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Abstract

S. Hart has recently obtained an analogue of the Folk Theorem for

two-player non-zero-sum games where one player is informed of the true

game and the other is not. In this note, we begin the proof of a per-

fectness theorem for the same set-up, presenting a sufficient condition

for perfect equilibrium. In Hart's case, the limit of individual ra-

tionality for the uniformed player is the greatest convex function

dominated by the value of the zero-sum game given by player II' s pay-

offs; in our case it is the greatest quasi-convex function dominated

by the value of the "expected game".





Perfection in Repeated Two-person Nonzero-sum Games of Asymmetric Information

This note reports some preliminary results towards the proof of a

perfectness theorem for games of asymmetric information. It uses the

model developed by Kart [1981] in his recent characterization of the

set of equilibria of such games.

In this model, Nature chooses an integer, k, from a finite set

K, according to a known probability distribution p e A . Player I is

informed of k, while II is not. Corresponding to k are two nxm matrices,

k k
A , representing player I.'s payoffs, and B , representing the payoffs

to player II. The game is played repeatedly, with both players using

behavioral strategies. The generic strategy for player I is crtK * T. ,

and we will write a(k) = a, when no confusion will result. At each

play of the game, players employ mixed moves c. (h) € A for player I

and T„(h) e A for player II, and where h is the history of realizations

of the moves of the players up to time t. The generic strategy for

player II is tS F~ , and does not depend on k.

We define cumulative average payoffs by noticing that the result

of strategies cr and t is a sequence of random variables taking values

(i,j), i = 1 n; j=l,...,m. Letting a (cr,x) denote the random mem-

ber of the matrix A selected at time t, we define

-k 1 - k , Na - - Z a (a,t)

t <T
~

b = Z p(k) [ Z i b'*]

kGK t<T -



-2-

Thus a represents player I's conditional (on k) expected (over a,x)

average payoff up to time T, while t>
T

is player II' s expected (over

a, t, and k) average payoff to time T. We now define equilibrium.

1.1 Definition : The pair (a*, x*) is an equilibrium iff, for all

a', x';

—

k

—

k

i) lim inf E[a :k, a*, x*] >_ lim sup E[a :k, a', x*] for all k, and
T T

ii) lim inf E[b :a*, x*] >_ lim sup E[b :a*, x']

T T

Setting a* = a' in i) and x* = x
1 in ii) , we observe that there exists

If

a vector (a,b) E R x R s.t.

—

k

—
lim E[a : k, a*, x*] = a, and lim E[b : a*, x*] b

T T

So that equilibrium sequences are convergent sequences. The Folk

Theorem for the undiscounted, complete information supergame states

that any feasible, individually-rational payoff of the stage game can

be obtained as the outcome of an equilibrium of the supergame, and

conversely. The Perfectness Theorem for the same model states that

the set of outcomes of equilibria and of perfect equilibria coincide.

Hart has shown that the Folk Theorem goes through, when we make

the appropriate translations of the concepts of "feasibility" and

"individual rationality". We begin with the latter.

1.2 Definition : let (a,b) £ R x R. (a,b) is individually-rational

for player I_ iff, for every p e A ,

(1) pa > val A(p)
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where A(p) is the "expected game" for player I: an nxm matrix whose

entries are

A(p)(i,j) = Z p(k)A
k
(i,j)

k<EK

Defining B(p) similarly, and letting val and vex( ) have their usual

interpretations as the value and the greatest convex function every-

where less than or equal to ( ) , respectively, we say that (a,b) is

individually-rational for II at p* € A iff

(2) b > vex val B(p*)

(o,t) is said to be a uniform equilibrium point if, Vo', t',

—

k

—

k

(3) lim inf E[a : k, a, t] >_ lim sup [sup E[a : k, a', t] for all k, and
-T

c
, -T

(4) lim inf E[b : a,x] >_ lim sup [sup E[b : a,T']]
.1

t
,

By reversing the orders of the sup and lim sup it can be seen that (3)

and (4) imply i) and ii) of definition 1.1, so that every uniform e.p.

is an equilibrium point (e.p.). Hart has shown that the reverse impli-

cation holds as well.

As a first approach to feasibility, we know that the outcomes of

stationary e.p.'s must be feasible: if conditions i) and ii) are sat-

isfied for a = A (i,j): k £ K, and b = A(p*)(i,j); then (a,b) are fea-

sible. By a slight extension, it can be seen that any convex combina-

tion of these stationary, nonrevealing equilibria is feasible.
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Now let F = CH {

[

[a,b ] (i, j ) ] } : this is the convex hull of the

2K
pure-strategy payoffs, considered as a subset of R . We can bound

—k k —k k
this set by the following device: let a = max A (i,j), 3 = max B (i,j),

k k k k
a_ = min A (i,j), and S_ = min B (i,j). Now define

i,j i.j

R? = {x S R
K

: o < x <_ a] ; R^ = {x £ R
K

: 6. <, x <_ 6~}
, ? = max ?, and

k

k =
£ = min 6 . Then R_ = {x € R: £ < x < g} . We now define the set of
~ k " 2 ^

feasible and individually-rational actual average outcomes.

K K
1.3 Definition : G = {(a,b,p) 6 R_^ x R- x A : there exist (c,d) e F

with

i) a >_ c and pa = pc

y
ii) for all q € A , qa >_ val A(q)

iii) b ^_ vex val B(p)}.

G is the set of payoffs corresponding to non-revealing equilibria:

ii) and iv) are individual-rationality conditions, while i) and iii)

are "representation" conditions: in i) we see that the vector a agrees

with the vector c on all games k with positive probability, while iii)

guarantees that there is some collection of payoffs in the true games

with expectation b.

When we turn to the study of equilibria in which there is some

transmission of information, the notion of feasibility becomes more

complicated. In their pioneering work on this model, Aumann, Maschler

and Stearns [1968] developed a class of equilibria involving transmis-

sion of information from the informed to the uninformed player, followed

by completely non- revealing play from that point on. In essence, what



-5-

Hart did was to extend this to obtain certain randomized collections

of such ncnrevealing "plans". This extends the set G since the poste-

rior distribution after communication may differ from the prior.

However, such a process of communication must always end in G.

This motivates the following definition:

K K
1.4 Definition : let g S R. x R„ x A . A sequence [g : n = 1,...,] of

K K
R.. x R„ x A - valued random variables is called a G-sequence starting

at _g_ iff

i) g
1

= g a.s.

;

ii) there exists a nondecreasing sequence [F : n = 1,...] of finite

fields s.t. g is a martingale w.r.t. F ;_n ° n

a.s.
iii) if s * g*, then g* S G; and

iv) for each n either a ., = a a.s. or p ,
= p a.s.

_n+l «n _n+l _n

Property ii) says that g is F -measurable and that E(g_,, :F ) = g a.s.r ' J _n n 2n+l n _n

for all n. Combining this with i) tells us that E(g ) = g a.s. for all

K K
n. Since the space R x R

?
x A is compact, the limit g* in iii) exists.

Thus property iii tells us that g* satisfies conditions 1.3.i-iv a.s.

Property iv is called the bi-martingale property; at every step either

player I's (vector-valued) payoff or player II' s posterior must remain

fixed, while the other may change in such a manner that the conditional

expectation is unaffected by iii)

.

K K
1.5 Definition : G* = {(a,b,p) G R x R_ x A : there exists a G-

process starting at (a,b,p)}.
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We remark that in the absence of conditions i) and iv) we would

have G* - CH[G]. Hart's Theorem is that G* is the Graph of the Equi-

librium Correspondence.

II. Perfection for Nonrevealing Equilibria

Let us consider a triple (a,b,p) in G. We know that the grim

punishments can be used to hold the players to their individual ration-

ality levels, but that these grim punishments are not worth carrying

out in the event. In the complete information game, this problem is

solved by punishing defectors for a long but finite period of time,

after which play is to return to the cooperative sequence. Defection

at any stage of this process, either on the part of the original defec-

tor or the punishers, is met with renewed punishment. In the limit, no

player can hope to profit by defection: either he defects for at most

a finite number of periods, and ultimately returns to an infinite play

of the cooperative sequence, or he defects forever, and is punished

forever, providing him with his minmax payoff. Unfortunately, even

the equilibrium strategies here have some revelation; to hold player

II to vex val B(p*), player I must reveal some information, unless

vex val B(p*) = val B(p*). In the equilibrium situation this causes

no problem, as the nonrevealing punishments associated with each pos-

sible posterior of player II are balanced in such a way that player

II' s expected minmax level is vex val B(p*) , but this is inconsistent

with perfection.

The reason is simply that, if the nonrevealing strategy calls for

(a,b,p*), where b < val B(p*), player II will respond to a promise of

long but finite punishment by immediate defection: after punishment
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begins, player II will revise his posterior to some p' ^ p*, and will

begin to respond optimally in B(p'). If it happens that val B(p') > b,

then player II has no incentive to return to the cooperative sequence.

In this section, we make the simple point that if this phenomenon can-

not arise, we can still construct a perfect equilibrium. In other

words, if the punishment can be arranged so that player II never forms

a posterior p' with the property that val B(p') > b, then we can con-

struct long-but- finite punishment sequences for player II. Note also

that there is no problem in policing the actions of player I.

2.1 Definition : Let a function H: A -> R„ be defined by

K K+l
H(p) = inf {be R_ : there exist p G A , t = 1 K+l, and q G A s.t,

i) val B(p ) <_ b for all t; and

K+l
ii) E q t P r P

t=l

We then define an analogue of G for the perfect nonrevealing case by:

K K
2.2 Definition : G = {(a,b,p) G R x R_ x A : there exist (c,d) G F

with

i) a >_ c and pa = pc

;

ii) for all q G A , qa >_ val A(q)
;

iii) b = pd; and

iv) b > H(p)}

It will be noted that G differs fron G only in the individual ration-
P

ality condition for player II, which has been strengthened. Analogously

with G*, we can define a G -process starting at point g, and set
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*
G = the set of points g s.t. there is a G -process starting with e.
P P

We can then demonstrate:

2.3 Theorem : If (a,b,p)£ G , then there is a perfect equilibrium with

payoff (a,b).

The nature of the strategies used in these "essentially nonrevealing"

equilibria is as follows: from the initial point (a,b,p) e G , the
P

players follow the Hart strategies, including communications [signalling

and jointly controlled lotteries] and payoff accumulation periods, fol-

lowed by an eventual play of nonrevealing equilibrium in G . There is
P

no need to punish players during the communications periods, as Hart

shows. During the other periods, we make use of the lemma that Hart

K K
calls Proposition 3.18: if (a , b , p ) is an R_ x R„ x A -valued

n n' rn l 2

martingale converging a.s. to (a, b, p) then a satisfies (1) a.s. iff

a satisfies (1) a.s. for all n, and (b,p) satisfies (2) a.s. iff

(b ,p ) satisfies (2) a.s. for all n. In other words, the elements of
n' n '

the sequences used in the G -process are individually-rational. In

our case we need the following

2.4 Lemma: if (a , b . p ) is a martingale convering a.s. to (a, b, p)

,

n n n

then (b, p) satisfies 2.2 iv a.s. if (b , p ) satisfies 2.2 iv a.s. for
' r n n

all n.

Proof : noting that H( ) is a continuous function, take lim.

Unfortunately, the "only if" part of this lemma is untrue. Hart's proof

works for G-processes, and uses Jensen's inequality and thus the con-

vexity of vex val B. In our case, H(p) is not convex. However;
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2.5 Lemma ; H(p) is the greatest quasiconvex function bounded above

by val B(p). This result follows from Definition 2.1.

Now we can sidestep the problem by a slight restriction on the

sequence of fields that makes the G -process into a martingale. Recall

that the reason we needed Lemma 2.4 was to guarantee that the threatened

punishments would be sufficient during the payoff-accumulation periods,

played with expected payoffs to player II of b , and a posterior dis-

tribution of p . Thus, we need to have inequality 2.2.iv satisfied

for all n.

2.6 Definition : D = {p G A
K

: H(p) t val B(p)}

CLearly, D can be represented uniquely as a collection of disjoint

open sets. We must choose the field that we use in the construction

of a G -process in such a way that the part of the fields that changes

can be made finite. This requirement ensures that the strong con-

vergence results we need go through, and also that the fields can be

generated by partial (finite) histories of play using player I's

strategy. Before defining the fields we will use, we must therefore

assure ourselves that this finiteness condition can be met.

2.7 Lemma : D is the union of finitely many disjoint open sets.

Proof: the proof is in two parts. First, we show that Val B(p) is

a piecewise monotonic function of p. Then, we show that the quasi-

convexification of a piecewise monotonic function differs from the

original function on a finite number of disjoint open sets.

First, consider the definition of val B(p).
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K n m ,

val B(p) = max mln I p(k) Z E y (i)y (j)b

^ m
2
k-1 1-1 j-1

X 1J

so that val B(p) is the minimum of finitely-many functions of u, and

p. Define

K n
u. (i)t .

13
W(u,,P,j) = 2 p(k) Z V 1)^

k-1 1-1

and let W*(u-,p) = min W(v,,p,j). Ihen each WCu^p.j) is a linear

i

function of p, and W*(y- ,p) is the minimum of finitely-many such

linear functions (M of them). It is therefore continuous and piece-

wise monotonic, in both arguments. Since the u. are drawn from the

compact set A , we are assured of the continuity of val B(p) in p.

Piecewise monotonicity means that there are a finite number of regions

within each of which W* is monotonic in each of the M variables u. (i)

and the K (or K-1) variables p(k). Since these regions exhaust the

M K
domain A x A , it follows that the maximizing choice of u. will always

lie on a boundary of such a region. Projecting these boundaries onto

A we obtain the desired result.

Now suppose that W(p) is a piecewise monotonic continuous func-

tion, and let w#(p) be its "quasi-convexification": the greatest

quasi-convex function everywhere less than or equal to W(p). Consider

first the case where p is a scalar (this is the case K = 2). It is

easy to see that the condition

w#(p) / W( P )

holds only between minima of W. In the case where all such local

minima are isolated, the number of such regions (connected intervals
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bounded on one side by a local minimum, and on the other side by the

closest p s.t. W(p) = the value v
of W at the local minimum) is bounded

2
above by the number of such local minima + 2 (for the boundaries of A ).

If there is a continuum (interval) of such local minima, we need con-

sider only the extreme ones. It is also obvious that if the domain of

W is divided into finitely-many intervals on each of which W is mono-

tone, there will be at most finitely-many such extreme or isolated

local minima. Thus, the set D consists of finitely many disjoint open

sets, on which H(p) is equal to the value of

W at the local minimum attained at the boundary of the set.

Now consider the K-dimensional case, for K >_ 3. In this case,

we cannot say that H(p) is constant on each subset of D. However, for

each p in D there will be a line segment crossing the subset of D con-

taining p along which H is constant. In other words, if P is in D,

there exists a unique maximal connected open subset of D containing p.

Call this E(p). Then there is p
1 in the boundary of E(p) s.t. val

B(p') = H(p). Moreover, if A(p) denotes the line containing p and p
T

,

then for all p"e A(p) n E(p) we have H(p") = H(p) = val B(p'). Along

the direction of A(p) , the point p' must be a local minimum. With

respect to this line, the previous result goes through. It follows

that, fixing any "direction" (linear submanifold of A ) , the previous

result applies. Therefore the image of D projected to any lower-

dimensional face of the simplex is a finite union of disjoint open

sets, so D must be such a finite union. QED

Remark: another way to formulate this is directly by induction on the

dimension K. We have seen that the result is true for K 2. Now
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suppose that K = 3; we have seen that for every line (of dimension 1)

through the 3-simplex (which is of dimension 2), the set obtained as

the intersection of the line with D is finite union of open sets;

therefore D is finite. The induction set is :

y
2.8 Lemma : Let D be a union of disjoint open sets in A . D is

finite iff for every K-2 dimensional linear manifold M in R , D n M

is a finite union of disjoint open sets.

[proof is obvious].

2.9 Definition : Let F be a field. If F is associated with an

r x E. x A - valued random variable, we say that F is admissibly

finite iff:

if

i) The partition on A induced by F always refines the parti-

tion of the simplex into A - D and the partition of D into finitely

many disjoint open sets as described above; and

ii) the restriction of the partition induced by F to D is finite.

2.10 Definition : a G -process starting at g is a G -process starting

at g where the fields F of 1.4.11 (or the analogous G condition) are
n p

all admissibly finite.

2.11 Lemma : if [a ,b ,p ] is a G -process terminating at [a.b.p] (in
n n n p

the sense of a.s. convergence) then b ^_H(p) iff b ^.H(p ) for all n.

proof: b = E[b:F ] >_ E[H(p) :F ]. Fix any event A E F , and denote

by H.( ) the corestriction of H to [a ,b ,p ] that have positive
A n n n

probability density conditional on A. Notice that H ( ) is convex.

Therefore
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E[H
A
(p):F

n
] >_H

A
(E[p:F

n
]) = H

A (pn
) QED

We remark that this result does not go through if either of the players

has an infinite number of moves or if the number of games is infinite,

although it should be possible to show that the main theorem is still

valid with an infinite (countable) number of finite-move games.

—

*

* —
2.12 Definition: G = {g G G : there is a G -process starting at g)

p p p

Remark: G = G .

P P

As a result of this construction, Hart's proof can be adapted

directly to prove Theorem 2.3, which tells us that in a perfect equil-

ibrium it is sufficient to have player II (the uniformed player) re-

ceive at least H(p).
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