DOE/EIA-0109(82/05]
Petroleum Supply Morthly

## Subscription Information

The Petroleum Supply Monthly report is prepared by the Petroleum Supply Division, Office of Oil and Gas, Energy Information Administration, Department of Energy. This publication is available on an annual subscription basis from the Superintendent of Documents, U.S. Government Printing Office. Send order form and payment to:

Superintendent of Documents<br>U.S. Government Printing Office<br>Washington, D.C. 20402<br>Order Desk (202) 788-8238<br>Single Copy<br>Domestic-\$5.00/copy<br>Foreign- $\$ 6.25 /$ copy<br>Subscription<br>Domestic-\$60.00/year<br>Foreign-\$75.00/year

For questions on energy statistics or information on availability of other EIA publications, contact: National Energy Information Center, EI-20, U.S. Department of Energy, Forrestal Building, Washington, D.C. 20585; (202) 252-8800.

Released for printing: May 24, 1982

## Contents

## Petroleum Focus

Summary Statisties Tables March 1982

## Detailed <br> Statistics <br> Tables <br> March 1982


Introduction ..... 1
Petroleum Focus ..... 3
Summary Statistics ..... 11
Detailed Statistics ..... 35
Glossary ..... G-1
Explanatory Notes. ..... E-1
Motor Gasoline ..... 4
Crude Oil and Petroleum Products Overview ..... 12
Crude Oil Supply and Disposition. ..... 16
Finished Motor Gasoline Supply and Disposition. ..... 20
Distillate Fuel Oil Supply and Disposition ..... 21
Residual Fuel Oil Supply and Disposition ..... 26
Liquefied Petroleum Gases and Ethane Supply and Disposition. ..... 27
Other Petroleum Products Supply and Disposition ..... 30
Imports of Crude Oil and Petroleum Products from OPEC Sources ..... 81
Imports of Crude Oil and Petroleum Products from Non-OPEC Sources ..... 82
Sources ..... 33
National Statistics
Table 1. U.S. Petroleum Balance ..... 37
Table 2. Supply and Disposition of Crude Oil and Petroleum Products ..... 38
Table 3. Year-to-Date Supply and Disposition of Crude Oil and Petroleum Products ..... 39
Table 4. Daily Average Supply and Disposition of Crude Oil and Petroleum Products ..... 40
Table б. Year-to-Date Daily Average Supply and Disposition of Crude Oil and Petroleum Preducts ..... 41
Supply and Disposition of Crude Oil and Petroleum Products by PAD Districts
Table 6. PAD Distriet I ..... 42
Table 7. PAD District II ..... 43
Table 8. PAD Distriet III ..... 44
Table 9. PAD District IV ..... 45
Table 10. PAD District V ..... 46
Production of Crude Oil and Lease Condensate
Table 11. Production by PAD District and State ..... 47
Table 12. Offshore Production by State. ..... 48
Table 13. Production of Lease Condensate by State ..... 48
Natural Gas Processing
Table 14. Natural Gas Processing Plant Preduction of Petroleum Produets by PAD Distriet ..... 49
Refinery Operations by PAD District
Table 15. Refinery Input of Crude Oil and Petroleum Produets ..... Б0
Table 16. Refinery Production of Petroleum Produets ..... 61
Table 17. Pereent Refinery Yield of Petroleum Products ..... 62
Table 18. Refinery Reeeipts of Crude Oil ..... 63
Table 19. Fuels Consumed at Refineries ..... ह8
Imports and Exports of Crude Oil and Petroleum Products
Table 20. Imports by PAD District ..... 54
Table 21. Imports by Source and PAD District ..... E5
Table 22. Exports by PAD District ..... 59
Table 23. Exports by Destination ..... 60


Figures


Glossary

## Explanatory Notes



## Stocks

Table 24. Stocks of Crude Oil and Petroleum Products by PAD Distriot

## Transportation of Crude Oil and Petroleum Products Between PAD Districts

Table 25. Movements by Pipeline, Tanker, and Barge .............................. 67
Table 26. Movements by Pipeline ........................................................ 68
Table 27. Movements by Tanker and Barge ....................................... 68
Table 28. Net Movements by Pipeline, 'Tanker, and Barge
69

## Heavy Fuel Oils by Sulfur Content <br> Table 29. Production of No. 4 Fuel Oil and Residual Fuel Oil ..................... 70

Table 30. Stocks of No. 4 Fuel Oil and Residual Fuel Oil .......................... 71
Table 31. Imports of Residual Fuel Oil by Country of Origin........................ 72
Table 82. Imports of Residual Fuel Oil by State of Entry .......................... 73
Petroleum Overview, Annual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Petroleum Overview, Monthly . ......................................................... 15
Petroleum Overview, Monthly .................................................... 14
Crude Oil and Petroleum Products Ending Stocks, Monthly ...................... 15
Crude Oil Supply and Disposition, Annual ........................................... 18
Crude Oil Supply and Disposition, Monthly .......................................... . . . 19
Crude Oil Ending Stocks, Annual......................................................... . . . . 18
Crude Oil Ending Stocks, Monthly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Products Supplied, Annual ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Products Supplied, Monthly ......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Motor Gasoline Ending Stocks, Annual ............................................... . . . 22
Motor Gasoline Ending Stocks, Monthly .............................................. . . . 23
Distillate Fuel Oil Ending Stocks, Annual................................................ 24
Distillate Fuel Oil Ending Stocks, Monthly ........................................ . . 25
Residual Fuel Oil Ending Stocks, Annual ............................................. 24
Residual Fuel Oil Ending Stacks, Monthly ........................................... 25
Liquefied Petroleum Gases and Ethane Ending Stocks, Annnal .................. 28
Liquefied Petroleum Gases and Ethane Ending Stocks, Monthly ................. 29
Other Petroleam Products Ending Stoeks, Annual .................................... . . 28
Other Petroleum Products Ending Stocks, Monthly ................................ . . 29
Definitions of Petroleum Products and Other Terms......................... G-1

1. Data Colleetion .......................................................................
1.1 EIA-64: Natural Gas Liquids Operations Report
1.2 EIA-87, 88, 89, 90. Joint Petroleum Reporting System
1.3 EIA-161, $162,168,164,165:$ Weekly Petroleum Reporting System
1.4 EIA-170: Tanker and Barge Shipments of Crude Oil and Petroleum
Products Between Districts
1.5 ERA-60: Report of Oil Imports into the United States and Puerto Rico
1.6 Census Import and Export Tabulations
2. Estimation . ...................................................................... E-10
2.1 Supply
2.2 Domestic Crude Oil Production
2.3 Disposition
2.4 Stocks
2.5 Average Stock Levels
2.6 Movements
2.7 Preliminary Monthly Statisties
3. Accuracy of Petroleum Supply Data......................................... E-14
4. Changes in Petroleum Industry Reporting . .................................. E-20
5. Notes on Tables ............................................................. . E-28
5.1 Crude Oil and Petroleum Products Overview
5.2 Crude Oil Supply and Disposition
5.3 Finished Motor Gasoline Supply and Disposition
5.4 Distillate and Residual Fuel Oil Supply and Disposition
5.5 Liquefied Petroleum Gases and Ethane Supply and Disposition
5.6 Other Petroleum Products Supply and Disposition
5.7 U.S. Petroleum Balance (Table 1)

PAD Districts.................................................................. G-9
Bureau of Mines Refinery Districts ..................................................... G-9
District Map, Oil and Gas Division, Rxilroad Commission of Texas.............. G-10


## Introduction



## About the Petroleum Supply Monthly

The Petroleum Supply Monthly (PSM) replaces four Energy Information Administration (EIA) monthly petroleum publications:
. Monthly Petroleum Statistics Report (MPSR)
-Monthly Petrodeum Statement (MPS)

- Supply, Disposition, and Stocks of All Oils by Petrolewm Administrotion for Defense Districts and Imports into the United States, by Country (PADD Report)
* Availability of Heavy Fuel Oils by Sulfur Level (Sulfur Report)

Care has been taken to insure that all the important information from the four consolidated publications is included in the PSM. The PSM displays these statistics in a comprehensive and cohesive manner, and provides readers with improved explanations of the data.

Artieles designed to help readers understand and interpret petroleum statistics will highlight the PSM. These articlos may focus upon a seasonal event sueh as the availability of motor gasoline for the summer driving season, or upon a trend such as the reduced utilization and shutdown of domestic refineries as consumption of petroleum products decreases.

The Petroleum Supply Monthly is designed to be convenient for both casual observation and serious analyais. For readers who want to know how the velume of petroleum products being supplied to the domestic market eompares with previous trends, the Summary Statistics section lists monthly and annual data series and displays them graphically. For a more detailed vlow of the current situation, energy analysts can study petroleum supply and disposition statistics for a broad range of products in the Detalled Statistics section. As a special service, preliminary monthly statistics derived from EIA's weekly reporting systems are presented with the Summary Statistics.

The Explanatory Notes present objective information describing data collection, estimation, data quality, changes to data colleeted and interpretation of tables. Industry terminology and product definitions are listed alphabetically in the Glossary,

The Petroleum Supply Monthly (PSM) is prepared by the Petroleum Supply Divison, Office of Oil and Gas, Energy Information Administration, Department of Energy.

NOTE: The article on "Timeliness and Accuracy of Selected Monthly Petroleum Supply Data" and the special articles-"Focus on Motor Gasoline Statistics" and "Fracus on Crude Oil Produetion Data"-which appeared in the A pril 1982 issue of this publication, were prepared in the Petroleum Supply Division, Energy Information Administration, by Dr. Naney Kirkendall.



#### Abstract

6 Motor gasoline supplies appear to be adequate to meet projected demand of between 6.6 and 7.0 million barrels per day for the summer driving season.",




## Motor Gasoline Outlook: Summer 1982

Motor gasoline supplies appear to be adequate to meet projected demand for the summer 1982 driving seasan, even if there is a drop in prices, a slight increase in seasonal consumption, and a smaller-than-expected increase in the overall efficiency of the vehicles currently on the road. Although current stock levels are low, they should be sufficient, in combination with ample crudeoil stocks and excess refining capacity, to serve as a buffer against seasonal demand for gasoline.

According to the Energy Information Administration's Short-Term Energy Outlook (February 1982), demand for motor gasoline this summer ${ }^{1}$ will average between 6.6 and 7.0 million barrels a disy (between 3 percent above and 3 parcent below the demand during the same period last year), ${ }^{2}$ Motor gasoline demand reached its peak in 1978 and declined during each of the following 3 years: it decreased 5.1 percent between 1978 and 1979, 7 percent between 1979 and 1980, and 4 percent between 1980 and 1981. ${ }^{3}$ This decline may not continue in 1982 if the effects of decreased real prices and slightly jncreased real income offset the effects of improved efficiency in the vehicle fleet. However, even if demand reaches the highest levels projected for the summer of 1982, supplies appear to be sufficient to meet it.

Refinery production, withdrawals from inventories, and imports are the major components of the motor gasoline supply. In general, normal demand is met by refinery production; sudden increases in demand are met by stock withdrawals and by imports. During the summer of 1981, motor gasoline demand averaged 6.8 million barrels a day. Refinery production, at 6.5 million barrels a day, accounted for 94 percent of this quantity: stock withdrawals accounted for 4 percent, and imports accounted for 2 percent. During the first quartar of 1982 , refinery output averaged 6.0 million barrels a day, a level which represents about 88 percent of the projected summer demand. 4 In early 1982, refining capacity utilization remained low, while crude oil stocks at refineries were at

[^0]levels close to those reported a year ago These crudestock levels, in combination with the availability of excess refining capacity, will allow for increased motor gasoline production should it be needed. Motar gasoline inventories during the first quarter of 1982 averaged 10 percent below last year's levels but remain within the average range of inventories over the past 3 years. ${ }^{4}$ Projected summer inventory levels also fall within this historical range.

Consumption during the summer of 1988 is not projected to fall below 1981 levels. This projection is based upon two assumptions: that real prices (adjusted for inflation) will continue to decline, and that there will be smaller-than-expected increases in overall vehicle fleet efficiency due to the retention of older cars. The 1982 mid-price forecasts presented in the February 1982 Short-Term Energy Outloof assume that real motor gasoline prices will decline 8 percent from 1981 levels. Real prices are not expected to increase during the summer. Nominal prices of motor gasoline (i.e., the price the consumer sees at the pump) have been falling steadily since March 1981. Gasoline prices declined over the last year, mainly becsuse of the steady decrease in crude oil prices resulting from a lack of product demand. Faced with high inventories and the cost of carrying them, oil companies have started giving rebates to dealers. This action has triggered dealer competition for certain grades and types of services. For these reasons, the increases in the nominal price of gasoline, which usually occur during the summer, may not occur or may be much smaller than normal in 1982.

[^1]

Few countries in the world are as dependent on gasoline as the United States. In 1980, 220 million Americans used about 101 billion gallons ( 2.4 billion barrels) of gasoline, just over 450 gallons (about 11 barrels) per capita. During 1979, the United Statea consumed 46 percentof gasoline consumed worldwide. Although the United States is a major consumer of all petroleum products, gasoline is the only fuel for which the United States so dorninates world cansumption. U.S. consumption of all petroleum products is only 28 percent of the worid total and is even leas for major productsother than gasoline. The United States uses 26 percent of the jet fuel and kerosene consumed in the world, 22 percent of the distillate fuel oil, and 17 percent of the residual fuel oil.t
U.S. gasoline consumption often is compared inappropriately to that of Japan and of Western Europe. U.S. gasoline consomption per capita is about four

times that of European countries with similar levela of income. ${ }^{2}$ A common explanation for the difference is that Americans have a proference for large antomobiles and automobile travel. A more fundamental explanation is that the average population density in the United States ia one-tenth that of Europe, so much more travelling ia required to

[^2]achieve the same degree of interaction among people.

Largely because of the denser settlement patterns, people in some Western industrialized countries rely more on walking and on energy-efficiont, non-gasoline-consuming transportation, Some countries traditionally have regarded gasoline as a luxury rather than as a necessity and have placed aubstantial taxes on it, often more than a dollar a gallon. As a result, U.S. gasoline prices are among the lowest in the world compared to pricea in other petroleum importing countries. These differences in price and in population density, which tend to reinforce each other, probably explain the large differences in the amount of gasoline used by the United Statea and by the rast of the industrialized world.

Gasoline consumption in the United States has increased steadily aince 1919, the year when the Bureau of Public Roade began collecting data on motor fuel use., From that date until the present there have been only four periods in which annual highway motor fuel use has declined; the Depression (1982-83), World War II (1942-48), the Arah-OPEC Oil Embargo (1974), and the period from 1978 through 1981.

Demand, at least in the short run, is not particularly responsive tosmall changes in price or economic conditions, Despite economic recesaions in 1988, 1945, 1949, $1954,1958,1961,1970$, and 1975, gasoline use continued to increase. ${ }^{4}$

During those years steady population grow th and growing vabicle stocka were apparently sufficient to overcome income declines, Until 1973, real gasoline prices wore stable or gradually declining. Even when prices jumped substan-

[^3]> 66More than 90 percent of the gasoline consumed in this country is used by cars and light vehicles...,"
tially in 1973 through 1974, consumption decreased only slightly. A large part of that small decline, perhaps a quarter to a half, can be attributed to shortages assoeiated with the Arab-OPEC oil embargo.

A contributing factor for theshort-term stability of gasoline demand is that gasaline use, like mast energy consumption, is associated with a capital stock of energy consuming durable goods-the stock of motor vehicles and other gesoline-powered equipment. More than 90 percent of the gasoline consumed in this country is used by ears and light trucks (under 10,000 pounds gross vehicle weight).

More than 141 million lightduty vehicles were in use in the United States in 1981.5 The total value of this stock is over $\$ 400$ billion. Because these vehicles have median lifetimes of $10-15$ years, the size and composition of the vehicle flect
change only gradually from one year to the next. However, as the following artiele on vehicle characteristics suggests, the gradual change in the motor vehicle fleet eomposition has contributed to substantial changes in gasoline consumption patterns in the United States. The steady fuel efficiency improvement in new ears sinee 1975, which is likely to persist through 1985, has generated a long-term downward pressure on gasoline demand. In the past, short-term declines in gasoline use have been caused by economie depression, higher prices, shortages, or wartime rationing. The current decline is primarily the result of long-term changes in the fuel economy of vehicles. Because of the inertia in the capital steck of vehicles, this downward trend is not likely to he reversed by short term changes in prices and income.
${ }^{5}$ Motor Vohiclo Manufacturers Associntion, Motor Velicle Facts and Figures 'g1, p. 22.



# The Impact of Changing Vehicle Characteristics and Use on Motor Gasoline Demand 

## Introduction

During the 9 years since the ArabOPEC Oil Embargo there have been substantial changes in the characteristies and efficiency of vehicles driven in the United States. During those years, the fuel economy of new cars has been improved, the number of diesel-powered cars in the vehicle fleet has increased steadily, and patterns of vehicle use have changed. These changes have had a major impact on the relative demand for fuels and have contributed to the reductions in gasoline demand which have occurred in recent years. ${ }^{1}$

## New-Car Fuel-Use Improvement

Cars and light trucks (under 10,000 pounds gross weight) account for over 90 percent of the gasoline use in the United States, About 70 percent of the gasoline use is accounted for by cars alone. Because the vehicle fleet is large and represents a substantial capital investment, its composition changes slowly. Any improvement in new-car efficiency will not cause dramatic improvement in the overall effieiency of vehicles currently on the road. Since the passage of the Energy Production and Conservation Act in 1975 (EPCA), domestic automobile manufacturers have been required to improve the fuel efficiency of their new vehicles. The mileage-pergallon (MPG) of new cars has improved dramatically since 1974, and fleet fuel economy has increased slowly butsteadily (Exhibit 1).

Between 1975 and 1980, the EPA-rated efficiency of new cars increased from 18.0 to 22.3 miles per gallon. ${ }^{2}$ The average annual growth rate in the new-car efficiency was abont 11.4 percent a year. During the same 5 -year period, the estimated overall efficiency of the vehicle fleet grew much less quickly. It showed a growth rate of about 1.6 percent a

[^4]year, or an increase from an average of 18.7 miles per gallon (MPG) in 1975 to an average of 15.2 MPG in $1980 .{ }^{3}$ The estimated fleet efficiency in 1981 was about 15.7 MPG , an improvement of about 4 percont over 1980. In 1982, the projected improvement in fleet efficiency could be about 8.4 percent; this would translate into an average fleet mileage-per-gallon for 1988 of 16.3 .4

A slowdown in new-car sales and the resulting retention of older cars may curtail the improvement in vehicle fleet efficiency during 1982 . Less than onetenth of the vehicle fleet is replaced with new cars in any given year, and the percentage seems to be declining. In 1970 about 8 percent of all passonger cars were under 1 year old. In 1980 , about 6 percent of all cars were under 1 year old. As a result, the average age of cars increased from 5.5 years in 1970 to 6.6 years in $1980{ }^{5}$ During 1982, the average age of the vehicle fleet is likely to increase.

If new car efficiency continues to improve as projected, fleet fuel economy will increase even more quickly each year through 1985. In fact, the Energy Production and Conservation Act (of 1975) sets standards for Corporate Average Fuel Economy requiring a salesweighted new-carefficiency of 27.5 MPG by 1985 .

## Increase in Diesel-Powered Vehicles

Since 1978 , sales of diesel cars and small tracks have increased dramatically contributing to the decline in gasoline demand. Before 1978, diesel cars accounted for less than one-tenth of 1 percent of the total passenger car fleet. In 1978, 167 thousand diesel cars were sold; in 1981,

[^5]66Between 1975 and 1981, the average fuel economy of the fleet has gone from 13.7
to 15.7 miles per gallon. ${ }^{\prime}$.

Sources for Exhibll 1:

1. J. D. Murrell, J. A. Foster and D. M. Brister, Environmental Protection Agency. Passonger Car and Light Truek Fund Bconomy Treads throuph 1980 SAE Paper Ngoc85s, 1881.
2. U.S Department of Energy, Highway Fuel Consumption Model, 4th Quarterly Report, July 1981. (Calculated using EPA fuel eepnomy values. It ahould be noted that BPA new car fuel comomy values for 1979 and 1980 are calculated using manufacturers' sales projections, while on-road fuel economy is based on actual sales data.)
3. U.S. Department of Transportation, Federal Highway Administration statistien.

573 thousand diesel cars were mildi, ${ }^{6}$ diesel cars accounted for 1 percent of the fleet. Despite a general decline in newcarsales in 1981 , sales of cliesel-powerns cars increased by 81.1 pereent ovor 1980 levels. The Oak Ridge Natimual lahoratory projects that sales of diowel fuel will reduce motur gasaline demand by between 1 and 2 percent in 1982 and by about 5 percent by 1985 .

## New Patterns of Vehicle Use

Changes in patterna of travel and vehicle use can affect motor gasoline consumpltion much morequickly than changes in fleet composition. Histarically, vehicho
nase, is thenasured in vehichemilestruvelloul (VM'T), has increased steadily from your to your, Ilowaver, from early 1479 through the rond of 1980 VMT declined-a atecretase attributed to the Irunias cruble oil supply eut-baek, assacintid gasaline showtagis, and gasoline friec inerowses. Dharing 1981, with supphies manple anil pricer beginning to drop, whicle use increased again (Exhibit 2)." This inerease will probably continue in I 042 simee smpplies of gasi-

[^6]Exhibit 1.
Automotive Fuel Eeonomy Trends
(Miles per Gallon)

66Changes in patterns of travel and vehicle use can affect motor gasoline consumption much more quickly than changes in fleet composition.g

line are ample for the season and since real prices are expected to remain stable or decrease.

In subsequent years, if the economy improves and new-car sales pick up, the annual VMT may grow by as much as 1.5 to 2.0 percent a year.

## Unleaded Gasoline Demand

The Clean Air Act of 1970, as amended, mandated standards for automobile emissions that have resulted in significant growth in the use of unleaded gasoline. This shift affeets the petroleum marketing and distribution system and refinery configuration. In 1977, 33 percent of the vehicles on the road used unleaded gasoline, creating a demand for unleaded gasoline of 2.0 million barrels a day, or about 28 percent of total gasoline demand. In 1981, 66 percent of the vehicles on the road used unleaded gasoline, creating a demand for unleaded gasoline of 3.8 million barrels a day, or about 60 percent of total demand. 8 Growth in demand for unleaded gasoline is expected to continue as sales of new cars requiting unleaded gasoline continue. However, the decreased rate of new-car sales
and the retention and increased use of older cars have slowed this growth over the past year.
Nevertheless, unleaded demand, relative to total demand, is expected to increase somewhat during 1982 , to about 3.7 million barrels a day, or about $\overline{5} 5$ percent of total gasoline demand. ${ }^{\text {b }}$

## Conclusion

Gasoline demand is influenced by a variety of factors. Vehicle efficiency improvernents and awitching to diesel fuel contribute to lower gasoline demand. In contrast, increases in miles driven contribute to gasoline use increases. In 1982, these influences appear to be in balance, and demand for gasoline is expected to be about the same as it was last year.

[^7]Summary
Statistics
1

Crude $\mathrm{OLI}^{1}$ and Petroleum Products Overview

|  |  | Fiald Production |  |  | Stock Withdrawol ${ }^{2}$ |  |  | Ending Stocks ${ }^{3}$ <br> Crude Oil ${ }^{5}$ and Petroleum Producta |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total Oamestlo4 | Crude Oil | Netural Ges Plent Producillon | Crude $\mathrm{Oli}^{5}$ | Petroleum Products | Petroleum <br> Products <br> Suppiled |  |
|  |  | Thousand Barrels per Day |  |  |  |  |  | Mililans of Barrels |
| 1973 | AVERAGE | 10,975 | 9,208 | 1,738 | 11 | -146 | 17,308 | 1,008 |
| 1974 | AVERAGE | 10,499 | 8,774 | 1,680 | -62 | -117 | 16,653 | 1,074 |
| 1975 | AVERAGE | 10,045 | 9,375 | 1,633 | -17 | -145 | 16,322 | 1,133 |
| 1976 1977 | AVERAGE | 9,774 | 8,132 | 1,603 | $\begin{array}{r}-39 \\ \hline 170\end{array}$ | 96 | 17,461 | 1,112 |
| 1977 | AVERAGE | 9,913 10,328 | 8,245 8,707 | 1,618 1,567 | -170 -78 | --378 | 18,431 | 1,312 1,270 |
| 1978 1979 | AVERAGE | 10,328 10,179 | 8,707 8,552 | 1,567 1,594 | -78 | 172 | 18,047 | 1,270 |
| 1979 | AVERAGE | 10,178 | 8,552 | 1,584 | -148 | -25 | 18,513 | 1,341 |
| 1980 | January | 10,377 | 8,675 | 1,648 | -594 | 270 | 18,851 | 1,351 |
|  | Fobruary | 10,402 | 8,705 | 1,656 | -292 | 563 | 18,817 | 1,343 |
|  | March | 10,303 | 0,698 | 1,568 | -47 | -99 | 17,377 | 1,348 |
|  | April | 10,356 | 8,6a6 | 1,630 | -412 | -229 | 16,784 | 1,367 |
|  | May | 10,298 | 8,835 | 1,615 | -117 | -520 | 16,238 | 1,387 |
|  | June | 10,164 | 8,554 | 1,561 | 65 | -869 | 16,187 | 1,411 |
|  | July | 10,113 9,974 | 8,547 | 1,524 | 88 | $-556$ | 16,008 | 1,425 |
|  | August | 9,974 10,184 | 8,414 | 1,519 | -274 | -473 | 15,753 | 1,449 |
|  | Seplembar | 10,184 | 8,619 | 1,515 | 307 | -259 | 16,598 | 1,447 |
|  | October | 10,082 | 8,532 | 1,516 | -191 | 756 | 16,995 | 1,430 |
|  | November | 10,109 10,204 | 8,495 | 1,571 1,560 | -8.8 | -84 | 16,702 | 1,432 |
|  | Oecember | 10,204 | 8,606 | 1,560 | 304 | 993 | 18,410 | 1,392 |
|  | AVERAGE | 10,214 | 8,597 | 1,573 | -98 | -42 | 17,056 |  |
| 1981 | January | 10,168 | 8.533 | 1,595 | -192 | 1,139 | 18,289 | 1,396 |
|  | February | 10,250 | 8,598 | 1,815 | -318 | 258 | 16,930 | 1,398 |
|  | March | 10,217 | 6,601 | 1,581 | -490 | 235 | 15,836 | 1,405 |
|  | April | 10,133 | 0,543 | 1,551 | -777 | 180 | 15,280 | 1,429 |
|  | May | 10,115 10,260 | 8,496 | 1,554 1,579 | -354 | -405 | 15,196 | 1,447 |
|  | June | 10,260 | 8,616 | 1,578 | -98 | 396 | 15,996 | 1,438 |
|  | July | 10,021 | 8,422 | 1,547 | -334 | 147 | 15,713 | 1,444 |
|  | August | 10,202 | 8,574 | 1,582 | 508 | -977 | 15,236 | 1,458 |
|  | September | 10,293 | 8,598 | 1,630 | -359 | -385 | 15,619 | 1,481 |
|  | October | 10,212 | 8,547 | 1,601 | -761 | 516 | 15,840 | 1,488 |
|  | November December | 10.284 10.274 | 8,595 | 1,615 | -352 | -245 | 15,508 | 1,506 |
|  | December | 10.274 | 8,624 | 1,605 | -130 | 698 | 16,602 | 1,489 |
|  | AVERAGE | 10,200 | 8,662 | 1,589 | -304 | 130 | 16,001 |  |
| 1982 | Jancuary | 10,257 | 8,669 | 1,548 | -236 | 1,128 | 15,890 | 1,461 |
|  | February | 10,281 | 8,690 | 1,524 | -216 | 1,268 | 15,941 | 1,431 |
|  | March ${ }^{*}$ | 10,212 | R8,597 | 1,570 | A-65 | R1,049 | R15,560 | R1,401 |
|  | April** | NA | 8,595 | NA | 32 | 1.058 | 15,510 | 1,422 |
|  | AVERAGE | NA | 8,637 | NA | $-120$ | 1,123 | 15,722 |  |

[^8]Crude Oil ${ }^{1}$ and Petroleum Products Overview (continued)

|  |  | Imports ${ }^{2}$ |  |  | Exporta ${ }^{3}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total | Crude Oll ${ }^{4}$ | Petroleum Products | Total | Crude Oll | Petroleum Products | Net ${ }^{5}$ Imports |
|  |  | Thousend Barrels per Day |  |  |  |  |  |  |
|  | AVERAGE | 6,256 | 3,244 | 3,012 | 231 | 2 | 228 | 6,025 |
| $1974$ | AVERAGE | 6,112 | 3,477 | 2,635 | 221 | 3 | 218 | 5,892 |
| 1975 | AVERAGE | 6,056 | 4,105 | 1,951 | 209 | 6 | 204 | 5,846 |
| $\begin{aligned} & 1976 \\ & 1977 \end{aligned}$ | AVERAGE | 7,313 | 5,287 | 2,026 | 223 | 8 | 215 | 7,080 |
| $1977$ | AVERAGE | 8,807 | 6,615 | 2,193 | 243 | 50 | 193 | 8,566 |
| $1978$ | AVERAGE | 8,363 | 6,356 | 2,008 | 362 | 158 | 204 | 8,002 |
|  | AVERAGE | 8,456 | 6,519 | 1,937 | 472 | 235 | 237 | 7,984 |
| 1980 | January | 8,598 | 6,406 | 2,192 | 550 | 322 | 228 | 8,048 |
|  | February | $7,945$ | $6,013$ | 1,931 | 558 | 332 | 227 | 7,386 |
|  | March | 7,452 | 5,695 | 1,757 | 573 | 330 | 243 | 6,879 |
|  | April | 7,106 | 5,508 | 1,508 | 434 | 192 | 241 | 6,672 |
|  | May | 6,579 6,894 | 5,106 | 1.472 | 591 | 326 | 266 | 5,987 |
|  | June | $6,894$ | 5,480 | 1,414 | 654 | 305 | 289 | 6,240 |
|  | July | 6,267 | 4,843 | 1,414 | 531 | 238 | 293 | 5,727 |
|  | August | 6,192 | 4,803 | 1,389 | 319 | 78 | 241 | 5,873 |
|  | September | 6,239 | 4.707 | 1,532 | 557 | 322 | 235 | 5,682 |
|  | October | 6,379 | 4,768 | 1,611 | 598 | 309 | 288 | 5,781 |
|  | November | 6,408 | 4,680 | 1,728 | 549 | 289 | 260 | 5,859 |
|  | Decamber | 6,894 | 5,082 | 1,012 | 622 | 343 | 279 | 6,272 |
|  | AVERAGE | 6,909 | 5,283 | 1,646 | 544 | 287 | 258 | 6,365 |
| 1981 | January | 6,814 | 4,923 | 1,892 | 558 | 339 | 219 | 6,257 |
|  | Fobruary | 6,777 | 4,873 | 1,804 | 568 | 198 | 371 | 6,208 |
|  | March | 6,026 | 4,521 | 1,505 | 588 | 210 | 376 | 5,440 |
|  | April | 5,767 | 4,457 | 1,310 | 570 | 198 | 372 | 5,108 |
|  | Msy | 5,702 | 4,267 | 1,436 | 595 | 312 | 283 | 5,107 |
|  | June | 5,422 | 4,084 | 1.338 | 420 | 123 | 297 | 5,002 |
|  | July | 5,809 | 4,336 | 1,473 | 571 | 257 | 314 | 5,238 |
|  | August | 5,737 | 4,165 | 1,572 | 644 | 204 | 440 | 5,093 |
|  | Seplember | 6,326 | 4,714 | 1,612 | 519 | 194 | 325 | 5,007 |
|  | October | 5,939 | 4,382 | 1,557 | 738 | 226 | 512 | 5,202 |
|  | November | 5,610 | 3,992 | 1,619 | 701 | 278 | 423 | 4,909 |
|  | December | 5,896 | 4,189 | 1,707 | 656 | 189 | 467 | 5,240 |
|  | AVERAGE | 5,981 | 4,406 | 1,576 | 595 | 228 | 367 | 5,3日7 |
| 1982 | Jenuary | 5,232 | 3,648 | 1,585 | 829 | 238 | 591 | 4,404 |
|  | February | $\begin{array}{r}4,691 \\ \hline\end{array}$ | 2,949 | 1,742 | 804 | 304 | 499 | 3,887 |
|  | March* | R 4,461 | R2,856 | R1,606 | 882 | 321 | 561 | 3,579 |
|  | April** | 3,854 | 2,604 | 1,250 | NA | NA | NA | NA |
|  | AVERAGE | 4,562 | 3,019 | 1,543 | NA | NA | NA | NA |

1 Includes lease condensate.
2 Includes shlpments from United States possessions end territories.
3 Includes shlpments to United States possesslons end territories,
4 Inckudes crude oll for storage in the Strategic Petroleum Reserve.
6 Net Imports = Imporis minus Exports.
Totals may not equal sum of components due to independent rounding.
$N A=N o t$ avallable $. \quad A=$ Revised date.

- See Explanatory Note 5.1.
*. Prellminary Stallisilcs. See Explenatory Note 2.7.
Gaographle coverage; The 50 United States and the District of Columbla including adjacent areas of the outer conllnental shelf, excluding the Hawalian Forsign Trada Zone,
Sources: See "Sources'2 at the end of th/s section.

Includes crude oil and natural gas plant production.
${ }^{2}$ Includes SPR importa,
Source table: "Crude Oil and Petroleum Products Overview."

## Legend

[ZA SPR Crude OII
[国 Crude Oil and Petroleum Produets, Excluding SPR

Source tables: "Crude Oil and Petroleum Products Overview ${ }^{*}$ and "Crude Oil Supply and Disposition."

Petroleum Overview, Annual (Thousand Barrels per Day)


Crude Oil and Petroleum Products Ending Stocks, Annual (Millions of Barrels)

sludes crude oll and natural gas plant Cuction.
cludes SPR imports.
zree table: "Crude Oil and Petroleum "clucts Overview."

## rend

## SPR Crude Oil

Crucle Oil and Petroleum Products, Excluding SPR

Average Stock Range ${ }^{1}$
errage stoek range (exeluding SPR) ed on 3 years of data. See planatory Note 2.5.
arce tables: "Crude Oil and roleum Prodnets Overview" ${ }^{\prime \prime}$ and -ude Oil Supply and Disposition."

Petroleum Overview, Monthly
(Thousand Barrels per Day)


Crude Oil and Petroleum Product Ending Stocks, Monthly (Millions of Barrels)


Crude Oll' Supply and Disposition

|  |  | Supply |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Fleld Production |  | Importa? |  |  | Stock Withdrawal ${ }^{9}$ |  |
|  |  | Total Domestic | Aleskan | Total | SPR ${ }^{4}$ | Other | SPR ${ }^{4}$ | Other |
|  |  | Thousand Barrels por Day |  |  |  |  |  |  |
| 1973 | AVERAGE | 9,208 | 198 | 3,244 |  | 3,244 3,477 |  | 11 |
| 1974 | AVERAGE | 8,774 | 193 | 3,477 |  | 3,477 |  | -62 |
| 1975 | AVERAGE | 8,375 | 191 | 4,165 |  | 4,105 |  | -17 -39 |
| 1976 | AVERAGE | 8,132 | 173 | 5,287 |  | 6,267 |  | -39 |
| 1977 | AVERAGE | 8,245 | 464 | 6,615 | 21 | 8,594 | -20 | $-166$ |
| 1979 | AVERAGE | 8,707 | 1,229 | 6,356 | 182 87 | 6,105 | -163 | 04 |
| 1979 | AVERAGE | 8,552 | 1,401 | 6,519 | 87 | 6,452 | -67 | -81 |
| 1986 | January | 8,675 | 1,634 | 6,406 | 0 | 8,406 | 0 | -694 |
|  | Februery | 9,705 | 1,630 | 6,013 | 0 | 8,013 | 0 | -292 |
|  | Merch | 8,698 | 1,647 | 5,695 | 0 | 5,605 | 0 | -47 |
|  | April | 8,685 | 1.649 | 5,580 | 0 | 5,590 | 0 | -412 |
|  | May | 8,835 | 1,627 | 5,100 | 0 | 5,106 | 0 | -117 |
|  | June | 8,564 | 1,626 | 5,480 | 0 | 5,480 | 0 | 65 |
|  | July | 8,547 | 1,612 | 4,043 | 0 | 4,943 | 0 | 60 |
|  | August | 8,414 | 1,612 | 4,8009 | 0 | 4,003 | 0 | -274 |
|  | September | 8,818 | 1,610 | 4,707 | 54 | 4,659 | $-6.4$ | 361 |
|  | October | 8,532 | 1,588 | 4,786 | 131 | 4,697 | -123 | -60 |
|  | November | 8,495 | 1,561 | 4,600 | 142 | 4.590 | -160 | 161 |
|  | December | 8,606 | 1,602 | 5,002 | 196 | 4,684 | - 177 | 401 |
|  | AVERAGE | 8,697 | 1,617 | 6,263 | 44 | 8,210 | -45 | -52 |
| 1981 | Janıary | 8,533 | 1,800 | 4,923 | 109 | 4,817 | -151 | -41 |
|  | February | 0,598 | 1,619 | 4,873 | 60 | 4,793 | -127 | -101 |
|  | March | 8.801 | 1,616 | 4,521 | 140 | 4,362 | -155 | -335 |
|  | Apriil | 8.543 | 1,006 | 4,457 | 272 | 4,165 | -444 | -333 |
|  | May | 8,496 | 1,580 | 4,267 | 306 | 3,861 | -513 | 156 |
|  | June | 8,616 | 1,632 | 4,058 | 316 | 3,760 | -434 | 335 |
|  | July | 8,422 | 1,605 | 4,335 | 175 | 4,161 | -324 | -10 |
|  | August | 8,574 | 1,602 | 4,165 | 257 | 3,906 | -372 | 600 |
|  | September | 8,698 | 1,607 | 4,714 | 435 | 4,279 | -456 | 126 |
|  | October | 8,547 | 1,586 | 4,302 | 463 | 3,029 | -501 | -260 |
|  | Novembar | 8,565 | 1,618 | 3,602 | 271 | 3,720 | $-250$ | -93 |
|  | December | 8,624 | 1,830 | 4,199 | 165 | 4,024 | -252 | 122 |
|  | AVERAGE | 8,502 | 1,616 | 4,466 | 258 | 4,150 | -338 | 32 |
| 1982 |  | 8,889 |  | 3,648 | 170 | 3,473 | -159 | -77 |
|  | February | 8,696 | 1,715 | 2,649 | 150 | 2,790 | -213 | -3 |
|  | March ${ }^{\text {a }}$ | R8,597 | A1,702 | R2,858 | R185 | 172,671 | A $=235$ | A179 |
|  | Apri'" | 8.585 | 1,700 | 2,604 | 200 | 2,401 | -209 | 241 |
|  | AVERAGE | 8,637 | 1,767 | 3,618 | 180 | 2,840 | -204 | 84 |

[^9]Crude $\mathrm{Oil}^{1}$ Supply and Disposition (continued)

|  |  | Supply (Continued) |  | Disposition |  | Ending Stooks ${ }^{2}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Unaccounted for Crude Oll | Crude Used Directly and Losses | Reflinery inputs | Exporta ${ }^{3}$ | Total Crude OH | SPR ${ }^{4}$ | Other Primary |
|  |  | Thousand Barrels por Dey |  |  |  | Mivions of Barrels |  |  |
| 1973 | AVERAGE | 3 | $-32$ | 12,431 | 2 | 242 |  | 242 |
| 1874 | AVERAGE | -25 | -26 | 12,133 | 3 | 265 |  | 265 |
| 1975 | AVERAGE | 17 | -90 | 12,442 | 6 | 271 |  | 271 |
| 1976 | AVERAGE | 77 | -33 | 13,416 | 8 | 285 |  | 285 |
| 1977 | AVERAGE | -6 | -30 | 14,602 | 50 | 348 | 7 | 340 |
| 1978 | AVERAGE | -57 | -30 | 14,739 | 158 | 376 | 67 | 309 |
| 1979 | AVERAGE | -11 | $-29$ | 14,648 | 235 | 430 | 91 | 339 |
| 1980 | January | 166 | -31 | 14,301 | 322 | 449 | 91 | 358 |
|  | Fobruary | 124 | -31 | 14,187 | 932 | 467 | 91 | 366 |
|  | March | -278 | -30 | 13,709 | 330 | 459 | 91 | 367 |
|  | April | -165 | -29 | 13,484 | 192 | 471 | 01 | 380 |
|  | May | 55 | -28 | 13,326 | 326 | 475 | 91 | 383 |
|  | June | 1 | -30 | 13,705 | 365 | 479 | 91 | 381 |
|  | July | 52 | -29 | 13,264 | 238 | 470 | 91 | 379 |
|  | August | 147 | -28 | 12,984 | 78 | 478 | 91 | 387 |
|  | September | 27 | $-26$ | 13,313 | 322 | 469 | 93 | 376 |
|  | Octobar | -3 | -25 | 12,772 | 309 | 475 | 97 | 379 |
|  | November | 268 | -26 | 13,119 | 289 | 475 | 102 | 373 |
|  | December | 24 | -28 | 13,648 | 343 | 466 | 108 | 353 |
|  | AVERAGE | 34 | -28 | 13,481 | 287 |  |  |  |
| 1981 | January | 352 | $-28$ | 13,248 | 339 | 494 | 112 | 381 |
|  | Februery | -29 | -23 | 12,909 | 198 | 503 | 116 | 387 |
|  | March | -10 | -29 | 12,383 | 210 | 518 | 121 | 397 |
|  | April | 92 | -27 | 12,090 | 198 | 541 | 134 | 407 |
|  | Msy | 241 | -23 | 12,309 | 312 | 662 | 150 | 402 |
|  | June | -39 | -30 | 12,415 | 123 | 555 | 163 | 392 |
|  | July | 162 | -62 | 12,267 | 257 | 566 | 173 | 393 |
|  | Augus! | -71 | -61 | 12,911 | 204 | 550 | 185 | 355 |
|  | September | -184 | -65 | 12,510 | 194 | 561 | 199 | 361 |
|  | October | 190 | -67 | 12,085 | 226 | 584 | 215 | 989 |
|  | November | 371 | -68 | 12,260 | 278 | 595 | 223 | 372 |
|  | December | -45 | -67 | 12,388 | 189 | 699 | 230 | 389 |
|  | AVERAGE | 88 | -46 | 12,477 | 228 |  |  |  |
| 1882 | January | -198 | -66 | 11,63日 | 238 | 606 | 235 | 371 |
|  | February | $199$ | -66 | $11,252$ | $304$ | $612$ | $241$ | 371 |
|  | March* | $278$ | $-68$ | R11,277 | $321$ | R614 | $\mathrm{H} 249$ | R36 |
|  | April** | NA | NA | 11,537 | NA | 623 | 259 | 369 |
|  | AVERAGE | NA | NA. | 11,429 | NA |  |  |  |

1 Includes loase condensate.
2 Ending slocks for 1073-1979 are totals as of December 31.
5 Includes shipments to United Stetes possessions and teriftariea,
4 Stretegic Petroleum Reeerve.
Totals mey nol equal sum of components due to independent rounding.
$\mathrm{NA}=$ Not aveilable.
$\mathbf{R}=$ Reviaed data.

- See Explaratory Note 5.2.
* Preliminary statistice. See Explenatory Note 2.7.

Geographle coverage: The 50 . Uniled States end the Districi of Columbia including adjacent ereas of the outor continental shelf, excluding the Hawallan Foreign Trede Zone.
Scurces; Sae "Sources" at the end of this soction.

Itreludes SPR imports.
Source table: "Crude Oil Supply and Disposition."

Legend
ZZSPR
图 Other Primary

Source table: "Crude Oil Supply and Disposition."

Crude Oil Supply and Disposition, Annual (Thousand Barrels per Day)


Crude Oil Ending Stocks, Annual
(Millions of Barrels)


IIneludes SPR imports.
Source table: "Crude Oil Supply and Disposition."

## Legend

ZZ SPR
気國 Other Primary
Average Stock Range ${ }^{1}$

Average stock range (excluding SPR) based on 8 years of dats. See Explanatory Note 2.5 .
Source table: "Crude Oil Supply and Disposition. ${ }^{\text {. }}$

Crude Oil Supply and Disposition, Monthly
(Thousand Barrels per Day)


Crude Oil Ending Stocks, Monthly (Millions of Barrels)


Finlshed Motor Gasoline Supply and Disposition

|  |  | Supply |  |  | Dlaposition |  |  |  | Ending Stocks ${ }^{1}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total Productlon | Imports ${ }^{2}$ | Stock Withdrawal ${ }^{2} 3$ | Exports | Product Supplied |  |  | Total Motor Gasolina ${ }^{4}$ | Finlahes Motor. Gaadilnd |
|  |  | Total |  |  |  | Unlaaded ${ }^{5}$ | Unteaded |  |  |
|  |  | Thousand Barrels per Day | Parcent of Total | Millions of Barrels |  |  |  |
| 1973 | AVERAGE |  | 6,535 | 134 | 9 | 4 | 8,674 | NA | NA | 209 |  |
| 1974 | AVERAGE | 6,360 | 204 | -24 | 2 | 6,537 | NA | NA | 218 |  |
| 1975 | AVERAGE | 6,520 | 184 | -29 | 2 | 6,675 | NA | NA | 235 |  |
| 1976 | AVERAGE | 6,841 | 131 | 10 | 3 | 6,979 | NA | NA | 231 |  |
| 1977 | AVERAGE | 7,093 | 217 | -72 | 2 | 7,177 | 1,976 | 27.5 | 258 | i |
| 1979 | AVERAGE | 7,169 | 190 | 54 | 1 | 7,412 | 2,521 | 34.0 | 238 |  |
| 1978 | AVERAGE | 6,852 | 181 | 2 | [8] | 7,034 | 2,798 | 39.8 | 237 |  |
| 1960 | January | 6,991 | 141 | -899 | 1 | 8,323 | 2,718 | 43.0 | 262 |  |
|  | February | 6,866 | 154 | -423 | (9) | 6,596 | 2,969 | 45.6 | 275 |  |
|  | March | 6,519 | 155 | -267\% | (9) | 6,406 | 3,632 | 47.3 | 203 |  |
|  | April | 6,284 | 155 | 368 | 1 | 6,809 | 3,021 | 44.4 | 272 |  |
|  | May | 6,318 | 132 | 283 | 1 | 8,729 | 2,580 | 44.3 | 283 |  |
|  | June | 6,569 | 146 | -59 | 1 | 6,657 | 3,099 | 46.6 | 265 |  |
|  | July | 6,465 | 149 | $-132$ | 3 | 6,743 | 3,131 | 46.4 | 261 | t |
|  | August | 6,452 | 141 | 56 | 1 | 6,848 | 3,135 | 47.2 | 259 |  |
|  | Septambor | 8,383 | 166 | 29 | 7 | 6,510 | 3,054 | 46.9 | 256 |  |
|  | October | 6,131 | 152 | 380 | 1 | 6,682 | 3,110 | 46.7 | 247 |  |
|  | November | 6,467 | 126 | -358 | (8) | 6,284 | 3,123 | 50.1 | 257 | ; |
|  | Decamber | 8,844 | 121 | -133 | 1 | 6,632 | 3,421 | 51.6 | 261 |  |
|  | AVERAGE | 6,506 | 140 | -65 | 1 | 6,579 | 3,067 | 46.6 |  | \% |
| 1981 |  | 6,687 | 138 | -435 |  | 6,389 | 3,115 | 10.8 | 277 | 227 |
|  | February | $6,282$ | 111 | $-100$ | 1 | 6,283 | 3,163 | 49.3 | 284 | 230 |
|  | March | 6,213 | 179 | -81 | (3) | $6,303$ | $3,097$ | 48.1 | 285 | 232 |
|  | April | 6,114 | 174 | 298 | (3) | 6,585 | 3,281 | 48.8 | 272 | 223 |
|  | May | 6,121 | 146 | 341 | 1 | 6,688 | 3,118 | 47.2 | 258 | 213 |
|  | June | $6,222$ | 161 | 620 | 1 | 7,001 | 3,421 | 48.3 | 242 | 194 |
|  | July | 6,417 | 118 | 282 | (F) | 6,817 | 3,420 | 50.2 | 227 | 185 |
|  | August | 8,616 | 125 | -93 | 3 | 6,645 | 3,346 | 50.4 | 233 | 188 |
|  | September | 6,587 | 189 | -74 | 2 | 6,860 | 3,337 | 50.1 | 237 | 191 |
|  | October | 8,447 | 143 | 10 | 3 | 6,598 | 3,253 | 49.3 | 235 | 19 D |
|  | Novernber | 6,588 | 145 | -333 | 1 | 6,395 | 3,203 | 50.1 | 247 | 200 |
|  | December | 6,621 | 196 | -91 | 11 | 8,715 | 3,444 | 51.3 | 251 | 203 |
|  | AVERAGE | 6,409 | 150 | 29 | 2 | 6,506 | 3,262 | 49.5 |  |  |
| 1982 |  | 6,181 | 114 | -358 |  | 5,920 | 3,033 | 51.2 | 262 | 214 |
|  | February | $5,917$ | $133$ | $28$ | 8 | $6,070$ | $3,145$ | $51.8$ | $282$ | $213$ |
|  | March* | A6,004 | $183$ | $469$ | $44$ | F6,612 | $3,396$ | $51.4$ | R248 | $199$ |
|  | April ${ }^{4}$ | 5,916 | NA | NA | NA | 6,100 | NA | NA | $223$ |  |
|  | AVERAGE | 6,007 | NA | NA | NA | 6,201 | NA | NA |  |  |

[^10]Distillate Fuel Oil Supply and Disposition

|  |  | Supply |  |  |  | Disposition |  | Ending Slocks ${ }^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total Production | Imports | Stock <br> Withdrawal ${ }^{2}$ | Crude Used Directly | Exports | Product <br> Suppiled |  |
|  |  | Thousand Barrels per Day |  |  |  |  |  | Malions of Barrela |
| 1973 1974 | AVERAGE | 2,622 | 392 | -115 | 2 | 9 | 3,092 | 198 |
| 1974 1975 | AVERAGE | 2,669 | 288 | -9 | 2 | 2 | 2,948 | 200 |
| 1975 | AVERAGE | 2,654 | 155 | 40 | 2 | 1 | 2,851 | 209 |
| 1978 | AVERAGE | 2,924 | 146 | 62 | 1 | 1 | 3,133 | 196 |
| 1977 | AVERAGE | 3,278 | 250 | -176 | 1 | 1 | 3,352 | 250 |
| 1978 | AVERAGE | 3,167 | 173 | 93 | 1 | 3 | 3,432 | 216 |
| 1979 | AVERAGE | 3,153 | 193 | -34 | 1 | 3 | 3,311 | 229 |
| 1980 | January | 3,014 2,766 | 179 | 526 | 1 | 7 | 3,714 | 212 |
|  | Fabruary | 2,766 | 237 | 716 | 1 | 8 | 3,712 | 192 |
|  | March Aptll | 2,558 2,461 | 193 | 446 | 1 | 19 | 3,178 | 178 |
|  | April | 2,461 2,474 | 154 | 21 | 2 | 2 | 2,635 | 177 |
|  | May | 2,474 2,647 | 126 | -199 | 1 | 1 | 2,402 | 183 |
|  | June | 2.647 | 108 | -439 | 1 | (8) | 2,317 | 197 |
|  | July | 2,690 | 117 | -567 | 2 | 19) 3 | 2,249 | 214 |
|  | August | 2,462 | 77 | -403 | 2 | (5) | 2,137 | 226 |
|  | Seplember | 2,686 | 101 | -201 | 2 | (5) | 2,587 | 232 |
|  | October | 2,590 | 115 | 215 | 1 | (5) | 2,920 | 226 |
|  | November | 2,703 | 133 | 111 | 1 | $(4)$ | 2,949 | 222 |
|  | December | 2,891 | 166 | 556 | 1 | (3) | 3,615 | 205 |
|  | AVERAGE | 2,062 | 142 | 64 | 1 | 3 | 2,866 |  |
| 1981 | January | 2,988 | 273 | 818 | 11 | (3) | 4,090 | 180 |
|  | February | 2,810 | 325 | 267 | 11 | 17 | 3,395 | 173 |
|  | Merch | 2,484 2,418 | 144 | 254 | 9 | (8) | 2,891 | 165 |
|  | April | 2,418 2,454 | 116 | (5) | 10 | (5) 3 | 2,541 | 165 |
|  | May June | 2,454 2,502 | 165 | -234 | 10 | ${ }^{(5)}$ | 2,396 | 172 |
|  | June | 2,502 2,403 | 201 | -275 | 10 | (9) | 2,437 | 180 |
|  | July | 2,403 2,656 | 179 159 | -210 | 10 | (8) 2 | 2,381 | 187 |
|  | August | 2,656 | 159 | -439 | 8 | (3) | 2,384 | 200 |
|  | Septomber | 2,611 2,490 | 129 | -217 | 10 | 1 | 2,532 | 207 |
|  | October | 2,490 2,729 | 117 | 182 | 9 | 5 | 2,792 | 201 |
|  | Novamber | 2,729 2,862 | 114 | 38 | 11 | 6 | 2,886 | 200 |
|  | December | 2,862 | 95 | 317 | 11 | 26 | 3,258 | 180 |
|  | AVERAGE | 2,616 | 167 | 42 | 10 | 5 | 2,830 |  |
| 1982 | January | 2,615 | 96 | 780 | 10 | 90 | 3,410 | 166 |
|  | February | 2,447 | 130 | 689 | 11 | 90 | 3,187 | 147 |
|  | March** April** | $\mathrm{F} 2,294$ 2,368 | F48 | P612 598 | 10 | 84 | R2,881 | P123 |
|  | Apri** | 2,368 | 94 | 597 | NA | NA | 2,980 | 107 |
|  | AVERAGE | 2,431 | 91 | 668 | NA | NA | 3,114 |  |

1 Ending stocks for 1973-1979 are totals es of December 31.
2 A negalive number indicates en increase in stocks and a positive number indicates a decresse,
Totals may not equal sum of components due to independent rounding.
(a) Less than 500 barrals per dsy. $\quad N A=N o t$ available. $\quad R=$ Revised data.

- Säe Explanatory Note 5.4.
* Prollminary Stotistics. See Explanatory Note 27.

Nota: Beginning in Jaruary 1981, the Energy Information Administration modifed survey forma, delinitions, and proceasing procedureg. See Explanatory Note 4 on Changes for the effects on Distilate Fuel Oil statistics.
Begining In January 1975, the Bureeu of Mines, DepL of the Interior, expanded its stocks coverage to include an additionel 100 bulk terminal operators.
Geographic coverage: The 50 United States and the District of Columbia incturding adjecent areas of the outer continental shelf excluding the Hawalian Forelgn Trade Zone.
Sources: Ses "Sources" of the end of this section.

Figures for 1979 and 1980 recast to account for data system changes in 1081. See Explanatory Note 4.
${ }^{2}$ Liquefied Petroleum Gases.
Source tables; "Pinished Motor
Gasoline Supply and Disposition,"
"Distillate Fuel oll Supply and
Disposition," "Residual Fuel On Supply and Disposition," "Liquefied Petroleum
Gases and Ethane Supply and
Disposition."
${ }^{1}$ Includes finished motor gasoline blending components.
Source table: "Finished Motor Gasoline Supply and Disposition."

Products Supplied, Annual
(Thousand Barrels per Day)


Motor Gasoline ${ }^{1}$ Ending Stocks, Annual (Millions of Barrels)


Liquefied Petroleum Gases.
Source tables: "Finished Motar Gasoline Supply and Disposition,"
"Distillate Fuel Oil Supply and Disposition," "Residual Fuel Oil Supply and Disposition," "Liquefied Petroleum Gases and Ethane Supply and Disposition."

Legend
Total Motor Gasoline ${ }^{1}$
Finished Motor Gasoline
Average Stock Range ${ }^{2}$

Includes finished motor gasoline blending components.
${ }^{2}$ Average stock range for tatal motor grasoline based on 3 years of data. See Explanatory Note 2.5.
Source table: "Finished Motor Gasoline Supply and Disposition."

Products Supplied, Monthly
(Thousand Barrels per Day)


## Motor Gasoline Ending Stocks, Monthly (Millions of Barrels)



Source table: "1 Distillate Fuel Oil Supply and Disposition."
ource table: "Residual Fuel Oil Supply nd Disposition."

Distillate Fuel Oil Ending Stocks, Annual (Millions of Barrels)


Residual Fuel Oil Ending Stocks, Annual (Millions of Barrels)


Legend

## Aving Average Stock Range ${ }^{3}$

Average stock range based on 8 years of data. Seo Explanatory Note 2.5.

Source table: "Distillate Fuel Oil Supply and Disposition."

## Legend

罂荤 Average Stock Range
${ }^{1}$ Average stock range based on 3 years of dats. See Explanatory Note 2.5.
Source table: "Residual Fuel Oil Supply and Disposition."

## Distillate Fuel Oil Ending Stocks, Monthly (Millions of Barrels)



## Residual Fuel Oil Ending Stocks, Monthly (Millions of Barrels)



Residual Fuel Oll Supply and Disposition

|  |  | Supply |  |  |  | Disposition |  | Ending Stocks ${ }^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Totel Production | Imports | Stack <br> Witindrawal ${ }^{2}$ | Crude Used Directly | Exports | Producta Supplied |  |
|  |  | Thousand Barrels per Day |  |  |  |  |  | Millions of Barrels |
| 1973 | AVERAGE | 871 | 1,453 | - 5 | 17 | 23 | 2,822 | 53 |
| 1974 | AVERAGE | 1,070 | 1,587 | -17 | 13 | 14 | 2,639 | 60 |
| 1975 | AVERAGE | 1,235 | 1,223 | 2 | 15 | 15 | 2,462 | 74 |
| 1976 | AVERAGE | 1,377 | 1,413 | 5 | 17 | 12 | 2,801 | 72 |
| 1977 | AVERAGE | 1,754 | 1,359 | -49 | 13 | 6 | 3,071 | 90 |
| 1978 | AVERAGE | 1,667 | 1,355 | -1 | 13 | 13 | 3,023 | 90 |
| 1979 | AVERAGE | 1,687 | 1,151 | -15 | 12 | 9 | 2,526 | 96 |
| 1980 | Jertuary | 1,771 | 1,338 | -51 | 14 | 5 | 3,067 |  |
|  | February | 1,773 | 1,122 | 214 | 14 | 17 | 3,105 | 91 |
|  | March | 1,584 | 976 | 87 | 14 | 2 | 2,058 | 88 |
|  | Aprl | 1,595 | 775 | 102 | 13 | 40 | 2,444 | 85 |
|  | May | 1,509 | 812 | -78 | 12 | 20 | 2,235 | 68 |
|  | June | 1,575 | 749 | -4 | 14 | 14 | 2.321 | 88 |
|  | July | 1.4e0 | 787 | 71 | 13 | 60 | 2,291 | 86 |
|  | August | 1.444 | 876 | -43 -31 | 13 | 21 | 2,286 | 87 |
|  | September | 1,495 | 906 | -31 | 10 | 21 | 2,359 | 88 |
|  | October | 1,512 | B75 | -100 | 9 | 70 | 2,227 | 91 |
|  | November | 1,579 | 1,024 | -74 | 10 | 88 | 2,451 2,679 | 93 |
|  | December | 1,660 | 1,025 | 46 | 10 | 62 | 2,679 | 92 |
|  | AVERAGE | 1,580 | 939 | 10 | 12 | 33 | 2,609 |  |
| 1961 |  | 1,611 | 1,016 | 298 | 11 | 65 | 2,870 | 82 |
|  | Fabruary | 1,565 | 956 | 144 | 9 | 125 | 2,649 2,098 | 78 76 |
|  | March | 1,423 | 699 | 107 | 14 | 145 | 2,098 1,829 | 76 73 |
|  | Aptil | 1,320 1,222 | 564 | 69 -177 | 14 | 161 25 | 1,829 1,769 | 79 79 |
|  | Msy | 1,222 | 736 640 | -177 283 | 14 | 76 | 1,769 1,993 | 70 |
|  | June | 1,232 1,174 | 640 830 | 283 26 | 14 48 | 82 | 1,996 | 69 |
|  | July | 1,174 1,230 | 830 819 | 26 -179 | 48 | 69 | 1,849 | 75 |
|  | Saptambur | 1,286 | 841 | -174 | 51 | 126 | 1.878 | 80 |
|  | October | 1,232 | 773 | 8 | 54 | 202 | 1,866 | 80 |
|  | November | 1,218 | 844 | -35 | 53 | 203 | 1,578 2,191 | 81 78 |
|  | Depamber | 1,296 | 920 | 80 | 52 | 167 | 2,191 | 78 |
|  | AVERAGE | 1,318 | 796 | 38 | 32 | 118 | 2,062 |  |
| 1982 | January | 1,183 | 821 | 328 | 63 | 235 | 2,150 | 68 58 |
|  | Februery | 1,136 | 928 | 356 | 53 53 | 213 197 | 2,261 R 1.912 | $\begin{array}{r}58 \\ \hline 857\end{array}$ |
|  | Msrch** | R1,121 | R910 | A26 | NA | NA | 1,822 |  |
|  | April ${ }^{* *}$ | 1,174 | 675 | 117 | NA | NA | 1,822 |  |
|  | AVERAGE | 1,164 | 832 | 204 | NA | NA | 2,032 |  |

1 Ending Stocks for 1973 -1979 are totals as of December 31.
${ }^{2}$ A negative rumber Indicatas an increase in stocks and a positive number indicates a decrease.
Totals mey not equal eum of components due to independent rounding.
$\mathrm{NA}=$ Not avellable. $R=$ Revlsed date.

- See Explanatory Noto 5.4.
* Preliminary Statlstics. Seo Explanatory Note 2,7.

Notes: Beginning In January 1981, the Energy Informetion Administration modified survey forms, dalinilions, and processing procedures.
Soe Explanatory Nole 4 on chenges for the effects on residual fuel oil stetistics.
Geginning in Januery 1975, The Bureau of Mines, Dept. of the Intarior, expended its stocks coverage to include an additional 100 bulk terrninal operators.
Geographle Covaraga: Tho 50 United Slates and the District of Columbia including adjacent arees of the outer continental shelf, axclucing the Hawailan Foreign Trade Zone.
Sources: Sea "Sources" at the and of this eection.

Liquefied Petroleum Gases and Ethane Supply and Disposition

|  |  | Supply |  |  | Disposition |  |  | Endling Stocks ${ }^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total Production | Imports | Stock Withdraws ${ }^{2}$ | Refinery inputs | Exporte | Product Supplad |  |
|  | , | Thousand Earrels per Day |  |  |  |  |  | Milions of Barrela |
| 1973 | AVERAGE | 1,600 | -132 | -35 | 220 | 27 | 1,449 | 99 |
| 1974 | AVERAGE | 1,565 | 123 | -38 | 220 | 25 | 1,400 | 113 |
| 1976 | AVERAGE | 1,527 | 112 | -35 | 246 | 28 | 1,333 | 126 |
| 1976 | AVERAGE | 1,535 | 130 | 24 | 260 | 25 | 1,404 | 116 |
| 1977 | AVERAGE | 1,566 | - 161 | -55 | 233 | 18 | 1,422 | 136 |
| 1973 | AVERAGE | 1,537 | - 123 | 12 | 239 | 20 | 1,413 | 132 |
| 1979 | AVERAGE | 1,568 | 217 | 70 | 236 | 15 | 1,682 | 111 |
| 1980 | Januery | 1,560 | 264 | 461 | 291 | 30 | 1,983 | 96 |
|  | Fabruery | 1,581 | 252 | 209 | 252 | 26. | 1,784 | 90 |
|  | March | 1,519 | 214 | 7 | 211 | 23 | 1,506 | 90 |
|  | April | 1,646. | 188 | -339 | 171 | 19 | 1,203 | 100 |
|  | May | 1,538 | 181 | -224 | 182 | 17 | 1,296 | 107 |
|  | June | 1,528 | 184 | -319 | 170 | 18 | 1,205 | 117 |
|  | July | 1,485 | 172 | -283 | 209 | 18 | 1,147 | 128 |
|  | August | 1,507 | 158 | -296 | 209 | 17 | 1,148 | 135 |
|  | September | 1,485 | 213 | -80 | 228 | 19 | 1,382 | 137 |
|  | October | 1,646 | 249 | 86 | 259 | 24 | 1,597 | 134 |
|  | Novamber | 1.549 | 231 | 82 | 304 | 23 | 1.535 | 132 |
|  | December | 1,567 | 289 | 373 | 319 | 23 | 1.888 | 120 |
|  | AVERAGE | 1,535 | 216 | $-27$ | 233 | 21 | 1,468 |  |
| 1981 | January | 1,628 | 308 | 373 | 352 | 21 | 1,984 | 116 |
|  | February | 1,614 | 327 | 166 | 308 | 21 | 1,783 | 112 |
|  | March | 1,570 | 260 | -3 | 257 | 20 | 1.550 | 112 |
|  | April | 1,598 | 214 | $-218$ | 231 | 26 | 1,338 | 118 |
|  | May | 1,608 | 189 | -273 | 220 | 19 | 1,285 | 127 |
|  | June | 1,577 | 200 | -194 | 235 | 24 | 1,320 | 133 |
|  | July | 1,526 | 213 | -253 | 215 | 17 | 1,258 | 141 |
|  | August | 1,560 | 185 | -241 | 235 | 149 | 1,129 | 148 |
|  | September | 1,620 | 199 | -107 | 287 | 21 | 1,404 | 151 |
|  | October | 1,608 | 287 | 85 | 317 | 76 | 1,566 | 149 |
|  | November | 1,667 | 280 | 74 | 382 | 58 | 1.581 | 148 |
|  | December | 1,610 | 255 | 303 | 447 | 50 | 1.871 | 137 |
|  | AVERAGE | 1,598 | 244 | -25 | 290 | 42 | 1,485 |  |
| 1982 | January | 1,646 | 314 | 480 | 398 | 67 | 1,873 |  |
|  | February | 1,476 | 291 | 310 | 327 | 51 | 1,899 | 114 |
|  | March* | 1,523 | 223 | 146 | 289 | 74 | 1,528 | 109 |
|  | AVERAGE | 1,516 | 275 | 312 | 338 | 65 | 1,700 |  |

1 Ending stocks for 1973-1979 are totals 95 of December 31.
2 A negative number indicetes en increase in stocks and a positive number indieates a dearaase.
Totels may not equal sum of components due to independent rounding.

* See Explanatory Note 5.5.

Geographic coverage: The 50 United States and the Distriot of Columbla inclucing adjecent ereas of the outer continental sheil excluding the Heweilen Foraign Trade Zone.
Sources: See "Sources" at the end of this section.

Source table: "Liquefied Petroleum Gases and Ethane Supply and Disposition,"

Inchudes matural gasoline and isopentane, unfinished oils, gasoline blending components, jet fuels, kerusene, lubricants, and asphalt. Some gasoline blending components not included prior to 1881 .

Source table: "Other Petroleum Products Supply and Disposition."

Liquefied Petroleum Gases and Ethane Ending Stocks, Annual
(Millions of Barrels)


Other Petroleum Products ${ }^{1}$ Ending Stocks, Annual (Millions of Barrels)


## Legend

(5) Average Stock Range ${ }^{\text {1 }}$

1Average stock range based en 3 years of data. See Explanatory Note 2.5.
Source table: "Liquefied Petroleum Gases and Ethane Supply and Disposition."

## Legend

F四教Average Stock Range ${ }^{2}$

Includes natural gasoline and isopentane, unfinished oils, gasoline blending components, jet foels, kerosene, lubricants, and asphalt.
${ }^{3}$ Average stock range based on 9 years of data. See Explanatory Note 2.5.
Souree table: "Other Petroleum Products Supply and Disposition."

Liquefied Petroleum Gases and Ethane Ending Stocks, Monthly (Millions of Barrels)


## Other Petroleum Products ${ }^{1}$ Endings Stocks, Monthly (Millions of Barrels)



Other Petroleum Products' Supply and Disposition

| , |  | Supply |  |  | Dlapoettion |  |  | Ending Stocke? |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total Produc* Tion | Imports | Stock WIthdrawal ${ }^{3}$ | Refinery Inputa | Exports | Producte <br> Supplied |  |
|  |  | Thousand Berrels per Day |  |  |  |  |  | Milions of Berrels |
| 1973 | AVERAGE | 3,693 | 562 | -9 | 750 | 166 | 3,270 | 205 |
| 1974 | AVERAGE | 3,558 | 432 | -28 | 665 | 174 | 3,123 | 215 |
| 1975 | AVERAGE | 3,424 | 277 | -2 | 537. | 160 | 3,002 | 219 |
| 1976 | AVERAGE | 3,643 | 205 | -5 | 524 | 175 | 3,145 | 220 |
| 1977 | AVERAGE | 3,912 | 205 | -27 | 514 | 165 | 3,410 | 230 |
| 1978 | AVERAGE | 4,046 | 166 | 14 | 492 | 167 | 3,568 | 225 |
| 1979 | AVERAGE | 4,153 | 185 | -37 | 352 | 209 | 3,749 | 235 |
| 1980 | January | 4,157 | - 269 | 135 | 561 | 186 | 3,785 | 234 |
|  | February | 4,181 | 167 | -153 | 380 | 174 | 3,641 | 239 |
|  | Merch | 4,128 | 218 | -370 | 149 | 200 | 3,627 | 250 |
|  | April | 4,105 | 238 | -374 | 86 | 180 | 3,703 | 261 |
|  | May | 4,018 | 222 | -301 | 135 | 227 | 3,577 | 271 |
|  | June | 4,016 | 225 | -49 | 250 | 256 | 3.687 | 272 |
|  | July | 3,873 | 188 | 82 | 356 | 209 | 3,578 | 270 |
|  | Augusi | 3,753 | 138 | 212 | 351 | 221 | 3,532 | 263 |
|  | Seplember | 3,952 | 206 | 25 | 234 | 188 | 3,761 | 262 |
|  | October | 3,737 | 220 | 175 | 351 | 193 | 3,588 | 257 252 |
|  | Novernber | 3,786 | 213 | 156 | 475 | 148 | 3,533 | 252 |
|  | December | 3,782 | 208 | 151 | 362 | 194 | 3.596 | 247 |
|  | AVERAGE | 3,956 | 210 | -23 | 311 | 198 | 3,834 |  |
| 1981 | January | 3,719 | 159 | 86 | 827 | 132 | 3,005 | 296 |
|  | February | 3,664 | 185 | -219 | 513 | 208 | 2,909 | 302 |
|  | March | 3,600 | 232 | -42 | 643 | 210 | 2,998 | 304 |
|  | April | 3,652 | 223 | 38 | 733 | 192 | 2,987 | 302 |
|  | May | 3,882 | 201 | -61 | 595 | 238 | 3,139 | 304 |
|  | June | 3,890 | 230 | -37 | 659 | 197 | 3,236 | 305 |
|  | July | 3,840 | 134 | 302 | 797 | 212 | 3,267 | 296 |
|  | August | 3,875 | 275 | -25 | 678 | 219 | 3,228 | 297 |
|  | Seplember | 3,748 | 273 | 187 | 887 | 176 | 3,145 | 291 |
|  | Oclober | 3,495 | 237 | 231 | 738 | 227 | 2,999 | 284 |
|  | Novenber | 3,503 | 215 | 12 | 807 | 154 | 2,768 | 284 |
|  | December | 3,486 | 207 | 88 | - 793 | 223 | 2,760 | 281 |
|  | AVERAGE | 3,693 | 219 | 49 | 724 | 200 | 3,038 |  |
| 1982 |  | 3,181 | 240 |  |  |  |  |  |
|  | Fobruary | 3,364 | 260 | $-116$ | $646$ | $138$ | $2,724$ | $287$ |
|  | March* | 3,485 | 291 | -204 | 734 | 161 | 2,627 | 284 |
|  | AVERAGE | 3,342 | 247 | -141 | 661 | 180 | 2,826 |  |

1 Incluces natural gesoline and isopentane, uniractioned stream, plant condensate, Cther lquids and all finished petroleum products except finished motor gasoline, disilliate fuel oll, and residual fuel oil.
2 Ending Slocks for 1973-1979 are totala as of Decembar 31 .
3 A nagative number indicates an increses in slocks and a positive number indi , a deoroese.
Totala may not equal sum of components due to independent rouncing.

* See Explanatory Note 5.6.

Note: Beginning in January 1975, the Eureau of mines, Dept, of the Intarior, expendeti its stocks
covarage to Include an additional 100 bulk ferminal operators.
Geographic Coveraga: The 50 Unitad States and the Distriet of Columbla Including adjacent areas of the cuter confinental shelf, excluding the Hawaian Foraign Trade Zone.,
Sources: See "Sources" at the end of this section.

Crude Oll and Petroleum Product Imports from OPEC Sources


1 Includes Ecuador, Gebon, iraq, Kuwait, and Qatar.
${ }^{2}$ Includes Algeria, Llaya, Saudl Arabie, Unitad Arab Emirates, Ireq, Kuwait, and Qstar.
Totals may not equal sum of components due to independent rounding.
Note: Beginning in October 1977, Stralegic Petroleum Reserve Importa are Included.
Geographic coverage: The 50 United States and the District of Columbis, Including adjecant oreas of
the outer conlinantal ahell, excluding the Hawsilian Foreign Trade Zono.
Sources: See "Sourcas" at the end of this aection.

Crude Oll and Petroleum Product Imports from Non-OPEC Sources

|  | Bahemas | Canada | Mexico | Netherlanda Antilles | Trinidad and Tobago | United Kingdom | Puerto Rico ${ }^{1}$ | Virgin lalande 1 | Other ${ }^{2}$ | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Thousand Barrels per Day |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & 1973 \\ & \text { AVERAGE } \\ & 1974 \end{aligned}$ | 174 | 1,325 | 16 | 585 | 255 | 15 | 89 | 329 | 465 | 3,283 |
| AVERAGE 1975 | 164 | 1,070 | 8 | 511 | 251 | 8 | 90 | 391 | 340 | 2,832 |
| AVERAGE $1976$ | 152 | 846 | 71 | 332 | 242 | 14 | 90 | 406 | 300 | 2,454 |
| AVERAGE 1977 | 118 | 699 | 87 | 275 | 274 | 31 | 88 | 422 | 353 | 2,247 |
| AVERAGE 1970 | 171 | 517 | 179 | 211 | 289 | 126 | 105 | 466 | 550 | 2,614 |
| AVERAGE 1979 | 160 | 467 | 318 | 229 | 253 | 180 | 94 | 429 | 484 | 2,613 |
| AVERAGE | 147 | 536 | 439 | 231 | 190 | 202 | 82 | 431 | 548 | 2,819 |
| 1980 |  |  |  |  |  |  |  |  |  |  |
| January | 175 | 570 | 545 | 289 | 239 | 298 | 57 | 467 | 492 | 3,131 |
| February | 111 | 540 | 477 | 205 | 192 | 105 | 96 | 536 | 652 | 2,914 |
| Merch | 124 | 460 | 460 | 184 | 189 | 232 | 101 | 449 | 601 | 2,800 |
| April | 56 | 459 419 | 546 586 | 231 | 143 | 182 | 76 | 425 | 619 | 2.737 |
| May | 77 7 | 419 | 576 687 | 176 | 221 | 124 | 88 | 303 | 496 | 2,481 |
| June | 77 | 408 | 627 | 197 | 182 | 146 | 91 | 314 | 465 | 2,486 |
| July | 43 | 378 | 460 | 248 | 180 | 115 | 00 | 378 | 376 | 2,262 |
| Augus: | 82 58 | 319 | 646 | 255 | 169 | 106 | 85 | 264 | 463 | 2,449 |
| Septamber | 58 | 458 | 550 | 213 | 205 | 218 | 52 | 343 | 473 | 2,660 |
| October | 70 | 476 | 605 | 230 | 114 | 134 | 107 | 372 | 450 | 2,667 |
| November | 22 | 470 | 469 | 264 | 158 | 157 | 108 | 391 | 435 | 2,464 |
| December | 54 | 502 | 445 | 212 | 149 | 199 | 109 | 423 | 378 | 2,471 |
| AVERAGE | 78 | 455 | 533 | 225 | 176 | 176 | 88 | 388 | 491 | 2,609 |
| 1981 |  |  |  |  |  |  |  |  |  |  |
| January | 30 | 543 | 401 | 197 | 150 | 219 | 89 | 494 | 553 | 2,688 |
| February | 84 | 546 | 437 | 227 | 163 | 271 | 46 | 481 | 626 | 2,881 |
| March | 74 | 471 410 | 488 | 227 | 93 | 283 | 45 | 370 | 570 | 2,600 |
| Aprii <br> May | 68 122 | 410 366 | 440 | 198 213 | 138 | 402 | 40 | 385 | 404 | 2,450 |
| May | 122 | 366 | 522 | 213 | 105 | 352 | 58 | 344 | 456 | 2,538 |
| June | 51 77 | 352 | 537 384 | 196 | 124 | 397 558 | 67 | 262 | 502 | 2,460 |
| July | 77 | 381 378 | 384 | 212 | 177 | 558 | 50 | 206 | 495 | 2,540 |
| August | 69 111 | 378 | 489 | 255 | 123 | 598 | 68 | 184 | 533 | 2,891 |
| Seplember | 111 | 419 | 708 | 163 | 169 | 528 | 72 | 266 | 653 | 3,084 |
| October | 63 | 446 | 668 | 153 | 121 | 351 | 60 | 303 | 559 | 2,725 |
| November | $53$ | 440 499 | 612 588 | 168 | 100 | 253 | 76 | 294 | 429 | 2,533 |
| December | 70 | 499 | 588 | 148 | 125 | 290 | 73 | 367 | 595 | 2,755 |
| AVERAGE | 73 | 445 | 523 | 196 | 133 | 374 | 82 | 327 | 531 | 2,663 |
| 1982 |  |  |  |  |  |  |  |  |  |  |
| Janusry | 28 | 509 | 426 | 179 | 106 | 346 | 62 | 334 | 425 | 2,415 |
| February | 50 | 533 | 489 | 221 | 120 | 132 | 38 | 354 | 487 | 2,424 |
| March | 43 | 435 | 503 | 189 | 118 | 293 | 62 | 307 | 470 | 2,429 |
| AVERAGE | 40 | 491 | 472 | 195 | 114 | 281 | 55 | 331 | 463 | 2,423 |

[^11]
## Sources

* 1973 through 1976: Bureau of Mines, U.S. Department of the Interior, "Petroleum Statement, Annual" and "PAD Districts Supply/Demand, Annual", Mineral Industry Surveys.
* 1977 through 1980. Enargy Administration, U.S. Department
of Energy. "Monthly Petrolaum Statistics Peport", (unleaded gesoline category).
* 1977 through 1980: Energy Information Administration, U.S. Depariment of Energy.
"Petroleum Statement, Annual" and "PAD Districts Supply/Demand, Annual", Energy Deta Reports.
- Jenuary 1981 through Decamber 1981: Energy Information Administration,
U.S. Clepartment of Energy, "Monthly Petroleurn Statement".
'January 1582 through March 1982: Detailed Statistics In this issue.
(Seb Explanatory Notes 5.1 through 5.8).
- April 1982: Estimates are hesed on EIA weekly data (except domestio crude oil production). (See Explanatory Note 2.2).
* Jenuary 1982 through April 1982: Domestic crude oll production
Detailed
Statistics

,


Tabta 1. U.S. Petroleum Balance, March 1982

|  |  | Curront Month |  | Year-to-Date |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Thousand Betrels | Thousand Earrela par Day | Thousand Barels | Thousand Eerrels per Day |
| Crude Oil Inctuding Laase Condeneste) Fiald Production |  |  |  |  |  |
|  |  |  |  |  |  |
| (1) |  | E 52,777 | 1,702 |  |  |
| (3) |  | E 213.736 | 6,885 | E 624,712 | 1.709 6.941 |
|  | Totat U.S. <br> Net Imports | E 286,513 | 8,597 | E 778,562 | 8.651 |
| (4) |  | 82.789 | 2,671 |  |  |
|  |  | 5,738 | 2,671 165 | 268,719 15.472 | 2,986 172 |
| (6) |  | 8,850 | 321 | 15,472 25,854 | 172 287 |
|  |  | 70,578 | 2,535 | 25,854 858,336 | 187 2.670 |
|  | SPA Withdrawal ( + ) or Addition ( $f$ ) , .................-.....-.-..................... | -7,206 | -235 | -18,196 | -202 |
|  |  | 5,261 | 170 | - 2,811 | - 31 |
|  | Used Direcliy and Losses ......... | -2,105 | -68 | 2,811 $-5,895$ | 31 -67 |
| (11) | Unatopuntad for 1. | 0.615 | 278 | $-5,895$ 9,896 | -67 110 |
|  |  | 4,495 | 145 | 0,896 $-11,484$ | 110 -128 |
|  | Crude input to Aetineries $(13)=(3)+(7)+(12)$ | 349,566 | 11,277 | 1,025,418 | -11,304 |
| Natural Gas Plant Liquids (NGPL) |  |  |  |  |  |
|  |  | 48,675 | 1,570 | 130,332 | 1,548 |
|  | Stoch Windrawai (t) or Addilion (t) 2 , | 167 | 6 | 786 | 1,89 |
|  |  | -284 48.578 | -9 | $-2,244$ | -25 |
|  | Other Liguids | 48,578 | 1,5e? | 107,077 | 1,532 |
| Unfinished Oils and Gasolne Blanding Components, Tolal |  |  |  |  |  |
|  |  | 748 | 24 |  |  |
| (19) |  | 4,206 | 136 | $-4,466$ 14,092 | -50 |
|  | Other Hydrocarbons and Alcohel Nww Supply (Fiold Producior] .-.................. | 1,398 | 43 | 14,092 3,969 | 108 44 |
|  | Retinery Processing Gain 1 _-n..-.....-_....-............................................... | 15,638 | 511 | 3,909 | 44 |
|  |  | 1,048 | -618 | $\begin{array}{r}\text { 45,910 } \\ \hline 8,892\end{array}$ | 510 63 |
|  | Totar Other Llquidis $\qquad$ $(z 3)=(18)$ through $(22)$ | 24,195 | 779 | 8,682 08,127 | 63 724 |
|  | Total Production ol Producis 3 $(24)=(13)+(17)+(23)$ | 422,268 | 13,823 | 1,228,420 | 13,849 |
| Ne1 Imports of Ratinad Products 3 |  |  |  |  |  |
|  | Imperts (Grose) .t.i.a........ | 45,379 | 1,464 | 132,838 | 1,476 |
| (26) |  | 17,393 | 561 | 49,669 | 562 |
| (27) |  | 27,886 | 900 | 83,147 | 024 |
|  | Total New Supgly of Products $(28)=[24]+(27)$ | 450,264 | 14,526 | 1,311,567 | 14,673 |
|  |  | 92,063 | 1,034 | 108,716 | 1,219 |
|  | Tolal Petroleum Products Suppled tor Demestic Use $(30)=[2 \theta]+(29)$ | 482,347 | 15,560 | 1.421,202 | 15,792 |
| (31) | Finished Motor Gaseline | 204,976 | 6,812 | 658,484 | 6,205 |
| (32) |  | 8,368 | 208 | 17,316 | 192 |
| (a3) |  | 23,928 | 772 | 73,854 | 821 |
| (34) | Korosens | 3,831 | 117 | 15,030 | 187 |
| (38) | Clsilats Fuel Oll | 89,304 | 2,881 | 284.271 | 3,159 |
| (37) | Pasidual Fuel Oll | 60,258 | 1,912 | 160, 2221 | 2,102 |
| (37) | Llqualied Petroleum Gases end Ethane ...................-_............................. | 47,382 | 1,528 | 153,007 | 1,700 |
| (38) | Other .... -....- | 87,170 | 1,844 | 168,220 | 1,750 |
| (89) |  | $-0,872$ | -312 | -28,006 | -312 |
| (40) | Tolal Producl Supplad $(40)=(31)$ through (30) | 482.347 | 15,580 | 1,421,282 | 18,792 |
| Ending Stoeks, All Ofis |  |  |  |  |  |
| (41) |  | 385,469 | -- | - | -- |
| (42) |  | 248,597 | -- | - | $\cdots$ |
| (4a) |  | 115,833 | -- | - | $\sim$ |
| (44) |  | 49,032 | $\cdots$ | - | -- |
| (45) | Nalural Gasoline and Untractionated Stream ..-...u..................................... | 17,768 | - | -- | - |
| (46) |  | 803,143 | -- | + - | -- |
| (47) |  | 1,400,502 | - | -- | -- |

[^12]Table 2 Supply and Disposition of Crude Oil and Petroleum Products, March 1992

| Commodily | Surcte |  |  |  |  |  | Ceposition |  |  | Ending Saocks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | tion $\begin{aligned} & \text { Feld } \\ & \text { Produe- } \\ & \text { tion } \end{aligned}$ | Patinery Producinn | Imports | Stock Win- drawal ( + ) or Ade: tion ( -1 | Unaeocurtud For Crude Or | Crusle Used Drocty and Losum? | Pe5nory inguts | Exports | Products Suppled |  |
| Cruce Oil (including lease condensate) | E 20e,513 | 0 | 28,528 | -2,015 | 8,645 | -2,105 | 340,596 | 2,950 | 0 | 614,225 |
| Natural Gas Plant Ueulds and LRGe | 47,910 | 7,972 | 7,009 | 4.223 | 0 | 0 | 15,704 | 2,308 | 48,192 | 126.764 |
| Natural Gasoline and liscpentane | 7.307 | $\bigcirc$ | (0) | $-20$ | 0 | 0 | 5,470 | 0 | 1,808 | 11,449 |
| Unlractionatod Stewn -_ | 257 | 0 | 0 | -230 | 0 | 0 | 0 | 0 | 10 | 4.788 |
| Plent Condensase -- | 1,106 | 0 | 186 | -26 | 0 | 0 | 1.253 | 0 | 3 | 1.532 |
| Liquefied Petreleum Gases and Fthave .-_ | 33,241 | 7,972 | 8,913 | 4,506 | 0 | 0 | 8,962 | 2.308 | 47,362 | 108.906 |
| Ethane --_ | 8332 | 222 | 1.512 | -30 | 0 | 0 | 195 | (4) | 10.085 | 5,672 |
| Propant - _ - | 14.4is | 7,500 | 1.873 | 068 | 0 | 0 | 113 | 1.135 | 23.607 | 60.239 |
| Butase -_-_ | 6,565 | 58 | 1,292 | 1.084 | 0 | 0 | 4,605 | 1,174 | 5.220 | 17,307 |
| Dutase-Propane Matures - | 105 | 32 | 425 | 157 | 0 | 0 | 148 | 0 | 631 | 880 |
| Ethane-Propane Matures ._-_ _-_ _-_ | 5.414 | 0 | 1.512 | -107 | 0 | 0 | 0 | 0 | 7810 | 16.986 |
|  | 3,410 | 1 | 0 | 494 | 0 | 0 | 3905 | - | (9) | 7,700 |
| Other Uquids | 1,308 | 0 | 4.206 | 745 | 0 | 0 | 15,082 | 0 | $-2,672$ | 165.785 |
| Other Hydrocarbens and Alcohal -_ | 1,398 | 0 | 0 | -8 | 0 | 0 | 1,300 | 0 | 0 | 183 |
| Unfrished Otis --_ | 0 | 0 | 3.814 | 1.089 | 0 | 0 | 0.500 | 0 | -4,797 | 715833 |
| Motar Gapoline Blending Corponants | 0 | 0 | 602 | -326 | 0 | 0 | 5.240 | 0 | -4,972 | 4 4 .091 |
| Avistion Gasoline Bliming Compononts -u._-_ | 0 | 0 | 0 | -11 | 0 | 0 | -108 | 0 | 97 | 658 |
| Finlished Petroleum Products | 765 | 300,176 | 28,466 | 27,557 | 0 | 1.90 | 0 | 15,006 | 42,238 | 494,167 |
| Finlehed Metor Gasciine -_ | 72 | 188.041 | 5.050 | 14,560 | 0 | 0 | 0 | 1,307 | 204,476 | 198.819 |
| Frished Leaded Motor Gesoline -_._._._-_ | 70 | 80.906 | 3,345 | 7.817 | 0 | 0 | 0 | 1.957 | 99.591 | 102.143 |
| Firished Urleaded Motor Oascline ___ | 3 | 95.955 | 2.296 | 6,804 | 0 | 0 | 0 | 0 | 106. 157 | 96.622 |
| Gasohol | 0 | 100 | 0 | 28 | 0 | 0 | 0 | $\bigcirc$ | 128 | 54 |
| Frivhed Avation Gascline - | 57 | . 633 | 0 | 87 | 0 | 0 | 0 | 0 | 877 | 2641 |
| Nsphthe-Type Jet Fuel | 0 | 6,806 | 0 | -418 | 0 | 0 | 0 | (b) | 6.388 | 0.445 |
| Kerosene-Type Jet Fuel | 0 | 27.827 | 1.200 | -5,118 | 0 | 0 | 0 | 80 | 23.928 | 36.081 |
| Kerosese - | 3 | 3.284 | 40 | 316 | 0 | 0 | 0 | 1 | 3.531 | 8,763 |
| Datitate Fual OS | 3 | 71.123 | 1,495 | 18.970 | 0 | 310 | 0 | 2.607 | 89,304 | 127,732 |
| Residual Fuel 01 _ | 0 | 34,736 | 28,128 | 800 | 0 | 1,639 | 0 | 6,113 | 50.238 | 57.349 |
| Nashitha < 400 Deg, for Potro. Feed. Use -_-_ | 0 | 5.675 | 76 | -514 | 0 | 0 | 0 | 167 | 5.988 7.918 | 3,149 |
| Other Ois > 400 Deg . for Petro. Feed. Use | 0 | 8.206 | 0 | 14 | 0 | 0 | 0 | 304 | 7.915 | 1.650 |
| Speolal Naptithas -- | 111 | 1,691 | 1,635 | $-21$ | 0 | 0 | 0 | 258 | 3.160 | 3,759 |
| Lubloarts - | 0 | 4254 | 114 | 553 | 0 | 0 | 0 | 602 | 4.229 | 13,705 |
| Waxes | 0 | 465 | 8 | -2 | $\stackrel{0}{0}$ | 0 | 0 | 36 .411 | 416 9.117 | . 865 |
| Petroleum Coke | 0 | 12.754 | 0 | -225 | 0 | 0 | 0 | 3.411 | 9.117 | 4,934 |
| Asphalt - | 0 | 7.046 | 1 | -1,789 | 0 | 0 | 0 | 12 | 5.247 | 26.085 |
| Rowd OA | $\bigcirc$ | 34 | 0 | -20 | 0 | 0 | 0 | 0 | 14 +1521 | 38 |
| Ssat Gas | 0 | 15.727 | 0 | 0 | 0 | 0 | 0 | 0 | 16.721 $\mathbf{2} \times 78$ | $\bigcirc$ |
| Mesolisheous Products -___ | 517 | 1.819 | 13 | 357 | 0 | 0 | 0 | 40 | 2.876 | 2,573 |
| Total | 316,568 | 397,148 | 138,200 | 30,510 | 8,415 | -156 | 281,312 | 27,363 | 482.367 | 1,400,902 |

[^13]2 Total equals refinory fuel use and loss
(v) Levs than 560 barrels.
(0) Less than $5 C 0$ barrels.
E Estimated.
Note Total mey not equal sum of corpenonts oue to independent rounding.
Table 3. Year-to-Date Supply and Disposition Statistics of Crude Oil and Petroleum Products, January - March 1982 (Thousands of Barrels)

| 20ity | Supply |  |  |  |  |  | Divsosition |  |  | Ending Sacks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Feld Proous: tion | Refinery Produe:tion | inports | Ssock Wath drawal $(+1$ or Add: $\operatorname{ton}(1)$ | Unsocourlied For Crude Or | Crude Used Directy and losses? | Refinery inouts | Expors | Products Sucpied |  |
| Crude os (inctuding lease condensate) | ET72,562 | 0 | 204,191 | -15.345 | 2,890 | -5,996 | 1,025,416 | 25,854 | 0 | 614,226 |
| Naturat Gas Plant Lquids and LRGs | 137,822 | 22,142 | 25,558 | 25,806 | 0 | 0 | 43,234 | 5,819 | 156,970 | 125.784 |
| Natural Gasoline and Isopertane -_ | 19.910 | 0 | 313 | $-1.903$ | 0 | 0 | 14.360 | 0 | 3.856 | 11,449 |
| Unfractionated Stream .-. | 398 | 0 | 0 | -383 | 0 | 0 | 8 | 0 | 6 | 4,738 |
| Plant Condeneate | 2989 | 0 | 478 | 42 | 0 | 0 | 3.500 | 0 | 7 | 1,532 |
| Liquelad Petroleum Geses and Ethane ___ | 114.329 | 22,142 | 24,770 | 28,050 | 0 | 0 | 30.460 | 5.815 | 153,007 | 108.996 |
| Etrase --_-_-_- | 24,537 | 588 | 5.677 | -732 | 0 | 0 | 695 | (9) | 29.348 | 5.672 |
|  | 42.658 | 21.299 | 0.979 | 16.967 | 0 | 0 | 354 | 2407 | 85.082 | 00.303 |
| Rutane - Butane Propere Witues | 13,397 | 144 | 5.434 | 10.434 | $\bigcirc$ | 0 | 18,477 | 3.352 | 13.511 | 17.307 |
| Butane-Propane Matures -.-. | 300 | 123 | 1,788 | 758 | 9 | 0 | 465 | 0 | 2.005 | 589 |
| Ethane-Propane Matures | 17,928 | $\bigcirc$ | 4,792 | -270 | 0 | 0 | 0 | 6 | 22.450 | 18.386 |
| Ivchutane | 9.500 | 14 | 6 | 303 | 0 | 0 | 10,472 | 0 | 11 | 7.708 |
| Other Liquids | 3,069 | 0 | 14,032 | -4,456 | 0 | 0 | 41,833 | 0 | -28,093 | 105,765 |
| Oewer Hydrocarbons ane Nochel | 3.909 | 0 | 0 | 39 | 0 | 0 | 3.998 | 0 | 0 | 183 |
| Uninishod Oils | 9 | 0 | 11,184 | $-3.700$ | 0 | 0 | 19.273 | 0 | -11絊 | 115.833 |
| Motpr Gasoline Blinding Coniponents ....._._. | 0 | 0 | 2,8ce | -738 | 0 | 0 | 18.491 | 0 | -16.381 | 49,091 |
| Avintion Gasolins Biending Components -_ | 0 | 0 | 0 | 33 | 0 | 0 | $-139$ | 0 | 172 | 650 |
| Finished Petroleum Products | 1,716 | 1,183,151 | 108.006 | 81,006 | 0 | S.ear | 0 | 43.871 | 1,292,404 | 454.147 |
| Frished Motor Gaopline ___ | 229 | 543.186 | 12.953 | 4.243 | 0 | 0 | 0 | 2,160 | 558,481 | 158.819 |
| Frished Leaded Motor Gasoline -_._ | 214 | 259.081 | 7.317 | 6.025 | 0 | 0 | 0 | 2.150 | 271.085 | 102.143 |
| Finshed Unieaded Motor Gasoline ___ | 16 | 282,177 | 5.636 | -1.787 | 0 | 0 | 0 | 0 | 287,042 | 26,822 |
| Gaschol | 0 | 320 | 0 | 5 | 0 | 0 | 0 | 0 | 333 | 54 |
| Finlahod Aviation Gasofine -___-_._-_ | 130 | 1,782 | 0 | 88 | 0 | 0 | 0 | 0 | 2,004 | 2.041 |
| Naphena-Type Jet Fuel | 0 | 16.735 | 101 | 489 | 0 | 0 | 0 | (1) | 17.316 | 6,445 |
| Kerosene-Type det Fuel -- | 0 | 73804 | 3.166 | -2.530 | 0 | 0 | 0 | 600 | 73054 | 36.081 |
| Karosene | 13 | 11.971 | 977 | 2.922 | 0 | 0 | 0 | 252 | 15.030 | 8.763 |
| Destilate Fuel OI | 10 | 220,068 | 8.111 | 62,444 | 0 | 329 | 0 | 7.911 | 204,271 | 127,732 |
| Residual Fuel Ol | 0 | 102325 | 72.615 | 20.080 | 0 | 4.753 | 0 | 18.371 | 100227 | 57.345 |
| Naphtra < 400 Deg , for Petro. Feed. | 0 | 15.587 | 459 | -631 | 8 | 0 | 0 | 342 | 15,073 | 2.169 |
| Other Ois $>400$ Deg. for Potrochern. Feedstock - | 0 | 24.591 | \% 0 | 100 +09 | 0 | 0 | 0 | 1.613 | 23,076 | 1.850 |
| Spocial Naphthas -__ | 206 | 4,415 | 1,965 | 109 | 0 | 0 | 0 | 585 | 6.199 | 3,759 |
| Lubricents | 0 | 12.511 | 581 | 520 | 0 | 0 | 0 | 1.422 | 12,290 | 13,705 |
| Wares - | 0 | 1,286 | 53 | 5 | 0 | 0 | 0 | 73 | 1.271 | 065 |
| Petrokeum Coke | 0 | 35.883 | 0 | -195 | 0 | 0 | 0 | 8.418 | 26.280 | 4,6e4 |
| Asphatt - | 0 | 18.963 | 60 | -6.560 | 0 | 0 | 0 | 20 | 12421 | 20,005 |
| Road or | 0 | 43 | 0 | -14 | 0 | 0 | 0 | 0 | 29 | 38 |
| Sell Gas .....______ | $\bigcirc$ | 47,056 | 0 | 0 | 0 | 0 | 0 | 0 | 47.095 | 0 |
| Mscellaneous Prodicts ... | 1,123 | 7.885 | 20 | 204 | 0 | 0 | 0 | 125 | 8,560 | 2.573 |
| Total | 221,853 | 1,161,290 | 431,848 | 87,631 | 9,895 | -313 | 1,115,383 | 75,543 | 1,421,2n2 | 1,400.302 |

[^14]Table 4. Daily Average Supply and Disposition of Crude Oil and Petroleum Products, March 1982

| Conmodity | Supply |  |  |  |  |  | Drepation |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Field Produc: tion | Refnery Prodic: ion | impors | Slock Wht drwal( + ) Adt fion'l | Unaccounted For Crude Cll | Crude Used Diectly and Losten? | Reflery Ieputs | Exports | Prodects Supplied |
| Crude Oll (including lease condensate) | E 3,507 | - | 2,856 | -65 | 278 | -68 | 11,277 | 321 | 0 |
|  | 1,545 | 257 | 220 | 136 | 0 | $\theta$ | 687 | 74 | 1,587 |
| Natural Gas Pane Lequids and LROs - .-. | 1,545 | 0 | (8) | -1 | 0 | 0 | 177 | 0 | 58 |
| Untractionatad Sream -____ | 8 | 0 | 0 | - | 0 | 0 | 0 | 0 | (a) 1 |
| Prapt Condensate | 36 | 9 | \% | -1 | 0 | 0 | 299 | 74 | 1,523 |
| Uquefod Petroleun Gaves and Eitane -_L_ | 1,266 | 257 | 223 | 14 | 0 | 0 | 6 | (4) | 325 |
| Ehane ---- | 285 | 7 | 58 | -31 | 0 | 0 | 4 | (d) 37 | 762 |
| Propane - Butane | 465 | 245 | 40 | 98 | 0 | 0 | 149 | 38 | 168 |
| Butane -.. ${ }_{\text {Butane Propane Mhturas }}$ | 212 | 2 | 14 | 5 | 0 | 0 | 5 | 0 | 20 |
| Butane Propane Mitures -_-_ | 207 | 0 | 49 | -3 | 0 | 0 | 0 | 0 | 252 |
| Emane-Propane Mixtues isobutane $\qquad$ | 110 | (3) | 0 | 16 | 0 | 0 | 120 | 0 | (1) |
|  | 45 | 0 | 135 | 24 | 0 | 0 | 517 | 0 | -312 |
| Other Lquids Oher Hydrocarbons and Alcohol -_ | 45 | 0 | \% | (8) | 0 | 0 | 45 | 0 | 9 |
| Unfinstied Ots - | 0 | 0 | 117 | 35 | 0 | 0 | 306 | 0 | -185 |
| Motor Cescline flending Components -_ | 0 | 0 | 19 | -10 | 0 | 0 | 160 | $\bigcirc$ | -180 3 |
| Avistion Gssolise flending Componenty -_ | 0 | 0 | 0 | (3) | 0 | 0 | $\checkmark$ | 0 | 3 |
| Finiehed Petroleum Products | 25 | 12.554 | 1,241 | 889 | 0 | 89 | 0 | 487 | 14,2035 |
| Firished Motor Gagolina | 2 | 5.001 | 183 | 469 | 0 | 0 | 0 | 44 | 0,512 |
| Firished Motor Gasolina Frished Leeded Motor Gascline -___________ | 2 | 2.903 | 169 | 285 | 0 | 0 | 0 | 44 | 3.216 |
| Frished Lededesded Motor Gascline -__ | (t) | 3.095 | 74 | 223 | 0 | 0 | 0 | 9 | 3.382 |
| Gaschol Fished Alsion Gascline | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 25 |
| Finshed Alasion Gascline -__ | 2 | 20 | 0 | 3 | 0 | 9 | 0 | 0 | ${ }^{25}$ |
| Nachtha-Type Jot Fuet - | 9 | 220 | 9 | -13 | 0 | 0 | 0 | (9) | 206 |
| Kercsene Type Jet Fad -_ | 0 | 901 | 39 | -165 | 0 | 0 | 0 | 3 | 772 |
| Kerosene - | (14) | 105 | 2 | 10 | 0 | 0 | 9 | (3) | 117 |
| Distilate Fuel Ol | (4) | 2,294 | 48 | 612 | 0 | 10 | 0 | +97 | 2,801 |
|  | 0 | 1,121 | 970 | 26 | $\bigcirc$ | 53 | 0 | 197 | 1.512 |
| Naptitha < 400 Deg, for Peteo. Feed. Use - | 0 | ${ }^{183}$ | 2 | -17 | 0 | c | 0 | 5 | 163 |
| Other Ols > 200 Deg . for Petra. Feed. Uset - | 0 | 265 | 0 | (9) | 0 | 0 | 0 | 10 | 255 |
| Special Naphthas -..._- | 4 | 55 | 53 | -1 | 0 | 0 | 0 | 8 | T02 |
| Libricarts - | 0 | 137 | 4 | 18 | 0 | 0 | 0 | 22 | 136 |
| Waxes - | 0 | 14 | 19 | (b) | 0 | 0 | 0 | 1 | 13 |
| Petroleum Coke | 0 | 411 | 0 | -7 | 0 | 0 | 0 | 110 | 294 |
| Asphat - | 0 | 227 | (*) | -58 | 0 | 0 | 0 | (b) | 169 |
| Foad OR | 0 | 1 | 0 | -1 | 0 | 0 | 0 | 0 | (4) 593 |
| 558 Cas _ | 0 | 530 | 0 | $\bigcirc$ | 0 | 0 | 0 | 1 | 839 |
| Micellaneous Products ___ _ _ | 17 | 59 | (5) | 12 | 0 | 0 |  |  |  |
| Tetal $\longrightarrow$ | 10.212 | 12,811 | 4,461 | 984 | 276 | -5 | 12,900 | 382 | 15,560 |

[^15]i9 Less than 500 barcts per doy.
Note. Total may not equal sum of componerts die to independent rounding.
Note. Total may not equal sum of conporents dae to independent rourding, and Estimation.
Sources and estmation procedures: See Explanalory Notes on Data Cotiection and
Table 5. Year-to-Date Daity Average Supply and Disposition of Crude Oal and Petroleum Products, January - March 1982
(Thousand Barrels per Day) (Thousand Barrels per Day)


[^16]2. Tobal equals rotinery fael use and ises.
(y) Less than 500 barves per day.
Notex Toxal may not equal sum of esmponents due to independent rasinang.

Table 6. PAD District 1, Supply and Disposition of Crude Oil and Petroleum Products, March 1982

| Commodiy | Sumay |  |  |  |  |  |  | Dispostion, |  |  | Endm slocks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Finid Produc: tion | Refinery Procuo sicn | Incors | Surok With draws $(+)$ or Add tion ( -1 | Unaccounted For Ciude Cit | Crude Used Drectly and Lossts 2 | Net Recepts | Relinery inputs | Exports | Products Supphed |  |
| Crude Oel (including lease condensate) | L 2,790 | 0 | 28,160 | 725 | 1,871 | 0 | 3,6et | 37230 | 0 | 0 | 18,732 |
| Natural Gas plant Liquids and Lacs | 1.172 | 1.250 | 413 | 1,233 | 0 | 0 | 2397 | 329 | 70 | 6,109 | 2509 $\mathbf{2} 579$ |
| Llovelied Patroleun Gases --_ | 482 | 1,280 | 415 | 302 | 0 | 0 | 2397 | 200 | 70 | 4,513 | 2.579 |
| Efrane -- | 374 | 0 | 0 | 919 | 0 | 0 | 0 | 0 | (1) | 1,293 | 0 |
| Other Products3 - | 310 | 0 | (19) | 12 | 0 | 0 | 0 | 31 | 0 | 297 | 20 |
| Other Lipulds | 110 | $\bigcirc$ | 1,585 | -320 | 0 | 0 | 1,0tt | 3,079 | 0 | -665 | 21,355 |
| Other Mydrocarboes and Alochol ._._._._.__ | 110 | 0 | 0 | 4 | 0 | 0 | 0 | 114 | 0 | $\bigcirc$ |  |
| Unfrished OEs | 0 | 0 | 1.552 | -651 | 0 | 0 | 1.818 | 2.819 | 0 | -300 | 295 |
| Motor Gasoline Blording Components -___ | 0 | 0 | 13 | -233 | 0 | 9 | 0 | 145 | $\bigcirc$ | -305 | 0.090 |
| Aviation Gasolino Blending Componens - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Finlshed Fetroleum Products | 54 | 41,293 | 32,183 | 14,516 | 0 | 0 | 70,005 | 0 | 575 | 158,041 | 157,151 |
| Frighed Motor Gascline | 64 | 18,714 | 4.636 | 2.054 |  | 0 | 40.226 | 0 | 1 | 66,233 | 81.077 |
| Frished Latied Motor Gaspline - | 64 | 0.298 | 2.703 | 1,022 | 0 | 0 | 17,450 | 0 | 1 | 30,130 36.100 | 28,708 |
| Firished Urieaded Motor Gesoline _____ | O | 10,418 | 1.933 | 1,035 | 0 | 0 | 22.776 | 0 | 0 | 36.180 | 32.231 |
| Gasohol - |  | 0 | $\bigcirc$ | -3 | 0 | 0 | 9 | 0 | 0 | ${ }_{4}{ }^{-3}$ | 18 |
| Finshed Aviation Gasoline .-..._-_._- | 0 | 9 | 0 | 4 | 0 | 0 | 404 | 0 | 0 | 417 | 444 |
| Naphthe-Type Jet Fuel - |  | 743 | 0 | 111 | 0 | 0 | 477 | 0 | (8) | 1.391 | 602 |
| Kerosene-Type Jet Fuel - | 0 | 1,452 | 1,200 | $-1,709$ | 0 | 0 | 8.358 | 0 | 0 | 9av | 9.045 |
| Kercsene - | 0 | 96 | 49 | 419 | 0 | 0 | 1.039 | 0 | 1 | 18002 | 3,876 |
| Distilase Fual CI | 9 | 9.231 | 1,137 | 13.46t | 0 | 0 | 15,102 | 0 | 1 | 38.001 | 44,930 |
| Residua! Fuel Oi, | 0 | 5.388 | 24,000 | 62 | 0 | 0 | 3283 | 0 | 225 | 32,508 | 24,829 |
| Naghthe and Other Olis for Pvtrochem, | 0 |  |  |  |  |  | -22 | 0 | 56 | 331 | 301 |
| Feedstock |  | 437 30 | 950 | -6 | 0 | 0 | 277 | 0 | 2 | 1.201 | 1.009 |
| Speclal Naphithas -...- | 0 | 746 | -950 | 4 | 0 | 0 | 724 | 0 | 248 | 1,335 | 3.893 |
|  | 0 | 756 | 109 | -12 | 0 | 0 | 10 | 0 | 5 | 90 | 142 |
| Waxes - ___ | 0 | 701 1279 | $\frac{2}{0}$ | -12 -233 | 0 | 0 | 0 | 0 | 17 | 973 | 989 |
| Petoieum Coke _______ | 0 | 1.279 | 0 | -283 | 0 |  | 200 | 0 | 5 | 1.090 | 5.407 |
|  | 0 | 1,060 | 1 | -167 | 0 |  | 0 | 0 | 0 | 0 | 0 |
| Rosd Ol [ | 0 | 1.05 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,053 | 0 |
|  | 0 | 1.058 | 0 | 30 | 0 | 0 | 467 | 0 | 15 | 833 | 461 |
| Mecolianeous Prodicts | 0 | 34 | 2 | 30 | $\bigcirc$ | 0 | 48 |  | 5 |  |  |
|  | 4,130 | 42,568 | 62,323 | 15,594 | 1,871 | 0 | 78,304 | 40,632 | 545 | 163,519 | 190,837 |

[^17]Table 7. PAD District II Supply and Disposition of Crude Oll and Petroleum Products, March 1982 (Thousands of Barrels)

| Commedity | Surply |  |  |  |  |  |  | Dispesilion |  |  | Ending Slocks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { Pleld } \\ & \text { Produe- } \\ & \text { ficn } \end{aligned}$ | Rotinery Produc. ton | Imports | Siock Withdrawd ( + ) ${ }^{\circ}$ Ads $\operatorname{tin}(6)$ | Unaccoanted For Cnude Orr | Crude Uned Directily and Lotses? | Net Recaipts | Retintry inputs | Experts | Products suppled |  |
| Crude Oll (inctuding lease condensatt) | E28.28 | 0 | 13,973 | -1,835 | 41,000 | $\rightarrow$ | 1,000 | 82,0\% | 1,963 | 0 | 63,363 |
| Natural Cas Plant Liquids and LRGs | 77000 | 2,139 | 5,168 | 499 | 0 | 0 | 4,225 | 5,084 | 825 | 13,722 | 30,241 |
| Liquatied Putroleum Gases ._._._____ | 7,360 | 2,107 | 3,356 | 1.443 | 0 | 0 | 3225 | 3,443 | 825 | 13,308 | 27,650 |
| Eitane | 1.377 | 26 | 1,812 | -1,069 | 0 | 9 | 0 | 0 | 0 | 2.156 | 1,768 |
| Other Producte ${ }^{3}$ ___ | $-1.111$ | 0 | 0 | 115 | 0 | 0 | 200 | 1.841 | 0 | -1.737 | 3.823 |
| Other Liquils | 229 | 0 | 523 | 350 | 0 | 0 | 742 | 2.096 | 0 | -193 | 32,009 |
| Other Hydrocarbons and Alcohol - | 228 | $\bigcirc$ | 9 | -16 | 0 | 0 | 0 | 212 | 0 | 0 | 92 |
| Unfriuhed Oils | 0 | 0 | 51 | 25 | 0 | 0 | 55 | 849 | 0 | -712 | 21.270 |
| Motor Gasolint Blending Componerts - | 0 | 0 | 472 | 438 | 0 | 0 | 637 | 1,078 | 0 | 519 | 11.252 |
| Avation Gasoline Blending Componerts -__ | 0 | 0 | 0 | -97 | 0 | 0 | 0 | -97 | 0 | 0 | 105 |
| Finished Petroleum Products | 17 | 91,120 | 722 | 6,252 | 0 | 0 | 2.645 | 0 | 142 | 107.515 | 137.235 |
| Finished Motor Gasoline | 0 | 51.544 | 2 | 3.817 | 0 | 0 | 7,285 | 0 | 25 | 02,029 | 93,543 |
| Rniahed Leaded Motor Gasotiot -____ | 0 | 26.500 25000 | 8 | 1,940 | 0 | 0 | 3,045 | 0 | 25 | 32.309 | 34,422 |
| Finighed Unlaaded Motor Gavoline -_.___ | 0 | 25.022 | 2 | 1,355 | 0 | 0 | 2,400 | 0 | 9 | 30.279 | 29.100 |
| Gaschol - | 0 | 13 115 | 0 | 22 | 9 | D | 0 | 0 | 8 | 35 | 21 |
| Firished Avialon Gasolhe -..._ | 0 | 115 | ${ }^{\circ}$ | 30 | 0 | 0 | 123 | 0 | 0 | 208 | 648 |
| Naphita-Type Jet Fupt - ._._. | 0 | 1,04? | 0 | $-107$ | 0 | 0 | 89 | 0 | 0 | 1.024 | 1.174 |
| Kerssene-Type Jet Ruel ___ _n_ | 0 | 4.543 | 0 | -005 | 0 | 0 | 995 | 0 | 0 | 4.573 | 7,560 |
|  | 0 | 482 | 0 | 1 | 0 | 0 | 172 | 0 | (5) | 655 | 2,095 |
| Distilate Fuel Oi | 1 | 17,968 | 0 | 3,313 | 0 | 0 | 1,308 | 0 | (*) | 22,970 | 40,198 |
| Rasidual Fual OE - | 0 | 3,630 | 614 | 331 | 0 | 0 | -700 | 0 | 0 | 3.723 | 6.957 |
| Naphta and Other Olis for Potro. Feec. | 0 | 1.744 | 9 | -125 | 0 | 0 | 13 | 0 | 49 | 1.502 | 603 |
| Sperial Naghtus ___ _-_ | ${ }^{0}$ | 296 | 67 | ${ }^{97}$ | 0 | 0 | 286 | 0 | 1 | 765 | 670 |
| Lubricants -___-_ | 0 | 819 | 5 | 146 | 0 | 0 | 113 | 0 | 16 | 1.067 | 2.021 |
| Waxes | 0 | 47 | 5 | $\stackrel{4}{74}$ | 0 | 0 | 0 | 0 |  | 47 | 75 |
| Pearcieum Coke | 0 | 3.250 | 0 | 74 | 0 | 0 | 0 | 0 | 49 | 3.375 | 905 |
| Asphalt | 0 | 1,051 | 0 | $-279$ | 0 | ${ }^{0}$ | 7 | 0 | (9) | 1.051 | 10,560 |
| Road On - | $\bigcirc$ | 4 | 0 | $-2$ | 0 | 0 | 0 | 0 | 0 | 2 | 13 |
| Sell Gas - Mricelianeos Products | ${ }^{0}$ | 2,751 | 9 | 0 | 0 | 0 | 9 | 0 | 0 | 3,761 | 0 |
| Niscelianeous Products | 15 | -104 | 9 | 267 | 0 | 0 | -57 | 0 | 1 | 129 | 171 |
| Total | 37.378 | 93,283 | 20,302 | 5,267 | 41,006 | -6 | 15,513 | 90.219 | 2,931 | 121,144 | 200,049 |

[^18]Table a. PAD Diatrict ill Supply and Disposition of Crude OA and Petroleum Products, March 1982
(Thousanda of Barrels)

| Cenmedily | Stanly |  |  |  |  |  |  | Discoptign |  |  | Ending Stocks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Pleid Prodastion | Relinery Produs: Sol | Inports | Stock With aswel ( + ) of Add- itan $(1)$ | Unae: countioc For Cince Cer | Crutbe Uned Directly and Losters? | $\begin{gathered} \text { Net } \\ \text { Reovipts } \end{gathered}$ | Rellown inguts | Epports | Aroducts Suppliod |  |
| Cruce OQ (including lease condinnate) __ 123.85s |  | 0 | 40.565 | -2,429 | -27,132 | -125 | 17.266 | 156,687 | 0 | 0 | 409333 |
| Natural Cas Plant Liquids and LAGs | 36.329 | 3,360 | 425 | 2,473 | 0 | 0 | -4.467 | 8.515 | 1,251 | 26.305 | 88.213 |
| Liquelod Petroltem Gases - | 21.90 | 3.170 | 425 | 2,740 | 0 | 0 | -5.839 | 33.34 | 1.281 | 17.392 | 70818 |
| Eihane - - | 6,559 | 181 | 0 | 50 | 0 | 0 | $\bigcirc$ | 191 |  | 6800 | 3,904 |
| Other Prodicts] - | 7.762 | 0 | 0 | -310 | 0 | - | -668 | 4,485 | 0 | 2,403 | 13,432 |
| Other Liquids | 425 | 0 | 1,95s | 426 | 0 | 0 | -2.527 | 9,206 | 0 | -8,587 | 6e, 38 |
| Other Hydrocestons and Alsohol -_- | 425 | 0 | 0 | 8 | 0 | 0 | -1809 | 4.931 | 0 |  |  |
| Untintathed Ols | 0 | 0 | 1.802 | 1,790 | $\bigcirc$ | 0 | -1.840 | 4,905 | 0 | -3.154 | 43,707 18.900 |
| Mottr Gaspline Bitpreting Componterts -_ | 0 | - | 54 | -1,075 | 0 | 0 | -687 | 3871 | 0 | -5,529 | 18.900 307 |
| Aviason Gasoline Blerding Components -_ | 0 | - | 0 | 155 | - | 0 | 0 | 5 | 0 | 97 | 307 |
| Fintshed Patroleum Products | 6ss | 177,613 | 3.270 | -1,236 | 0 | 6 | -6a,392 | 9 | ancs | 68.121 | 127.455 |
| Finished Motor Gesoline - | 5 | 81,166 | (9) | 2.856 | 0 | 0 | $-4.655$ | 0 | 1,060 | 32,606 | 43,146 |
| Finshed Leaded Motcr Gasoline - .-. | 4 | 52,056 | (5) | 860 | 0 | 0 | $-22,508$ | 0 | 1.006 | 15.328 | 25,274 |
| Firished Uniesded Mator Gescline - | 1 | 43,110 | 0 | 1,391 | 0 | 0 | $-27.147$ | 0 | 0 | 17,355 | 23,858 |
| Gaschol | 0 | 0 | - | 5 | 0 | $\bigcirc$ | 0 | 0 | $\bigcirc$ | 5 | 4 |
| Friahed Aviation Gasoline ___ | 87 | 373 | $\bigcirc$ | $\pm 9$ | 0 | - | -546 | - | $\bigcirc$ | -159 | a37 |
| Nophana-Type Jet Fuel | 0 | 2.858 | 0 | -351 | $\bigcirc$ | $\bigcirc$ | -723 | 0 | 0 | 1.774 | 2.905 |
| Kercoene-Type Jet Fuel | 0 | 14,347 | 0 | -1,976 | $\bigcirc$ | 0 | -10.040 | 0 | 0 | 2.331 | 11,049 |
| Kerceene - | 3 | 2,444 | 0 | -101 | 0 | 0 | -1,211 | 0 | 0 | 1,135 | 2.558 |
| Dintliate Fucl Oif | 1 | 31,938 | 197 | -768 | 0 | 6 | -16,941 | 0 | 1.324 | 13.041 | 27,469 |
| Aosidual Fuel ${ }^{\text {ar }}$ | 0 | 13,735 | 2.818 | -396 | 0 | 0 | -2,187 | 0 | 4,110 | 9.319 | 14,697 |
| Narphthe and Other Ois tor Poters. Feed. m- | 0 | 11.330 | 34 | -298 | 0 | 0 | 9 | 0 | 352 | 10.723 | 3.437 |
| Spacial Naphthas -_ | 111 | 1.183 | 222 | 48 | 0 | 0 | -563 | 9 | 253 | 654 | 1,700 |
| Lubricants - | 0 | 2.319 | (*) | 394 | 0 | 8 | $-877$ | 0 | 375 | 1,443 | 6235 |
| Waxss -_ Coie _n_ | 0 | 232 | 1 | 9 | 0 | 0 | -10 | 0 | 26 | 206 | 383 |
|  | 0 | 4.802 | 0 | -90 | 0 | 0 | 0 | 0 | 1,188 | 3,404 | 665 |
| Asphat - | 0 | 2.131 | 0 | -43 | $\bigcirc$ | 0 | -273 | 0 | 3 | 1,800 | 4.317 |
| Rood On | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\bigcirc$ | 2 |
| Ssin Gas _ _ _ _ _ | 0 | 7.570 | 0 | 0 | 0 | 0 | $\bigcirc$ | $\bigcirc$ | 0 | 7.570 | 0 |
| Mincellaneous Products .-_ | 477 | 1.230 | 1 | 197 | 0 | $\bigcirc$ | -367 | 0 | 20 | 1.589 | 1,511 |
| Total | 168,258 | 180,373 | 46,115 | -256 | -27,138 | -173 | -75,050 | 174,776 | 10,006 | 105,030 | 694,997 |

[^19]Tabie 9. PAD District IV Supply and Disposition of Crude Oif and Petroleum Products, March 1982

| Commediy | Sungly |  |  |  |  |  |  | Dipasiton |  |  | Encing Stocks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Fineld Prodic: ton | Rethary Produc: tien | Imperts | Stock With- drawal $(+)$ or Ads- $\operatorname{ting}(4)$ | Unacobunted For Crudo Oil | Crude Usid Deectly and Labeses | Not Rectipta | Refinory trouts | Exports | Prodicts Suppled |  |
| Crude OE (inclucling lease condensate) | E 18,439 | 0 | 628 | -314 | -6,838 | -11 | 0 | 11,904 | 0 | 0 | 16,600 |
| Natural Cas Prout Liquids and LRas | 2,204 | $\stackrel{7}{7}$ | 594 | 128 | 0 | 0 | -215 | 608 |  |  |  |
| Liquefied Petroleum Gases | 791 | $-7$ | 451 | 71 | 0 | 0 | 117 | 339 | 0 | 2,096 1,084 | 1,148 903 |
| Ethane - | 22 | 0 | 0 | (9) | 0 | 0 | 0 | 0 | 0 | 22 |  |
| Other Products ${ }^{\text {a }}$ | 1.302 | 0 | 143 | 56 | 0 | 0 | -332 | 268 | 0 | 990 | 244 |
| Other Laquids | 60 | 0 | 53 | -200 | 0 | 0 |  |  |  |  |  |
| Ohar Hydrocarbons and Acohol -_ | 60 | 0 | 0 | 0 | 0 | 0 | 0 | -844 | 0 | 56t | 6.842 |
| Unfoliched Ols matur | 0 | 0 | 0 | -48 | 0 | 0 | 0 | $-484$ | 0 | 435 | 3.203 |
| Motor Gavaline Blending Compononts -_ Avation Casoline Blending Componts | 0 | 0 | 53 | -188 | 0 | 0 | 0 | -220 | 0 | 115 | 3.683 |
| Avation Gasclive Blending Corponents -_ _ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Pinished Potroleum Products | 20 | 12,012 | 1 | -73 | 0 | 10 | 954 | 0 |  |  |  |
| Finiahed Motor Gasoint - | 3 | 5.295 | 0 | -51 | 0 | 0 | 539 | 0 | 0 | 8,770 | 15,550 8.497 |
| Fhighed Loadod Motor Gasoline ____ | 2 | 4.042 | 0 | -31 | 0 | 0 | 150 | 0 | 0 | 4,169 | 4.309 |
| Finished Uiverdid Motor Gaveline | 1 | 2253 | - | -31 | 0 | 0 | 377 | 0 | 0 | 2,600 | 2.205 |
| Finsohod Aviaton Gasofos | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2.600 1 | 2.25 |
| Finahed Aviation Qasolno | 0 | 15 | $\stackrel{0}{0}$ | 2 | 0 | 0 | 19 | 0 | 0 | 36 | 82 |
| Naphita-Type Jet Fuel | 0 | 413 | 0 | -1 | 0 | 0 | $-87$ | 0 | 0 | 325 | 204 |
| Karosine-Type Jet Fuel Korosene | 0 | 571 | 0 | -85 | $\stackrel{0}{0}$ | 0 | 540 | $\bigcirc$ | 0 | 1,025 | 624 |
| Distilase Fual OI. | 1 | 2.94 | (9) 0 | 1 | 0 | $\bigcirc$ | 9 | 0 | 0 | 48 | 74 |
| Residual Fuel Ol | 0 | -312 | (1) 0 | 209 | 0 | ${ }^{\circ}$ | -51 | 0 | 0 | 3.107 | 3,697 |
| Nephita and Other Ois for Petra. Foed. | 0 | 0 | 0 | 119 | 0 | 10 | 0 | 0 | 0 | 441 | 550 |
| Special Naphthas -____ | 0 | 1 | 0 | 4 | 0 | 0 | 0 | 0 | 1 | -1 | 0 |
| Waxests | 0 | 2 | (a) | 25 | 0 | 0 | 0 |  | 0 | 5 | 2 |
| Waxes - | 0 | 2 | 0 | -1 | 0 | 0 | 0 | 9 | 1 | 26 | 96 |
| Putrcleur Coike | 0 | 357 | 0 | 28 | 0 | 0 | 0 | 0 | 9 | 1 | 6 |
| Asphat | 0 | 509 | 0 | -318 | 0 | 0 | 0 | $\bigcirc$ | 0 | 385 | 568 |
| Prad Oil | 0 | 3 | 0 | 0 | 0 | 0 | ${ }^{\circ}$ | 0 | (0) | 191 | 3,175 |
| Soll Ciss - | 0 | 515 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 |
| Miscelianeous Products | 25 | 22 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 515 | 9 |
| Total | 20,732 | 12,005 | 1,276 | -471 | -0,838 |  |  |  |  |  |  |
|  |  |  |  |  |  | 1 | 739 | 11,808 | 3 | 15,571 | 30,720 |

[^20]5 includev natural gasoline, isopentane, unfractionabad statan, and platt condensate. (x) Less than 500 bomeis.

Table 10, PAD Distriet V Supply and Disposition of Crude Oil and Petroteum Products, March 1882

| Comynedily | Susply |  |  |  |  |  |  | Dispertion |  |  | Ending Stock |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Freid Produe: Son | Aolinary Produeton | Imperte | Slock Witr drawal $(+)$ or Ads. tion. $(\cdot)$ | Unac: counted For Crude Oll | Crude Used Diveety and Losses? | Net Rectipts | Mefleary inputs | Exports | Products Suppled |  |
| Crude Oil (inclading lease condensate) | C 86.593 | 0 | 5,196 | 1,838 | -376 | -1,963 | -21,950 | 01,258 | 7,907 | 0 | 80,113 |
| Natural Gas Plant Lquids and LAOs | 603 | 1,206 | 497 | -110 | 0 | - | 0 | 1,173 | 152 | 87 | 1,5e9 |
| Liquefed Potroleum Gasos -_ | 305 | 1,191 | 454 | 39 | 0 | 0 | 0 | AS3 | 152 | 905 | 1.374 |
| Errane | 0 | 15 | 0 | 0 | 0 | 0 | 8 | 0 | $\bigcirc$ | 15 | 0 |
| Other Products? | 303 | 0 | 43 | -148 | 0 | 0 | 0 | 321 | 0 | -123 | 189 |
| Other Liquids | 575 | 0 | 208 | 556 | 0 | 0 | 167 | 2.245 | 0 | -779 | 35.763 |
| Otwer Hedrocerbona and Nicohol -__ | 575 | 0 | 0 | $\underline{-2}$ | 8 | 0 | 0 | 573 | 0 | 0 | 4 |
| Untrished Olls | 0 | 0 | 209 | -27 | 0 | 0 | 167 | 1.418 | 0 | -1.067 | 28.389 |
| Motor Gasoline Blending Cormponorts | 0 | 0 | 0 | 654 | 0 | 0 | 0 | 365 | 0 | 288 | 0.220 |
| Aviotsen Gasolint Blending Compononts -__ | 0 | 0 | $\bigcirc$ | $-60$ | 0 | 0 | 0 | $-90$ | 0 | 0 | 156 |
| Finighed Petroleum Products | 0 | 67,143 | 2,2\% | 8,088 | 0 | 1,893 | 2187 | 0 | 5.559 | 76.007 | 56,256 |
| Plinehad Moter Gasoina, | 0 | 24.322 | 1,042 | S,843 | 0 | 0 | 1,611 | 8 | 254 | 36.604 | 18,556 |
| Frished Leaded Motor Gasoine | 0 | 13.081 | 681 | 3.285 | 0 | 0 | 1.017 | 0 | 254 | 17,751 | 9,420 |
| Firishad Unloadad Melor Gasoline --_ | $\bigcirc$ | 15, 154 | 561 | 2.654 | 0 | 0 | 504 | 0 | 0 | 18.780 | 8.127 |
| G9sohol | 0 | 87 | 0 | 3 | 9 | 0 | 0 | $\bigcirc$ | 0 | 90 | 9 |
| Frishad Avialion Gasoline -___ | 0 | 115 | 0 | 100 | 0 | 8 | 9 | 0 | 0 | 215 | 590 |
| Naghthe-Type Jet Fuol - | 0 | 1,759 | 0 | -60 | 0 | 8 | 244 | 0 | 0 | 1,904 | 13.309 |
| Keroseno-Type Jet Fual | 0 | 7,014 | 0 | -44 | 0 | 0 | 207 | 0 | 80 | 8,697 | 6.994 |
| Kerosena. | 0 | 195 | 0 | -4 | 0 | 0 | 0 | 0 | (a) | 191 | 160 |
| Distilate Fuel Of | 0 | 9.018 | 160 | 2463 | 0 | 304 | 48 | 0 | 1212 | 11,105 | 11,437 |
| Aoviduar Puat Ol | 0 | 11,762 | 708 | 624 | 0 | 1,629 | -306 | 0 | 1,778 | 12.608 | 10.325 |
| Naphtha and Other Ois for Petro. Feod. | 0 | 370 | 4 | $-12$ | 0 | 0 | 0 | 0 | 14 | 348 | 398 |
| Speclal Nophehas | 0 | 181 | 376 | $-82$ | 0 | 0 | 0 | 0 | (8) | 474 | 345 |
| Lubricents - | 0 | 309 | (1) | -6 | 9 | 0 | 42 | 0 | 52 | 352 | 1,415 |
| Wares | 0 | 64 | 1 | 6 | 0 | 0 | 0 | 9 | 5 | 87 | S5 |
| Patroleun Coke | 0 | 2.008 | 0 | 45 | 0 | 0 | 9 | 8 | 2.157 | 974 | 1.578 |
| Asphat | 0 | 1,395 | 0 | -276 | 0 | 0 | 0 | 0 | 3 | 1,116 | 2.825 |
| Road On | 9 | -27 | 0 | -18 | 9 | 0 | 0 | 0 | 0 | 9 | 20 |
| Sai Gas | $\bigcirc$ | 3,222 | 0 | 9 | $\stackrel{0}{0}$ | 0 | 0 | 0 | 0 | 3.228 | 427 |
| Mincellanaous Products _____ | 0 | 254 | (19) | -120 | 0 | 0 | $\cdots$ | 0 | 4 | 81 | 427 |
| Total | 37,781 | 80,349 | 8,192 | 10,377 | -378 | -30 | -19,596 | 64,a15 | 13,653 | 76,185 | 179,700 |

[^21]Table 11. Production of Crude OiA (including Lease Condensate) by PAD District
and State, for the Most Current Month, ${ }^{1}$ January 1982
(Thousands of Barreis)

| PAD District and State | Prodyction |  |
| :---: | :---: | :---: |
|  | Total | Daly Average |
| PAD District I |  |  |
| Florda | 2378 | 77 |
| New Yakk | 867 | 2 |
| Pennujuaris | E 207 | 7 |
| Veginis | 0 | 0 |
| West Vrgiris | E 198 | 6 |
| Totsl | E 2.050 | 32 |
| PAD Distriet II |  |  |
| ISnoks | 2.140 | 69 |
| Indiana | -560 | 19 |
| Kanalas | 5.521 | 178 |
| Kentucky | 547 | 18 |
| Michigen | 2,426 | 78 |
|  | E 7 | (7) |
| Nolvasha | 500 | 18 |
| North Dakota | 3,625 | 114 |
| Otio | E 1,154 | 37 |
| Ovimhome | 13.002 | 422 |
| South Dakota | 97 | 3 |
| Ternessee - | 70 | 2 |
| Total | E 29,720 | 959 |






Table 13. Production of Lease Condensate by State,

| Scase | Laase Condentate Producion |  |
| :---: | :---: | :---: |
|  | Total | Daly <br> Average |
| Aphyra | 955 | 31 |
| Callorna | 15 |  |
| Lovisiara | 6.212 | 200 |
| Miswistippl | 941 | 30 |
| Nuw Masico | 453 | 15 |
| Oldanora | 863 | 28 |
| Texas | 2.842 | 124 |
| Total | 13.281 | 426 |
| 1 These production data are heluded in Tuble 11. Smal amounts of lease condensate are krown to be produced in shates other than those fotcod. howevtr. |  |  |
| statigbics on this production are not ivvilable. <br> (1) Less than 500 barrets. <br> Notec: Total may not squal sum of components <br> Sources: Sep Explanalicry Noses on Data Cobection | incleper and Estr | ding |

Table 12. Offshore Production of Crude Oll (including

| Stre | Oflshore Produrion |  |
| :---: | :---: | :---: |
|  | Total | $\begin{aligned} & \text { Daly } \\ & \text { Awrage } \end{aligned}$ |
| Nankt | 2.124 | 69 |
| Callomia |  |  |
| Fodera | 2275 | ${ }_{108}$ |
| State - . | 3.359 | 100 |
| Calolung Total - |  |  |
|  |  |  |
| Foberal | 21,486 | 6 |
| Sate | 2,056 | 6 |
| Terat |  |  |
|  |  |  |
| Faderal | 1,097 | 35 |
| Stato - | 129 | 4 |
| Teoss, Toul | 1,226 | 40 |
| United States Total | 32,524 | 1,049 |

I Those production data aso inclused in Tebie 11.
Noter. Total may not equal sum of comporints dav to intependent
Souroer: See Eplaratioy Notas on Data Colection and Eximation.
Table 14. Natural Gas Processing Plant Production of Petroleum Products by PAD District,1 March 1982 (Thousands of Barrels)

| Commoxity | PAD Dithet I |  |  | PAD Pentrat |  |  |  |  | PAD Diptikt ${ }^{\text {a }}$ |  |  |  |  |  | $\begin{gathered} \text { PAD } \\ \text { Dst. } \mathrm{N} \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { PND } \\ \text { Det. } Y \\ \hline \end{array}$ | Unitod Stales |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | East Coast | Appalachian 판 | Total | $\begin{gathered} \text { Appala- } \\ \text { chian } \\ \text { \#12 } \end{gathered}$ | $\begin{aligned} & \text { Ind. } \\ & i_{n}, K_{y y} . \end{aligned}$ | Minen <br> Wre, <br> Paks | Chle. Kans. Ma | Teta | Texas Iniand | $\begin{gathered} \text { Texat } \\ \text { Gut } \\ \text { Coost } \\ \hline \end{gathered}$ |  | No. La, Ak. | New Merico | Total | Dot in Rcciky MC | $\begin{aligned} & \text { Det. Y } \\ & \text { Wost } \\ & \text { Const } \\ & \hline \end{aligned}$ |  |
| Natiral Gas Plant Liquids | 645 | 527 | 1,172 | 3 | 1,360 | 201 | 5.831 | 7.606 | 18,409 | 3.656 | 0.981 | 66s | 3,568 | 36,320 | 2,204 | 609 | 47.910 708 |
| Isopectane | 0 | 0 | 0 | 0 | 0 | 0 | 200 | 265 | 301 | 33 | 119 | $\bigcirc$ |  | 533 | 2 | 0 | 796 |
| Natural Gasolne | 67 | 34 | 121 | 0 | 76 | 60 | 1,071 | 1.227 | 2,080 | 560 | 1,419 | 110 | 311 | 4.460 1.789 | 384 | 318 | 6,511 |
| Untractionated Stream | 0 | 196 | 195 | 3 | 100 | 32 | -2,846 | -2.710 | 7,506 | $-9.063$ | 1,071 | -15 | 2,208 | 1,789 | 997 | -15 | 257 |
| Ptant Condamate | 0 | 0 | 0 | 0 | 63 | 0 | 28 | 111 | 209 | 716 | 123 | -03 | 1 | 987 | ${ }^{8}$ | 0 | 1,106 |
| Liquefed Petroleum Gases and Ethare. | 558 | 297 | 856 | 0 | 1.121 | 179 | 7,418 | 8,717 | 0.283 | 11,309 | 7,249 | 635 | 1,045 | 24,551 | 813 | 305 | 30.241 |
| Ethane - | 220 | 359 | 374 | 0 | 441 | 0 | 937 | 1,377 | 1,276 | 2,702 | 2.440 | 63 | 78 | 6.559 | 22 | 0 | 8.332 |
| Propane | 207 | 97 | 309 | 0 | 533 | 116 | 3.083 | 3.732 | 3,060 | 3.616 | 2.323 | 169 | 502 | 9.669 | 500 | 190 | 14,415 |
| Butane | 113 | 30 | 143 | 0 | 102 | 54 | 1,207 | 1,363 | 1.348 | 1.973 | 911 | 240 | 243 | 4,715 69 | 286 | 58 | 6,586 |
| Butane-Propane Motures | 0 | 0 | 0 | 0 | 2 | 0 | 9 | 2 | 56 | 2 | 2 | 7 | 5 | 69 | 2 | 33 | 106 |
| Elume Propune Mixtures | O | 9 | 0 | 0 | 0 | 0 | 1.721 | 1,721 | 1.814 | 1.906 | 760 | 0 | 134 | 4,693 | 0 | 0 | 6,414 |
| Inpoutane -_ | 18 | 17 | 35 | 0 | 44 | 9 | 470 | 522 | 707 | 1.081 | 794 | 155 | 87 | 2885 | 4 | 24 | 3.410 |
| Finished Motor Gasoline | 54 | 0 | 64 | 0 | 0 | 0 | 0 | 0 | 5 | 0 | ${ }^{\circ}$ | 0 | 0 | 5 | 3 | $?$ | 72 |
| Frithed Lasded Motior Gavoline -_ | 84 | 0 | 64 | 0 | 0 | 0 | 0 | - | 4 | 0 | 0 | 0 | 0 | 4 | 2 | 0 | 70 |
| Finlehed Urleaded Moter Gasoline ___ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 5 | 5 | 1 | 0 | 0 | 3 |
| Gaschel | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 |
| Frished Aviation Gasoline | 0 | $\bigcirc$ | 0 | 0 | 0 | 0 | 0 | 0 | 57 | 0 | 0 | 0 | 0 | 57 | 0 | 0 | 57 |
| Naphitha-Type Jot Puel - | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | - | 0 |
| Kerosene-Type Jet Fusk | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 |
| Kerocene - | 0 | 0 | 0 | 0 | 0 | $?$ | 0 | 0 | 1 | 0 | 9 | 1 | 2 | 3 | 0 | 0 | 3 |
| Distilate Fuel O8 | 0 | 0 | 0 | 0 | 0 | $?$ | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | , | - | 3 |
| Special Naphthas | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 111 | 0 | 0 | 0 | 0 | 111 | 0 | 0 | 111 |
| Miscelaneous Products - | 0 | 0 | 0 | 0 | 3 | 0 | 13 | 15 | 333 | 2 | 1 | 9 | 132 | 477 | 25 | 0 | 517 |
| Total Froduction | 700 | 527 | 1.256 | 3 | 1,382 | 221 | 5,045 | 7,022 | 19.007 | 3.606 | 9,982 | 677 | 3,701 | 38.975 | 2233 | 608 | 48.875 |

[^22]Table 15. Refinery input of Crude Oil and Petroleum Products by PAD District, March 1982

| Commodity | PAOCatict |  |  | PAD Datict II |  |  |  |  | PAO Dotrictis. |  |  |  |  |  | PAODRt, NRockyM! | PAD <br> Dist y West Csas! | Unted Scates |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | East Copt | Appala chian腊 | Tous | Appaiachian $\pm 2$ | $\begin{aligned} & \text { Ind. } \\ & \min _{1}, \mathrm{Ky} \text {. } \end{aligned}$ | Mrn. Wac, Daks. | Oria. <br> Kans. <br> MO. | Tots | Texas riend | Texas Gull <br> Coatt | $\begin{aligned} & \text { La } \\ & \text { Out } \\ & \text { Coast, } \end{aligned}$ | No. La. Nk. | Nerw Merice | Total |  |  |  |


笑

| Other Lipuids |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oher Hydrocurbens .__ | 00 | 21 | 114 | 0 | 800 | 0 | 12 | 212 | 4 | 265 | 162 | 0 | 0 | 431 | 80 | 573 | 1.350 |
| Alcohal - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 9 | 0 | 0 | 0 | 0 | 0 |  |
| Uefnished Cal (nel) | 2749 | 70 | 2819 | 96 | 170 | $-130$ | 715 | 343 | -752 | 3,707 | 1,648 | 225 | -12 | 4.906 | -464 | 1,416 | 0,500 |
| Motor Gasolne Biending Components (nex) | 100 | 42 | 145 | -12 | 1,065 | 60 | -94 | 1.078 | 156 | 1.887 | 1,954 | 69 | $-17$ | 3871 | $-220$ | 386 | 5.240 |
| Aviation Gasoline Blendhy Components (net) $\qquad$ | $\bigcirc$ | 0 | 0 | 0 | -86 | 0 | -11 | -97 | -83 | 21 | OS | 0 | 0 | 58 | 0 | -60 | -108 |
| Total inpat to Refneries | 37.205 | 2.427 | 10.632 | 1.030 | 52.050 | 7223 | 27,130 | 80,210 | 15.362 | -6,487 | 62,652 | 5.708 | 2.503 | 174.778 | 11.868 | 64.815 | 301,312 |
| Cruse Oil Distilition Gross irput (daly avernge) |  |  |  | 63 |  | 235 | 738 | 2.735 | 502 | 2.614 | 1,9m | 171 | 56 | 5.265 | 301 | 2.042 | 1t,060 |
| Gross inpu (daly average) - | 1,137 1,689 | 107 182 | 1.824 | 68 68 | 1.608 2.501 | 225 | 1.150 | 4.012 | 500 | 4,447 | 2814 | 200 | 123 | 8,334 | 630 | 3.146 | 17,971 |
| Operating Ratio (perceri)' | 68.4 | 05.7 | 66.2 | 04.9 | 84.5 | 78.9 | 69.4 | 67.4 | 76.0 | 58.8 | 67.3 | 50.7 | 70.0 | 63.2 | 620 | 65.0 | 44.9 |
| Crude Oil Qualities |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Sultr Cortent. Weighted Average (percenty $\qquad$ | 1.13 |  | 1.06 32.65 | .62 38.90 | 98.31 | 1.68 | 37.89 | 30.31 | $\begin{array}{r} .57 \\ 38.29 \end{array}$ | $\begin{array}{r} .97 \\ 34.67 \end{array}$ | $\begin{array}{r} 81 \\ 34.05 \end{array}$ | $\begin{array}{r} 1.71 \\ 3206 \end{array}$ | $\begin{array}{r} .36 \\ 20.06 \end{array}$ | 50, 36.97 | 36.37 | 1.09 25.11 | $\begin{array}{r} .99 \\ 33.47 \end{array}$ |
| API Gravily. Wolghted Average ___ | 21.80 | 40,43 | 32.65 | 38.00 | 38.31 | 30.77 | 37.89 | 30.38 | 38.29 | 34.67 |  |  |  |  |  |  |  |

[^23]Table 16．Refinery Production of Petroleum Products by PAD District，March 1982
（Thousands of Barrels）

 397,140
$-15,839$
 응


 $\underset{4}{9} 9$




合
敛
8
8


盟胞等
 $\stackrel{\text { g }}{7}$

 No多盟 000 名品号哭 8思 0

```
                                    -
```

Liquefied Petroleum Gases and Frae -__
For Petrochemical Feedstock Use For Other Uses－＿
Ethene
For Other Uses－ For Petrochernica，Feedstock Use
For Other Uses Butane
For Petrochemical Feedstock Use－＿＿＿＿
For Other Uses For Other Uses Matures
Butane－Propane Matlock Use＿－
For Petrochemical Feedstock Butane－Propase Matures
For Potrocherical Feedstock Use－
For Other Uses
Isobuthe for Petra．Feed．Use－－
易㫨


 Fished Uniaaded Motor Gasoline－＿
Gasohol
Finished Aviation Gasoline－
 Nagheu－7ype del Fuel－．
Kerosene Type Jet Fuel－－
Kerosene－ Kerosene
Distilate Fuel Ot
Distillate Publ Cd Loss No． 4 Distillate Publ Col Loss No． 4 －
No． 4 Pal On Residual Fuel Oe
Naphtha＜ 400 Deg．For Petra．Feed．Use Nesphith＜ 400 Deg．For Petra．Feed．Use
Over Ole $>400$ Deg．For Petra．Feed．Use－ Special Nephthas－ Luenoants
 Wax,
Miersorystalline－
Coytaline－F．dy Refined
 Crystaline－Other＿＿＿
Petroleum Coke：
Marketable Marketable－
Catalyst
Asphalt Asphalt
Road OE
$S=1$ Sal Gas
For Potrochernical Fosdstock Use＿＿＿＿＿＿＿＿＿＿ For Other Uses
Mischlaneous Products－＿＿＿＿＿＿＿＿
 80
思
皆
7 3.396
39 －1．

[^24]Table 17. Percent Refinery Yield of Petroleum Products by PAD District, March 1902

| Comnodiy | PAD Ditipt |  |  | PaD Oestry |  |  |  |  | Paphatrietin |  |  |  |  |  | $\begin{array}{\|c\|} \hline \text { PAD } \\ \text { Das IV } \\ \hline \text { Packy } \\ M \end{array}$ |  | Uritiod States |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | East Cosst | $\begin{gathered} \text { Appoin } \\ \text { chlan } \\ \text { in } \end{gathered}$ | Total | A0palsChan 12 | $\begin{aligned} & \text { Ind, } \\ & \text { in. } \mathrm{Ky} \text {. } \end{aligned}$ | MrO . Witc. Dats | CKa. Kanti. Mo. | Tetal | Texas Hand | $\begin{aligned} & \text { Texas } \\ & \text { Cult } \\ & \text { Coast } \end{aligned}$ | $\begin{gathered} \text { La. } \\ \text { Gout } \\ \text { Const } \end{gathered}$ | No. La, Alk. | $\begin{gathered} \text { New } \\ \text { Moviop } \end{gathered}$ | Tots |  | Dis y West Coost |  |
| Prished Meter Gasoline2 Fribhed Avtaion Gasolinea | 46.0 | 37.1 | 45.3 | 59.4 | 55.7 | 58.1 | 51.0 | 54.5 | 45.5 | 41.7 | 43.5 | 30.2 | 37.1 | 42.2 | 51.2 | 41.8 | 458 |
| Pinkhed Avtation Gasolined | (3) | 1.7 | (1) | 0 | 3 28 | 38 | $\underline{2}$ | -3 | 3 | 3 | .1 | 0 | 0 | 2 | . 1 | -3 | 2 |
| Lioupliod Retrnary Gases 4 Ethane | 33 | 1.7 | 32 | 1.4 | 28 | 3.5 | 1.8 | 26 | 32 | 2.3 | 1.4 | 1.0 | 1.2 | 21 | - 1 | 1.9 | 2.8 |
| Naphtha-Type Jet Fuel | 20 | - 0 | 1.9 | 0 | 0 | 1.3 | 26 | 1.3 | 59 | 1.4 | 星 | 26 | 13.7 | 1.4 | 3.0 | 2.8 | 2.8 1.8 |
| Kerosene-Type Jet Fuel __ Kerosens | 3.7 | 2.0 | 1.6 | 0.1 | 6.6 | 3.4 | 38 | 5.5 | 4.5 | 7.4 | 13.1 | 4 | 1.0 | 8.8 | 5.0 | 11.2 | 7.8 |
| Kerosine | $22 \frac{2}{4}$ | 1.9 | $\frac{2}{10}$ | 0 | 1.0 | (1) | (4) | 4 | 6 | 1.5 | 1.4 | 19 | 1.0 | 1.5 | 4 | 13 | - 9 |
| Disallse Fuel OX | 22.4 14.1 | 26.3 6.1 | 230 | 218 6.5 | 18.5 4.8 | 25.2 | 269 32 | 21.7 | 232 | 20.2 | 16.9 | 28.6 | 34.1 | 10.7 | 258 | 14.4 | 19.8 |
| Naphtha < 400 Dege F. Petro. Feod. Use | 10.1 1.0 | ${ }^{6.1}$ | 135 9 | 6 | 1.818 | 3.7 0 | 3.2 3 | 4.3 | 73 28 | 78 | 10.0 | 9.4 | 7.1 | 85 | 27 | 18.7 | 9.7 |
| Oener Ois $>400$ Deg. F. Patro. Food Use - | (9) | 1.6 | 2 | 0 | 2.2 | 0 | 0 | 1.3 | 288 | 4.4 | -3 | (9) | 0 | 28 42 | 0 | 2 | 1.0 |
| Special Naphthes - | (9) | . 5 | . 1 | . 0 | 4 | 0 | 4 | 4 | - | 10 | 1 | 42 |  | 4 |  | 4 | 23 |
| Wericants -_._- | 9 | 12.7 | 1.3 | 0 | $s$ | 0 | 1.5 | 1.0 | 3 | 18 | 1.1 | 28 | 0 | . 7 | (9) | 3 | 5 |
|  | (1) | 25 | 3 | 0 | (4) | 0 | . 1 | . 1 | (c) | 2 | 1. | 5 | 0 | 1.4 | (1) | 6 | 1.2 |
| Petroleum Coke ___ And | 3.4 | 1.3 | 32 | 1.4 | 4.1 | 4.7 | 4.0 | 4.0 | 18 | 3.1 | 3 | -5 | 4 | -1 | (a) | 1 | 1 |
| Asphat - | 26 | 3.4 | 26 | 4.4 | 1.3 | 6.0 | 20 | 24 | 20 | ${ }^{2.1}$ | 1.4 | 25 | 4 | 24 | 21 | 4.9 | 38 |
| Rond Oil - | 0 | 0 | 0 | 9 | (1) | 0 | (1) | (1) | 0 | $\stackrel{ }{0}$ | 1.4 | 125 | 20 | 13 | 4.5 | 22 | 20 |
| Ssx Gas for Petro. Peed. Use -_ | . 1 | 0 | . 1 | 9 | (a) | 0 | 0 | (1) | ) | 8 |  | 0 | 0 | 0 | (b) | (0) | (a) |
| Sor Gas for Other Uses -_.___ | 4.1 | 2.9 | 4.0 | 18 | 4.5 | 3.6 | 5.0 | 4.5 | 23 | 4 | 4 | 8 | 1 | 3 | -1 | (9) | 2 |
| Miscesianhous Products -_ | , | . 7 | 8 | 2 | - 4 | 3 | 2 | -1 | 7 | 1.2 | 4 | 8 | 2.1 | 4.3 | 4 | 5.1 | 45 |
| Processing Gainf() or Losen( + ) $^{4}$._L_ | -8.4 | 1.2 | -4.8 | -4.4 | -5.2 | -6.7 | -3.8 | -4.9 | $-1.7$ | -4.6 | $-3.7$ | -1.0 | -3 | -18 | -1.2 | -5.6 | -4.4 |

5 plant liouids, other 2 Glased on tuty finished motor gasoine output ples net 3 Based on finished avdation gesoline output plys net oulpwt of aviaton gesoline blending components
4 Reprasents the dillerunse bitween input and Production. (9) Raprasenss the dillerunse besween ingot and Production
Note: Total mas percent.
Not
Note: Total may not equal sum of componerts duy to independent rounding
Sea Explanatory Notes on negative product yielde
Source: See Epplanatry Notes on Data Colloction and Eytimation.
Table 18. Refinery Recelpta of Crude Oill by PAD District, March 1982 (Thousands of Barrels)

| Method | PAD Dstrict I |  |  | PAD DetwetII |  |  |  |  | PAD District:n |  |  |  |  |  | PADDy: IVRockyMR | $\begin{aligned} & \text { PAD } \\ & \text { Dist V } \\ & \hline \end{aligned}$ | United Statas |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | East Const | Agoala chien 41 | Total | $\begin{array}{\|c\|} \hline \text { Appali- } \\ \text { chian } \\ \text { \#2 } \\ \hline \end{array}$ | $\begin{aligned} & \text { Ind. } \\ & \text { In. } K y \text {. } \end{aligned}$ | Min. Wise. Daks | Oria Kans $M 3$ | Total | Texas Inland | Terses Guly Cont | Lat. Quit Censt_ | No. La. Ark. | New Manco | Total |  | $\begin{aligned} & \text { Dest V } \\ & \text { West } \\ & \text { Const } \end{aligned}$ |  |
| Pupoline |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Domastic | 0 | 1.937 | 1,937 | 1,250 | 37,439 | 3.484 | 22308 | 64.547 | 12.244 | 5 Ca 38 | 31,915 | 3250 | 1,221 | D0.328 | 10,034 | 27.307 | 203,453 |
| Forsign | 0 | 775 | 775 | 270 | 9,30e | 3.861 | 1.457 | 14.596 | 1,123 | 4,430 | 918 | 480 | 0 | 10.830 | 827 | 430 | 27,458 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Domystie | 4,112 | 0 | 4,112 | 0 | 0 | 0 | 0 | 0 | 0 | 5,309 | 3.308 | 0 | 0 | 8.611 | 0 | 28,164 | 38,887 |
| Foreign | 25,773 | 0 | 25,773 | 0 | * 0 | 0 | 0 | 0 | 0 | 0.968 | 18.123 | 0 | 0 | 25.093 | 0 | 5069 | 50,585 |
| Burga |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Domaste | 2808 | 45 |  | 0 | 1.019 .304 | 0 | 0 | $\begin{array}{r} 1,019 \\ 094 \end{array}$ | 0 | $4,483$ $30$ | $\begin{array}{r} 5.488 \\ 373 \end{array}$ | $\begin{array}{r} 129 \\ 9 \end{array}$ | 0 | $\begin{array}{r} 10.040 \\ 4112 \end{array}$ | 0 0 | $\begin{array}{r} 257 \\ 0 \end{array}$ | $\begin{array}{r} 11.371 \\ 3.545 \end{array}$ |
| Forplign | 2.808 | 0 | 2,809 | 0 | 324 | 0 | 0 | 324 | 0 | 60 | $323$ |  | 0 | $412$ | 0 |  | 3,545 |
| Tark Cars |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Domestic ___ | 22 | 385 | $437$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 24 | 0 | 24 0 | 0 | 0 | 461 0 |
| Trucka |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Domestio ___ | 0 | 318 | 318 | 125 | 257 | 11 | 935 | 1.300 | 935 | 227 | 575 | 917 | 597 | 3,189 | 956 | 1.100 | 7,105 |
|  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 168 | 0 | 0 | 0 | 0 | 168 | 0 | 0 | 168 |
| Total |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Domestio | 4,104 | 2.058 | 6.8es | 1.321 | 38.715 | 3.495 | 23.309 | 00834 | 12,180 | 80,417 | 41,221 | 4.320 | 2.358 | 121.436 | 10.980 | 55038 | 201,357 |
| Forelign | 24.562 | 775 | 29357 | 270 | 9,392 | 3,561 | 1,457 | 14,920 | 1,291 | 18.378 | 10,366 | 488 | 0 | 25,503 | 827 | 8,118 | 67,728 | Notec Total may not equal sum of componants dua to indapendent rounding.

Table 19. Fuels Consumed at Refineries by PAD District, March 1982

| Commodity | PADCistret I |  |  | PAP. Ditict |  |  |  |  | PARDplict! |  |  |  |  |  | $\begin{gathered} \text { PAD } \\ \mathrm{Digh}^{2} \mathrm{~V} \end{gathered}$ | $\begin{gathered} \text { PAD } \\ \text { D2t V } \end{gathered}$ | Unted States |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | East Const | Appala: chian -1. | Total | $\begin{gathered} \text { Aposis } \\ \text { chinn } \\ 92 \end{gathered}$ | $\begin{aligned} & \text { Ind. } \\ & \text { in. Ky. } \end{aligned}$ | M*n. Wise Daki | $\begin{gathered} \text { Orbas. } \\ \text { Kans. } \\ \mathrm{M}_{2} . \end{gathered}$ | Total | Tmass linland | Trexes Olat Coant | $\begin{aligned} & \text { La } \\ & \text { Cult } \\ & \text { Crest } \end{aligned}$ | $\frac{\text { Na. La. }}{\text { Ark }}$ | New Morico | Total | $\begin{gathered} \text { Dist } \mathrm{V} \\ \hline \text { Aocky } \\ \mathrm{M} \end{gathered}$ | Dat $V$ West Coant |  |
| Cruce OIf (recuiting inese condensate) | 17 | 0 | 9 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 0 | 0 | (m) | (v) |
| Lqualled Petocisum Gasest | 17 | 13 | 30 | 11 | 260 | 38 | 24 | 240 | 19 | 61 | 211 | 0 | 3 | 2es | 8 | 205 | 503 |
| Unifilshed Ols _ | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Destliate Fuol Oil | 57 | 25 | 88 | 0 | 6 | 0 | 0 | 6 | 11 | 0 | 15 | 14 | (1) | 26 | 7 | 5 | 125 |
| Residual Fual On | 800 | 84 | 354 | 9 | 372 | 79 | 58 | 518 | 10 | 239 | 60 | 14 | 0 | 323 | 124 | 258 | 2.106 |
| Marketable Petroleum Coke | 0 | 0 | 9 | 9 | 2 | 0 | 0 | 2 | 9 | 9 | 9 | 0 | 0 | 0 | 11 | 44 | 57 |
| Catalyst Petroloum Cole | 633 | 44 | 677 | 25 | 787 | 68 | 367 | 1,278 | 170 | 1,242 | 675 | 24 | 0 | 2,235 | 132 | 814 | 5,096 |
| Sell Gss | 1,230 | 124 | 1384 | 69 | 2,202 | 230 | 1,001 | 3.500 | 274 | 3.948 | 2.313 | 108 | 48 | 4.750 | 443 | 2,211 | 14,976 |
| Othar Fucts 2 Natral Ras imillon atio feellu | 0 | 0 | 0 | $\bigcirc$ | 93 | 7 | 50 | 90 | 5 6 | 13, 23 | (1) | 9 | 0 | 23 | 9 | 105 | - 222 |
| Naturd Gas (million cubic feet -____-_ | 1,706 | 303 | 2.069 | 34 | 3328 | 78 | 5.393 | 8.e20 | 2.574 | 13.057 89 | 7.901 | 82 | 198 | 24.835 38 | 1296 | 3264 | 45.083 53 |
| Coal (thousand short tons) --. | 0 | 15 | 15 | 14 | 8 | 0 | ${ }_{785}$ | 1210 | 78 | \% 78 | 358 | + 124 | 0 | 30 | 0 | 497 | 53 |
| Purchated Electricty (milion kWh) -__ | 335 | 42 | 377 749 | 14 | 287 | 45 | 785 | 1210 | 75 | 776 | 255 | 124 | 0 | 1, 398 | 63 | 497 1.454 | 3,4es |
| Purchased Steam (rition pounds) -_ | 737 | 12 | 749 | 0 | 125 | 0 | 0 | 125 | 10 | 0 | 974 | 0 | 0 | 982 | 0 | 1,454 | 3,380 |

[^25]Table 20. Imports of Crude Oil and Potroleum Products by PAD District, March 1982

| Commodiry | Ptuoleum Adminitratien for Delense Disticts |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | $\square$ | \# | N | v | Total |
| Crude Oil (including lease condensate) ${ }^{12}$ | 28,160 | 13,079 | 40,565 | 628 | 8,1\%6 | 68.538 |
| Natural Gas Liquids | 416 | 5,168 | 425 | 594 | 497 | 7,090 |
| Namus Gasoline and laopevane - | (b) | 0 | 0 | 9 | 0 | (0) |
| Plent Condeniala $\qquad$ | ${ }_{4} 15$ | 5.78 | 0 | 143 | 43 | 106 |
| Liquefied Potroleum Geses and thene -__ | 415 | S.768 | 485 | 451 | 454 | 6.919 |
| Emane | 0 | 1,812 +105 | $\bigcirc$ | - | 0 | 1.812 |
| Propare | 234 | 1,195 | 0 | 344 | 100 | 1,473 |
| Butane - Progane Matures | 182 | 650 | 0 | 107 | 259 | 1.202 |
| Butane-Progane Matures | 0 | 0 | 425 | 9 | 0 | 425 |
| Entne-Progane Matures | 0 | 1,512 | 9 | 0 | 0 | 1.512 |
| Other Liquids 1 | 1,465 | 523 | 1,855 | 83 | 209 | 4.206 |
| Uniniehed Ols 1 | 1.552 | 51 | 1,802 | 9 | 209 | 3.614 |
| Motor Gasoline Brending Components | 13 | 472 | 54 | 53 | $\bigcirc$ | 592 |
| Finlshed Petroleum Proeucts | 32,183 | 72 | 2,270 | 1 | 2,200 | 38,466 |
| Frichod Motor Gasoling | 4,706 | 2 | (b) | 0 | 1,042 | 5. 200 |
| Fonshed Leaded Motor Gasoline - | 2,700 | 0 | (0) | 0 | 681 | 3.365 |
| Frished Uniagded Motor Gasoine | 1.939 | 2 | 0 | 0 | 361 | 2226 |
| Frighed Aviston Gasowne | ${ }^{0}$ | 0 | 0 | 0 | 0 | 0 |
| Naphthertype Jet Punl | 0 | 0 | 0 | 0 | 0 | 0 |
| Karosene-Type Jet Puel | 1200 | 0 | 0 | 0 | 0 | 1.200 |
| Biner Arcrat Fuel | 1.200 | 0 | 0 | 0 | 0 | 1,200 |
| Keroterne | 1.200 | 0 | 9 | 0 | 0 | 1.200 |
| Distlate Fuel Oi | 1,437 | 9 | 9 | 0 | 0 | 49 |
| Dasblate Fuel Of | 1,137 0 | 9 | 197 | (a) | 160 | 1,495 |
| For milkay ofthhore use | 0 | 0 | 0 | 0 |  | 0 |
| No. 2 fued oll | 1,137 | 0 | 197 | (b) | 157 | 0 |
| No .4 fuel oll | 0 | - | 0 | (1) | 157 | 1.491 |
| Residual Fuel OI | 34,060 | 614 | 2816 | 0 | 3 | 3 |
| Bonded ships bunkers | 0 |  | 2,10 |  | 708 | 28,108 |
| For militay oftchare use | 0 | 0 | - | 0 | 0 | 0 |
| Other | 0 | 0 | 9 | 0 | 0 | 0 |
| Other - 400 Deg | 24,050 | 614 | 2,816 | 0 | 70 | 28,136 |
| Naphitha < 400 Deg, lor Petra. Food. Use | 36 | 0 | 34 | 0 | 4 | 74 |
| Other Ols $>400$ Deg. for Petro. Foed. Uoe | 0 | 0 | 0 | 0 | 0 | 0 |
| Speolal Naphthas | 950 | 87 | 222 | 0 | 376 | 1,635 |
| Lubricents | 109 | 5 | (1) | (4) | (9) | 114 |
| Wex | 2 | 5 | 1 | $\bigcirc$ | $\dagger$ | 8 |
| Asphat |  | 0 | 0 | 0 | 0 | 1 |
| Mascellaneous Products | 2 | 9 | 1 | 0 | (1) | 13 |
| Total lmports | 62.323 | 20,302 | 46,115 | 1,276 | 8,192 | 138,259 |

i Cude od and unfinishod obe ate teperted by the PAD Detrict in which fley are tio be processed: bll obest products are reported by
${ }_{2}$ Inctudes crude oil importad for sterage in the Statagic Petroleum Reserve.
Notec Total mey not equel sum of components due 10 indopensent rounding.
Table 21. Imports of Crude Oil and Petroleum Products by Source and PAD District, March 1982
(Thousands of Barrels)

| Source | Cruce Oit | $\begin{aligned} & \text { UPG } \\ & \text { and } \\ & \text { Ehane } \end{aligned}$ | Urfin iened Cls | Gasoline Blening Componerts | Finished Motor Gasoline | Jet <br> Fual | Kerosone | Dist Fuot Oit | Resid. Puat Ot | Special Naphthas | Oter Pros: ucte 2 | Totas Prod: ucts | Total Patrohown |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |



Table 21. Imports of Crude Oill and Petroleum Products by Source and PAD District, March 1982

| Source | Cruds Cal | $\begin{aligned} & \text { LPG } \\ & \text { and } \\ & \text { Ehane } \end{aligned}$ | Untinished Ois | Gavoine Bientipy Compor nemts | Frished Motor Gasoline | $\begin{aligned} & \text { Jot } \\ & \text { Fiot } \end{aligned}$ | Karoseces | $\begin{aligned} & \text { Daty } \\ & \text { Fouel } \\ & \text { Coin } \end{aligned}$ | Renid Fuel 0 | Spocial Napithas | Other Prod: ucts ? | Total Prod ucts | Total Potroloum | $\begin{gathered} \text { Total } \\ \text { (Dasly } \\ \text { Average) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |



[^26]Table 21. Imports of Crude Oil and Petroleum Products by Source and PAD District, March 1982 (Thousands of Barrels)

| Source | Crude Of 1 | $\begin{gathered} \text { LPG } \\ \text { and } \\ \text { Etrane } \end{gathered}$ | Untin bhed Oils | Gaspline <br> Birending Compo nerts | Finighed Motor Gascin | $\begin{aligned} & \text { Jot } \\ & \text { Fuox } \end{aligned}$ | $\begin{aligned} & \text { Karo } \\ & \operatorname{sen} 0 \end{aligned}$ | $\begin{gathered} \text { Disu } \\ \text { Fual } \\ \text { Of } \end{gathered}$ | $\begin{aligned} & \text { Resid. } \\ & \text { Fual } \\ & \text { Oi } \end{aligned}$ | Special Naphthas | Other Prod. uets 2 | Tolal Pros. vess | $\begin{aligned} & \text { Total } \\ & \text { Poter } \\ & \text { levem } \end{aligned}$ | Total (Dely Averngo |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PAD Distict II |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Arab OPEC |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Onter | 636 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 635 | 21 |
| Saud Nabia - | 2,756 | 0 | 0 | 0 | 0 | $\bigcirc$ | 0 | - | 9 | 0 | 0 | 0 | 2756 | 89 |
| United Arab Emintes - | ${ }^{334}$ | 0 | 0 | 0 | - | - | 0 | - | 0 | 0 | 0 | - | 4 bs | 16 |
| Scatical Ant OPEC | 3,875 | 0 | 0 | - | 0 | - | 0 | 0 | 0 | 0 | 0 | - | 3.875 | 125 |
| Other OPEC |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Nigeria | 1.091 | 0 | - | 0 | 0 | 0 | - | - | 0 | 0 | 0 | 0 | 1,031 | 33 |
| Suttotal Other OPEC _- | 1,031 | 0 | $\bigcirc$ | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 1.031 | 38 |
| Other |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Carada | 4,153 | 5,16e | 51 | 472 | 2 | 0 | - | 0 | 514 | ${ }^{37}$ | 18 | 6.413 | 10.567 | 341 |
| Fracte -- | 0 | ? | - | 0 | 0 | 0 | 0 |  | 0 | 0 |  | (9) | (1) | (6) |
| Nexico - | 1.731 | 0 | - | - | 0 | 0 | 。 | 0 | 0 | 0 | O | 0 | 1,731 | 56 |
| Norway | 500 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 500 | 16 |
| United Kington - | 2.239 | 0 | $\bigcirc$ | 0 | 0 | 0 |  | 0 | 0 | 0 | (9) | (0) | 2230 | 72 |
| Oiner Easem Hemisphere | 49 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 469 | 14 |
| Subtotal Other -_ | 2.072 | 6.168 | 51 | 472 | 2 | 0 | - | 0 | 614 | ${ }^{87}$ | 10 | 6.413 | 15,456 | 500 |
| Total imperts | 13.979 | 5,168 | 51 | 472 | 2 | 0 | - | 0 | 814 | 87 | 18 | 0.413 | 20,952 | 850 |
|  | PAD Datict in |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Arab Opec |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Noteno | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | (4) |
| Lbya | ${ }^{51 a}$ | 0 | \% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 518 | 17 |
| Sans Anabia - | 9294 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 2.294 | 900 |
| Unitod Arab Emintes - | 3.658 | 0 | 0 |  | 0 | 0 | c | 0 | - | 0 | 0 | 0 | 3.658 | 118 |
| Sutsotal Neab OPEG - | 13.471 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13.471 | 435 |
| Other opec |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Ecuador .__ | 1,070 | 0 | ? | 0 | 0 | 0 | 0 | 9 | $\bigcirc$ | - | $\bigcirc$ | 0 | 1,270 | 35 |
| Nigeria | 4,036 | 0 | 0 | 0 | 0 | 0 | 0 | $\bigcirc$ | $\bigcirc$ | 0 | 0 | 0 | 4.305 | 159 |
| Vaneswlo - | 1.803 | - | - | 0 | 0 | $\bigcirc$ | a | $\bigcirc$ | 1,411 | - | - | 1 1411 | 3213 | 108 |
| Sediotas Other OPEC - | 7,809 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,411 | 0 | 0 | 1,411 | 2275 | 297 |
| Other |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Angolo - | 169 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 108 | 5 |
| Sanamas | ${ }^{\circ}$ | 0 | 242 |  | 0 | 0 | 0 | 150 | ${ }^{\circ}$ | 0 | - | 392 | 389 | 13 |
| Erant | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 15 | 15 |  |
| Cansia .-.-_ | 0 | 0 | 0 | 54 | 0 | 0 | 0 | 0 | 0 | - | 0 | 54 | 54 | 2 |
| Conge _ . . . | 0 | - | - | 0 | $\bigcirc$ | 0 | 0 | 0 | ${ }^{(1)}$ | \% | $\bigcirc$ | (1) | (1) |  |
| Egpt - | 1,153 |  | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 1.150 | 37 |
| Prance - | 0 | 0 | \% | 0 | 0 | 0 | 0 | 0 | - |  | (8) | (9) | (9) | (9) |
| Ghana -_- | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | ( ${ }^{\text {a }}$ |
| Malajial | 794 | $\bigcirc$ | $\bigcirc$ |  | 0 | 0 | 0 | $\bigcirc$ | 0 | 0 | 0 | 0 | 794 | 26 |
| Mexce | 10.006 | 425 | 0 | 0 | (*) | 0 | 0 | 47 | 335 | 0 | 2 | 800 | 10.895 | 351 |
| Netheriande Antiles -_ | 0 | 0 | (8) | 0 | 0 | 0 | 0 | - | 239 | . | 0 | 220 | 200 | 7 |
| Noway - | 991 | 0 | ? | 0 | - | 0 | 0 | 0 | - | 0 | 0 | 0 | 991 | 32 |
| Paru ._._ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 239 | 0 | 0 | 230 | 239 | 8 |

See footnotes at and of tabla.
Table 21. Imports of Crude OU and Petroleum Products by Source and PAD Distriet, March 1932

| Source | Crude O이 1 | $\begin{gathered} \text { IPG } \\ \text { and } \\ \text { Ethane } \end{gathered}$ | Unlifahed Ois | Gasoline Blending Components | Finshed Hatar Gasoline | Jot | Karg. sene | Disil Fool CI | Aland. Fued cr | Speclal Naphthas | Other Prod. ucts 2 | Total Mod ucts | Total Peroleum | Total (Daly Average) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | PAD Distriel ${ }^{\text {alt }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Other |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Puerto fiso -_-_-_- | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 34 | 34 | 34 | 1 |
| Trinidad ans Tobago --_ | 2301 | 0 | 0 | 0 | 0 |  | 0 | 0 | 599 | 0 | 0 | 509 | 2.900 | 94 |
| Turisia | (1) | 0 | 0 | 0 | 0 |  |  | 0 | 0 | 0 | 0 | 0 | (3) | (3) |
| Unitsd IGrgdom _-_ | 3345 | 0 | 1204 | 0 | $\bigcirc$ |  |  | 0 | 0 | 0 | 0 | 984 | 4.270 | 138 |
| Virgin islands -_ | 0 | 0 | 173 | 0 | $\bigcirc$ |  |  | 0 | 0 | 70 | 0 | 242 | 242 | a |
| Other Westiom |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Hernitphers -_ | 0 | 0 | 67 | $\bigcirc$ | $\bigcirc$ |  |  | 0 | 9 | 102 | 0 | 160 | 169 | 5 |
| Other Thatem Hemiophere | 445 | 0 | 307 | 0 | 0 |  |  | 0 | 1 | 35 | 0 | 432 | 878 | 28 |
| Subtetal Other _-_._._ | 19285 | 425 | 1,802 | 54 | (5) |  |  | 197 | 1.405 | 222 | 56 | 4,140 | 23.425 | 798 |
| Total limports | 40,505 | 425 | 1,802 | 54 | (5) |  |  | 197 | 2.810 | 222 | 36 | 5.550 | 46.115 | 1,403 |
|  | PAD Distict N |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Other |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Conede - | ${ }^{483}$ | 451 | 0 | 53 | 0 |  |  | (1) | 0 | 0 | 143 | 643 | 1.275 | 41 |
| Sutheal Other | 638 | 451 | 0 | 53 | 0 |  |  | (n) | 0 | 0 | 143 | 648 | 1276 | 41 |
| Total Imports | 688 | 451 | 0 | 53 | 0 |  |  | ( ${ }^{\text {m }}$ | 0 | 0 | 143 | 648 | 1276 | 41 |
|  | PAO District V |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Arab OPFC |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Seud Arabia ___ | 101 | 0 | 0 | 0 | 0 |  |  | 0 | 0 | 0 | 0 | 0 | 101 | 3 |
| United Arab Emirates --- | 350 | 0 | 0 | 0 | 0 |  |  | 0 | 0 | 0 | 0 | 0 | 350 | 11 |
| Subtotal Arab OPEC _- | 450 | 0 | 0 | 0 | 0 |  |  | 0 | 0 | 0 | 0 | 0 | 450 | 15 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Eeuador _____ | 270 | 0 | 0 | 0 | 0 |  |  | 0 | 0 | 0 | 0 | 0 | 270 | 8 |
| Indonosia _-_ | 3,425 | 0 | 0 | 0 | 245 |  |  | ${ }^{69}$ | 543 | 0 | 0 | 858 | 4,283 | 138 |
| Vonezuela | 0 | 0 | 209 | 0 | 9 |  |  | 0 | 0 | 0 | 0 | 209 | 200 | 7 |
| Subtetal Other OPEC _- | 1,005 | 0 | 205 | 0 | 240 |  |  | 69 | 543 | 0 | 0 | 1,067 | 4,762 | 154 |
| Other |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 0 | 0 | 0 | 0 | 76 |  |  | 4 | 77 | 0 | 0 | 157 | 157 | 5 |
| Canada -__ | 430 | 454 | 0 | 0 | 0 |  | 0 | 3 | 22 | 12 | 48 | 539 | 969 | 31 |
| Malayda -_ _- | 621 | 0 | 0 | 0 | 0 |  | 0 | 0 | - 0 | 0 | 1 | 5 | 621 | 8 |
| Medico - | 0 | 0 | 0 | 0 | (3) |  | 0 | 54 | - 0 | 0 | 1 | 55 | 55 | 2 |
| Nethertants | 0 | (d) | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 | (P) | (1) 05 | (घ) |
| Peocle's Rapublic of China | 0 | 0 | 0 | 0 | 487 |  |  | 8 | 0 | 168 | 0 | 655 | 655 | 21 |
| Pupte Fise - Merisiene | 0 | 0 | 0 | 0 | 238 |  | - | 0 | 0 | 0 | 0 | 225 | 225 | ? |
| Other Eastom Herrisphere | 0 | 9 | 0 | 0 | 7 |  | dren | 29 | 66 | 195 | (a) | +207 | ${ }_{2080}^{207}$ | 10 |
| Suttotal Other | 1.051 | 454 | 0 | 0 | 796 |  |  | 91 | 164 | 376 | 48 | 1,920 | 2.680 | 95 |
| Total imports - | 5,195 | 454 | 209 | 0 | 1.042 |  | , | 160 | 708 | 375 | 48 | 2,996 | B. 188 | 264 |

1 loclates conde of imported for storage in the Sratogic Petroitum Aeserve. -


Table 22. Exports of Crude Ol and Petroleum Products by PAD District, March 1902
(Thousands of Barrels)

| Cornenodity | Petroieun Adrinistration for Defonse Dierricts |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | U | 18 | IV | v | Totas |
| Crude Oil (including lase condersate) ' | 0 | 1,963 | 0 | 0 | 7,987 | 9,950 |
| Uqueled Petroleum Gases and Exhane | 70 | 825 | 1.251 | 0 | 162 | 2,308 |
| Thane | (1) | 0 | (1) | 0 | 0 |  |
| Propane | 29 | 330 | 714 | 0 | 61 | 1,135 |
| Butane | 41 | 495 | 567 | 0 | 91 | 1,174 |
| Butane-Propane Motures | 0 | 0 | 0 | 0 | 0 | 0 |
| Friahed Motor Gasoline - | 1 | 25 | 1,066 | 0 | 254 | 1,367 |
| Naphtha-Type Jet Fuel | (9) | 0 | 0 | 0 | 0 | (*) |
| Kerosere-Type Jet Fual -n- | 0 | 0 | 0 | 0 | 80 | 80 |
| Kercsere | 1 | (9) | 0 | 0 | (1) | 1 |
| Distilote Fusi Oi | 1 | (1) | 1,394 | 0 | 1,212 | 2,607 |
| Ansidual Fuel Oil | 225 | 5 | 4,110 | 0 | 1,776 | 6,113 |
| Naphtha < 400 Deg. for Petrocham. Foedstsok | 55 | 7 | 90 | 1 | 13 | 167 |
| Other Ols > 400 Deg for Putrochen. Foudelock | (9) | 42 | 251 | 0 | 1 | 304 |
| Special Naphthas | 2 | 1 | 253 | 0 | (m) | 256 |
| Libricants | 248 | 16 | 375 | 1 | 52 | 689 |
| Was | 5 | (1) | 28 | 0 | 8 | 36 |
| Porroleum Coke | 17 | 49 | 1,188 | 0 | 2.157 | 3.411 |
| Asphalk | 5 | (1) | 3 | (9) | 3 | 12 |
| Miscaianeous Products | 15 | 1 | 20 | (i) | 4 | 40 |
| Total Product Exports | 645 | 968 | 10,068 | 3 | 6,711 | 17.200 |
| Total Eports | 645 | 2.931 | 10,068 | 3 | 13,856 | 27.343 |

 possesdions. 500 barrels.
Notex Total may net equal sum of components dua to indepandont nounding.
Sourcas: See Explanatory Notos on Data Collection and Estimation.
Teble 23．Exports of Crude Oil and Petroleum Products by Destination，March 1982

| Destination | $\begin{aligned} & \text { Crude } \\ & \text { Cill } \end{aligned}$ | $\begin{gathered} \text { LPG } \\ \text { mand } \\ \text { enome } \end{gathered}$ | Finiched Mctar Gesoline | Fotel | $\begin{aligned} & \text { Dist } \\ & \text { Mout } \\ & \text { Oil } \end{aligned}$ | Redlaual Fuel Oil | $\left\|\begin{array}{c} \text { Special } \\ \text { Niephthas } \end{array}\right\|$ | $\begin{aligned} & \text { Lubs } \\ & \text { cants } \end{aligned}$ | Wax | Peve－ bum Coke | Asphat | Orner | Tota | $\begin{gathered} \text { Total } \\ \text { (apely } \\ \text { Average) } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Avgontiox－＿－ | 0 | 1 | $m$－ |  |  | 5 |  |  |  | 31 | 9 | （97） | $\infty$ | 2 |
| Austala－ | 0 | ？ | （1） | 0 | 0 | 135 | 11 | 6 | 0 | 247 | （19） | （1） | 454 | 15 |
| Bahmer－ | $\bigcirc$ | 2 | 1 |  |  | 0 |  | 1 |  | $\bigcirc$ | ， | （9） | 4 |  |
| Buvtin | 0 | 2 | （n）${ }^{0}$ | 0 | 0 | 0 | （6） | （®） |  | 60 | 0 |  | 64 | 2 |
| Baigken 8 Luxambura－ | 0 | 1 | （1） | 0 | 0 | 0 | 0 | 6 | （4） | 9 | M | （1） | 70 | 2 |
| Daral | $\bigcirc$ | 6 | 0 | 0 | 0 | 460 | 7 | 10 | （6） | 0 |  |  | 485 | 16 |
| Cameroen－ | 0 | （7） | 0 | 0 | 0 | \％ | 0 | 0 | 1 | 30 | 0 | 0 | 30 | 1 |
| Cande－ | 1，963 | ${ }^{820}$ | 28 | 40 | 1 | 31 | ${ }^{2}$ | 06 |  | 120 |  |  | 2.190 | 103 |
| Crie |  | （1） | 0 | 0 | 0 | $\bigcirc$ | （4） | 2 | （1） | 0 | 0 |  | 3 |  |
| Colna（Tument－＿－＿ | 0 | ${ }_{0}$ | 0 | 0 | 0 | $\bigcirc$ | （9） | ${ }^{6}$ | （9） |  | （1） |  |  | 1 |
| Colombia | 0 | 1 | $\bigcirc$ | 0 | $\bigcirc$ | 0 | 0 | 3 | （2） | （1） |  | $\square^{1}$ | 5 |  |
| $\xrightarrow{\text { Costa Rioa }}$ Donmak | 0 | 1 | 0 | 0 | － | $\bigcirc$ | 0 | 2 | （19） | － |  |  | 4 |  |
| Donmak | 0 | 1 | 0 | 0 | 0 | 0 | （3） | （9） | （9） | 125 | 0 | （9） | 126 | $\cdots$ |
| Oominican Rapubic－－ | 0 | 0 | 0 | 0 | 0 | 0 | （19） | （19） | （a） | 12 | 0 | （19 | 13 |  |
| Eeunsor－－ | $\bigcirc$ | 0 | 121 | $\bigcirc$ | 131 | 0 | （19） | （99） | （9） | 0 | 0 | $\square^{3}$ | 256 |  |
| Empl | 0 | 0 | 0 | 0 | － | － | 0 | 4 |  | 0 |  |  | 4 |  |
| Finlend－ | 0 | 0 | 0 | $\bigcirc$ | 0 | 0 | ${ }^{\circ}$ | 2 |  | $\bigcirc$ | ？ | （M） | 2 | （9） |
| Frues－ | 0 | 305 | ${ }^{\circ}$ | 0 | 9 | 9 | （3）${ }^{0}$ | （19 | （m） | －5e9 | 0 | ${ }^{\text {t }}$ | 1 |  |
| Fronch Pacitiolsy |  | 305 | 15 | 0 | 35 | 630 | （3） 0 | 1 |  | 1 50 | － | （m） | ${ }^{1068}$ |  |
| Ghane－－＿－ | $\bigcirc$ | 0 | 0 | 0 | 0 | 0 | 0 | （m） |  | 024 |  | （1） | 24 | 1 |
| Greece－ | 0 | （1） | 9 | $\bigcirc$ | 0 | － | 0 | 1 |  | 00 | － | 0 | 1 | （b） |
| Guasmola－ | 0 | 0 | 9 | $\bigcirc$ | 0 | 0 | ？ | 3 | （牙 | －${ }^{\circ}$ | O | （1） | 3 |  |
| Quines－＿＿ | 0 | 0 | 0 | 0 | 0 | O | － | 0 |  | 00 | $\bigcirc$ |  | 0 | 0 |
| Honduras－＿ | $\bigcirc$ | 0 | 0 |  | 0 | 0 | $\bigcirc$ | 1 | （1） | （9） | 0 | 1 | 2 | （1） |
|  | $\bigcirc$ | 2 | － | 0 | （M） | 0 | 0 | 1 | （19） | 0 | ¢） | 1 | 4 | （9） |
| insa | － | 0 | 0 | $\bigcirc$ | 0 | ${ }_{0}$ | 0 | 0 |  | 0 | 0 | 97 | 7 |  |
| Mrannesla－ | 8 | 9 | 0 | 0 | 0 | 0 | － | 16 |  | 0 | （0） | （9） | ${ }^{16}$ | 1 |
| limat | 8 | 1 | － | $\bigcirc$ | $\bigcirc$ | 0 | ${ }^{1}$ | ， |  | 0 － | （m） 0 | 0 | 1 |  |
| hay | － | 30 | $\bigcirc$ | 0 | 0 | 0 | （1） | 1 | （3） | － | （ M | $\frac{6}{7}$ | 8 |  |
|  | 0 | 0 | － | $\bigcirc$ | 0 | 151 | 0 | ？ |  | 1 3so | 0 | 7 | 05 |  |
| Jaraica | a | 0 |  | 0 |  |  | － | 8 |  | 0 | 1. | $\cdots$ | 5 | （4） |
| Japan |  |  |  |  |  | 0 | （19） |  | 敞 | 9 | 0 | $\cdots$ | \％ | ？ |
| Jorden | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |  | 00 | 0 | 0 | 2 | 41 |
| Koren Reputic of－ | 0 | 0 | － | 0 | 452 | 704 | （1） | ， | （2） | 46 | 3 | 1 | 1，209 | 39 |
| Kuwalk－ |  | 1 | 0 | 0 | 0 | 0 | （2） | 1 |  | $0 \quad 0$ | 0 | （m） | 2 |  |
| Leberon－ | － | （97） | 0 | 0 | － | 0 | － | （円） |  | 0 | － | （19） | （9） | （9） |
| Lbora－ | － | $\bigcirc$ | 0 | 0 | ${ }^{-}$ | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 | 0 |
| Maligria－－－ | 0 | ${ }^{\circ}$ | － | 0 | 0 | 0 | 0 | （1） |  | $\bigcirc$ | $\cdots$ | （9） | $\frac{1}{1}$ |  |
| Merice |  | 780 | 0s | 40 | 1，168 | （a） | 1 | 87 |  | 4 56 | 2 | ${ }^{7}$ | 3，127 | 101 |
| Nethertands | ${ }^{\circ}$ | 198 | 0 | 0 | 0 | 22.21 | （2） | 4 | （a） | 548 | $\bigcirc$ | 34 | 3.061 | 9 |
| Netheriands Anties－＿ | 0 | 0 | 0 |  | 1 | 0 | 0 | （9） |  | $00^{0}$ | 0 | （1） | （19） | （19） |
| New Zoalind－ | 0 | 0 | （\＃） | 0 | 1 | 0 | （－1） | （1） | （2） | （2） | （M） | 2 | 4 | （4） |
| Nocyagua－－ | 8 | 0 | 0 | 0 | ${ }^{\circ}$ | 0 | 0 | （a） |  | 0 － | $\bigcirc$ | $\stackrel{ }{8}$ | （M） | （ ${ }^{\text {a }}$ |
| Nogris－ | － | 0 | $\bigcirc$ | 0 | 176 | 0 | 0 | 38 |  | 09 | 1 | ${ }^{1}$ | 214 | ？ |
| Nermby | 0 | （19） | 0 | 0 | 0 | 0 | 0 | （6） |  | － 90 | ${ }^{\circ}$ | （1） | 30 | 1 |
| Pacifo Trust Ters．－＿－＿ | 0 | （1） | 0 |  | 9 | 0 | 0 | （f） |  | 0 | （10） | （2） | （19） |  |
|  | 0 | （6） | $\bigcirc$ | 0 | 152 | 177 | 0 | 52 | （9） | 0 | （iv） | （） | 383 | 12 |
| Peru | － | 0 | 0 | 0 | － | 0 | 0 | 13 |  | 0 （0） | － | （0） | ${ }^{16}$ | （4） |
| Phipgines－－＿ | 0 | 0 | 0 | 0 | 0 | 0 | （9） | 3 | （v） | 1 | $\bigcirc$ | 1 | 5 | （19） |

Tebte 23. Exports of Crude on and Petroteum Products by Destination, March 1982 (eontinued).

| Destination | Cude Cal 1 | LPG and Ehane | Finithed Motor Cascine | $\begin{aligned} & \text { Jot } \\ & \text { Fual } \end{aligned}$ | Dest <br> Fual <br> Oa | Rosicual Fual OH | Special | Luencants | Wax | Petioleym Coke | Asphet | Cover | Toeal | Tokal (Dably Average) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Puerita Fico - | 2.182 | 21 | 219 | 0 | 6 | 327 | 224 | 14 | 1 | 58 | (4) | 8 | 3,000 | 99 |
| Rep. of South Alica ___ | 0 | (0) | 0 | 0 | 0 | 0 | 0 | 39 | 2 | 16 | (9) | 14 | 72 | 2 |
| Saurl Arabia - | 0 | 7 | 0 | 0 | (9) | 0 | 0 | 20 | 0 | (4) | 2 | 3 | 32 | 1 |
| Singapore ___ | 0 | (3) | 0 | 0 | 0 | 0 | 0 | 2 | (a) | 0 | 18 | 4 | 6 | (v) |
| Spain - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | (4) | 183 | 0 | 1 | 185 | , |
| Surinam - | 0 | (*) | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 16 | 0 | (b) | 16 | 1 |
| 5 meden - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | (a) | 0 | 0 | 2 | 3 | (4) |
| 5 minerland | 0 | 0 | 0 | 0 | 0 | (v) | 0 | (a) | (ल) | 0 | 0 | (3) | 1 | (19) |
| Tralland | 0 | (a) | 0 | 0 | 0 | 0 | 0 | (9) | 0 | 0 | 0 | (i) | 1 | (19) |
| Tirictad and Tobago ___ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | (-) | 0 | (0) | 7 | $\cdots$ |
| Turkey - | 0 | 0 | 0 | 0 | 0 | 328 | (v) | (4) | 0 | 0 | 0 | 0 | 328 | ${ }^{11}$ |
| United Anab Envirates ___ | 0 | 0 | 0 | 0 | 0 | 0 | (M) | (4) | 0 | 58 | 0 | (v) | 58 |  |
| Unied Kingdom - | 0 | 1 | 0 | 0 | 1 | 605 | 0 | 21 | (*) | (9) | (9) | 11 | 640 | 21 |
| USSR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 58 | 0 | 0 | 0 | 0 | 58 | 2 |
| Unguay - | 0 | 0 | $\bigcirc$ | 0 | 0 | 0 | 0 | (*) | 0 | 0 | 0 | 0 | (9) |  |
| Venezusia - | 0 | 21 | 0 | 0 | 0 | 0 | 19 | 6 | (v) | 6 | (m) | 147 | 181 | 5 |
| West Germaty | 5.256 | 0 | 0 | 0 | 0 | 0 | 0 | (a) | 0 | 0 | 0 | (4) | 5.256 | 170 |
| West Germaty -_ | 0 | 0 | 0 | 0 | (*) | 0 | 0 | 1 | 18 | 47 | m | 11 | 77 | 2 |
| Yupoelovia - | 0 | 5 | 0 | 0 | 0 | 0 | (1) | (3) | 0 | 0 | 0 | (3) | 5 | ( ${ }^{\text {a }}$ |
| Other - | 545 | 2 | 0 | 0 | P1 | 0 | (1) | 20 | 1 | 0 | (m) | 2 | 574 | 19 |
| Total | 2960 | 2,308 | 1,357 | 80 | 2.907 | 5.231 | 296 | 692 | 36 | 3,411 | 12 | 512 | 27,151 | 876 | cuata of to Puerto Rico sind the Vigin lalands are not prohibited because these toritorias are U.S. povestelons.


Table 24. Stocks of Crude OA and Petroleum Products by PAD District, March 31, 1982

| Commoalry | PAD Distati |  |  | PAD Distictif |  |  |  |  | PRDOptrict |  |  |  |  |  | PAD <br> Dist. N <br> Focky <br> M | $\begin{aligned} & \text { PAD } \\ & \text { Dat V } \\ & \text { West } \\ & \text { Coust } \end{aligned}$ | United Sases |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | East Const | Appalschian $\pm 1$ | Total | Appalachan 12 | $\begin{aligned} & \text { Ind. } \\ & \text { \#1. } \mathrm{Ky} \text {. } \end{aligned}$ | Minh. Wrac. Dabs | Cila. Kare. $\mathrm{M}_{0}$ | Tetal | Tecas Intand | Thas Out Cosst | La <br> Gult <br> Conet | No. La Nk. | New Monse | Tcta |  |  |  |
| Crude Oll (lncl. lease condensate) 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Rethery | - | - | 15,546 | - | - | - | - | 16,705 | - | - | - | - | - | 50,171 | 2,734 | 23.252 | 168.352 |
| Taik Farms and Poelnes | - | - | 3.127 | - | - | - | - | 65,002 | - | - | - | - | - | 03,513 | 11,561 | 28.081 | 201.664 |
| Leases | - | - | 65 | - | - | - | - | 1,570 | - | - | - | - |  | 17.78 | 1,485 | 1.786 | 22,652 |
| Strasege Petroleum Resenve? | - | - | 0 | - | - | - | - | 0 | - | - | - | T | - | 248.537 | 0 | 0 | 248,537 |
| Aaskan in Tranat ... | - | - | 0 | - | - | - | - | 0 | - | - | - | - | - | 0 | 0 | 33.821 | 33.021 |
| Toeal | - | - | 18.732 | - | - | - | - | 83,363 | - | - | - | - | - | 409.303 | 18,060 | 60.118 | 614,226 |
| Petroleum Products |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Actingy | 40,895 | 4,407 | 45,242 | 1.035 | 45.239 | 8.063 | 24,613 | 78.976 | 12.371 | 76,375 | 47,303 | 5.284 | 1.980 | 143.413 | 17.623 | 68.12 | 353,806 |
| Bulk Terminal | 102.899 | 6,703 | 109.542 | 4.312 | 40,109 | 10.650 | 13.837 | 68.917 | 5.261 | 39.680 | 6,883 | 4.088 | 485 | 50,418 | 2.841 | 20.531 | 252.249 |
| Ppeline | 24.730 | 1,470 | 25.700 | 1,500 | 12.300 | $3.85 ?$ | 16.399 | 34.135 | 8.239 | 10,146 | 6.722 | 14.282 3.798 | 1,222 | 20.775 50.458 | 2.863 313 | 3.896 4.3 | 107,475 73008 765,076 |
| Natural Gas Processing Plant ___ | 368 | 267 | 615 | $\bigcirc$ | 1,913 | 141 | 19,209 | 24.258 | 5,747 | $\begin{array}{r}29054 \\ \hline 19.255\end{array}$ | 16.554 | 3789 27.452 | 1.308 5.103 | S0.458 | 23850 | -8,542 | 73.088 785.676 |
| Total ___ | 168,259 | 12,867 | 181,105 | 6.597 | 20,561 | 22.741 | 74,046 | 200,285 | 21,632 | 149.255 | 71.822 | 27,452 | 5,103 | 285jp64 | 23,6st |  |  |
| Natural Gasoline and lsopentane |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Aefinery -_-_. | 3 | 0 | 3 | 0 | 27 | 106 | 162 | 205 | 104 | 750 | 209 | 0 | 41 | 1.110 | 10 | 168 | 1.580 |
| Foolee | 0 | 0 | 0 | 0 | 52 | 1 | 234 | 337 | 573 | 45 | 0 | 64 | 44 | 720 | 154 |  | 1.222 |
| Natural Oas Procoesing Phant | 3 | 14 | 17 | 0 | 32 | 14 | 1,285 | 1332 | 469 | 6,122 | 517 | 26 | ${ }^{82}$ | 7,23 | 42 | 14 | 3.641 |
| Total - | 6 | 14 | 20 | 0 | 111 | 121 | 1.731 | 1,964 | 1,166 | 6,923 | 76 | 50 | 167 | 3.072 | 266 | 187 | 11,449 |
| Untractionated Stream 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Piopine - Procession Prent | 0 | 0 | 0 | 0 | 78 108 | 2 | 1.840 | 1.750 | 272 | 2.105 | 227 | 2 | 242 | 2.897 | 36 | 2 | 4.835 |
| Nataral Gas Processing Plant Total | 0 | 0 | 0 | 0 | 102 | 2 | 1,640 | 1.780 | 272 | 2,105 2,190 | 255 | 2 | 262 |  | 36 | 2 | 4.783 |
| Total | 0 | 0 | 0 | 0 | 180 | 2 | 1,6es | 1,847 | 272 | 2,130 |  |  | 248 |  |  |  | 4.768 |
| Plant Condensate 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Relinery | 0 | 00 | 0 | $0 \quad 0$ | 6 |  | 0 |  | 822 | 273 | 49 | 4 | 417 | 1,165 | 5 | 0 | 1,165 |
| Plpelne | 0 | 0 | 0 | 0 | 0 2 | 0 | 5 | 7 | 822 | 21 | 14 | 10 | - 1 | 01 | 12 | 0 | 100 |
| Natural Oas Processing Pant _-_ Total | 0 | 0 | 0 | 0 | 2 | ${ }^{0}$ | 5 | 13 | A75 | 454 | 63 | 107 | 18 | 1,517 | 72 | 0 | 1.532 |
| Total - | 0 | 00 | 0 | 0 | 8 | E | 5 | 13 | R\%5 | 454 | - |  | - |  |  |  | H332 |
| Ethane 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Refney | 0 | $0 \quad 0$ | 0 | 0 0 | 8 | 0 | 10 | 88 | 0 |  | 0 |  | c | 1.188 | 80 | 0 | 1.286 |
| Buk Termins [____ | 0 | $0 \quad 0$ | 0 | 0 | 78 | 0 | 20 | 98 | 13 | 1,108 | 141 | 0 | 0 3 |  | 40 | 0 | 1,525 |
| Ppelive |  | $0 \quad 0$ | 0 | 00 | 28 | 019 | 144 | 1.091 | 213 | 77 | 141 |  | 10 | 1.709 | (v) | 0 |  |
| Natural Gas Procesting Plart |  | 00 | 0 | $0 \quad 0$ | 24 | 9 | 546 | +571 | $\begin{array}{r}181 \\ \\ \hline 94\end{array}$ | 1,063 | 444 585 |  | 13 | 3,904 | 4 (b) | 0 | 5.872 |
| Total |  | 0 0 | 0 | 00 | 138 | 018 | 710 | 1,760 | 38 | 2 LCl | 585 |  | 1 , |  |  |  |  |
| Propane for Patrochemical Feedstock Use |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Pefliey -_-_-_ | 44 | 40 | 44 | 40 | 82 62 | 0 | 0 | 62 | 0 | 7 | 192 |  | $0 \quad 0$ | 199 | 9 | 0 | 306 |
| Total -_-_-3 | 44 | 40 | 44 | 4 a | 62 | 0 | 0 | 62 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| netinery | 373 | 73 | 376 176 | 5 | 686 786 | 97 | 459 | 1.313 | 201 | 13.719 |  | $0 \quad 42$ | 2 | 13.562 | 23 | 0 | 15.489 |
| Buak Teminal | 176 877 | 76 | 176 1206 | 6 | 764 .1579 | 978 | 458 1.731 | 1.313 3.830 | 201 574 | 12.719 379 | 250 | 0 | 4 158 | 1,985 | 205 121 | 0 | 6.889 |
| Ppoine - | 877 | 77329 | 1.206 | 20 | 1,570 | 89 | 1.731 12.359 | 14.114 | 374 3.154 | 6.395 | 5.780 | O 3.514 | 14 37 | 19.270 | 20 153 | 189 | 34.235 |
| Natral Gas Processing Plant - | 279 | 2930 | 529 | 7 | 1,869 | 113 595 | 12,359 | 14.114 20.036 | 4,137 | 21,24? | 6.787 | 7 4,173 | 173 S42 | 36.8s1 | 1 408 | 415 | 60,027 |
| Total | 1,705 | 5582 | 2.287 | 738 | 4,676 | 535 | 14.787 | 20.036 | 4,137 | 21,247 | 6,787 | 4,173 |  |  |  |  |  |

Table 24. Stocks of Crude Oil and Petroleum Products by PAD District, March 31, 1982 (Thousands of Barrels) (continued)

| Commodity | PADDistriet I |  |  | PAD Dintict |  |  |  |  | PAD District ${ }_{\text {I }}$ |  |  |  |  |  | PADDist IVRockyML | $\begin{aligned} & \text { PaD } \\ & \text { Dist. Y } \\ & \text { West } \\ & \text { Const } \\ & \hline \end{aligned}$ | Unted States |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Cast Coast | Appalachian \#1 | Total | Acpaisahlan 3 | $\begin{gathered} \text { ind. } \\ \text { in, Ky, } \\ \hline \end{gathered}$ | Mint Wec. Doke | Oria. Kana. Mo | Total | Teas Inland | Tanas Gu! Ceas! | La. Gut Coast | $\mathrm{Na} \mathrm{Ca}$ <br> Ark. | $\begin{gathered} \text { New } \\ \text { Menco } \end{gathered}$ | Totai |  |  |  |
| Butane for Petro. Feed. Use |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Pellnery | 0 | 0 | 0 | 0 | 0 | 8 | 1 | 9 | 0 | 13 | 0 | 2 | 0 | 15 | 2 | 2 | 28 |
| Total - | 0 | 0 | 0 | 0 | 0 | 8 | 1 | 9 | 0 | 13 | 0 | 2 | 0 | 15 | 2 | 2 | 24 |
| Butane for Other Unpe |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Relinery | 68 | 3 | 71 | 76 | 231 | 37 | 234 | 578 | 120 | 424 | 398 | 2 | 2 | 1,387 | 118 | 551 | 2.705 |
| Buk Teminal | 9 | 0 | 9 | 0 | 274 | 0 | 179 | 453 | 510 | 2,882 | 0 | 0 | 0 | 3.001 | 0 | 0 | 2,463 |
| Plociline _-_ | 34 | 78 | 112 | 23 | 805 | 30 | 401 | 1,346 | 1.154 | 17 | 5 | 18 | 70 | 1.284 | 61 | 0 | 2.763 |
| Nateral Gas Procenting Plent | 49 | 1 | 50 | 9 | 55 | 10 | 901 | 985 | 652 | 3.820 | 2,443 | 160 | 103 | 7,188 | 41 | 83 | 8.328 |
| Tetal | 160 | 82 | 242 | 103 | 1,485 | 77 | 1.717 | 3,843 | 2,045 | 7.152 | 3,287 | 180 | 175 | 12,840 | 220 | 634 | 17.279 |
| Butane-Propane Mixtures tor Petro. Feed. Use |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Relisery - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 2 |
| Total | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 2 |
| Butane-Propane Mixtures for Other Uaes 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Petinery -..._-_._-_ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 17 | 1 | 5 | 27 | - | 120 | 149 |
| Buk Teminal _-_ ___ | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 |
| Popline -_ Pren Pren | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 18 | 631 | 26 | 10 | 0 | 1 | 008 | 0 | 0 | 406 |
| Natural Gas Processing Plant ___ | 0 | 0 | 0 | 0 | (3) | 0 | 41 | 42 | 68 | 2 | ${ }^{\circ}$ | (19) | 0 | 90 | (3) | 4 | 145 |
| Total -ua | 0 | 0 | 0 | 0 | 7 | 0 | 59 | 67 | 727 | 32 | 27 | 1 | 8 | 783 | 2 | 124 | 087 |
| Ethane-Propane Mixturea |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Rolinery -_ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | \% | 0 | 0 | 1 |
| Bulk Terminal | 0 | 0 | 0 | - | 0 | 0 | 4 | 4 | 434 | 6.859 | 0 | 0 | 0 | 6.273 | 0 | $\bigcirc$ | 6.277 |
| Ppoline - | 0 | 0 | 0 | 0 | 08 | 0 | 427 | 499 | 712 | 81 | 2 | 0 | 121 | 016 | 165 | 0 | 1.574 |
| Nistural Gas Proceseing Pisnt _-_ | 0 | 0 | 0 | 0 | 0 | 0 | 1,419 | 1,419 | 331 | 6,864 | 0 | (b) | 420 | 7.715 | $\bigcirc$ | 0 | 8,132 |
| Total - | 0 | 0 | 0 | 0 | 65 | 0 | 1,850 | 1,916 | 1,477 | 12,805 | 2 | (b) | 541 | 14,005 | 165 | 0 | 16.836 |
| Inobutane |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Raliniry | 0 | 4 | 4 | 69 | 153 | 31 | 188 | 412 | 138 | 174 | 325 | 11 | 6 | 654 | 62 | 48 | 1.189 |
| Buk Terminal -_ | 0 | 0 | 0 | 0 | 73 | 0 | 135 | 206 | 110 | 632 | 0 | 0 | 0 | 798 | 9 | 0 | 1.000 |
| Ploelhe | 0 | 9 | 0 | 1 | 371 | 8 | 162 | 542 | 173 | 30 | 0 | 148 | 57 | 394 | 42 | 0 | 976 |
| Natural Gas Processing Plant | 1 | 1 | 2 | 81 | 47 | ${ }_{41}^{2}$ | 1.007 1.472 | 1.056 2210 | 241 688 | 1.832 2898 | 1,128 <br> 1,453 | 2281 | 78 148 | 3,343 5,169 | ${ }_{106}^{2}$ | 150 188 | 4.551 7.709 |
| Tolal --_ | 1 | 5 | 5 | 61 | 644 | 41 | 1,472 | 2218 | 668 | 2.990 | 1,4.53 | 221 | 142 | 5.163 | 106 | 188 | 7.709 |
| Other Hydrocarbons and Nlcohol 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Relintry - | 0 | 0.4 | 4 | 0 | 88 | 0 | 4 | 02 | 8 | 70 | 4 | 0 | 0 | 82 | 1 | 4 | 103 |
|  | 0 | 4 | 4 | 0 | 58 | 0 | 4 | 32 | 8 | 70 | 4 | 0 | 0 | 32 | 1 | 4 | 189 |
| Unfintshed Oils |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Rolinery |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Nachlhas and Lighter._-__ | 3.258 | - 547 | 3.905 | 56 | 2,709 | 170 | 1,419 | 4,342 | 1,457 | 8.029 | 5090 | 189 | 189 | 14.908 | 761 | 5,324 | 20.240 |
| Karowne and Ughtar Gas Ols -_ | 1,196 | $5 \quad 17$ | 1213 | 0 | 2.572 | 32 | 569 | 3.573 | 610 | 5.908 | 1,279 7785 | 35 | 3 | 7,836 | 770 | 3,759 | 17,141 |
| Heavy Gas Ots | 78.894 | 429 | 8.289 | 25 | 4.512 | 315 | 2.783 | 7.706 | 2.081 | 10,499 | 7257 | 319 | 9 | 20,119 | 1,057 | 11,935 | 49000 |
| Thesidum -_ | 1,843 | 241 | 1,884 | 3 | 3.737 | 21 | 1.885 | 5.640 | 309 | 3.392 | S, 069 | 47 | ${ }^{8}$ | 6845 | 620 | 5.374 | 20.372 |
| Toal | 14,031 | 11234 | 15,265 | 514 | 13,520 | 539 | 7.008 | 21.270 | 4,417 | 27828 | 16.656 | 600 | 213 | 49,707 | 3.204 | 26,383 | 115.833 |

[^27]Table 24. Stocks of Crude Oll and Petroleum Products by PAD Distriet, March 31, 1982

| Comrnodity | PAD Detictl |  |  | PAD Distigit |  |  |  |  | PNOpyrat |  |  |  |  |  | PAD <br> Dist V <br> Aocky <br> W: | $\begin{array}{\|l\|} \hline \text { PAD } \\ \text { Dist V } \\ \text { West } \\ \text { Ceost } \\ \hline \end{array}$ | United States |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Eost Coast | Appelachian \#1 | Totel | $\begin{gathered} \text { Appaly- } \\ \text { chian } \\ \text { w2 } \end{gathered}$ | $\begin{gathered} \mathrm{Indx}_{2} \\ \mathrm{~B}, \mathrm{Ky} \end{gathered}$ | Minn. <br> Wise. <br> Daks | Ohle. Kans. $\mathrm{M}_{2}$ | Totar | Texas inlard | Toxas Gut Conat | La. Qull Coast | No. Lat. Ak. | New Mexico | Total |  |  |  |
| Motor Gesoline Blending Components |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Relinery | 5.nes | 214 | 5.800 | 33 | 7,153 | 829 | 2,774 | 10.789 | 1,743 | 2.391 | 6883 | 118 | 297 | 18,387 | 3.629 | 2,120 | 47,05 |
| Butk Terminal | 206 | 0 | 208 | 6 | 90 | 1 | 254 | 351 | 440 | 45 | 0 | 1 | 0 | 466 | 4 | 100 | 1,147 |
| Plpeline - | 0 | 0 | 0 | 0 | 26 | 2 | 84 | 112 | 27 | 0 | 0 | a | 0 | 27 | 0 | 9 | 139 |
| Total | 5.872 | 214 | 0.000 | 39 | 7,259 | 832 | $\mathbf{8 , 1 1 2}$ | 11252 | 2210 | 9,436 | 6.838 | 118 | 297 | 18.900 | 3.633 | 2.220 | 49.001 |
| Aviation Gasoline Diending Components |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Refinery | 9 | 0 | 0 | 0 | 178 | 0 | 17 | 195 | 18 | 113 | 176 | 0 | 0 | 307 | 0 | 156 | 658 |
| Total | 0 | 0 | 0 | 0 | 178 | 0 | 17 | 125 | 15 | 113 | 175 | 0 | 0 | 307 | 0 | 156 | 658 |
| Total Finlshed Motor Gaaoilne |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Reflnery - | 5.406 | 469 | 5,9e9 | 100 | 7.456 | 2109 | 4,975 | 14,640 | 2.277 | 0.215 | 5.341 | 1.051 | 304 | 18,188 | 3.212 | 7,569 | 49,498 |
| Buk Terrinal | 36,692 | 3.307 | 59.909 | 2271 | 20.035 | 4,600 | 6.174 | 33,160 | 2.459 | 4,378 | 1.843 | 2.780 | 313 | 11,594 | 1.850 | 8.940 | 85.513 |
| Ppeline | 14,437 | 625 | 15,102 | 925 | 6,658 | 1,506 | 6.694 | 15,743 | 1,872 | 5.507 | 3.972 | 7918 | 277 | 10.344 30 | 1,451 | 2097 | 59.757 |
| Nitural Gas Processing Plant | 17 | 0 | 17 | 0 | 0 | 0 | 0 | 0 | 30 | 0 | 0 | $\stackrel{\square}{7}$ | 0 | 30 | 4 | $\bigcirc$ | 51 |
| Total Prished Maxar Gasoline -__ | 56,612 | 4,465 | 61,077 | 3.365 | 34.149 | 8.185 | 17,843 | 63.563 | 6.438 | 18.100 | 10.861 | 11,747 | 500 | 49,146 | 6.497 | 18.556 | $19 \times 319$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Retinery - | 2.518 | 261 | 2,760 | 65 | 3025 | 1,109 | 2,845 | 7808 | 1,126 | 4,983 | 2.806 | 915 | 180 | 10.134 | 2.156 1.160 | 4.510 | 26,693 |
| Buk Terminal | 17,398 | 1,574 | 18,910 | 1,293 | 10,389 | 2.691 | 3.685 | 18.003 | 1,250 | 2,501 | 859 | 1,424 | 208 | 6.258 | 1.160 | 4,942 | 40.233 |
| Plpeline | 6.743 | 318 | 7,061 | 805 | 3.429 | 620 | 3685 | 8.511 | 706 | 2.735 0 | 1,761 0 | $1 / 313$ 0 | 160 | 8878 24 | 908 | 968 | 26.356 44 |
| Natural Gas Processing Plant | 17 | 0 | 17 | 0 | - | $\bigcirc$ | 10.215 | 4,422 | 3,106 | 10,159 | 5809 | 5.852 | 565 | 25.274 | 4.759 | 2.420 |  |
| Tounl - | 28.615 | 2.153 | 20,760 | 1,008 | 17.776 | 4.623 | 10.215 | 34,422 | 3,106 | 10,150 | 5.800 | S.8sa | 565 | 25.274 | 4.759 | 8,420 | 182,143 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Relinery | 2837 18398 | 1,729 | 3,069 21,071 | 36 1.039 | $\mathbf{3 4 0 1}$ $\mathbf{9 , 6 0 0}$ | 1,006 1,202 | 2,130 2,485 | 6.732 15.137 | 1,151 1,205 |  |  | 1,356 |  | 5,342 | 1.059 670 | 3,986 | 46.218 |
| Buk Terminal | 18,339 | 1,739 | 21,071 | 1.039 490 | 9,600 | 1,902 | 2,485 3,009 | 15.137 7.231 | 1,205 965 | 1,377 2,772 | 2.211 | 1,396 4,403 | 114 | 10,466 | 513 | 1.050 |  |
| Ppelint Nataral Gas Processing Plant _____ | 7,754 | 377 | 8,131 | 400 | 3,166 0 | 565 | 3.009 0 | 7231 | 96 | 2.772 | 2211 0 | 4,403 0 | 1140 | 10,466 6 | $\begin{array}{r}1 \\ \\ \hline 1\end{array}$ | 1.050 0 | $\begin{array}{r}7 \\ \hline 8.409\end{array}$ |
| Nstural Gas Processing Plant _____ Total | 28973 | 2.312 | 32.291 | 1,558 | 16,357 | 2,581 | 7.624 | 20,100 | 3.328 | 8,941 | 5,359 | 5.895 | 345 | 23868 | 2.236 | 8.127 | 96.602 |
| Total | 203\% |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Gasohol |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Retinery- | \% | 0 | ${ }^{0}$ | 0 | 16 | 0 | 0 | 20 |  | 0 |  | 0 0 |  |  |  | 0 | 42 |
| Dulk Terminal | 18 | 0 | 18 | 0 | 16 | 0 | 4 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| Ppoline - | - | - 0 | \% | 0 | $\bigcirc$ | - 1 | 0 | 1 | 4 | 0 | 0 | 0 | 0 | 4 | 42 | 9 |  |
| Total - | 18 | 0 | 18 | 0 | 16 | 1 | 4 | 21 | 4 | 0 | - | - | 0 | 4 | 2 | $\bigcirc$ | S |
| Finlahed Aviation Gasolline |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Refinery | 30 | 0 | 30 | 0 | 185 | 0 | 51 | 206 | 24 | 384 | 214 | 15 | 39 | 173 | 16 | 396 |  |
| Bux Terminal. | 367 | 47 | 414 | 1 | 242 | 6 | 64 | 367 | 64 | 49 | 2 | 2 19 | 40 | -65 | 16 | 38 | 1110 |
| Plpeline | 0 | ${ }^{0}$ | $\bigcirc$ | 0 | 10 | 0 | 35 | 45 | 40 | 1 | 0 | 0 | 4 | 65 57 | 0 | 0 | 110 |
| Natural Gas Processing Pant -u- | $\bigcirc$ | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 57 | - | c | e | 0 | 97 | 0 | - 900 | 21 |
| Total _-_ | 397 | 47 | 44 | 1 | 437 | 60 | 150 | 648 | 185 | 414 | 216 | 645 | 30 | 597 | 62 | - 000 | 2 Cl |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Relinery - | 262 | 24 | 303 | 3 | 166 | 38 | 841 156 | 265 | 231 | 152 | 431 | 1 | 80 | 431 | 1 16 | 8 02 | 8.97 |
| Bulk Temmina! | 21 | 10 | 21 | 3 | 36 | 50 | 156 | 245 | 231 | 152 |  | 0 48 | 9 | 593 | 115 | 5377 |  |
| Ploelve -- | 276 | 80 | 278 | 3 | 1 | 73 | 87 | 164 | 03 | 0 | 474 | 3126 | 7 588 | 2005 | 5 - 715 | 4 1,360 | 6,465 |
| Total | 561 | 41 | 602 | 6 | 223 | 161 | 784 | 1,174 | 652 | 954 | 474 | 4327 | 7 598 | 2.905 | 5204 | + 1,300 | 6,465 |

[^28]Table 24. Stocks of Crude Oi and Petroleum Products by PAD District, March 31, 1902 (Thousands of Barrels) (continued)

| Commodiy | PAD Detrict 1 |  |  | PRODotert |  |  |  |  | PAD District |  |  |  |  |  | PADDit IyModyH. | PAO Det. $V$ West Coget. | UnitedStales |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | East Coast | Appals chian an | Total | Apoala chan 42 | $\begin{aligned} & \text { lnd. } \\ & \text { ning. } \end{aligned}$ | Menn. Wisc, Daks | Chis. <br> Kans. <br> 1 M | Tetal | Texas Inand | Texas Gal Const | $\begin{gathered} \text { La } \\ \text { Guil } \\ \text { Const } \end{gathered}$ | No. La. Ak. | New Mexico | Total |  |  |  |
| Kerosene-Type Jet Fues |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Aefinery | 899 | 11 | 903 | 81 | 1,131 | 77 | 340 | 1.000 | 277 | 2.810 | 2,425 | 13 | 37 | 5.382 | 256 | 3.978 | 12.168 |
| Dutk Terminal | 5,158 | 175 | 6,333 | 58 | 2007 | 414 | 070 | 32.239 | 201 | 1,097 | 65 | 38 | 25 | 1,427 | 176 | 2,370 | 12,547 |
| Pipeline ... | 2,714 | 95 | 2,809 | 101 | 763 | 158 | 1,879 | 2721 | 1,042 | 1,547 | 572 | 1,830 | 69 | 5.060 | 150 | 656 | 11,380 |
| Tetal | 8.764 | 261 | 9,045 | 220 | 4,011 | 649 | 2,689 | 7.509 | 1,520 | 5,254 | 3,062 | 1,802 | 131 | 11,849 | 624 | 6,934 | 36,081 |
| Kerosene |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Netnery | 131 | 68 | 199 | 0 | 444 | 17 | 159 | 820 | 58 | 908 | 555 | 10 | 83 | 1,612 | 36 | 86 | 2,535 |
| Bulk Termina | 3.010 | 252 | 2.282 | 163 | 724 | 59 | 12 | 958 | 11 | 384 | 41 | 24 | 0 | 460 | 30 | 74 | 4,730 |
| Ploaline | 408 | 7 | 415 | 72 | 130 | 0 | 315 | 517 | 7 | 95 | 277 | 105 | 0 | 482 | 0 | 0 | 1,414 |
| Natural Gas Processing Plant | 0 | ${ }^{\circ}$ | 0 | 0 | - | $\bigcirc$ | 0 | 0 | 2 | 180 | 0 | (1) | 1 | 4 | 0 | 0 | 4 |
| Tetal -_.__ | 3.549 | 227 | 2,876 | 236 | 1,208 | 76 | 486 | 2.006 | 76 | 1.385 | 873 | 130 | 84 | 2.558 | 14 | 160 | 8.763 |
| Total Distilate Fuel Oils |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Refinery | 4,098 | 512 | 5,200 | 69 | 5,991 | 1,241 | 4.263 | 11,754 | 1.025 | 7,947 | 4,604 | 1.008 | 389 | 15.063 | 2.373 | 5,504 | 32.034 |
| Bulk Terminal | 31,802 | 2.166 | 34,048 | T,297 | 11,394 | 2,082 | 4,522 | 21,108 | 994 | 1,902 | 826 | 084 | 100 | 4,796 | 720 | 5.007 | 65.785 |
| Pipeline | 5,426 | 256 | 5.882 | 348 | 1,817 | 971 | 4,313 | 7.249 | 465 | 2.112 | 1,463 | 3.439 | 175 | 7.609 | 604 | 926 | 22.070 |
| Natrat Gas Proceesting Plant | 0 | 0 | 0 | 0 | 0 | $\bigcirc$ | (v) | (1) | 1 | 11,901 | 0 | 0 | 0 | 1 | (3) | 0 | 2 |
| Total Distilase Fued OI | 41,006 | 2,004 | 44,930 | 1,714 | 19,002 | 6.294 | 13,188 | 40,198 | 2,466 | 11,901 | 6.873 | 5,485 | 664 | 27,469 | 3697 | 11,437 | 127,732 |
| Dist. Fuel Ois Less Mo. 4 Fund On |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Aefony | 4.088 | 503 | 5,191 | 63 | 5,908 | 1,341 | 4,353 | 11,701 | 965 | 7,747 | 4,432 | 984 | 318 | 14,446 | 2,363 | 5,454 | 32.155 |
| Buk Terminal | 90,315 | 2,760 | 22,481 | 1.202 | 11,282 | 2,392 | 4,522 | 21,068 | 934 | 1,916 | 826 | 963 | 100 | 4,789 | 720 | 4.950 | 64,008 |
| Plpeline - | 6,426 | 256 | 5.682 | 348 | 1,517 | 971 | 4,313 | 7260 | 448 | 2.112 | 1,443 | 3.433 | 175 | 7,009 | 604 | 926 | 22.070 |
| Natural Gas Proceeing Pant | 0 | 0 | 93 | 9 | $\bigcirc$ | 0 | (9) | (1) | 1 | 0 | $\bigcirc$ | 0 | - | 1 | (4) | 0 | 2 |
| Total | 40,429 | 2,025 | 43.354 | 1.009 | 18837 | 0.294 | 13,188 | 40.018 | 2,290 | 11,775 | 6,701 | 5,300 | 509 | 20,645 | 2687 | 11,300 | 125.785 |
| No. 4 Fuel Ot |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Ratioery | 0 | 9 | 9 | 9 | 53 | 0 | 0 | 53 | 70 | 200 | 172 | 104 | 71 | 617 | 10 | 50 | 739 |
| Buk Terminat | 1,567 | 0 | 1,807 | 15 | 112 | 0 | 0 | 127 | 6 | 5 | 0 | 1 | 0 | 7 | ${ }^{\circ}$ | 57 | 1,758 |
| Total | 1.567 | 0 | 1.576 | 15 | 185 | 0 | 0 | 180 | 70 | 206 | 172 | 106 | 71 | 626 | 10 | 107 | 2,497 |
| Residual Fuet Oas |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Roliney | 3849 | 174 | 4,023 | 76 | 2370 | 346 | 838 | 3.422 | 332 | 4,965 | 3798 | 319 | 74 | 2.460 | 550 | 2,148 2.169 | 25,611 |
| Bubk Terminal | 20.740 | 68 | 20,n05 | 244 | 2250 | 210 | 831 | 3.535 | 8 | 1,311 | $3 \times 80$ |  | 0 | 5218 | $\bigcirc$ | 2.169 15 | 31.729 15 |
| Ppethe - | 24.580 | 260 | 24,829 | 320 | 4,620 | 558 | 1,450 | 0.857 | 241 | 6.250 | 7,658 | 358 | 74 | 14,687 | 550 | ${ }^{2} \mathbf{1} 8236$ | 57.349 |
| Naphtha < 400 Deg . Petre. Feedatock |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Relinery ....... | 209 | 0 | 209 | 0 | 316 | 0 | 94 | 412 | 124 | 1,809 | 411 | 12 | 0 | 2238 | 0 | 238 | 2.148 $\mathbf{3}$ |
| Total | 260 | 0 | 289 | 0 | 318 | 0 | 94 | 412 | 124 | 1,638 | 411 | 12 | 0 | 2.236 | 0 | 20 | 8,149 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Refinery - | 4 | ${ }^{88}$ | 92 | 0 | 100 | 0 | 1 | 191 | 168 | 704 | 291 | 38 | 0 | 1,201 | 0 | 166 | 1.850 |
| Total -______ | 4 | 88 | 92 | 0 | 180 | 0 | 1 | 191 | 168 | 704 | 291 | 38 | 0 | 1,201 | 0 | 166 | 1,850 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Retinery | 22 | 51 | 73 | 1 | 178 | 0 | 190 | 372 | 45 | 1,313 | 38 | 171 | 0 | 1,567 | 2 | 950 | 2.914 |
| Bukk Teminal | 969 | 7 | 956 | 79 | 154 | 28 | 37 | 298 | 0 | 2 | 1 | 8 | 0 | 11 | 0 | 45 | 1,320 |
| Natral Gas Processing Plast - | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 124 169 | 0 | (3) | 0 | 0 | 125 | 0 | ${ }^{0}$ | 125 |
| Tocal _-_ | 961 | 58 | 1,009 | 80 | 332 | 2 | 230 | 670 | 169 | 1,315 | 39 | 170 | 0 | 1,703 | ${ }^{2}$ | 345 | 2,750 |

ucts by PAD District, March 31, 1982

| Commodity | PAD Detrict I |  |  | PAODatikt |  |  |  |  | PADOstict |  |  |  |  |  | $\left\|\begin{array}{c\|} \hline P A D \\ \hline \mathrm{DAt} \end{array}\right\|$ | $\begin{gathered} \text { PAD } \\ \text { DAs y } \end{gathered}$ | Unitod Stakes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { East } \\ & \text { Coast } \end{aligned}$ | $\begin{gathered} \text { Appola } \\ \text { chian } \\ \text { el } \end{gathered}$ | Tota | Appolachian $\square 2$ | $\begin{aligned} & \operatorname{lnd}_{3} \\ & \mathrm{ning} \\ & \hline \end{aligned}$ | Minn. Whec. Daks | $\mathrm{CKa}_{3}$ Kans, Ma | Total | Texas Inland | $\begin{aligned} & \text { Texas } \\ & \text { Gual } \\ & \text { Ccest } \end{aligned}$ | $\begin{aligned} & \text { La. } \\ & \text { Gvit } \\ & \text { Coast } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { No. La, } \\ \text { Nk. } \end{gathered}$ | $\begin{gathered} \text { New } \\ \text { Merico } \end{gathered}$ | Totai | Dat V Rocky M | $\begin{aligned} & \text { Dat. y } \\ & \text { West } \\ & \text { Conve } \\ & \hline \end{aligned}$ |  |
| Lubricants |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Retinery |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Pripht Slock -_ | 160 | 488 | 654 | 8 | 64 | $\bigcirc$ | 74 | 138 | 0 | 245 | 121 | 0 | 0 | 366 | 7 | 46 | 1211 |
| Neutrel - | 781 | 329 | 1,110 | 8 | 560 | $\bigcirc$ | 440 | 930 | 0 | 1,735 | 1,119 | 59 | 0 | 2.913 | 7 | 517 | 5807 |
| Other | 758 | 131 | 387 | 9 | 177 | 0 | 140 | 317 | 45 | 2.050 | 338 | 142 | 1 | 2.585 | 10 | 109 | 3.008 |
| Pulk Terminals -a._._ | 1.096 | 252 | 1238 | 15 | 430 | 25 | 97 | 576 | 8 | 90 | 262 | 68 | 5 | 371 | 1 | 740 | 2.905 |
| Total | 2,730 | 1,200 | 3.909 | 15 | 1.230 | 25 | 751 | 2.021 | 53 | 4,069 | 1,840 | 260 | 4 | 6.235 | 05 | 1,416 | 13.705 |
| Wax, Microcrystalline |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Aefinery -_.__-_ | 0 | 38 | 38 | $\bigcirc$ | 0 | 0 | 15 | 15 | 25 | 25 | 8 | 0 | $\bigcirc$ | 58 | 0 | 0 | 111 |
| Total --_-_-_ | 0 | 38 | 38 | $\bigcirc$ | 0 | 0 | 15 | 15 | 25 | 25 | 8 | 0 | $\bigcirc$ | 58 | 0 | 0 | 111 |
| Wax, Cryatalline-Fully Refined |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Relinery | 12 | 24 | 36 | 0 | 20 | 0 | 21 | 50 | 0 | 75 | 128 | 0 | 0 | 200 | 6 | 35 | 330 |
| Total | 12 | 24 | 36 | $\bigcirc$ | 29 | 0 | 21 | 50 | 0 | 75 | 128 | 0 | 0 | 203 | 6 | 35 | 330 |
| Wax, Cryatalline-Other |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Aplinery | 3 | 65 | 68 | 0 | 4 | ${ }^{0}$ | 9 | 13 | 0 | 122 | 0 | 0 | ${ }^{\text {a }}$ | 122 | $\bigcirc$ | 21 | 224 |
| Toast | 3 | 65 | 68 | 0 | 4 | 0 | 9 | 13 | 0 | 122 | 0 | $\bigcirc$ | 0 | 122 | 0 | 21 | 224 |
| Petroleum Coke |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Ruthery | 900 | $\bigcirc$ | 900 | 0 | 356 | 347 | 239 | 095 | 0 | 105 | 593 | 28 | $\bigcirc$ | 665 | 508 | 1,525 | 4,894 |
| Total | 600 | $\bigcirc$ | 000 | 0 | 356 | 367 | 293 | 995 | 0 | 105 | 593 | 23 | $\bigcirc$ | 505 | 568 | 1.525 | 4.894 |
| Asphal |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Aeliney | 2.004 2.458 | 428 | 2.580 | 409 | 3.419 | 2279 | 1.638 | 7.685 2875 | 813 | 7 c | 801 | 1.310 | 273 | 4.009 | 3,175 | 2.167 459 | 19.636 |
| Buk Teminal | 2,456 | 431 | 2.837 | 175 | 1,425 | 1,048 | 227 | 2.875 | 9 | $\bigcirc$ | 178 | 69 | $\bigcirc$ | 228 | ${ }^{\circ}$ | 459 | 6,449 |
| Total | 4,650 | 857 | 5,407 | 584 | 4.84 | 3.267 | 1,865 | 10,560 | a13 | me | 1.079 | 1,360 | 272 | 4,317 | 3,175 | 2 203 | 26,005 |
| Road OE |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Aelinery | 0 | 0 | 0 | ${ }_{0}^{0}$ | 8 | 0 | 5 | 13 | 0 | 0 | 0 | 2 | 0 | 2 | 3 | 20 | 38 |
| Total | 0 | 0 | 0 | 0 | 8 | 0 | 6 | 13 | 0 | 0 | 0 | 2 | 0 | 2 | 3 | 20 | 38 |
| Miycellaneous Prodacts |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Ratinery | 236 | 35 | 322 | 2 | 65 | 12 | 30 | 110 | 67 | 413 | 124 | 48 | 0 | 659 | 0 | 291 | 1.375 |
| Bulk Terminal ______ | 127 | 9 | 127 | 9 | 27 | 5 | 3 | 35 | 0 | 0 | 0 | 16 | 0 | 16 | 0 | 136 | 314 |
| Plovine. | 2 | 10 | 12 | 9 | 15 | 0 | 0 | 24 | 48 | 0 | 0 | 0 | 0 | 495 | 0 | 0 | 84 |
| Nahural Ges Prucessing Prant | 0 | $\bigcirc$ | $\bigcirc$ | 1 | 2 | 0 | ( ${ }^{\text {a }}$ | 2 | 72 | 701 | (*) | 22 | (v) | 796 | 3 | 0 | 800 |
| Toay | 415 | 45 | 451 | 11 | 110 | 17 | 33 | 171 | 187 | 1,114 | 124 | 68 | (a) | 1.511 | 3 | 427 | 2.573 |
| Total Stocks, All Ods | - | - | 190.837 | - | - | - | - | 250,600 | - | - | - | - | - | 694.907 | 39.720 | 179.700 | 1,400.002 |

[^29](i) Less than 500 berrela.
Note Total may not equal sum of compenents dae to independent rounding.
Scuroest See Eeplanatoy Notes on Data Colection and Estination.
Scuroes

- Net Appticable.

| Commedity | From Ito |  | From ill to |  |  | From ill to |  |  |  |  | From N to |  |  |  | From V to |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $t$ | 1818 | 1 | E | N | 1 | H | N |  | V | - | 18 |  | V | 1 | 1 里 |
| Crude Oil | 0 | 0 | 0 | 0 | 0 | 402 1,000 |  | 0 |  | 110 | 0 | 0 |  | 0 | 3.282 | 18.778 |
| Petroloum Products | 7240 | 853 | 2858 | 5,312 | 2.446 | 79824 | 17240 |  | 0 | 2,448 | 740 |  | 0 | 967 | 40 | 1,021 |
| Natural Gasoline and licpentane | 0 | 0 | 0 | 332 | 0 | 0 | 600 |  | 0 | 0 | 332 |  | 0 | 0 | 0 | $0$ |
| Unfractonated Syeam | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 |  | 0 | 0 | 0 |  |
| Plart Cordensate | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 |  | 0 | 0 | 0 | $0$ |
| Uiqualiod Potroloum Gases | 0 | 0 | 955 | 1,580 | 117 | 1,481 | 5,978 |  | 0 | 1 | 0 |  | 0 | 0 | 0 | 0 |
| Untivinhed Oils | 55 | 0 | 0 | 0 | 0 | 1.673 | 0 |  | 0 | 231 | 0 |  | 0 | 0 | 0 | 64 |
| Molor Gasoline Blending Componerts - | 0 | $\bigcirc$ | 0 | 0 | 0 | 9 | 687 |  | 0 | 0 | 0 |  | 0 | $\bigcirc$ | 0 | 0 |
| Avalion Gasoline Biveding Componsits | 0 | 0 | 0 | 0 | 0 | 0 | \% |  | 0 | 0 | 0 |  | 0 | 0 | 0 | $0$ |
| Frichuod Motor Gatoline - | 5,300 | 262 | 1.079 | 1,828 | 1.456 | 44.888 | 6.121 |  | 0 | 036 | 237 |  | 0 | 695 | 21 | 0 |
| Firished Leaded Moter Gaseline. | 2098 | 0 | 485 | 1,090 | 810 | 19.883 | 3,165 |  | 0 | 530 | 167 |  | 0 | 487 | 0 | 0 |
| Frished Unieaded Mosor Gasoline | 2382 | 202 | 504 | 738 | 658 | 24,805 | 2,000 |  | 0 | 400 | 70 |  | 0 | 209 | 21 | 0 |
| Gasohol - | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 |
| Firithod Aviation Gasoline | 0 | 0 | 0 | 0 | 19 | 404 | 142 |  | 0 | 0 | 0 |  | 0 | $\bigcirc$ | 0 | 0 |
| Nsphthe-Type Jet Fuel | 141 | 0 | 0 | 81 | 0 | 618 | 29 |  | 0 | 157 | 0 |  | 0 | 87 | 0 |  |
| Kerosene-Type Jet Fuel | 172 | 0 | 45 | 84 | 594 | 8,485 | 1,490 |  | 0 | 159 | 6 |  | 0 | 48 | 0 | 0 |
| Kerosene - | 128 | 0 | 13 | 0 | 8 | 1,154 | 87 |  | 0 | 0 | 0 |  | 0 | 0 | 0 |  |
| Distlate Fuef O9, | 1.375 | 178 | 271 | 674 | 250 | 16,444 | 1.023 |  | 0 | 326 | 165 |  | 0 | 135 | 0 |  |
| Disslate Fuel Oil Lase No. 4 | 1,375 | 178 | 271 | 674 | 250 | 16,347 | 1,023 |  | 0 | 320 | 165 |  | 0 | 135 | 0 |  |
| Na .4 Fuel OP | 0 | 0 | 0 | ${ }_{1}$ | 0 | 97 | ${ }^{\circ}$ |  | 0 | 0 | 0 |  | 0 | 0 | 9 | 875 |
| Pesidual Fuel OII - | 0 | 197 | 133 | 711 | 0 | 3.328 | 84 |  | 0 | 588 | 0 |  | 0 | 0 | 19 | 875 |
| Naphata and Oever Ois for Petro. | 38 | 127 | 44 | 28 | 0 | 99 | 45 |  | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 |
| Special Naphthas | 0 | 0 | 0 | 0 | 0 | 277 | 286 |  | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 |
| Lubicants | 40 | 81 | 102 | 45 | 0 | 743 | 221 |  | 0 | 81 | 0 |  | 0 | 0 | 0 | 33 |
| Wax | 0 | 0 | 0 | 0 | 0 | 10 | 0 |  | 0 | 0 | 0 |  | 0 | $\bigcirc$ | 0 | 0 |
| Asphat and Hoad Oif | 0 | 0 | 57 158 | 0 | 9 | 143 | 136 |  | 0 | 0 | 0 |  | 0 | 0 | $\bigcirc$ | 0 |
| Mincellaneous Products. | 0 | 8 | 158 | 0 | 0 | 317 | 101 |  | 0 | 0 | 0 |  | 0 | 0 | 0 | 43 |
| Total All Producte | 7.249 | 853 | 2.858 | 5.312 | 2.445 | 80220 | 18.240 |  | 0 | 2,558 | 740 |  | 0 | 967 | 3.202 | 19.709 |

[^30]Table 26. Movements of Petroleum Products by Pipeline Between PAD Districts, March 1962 (Thousands of Barrels)

Table 27. Movements of Crude Oil and Petroleum Products by Tanker and Barge Between PAD Districts, March 1982
(Thousands of Barrels)

| Commodity | From 1 to |  | Fromill to |  | From $\mathrm{l}^{\text {a }}$ to |  |  |  |  |  | From V to |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | * | Hil | 1 | a | 1 | $\begin{gathered} \mathrm{Now} \\ \mathrm{Eng} \end{gathered}$ | $\begin{gathered} \text { Cant } \\ \text { as } \end{gathered}$ | $\underset{\text { AI }}{\text { Low }}$ | - | $v$ | 1 | an |
| Crude of | - | 0 | 0 | 0 | 402 | 0 | 402 | 0 | 1,000 | 110 | 3282 | 18.778 |
| Petroleum Products | 1,400 | ${ }_{0} 8$ | 405800 |  | 24.867 | 2006 | 4.851 | 17,820 | 2309 | 375 | 40 | 1.021 |
| Liquelied Petelieum Gases |  |  | 0 | 9 | 276 | 0 |  | 276 51 | 57 | 1 | 0 | 0 |
| Untribhed Ois | 55 | 0 | 0 | - | 1,.673 | 220 | 1,402 | $5 t$ | 0 | 231 | 0 | 66 |
| Fivihec Motor Gasolne | 86 | 262 | 124 | 0 | 10,178 | 333 | 459 | 9.337 | 816 | 0 | 21 | 0 |
| Fintred Anation Gasoine - | \% | - | 0 | $\bigcirc$ | 404 | 0 | 217 | 187 | 25 | 0 | 0 | 0 |
| Naphene Type Jet Foel - | 141 | - | 0 | 0 | 378 | 13 | 0 | 365 | 0 | 0 | 0 | 0 |
| Kerosene Type Jet Fual - | 8 | 0 | 0 | $\bigcirc$ | 3,343 | ${ }^{151}$ | 489 | 2712 | 216 | 0 | 0 | 0 |
| Kerosene | 68 | ${ }^{\circ}$ | 0 | $\bigcirc$ | 277 | $\bigcirc$ | 242 | 15 | 0 | 0 | 0 | 0 |
| Dathate Fuol Oil - | 209 | ${ }^{178}$ | 25 | 77 | 3,141 | 530 | 625 | 1,965 | 420 | 0 | 0 | 0 |
| Residual Fuo Oil | 0 | 197 | 133 | 711 | 3,238 | 722 | 550 | 2.056 | 84 | 63 | 19 | 875 |
| Naphtha and Oeter Ows for Petro. Feed. Une-_ | 38 | 127 | 44 | 25 | ${ }^{99}$ | ¢ | 22 | 7 | 45 | 0 | 0 | 0 |
|  | 0 | - | 0 | O | 277 | 39 | 155 | 89 | 285 | 0 | 0 | 0 |
| Whicants -_-_._-_._-_ | 40 | 81 | 102 | 45 | 743 | 34 | 505 | 206 | 221 | ${ }^{1}$ | 0 | 38 |
| Wax | 8 | $\bigcirc$ | $\bigcirc$ | - | 10 | ? | 10 | 0 | 0 | 0 | 0 | 0 |
| Asphat and Road Oil | 0 | - | 57 | - | 143 | 0 | 0 | 16 | 135 | 0 | 0 |  |
| Miscolanosus Prodicts -_ | 0 | 8 | 0 | 0 | 317 | 10 | 185 | 122 | 61 | 0 | 0 | 4 |
| Total | 1,480 | ${ }^{853}$ | 485 | 360 | 24,909 | 2.096 | 5.253 | 17,620 | 3.369 | 405 | 3.322 | 18.798 |

Table 28. Net Movements of Crude Oil and Petroleum Products by Pipeline, Tanker and Barge Between PAD Districts, March 1982

| Commosity | PAD. Distic: |  |  | PA. Ostrict III |  |  | PA.C. Datict I |  |  | PAD. Distert IV |  |  | PA.D. Dittret V |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { Peceipts } \\ & \text { mito } \\ & \text { PADOI } \end{aligned}$ | Snipments from PACO | $\begin{gathered} \text { Net } \\ \text { Rocelt } \\ \text { PACOI } \end{gathered}$ | Rectiots Into PADO I | Sriprients from PADO: | Net Receipts PADO | Recripts ino PAOO | $\begin{aligned} & \text { Shioments } \\ & \text { from } \\ & \text { PADO in } \end{aligned}$ | $\begin{gathered} \text { Net } \\ \text { Recelpts } \\ \text { PADO } \end{gathered}$ | $\begin{aligned} & \text { Recolots } \\ & \text { PADO N } \end{aligned}$ | $\begin{gathered} \text { Shigments } \\ \text { from } \\ \text { PADD IV } \end{gathered}$ | $\begin{gathered} \text { Net } \\ \text { Recepts } \\ \text { PADD NV } \end{gathered}$ | $\begin{aligned} & \text { Recoipts } \\ & \text { into } \\ & \text { PADOV V } \end{aligned}$ | $\begin{gathered} \text { Shipments } \\ \text { from } \\ \text { PNOD V } \end{gathered}$ | Net Receipt PADO V |
| Cruse ofis | 3.684 | 0 | 3,684 | 1,000 | $\bigcirc$ | 1,000 | 18,776 | 1,512 | 17,236 | 0 | 0 | $\bigcirc$ | 110 | 22,060 | $-21,950$ |
| Petroleum Products | 62,722 | 8,102 | 74,820 | 25.229 | 10.516 | 14,513 | 7.186 | 93.512 | -02,325 | 2,46 | 1,707 | 739 | 3.415 | 1.081 | 2.354 |
| Natral Canotere - | 0 | 0 |  | 1.232 | 332 | ${ }^{00}$ | 332 | 000 | -568 | - | 332 | -322 | 0 |  | 0 |
| Untractionted Stoam -__ | 0 | 0 | 0 | ${ }_{0}^{0}$ | 0 | $\bigcirc$ | ${ }^{\circ}$ | 0 | 0 | $\bigcirc$ | 0 | 0 | 0 | ${ }^{\circ}$ | 0 |
| Plamt Condensate - | ${ }^{\circ}$ | 0 | 9 | 59 | 2853 | 앙 | $\bigcirc$ | 7.0 | - 58.8 | 117 | 8 | 9 | 0 | - | 0 |
| Loustod Petrctoun Gaves -_._._- | 2,357 | 0 | 2307 | 5.978 | 2653 | 3.325 | 1.580 | 7,419 | -5,839 | 117 | - | 117 | ni | - | \% |
| Unfinished Olls | 1,673 | 55 | 1,618 | ${ }^{5}$ | 0 | 55 | $\cdots$ | 1.906 | -1,840 | O | $\bigcirc$ | 0 | 231 | 56 | 167 |
| Motor Gasoline Blending Cormponents - | 0 | 0 | 0 | 687 | $\bigcirc$ | 687 | - | 687 | -637 | 0 | $\bigcirc$ | 0 | 0 | 0 | 0 |
| Aviston Gasoline Biencing Components. | 0 | 5 | - ${ }^{\circ}$ | 0 | ${ }^{\circ}$ | - | 2090 | 51.3 | \% | 1.485 | ${ }^{23}$ | ${ }^{\circ}$ | 1632 | 21 | 1 |
| Friuhed Motor Gasoine -_ | 45.788 | 5.562 | 40.225 | 11,858 | 4.373 | 7.285 | 2000 | 51,745 | -19.65s | 1.466 | 033 | 539 | 1.632 | 21 | 1.611 |
| Frished Lasded Moltar Gasdine - | 20.368 | 2018 | 17,450 | 6,270 5088 | 2, 2,38 | 3.885 | 1,000 | 28.14 | -22.509 | 810 | ${ }^{654}$ | 156 | ${ }^{1,017}$ | 0 | 1.017 |
| Frithed Unlosded Moter Gasolise --.- | 25,420 | 2.654 | 22,776 | 5.388 | 1,868 | 3.400 | 1,000 | 28,167 | -27.147 | 6s6 | 270 | 377 | 615 | 21 | 596 |
| Gusotol |  | $\bigcirc$ | 0 | 0 | ${ }^{\circ}$ | ${ }^{\circ}$ | - | ${ }^{8}$ | - | - | - | 9090 | $\bigcirc$ | 。 | 0 |
| Finishod Avasion Gasoline --_ | 406 | $\bigcirc$ | 404 | 142 | 19 | 129 | ${ }^{\circ}$ | 846 | -543 | 19 | 87 | ${ }_{87}$ | 4 | - | 44 |
| Naphte-Type Jet Fual - | 618 | 141 | ${ }^{477}$ | 170 | 81 | 89 | 81 | 804 | -723 | 0 | 87 | -808 | 248 | - | 240 |
| Kerosene-Type Jet Fuel -_-_ | 8.530 | 172 | 8.358 | 1,608 | 673 | 935 | 34 | 10,074 | -10.040 | 59 | 54 | 540 | 207 | 0 | 20\% |
| Kerosese - | 1,167 | 128 | 1,039 | ${ }^{185}$ | 13 | 172 | 85 | 17.211 | -1,281 | $20^{\circ}$ | 301 | 0 | 0 | 0 | 5 |
|  | 78.715 | 1,563 | 15,162 | 2.563 | 1,195 | 1,368 | 852 | 17,708 | -16,941 | 25 | 301 | -51 | 482 | - | 482 |
| Duallate fuei Oil Less Na. 4 | 16.618 | 1,563 | ${ }^{15.065}$ | 2.563 | 1,155 | 1,368 | ${ }^{85}$ | 17,898 | $-16.84$ | 250 | 301 | -51 | 462 | - | 452 |
| Na 4 Fuei Of - | 07 | $\stackrel{\square}{7}$ | 97 | ${ }^{\circ}$ | ${ }^{0}$ | ${ }^{\circ}$ | ${ }^{\circ}$ | 97 | $-97$ | $\bigcirc$ | ${ }^{\circ}$ | - | 508 | 9 | 38 |
| Arenitual Fuel O ar - | 3.460 | 197 | 3,2e3 | 86 | 844 | -760 | 1,783 | 3.870 | -2,187 | 0 | - | 0 | 588 | 896 | -336 |
| Naphima and Oter Oin for Potro. | 143 | 165 | -22 | 83 | 70 | 13 | 153 | 144 | 9 | 0 | 0 | 0 | 0 | 0 | - |
| Special Naphehas - .-...._ | 277 | ${ }^{\circ}$ | 277 | 286 | 0 | 286 | 0 | 563 | -863 | 0 | $\bigcirc$ | 9 | 8 | 3 | ${ }^{\circ}$ |
| Whricante --_-_-_-_ | 845 | 121 | 724 | 281 | 148 | 113 | 165 | 1.045 | -879 | 0 | $\bigcirc$ | 0 | 51 | 30 | 42 |
| Wax --. | 10 | 0 | 10 | ${ }^{\circ}$ | 5 | ${ }^{\circ}$ | - | 278 | -209 | 0 | - | 8 | ${ }_{0}$ | - | - |
| Asphait and Road O4 | 200 | 8 | 200 | 136 | 57 | 79 | ${ }^{\circ}$ | 278 | -270 | ${ }^{\circ}$ | 8 | $\bigcirc$ | 8 | ${ }^{\circ}$ | - |
| Miscolimeous Produtts -_ | 475 | 8 | 487 | 101 | 158 | -57 | 51 | 418 | -357 | 0 | 0 | $\bigcirc$ | 0 | 43 | -43 |
| Total All Produots | 86,406 | 2.102 | 78.304 | 20,200 | 10.616 | 15.613 | 25.964 | 101024 | -75,080 | 2.46 | 1,707 | 733 | 3.525 | 23.121 | -10.505 |

[^31]duction of No.4 Fuel Oll and Residual Fuel Ol By Sulfur Content, March 1982 zsands of Barrels)

| Commodity | PAD Dattige |  |  | PAO. Distral |  |  |  |  | PAODaticy |  |  |  |  |  | $\begin{array}{\|c\|} \hline \text { PAO } \\ \text { DSLIV } \\ \hline \text { Rocky } \\ \text { MO } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { PAD } \\ \text { Dart. V } \\ \hline \text { Went } \\ \text { Conat } \\ \hline \end{array}$ | Unted States |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Fant Coast |  | Total | Appals crien - | Ind. a. Ky. | Mrn <br> Wec, <br> Daks | Cita. <br> Kara. M | Total | Teas lisend | $\begin{aligned} & \text { Toxas } \\ & \text { Out } \\ & \text { Coast } \end{aligned}$ | $\begin{gathered} \text { Lu } \\ \text { Gut } \\ \text { Coast } \end{gathered}$ | No. La. Ack | $\begin{gathered} \text { New } \\ \text { Mesiso } \end{gathered}$ | Toal |  |  |  |
|  |  |  |  |  | 21 | 0 | 0 | 21 | 5 | 405 | 214 | 53 | 226 | 37 | 26 | 73 | 512 |
|  | 0 | 0 | 0 | 0 | 1 | 0 |  | 1 | 0 | 333 | -54 | A | 0 | 23 | 0 | - | 2014 |
| Stur | 0 | - | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 0 |  |  | 305 |  | ${ }^{27}$ | 351 |
|  | 0 | 0 | 0 | 0 | 16 | 0 | 0 | 18 | 4 | 0 | 0 |  | 0 | 1 | 0 | 11 | 25 |
|  | 0 | 13 | 13 | 0 | 。 | 0 | 0 | - | , | 0 | -200 | 47 | 0 | -213 | 0 | 35 | $-176$ |
| $200 \%$ sulur | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |
| 入 | 5.18 | 204 | 5208 | 119 | 2.357 | 247 | 815 | 2.578 | 1,007 | 6,295 | 5,468 | 462 | 173 | 13.756 | 312 | 11,762 | 30,75 |
| sudur | 472 | 30 | 508 | 0 | 0 | 0 |  | 0 | 107 | 447 | \% | 113 | S5 | 747 | 128 | 2851 |  |
| Sathr | 1,514 | 80 | ${ }^{1.504}$ | 0 | 40 | 3 | 102 | 154 | 128 | 1893 | Des | 151 | 5 | 2,171 | 76 | 1.093 | 6.840 |
| satyr | 000 | 0 | 00 | 119 | ${ }^{1}, 087$ | 78 | 351 | 1917 | 123 | 120 | 542 | 15 | 104 | 907 | -33 | 7.583 | 3.520 |
| - Sulur | 152 2047 | 0 | 2064 | 0 | ${ }_{600}$ | 168 | 139 | 900 | 0 | 4202 | 4.270 | 86 | 0 | 2.574 | 133 | 550 | 12270 |

[^32]

[^33]Table 31．Imports of Residual Fuel Oil by Sulfur Content by Country of Origin，March 1982

| Couniry | Pesigual fuel On |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 0.00 \text { to } \\ & 0.30 \% \end{aligned}$ | $\begin{aligned} & 0.31 \text { to } \\ & 0.50 \% \end{aligned}$ | $\begin{aligned} & 0.51 t \\ & 1.00 \% \end{aligned}$ | $\begin{aligned} & 1.01 \text { to } \\ & 200 \% \end{aligned}$ | $\begin{aligned} & \text { Groster } \\ & \text { Than } \\ & 200 \% \end{aligned}$ | $\begin{gathered} \text { Not } \\ \text { Speotind } \end{gathered}$ | Toual |


| $\frac{\mathrm{m}}{\mathrm{~N}}$ |  |  | g 틈 | $\stackrel{\square}{\square}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0000000 | 0000000 | 000000000000000000000 | 000 | 0 |
| 0000000 | 00000 营镸 |  | $\begin{array}{r} \circ \circ \mathrm{om} \\ \text { 男 } \end{array}$ | 㚜 |
| 0000000 | $\text { 界 } 0000 \text { 荧峇 }$ | 00000 N | $00 \%$ | \％ |
| 0000000 | 0000000 | $0000 \mathrm{~g}^{2} \mathrm{~N} 0000000 \mathrm{~g} 000 \mathrm{~g} 000 \mathrm{k} 00$ | N y y | \％ |
| 0000000 | 0090008 | O0000\％ $000000000000000{ }^{\text {d }}$ | ○桪品 | $\stackrel{\text { ®ู }}{\sim}$ |
|  | $00 \frac{\mathrm{~m}}{\mathrm{y}} 000 \mathrm{~g}$ |  |  | $\stackrel{9}{9}$ |
|  |  |  |  |  |

[^34]Table 32. Imports of Residual Fuel Oil by Sulfur Content by State of Entry, March 1982

| Sute | Resioual Fuer CB |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 0.00 \text { to } \\ & 0.30 \% \end{aligned}$ | $\begin{aligned} & 0.31 \text { to } \\ & 0.50 \% \end{aligned}$ | $\begin{aligned} & 0.51 \pm \\ & 1.00 \% \end{aligned}$ | 1.01 te 200\% | Oreater Than $200 \%$ | Not Specifed | Tous |
| PAD District I. | 5,850 | see | 3,760 | 3,637 | 9,747 | 9 | 24,069 |
| Conosecticut | 0 | $\bigcirc$ | 0 | 0 | 47 | 0 | 47 |
| Floride | 3 | 0 | 205 | 200 | 1,463 | - | 1.960 |
| Gacria - | 0 | 0 | $\bigcirc$ | $\bigcirc$ | 167 | 0 | 167 |
| Maine - | 0 | 0 | 242 | 747 | 1,832 | 0 | 2,821 |
| Mayland -- | 0 | 0 | 43 | 0 | 475 | 0 | 550 |
| Massachusetts ___ | 0 | 0 | 382 | 302 | 2,203 | 0 | 2.986 |
| Now Jorsicy _-_. | 1,786 | 77 | 295 | 118 | 502 | 0 | 2760 |
| New York | 4,153 | 347 | 1.538 | 1.638 | 1,347 | 0 | 8.023 |
| North Carclina | 0 | 0 | 0 | 235 | 639 | 0 | 874 |
| Penntytuaria -_ | 0 | 369 | 777 | 231 | 20 | 0 | 1,407 |
| Phode leland _-. | 0 | 173 | 0 | 0 | 0 | 0 | 173 |
| South Caroine -_ | 6 | 0 | 0 | 0 | 152 | 0 | 158 |
| Viglirla -__ | 0 | 0 | 149 | 85 | 1.070 | 0 | 1,904 |
| PAD District Ill | 65 | 0 | 515 | 25 | 9 | 0 | 514 |
| Michipan | es | 0 | 515 | 0 | 0 | 0 | 509 |
| North Dakcta | 0 | 0 | 0 | 25 | 9 | 0 | 34 |
| PAD District ilit | 3 | 0 | 239 | 599 | 1,975 | 0 | 2.816 |
| Louslane | 2 | 0 | 239 | 590 | 1.827 | 0 | 2.867 |
| Texas +_._._._ | 1 | 0 | 0 | 0 | 148 | 0 | 149 |
| PAD District IV | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| PAD District V | 417 | 257 | 22 | 12 | 0 | 0 | 700 |
| Callorria - | 413 | 9 | 0 | 0 | 0 | 0 | 413 |
| Hawal | 3 | 257 | 0 | 12 | 0 | 0 | 273 |
| Waskington ____ | 0 | 0 | 22 | 0 | 0 | 0 | 22 |
| A PAD Districts | 6,435 | 1,222 | 4,836 | 4,274 | 11,731 | 0 | 28,198 |



## Definitions of Petroleum Products and Other Terms

Alcohol. The family name of a group of organic ehemical compounds composed of carbon, hydroges, and oxygen. The serios of molecules vary in ehain length and are composed of a hydrocarban phlas a hydroxyl group, $\mathrm{CH}-(\mathrm{CH}) \mathrm{n}-\mathrm{OH}$. "Atcohol" includes ethanol and methanol.

Asphalt. A dark-brown-to-black cement-like material, containing bitumens as the predonins:: constituents, obtained by petroleum processing. The definition includes crude asphalt as well as the following finished procucts: eements, fluxes, the asphalt content of emulsions (exclusive of water), ard petroleum distillates blended with asphalt to make eutbaek asphalts. The eonversion factor is 5.$\}$ 42-gallon barrels per short ton.

## ASTM. The acronym for the American Soejety for Testing and Materials.

Aviation Gasoline Blending Components. Finished components in the gasoline range which will $t_{i}$ used for blending or eompounding into finished aviation gasoline.

Aviation Gasoline (Finished). All special grades of gasoline for use in aviation reciproeating enginss as given in ASTM Specifieation D 910 and Military Speeification M1L-G-5572.

Barrel. A volumetric unit of measure for erude oil and petroleum products equivalent to $42 \mathrm{U} . \mathrm{S}$ gallons. This measure is used in moststatistical reports. Factors for converting petroleum coke, asphali and wax to barrels are given in the definitions for these products.

Butane. A normally gaseous paraffinie hydrocarbon, $\mathrm{C}_{4} \mathrm{H}_{10}$ It is extracted from natural gas or refiner gas streams. Butane is covered by ASTM Specifieation D1885 and Gas Processors Associatie? Specifieation for commercial butane.

- Normal Butane-A saturated straight-ehain bydrocarbon of butane. It is a colorless paraflin gas that bolls at a temperature of $31.1^{\circ} \mathrm{P}$. This classification includes mixtures of gases ths eontain 80 percent or more normal butane.
- Other Butanes-All butanes not ineluded as normal butane or isobutane.

Butane-Propane Mixtures Mixtures consisting exclusively of butane and propane that conformit ASTM Specification D1835 and Gas Processors Specification for commercial butane-propane. The, are extracted from natural gas and refinery gas streams.

Butylenc. An olefinie hydrocarbon, $\mathrm{C}_{4} \mathrm{H}_{8}$ recovered from refinery processes. It is reported i the "Butane" category.

Coal. A generie term applied to carbonaceous rocks that were formed by the partial or eomples decomposition of vegetation. These stratified carbonaceous roeks are either solid or brittle and at highly combustible. Ineludes lignite, bituminous coal, and anthraeite which conform to AST) Speeification D 388.

Crude Oll (Ineluding Lease Condensate). A mixture of hydroearbons that existed in liquid phase! underground reservoirs and remains liquid at atmospheric pressure after passing through surfan separating facilities. Lease condensate is ineluded. Drips are also ineluded, but topped erude (residus oil and other unfinished oils are excluded. Liquids produeed at natural gas proeessing plants asd mixi with crude oil are likewise excluded where identifiable. Crude oil is considered as either domestic: foreign, aceording to the following:

- Domestic-Crude oil produced in the United States or from its outer continental shelf as defint in 43 U.S.C. 1331. Hydrocarbons such as shale oll and tsr sand oil are ineluded.
- Foreign-Crudeoil produced outside the United States, Imported Athabasea hydroearbonsa included.

Distillate Fuel Oil. A general classification for one of the petroleum fractions produced in conventional diatillation operations. It is used primarily for spsce heating, on- and-off-highway diesel engine fuel (ineluding railroad engine fuel and fuel for agricultural machinery), and electric power generation. Included are products known as No. 1 and No. 2 heating oils, No. 1 and No. 2 diesel fuel oils, and No. 4 fuel oil.

- No. 1 Fuel Oil-A light distillate fuel oil intended for vaporizing pot-type burners. ASTM Specification D 396 specifies for this grade maximum distillation temperatures of $400^{\circ} \mathrm{F}$, at the 10 -percent point and $550^{\circ} \mathrm{F}$. at the 90 -percent point, and kinematic viscosities between 1.4 and 2.2 centistokes at $100^{\circ} \mathrm{F}$.
- No. 2 Fuel Oil-A distillate fuel oil for domestic heating for use in atomizing-type burners or for moderate capaeity commercial-industrial burner units. ASTM Specification D 396 specifies for this grade temperatures at the 90 -percent point between $540^{\circ}$ and $640^{\circ} \mathrm{F}$,, and kinematic viscosities between 2.0 and 8.6 centistokes at $100^{\circ} \mathrm{F}$.
- No. 1 and No. 2 Diegel Fuel Oils-Distillate fuel oils used in compression-ignition enginea, as given by ASTM Specifiention D 975:

1. No. 1-D-A volatile distillate fuel oil in the $400^{\circ}$ to $550^{\circ} \mathrm{F}$. boiling range for engines in service requiring frequent speed and load changes. Type C-B diesel fuel, whieh is used for city buses and similar operations, is ineluded.
2. No. 2-D-A distillate fuel oil of lower volatility in the $540^{\circ}$ to $640^{\circ} \mathrm{F}$. boiling range for engines in industrial and heavy mobile service. Type R-R diesol fuel for railrosd compression-ignition engines and Type T-T for diesel-engine trucks are included.

- No. 4 Fuel Oil-A fuel oil for commercial burner inatallations not equipped with preheating facilities. It is used extensively in industrial plants. This grade is a blend of distillate fuel oil and residual fuel oil stocks that conforms to ASTM Specifieation D 396 or Federal Speeification VV-F-815C; its linematic viseosity is between 5.8 and 26.4 eentistokes at $100^{\circ} \mathrm{F}$. Also included is No. 4-D, a fuel oil for low-and medium-speed diesel engines that conforms to ASTM Specification D 975.

Eastern Hemisphere. That half of the earth east of the Atlantic Oeean which includea Europe, Asia, Afriea. and Australia. The Hawailan Foreign Trade Zone is in this hemisphere.

Electrin Energy (Purehased). Electricity purehased for refinery operations that is not produced within the refinery complex.

Ethane. A normally gaseous paraffinic hydroearbon, $\mathrm{C}_{2} \mathrm{H}_{6}$ extracted from natural gas and refinery gas streams. "Ethane" includes any product containing 90 percent liquid volume or more ethane.

Ethane-Propane Mixtures. Mixtures of ethane and propane in which neither eomponent is 90 percent or more of the liquid volume. It is exteacted for natural gas and refinery gas streams.

Ethylene. An olefinic hydrocarbon, $\mathrm{C}_{2} \mathrm{H}_{4}$, reeovered from refinery and petrochemicsi proeesses. It is reported in the "Ethane" eategory.

Field Production. Represents erudeoil production on leases, natural gas liquids produetion at natural gas processing plants, and new supply of other hydrocarbons and aleohol.

Gas Well Gas. Natural gas produced from gas wells. Sueh gas may be either assoeiated gas or non-associated gas.

- Associated Gas-Freenatural gas in immediate contact, but not in solution, with erude oil in the reservoir.
- Non-Assoeiated Gra-Free natural gas not in contaet with, nor dissolved in, crude oil in the reservoir.

Imported Crude Oil Burned as Fuel. The amount of foreign erude oil burned as a fuel oil, usually as residual fuel oil, without being processed as sueh. "Imported crude oil burned as fuel" ineludes lease eondensate and liquid hydrocarbons produced from tar sand oil, gilsonite, and oil shale.

Isobutane. A saturated branch-chain isomer of butane. It is a colorless paraffinic gas that boils at a temperature of $10.9^{\circ} \mathrm{F}$. This classification ineludes mixtures of gages that contain 80 percent liquid volume or more isobutane. It is extracted from natural gas and refinery gas streams.

Isopentane. A satnrated branch-chain bydrocarbon, $\mathrm{C}_{6} \mathrm{H}_{12}$ obtained by fractionation of natural gasoline or isomerization of normal pentane.

Kerosene. A petroleum distillate that boils at a temperature between $300^{\circ}$ and $650^{\circ} \mathrm{F}$, that has a thash point higher than $100^{\circ} \mathrm{F}$. by ASTM Method D 56 , that has a gravity range from $40^{\circ}$ to $46^{\circ} \mathrm{API}$, and that has a burning point in the range of $150^{\circ}$ to $175^{\circ} \mathrm{F}$. It is a clean-burning product suitable for ase as an illuminant when burned in wick lamps. Includes grades of kerosene called range oil having properties similar to No . 1 fuel oil, but with a gravity of about $43^{\circ} \mathrm{API}$ and having a maximum end-point of $625^{\circ} \mathrm{F}$. Kerosene is used in space heaters, cook stoves, and water heaters.

Kerosene-Type Jet FueI. A quality kerosene product with an average gravity of $40.7^{\circ} \mathrm{APl}$, a 10 percent distillation temperature of $400^{\circ} \mathrm{F}$., and an end-point of $572^{\circ} \mathrm{F}$. It is covered by ASTM Specification D 1855 and Military Specification MIL-T-5624L (Grade JP-5 and JP-8). It is used primarily for commercial turbojet and turboprop aireraft engines.

Lease Condensate. A natursl gas liquid recovered from gas well gas (associated and non-associated) in lease separators or natural gas field facilities. Lease condensate consists primarily of pentanes and hesvier hydrocarbona.

Lcase Separator. A surface facility used for separating casinghead gas from produced crude oil and water and separating gas from that portion of associated gas and non-associated gas that liquelies at the temperature and pressure conditions of the separator.

Liquefied Petroleum Gases (LPG). Propane, propylene, butanes, butylene, ethane-propane mixtures and isobutane produced at refineries or natural cas processing plants, ineluding plants that fractionate raw natural gas plant liquids. Formerly called "Liquefied Gases."

Liquefied Refinery Gases (LRG). Liquefied petroleum gases fractionated from refinery or still gases. Through compression and/or refrigeration they are retained in the liquid state. The reported catogories are ethane and/or ethylene, propane and/or propylene, butane and/or butylene, butana-propace mixtures, and isobutane. Excludes atill gases used for chemical or rubber manufacture which are reported as petrochemical feedstocks and also excludes liquefied gases ready for blending into gasolive which are reported as gasoline blending components. Liquefied refinery gases are reported for use as petrochemical feedstocks, other uses, or both.

Lubricants. A substance used to reduce friction between bearing surfaces. Petroleum lubricants mss be produced either from distillates or residues. Other substances may be added to impart or improve certain required properties. "Labricants" includes all grades of lubricating oils from spindle ofl $t o$ cylinder oil and those used in greases. The three categories reported are:

- Bright Stock-A refined, high viscosity lobricating oil base stock that is usually made from a residuum by a treatment such as deasphalting, acid treatment, or solvent extraction.
- Neutral-A distillate lubricating oil base stock with a viscosity that is usually not above 550 Saybolt Universal Seconds (SUS) at $100^{\circ} \mathrm{F}$. It is prepared by a treatment such as hydrofining. acid treatment, or solvent extraction.
- Other-A lubricating oil base stock used in finished lubricating oils and greases, including black, coasta!, and red oils.

Miscellaneous Products. Includes all finished products not elassified elsewhere. "Miscelleneous products" include petrolatum, absorption oils, ram-jet fuel, petroleum rocket fuels, synthetic natursl gas feedstocks, and other finishod products.

Motor Gasoline Blending Components. Finished components in the gasoline range that will heused for blending or compounding into finished motor gasoline. Pool gasoline is included in this category.

Motor Gasoline (Finished). A complex mixture of relatively volatile hydrocarbons, with or without small quantities of additives, that have been blended to form a fuel suitable for use in spark-ignition
grades of inputs, limitations of downstream facilities, scheduled and unscheduled downtimes, and environmental constraints. Includes any shutdown capacity that could be placed in operation within 90 days.
Other Hydrocarbons. Materials received by a refinery and consumed as raw materials. Includes hydrogen, coal, tar cerivatives, gilsonite, and natural gas received by the refinery for reforming into hydrogen. Natural gas to be used as fuel is excluded.

Petrochemical Feedstocks. Chemical feedstocks derived from petroleum, principally for the manufacture of synthetic rubber and a variety of plastics. The categories reported are "Naphtha-less than $400^{\circ} \mathrm{F}$. end-point" and "Other oils over $400^{\circ} \mathrm{F}$. end-point."

- Naphtha less than $400^{\circ} \mathrm{F}$. end-point-A naphtha with an end point of less than $400^{\circ} \mathrm{F}$, and that is reported as used as a petrochemical feedstock.
- Other oils over $400^{\circ} \mathrm{F}$. end-point-0ils with an end paint over $400^{\circ} \mathrm{F}$. and that are reperted as used as a petrochemical feedstock.

Petroleum Coke. A residue, the final product of the condensation process in cracking. This product is reported as marketable coke or catalyst coke. The converaion factor is 542 -gallon barrels per ahort ton.

- Marketable Coke-Those grades of coke that are produced in delayed or fluid cokers and which may be recovered as relatively pure carbon. This "green" coke may be sold or further purified b; calcining.
- Catalyst Coke-In many catalytic operations (i.e., eatalytic cracking) carbon is deposited on the catalyst, thus deactivating the catalyst. The catalyst is reactivated by burning off the carbon, which is used as fuel in the refinery process. This carbon or coke is not recoverable in a concentrated form.

Petroleum Products. Petroleum products are obtained from the processing of crude oil (including lease condensate), natural gas, and other hydrocarbon compounds. Petroleum products include unfinished oils, natural gasoline and isopentane, plant condensate, unfractionated stream, ethane, liquefied petroleum gases, aviation gasoline, motor gasoline, naphtha-type jet fuel, kerosene-type jet fuel, kerosene, distillate fuel oil, residual fuel oil, naphtha less than $400^{\circ} \mathrm{F}$. end-point, other oils-over $400^{\circ} \mathrm{F}$, end-point, special naphthes, lubricants, waxes, petroleum coke, asphalt, road oil, still gas, and miscellaneous products.

Petroleum Refinery. An installation that manufactares finished petroleum products from crude oil unfinished oils, natural gas plant liquids, other hydrocarbons, and alcobol.

Plant Condensate. One of the natural gas plant liquids, mostly pentanes and heavier hydrotarbons, recovered and separated as liquids at gas inlet separators or scrubbers in processing plants.

Primary Stocks. Stocks of crude oil or petroleum products held in storage at (or in) leases, refineries, natural gas processing plants, pipelines, tankfarms, and bulk terminals that can store at least 50,00) barrels of petroleum products or that can receive petroleum products by tanker, barge, or pipeline Crudeoil that is in transit from Alaska, or that is stored on Federal leases or in the Strategic Petroleurt Reserve is included. "Primary Stocka" excludes stocks of foreign origin that are held in bonded warehouse storage.

Propane. A normally gaseous hydrocarbon. $\mathrm{C}_{3} \mathrm{H}_{8}$ extracted from natural gas and refinery gas atreams It is used primarily as a fuel and as a petrochemical feedstock. Propane is covered by ASTM Specification D1885, Gas Processors Association for commercial and HD-5 propane, and ASTM Specification for special duty propane.

Propylene. An olefinic hydrocarbon, $\mathrm{C}_{3} \mathrm{H}_{4}$, recovered from refinery and petrochemical processes. It is reported in the "Propane" category.

Residual Fuel Oil. Topped crude of refinery operations, "Residual Fuel Oil" includes No. 5 and No. 6 fuel oils as defined in ASTM Specifieation D 896 and Federal Specification VV-F-815C; Navy Special fuel oil as defined in Military Specification MIL-F-869E including Amendment 2; Bunker C foel oad. Residual fuel oll is used for the production of electric power, space heating, vessel bunkering. and various industrial purposes. Imports of residual fuel oil include "Imported Crude Oil Burned as Fuel."

Road Oil. Any heavy petroleum oil, including residual asphaltic oils, used as a dust palliative and surface treatment of roads and highways. It is generally produced in six grades; from 0 , the most liquid, to 5 , the mast viscous.
Special Naphthas. All finished products within the gasoline range that are used as paint thinners, cleaners, and solvents. These products are refined to a specified flash point and have a boiling range of $90^{\circ}$ to $220^{\circ} \mathrm{F}$, "Special naphthas" includes all commercial hexane and cleaning solvents conforming to ASTM Specifications D1836 and D 484, respectively. Naphthas to be blended or marketed as motor gasoline or aviation gasoline or that are to be used as petrochemical and synthetic natural gas (SNG) feedstocks are excluded.

Steam (Purchased). Steam that is purchased for use by s refinery that was not generated from within the refinery complex.

Still Gas (Refinery Gas). Any form or mixture of gas produced in refineries by distillation, cracking, reforming, and other processes. The principal constituents are methane, ethane, ethylene, butane, butylene, propane, propylene, etc. Still gas is reported for petrochemical feedstock use and refinery fuel use.

- Petrochemical Feedstock Use-Includes all refinery streams which are used by chemical or rubber manufacturing operations for further processing, less the amount of such streams returned to the source refinery. Trinished petrochemical products are not ineluded. For example, polyethylene, butadiene, etc. are considered petrochemical products; therefore, only their feedstock equivalents are inclucied.
- Fuel Use-All other still gas.

Strategic Petroleum Reserve (SPR). Stocks (eurrently, only crude oil) maintained by the Federal Government for use during periods of major supply interruption.

Unfinished Oils. Includes all ails requiring further processing, except those requiring only mechanical blending.

Unfractionated Stream. Mixtures of unsegregated natural gas plant liquid components excluding those included in plant condensate. This product is extracted from natural gas.

Wax. A solid or semi-solid material derived from petroleum distillates or residues by such treatments as chilling, precipitating with a solvent, or de-oiling. It is a light-colored, more-or-less translueent crystalline mass, slightly greasy to the touch, consisting of a mix ture of solid hydrocarbons in which the paraffin series predominates. Includes all marketable wax whether crude scale or fully refined. The three grades reported are microcrystalline, crystalline-fully refined, and crystalline-other. The conversion factor is 280 pounds per 42 -gallon barrel.

- Microcrystalline Wax-Wax extracted from certain petroleum residues having a finer and less apparent crystalline structure than paraffin wax and having the following physical characteristics:

Penetration at $77^{\circ} \mathrm{F}$. (D-1321)-60 maximum.
Viscosity at $210^{\circ} \mathrm{F}$. in Saybolt Universal Seconds (SUS)
(D-88) -60 SUS ( 10.22 centistokes) minimum to 150
SUS ( 31.8 centistokes) maximum.
Oil content (D-721)-5 percent minimum.

- Crystalline-Fully Reifined Wax-A light-colorod parafin wax having the following characteristics:

Viscosity at $210^{\circ} \mathrm{F}$.
(D-88)-59.9 SUS (10.18 centistokes) maximum.
Oil Content (D-721) -0.5 percent maximum.
Other +20 color, Saybalt minimum.

- Crystalline-Other Wax-A paraffin wax having the following characteristics:

Viscosity at $210^{\circ} \mathrm{F}$. (D-88)-69.9 SU8 ( 10.18 centistokes) maximum.
Oil Content (D-721) - 0.61 percent minimum to 15 percent maximum.
Weatern Hemisphere. That half of the earth that includes North and South America and the surrounding waters.

## Bureau of Mines Petroleum Refining Districts and PAD Districts

## PAD District

## Refining District

East Consi-District of Columbia and the States of Maine, New Hampshire, Vermont, Massachusetts Rhode Island, Connecticnt, New Jersey, Delaware, Maryland, Virginia, North Carolina, Soulh Carolina, Georgia, Florida, and the following counties of the State of New York: Cayuga, Tompkiss Chemung and all counties east and north thereof. Also the following eounties in the state d Pennsylvania: Bradford, Sullivan, Columbia, Montour, Northumberland, Dauphin, York, and all counties east thereof.

Appalachian \#1-The State of West Virginia, those parts of the States of Pennsylvania and New York not included in the East Coast District.

Appalachian \#2-The following counties of the State of Ohio: Erie, Huron, Crawford, Marion Delaware, Franklin, Pickaway, Ross, Pike, Scioto, and all counties east thereof.

Indiana-Illinois-Kentueky-The States of Indiana, Illinois, Kentucky, Tennessee, Miehigan, ard that part of the State of Ohio not included in the Appalachian District.

Minnesota-Wisconsin-North and South Dakota--The States of Minnesota, Wisconsia, North Dakota, and South Dakota.

Oklahoma-Kansas-Missouri-The States of Oklahoma, Kansas, Missouri, Nebraskn, and lowa.

Texas Inland-The State of Texas except the Texas Gulf Coast District.
Texas Gulf Coasi-The following counties of the State of Texas: Newton, Orange, Jefferson, Jasper, Tyler, Hardin, Liberty, Chambers, Polk, San Jacinto, Montgomery, Harris, Galveston, Waller, Feet Bend, Brazoria, Wharton, Matagorda, Jackson, Victoria, Calhoun, Refugio, Aransas, San Patricia Nueces, Kleberg, Kenedy, Willaey, and Cameron.

Louisiana Gulf Coast-The following Parishes of the State of Louisiana: Vernon, Rapides, Avoyelles Pointe Coupee, Weat Feliciana, East Feliciana, Saint Helena, Tangipahoa, Washington, and al Parishes santh thereof. Also the following connties of the State of Mississippi: Pearl River, Store George, Hancock, Harrison, and Jackson. Also the following counties of the State of Alabama: Mobitit and Baldwin.

North Louisiana-Arkansas-The State of Arkanges and those parts of the States of Louisian Mississippi, and Alabama not included in the Louisiana Gulf Coast Distriet.

New Mexico-The State of New Mexico.

Rocky Mountain-The States of Montana, Idaho, Wyoming, Utah, and Colorado.

West Coast-The States of Washington, Oregon, California, Nevada, Arizona, Alaska, and Hawali.

## Petroleum Administration for Defense (PAD) Districts



Bureau of Mines Refining Districts




## Explanatory Notes

## Note 1.1 EIA-64: Natural Gas Liquids Operations Report

## Background

The EIA-64, "Natural Gas Liquids Operations Report" evolved from a survey designed and conducted by the United States Geologieal Sarvey beginning in 1911. This form eollects data on the produetion asd storage of natural gas plant liquids at natural gas processing plants and fractionators.

## Description of Survey

## Universe

The universe ineludes all operators of facilities designed to; (1) extract fiquid hydrocarbons from natural ges streams (natural gas processing plants); (2) separate a combined products liquid hydrocarbon stream into its component products, Le, propane, butane, natural gasoline, ete. (fractionators); or (3) store the liquid hydrocarbon output of plants and fractionators.

The mailing list is automated. It is maintained by matehing periodically with the LP Gas Almonac listings (including supplements) and the Oil aud Gas Journal Processing Plant Survey listings, and by making changes reported by the respondents.

## Information Collected

The data aresubmitted monthly by facility and inelude all products that the company controls through possession, regardless of ownership. The main items of information collected by the EIA-64 are shown by the example of the form presented below.

## Colleetion Methods

Completed reports are required to be postmarked 20 days following the last day of the report month. Follow-up telephone ealls are made to nonrespondents in order to collect data before publication of the aggregated data.

Imputing Missing Data
Imputation is performed only for companies that submitted a report in the previeus month. For such companies, previous monthly values are used for current values. The previous month's onding stocks value is used for both the current month's beginning stocks and the current month's ending stocks. The value of shipments is adjusted to balance stock level, production, receipts, plant fuel use, and losses. In the event that the previous month's cata wers estimated, the respondent is contacted and refuested to submit estimates, if necessary, to be followed by a resubmission of actual data.

## Response Rates

The initial response rate averages 85 percent, with a final response averaging 98 percent as a result of telephone follow-up procedures.

## Data Processing

Upon reeeipt, the reports are revie wed for identification section omissions, daplicate submissions, and identification information changes. The data are then entered and edited. The edit program ineludes cheeks for invalid data entry codes, range checks for current-month to previous-month changes (absolute and relative), arithmetic calculation errors, line balancing errors, ete Telephone ealis are made to respondents to resolve questions.

## Note 1.2 EIA-87, 88, 89 and 90: Joint Petroleum Reporting System

## Background

The Joint Petroleum Reporting System (JPRS) comprises four saryeys: the "Refinery Report" (EIA87); the "Bulk Terminal Stooks Report" (EIA-88); the "Pipeline Products Report" (EIA-89); and the

"Crude Oil Stocks Report" (EIA-90). This group of forms collects data on petroleum refinery operations and on storage of crude oil and petroleum products. The origins of JPRS lie in the voluntary petroleum reporling systems instituted by the Bureau of Mines (BOM) soon after it was established as a part of the Department of the Interior in May 1910.

## Description of Survey

## Universe

The respondent universe of each JPRS survey is defined as follows:
EIA-87: All petroleum refineries and plants producing finished motor gasoline through the mechanical blending of liquids which are operated or controlled in the 50 States, the District d Columbia, Puerto Rieo, the Virgin Islands, Hawailian Foreign Trade Zone, and Guam.

EIA-88: All bulk terminal facilities in the 50 States and the District of Columbia, Puerto Rico, and the Virgin Islands that (a) have total bulk storage'capacity of 50,000 barrels or more and/or (b) reeeive petroleum produets by tanker, barge, or pipeline regardless of ownership of the material.

E1A-89: All preducts pipeline companies that carry petroleum products (ineluding interstate, intrastate and intracompany pipelines) in the 50 States and the District of Columbia.

EIA-90: Crude oil pipeline companies (gathering and trunk pipeline companies), erude oil producers terminal operators, storers of crude oil, and companies transporting Alaskan crude oil by water (in excess of 1,000 barrels), regardless of ownership in the 50 States and the District of Columbia.

The list of respondents is kept eurrent by checking for new respondents in the Oil and Gas Journel weekly magazine; newspaper articles; the Office of Resource Appications publication "Trends in Refinery Capacity \& Utilization;" the Offiee of Refinery Operations (ERA) list of U.S. Refiners; and the annual survey EIA-177 "Capacity of Petroleum Refineries."

## Information Collected

The main items of information collected by EIA-87, are shown by the example presented below. The EIA-88 and EIA-89 collect data on petroleum product stoeks. The EIA-90 collects data on crudedil stocks and erude oil used directly as fuel.

## Collection Methods

The data for the JPRS surveys are collected on a monthly basis. Completed forms are required to kt postmarked by the 20th day following the report month. Telephone follow-up ealls are mnde is nourespondents in order to collect data before publication deadline. An automated mailing list is maintained and is used to monitor receipt of the forms.

## Imputing Missing Data

Imputation is performed only for companies that submitted a report in the previous month. For thess companies, the previous monthly values are used for current values. The previous month's ending stocks value is used for both the current month's beginning stacks and the current month's ending stocks. 'Th? value of shipments is adjusted to balance stock level, production receipts, and losses. In the event that previous month's data were estimated, the respondent is contacted and requested to submit estimatesit necessary, to be followed by a resubmission of actual data.

## Response Rates

As of the filing deadine, the response rate of the JPRS respondents is over 90 percent. All companies that have not responded are contacted by telephone. Although data are taken by telephone to expedile processing, a certified submission is still required. Thirty calendar days after the report month, data or companies that still fail to file the form are estimated based on prior month's data. Names of eompanias that fail to file for two consecutive months are forwarded to DOE for further noncompliance action. Final response rate is 100 percent.


|  ITheuments if Tesely of 42 Csilseal |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Iтеm orschiptiay | $\begin{aligned} & \text { phat } \\ & \text { uct } \\ & \text { ucte } \end{aligned}$ |  |  cone uble |  | $\begin{gathered} \text { mondet } \\ \text { Whay! } \\ \text { un } \end{gathered}$ |  － CHO |  |  |
|  |  |  |  |  | ；$\times$ |  |  |  |
| Dameaic lind＿－Agatarl |  | X，$x^{2}$ |  |  |  | 5 x | － | 8， |
| Funim | 120 |  |  |  | X |  | X， |  |
| W可年 | 811 | 342 ${ }^{\text {an }}$ |  |  | K |  |  |  |
|  | 150 |  |  |  | $x$ |  |  |  |
| Friciere | 231 |  |  |  | X |  |  |  |
|  | 241 |  |  |  | $X$ |  |  |  |
| Inatulse | 232 |  |  |  | $X$ |  |  |  |
| Aumial bilase | 725 |  |  |  | X |  |  |  |
| Patsi biaked | 238 |  |  |  | X |  |  |  |
| Hetana P molite nelitra | 234 |  |  |  | X |  |  |  |
| Noparal yraylne arsi hapantere | 270 |  |  |  | X |  |  |  |
| Farmy conturnita | 210 |  |  |  | X |  |  |  |
| Untastiansial sterat | 223 |  |  |  | X |  |  |  |
|  | 906 |  |  |  | $\therefore X$ |  |  |  |
| Alsjkgl | 491 |  |  |  | K |  |  |  |
| Unhisaticlit | 312 |  |  |  |  |  |  |  |
| Gecollios <br> Pinimad latios，neter | 431 |  |  |  |  |  |  |  |
| Fialiocluslontas，mitie | 183 |  |  |  |  |  |  |  |
| Bexiligequpmerts，matir | 124 |  |  |  |  |  |  |  |
| Cosubal | $\frac{138}{114}$ |  |  |  |  |  |  |  |
| Frivitilatioter | $\frac{111}{112}$ |  |  |  |  |  |  |  |
| becilid machimas anaman） | 051 |  |  |  |  |  |  |  |
| Sectial nachines asiman） | 051 |  |  |  |  |  |  |  |
| Jat harl： Nuprutu wese | 211 |  |  |  |  |  |  |  |
| Kerosalt typf． | 213 |  |  |  |  |  |  |  |
| Keroase linclisexptall | 311 |  |  |  |  |  |  |  |
| Dijilleas luol eil Lail Ko． 4 | 412 |  |  |  |  |  |  |  |
| Na． 4 hat of | 414 |  |  |  |  |  |  |  |
| frovenul hatiol | 612 |  |  |  |  |  |  |  |
| Lequasion sils： Diphtack： | 159 |  |  |  |  |  |  |  |
| Neplial | 956 |  |  |  |  |  |  |  |
| O， | 351 |  |  |  |  |  |  |  |
| Ablufit | 300 |  |  |  |  |  |  |  |
|  | 451 |  |  |  |  |  |  |  |
| Ornvilun－laty rationd | \％ |  |  |  |  |  |  |  |
| Consumasestise | tel |  |  |  |  |  |  |  |
| Patudosereaske Mertorditio | 321 |  |  |  |  |  |  |  |
| Censlysi | 022 |  |  |  |  |  |  | $2.0 \%$ Non |
| flotil al | 651 |  |  |  |  |  |  |  |
| Dell get： <br> Patractiondes feefongh au | 042 |  |  |  |  |  |  |  |
| Citue me | 044 |  |  |  |  |  |  | byershat |
|  | t12 |  |  |  |  |  |  |  |
| Other 14 | 632 |  |  |  |  |  |  |  |
|  | 613 |  |  |  |  |  |  |  |
| Othel uif | 635 |  |  |  |  |  |  |  |
|  | ant |  |  |  |  |  |  |  |
| Celatase | ESA |  |  |  |  |  |  |  |
|  | 416 |  |  |  |  |  |  |  |
| Opar mas |  |  |  |  |  |  |  |  |
|  | 816 |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  | 324 |  |  |  |  |  |  |  |
|  | 931 |  |  |  |  |  |  |  |
| Fuel U庐 | 931 |  |  |  |  |  |  |  |
|  | 18 | 50，${ }^{\text {a }}$ | W01 |  |  | $5$ |  | －${ }^{2}$ |
| TOTAL | vos |  | \％2，以is |  |  | 25 | 198 | 298\％ |

# Note 1.3 EIA-161, 162, 163, 164 and 165: Weekly Petroleum Reporting System 

## Background

The Weekly Petroleum Reporting System (WPRS) comprises five surveys: the "Refinery Report" (EIA-161); the "Bulk Terminal Stocks Report" (E1A-162); the "Pipeline Product Stock Report" (EIA163); the "Crude Oil Stacks Report" (EIA-164); and the "Imports Repori" (E1A-166).

The ELA weekly reporting system was designed to callect data similar to those eollected under the monthly Joint Petroleum Reporting System(JPRS) (See Note 1.2). In the WPRS, selected petroleun companies report weekly data to EIA on crude ail and petroleum product stocks, refinery inputs and production, and crude oil and petroleum product imports. On the Forms E1A-161 through E1A-10A. companies report data on a custody basis. On the Form EIA-165, the importer of record reperts each shipmententering the United States. Current weekly data and the most recent monthly data from the JPRS are used to estimate the published weekly totals.

## Description of Survey

## Universe

The sample of companies that report weekly in the WPRS was selected from the universe of companies that report monthly in either the JPRS system or the ERA-60 system (for imports). All sampled companjes report data only for facilities in the 50 States and the District of Columbia.
The sampling frame for each weekly survey is defined as follows:
EIA-161: Uses the EIA-87 universe, which includes all petroleum refineries in the United States and its territories, industrial facilities that have crude oil distillation capacity and produce some refind petroleum products, and bull terminals that blend motor gasoline.

EIA-162: Uses the EIA-88 universe, which includes all bulk terminal facilities in the Uited Statesmal its territories that have total bulk storage capacity of 50,000 barrels or more, or that receive petrolcum products by tanker, barge, or pipeline.

EIA-163: Based on the EIA-89 universe, which includes all petroleum product pipeline companies in the United States and its territories that transport refined petroleum products, including interstatt, intrastate and intracompany pipeline movements. Pipeline companies that only transport natural gas liquids are not included in the E1A-163 frame. Only those pipeline companiea which tranaport products covered in the weekly survey are included.
EIA-164: Uses the EIA-90 universe, which consists of all trunk pipeline companies in the United States and its territories which transport crude oil, all refining companies, all crude oil producers, all terminal operators, and all storers of 1,000 barrels or more of crude oil.

E1A-165: Uses the ERA-60 universe, which includes all importers of record of crude oil and petroleum products into the United States and Puerto Rico.

## Sampling

The sampling procedure used for the weekly system is the cut-off method. In the cut-off method, companies are ranked from largest to smallest on the basis of the quantities reported during some previous period. Companies are chosen for the sample beginning with the largest and adding companies until the total sample covers about 90 percent of the total for the previous time period.

## Collection Methods

Data are collected by mail, mailgram, telephone, Telex, and Telefax on a weekly baais. All canvassed firms and terminal operating cornpanjes must file by $5: 00 \mathrm{p} . \mathrm{m}$. on the Monday following the close of the report period, $7 \mathrm{a} . \mathrm{m}$. Friday. During the processing week, company corrections of the prior week's dala are also entered.

## Formula and Calculations

After the company reports have been checked and entered into the weekly data base, ratio eatimates of the weekly totals are calculated from the reported data.

First, the current week's data for a given product reported by companies io that region are summed. (Call this weekly sum, $W_{2}$ ) Next, the most recent month's data for the product reported by those same companies are summed. (Call this monthly sum, M). Fiosilly, les $\mathrm{M}_{\mathrm{s}}$ be the sum of the most recent month's data for the product as reported by all companies. Then, the current week's ratio estimate for that produet for all companies is given by.

$$
\mathrm{W}_{\mathrm{t}}=\frac{\mathrm{M}_{4}}{\mathrm{M}}{ }^{0} \mathrm{~W}_{3}
$$

This procedure is used directly to estimate total weekly inputs to refiocries and production.
To estimate stacks of fivished products, the preceding procedure is followed separately for refiocries, bull termioals, and pipolines. Total estimates are formed by summing over establishment types.

Weekly imports data are highly variable oo a company-by-company basis or a week-by-week basis. Under such cooditions, the ratio method is known to result in large errors. Henec, a number of other procedures for estimating weekly imports were considered. The average ratio method was selected for estimating imports because it produces eatimates that were close to beochmark values computed from monthly data. Estimates are obtaioed using the ratio method, but with each company in turn omitted from the sample. These estimates are then averaged to obtain the average ratio estimate.

## Imputing Missing Data

The ratio method of estimation automatically imputes for nomrespoose. Data from companies that do not respond are excluded from both the weekly and the monthly totals for the sampled companies.

## Response Rates

The response rate as of the day after the filing deadline is a bout 80 pereent for the $\mathbb{S I A}-161 ; 75$ pereent: for the BIA-162; 95 percent for the EIA-168; 80 percent for the EIA-164; and greater than 95 percent for the EIA-165. However, more forms are received the oext day, bringing the final response rates up. Late respoodents are contacted by telcphode. Nearly all of the major companies report on time. The nonresponse rate for the puhlished estimates is usually between 2 percent and 5 percent.

## Note 1.4 EIA-170: Tanker and Barge Shipments of Crude Oil and Petroleum Products Between Districts

## Background

The EIA-170 survey collects data for calculation of monthly petroleum supply and disposition figures oo U.S. aod PAD District levels.

## Instrument and Design

This form is designed to collect data on total movements by tanker and barge of crude oil and petroleum produets between PAD Distriets or between PAD Disirices aod the Panama Canal, by shipping State and receiviog Stale.

## Universe

The respondent universe of the EIA- 170 consists of all known companies and plants that have custody of erude oil and petroleum products transported by tanker and barge between PAD Districts or between PAD Districts and the Panama Canal. There are currently about 60 respondents.

Collection Methotk
Survey dataare collected by mail every month. The filing deadline is the 20th calendar day of the month following the report period. The response rate as of the filing deadline is about 98 percent. Late respondents are contacted by telephone. All responses are processed cach month before release of the data for puhlication.

## Note 1.5 ERA-60: Reports of Oil Imports into the United States and Puerto Rico

## Background

The "Report of Oil Imports into the United States and Puerto Rico" (ERA-60) survey was designed by the Economic Regulatory Administration (ERA) of the Department of Energy to collect dataon portof entry, country of origin, destination, and quantity of imported crude oil and petroleum products, as well as sulfur content and API gravity. All licensed importers and importers of record are required to repart. The "Shipments of Refined Produets from Puerto Rico to the United States" (P-133-M-0) survey was designed to collect data on imports to the United States that are not covered by the ERA-60.

## Universe

The monthly submission of Form ERA-60 and P-183-M-0 is reguired by all licensed importers and importers of record into the United States and Puerto Rico. The respondent universe consisted of approximately 750 firms as of June 30,1981 . The respondent universe for these surveys is updated whenever an import lieense is granted by the Office of Oil Imports of the ERA.

## Collection Methods

The survey data are colleeted by mail each month. It is mandatory for each respondent to file the ERA-60/P-133-M-0 by the 15th working day of the month following the reporting period. Resubmissions are received frequently and are processed when received.

## Response Rates

In December 1980, the survey had a reaponse rate of 92 percont by the filing dead line. The vniverse was 640 at that time. (Because this is a dynamic survey, the universe is constantly changing.) Standard followup of nonrespondents is made to insure that all reports are received, since data are not imputed for nonrespondents. Response rate is generally $98-99 \%$ by the time the data are first published. Revised publieations are not generated as standard operating procedure. The ERA-60 file is never closed; resubmissions are constantly received and processed.

## Note 1.6 Census Import (IM-145) and Export (EM-522 and EM-594) Tabulations

The foreign trade statistics program, conducted by the Bureau of the Census, involves compllation and dissemination of a large body of data relating to the imports and exports of the United States.

## Import Statistics

## Coverage

The importstatistics reflect both government and nongovernment imports of merchandise from foreign countries into the U.S. Customs territory (includes the 50 States, the District of Columbia, and Puerto Rico), without regard to whether or not a commercial transaetion is involved. In general, the statisties record the physical movement of merchandise into the United States from foreign countries, with the exception of the following types of transactions that are excluded from the statistics:

1. Merchandise shipped in transit through the United States, when documented with Customs as an intransit movement.
2. Shipments between the United States and Puerto Rico, the Virgin Islands, Guam, American Samoa, and other U.S. possessions; shipments between any of these outlying areas; and imports into U.S. possessions from forcign countries.
3. U.S. merchandise returned by U.S. Armed Forces for their own use.

## Souree of Import Information

The official U.S. import statistics are compiled by the Bureau of the Census from copies of the import entry and warehouse withdrawal forms that importersare required by law to file with Customs officials (Customs Forms 7501-7605).

Imported petroleum is reported as "Imports for Consumption," Imports for consumption are a combination of entries for immediate consumption and withdrawals from warehouses for consumption. With certain exceptions as indicated above, thesedatagenerally reflect the total of commodities entered into U.S. consumption channels.

Country and Area of Origin
The country reported in the statistics as the country of origin is defined as the country where the merchandise was grown, mined, or manufactured. In instances where the country of origin cannot be determined, the transactions are credited to the country of shipment.

## Export Statistics

## Coverage

The export statistics refleet both government and nongovernment exports of domestic and foreign merchandise from the U.S. Customs territory (includes the 50 States, the District of Columbia, and Puerto Rico) to foreign countries, without regard to whether or not the exportation involves a commercial transaction. In general, the statistics record the physical movement of merchandise out of the United States to foreign countries, with the exception of the following types of trarsactions:

1. Shipments between the United States and Puerto Rico, the Virgin Iglands, Guam, American Samoa, and other U.S. possessions; betw cen any of these outlying arcaa; and shipments from U.S. Possessions to foreign countries.
2. Merchandise shipped in transit through the United States from one foreign eountry to another, when documented as such with U.S. Cuatoms.
3. Bunker fuels and other supplies and equipment for nse on departing vessels, planes, or other earriera engaged in foreign trade.

## Source of Export Information

The official U.S. export statistics are compiled by the Bureau of the Census primarily from copies of Shipper's Export Declarations. Shipper's Export Declarations are required to be filed with Customs officials, except when qualified exporters have been authorized to aubmit data in the form of magnetic tape, punched cards, or monthly Shipper's Summary Export Declarations directly to the Burean of the Census.

## Country and Arca of Destination

The country of destination is defined as the country of ultimate destination or the country where the goods are to be consumed, further processed, or manufactured, as known to the shipper at the time of exportation. If the shipper does not know the country of ultimate destination, the shipment is credited to the last country to which the shipper knows that the merchandise will beshipped in thesame form as it was when exported.

## Note 2 Estimation

The geographic coverage of all estimates is the 50 United States and the District of Columbia, including adjacent areas of the outer continental shelf, excluding the Hawaiian Foreign Trade Zone.

## Note 2.1 Supply

The components of petroleum supply are field production, refinery production, imports, stock withdrawal ar addition, crude oil used directly, and losses.

Field Production is the sum of crude oil (ineluding lease condensate) production, natural gas processing plant production, and new supply (field production) of other liquids used by refineries.

Crude oil production is estimated based on data received from State conservation and revenue agencies. Reports of crude oil production from each of the 81 producing States are not received until several months after the other components of petroleum supply described in Explanatory Note 21 are available for publication. For an explanation of the crudeoll estimation procedure used until the State reports are complete, see Explanatory Note 2.2.

Field production of natural gas plant liquids (NGPL), ineluding finished petroleum products, is reported monthly on survey Form EIA-64, "Natural Gas Liquids Operation Report." Negative praduction will occur when the amount of a product produced during the month is less than the amount of that same product that is reprocessed (input) or reclassified to become another product during the same month. For survey description and other detail, see Explanatory Note 1.1.

Field production of natural gas plant liquids (NGPL), including finished petroleum products, is reported monthly on survey Form EIA-64, "Natural Gas Liquids Operations Report." Negative production will occur when the amount of a product produced during the month is less than the amount of that same product that is reproccssed (input) or reclassified to become another prochuct during the same month. For survey description and other detail, see Explanatory Note 1.1.

Refinery Production of LRGs, cthane, and finished petroleum products is reported monthly on survey Form EIA-87, "Refinery Report." Published production of these products equals refinery production minus refinery input. Refinery production of unfinished oils and of motor and aviation gasoline blending components appears on a net basis under refinery input. Negative production will occur when the amount of a product produced during the month is less than the ameunt of that anme product that is reprocessed (input) or reclassified to become another product during the same month.

Refinery production is also reported weekly on survey Rorm EIA-161, "Refinery Report." Seo Explanatory Notes 1.2 and 1.8 for survey deseriptions and other detail. It should also be noted that refineries do not report production of crude oil, natural gasoline, isopentane, unfraetioanted stream, plant condensate, or other hydrocarbons and alcohol.

Imports of crude oil and petroleum products are reported monthly on Form ERA-60, "Report of Oil Imports into the United States and Puerto Rico," and Form P-138-M-O, "Shipments of Refined Products (including unfinished oils) from Puerto Rico to the United States." In addition, the Census Bureau Tabulation IM-145 summarizes import data from Customs import deelarations reported on Custors Forms 7501 and 7505 . The most prominent difference between the EiA and Consus systems appears in imports of liquefied petroleum gases (LPG), where Census data show a much higher level of imports than Energy Information Administration data. This occurs because the ERA-60 respondent frame was built by monitoring importers of licensed products and because LPGs are not licensed products. Therefore, respondents that oniy import LPGs have not beon identified, and do not report these imports to the Department of Energy. Since these importers are required to file form 7501 with the U.S.Customs Service, EIA obtains data on imports of LPGs from Census Tabulation $1 \mathrm{M}-145$. Additional data taken from the $\mathrm{IM}-145$ are relatively small quantities of naphtha and kerosene-type jet fuels, distillate fuel oils, and residual fuej oils withdrawn from bonded storage for use in international trade and for milftary offshore use. Even though these duty-free fuels are stored on United States shores, they did not enter the United States for domestic consumption and therefore are not included in the ERA-60 reporting system.

Imports are also reported weekly on survey Form EIA-165, "Imports Report." See Explanatory Notos 1.3. 1.5, and 1.6 for survey descriptions and other detail.

Stock Withdrawal ( ${ }^{*}$ ) or Addition ( - ) is calculated by subtracting stocks at the end of the month from stocks at the beginning of the month. (Note: The beginningstocks of one month are equal to the ending stocks of the previous manth.) A positive result (+) wauld representa withdr awal fromstoeks and an increase in petroleum supplies distributed for domestic consumption. A negative result ( - ) would represent a buildup of stocks and reduce petroleum supplies distributed for domestic consumption. For survey forms used to make stoek withdrawal or addition caleulations see Explanatory Note 2.4.

Unaccountod-for Crude Oil is a balaneing item that represents the difference between crude oil supply and disposition. Crude oil supply is the sum of field production, imports and stoek withdrawal or addition, less crude used directly and losses. Crude cil disposition is the sum of exports and refinery input.

Unaceountod-for erude oil is caloulated by subtraeting erude oil supplies from crudeoil disposition. A negative result indicates that refiners and exporters reported use of more crude oil than was reportod to have been available to them. (This occurs, for example, when imports are undercounted due to late reporting or other problems.) A negative result would indicate that more crude oil was reported to have been supplied to rofiners and exporters than they reported used. This calculation is performed for crude oil to ensure that product supplied for crude oil is always zero.

Crude Oil Used Directly and Losses is the sum of crude oil losses at refineries, crudeoil burned at refineries, and crude oil burned on leascs. Crude oil losses and consumption at refineries are reported on Form EIA-87, "Refinery Report." Crude oil burned on leases is reported on Form EIA-90, "Crude Oil Stocks Report." Crude oil burned on leases is divided in to twacategories: crude burned as residual fuel cil and crude burned as distillatefuel oil. Crude burned on leases appears as a negative supply to crude oil (a reduction in crude cill supplies) and as a positive supply to residual and distillate fuel oil (an increase to those supplies).

## Note 2.2: Domestic Crude Oil Production

Data for the Crude Oil Production System (COPS) are reported to the Department of Energy by each of the individual State conservation agencies, which collcet erudeoil production values for tax purposes. In addition, the U.S. Geological Survoy reports the volume of crude oil that is produced offshore in Federally-owned waters. With the exception of six State conservation agencies, all of these reports are received monthly. After each calendar yoar, these monthly numbers are updated using the annual reports from the State conservaton agencies and the U.S. Geological Survey. The six States that do not report monthly values are Indiana, New York, Ohio, Pennsylvania, West Virginia, and Wyoming. Monthly values are estimated for these States using the individual linear trends of their historical annual crude oil production values.

There is a time lag of approximately 3 to 4 months between the end of the reporting manth and the time when the actual values are available for this publication. In order to provide more timely crude oil production estimatos, the Department of Energy has established a series of statistical models that forecast the volume of crude oil production based on the historical production patterns. The models use Auto Regressivo Integrated Moving Average (ARIMA) to analyze series of monthly crude oil production values collected over several years.

In order to provide detailed crudeoil production information on bath the PAD Diatrict level and for the major producing States, the total United States crude oil production volume was separated into nine distinct groupinga. The nine different time serjes are the monthly reported crude oil production volumes for: (1) all the States in PAD Distriet 1 ; (2) all the states in PAD Distriet 2; (8) Texas; (4) Louisiana; (5) the States in PAD District 3 excluding Texas and Louisiana; (6) all the States in PAD District 4; (7) Alaska; (8) California; and (9) the States in PAD District 5 excluding Alaska and California. Monthly data collected beginning in January 1978 are used for cach of these time series.

A separate ARIMA model is identified for each time series. New model parameters are eatimated monthly for each of these nine updated time series. Then, these ARIMA models are used to forecast crude oil production volumes for the month of interest. These values are then aggregated into PAD District and national totals. The forecasts made during 1981 had an average error of less than 0.6 percent compared to the monthly crade oil production volumes eventually reported by the States.

## Note 2.3 Disposition

The components of petroleum disposition are refinery input, exports, and produets supplied for domestic consumption.

Refinery Inputs of crude oil, NGPL and other liquids are reported monthly on survey Form EIA-87, "Refinery Report." Published inputs of unfinished oils, and motor and aviation gasoline blending components, equal refinery input minus refinery output. Refinery inputs of finished petroleum products are reported on a net basis under refinery production. Refinery inputs are also reported weekly on survey Form EIA-161, "Refinery Report." See Explanatory Notes 1.2 and 1.3 for survey description and other details.

Exports of crudecil and petroleum products are compiled from Census Bureau tabulations EM522 and EM594. Exports include crade oil shipments to Puerto Rico, the Virgin Islands, and the Hawailian Foreign Trade Zone, which are obtained from refinery receipts reported on Form EIA-87.

Product supplied for each product is calculated by summing field production plus refinery production, plus imports, plus stock withdrawal or minus stock addition, plus crude oil used directly and losses (plus net recejpts when calculated on a PAD District basis), minus refinery inpat, minus exports. This formula ensures that total disposition equals total supply. Products supplied indicates those quantities of petroleum prodacts supplied for domestic consumption. Occasionally, the result for a product is negative when total disposition of that productexceeds total supply. Negative prodact supplied may occur for a number of reasons: (1) product reclassification has not been reported, (2) misreporting or delayed reporting of data, and (3) for calculations on a PAD District basis, incomplete coverageof interdistrict movements data compiled to calculate net receipts.

## Note 2.4 Stocks

Primary stocks of crude oil are the sum of ending stocks reported monthly on Form EIA-87, "Refinery Report," and Form EIA-90, "Crude Oil Stocks Report." Crude oil held in the Strategic Petroleum Reserve is included anlessotherwise noted. Alaskan crude oil in transit is also included. Stocks of erude oil are also reported weekly on Form 161, "Refinery Report," and Form EiA-164, "Crude Oil Stocks Report." Primary stocks of petroleum products are summed from data reported on the Form EIA-64, "Natural Gas Liquids Operations Report," Form EiA-87, "Refinery Report," Form EIA-88, "Bulk Terminal Stocks Report," and Form EIA-89, "Pipeline Products Stocks Report." Primary stoeks of petroleum products do not inclade secondary stocks held by dealers and jobbers, or stocks held by consumers. Petroleum product stocks are also raported weekly on Form EIA-161, "Refinery Report," Form EIA-162, "Bulk Terminal Stocks Report," and Form EiA-168, "Pipeline Products Stocks Report." For survey descriptions and other details see Explanatory Notes [.1., 1.2, and 1.3.

## Note 2.5 Average Stock Levels

The graphs displaying monthly stock levels of petroleum products, crude oil, motor gasoline, distillate fuel oil, residnal fuel oil, liquified petroleum gases and ethane, and other products provide the user with recent data as well as a summary of data from the most recent 3 year period from January through December or from July through June. This summary takes the form of an "average range" that includes seasonal variation determined from a longer time period. The average range represents the historical pattern; it is not a forecast.

These curves are updated every 6 menthseffective January 1 or July 1 by basing the "average ranges" on a more recent time period. At that time, each 3 -year data series will be adjusted by dropping the first 6 months and including the mest recent 6 months.

For each data sories, the monthly seasoual factors were estimated by means of a seasonal adjustment technique developed at the Bureau of Ceosus (Census $\mathrm{X}-11$ ). The seasonal factors were assumed to be stable (l.e., uochaoging from year to year) and additive (i.e., the series is deseasonalized by subtracting the seasonal factor for the appropriate month from the reportod stock levels). The fotent of deseasonalization is to remove only seasonal variation from the data. Thus, a deseasonalized series would contain the same trends and irregularities as the original data. For erude ofl stoeks, the derived seasonal factors were very small relative to crude oil stock levels. Therefore, the seasoual factors for erude oil stock levels were set to zero. The seasonal factors for total petroleum (erude and products), distillate fuel oil, residual fuel oil, liquefied petroleum gases and ethane, and ether products were derived using monthly data from 1974-1980. For motor gasoline, the seasonal factors were based on monthly data from $1975,1976,1978,1979$ and 1980 . In 1977 , there was virtually no seasonal behavior in motor gasoline stocks. Monthly stock levels stayed at the same high level for the entire year. In addition, tho seasonal patterns in 1973 and 1974 appeared to be different from those in recent years. It was therefore assumed that the seasonal pattorns in 1973, 1974, aed 1977 were not representative of the recent past, aod these years were not used in the determination of seasonal patterns for motor gasoline stocks. Because of these differeaces in the year-to-year seasobal fluctuation of motor gasoline, the evidence for the illustrated seasonal patterns for total petroleum (crude and products), crude oil, distillate fuel oil, residual fuel oil, liquefied petroleum gases and ethane, and other products is stronger than is the evidonce for the illustrated seasonal patterns for motor gasoline.

In some cases, these seasonal patterns do not show a smooth transitioe from month to month. For example, the June factor for residual fucl oil is slightly less than the May and July values, making a bump in the curve. As there is little difference in tho magnitudo of these seasonal factors, it is possible that this variation is due to the small number of observations ( 7 years) and the data variability.

After seasonal factors are derived, the most recent 3 yenr period (from January through December or from July through June) is deseasonalized. The average of the descasonalized 86-month series determines the midpoint of the desensonalized average bavd. The standard error of the deseasonalized 36 months is caleulated adjusting for extreme data points. The width of the "average range" is twice this standard error.

The upper curve of tho "average range" is defined as the average plus the seasonal factors plus the standard error. The lower curve is defined as the average plus the seasonal factors minus the standard error.

## Note 2.6 Movements

Movernents of erude oil between PAD Districts are reported on Porm EIA-170, "Tanker and Barge Report." Petroleum product movements are reported on Forms EIA-170 and EIA-89, "Pipeline Products Report." Net reeeipts are calculated by summing total movements into and total movements from each PAD District by pipelines, tankers, and barges, and subtracting for the difference. Movemonts of crude oil by pipeline are nat roported. For survey descriptions and other detail, see Explanatory Notes 1.2 and 1.4.

## Note 2.7 Preliminary Monthly Statistics

Data from the Weekly Petroleum Reporting System (Forms EIA -161, 162, 163,164 and 165) are used to estimate the most recent monthly values for the historical statistics. Since some of the weekly reporting periods ovorlap 2 adjacent months, it is necessary to use weighting factors in the calculation of the monthly values.

To ealculate monthly estimates of crude oil and petroleum product imports, crudecil input to refineries, and production of petroleum products for a specific month, the weekly estimates are weighted by the number of days of that month included in each week, then summed.

End-of-month stock levels of crude oil and the major products (motor gasoline, distillate fuel and residual fuel) are calculated in a similar manner, but use only the two weekly reporting periods that cover the end-of-week stocks before and after the end of the month, The end-of-month stock level is calculated by first calculating the stock change between the 2 weeks. The daily stock change between the two end-of-week stock levels is then calculated. This number is multiplied by the weighting factor of earlier of the 2 weeks (the week that covers the last day of the mon th of interest). This change is addled to the earlier of the two end-of-weck stock levels to estimate the end-of-month stock level.

Preliminary monthly estimates of domestic erude oil production are calculated as described in Explanatory Note 2.2.

## Note 3 Accuracy of Petroleum Supply Data

Early in 1981, the Energy Information Administration completed an assessment of the accurncy of principal petroleum supply data series. This assessment concentrated on two methods of analysis:
-Comparisons between EIA's final annual estimates published in the Petroleum Statement Anmal (PSA) and annual estimates from independent sources.

- Comparisons between EIA's final monthly estimates published in the PSA and EIA's earlier estimates published in the Monhliy Petrolewn Statisties Report and the Petrolewm Statement, Monthy (predocessor of the Monthly Petroloam Statement).

Selected excerpts from these comparisons are presented below.
Comparisons of Annual Estimates
All of the systems that provide data for the Petrolcum Supply Monthiy, except for the weekly systems, try tocollect data from the entire universe of their potential respondents. They do notsample, and have no sampling errors. Inaccuracies in the datastill oecur because of problems such as incomplete lists of respondents, crrors in the responses, and conceptual errors in the design of the data systems. Such inaccuracies are hard to identify and even harder to quantify. Some understanding of the overall accuracy of the estimates can beachieved by comparing estimates derived from independent sources of data, as shown in the following tables. Close agreements among annual estimates from several independent sources support the conclusion that the estimates are accurate, and accuracy in the annual estimates implies accuracy in the monthly estimates that comprise the annual estimates.

## Crude OiI Production

Comparisons among independentestimates of annual crude oil and lease condensate production lead to the conclusion that the PSA estimates are probably accurate to within 1 percent.

Crude Oil Imports
Comparisons among independent estimates of annual crude oil imports lead to the conclusion that the PSA estimates are probably accurate to within 1 percent. This conclusion is supported by astudy of EIA and Customs/Census import data performed for EIA. ${ }^{2}$

## Motor Gasoline Supplied

Comparisons among independent estimates of the annual volume of motor gasoline supplied for domestic use show that differences in the estimates grew between 1977 and 1979. By 1979, the BIA estimate of sales by refiners and the Environmental Protection Agency's estimate of production had grown about 5-7 percent larger than the comparable PSA, Landberg, and American Petroleum Institute (API) estimates. Research conducted by EIA in 1979 and $1980^{\circ}$ confirmed that the lower

[^35]estimates were inaceurate, and identified changes in the petroleum industry that had an adverse effect on the PSA estimate. During 1980, EIA developed and tested improved procedures for collecting petroleum supply data, and implemented them in January 1981. (See Explanatory Note 4.)

## Distillate Fuel Oil Supplied

Comparisons among independent estimates of the annual volume of distillate fuel oil supplied for domestic use lead to the conclusion that the PSA estimates are probably accurate to within 1 to 2 pereent.

## Residual Fuel Oil Supplied

Comparisons among independent estimates of the annual volume of residual fuel oil supplied for domestic use seem to show sizable and consistent differences between the EIA estimates of sales by refiners and the PSA and API estimates. When imports of residual fuel oil by nonrefiners are added to the refiner sales, however, the difference between refiner sales and the PSA estimates are narrowed to within 1 percent. The comparisans therefore lead to the conclusion that the PSA estimates are probably accurate to within 1 to 2 percent.

Comparison of Estimates of the Volume of Crude Oil and Lease Condensate Production, 1977-1979

| EIA Estimate from Petroleum Statement Annual ${ }^{\text {b }}$ | Estimated Volume of Production in Millions of 42-U.S. Gallon Barrelsn |  |  | Comparative Estimate as a Percont of the PSA Estimate |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1979 | 1978 | 1977 | 1979 | 1978 | 1977 |
|  | 8,121 | 8,178 | 3,009 | /// | //] | //] |
| Comparative Estimates |  |  |  |  |  |  |
| American Petroleum Institute Estimate from API Monthly Statistical Report ${ }^{\text {e }}$ | 3,130 | 3,214 | 3,021 | 100.8\% | 101.1\% | 100.4\% |
| Census Estimate from the Annual Survey of Oil and Gas ${ }^{\text {d }}$ | - | 2,148 | 3.016 | - | 99.1\% | 100.2\% |
| Oil and Gas Journal Estimates' of Total Production derived from Monthly Data | 3,168 | 8,165 | 3,005 | 101.5\% | 99.6\% | 99.9\% |
| EIA Estimate from Annual Survey of Oil and Gas Reserves (EIA-28) ${ }^{t}$ | 3,102 | 8,144 | 3,001 | 99.4\% | 98.9\% | 99.7\% |
| //7/=Not applicable <br> $-=$ Not available |  |  |  |  |  |  |

${ }^{*}$ Volumes are rounded to the nearest million barrels.
${ }^{4}$ From Table 6 in EIA'r Petrolown Statement Anitual, 1977, 1978, 1979,
${ }^{\text {F From issues of the American Petroleum Institute's Monthly Statistical Reporl. The annual values ware obtained by }}$ summing the monthly vilues for ench of the twelve-month periods.
${ }^{\prime}$ 'From Trable I, p. 2 of the Burenu of Consua' Annual Sturvey of Oil and Gas, 1978.
"From issues of the Oil and Gas Journal. Manthly estimates are in thousands of barrels per day. They are converted to millions of barrels by dividing by 1,000 and multiplying by the number of days in the reporting peried.
'Trom EIA's U.S, Crude Oit and Natural Gns Renerves 1979 Anueal Report (Table 19, p. 38), 1978 Annual Report (Table 16, p. 20), and 1977 A mual Report (Table 22, p.36).

Geographic coverage: the 60 Unitod States and District of Columbla with adjacent arans of the Outer Continental shelf.

SOURCE: An Assossment of the Aocuracy of Principal Data Series of the Enerpy Information Adniviatration, DOE/EIA-0292.

Comparison of Estimates of the Volume of Crude Oil Imports, 1977-1979

| $\begin{aligned} & \text { Volur } \\ & 42-\mathrm{U} . \mathrm{S} \end{aligned}$ | of Mi <br> Gallon | $\begin{aligned} & 8 \text { of } \\ & \text { rels } \end{aligned}$ | Comparative Estimates as <br> a Percent <br> of the Primary Estimate |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1979 | 1978 | 1977 | 1979 | 1978 | 1977 |

EIA Estimate of Receipts at Ports of Entry (ERA-60) from Petroleus Statement, Arrual ${ }^{\text {b }}$

2,880
2,320 2,414

2,414
/7/ //I Comparative Estimstes

American Petroleum Institute Estimate of Receipts as Reported by Refiners ${ }^{\circ}$
Customs/Census Estimate of Receipts at Ports of Entry (Customs Forms 7501 and 7502) ${ }^{\text {d }}$

| 2,346 | 2,323 | 2,360 | $98.6 \%$ | $100.1 \%$ | $97.8 \%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 2,415 | 2,398 | 2,431 | $101.5 \%$ | $100.8 \%$ | $100.7 \%$ |
| 2,964 | 2,334 | 2,481 | $99.3 \%$ | $100.6 \%$ | $100.7 \%$ |

$/ / /=$ Not applicable
*Volumes are rounded to the nearest million barrela.
${ }^{\text {b }}$ From Table 1 in EIA's Petroleum Statement Awaral 1977, 1978, 1979. This table also inchudes imports for the Stratagic Patroleum Reserve (SPR) whleh were 7.5 million in 1977, 58.8 millian in 1978, and 24.4 million in 1979.
atetimate equals the sum of the annual estimate of imports derived from API's Monthly Statistics Report (which excludes imports for SPR), and the EIA eatimetes for imports for the SPR which are listed in footnote b above. The annual estimatea from API data are equal to the aum of the API monthly estimates weighted by the number of days in ouch manth.
${ }^{4}$ Data on imports to Puerto Rico which are included in the souree for these estimates have been excluded from these estimates in keeping with the geographic coverage of the table. Data are from computer printouts of the Bureau of Censua Report IM-245-X dated April 3, 1980 (1977 and 1978 data) and December 19, 1980 (1979 data).
${ }^{4}$ Estimate equala rofinery inpats of forelgn erude plus (minus) stock increases (decreases) of forcign crude. The clate for the computation are published in EIA's Potroleum Statement, Annuala. The stock changes (all increases) are derived from data on stocks of erude ofl at refineries, balk terminals, and pipelines as reported on Form EIA-90, plus the increase in the SPR. This estimate excludes crude oil imported and not used as refinery input.
Geagraphic coverage: the 50 United States and the Distriet of Columbia.
SOURCE: An Assessanem of the Acewraey of Principal Data Series of the Energy Information Administration, DOB/EIA-0292.

Comparison of Estimates of the Volume of Motor Grsoline Supplied for Domestic Use, 1977-1979

|  | Volume in Millions of 42-U.S. Gallon Barrels ${ }^{\text {a }}$ |  |  | Volume Supplied as a Percent of the PSA Estimate |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1979 | 1978 | 1977 | 1979 | 1978 | 1977 |
| EIA Estimate from Petrolewn Statement, Anmual ${ }^{\text {b }}$ | 2,573 | 2771 | 2,625 | //I | //7 | //' |
| Comparative Estimates |  |  |  |  |  |  |
| EIA Estimate of Sales by Refiners $(\mathrm{P}-306)^{r}$ | 2,708 | 2,792 | 2,671 | 105.2\% | 109.0\% | 101.8\% |
| Environmental Protection Agency Estimate derived from Production Data ${ }^{d}$ | 2.766 | 2,851 | 2706 | 107.5\% | 105.2\% | 108.1\% |
| Lundberg Surveys, Inc. Bstimate of U.S. Motor Gasoline Saless | 2,681 | 2,746 | 2,656 | 102.3\% | 101.3\% | 101.2\% |
| American Petroleum Institute Estimate of Deliveries | 2,679 | 2,697 | 2,612 | 100.2\% | 99.5\% | 99.5\% |

(// = Not applicable
"Volumea are rounded to the nearest million 42.U.S gallon barrels.
${ }^{\text {In }}$ Derived from Table 2 in EIA's Petroloum Statanent Anawal, 1977, 1978, 1979.
${ }^{\text {a }}$ Derived from Table 1 of EIA's Desember issucot Petbolewm Markd Shara, Report on Sates of Refixem Petrolexm Prodacts 1977, 1978, 1979.
${ }^{\text {The }}$ The estimate slown is derived by sulstituting EIIA Dumestic Production values with values of damestic production tabulated from the Environmental Protoction Agency Be. Form $8520-2$ "Lead Additive Report for Refinerics." The EPA production estimates are 2,094 million barrels in $1577,2,767$ in 1978, and 2,648 in 1979 as compared from asummary sheet provided by Mr. Bob Suramerhayes of EPA.
"From the mid-June issues of the "Nationel Petroleum News," 1979 and 1980.
'API publighes monthly estimates in thousandis of barrels per month of the volume of motorgasoline deliverod from primary storage. The initial published monthly eatimate is derivod from API sources, but in later API publications the estimates are revised using EIA data. The valuesshown in the tableare cqual to tho sume of the initial published API monthly estimates of motor gasoline multiplied by the number of dnys per month.
Goographic coverage: the 50 Unitod States and the Districl of Calunbia
SOURCE: An Asposoneat of the Acerracy of Prineipal Data Series of hen Exerym Information Adminiatration, DOE/ElA-0292.

Comparison of Estimntes of the Volume of Distillate Fuel Oil (Ineluding Kerosene) Supplied for Domestic Use, 1977-1979

|  | Volume in Milliens of 42-U,S, Gallon Barrels ${ }^{\text {® }}$ |  |  | Volume Supplied as a Percent of the PSA Estimate |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1979 | 1978 | 1977 | 1979 | 1978 | 1977 |
| EIA Eatimate from Petroleum Statement Annual ${ }^{\text {b }}$ | 1,289 | 1,307 | 1,275 | //I | //I | //] |
| Comparative Estimates |  |  |  |  |  |  |
| EIA Estimate of Sales by Refiners (P-306) ${ }^{\circ}$ | 1,282 | 1,275 | 1,242 | 101.0\% | 97.6\% | 97.4\% |
| Ameriean Petroleum Institute Estimate of Deliveries ${ }^{d}$ | 1,291 | 1,300 | 1,277 | 101.7\% | 99.5\% | 100.2\% |
| $/ / /=$ Not applieable |  |  |  |  |  |  |
| "Volumes are rounded to the nearest million 42-U.S. gatlon barrels, |  |  |  |  |  |  |
| "Derived from Table 2 in EIA's "Petroleuon Statement Annalal", 1977, 1978, 1979 |  |  |  |  |  |  |
|  1977, 1978, 1978. |  |  |  |  |  |  |
| "API publishes monthly estimates in thousands of barrels par month of the wolume of distillate and kerosene delivered from primary storage The initinl publishod monthly estimate is derived from API sourcs, bat in later API pablientions the estimates are revisod using EIA data. The values sluwn in the table are eqpal to the sums of the initial pubilished API monthly estimates of distillate and keroscne multiplicd by the number of clays per month. |  |  |  |  |  |  |
| Geographic coverage: the 50 United States and the District of Columbia. |  |  |  |  |  |  |
| SOURCE: Ax Amassment of the Accuracy of DOE/EIA-0292. | Prinejpal | nta Seri | othe | мergy Inf | tion | ivistrat |

Comparison of Estimates of the Volume of Residual Fuel Oil Supplied for Domestic Use, 1977-1979.

|  | Volume in Millions of 42-U.S. Gallon Barrels ${ }^{2}$ |  |  | Volume Supplied as a Percent of the PSA Estimates |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1979 | 1978 | 1977 | 1979 | 1978 | 1977 |
| EIA Estimate from Petroleum Statement, Anmual ${ }^{\text {b }}$ | 1.024 | 1,095 | 1,109 | /// | /// | //f |

Comparative Estimates
EIA Estimate of Sales by Refiners

| (P-806) | 796 | 882 | 847 | $80.8 \%$ | $79.6 \%$ | $80.1 \%$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ameriean Petroleum Institute Batimate of <br> Deliveries |  |  |  |  |  |  |

$/ / /=$ Not Applicable
${ }^{4}$ Volumes are rounded to the nearest million 42-U.S. gallon barrels.
 figures in the souree referencerl below, has been reinstated in these estimates.
'Derived from Table 1 of EIA's December issue of Petrolewn Market Shares, Report on Sales of Refined Petroteran Products, 1977, 1978, 1979.
${ }^{d}$ API publishes monthly estimates in thousands of berrels per manth of the volume of reaidual fuel oil delivered from primary storsge. The initial published monthly estimateis derived from API sources, but in later API publications the estimates are revised using EIA data. The values shown in the table are equal to the sums of the initial published API monthly estimates of residual fuei oil mulliplied by the number of days par month,
Geographic Coveragee the 50 United Statea and the Distriet of Columbla.
SOURCE; An Areasempent af the Accuraces of Principal Data Serien of the Enevgl Information Administration, DOE/EIA-C2922.

## Comparisons of Monthly Estimates Over Time

Inaccuracies in petroleum data resulting from incomplete or delayed reports from respondents and from data processing errors are usually eliminated from the final PSA estimates. Such inaccuracies can atill have important effects on the monthly eatimates published in the Petroleum Supply Monthly and its predecessors. The following tables compare the initial monthly estimates published in the Monthly Petroleum Statistics Report and the Petroleum Statement, Monthly with the final monthly estimates published in the PSA. During 1977-1979, the Monthly Petroleum Statistics Report was published about 60 days after the end of the reporting month, and the Petroleum Statement, Monthly was published about 120-150 days after the end of the reporting month. The tables show that, both in terms of bias and in terms of atandard deviation, the later estimates are consistently more accurate than the earlier estimates. In apite of this, the earlier eatimates may have been more valuable to userg of energy information because of the large difference in timeliness.

For purposes of comparison, the Petroleum Supply Monthly is scheduled to be published on about the same time lag as the Monthly Petroleum Statistics Report. Cantion ahould be exercised, however, in drawing conclusions from this similarity. The Petroleum Supply Monthly uses improved data processing procedures developed and avccessfully implemented during 1981. In addition, sinee 1978, ElA has greatly improved the accuraey of its 60 -day crude oil production estimates and is making progress in improving the accuracy of its 60-day import estimates.

Initial Monthly Estimates of Production, Stocks, and Imports of Crude Oil As A Percent of EIA's Final Published Estimates ${ }^{*}$
January 1977 - December 1979

| Produetion | Primary Stocks At | 1 |
| :---: | :---: | :---: |
| During Month | End of Month | During Month |
| Mean Standard | Mean Standard | Mean St |
| Percent Deviation | Percent Deviation | Mercent Deviatio |

EIA's Estimates from the Monthly Petrolewm Statistica

| Report ${ }^{6}$ | $\# 98.7 \%$ | $1.6 \%$ | $\# 98.3 \%$ | $1.4 \%$ | $\# 95.4 \%$ | $2.4 \%$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| EIA's Estimates from the |  |  |  |  |  |  |
| Petrolewn Statement, Monthly | $\# 99.6 \%$ | $0.6 \%$ | $100.0 \%$ | $0.1 \%$ | $\# 98.4 \%$ | $1.3 \%$ |

Initial Monthly Estimates of Products Supplied for Domestic Use as A Pereent of EIA's Final Published Estimates ${ }^{\text {a }}$
January 1977 - December 1979

|  | ( | dual Fuel |
| :---: | :---: | :---: |
|  | Standard | Mean St |
| Percent Deviation | Deviation | Percent De |


| ELA's Estimates from the <br> Monlhly Petroleum Statistics <br> Report |  | $99.9 \%$ | $1.3 \%$ | $99.9 \%$ | $2.8 \%$ | $\# 97.9 \%$ | $2.7 \%$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| EIA's Estimates from the |  |  |  |  |  |  |  |
| Petroleum Statemend, Monthy | $100.0 \%$ | $0.3 \%$ | $99.7 \%$ | $0.5 \%$ | $99.4 \%$ | $1.2 \%$ |  |

Initial Monthly Estimatos of End-of-Month Primary Stocks As a Pereent of EIA's Final Published Estimates ${ }^{\text {a }}$
January 1977 - Deeember 1979

\# Represents a difference from $100 \%$ found to ho statistieally signifieant at the 950 level of confidence $(\mathrm{n}=36)$.
"Trinal monthly estimates are from the "Petroleum Statement, Annual" for 1977, 1978 and 1979. The mean percent is ealculated ta follows: ench proliminary estimate is first expressed as a percent of EIA's final published estimate, these are then summed and the sum is divided by the number ofestimates. The stand and deviation is the square root of the quantity computed by summing the squared deviation of the percentsfrom the mean percent and then dividing by the number of percents.
${ }^{\text {b Based on }} 36$ initial estimstes appearing in issuea dated Jantary 1977 - Decomber 1979.
${ }^{\text {eBased}}$ on 36 initial estimates appearing in isenes dated Janusry 1977 - December 1979.
SOURCE: An Assessment of the Acturacy of Prineipal Data Serica of the Ererpy Information Adminietration, DOE/EIA-0202.

## Note 4 Changes in Petroleum Industry Reporting

Petroleum statistics contained in this report for all years through 1980 were developed using definitions, concepts, reporting procedures and aggregation methods that are consistent with those developed by the U.S. Bureau of Mines. Research conducted by the Energy Information Administration in 1979 and 1980 indicated that changes had occurred in the petroleum industry that were not being adequately reflected in EIA's reporting systems.

EIA reporting forms, definitions, and procedures were modified beginning in January 1981 to describe induatry operations more accurately. Unfortunately, empirical information is not available to precisely measure the data shortcomings throughout 1980 . However, estimates of the magnitudes of differences in the major data series are described below to form a basis for comparing 1979, 1980, and 1981 data.

## Motor Gasoline

Prior to 1979, the EIA product-supplied series for motor gasoline was consistently about 2 percent lower than the Federal Highway Administration (FHWA) gasoline-sales data series, which is derived from State tax receipts. This difference increased to about 4 percent in 1979 and 5 percent in 1980 . Thereare two primary causes for this growing difference. First, refinery operations, particularly the flows of unfinished oils and the redesignation of some finished products, were not being accurately described on the EIA survey forms. Second, a large amount of gasoline was being produced away from refineries at "downstream blending stations" to take advantage of provisions in regulations governing the amount of lead that could be added. These blending stations were not reporting gasoline production to the F1A until the data system was changed in January 1981.

Quantitative estimates of the magnitude of the difference-in EIA's gasoline product supplied data in 1979 and 1980 have been made by the EIA and the American Petroleum Institute (API). The following table provides 1979 and 1980 data as published in the Petroleum Statement Annual, as well as EIA and API eatimates of "recast" motor gasoline product supplied. EIA recast estimates were based upon preliminary monthly information in the Monthly Petrolsum Slatement. The ranges displayed in the EIA. column reflect uncertainty in the estimates. Also shown are the FHWA motor gasoline sales statistics for those years. EIA has recently published a study of the quality of these FHWA data. ${ }^{1}$

[^36]Finished Motor Gasoline Product Supplied on Old and New Basis (Thousand Barrels per Day)

|  | 1979 |  |  |  | 1980 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | EIA <br> Reported | API <br> Reeast | E1A <br> Reeast | FHWA ${ }^{1}$ | EIA <br> Reported | API <br> Recast | EIA <br> Recast | FHWA ${ }^{1}$ |
| Jan | 6,880 | 7,230 | $\begin{aligned} & 7,084- \\ & 7,246 \end{aligned}$ | 6,984 | 6,323 | 6,789 | $\begin{aligned} & 6,630- \\ & 6,791 \end{aligned}$ | 6,672 |
| Feb | 7,254 | 7,496 | $\begin{aligned} & 7,389- \\ & 7,568 \end{aligned}$ | 7,538 | 6,596 | 6,983 | $\begin{aligned} & 6,881- \\ & 7,008 \end{aligned}$ | 6,880 |
| Mar | 7,229 | 7,414 | $\begin{aligned} & 7,301- \\ & 7,468 \end{aligned}$ | 7,816 | 6,406 | 6,768 | $\begin{aligned} & 6,607- \\ & 6,708 \end{aligned}$ | 6.718 |
| Apr | 7,055 | 7,800 | $\begin{aligned} & 7,187- \\ & 7,359 \end{aligned}$ | 7,375 | 6,800 | 7,014 | $\begin{aligned} & 6,886- \\ & 7,052 \end{aligned}$ | 6,981 |
| May | 7,213 | 7,429 | $\begin{aligned} & 7,818- \\ & 7,475 \end{aligned}$ | 7,428 | 6,729 | 6,954 | $\begin{aligned} & 6,828- \\ & 6,984 \end{aligned}$ | 7,044 |
| Jun | 7.191 | 7,488 | $\begin{aligned} & 7,350- \\ & 7,516 \end{aligned}$ | 7,441 | 6,657 | 6,966 | $\begin{aligned} & 6,824- \\ & 6,991 \end{aligned}$ | 7,049 |
| Jul | 6,902 | 7.241 | $\begin{aligned} & 7,105- \\ & 7,266 \end{aligned}$ | 7,299 | 6,743 | 6,973 | 6,960 | 7,182 |
| Aug | 7,330 | 7,546 | $\begin{aligned} & 7,426- \\ & 7,588 \end{aligned}$ | 7,619 | 6,648 | 6,841 | 6,828 | 7,090 |
| Sep | 6,881 | 7,122 | $\begin{aligned} & 7,016- \\ & 7,262 \end{aligned}$ | 7,282 | 6,510 | 6,692 | 6,962 | 6,685 |
| Nov | 6,791 | 7,068 | $\begin{aligned} & 6,956- \\ & 7,122 \end{aligned}$ | 7,142 | 6,284 | 6,507 | 6,516 | 6,951 |
| Dee | 6,780 | 7,106 | $\begin{aligned} & 6,966- \\ & 7,127 \end{aligned}$ | 7,064 | 6,682 | 6,948 | 6,986 | 6,993 |
| Average | 7,084 | 7,302 | $\begin{aligned} & 7,183- \\ & 7,847 \end{aligned}$ | 7,309 | 6,679 | 6.882 | $\begin{aligned} & 6,806- \\ & 6,889 \end{aligned}$ | 6,925 |

IFHWA zasoline statistics published in their 1979 Table MF-83G, 08-06-80, contain aviation gasoline as well as motor gasoline. Only motor gasoline data are ineluded in pablished 1980 data. Consequently, the 1979 data ahown above were reduced by subtracting aviation gasoline product supplied quantities as published by EIA in the 1979 Petrolexm Statemen Avrual. The 1980 FHWA data published in their 1980 Table MF-33GA, August 1981 , did not require this adjuatment.

## Distillate and Residual Fuel Oil

Distillate and residual fuel oil refinery production statistics through 1980 were adjusted to aceount for an imbalance between unfinished oil supply and disposition. The reported quantitice of refinery inputs of unfinished oils typieally exceed the available supply of unfinished oils. It has been assumed that this occurs when distillate and residual fuel oil produced by a refinery is shipped to another refinery, where it is treated as unfinished oll. This oil is then reprocessed rather than used or sold as distillate or residual fuel oil.

For many years (ineluding 1980), the difference between unfinished oil disposition and supply was subtracted from distillate and residual fuel cil produetion to adjust for this diserepancy. Two-thirds of the difference was applied to distillate, and one-third to residual fuel oil,

Beginning in January 1981 this adjustment was discontinued because there was notsuffieient empirical evidence to support it. The following table presents distillateand residual fuel oil refinery produetion in 1980 as published (adjusted) and on the same basis as 1981 statistics are now being completed (pnadjusted) to permit comparison between 1980 and 1981 data series, Adjusted distillate and residual fuel oil product supplied volumes differ from the unadjusted volumes by the same amounts as the adjusted and unadjusted production volumes.

Adjusted and Unadjusted Refinery Production, and Unadjusted Product Supplied of Distillate and Residual Fuel Oils, by Month for 1979 and 1980 (Thousand Barrels Per Day)

1979

| Month | Distillate Fuel Oil |  |  |  | Residual Fnel Oil |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Adj. Ref. Prod. | Unadj. Ref. Prod. | Diff. | Unadj. Product Supplied | Adj. Ref. Prod. | Unadj. Ref. Prod. | Diff. | Unadj. Product Supplied |
| Jan. | 3,043 | 3,108 | 65 | 4,646 | 1,912 | 1,946 | 84 | 8,594 |
| Feb. | 2,888 | 2,945 | 57 | 4,869 | 1,792 | 1,822 | 30 | 3,625 |
| Mar. | 3,019 | 3,026 | 7 | 3,671 | 1,719 | 1,723 | 4 | 8,248 |
| Apr. | 2,945 | 2,978 | 32 | 3,048 | 1,689 | 1,656 | 17 | 2,524 |
| May | 3,066 | 3,088 | 27 | 3,025 | 1,586 | 1,600 | 14 | 2,517 |
| Jun. | 3,158 | 3,187 | 35 | 2,743 | 1,548 | 1,566 | 18 | 2,601 |
| Jul. | 3,805 | 3,844 | 38 | 2,601 | 1,575 | 1,594 | 20 | 2,471 |
| Aug. | 3,321 | 8,859 | 38 | 2,799 | 1,584 | 1,603 | 20 | 2,570 |
| Sep. | 3,854 | 8,306 | -48 | 2,699 | 1,627 | 1,602 | -25 | 2,584 |
| Oct. | 3,251 | 3,217 | -84 | 3,085 | 1,629 | 1,612 | -17 | 2,623 |
| Nov. | 3,239 | 3,200 | -39 | 3,208 | 1,786 | 1,716 | -20 | 2,795 |
| Dec. | 3,221 | 3,238 | 17 | 3,725 | 1,894 | 1,908 | 9 | 3,022 |
| Average | 3,152 | 3,169 | 16 | 3,327 | 1,687 | 1,695 | 8 | 2.884 |

1980

| Month | Distillate Fuel Of |  |  |  | Residual Fuel Oil |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Adj. Ref. Prod. | Unadj. Ref. Prod. | Diff. | Unadj. <br> Prodnet <br> Supplied | Adj. Ref. Prod. | Unadj. Ref. Prod. | Diff. | Unadj. Product Supplied |
| Jan. | 3,018 | 3,098 | 80 | 3,794 | 1,771 | 1,812 | 41 | 3,108 |
| Feb. | 2,766 | 2,888 | 122 | 3,884 | 1,773 | 1,886 | 63 | 8,168 |
| Mar. | 2,557 | 2,690 | 138 | 3,812 | 1,584 | 1,652 | 68 | 2,726 |
| Apr. | 2,460 | 2,554 | 94 | 2,729 | 1,595 | 1,643 | 48 | 2,492 |
| May | 2,474 | 2,610 | 186 | 2,588 | 1,509 | 1,579 | 70 | 2,305 |
| Jun. | 2,646 | 2,721 | 75 | 2,892 | 1,575 | 1,618 | 38 | 2,359 |
| Jul. | 2,689 | 2,788 | 94 | 2,343 | 1,480 | 1,528 | 48 | 2,339 |
| Aug. | 2,461 | 2,582 | 121 | 2,258 | 1,444 | 1,506 | 62 | 2,348 |
| Sep. | 2,686 | 2,726 | 40 | 2,627 | 1,495 | 1,516 | 21 | 2,380 |
| Oct. | 2,589 | 2,650 | 61 | 2,981 | 1,512 | 1,543 | 91 | 2,258 |
| Nov. | 2,703 | 2,828 | 120 | 8,069 | 1,579 | 1,641 | 62 | 2,513 |
| Dec. | 2,891 | 3,052 | 161 | 3,776 | 1,660 | 1.743 | 88 | 2,762 |
| Average | 2,661 | 2,764 | 103 | 2,969 | 1.680 | 1,684 | 54 | 2,562 |

## Total Petroleum Products

The imbalance between the supply and disposition of unfinished oils is now reported as part of the reelassified products (line 39) in the U.S. Petroleum Balance (Table 1). Imbalances between the supply and disposition of gasoline blending components comprise the remainder of the reclassified in Table 1 . These imbalances are reported as negative product supplied in the Other Liquids section of the table of Supply and Disposition Statistics (Table 2). Since these changes only involve redistribution of the volumes of gasoline, distillate and residual fuel oil, gasoline blending components, and unfinished oils, the total volume of petroleum products supplied remains unaffected by them.

## Note 5 Notes on Tables

5.1 Crude Oil and Petroleum Produets Overview statistics on the referenced line appear in Table of the Detailed Statistics, except where noted.

- Crude Oil and Petroleum Products Stoek Withdrawal (+) or Addition (-), Petroleum Produc Supplied, Total Imports, Crude Oil Imports, Total Exports, and Crude Oil Exports appear as labeled Table 4. Total Production and Crude Oil Production appear under Field Production in Table 4.
- Natural Gas Plant Production is the sum of Natural Gas Plant Liquids and Finished Petrolen Produets Field Production in Table 4.
- Petroleum Produets Imports is the sum of Natural Gas Plant Liquids and LRGs, Other Liquids, an Finished Petroleum Products Imports in Table 4.
- Petroleum Products Exports is the sum of Natural Gas Plant Liquids and LRGs, Other Liquids, an Finished Petroleum Products Exports in Table 4.
- Total Crude Oil and Petroleum Products Ending Stocks appear in thousands of barrels in Table 2
5.2 Crude Oil Supply and Disposition statistics on the referenced line appear in Table 1 of th Detailed Statistics, except where noted.
- Total Domestic Field Production, Alaskan Field Production, SPR Imports, Other Imports (synony) mous with Imports Gross Excl. SPR), SPR and Other Primary Stocks Withdrawal ( + ) or Addition (Unaceounted For Crude Oil, Refinery Inputs, and Exports appear as labeled in Table 1.
- SPR Ending Stocks and Other Primary Ending Stocks (synonymous with stocks excluding SPR appear in thousands of barrels in Table 1.
- Total Crude Oil Ending Stocks appear in thousands of barrels in Table 2 .
- Total Imports appear in Table 4.
5.3 Finished Motor Gasoline Supply and Disposition statistics on the referenced line appear in Tabl 4 of the Detailed Statisties, except where noted.
- Total Production is the sum of Field Production and Refinery Production in Table 4.
- Imports, Stock Withdrawal ( + ) or Addition ( - ), Exports, and Product Supplied appear as labeled Table 4.
- Unleaded Percent of Total Product Supplied represents the ratio of finished unleaded motor gasolin product supplicd to total finished motor gasoline product supplied, multiplied by 100 and rounded to th nearest tenth.
- Ending Stocks appear in thousands of barrels in Table 2.
5.4 Distllate and Residual Fuel Oil Supply and Disposition statisties on the referenced lines appea in Table 4 of the Detailed Statistica, except where noted.
- Total Production is the sum of Field Production and Refinery Production in Table 4 .
- Imports, Stock Withdrawal (+) or Addition (-), Crude Used Directly, Exports, and Product Suppli appear as labeled in Table 4.
- Ending Stocks appear in thousands of barrels in Table 2.
5.5 Liquefied Petroleum Gases and Ethane statistics represent the aggregation of statisties on ethane, propane, butane, butane-propane mixtures, ethane-propane mixtures, and isobutane. The statistics on the referenced line appear in Table 4 of the Detailed Statisties, except where noted.
- Total Production is the sum of Field Production and Refinery Production in Table 4.
- Imports, Stock Withdrawal ( + ) or Addition (-), Refinery Inputs, Exports, and Product Supplied appear as labeled in Table 4.
- Ending stocks appear in thousands of barrels in Table 2.
5.6 Other Petrolcum Products Supply and Diaposition statistics represent the aggregation of statistics on natural gasoline, isopentane, unfractionated stream, plant condensate, other liquids, and all finished petroleum products except finished motor gasoline, distillate fuel oil, and residual fuel oil. Thestatistics on the referenced line areaggregated from Table 4 of the Detailed Statistics, except where noted.
- Total Production is the aggregated sum of Field Production and Refinery Production in Table 4.
- Imparts, Stock Withdrawal (+) or Addition ( - ) Refinery Inputs, Exports, and Product Supplied are aggregated from Table 4.
- Ending stocks are aggregated from ending stocks in thousands of barrels in Table 2.

Note 5.7 Table 1. U.S. Petroleum Balance

* Lines (1) through (3) of Table 1: Cruce oil (including lease condensate) production for "Alaska," "Lower 48 States," and "Total U.S." are calculated by calling the conservation agency in Alasks for Alaskan crude oil production during the month, estimating crude oil production in the United States (see Explanatory Note 2.2), and taking the difference to equal production in the lower 48 states.
- Line (5) of Table 1: SPR imports are reported on Survey Form ERA-60.
- Line (12) of Table 1: "Total Other Sources" equale crude oil stock withdrawal (+) or addition (-) plus unaccounted for crude oil plus crude used as fuel and losses in Table 2.
- Line (14) of Table 1: Natural gas plantliquids (NGPL) "Production" equals field production of natural gas plant liquids (NGPL) plus field production of finished petroleum products in Table 2.
- Line (15) of Table 1: NGPL "Imports" equals the sum of theimports of natural gasoline and isopentane, unfractionated stream, and plant condensate imports in Table 2.
- Line (16) of Table 1: NGPL "Stock Withdrawal ( + ) or Addition ( - ") is equal to the sum of stock withdrawa! ( + ) or addition ( - ) of natural gasolite and isopentane, unfractionated atream, and plant condensate in Table 2.
- Line (17) of Table 1 equals the sum of lines (14), (15), and (16) of Table 1.
- Line (18) of Table 1: unfinished oils and gasoline blending components "Stock Withdrawal (+) or Addition ( -$)^{\prime \prime}$ equals stock withdrawal ( + ) or addition ( $(-)$ for other hydrocarbons and alcohol, for unfinished oils, motor gasoline blending components, and aviation gasoline blending components.
- Line (20) of Table 1: "Other Hydrocarbona and Alcohol New Supply" equals the field production of same in Table 2.
- Line (21) on Table 1: "Refinery Processing Gain" is a balancing item equal to total refinery production minus total refinery input in Table 2.
- Line (22) on Table 1: "Crude Uaed Directly" equala the aum of crude oil uaed directly as distillate and reatidual fuel oils in Table 2.
- Line (23) of Table 1: "Total Other Liquids" equals the sum of lines (18) through (22) of Table 1.
- Line (24) of Table 1: "Total Production of Products" equals crude oil input to refineries plus field production of NGPL and finished petroleum products; plus imports of natural gasoline and isopentane, unfractionated atream, and plant condenaate; plus stock withdrawal ( + ) or addition $(-)$ of natural gaboline and isopentane, unfractionated stream, and plant condensate; plus stock withdrawal ( + ) or
addition (-) of other hydrocarbons and alcohol, unfinished oils, aviation gasoline blending components, and motor gasoline blending components; plus imports of unfinished oils, aviation gasoline blending components, and motor gasoline blending components; plus field production of other hydrocarbons and alcohol; plus total refinery production; minus total refinery input; plus crude oll used as distillate and residual fuel oils in Table 2.
- Line (25) of Table 1: "Gross Imports of Refined Products" equals imports of LPG and ethane plus imports of finished petroleum products in Table 2.
- Line (26) of Table 1: "Exports of Refined Products" equals exports of LPG and ethane plus exports of finished petroleum products in Table 2
- Line (27) of Table 1: "Net Imports of Refined Products" equals the difference between lines (25) and (26) of Table (1).
- Line (28) of Table 1: "Total New Supply of Products" equala crude oil input to refineries plus field production of NGPL and finished petroleum products; plus imports of natural gesoline and isopentane, unfractionated stream, and plant condensate; plus stock withdrawal (+) or addition ( - ) of natural gasoline and isopentane, unfractionated stream, and plant condensate; plus stock withdrawal ( + ) or addition (-) of other hydrocarbons and alcohol, unfinished oils, aviation gasoline blending components, and motor gasoline blending components; plus imports of unfinished oils, aviation gasoline blending components, and motor gasoline blending components; plus field production of other hydrocarbons and alcohol; plus total refinery production; minus total refinery input; plus crude oil used as distillate and residual fuel oils; plus imports of LPG and ethane and finighed petroleum products; minus exports of LPG and ethane and finished petroleum products in Table 2.
- Line (29) of Table 1: "Refined Products Stocks Withdrawal (+) or Addition (-)equala the sum of stock withdrawal ( + ) or addition ( - ) for LPG and ethane, and finished petroleum products in Table 2.
- Line (30) of Table 1: "Total Petroleum Producta Supplied for Domestic Use" equals total products supplied in Table 2.
- Lines (31) through (37) of Table 1 equal the respective products supplied in Table 2.
- Line (38) of Table 1: "Other Products Supplied" equals the sum of natural gasoline and ieopentane, unfractionated stream, plant condensate, aviation gasoline, naphtha $<400 \mathrm{Deg}$. F for petrochemical feedstock uses, other oils > 400 Deg. F. for petrochemical feedstock use, special naphthas, lubricants, waxes, eoke, asphalt, road oil, still gas, and migcellaneons products supplied in Table 2.
- Line (89) of Table 1: "Total Reclassified" is a balancing item equal to the sum of unfinished oils, motor gasoline blending componenta, and aviation gasoline blending components products supplied in Table 2.
- Line (40) of Table 1: "Total Product Supplied" is equal to total products supplied in Table 2.
- The sum of lines (41) and (42) of Table 1, stocks of "Crude Oil and LeaseCondensate (Exeluding SPR)" and stocks held by the "Strategic Petroleum Reserve," equals ending stocks of crude oil in Table 2. SPR stocks are reported on Form E1A-90.
- Line (46) of Table 1, stocks of "Refined Products," equals the sum of LPG and ethane and finighed petroleum product stocks in Table 2.


[^0]:    This article was preparod by Debra Paxsen of the Shart-Term Information Division, Energy Information Administration.

[^1]:    Defined as June throagh August.
    ${ }^{2}$ See Short-term Ewergy Outlook for description of foreesst methodology. All projeetions cited here are from the EIA ShorTorm Energy Outlook (February 1982).
    ${ }^{3}$ Motor gasoline and distillate and residual fuel oils product supplied figures for 1979 and 1980 have been recast to aceount for data system changes in 1981. Soo Explanatory Note 4.
    "For historical data, see "Summary Statisties" section of this publication.
    "See graph P. 28, "Motor Gasoline Ending Stocks, Monthly."

[^2]:    This articlewas prepared by David $\mathrm{I}_{\mathrm{n}}$ Greene, Osk Ridge National Laboratorles.

[^3]:    U.S. Department of Energy, E1A 1980 International Energy Annual, 1981, Table 18.
    ${ }^{2}$ Intarnational Energy Arnwal, Table 1.
    SThese motor fuel nse data [nchude perhapa 2 percent or less diesel and other spocial fuels. Separate gasoline statiaties do not exiat prior to 1949.

    EIA Annzal Report to Congress, 1980 Vol . Two: Data, Table 28; Dept. of Interior, Bureau of Mines, Minerals Yeartook, 1939, 1946, 1950.

[^4]:    This article was prepared by Wendy Kolmar, Petroleum Supply Division, Energy Information Administration.

[^5]:    "See Figureon "ProductaSupplied, Annual," p. 22.

    2U.8. Environmental Protection Agency, Light Duty Automotive Fuel Economy Trends Through 1081, Table I1-8.
    aFederal Highway Administration, Highwoy Statistice, 1975-80, Table VM-1.
    TEnergy Information Administration, Short Tern Energy Outloak, February 1982, p. 13.
    sMotor Vehicle Manufacturers Association, Motor Vahicle Facts And Figures 's1, p. 22.

[^6]:    
     way Administration, 'ruoffic Volawe Trenels, 1975-19N1, Tuate 3:

[^7]:    *For demand atatistics, see the "Summary Statistics" eectlon of this publiention.
    PEnergy Information Administration, Skort-Term Energy Owilook, February 1081, p. 14.

[^8]:    1 Includes lease condensate.
    2 A negative number indicates an increase in stocks and e positive number inclicales a decrease.
    3 Ending stocks for 1973-1979 are totels as of December 31.
    4 Includes csude cil, natural ges plani groduction, other fydrocarbons and aicohol.
    5 Includes stocks loceted in the Strategic Petroleum Feserve,
    Totals may not equel sum of components due to independent rounding,
    $N A=$ Not available, $\quad R=$ Revised data.

    - Sea Explanalory Nole 6.1.
    *Preilminary ptetistios, See Explanolory Note 2.7.
    Note: Begining in Jonuary 1975, the Buraau of Minee, Dept. of Interlor, expanded its stocks coverage to includa an eddiltonal 100 bulk terminel operators.
    Gecgraphilo covarage: The 60 United Statas and the District of Columbia Including adiecent areas of the cuter conthantal shelf, excluding the Hewallan Foraign Trade Zone,
    Sourpest Soe Scurcea" at the end of this sactlon.

[^9]:    Includes lesse condensale.
    2 Includes shipments from Uniled States possessions and ierrilorios.
    ${ }_{4}$ A negetive number indicalas an ingraess in sigcks and a positive number indicalas a docroaso.
    4 Strategic Petroleum Reserve.
    Tolais may not equali-sum of components due to indopendent rounding.
    $N A=$ Not zvalleble. $\quad \mathrm{R}=$ Risvised data

    - See Explanatory Note 5.2.
    *. Prellminary slatistics. See Explanatary Nota 2.7.
    Geographle covaraga; Tha 60 Unitad States and tha District of Columbla including adjacent areos of the outer conbinental shelf, excluding the Hawallan Foreign Trade Zono. Sources: See "Scurces" at the end of this saction.

[^10]:    I Ending stocks for 1973-1079 ara totals as of Dacember 31.
    2. Baginning in 1981 exc)udes blencing componants.

    3 A negative number indicates an incroase in stocks and a positiva number indicates a deoreesa.
    4 Includes motor gasolina blending oomponanis.
    5 Includaa gasohol.
    Torels mey not aqual sum of componants dua to indapandant rounding.
    (s) = Lass than 500 berrals. $\quad N A=$ Not availabla. $\quad \mathrm{A}=$ Revisad data.

    - Sea Explanetory Nota 5.3,
    - Preliminary ajafistics, Sae Explanetory Note 2.7.

    Notes; Beglning in January 1981, tha Energy Information Administration modified survey forms, definitions, and procesaing procedures. Sae Explanatory Nota 4 on Chenges tor the effects on mator gesolina stetlstics.
    Beginning in January 1975, the Bureeu of Mines, Dept. of the Intarbor, expanded its stocks covarage to include es acdillonal 100 bulk tarminal operators.
    Geographic colvarege: The 50 Unitad Statas and the District of Columble including adjacent areas of
    the outar continentel shall, axcluding the Hawallan Foralgn Trada Zona.
    Sources; Sea "Sourcas" at the and of this saction.

[^11]:    U.S. Pcssesslans.

    E Includes ail Non-OPEC countries except those shown above.
    Totals may not equal sum of components dua to independant rounding.
    Note: Begirning in October 1977, Stratogic Patrolaum Reserve imports are included.
    Geographic coverage: The 50 United States and the District of Columbla, Including adjacent areas of the outer continanial sheif, excluding the Hawallen Foreign Trade Zone.
    Sources: See "Sources" at the ond of this section.

[^12]:    1 A balaneing litem.
    2 Includes itopsniane, netural gasoline, unlractlenatad strbam, and plant condensate only.
    a For producls Includad se8 Explanalory Nola 5.7.
    E Estimated.

    - Not Applicablo.

    Noter: Totsl may not equal sum of components dua io indeperident rounding.
    Soureas and eatimailon procedures. See Explanatory Notes 1, 2, and 5.7.

[^13]:    1 Unaccounted for onde ofi is a batanoing lien.

[^14]:    I Unaccountod for oute ol is a batancing itern.
    (9) Less han 500 barrels or less than 500 barels per day.

    E Estmajed.
    Note: Total may not equal tum of components due io independent rounding.
    Sources and estimation procedures: See Epplanatory Notes on Data Coliection and Estmation.

[^15]:    I Unscocounted for crude ol is a balancing them.

[^16]:    1 Unaccourted for crude oll is a bulancing ianm

[^17]:    1 Unaccounted for cude of is a batancieg hem
    2 Total equals rofinery fuvi use and loss.
    9 includes noterl govoline, isopantane, utraction
    (b) Lose than 500 barrols.

    Note: Total may not equal sum of componerts due to independent rounding
    Sourcos and estimation procoduret: See Explenatory Netes on Data Coliection and Eistivation.

[^18]:    1 Unaccounted for cude oll is a Salancing hera
    2 Total equals rolinery fuel use and loss.
    3 indudes naturai gatcine, isopentare, infracionated streart, and plant condenoste.
    (1) Less than 500 barrela.

    Note: Total may not oqual sarn of comoonente due to independent rounding.
    Scuross and estimation procedures. Sce Explanatory Notes on Data Colection and Estiration.

[^19]:    IUnaccountad for orude cil is a baiarining tem.
    2 Total equats refinery fuei use and loas.
    3 includes natural gayoline, isopontane, untractionated sream, and plart condensute
    (a) Less than sco barrate.

    Notec Total may not equal sum of componenta due to indopendent rounding.
    Sources and ertmption procedures: See Explanatory Notes on Data Cetection and Estimation.

[^20]:    $\ddagger$ Unvocounted for cride of is a balancing lam.

[^21]:    i Unacopurted for crude ol is a balancing zem.
    
    (5) Less than 500 bamels.

    E Estrinted.
    Note: Total may not equal sum of componerts due to independert rounding.
    Sources and estimaton procooures: See Explaratory Notas on Data Collection and Estimation.

[^22]:    I Production roprecents cuanty of natural gas processing plant outpet less input to fractionating facilises.
    Noter Tonil may not equal sum of components dae to inderendent rounding.
    Noter Totel may not equal sum of oorppenents das to inderendent
    Source: $\mathrm{Se0}$ Eplanatory Notoe on Datia Colacticn and Egtinabon.

[^23]:    I Reoveserts grost input divided by ocerable capscity.
    Notes Tetai may not equal sum of componeves due to independent rounding
    Source: Seo Epplanatory Notes on Data Celiectisn and Eotimation.

[^24]:     See Explanatory Notes on negative product yield．
    Sources：See Explanatory Notes on Data Colection and Estimation．

[^25]:    
    Noter Total may not equal sum of componerts dan to indopendent rounding.
    Source: See Eplanatory Notes on Dota Coloction and Eitination.

[^26]:    See footrotes at and of table.

[^27]:    See footnotes at and of table.

[^28]:    See footnoles at end of table.

[^29]:    1 Crude ol data are not collected by reflnery distict
    2 Includes 33,365 thousands of barrets of domestic crude oll.

[^30]:    Note: Total may not equal surn of componerts due to independient rounding.
    Sourcas: See Explanatory Notes on Data Coltection and Estimation.

[^31]:    Note Total may not equal sum of componerts dve to independent
    rounding.
    Seurcet: See Beplenetory Notes on Data Coloetien and Esimation

[^32]:    may not equil sum of conponerts due to independert rounding
    e Explenaliy Notes on Dota Collection and Evtmation.

[^33]:    

[^34]:    

[^35]:    ${ }^{1}$ An Assesgnent of the Acewracy of Principal Data Series of the Energy Information Adminiotration, DOE/EIA-0292, June 1981.
    ${ }^{2}$ Maxima Corporation, Potroleum Imports Reporting Spstems, Preliminary Draf, (Silver Spring, Maryland: February 1980). Prepared for the Office of Energy Information Validation, Energy Information Administration, U.S. Department of Energy, Washington, D.C.
    ${ }^{3}$ Office of Energy Information Validation, Energy Information Administration, U.S. Department of Energy, An Evaluation of Published EIA Gosoline Strpply Estimates (Weshington, D.C.: April 1980).

[^36]:    ${ }^{2}$ Officeof Energy Information Validation, Energy Information Administration, U.S. Department of Energy, Error Prafils of the Motor Fuel Taxation Data wsed to Establish and Monitor State Emergency Conservation Targets (Washington, D.C.: December, 1981).

