

NON CIRCULATING

> CHECK FOR UNBOUND CIRCULATIAG COPY

Bulletin 652

Performance of

EXPERIMENTAL

CORN

HYBRIDS

IN ILLINOIS

1959

By R. W. Jugenheimer,
K. E. Williams, and R. L. Harrison

CONTENTS

Page
MATERIAL TESTED 4
MEASURING PERFORMANCE 6
RESULTS OF THE TESTS 8
NORTHERN ILLINOIS: DeKalb
Double Crosses (Table 2) 10
Three-Way Crosses and Standards (Table 3). 13
NORTH-CENTRAL ILLINOIS: Peoria
Double Crosses (Table 4) 16
Three-Way Crosses and Standards (Table 5) 19
CENTRAL ILLINOIS: Urbana
Double Crosses (Table 6) 20
Three-Way Crosses and Standards (Table 7) 25
Three-Way Crosses and Standards (Table 8). 26
Hybrids Involving Related Inbreds (Table 9) 29
SOUTH-CENTRAL ILLINOIS: Brownstown
Double Crosses (Table 10). 31
Three-Way Crosses and Standards (Table 11) 34
Three-Way Crosses and Standards (Table 12) 35
STATE-WIDE PERFORMANCE OF ILLINOIS THREE-WAY CROSSES AND STANDARDS (Table 13). 38
PERFORMANCE OF HIGH-OIL HYBRIDS (Table 14) 41
DOUBLE-CROSS HYBRID NUMBERS, PEDIGREES, AND INDEX TO TABLES (Table 15) 42
Acknowledgment is due W. T. Schwenk and Sons, Edwards, Illinois, for providing landfor one of the tests. Trials in DeKalb, Champaign, and Fayette Counties were located onUniversity of llinois farms managed by R. E. Bell, C. H. Farnham, and P. E. Johnson.Thanks are due W. C. Jacob and Robert Seif for processing the data, and to H. M. Hayes,Earl Wernsman, S. S. Bal, P. S. Bhatnagar, N. S. Dass, P. S. Hoshiarpuri, and V. B. Malikfor aid in field and laboratory. E. B. Earley supervised the oil and protein determinations.

PERFORMANCE OF EXPERIMENTAL CORN HYBRIDS IN ILLINOIS, 1959

By R. W. Jugenheimer, K. E. Williams, and R. L. Harrison ${ }^{1}$

The development and evaluation of better-performing inbred lines and hybrids remain an important objective of the Illinois Agricultural Experiment Station. This report summarizes the results of performance trials of experimental corn hybrids conducted in 1959. More than 750 different hybrids were compared in nearly 3,500 plots. Most of the hybrids were developed by the senior author. Data from preliminary tests involving specialized phases of the Illinois cornresearch program are not included in this bulletin.

The University of Illinois does not produce hybrid seed corn in commercial quantities. Hybrids that include new inbred lines may be produced under the "delayed-release" program adopted by the states in the corn belt. Multiplication of a new line is handled by the Station, and the production of single crosses in quantity is handled by the Illinois Seed Producers Association, Champaign, Illinois. If a new Illinois experimental hybrid gives satisfactory performance, the parental lines eventually are released for use by seedsmen.

In order to make the results of corn research more quickly available to the public, the University of Illinois has adopted a slight modification of the "delayed-release" policy as it pertains to Illinois-developed inbred lines. Inbred lines of corn developed by the University of Illinois may be released to the public when they have demonstrated superior combining ability for yield, standability, disease resistance, insect resistance, chemical composition, male sterility, or other characters. Such Illinois lines may form a part of a new hybrid or be used in other ways by corn breeders. Inbred lines of corn developed by others will not be released without their approval.

Hand-pollinated seed of released Illinois inbred lines usually is available for a fee in packets containing 25 to 100 kernels. New releases are announced annually about April 1. Inquiries may be addressed to the Agronomy Department, University of Illinois, Urbana, Illinois.

Since most of the hybrids whose performance is recorded here are not yet in commercial use, the information about them is of most value to producers of hybrid seed. The 1959 performance of hybrids available to farmers in commercial quantities is reported in Bulletin 651 of this Station.

[^0]
MATERIAL TESTED

Double crosses for consideration of seedsmen. Nearly 400 different double-cross hybrids were grown at four locations. The seed was produced by controlled hand-pollination. The double-cross hybrids whose performance is shown in this report and the tables in which each appears are shown in Table 15. This table also contains the pedigrees of the hybrids tested. In the pedigrees, the order of the single crosses and of the lines in the single crosses has no significance; it does not indicate which should be used as seed or pollen parent.

Illinois yellow hybrids are numbered consecutively below 2000 and above 3000. White hybrids are numbered in the 2000 series; these white hybrids are usually followed by the letter W. Hybrids that have performed well after regional testing in several corn-belt states have been designated AES (Agricultural Experiment Station) hybrids. Hybrids in the 600 series are similar to Illinois 1277 in maturity; those in the 700 series correspond in maturity to Illinois 21 ; those in the 800 series correspond to Illinois 1570 ; and those in the 900 series to Illinois 1851.

The letter A or B following an Illinois hybrid number indicates that the combination of inbred lines making up the hybrid has been rearranged or permuted. For example, if the original pedigree of an Illinois hybrid was $(1 \times 2)(3 \times 4)$, the letter A following the number means that the hybrid was put together $(1 \times 3)(2 \times 4)$, the letter B, $(1 \times 4)(2 \times 3)$. A difference in reciprocals is not recognized in this method. When a short dash (-) followed by a number occurs as part of an Illinois hybrid number, it means that a tested related line has been substituted for one of the inbred lines included in the original hybrid.

Hybrids for prediction studies. Twelve sets of three-way crosses differing in maturity were tested in 1959. The three-way crosses in Tables 5, 7, and 11 are a part of the "uniform" tests conducted cooperatively by corn-belt states and the U. S. Department of Agriculture. Seed of the unreleased inbred lines involved in these crosses was contributed by the state or by the federal corn breeder who developed them. Three-way crosses whose performance is reported in Tables 3, 8,12 , and 13 were developed by the Illinois Station and tested only in Illinois.

Performance of single-cross, three-way-cross, and top-cross hybrids is of interest to corn breeders, producers of hybrid seed corn, and farmers. Characteristics of single crosses such as yield, standability,
and size, shape, and quality of seed definitely affect the practical production of hybrid seed corn. Some farmers are interested in growing single-cross and three-way-cross hybrids commercially because of their attractive appearance and extreme uniformity. Use of single-cross and three-way-cross data for the prediction of desirable double-cross combinations creates additional interest in the performance of single crosses and three-way crosses.

Prediction studies are an extremely valuable part of a research program. Methods are available to predict the performance of the better hybrid combinations without making and testing large numbers of undesirable crosses. For example, 1,225 single crosses and 690,900 double crosses are possible with 50 inbred lines. However, by using single-cross performance data, the corn breeder can predict which of the many possible double-cross combinations are likely to be most desirable. The following six single crosses can be made with four inbred lines: $\mathrm{A} \times \mathrm{B}, \mathrm{A} \times \mathrm{C}, \mathrm{A} \times \mathrm{D}, \mathrm{B} \times \mathrm{C}, \mathrm{B} \times \mathrm{D}$, and $\mathrm{C} \times \mathrm{D}$. The average performance of the four non-parental single crosses gives the predicted performance of a specific double-cross hybrid. For instance, the average yields of the four single crosses $A \times C, A \times D$, $B \times C$, and $B \times D$ give the predicted yield of double cross $(A \times B)$ $(\mathrm{C} \times \mathrm{D})$. The procedure in predicting acre yields and percentage of erect plants from single-cross data is shown on page 6 of Illinois Agricultural Experiment Station Bulletin 597.

Similar predictions can be made for other characteristics. Predicted hybrid combinations, however, should always be thoroughly tested under field conditions before being put into commercial production.

Three-way crosses also provide useful predictions of the performance of double-cross hybrids. A large number of inbred lines can be compared, and the method is especially valuable where a desirable seedparent single cross is available for use as a tester. Three-way crosses provide information on specific hybrids and may often eliminate the time and expense required for testing inbred lines in top crosses and single crosses. The procedure in predicting acre yields and percentage of erect plants from three-way-cross data is also shown on page 6 of Bulletin 597.

Top crosses are simple to produce and often are useful in early stages of a breeding program. For example, a single cross from the corn belt of the United States might contribute genes for high yield and standability, and an open-pollinated variety from Europe might contribute adaptation to local European conditions. Such top crosses might
thus combine the desirable traits of the American single cross and the European open-pollinated variety. Most top crosses, however, are temporary expedients, which usually are eventually replaced by double crosses. Top crosses are useful also for evaluating the performance of inbred lines. They also provide a means of selecting promising openpollinated varieties for use as source material for the development of inbred lines.

MEASURING PERFORMANCE

Trials were made at four locations: in DeKalb county in northern Illinois, in Peoria county in north-central Illinois, in Champaign county in central Illinois, and in Fayette county in south-central Illinois. These locations are representative of the soil, rainfall, and length of growing season in their respective areas.

> Table 1. - GENERAL INFORMATION: Tests of Illinois Experimental Corn Hybrids, 1959

County ${ }^{\text {a }}$	Section of state	Table number	Plants per hill	Date of-	
				Planting	Harvesting
DeKalb	Northern	2-3	5	May 14	Oct. 13
Peoria.	North-Central	4-5	5	May 18	Oct. 19
Champaign.	Central	6	5	May 7	Oct. 15
Champaign.	Central	7	5	May 28	Nov. 3
Champaign.	Central	8	5	May 28	Oct. 28
Champaign.	Central	9		May 28	Oct. 23
Fayette..	South-Central	10-12		June 3	Nov. 10

${ }^{\text {a }}$ The fields are located near the following cities and towns: in DeKalb county near DeKalb, in Peoria county near Peoria, in Champaign county near Urbana, and in Fayette county near Brownstown.

Hybrids were compared for grain yield, maturity, shelling percentage, standability, ear height, dropped ears, and resistance to smut. Only hybrids of similar maturity were tested on the same field. A familiar hybrid whose maturity was considered the standard for the group is named in each table heading. Percentages of oil and protein in the grain were determined on special hybrids.

General information concerning the tests is given in Table 1.
Field plot design. The data in Tables 3, 5, 7, 8, 10, 11, 12, 13, and 14 were obtained in randomized blocks. Rectangular lattice designs were used for the data reported in Tables 2, 4, 6, and 9.

Method of planting. All plots in these tests were planted, thinned, and harvested by hand in well-fertilized fields prepared in the usual way for corn. Individual plots were 2×5 or 1×10 hills in area. Six kernels were planted in hills spaced 40 inches apart. Hills were thinned to 5 plants at DeKalb, Peoria, and Urbana, and to 4 plants at Brownstown.

Acre grain yields. Acre yields are reported as shelled grain containing 15.5 percent moisture, the maximum allowable for No. 2 corn. Data from all plots are included in the report on yield. The only correction for imperfect stands was the following adjustment for missing hills:

Ear weight in field $\times\left[1+\left(\frac{\text { missing hills }}{\text { hills present }} \times .7\right)\right]=$ adjusted ear weight
This adjustment adds 0.7 percent of the average hill yield for each missing hill, and assumes that 0.3 percent is made up by the increased yield of surrounding hills.

Shelling percentage and moisture in grain. All ears from one replication of each entry were shelled immediately after harvest. The percentage of moisture in the shelled grain was determined with a Steinlite moisture meter.

Stand. Counts of the number of missing hills and number of missing plants were made in late summer in each plot. The data are reported as percentage of a perfect stand. Yields were corrected for missing hills.

Ear height. Representative plants in each plot were measured to determine the distance in inches from the soil to the ear-bearing node.

Erect plants and dropped ears. Percentage of erect plants and of dropped ears in each plot of each entry was determined by actual counts at the time of harvest. Stalks broken above the ear were not considered lodged. Stalks leaning less than 45 degrees were considered as erect.

Leaf blight. Readings were recorded on all plots at DeKalb. A grade of 1 denotes the greatest amount of resistance, while a grade of 5 signifies extreme susceptibility to leaf blights.

Smutted plants. The number of smutted plants was recorded on all plots in late summer in fields having considerable smut infection. These data are reported in the tables as percent of smutted plants.

Oil and protein content. Percentage of oil and of protein was determined by standard procedures on representative grain samples.

RESULTS OF THE TESTS

Data obtained from the tests are summarized in Tables 2 to 14. Long-time averages are more reliable indexes of the performance of hybrids than a single year's result. The parts of the tables summarizing the results of two or three years therefore deserve the most weight when the results are studied.

Relative performance cannot be determined with absolute accuracy by any method of testing. Small differences between entries are seldom of any significance. In fact, small differences are to be expected among plots planted even with the same lot of seed. Variations in growing conditions such as soil fertility are reduced but not completely eliminated by replicating the same entry several times in the same test. Unavoidable variation may be determined by a mathematical procedure known as analysis of variance. From this procedure figures may be obtained that represent the range which differences between two entries must exceed before those entries can be considered significantly different. The method used to determine this range is called the "Multiple Range Test." ${ }^{1}$ This method considers the number of entries that fall within the range as well as the variability of the test. Data shown in boldface were not statistically different from the best performance for that characteristic.

Double crosses. The performance of nearly 400 new double-cross hybrids is shown in Tables $2,4,5,6,7,9,10$, and 11. Many of these hybrids were superior to popular combinations now being grown.

Three-way crosses. Data on three-way crosses are reported in Tables $3,5,7,8,11,12,13$, and 14 . These data permit predicting the performance of hundreds of promising double crosses. Some of the three-way-cross hybrids may be grown commercially because of their excellent performance, extreme uniformity, and attractive appearance.

High-oil and high-protein hybrids. Three new corn hybrids, Ill. $6021((\mathrm{R} 75 \times \mathrm{R} 76)(\mathrm{R} 84 \times \mathrm{K} 4))$, Ill. $6052((\mathrm{R} 78 \times 38-11)(\mathrm{R} 84 \times$ $\mathrm{K} 4)$), and Ill. $6001(\mathrm{R} 78 \times(\mathrm{K} 4 \times 38-11))$, have been developed in the Agronomy Department of the University of Illinois. Foundation single-cross seed of these three hybrids is available to seedsmen interested in producing seed in 1960. Such seed may be obtained from the Illinois Seed Producers Association, 107 N. 5th Street, Champaign, Illinois. Seed of Ill. hybrids 6001, 6021, and 6052 for farm use is available for the 1960 growing season from the following producers:

[^1]Illinois Seed Producers Association, 107 N. 5th Street, Champaign, Illinois; Mountjoy Seed Company, Atlanta, Illinois; George Pfeifer, Arcola, Illinois; Producers Seed Company, Piper City, Illinois; MFA, Marshall, Missouri; and Ruff Seed Company, Amanda, Ohio.

These new hybrids yield about 30 percent more oil and 10 percent more protein than present commercial hybrids. In addition, they are similar to standard hybrids in grain yield, standability, and other agronomic traits. Nationwide use of adapted high-oil hybrids would produce almost as much oil as is now received from butterfat, soybeans, cotton, and flax. These new high-oil hybrids should benefit both the starch industry and the livestock feeders.

Results of tests with high-oil and high-protein hybrids are given in Table 14.

Single crosses and hybrids involving related inbred lines. Some farmers are interested in hybrids with greater uniformity and performance than are available in double-cross hybrids. Single-cross hybrids are more attractive and uniform in appearance than other types of hybrids. The relatively high cost of producing seed of single crosses usually limits their use to situations where extreme uniformity is important.

Sister-line crosses are combinations between sister strains of the same inbred line. Some sister-line crosses have considerably greater yield, vigor, and standability than the original inbred line, and may be practical for the commercial use of single-cross hybrids. Data on a group of inbred lines and sister-line crosses were reported in Table 11 of Illinois Bulletin 636. Related versions of the same inbred are grouped together in Table 11A of Bulletin 636. Some growers are interested in producing $\mathrm{Hy} \times \mathrm{Oh} 7$ because of its high yield and ability to yield well under high plant populations. Hy2 yielded 35 bushels an acre, whereas a related sister-line cross $\mathrm{R} 158 \times \mathrm{CI} .42 \mathrm{~A}$ yielded 125 bushels per acre. This latter hybrid might be used as a seed parent. In addition, it is resistant to leaf blight and is higher in protein content. Oh7 yielded 51 bushels an acre, whereas $\mathrm{Oh} 7 \times \mathrm{Oh} 7 \mathrm{~A}$, a sisterline cross, yielded 85 bushels an acre. This cross might be used as the pollen parent for the commercial production of a modified version of $\mathrm{Hy} \times \mathrm{Oh} 7$. Many of the other sister-line crosses appear to be promising and could be used as seed parents of single crosses.

The performance of hybrids involving related inbred lines is given in Table 9 of this bulletin. Some of these hybrids produced higher grain yields, had greater uniformity of plant and ear, and appear to be more practical to produce than the original single-cross hybrids.

Table 2. - DOUBLE CROSSES OF ILLINOIS 1277 MATURITY Tested in Northern Illinois, 1957-1959

(Data in boldface were not statistically different from the best performance for that characteristic. Absence of boldface figures in some columns is due to lack of statistical information.)

Rank in yield	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height

A - Three-year averages, 1957-1959

		$b u$.	perct.	perct.	perct.	perct.	in.	perct.	percl.	score
1	IIl. 3152	128	28	78	88	99	43			
2	III. 1952.	126	25	78	85	98	44			
3	III. 3009.	126	24	79	90	98	48			
4	IIl. 1936.	124	27	77	84	99	45			
5	IIl. 1961	123	24	78	87	99	47
6	Ill. 1862	123	29	78	92	100	40			
7	III. 1559 B	120	26	77	83	97	44			
8	Ill. 1959.	120	26	78	91	98	45			
9	Ill. 3043	120	30	79	92	97	47			
10	IIl. 1955	120	24	77	90	97	44		. . ${ }^{\text {d }}$	
11	Ill. 1962	120	24	78	87	97	47			
12	Ill. 1969 A	120	29	78	88	97	48			
13	Ill. 3046.	119	27	77	90	97	49	. .		
14	AES 601.	119	26	77	82	- 98	44			
15	III. 1960.	119	26	79	84	99	45
16	Ill. 1957.	118	26	78	83	99	45			
17	Ill. 1958.	118	24	78	82	96	47	...		
18	AES 702	118	28	75	83	98	48	\cdots		
19	AES 514.	115	23	78	94	99	44			
20	III. 1864.	115	27	77	81	99	41	. .		
21	Ill. 2247 W .	114	28	76	80	97	49			
22	III. 1091 A .	113	27	77	66	98	48	. .		
23	III. 1555A.	111	23	76	79	96	46			
24	AES 510.	111	24	77	78	96	44			
25	AES 610.	111	25	79	93	98	39			
26	III. 1277	110	27	77	68	99	45			
27	IIl. 1560A.	110	29	78	80	96	44			
28	Ohio K24.	107	26	78	76	94	42		. .	
29	Ohio M15.	100	24	78	71	91	47			
30	III. 101.	100	26	77	65	93	44			
31	Ill. 21	92	28	77	73	85	51			
	Average	116	26	78	83	97	45			

B - Two-year averages, 1958-1959

1	Ill. 3173	134	28	82	89	100	48			
2	IIl. 3176B.	130	31	77	84	98	47			
3	Ill. 3152 A .	128	26	78	83	100	44			
4	Ill. 3167 B .	128	30	78	85	98	49			
5	I11. 3152	128	28	78	83	100	44			. .
6	Ill. 3169B	127	30	78	84	98	44			
7	Ill. 1936.	126	27	78	78	100	46			
8	III. 1952	126	26	79	79	98	45			
9	I11. 3174	125	26	78	84	100	47			
10	I11. 1862	124	30	80	88	100	42			
11	Ill. 1961	123	24	79	82	100	46			. .
12	111. 3287	123	30	78	94	98	44			
13	111. 1559 B .	122	26	78	74	98	44			
14	III. 3009 .	122	25	79	85	98	50			
15	III. 2247 W	122	28	76	70	99	50			. \cdot
16	IIl. 1959.	122	26	79	88	98	46			\ldots
17	I11. 1962	121	24	78	82	98	47			
18.	111. 1955	119	24	77	86	100	44			
19	AES 601	118	26	77	75	99	45			
20	Ill. 1958	118	25	78	74	99	47			. .
21	III. 1960	118	26	79	77	100	45			
22	III. 1969 A .	117	30	78	84	98	50			

(Table is continued on next page)

Table 2. - Continued

Rank in yield	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height

B - Two-year averages, 1958-1959 - concluded

		$b u$.	perct.	perct.	perci.	perct.	in.	perct.	perct.	score
23	Ill. 1957	116	27	78	74	100	44			
24	Ill. 3043	116	32	78	88	98	48			
25	III. 3046	116	29	78	86	99	49			
26	AES 610.	114	26	79	90	99	40			
27	AES 514.	113	25	78	92	100	46			
28	AES 702	113	29	76	75	100	49			
29	Ill. 1091A	110	27	76	52	99	50			
30	Ill. 1864.	110	29	77	72	100	42			
31	AES 510.	109	25	76	68	98	45			
32	Ill. 1555A	108	24	75	70	98	46			
33	Ohio K24.	108	26	79	66	94	44			
34	Ill. 1560A.	108	30	78	70	97	43			
35	Ohio M15	108	24	80	60	98	47			
36	III. 101.	104	27	78	54	100	44			
37	III. 1277.	104	26	77	55	100	46			
38	III. 21	100	28	77	63	98	52			
39	III. 6052	100	35	76	62	98	56		\cdots	
40	Ill. 6021	95	32	76	63	100	57			
	Average.	117	27	78	77	99	46			

C - 1959 results (3 replications)

1	III. 3301	132	24	80	95	100	40	0	8	1.4
2	III. 3173	130	24	82	91	99	44	1	3	2.6
3	III. 3176 B .	128	28	77	94	98	42	3	8	2.5
4	III. 3303.	128	25	79	89	100	43	2	2	1.5
5	III. 3270	125	25	77	92	99	40	1	4	2.3
6	Ill. 3152 BI	124	26	77	93	99	40	1	8	2.0
7	III. 3379	124	24	79	90	98	42	1	4	2.7
8	III. 1952	123	22	78	89	98	42	1	10	2.2
9	III. 3152 A	123	24	78	93	100	41	1	7	2.3
10	111. 1962	122	22	79	80	99	44	0	3	3.3
11	III. 3009	122	22	79	84	99	44	3	7	3.1
12	III. 3167 B .	122	27	78	94	99	44	3	3	2.2
13	III. 3300.	122	25	78	82	99	43	1	5	1.9
14	III. 3383	122	25	79	87	100	44	0	5	2.6
15	Ill. 1959	121	22	78	89	100	44	1	7	3.1
16	III. 3268	121	27	80	96	97	42	1	9	2.1
17	III. 3311.	121	27	78	90	100	43	0	1	2.4
18	III. 3382	121	26	79	96	99	45	3	5	2.8
19	III. 3266	120	26	79	86	96	41	6	3	2.6
20	III. 3271	120	26	81	90	99	40	4	9	3.1
21	Ill. 3381	120	25	79	91	100	44	2	3	2.8
22	Iowa 4967.	120	26	78	84	100	45	7	6	1.5
23	III. 3174.	119	25	78	83	100	47	1	3	2.8
24	III. 3267	118	26	77	89	96	44	8	2	2.8
25	III. 3274	118	26	77	97	99	44	4	2	3.0
26	IIl. 3310	118	27	78	91	99	41	4	1	2.0
27	III. 1955	117	21	79	80	100	43	1	11	3.6
28	III. 1960	117	23	78	88	99	42	0	9	1.6
29	IIl. 1961	117	23	79	83	99	43	2	2	3.0
30	III. 3169 B	117	27	77	91	97	41	3	9	2.9
31	III. 3275	117	26	82	91	99	44	1	3	2.0
32	III. 3287	117	26	77	93	96	40	1	4	1.3
33	III. 3302	117	24	78	92	99	45	3	8	2.4
34	III. 3302A1	117	24	78	92	100	42	0	8	1.4
35	111. 3305.	117	24	78	77	99	40	3	11	2.2
36	Ill. 1559B.	116	23	80	95	97	40	1	7	2.3
37	III. 1862.	116	26	79	96	100	37	1	12	2.2
38	III. 1936.	116	22	78	84	100	43	3	6	3.0
39	Ill. 3043.	115	27	78	91	99	45	4	4	3.0
40	III. 3152 .	115	24	77	92	99	41	1	11	2.7

(Table is concluded on next page)

Table 2. - Concluded

| Rank
 in yield
 or code | Entry | Acre
 yield | Mois-
 ture in
 grain | Shell-
 ing | Erect
 plants | Stand | Ear
 height |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | C - 1959 results (3 replications) - concluded

		$b u$.	perct.	perct.	perct.	perct.	$i n$.	perct.	perct.	perct.
41	III. 3313.	115	23	80	96	98	43	4	6	1.8
42	III. 3380	115	25	79	92	100	46	5	2	2.6
43	111. 2247 W .	114	24	77	80	100	47	8	6	2.7
44	111. 3152A1.	114	23	79	93	100	40	2	6	1.9
45	Ill. 3309-1.	114	25	77	90	100	44	5	4	2.6
46	III. 3046.	113	25	77	90	99	44	2	2	1.7
47	III. 1957.	112	23	79	84	100	44	3	3	3.1
48	III. 3179.	112	26	80	52	99	49	3	5	3.7
49	Ill. 3272	112	27	80	97	100	43	2	8	2.8
50	111. 3309	112	26	76	88	99	46	3	2	2.5
51	111. 3312 .	112	27	80	94	99	43	1	1	2.3
52	III. 3312-1	112	25	73	86	99	43	3	3	1.9
53	III. 1958.	111	22	80	82	99	43	0	4	1.9
54	III. 1969A	111	26	78	93	99	45	4	4	2.2
55	111. 3152-1	111	24	78	91	99	38	2	6	2.4
56	111. 3269.	111	26	77	93	99	41	1	3	2.1
57	III. 3307.	109	26	76	85	99	47	1	2	2.2
58	AES 610.	108	22	79	93	+ 99	40	2	3	2.5
59	Ill. 3300A.	108	25	77	87	- 99	41	1	6	1.7
60	AES 514..	107	23	78	95	100	45	2	3	2.2
61	111. 3273.	107	28	78	96	96	40	6	5	2.7
62	III. 3308.	107	25	78	85	100	48	3	4	2.0
63	III. 6109	107	25	76	78	100	50	7	9	3.3
64	III. 3152 B	106	23	75	87	99	42	1	7	2.4
65	III. 3304.		27	76	91	98	42	0	14	2.5
66	111. 1560 A .		26	78	90	97	40	2	9	2.6
67	IIl. 3265.	104	28	78	93	99	42	3	4	2.5
68	Iowa 5052	104	24	74	92	97	41	7	3	2.4
69	Ohio K24.	103	25	79	68	97	43	5	4	3.0
70	AES 510.	102	22	77	85	99	42	7	14	2.7
71	Ill. 3306.	100	26	76	86	100	46	5	2	1.5
72	AES 601.	99	23	77	88	99	40	2	7	3.7
73	111. 1091 A .	99	24	76	72	99	46	3	7	3.9
74	III. 1555A.	96	21	76	76	97	43	2	10	3.1
75	III. 6115 .	96	23	75	79	100	45	8	3	2.3
76	Ohio M15.	96	22	78	57	97	44	2	5	3.3
77	Ill. 1864.	95	26	77	86	100	38	2	7	2.9
78	III. 6021.	93	25	77	74	99	52	5	6	3.0
79	AES 702.	92	25	74	94	100	44	8	6	2.4
80	Ill. 6052 .	92	30	77	67	100	49	3	13	3.5
81	111. 101		24	77	85	100	40	2	13	3.0
82	III. 21.	86	25	76	77	99	48	2	8	4.6
83	Ill. 1277	84	23	77	79	99	41	2	5	4.0
	Average	112	25	78	87	99	43	3	6	2.5

D - Single and sister-line crosses

84	Hy2 \times WF9.	86	26	74	83	100	44	3	6	4.0
85	(R158×CI.42)(WF9×									
	R75).............	79	25	76	75	99	51	6	4	3.4
86	$\mathrm{Hy} 2 \times \mathrm{Oh} 7$	124	26	80	81	99	53	3	3	3.1
87	$\begin{gathered} (\mathrm{R} 158 \times \text { CI. } 42 \mathrm{~A})(\text { Oh } 7 \times \\ \text { Oh7A) } \end{gathered}$	96	29	77	83	100	54	3	5	3.1
88	$\mathrm{Hy} 2 \times 187-2$.	90	26	78	63	99	50	9	2	4.0
89	$\begin{gathered} (\mathrm{R} 158 \times \mathrm{CI} .42 \mathrm{~A})(\mathrm{R} 84 \times \\ \mathrm{W} 187 \mathrm{R}) \end{gathered}$								6	
90		60 87	26 28	75 75	67 80	99 99	51 54	11	6 3	5.0 2.9
	Average .	89	26	76	76	99	51	6	4	3.6

Table 3. - THREE-WAY CROSSES AND STANDARDS
Tested in Northern Illinois, 1959
(Data in boldface were not statistically different from the best performance for that characteristic)

Code Entry \quad\begin{tabular}{c}
Acre

yield

Mois-

ture in

grain

\quad

Shell-

ing

\quad

Erect

plants

\quad Stand $\frac{\text { Height }}{\text { Plant Ear }}$

Dropped

ears

 Smut

Leaf

blight
\end{tabular}

A - Iṇbred lines crossed with (WF9 \times Oh43)

		$b u$.	perct.	perct.	perct.	perct.	$i n$.	in.	perct.	perct.	score
1	R71.	114	28	82	97	98	84	38	3	3	4.0
2	R74.	99	26	80	92	97	88	36	0	3	2.0
3	R74A	91	27	75	98	99	87	36	1	8	1.5
4	R76.	111	26	79	69	95	94	48	10	2	2.0
5	R78.	116	27	82	89	94	88	41	3	3	2.0
6	R84.	95	25	80	82	88	88	46		11	3.0
7	R101.	105	25	79	93	97	91	40	0	9	4.0
8	R104.	100	26	83	81	98	86	40	1	1	4.0
9	R109B	109	26	82	97	93	88	42	0	1	3.0
10	R112.	115	25	83	96	96	94	40	5	10	2.5
11	R113.	113	24	79	82	100	84	40	1	3	2.5
12	R114.	108	24	79	91	95	98	41	1	3	2.0
13	R132.	114	27	80	67	99	92	44	1	0	3.0
14	R134.	136	27	79	93	92	96	46	4	3	2.0
15	R135.	96	25	83	76	88	92	45	4	2	2.0
16	R151.	134	27	82	83	99	92	42	5	2	3.0
17	R154.	134	24	80	86	92	96	42	2	2	2.5
18	R158.	107	24	81	92	100	98	42	6	1	2.5
19	R159.	107	28	80	88	97	86	40	2	1	2.5
20	R166.	92	26	82	87	92	80	35	1	2	3.0
21	R168.	123	23	82	92	99	86	41	0	2	2.0
22	R172.	125	25	81	94	99	90	42	0	0	1.5
23	R180.	93	27	79	87	96	86	40	4	4	3.5
24	R181.	120	20	80	73	96	88	38	2	0	3.5
25	R182.	109	25	81	96	92	96	41	4	4	3.0
26	R183.	82	26	78	76	98	94	44	1	3	1.5
27	R192.	101	26	79	90	99	96	44	2	15	3.0
28	R193.	115	26	80	93	98	92	40	4	5	2.5
29	R194.	100	28	79	77	99	88	42	3	2	2.0
30	R195.	104	24	79	89	99	94	46	2	3	4.5
31	R196.	104	25	80	96	100	92	44	3	0	3.5
32	R197.	117	29	80	85	98	93	47	6	0	2.5
33	R198.	108	27	81	86	98	94	47	4	11	2.0
		109	26	80	87	96	91	42	3	4	2.7

B-Single crosses

34	WF9 \times Oh43	108	27	81	94	98	87	39	6	3	2.5
35	WF9 \times B37	95	28	75	98	100	92	42	5	9	3.5
36	B41 \times Oh7A	71	32	74	56	94	94	51	1	1	4.0
	Average.	91	29	77	83	97	91	44	4	4	3.3

C - Inbred lines crossed with (WF9 \times B37)

1	R71	103	29	75	99	89	94	48	4	2	4.0
2	R74.	95	29	76	100	69	93	45	3	7	2.5
3	R74A.	64	30	68	97	100	98	45	2	3	1.0
4	R76.	93	27	75	90	96	96	52	6	12	3.0
5	R78.	101	28	78	84	95	94	41	3	9	2.0
6	R84.	73	25	75	89	96	96	50	3	12	4.5
7	R101.	85	25	75	89	98	92	46	0	7	3.5
8	R104.	99	26	80	79	99	92	48	5	1	4.0
9	R109B	103	27	77	99	97	94	46	2	4	2.5
10	R112.	109	26	80	98	100	90	48	6	6	2.5
11	R113.	106	24	76	93	100	91	50	2	1	3.0
12	R114.	107	28	76	99	99	98	48	1	2	2.5
13	R132.	101	25	77	56	95	94	46	2	3	4.0
14	R134.	108	28	74	94	95	96	46	10	8	2.0
15	R135.	92	25	77	83	79	96	52	6	6	1.5

(Table is continued on next page)

Table 3. - Continued

Code	Entry	Acre yield	Moisture in grain	Shelling	Erect plants	Stand	Height		Dropped ears	Smut	Leaf blight
							Plant	Ear			
C - Inbred lines crossed with (WF9 \times B37) - continued											
		$b u$.	perct.	perct.	perct.	perct.	$i n$.	in.	perct.	perct.	score
16	R151.	130	29	79	91	99	98	53	6	0	2.5
17	R154.	122	26	79	78	97	96	52	1	0	2.5
18	R158.	91	25	77	90	89	98	48	5	3	4.5
19	R159.	97	27	76	94	100	93	50	1	6	1.0
20	R166.	98	26	80	90	97	92	46	2	10	3.0
21	R168.	125	25	78	99	98	90	45	0	8	2.5
22	R172.	107	26	76	95	100	92	49	1	1	1.5
23	R180.	92	27	77	97	94	90	46	5	3	3.5
24	R181.	123	23	76	89	100	94	45	2	2	2.5
25	R182.	82	24	76	97	68	98	48	3	7	2.5
26	R183.	56	29	75	98	98	96	51	0	1	1.5
27	R192.	104	27	76	87	96	98	50	0	12	2.0
28	R193.	96	28	76	91	100	94	47	4	3	2.5
29	R194.	109	30	77	96	96	93	52	3	7	2.0
30	R195.	103	24	76	91	98	92	50	3	8	3.5
31	R196.	118	26	76	94	99	97	50	2	7	2.5
32	R197.	125	31	77	78	98	95	52	2	5	2.5
33	R198.	96	31	77	82	100 !	98	52	9	11	2.0
	Average...	100	27	76	90	95	94	48	3	5	2.6

D - Single crosses

34	WF9 \times Oh43.	100	28	76	97	98	92	42	5	3	2.0
35	WF9 \times B37..	85	28	74	99	96	90	48	4	15	2.5
36	B41 \times Oh7A	24	35	66	42	97	91	50	0	0	4.0
	Average.	70	30	72	79	97	91	47	3	6	2.8

E - Inbred lines crossed with (B41 \times Oh7A)

1	R71.	80	31	78	89	98	90	48	2	4	3.5
2	R74.	119	28	77	92	99	92	49	1	2	2.0
3	R74A	25	30	75	96	100	92	50	4	12	1.5
4	R76.	105	30	74	76	100	98	52	2	9	2.5
5	R78.	63	31	77	59	100	92	50	0	8	2.5
6	R84.	41	29	76	82	98	90	54	6	10	3.0
7	R101.	79	26	77	80	99	91	50	3	3	4.0
8	R104.	89	27	78	71	100	90	54	3	0	3.5
9	R109	105	30	79	93	100	92	52	2	7	2.5
10	R112.	91	28	78	95	99	92	45	3	10	1.0
11	R113.	78	25	77	94	99	87	49	1	1	2.5
12	R114.	98	27	75	90	98	97	52	2	4	2.0
13	R132.	83	27	76	57	97	94	52	5	2	4.5
14	R134.	97	30	80	85	100	93	49	13	3	1.5
15	R135.	51	29	78	92	100	92	50	7	7	3.0
16	R151.	122	28	79	75	100	97	52	8	2	2.0
17	R154.	107	27	79	80	100	96	54	6	2	2.5
18	R158.	92	27	78	93	94	96	51	3	0	3.5
19	R159.	71	33	75	95	100	94	48	1	6	1.0
20	R166.	68	29	76	60	100	84	46	1	3	2.5
21	R168.	108	26	83	97	100	88	46	1	4	1.5
22	R172.	95	26	78	86	99	94	54	1	5	1.0
23	R180.	73	28	76	70	100	86	44	3	3	3.5
24	R181.	117	23	76	73	100	92	48	1	3	3.5
25	R182.	94	27	79	94	98	94	48	3	0	1.5
26	R183.	70	28	77	95	96	92	54	4	2	1.5
27.	R192.	70	29	75	85	97	92	50	0	9	3.0
28	R193.	87	27	75	86	100	91	46	6	1	2.5
29	R194.	47	34	78	92	100	90	50	4	5	2.5
30	R195.	76	27	75	98	99	91	52	3	3	3.0
31	R196.	78	28	75	84	98	92	54	3	2	2.5
32	R197.	106	30	77	84	100	92	52	2	0	2.5
33	R198.	84	31	77	60	99	94	56	1	3	2.0
		84	28	77	84	99	92	50	3	4	2.5

(Table is concluded on next page)

Table 3. - Concluded

Code	Entry	Acre yield	Moisture in grain	Shelling	Erect plants	Stand	Height		Droppedears	Smut	Leaf blight
							Plant	Ear			
F-Single crosses											
		$b u$.	perct.	perct.	perct.	perct.	in.	in.	perct.	perct.	score
34	WF9 \times Oh43..	104	28	81	95	99	89	42	5	1	1.0
35	WF9 \times B37.	72.	27	74	94	100	92	47	1	10	2.0
36	B41 \times Oh7A..	41	34	72	42	99	90	50	1	2	2.5
	Average.	72	30	76	77	99	90	46	2	4	1.8

G-Mean of inbred lines crossed with three testers

H - Mean of three single-cross testers

34	WF9 \times Oh43....	104	28	79	95	98	89	41	5	2	1.8
35	WF9 \times B37....	84	28	74	97	99	91	46	3	11	2.7
36	B41 \times Oh7A....	45	34	71	47	97	92	50	1	1	3.5
	Average...	78	30	75	80	98	91	46	3	5	2.7

Table 4. - DOUBLE CROSSES OF ILLINOIS 21 MATURITY Tested in North-Central Illinois, 1957-1959

(Data in boldface were not statistically different from the best performance for that characteristic. Absence of boldface figures in some columns is due to lack of statistical information.)

$\begin{aligned} & \text { Rank } \\ & \text { in } \\ & \text { yield } \end{aligned}$	Entry	Acre yield	Moisture in grain	Shelling	Erect plants	Stand	$\underset{\text { height }}{\text { Ear }}$	Dropped ears	Smut
A - Three-year averages, 1957-1959									
		bu.	perct.	perct.	percl.	perct.	$i n$.	perct.	perct.
1	III. 3042	125	23	80	92	94	46	1	
2	III. 3026.	123	22	80	89	96	41	1	-
3	III. 3022 .	122	20	81	89	92	44	1	.
4	III. 3029.	120	21	80	91	93	42	0	\ldots
5	III. 3010	119	21	80	86	97	47	2	
6	AES 805.	119	21	80	81	96	48	2	
7	III. 3023A	119	19	82	88	97	40	0	
	IIl. 3021.	118	22	81	93	97	43	2	
9	AES 703	118	20	80	93	93	43	0	\cdots
10	Ill. 3160.	117	20	82	96	96	44	0	.
11	III. 1968.	116	19	83	86	94	46	0	
12	III. 3032.	116	20	81	87	95	42	1	\ldots
13	III. 1332	115	19	81	80	95	48	1	.
14	III. 3039	115	21	79	91	97	43	1	
15	III. 1971	114	20	83	83	96	46	1	.
16	111. 3017.	114	21	80	93	95	44	1	.
17	III. 1969	113	20	82	93	96	47	1	
18	III. 3020	112	20	80	91	99	40	1	.
19	III. 3043.	111	20	82	93	96	45	2	.
20	III. 1921	110	23	79	89	93	48	1	
21	III. 1966	110	20	79	82	93	46	1	.
22	AES 705	109	21	80	91	98	44	1	.
23	III. 3030	109	21	79	95	96	43	1	
24	III. 21.	108	21	81	76	93	48	2	\cdots
25	III. 1928	108	23	79	87	92	52	1	.
26	Ill. 1831.	107	22	81	86	94	42	1	.
27	AES 704	106	21	79	97	91	42	1	\ldots
28	Ill. 1570	106	21	79	74	96	48	3	
29	AES 702	105	21	79	80	92	45	1	\cdots
30	Iowa 4297.	98	21	80	78	96	45	2	\ldots
	Average...	113	21	80	88	95	45	1	.

B - Two-year averages, 1958-1959

1	Ill. 3042	124	22	82	92	97	47	1	
2	III. 3022	124	20	82	92	95	46	1	
3	III. 3029	122	21	82	92	96	44	0	
4	III. 3026.	121	21	81	92	96	44	2	
5	III. 3015 B .	120	20	82	94	95	46	4	\cdots
6	Ill. 3021	119	20	82	93	99	44	2	
7	III. 1968.	118	18	84	90	97	46	0	
8	AES 805.	118	20	80	82	98	50	3	
	Ill. 3010.	117	20	81	88	98	48	3	
10	III. 3160.	117	20	83	98	96	46	0	\cdots
11	Ill. 3291.	116	20	84	92	98	46	1	
12	III. 3294	116	21	82	86	99	52	4	
13	AES 703.	116	20	80	94	94	46	0	\cdots
14	Ill. 3023B	116	21	82	90	98	44	1	
15	III. 3023A.	116	19	83	88	98	42	0	.
16	Ill. 1969.	114	20	83	92	98	48	2	.
17	III. 3039	114	20	79	92	99	44	2	
18	III. 3017.	113	20	80	94	96	46	1	
19.	III. 3032	113	20	82	86	95	44	1	
20	III. 1332.	112	18	82	82	94	51	2	.
21	Iowa 4991	112	21	82	97	97	44	0	.
22	AES 705..	111	20	80	92	98	46	2	.

(Table is continued on next page)

Table 4. - Continued

C -1959 results (3 replications)

1	Ill. 3182A.	118	24	83	69	97	46	3	1
2	III. 3022.	116	22	80	96	93	42	1	6
3	III. 3042	115	24	82	96	95	43	0	4
4	III. 3347	112	24	81	90	96	46	1	1
5	III. 1968	109	20	84	92	94	42	1	5
6	Ill. 3026	108	23	80	90	96	40	1	6
7	III. 3321	108	21	81	90	96	44	1	8
8	III. 3348	108	25	79	89	97	45	1	0
9	IIl. 3029	107	22	81	98	92	43	1	2
10	III. 3318	107	20	81	94	97	45	0	6
11	U.S. 13.	107	22	80	87	97	52	5	5
12	III. 3021	106	22	81	95	98	41	3	12
13	111. 3326A	106	19	82	94	98	44	0	11
14	Ill. 1969.	105	21	81	93	96	46	1	1
15	III. 3317	105	22	82	96	99	44	1	4
16	IIl. 3345	105	24	82	90	97	47	3	1
17	Ill. 3182 B	104	24	81	84	98	46	0	3
18	III. 3314	104	22	83	86	97	48	1	3
19	Ill. 3318 A	104	20	78	94	94	46	3	4
20	111. 3326.	104	22	80	91	95	43	0	5
21	III. 3319	103	21	81	94	95	47	0	0
22	Jll. 3323 A	103	20	79	95	97	42	0	1
23	AES 703.	102	22	80	94	94	42	1	4
24	Ill. 3015 B	102	22	80	94	91	42	1	6
25	IIJ. 3160.	102	21	82	96	95	44	0	4
26	Iowa 4962.	102	22	78	91	96	40	1	3
27	Ill. 3023A.	101	21	82	90	97	39	0	1
28	Il1. 3315.	101	22	80	95	88	48	2	2
29	111. 3291	100	23	83	97	96	44	0	12
30	Ill. 3184A	99	25	82	76	96	50	1	8
31	Ill. 3322.	99	21	81	92	96	43	0	4
32	AES 702.	98	22	79	93	94	45	2	1
33	III. 1971.	98	21	81	93	90	45	2	6
34	I11. 3010	98	22	80	89	95	43	4	6
35	III. 3294.	98	23	80	91	98	50	5	8
36	Ill. 6109.	98	21	77	92	94	46	1	4
37	IIl. 3032.	97	22	80	86	91	42	1	6
38	III. 3039	96	22	77	94	99	40	2	5
39	111. 3045A.	96	20	79	91	95	43	0	4
40	Ill. 3017.	95	21	79	97	92	44	1	5

(Table is concluded on next page)

Table 4. - Concluded

Table 5. - THREE-WAY CROSSES AND STANDARDS OF ILLINOIS 21 MATURITY

Tested in North-Central Illinois, 1959
(Data in boldface were not statistically different from the best performance for that characteristic. Absence of boldface figures in some columns is due to lack of statistical information.)

B - Inbred lines crossed with (B37 \times Oh43)

9	R104.	73	21	86	93	91	38	1	3
10	R135.	87	21	84	75	87	45	3	10
11	R138.	104	22	81	90	95	43	2	6
12	R195.	79	21	82	96	89	41	0	7
13	H62	94	25	82	91	94	39	0	2
14	Ia57:1302.	102	22	80	79	95	44	0	5
15	Oh26F	94	21	83	94	93	39	1	3
	Average	90	22	83	88	92	41	0	5

C - Standard checks

Table 6. - DOUBLE CROSSES OF ILLINOIS 1570 MATURITY Tested in Central Illinois, 1957-1959
(Data in boldface were not statistically different from the best performance for that characteristic. Absence of boldface figures in some columns is due to lack of statistical information.)

Rank in yield	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height

A - Three-year averages, 1957-1959

		bu.	perct.	perct.	perct.	perct.	in.	perct.	perct.
1	A 102.	109	22	81	78	98	42	1	12
2	III. 1976	109	21	80	85	96	45	0	9
3	AES 810.	107	19	81	91	96	42	1	12
4	III. 3117.	106	19	85	85	98	41	1	14
5	III. 3093	105	19	81	89	98	42	2	8
6	III. 1918.	104	20	83	88	98	44	5	8
7	III. 3080	103	20	80	83	98	43	1	6
8	III. 1984	102	21	79	86	98	42	1	9
9	III. 3055.	102	19	82	90	98	43	0	10
10	III. 3049 .	102	20	82	97	98	41	0	5
11	Ill. 1332-3	102	21	82	88	97	43	1	13
12	III. 1916.	102	19	83	86	98	45	2	16
13	Ill. 1926.	101	19	80	94	96	43	2	7
14	AES 809.	100	21	82	91	95	38	1	13
15	Ill. 1856	100	25	80	86	98	47	1	13
16	Ill. 1922.	100	21	81	93	98	41	0	8
17	III. 1983	99	19	82	93	98	43	2	7
18	III. 1989.	99	19	80	92	96	39	1	7
19	111. 3107.	99	20	82	88	99	42	2	13
20	III. 3121.	99	19	83	88	97	40	1	5
21	Ill. 1981	98	20	81	90	97	45	2	16
22	III. 1987.	98	20	77	87	98	43	2	8
23	III. 3115	98	17	82	88	98	43	2	18
24	III. 3119.	98	21	82	84	99	42	1	7
25	III. 1332-4	98	19	82	89	97	42	1	8
26	IIl. 1996.	98	20	77	92	97	43	1	10
27	IlI. 1813	98	21	81	96	95	43	2	9
28	Ill. 1880	98	19	83	89	98	42	2	7
29	III. 1921	98	20	80	94	98	41	1	12
30	III. 3124	98	21	80	95	99	42	1	7
31	IIl. 3092.	97	20	81	91	97	43	2	10
32	III. 3074	97	21	83	92	99	42	0	9
33	AES 702.	97	20	80	88	99	40	2	12
34	III. 1944	97	21	79	90	94	47	0	11
35	III. 1994	97	21	78	91	97	41	1	11
36	III. 1332.	97	20	82	93	97	42	2	16
37	Ill. 3075.	97	20	83	89	99	43	1	7
38	U.S. 13	97	19	80	81	95	46	4	10
39	Ill. 1928	97	21	81	90	96	45	1	17
40	Ill. 1919	96	19	80	85	98	42	3	16
41	III. 3104.	96	19	80	88	98	40	2	13
42	III. 21.	96	19	82	89	98	42	2	10
43	Ill. 1978	95	21	77	83	98	45	2	10
44	III. 1893.	95	20	80	89	94	46	2	17
45	IIl. 1992.	95	22	78	92	95	43	0	11
46	III. 3151.	95	19	80	92	97	43	1	16
47	III. 1570.	95	20	80	81	97	43	2	10
48	Ill. 1851	94	22	77	88	95	47	1	15
49	AES 805.	93	20	79	92	97	42	1	23
50	Ill. 1890.	93	19	81	89	94	42	0	18
	Aver	99	20	81	89	97	43	1	11

(Table is continued on next page)

Table 6. - Continued

Rank in yield	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Ear height
D Dropped Smut							
ears							

		bu.	perct.	perct.	perct.	perct.	in.	perct.	perct.
1	III. 3183.	109	20	82	89	96	38	2	10
2	III. 3186	108	19	84	86	98	42	2	12
3	III. 1976.	107	20	82	90	98	42	0	12
4	A 102.	105	19	83	77	98	41	1	17
5	Ill. 3080	104	18	82	84	98	41	2	8
6	Ill. 3117.	104	17	86	89	98	40	2	19
7	AES 810.	102	18	82	94	95	40	2	17
8	III. 1918.	101	20	84	91	98	42	7	12
9	111. 3093.	100	18	82	88	98	40	2	12
10	Ill. 1926.	100	18	82	96	97	40	2	10
11	III. 1984.	100	18	80	91	98	40	2	14
12	III. 3055.	100	18	82	93	98	43	0	16
13	III. 3074.	100	20	85	93	99	40	0	13
14	III. 1916.	99	17	85	88	98	44	4	20
15	III. 1989.	99	18	82	93	98	38	1	10
16	Iowa 5115.	98	19	80	92	98	40	0	6
17	AES 809.	98	20	84	90	97	34	1	19
18	III. 1987.	98	19	78	89	100	42	3	12
19	III. 1922.	97	20	84	94	98	38	0	11
20	III. 3151.	96	18	83	95	98	42	2	24
21	III. 3049.	96	20	83	98	100	38	0	8
22	III. 3119.	96	18	84	84	98	42	2	10
23	III. 3121.	96	18	84	84	96	38	1	6
24	III. 1856.	96	21	81	92	98	44	2	19
25	III. 3075.	95	18	84	88	98	40	1	10
26	U.S. 13.	95	19	82	84	97	44	6	14
27	AES 705.	94	18	84	94	98	36	1	16
28	III. 1992.	94	20	81	92	95	40	0	16
29	III. 1996.	94	18	78	94	97	40	1	14
30	III. 1983	94	18	82	95	98	41	2	10
31	Ill. 1570.	94	18	82	92	96	42	3	14
32	III. 1994.	94	19	80	90	98	40	2	16
33	III. 1332-3	93	20	84	90	96	40	2	19
34	III. 1332-4	93	18	84	94	95	40	2	12
35	III. 1813.	93	20	82	96	94	42	2	14
36	Ill. 21.	93	18	82	94	98	43	4	15
37	III. 3107.	93	19	84	91	100	41	3	19
38	III. 1944.	92	20	82	88	92	46	0	15
39	III. 1919	92	18	81	90	97	40	5	24
40	I11. 3115.	92	16	84	93	98	42	2	25
41	III. 3124.	91	20	82	96	100	40	2	10
42	III. 1880.	90	18	84	93	98	41	2	10
43	III. 1981.	90	18	83	92	97	43	2	22
44	III. 1332.	90	18	84	97	99	42	2	24
45	III. 1893.	90	18	82	92	96	43	4	25
46	III. 1921.	90	19	80	98	98	39	2	18
47	AES 702.	89	18	82	91	99	37	2	18
48	III. 3104.	88	18	80	93	98	38	3	19
49	III. 1928.	87	20	82	92	96	41	2	24
50	111. 3092 .	87	18	82	91	96	40	3	14
51	III. 1851.	86	20	78	86	94	46	1	22
52	III. 1978.	86	20	79	86	98	45	2	15
53	III. 6021.	86	19	80	86	98	49		
54	III. 6052.	83	19	84	78	92	48	3	22
55	AES 805.	83	19	80	93	98	40	1	34
56	Ill. 1890.	83	19	80	92	92	41	0	26
	Average.	95	19	82	91	97	41	2	16

(Table is continued on next page)

Table 6. - Continued

Rank in yield	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand
Ear height	Dropped ears	Smut				

C- 1959 results (3 replications)

		$b u$.	perct.	perct.	perct.	perct.	in.	perct.	perct.
1	III. 3343	106	20	83	92	100	37	1	6
2	III. 3346	106	21	85	86	99	39	1	9
3	III. 3347	104	18	84	92	95	33	1	9
4	III. 3350	103	22	80	87	99	37	1	6
5	III. 3332A.	100	19	85	84	98	35	0	8
6	III. 3244	99	19	84	84	98	34	1	16
7	III. 3349	99	20	79	81	97	38	1	11
8	A104.	99	19	80	74	96	36	1	11
9	111. 3334	98	19	85	79	98	35	1	6
10	III. 3353	98	21	82	89	95	34	1	6
11	III. 3357.	98	21	82	91	97	30	0	8
12	III. 3329	96	18	83	90	100	34	1	5
13	III. 3377.	96	18	84	92	99	36	3	19
14	III. 1976.	95	19	81	92	98	36	0	21
15	A110.	95	20	84	74	92	36	1	5
16	Ill. 3354	93	23	78	76	99	37	2	8
17	III. 1918	92	20	83	92	95	35	12	21
18	III. 3248	92	19	82	79	99	33	3	12
19	III. 3344	92	24	83	- 94	97	37	1	7
20	Ill. 3359	92	20	80	84	97	33	2	12
21	III. 3378.	92	19	86	84	99	36	2	17
22	111. 3277.	91	19	81	84	97	35	0	14
23	III. 3348.	90	21	84	92	99	36	0	6
24	III. 3328.	89	19	83	85	98	34	1	7
25	III. 3330	89	19	84	89	98	36	1	8
26	Ill. 3351.	89	20	85	88	100	39	1	6
27	II1. 3372.	89	20	83	87	99	36	3	18
28	III. 3080	88	18	82	78	99	36	1	15
29	111. 3183.	88	21	79	84	94	32	1	15
30	Ill. 3186	88	19	84	84	96	36	3	21
31	AES 810.	87	18	80	92	99	33	3	27
32	Ill. 3332 .	87	19	82	73	95	34	2	5
33	III. 3374	87	18	80	96	94	35	4	16
34	Ill. 1926	86	19	80	95	97	34	3	17
35	Il1. 3117.	86	17	85	89	99	34	2	28
36	IIl. 3240 A .	85	22	82	93	97	35	3	32
37	III. 3247.	85	19	82	73	97	37	1	14
38	III. 3259B.	85	18	81	78	98	31	0	15
39	Ill. 3333 .	85	19	84	80	95	34	3	9
40	A102.	85	19	82	75	99	33	1	22
41	III. 3183A.	84	21	81	89	96	36	3	20
42	III. 3281.	84	18	82	89	98	37	2	24
43	III. 3184A.	83	20	83	77	99	36	5	26
44	III. 3362 .	83	21	83	88	97	35	1	15
45	I11. 3373	83	18	82	91	99	32	5	19
46	III. 3055	82	18	81	96	99	39	0	26
47	Il1. 3238.	82	20	83	91	99	34	1	25
48	III. 3074	81	20	84	89	98	34	1	17
49	III. 3237 A .	81	18	84	84	98	34	1	16
50	III. 3242 .	81	20	82	88	95	34	0	15
51	III. 3093.	80	17	83	86	97	34	2	25
52	III. 3222 .	80	18	83	90	99	34	2	10
53	III. 3236	80	23	85	82	93	36	0	19
54	Ill. 3345	80	22	80	90	98	37	2	6
55	III. 3355	80	20	81	95	96	31	1	10
56	A109.	80	19	81	87	96	36	3	25
57	III. 3237	79	19	81	86	100	30	2	11
58	III. 3249	79	20	83	82	97	33	5	16
59	Il1. 3367	79	20	81	91	99	33	0	13
60	U.S. 13.	79	19	81	88	99	39	8	27
61	Ill. 1989	78	18	82	92	98	33	0	18
62	III. 3182A.	78	22	83	81	99	34	1	19
63	Ill. 3342.	78	17	84	82	99	34	2	14
64	111. 3358	78	19	83	87	88	32	1	13
65	Ill. 3360 .	78	20	81	86	99	34	1	16

(Table is continued on next page)

Table 6. - Continued

Rank in yield	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand

C-1959 results (3 replications) - continued

		$b u$.	perct.	perct.	perct.	perct.	in.	perct.	percl.
66	III. 3384	78	20	83	93	94	33	1	22
67	III. 3121.	77	18	84	72	98	32	2	10
68	III. 3239	77	19	83	85	99	34	0	17
69	III. 3356	77	20	80	82	95	33	2	10
70	III. 3259 A	76	20	83	82	99	34	1	13
71	Ill. 3331.	76	19	84	89	95	36	5	20
72	Iowa 5018.	76	19	80	91	98	32	3	21
73	AES 809.	75	20	82	89	97	31	1	34
74	III. 1916.	75	18	84	89	97	37	6	33
75	Ill. 1987.	75	18	74	89	99	36	2	21
76	III. 3102.	75	18	80	95	92	34	1	32
77	III. 3254	75	19	80	93	97	30	0	9
78	III. 3280	75	19	79	95	96	34	1	28
79	III. 3368	75	18	83	95	99	37	3	18
80	III. 1570	74	18	81	95	99	37	5	23
81	III. 1922	74	20	84	92	99	35	1	18
82	III. 1984	74	18	80	91	97	35	1	26
83	III. 3124	74	20	82	94	100	36	3	18
84	III. 3256	74	19	84	90	97	34	1	19
85	111. 3259.	74	20	82	86	98	30	1	12
86	III. 3119.	73	18	83	74	97	35	3	12
87	III. 3232.	73	17	81	94	98	34	3	20
88	III. 3361	73	19	81	87	95	35	2	14
89	III. 1856	72	22	79	94	97	34	2	28
90	III. 3253	72	22	83	81	99	30	1	8
91	III. 3371	72	18	81	96	95	39	1	26
92	III. 3375	72	20	85	90	100	39	2	26
93	U.S. 523W	72	24	78	77	98	38	2	23
94	III. 1944.	71	19	82	81	89	40	1	15
95	III. 1994.	71	19	79	90	98	33	2	29
96	III. 1996	71	18	72	93	99	34	1	28
97	III. 3220	71	20	82	95	98	35	1	25
98	I11. 3276	71	21	74	94	98	36	1	15
99	III. 3279	71	21	82	98	99	34	5	36
100	III. 3370	71	19	79	97	96	34	6	26
101	Iowa 5115.	71	19	77	93	97	34	1	11
102	III. $21 . .$.	70	18	82	98	96	37	4	25
103	III. 1880	70	18	84	95	97	35	2	16
104	IIl. 1983	70	17	80	98	97	35	3	19
105	III. 3049 .	70	20	83	98	99	35	1	12
106	III. 3182 B .	70	20	81	89	95	34	2	18
107	III. 3221.	70	20	84	89	97	36	0	36
108	Ill. 1332-4.	69	17	84	94	95	33	2	16
109	I11. 3278 .	69	19	79	89	97	36	4	24
110	Iowa 5040.	69	19	80	92	99	35	1	19
111	III. 3011 A .	68	17	80	94	99	32	1	34
112	III. 3075.	68	19	82	84	98	34	0	14
113	III. 3225.	68	21	83	96	97	35	2	28
114	III. 3246.	68	22	68	76	96	37	2	20
115	III. 1851.	67	20	77	96	99	37	1	40
116	Ill. 1992.	67	19	80	95	96	34	1	31
117	III. 3092.	67	17	83	93	98	35	2	24
118	III. 3151.	67	18	81	97	98	35	1	41
119	III. 3227.	67	18	80	95	98	36	3	22
120	III. 3364.	67	22	81	91	95	37	0	17
121	AES 702.	66	17	82	86	99	33	3	35
122	III. 1332-3.	66	19	85	92	99	35	3	34
123	III. 3255.	66	19	81	88	99	33	1	11
124	III. 3257.	66	19	82	91	97	32	0	19
125	AES 705	65	18	82	96	97	31	0	26
126	III. 3260 .	65	18	79	81	97	33	1	32
127	III. 3369.	65	18	80	94	98	34	2	29
128	III. 1813	64	20	81	95	99	37	3	28
129	IIl. 1893.	64	19	80	93	97	35	3	44
130	111. 3235.	64	17	80	98	97	36	8	32

(Table is concluded on next page)

Table 6. - Concluded

$\begin{aligned} & \text { Rank } \\ & \text { in } \\ & \text { yield } \end{aligned}$	Entry	Acre yield	Moisture in grain	$\begin{gathered} \text { Shell- } \\ \text { ing } \end{gathered}$	Erect plants	Stand	Ear height	Dropped ears	Smut
C - 1959 results (3 replications) - concluded									
		$b u$.	perct.	perct.	perct.	perct.	in.	perct.	perct.
131	III. 3241	64	21	82	83	98	39	3	27
132	I11. 3284	64	19	83	95	94	35	2	26
133	IIl. 3376	64	19	80	95	99	36	2	22
134	III. 3365	63	18	81	95	97	35	3	26
135	III. 1928	62	22	80	94	95	35	1	44
136	III. 1981.	62	19	82	98	97	36	3	40
137	I11. 3115.	62	17	81	93	97	34	3	44
138	Ill. 3230	62	19	82	96	100	32	3	38
139	III. 3240	62	21	82	91	98	34	1	37
140	Ill. 3260 A .	62	18	81	79	100	33	0	35
141	IIl. 6021	62	20	77	91	98	42	5	47
142	IIl. 3218	61	19	82	98	98	32	3	22
143	III. 3258	61	18	82	89	91	30	0	20
144	III. 3264	61	17	81	83	96	34	1	24
145	III. 1919.	60	19	77	93	99	33	5	36
146	III. 3226	60	18	81	98	97	35	1	32
147	III. 3283	60	18	79	92	99	34	0	35
148	III. 6109	60	18	80	90	96	33	2	40
149	III. 6115	60	18	79	+96	98	36	3	38
150	III. 1332.	59	18	81	100	100	35	4	44
151	IIl. 3107	59	19	82	97	99	34	4	29
152	III. 3223	59	21	82	99	97	33	0	24
153	III. 3224	59	19	81	100	97	36	4	37
154	III. 3285	59	18	79	92	98	34	1	44
155	III. 3233 .	58	18	80	99	98	33	10	33
156	Ill. 3234.	58	19	80	95	97	38	7	29
157	III. 3282.	58	19	76	96	95	33	1	43
158	III. 6052	57	20	84	82	93	37	3	42
159	III. 3229	56	19	81	100	99	32	2	30
160	III. 1890.	55	19	78	92	93	36	0	46
161	I11. 1921	54	20	78	98	98	32	4	29
162	I11. 1978.	54	20	75	98	97	35	4	30
163	III. 3219.	54	19	82	98	99	33	1	33
164	III. 3228	53	18	83	97	97	31	3	39
165	Ill. 6062	51	18	79	94	97	35	4	49
166	Ill. 3217.	50	19	81	99	100	35	2	23
167	AES 805.	49	18	76	97	99	35 33	2	58
168	III. 3104.	49	18	75	99	98	33	4	35
169	II1. 3363.	49	19	79	99	98	33 35	1	35 35
170	III. 3366	45	18	72	98	95	35	4	35
171	Iowa 5122.	40	18	78	100	99	32	3	47
172	Ill. 3231.	38	18	79	93	96	30	4	46
	Average. . .	74	19	81	90	97	35	2	23

Table 7. - THREE-WAY CROSSES AND STANDARDS OF ILLINOIS 1570 MATURITY
 Tested in Central Illinois, 1959

(Data in boldface were not statistically different from the best performance for that characteristic. Absence of boldface figures in some columns is due to lack of statistical information.)

Code		Entry	Acre yield	Moisture in grain	Shelling	Erect plants	Stand	$\underset{\text { height }}{\text { Ear }}$	$\begin{aligned} & \text { Dropped } \\ & \text { ears } \end{aligned}$	Smut
A - Inbred lines crossed with (Hy \times WF9)										
			$b u$.	perct.	perct.	perct.	perct.	in.	perct.	perct.
1	R74A.		58	21	74	97	94	34	1	6
2	R76.		83	19	81	93	96	37	9	15
3	R78.		65	21	80	74	93	28	3	8
4	R84.		58	19	79	93	98	36	1	5
5	R196.		40	20	78	88	98	36	1	2
6	H51.		85	21	78	91	98	36	2	5
7	38-11.		76	21	80	95	100	52	7	19
8	L317.		76	21	82	57	94	40	4	5
9	Ia47:1313.		57	19	77	92	98	36	1	4
10	Ia57:1357.		83	22	79	93	99	36	2	0
	K807...		64	19	78	98	95	33	0	
12	K808...		73	21	78	83	99	36	0	2
13	Mo4582..		111	22	80	89	97	40	22	2
14	Mo61004.		84	23	75	87	93	34	0	3
15	Mo61018.		61	24	73	96	96	35	1	3
16	CI.38B.		79	20	75	97	99	38	2	7
Average................. 72				21	78	89	97	36	4	6

B - Inbred lines crossed with (B14 \times CI. 31 A)

17	Hy.	103	22	83	80	93	41	0	1
18	R74A	53	22	77	100	94	32	0	4
19	R76.	83	20	80	71	96	42	4	6
20	R78.	83	20	80	74	96	34	3	2
21	R84.	84	19	78	68	95	38	0	6
22	R196.	95	22	81	89	98	36	0	0
23	WF9	79	20	81	92	96	32	0	8
24	H49.	72	22	79	88	100	36	1	1
25	H51.	74	20	78	79	97	32	0	2
26	H52.	70	21	74	98	98	42	2	4
27	H55.	94	22	82	64	99	40	0	4
28	H56.	111	24	82	79	99	40	0	0
29	38-11	93	19	79	95	100	40	4	6
30	B41.	54	21	77	95	97	36	0	2
31	L317	68	21	78	58	97	40	0	3
32	Ia57:1313.	84	21	80	79	98	38	0	0
33	Ia57:1357.	74	24	78	92	95	33	0	2
34	K807....	72	20	75	97	99	36	0	2
35	K808.	61	24	77	88	97	34	0	9
36	Mo4582	95	20	79	72	96	40	2	0
37	Mo9120.	108	21	83	93	99	34	0	1
38	Mo9170.	79	22	80	95	98	36	0	2
39	Mo53683	87	21	79	84	99	36	2	3
40	Mo61004	90	24	75	85	95	36	0	1
41	Mo61018.	59	24	76	97	94	30	0	0
42	Mo61259.	92	24	76	94	96	40	0	2
43	CI.29A.	84	22	78	94	99	36	3	3
44	C1.38B.	81	21	79	95	98	33	0	3 5
45	CI.42A.	102	25	81	56	98	39	0	5
	Average	82	22	79	85	97	37	1	3

C - Standard checks

47	$\mathrm{B} 14 \times \mathrm{CI} .31 \mathrm{~A}$	108	22	82	88	90	36	0	3
48	Ill. $1332 \ldots$.	77	19	81	94	99	38	0	18
49	U.S. 13.	72	20	78	80	97	44	1	12
46	Hy \times WF9	63	23	79	99	99	30	1	10
	Average.	80	21	80	90	96	37	1	11
	rage of 49 entries.	79	21	79	86	97	36	2	5

Table 8. - THREE-WAY CROSSES AND STANDARDS Tested in Central Illinois, 1959

(Data in boldface were not statistically different
from the best performance for that characteristic)

Code	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Height Plant	Dar ears	Smut

A - Inbred lines crossed with (WF9 \times Oh43)

		$b u$.	perct.	perct.	perct.	perct.	in.	in.	perct.	perct.
1	R71.	91	20	80	90	100	67	31	1	4
2	R74.	65	22	77	92	99	66	29	0	1
3	R74A	46	21	72	96	92	69	29	1	7
4	R76.	86	22	78	79	89	77	38	4	7
5	R78.	77	23	81	68	95	70	33	4	5
6	R84.	67	21	80	89	98	68	33	2	5
7	R101.	81	21	79	81	99	70	32	1	9
8	R104.	81	21	82	88	100	70	34	0	11
9	R109	79	23	79	94	88	69	31	1	1
10	R112.	88	20	82	76	95	67	27	2	7
11	R113.	68	21	74	84	97	67	31	0	5
12	R114.	56	19	80	95	95	74	32	0	11
13	R132.	80	21	79	67	100	69	33	1	5
14	R134.	88	21	78	92	94	79	36	1	2
15	R135.	76	21	83	74	96	67	31	9	14
16	R151.	101	22	82	90	99	74	32	1	5
17	R154.	95	21	82	62	98	71	31	0	5
18	R158.	77	19	83	92	100	75	33	5	2
19	R159.	56	22	76	98	98	62	26	0	2
20	R166.	78	22	81	54	97	59	28	0	4
21	R168.	89	19	84	85	99	68	28	3	5
22	R172.	94	21	82	89	100	72	36	0	4
23	R180.	69	22	76	80	97	66	27	5	6
24	R181.	96	19	78	78	98	72	32	1	3
25	R182.	62	20	79	94	97	70	33	3	2
26	R183.	45	21	77	96	100	76	33	0	8
27	R192.	86	23	79	85	99	71	28	0	4
28	R193.	77	20	79	74	98	71	29	0	3
29	R194.	78	23	79	77	99	70	33	0	3
30	R195.	68	19	78	92	98	71	32	0	6
31	R196.	75	21	79	92	98	72	35	4	4
32	R197.	96	23	80	85	93	73	35	1	2
33	R198.	95	24	80	79	97	74	32	1	16
		78	21	79	84	97	70	32	2	6

B-Single crosses

34	WF9 \times Oh43	97	19	81	92	97	72	29	0	3
35	WF9 \times B37.	76	23	75	90	100	74	35	0	9
36	B41 \times Oh7A	53	27	70	70	98	72	38	1	2
	Average	75	23	75	84	98	73	34	0	5

C - Inbred lines crossed with (WF9 \times B37)

1	R71	95	24	78	90	95	72	26	2	5
2	R74	88	24	76	94	98	72	27	0	4
3	R74A	34	23	68	90	97	73	28	0	9
4	R76	70	22	78	92	93	77	32	1	22
5	R78.	69	23	78	73	100	69	27	0	11
6	R84.	42	22	72	93	100	71	33	0	17
7	R101	89	23	80	95	97	68	28	0	9
8	R104	74	22	81	75	97	72	30	1	5
9	R109B	58	24	75	90	92	72	30	0	10
10	R112.	76	22	79	86	93	70	27	1	14
11	R113.	61	21	72	93	98	66	29	0	14
12	R114..	61	21	74	89	98	76	32	0	6
13	R132.	91	22	79	58	98	67	29	2	9
14	R134..	81	23	76	99	93	76	33	1	4
15	R135..	63	23	79	79	89	73	34	1	28

(Table is continued on next page)

Table 8. - Continued

Code	Entry	Acre yield	Mois- turein grain	Shell- ing	Erect plants	Stand	Height Plant

C-Inbred lines crossed with (WF9 \times B37) - concluded

		$b u$.	perct.	perct.	perct.	perct.	$i n$.	in.	perct.	perct.
16	R151.	97	23	79	87	98	78	34	0	5
17	R154.	91	22	81	75	96	76	30	2	8
18	R158.	64	20	75	97	97	81	33	3	8
19	R159.	51	23	72	97	97	71	27	0	12
20	R166.	87	23	80	86	97	63	28	0	2
21	R168.	80	21	81	98	96	67	25	0	12
22	R172.	76	23	77	98	99	70	31	0	7
23	R180.	69	21	78	93	99	65	26	5	15
24	R181.	93	20	77	97	97	73	30	1	4
25	R182.	53	20	74	96	99	73	26	0	4
26	R183.	40	24	74	98	95	74	35	0	7
27	R192.	82	23	76	95	99	73	30	1	12
28	R193.	63	21	75	82	97	71	25	1	6
29	R194.	76	26	77	92	99	69	32	1	4
30	R195.	68	20	75	91	94	72	32	0	5
31	R196.	69	23	76	84	99	76	33	0	7
32	R197.	87	24	77	78	94	76	34	3	2
33	R198.	66	24	75	87	93	77	35	1	22
	Average.	72	22	76	89	96	72	30	1	10

D - Single crosses

34	WF9 \times Oh43 $\ldots \ldots \ldots \ldots$	98	20	80	91	95	70	24	1
35	WF9 \times B37 $\ldots \ldots \ldots \ldots$	60	22	72	95	94	71	30	0
36	B41 \times Oh7A. $\ldots \ldots \ldots$	53	26	70	61	100	72	38	1

E-Inbred lines crossed with (B41 \times Oh7A)

1	R71.	104	26	80	90	99	74	38	2	1
2	R74.	90	25	78	88	100	72	34	0	5
3	R74A.	15	26	68	99	100	63	30	0	12
4	R76.	75	25	76	80	100	79	46	0	17
5	R78.	67	25	81	60	98	71	36	0	18
6	R84.	42	22	75	95	98	70	38	1	10
7	R101	52	24	80	97	100	70	32	1	15
8	R104.	86	22	83	86	89	68	31	0	12
9	R109B	49	27	74	92	97	74	39	0	6
10	R112.	66	23	80	88	99	70	32	1	14
11	R113.	41	25	73	97	100	59	37	0	17
12	R114.	54	22	76	86	96	76	36	0	12
13	R132.	62	24	78	61	97	71	36	0	7
14	R134.	71	26	77	91	98	74	37	1	6
15	R135.	30	23	81	89	99	69	38	2	14
16	R151.	92	25	80	90	98	78	37	0	13
17	R154.	93	23	82	46	100	74	37	0	2
18	R158.	54	23	79	98	98	81	40	6	4
19	R159.	40	25	73	97	100	70	36	0	4
20	R166.	79	24	81	48	99	70	35	0	6
21	R168.	79	21	83	96	84	71	37	0	18
22	R172.	73	23	80	91	95	73	37	1	9
23	R180.	66	24	77	88	98	65	32	2	3
24	R181.	86	22	78	71	97	75	37	0	7
25	R182.	59	23	77	99	99	71	35	1	3
26	R183.	36	25	78	94	97	73	37	0	5
27	R192.	69	26	75	72	100	75	39	0	10
28	R193.	67	23	77	86	99	74	33	2	5
29	R194.	49	26	75	89	98	72	37	2	5
30	R195.	58	22	77	91	98	72	41	0	11
31	R196.	70	24	74	88	97	74	37	0	4
32	R197.	61	26	77	89	91	71	37	3	4
33	R198.	56	25	78	87	99	79	48	1	21
	Average.	64	24	78	85	97	72	37	1	9

(Table is concluded on next page)

Table 8. - Concluded

Code	Entry	Acre yield	Moisture in grain	Shelling	Erect plants	Stand	Height		Dropped ears	Smut
							Plant	Ear		
F-Single crosses										
		$b u$.	perct.	perct.	perct.	perct.	in.	in.	perct.	perct.
34	WF9 \times Oh43.	72	22	77	77	94	70	31	0	9
35	WF9 \times B37.	75	21	78	81	96	70	32	0	5
36	B41 \times Oh7A.	46	27	72	84	100	71	38	0	6
	Average.	64	23	76	81	97	70	34	0	6

G - Mean of inbred lines crossed with three testers

1	R71.	97	23	79	90	98	71	32	2	3
2	R74	81	24	77	91	99	70	30	0	3
3	R74A	31	24	69	95	96	68	29	0	9
4	R76.	77	23	77	84	94	78	39	2	15
5	R78.	71	23	80	67	98	70	32	1	11
6	R84.	51	22	75	92	99	70	35	1	11
7	R101	74	22	80	91	99	69	31	1	11
8	R104.	80	22	82	83	95	70	32	0	9
9	R109B	62	25	76	92	92	72	34	0	6
10	R112.	77	22	80	83	96	69	29	1	12
11	R113.	57	22	73	91	98	64	32	0	12
12	R114.	57	21	76	90	96	75	33	0	10
13	R132.	78	22	79	62	98	69	33	1	7
14	R134	80	23	77	94	95	77	36	1	4
15	R135.	57	23	81	80	95	70	34	4	19
16	R151.	97	23	80	89	98	77	35	0	8
17	R154.	93	22	82	61	98	74	33	1	5
18	R158.	65	21	79	96	98	79	36	5	5
19	R159.	49	23	74	97	98	68	30	0	6
20	R166.	81	23	81	63	98	64	31	0	4
21	R168.	83	20	83	93	93	69	30	1	11
22	R172.	81	22	80	93	98	72	35	0	7
23	R180.	68	22	77	87	98	66	29	4	8
24	R181.	92	20	78	82	97	74	33	1	5
25	R182.	58	21	77	96	98	72	31	1	3
26	R183.	40	23	76	96	97	74	35	0	7
27	R192.	79	24	77	84	99	73	32	0	9
28	R193.	69	22	77	81	98	72	29	1	5
29	R194.	68	25	77	86	99	71	34	1	4
30	R195.	65	20	76	91	97	72	35	0	7
31	R196.	72	22	76	88	98	74	35	1	5
32	R197.	81	24	78	84	93	73	36	2	3
33	R198.	72	24	78	84	96	77	38	1	20
	Average	71	23	78	86	97	72	33	1	8

H - Mean of three single-cross testers

34	WF9 \times Oh43	89	20	79	87	95	71	28	0	4
35	WF9 \times B37.	70	22	75	89	97	72	32	0	9
36	$\mathrm{B41} \times \mathrm{Oh} 7 \mathrm{~A}$	51	27	71	72	99	72	38	1	6
	Average.	70	23	75	83	97	72	33	0	6

Table 9. - HYBRIDS INVOLVING RELATED INBREDS OF ILLINOIS 1570 MATURITY

Tested in Central Illinois, 1959

(Data in boldface were not statistically different from the best performance for that characteristic. Absence of boldface figures in some columns is due to lack of statistical information.)

| Entry | Acre
 yield | Mois-
 ture in
 grain | Shell-
 ing | Erect
 plants | Stand |
| :--- | :--- | :--- | :--- | :--- | :--- | | Ear |
| :---: |
| height | | Dropped |
| :---: |
| ears | Smut

A-Hybrids involving related inbreds

		bu.	perct.	perct.	perct.	perct.	in.	perct.	perct.
1	Hy $2 \times$ WF9	60	19	77	94	98	29	0	6
2	(Hy2 \times R138) (WF9 \times R75)	73	20	81	97	96	36	4	21
3	(Hy2 \times R158) (WF9 \times R75).	73	20	80	94	93	39	2	16
4	Hy $2 \times 38-11$	85	20	80	98	98	42	8	5
5	$(\mathrm{Hy} 2 \times \mathrm{R} 138)(38-11 \times \mathrm{R} 76)$	80	19	81	81	100	46	3	17
6	$(\mathrm{Hy} 2 \times \mathrm{R} 158)(38-11 \times \mathrm{R} 76)$.	91	19	81	89	94	45	10	10
7	$(\mathrm{Hy} 2 \times \mathrm{R} 138)(38-11 \times \mathrm{CI} .38 \mathrm{~B})$	84	19	80	93	97	41	5	9
8	($\mathrm{Hy} 2 \times \mathrm{R} 158$)(38-11 \times CI.38B) .	67	20	80	93	97	37	2	11
9	$\mathrm{Hy} 2 \times \mathrm{Oh} 7$	116	20	84	76	93	39	0	0
10	$(\mathrm{Hy} 2 \times \mathrm{R} 138)(\mathrm{Oh} 7 \times \mathrm{Oh} 7 \mathrm{~A})$	112	22	83	67	99	40	1	6
11	$(\mathrm{Hy} 2 \times \mathrm{R} 158)(\mathrm{Oh} 7 \times \mathrm{Oh} 7 \mathrm{~A})$	106	22	80	86	89	41	0	1
12	$(\mathrm{Hy} 2 \times \mathrm{R} 138)\left(\mathrm{Oh} 7 \times\right.$ Oh7 ${ }^{\text {a }}$)	124	20	85	84	99	40	0	6
13	$(\mathrm{Hy} 2 \times \mathrm{R} 158)(\mathrm{Oh} 7 \times \mathrm{Oh} 7 \mathrm{~B})$	104	21	84	89	89	39	1	2
14	$\mathrm{Hy} 2 \times \mathrm{Oh} 41$	84	21	81	96	94	37	2	1
15	$(\mathrm{Hy} 2 \times \mathrm{R} 138)(\mathrm{Oh} 41 \times \mathrm{R} 118)$	63	21	78	85	98	42	0	4
16	($\mathrm{Hy} 2 \times \mathrm{R} 158$) $(\mathrm{Oh} 41 \times \mathrm{R} 118)$	61	20	73	91	97	41	1	6
17	$(\mathrm{Hy} 2 \times \mathrm{R} 138)(\mathrm{Oh} 41 \times \mathrm{Cl} 317 \mathrm{~B})$.	85	22	78	73	97	45	1	3
18	(Hy2 \times R158) $(\mathrm{Oh} 41 \times \mathrm{CI} .317 \mathrm{~B}) .$.	86	24	79	68	98	43	1	1
19	Hy $2 \times 187-2 \ldots \ldots \ldots$	60	19	82	96	96	36	1	12
20	(Hy2 \times R138) (187-2 \times W187R) .	52	21	78	87	98	39	1	7
21	(Hy2 \times R158) (187-2 \times W187R).	55	20	79	90	99	38	4	3
22	$(\mathrm{Hy} 2 \times \mathrm{R} 138)(187-2 \times \mathrm{R} 84) \ldots$.	56	20	83	85	96	41	2	5
23	$(\mathrm{Hy} 2 \times \mathrm{R} 158)(187-2 \times \mathrm{R} 84)$.	49	19	78	93	96	38	3	7
24	WF9 $\times 38-11$	83	18	81	94	100	37	3	7
25	(WF9 \times R75) $(38-11 \times \mathrm{R} 76)$	74	19	78	98	94	38	3	25
26	$(\mathrm{WF} 9 \times \mathrm{R} 75)(38-11 \times \mathrm{Cl} .38 \mathrm{~B})$	91	18	81	100	94	35	3	25
27	WF9 \times Oh7	99	20	83	97	96	31	0	5
28	$($ WF9 \times R75) (Oh7 \times Oh7A)	104	21	81	85	93	34	1	12
29	$(\mathrm{WF} 9 \times \mathrm{R} 75)(\mathrm{Oh} 7 \times$ Oh7B)	95	18	79	98	95	30	0	7
30	WF9 \times Oh41	97	19	79	52	99	34	1	4
31	(WF9 \times R75) (Oh41 \times R118)	83	20	79	76	93	37	2	5
32	$(W F 9 \times$ R75 $)(\mathrm{Oh} 41 \times \mathrm{Cl}$ (317B) \ldots	89	23	77	64	97	40	1	5
33	WF9 $\times 187-2$	68	20	83	100	93	35	1	13
34	(WF9 \times R75) (187-2 \times W187R)	72	18	81	85	100	34	1	14
35	(WF9 \times R75) (187-2 \times R84) .	71	18	82	94	92	37	1	14
36	38-11 \times Oh7	109	21	80	86	97	39	0	15
37	(38-11 \times R76) (Oh7 \times Oh7A)	109	21	82	74	100	44	1	15
38	(38-11 \times CI. 38 B) $(\mathrm{Oh} 7 \times \mathrm{Oh} 7 \mathrm{~A})$.	110	22	79	72	97	42	0	14
39	(38-11 \times R76)(Oh7 \times Oh7B) ...	108	22	82	74	96	43	0	15
40	$(38-11 \times \mathrm{Cl} .38 \mathrm{~B})(\mathrm{Oh} 7 \times \mathrm{Oh} 7 \mathrm{~B})$.	102	20	83	89	100	41	0	24
41	$38-11 \times$ Oh41	78	24	80	84	96	35	2	1
42	(38-11 \times R76) (Oh41 \times R118)	71	21	78	84	91	44	0	15
43	(38-11 \times CI. 38 B) $(\mathrm{Oh} 41 \times \mathrm{R118)}$	72	21	76	87	97	42	0	6
44	$(38-11 \times \mathrm{R} 76)(\mathrm{Oh} 41 \times \mathrm{CI} 317 \mathrm{~B})$.	81	22	74	60	94	44	0	5
45	$\begin{gathered} (38-11 \times \mathrm{CI} .38 \mathrm{~B})(\mathrm{Oh} 41 \times \\ \mathrm{CI} .317 \mathrm{~B}) \ldots \ldots \ldots \ldots \end{gathered}$	75	22	74	78	95	44	0	5
46	$38-11 \times 187-2$	73	19	82	90	99	33	1	9
47	(38-11 \times R76) (187-2 \times W187R)	76	19	84	77	100	39	4	8
48	(38-11 \times CI.38B) (187-2 \times W187R)	76	20	85	87	99	35	3	14
49	(38-11 \times R76) (187-2 \times R84)	63	19	76	87	95	43	2	18
50	(38-11 \times CI. 38 B) (187-2 \times R84)	60	20	79	97	99	39	5	23
51	$\mathrm{Oh} 7 \times \mathrm{Oh} 41$	101	22	79	81	94	36	0	3
52	$(\mathrm{Oh} 7 \times$ Oh7A) $(\mathrm{Oh} 41 \times \mathrm{R} 118)$.	95	23	77	64	93	42	0	4
53	(Oh7 \times Oh7B) (Oh41 \times R118)	100	22	80	75	100	40	0	2
54		113	25	79	45	99	45	1	2
55	$(\mathrm{Oh} 7 \times \mathrm{Oh} 7 \mathrm{~B})(\mathrm{Oh} 41 \times \mathrm{Cl} .317 \mathrm{~B}) .$.	93	24	79	63	95	42	0	5

(Table is concluded on next page)

Table 9. - Concluded

Code Entry \quad\begin{tabular}{c}
Acre

yield

Mois-

ture in

grain

\quad

Shell-

ing

\quad

Erect

plants

 Stand

Ear

height

Dropped

ears
\end{tabular} Smut

A - Hybrids involving related inbreds - concluded

		$b u$.	perct.	perct.	perct.	perct.	$i n$.	perct.	perct.
56	(Oh7×187-2)	108	20	84	71	99	36	0	6
57	(Oh7 \times Oh7A) (187-2 \times W 187R) ...	94	22	82	59	96	37	0	4
58	$(\mathrm{Oh} 7 \times \mathrm{Oh} 7 \mathrm{~B})(187-2 \times W 187 \mathrm{R}) .$.	97	19	82	56	94	37	0	4
59	$(\mathrm{Oh} 7 \times$ Oh7A) $(187-2 \times \mathrm{R} 84) \ldots$	103	21	82	60	99	39	0	7
60	$(\mathrm{Oh} 7 \times \mathrm{Oh} 7 \mathrm{~B})(187-2 \times \mathrm{R} 84)$	98	22	82	74	97	36	0	7
61	Oh41 $\times 187-2$	82	22	80	61	80	40	0	4
62	(Oh41 \times R118) (187-2 \times W187R) .	64	22	81	67	96	40	1	6
63	(Oh41×CI.317B)(187-2× W187R)	65	26	80	45	95	41	0	2
64	$(\mathrm{Oh} 41 \times \mathrm{R} 118)(187-2 \times \mathrm{R} 84)$	55	21	77	76	99	40	1	12
65	$(\mathrm{Oh} 41 \times \mathrm{CI} .317 \mathrm{~B})(187-2 \times \mathrm{R} 84) .$.	57	24	76	64	88	44	2	19
	Average.	84	21	80	81	96	39	1	9

B - Sister-line crosses

66	$\mathrm{R} 138 \times \mathrm{R} 158$	72	21	79	85	93	38	4	4
67	R158×CI.42A	74	22	82	75	97	39	8	7
	Average	73	22	80	80	95	38	6	6

C - Double crosses

68	111. 1332.	90	19	82	94	99	37	1	7
69	Ill. 1570	79	23	79	90	96	37	2	7
70	IIl. 3049	71	22	81	92	96	35	1	3
71	I11. 6021	55	21	78	86	94	40	1	19
72	I11. 6052	52	22	78	81	96	40	2	11
	Average	69	21	80	89	96	38	1	9
Ave	rage of 72 entries.	82	21	80	81	96	39	2	9

Table 10. - DOUBLE CROSSES OF ILLINOIS 1851 MATURITY Tested in South-Central Illinois, 1957-1959

(Data in boldface were not statistically different from the best performance for that characteristic. Absence of boldface figures in some columns is due to lack of statistical information.)

$\begin{gathered} \text { Rank } \\ \text { in } \\ \text { yield } \end{gathered}$	Entry	Acre yield	Moisture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears	Smut
A - Three-year averages, 1957-1959									
		bu.	perct.	perci.	perct.	perct.	in.	perct.	perct.
1	Ill. 1851.	105	26	77	85	99	49		4
2	Ill. 1660.	103	28	77	82	98	45		1
3	III. 3133.	99	26	80	86	99	45		4
4	Ill. 1539A.	98	29	77	90	98	49		3
5	III. 1928.	97	27	78	94	99	46	. . .	6
6	U.S. 523W	97	29	76	69	99	44		2
7	III. 1852.	96	28	73	81	96	45		2
8	Ill. 3129.	96	26	78	86	99	45	...	4
9	III. 3140.	96	28	76	80	99	49	\ldots	3
10	III. 3147.	95	26	78	79	99	47	...	4
11	IIl. 1856.	94	28	74	96	99	44		4
12	III. 3126.	94	25	79	90	97	45		2
13	III. 3145.	94	27	77	90	96	45	...	8
14	III. 3135.	94	27	76	94	98	46		1
15	Ill. 1850.	94	28	74	89	97	46	...	3
16	Ill. 1849.	94	28	72	96	99	45		1
17	III. 1893.	94	25	75	92	99	47		4
18	Ill. 1913.	93	22	82	89	99	44	\ldots	2
19	III. 3149.	93	25	79	94	96	43	\ldots	3
20	III. 1909.	92	24	80	90	95	44		7
21	III. 1918.	91	26	79	86	97	44		2
22	III. 1948.	91	27	79	79	98	45	\ldots	1
23	Ill. 3131.	91	27	78	81	97	47		4
24	Ill. 1332.	90	25	79	91	98	44	...	6
25	AES 805	89	24	77	93	98	44	...	7
26	Ill. 3136.	89	25	78	94	99	43		1
27	III. 1570.	88	25	77	89	98	43		1
28	III. 1935.	88	23	78	88	99	43		7
29	III. 200.	88	26	78	74	97	46		5
30	U.S. 13.	87	26	78	76	97	46		2
31	Ill. 1889 .	81	25	76	91	98	43		12
	Average.	93	26	77	87	98	45	...	4

B - Two-year averages, 1958-1959

1	III. 3190	125	20	82	94	98	46		4
2	Ill. 3198A	122	20	84	84	99	46		4
3	Kan. 4003	122	20	86	78	99	46		4
4	Ky. 105	120	20	82	88	97	45		6
5	Ill. 1660	119	21	83	93	98	44		1
6	Ky. 5712W	117	21	81	97	100	42		3
7	Ill. $3193 .$.	116	19	84	90	98	44		3
8	Ill. 3192 A	116	20	82	84	96	46		2
9	III. 1851	114	20	82	90	99	46		6
10	Ill. 3204 A	114	20	80	96	99	46		4
11	Ill. 3214.	114	20	82	85	100	44		6
12	III. 1856	113	20	82	95	99	44		6
13	Ill. 3197 B	112	20	80	94	98	43		4
14	Ill. 3210.	112	21	80	96	97	46		8
15	Ill. 1852	112	19	80	88	98	43		3
16	U.S. 523W.	112	21	81	80	99	43		4
17	Ill. 1849.	112	20	80	99	100	43		2
18	III. 3192	112	20	82	86	94	45		0
19	III. 1539 A	111	20	80	96	99	46		4
20	III. 3135	111	18	82	93	99	46		1

(Table is continued on next page)

Table 10. - Continued

$\begin{aligned} & \text { Rank } \\ & \text { in } \\ & \text { yield } \end{aligned}$		Entry	Acre yield	Moisture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears	Smut
B - Two-year averages, 1958-1959-continued										
			$b u$.	perct.	perct.	perct.	perct.	in.	perct.	perct.
21	Ill. 3140.		111	20	82	97	100	45		5
22	Ill. 3133.		110	20	84	90	99	44		6
23	Ill. 3206		110	21	80	96	98	43		4
24	Ill. 1850.		108	20	78	96	96	45		4
25	IIl. 3131.		108	18	82	82	99	46		6
26	Ill. 3145.		108	20	82	91	98	45		10
27	III. 1928.		107	20	82	96	99	44		10
28	IIl. 3129.		105	19	82	90	99	42	. . .	6
29	III. 3147.		104	18	81	84	99	46		6
30	U.S. 13.		104	18	83	83	99	44	. .	4
31	IIl. 3149.		102	18	82	93	97	41		4
32	III. 1909.		102	18	84	84	97	42	\ldots	10
33	III. 3126.		102	20	82	90	97	43	. .	3
34	IIl. 1893.		102	18	78	94	98	44		6
35	Ill. 1332 .		100	17	82	90	98	42		8
36	Ill. 1913.		100	18	86	88	99	42		3
37	III. 1918.		100	20	83	83	98	44	. .	3
38	Ill. 1948.		98	22	82	-'81	100	42	. .	2
39	Ill. 1570.		96	18	82	87	98	42		2
40	Ill. 3136.		94	18	80	92	99	41		2
41	III. 200.		94	18	80	75	96	44	. .	8
42	AES 805.		92	18	81	93	99	42	. .	10
43	Ky. 5708		92	20	77	86	99	42	. .	4
44	Ill. 1935.		88	17	80	89	98	40		11
45	III. 1889.		84	19	79	92	98	42		18
	Aver	e.	107	19	82	90	98	44		5

C -1959 results (2 replications)

1	AES 904W.	141	24	79	84	100	42	0	8
2	Ky. 105	126	21	81	95	98	40	0	2
3	Tenn. 7110 W	123	23	78	91	100	38	2	2
4	Kan. 4003.	122	22	83	70	100	40	1	4
5	Ill. 3190	121	23	79	92	98	42	0	6
6	Ill. 3198 A .	118	22	81	76	100	42	0	1
7	Ky. 5712W	118	24	80	98	100	40	1	0
8	Mo. 881.	118	24	78	87	99	40	0	4
9	Tenn. 7015	118	24	80	81	100	43	1	6
10	U.S. 642.	117	25	79	72	100	42	0	5
11	Ill. 3154	115	24	78	82	100	39	0	2
12	Tenn. 5005	114	22	79	80	100	40	0	2
13	Tenn. 7018.	114	22	83	77	95	42	0	7
14	Ill. $1660 .$.	113	23	81	92	99	40	1	1
15	Ill. 3157	112	20	81	54	100	42	2	4
16	Ill. 3214.	112	23	79	76	100	42	0	2
17	III. 3251.	112	23	80	85	100	42	4	0
18	U.S. 523 W	112	24	78	69	100	40	4	4
19	U.S. 658.	112	22	79	82	98	42	3	8
20	Ill. 1851	111	22	79	86	100	40	2	8
21	111. 3133.	111	22	82	86	99	40	4	2
22	III. 3197 B	111	22	78	92	100	40	0	2
23	III. 3362 .	111	22	81	91	100	40	0	10
24	III. 3140	110	22	80	95	100	40	1	2
25	III. 3192	110	23	79	79	100	42	2	0
26	III. 3193.	110	22	81	85	100	40	4	2
27	III. 3135	109	20	81	88	100	40	2	2
28	Ill. 3204 A	108	23	78	95	100	41	2	1
29	IIl. 3252	108	23	77	99	95	39	0	3
30	III. 3360	107	21	81	85	100	38	1	5
31	Kan. 2446W .	107	22	76	85	100	40	1	2
32	Ill. 1539A.	105	23	77	92	99	40	2	3
33	III. 1852.	105	21	77	81	99	39	0	5
34	III. 1856	104	23	78	95	100	38	1	10
35	Ill. 3145 .	104	22	80	86	99	42	1	16

(Table is concluded on next page)

Table 10. - Concluded

Rank in yield	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand

C - 1959 results (2 replications) - concluded									
		$b u$.	perct.	perct.	perct.	perct.	in.	perct.	perct.
36	III. 3192A.	104	21	79	74	96	43	1	3
37	III. 1849..	103	22	76	99	100	40	4	2
38	III. 3206.	103	24	78	96	99	38	1	4
39	III. 3337 B	103	20	82	86	95	40	1	5
40	Mo. 916	103	24	76	97	85	40	0	6
41	Tenn. 501W.	103	23	76	80	95	38	1	4
42	Tenn. 8106W	103	23	78	84	100	38	1	11
43	III. 1332.	102	19	80	92	100	39	0	12
44	III. 1928.	101	23	79	99	99	40	1	18
45	III. 3131	101	20	81	72	100	40	0	6
46	IIl. 3210.	101	24	77	97	94	42	1	4
47	III. 3335.	101	21	78	79	95	40	4	3
48	111. 3355	101	22	81	92	100	36	4	0
49	III. 6021.	101	21	80	89	99	40	3	8
50	U.S. 13.	101	21	80	79	100	40	2	5
51	Ark. 5614.	100	22	80	70	100	43	4	4
52	III. $6115 .$.	100	20	85	76	100	40	4	2
53	III. 1850	99	22	74	97	94	40	1	5
54	Ill. 3337A.	99	19	80	85	100	39	0	4
55	IIl. 3129.	97	22	79	88	100	38	1	1
56	III. 3149.	97	20	80	94	100	37	1	4
57	III. 3341A.	97	19	80	88	100	40	1	6
58	III. 1909.	96	20	81	81	96	41	5	17
59	III. 1948	96	25	80	70	100	38	0	1
60	III. 3147.	96	20	79	73	99	40	4	11
61	III. 3250.	96	24	79	71	100	40	0	1
62	III. 3341	96	20	81	72	99	39	0	11
63	Kan. 2561W	96	22	77	99	100	34	4	8
64	Ill. 3337.	95	19	79	75	100	37	1	0
65	VPI 653.	95	22	80	90	98	37	3	5
66	III. 1570.	94	20	79	82	99	38	1	2
67	III. 3126.	94	22	78	87	94	39	0	5
68	N.C. 5113.	94	25	83	86	90	40	5	9
69	III. 1918..	93	23	81	72	100	38	2	5
70	III. 1964.	93	20	79	72	100	40	4	9
	III. 3339A.	92	20	80	91	99	38	3	4
72	III. $6052 .$.	92	22	80	72	99	40	4	10
73	VPI 648.	92	23	76	99	100	38	0	14
74	Ill. 1893.	90	20	74	94	99	38	4	5
75	III. 1913.	89	20	82	78	100	36	5	4
76	III. 1996.	87	20	80	86	100	40	0	0
77	III. 3338A.	87	20	82	91	99	38	1	1
78	III. $200 .$.	86	20	79	71	100	40	0	10
79	III. 3336	86	20	79	67	96	40	0	0
80	III. 3339.	86	20	79	91	100	38	0	6
81	III. 3049.	85	22	81	86	100	34	1	1
82	III. 3136.	85	21	78	92	100	36	0	2
83	III. 3339B.	84	20	79	91	99	38	0	5
84	AES 805.	81	20	79	92	100	39	5	15
85	Ill. 3340	80	21	74	90	98	40	3	8
86	III. 1935.	79	19	76	91	100	37	1	14
87	III. 6001.	78	24	79	69	100	35	0	6
88	III. 3338.	78	21	78	87	96	38	1	5
89	III. 6109	76	20	77	79	100	36	1	8
90	Ky. 5708.	70	23	73	82	100	36	0	2
91	III. 1889.	57	22	74	95	99	36	0	23
	Average.	101	22	79	85	99	39	1	5

Table 11. - THREE-WAY CROSSES AND STANDARDS OF ILLINOIS 1851 MATURITY

Tested in South-Central Illinois, 1959
(Data in boldface were not statistically different from the best performance for that characteristic. Absence of boldface figures in some columns is due to lack of statistical information.)

Code		Entry	Acre yield	Moisture in grain	Shelling	Erect plants	Stand	Ear height	Dropped ears	Smut
A-Inbred lines crossed with (B41 \times Oh7A)										
			$b u$.	perct.	perct.	perct.	perct.	in.	perct.	perct.
1	R132.		93	20	82	42	99	32	0	3
2	R134.		113	22	79	66	100	36	5	0
3	R197.		104	22	82	62	100	35	5	2
4	R198.		101	24	83	34	99	36	13	4
5	K7-25		99	23	78	81	100	34	1	0
6	K7-47.		110	23	81	75	100	36	0	10
7	K7-50.		104	22	85	90	100	33	2	4
8	Mo5.		92	21	78	59	100	29	0	8
9	Mo6		112	21	79	83	99	36	1	5
10	Mo7.		99	24	78	37	98	38	0	8
11	Mo0225		117	24	78	95	100	36	4	5
12	Mo2788A		91	21	76	42	95	32	0	2
13	Mo9294.		106	24	80	- 71	100	36	1	4
14	Mo11077		115	22	86	40	98	38	3	3
15	Mo61072		107	23	80	98	100	36	0	2
16	Ok2011.		110	22	82	60	100	34	16	4
17	Ok2012.		106	23	81	39	99	36	4	3
18	Ok2013.		85	23	80	94	95	34	1	5
19	Ok4001.		98	23	80	71	99	36	0	2
20	Ok4002.		105	21	80	89	100	37	1	5
21	Ok4003.		103	22	81	51	100	32	0	1
22	Ok7001.		115	21	80	61	100	36	1	5
23	Ok7002.		92	19	81	42	100	38	5	4
24	Va12C.		102	21	74	96	99	35	1	4
25	Va23..		89	23	80	93	94	31	0	3
26	Va27..		117	21	79	54	100	36	2	0
27	Va29.		118	29	81	61	100	36	4	0
28	Va35C.		114	21	79	88	100	36	2	1
29	CI. 31 A .		109	22	80	81	100	34	1	4
	Avera	e.	104	22	80	67	99	35	3	3

B - Standard checks

31	I11. 1851	112	20	80	73	99	38	0	4
30	$\mathrm{B} 41 \times \mathrm{Oh} 7 \mathrm{~A}$	103	21	81	78	91	34	6	1
33	U.S. 13..	96	19	83	68	98	36	5	3
32	Ill. 1913	91	19	87	74	100	33	0	1
36	R158×CI.42A	86	20	86	92	94	33	1	1
35	$\mathrm{R} 138 \times \mathrm{R} 158$.	78	20	83	83	92	35	0	0
34	$\mathrm{Hy} 2 \times \mathrm{R} 158$.	65	20	81	95	100	34	1	2
	Average .	90	20	83	80	96	35	2	2
Aver	age of 36 entries.	102	22	81	70	98	35	2	3

Table 12. - THREE-WAY CROSSES AND STANDARDS Tested in South-Central Illinois, 1959
(Data in boldface were not statistically different from the best performance for that characteristic)

Code	Entry	Acre yield	Mois- ture in grain	Shell- ing	Erect plants	Stand	Height	Dropped ears

A - Inbred lines crossed with (WF9 \times Oh43)

		$b u$.	perct.	perct.	perct.	perct.	$i n$.	$i n$.	perct.	perct.
1	R71.	89	19	82	96		60	25	3	
2	R74.	79	20	81	91	98	65	26	1	0
3	R74A	77	20	75	60	100	68	28	1	5
4	R76.	97	20	81	94	98	70	31	3	17
5	R78.	88	20	80	91	98	62	28	4	7
6	R84.	96	20	79	89	100	64	30	4	3
7	R101	83	19	81	95	100	63	29	1	6
8	R104.	87	19	84	90	100	57	29	4	4
9	R109B	90	21	81	100	100	65	29	1	6
10	R112.	96	19	82	92	98	67	27	0	6
11	R113.	55	20	76	97	98	60	27	0	1
12	R114.	82	19	80	99	100	70	31	3	11
13	R132.	108	20	82	85	100	62	29	1	0
14	R134.	100	20	80	95	99	70	35	1	3
15	R135.	74	20	83	90	91	63	30	1	9
16	R151.	106	21	83	94	100	65	30	1	1
17	R154.	95	19	83	85	100	62	27	1	1
18	R158.	75	19	81	97	98	68	29	10	5
19	R159.	89	20	81	95	100	66	27	1	8
20	R166.	84	20	85	34	99	59	24	0	0
21	R168.	89	18	85	99	100	65	27	3	3
22	R172.	95	20	83	99	98	65	31	3	3
23	R180.	89	19	83	89	100	65	29	1	4
24	R181.	100	18	79	90	100	66	29	1	1
25	R182.	77	18	82	100	100	68	30	4	1
26	R183.	80	22	80	99	100	70	30	1	3
27	R192.	93	20	79	99	100	64	29	0	18
28	R193	98	20	81	95	96	69	31	0	1
29	R194.	99	21	82	94	100	65	32	0	3
30	R195.	91	18	80	98	100	66	28	0	9
31	R196.	96	20	81	99	98	69	34	1	1
32	R197.	102	21	83	94	100	66	33	8	3
33	R198	105	21	83	90	99	69	32	8	13
	Average	90	20	81	92	99	65	29	2	5

B - Single crosses

34	WF9 \times Oh43	100	19	84	99	98	65	26	0	5
35	WF9 \times B37.	83	19	78	100	100	66	31	5	24
36	B41 \times Oh7A	116	22	80	84	100	71	34	2	2
	Average	100	20	81	94	99	67	30	2	10

C - Inbred lines crossed with (WF9 \times B37)

1	R71	97	22	79	96	100	74	37	1	1
2	R74	100	19	81	99	100	66	29	5	3
3	R74A	57	20	70	98	100	69	33	3	11
4	R76	81	20	78	100	100	71	33	3	15
5	R78	89	20	81	94	93	66	31	0	6
6	R84.	89	19	81	89	100	63	31	0	6
7	R101	84	19	82	91	100	63	28	1	9
8	R104	90	19	84	59	98	71	34	1	3
9	R109B	94	20	81	93	95	66	29	1	3
10	R112.	93	19	82	96	100	66	31	0	8
11	R113.	67	20	77	100	100	66	32	0	4
12	R114.	87	19	78	100	100	79	39	0	5
13	R132	97	18	82	60	100	65	31	0	3
14	R134.	104	20	78	97	96	76	37	5	0
15	R135.	70	19	80	98	100	68	34	4	14

(Table is continued on next page)

Table 12. - Continued

Code	Entry	Acre yield	Moisture in	Shell-	Erect plants	Stand	Height		Dropped	Smut	
							Plant	Ear			

C - Inbred lines crossed with (WF9 \times B37) - concluded

		$b u$.	perct.	perct.	perct.	perct.	in.	in.	perct.	perct.
16	R151.	105	21	83	94	96	75	34	3	8
17	R154.	101	20	83	96	100	66	29	1	4
18	R158.	71	19	80	98	100	72	33	4	5
19	R159.	87	19	78	99	100	67	31	0	10
20	R166.	89	18	86	78	100	64	28	0	1
21	R168.	84	19	80	98	100	67	33	1	5
22	R172.	101	19	82	99	100	65	32	1	4
23	R180.	76	19	82	93	93	68	33	3	7
24	R181.	94	18	79	93	100	69	28	0	9
25	R182.	72	18	81	100	96	64	29	0	3
26	R183.	86	20	80	100	99	74	35	0	3
27	R192.	97	21	80	96	100	73	32	0	15
28	R193.	90	19	82	96	100	72	33	1	3
29	R194.	101	20	81	93	100	70	30	0	3
30	R195.	76	18	79	96	100	67	35	1	4
31	R196.	79	19	79	100	95	69	36	1	7
32	R197.	103	20	82	90	96	73	36	1	3
33	R198.	104	20	82	94	99	73	35	4	19
		88	19	80	93	99	69	32	1	6

D - Single crosses

34	WF9 \times Oh43	106	19	85	95	100	65	30	1	1
35	WF9 \times B37	88	19	79	100	100	71	32	2	15
36	B41×Oh7A	102	22	81	91	95	72	34	3	1
	Average	99	20	82	96	98	69	32	2	6

E - Inbred lines crossed with (B41 $\times \mathrm{Oh} 7 \mathrm{~A}$)

1	R71	106	22	82	91	98	65	33	0	3
2	R74	98	21	81	100	98	63	26	0	3
3	R74A.	74	20	74	99	100	67	32	1	9
4	R76	107	20	81	96	100	77	39	4	21
5	R78	82	22	80	90	99	62	32	1	1
6	R84	83	20	80	94	100	68	34	0	8
7	R101	75	20	83	82	99	65	33	0	5
8	R104.	99	19	85	64	100	68	37	0	1
9	R109B	89	21	81	99	100	67	33	1	1
10	R112.	90	20	81	94	100	61	28	1	4
11	R113.	59	21	77	99	99	63	31	0	0
12	R114.	72	19	77	96	99	74	35	1	10
13	R132.	93	20	83	43	100	70	33	0	1
14	R134.	114	21	78	94	99	78	38	1	0
15	R135.	80	20	81	87	99	74	38	0	15
16	R151.	112	21	85	92	96	71	39	3	4
17	R154.	88	20	84	71	100	67	33	0	0
18	R158.	79	19	82	96	98	73	32	1	0
19	R159.	90	22	80	99	100	70	34	0	15
20	R166.	89	20	86	35	99	61	30	1	1
21	R168.	90	19	84	94	100	64	33	1	6
22	R172.	103	19	83	98	98	65	32	1	1
23	R180.	89	21	81	91	99	72	34	3	4
24	R181.	104	18	82	58	99	76	36	1	1
25	R182.	85	20	81	98	100	70	31	1	0
26	R183.	95	22	80	98	100	77	39	0	5
27	R192.	101	23	82	82	99	74	36	1	12
28	R193.	98	20	83	89	100	66	31	0	1
29	R194.	94	21	81	91	100	69	35	0	3
30	R195.	97	19	83	90	100	65	32	0	3
31	R196.	107	21	81	98	100	66	32	3	1
32	R197.	103	21	81	80	99	66	34	8	4
33	R198.	102	22	83	70	100	69	34	5	10
		92	20	81	87	99	69	34	1	5

(Table is concluded on next page)

Table 12. - Concluded

Code	Entry	Acre yield	Moisture in grain	Shelling	Erect plants	Stand	Height		Dropped ears	Smut
							Plant	Ear		
F-Single crosses										
		$b u$.	perct.	perct.	perct.	perct.	in.	in.	perct.	perct.
34	WF9 \times Oh43	95	19	86	95	94	63	26	0	1
35	WF9 \times B37	74	19	80	99	100	65	30	2	12
36	B41 \times Oh7A	108	22	80	80	100	74	37	0	1
	Average.	92	20	82	91	98	67	31	1	5

G - Mean of inbred lines crossed with three testers

1	R71	97	21	81	95	99	66	32	1	3
2	R74	93	20	81	97	98	65	27	2	2
3	R74A.	69	20	73	98	100	68	31	2	8
4	R76.	95	20	80	97	99	73	34	3	18
5	R78	86	21	80	92	96	63	30	2	5
6	R84.	89	20	80	90	100	65	31	1	5
7	R101	80	19	82	90	100	64	30	1	7
8	R104	92	19	84	71	99	65	33	2	3
9	R109 B	91	21	81	97	98	66	30	1	3
10	R112	93	19	82	94	99	65	29	0	6
11	R113	60	20	76	99	99	63	30	0	2
12	R114	80	19	78	98	100	74	35	1	9
13	R132	99	19	82	63	100	65	31	0	1
14	R134	106	21	79	95	98	75	36	3	1
15	R135	75	20	81	92	97	68	34	2	13
16	R151	107	21	84	93	98	70	34	2	4
17	R154.	94	20	84	84	100	65	30	1	2
18	R158.	75	19	81	97	98	71	31	5	3
19	R159.	89	20	80	98	100	68	30	0	11
20	R166.	87	19	86	49	99	61	27	0	1
21	R168.	88	19	83	97	100	65	31	2	5
22	R172.	100	20	83	98	98	65	32	2	3
23	R180.	85	20	82	91	97	68	32	2	5
24	R181	99	18	80	80	100	70	31	1	4
25	R182.	78	19	81	99	99	67	30	2	1
26	R183.	87	21	80	99	100	74	35	0	3
27	R192.	97	21	80	92	100	70	32	0	15
28	R193.	95	20	82	93	99	69	32	0	2
29	R194.	98	21	82	93	100	68	32	0	3
30	R195.	88	19	80	95	100	66	32	0	5
31	R196.	94	20	80	99	98	68	34	2	3
32	R197.	102	21	82	88	98	68	34	5	3
33	R198.	104	21	83	85	99	70	34	5	14
		90	20	81	91	99	68	32	2	5

H - Mean of three single-cross testers

34	WF9 \times Oh43	100	19	85	96	97	64	27	0	2
35	WF9 \times B37	82	19	79	99	100	67	31	3	17
36	B41 \times Oh7A	109	22	80	85	98	72	35	2	1
	Average.	97	20	81	93	98	68	31	2	7

Table 13. - STATE-WIDE PERFORMANCE OF ILLINOIS THREE-WAY CROSSES AND STANDARDS

Tested in Illinois, 1959
(Data in boldface were not statistically different from the best performance for that characteristic)

Code	Entry	Acre	Mois-	Shell-	Erect	Stand	Hei		Dropped ears	Smut
		yield	grain	ing	plants	Stand	Plant	Ear		
A - Inbred lines crossed with (WF9 \times Oh43)										
		$b u$.	perct.	perct.	perct.	perct.	$i n$.	in.	perct.	perct.
1	R71.	98	22	82	94	99	71	31	2	4
2	R74.	81	23	79	92	98	73	31	0	1
3	R74A	71	23	74	97	97	75	31	1	7
4	R 76.	98	23	79	81	94	80	39	6	9
5	R78.	94	23	81	83	96	73	34	4	5
6	R84..	86	22	79	87	95	73	37	4	6
7	R101.	90	22	80	90	99	75	34	1	8
8	R104.	90	22	83	86	99	71	34	2	5
9	R109B	92	23	81	97	94	74	34	1	3
10	R112..	100	21	82	88	96	76	32	2	8
11	R113.	79	21	76	88	98	71	33	0	3
12	R114.	82	21	79	95 !	97	81	35	1	9
13	R132.	101	23	80	73	100	74	35	1	2
14	R134.	108	23	79	94	95	82	39	2	3
15	R135.	82	22	83	80	92	74	35	5	9
16	R151.	114	23	83	89	99	77	35	2	3
17	R154.	108	22	82	78	97	76	34	1	3
18	R158.	86	21	81	94	99	80	35	7	3
19	R159.	84	23	79	94	98	72	31	1	4
20	R166.	85	23	83	59	96	66	29	0	2
21	R168..	100	20	84	92	99	73	32	2	3
22	R172.	105	22	82	94	99	76	36	1	2
23	R180.	84	23	79	85	98	72	32	4	5
24	R181.	105	19	79	80	98	76	33	1	1
25	R182.	83	21	81	96	96	78	35	4	3
26	R183.	69	23	78	90	99	80	36	1	5
27	R192.	93	23	79	91	99	77	34	1	12
28	R193.	97	22	80	87	97	78	33	1	3
29	R194.	92	24	80	82	99	75	36	1	3
30	R195.	88	21	79	93	99	77	35	1	6
31	R196.	92	22	80	96	99	78	38	3	2
32	R197.	105	25	81	88	97	77	38	5	2
33	R198.	103	24	82	85	98	79	37	4	13
	Average.	92	22	80	88	97	75	34	2	5
Test	er WF9 \times Oh43.	98	22	81	93	97	75	32	2	3

B - Inbred lines crossed with (WF9 \times B37)

1	R71	98	25	77	95	95	80	37	3	3
2	R74	94	24	78	98	89	77	34	3	5
3	R74A.	52	24	69	95	99	80	35	2	8
4	R76.	81	23	77	94	96	82	39	3	16
5	R78.	87	24	79	84	96	77	33	1	9
6	R84.	68	22	76	90	99	77	38	1	12
7	R101	86	22	79	92	98	74	34	0	8
8	R104	87	22	82	71	98	78	38	2	3
9	R109B	85	24	78	94	95	78	35	1	6
10	R112.	93	22	80	93	98	76	35	2	9
11	R113.	78	22	75	95	99	74	37	1	6
12	R114.	85	23	76	96	99	85	40	0	4
13	R132.	97	22	79	58	98	75	36	1	5
14	R134.	97	24	76	97	95	83	39	6	4
15	R135.	75	23	79	87	89	79	40	4	16

(Table is continued on next page)

Table 13. - Continued

Code	Entry	Acre yield	Moisture in grain	Shelling	Erect plants	Stand	Height		Dropped ears	Smut
							Plant	Ear		
B - Inbred lines crossed with (WF9 \times B37) - concluded										
		$b u$.	perct.	perct.	perct.	perct.	$i n$.	in.	perct.	perct.
16	R151.	111	24	80	90	98	84	40	3	4
17	R154.	105	22	81	83	98	80	37	1	4
18	R158.	75	21	77	95	95	84	38	4	6
19	R159.	78	23	76	97	99	77	36	0	9
20	R166.	91	23	82	85	98	73	34	1	5
21	R168.	97	21	80	98	98	75	34	0	8
22	R172.	95	23	78	97	100	76	37	1	4
23	R180.	79	22	79	94	95	74	35	4	8
24	R181.	103	21	78	93	99	79	34	1	5
25	R182.	69	21	77	98	88	79	35	1	5
26	R183.	61	24	76	99	97	81	40	0	4
27	R192.	94	24	77	93	98	82	37	0	13
28	R193.	83	23	78	90	99	79	35	2	4
29	R194.	95	25	79	93	98	78	38	1	5
30	R195.		21	77	93	97	77	39	1	6
31	R196.	88	23	77	93	98	81	40	1	7
32	R197.	105	25	79	82	96	81	41	2	3
33	R198.	89	25	78	88	97	83	41	5	18
	Average.	87	23	78	91	97	79	37	2	7
Test	er WF9 \times B37 .	79	23	76	95	99	77	36	2	12

C - Inbred lines crossed with (B41 $\times \mathrm{Oh} 7 \mathrm{~A}$)

(Table is concluded on next page)

Table 13. - Concluded

Code	Entry	Acre yield	Moisture in grain	Shelling	Erect plants	Stand	Height		Dropped ears	Smut
							Plant	Ear		
D - Mean of inbred lines crossed with three testers and grown at three locations										
		$b u$.	perct.	perct.	perct.	perct.	in.	in.	perct.	perct.
1	R71.	98	25	80	93	97	76	36		3
2	R74.	93	24	79	94	95	75	34	1	3
3	R74A	54	24	72	96	99	76	35	1	8
4	R76..	92	24	78	86	97	82	41	4	13
5	R78.	83	24	80	79	97	75	35	2	8
6	R84..	70	23	78	89	98	75	39	3	9
7	R101.	81	22	80	89	99	75	35	1	8
8	R104.	89	22	82	77	98	75	38	2	4
9	R109B	86	24	79	95	96	76	37	1	4
10	R112..	92	23	81	91	98	75	34	2	9
11	R113..	72	22	76	93	99	72	36	0	5
12	R114..	81	22	77	94	98	83	38	1	7
13	R132.	92	23	80	61	98	76	37	1	3
14	R134.	100	24	78	93	96	82	40	4	3
15	R135.	70	23	81	85	93	77	39	4	12
16	R151.	111	24	81	88. ${ }^{1}$	98	81	39	3	5
17	R154.	103	22	82	76	98	78	37	2	3
18	R158.	79	22	79	95	97	83	38	5	3
19	R159.	76	24	77	96	99	76	36	1	7
20	R166.	85	23	82	64	98	70	34	1	3
21	R168.	97	21	82	95	97	74	35	1	7
22	R172.	97	23	80	94	99	76	38	1	4
23	R180.	79	23	79	88	97	74	35	3	5
24	R181.	104	20	79	80	99	79	36	1	3
25	R182.	77	22	79	97	94	78	36	2	3
26	R183.	66	24	78	95	98	81	40	1	4
27	R192.	89	24	78	88	99	80	38	0	12
28	R193.	88	23	79	88	99	78	35	2	3
29	R194.	84	25	79	89	99	76	38	1	4
30	R195.	82	21	78	93	98	77	39	1	6
31	R196.	89	23	78	93	98	79	39	2	4
32	R197.	100	25	79	85	97	78	40	4	3
33	R198.	91	25	80	82	98	81	41	4	14
	Average. .	86	23	79	88	98	77	37	2	6
Aver	rage of 3 testers.	82	24	77	85	98	77	36	2	6

Entry	Acre yield		Oil		tein	Moisture in grain	Shelling	Erect plants	Stand	Ear height	Smut
A - Northern Illinois, DeKalb, 1958											
	$b u$.	perct.	lb. per acre	perct.	lb. per acre	perct.	perct.	perct.	perct.	$i n$.	perct.
III. $6052^{\text {b }}$.	124	5.44	378	10.44	725	40	83	66	99	59	. .
U.S. 13...	122	4.49	307	9.44	645	34	76	69	100	57	.
Ill. $6021{ }^{\text {b }}$	102	5.41	309	9.60	514	39	75	48	98	62	.
Average.	116	5.11	331	9.63	628	38	78	61	99	59	. .
B - North-Central Illinois, Peoria, 1958-1959											
III. $6052^{\text {b }}$ III. $6021^{\text {b }}$	106 104	6.73 5.72	399 333	10.10 9.50	600	22	80	74 81	$\begin{aligned} & 990 \\ & 96 \end{aligned}$	$\begin{aligned} & 58 \\ & 58 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$
Average.	105	6.22	366	9.80	576	21	81	78	98	58	8
C-Central Illinois, Urbana, 1954-1959											
U.S. 13.	110	4.72	291	10.30	634	20	\cdots	86	.	\cdots	\cdots
III. 6052^{b}	103	6.37	367	11.32	653	22	.	81	\cdots	.	\ldots
Ill. 6021^{b}	102	6.31	360	11.11	635	20	. .	84
Average.	105	5.80	339	10.91	641	21		84	\ldots	.	.
D - Central Illinois, Urbana, 1958-1959											
R182(38-11 \times K4)	97	5.13	279	10.20	554	.	\cdots	95	97	\cdots	\cdots
R158(38-11 \times K4)	97	5.05	274	11.02	599	. .	.	91	98	.	.
U.S. 13......... . .	96	4.40	237	9.80	527	.	.	92	98	.	.
Ill. 6021^{b} i	92	5.92	305	10.49	540	.	.	86	98	.	.
$\mathrm{R} 199(38-11 \times \mathrm{K} 4)$	88	5.64	278	9.76	481	.	\ldots	88	96	\cdots	.
Ill. $6115 \ldots \ldots$	88	5.25	259	11.11	548	.	.	90	98	.	.
$\mathrm{R} 207(38-11 \times \mathrm{K} 4)$	88	4.49	221	10.17	501	.	.	94	98	.	.
111. 6052b.	86	6.36	306	10.67	514	.	\cdots	78	95	\cdots	\cdots
111. $6109 \ldots$	86	5.22	251	11.02	531	\cdots	\ldots	87	96	.	.
$\mathrm{R} 213(38-11 \times \mathrm{K} 4)$	84	5.50	259	10.06	473	.	.	92	96	. .	.
111. 6062.	82	6.04	277	11.09	509	.	.	84	97	.	.
	78	6.88	300	10.39	454	.	.	84	98	\cdots	.
R183(38-11 \times K4)	78	5.38	235	10.97	479			88	98	.	.
R85(38-11 \times K4).	76	4.98	212	11.75	500	.	\cdots	88	93	.	.
R120(38-11 \times K4)	75	4.87	205	12.58	528	\cdots	.	96	96	.	.
Average.	86	5.41	260	10.74	516			89	97		\cdots
E-South-Central Illinois, Brownstown, 1958-1959											
Ill. $6021{ }^{\text {b }}$.	105	6.28	369	10.30	606	18	83	88	98	46	5
U.S. 13.	104	4.58	267	10.08	587	18	84	89	96	43	3
Ill. $6052^{\text {b }}$.	102	5.82	332	10.75	614	18	83	84	96	46	7
Average.	104	5.56	323	10.38	602	18	83	87	97	45	5

a Data not analyzed statistically. b Available for commercial production.

Table 15. - DOUBLE-CROSS HYBRID NUMBERS, PEDIGREES, AND INDEX TO TABLES

(The order of the single crosses does not indicate which should be used as seed or pollen parent.)

Hybrid	Pedigree	Table No.
AES 510	(WF9 \times W22) ($\mathrm{H} 19 \times \mathrm{B9}$)	BC
AES 514	(B14 \times A239) (A295 \times W64A)	2 ABC
AES 601	(M14 \times B14) (WF9 \times W22) .	2 ABC
AES 610 (III. 1580)	(M14 \times A73) $(\mathrm{Oh} 43 \times \mathrm{Oh} 51 \mathrm{~A})$	2ABC
AES 702 (III. 1790)	($\mathrm{ClO3} \times \mathrm{M14}$) $(\mathrm{Hy} 2 \times \mathrm{WF} 9)$	ABC, 6ABC
AES 703 (III. 3019A)	(WF9 \times Oh43) (B14 \times B38)	4 ABC
AES 704 (III. 3016A)	. ${ }^{(W F 9} \times$ Oh43) (B14 \times B37)	4ABC
AES 705 (III. 3011).	(${ }^{(C 103 \times O} \times$ O43) (WF9 \times B14)	ABC, 5C, 6BC
AES 805 (III. 1770).	($\mathrm{Cl} 103 \times \mathrm{Oh45)}$ (WF9 $\times 38-11$)	SABC, 10ABC
AES 809.......	((C103 $\times \mathrm{Oh} 43)(\mathrm{P} 8 \times \mathrm{WF9})$.	6ABC
AES 810	(WF9 $\times \mathrm{H} 50$) ($\mathrm{Oh} 7 \mathrm{~B} \times \mathrm{Oh} 45$)	6ABC
AES 904 W	. (K64 x Mo22) (T111 \times TI15)	10C
III. 21.	(Hy2 $\times 187-2$ (WF9 $\times 38-11$)	ABC, 6ABC
III. 101	(M14 \times WF9) (187-2 \times W26)	2ABC
III. 200	. (WF9 x 38-11) (L317 \times K'4)	10ABC
III. 1091A	(Hy2 x 187-2) (M14 \times WF9)	2ABC
III. 1277 .	. (M14 \times WF9) (1.205 $\times 187-2$)	2 ABC
III. 1332.	. $\mathrm{Hy} 2 \times \mathrm{Oh} 7$) (WF9 $\times 38-11$).	C, 9C, 10ABC
III. 1332-3	(WF9 x 38-11) (Oh7 \times Cl.42A)	.6ABC
III. 1332-4	.(HyR x Oh7) (WF9TMS $\times 38-11$)	6ABC
III. 1539A	. $38-11 \times \mathrm{Cl} .7)(\mathrm{K} 201 \times \mathrm{Cl}$ 21E)	10ABC
III. 1555A	(WF9 \times Oh51A) ($1.224 \times$ Oh28)	. 2 ABC
III. 1559B	. (M14 \times Oh28) (WF9 \times Oh51A)	. 2 ABC
III. 1560A	. (WF9 x Oh51A) (1.205 \times Oh28)	. 2 ABC
III. 1570.	. $\mathrm{Hy} 2 \times \mathrm{Oh41)}$ (WF9 $\times 38-11$)	C, 9C, 10ABC
III. 1660	. $\mathrm{K} 4 \times \mathrm{K} 201)(\mathrm{Oh} 7 \times \mathrm{Cl} .21 \mathrm{E})$	10ABC
III. 1813.	((C103 \times Oh45) (Hy2 \times WF9)	6ABC
III. 1831.	. (WF9 x W146) (K237 \times Oh45).	4ABC
III. 1849	($\mathrm{C103} \times 38-11)(\mathrm{K} 201 \times \mathrm{Cl} .21 \mathrm{E})$	10ABC
III. 1850	. $(\mathrm{ClO3} \times \mathrm{Cl} .21 \mathrm{E})(38-11 \times \mathrm{K} 2 \mathrm{O})$	10ABC
III. 1851.	($\mathrm{ClO3} \times 38-11)(\mathrm{Oh} 7 \times \mathrm{Cl} .21 \mathrm{E})$.	C, 10ABC, 11B
III. 1852	($\mathrm{Cl} 103 \times \mathrm{Cl} .21 \mathrm{E})(38-11 \times \mathrm{Oh} 7)$. 10 ABC
III. 1856.	((38-11 \times Oh7) (K201 \times Cl.21E)	6ABC, 10ABC
III. 1862 (lawa 4779)	. (M14 \times WF9) (Oh43 \times Oh51A)	. 2ABC
III. 1864.	. (M14 \times WF9) (Oh43 \times W22)	$2 A B C$
III. 1880.	($\mathrm{R103} \times$ R104) (WF9 $\times 38-11$).	6ABC
III. 1889.	($\mathrm{Cl} 103 \times \mathrm{Oh} 45)(38-11 \times \mathrm{Oh} 29)$	10ABC
III. 1890.	. ${ }^{(C 103 \times O h 45)(R 75 \times 38-11) . ~}$. 6ABC
III. 1893	. $(\mathrm{Cl} 103 \times 38-11)(\mathrm{Oh} 7 \mathrm{~B} \times \mathrm{Oh} 29)$.	6ABC, 10ABC
III. 1909	. (R130 \times R151) (WF9 $\times 38-11$)	$10 \mathrm{ABC}$
III. 1913	(R151 \times R154) (WF9 $\times 38-11$)	10ABC, 11B
III. 1916	. (R130 \times R154) (WF9 $\times 38-11$).	. 6ABC
III. 1918	. (R151 \times R153) (WF9 $\times 38-11$)	6ABC, 10ABC
III. 1919	. (R130 \times R156) (WF9 $\times 38-11$).	6ABC
III. 1921.	. (R71 \times R105) (WF9 $\times 38-11$)	4ABC, 6ABC
III. 1922.	. (Hy2 \times WF9) (R71 \times R105)	6ABC
III. 1926.	(R71A \times R74) (R75 $\times 38-11$)	. 6 ABC
III. 1928	($R 75 \times 38-11$) (R98 \times R105))	SABC, 10ABC
III. 1935.	($\mathrm{C103} \mathrm{\times R101)} \mathrm{(R75} \mathrm{\times 38-11)}$.	. 10 ABC
III. 1936	. (Hy2 x WF9) (M14 \times B14).	. 2ABC

Table 15. - Continued

Hybrid	Pedigree	Table No.
III. 1944	(R71 \times R98) (R130 \times R153)	6ABC
III. 1948	(R105 \times R15I) (R153 \times R154)	10ABC
III. 1952.	. (M14 \times B14) (A545 \times W64A)	. 2 ABC
III. 1955.	. (M14 \times A297) (B14 \times W64A)	2ABC
III. 1957.	. (M14 \times A545) (B14 \times W64A)	2ABC
III. 1958	. (M14 \times Oh26A) $($ B14 \times A545)	$2 A B C$
III. 1959 (Ind. 6225)	. (M14 \times W64A) (B14 \times A 297) .	2ABC
III. 1960	. $(\mathrm{M14} \times \mathrm{W} 64 \mathrm{~A})(\mathrm{B} 14 \times \mathrm{A} 545)$	2ABC
III. 1961.	($\mathrm{B} 14 \times \mathrm{A} 545)(\mathrm{A} 239 \times$ W64A).	2ABC
III. 1962	(${ }^{(14 \times A 545)}$ (A297 \times W64A)	2ABC
III. 1964	($\mathrm{R138} \times \mathrm{R143}$) (R144 \times WF9)	.10C
III. 1966	(R163 \times R165) (WF9 \times B14)	4ABC
III. 1968.	. (R163 \times R169) (WF9 \times B14)	$4 A B C$
III. 1969	($\mathrm{R} 165 \times \mathrm{R168}$) (WF9 \times B14)	4ABC
III. 1969A	(R165 \times WF9) (R168 \times B14) .	2ABC
III. 1971.	. (R168 \times R169) (WF9 \times B14)	. 4 ABC
III. 1976	. $38-11 \times \mathrm{Oh} 41)(\mathrm{Oh} 7 \times \mathrm{Cl} .21 \mathrm{E})$.6ABC
III. 1978	. ${ }^{\text {Cl03 }} \times 38-11$ ($\mathrm{WF9} \times \mathrm{Oh7A}$)	.6ABC
III. 1981.	($\mathrm{W} 9 \times 38-11$ ($\mathrm{Oh} 7 \times \mathrm{Cl}$ 21E)	6ABC
III. 1983	. $\mathrm{Hy} 2 \times \mathrm{B14}$) (WF9 $\times 38-11$)	6ABC
III. 1984.	. (Hy $2 \times$ WF9) (Oh29 \times Oh41)	6ABC
III. 1987.	. (C103 \times B10) (Hy2 \times WF9) .	. 6 ABC
III. 1989	. (Hy2 x WF9) (M14 x Oh29).	6ABC
III. 1992.	. ${ }^{(C 103 \times \text { B14 }}$) (WF9 \times Oh7A)	6ABC
III. 1994	. (C103 \times WF9) (Oh29 \times Oh41)	6ABC
III. 1996	. $\mathrm{Cl} 103 \times \mathrm{B14})(\mathrm{Hy} 2 \times \mathrm{Oh} 7)$.	4C, 6ABC, 10C
III. 3009	. $814 \times 821)($ A297 \times W64A)	. 2 ABC
III. 3010	. $\mathrm{Cl}^{(03 \times N 24)}$ (WF9 \times B14)	4ABC
III. 3011A	($\mathrm{ClO3} \times \mathrm{B14}$) (WF9 \times Oh43)	4C, 6C
III. 3015B.	($\mathrm{WF} 9 \times \mathrm{N} 24$) (B14 \times B37) .	.4BC
III. 3016.	. (WF9 \times B14) (B37 \times Oh43) .	5C
III. 3017.	. (WF9 \times 814) (B37 \times Oh45)	4ABC
III. 3020	. (WF9 \times B14) (N6 \times Oh43) .	4ABC
III. 3021.	. (WF9 x B14) (N6 \times Oh45).	4ABC
III. 3022	. WF (\times B14) ($\mathrm{N} 22 \mathrm{~A} \times \mathrm{Oh} 43$)	4ABC
III. 3023A	. (WF9 x B14) (N24 \times Oh43) .	4ABC
III. 3023B	.(WF9 \times N24) (B14 \times Oh43)	.4BC
III. 3026	(W F9 \times B14) $(\mathrm{N} 610 \times \mathrm{Oh} 45)$. 4 ABC
III. 3029	. (WF9 x B14) (Oh43 \times Oh45) .	4ABC
III. 3030	(WF9 x B14) $(\mathrm{Oh} 43 \times \mathrm{Oh} 422)$.	4ABC
III. 3032 .	. (WF9 x B38) ($\mathrm{Oh} 28 \times \mathrm{Oh} 43$) .	. 4 ABC
III. 3039	. ${ }^{\text {B37 }} \times$ B38) $(\mathrm{Oh} 28 \times \mathrm{Oh} 43)$.	. 4 ABC
III. 3042	. (WF9 x B14) (B40 \times Oh45) .	. 4 ABC
III. 3043 .	. (R71 \times R109B) (WF9 \times B14)	2ABC, 4ABC
III. 3044A	(R109B \times B14) (R113 \times WF9).	$\ldots .4 C$
III. 3045A.	. (R109B \times WF9) (R168 \times B14)	
III. 3046	. (R113 \times R168) (WF9 \times B14) .	2ABC
III. 3049.	. (Hy2 \times WF9) (R71 \times R1098)	6ABC, 9C, 10C
III. 3055	($\mathrm{R109B} \times \mathrm{R16B}$) (WF9 $\times 38-11$).	.6ABC
III. 3074	. (R71 \times R168) (R105 \times R163) .	. . 6 ABC
III. 3075	. (Hy2 \times WF9) (R95 \times R101) .	. 6 ABC
III. 3080.	. (Hy2 \times WF9) (R101 \times Oh451)	. 6 ABC
III. 3092	($\mathrm{Hy} 2 \times \mathrm{WF} 9$) (B38 \times K720) .	6ABC
III. 3093	($\mathrm{Hy2} \times \mathrm{WF} 9)(\mathrm{B} 38 \times \mathrm{N} 25)$.	6ABC
III. 3102 .	(R101 \times Oh41) (WF9 $\times 38-11$)	6 C

(Table is continued on next page)

Table 15. - Continued

Hybrid	Pedigree	Table No.
III. 3104.	(R109B \times N25 ((WF9 $\times 38-11$)	6ABC
III. 3107	(R154 \times B38) (WF9 $\times 38-11$).	6ABC
III. 3115.	(R127 \times N35) (WF9 $\times 38-11$)	6ABC
III. 3117	($\mathrm{R} 127 \times \mathrm{R154)}$ (WF9 $\times 38-11$)	6ABC
III. 3119	. $\mathrm{Hy2} 2 \times \mathrm{WF} 9)(\mathrm{R154} \times \mathrm{B38}$)	6ABC
III. 3121.	(Hy $2 \times$ WF9) (R127 \times R154)	6ABC
III. 3124	(Hy2 \times WF9) (R71 \times R168)	6ABC
III. 3126	($\mathrm{R101} \times \mathrm{Mo3})(38-11 \times \mathrm{K} 201)$	10ABC
III. 3129	$(\mathrm{R101} \times \mathrm{Mo8})(38-11 \times \mathrm{K} 201)$	10ABC
III. 3131.	($\mathrm{R} 129 \times \mathrm{Mo3}$) (38-11 \times K201)	OABC
III. 3133	(R127 \times Mo3) (38-11 \times K201)	10ABC
III. 3135	(R71A \times Mo3) (38-11 \times K201)	10ABC
III. 3136	. $\mathrm{R} 74 \times \mathrm{R101}$) $(38-11 \times \mathrm{K} 201)$.	10ABC
III. 3140 .	$(38-11 \times$ K201) $(\mathrm{Ky126} \times$ Cl. 21 E$)$	10ABC
III. 3145	($\mathrm{R} 129 \times \mathrm{Mo9150}$) $(38-11 \times \mathrm{K} 201)$	10ABC
III. 3147	($\mathrm{R} 118 \times \mathrm{R129)}$ (38-11 \times K201)	10ABC
III. 3149.	($\mathrm{R} 74 \times \mathrm{R129})(38-11 \times \mathrm{K} 201)$	10ABC
III. 3151.	((WF9 $\times 38-11$) (B14 \times Oh41)	. 6 ABC
III. 3152 .	(M14 \times WF9) (B14 \times Oh43)	2ABC
III. 3152A	(M14 \times B14) (WF9 \times Oh43)	. 2 C
III. 3152B.	(M14 \times Oh43) (WF9 \times B14)	
III. 3152AI	. (M14 \times B14) (Oh43 \times W64A)	2 C
III. 3152B1.	. (M14 \times Oh43) (B14 \times W64A)	2 C
III. 3152-1.	. (M14 \times W $64 A)($ B14 \times Oh43)	2 C
III. 3154	. (R132 \times R134) (K201C \times Cl.21E)	.10C
III. 3157.	($\mathrm{R} 132 \times \mathrm{R135}$) (R134 \times R136)	10 C
III. 3160	($\mathrm{WF9} \times \mathrm{Oh} 7)(\mathrm{B14} \times \mathrm{Oh} 43)$.	4 ABC
III. 31678 .	. (WF9 x B37) (A545 \times Oh43).	2BC
III. 3169B	. (WF9 \times Oh43) ($\mathrm{B} 37 \times \mathrm{Oh} 28$)	2BC
III. 3173.	($\mathrm{B} 14 \times \mathrm{Oh} 43)(\mathrm{A} 545 \times \mathrm{N} 24)$.	2BC
III. 3174 .	($\mathrm{B} 37 \times \mathrm{Oh} 28$) (A297 \times Oh43)	2BC
III. 3176 B	($\mathrm{B} 37 \times \mathrm{Oh} 43)(\mathrm{A} 545 \times \mathrm{Oh} 28)$	2BC
III. 3179 .	(R101 \times R105) (R151 \times Cl.42A)	2 C
III. 3182A.	($\mathrm{R105} \times \mathrm{WF9}$) (R151 \times R154)	4C, 6C
III. 3182B.	($\mathrm{R} 105 \times \mathrm{R154)}$ (R151 \times WF9)	4C, 6C
III. 3183.	($\mathrm{R} 105 \times \mathrm{R153)}$ (R154 \times WF9) .	6BC
III. 3183A	(R105 \times R154) (R153 \times WF9).	4C, 6C
III. 3184A	($\mathrm{R105} \times$ WF9) (R154 \times Cl. 42 A)	4C, 6C
III. 3186.	(R151 \times Cl. 42 A$)(\mathrm{R} 154 \times$ WF9)	.6BC
III. 3190	($\mathrm{Cl} 103 \times \mathrm{K} 201)(\mathrm{Ky126} \times \mathrm{Oh7B})$.	10BC
III. 3192 .	($(\mathrm{ClO3} \times \mathrm{Oh7B})(\mathrm{Ky126} \times \mathrm{N} 82481)$. 10 BC
III. 3192A.	($\mathrm{ClO3}^{\times \mathrm{Ky1} 26)(\mathrm{N} 82481 \times \mathrm{Oh7B}) .}$. 10BC
III. 3193.	($38-11 \times \mathrm{K} 712)(\mathrm{K} 201 \times \mathrm{Oh} 7 \mathrm{~B})$.10BC
III. 3197 B	($\mathrm{K} 201 \times \mathrm{Cl}$ 21E) (K712 \times Oh7B)	.108C
III. 3198A	. (K201 x Ky126) (N82481 \times Oh7B)	.10BC
III. 3204A	($\mathrm{Cl}^{(033 \times K 712) ~(K 201 \times K y 126) . ~}$. 10BC
III. 3206	($\mathrm{C} 103 \times \mathrm{K} 712$) (K201 $\times \mathrm{Cl} .21 \mathrm{E})$. 10BC
III. 3210	($\mathrm{ClO3} \times \mathrm{K} 712)(\mathrm{Ky126} \times \mathrm{Cl}$ 21E)	10BC
III. 3214 .	($\mathrm{K} 201 \times \mathrm{Ky126)}$ ($\mathrm{K} 712 \times \mathrm{Oh} \mathrm{Cl}^{\text {2 }}$)	10BC
III. 3217	($\mathrm{Hy} 2 \times \mathrm{WF9}$) (R109B \times H60) .	.6C
III. 3218.	($\mathrm{Hy} 2 \times \mathrm{WF9}$) ($\mathrm{H} 51 \times \mathrm{H} 60$)	6 C
III. 3219.	($\mathrm{Hy} 2 \times \mathrm{WF9}$) (H51 \times 187-2-13657-6) .	6C
III. 3220	. (Hy $2 \times$ WF9) (H54 \times H6O)	6C
III. 3221.	($\mathrm{Hy} 2 \times$ WF9) (H54 \times 187-2-13657-6)	6 C
III. 3222	($\mathrm{Hy} 2 \times \mathrm{W} 9$) ($\mathrm{H} 60 \times \mathrm{K} 758$) .	

(Table is continued on next page)

Table 15. - Continued

Hybrid	Pedigree	Table No.
III. 3223	(Hy2 \times WF9) ($\mathrm{H} 60 \times \mathrm{Cl} .30$)	6 C
III. 3224	(Hy2 \times WF9) ($\mathrm{H} 60 \times \mathrm{Cl} .38 \mathrm{~B}$)	6C
III. 3225	($\mathrm{Hy} 2 \times$ WF9) ($\mathrm{H} 60 \times 187-2-13657-6$)	6C
III. 3226	($\mathrm{Hy} 2 \times \mathrm{H6O}$) (WF9 $\times 38-11$).	6C
III. 3227	. $\mathrm{Hy2} \times \mathrm{K7} 57$) (WF9 $\times 38-11$)	6C
III. 3228	. (R71 \times H60) (WF9 $\times 38-11$).	6C
III. 3229	($\mathrm{R1098} \times \mathrm{H60}$) (WF9 $\times 38-11)$	6C
III. 3230	(WF9 $\times 38-11)(\mathrm{H} 53 \times \mathrm{H} 60)$.	6C
III. 3231.	. (WF9 $\times 38-11)(\mathrm{H} 53 \times \mathrm{K} 757)$.	6C
III. 3232	. (WF9 x 38-11) (H60 K K757).	6C
III. 3233	. (WF9 $\times 38-11)(\mathrm{H60} \times \mathrm{Cl} .30)$	6C
III. 3234	(WF9 $\times 38-11)(\mathrm{H6O} \times \mathrm{Cl} .42 \mathrm{~A})$.	6C
III. 3235	(WF9 $\times 38-11)(\mathrm{K} 757 \times \mathrm{Cl} .30)$	6C
III. 3236.	. (R101 \times WF9) (R105 $\times \mathrm{Cl} .42 \mathrm{~A})$	6C
III. 3237	($\mathrm{R} 101 \times$ WF9) (R151 \times R154)	6C
III. 3237A.	(R101 \times R154) (R151 \times WF9)	6 C
III. 3238	. (R101 \times WF9) (R151 \times Cl.42A)	6C
III. 3239.	($\mathrm{R} 101 \times$ WF9) (R154 \times Cl.42A)	6C
III. 3240	($\mathrm{R105} \times \mathrm{WF})(\mathrm{R151} \times \mathrm{Cl} .42 \mathrm{~A})$	6C
III. 3240A.	($\mathrm{R} 105 \times \mathrm{Cl} .42 \mathrm{~A})(\mathrm{R151} \times \mathrm{WF})$)	6C
III. 3241.	(R105 \times R154) (R130 \times WF9)	6C
III. 3242	(R101 \times R105) (R151 \times WF9)	6C
III. 3244	(R105 \times R153) (R151 \times WF9)	6C
III. 3246	($\mathrm{R105} \times \mathrm{R130}$) (R153 \times WF9)	.6C
III. 3247	(R130 \times R154) (R153 \times WF9)	.6C
III. 3248	(R151 \times R154) (R153 \times WF9)	6C
III. 3249	(R153 \times WF9) (R154 \times Cl. 42 A$)$	6C
III. 3250	(K712 \times N82481) (Ky126 \times Oh41)	10C
III. 3251.	(38-11 \times K201) (K711 \times Ky126)	10C
III. 3252	. $38-11 \times \mathrm{K} 201)(\mathrm{K} 711 \times \mathrm{Cl} .21 \mathrm{E})$	10C
III. 3253	($R 71 \times R 74$) (R1098 \times R168)	6 C
III. 3254 .	(R71 \times R112) (R74 \times R109B)	
III. 3255	($R 71 \times$ R112) $(R 1098 \times R 168)$	6C
III. 3256	(R74 \times R96B) (R112 \times R168) .	6C
III. 3257	($R 74 \times R 1098)(R 110 \times R 112)$.6C
III. 3258 .	($R 74 \times R 109 B)(R 112 \times R 114)$.	6C
III. 3259.	($R 74 \times$ R109B) (R112 \times R168)	6C
III. 3259A	(R74 \times R112) (R1098 \times R168) .	.6C
III. 3259B .	(R74 \times R168) (R109B \times R112)	6C
III. 3260 .	(R74 \times R112) (R109B \times R115) .	6C
III. 3260A	($R 74 \times R 115)(R 109 B \times R 112)$.	6C
III. 3264.	(R109B \times R168) (R112 \times R114) .	.6C
III. 3265.	(R71 \times R109B) (WF9 \times Oh43)	2C
III. 3266.	(R74 \times R109B) (WF9 \times Oh43)	2C
III. 3267	(R74 \times R110) (WF9 \times Oh43).	2C
III. 3268	($R 74 \times$ R112) (WF9 \times Oh43) .	2C
III. 3269 .	($\mathrm{R} 74 \times \mathrm{R114)}$ (WF9 \times Oh43).	2 C
III. 3270 .	(R74 \times R168) (WF9 \times Oh43)	2C
III. 3271.	($\mathrm{R9} 6 \mathrm{~B} \times \mathrm{R112}$) (WF9 \times Oh43) .	2 C
III. 3272 .	($\mathrm{R109B} \times \mathrm{R112}$) (WF9 \times Oh43).	2C
III. 3273	(R109B \times R114) (WF9 \times Oh43).	
III. 3274 .	(R112 \times R168) (WF9 \times Oh43).	2C
III. 3275	(R114 \times R168) (WF9 \times Oh43)	2 C
III. 3276	(R71 \times R109B) ($38-11 \times$ K4) .	6C
III. 3277	(R74 \times R109B) (38-11 \times K4)	. 6 C

Table 15. - Continued

Hybrid	Pedigree	Table No.
III. 3278	($\mathrm{R} 74 \times \mathrm{R110}$) (38-11 \times K4)	6C
III. 3279	(R74 x R112) (38-11 \times K4)	6C
III. 3280	(R74 \times R114) (38-11 \times K4)	6C
III. 3281.	(R74 \times R168) (38-11 \times K4) .	6C
III. 3282	($\mathrm{R} 96 \mathrm{~B} \times \mathrm{R112}$) (38-11 \times K4)	6C
III. 3283	($\mathrm{R} 109 \mathrm{~B} \times \mathrm{R} 112$) (38-11 $\times \mathrm{K} 4)$.	
III. 3284	. (R109B \times R114) (38-11 \times K4)	6C
III. 3285	. $\mathrm{R} 112 \times \mathrm{R168)}$ (38-11 \times K4)	. 6 C
III. 3287	. (C103 \times Oh43) (WF9 \times Oh51A)	2BC
III. 3291.	(P8 \times WF9) (B14 \times Oh43)	4BC
III. 3294	(C103 \times Hy2) (P8 \times WF9)	4BC
III. 3300	. (M14 \times Oh43) (R113 \times B14)	2C
III. 3300A	. (M14 \times R113) (B14 \times Oh43)	2C
III. 3301.	(M14 \times Oh43) (R168 \times B14)	2C
III. 3302	. (M14 \times B14) (R172 \times WF9)	2C
III. 3302AI	(M14 \times W 64A) (R172 \times B14)	2C
III. 3303	. (M14 \times Oh43) (R172 \times B14) .	2 C
III. 3304	(M14 \times B37) (WF9 \times Oh43)	. 2 C
III. 3305	. (M14 x A295) (WF9 x Oh43)	. 2 C
III. 3306	. (M14 \times Oh43) (L12 \times B14) .	. 2 C
III. 3307	. (R113 \times B14) (R172 \times WF9)	. 2 C
III. 3308	(R113 \times Oh43) (L12 \times B14)	. 2 C
III. 3309	(R113 \times B14) (WF9 \times Oh43)	. 2 C
III. 3309-1	. (R113 \times B14) (Oh43 \times W 64A)	. 2 C
III. 3310.	(R165 \times B14) (WF9 \times Oh43)	2C
III. 3311.	(R168 \times B14) (WF9 \times Oh43)	2C
III. 3312 .	(R172 \times B14) (WF9 \times Oh43) .	2C
III. 3312-1.	(R172 \times B14) (Oh43 \times W64A)	.2C
III. 3313.	($\mathrm{L} 12 \times \mathrm{B14}$) $(\mathrm{Oh} 43 \times \mathrm{W} 64 \mathrm{~A})$	2C
III. 3314	. $\mathrm{Hy} 2 \times \mathrm{RIO9B}$) (R168 \times B14)	4C
III. 3315 .	($\mathrm{Hy} 2 \times \mathrm{R109B}$) (WF9 \times B14) .	
III. 3315A.	. (Hy $2 \times$ WF9) (R109B \times B14)	4C
III. 3316.	(Hy2 \times WF9) (R113 \times B14).	. 4 C
III. 3317.	. (Hy2 x WF9) (R165 \times B14)	4 C
III. 3318	(Hy2 \times WF9) (R168 \times B14)	. 4 C
III. 3318A.	($\mathrm{Hy} 2 \times \mathrm{R} 168$) (WF9 \times B14).	4 C
III. 3319.	. $\mathrm{Hy} 2 \times$ WF9) (R172 \times B14)	
III. 3320	($\mathrm{R109B} \times \mathrm{R113}$) (R168 \times B14) .	4 C
III. 3321.	(R109B \times R165) (R168 \times B14)	4C
III. 3322	. (R109B \times Oh28) (R168 \times B14)	. 4 C
III. 3323	(R109B \times R172) (WF9 \times B14) .	
III. 3323A	(R109B \times WF9) (R172 \times B14) .	4C
III. 3325	(R109B \times WF9) (B14 \times Oh28).	4C
III. 3325A.	. (R109B \times Oh28) (WF9 \times B14)	4C
III. 3326	(R168 \times B14) (WF9 \times Oh28) .	4C
III. 3326A	($\mathrm{R} 168 \times$ Oh28) (WF9 \times B14)	4 C
III. 3328	(Hy2 x R129) (R71 \times R74) .	.6C
III. 3329	. (Hy2 \times WF9) (R71 \times R74).	6C
III. 3330	. . $\mathrm{Hy} 2 \times 38-11$) (R71 \times R74) .	6C
III. 3331.	. (Hy2 x R129) (R71 \times WF9) .	6C
III. 3332 .	. (Hy2 \times R74) (R127 \times WF9)	
III. 3332A	(Hy2 \times WF9) (R74 \times R127).	.6C
III. 3333	. (Hy2 x R129) (R74 \times WF9).	6C
III. 3334	. (Hy2 x R154) (R74 \times WF9) .	6C
III. 3335	(C103 \times R113) (Hy2 x 38-11)	10C

Table 15. - Continued

Hybrid	Pedigree	Table No.
III. 3336	$(\mathrm{ClO3} \times \mathrm{R153})(\mathrm{Hy2} \times \mathrm{R154})$.	10C
III. 3337	($\mathrm{Cl03} \times \mathrm{Hy2}$) (R154 $\times 38-11$)	10C
III. 3337A.	$(\mathrm{ClO3} \times \mathrm{R154)}$ (Hy2 $\times 38-11$)	10C
III. 3337B	$(\mathrm{ClO3} \times 38-11)(\mathrm{Hy} 2 \times \mathrm{Rl} 54)$	10C
III. 3338	. $(\mathrm{ClO3} \times \mathrm{R154)}$ ($\mathrm{Hy} 2 \times \mathrm{RI} 68$).	10C
III. 3338A.	($\mathrm{Cl} 103 \times \mathrm{R168)}$ ($\mathrm{Hy} 2 \times \mathrm{R154)}$.	10C
III. 3339	. $\mathrm{ClO3} \times \mathrm{Hy2}$) (R168 $\times 38-11$)	10C
III. 3339A	. ${ }^{(C 103 \times R 168)}$ (Hy $\left.2 \times 38-11\right)$	10C
III. 3339B	($\mathrm{Cl} 103 \times 38-11)(\mathrm{Hy} 2 \times \mathrm{R168})$	10C
III. 3340 .	($\mathrm{C103} \times \mathrm{R159}$) (Hy2 $\times 38-11)$	OC
III. 3341.	. $(\mathrm{ClO3} \times \mathrm{R154)}$ (R168 $\times 38-11)$.	10C
III. 3341A	($\mathrm{Cl} 103 \times \mathrm{R168)}(\mathrm{R154} \mathrm{\times 38-11)}$.	10C
III. 3342	($\mathrm{Hy} 2 \times \mathrm{R168)}$ (R154 $\times 38-11$)	.6C
III. 3343	($\mathrm{R} 71 \times \mathrm{R} 74$) $(\mathrm{H} 49 \times \mathrm{H} 55)$	6C
III. 3344	(R71 \times R105) ($\mathrm{H} 49 \times \mathrm{H} 55$)	6 C
III. 3345	($\mathrm{R} 71 \times \mathrm{R109B}$) ($\mathrm{H} 49 \times \mathrm{H} 55$)	4C, 6C
III. 3346	($\mathrm{R} 71 \times \mathrm{R168}$) ($\mathrm{H} 49 \times \mathrm{H} 55$)	6C
III. 3347	(R74 \times R101) (H49 \times H55)	4C, 6C
III. 3348	(R74 \times R109B) $(\mathrm{H} 49 \times \mathrm{H} 55)$	4C, 6C
III. 3349	($\mathrm{R} 74 \times \mathrm{R168})(\mathrm{H} 49 \times \mathrm{H} 55)$.	. 6 6
III. 3350	($\mathrm{R101} \times \mathrm{Oh41)}$ ($\mathrm{H} 49 \times \mathrm{H} 55)$.	6C
III. 3351.	($\mathrm{R109B} \times \mathrm{R168}$) (H49 \times H55)	6C
III. 3353	(R71 \times R74) (H49 \times H51).	6C
III. 3354	(R71 \times R105) (H49 \times H51)	6C
III. 3355	. $\mathrm{R} 71 \times \mathrm{Rl098}$) $(\mathrm{H} 49 \times \mathrm{H} 51)$	6C, 10C
III. 3356	($\mathrm{R} 71 \times \mathrm{R168)}(\mathrm{H} 49 \times \mathrm{H} 51)$.	6C
III. 3357 .	(R74 \times R101) (H49 \times H51).	6C
III. 3358	($\mathrm{R} 74 \times \mathrm{R109B})(\mathrm{H} 49 \times \mathrm{H} 51)$	6C
III. 3359	($\mathrm{R} 74 \times \mathrm{R168)}(\mathrm{H} 49 \times \mathrm{H} 51)$.	6C
III. 3360	(R101 \times Oh41) $(\mathrm{H} 49 \times \mathrm{H} 51)$.6C, 10C
III. 3361.	($\mathrm{R109B} \times \mathrm{R168}$) ($\mathrm{H} 49 \times \mathrm{H} 51)$.	6C
III. 3362	. $\mathrm{Oh} 7 \times \mathrm{Cl} .42 \mathrm{~A})(\mathrm{H} 49 \times \mathrm{H} 51)$	6C, 10C
III. 3363	. $(\mathrm{ClO3} \times \mathrm{Bl4})(\mathrm{R109B} \times \mathrm{WF9})$.6C
III. 3364	(R74 \times R101) (K201 \times Cl.21E)	6C
III. 3365	.(Hy2 x R71) (WF9 x 38-11).	6C
III. 3366	. (Hy2 \times R109B) (WF9 $\times 38-11$)	6C
III. 3367	. (R74 \times WF9) ($\mathrm{Oh} 7 \times \mathrm{Cl}$.21E) .	.6C
III. 3368	. $\mathrm{Hy} 2 \times \mathrm{R} 71)(\mathrm{WF9} \times \mathrm{Bl4}$) .	6C
IIII. 3369 .	. (C103 \times B14) (R71 \times WF9)	.6C
III. 3370 .	($\mathrm{Cl} 103 \times \mathrm{B14})(\mathrm{R7} 4 \times$ WF9)	6C
III. 3371.	. (C103 \times B14) (R172 \times WF9)	
III. 3372	. (C103 \times CI.7) (R74 \times WF9)	.6C
III. 3373	. (C103 \times WF9) (R101 \times Oh41)	6C
III. 3374	. (R101 \times Oh41) (WF9 \times B14) .	6 C
III. 3375	. $(\mathrm{ClO3} \times \mathrm{WF9})(\mathrm{Hy} 2 \times \mathrm{Cl} .42 \mathrm{~A})$	
III. 3376	. $\left.{ }^{(H y 2} \times \mathrm{Cl} .42 \mathrm{~A}\right)(\mathrm{WF9} \times \mathrm{B14})$.	.6C
III. 3377 .	. (Hy2 x Cl.42A) (WF9 \times N6).	
III. 3378 .	. (Hy2 \times Cl.42A) (WF9 \times W64A).	6C
III. 3379 .	. (WF9 \times W64A) (Oh43 \times Oh45R) .	2 C
III. 3380 .	. $\mathrm{Hy} 2 \times \mathrm{WF}$) (R172 \times Oh43) .	
III. 3381 .	($\mathrm{R} 71 \times$ WF9) (B14 \times Oh43).	2C
III. 3382	($\mathrm{R109B} \times$ WF9) (B14 \times Oh43).	2C
III. 3383	. (M14 \times WF9) (R172 \times Oh43)	2C
III. 3384 .	($\mathrm{Hy} 2 \times \mathrm{Oh} 7$) (WF9 \times Oh41) .	6C
III. 2247 W	($\mathrm{R144} \times \mathrm{R145)}(\mathrm{R146} \times \mathrm{R148})$	2ABC

Table 15. - Concluded

[^0]: ${ }^{1}$ R. W. Jugenheimer, Assistant Dean and Assistant Director; K. E. Williams, Crops Testing Technician; R. L. Harrison, Research Assistant.

[^1]: " "Multiple Range and Multiple F Tests," by D. B. Duncan in Biometrics 11 (1), 1-43. 1955.

