Fchruary, 1792, when the nlties (the English, the Mahratias, and the (roops of the Nizam) eneamped in sight of the eapital. But it was not until Gencral Ahereromby had united his forees to those of Iord Cornwallis, and lad determined to take the fown by storm, that the haughty mind of thic Sulfan was himbled. He agreed to give the allies one half of his dominions, and to pray them In the eourse of twelve months the sum of three hroies and thirty laes of rupees ($3,0: 30,000 \mathrm{l}$), to restore all the prisoners, and to deliver up as hostages two of his sons. Abidulkhalik and Moâz Xddecn were the nanues of the two princes, and the attention and kindness evineed by Joord Cormwallis lowards them were such as to afford the highest gratification to the Sultan their father. By signing the definitive treaty of the 16 th March, 1792, the Sultan lost one half of his dominions. Soon after this the allies yuitted the neighbourhood of Seringapatan, and Tippoo sought
the means of replenishing his treasury. This was soon done by imposing exorbitant and extraordinary taxes, which were chiefly levied upon the agriculturists.

Notwithstanding this seeming tranquillity from 1792 to 1796 , the Sultan was engaged in ineiting all the native chiefs against the British power in India; but it was not until 1798 that the whole extent of his secret machinations and intrigues became known. At the commencement of this year ambassadors were sent from Seringapatam to the Mauritius. Their object was to rencw the Sultan"s relations with France, and to solicit the aid of 10,000 European and 30,000 negro troops. The proceedings of the embassy were first made known in the montl of Junc to the Marquis Welleslcy, the governor-general. About the same time intelligence was received in India of the operations of the French in Egypt. Circumstances like these left no doubt as to the intentions of the Sultan, and on the 3rd of Febriary, 1799, orders were issued for the Jritish armies and those of the allies immediatcly to invade the dominions of Tippoo. Hostilities commenced on the 5th of March; and, on the 5th of April, General Harris took a strong position opposite the west side of Scriggapatam. After besieging the place some time, a general attack was made on the 4th of May, 1799. The Sultan had scarcely finished his repast when he herrd the noise of the assault. He instantly repaired towards a breach which the English had suceeeded in making a few days before. His troops fled; he endeavoured to rally them ; and so long as any of his men remained firm, he continued to dispute the ground against an English column which had foreed the breach and gained the ramparts. Finding all his efforts agrainst the enemy fruitless, he mounted his horse, and, in endeavouring to effect his retreat, arrived at a bridge leading to the inner fort; but the place was already occupied by the English, and in his attempts to procecd he was net by a party of Europeans from wittuinside the gate, by whom he was attaeked. Owing to two wounds which he received in his breast, he fell from his horse; his attendants placed him upon a palankeen, in one of the recesses of the gateway, and entreated him to make himself known to the English. This he disdainfully refused to do. A sloort time alterwards bomc European soldiers entered the gateway, and one of them attempting to take off the Sultan's sword-belt, the wounded prince, who still held his sword, made a thrust at him and wounded him in the knee; upon which the soldier levelled his musket and shot him through the head. On the afternoon of the 5 th of May he was buried in the mausoleum of Hyder Aly. Four companies of European troops escorted the funeral procession, which was strikingly solcmn.

When Tippoo met his death he was in his fiftieth year. He was of dark complexion, and about five fcet nine inches higli; he had a round face, with large black eyes, and an aquiline nose, which gave much animation and expression to his countenance. Although after his misfortunes in 1792 he oppressed the people more than they had ever been in the time of his father, he was nevertheless very popular; and even now the Mysoreans consider him as a martyr to the faith, and as a prince who fell gloriously in the cause of his religion. He used to pass a great portion of his day in reading, and his library, consisting of about 12,000 volumes, was well selected. About one-half of this collection is preserved at the East India Housc, Jondon; the other lialf was left at Fort William for the use of the college. The Museum and the Library of the East India House contain many articles both of value and curiosity which once belonged to Tippoo Saib.
('Memoirs of Tippoo Sultan,' in Stewart's Descriptive Catalogue of the Oriental Library of the late Tippoo Suttan of Mysore, Cambridge, J809. This is the most authentic account of Tippoo's life.)

TIPTON. [STAFFORDSHIRE.]
TIRABOSCHI, GIRO'LAMO, born at Bergamo in 1731, studied in the college of Monza, and afterwards entered the order of the Jesuits. About 1766 he was made professor of rhetoric in the university of Milan, where he wrote his first work, the history of a monastic order long since siuppresserl, under peculiar circumstances: "Vetera Humiliatorum Momumenta, Milan, 1766. In 1770 he was ajpointed by the rluke of Modena librarian of his rich library, in the place of FatherGranclli, deceased. He now applicd himself to the undertaking of his great work, 'Storia della

Letteratura Itáliana,' published at Modena, 1772-1783, which he completed in eleven years. The subject was vast and intricate; the only author who had yet attempted to write a general history of Italian literature, Gimma of Naples, had only sketched a rough and very defective outline of it in his 'Storia dell' Italia Letterata.' There were however local histories and biographies concerning particular towns and districts, and the rest of the materials had to be sought among the archives and libraries of Italy. Tiraboschi undertook to write the history of the literature of antient and modern Italy in the most extended sense of the word, including most of, if not all, the individuals deserving of mention in every department of learning, who have flourished in Italy, from the oldest times on record, beginning from the Etruscans and the Greck colonies of Magna Græecia and Sicily, and then procecding with the history of Roman literature through its rise, progress, and decay, down to the invasion of the northern tribes, with which the second volume concludes. The author distributes the great divisions of learning in separate chapters; poetry, grammar, oratory, history, philosophy, medicine, jurisprudence, and the arts; he gives an account of the principal libraries, and of the great patrons of learning, and although he does not profess to write biography, properly speaking, yet he gives biographical notices of the more illustrious writers and of their productions. The third volume comprises the literary history of Italy during the dark age3, as they are commonly called, from the fifth to the twelfth century. The author makes his way through the scanty and obscure records of those times, and brings to light much curious information concerning the intellcetual state of Italy under the Goths, the Longobards, and the Franks. The ecclesiastical writers come in for a great share of this part of the work. The fourth volume includes the period from 1183 to the year 1300. The revival of studies, the formation of the Italian language, the foundation of universities, notices of the civilians and camonists who flourished in that age, an account of the Italian troubadours, of the earliest Italian poets, and of the Italian Latinists, and a view of the splendid architectural works of Amolfo di Lapo, of Niccolo and Giovanni of Pisa, and other artists, impart a cheering aspect to this period. The fiffli volume embraces the 14 th century, the age of Dante, Petrarca, and Boceaccio. The author is particularly diffuse in speaking of Petrarca. The sixth volume concerns the 15 th century, an age of classical studies; the age of Cosmo and Lorenzo đe' Medici, of Poggio, Filelfo, Niccoli, Palla Strozzi, Coluccio Salutati, Paolo Manetti, Cardinal Bessarion, and other collectors of MSS., founders of libraties, and encouragers of Jearning, and the age also of distinguished jurists and ecelesiastical writers. This volume is very large and is divided into three parts, whilst the preceding volumes are divided each into two parts, each part being subdivided into books and chapters. We cannot lelp thinking that this mode of dinsion is too formal and cumbersome, and that it might liave been simplified and made clearer.

The seventh volume of Tiraboschi's history treats of the 16 th century, the age of Leo X ., the Augustan age, as it is sometimes called, of Italian literature. This volume, Which is still more bulky than the one preceding, is divided into four parts. After giving a sketch of the general condition of Italy during that period, of the encouragement to learning afforded by the various princes, of the universities, academies, librarics, and museums, the author treats first of the theological polemics which arose with the Reformation, then of the philosoplical and mathematical studies, of natural history and medicine, of civil and ecclesiastical jurisprudence, of historical writing, and of the Italian Hellenists and Orientalists. He passes next in review the Italian pocts, among whom Ariosto and Tasso hold a conspicuous place, and atterwards the Latin poets, the grammarians, rhetoricians, and julpit orators, and lastly the artists, among whom Michael Ángclo, Raffaello, Tiziano, und Correggio stand prominent. "It is impossible to peruse this long list of illustrious names without being struck with the secmingly incxhaustible fertility of the Italian mind in almost every branch of knowledge.
The eighth volume cmbraces the 17 th century, which in Italy is scornfully styled the age of the 'scicentisti,' or the age of bad taste, a reproach however which applies mainly to the pocts, and mot even to the whole of them. Tho department of history is filled with good hames, as well as

That of the mathematical sciences, in which Galileo nolds the fint rank. With the 17 th eentury Tiraboselii concludes his work. Various reasons prevented his entering the field of contemporary history. This however has been done of late jears Ly Lombardi, in his continuation of Tiraboschi's work: 'Storia della Letteratura Italiana nel Sccolo x viii.'
Tiraboschi's work was highly esteemed, and went through numerous editions in various parts of Italy. The author himself superintended the second edition of : Modena.' $1757-94$, in which he made corrections and additions, chicffy in the slape of notes to the text. Antonio Landi made an alridgenent of the work in Freneh, which was published at Paris, and at 13etn, in 1784 ; and J. Retzer made a similar abridgment of it in the Germian language. When the work of Tiraboschi appeared, no other country of Europe hind a general history of its own litemture. The learned Benedictines of St. Maur had begun a work of this kind conceming the literature of France, which however they len imperfeet. The work of Tirabosehi does not give all the information that one might wish, but it contains probably as much information as could be collected and conjpressed together ly any one nian upon the subject. It has been said to be deficient in critieism, and in the analysis of conspicuous works, of which he lins not given exiracts; but this, as he says in his prefaec, did not form part of his plan, which was already extensive enough, or the work would have had no end. Ilis aceuracy und conscientiousness are undisputed. The tone of his remarks, especially on religious matters, is perhaps as templerate as could be expected from a man of his professon, times, and country, who was a sinecre believer in the tencts of his clurch, though not a bigot. For a proof of this we might refer the reader to Tirabosclii's letter to Father Mamachi, a Dominiean, who edited at Rome an eclition of Tirabosehi's great work with eorrections and notes to those passages which were not consonant with his own ligh notions of Papal prerogative and Roman supremacy, both spiritual and temporal. Tiraboschi's letter was published at Modena in 178, and was afterwards inserted at the end of the last volume of the second Modema edition of the 'Ilistory of Italian Literature.' A tone of refined cutting irony, half veiled, under a most courteous style of language, pervades the whole of the letter. The Freneh writer Ginguené has followed elosely, Tiraboschi's footsteps in his " Histoire Litteraire d'ltalie, which however contains only the modern part, or the history of the literature of the Italian language. [GlN(ivuné.]

The cluke of Modena, Ercole III. of Este, in consideration of Tiraboseli's useful labours, made him a knight, and appointed him menber of his council in 1580 . By the suppression of the order of Jesuits, Tiraboselii had become a sceular priest. In 1781 he began to publish another work of bibliography and biography: - Biblioteea Modenese, o Notizia della Vita e delle Opere degli Seritiori natii degli Stati del Serenissimo Duea di Modema,' 6 vols. Ito., Modena, 1781-86; to whieh he afterwards added a seventh volume, containing notices of the artists who were born in the dominious of the house of Este. Having thus illustrated the literary history of Modena, and of the other territories of the house of Este, he afterwards wrote the political history of the same eountry, in his . Memorie Storiche Modencsi, eol codice diplomatico, illustrato con note, 3 vols. 4to., Modema, 1703. He also published the history of the anticnt monastery and abbey of Nonantola in the duchy of Modena, founded about the middle of the eighth century by Anselums, Duke of Friuli, and afterwards greatly enriched by Charlemagne and other princes, and which became a powerful community during the middle ages: 'Storia dell' augusta Badia di S. Silvestro di Nonantola, aggiuntovi il corliee diplomatico della medexima, illustrato con note,' 2 vols. follo, Modena, 17R1. The nther works of Tiraboseli are: 1, 'Vita del Conte D. Fulvio 'Testi.' Testi was a lyric poct of the seventecnth eentury, and enjoyed for a time a lugh office at the court of Modena, but ended his days in prison for state reasons.』 ' Lettere intomo ai viaggi del Sigr. Brnce,' inserted in the 'Notizie Letterarie' of Cesena, 1792; 3, 'Memoria delle cognizioni elte $\dot{1}$ avevano delle sorgenti del Nilo prima del Viaggio del Sigr. Jacopo Bruce,' Iuserted in the lat vol. of the "Memorie dell' Accademin delle Scienze di Mantova;' 4 , Two memoirs on Galileo, lis discoveries, and pis condemation by the Inquisition, inserted in the last
vol. of the second Mudena edition of the 'Ilistory of Itulim Literature ;' 5 , 'Notizie della Confiaternita di s. P'ietro Martire;' G. "Vita di Sant' Olimpia, Vedova e Diaconesar della Chiesa di Costantinopolí;' 7. 'Elomio Storico di Rambaldo de Conti Azzoni Avogaro; besides other minor writings, especially in answer to the crities of his 'IIstory of ltalian Litcrature.' Ife len unpubliahed: 1, "Dizionario Topografico degli Stati Fistensi," published since at Modena, 18215 ; 2 '(Catalogo ragionato dei Libri del gia Collegio dei Ciesuiti di Brera; 3, Lettera sulla Venuta di Gustavo Adolfo in Italia ;' 4 , 'Vita di Giamnandrea llarotti Ferrarese;' 5 , 'Notizie sulla Zecea di Bresecllo, sopra alcumi Laoghi del Modenese, ed Albero della easa Montecuecoli; besides several dissertations and orations. Ilis voluminous correspondenee is preserved in the Molena Library:
Tiraboschi died at Modena, in June, 1794, of a disease brought on by sedentary life and constant application. Ile was huricd in the church of SS. Fanstino e Ciovila, outside of the cily, and a Latin insuription was placed on his tomb, written by Father l'ozzetti, who sueceeded him as librarian, eommemorative of his labours and his virtues, among which modesty and charity were most conspicuous:
(Llogio di Girolamo Tiraloschi, by lozzetti, prefixed th) the later cditions of the "History of Italian Iiterature; Ugoni, Storia della Letteratura Italiana nella seconda metà del Sceolo XI'MI.; Lombardi, Storia della Letterutura Italiana nel Secolo XVIII.)
TIRA'NO. [Valtellino.]
TIRHUT: [HiNDESTAN, p. 217.]
TIRIDATES, prince of Media, and afterwards kine of Armenia, was the brother of Vologeses, king of the I'arthians, that is, of Media. Ife first appears in history in A.n. 53, in the first war of Corbulo against Vologeses (Tacitus, Hist., xii. 50), who was compelled to desist from his schemes upon Armeniain A.D. 54. In A.D. 58 , however, the Parthinns again overran Armenia, having been invited by the inhabitants of that country, and Vologeses ceded his eonçuest to his brother Tiridates, who thus became king of Armenia. As the Romans would not allow this country to locome a posscssion of the P'arthians, Corbulo. directed his forces against the royal brothers, knowing that Vologeses was prevented from cimploying his army against him in consequance of an insurrection of the provinee of Hyreania. Corbulo thercfore soon persuaded liindates to submit to the emperor Nero, and to prefer a moderate dependence to an unecrtain and dangerous independence. When they were about to meet, in order to settle the ecnditions of the peace, Tiridates suddenly hecance afraid of some treachcrous design on the part of the Romans, and he therefore broke off the negotiations and renewed the war. Corbulo however defeated him at Artaxata on the Araxes, took and destroyed this old eapital of Armenia, and forced the new eapital, Tigranocerta [Tigranocprta], to surrender after a short siege. (Tacitus, Mist., xiv. 24; Frontinus, Stratag., ii. 9, exempl. 5.)
Tiridates fled to his brother, who had taken the field against the Ifyrcanians, and who entrusted him with the command of a new army, with which Tiridates lioped to expel the Romans from Armenia. IIc attacked them on the side of Mesopotania, lout the strong position whielt the Romans kept at Tigranocerta, and the eare which they showed in watching the passages of the Euplates, prevented himf from either penctrating into the valley of the Upper Tigris, or from invading Syria, a manacuve by wheli Corbulo would have been obliged to hasten ta the relicf of this province, and to leave Armenia to the ineursions of Vologeses. Tiridates therefore listened onee more to the pacifie proposals of the Romans, who were anvions to avoid any war with the Parthians if they. could do so on conditions whieh would seeure their influence over Arinenia. Their intention was not to make a lRoman province of Armenia. Ambassadors from Tividates arrived in the camp of Corbulo, and they declared, in the name of Tiridates and his brother Vologesen, that Tiridates was ready to sulmit to Nero, as a vassal-king, and that Vologeses would leep in future a better understanding with the Romans than before. In order to settle the peace, a day was fixed on which Tiridates was to appear in the caunp of Corbulo, who sent Tiberius Alexander [TMernes AlisxAnder] and his son-in-law Vivianus Amins as hostages into the eamp of Tiridates (A,D, C3), When Tiridates en-
tered the tent of Corbulo, he took off his royal diadem, and placed it at the foot of a portrait of the emperor Nero, taling an oath that he would not exercise any right of sovereignty in Armenia till he had again reccived the same diadem from the hands of the emperor in Rome. (Tacitus, Hist., xv. 28, 29.) Tiridates arrived in Rome in A.D. 66, and when he approached the city a great number of people came out from the gates to behold the entrance of an oriental king descended from the mighty sovereigns of the Parthians. In Zumpt, 'Annales veferum Regnorum et Populorum, imprimis Romanorum, the Armenian king who entcred Rome in A.d. 66 is called Tigranes, but this is a typographical error. (Tacitus, Hist., xvi. 23.) The latter circumstances of the life of Tiridates are unknown. [Parthia.]

TIRLEMONT (in Dutch, Tienen), situated in $50^{\circ} 50^{\prime}$ N. lat. and in $4^{\circ} 50^{\prime}$ E. long., is an inland town in the kingdom of Belgium, in the province of South Brabant, on a small river called the Great Geete. It is a pretty well-built town, and has 8000 inhabitants, who have considerable manufactures of flannel and stockings. There are also brandy distilleries, and breweries which produce a celebrated kind of beer. It is said to have been formerly more populous and thriving than at present. In the wars of the French revolution, several battles took place here between the French and the Austrians ; first, in November, 1792, when the Austrians were defeated; secondly, on the 16 th of March, 1793, when they again sustained at check, for which they took ample revenge two days afterwards by the decisive victory of Neerwinden.
(Hassel ; Stein; Cannabich; Hörschelmann.)
Tiro. [Cicero.]
TlRVALORE, TABLES OF. [Viga Ganisa.] TIRY, or TYREE. [Hebrides.]
TIRYNS was an antient city of Argolis, in the Peloponnesus, situated in $37^{\circ} 40^{\prime} \mathrm{N}$. lat. and $41^{\circ} 1^{\prime} \mathrm{E}$. long., at no great distance from the head of the Argolic Bay, now the Gulf of Napoli di Romania. According to a legend in Strabo (viii., p. 373; Casaub.), it was built by Proetus, an antient king of Argolis, who in the construction of the citarlel employed masons from Lycia, who were called Cyclopes. The Greeks attributed most arehitectural works which were characterised by rude massiveness and great antiquity to the Cyclopes, and such works were consequently described as Cyclopean. Homer (Iliad, ii. 559) calls Tiryns the 'walled,' or rather the ' wally' Tiryns: and Pausanias (ii. 25), 1000 years after him, thus describes the remains, as they existed in the second century of our ara. - The ruins of Tiryns,' he observes, 'were on the right of the road leading from Argos to Epidaurus. The wall of the fortification, which still remains, is the work of the Cyclopes, and is built of unwrought stones, so large that not even the least of them could be even moved by a pair of mules. The intervals between them have been long since filled up with smaller stones, so as to make the whole mass solid and compact.' . No cement or mortar was used in these constructions, and it is evident that they were the first rude attempt at building with stone among the Pelasgic Greeks, and constituted their first style of architecturc. The second is still visible in the remains of Mycenfe.
The ruins of Tiryns are thus described by Col. Leake, in his 'Morca,' vol. ii., p. 3.50 :- 'They occupy the lowest and flattest of several rocky hills, which rise like islands out of the level plain. The length of the summit of that of Tiryns is about 250 yards, the breadth from 40 to 80 ; the height above the plain from 20 to 50 feet; the direction nearly north and south. The entire circuit of the walls still remains more or less preserved. Some of the masses of the stone are shaped by art, some of them are rectangular; but these are probably repairs, and not a part of the original work described by Pausanias. The finest specimens of the Cyclopean masonry are near the remains of the eastern gate, where a ramp, supported by a wall of the same kind, leads up to the gate. The ruined wall of the fortress still exists to the height of 25 feet, above the top of the ramp; but this is the only part in which the walls risc to any considerable height above the table summit of the hill within the fortress. On one side of this gateway I measured a stone of 10.6 by 3.9 by 3.6 . Here the wall is $24 \frac{1}{2}$ feet in thickness; in other parts from 20 to 23 . But the principal entrance was not here, I think, but on the southern side, adjacent to the south-cast angle of the
P. C., No. 1550.
fortress, where a sloping approach from the plaint is still to be seen, leading to an opening in the walls.'

In its general form the fortress appears to have consisted of an upper and a lower enclosure of nearly equal dimensions, with an intermediate platform. The southern en trance led, by an ascent to the left, to the upper level, and by a direct passage between the upper inclosure and the eastern wall of the fortress into the lower inclosure, having also a branch to the left into the middle platform, the entrance into which last was nearly opposite to the eastern gate already described. : There was also a postern on the western side. In the eastern, as well as in the southern wall, there were galleries in the body of the wall of sin. gular construction, the angle of the roof being formed by merely sloping the courses of the masonry. In the eastern wall there are two parallel pissages, of which the outer has six recesses in the exterior wall. These niches were probably intended to serve for the protracted defence of the gallery itself, and the galleries for covered communications leading to places of arms at the extremities of them. One of these places of arms still exists at the southwest angle of the fortress, and there may have been others on either side of the great southern entrance. The passage which led from this entrance to the lower division of the fortress was about 12 feet broad; and about midway there still exists an immensc door-post, with a hole in it for a bolt, showing that the passage might be closed upon occasion. In these contrivances for the progressive defenco of the interior we find a great rescmblance not only to Mycene, which was built by the same school of engineers, but to several other Grecian fortresses of remote antiquity: A deficiency of flank defence is another point of resemblance: it is only on the western side, towards the south, that this essential mode of protection seems to have been provided. On this side, besides the place of arms at the south-western angle, there are the foundations of another of a semicircular form, projecting from the same wall, fifty yards farther to the north; and at an equal distance, still farther in the same direction, there is a retirement in the wall, which serves in aid of the scmicircular bastion in covering the approach to the postern of the lower inclosure. This latter division of the fortress was of an oval shape, about 100 yards long and 40 broad: its walls formed an acute angle to the north, and several obtuse angles on the east and west. Of the upper inclosure very little remains.
The fortress itself is only a third of a mile in circumference, so that in all probability it must have been no more than the citadel of the Tirynthii, the town itself being situated in a plain of two or three hundred yards in breadth; on the south-west of the fortress: beyond this plain lies a marsh, extending a mile farther towards the sea.
Proetus, the reputed founder of Tiryns, was succceded by his son Megapenthes, who is said to have transferred it to Perseus. Perseus transmitted it to his descendant Electryon, whose daughter Alcmena married Amphitryon. The latter prince was expelled from Tiryns by Sthenelus, king of Argos; but his son Hercules recovered his inheritance, and was in consequence called Tirynthius. (Diodorus, iv. 10 ; Pindar, Olymp., x. 37.)

From Perseus to Amphitryon, Tiryns was a dependency of the neighbouring city Mycenæ. At the time of the Trojan war, Homer (Iliad, ii. 559) represents it as being subject to the kings of Argos. Subsequently it was partially destroyed by the Argives. The date of that event is uncertain; but from two passages of Herodatus (vi. 83 , and ix. 28), in which mention is made of Tiryns, it appears that it existed up to b.c. 480, and it is probable that it was overthrown about the same time as Mycenæ, в.c. 468. (Clinton, Fasti Hell., ii., p. 425.) According to Strabo (viii., p. 373), the Tirynthians, on leaving their homes, retired to Epidaurus : according to Pausanias (ii. 25), the greater part of them were sent to Argos.

Pausanias also notices what he calls the chambers ($\theta \dot{\alpha} \lambda \alpha u o t$) of the daughters of Proetus lying between Tiryns and the sea; but he gives no description of them. Strabo speaks of some artificial caverns near Nauplia, which he places at the distance of only 12 stadia from Tiryns, and says that they were attributed to the Cyclopes. It is not improbable that he alludes to the same excavations as Pausanias; but Strabo had probably not seen them, for he never saw Mycenæ. The Tirynthian citadel was also called Licymnia, from Licymnius, a son of Electryon, and brother of Aleinena. (Pindar, Olymp., vii. 49.)
(Leake's Morea, ii. 353; Gemer's Greace, iii. 273; Sir W. Gell's Itinerary of the Morea and Argolis; Dodwell, Claes. Tome, ii., P. $2=0$.)

TISCHBELN, JOHN HENIRI; culled the Elder, one of the most celebrated painters of the eighteenth century, wns the finh som of a baker of Hayna near (iotha, where he was born in $17: 23$. Ife was tirst apprenticed to an uncle on the mother's side, who was a locksmith; but he displayed so much talent fordrawing, that an elder brother, Jolin Valentine, took hiun away from his uncle and placed him, in his fourteenth year, with a paper-stainer and deeorator in Cassel, of the naune of Zimmermann. Ife reeeived also some instruction from Van Freese, the court painter at Cassel, a ad soon gave proof of his abillty. Tischbein met with an early and a valuable patron in Count Stalion, through whose assistance he was enabled, in 1743, to visit I'uris, where he remained five years with Charles Vanloo, and ncquired his style of painting. From Paris he weat to Venice, and there studied eight months with Piazzettn : from Veniee he went to Rome, where he remained two years; he again risited Piazzetta in Venice, and after a short time, in 1701, he returned to Cassel, where, in 1752 , he was appointed cabinet painter to the Iandgrave.

Tischbein excelled in historical and mythologieal subjeets, in which lines are lis best pietures, painted from about 1762 until 1785; he died in 1789, as director of the Academy of Cassel, and a member of the Academy of J3ologna. A liographical notice of Tischbein with critieisma upon his works was puhlished in Nürnherg in 1797, cight years atter his death, by J. F. Engelschall, entitled : J. H. Tischbein, aln Mensely und Künstler dargestellt.' In that work there is a list of 144 historieal pieces by Tischbein, of whech the following have been considered the best:- - the Resurrection of Clurist, very large figures, painted in 1763, for the altar of St. Michael's church at Hamburg; the Transfigumtion, in the Lutheran church at Cassel, 1760 ; Hermann's Trophies after his Vietory over Varus in the year 9, in the palace of Pyrmont, 1768; ten pictures of the Life of Cleopatra, painted in the palace of Weisenstein, 1769-70; sixtcen from the life of Telemachus, in the palace of Wilhelmathal ; an Ecee Homo, in the Romasn Catholic ehapel at Cassel, 1718; a Deposition from the Croas, and an Ascension, altar-picees in the principal church of Stralsund, 1787; Christ on the Mount of Olives, an altar-picee presented by hins to the church of his native place Hayna, 1788; the Death of Aleestis, 1780; and the iRestoration of Aleestis to Ier liusband by Hereules, 177.
Tischbein printed many pictures from the antient poets, and some from Tasso ; several of which are now in the Pic-ture-gallery at Cassel. He painted alsor eollection of female portraits, selectel chicfly for their beauty, which is now at the palace of Wilhelnsthal near Cassel. Ire also frequently copied his own pictures. Nearly all his works remain in lis own country, on which account he is little known out of it. It is remarkable that of all the great galleries of Germany, Minich is the only one that posseases a specimen of his works, and that is ouly a portrait.
Tischhein painted very slowly, but he was very industrious: he was generally at his easel by five in the morning in the summer time, and he painted until fonr in the allernoon. He painted in tho Freneh style; his colouring was a mixture of the French and the Venctian, and in large compositions very gaudy, but his drawing and chiar'owcuro were very good. In costume however he was incorrect, yet he was as eorrect perhaps as his sources of informalion would allow him to be, and it is a fault that he had in cominon with most of the great printers, especially the Venctinns; but according to the crities he generally contrived in his antient picees to make his actors look mueh more like Frenclimen and Germans than Greeks or Jomans. In his religious piecees he was more surecessful: he was no follower of Lensing's theory of beauty; he conwidered lieauty of little eonsequence. He etched several plates atter hls own pietures:-Venus and Cunid; Women lathing; Hercules and. Omphale; Menclaus nud Yanis; Thetim and Achilles; and his great pieture of the Resurcection of Christ, at Ifamhurg.
Tischlein was a man of very clomestio halits: he had an nld wervant named Conrad Otto without whom he used to my he almuld be helpleas; he had ne cook also who lived with him 21 years. He was iwice married, and yet was a hubband scarcely four years: he married his frot wife in 1750, by whom he had two daughters; he lived with her
three years, when she died, and in 1759 be married her sister, with whom however he lived only a few months. His clder daughter Amalia was a clever painter; she was elected, in 1780, a member of the Academy of Cassel; she used to sit to her father for many of the females in his historical works. Anter Tischbein's death, the Landgrave of Cassel purchased all the works that were in his house, and placed them together in the palace of Wilhelmshöhe.
(Meusel, Miscellaneen Artivtischen Inlialts; F'üssli, All. gencines Künatler Lexicon; \&ec.)
TISCLIBEIN, JOHN HENIRY WILLAAM, called the Younger, the youngest son of John Conrad Tischbein, and nephew of Uno preceding, with whom he is sometimes confounded, was born at Hayna in 1751. He was instrueted by his uncle John Henry at Cassel in historical painting, and he afterwards studied landscape painting three years with his uncle John Jacol at Hamburg; in 17% le went to Holland, where he remained two years, and in $1 \pi^{2}$ returned to Cassel and painted portraits and landseapos; he visited also Manover and Berlin, and painted many portraits in both places. In 1779 he lef Cassel, by the dewire of the Landgrave, for Italy, but he spent about two years in Ziirich, where ho painted many portraits and made the design of his celebrated pieture of Conradin of Suabiat, playing, after his sentence to death, a game at draughts with Frederick of Austria. In 1781 Tischbein arived in Rome, and his flrst studies were some copies in oil after Raphael and Guercino, and some drawings after Raphach, Domenichino, and Llonardo da Vincl. Ilis first origina] picture was Hercules choosing between Vice and Virtue, after whielt lie painted his picture of Conradin of Suabia, now in the palace of Pyrmont. In 1787 he went to Naples, and the next year pninled the portrait of the erown-prince for the queen, who presented 'Tischbein with a valuable snuff-box and 200 dicats, expreasing her complete satisfaction with the picture. In Naples he appears to have aequired laurels rapidly, for in 1790 he was appointed director of the Academy with a salary of givo ducats per annum, which however he lost again in 1799, at the breaking out of the revolution at Naples, but he found no difficulty in obtaining permission from the Freneh authorities to seturn to Giermany with what property lie chose to take with him. He accordingly embarked, with the painter Hackert and another, for Leghorn, taking with him the plates of his illustrations to Homer, his designs for Sir W. Hamilton's second collection of rases, and some other works of art: but the ship was driven by a storm upon the eoast of Corsica, and was captured by a French ship of war; it was however set at liberty again, and after a troublesone journey of four months Tischbein at last reached Cassel in safety. During his residence in Naples he published there, in 1706, a remarkable work upon aoimals, in two parts, folio, entitled 'Têtes des Ditterents Animaux, dessinés d'apreds Nature, pour donner une idée plus exacte de leurs caractéres.' The first phart contains 16 designs of animals, and the first plate of this part is the eclebrated design called in Italy Tischbein's Laocoon; it represents a large make nttacking and destroying a lioness and her young in their den; a design of remarkable powes and spint: the second part contains 8 phates only, consisting of characteristic heads of men and gods, as-Correggio, Salvat or Rosa, Miclael Angelo, IRaphail, Scipio Africanus, Caraealla, Jupiter, and Apollo. Tischbein after his return to Germany lived principally at Mamburg and at liutin in Oldenburg near Liibeck; the majority of his works are in the possession of the grand-duke of Oldenburg; the following paintings are three of his most celelyrated works: -Ajnx and Cassandra, painted in 1805; "Let the Little Children come unto me, painted in 1806, for the altar of the ehurch of St. Angari at Bremen; and Mector taking leave of Andromacle, painted in 1810. Ile painted also the portraits of Klopstock, of Heyne, and of B \mathbf{H} ueher.
In (föttingen in $1801-4$ lie published in roval folio his favourite work on Homer, with explanations liy Heyne-- Ilomer, macla Antiken gezeiclmet von HeinrielıTiselibein, Direcktor, \&e., mit erläuterungen von Chr. Gottl. Heyne; i.-vi., cach number containing 6 plates: the portrats of the Iomeric heroes were enyraved by 1 . Morghen. Tischbein's drawings for Sir W. Hamilton's second collection of vases, published at Naples from 1791, in 4 vols. Colio, amount to 214: the work is entitled 'A Collection of Engravings from Antient Vasees, mostly of pure Greek workmanship, discovered in Sepulchres in the Kingdom of the

Two Sicilies, but principally in the environs of Naples, during the years 1789 and 1700 ; now in the possession of Sir IV. Hamilton, published by William Tischbein, director of the Royal Aeademy of Painting at Naples.' The text, which is in Freneh and English, is by Italinsky. Tischbein published other works, and etehed also several plates, after Paul Potter, Roos, Rosa di Tivoli, Rembrandt, \&c. As a painter his drawing was correet, and his expression and eolouring good, and he excelled in drawing animals. He died in 1829. There were many other artists of this family, of various degrees of merit, but they are unknown beyond their own cireles.
(Füssli, Allgemeines Künstler Lexicon; Kugler, Ifandbuch der Geschichte der Malerei.)
TI'SIAS. [Oratory.]
TISSAPHERNES. [CyRUS The Younger.]
TISSOT, SIMON ANDREW, an eminent Swiss phy sician, was born at Lausanne, in the canton de Vaud, in 1738. He studied first at Gencva, and then at Montpellier, from 1746 to 1749 , where he took his degree of Doctor of Medicine. He then returned to Switzerland and settled at Lausanne, where he joined to an extensive practice a considerable degree of theoretical knowledge. His reputation spread rapilly through Europe in consequence of his medical publications, and caused him to be consulted from all parts. He was also offered at various times several im portant situations at different foreign courts and universities, all which he declined, and remained satisfied with the respect and comfort which he cnjoyed at home, and with the office of professor of medicine at the college of Lausanne. However, in 1780, he could not resist the warm solieitations of the emperor Joseph II., who conferred on him the professorship of clinical medicine at the university of Pavia. Being thrown thus late in life into so diffieult a post, and being naturally of a modest and shy disposition, he did not at first answer the expectations formed of him. However there soon after broke out in the province an cpidemic bilious fever, as to the treatment of which the physicians of the place were not agreed. On this oceasion the Count de Firmian, the celebrated minister under the archduke, gave orders that Tissot's directions should be followed, as he had treated a similar disorder with great success in the canton of Le Valais in 1755 . His system was again successful, and the students not only celebrated his triumph with fetes, but, wishing to render the memory of it more durable, they caused a marble inscription, beginning with the words Immortali Preceptori, to be placed under the portico of the sehool. After holding his professorslip for three years, Tissot obtained permission to retirc from office. During his stay in Italy he had made use of the vacations to travel through the finest parts of that country, and was everywhere received with the most marked and flattering attention. Pope Pius VI. signified his desire of seeing so estimable and eminent a man; he nccordingly received him with mueh kindness, excused him (as being a Protestant) from the ceremonial customary at presentations at the Papal court, and made him a present of a set of the gold medals struck during his pontificate.
Having always lived economically and without any display, Tissot had saved while in Italy a sum of money sufficient for the purchase of a country-seat, which he intended to be the retreat of his old age. He had only engaged himself in the Austrian service for a very limited period; he had now finished the medical education of a favourite nephew; and, lastly, as he himself with charaeteristic playfulness expressed it, having received the title of 'Immortal,' he thought it prudent not to run any risk of descending from such a height, and of outliving (as he might easily do) his apotheosis. He was suceeeded in his professorship at Pavia by the celebrated J. P. Frank, and died unmarried, on the 15th of June, 1797, in his native land, at the age of sixty-nine. A complete list of his works is given in the 'Biographie Médicafe, from which work the abbve account is taken: of these the following are the most interesting: 'Tentamen de Morbis ex Manustupratione Ortis,' Louvain, 8vo., 17CJ; whieh was translated into French, and has been frequently republished. 'Dissertatio de Febribus Biliosis, seu Historia Epidemiae Lausanensis anni 1755,' Lausanne, $1758,8 \mathrm{vo}$. 'Avis au Peuple sur sa Santé,' Lausanne, 1761, 12mo., which was translated into no less than seven different languages, and in less than six years reached the tenth edition. It has since been
frequently reprinted, and contributed more than any of his other works to make the author's name known throughout Europe. It served also as the model and foundation for many similar popular works in more recent times. 'De Valetudine Litteratorum,' Lausanne, 8vo., 1766, whieh was translated into French, and frequently reprinted, and of which the latest and best edition is that by F. G. Boisseau, Paris, 1826, 18 mo ., with notes by the editor, and a memoir of the author. 'Essai sur les Maladies des Gens du Monde,' which has also gone through several editions. There is a complete edition of his works by J. N. Hallé, in 11 vols. 8vo., Paris, 1811, with notes by the editor and a memoir of the author. Besides these original works Tissot edited at Yverdun, 1779, in three volunies 4to., the treatise of Morgagni, 'De Sedibus et Causis Morborum per Anatomen Indagatis,' to which he prefixed a history of the Life and Works of the author.

TISSUES, VEGETABLE. The various organs of plants, as the leaves, flowers, roots, stem, \&c., are composed of certain ultimate structures, which are called elementary organs or vegetable tissues. Most parts of a plant, when cut into, present to the naked eye an alnost perfectly homogeneous character; and it is only by ealling to our aid the microseope that we can distinguish the various struetures of which they are composed. On taking a leaf or a portion of the stem of one of the higher plants, and submitting it to the microscope, it will be found to consist, 1 , of a thin transparent homogeneous membrane, which is arranged in the form of cells or cylindrical tubes; 2 , of fibres, which are arranged in a spiral form in the interior of the cells or tubes; and 3, a fluid of varying density, filling the cells and existing between them, and containing in it globules of various sizes and kinds. These parts constitute what are known respectively as 'elementary membrane,' ' elementary fibre,' and 'organic mucus.' Elementary membrane, and the fluid from which it is developed, are the only two which are constantly present in all plants. Fibre is only found in the higher forms of plants.

The priniary form in which organization appears is that of a simplocell containing or surrounded by a fluid; and however cumplicated may be the forms which the tissues of plants may assume, they mostly originate in this primitive form. Some late, researches on the development of tissues in animals seem to lead to the conclusion that some of these tissues are formed from a primitive fibre; and from analogy it has been supposed that the same may occur in vegetable organization. Whether however the cell or the fibre shall be determined to be the primitive form of tissue in the animal kingdom, there can be little doubt that the cell is so in the vegetable kingdom.

The devclopment of the cell itself is a subject of much interest, and great light has been thrown on this obseure department of physiology by the late researelhes of Dr. Schleiden. It was long since obseryed by Robert Brown that in the cells of the tissue of Orchidaceous plants there was an opaque spot, or 'areola, in the interior of the cell: Schleiden, finding this spot very constant in the cells of eertain plants, concluded that it must have some important relation to them, and submitted it to a very strict examination. He found that these bodies were the original particles from whence the cells were formed; hence he called them cytoblasts. The best parts of the plant for observing the phenomena to which these bodies give rise are, the large cell which exists between the embryo and the membranes of the seed, and in which the albumen is subsequently deposited, the embryonal sac, and the end of the pollen-tube, from which the embryo itself is developed. In the gummy fluid that exists, in these parts in the process of growth a number of granules are developed, rendering this transparent homogeneous fluid opalescent, or almost opaque. It is among these granules, which assume a brownish-yellow colour under the influence of tincture of iodine, that the eytoblasts make their appearance. Whilst in this state the eytoblasts increase considerably in size, beeoming larger than the granules of the gum; and as soon as they have attained their full size, a delieate transparent vesicle rises upon their surface: this is the young cell, which at first represents a vcry flat segment of a sphere, whose plane side is formed by the cytoblast, and the convex side by the young cell, which is situated on it, somewhat like a watch-glass on a watch. In its natural medium it is almost distinguished by this circumstance alone, that the space between its convexity
and the cytob.ast is perfeetly clear and transparent, and probably filled with an aqueons fluid, and is bounded by the surrounding mucous granules, pressed baek hy its expaasion. But ir these young cells are isolated, the mucous granules may almost entirely be removed by shaking the stage of the miernsenpe. This chunot however be long olserved, as they entirely dissolve in a few minutes in distilled water, leaving the eytoblasts behind. The vesiele stadually gets larger and becomes more consistent, its parietes being formed entirely of vegetahle gelatine (Gallerte), except the eytoblast, which always forms a portion or the wall. The whole eell now gradually enlarges beyond the edges of the cytoblast, and gets so large that at last the latter appears as a small body enelosed in one of the side walls. At this point the cytoblast assmmes the character of the areola deseribed by Brown. The young eell frequently presents great irregularities, a proof that the expansion does not proceed regularly from a fixed point. The cell grows progressively, and becomes, under the influence of surrounding objects, more regular, and most frequently assumes the form of a rhomboidal dodecahedron. The cytoblast still remains in the cell, partaking of the Tife inherent in the cell, unless it is in cells destined to a higher development, when it is either reabsorbed in the walls of the eell, or cast off into the cell as a useless member, and there reabsorbed. It is mly after the reabsorption of the eytoblast that sceondary sipositions are observed to cominence on the inside of the walls of the cell. (Schleiden.)
The eytollast remains in the eells in only a small number of eases. They are found in a portion of the cellular tissue of Orchidacese, also of Cactacer. In hairs likewise, and cells in which the function of cyclosis is earried on, they are very frequently permanent; also in the pollen granules of Abictine. Dr. Schleiden always found them present in recently-formed cellular tissue.
The increase of the bulk and size of plants depends upon the development, in the interior of the old or originally formed cells, of several new cytoblasts, each of which develops a new eell, and causes ly its presence the absorption or destruction of the old one.

But all the parts of plants do not consist of simple cells; the cells become elongated, forming fibrons or woody tissue, and spiral fibres are generated loth in cells and tubes, constituting the various forms of fibro-ecllular and vaseular tissue, and it will be necessary to sny a few words on their development. One great error that has arisen from the naming and classification of the tissues of the plants has been the supposition that they were essentially distinet and possessed a different origin. This is seen in the theories of the origin of wood. Woody fibres are nothing more than elongated cells with thickened walls; but they were supposed to originate in a different manner from the cellular tissue; and an ingenious theory of Du Petit Thours has been adopted by many eminent botanists for the purpose of explaining this phenomenon.
In reterring to Du Petit Thouars' views, Dr. Lindley says, - The wood is not formed out of the bark as a mere deposition, but it is produced from matterelaloorated in the leaves sent downwards, either through the vessels of the inner bark along with the matter for forming the liber, by which it is subsequently parted with, or it and the liber are transmitted distinct from one another, the one adhering to the albumen, the other to the laark. I know of no proof of the former supposition; of the latter there is every reason to belicse the truth.' And again, "It is not merely in the properly of inereasing the speeies that buds agree with seeds, but that they enit roots in like manner; and that the wood and liber are both formed by the downward deseent of bud-roots, at first nourished by the moisture of the cambium, and finally imbedded in the cellular tissue which is the result of the organization of that seeretion.' This theory then supposes that woody tissue is sent down as a deposit from buds and leaves. But it is mueh too general, and whatever may be the ageney of the leaves in claborating the sap, and preparing the secretions of plants, they are certainly not the only agents engaged in developing the woody tissue. There are many parts of plants that possers no leaves, and some whole orders, as Cactacese, that porsess no leaves that yet develop woody tissuc, Trees also that liave the hark removed in a circle from the stem at the spring of the year, before the leaves are developed, will at the end of the year exhibit between the
bark and wood new woody tissue. This was proved hry a series of experiments performed on beech-trees by Mr. Iankester. The existence of woody exerescences in the hark of trees is also another faet opposed to Du l'etit Thouars theory. These exerescences exist in the form of knols, and are most frequent on the beech, projecting from the bark of the tree. On cxamining them it will be found that they have no conncetion with the wood of the tree, and consist of neveml layers of contorted wooly tissue, anveloped in a bark of their own, consisting of liber and cellular integument. They are of all sizes, from a mere point to that of an orange. The smallest consist of cellular tissue, in the centre of whieh a darker spot is seen, as though. the tissuc was injured or diseased. It is around this spot that the fibres of woody tissue develop themselves. These bodies appear to liave their origin in an undeveloped bud: hence they are ealled by Dutrochet embryo-buds; but as they go on inereasing in size, and development occurs in a cireular, rather than a longitudinal direction, they are deseribed by Lankester as abortive branches. From the researehes of Selaleiden there can be little doube but that the elóngated tissue is developed in the same manner as cells. A question that still arises, and requires solution, is, as to whether the single fibres of woody tissue are the prodnee of a single cytoblast or of several. In the tissuc called pitted or Bothrenchyma, there are evident indieations of its eyliudrical tulbes leing formed of several cells anited together, and the walls, being absorbed at their point of umion, have thus produced a continuous tube.
The above observations of Schleiden have set aside the supposition that the cell is composed entirely of spiral fibres intimately superposed. But still the question recurs as to whether tibre may not be generated independent of membrane. Meyen found fibres without memlrane in the genus Stelis; Lindley observed them in Collomia; and many other instances are known in whieh fibres are found in plants without any apparently enveloping membrane. The late researeles of Dr. Marin Barry on the development of animal tissue from the spiral filue of the blondglohule have induced some botanists to examine this quesfion; and Dr. Willshire, in a paper in the 9 th volume of the 'Annals of Natural History,' has endeavoured to prove that the irregular-shaped bodies marked with dark lines, and found in the juices of many plants, are the eytoblasts or pure fibrous tissue. If such a development of fibre takes place, it ean be only in exeecdingly rare eases. Sehleiden in his memoir on Plyytogenesis states that fibres are never formed free, but always in the interior of cells, and that the walls of these cells in the young state are simple and of a very delicate texture.

Whether fibre is formed independent of membrane or not, there is no doubt of its formation in a large number of organs in the inside of cells and tulbes forming the fibrocellular and fibro-vascular tissues. Aeeording to Sehleiden, the cells in which the development of fibre takes place are in the conmencement of the formation of the filsres filled with starch, rarely with mueus or gum, although the stareh passes into the state of mucus or gum, and then into that of gelatin (gallerte). From this latter vegetable filbres are formed which in their development always follow the dircetion of a spiral line, whose coils are narrower or wider aecording to circumstances. The development of the fibre is the same in the spiral ressel as in the spimal cell, there being no difference between the two but in their dimensions. In the first volume of the 'Transactions of the Mieroscopieal Society of Londion' (1842), Mr. Quekett gives the following necount of the development of fibre in The vaseular tissuc of plants:- When the young vessels (that is, membranous tubes) are recognised, they appear as pellucid glossy tubes, with a cytoblast in some part of their interior; earlier than this they are not to be readily recognised from cells. As they grow older the cytoblast diminishes, and the contents, whieh at first were clear and gelatinous, become less transparent from containing thousands of granules, whieh are too small to nllow of the passage of light, and consequently appear as dark points; these atoms are alout the of an meh in diameter, and have the motion known as "nctive molecules." If the vessel be wounded at this period, the pelatinous contents pour slowly out, and then the siugufar movements of these molecules are still more clearly seen. These atoms, from their freedom of motion, are arranged indiscriminately in the interior of the vessel, but in a short time some of them
enlarge, and then transmit a little light, which, on account of their minute dimensions, is not suffered to pass as a white pencil, but is decomposed in its course, the granule thereby becoming of a greenish hue. The granules exhibiting this greenish hue are now in a fit state to enter into the composition of the fibre that is to exist in the interior of the membranous tube.' This is effected in the following manner:-'The granules which are in active motion in the viscid fluid near one of the ends become severally attraeted to the inner wall of the vessel, beginning at the very point; those granules first attraeted appear as if cemented to the spot by the viscid fluid in that. direction losing some of its watery character; for there appears a string of a whitish colour, besides granules, in the line which the filre is to occupy. As the other granules are attracted to those already fixed in an inelined direction, the spiral course is soon to be seen, and the same action progressively goes on from the end where it began towards' the other, around the interior of the tube in the form of a spiral ; the fibre being produced, like a root, by having the new matter added and continually attached to the growing point, thereby causing its gradual elongation.' Spiral cells and vessels thus formed exhibit a great variety of appearance, depending on the period in the age of the cell or tube at which the development of the fibre take place, as well as the modifications that oceur in the chemical changes of the substances from which the fibres are formed. The eause of the arrangement of the partieles in a fibrous form is still got satisfactorily explained, and it is most commonly referred to an attraction between the sides of the membrane, of the cell, and the particles it contains, but why they form a spiral is a mystery yet to be solved. [Spiral Structure of Plants.]

The various forms of vegetable tissue found in the different organs of plants are included in the following ar-rangement:-

I. Fibrous.

Tissue in whiel elementary fibre is alone apparent.

II. Cellular.

Tissue composed of membrane in the form of cells whose length does not greatly exceed their breadth.

1. Merenchyma, the cells of which touch cach other only at some points.
2. Parenchyma, the walls of the eells of which are generally united.
3. Prosenchyma, the eclls of which are always fusiform, and overlie each other at their ends.
III. Vascular.

Tissue composed of cylindrical tubes of membrane continuous, or overlying each other at their ends.

1. Pleurenchyma, with the sides of the tubes thickened and tapering to caeh end.
2. Cinenchyma, the sides of the tubes of which anastomoze, and convey a peculiar fluid.
IV. Fibro-cellular.

Tissue composed of cells, in the inside of which fibres are generated.

a. Genuine.

1. Fibrous cells.

b. Spurious.
2. Porous cells.
3. Dotted cells.

V. Fibro-vascular.

Tissue composed of tubes, in the inside of which one or more spiral fibres are more or less perfectly developed.
a. Genuine.

1. Spiral vessels.
2. Annular vessels.
3. Moniliform vessels.

b. Spurious.

4. Sealariform vesscls.
5. Porous vessels.
(Bothrenchyma.)

6. Dotted ressels.

This arrangement includes the principal forms of tissuc ohserved in plants, but the divisions are not founded upon any essential difference in the strueture or functions of the ramious tissucs. The most important distinction exists
bctween membrane and fibre, which are apparently developed under the influence of different forces. The cell and the tube differ but in their dimensions, and the same is true of them when fibre is generated in their inside.

Fibrous Tissue.-Although the development of fibre independent of membrane is still undecided. many of the parts of plants exhibit fibres divested of membrane. Fibres spirally arranged and adhering only together by vegetable mucus, which is dissolved away by the application of water, were diseovered by Brown, in the seed-coat of Casuarina, and by Lindley, in the same position in Collomia lincuris. Meyen, who maintains that all eells may be composed of minute fibres, records many instances of vegetable structure in which fibre of a spiral form alone is most apparent, as the parenchyma of a species of Stelis, in the external layer or bark of the aerial roots of many species of Orehidaceæ, and also in species of Melocactus and Mammillaria. Fibres not assuming a spiral form, and independent of eells or tubes, have been described by Purkinje. In the lining of the anthers of Polygala Chamæbuxus they are found short, straight, and radiating; in the anthers of Linaria cymbalaria they form distinet arehes; and in those of some species of Campanula, they are arranged like the teeth of a comb. The fibre in all eases is very minute, varying from $\frac{10}{200 \pi}$ to $\frac{1000}{}$ of an inch in diameter. It is most commonly transparent and colourless, but in some cases has been observed of a greenish colour. Purkinje, who has recently investigated it very attentively, asscrts that it is hollow; but Lindley, Schleiden, and Morren are of opinion that it is solid.
Cellular Tissue; also called utricular and vesicular tissue. the Parenchyma of Lindley and Morren, tela cellulosa of Liuk, and contextus and complexus cellulosus of older writers; Zellgewebe, Germ. ; Tissu cellulaire, French.This tissue consists of cells or eavities, which are elosed on all sides, and are formed of a delieate, mostly transparent membrane developed from a eytoblast. It is present in the whole vegetable kingdom ; and all the lower forms of plants, constituting the class Acrogens, are composed entirely of it, and have hence been called Cellulares. In the higher plants it is most abundant in fruits and succulent leaves. It exists in larger quantity in herbs than trees, and the younger the plant is the more it abounds, and constitutes the entire structure of the embryo.
The normal form of the cells is spheroidal, and when they exist in this or in an elliptical form, and only toueh eaclo other at a few points without exerting pressure, they constitute the tissue called by Meyen Merenchyma. The cells in this ease may form a regular or irregular layer, a distinction which may be of some importance. Such tissue is found in many parts of plants, especially those which are delicate and easily torn, as in the pulp of fruits like the strawberry, in the petals of the white lily, in the stem of Caetus pendulus, where they are spheroidal, and in the leaf of the Agave Americana, where they are elliptical. The eells also which constitute the entirc of many of the lower plants belong to this division of cellular tissue. They are seen separate or loosely adhering to each other in the Protococeus nivalis, the plant of the Red snow [Svow, Red], in many of the smuts and brands, as Ustilago and Uredo. Chroolepus, and many of the lower forms of algæ and fungi, consist of filanients which arc entirely composed of spheroidal cells arranged one upon another.
In the higher forms of plants the vegetative foree is greater, and a greater number of cells being generated in a given space, they press on each other on all sides, assuming a variety of forms, and constituting the tissuc called by Meyen Parenchyma. The most common form which the cells present under these circumstanees is the rhomboidal dodecahedron, whieh is the mathematical forn that a globe assumes when subjected to the pressure of a number of globes tonehing each other at the same time. These cells when cut through, as in the section of a portion of pith, or the leaf of a plant, will present their cut margins, when seen through the mieroseope, in the form of hexagons. (a and b, Fig. 1.) But the pressure is not always equal on all sides of the cells, so that a great numaber of secondary forms are the result. When the vesicles are elongated, the dodecahedrons assunie the form of rightangled prisms, terminated by four-sided pyramids; whose faces replaee the angle of the pyramids at varying degrecs of inclination to the axis. Many of the forms thus assumed characterise parts' of plants, and are very constant in the
same precies of plants. The principal varieties of Parenchyma distinguished by Meyen are

1. The eubical, whieh exists in the cutiele of some leaves. nnd is not unfrequently met with in bark and pith, as in the pith of Viscum album. (c, Fig. 1.)
2. The columnar, of which there are two varicties: the cylindrical (cylindrenchyma of Morren), examples of which may be seen in Chara and in Agaricus musearius; the prismatical (prismenchyma), frequently seen in the pith and the bark of plants, and when compressed it becomes the muriform tissue (P, Fig. 1), which is constantly found in the medullary rays, and has its name from the cells being arranged as bricks in a wall.
3. The dorlecuhedral: the natural form of parenchyma when the cells are of equal size and cxert on each other equal pressure, and when cut present a hexagonal form. (a, e , Fig. 4.)
4. The stellated (nefinenclyma), in which the cells, from the irregularity of their walls, assume a star-like form, scen in Musa.
5. The tabulated, seen in the epiphlwum of many plants: other forms, as conical (conenchyma; h, Fig. 1), uval (ovenclyma), fusiform (atractenchyma), sinuous (colpenehyma), branelied (cladenehyma), entangled (dedalenelyma), have been deseribed by Morren.
Prosenehyma differs from Parenehyma in the cells always laving an elliptical form which taper to their extremities, where they overlie each other. This form of tissue is found only in the bark and wood, and is a transition from cellular to what is called woody tissue. Meyen applies this term especially to the tissue forming the wood of Conifera and Cyeadacea. In these families this tissue is marked with dots, which are surrounded by a circle.

(Fig. 2.) These dots were formerly supposed to be glands, and to secrete the resinous matter which abounds in them, and hence it was callex 'glandular woody tissue.' The rusearches of Mohl and others have however shown that these dots are the result of the development of fibre within the walls of the cells, and in this view the Prosenchyma not only constitutes a transition from cellular to vascular fissule, but also a transition from fibro-cellular to fibrovaspular tissue.

Cumtents of Cells.- The vesiele of cellular tissuc when it rises froms its eytoblast is a thin transparent membrane, whichs is it enlerges becomes thiclened from within by the appropristinu of proper nutriment which is contained in the cell. This cell in the early stages of its growth is filled with a fanid, at first clear, but aflerwards opalescent from the devclopment in it of minute grnnules. These granules are of rarious ahapes and sizes, and always excesbively minute. In their early stages they possess the
characters of starch, more particularls the groperly of assuming a blue colour whin brouglit in contact with tineture of iodine. In the older cells many of the granules lose the character of starch, and possess other propertics. Some of them, and these more minute than those of starch. are not coloured by iodine, and are soluble in alcohol, and partake of a resinous character. They give the peculiar eolour to the claborated sap, whatever that may be, and in plants with milky juices constitute the caoutchone which they yield. They seem also to be the constituents of the volatile oils, resins, balsams, gums, \&e. that plants yield. [Secretions, Vegrtain.es.] Another set of globulea are also found present in old cells, and these constituta what is called chlorophyl, or ehromule, and exist especially in the cells of plants on their surface, giving to them their peculiar colours. [SAP.] It is from the remaining graunles of starch that the cells are nourished. Previous to being appropriated by the walls of the cell they are converted into a substance called by Meyen vegetable jelly (gallerte). It is from this substance, varying in almost every family of plants, that the cells are thickened, by which the delicate membrane in many eases becomes exeessirely lard, as in the stones of many fruits, the seed of the Phytelephas Macroearpa, and the wood of many trees. In simple cellular tissuc and in wooly tisstue this material is applied equally to the whole surface of the cell, forming regular lajers: in the fibro-cellular and fibro-vascular tissues it is appropristed in the form of fibre.
Aunther class of bodics found in the interior of eells, and which appear to have nothing to do with the nutrition of the plant, are those erystalline bodies ealled Rapliides. They oceur singly or in bundles, and have an acieular form, and are long or short recording to circumstances. In length they measure from for th to $\frac{1}{2}$ th part of an inell. These erystals were first observed in the proper juices of plants, and have been subsequently found in all parts of plants where cellular tissue exists. They were formerly supposed to exist between the cells, but later observers have seen them in cells, and they probably exist in both situations. The form of these bodies is not antisfactorily determined. Mohl deseribes them as right-angled foursided prisms vanishing into points. Quekett, who is oue of the latest observers on this point, says they are decidedly four-sided prisms, but not always right-angled. Those which are conglomerated are called erystal-glands (hrystaldriisen) by Meyen. They seldom present more than the pyramid of cach little erysfal composing them. The proportion in which they exist in plants is sometines very great. In some species of Cactacea, according to Quelett, the erystals equal the weight of the dried tissuc. One hundred grains of Turkey rhubarb-root yield between 30 and 40 grains of raphides; the same quantity of tissuo of Seilla maritima yielded 10 grains. In most plants these erystals are composed of either oxalate or phosphate of lime. Raspail says the erystals of the oxalate of lime are four-sided prisms with pyramids of the same base; those of the phosphate, six-sided prisms. In Chara erystals of earbonate of lime oecur in great abundance on the ontside of the tissue, and we have observed them in the intereellular passages immediately under the epidermis, but they do not oeeur in the interior parts of the plant. Seluubler found that the erystal-glands of Iydrurus erystallophorus consisted of earbonate of lime, and Saigey and De la Fosse found siliea in the erystals of the Mirabilis Jalapa. Silica is a very prominent constituent of the Graminacex, but is seldoni found erystallized. It gives the hardness to the epidermis of the Dutch rush, and is seereted in larse quantities in the joints of the stem of the bamboo, and is used as an article of commerec under the name of Tubushcer. From the variable form of the erystals in plants it may be inferred that other salts form thein besides the above. These bodies do not appear to be necessary parts of the tissues in which they oceur, and they have been compared by Link to caleuli and other coneretions in the animal kingdon. This view is rendered very probable by the fact that they are alwnys composed of those clements which the plants take up from the soil as necessary nutriment. Meyen has pointed out the fact that plants growing near the sea wifl thow off the superabundanco of chloride of sodium in their tisures in the form of erystals; and we have found crystals of carbonate of lime most abundant in Chara flexilis, where the water in which it grew contained most of that substance. Dhosphate of lime
is necessary to the mutrition of many plants, and the elements of oxalic acid exist in the sap of all plants; and when these are in greater abundance than the vital encrgies of the plant can appropriate, the laws of chemical affinity come into play, and crystallization is the result.

Growth, Form, gre.-The vesicles. of cellular tissue are very small, and cannot be distinguished with the naked eye ; and in fact all investigations on the structure, development, and functions of the tissues of plants, can only be conducted with the aid of the microscope. The measurements of the cells give them a sizc varying from $\frac{1}{30}$ th to the tobsth of an inch in diameter. In the lower tribes, as in the Funci, their generation is very rapid, and it is well known that mushrooms, puffballs, \&c. will attain a great size in the course of a single night. The force too with which they are generated is yery great, and therc are many well-authenticated. instances of agarics springing up beueath pavements and displaeing stones of great weight and size.
The walls of the loose spheroidal cells in merenchyma consist of a single membrane, but the walls of the more closely-pressed cells of parenchyma consist of two membranes, originally distinct, but fused info one by growth. It frequently happens that the walls of the cells are not accurately applied to cach other, and consequently spaces of various kinds occur between the cells. These are called intercollular passages. They occur in the greatest abundance in the loose merenchymatous tissue. When these passages exist between the walls of two cells whose sides are united in their middle and recede towards their margins, they are called by Link meatus intercellulares. These are most frequently met with in the epidermis of piants. Where the passages are formed of three or more eells the sides of whose walls do not touch, they are called eluctus intercellulares. These arc very well scen in the parenclyma of the stem of the iris and hyacinth, and Heracleum. These passages have been supposed by De Candolle and others to convey the sap; but this has probably arisen from an error in observation, as they are easily filled with sap when cut through. Others again confound thesc passages with the peculiar vascular tissue described by Schultes as Laticiferous tissue (Cinenchyma).

Another kind of intercellular formation are the air-cells, the lacunce intercellulares of Link, which are large cavities formed in the tissue of plants, and whose walls are entirely formed of cellular tissue. They may be very distinctly divided into two kinds, the regular and the irregular. The regular exist under the epidermis of many plants and vary in size, but have in all cases a regularity of structure, their sides being formed of equal-sized cells of ccllular tissue. They may be seen in the leaf-stalk of Calla athiopica, the stem of CEnanthe Phellandrium, and the petioles of Nymphæa. They are very common in waterplants. They are always filled with air in these plants, and serve as a mcans of buoying them up in the water. The irregular air-cells, lacunce of Link, are found in old plants; they arise from the growth of the plant tearing asunder the cellular tissue, or from a deficient development or even the absorption of this tissue in particular directions. They may be seen in the stem of the fronds of the Aspidium Filix Mas, of Hippuris and Equisetum, and in ncarly the whole of the family Umbelliferre.

The other organs which are formed by and found in the midst of the cellular tissue are the sap-colls and glands. The sap-cells, the opangia of Link, eonsist of enlarged celle of tissue, varying much in size, but always filled with claborated sap. They are found in the skin of the fruit of the citron, pomegranate, \&c. These are regular in form, but in the roots and rhizomata of such plants as the ginger, Archangclica, and Aristolochia, they are found of an irregular form. The glands, which are by some supposed to be the agents by which the peculiar secretions of the plant are immediately separated from the latex, are composed of cells pressed together, and assuming a variety of forms. When cxamined, these cells are found to contain in many instances the resin, gum, oil, \&c. which give to the plant some of its peeuliar physical properties.

The organs just enumerated as present in the cellular fissue are met with chiefly in the merenchymatous and parenchymintous forms.

Vascular or Tubular Tissue consists of continuous tubes of simple membrane, and comprehends the woody and the laticifercus tissues. On the onc hand they are distinguished
by their length from the forms of cellular tissue, and on the other hand by their plane membrane from those tissues of which fibre forms a constituent element.

Pleurcnchyma, or Woody Tissue (vasa flbrosa of Link, ane Fasergefässe, German), is found abundantly in the wood. and especially the liber, of all plants. It is composed of yery long, thin, tough, transparent, membranous tubes. No bars or dots are seen in their walls, although when they cross each other the points at which thcy touch may be taken for such markings. They taper acutely to each end, and do not appear to have any communication one with the other, although they are occasionally seen with open extremities, which Slack supposes to arise from the breaking off of one fibre where it was united to another. In the svood and bark of dicotyledonous plants they are frequently mixed with prosenchyma, and in monocotyledonous plants with parenchyma. They grow by increasing in length both above and below. Their diameter varies from $\frac{1}{30}$ to $\frac{1}{3000}$ of an inch. The walls increase in thickness by the deposition of vegetable jelly, called by Turpin sclerogen, to their insides, and in the woody tissue of Betula alba and other trees the sclerogen may be seen forming successive layers around the sides of the tubes. Their form is mostly cylindrical, but in Cycas revoluta Link has observed them assuming a prismatic form.

The tubes of woody tissue are very tough, and will resist considerable force without breaking. It is on this account that they are used extensively in the manufacture of cloths of various kinds. The plantsused most commonly for this purpose are the hemp and flax. The fibres of Tilia, Daphnc, Lagetta, and of many of the plants of the order of Malvaceæ, are used for making mats, cordage, whips, \&c. The following is a comparative statement of the relative strength of silk and some woody fibre:-

Woody tissue gives firmness and tenacity to the plant, and assists in conveying the sap from the roots to the leaves.

Cinenchyma, or Laticiferous. Tissue, consists of tubes which are mostly branched and anastomosing; their walls are exceedingly delicate in young plants, and thicker in old ones; and they are characterised by conveying a fluid called the latex, which differs from the sap in other parts of the plant. [SAp.] Tbe older botanists, Spigelius, Mal. pighi, and Grevo described them, but they were gencrally confounded with woody tissue, till they were very fully investigated by Schultes. In older writcrs they are called vasa propria or peculiaria; by Link, vasa opophora. Some writers have supposed that they are nothing more than interccllular passages, and have denied that they possess membranous parietes; but their existence has been ascertained, and the observations of Schultes on their structure confirmed by Link, Meyen, Mohl, and others. The walls of these vessels are mostly plain, but have been sometimes observed marked with bars and fibres. They do not exist in all plants, and have not been found at all in the lower forms of Cryptogamia, nor in some of the Phanerogamous plants, as Valisneria and Stratiotes. Their most frequent position is on the sides of spiral vessels, or amongst the bundles of this tissue found in the midrib and nerves of leaves. They are most obvious in the order Euphorbiaces, where the latex is of a white colour. This juice is not always coloured or opalescent, but is somctimes quite clear. The tubes are not always regular in size. In some species, as in Glycine Apios, they are irregularly contracted and expanded; in Papaver nudicaule they have a moniliform appearance; in Acer platanoides they are very regular. In the stem they are generally simple, but in very young plants and the younger parts of plants they are branched, nud anastomose. (Fig. 3.) Link has observed their terminating in blind extremities. In their distribution they gradually diminish in size, and have been traced into the most delicate parts of plants, as the hairs.

Schultes supposes that these vessels perform the same functions in the plant as the arteries and veins in animals. The fluid in them has a peculiar motion, which he calls cyclosis. [SAP.]

Fibro-cellular Tissue, or Inenchyma, consists of cells formed of menbrane, in the inside of which fibre is de-

veloped. This tissue may be divided into two kinds, gemuine and spurious; the genuine being that in which the fibre is distinctly marked on the inside of the cell, and the spurious that in which the fibre, cither by absorption or the union of its various parts, forms rings, bars, dots, and other appearances on the sides of the cell. The genuine fibro-cellular tissue is mostly found in parenchymatous and prosenchymatous cells. It has been known for a long time amonest botanists, and was first described by Hedwig, who was followed by Moldenhawer and others. They are ubundant in the external parchnent-like layers of acrial roots of Orchidacee, and have been deseribed by Meyen in Oncidium altissimum, Acropera Loddigesii, Brassavola cordata, \&e. They occur in the hairs of the periearp of many of the Composite, as in Perdicium taraxaci, Scnecio flaccidus, and Trichoelinc humilis. Horkel has described them in the epidermis of many Labiats, as Ziziphora, Ocymum, and many Salvia. .The seed-coats of many planis possess them, as Gilia Ipomopsis, Polemonium Cantua, and Caldaria; and Kippist has lately demonstrated their presence in many of the species of Acanthacez. In some of these cases, and many others might be mentioned, the fibre appears to constitute the whole of the cell, as stated under fibrous tissue.
The fibre in these cells varies in its position and form. In the cells of the leaf of Oncidium altissimum they are very distinet, and oecasionally branched. In the testa of the seed of Maanandya Bareleyana, where they were first pointed out by Lindley, the fibres run in different directions over each other, forming a network. In the endothecium of Calla athiopiaca they are parallel, and in this form are very common in the same organ of other plants. In the endothecium of Nymphea alba the fibres form regular arches arising from a plane base. In the claters of Jungermannia and in the testa of Acanthodium the cells are greatly elongated, with a single spiral fibre in their interior.
The spurious fibro-cellular tissue includes the porons and dotted cells of many authors ; the cellulce porosce et punctate of link. If a portion of the parenchyma of Viseum albun be examined, the inside of the cells will be found to possess a number of bright spots. They were first discovered by Treviranus in Cyeas revoluta, and supposed hy him to be granules. They were thought by other whservers to be pores: hence their name porous cells. Sprengel, Mohl, and link consider them little vesicles, but Meyen has given a different explanation of their nature. He ascribes their existence to a metamorphosis of the fibres generated in cells. They are often met with in the same cells as fibres, and it is by the union of some parts of the fihre and the absorption of others that the paces are produced, which when first viewed appear as though they were granules, pores, or vesicles. The same appearance is frequently found in the varions forms of fibro-vascular tissue, where there ean be little doubt of the vints arising from the irregular formation of the fibres. Even those botauists who do not subscribe to Meyen's view on this point with refard to cellular tissuc, atmit its correctness in vascular tissuc. As it inust be admitted that there is no essentia! difference between the cellular and vascular tissues, it is undoubtedly a correct inference that these spots have the same origin in both tissues.

A transition from porous eclls to porous tubes is seen in the tiwue which has been called Bothrenehyma. In this
tissue, which can be well seen in Phytocrene, ns well as Cyces, a number of truncated porous cells arc placed one on the other so as to form a cylinder, which becomes a tube by the absorption or removal of the cellular partitions. Yorons vascular tissue is referred to this form lyy Lindley under the name of continuous Bothrenchyma, as the par. titions or union of the cells are not visible. Where the points of union of the eells are evident, he calls it artieulated Bothrenchyma.
Dotted cells have their walls marked with dark spots. These cells have been observed in the pith of Calycanthus floridus and in the stem of Dracana forminatis. They appear only to difter from the porous cells in the matter from which they are formed having greater opacity, and not transmitting the light so freely.
Mibro-vascular Tissue, or Trachenchyma (vasa spiroidea of Link), consists of tubes, in the inside of which spiral tibres are generated. The fibres of this tissue, like the last, are subject to metamorphosis, the consequence of which is, the tubes present the appearances of rings, bars, and bright and dark spots.
The tubes consist of a very delicate membrane, which is mostly cylindrical ; it may however assume a prismatical form when the tubes are in bundles and closely pressed logether, as in ferns and many monocotyledonous plants. The fibres generated in this tissue are mostly compressed, and wind up the sides of the tube in a spiral form. When the membrane is broken, the fibre in most cases may be minrolled. It is in the younger tubes that this is most ensily effected; as in the older tubes those changes go on which connect the membrane and the fibre firmly together, ind convert the latter into bars, dots, \&ic. The number of fibres incladed in a tube varies; it is frequently single, but in some instances as many as twenty-two have been counted. They have no fixed direction; some pass from right to left, others from left to right. Some difterence of opinion has existed as to whether the fibres are tubular or not. Schleiden says in most instances they are solid, but where they are formed from large globules of jelly they appear to be tubular in both vascular and cellular tissue.
Link divides fibro-vascular tissue into genuine and spurious; the former includes all those vessels which possess perfect fibres. The principal forms of thesc are the spiral, annular, and moniliform vessels. The spirab vessel consists of a tube, in which one or more fibres run continuously along its sides from one end to the other. ($d, e, f, F i g .4$.) When the fibres are single, they are called

Fig. 4.

simple; when there is more than one, compound. The spiral vessels are most abundant in young plants, as their character becomes changed by age. When the fibres adhere to the sides of the membrane, they are said to be closed. The spiral vessel was at one time considered a very important tissuc, performing especial vital functions. From the circumstance of air being frequently fount iu them, and this air containing a larger quantity of oxygen than the atmosphere, they were supposed to carry on the function of respiration. Subsequent observation however proves that they as frequently convey liquid as air, and Meyen supposes that they are only filled with air when a larger quantity of fluid ceases to be required by the plant.

Aunular vessels or ducts consist of tubes with perfect rings of fibre on their sides. (g, Fig. 4.) These are evidently formed from the interruption of the spires, and the union of the broken ends, as they are frequently found present with a spiral fibre in the same tube. They are mostly larger than the spiral vessels, and the fibre is atso thicker: they are very abundant in monocotyledonous
plants; amongst dicotyledons they are found chiefly in quick-growing plants, as Cucurbitacer.

Montliform vessels have successive dilatations and contraetions of the tube, and a perfect spiral fibre in their inside. It has been proved by Slack that these vessels derive their peculiar form from accidental compression. They are found in the knots of trees where branches are given off, in roots, and other parts whe:e they meet with obstacles to their longitudinal development.

Spurious fibro-vascular tissue includes scalariform, porous, and dotted vessels. The spurious vessels are not found in the tissues of young plants, and are either developed after the appearance of the genuine spiroids, or are formed from them. Meyen maintains the latter view, but Link and other botanists are still inclined to give to some of the barred and dotted tissues an original development. In the medullary sheath, the spurious spiroids are never found in the young plant, although they are somctimes in the albumen and bark; but it is not necessary that a pure spiral fibre should always be visible previous to its being converted into some one of the forms of spurious spiroids. If in a very large number of cases there is evidence that rings, bars, and dots are formed from the metamorphosis of spiral fibres, we may fairly conclude that in those eases where no observation proves to the contrary, the same effects are to be attributed to the same eause.
Scalariform vessels consist of tuoes mostly prismatieal, with spots on their walls resembling bars or straps. These bars are placed one above another in a ladder-iike form; hence their name. They are abundant in ferns, where the prismatic form of the spiroid is nost frequently seen.
Porous vessels are tubes with bright spots upon their walls ($h, i, F i g .4$); they constitute the continuous Bothrenchyma of Lindley. They are found in greatest abundance in the old wood of Coniferæ, in the same positions where spiral vessels are found, in the young wood, and also in the roots of plants. The dots constituting what were erroneously thought to be pores, have the same eharacter as thosc of fibro-cellular tissue. These vessels often attain a great size, neasuring as much as a quarter of a line in diametor.
Dotted vessels constitute the tissue which has been ealled ' glundular uoondy tissuc, and to which Meyen applies peculiarly the term Prosenchyma. (Fig. 3; B, Fig.4.) The dotted vessel, like the dotted cell, has dark spots on the inside of its membranous walls; but in addition to the dot there is also a circle. This dot docs not appear to be formed by the remains of a partly-absorbed fibre, or the crossing of the fibres, as in some of the forms of porous cel's and vessels, but from the sinuous flexures of one or more fibres uniting together and forming between them a little eavity or depression: this is attended with depression of the external membrane, which gives the appearance of the larger cirele surrounding the depression. (Fig. 2; b, Fig.4.) These phenomena make their appearance vely early in the tissues of Conifernns plants; but if buds and very young plants are examined, the sinuous spiral vessels, called by Link rasa spiroida fibrosa, may be easily seen.
Function.- The function ot the tissues of vegetables is not so varied as their forms have led botanists to suppose. As a summary of them we give the following. In the simple eell we have the type of all the other tissues, and in the lowest forms of plants it alone performs all the functions of the higher plants. The eell of the Ustilago absorhs nutriment from without : this nutriment undergoes the changes that fit it for becoming a part of the structure of the cell. This is the process of nutrition. Within this eell another is generated, which is capable of perfornuing the same functions as its parent. This is reproduction. As we ascend in the scale of organization of plants, the strueture becomes more complicated. Cells are accumulated together; some simply absorb sap, others expose the sap to the atmosphere; whilst others separate peculiar secretions, and another set are employed as the depositaries of these secretions. As the functions of the plant become more loealised in the organs called leaves and flowers, tissues strong enough to bear them up in the air are required, and the cells are elongated and strengthened by an inerease of thickness in their membrane, and woody tissue is formed. Where the same objects are required, and at the same time space for a large quantity of fluid to pass through the cells, fibre is generated within the mem-
P. C., No. 1551.
brane; and for this reason fibro-cellular, and especially fibro-vascular, tissue is found abundant in succulent plants, and in those which require a large supply of moisture. These tissues arc absent or very small in dry plants, as well as those which are constantly immersed in watcr. In the higher plants the conveyance of the prepared juices from one part of the plant to another is provided for by the Laticiterous tissue. It is upon the cell of the ovule in the Dicotyledonous and Monocotylcdonous plants that the mysterious dynamic agency is exerted by another cell from the anther, the result of which is the production of another plant, sinilar to the one from which it is developed. It will thus be seen that all the tissues of plants partake more or less of the functions of the simple cell, which, as the fundamental form of vegetable organization, performs in all cases the most important functions. It is not so much by a difference in the form as by a difference in the function of particular cells that the complicated organs of the highest plants are distinguished fiom one another.
(The principal works consulted in preparing this article have been Meyen, Pflanzen-Physiologie, band i.; Link, E'ementa Philosophice Botunice: De Candolle, O, ganographie Vegetule; Lindley, Elements of Botany, and Introduction to Botany; Guadichaud, Recherches sur l'Organographie, e-c. des V Egéaua; Bischoff, Lehrbuch der Botanik. Papers :-Quekett, On the Development of Vascular Tissues of Plunts, in ' Trans. Mieroscop. Soc.,' vol. i., 1842 ; Kippist, On the Spirul Cells of Acunthacere, 'Linnæan Transactions,' vol. xix., 1842; Schleiden, Beiträge zur Phytogenesis, Müller"s 'Archiv,' 1838; Willshire, On Vegetuble Siructure, 'Annals of Natural History,' vol. ix.: Schultcs, Sur la Circulution duns les Plantes; Lankester, On the Origin of Wood, ' Ann. of Nat. Hist.,' 1810.)
TITANIC ACID. [Titanium.]
TITA'NIUAI. This nictal was first recognised by Mr. Gregor, in 1791, as a distinct substance; he detected it in a black sand found in the bed of a rivulet near Menaccan in Cornwall. In 1795 Klaproth discovered it in some other minesals, and he gave it the name it now bears. The properties of titanium were not however satisfactorily determined until 18:22, when Dr. Wollaston examined and described it as it occurred in its perfect metallic and crystallized state, in the slag of an iton-furnace at Merthyr Tydfil in South Wales. The form of the crystals is the cube; their colour resembles that of bright copper; they nre sufficiently hard to seratch rock-ciystal, and their specific gravity is $5 \cdot 3$.

Titanium is not acted upon by nitric, hydrochloric, or sulphuric acid, either cold or hot, concentrated or diuted; aqua regia, or nascent chlorine, is also powerless, but a mixture of nitric and hydrofluotic acid dissolves titanium : for fusion an extremely high tempeature is required: when strongly lieated with nitre, titanium is oxidized and rendered soluble in hydrochlorice acid, and it is precipitated from solution by the alkalis in the state of a white oxide.
We shall now describe the principal minerals known to contain titanium, ex cept Pyrochlore, Polymignite, Zirconia, \&ce., which are described under these heads.

Anatase, Octuedrite, or Oisunite.-This is protoxide of titanium nearly pure. It oecurs in attached and inibedded acute octohedral crystals. Primary form a square prism. Cleavare paiallel to the terminal planes, and to those of the octohedron. Fiacture conchoidal, indistinct. Hardness: scratches phosphate of lime, and is scratched by quartz. By frietion becomes negatively electical, and when heated gives out a reddish yellow phosphorescent light. Colour, various shades of brown, more or less dark, sometimes indigo blue. Streak white. Lustre adaman tine. Translucent, transparent. Specific gravity $3 \cdot 826$. It occurs in Cornwall, in Dauphiny, at Bourg d'Oisans, in Spain, Switzerland, and some other places. It consists almost entirely of oxide of titanium, probably the protoxide.
Rutile, or Titanite: Peroxide of Titanium, or Titanic Acid.-Occurs erystallized and in crystalline masses. Primary form a square prisn. Cleavage parallel to the lateral planes. Crystals trequently geniculated. Fraeture uneven. Hardness: scratches glass, and sometimes quaitz. Colour red, reddish brown, and oecasionally yellowish. Streak very pale brown. Listre adamantine. Translucent, transparent, opaque. Specifie gravity 4.249 to 4.4 . Occurs not unfrequently inclosed in quartz, in fine red filamentous
erystals. Rutile is found in Perthshire, Bohemia, Switzerland, especially at SI. Gothard, and in various other parts of Europe; and also in Brazil and North Ameriea. It consists of, aecording to H. Rose-oxygen, $33 \cdot \mathrm{~m}$; titanium, GGOF. It is frequently more or less mixed with oxide of iron and of manganese, and sonctimes with oxide of ehromium.
Brookite.-Probably a dimiorjhous variety of rutile. Oceurs in altached crystals. I'riniary form a right rhombie prism. Cleavage parallel to the lateral planes and short diagonal. Fracture uneven. Hardness: seratehes fluorspar, and is seratelied by phosphate of lime. Brittle. Colour, deep red, and reddish or yellowish brown. Streak yellowish white. Instre adanantine. Translucent, transparent, opaque. Specific gravity maknown. Oecurs in Dauphiny and Swizerland, but in larger erystals at Snowdon in Wales. It has not been completely analyzed, but appears to be titanic acid with traees ot iron and manganese.

The minerals which we shall next deseribe are the titaniates of iron: they vary greatly both in form and compastion, some being erystallized and others granular; the latter are frequently termed titaniferous iron-sand.
Kiludelophan: Arotomous Iron.-Occurs in imbedded erystals. Primary form a rhomboid. Cleavage perpendicular to the axis; distinet. Frncture conchoidal. Hardness 50 to 5%. Brittle. Colour dark iron black. Streak blaek. Lustre imperfeet metallic. Opaque. Specific gravity 4.C61. Found at Gastein in Salzburg; in Sweden, and Siberia. Analysis of a specimen from Gastein, by Kobell :-titanic acid, 53.00 ; protoxide of iron, 36.00 ; peroxide of iron, $4 \cdot 2$); protoxide of manganese, $1 \cdot 6.5$.
Ilmenife.-Oceurs in imbedded erystals. Primary form a right rhombic prism. No eleavage observed. Fracture uneven to conchoidal, with a vitreous lustre. Hardness $5 \cdot 0$; seratches glass slightly. Colour black. Opaque. Speeifie gravity $5 \cdot 43$. It is found near Lake Ilmen in Siberia. Analysis by Mosander:-titanic acid, 46.92 ; protoxide of irnn, $37 \cdot 86$; peroxide of iron, $10 \cdot 74$; protoxide of manganese, $2 \cdot 73$; magnesia, $1 \cdot 14$.
Crichtonite.-Decurs in attached erystals. Cleavage parallel to the axis. Fracture conchoidal, splendent. Hardness: seratehes fluor-spar, but not glass. Brittle Does not obey the magnet. Colour shining black. Streak black. Lusire imperfect metallie. Opaque. Specific gravity 4. It has not been completely analyzed; but, aceording to Berzelius, it consists of titanic acid and oxide of iron.
Mohsite.-Oceurs in attaehed maeled erystals. Primary form a rhomboid. No visible cleavage. Fraeture ennchoidal, shining. Hardness: seratehes glass readily. Brittle. Does not affect the magnet. Colour iron blaek. Streak black. Lustre metallic. Upaque, Found in Dauphiny. It appears to be a titaniate of iron, but has not been completely analyzed.
Of granular titaniate of iron and titaniferous iron-sand, we shall describe three varieties :-
Nigıin.-Oceurs in flat rounded grains of about the size of a pea, with oceasional indications of a crystalline form. Stincture foliated. Very hard. Brittle. Colour greyish black. Lustre metallic. Specific gravity 4.445 . Analysis by Klaproth:-litanic acid, 84; protoxide of iron, 14 : protoxide of manganese, 2. Found in Transylvania.
Menuccunite. Oecurs in small anyular grains. Strueture imperfeetly lamellar. Fracture fine-grained, uneven. Hardnes-yields to the knife. Colour greyish black. Lustre glistening. Opaque. Specifie gravity 4.427. Oecurs in rivulets in the parish of St. Keverne, Comwall : It has also been found in New South Wales. The picked grans, analyzed by Dr. Colquhoun, gave-litanic acid, $87 \cdot 187$; protoxide of iron, $39 \cdot 780$; protoxide of manganese, 2.176.

Iserine--Occurs in very small flattish angular grains, which have a rough glimmering surface. Structure lamellar. Cross faneture conchoidal. Very hard. Slightly altracted by the magnet. Opaque. Lustre semi-metallic. Speesfic gravity abont 4%. Found on the Riesengebirge, near the origin of the river Iser in Silesia; in Bohemia; it the river Don in Scotland, and that of the Mersey opposite Liverpoul. By the analysis of II. Rose, it consists of-titante acil. 50.12 ; protoxide of iron, 49.88 . It is probably a varicty of Menaceanite.

Greenovite: Titaniate of Menganese.-Oceurs in small amorphous masses and crystullized. Primary form pro-
bably an oblique riombic prism. Hardness, greater than that of flunr-spar or phosplate of lime, but does not scrateh glass. Colour deep rose red ; the crystals are splendent, exeept the terminal faces, which are often dull and tarnished. Specific gravity 344. It is found in the naanganese deposit of St. Mareel in I'iedmont. Analysis by M. Carearié:-titanic acid, $74 \cdot 5$; oxide of manganese, 24.8.

Sphène ; Spinthère : Silico-titaniate of Lime.-Oceurs in atlached and imbedded erystals, and massive. Primary form an oblique rhombic prism. Cleavage inclistinct. Fracture even, slightly conchoidal. Hardness: seratches phosplate of lime, but is seratehed ly felspar. Colour, various shades of grey, green, yetlow, and brown. Streak white or greyish-white. Lustre adamantine, resinous. Tiansparent, iranslucent, opaque. Specific gravity $3 \cdot 468$ to $3 \cdot 6$. Sphene is tound interspersed in primary rocks, as in granite and greiss, and more particularly in syenite, in Norway, Germany, Switzerland, and also in America. The results of the analysis of sphene vary considerably; the following is by Klaproth:-titanie acid, 33 ; silicie acid, 35 ; lime, 33.

Aeschynite.-Titaniate of zireonia and eerium, \&ee. Oecurs crystallized. Primary form a right rlombie prism. Cleavage difficult, and only parallel to the basis of the primary form. Fracture conchoidal. Hardness: seratehes phosphate of lime, and is scratched by felspar. Coluur black; streak greyish-black. Lustre resinous. Opaque. Specific gravity 5. 14 . Found at Miask, in the Uralian Mlountains, Siberia. Analysis by Hartwall :-fitanic avid, 56.0 ; zireonia, 20.0 ; oxide of cerium, 15.0 ; lime, 3.8 ; oxide of iron, 2.6 ; oxide of zine, 0.5 .
The principal natural substances containing titaniunt being now described, we proceed to consider its artificial compounds.
Or'ygen and Titanium.-It has already heen stated that these combine with diffieulty by direct means. When rutile, or titanic acid, is dissolved in hyilrochloric acid, a piece of zine immersed in the solution oceasions the tormation and precipitation of a deep purple-coloured powder, which is protoxide of titanium: so great however is the facility with which it returns to the state of peroxide, that it cannot be collected; and hence the composition of this oxide has not been perlectly determined. It is however probably composed of -

One equivalent of oxygen
One equivalent of titanium

Equivaleut

8
24

$\overline{32}$

When also titanic acid is exposed to a strong heat, a portion of it loses oxygen, and a black mass is formed, which is the protoxide; it has an earthy fracture, is insoluble in aeids, and diffieult to reconvert to the titame acid. It has been already mentioned that amatase is probably the protoxide of titanium.

Peroxide of Titunium, Titanic Acid.-Rutile is titanic aeid nearly pure: when it is zedueed to fine powder ancl fused in a platinn elucible, with three times its weight of earbonate of potash, titaniate of potash is obtained, mixerl with some excess of carbonate of potash; this is to be removed by washing with water, and titanic acid is then precipitated by dilution and heat ; and after washing with dilute hydrochloric acid, is nearly pure titanic acid. Its properties are, that when pure it is quite white, very infusible, and after it has beon heated is soluble only in liydrofluorie acid. Its acid powers are feeble; it is insoluble in water, and does not act on vegetable blues; it combines however with alkalis and metallic oxides, forming salts which are termed titaniates. It is probably composed of-

$$
\begin{array}{cc}
\begin{array}{c}
\text { Two equivalents of oxygen } \\
\text { One equivalent of titanium }
\end{array} & \begin{array}{l}
16 \\
\text { Equivalent }
\end{array}
\end{array}
$$

Chlorine and Titanium combine when the gas is passed over netallic titanium at a red heat. It is a colourless t1ansparent fluid, and boils at a little above 212°, is volatilized, and condenses unchanged. When exposed to the air it deliquesces, and when a few drops of it are mixed with an equal bulk of water, combination tukes place with considerable violence and the evolution of intense heat. It absorbs dry ammoniacal gas, and from the compound so
obtained Leebig prepared metallic titanium. It appears to consist of -

$$
\begin{array}{ll}
\text { Two equivalents of chlorine } & 72 \\
\text { One equivalent of titanium . } & 2 t
\end{array}
$$

Equivalent

96
Tincture of galls, when added to a solution of titanic acid, occasions an orange-red colour, probably owing to the tannic acid which the tincture contains; this is very characteristic of the presence of titanic acid.
The other compounds of titaniuns are but little known; the peroxide, or titanic acid, unites both with bases and acids to form saline compounds: the former are called titaniates.
TITANS (Tırãves, fem. Tıraviies) is the name by which in the mythology of antient Greece a certain class of sons and daughters of Uranus and Gaea are designated. The oriminal name of Gaea was said to have been Titaea, from which Titans was derived. (Diodorus Sic., iii. 56.) The beings generally comprised under the name of Titans were Oceanus, Coeus, Ciius, Hyperion, Iapetus, Cronus, Thetys, Rhea, Themis, Mnemosyne, Phoebe, Dione, and Theia. (Apollodor., Biblioth., i. 1, 3; Diodorus Sic., v. 66.) Other writers, as Stephanus of Byzantium (s. u. "Åava), Pausanias (viii. 37, 3), and others, differ both in the names and numbers of the Titans. Uranus had by Gaea two other sets of children, viz. the Hecatoncheires (centimani, or beings with a hundred arms), and the Cyclops; and these two he cast into Tartarus, at which Gaea, their mother, was so indignaut, that she induced the Titans to revolt against their father, Uranus, and gave to Cronus an adamantine siekte with which he castrated his father. Oceanus took no part in this rebellion. After Uranus was depriverl of the sovereignty, and the Hecatoncheires together with the Cyclops were led back from the lower world, the supreme power was giv an by the brothers to Cronus. But Cronus again threw them into Tartarus, and married his sister Rhea; as however Gaea and Uranus had prophesied to him that he would be deprived of the sovereignty by his own children, he devoured all the children whont Rhea bore him. But when she was pregnant with Zeus, she withdrew to Crete, where she gave birth to him in a eavern, and anerwards had him educated by the Curetes and nymphs. To deceive Cronus, she had given him a stone wrapt up like a child, which he devoured. When Zens had grown up, he took Metis, the daughter of Oceanus, and with her assistance he administered a poison to Cronus, which inade him vomit out the children he had swallowed, viz. Hestia, Demeter, Ilera. Pluto. and Poseidon, and with their aid Zeus now commenced a war against his father, which lasted for ten ycars. This struggle, cetebrated in mythology as the war of the Titans, was terminated by Zeus relicving the Cyclops from Tartarus, and by his gaining with their weapons the victory over the Titans, who were now cast into Tartarus, and were guarded there by the Hecatoncheires. Zeus and his brothers now divided the sovereignty of the world among themselves. (Λ pollodor., Bibliolh., i. 1 and 2.)

The name Titan has also been given to those superhuman beings who were descended from the Titans, such as Prometheus, Hecatc, Latona, Pyrrla, Helios, \&c. It moreover occurs as a designation of a very early race of men in Crete and Egypt.
(Lobeck, Aglaophamus, p. 763 ; Büttiger, Ideen zur Kunstmythologie. p. 217, we. ; Vibleker, Mythologie des Japetischen Geschlechtes, p. 280, \&c.;
TITCHFIELD. [HAmpshire, vol. xii., p. 32.]
TITHES are the tenth part of the increase yearly arising and renewing from the profits of lands, the stock upon lands, and the personal industry of the inhabitants, and are offerings payable to the church by law.
Under the theocratic government of the Jews the tenth part of the ycarly increase of their goods was due to the priests by divine right. 'And behold I have given the children of Levi all the tenth in lsracl for an inheritance, for their service which they serve, even the service of the tabernacte of the congregation.' (Numbers, xviii. 21.) And again, 'Thou shalt truly tithe all the increase of the seed, that the field bringeth year by year.' (Deut., xiv. 22.) - And all the tithe of the land, whether of the seed of the land or of the fruit of the tree, is the Lord's; it is holy unto the Lord.' 'And concerning the tithe of the herd or of the flock, even of whatsoever passeth under the rod,
the tenth shall be holy unto the Lord.' (Levit,, xxvii. 30, 32.)

In the earliest ages of the Christian church offerings were made by its members at the altar, at collections, and in other ways, and such payments were enjoined by decrees of the church and sanctioned by general usage. For many centuries however they were voluntary, and not enforced by any civil laws. When the church was struggling against persecution, the Christians brought all their worldly goods into a common stock for the benefit of all. ' And the multitude of them that believed were of one heart and of one soul: neither said any of them that aught of the things which he possessed was his own; but they had all things in common.' 'Neither was there any among them that lacked; for as many as were possessors of lands or houses sold them, and brought the prices of the things that were sold, and laid them down at the apostles' feet: and distribution was made unto every man according bis he had need.' (Acts, iv. 32, 34, 35.) They then had no other object than the defence and support of their faith; they required no compulsion to make offerings to their infant church. But when the church had increased in power, and began to number amongst its members many who adhered to it because it was the prevailing religion, rather than on account of any enthusiasm or reverence for its divine origin and doctrines, it was found necessary to enforce certain fixed contributions for the support of the ministers of religion. The church relied upon the example of the Jews, and required a tenth to be paid. Meanwhile the conversion of temporal princes to Christianity, and their zeal in favour of their new faith, enabled the church to obtain the enactment of civil laws to compel the payment of tithes. In England the first instance of a law for the offering of tithes was that of Offa, king of Mercia, towards the nd es: the eighth century. He first gave the church a civil right in tithes, and enabled the clergy to recover them as their legal due by the coercion of the civil power. The law of Offa was at a later period cxtended to the whole of England by king Ethelivulph. (Prideaux, On Tithes, 167.)
At first, though every man was obliged to pay tithes, the particular church or monastery to which they should be paid appears to lave been left to his own option. In the year 1200, however, Pope Innocent III, directed a decretal epistle to the archbishop of Canterbury, in which he enjoined the payment of titlies to the parsons of the respective parishes in which they arose. This parochial appropriation of tithes has ever since been the law of the land. (Coke, 2 Inst., 641.) The same pope gave similar instructions in other countrics at about the same time.

The tithes thus payable were of three kinds, viz. preedial, mixed, and personal. Predial tithes are such as arise immediately from the ground, as grain of all sorts, fruits, and herbs. Mired tithes arise from things nourished by the earth, as colts, ealves, pigs, lambs, chickens, milk, cheese, and eggs. Personal tithes are paid from the profits arising from the labour and industry of men engaged in trades or other occupations; being the tenth part of the clear gain, after deducling all charges. (Watson, On Tither, c. 49.)
Tithes are further divided into great and small. The former consist of corn, hay, wood, \&c.; the latter of the preedial tithes of other kinds, together with mixed and personal tithes. This distinction is arbittary, and not dependent upon the relative value of the different kinds of tithe within a particular parish. . Potatoes, for instance. grown in fietrls have been adjudged to be small tithes, in whatever quantities sown (Smith v. Wyatt, 2 Atk., 364), while corn and hay, in the smallest portions, still continue to be treated as great tithes. The distinction is of material consequence, as great tithes belong, of right, to the rector of the parish, and small tithes to the vicar.

No tithes are paid for quarries or mines, because their products are not the increase, but are part of the substance of the earth. Neither are houses, considered separately from the soil, chargeable, as having no annual increase. By the common law of England no tithe is duc for things that are feree naturce, such as fish, game, \&c. ; but there are local customs by which tithe has been paid from such things from time immemorial, and in those places such customary tithes may be exacted. Tame animals kept for pleasure or curiosity are also excmpt from tithes.

Tithes were all origimally paid in kind, i.e. The tenth wheat-sheaf, the tenth lamb or pig, as the case nught he, belonged of right to the parson of the parish as his tithe. The ineonvenience and vexation of such a mode of payunent are obvious. The practice could only have oríginofd in times and in countries in whiel barter formed the only means of exchange, and the produets of the earth were the sole test of value. The improved habits and civilization of eenturies were nevertheless unable to alter what had been sanctioned by custom since the memory of ruan, and no attempt had been made in this country, until very reeently, to introduce a general inprovement in the inode of colleetion. The ineonvenience of paying tithes in kind must long since have been felt, and certain modes of olviating it were oceasionally practised. Sometimes the owner of land would enter into a composition with the parson or vicar, with the consent of the ordinary and the patron of the living, by which certain land should be altogether diselarged from tithes, on conveying other land, or making compensation. In other words, the owner of the land purehased an exemption from tithes. Such arrangements between landowners and the church were recognised by law, but it was found that they were often injuitous to the church by reason of an insuificient value being given for the tithes. The acts I Elizabeth, e. 19, and 13 Elizabeth, c. 10, were accordingly passed, which disabled bishops, colleges, chapters, parsons, and vicars from making any alienation of church property for a longer term than twenty-one years or three lives. In order to establish an exemption from tithes on the ground of a real composition, it is therefore necessary to show that such composition had been entered into before the statute of Elizabeth. Since that time compositions have rarely been made, except under the authority of private acts of parliament.
Another method of avoiding the payment of tithes in kind was that of a modus decimandi, commonly known as a modus. This consists of any custom in a particular place, by which the ordinary mode of collecting tithes has been superseded by some special manner of tithing. In some parishes the custom has prevailed, time out of mind, of paying a certain sum of money amnally for every acre, of land, in lieu of tithes. In othery a smaller quantity of produce is given, and the residue is made up in labour, as every 12 th sheaf of wheat instead of the loth, but to be housed or threshed by the owner.
A large portion of the land of this country is tithe-free, from various eauses. Some has been exempted under real composition, as already explained, and some by preseription, which supposes a composition to have been formerly made. The inost frequent ground of exemption is that the land once belonged to a religious house, and was therefore discharged in this manner. All abloots, priors, and other ehiet monks originally paicl tithes from the lands helonging to then, until Pope Paschal 11. exempted all spiritual persons from paying tithes of lands in their own hands. This geueral discharge continued till the time of King Henry 11., when Pope Adrian IV. restrained it to the three religious orders of Cisterciaus, Templars, and Hospitalers, to whom Pope Innocent 111. added the Preemonstratenses. These four orders, on account of their exemption, were commonly called the privileged orders. The Council of Lateran, in 1215, further restrained this exemption to lands in the oceupation of those religious orders of which they were in possession before that council. Bulls were however obtained for discharging particular monasteries from the payment of tithes, which would not otherwise have been exempt ; by which means much land has been ever since tithe-free. Another mode by Which lands belonging to religious houses became not liable to the payment of tithes, was that of unify of po.ssession; as where the lands and the rectory belonged to the same establishment, whiel would not, of course, pay tithes in itself. Yet the lands were not absolutely discharged by this unlty of possession, for upon any disunion the payment of tithes was revived; so that the union only suspended the payment. The aet 31 Hen. VIII., e. 13 , which dissolved several of the religions houses, continued the discharge of their lands from tithes, though in the possession of the king or any other person. Many monasteries had previously heen dissolved by act of parliament, but as no sueh clause as that contained in the 31 .
of the monasteries diesolved by them became elargeable with lithes.

We have sfated enough concerning the nature of tithes and the various circunstances atfecting them, to show how complieated must be the laws, and how entangled the interests of ditferent parties who had to pry or to receive them. But apart from such considerations it may be well to inguire whether tithes be, in their otiginal nature, a tit mode of supporting a religions establishment; and it not, in what manner they might be made so. There can seareely be a cloubt that the payment of tithes in kind is a eause of constant irritation and dispute between a elergyman and his jarishioners. With the best intentions on both sides, the very nature of tithes is such, that doubts and difficulties must arise between them; and even where there is no doubt, the form and principle of payment are odious and diseouraging. The fiardships and injustice of tithes upon the agriculturist are weli described by Dr. Paley:- Agrieulture is discouraged by every constitution of landed property which lets in those who have no concern in the inprovement to a participation of the protit: of all institutions which are in this way adverse to cultivation and improvement, none is so noxious as that of tithes. Λ elaimant here enters into the produce who contributed no assistance whatever to the production. When years nerhaps of care and toil have matured an improveinent; when the husbandman sees new crops ripening to his skill and industry ; the moment he is ready to put his siekle to the grain, he finds himself compelled to divide his harvest with a stranger.' (Moral and Politicul Philosophy, chapter xii.).

If tithes then be in prineiple an injurious and restrietive tax upon agriculture, and if the mode of collection be vexatious and unpopular, it became the duty of a legislature to provide a remedy for these evils. But tithes are unlike any other tax, which being found injurious to the state, many be removed on providing others. They are not the property of the state, but of its subjects; they are payable not only to the chureh, but to lay impropriators; they liave been the subject of innumetable private bargains; land has been sold at a ligher price on account of its exemption from tithe; the value of the patronage of the greater portion of the livings of this country is dependent upon the existing liability of land to tithes; in short, the various relations of society have been for centuries so closely connceted with the receipt and payment of tithes, that to have abolished them would have been a gross injustice and spoliation to many, and no advantage to the community; for the whole profit would immediately have been enjoyed by those whose lands were discharged from payments 10 which they had always been liable, and subject to which they had most prolably been purehased.
As for tliese reasons the extinction of tithes was impraetieable, a commutation of them has been attempled and has been found most suceessful. Dr. Paley, who saw so elearly the evils of tithes. himself suggested this improvement. 'No measure of sucll extensive concern appears to me so practicable, nor any single alteration so bencficial, as the conversion of thes into corn-rems. This commutation, I am convinced, might be so adjusted as to secure to the tithe-holder a complete and perpetual equivalent for his interest, and to leave to industry its full opreration and entire reward.' (Moral and Political Philosophy, chapter xii.) This principle of commutation was first proposed to be applied lyy the legislature to Ireland. In addition to the common evils of a tithe system, that country was labouring under another. Its people were paying tithes for the support of a clergy possessing a religion at variance with their own. Resistance to the pryment of tithes oceasioned by this appropriation of them had become so general, that a commulation was deemed alisolutely necessary for the safety of the cluureh of Ireland. It was recommenuled by committees of both houses of parliament in 1832, but not finally carricd into effect until 1838.

The statutes for the general commutation of tithes in England are the $6 \& 7$ Will. IV., e. 71 , the 7 Will. IV. and 1 Viet., $c .60$, the 1 \& 2 Vict., c. Gt, the 2 \& 3 Viet., c. 32 , and the 5 \& 6 Viet., c. 54 . Their object is to substifute a rent-charge, payable in money, but fluctuating aceording to the average price of corn for seven preceding years, for all tithes, whether payable under a modus or composition, or not. A voluntary agreement between
the owners of the land and of the tithes was first promoted, and in case of no such agreement, a compulsory commutation was to be effected by commissioners. In case ot dispute, provision was made for the valuation and apportionment of tithe in every parish. The rent-charge was to be thus calculated:-The comptroller of corn returns is required to publish in January the average price of an imperial bushel of Bitish wheat, barley, and oats, computed from the weekly a verages of the corn returns during seven preceding years. Every rent-charge is to be of the value of such nuinber of imperial bushels and decimal parts of an imperial bushel of wheat, barlcy, and oats, as the same would have purchased at the prices so ascertained and published, in case one-third of such rent-charge had been invested in the purchase of wheat, one-third in barley, and the remainder in oats. For example, suppose the value of the tithe of a parish to have been settled by agreement or by award at $300 l$., and that the average price of wheat for the seven preceding years had been 10 s . a bushel, of harley $\overline{0}$. , and of oats $2 s .6 d$.; the $300 l$. would then represent 200 bushels of wheat, 400 bushels of barley, and 800 bushels of oats. However much the average prices of corn may fluctuate in future years, a sum equal in value to the same number of bushels of each description of corn, aceording to such average prices, will be payable to the tithe-owner, and not an unvarying sum of 300%. The quantity of corm is fixed, but the money payment to the tithe-owner varies with the septennial avelage price of corn. Land not exceeding 20 acres may also be given by a parish, on account of any spiritual bencfice or dignity, as a commutation for tithes to ecclesiastical persons, but not to lay impropriators. (G \& 7 Will. IV., c. 7l, s. 26-28.)

By the last Report of the tithe commissioners, it appears that already voluntary proceedings have commenced in 9381 tithe districts; 6348 agreements have been reeeived, of which 5804 have been confirmed; 2178 notices for making awards have been issued; 135j drafts of compulsory awards have been received, of which 1030 have been confirmed; 5220 apportionments liave been received, of which 4347 have been confirmed. Of the whole business of assigning rent-charges and apportioning them, about half is completed.

The complete and final commutation of tithes must be regarded as a most valuable measure. It is perfectly fair to all parties, and is calculated to add seeurity and permanence to the property of the church, and to reinove all grounds of discord and jealousy between the clergy and their parishioners. Nor must we omit to mention an inprovement in the mode of recovering tithes, consequent upon the commutation. There were formerly various modes of recovery, in the ecclesiastical as well as in the civil courts, and before justices of the peace, all more or less lcading to unseemly litigation. The present mode of recovering the rent-clarge, if in arrear, is hy distraining for it in the same manner as a landlord recovers his rent; and if the rent-charge shall have been forty days in arrear, possession of the land may be given to the owner of the rent-charge until the arrears and costs are satisficd. Indeed the whole principle of the tithe commutation Aets is to strip tithes of the character of a tax, and to assimilate them as much as possible to a rent-charge upon the land.
[Agricultcre; Benefice; First-Fruits; Impropriations; Tax, Taxation; Taxatio Ecclesiastica; Trnthe:]
TITHING (Tithinga; from the Saxon, Theothunge) is an antient municipal division of land in England under the Saxon kings. The whole country was divided into tithings and hundreds by Alfred the Great. The former was a district containing ten heads of families; the latter comprised ten tithings, or one hundred heads of families. Every tithing had its chicf man annually appointed to preside over the rest, who was called the tithing-man or borsholder, and sometimes the headborough or borough's elder. Each of these little communities was bound to keep the peace within their own jurisdiction, and the members were responsible for each other. So important were these associations deemed to be, that no man was allowed to abide in Enyland above forty days without being enrolled in some tithing. Although the institution has long ceased, the name and division are still retained in many parts of England.

TITI, SANTI DI, an ltalian painter and architect, born of a noble fanily at Borgo San Sepolcro in Tuscany, 1538 ,
was a scholar of Bronzino's, and, according to Lanzi, also studied under Cellini. While at Rome he was employed upon some subjects in the chapel of the Palazzo Salviati, and painted a St. Jerome in San Giovanin de' Fiorentini, besides executing several works in the Belvedere of the Vatican. He returned to Florence in 1560 , with a reputation for great ability in design; nor was such reputation at all diminished by the works he there produced, for among them are some of his best, including his Resurrection and Supper at Emmaus, in Santa Croce; of which, and of his other performances, a full account is given by Borghini, in his ' Reposo.' It was also at Florence that he chiefly exercised his profession of architect. The Casa Dardanelli, the Villa Spini at Peretola, and his own house at Florence, are enumerated among his works of that class, but without much commendation; although he is said to have displayed great taste in some of his architectural backgrounds in painting, in which he also showed great knowledge of perspective. His pencil was frequently employed on merely temporary decorations, either on occasions of solemn funeral obsequies or splendid festivities, of which lattor kind were those which he painted at the celebration of the nuptials of the duke of Braceiano. Santi died in 1603 , leaving a son named Tiberio, who was also an artist, and who did not long survive him.
(Biogr. Universelle; Lanzi ; Milizia; Vasari.)
TITIAN. [Vicellio, Tiziano.]
TITICA'CA, LAKE. [BoliviA, vol. v., p. 86.]
TITLARKS. Mr. Swainson characterises the Tillarlis (genus Anthus) as slender-shaped birds, having the plumage and long hinder toes of the true larks, but with the slender bills of the Wagtails; and he places the former next to the East Indian genus Enicurus, which in his view suceeeds to the Wagtails (Motacilla and Budytes). Authus indeed seems to him to have its position at the very extremity of the Dentirostres, just as the family of the Alaudince, or True Larks, is in the circle of the Conirostres; "in other words, they are not only analogous, but this analogy actnally blends into an affinity.' (Classification of Birds. [Larks.] In the Synopsis, at the conclusion of the work, Anthus is arranged as the last gents of the Motacillince, with the following

Generic Character. - Bill very slender, the sides compressed, the upper mandible longest, with the tip deflected over the lower, and distinctly notched. Wings moderate; the four first quills nearly cqual : tertials obtuse, lenythened. Tail moderate, slightly torked. Legs slender, black. Tarsus and middle toe cqual. Lateral toes and elaws of the same lengtl and sizc. Example, Anthus aquaticus (Fuma Boreali-Americana, pl. 44). The Prince of Canino also plaecs the genus Anlhus among the Motacillince, which, in lis arrangement, is the sixth subfamily of the Turdide.

The True Larks are placed by the Prince, in the same highly useful work (Birds of Europe and North America), under the Alaudince, the fourth subfamily of the Fringillida, standing between the Emberizince and the Loxine.

The Alaudine of the Prince comprise the following
Genera. - Certhilauda, Sw. ; Alauda, Linn. ; Galerida, Boie ; Phileremos, Brehm (Eremophilus, Boie); and Melunocorypha, Boie. Mr. G. R. Gray (List of the Genera of Birds) also makes Anthus one of the genera of his Motacillince, placing it between Ephthianura, Gould, and Corydalla,* Vigors. The Motacilline, in Mr. Gray's arrangement, form the sevently subfamily of his Luscinide.

The True Larks (Alaudince) are arranged by him as the sixth subfamily of the Fringillidee, with the following

Gcnera.-Alauda, Linn.; Galerida, Boie; Otocoris, Bonap. ; Melanocorypha, Boic ; Saxilauda, Less. ; Erana, G. R. Gray; Mirafra, Horsf.; Calandrella, Kaup; Fringalauda, Hodgs.; Megalophonus, G. IR. Gray ; Macronyx, Siw. ; and Certhilauda, Sw.

The Alaudine are placed by this zoologist between the Emberizince and the Pyrrhulince.

But we must now return to the Tillarks, and we quite agree with Mr. Yarrell, who, in his British Birds, observes that it would assist correct definition if, among ourselves, the term Titlark could be discontinued entirely; 'the Tree

- In the Appendix Mr. Gray states that Pipnstes, Knup, nud Seimoniptera, Kaup, should come uext to Anthws, aud that Mr. Swainswr's gent Agrudroma should be I laced here,

Pipit being ealled the Titlark by some, the Meaduw Pipit Citlark by others: and round the sea-coast, where the Rock l'ipit is generally the uost freguent of the three, that is also called 'litlark.'
Beclastein separated the lipits from the true Larks, giving the fonner the generic sppellation of Anthus, and Mr. Yarnell elevates them Into a tamily, Anthide.
The following species are British:-
The Tree Pipit, Anthus Irivalis; the Meadow lipit, Anlloms prulensis; the Rock Pijit, Anthus obscurus (Antthus petrows, Flem., Jen. ; Anthus uquaticus, Selby, Gould; Alauda obscura, Avet.); and Richard's Pipit, Anthus Ricardi.

The Titlark of Pennant is the Moadow Pipit of the above list; and Mr. Yurrell well observes that seareely any two Britiah birds have been so frequently confounded together as the Tree and the Meadow lipits; but when the two species we examined in hand, obvious and eonstant distipctions appear; and there are, he adds, besides, differenees in the habits of these birds, as well as in the loealities they each frequent. 'The Tree Pipit is rather the larger bind of the two; the beak is stouter and stronger; the spois on the breast longer and fewer in number; the elaw of the hiud tue is not so long as the toe itself; the tertial feathers of the wings are rather longer in proportion to the primaries; the white on the outer tail-teather on each side is neither su pure in eolour, nor is it spread over so large a portion of the feather; and, as far as my own observation goes, it does not appear to be so mus merous as a species as the Meadow lijit.'

Unlike the Mendow Pipit, the Tres Pipit is a summer visitor, only arriving in our well-wooded enelosures towards the end of April. The male generally begins his agreeable song from the top of a bush or an upper branch of some ohedge-row elm; from lis perch he rises into the air, lus wings sluvering, till he has reached an elevation about as ligh again as the trea from which he started. As moon as he has attained his greatest height he poises his wings, apreads hls tail and slowly descends, singing all the while, to the same station whenee he rose, or the top of nome neighbouring trec. The nest, placed generally on the ground, is framed of moss, root-fibres, and withered grasa, lined seantily with bents and hairs. The eggs, four or tise in number, vary mueli in colour in different nesta.

Foot of the Tren Pipit. (Siarrell.)

Tree Piplf. (Gonld)

Mr. Yarrell considers the most characteristie hue to be greyish-white clouded and spotied with purple-brown or purple-red; the length of the ege about 10 lines, diameter 8 . Food, insects and worms. Total length of the bird about $6 f$ inches. Tlus bird must not be confounded with the WOOD-Lakk.

The winter-quarten of this speeies are probably in Northern and Westem Africa. It is a Madeira bird, and alon inlialits Japan.

The Mfeadow Pepit remains with us throughout the yenr, and is the smallest and most common species, its toinl length being 6 inches only. Il haunts heathy and hilly districts, as well as meadows and marsli-lands. Mr. Yarrell thus deseribes its habits:- Whell progressing from place to place, the flight of this bird is performed by sho.t unequal jerks; but when in attendanee on its mate and undisturbed, it rises with an equal vibratory motion, and sings some musical solt notes on the wing, sometimes whilst hovering over its nest, and returns to the ground anter singing. Oeeasionally it may be seent to setile on a low bush; but is rarely observed sitting on the bianch of a tree, or perehed on a rail, whiel is the common habit of the Tree Mipit. The Meadow lipit, when standing on a slight mound of earth, a elod, or a stone, frequently moves hls tail up and down like a wagtail; and Mr. Neville Wood mentions that he has heard him sing while thus situated on or very near the eartl. The Neadow Pipit seeks its food on the ground, along which it mins nimbly in pursuit of insects, worms, and small slugs. In the stomach of one of these birds, examined in the month of December, Mr. Thoinpson, of Belfast, found two specimens of Bulimus lubricus. It is, according to the last-named zoologist, the Moss-cheeper of the north of 1reland, a mame which Sibbald gives as applied to it in Scooland.

Nest on the ground, generally among grass, made of dried bents on the outside, witha lining of tiner ones and a few hairs: eggs from four to six, reddish brown mottled with darker; lengtl nine lines by seven.

Pennant gives Cor Hedydd as the Welsh name of the Titlark, and Hedydd y cae as that of the Field-lark, Alauda minor.

Foot of Meadow Piphit. (Yiamell.)

TITLE. [Vkviors avid Plircnaselzs.]
TITLE DLiEDS. [Vkndons and Punchasers.]

İvy of Vollars the Twxisti-govatil.

Lonlons I'rintod by Wriliam CLowhi aud Soxs, stamford- treet.
.

$$
11
$$

-

4

[^9]

[^0]: - In deccilinge, in a sulequent pare, a mmarinuble Tersian tancestry of the sisternth erntury, calvellinhed wht emblematical devicen, which fo tinw in the poomaion of the Maryulte de lagny, at Alt, Jublnal observes that the Anert
 fred. Thene, liwe aide, are what we rommoniy call Turkloh inpeaties, nol of the persare rouad the Cape of Ciond llope. Turkey formed the ouly way of communication with Prrola. The extablishments of the reyal tapestry manifac.
 of working 11 t satald so be continued succomfolly to the lish, even to our own day.

[^1]: - In Malone's calition (1821) many references in thila kind of substitute for
 not jo, s. 1 (rol, xril. p. 5i). Prom tho latter posange it would appear that

[^2]: - Calliug him 'Parkharie' however.

[^3]: - Aconditg to the pamative of the royage nf II.M.S. Monde to the ganiwirh Ishanis, the indien of 11 wall (the Uw lighee of Captaln Cook) frliow the nin.

[^4]: - This name was prolably derived from a ditch which in very ausienl times

 Herodoluy, iv. 3.)

[^5]: - For exaraple. In our own fisland the very same thing has happened to at sery ("immerian famlly, tho Cymry, who, in the mountains of Wales, succesfally resinted the saxon and Nostnin invarlers.

[^6]: - M. Wronski has glven elegant forms of trangormation and development, which are most accessible in Mont ferrier's ' Dictionnaire des Scionces Mathematiques.' l'arls, 18:3. 'The author of these develonments has wrant himsidf in a cloud of obscurity, and allopted the tone of an assallant, with not a little of the manner of a chirlutan, which has hindered his really remarkable extenslous from receiving the notiec to which they are entitled, and himself from olnnining the character as a mathematicinn which no one who reads his works can for a moment deny him. We do not enter into his methods, becangc, thongh good in theory, they are not easily used, from their excessive generality. For Instance, in the article on Reversion of Series, in the dictionary ched, the author of which is a partizan of M . Wronski, the results are carrled as far as 1. of our article on that subject, not by the vaunted methods, but by the old method of indeterminate coeflicients, an immense labour, after which the name of the undertaker is very properly recorded. To repeat the same process and to carry it two terms further, by Arbogast's and Burmann's methods combined, did not take us the ee hours.

[^7]: - Thowgh eroch is the can in the phan given alore as pis exarople of an

[^8]: Their tribe (the Bavarians) came a long time ago from the noble Armenia. It is sald that in the Alps, far off towards indin, there are still people who

[^9]: $\Delta=7 n$
 \rightarrow

