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ERRATA.

In the first paper of this pamphlet the references to pages should, wherever

met with, read instead of "
52,

" "
53,

" "
54,

"—"
540,

" "
541,

" " 542.
"

In the second paper, for "spiral"
'^' and "spiral motion,

"
read "helix"

and helical motion.
"
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PREFATORY REMARKS.

No physical phenomenon has ever more highly excited the curiosity of the

public generally than that exhibited by the simple instrument known as the

'
Gyroscope." None, based so directly upon the very fundamental laws of me-

chanics, (viz., those which refer to inertia^ and to gravitation,) seems, at first

sight, to exhibit so utter a violation of them.

It is not indeed the unskilled in mechanics alone who, seeing an apparent

suspension, in this little instrument, ofthe very first law governing matter which

addresses itself to the experience of childhood, is perplexed.

The scientific man too, the mathematician (unless his studies have happened
to lead before in this very direction,) is startled, and is prone to ask himself if

so paradoxical a phenomenon does not involve some new and hitherto unknown

mechanical principle, or some modification of those already admitted.

Yet there can be perhaps no more beautiful illustration of those laws, no

more convincing proof of their absolute truth, and adequacy to explain all

purely mechanical phenomena, than is found in the solution of the problem of

the Gyroscope.
To exhibit this perfect harmony of the phenomenon with laws universally

known and understood (so far as the primal laws of matter can be understood)

has been the governing idea in my mind in preparing these pages ;
and auxili-

ary to this, I desired to set at rest a vexed question, and, while correcting the

numerous errors which had been circulated in popular and even scientific

journals, to place the analysis of the problem in such a form that all who had

so much knowledge of mechanics as may be derived from text-books, could

follow it.

If I had addressed mathematicians alone, and sought results merely, it is

proper to say that I could have arrived at them by much shorter methods.

To those who seek a popular explanation and do not find satisfactory that

which I strive to give, independently of the analysis, in the latter part of my
first paper, I can only say that all attempts at a purely popular explanation I

have yet seen have been failures, and that the perplexity of terms, rather than

the intrinsic difficulty of the subject, renders such explanations of little avail to

those who cannot also comprehend the analysis.

The two supplementary papers of this pamphlet became necessary in order

to apply the theory to the actual circumstances under which the Gyroscope is

seen ; the more so because at the first glance the actual motions of the instru-

ment seem as paradoxically to violate the theory, as the theoretical motions

seem to do the laws of nature.

The theory of the Gyroscope contained in these pages is not new, nor does

it profess to be so: but the whole constitutes, so far as I know, the only thorough

application of the laws of rotary motion to all the observed phenomena of the

instrument, involving, as they do, the effects of friction, resistance of the air

and of initial gyratory velocities.

J. G. B.

New York, April 21st, 1858.
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XX. EDUCATIONAL MISCELLANY AND INTELLIGENCE.

KOTARY MOTION AS APPLIED TO THE GYROSCOPE.

BT HAJO& J. Q. BABNAKD, A. M.

Corps of Engineers of United States Army.

After reading most of the popular explanations of the above

Ehenomenon
given in our scientific and other publications, I

ave found none altogether satisfactory. While, with more or

less success, they expose the more obvious features of the phe-
nomenon and find in the force of gravity an efl&cient cause of

horizontal motion, they usually end in destroying the founda-

tion on which their theory is built, and leave an effect to exist

without a cause ; a horizontal motion of the revolving disk about
the point of support is supposed to be accounted for, while the

descending motion, which is the first and direct effect of gravity
(and without which no horizontal motion can take place), is

ignored or supposed to be entirely eliminated. Indeed it is

gravely stated as a distinguishing peculiarity of rotary motion
,

that, while gravity acting upon a non-rotating body causes Tt

to descend vertically, the same force acting upon a rotary body
"

causes it to move horizontally, A tendency to descend is supposed
to produce the effect of an actual descent ; as if,

in mechanics,
a mere tendency to motion ever produced any effect whatever
without that motion actually taking place.
Whatever *

mystification' there may be in analysis
—however

it may hide its results under symbols unintelligible save to the

initiated, it is most certain that the greater portion of the physi-
cal phenomena of the universe are utterly beyond the grasp of
the human mind without its aid. The mind can—indeed it

must—search out the inducing causes, bring them together and

adjust them to each other, each in its proper relation to the rest
;

but farther than that (at least in complicated phenomena) un-

aided, it cannot go. It cd^nnoi follow these causes in all their va-
rious actions and re-actions and at a given instant of time bring
forth the results.

This, analysis alone can do. After it has accomplished this,
it indeed usually furnishes a clue by which to trace how the

workings of known mechanical laws have conspired to produce
these results. This clue I now propose to find in the analysis
of rotary motion as applied to the gyroscope.
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The analysis I shall present, so far as determining the equations
of motion is concerned, is mainly derived from the works of

Poisson (vide "Journal de I'Ecole Polytech." vol. xvi—Traite de

Mecanique, vol. ii, p. 162). Following his steps and arriving
at his analytical results, I propose to develop fully their mean-

ing, and to show that they are expressions not merely of a visi-

ble phenomenon, but that they contain within themselves the
sole clue to its explanation : while they dispel all that is myste-
rious or paradoxical, and, in reducing it to merely a "particular
case" of the laws of "rotary motion," throw much light upon
the significance and working of those laws.

Although not unfamiliar to mathematicians, it may not be

uninteresting to those who have not time to go through the long
preliminary study necessary to enable them to take up with
Poisson this special investigation ;

or whose studies" in mechan-
ics have led them no farther than to the general equations of
"
rotary motion" found in text books, to show how the particu-

lar equations of the gyroscopic motion may be deduced.

In so doing I shall closely follow him
; making however some

few modifications for the sake of brevity and of avoiding the

use of numerous auxiliary quantities not necessary to the limited

scope of this investigation.
The general equations of rotary motion are (see Prof. Bart-

lett's
"
Analytical Mechanics" Equations (228), p. 170) :

(1.)

In the above expressions the rotating body (of any shape)
A B CD (fig. 1) is supposed retained by the fixed point (within
or without its mass) 0. Ox^ Oy and Oz are the three co-ordi-

nate axes, fixed in space, to which the motion of the body is re-

ferred. OcCj, Oy,, O2,, are the three principal axes belonging
to the point 0, and which, of course, partake of the body's
motion. The position of the body at any instant of time is

determined by those of the moving axes.

A
J
-Sand C express the several "moments of inertia" of the

mass with reference, respectively, to the three principal axes

Ox^ Oy^ Oz^\ iV,, i/j and L^ are the moments of the accelerat-

ing forces, and Vx^ Vy, v^, the components of rotary velocity, all

taken with reference to these same axes.

Like lineal velocities, velocities of rotation may be decomposed—that is, a rotation about any single axis may be considered as
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tlie resultant of components about other axes (which may always
be reduced to three rectangular ones) : and by this means, about

whatever axis the body, at the instant we consider, may be

revolving, its actual velocity and axis are determined by a

knowledge of its components v^j Vy, v^, about the principal
axes Ox

, Oi/^ Oz^^ these components being, as with lineal ve-

locities, equal to the resultant velocity multiplied by the cosine

of the angles their several rectangular axes make with the re-

sultant axis.

As the true axis and rotary velocity may continually vary, so

the components Vj;, Vy, v^j in equations (1) are variable functions

of the time.

Fig. 1. -V/^

^,-^,^

xJ^
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sines of the angles made by tlie axes Ox^, Oy^ and Oz^ with
the fixed axes Oz and Oy.

These values are shown to be (vide Bartlett's Mech., p. 172)
^

cos x^ 02= — sin 6 sin q> cos x^ Oyrrrcos 6 cos ip sin 9-- sin V cos (p

cos yj Oz=z-— sin 6 cos q> cos y^ Oy=:cos ^ cos V cos 9)-f-sin y^ sin 9
cos 2;

J
0^= cos ^ cos 0j Oy^rsin cos v

The differential angnlar motions, in the time dt, about the
axes Ox J, Oy^j Oz^^ will be Vj;dtj Vyd% and V;2C?^. We may de-

termine the values of these motions by applying the laws of

composition of rotary motion to the rotations indicated by the

increments of the angles <9, 9 and V-

If 6 and 9 remain constant the increment d^j would indicate

that amount of angular motion about the axis Oz perpendicular
to the plane in which this angle is measured. In the same man-
ner dcp would indicate angular motion about the axis Oz

, ;
while

dd indicates rotation about the line of nodes ON. In using
these three angles therefore, we actually refer the rotation to the
three axes Oz^ Oz^, ON, of which one, Oz, is fixed in space,

another, Oz
, ,

is fixed in and moves with the body, and the third,

ON, is shifting in respect to both.

The angular motion produced around the axes Ox^, Oy^, Oz^,

by these simultaneous increments of the angles 9,
^ and

v^,
will

be equal to the sum of the products of these increments by the

cosines of the angles of these axes, respectively, with the lines

Oz, Oz, and ON
The axis of Oz^ for example makes the angles ^, 0° and 90^

with these lines, hence the angular motion v^ dt is equal (taking
the sum without regard to sign) to cos 6 dip-]- dtp.

In the same manner (adding without regard to signs),

Vxdt=QO^ Xy Oz(iv^+cos (pdd

and Vydt= cos ?/ j
Oz c? v^+ cos (90°+ 9) <^ G-

But if we consider the motion about Oz^ indicated by dqy, posi-

tive, it is plain from the directions in which 9 and v are laid off

on the figure, that the motion cos OdH^ will be in the reverse di-

rection and negative, and since cos 6 is positive c?V^ must be re-

garded as negative, hence

Vzdt=d(p— cos Odip.

The first term of the value of Va;dt, cos x^Ozd^p [since cos
a:;,

Oz

(=— sin 6 sin 9) is negative and c?v is to be taken with the

negative sign] is positive. But a study of the figure will show
that the rotation referred to the axis Ox

, ,
indicated by the first

term of this value, is the reverse of that measured by a positive
increment of 6 in the second, and hence, (as cos 9 is positive,) dd
must be considered negative. Making this change and substi-

tuting the values given of cos x^ Oz, cos y, Oz, and for cos (90°

-hqp),— sin (f,
we have the three equations
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V;rC?^=:siii 6 sin q>dip—cos <pdd\

Vydt=sm cos <pd ip-\'Sm q)dOy (2.)*

Vzdt=d(p— cos 6 dip )

The general equations (1.) are susceptible of integration only
in a few particular cases. Among these cases is that we con-

sider, viz., that of a solid of revolution retained by a fixed point
m its axis of figure.

Let the solid AB CD (fig. 1) be supposed such a solid, of

which Oz
,
is the axis of figure. It will be, of course, a princi-

pal axis, and any two rectangular axes in the plane, through

perpendicular to it, will likewise be principal. By way of de-

termining them, let Ox^ be supposed to pierce the surface in

some arbitrarily assumed E point in this plane. Let G be the

center of gravity (gravity being the sole accelerating force).

The moments of inertia A and B become equal, and equations

(1.) reduce to

Cdv,=
)

Advy^(C-A)v^V:,dt—yaMgdt V (8.)t

Advx-\-{C—A)vyVzdtz=z^yhMgdt )

in which the distance OG of the point of support from the cen-

ter of gravity is represented by y, g is the force of gravity, M
the mass, and a and b stand for the cosines a;, O2 and y^ Oz and
of which the values are (p. 52)

a=z — sin 6 sin 9, bz=z — sin 6 cos cp.

The first equation (3) gives by integration Vz =n, n being an

arbitrary constant
;

it indicates that the rotation about the axis

of figure remains always constant.

Multiplying the two last equations (3) by Vy and v^ respect-

ively and adding the products, we get

A {Vy d Vy -\-Va: d Va:)=:Y Mff {aVy—hvx) dt.

From the values of a and b above, and from those Vx and Vy

(equations 2) it is easy to find

(avy
—

bvx)dt=i —sin 0d6z=d. cos 6'^

substituting this value and integrating and calling h the arbitrary
constant

A {vy ^-{-Vx 2)=:2 yMg cos 6-^h (a)

* To avoid the introduction of numerous quantities foreign to our particular in

vcstigation and a tedious analysis, I have departed from Poisson and substituted the

above simple method of getting equations (2.), which is an instructive illustration

of the principles of the composition of rotary motions.

f See Bartlett's Mech. Equations (225) and (118) for the values of ij Jtfj iVj :

in the case we consider the extraneous force P (of eq. 118) is ^r; the co-ordinates

x',y' of its point of application G (referred to the axes Oxy, Oy^, Oz^,) are zero

and z^=zOG=i/: cosines of a, p and 7 are a, b and c: hence £^=0, Mi=']/aMffy
2^1^—ybMg.



542 J. G. BARNARD ON THE GYROSCOPE.

Multiplying the two last equations (3), respectively, by h and a
and adding and reducing by the value just found of c?.cos 6 and
of Vz, we get

A{hdvy+adVj:)-\-{C-A)nd.Qo^ez:zO (6)

Differentiating the values of a and h and referring to equations

(2) it may readily be verified (putting for v^ its value n) that

dhz=z{yx cos 6— an)dt
daz=z{bn— Vy cos d)dt

and multiplying the first by Avy and the second by Ava;^ and

adding
A(vydb-\-Va;da)z=:An{bvj,; -^avy)dt=z —And. cos 6.

Adding this to equation (Z>),
we get

Ad.{hVy-\-aVx)-\- On d . cos 0^=: 0, the integral of which is

A (bvy-^aVj;)-\-Cn cos 6z=:l
[I being an arbitrary constant), (c)

Eeferring to equations (2) it will be found by performing the

operations indicated, that :

2 . 2 • 2/J^'^V^^^

bvy'{-ava:=z
—sm^d-—

Substituting these values in equations (a) and
(c),

we get

Cn cos 6-A sin^ d~=l
dt

If, at the origin of motion, the axis of figure is simply de-

viated from a vertical position by an arbitrary angle «, in the

plane of xz^ and an arbitrary velocity n is imparted about this

axis alone; then v^ and Vy will, at that instant, be zero, 6=a^
and the substitution of these values in equations (a) and (c) will

determine the values of the constants I and h.

h=— 2 Mff Y cos a

1=: On cos a,

which substituted in the above equations, make them

. dip Cn
sm^ d --—=z—-

(cos o— cos a
)

These together with the last equation (2) which may be writ-

ten, (substituting the value of v^)

dcpz=zndt-{- cos dip (5.)

will, (if integrated) determine the three angles (t,
^ and ^p in

terms of the time t They are therefore the differential equa-
tions of motion of the gyroscope.
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Let NEE' (fig. 1) be a section of tlie solid by the plane ic, y, .

This section may be called the equator. E being some fixed

point in the equator (through which the principal axis Ox,

passes), the angle 9 is the angle EON.
If -A^ is the ascending node of the equator

—that is, the point
at which E in its axial rotation rises above the horizontal plane,
the angle (p must increase from N towards E—that is, d(p (in

equation 5) must be positive and (as the second term of its value

is usually very small compared to the first) the angular velocity
n must be positive. That being the case the value oidq> will be

exactly that due to the constant axial rotation ndt^ augmented
by the term cos OdH^^ which is the projection on the plane of the

equator of the angular motion dip of the node. This term is an

increment to ndt when it is positive, and the reverse when it is

negative. In the first case, the motion of the node is considered

retrograde
—in the second, direct.

The first member of the second equation (4) being essentially

positive, the difference cos ^— cos « must be always positive—
that is, the axis of figure Oz

,
can never rise above its initial an-

gle of elevation «. As a consequence -7- [in first equation (4)]

must be always positive. The node N, therefore, moves always
in the direction in which V is laid off positively, and the motion
will be direct or retrograde, with reference to the axial rotation,

according as cos^ is negative or positive
—that is, as the axis

of figure is above or below the horizontal plane. In either case

the motion of the node in its own horizontal plane is always
progressive in the same direction. If the rotation n were re-

versed, so would also be the motion of the node.

If this rotation n is zero, -7- must also be zero and the second

equation (4) reduces at once to the equation of the compound

pendulum, as it should. Eliminating
~ between the two equa-

tions (4) we get

. ^^dd^ 2Mgy ^.\^ C'-^n'^ , .
^-, , n \

sin2 ^—— z=z f-^ fsm^ a —
(cos — cos a) | (cos ^— cos a).

The length of the simple pendulum which would make its

oscillations in the same time as the body (if the rotary velocity
A

n were zero) is
t^^.*

If we call this X and make for simplicity

* The length of the Bimple pendulum is (see Bartlett's Mech,, p. 252) X= — —

The moment of inertia A=M(kj^ +7*); hence -,-7- =x.
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—
7:r-=-^ the above equation becomes

sin 20^ =z^ [sin
2 ^- 2 192 (cos ^-cos a)] (cos 6»-cos a) (6)

and the first equation (4) becomes

^\n2 0-^—2^ f (cos^-cosa). (7.)

Equation (6) would, if integrated, give the value of 6 in terms

of the time
;
that is, the inclination which the axis of figure

makes at any moment with the vertical
;
while eq. (7) (after sub-

stituting the ascertained value of 0) would give the value of <//

and hence determines the progressive movement of the body
about the vertical Oz.

These equations in the above general form, have not been

integrated ;'^
nevertheless they furnish the means of obtaining all

that we desire with regard to gyroscopic motion, and m particu-
lar that self-sustaining power, which it is the particular object
of our analysis to explain.

In the first place, from eq. (6), by putting
—

equal to zero, we

can obtain the maximum and minimum values of 6. This diff.

co-efficient is zero, when the factor cos <9— cos a=:0, that is, when
<9=a; and this is sl maximum, for it has just been shown from

equations (4) that q cannot exceed «. It will be zero also and
a minimum,^ when

sin2 19— 2i?2 (cos
6 - cos a)z=0

or cos 6=1 - (92 -fVl -f-2 p~cos a-ff^. (g.)

(The positive sign of the radical alone applies to the case, since

the negative one would make a greater angle than «.)

It is clear that (« being given) the value of depends on (9

alone, and that it can never become zero unless ^ is zero
;
and

as long as the impressed rotary velocity n is not itself zero (how-
ever minute it may be), (5 will have a finite value.

It

Thus, however rninute niay be^_the velocity of rotation, it is

sufiicient to prevenFthe axis of rotation from faUin(f to a vertical

I position .

The self-sustaining power of the gyroscope when very great
velocities are given is but an extreme case of this law. For, if §
is very great, the small quantity 1— cos ^ a maybe subtracted
from the quantity under the radical (eq. 8) without sensibly
idtering its value, which would cause that eq. to become

cos z= cos a.

* The integration may be effected by the use of elliptic functions: but the pro-
cees is of no interest in this discussion.

f It is easy to show that this value of 6 belongs to an actual minimum
;
but it is

f?carcely worth while to introduce the proof.
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That is, when the impressed velocity n, and in consequence ^
is very great, the minimum value of 6 differs from its maximum
a by an exceedingly minute quantity.
Here then is the result, analytically found, which so surprises

the observer, and for which an explanation has been so much
sought and so variously given. The revolvin^y body, though m

^

solicited by gravity, does not visibly fall. 1 1
\^^'-^^'^5>

Knowing this fact, we may assume that the impressed velocity
n is very great, and hence cos <9— cos « exceedingly minute, and
on this supposition, obtain integrals of equations (6) and (7),

which will express with all requisite accuracy the true gyroscopic
motion. For this purpose, make

6=ia— M, ddzzi—du

in which the new variable u is always extremely minute, and is

the angular descent of the axis of figure below its initial eleva-

tion.

By developing and neglecting the powers of u superior to the

square, we have

siu^ 6 =. sin2 a— w sin 2a -|- u^ cos 2a *

cos ^—cos oczizusmoc^^u^ cos a

substituting these values in eq. 6 we get

J "dt- 7 . f
I V2wsina— t^2^(>QS«-[-4/^2j

i

|9 having been assumed very great, cos a may be neglected in

comparison with 4:^^^^ and the above may be written

J
I y^ ^f —

^
/ T\

V 2w sin a —• 4/52^2 V )

Integrating and observing that u = o, when t = o, we have

* By Stirling's theorem,

in which IT, U\ TJ" &c. are the values of/ (m) and its diflferent co-efficients when u
is made zero.

Making/ (w) =sin2 (»—«), and recollecting that sin lu=2 sin u cos u and cos 2w=
cos*w — sin2 M, we get the value of sin^

;
and making /(w).= cos(a— w)-cosa

the value in text of cos B — cos a is obtained.

f Eq. 6 may be written

•K d9^
, (cos Q - cos a)2

-^=2(cos0-cosa)-4/3^ ,i„. ^
\

By substituting the values just found, of dB, sin^ Q and cos 9 — cos a and per-
forming the operations indicated, neglecting the higher powers of ii, (by which
fcOS ^ —" COS Ot) I

'^Q reduces simply to w^) and deducing the value ^ (Z<, the expres-

sion in the text, is obtained.

No. 9.—[Vol. Ill, No. 2.]—35.
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17 ,
1 r , 4.s^"l.

^^.^=-.arc|-cos=l--^_J.

or, (since cos 2a = 1—2 sin^ a)

?*=
^sinasin2^ l^-.^j (9.)

Putting a— t* in place of (equat. 7) neglecting square of u, we get

from which, observing that V = 0, when ^=0

These three expressions (9), (10), (11), represent the vertical

angular depression
—the horizontal angular velocity

—and the

sin a .

du
, . , ^ 2/3

4«2
„ /

- may be put m the form -:— .* V2m sin a -4/32^2
'' ^ sma

J
sin a

sin a
Call -T^ =R, and the integral of the 2d factor of the above is the arc whose radius

is R and versed sine is u
;
or whose cosine is R — ^i

;
or it is R times the arc whose

u
cosine 1 — ^ with radius unity. Substituting the value of R in the integral and

23 1"^

multiplying by the factor 7
— we get the value of -^ t, of the text.

f In eq. (7) if we divide both members by sin^ 9, and, in reducing the fraction

cos 9 - cos a
r---r— > use the values already found and neglect the square, as well as higher

powers u, (which may be done without sensible error owing to the minuteness of w,

though it could not be done in the foregoing values of dt and t, since the co-efficient

4^2 in those values, is reciprocally great, as u is small) the quotient will be simply
u

sin a

Substituting the value of u and dividing out sin a w^e get the value of — in

the text.

The integral of sin 2
13 |

5^ < <ft results from the formula /* sin2 (p<;q)= l(p —

1 . 11
- am 2(p, easily obtained by substituting for sin 2

<p,
its value -—- cos 2(p
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extent of horizontal angular motion of the axis of

figure after any time t.*

The first two will reach their respective maxima and
minima when

ir fl,

sin^J^t«4
and =0| or v^ien

"^^"r^Vq
^^^

These values of t in equation (11 ) give

Hence, counting from the commencement of motion \f\^en

t, u, J^ and ^ are all zero, we have the following

series of corresponding values of these variables

which correspond to the moment of greatest depressiont
when u and

^jf.
are maxima, and

when, it appears (u being the zero), the axis of figure
has regained its original elevation and the horizontal

velocity is destroyed.
All these vcilues are (owing to the assumed large value

of
/$ ) very minute. If we suppose the rotating velocity

n=»100ir or 100 revolutions per second, the maximum of H
(with an instrument of ordinary proportions) would be
a fraction of a minute of arc, and the period of undu-
lation but a fraction of a second.

Hence the horizontal motion about the point of support
will be exceedingly slow compared v;ith the axial rota-
tion of the disk expressed by a..

If, in equations (9) and (lO), we increase t indefi-

nitely, we will find but a repetition of the series of
values already found, they being recurring functions of
the time.
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v/e see then the revolving body does not in fact main-
tain a uniform unchanging elevation, and move about its

point of support at a uniform rate, (as it appears to do)
But the axis of figure generates what may be called
s- corrugated cone , and any

* The assumption that-y^-O iriien t. is zero supposes that
the initial position of the node coincides with the
fixed axis of x. In my subsequent illustrations and

analysis I suppose the initial position to be at 90°

therefrom, which would require to the above value of

vA, the constant -'TT to be added. The horizontal^ Z

angular motion of the axis of figure is the same as
that of the node.
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point it would describe an undulating curve (fig«2)
whose superior culminations a, a , a , &o, , are
CUSPS lying in the same horizontal plane, eind whose

Fig. 2

sagittae cb, ^y , &c. , are to the amplitudes aajfl.a*

If the initial elevations is 90^, this ratio is as
the diajneter to the circumference of the circle : a

property v/hich indicates the cycloid *

Assuming X »90° and sin« =1, equations (9) and (10 )

will give, by elimination of sin^^ ^^ f.

dLi- -x^ x/3;i«.

substituting this value in eq. ( d) we get

the differential equation of the cycloid generated by
the circle whose diameter is—4— -

In this position of the axis, both the angles u and

1/^
are arcs of great circles described by a point of

the axis of figure at a units distance from 0^, and

owing to their minuteness may be considered as
rectilinear co-ordinates.

If
c{

is not 900, the sagittae b£=/7isin<\; but then-,

while the angular motion is the same, the arc
described by the same point of the axis v/ill be that



tVA "'
A v^
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•
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of a small circle « whose actual length will likewise

be reduced in the ratio of 1 : since* The curve is

therefore a cycloid in all circumstances; and the

axis of figure moves as if it were attached to the
circumference of a minute circle whose dieimeter is

•r^ sin ^ , which rolled along the horizontal circle,

aa^a',' about the verticeuL throughthe point of support.
The centre je of this little circle moves with

uniform velocity. The first term of the value of y
(equation ll) is due to this uniform motion : it

may be called the mean precession *



i^o

:.'^''Ci:o .>5:. •-.; .;..:
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The second term is due to the circular motion of the axis

about this centre, and, combined with the corresponding values

of u^ constitutes what may be called the nutation.

These cycloidal undulations are so minute—succeed each other

with such rapidity, (with the high degrees of velocity usually

given to the gyroscope,) that they are entirely lost to the eye,

and the axis seems to maintain an unvarying elevation and move
around the vertical with a uniform slow motion.

It is in omitting to take into account these minute undulations

that nearly all popular explanations fail. They fail, in the first

place, because they substitute, in the place of the real phenome-
non, one which is purely imaginary and inexplicable^ since it is

in direct variance with fact and the laws of nature
;

—and they

fail, because these undulations—(great or small, according as the

impressed rotation is small or great) furnish the only true clue

to an understanding of the subject.
^The fact is, that the phenomenon exhibited by the gyroscope

which* is so striking, and for which explanations are so much

sought, is only a particular and extreme phase of the motion ex-

pressed by equations (6) and (7)
—that the self-sustaining power

is not absolute^ but one of degree
—^that however minute the axial

rotation may be, the body never will fall quite to the vertical
;

—
however great, it cannot sustain itself without any depression.

I have exhibited the undulations, as they exist with high veloci-

ties,
—when they become minute and nearly true cycloids ;

with

low velocities, they would occupy (horizontally) a larger portion
of the arc of a semi-circle, and reach downward approximating,
more or less nearly, to contact with the vertical : and, finally^

when the rotary velocity is zero, their cusps are in diametrically

opposite points of the horizontal circle, while the curves resolve

themselves into vertical circular arcs which coincide with each

other, and the vibration of the pendulum is exhibited. All

these varieties of motion, of which that of the pendulum is one

extreme phase and the gyroscopic another, are embraced in

equations (6) and (7) and exhibited by varying § from to high
values, though, (wanting general integrals to these equations)
we cannot determine, except in these extreme cases, the exact

- elements of the undulations. The minimum value of may
however always be determined by equation (8).

If we scrutinize the meaning of equations (6) and (7), it will

be found that they represent, the first, the horizontal angular

component of the velocity of a point at units distance from 0,
and the second, the actual velocity gf such point.*

* In more general terms equations (4) express, the first, that the moment of the

quantity of motion about the fixed vertical axis Oz remains always constant : the

second that the living forces generated in the body (over and above the impressed
axial rotation) are exactly what is due to gravity through the height, h.

Both are expressions of truths that might have been anticipated ;
for gravity
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For sin ^
-77

is the horizontal, and -7- the vertical, component

of this velocity. Calling the first t'A, and the second v^, and
the resultant Vg^ and calling cos ^— cos «, (which is the true

height of fall) A, those equations may be written

Cn h
''= A ^6 <^)

This velocity Vs (as a function of the height of fall) is exactly
that of the compound pendulum, and is entirely independent of the

axial rotation n. Hence, (as we might reasonably suppose) ro-

tary motion has no power to impair the work of gravity through
a given height, in generating velocity ;

but it does have power to

change tJie direction of that velocity. Its effect is precisely that of

a material undulatory curve, which, deflecting the body's path
from vertical descent, finally directs it upward, and causes its

velocity to be destroyed by the same forces which generated it.

And it may be remarked, that, were the cycloid,we have de-

scribed, ^wc/i a material curve, on which the axis of the gyroscope
rested, without friction and without rotation, it would travel along
this curve by the effect of gravity alone, (the velocity of descent

on the downward branch carrying it up the ascending one,) with

exactly the same velocity that the rotating disk does, through the

combined effects of gravity and rotation.

Equation {a) expresses the horizontal velocity produced by
the rotation.

If we substitute its value in the second, we may deduce

de__ \2g C-^n^ h^

If we take this value at the commencement of descent, and

before any horizontal velocity is acquired, (making h indefinitely

small), the second term under the radical may be neglected, and

the first increment of descending velocity becomes ^ h, pre-

cisely what is due to gravity, and what it would he were there no
rotation.

Hence the popular idea that a rotating body offers any direct

resistance to a change of its plane, is unfounded. It requires as

little exertion of force (in the direction of motion) to move it

cannot increase the moment of the quantity of motion about an axis parallel to

itself; while its power of generating living force by working through a given

height, cannot be impaired.
Had we considered ourselves at liberty to assume them, however, the equations

might have been got without the tedious analysis by which we have reached them.



J. G. BARNARD ON THE GYROSCOPE. 551

from one plane to another, as if no rotation existed
;
and (as a

corollary) as little expenditure of work.
But deflecting forces are developed, by angular motion given

to the axis, and normal to its direction, which are very sensible,

and are mistaken for direct resistances. If the extremity of the

axis of rotation were confined in a vertical circular groove, in

which it could move without friction
;
or if any similar fixed re-

sistance, as a material vertical plane, were opposed to the de-

flecting force, the rotating disk would vibrate in the vertical

plane, as if no rotation existed. Its equation of motion would

become that of the compound pendulum, —-=
V^h, What

then is the resistance to a change of plane of rotation so often

alluded to and described'/ A
mzinomS^lentirely .

The above may be otherwise establisEeJ Ifin equations (3)
we introduce in the second member an indeterminate horizontal

force, g\ applied to the centre of gravity, parallel to the fixed

axis of
?/,

and contrary to the direction in which, in our figure,
we suppose the angle v to increase, the projections of this force

on the axes Ox^^ Oy^^ will be a'g' and h' g' and the last two of

these equations will become, (calhng cosines x^Oy and y^Oy^
a' and

6',)

Advy—{C—A)nVxdt^^yM(ag-ira'g')dt
AdVa:+\C—A)nVydt=-yM(bg-{-h'g')dt

Multiplying the first by Vy and the second by v^ and adding
A (vydvy -^Vxdvx )=zyM\g (a Vy^hvj;)d t-\-g' (a' Vy—h'vj;)d t~\.

But (avy—bva;)dt}iSiS been shown (p. 53) to be =d.cosO^—and

by a similar process it may be shown that {a'Vy
—
'b'Vx)dt=

=d. (sin cos
V'). (For values of a' and h\ see p. 52.)

Let us suppose now that the force g' is such that the axis of

the disk may be always maintained in the plane of its initial po-
sition xz. The angle v^ would always be 90°, dip=0, and c?.(sin^
cos y^)=0. That is, the co-efficient of the new force g' becomes

zero; and the integral of the above equation is as before (p. 54),

A(Vy2+Va;^)=2YMg cosd-^h. ,

But the value of Vy^+v^^ likewise reduces (since -^=0) to
-7-^

and the above becomes the equation of the compound pendulum.
dO^ 2Yj}fg 2, a

(g) 7772^^
—

A
— ^^^

^"^~^^^X ^^^^
^—cos a), (h being determined.)

This is the principle just before announced, that, with a force so

applied as to prevent any deflection from the plane in which

gravity tends to cause the axis to vibrate, the motion would be

precisely as if no axial rotation existed.
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To determine the force of g' ; multiply tlie first of preceding
equations by J, and the second by a, and add the two, and add
likewise A{vydh+Vxda)=—AndQOQd (see p. 54) and we shall

get

Ad{hVy-\-aVx)-^Cndco^d=:yMg'{a'h— ah')dt.

By referring to the values of a, a', h, h\ and performing the

operations indicated and making cos ^=o, sin v=l, the above
becomes,

Ad{bvy-\-aVa:)-\-Ond cos 0=YMg^ sin 6 dt.

But the value of {hvy+av:^) (p. 54) becomes zero when --^^=0.

TT / OndcosO Cn dd ^Hence g :=—% ^^
—= — *

yM&mOdt yMdt

The second factor — is the angular velocity with which the axis

of rotation is moving.
Hence calling Vs that angular velocity, the value of the deflect-

ing force^ g' may be written (irrespective of signs),

^-^^^- (^)

that is, it is directly proportional to the axial rotation n, and to

the angular velocity of the axis of that rotation. By putting for

0, Mk^ (in which h is the distance from the axis at which the
mass M^ if concentrated, would have the moment of inertia, (7,)

the above takes the simple form

In the case we have been considering above, in which g' is sup-

posed to counteract the deflecting force of axial rotation, the angu-

lar velocity Vs ,ot—j- (equation g) is equal to hr (^^^ ^ ~ ^^^ ")•

But in the case of the free motion of the gyroscope, this de-

flecting force combines with gravity to produce the observed
movements of the axis of figure.

If, therefore, we disregard the axial rotation and consider the

body simply as fixed at the point 0, and acted upon, at the cen-

ter of gravity, by two forces—one of gravity, constant in inten-

sity and direction—the other, the deflecting force due to an axial

C
rotational, whose variable intensity is represented hj—=rz.nvsj

* The effect of gravity is to diminish 9 and the increment dd is negative in the
case we are considering. Hence the negative sign to the value of ^', indicating that

the force is in the direction of the positive axis of y, as it should, since the tendency
of the node is to move in the reverse direction.
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and whose direction is always normal to the plane of motion of

the axis
;
we ought, introducing these forces, and making the

axial rotation n zero, in general equations (8),
to be able to de-

duce therefrom the identical equations (4) which express the mo-
tion of the gyroscope.

• a

This I have done
;
but as it is only a Verification of what has

previously been said, I omit in the text the introduction of the

somewhat difficult analysis.*

Equation (5) becomes (in the case we consider), by integration,

(p=^nt^\^^J cos a

which, with the values of u and V already obtained, determines

completely the position of the body at any instant of time.

Knowing now not only the exact nature of the motion of the

gyroscope, but the direction and intensity of the forces which

* To introduce these forces in eq, (3) I observe, first, that as both are applied at

O (in the axis Oz^ the moment L^ is still zero and the first eq. becomes, as before,

CdVg = or Vg=: const.

And as we disregard the impressed axial rotation, we make this constant (or v^ )

zero.

Cn
The deflecting force —^ Vg (taken with contrary sign to the counteracting force

Cn d9 Cn d-^

just obtained) resolves itself into two components
—t> -jt and — —^ -jr sin 9, the

first in a horizontal, the second in a vertical plane, and both normal to the axis of

figure.
The second is opposed to gravity, whose component normal to the axis of figure,

is g sin 9.

Hence we have the two component forces (in the directions above indicated),

^ Cnd^
,

/ Cn c?^^ \

'Wf'dl ^iff--^7irr-^] sine.
/ Cnd^\ .

^[^-WdF)
'''

I Cn dA,\ ,

,^ / Cn d-^\ , ^ . ^^Cn d^

These moments with reference to the axes of y j and x j will be

.

"

^ / Cn dA,\ , ^ ,^ C'n (f9

-sm(P7Jf \9-;7M-ir\ 8me-cos(P7if^ ^, and

Hence equations (3) (making v^ zero, and putting for M^ and Ni the above values,
and recollecting the values of a and b, (p. 53) become

d-^ d^ 1

Advy = a<yMgdt
— aCn -^ dt— Cn cos ^~i7dt

KdVj.=— bjMgdt-\-bCn -^ dt— Cn sin (p ^ <ft

(0

Multiplying the equations severally by Vy and v^, adding and reducing (as on

p. 53) we get

A{vydvy\- Vj.dVj;)=z jMgd .cos^— Cn-yrd. cos 9—Cn d^ ( Vy cos (p+v* sin (p)

But Vy cos (p-f-Va; sin (p will be found equal to sin 9 -jt (by substituting the values
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produce it, it is not difficult to understand why such a motion
takes place.

Fig. 1 represents the body as supported by a point within its

mass
;
but the analysis applies to any position, in the axis of

figure, within or without
;
and figs. 3 and 4 represent the more

familiar circumstances under which the phenomenon is ex-

hibited.

Let the revolving body be supposed (fig. 3, vertical projection),
for simplicity of projection, an exact sphere^ supported by a

point in the axis prolonged, at 0, which has an initial elevation

a greater than 90°. Fig. 4 represents the projection on the hor-

izontal plane xy\ the initial position of the axis of figure (being
in the plane of xz) is projected in Ox.

Ox^ Oy^ Oz^ are the three (fixed in space) co-ordinate axes, to

which the body's position is referred.

In this position, an initial and high velocity n is supposed to

be given about the axis of figure Os
j ,

so that the visible por-
tions move in the direction of the arrows 5, h\ and the body is

left subject to whatever motion about its point of support 0,

gravity may impress upon it. Had it no axial rotation, it would

immediately fall and vibrate according to the known laws of the

pendulum. Instead of which, while the axis maintains (appar-

ently) its elevation «, it moves slowly around the vertical Oz, re-

ceding from the observer, or from the position ON" towards ON.
It is self-evident that the first tendency (and as I have likewise

proved, the first effect) of gravity is to cause the axis Oz^ to de-

scend vertically, and to generate vertical angular velocity. But
with this angular velocity, the deflecting force proportional to

that velocity and normal to its direction, is generated, which

pushes aside the descending axis from its vertical path.
—But as

the direction of motion changes, so does the direction of this

force—always preserving its perpendicularity. It finally acquires

of vy and v^) ;
hence the two last terms destroy each other, and the above equation

becomes identical with equation (a) from which the 2d eq. (4) is deduced.

Multiplying the 1st equation \i) by coscp and the second by sin(p and adding,
we get,

^(cos <pdvy -f- sin (pdv^)
= - Cnd 9.

By differentiating the values of Vy and v^, performing the multiphcations, and

substituting for d(p its value, cos 9 d-^, (proceeding from the 3d equation (2) when

?;^=0) the above becomes

/ J2^l. d-^ d^\ ^ d9
^

['^
«
-dl^ +2 '^^ s

'at ^)=-(^^w
Multiplying both members by sin dt, and integrating, the above becomes

,
d-^ Cn

the same as the 1st equation (4) when the value of the constant I is determined.
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an intensity and upward direction adequate to neutralize the

downward action of gravity ;
but the acquired downward velocity

still exists and the axis still descends at the same time acquiring
a constantly increasing horizontal component, and with it a still

increasing upward deflecting force. At length the descending

Fig. 3.

&^

cuiiipv^nent of velocity is entirely destroyed
—the path ot the

axis is horizontal
;
the deflecting force due to it acts directly

contrary to gravity, which it exceeds in intensity, and hence
causes the axis to commence rising. This is .the state of things
at the point h (fig. 2). The axis has descended the curve a b, and
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has acquired a velocity due to its actual fall a c?; but this velocity
has been deflected to a horizontal direction. The ascent of the

branch h a' is precisely the converse of its descent. The acquired
horizontal velocity impels the axis horizontally, while the de-

flecting force due to it (now at its maximum) causes it to com-
mence ascending. As the curve bends upward, the normal
direction of this force opposes itself more and more to the hori-

zontal, while gravity is equally counteracting the vertical, veloc-

ity. As the horizontal velocity at h was due to a fall through the

height a
c?, so, through the medium of this deflecting force, it is

just capable of restoring the work gravity had expended and

lifting the axis back to its original elevation at a', and the cy-
cloidal undulation is completed, to be again and again repeated,
and the axis of figure, performing undulations too rapid and too

minute to be perceived, moves slowly around its point of sup-

port.

Eeferring to fig. 8, the equator of the revolving body (a plane

perpendicular to the axis of figure and through the fixed point 0,)
would be an imaginary plane E^ E^. Its intersection with the

horizontal plane oi xy would be the line of nodes Aj JSf'. In
the position delineated, the progression of the nodes is direct.

For, at the ascending node A, any point in the imaginary plane
of the equator (supposed to revolve with the body) would move

upwards in the direction of the arrow a, while the node moves
in the same direction from (of the arrow a'). Were the axis of

Fig. 5.

figure below the horizontal plane, (fig. 5) the upward rotation of

the point would be from to E^ (as the arrow a), while the pro-

gression of the node (in the same direction as before as the arrow

a') would be the reverse, and the motion of the node would be

retrograde
—

yet in both cases the same in space.
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Fig. 6.

As the deflecting force of rotary motion is tlie sole agent in

diverting the vertical velocity produced by gravity from its

downward direction, and in producing these paradoxical effects
;

and as the foregoing analysis while it has determined its value,
has thrown no light upon its origin, it may be well to inquire
how this force is created.

Popular explanations have usually turned upon the deflexion

of the vertical components of rotary velocity by the vertical an-

gular motion of the axis produced by gravity. In point of fact,

however, both vertical and horizontal components are deflected,
one as much as the other

;
and the simplest way of studying the

effects produced, is to trace a vertical projection of the path of a

point of the body under these combined motions. For this pur-

pose conceive the mass of the revolving disk concentrated in a

single ring of matter of a radius h due to its moment of inertia

C=Mh^^ (see Bartlett Mech. p. 178) and, for simplicity, suppose
the angular motion of the axis to take place around the centre

figure and of gravity G.

Let AB \)Q such a ring

(supposed perpendicular to

the plane of projection) re-

volving about its axis of fig-

ure G
(7,

while the axis turns

in the vertical plane about the

same point Q. Let the rota-

tion be such that the visible

portion of the disk moves

upward through the semi-cir-

cumference, from B io A^
while the axis moves down-
ward through the angle d to

the position G C. The point
-5, by its axial rotation alone,
would be carried to A

;
but the plane of the disk, by simultane-

ous movement of the axis, is carried to the position A' B' and
the point ^arrives

at B' instead of A, through the curve pro-
jected mBGB' The equation of the projection, in circular
lunctions, is easily made; but its general character is readilv
perceived, and it is sufficient to say, that it passes through the

^Tl; tT i*^ tangents at^ andB are perpendicular to ^^ "

f^ A -f 'T^^4 r^* i^s concavity, throughout its whole length,turned to the right The point A descends on the other, or re-
mote side of the disk, and makes an exactly similar curve AG A'
with its concavity reversed.
The centrifugal forces due to the deflections of the verticalmotions are normal to the concavities of these curves

; hence, on
the side of the axis towards the

ejp, they are to the
left, and on



558 J. G. BARNARD ON THE GYROSCOPE.

the opposite or further side, to the right^ (as the arrows h and a.)
Hence the joint effect is to press the axis G (7 from its vertical

plane GGG'^ horizontally and towards the eye. Eeverse the di-

rection of axial rotation and the curves A A' and BB will be
the same, except that A A' would be on the wear, and BB on
the remote side of the axis G

(7,
and the direction of the result-

ing pressure will be reversed.

A projection on the horizontal plane would likewise illustrate

this deflecting force and show at the same time that there is no
resistance in the plane of motion of the axis, and that the whole
effect of these deflexions of the paths of the different material

points, is a mere interchange of living forces between the different
material points of the disk ; but it is believed that the foregoing
illustration is sufficient to explain the origin of this force, whose
measure and direction I have analytically demonstrated.

It may be remarked, however, that the intensity of the force

will evidently be directly as the velocities gained and lost in the
motion of the particles from one side of the axis to the other

;

or as the angular velocity of the axis, and as the distance, Jc,
of the

particles from that axis. It will also be as the number ofparticles
which undergo this gain and loss of living force in a given time

;

or as the velocity of axial rotation. Considered as applied nor-

mally at G to produce rotation about any fixed point in the

axis, its intensity will evidently be directly as the arm of lever k,

and inversely as the distance of G from
(/). Hence the meas-

ure of this force already found, from analysis, g'=— nvs.

In the foregoing analysis, the entire ponderable mass is sup-

posed to partake of the impressed rotation about the axis of fig-

ure Oz
1 ;

and such must be the case, in order that the results we
have arrived at may rigidly apply. Such, however, cannot be
the case in practice. A portion of the instrument must consist

of mountings which do not share in the rotation of the disk.

It is believed the analysis will apply to this case by simply in-

cluding the whole mass, in computing the moment of inertia A
and the mass M, while the moment G represents, as before, that

of the dish alone.

In this manner it would be easy to calculate what amount of
extraneous weight (with an assumed maximum depression u), the

instrument would sustain, with a given velocity of rotation.

The analogy between the minute motions of the gyroscope
and that grand phenomenon exhibited in the heavens,

—the
"
precession of the equinoxes"

—is often remarked. In an ulti-

mate analysis, the phenomena, doubtless, are identical
; yet the

immediate causes of the latter are so much more complex, that

it is difficult to institute any profitable comparison.
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At first sight, the undulatory motion attending the precession,
known as

" nutation" (nodding) would seem identical with the

undulations of the gyroscope. But the identity is not easily indi-

cated
;
for the earth's motion of nutation is mainly governed by the

moon, with whose cycles it coincides
;
and the solar and lunar

precessions and nutations are so combined, and affected by causes

which do not enter into our problem, that it is vain to attempt

any minute identification of the phenomena, without reference

to the difficult analysis of celestial mechanics.

On a preceding page, I said that a horizontal motion of the

rotating disk around its point of support, without descending

undulations, was at variance with the laws of nature. This as-

sertion applied however only to the actual problem in hand, in

which no other external force than gravity was considered, and
no other initial velocity than that of axial rotation.

Analysis shows, however, that an initial impulse may be ap-

plied to the rotating disk in such a way that the horizontal mo-
tion shall be absolutely without undulation. An initial horizon-

tal angular velocity such as would make its corresponding de-

flective force equal to the component of gravity, g sin
(9,

would
cause a horizontal motion without undulation.

If the axial rotation n^ as well as the horizontal rotation, is

communicated by an impulsive force, analysis shows that it may
be applied in any plane intersecting the horizontal plane in the

line of nodes ; but if applied in the plane of the equator (where
it can communicate nothing but an axial rotation n), or in the

horizontal plane, its intensity must be infinite.

My announced object does not carry me further into the con-

sideration of the gyroscope than the solution of this peculiar

phenomenon, which depends solely upon, and is so illustrative

of, the laws of rotary motion.

If I have been at all successful in making this so often ex-

plained subject more intelligible
—in giving clearer views of some

of the supposed effects of rotation, it has been because I have
trusted solely to the only safe guide in the complicated phenom-
ena of nature, analysis,

[The foregoing analysis of the phenomana of the Gyroscope, by Major Barnard,

of the Corps of Engineers of the United States Army, and late Superintendent of

the Military Academy at West Point, is inserted in this Journal, although it will also

appear in the "American Journal of Science and Art" for July, because many of

our readers have become interested in the subject from the articles which have

already appeared in our pages, and because we have been asked for a more scientific

explanation of what has been called the
self-sustaining power in the rotary disc \IL

The length of the paper has crowded many articles of educational intelligence into ' '
•

the next number. Ed.]
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The following patterns of Gyroscopes can be safely sent by Express to any one

remitting the price :
—

No. 1. Gyroscope of Iron, simplest form, $2.00"
2.

" " Brass " "
3.00

3.
" " "

sphere in place of wheel, . . . 3.50

4.
" " " with lever and weight, 4.00

5.
" " " with socket and arms, 5.00

6.
" " "

hung on gymbals, 7.00

7.
" " " with three concentric rings, (next page,) 8.00

8.
" "

Rings of brass with lever & weight large size, 10.00

Nos. 5, 7, and 8, are b^t for Schools and Colleges.
Address at Hartford, Conn., F. C. Brownell, Secy." "

Chicago, 111., Talcott & Sherwood.
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XVI. EDUCATIONAL MISCELLANY.

ON THE MOTION OF THE GYROSCOPE AS MODIFIED BY THE RETARDING

FORCES OF FRICTION, AND THE RESISTANCE OF THE AIR*.

WITH A BRIEF ANALYSIS OF THE TOP. O^^^c^lJi^C "

BY MAJOE J. G. BAENAED, A. M.

Corps of Engineers U. S. A.

In a previous paper (see article in this Joumal for June,

1857, to wMcli this paper is intended to be supplementary,)
I have investigated the ''Self-sustaining power of the Gyro-

scope" in the light of analysis. From the general equations
of "Eotary motion" I have deduced the laws of motion for

the particular case of a solid of revolution moving about a fixed

point in its axis of figure, (or the prolongation thereof). I

have shown that such a body, having its axis placed in any
degree of inclination to the vertical, and having a high rotary
motion about that axis, will not, under the influence of grav-

ity, sensibly fall ; but that any point in the. axis will describe

"an undulating curve whose superior culminations are cusps

lying in the same horizontal plane ;" that this curve approaches
more and more nearly to the cycloid, as the velocity of axial

rotation is greater ;
that when this velocity is very great the

undulations become very minute and " the axis of figure per-

forming undulations too rapid and too minute to be perceived,
moves slowly about its point of support." I have shown how
the direction and velocity of this gyration are determined by the

direction and velocity of axial rotation and the distance of the

center of gravity of the figure from the point of support, and
that the remarkable phenomenon exhibited by the gyroscope is

but a particular case due to a very high velocity of axial rotation,
of the general laws of motion of such a body as described,
which embrace the motion of the pendulum in one extreme and
that of the gyroscope in the other, and that intermediate between
these two extreme cases (for moderate rotary velocities) the un-

dulations of the axis, will be large and sensible.

I have likewise shown that whenever, to the axis of a rotating
solid, an angular velocity is imparted, a force which I have
called "

the deflecting force^"* acting perpendicular to the plane of

motion of that axis, is developed, whose intensity is proportional,
to this angular velocity, and likewise to the rotary velocity of

the body ;
and that it is this deflectingforce which is the imme-

diate sustaining agent, in the gyroscope.
In the above deductions of analysis is found the full and com-

plete solution of the "
self-sustaining power of the gyroscope."

To make the character of the motion indicated by analysis,
No. 11.—[IV., No. 2.]—34.
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sensible to the eye, it is only necessary to attach to the ordinary
gyroscope, in the prolongation of the axis, an arm of five or six
inches in length, and having an universal joint at its extremity,
and to swing the instrument as a pendulum ; or, the extremity
of an arm of such a length may be rested in the usual way,
upon the point of the standard, when, with the centre of gyra-
tion removed at so great a distance from the point of support,
the undulatory motion becomes very evident.

But it cannot fail to be observed that the motion preserves
this peculiar feature but for a very short period. The undula-
tions speedily disappear; instead of periodical moments of rest

(which the theory requires at each cusp) the gyratory velocity
becomes continuous^ and nearly uniform and horizontal; audit
increases as the axis (owing to the retarding influences of friction

and the resistance of the air) slowly falls. In short, the axis
soon seems to move upon a descending spiral described about a
vertical through the point of support.
The experimental gyroscope, in its simplest form consists of

two distinct masses, the rotating disk, and the mounting (or ring
in which the disk turns). The point of support in the latter,

though it gives free motion about a vertical axis, constrains

more or less, the motion of the combined mass about any other.

The rotating disk turns at the extremities of its axle, upon
points or surfaces in the mass of the mounting, with friction ; it

is rare, too, that the point of support, of the mounting, is ad-

justed in the exact prolongation of the axis of the disk.

Without attempting to subject to analysis causes so difficult

to grasp as these, I shall first attempt to show, by general con-

siderations, what would be the immediate influence of the re-

tarding forces of friction and the resistance of the air upon our
theoretical solid

;
and then point out the further effect due to the

discrepancies of figure, above indicated. Leaving out of con-

sideration the minute effect of friction at the point of support,
these forces exert their influence, mainly in retarding the rotary

velocity of the disk. Friction—at the extremities of the axle of
the disk, and the resistance of the air, at its surface, are power-
ful enough to destroy entirely in a Yerj few minutes, the high
velocity originally given to it. It is in this way, mainly, that

they modify the motion indicated by analysis.
If the rotary velocity remained co?25^ar2Awhile the axis made one

of the little cycloidal curves aba', (fig. 1) the deflecting force

would be just sufficient, as I have shown (p. 556 of the article

cited) to lift the axis back to its original elevation a', and to

destroy, entirely, the velocity it had acquired through its fall cb.

If, at a', the rotary velocity n underwent an instantaneous dimi-

nution, and remained constant through another undulation, a

curve, of larger amplitude and sagitta a' b' a" would be described,
and the axis would again rise to its original elevation a", and

again be brought to rest. We might then, on casual considera-
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tion of the subject, expect to see the undula-

tions become more and more sensible as the

rotary velocity decreased. The reverse, how-

ever, is the case, as I have already stated. In

fact, the above supposition would require the

rotary velocity n to be a discontinuous decreas-

ing function of the time
;
whereas it is, really

a continuous decreasing function. It is under-

going a gradual diminution between a and a'.

The deflecting force, which is constantly pro-

portional to it, is therefore insufficient to keep
the axis up to the theoretical curve aha', but

a bluer Guive ah^a^ is described; and when
the culmination a

,
is reached, it is helow the

original elevation a\
But the 2d of our general equations for the

gyroscope (4), [afterwards put under the sim-

ple form
jeq. (f)\vs^ =—h'\ which is inde-

pendent of n, shows that the angular velocity
of the axis will always be that due to its actual

fall h below the initial elevation. On reaching
the culmination a

, therefore, the axis will not

come to rest, but will have a horizontal veloc-

ity due to the fall a'a^ and the curve will not

form a cusp but an inflexion at a^.
The axis will commence its second descent,

therefore, with an initial horizontal velocity.

It will not descend as much as it would have
done had it started from rest with its dimin-

ished value of n ; and, for the same reason

as before, will not be able as again to rise

high as its starting point a^ but to a some-

what lower point a^ and with an increased

horizontal velocity. These increments of hori-

zontal velocity will constantly ensue as the

culminations become lower and lower, while
on the other hand, the undulations become less

and less marked, as indicated by the ligure.
I have stated in my former paper (p. 559)

that a certain initial horizontal angular velocity
such as would " make its corresponding deflect-

ing force equal to the component of gravity, g
sin

<5,
would cause a horizontal motion without undulation." This

horizontal velocity is rapidly attained through the agencies just
described : or, at least, nearly approximated to, and the axis, as

observation shows, soon acquires a continuous and uniform hori-

zontal motion.
On the other hand, this sustaining power being directly pro-
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portional to the rotary velocity of the disk, as well as to the an-

gular velocity of the axis, diminishes with the former, and as it

diminishes, the axis must descend, acquiring angular velocity due
to the height of fall : hence the rapid gyration and the descend-

ing spiral motion which accompanies the loss of rotary velocity.A more curious and puzzling effect of the friction of the axle
is presented, when we come to take into consideration, instead

of our theoretical solid, the discrepancies of figure presented by
the actual gyroscope. If, with a high initial rotation, the com-
mon gyroscope be placed on its point of support with its axis

somewhat inclined above a horizontal position, it will soon be
observed to rise. In my analytical examination (p. 543) I have
stated as a deduction from the second equation (4), that " the

axis of figure can never rise above its initial angle of elevation."

That equation supposes that the rotary velocity n remains unim-

paired, and is the expression of a fundamental principle of dy-
namics—that of "living forces" (so-called), which requires that

the living force generated by gravity be directly proportional to

the height offall, and involves as a corollary that through the

agency of its own gravity alone, the centre of gravity of a body
can never rise above its initial height.* The anomaly observed,

therefore, either requires the action of some foreign force ; or^

that the living force lost by the rotating disk, shall, through
some hidden agency, be expended in performing this work of

lifting the mass.

The discrepancy here exhibited between the motion proper to

our theoretical solid of revolution and the experimental gyro-

scope is due to the division of the latter into two distinct masses,
one of which rotates, loith friction, upon points or surfaces in the

other
;
and to the fact that at the point of support (in the latter)

there is r^oi perfectly free motion in all directions.

The friction at the extremities of the axle of the disk, tends

to impress on the mass which constitutes the "mounting," a ro-

tation in the same direction. Were the motion of the latter

upon its fixed point of support perfectly free, the mounting and
disk would soon acquire a common rotatory velocity about the

axis of the disk. But the mounting is perfectly free to turn

about the vertical axis through the point of support, though not

about any other. If we decompose, therefore, the rotation which
would be impressed upon the mounting into two components,
one about this vertical, and the other about a horizontal axis—
the first X2k.QQfull effect,

and the latter is destroyed at the point
fo support. If the axis of the instrument is above the horizon-

tal, this component of rotation is in the same direction as the

gyration due to gravity, and adds to it ; if the axis is below the

horizontal, the component is the reverse of the natural gyration,
and diminishes it.

* The first of these equations (as I have remarked in a note to p. 547) is the expres-

sion of another fundamental principle
—more usually called the "

principle of areas."
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But I have shown that the axis soon acquires, independent of

this cause, a gyration whose deflecting or sustaining force is just

equivalent to the downward component of gravity. The addi-

tion to this gyratory velocity caused by friction when the axis is

inclined upwards puts the deflecting force in eoccess^ and the axis

is raised
;

it is raised, as in all other cases in which work is done

through acquired velocity
—

viz., by an expenditure of living

force ; but in this instance, through a most curious and compli-
cated series of agencies.
The phenomenon may be best illustrated in the following man-

ner. Let the outer extremity of the common gyroscope, having
its axis inclined above the horizontal, be supported by a thread

attached to some fixed point vertically above the point of support,
so that gyration shall be free. Here gravity is eliminated, and
the axis of our theoretical solid of revolution would remain per-

fectly motionless
;
but the gyroscope starts off, of itself, to gy-

rate in the same direction that it would were its extremity ^ree.

This gyration increases (if the rotary velocity is great) until the

deflecting force due to it, lifts the outer extremity from its sup-

port on the thread, and it continues indefinitely to rise. Try
the same experiment with the axis helow the horizontal. The

gyration will commence spontaneously as before, but in the

reverse direction : it will increase until the inner extremity is lifted

from the point of support^ (the action of the deflecting force being
here reversed,) the instrument supporting itself on the thread

alone. If the experiment is tried with the axis perfectly hori-

zontal, no gyration takes place, for the component of rotation,
due to friction, is,

in this position, zero.

The foregoing reasoning accounts, I believe, for all the ob-

served phenomena of the experimental gyroscope, and shows

how, from the theory of oar imaginary solid of revolution, a

consideration of the effects of the discrepancies of form, and of

the actual disturbing forces, leads to their satisfactory explanation.
The great similarity between the phenomena of the top and

gyroscope, renders it not uninteresting to compare the laws of

motion of the two. If we conceive a solid of revolution ter-

minated at its lower extremity by & point (the ordinary form of
the top), resting upon a horizontal plane without fi-iction, and

having a rotary motion about its axis offigure, such a body will

be subject to the action of two forces; its weight, acting at the
centre of gravity, and the resistance of the plane, acting at the

point vertically upwards.
According to the fundamental principles of dynamics, the

centre of gravity will move as if the mass and forces were con-
centrated at that point, while the mass will turn about this cen-

tre as if it were fixed. Calling E the resistance of the plane,
if the mass, and Mg the weight of the top, and z the height of
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the centre of gravity above the plane, we shall have for the

equation of motion of the centre of gravity*

^^£=^-^^ (!•)

As the angular motion of the body is the same as if the centre

of gravity was fixed, and as R is the only force which operates
to produce rotation about that centre, if we call G the moment
of inertia of the top about its axis of figure, and A its moment
with reference to a perpendicular axis through the centre of

gravity, and / the distance, GK (fig. 2) of the point of support
from that centre; the equations of rotary motion will become
identical with equations (3) (p. 541), substituting B for Mg

Cdv^=0 ')

Advy-^{C—A)v^Vxdt= yaRdt >
(2.)

Advx-\-{C^A)vyVzdt=:—yhRdt )

The first of equations (2) gives us Vz as for the gyroscope,

equal a constant n.

Multiplying the 2d and 8d of equations (2) by Vy and v^ re-

spectively, and adding and making the same reduction as on p.

63, we shall get

A{yydvy-\-Vxdvx)=:Ry d ,co^d.

But z (the height of the centre of gravity above the fixed plane)
= — y cos (9

;
hence yd.Q>o&d =—dz; and equation (1) gives

-r-^ -h-g ). Substituting these values ofE and yd.aosO in

the preceding equation, and integrating, we have

A{vy2+Vx2)^M{^^
+
2gz'^=k

(3.)

From the 2d and 3d of equations (2) the equation (c) (of the

gyroscope, p. 542) is deduced by an identical process.

A(bVy-\-aVa;)-\- On co& 6:=:l,

and a substitution in the two foregoing equations of the values

of the cosines a and h, and of the angular velocities v^ and Vy,

in terms of the angles (p, and ip (see pp. 540, 541), and for z and

—- their values,
—

/ cos (9,
and '/sin (9— and a determination of the

dt d t

constants, on the supposition of an initial inclination of the axis

a, and of initial velocity of axial rotation w, will give us for the

equations of motion of the top :

hm^d-j-zzz—r- (cos (9— cos a)

Ai^^m2e^-^^^J1^
* As there are no horizontal forces in action, there can be no horizontal motion

of the centre of gravity except from initial impulse, which I here exclude.
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from wliicli the angular motions of the top can be determined.

The first is identical with the first equation (4) for the gyroscope.
The second differs from the jsecond gyroscopic equation only in

containing in its first member the term My^ ^in^d-—^ or its

equivalent M-j-^ , expressing the living force of vertical transla-

tion of the whole mass.

The second member (as in the corresponding equation for the

gyroscope) expresses the work
of^ gravity^ and the first term of

the first member expresses the living force due to the angular
motion of the axis. Instead therefore of the work of gravity

being expended (as in the gyroscope) ivhoUy in producing angu-
lar motion, part of it is expended in vertical translation of the

centre of gravity. The angular motion takes place not (as in

the gyroscope) about the point of support (which in this case is

not fixed\ but about the centre of gravity (to which the moments
of inertia A and B refer) ;

and that centre, motionless horizon-

tally, moves vertically up and down, coincident with the small

angular undulations of the axis through a space which will be
more and more minute as the rotary velocity n is greater.

An elimination of -r- between the two equations (4) and a

study of the resulting equation, would lead us to the same gen-
eral results, as the similar process, p. 544, for the gyroscope.
The vertical angular motion, expressed by the variation which

the angle undergoes, becomes exceedingly minute (the maxi-
mum and minimum values of 6 approximating each other) when
n is great, and the axis gyrates with slow undulatory motion
about a vertical through the centre of gravity. It would be

easy, likewise, to show by substituting for another variable,

u=ct—dj always (in case of high values of n) extremely small,
and whose higher powers may therefore be neglected, that the
co-ordinates of angular motion, u and V, approximate more and
more nearly to the relation expressed by the equation of the

cycloid as n increases
; though the approximation is not so rapid

as in the gyroscope. All the results and conclusions flowing
from the similar process for the gyroscope (see pp. 545, 546, 547,

548) would be deduced. As, however, the centre of gravity, to

which these angular motions are referred, is not a fixed ])oint^
but is itself constantly rising and falling as d increases or di-

minishes, the actual motion of the axis is of a more complicated
character.

If OK" (see fig. 2) is the initial position of the axis of the

top, the motion of the centre of gravity will consist ina vertical

falling and rising through the distance GG'— GK"{q,o^z^ G'G"—
coaZiG G")= y (cos ^ ,

— cos «) (in which ^
is the minimum value of^)
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while the extremity of the axis

or pointy K^ describes on the

supporting surface and about
the projection G" of the cen-

tre of gravity, an undulating
curve a, Z>, a', h'^ a'\ &c., hav-

ing cusps a, a\ ko,.^ in the circle

described about G" with the

radius G"K"—y sina, and

tangent, externally, to the
circle described with a radius

G" K'=y sin^,. But, as in

the case of the gyroscope,
these little undulations speedi-

ly disappear through the re-

tarding influence of friction

and resistance of the air, and
the point of the top describes

about G".

a circle, more or less perfect.

The rationale of the self-sustaining power of the top is identi-

cal with that of the gyroscope ;
the deflecting force due to the

angular motion of the axis plays the same part as the sustaining
agent, and has the same analytical expression. Owing io friction^
the top likewise rises, and soon attains a vertical position ;

but
the agency by which this effect is produced is not exactly the
same as for the gyroscope.

If the extremity of the top is rounded, or is not a perfect
mathematical point, it will roll^ by friction, on the supporting
surface along the circular track just described. This rolling

speedily imparts an angular motion to the axis greater than the

horizontal gyration due to gravity, and the deflecting force be-

comes in excess, (as explained in the case of the gyroscope,) and
the axis rises until the top assumes a vertical position. Even

though the extremity of the top is a very perfect point, yet if it

happens to be slightly out of the axis of figure (and rotation) the

same result will, in a less degree, ensue : for the point, instead

of resting permanenthj on the surface, will strike
it, at each revo-

lution, and in so doing, propel the extremity along. The condi-

tions of a perfect point, perfectly centered in the axis of figure,
are rarely combined, or rather ixre practically impossible; but it is

easy to ascertain by experiment that the more nearly they are

fulfilled, and the harder and more highly polished the support-

ing surface, the less tendency to rise is exhibited
;

while the

great stiffness (or tendency to assume a vertical position) of tops
with rounded points, is a fact well known and made use of in

the construction of these toys.

C^f"The references throughout this paper are to my paper on the gyroscope in the

June number of the Am. Journal of Education.
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XVIII. EDUCATIONAL MISCELLANY AND INTELLIGENCE.

0^ THE EFFECTS OF INITIAL GYRATORY VELOCITIES, AND OF RETARDDfG FORCES,

ON THE MOTION OF THE GYROSCOPE.

BY MAJOR J. G. BARNARD, A. M

Corps of Engineers, U. S. A.*

In one of the concluding paragraphs' of my first paper on the Gyro-

scope (Am. Journal of Education, June, 1857,) I stated that " an initial im-

pulse may be applied to the rotating disk in such a way that the horizon-

tal motion shall be absolutely without undulation. An initial angular

velocity such as would make its corresponding deflective force equal to

the component of gravity g sin ^, would cause a horizontal motion without

undulation."

The statement contained in the last sentence quoted, is not rigidly true
;

for besides the component of gravity, there is another force to be consid-

ered, viz., the centrifugal force due to the gyratory velocity, which acts

either in conjunction with, or in opposition to, the component of gravity,

according as the axis of the disk is above or below a horizontal.

In this last position this force is null (as regards its effects in sustaining
or depressing the axis), and to this angular elevation of the axis the

statement quoted is true without qualification. The assumption of an

initial horizontal velocity requires only a new determination of constants

for equations (a) and (c) (pp. 541, 542, June No.).
If we make, in those equations

^=a, ()d:zi90°, V=90°, «=-sina, v^zzim, Vy=0, VzZ=:.n,

(in which m is the assumed initial velocity) and determine the constants

h and I therefrom, the equations of motion will become

sm 2 o— =z— (cos o
— cos a) -|-m sm a

. Bm^^^ +
—

=-^(cos6-cos«)+ m^
J

and from them we get

. ^^dO^ r^Mgy . ^^ "iCmn . C^n^ , ^sm2 d——-=z| i^-^ sm^ 0^ — sm a ——
(cos c^— cos a)

dt^ \^ A A ^2 V /

—m2 (cos 6 -|- cos a) I (cos
^— cos a) (2)

dd dip
From this we ffet -;-= when cos ^ — cos a=0 : and as -^ is not zero^ dt

' dt
for this initial elevation, it indicates, instead of a cusp, a tangency to the

horizontal here.

This paper is intended to give a more rigidly mathematical demonstration of

the effects of "
retarding forces" than is given in (December No. p. 529,) of this Jour-

nal > and to give the theory of the " motions "
of the Gyroscope a more general

form, by the introduction of "
Initial Gyratory Velocities."
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If the curve described is horizontal without undulation, the other fac-

tor of the second member of eq. (2) should likewise become zero with
dz=za : an effect which may ensue from a suitable value given to m.
The value of the deflecting force due to a given angular velocity m is

(J

(p. 552, June number) -—mn, and if we suppose this equal to the com-

ponent of gravity g sin «, we shall have m j= --f^sin a.
Cn

If we substitute this value of m in the second member of equation (2)
and assume a =r 90° the factor in question becomes zero for ^z= a, and
the maximum and minimum values of d are the same, indicating a hori-
zontal motion without undulation.

For every other initial elevation than 90° a different value of m is re-

quired to produce this result, in consequence of the influence of the cen-

trifugal force of gyration at other elevations.

With «= 90°, equation (2) becomes

'dt^~\ —J-^^'"^^ -J ^^cos<9-.m2cos^
cos(9 (3)

Placing the first factor of the second member equal to zero and solving
with reference to cos^ we get (recollecting the value given to § in our
former article)

sin2 e -

52-4?- +
4:Mgy ^V^4.Mgy]

+ 1-
Cmn
Mgy'

(4)

For ^/^= 0, equation (3) expresses the cycloidal curve with cusps a, a',

a'\ &c., as has been already shown in our former investigation. For

Mg'^m> but <^ —^
— the minimum value of 6 derived from equation (4) is

greater than when m is zero, while instead of a cusp (there is as has

already been observed) a tangency at a, and the curve has the wave form

a6j a'h\ (the points b^b^'b^", &c. being higher than bb'b").*

MgyWhen mr=-—— the curve unites with the horizontal a a' a" a'" and
Cn

there is no undulation
; equation (4) giving cos ^ =: 0, or ^= 90°.

* In reality, the amplitudes, a a', a' a", of the undulations become increased, at the

same time that the sagittic are diminished, but, for the sake of comparison, I have

represented them the same for each variety of curve.
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When m> --^, -r- becomes still zero with ^z=a= 90°; but this
Cn at

instead of a njaximum is now a minimum value of ^, for the value of

which satisfies equation (4) is greater than 90°, and the curve ah^ a'h^',

&c., undulates above the plane a a' a".

2 Mo Y 1

Finally when m= ^ , equation (4) will give cos5=- -^ and a

substitution of this in the first equation (1) (making a= 90°), will give

— r= : showing that the curve makes cusps at its superior culminations,

and that the common cycloidal motion is resumed. In fact the value of

—-=
-3 {^ (p. 547, June number) at the lowest point h of the cycloid, is,

2Mo y

(substituting the values of ^ and i) exactly equal to —^ ,
and the

value of the sagitta u corresponding to e 6 is what we have just found for

cos<9, or e 63, viz. —-.

If now, retaining m constant at this value to which we have brought
it, we increase the rotary velocity, w, or vice versa, a curve with loops, (fig.

2,) may be described, as it can be shown that, for the maximum value

d ip
of dj
— becomes negative.*

2.

In my supplementary paper in the December number of this Journal I

have endeavored to show how the theoretical cycloidal motion of a sim-

ple solid of revolution is modified by the retarding forces of friction and
the resistance of the air, and that the theory explains all the phenomena
observed in the ordinary gyroscope.

It may be objected however that the nature of the curve given in

Fig. 1, (p. 531,) is in some degree assumed, and I therefore" wish to show
that it can be confirmed by mathematical demonstration.

The rotary velocity n of the disk is supposed to be gradually destroyed

through the retarding forces of friction at the extremities of the axle,
and of the resistance of the air at the surface.

Without attempting to give analytical expressions for the retarding
forces, it is sufliicient to say that the rotary velocity, at the end of any

*If m is made negative and small
(i. e., a backward initial velocity given) a looped

curve like the above, but lying below the plane a a' a", results. All these curves (n

being always supposed very great) are but the different forms of the "
cycloid

"

known as prolate, common, and curtate cycloids ;
the common—a particular case of

the curve—corresponding to the particular case of the problem in which the initial

gyratory velocity is either zero or has the particular value —^
•
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time
i, counting from the commencement of motion, may be expressed

thus

in which n is the initial rotary velocity of the disk.

If we substitute this expression for v^ in the last two equations (3) (p.

541, June No.,) and follow a similar process to that by which equations
(4) of that paper are deduced, we shall get, for the equations of motion

sin2|9— =:—- (cos(9-cosa)-— / f{t)d.co&d 7
at A Af/ ( /k\

For the sake of simplicity suppose the initial position of the axis be hori-

zontal, or a z=90 and the above become

sin2^^ = ^cos^^-^ rf(t)d.coB,e )dt A Aj o'^^ ( ,_.

dt
^

dt^ A . J

«

If aff a' represents the cycloidal curve, and aee' e" g' the curve in

question, it will be observed that the angular velocity of the axis given

by the 2nd equation (6) is the same for both, for equal values of ^, while

the value of i^e horizontal component oi \h2ii velocity, sin^—
,
is less

r^
than for the cycloidal curve, by the term - / f{t)d. cos (9.A sm C </ Q

As 6 diminishes, d cos 6 is positive and this term is subtractive and

dip
hence for any point e or e' on the descending branch,

—- is less than for

the corresponding point /or/' of the cycloid, and the branch aee' e" will

be behind the branch aff, and will descend lower.

C P
At e" the term —j—;

—
-r- / flt)d. cos d. attains its maximum, for as the

A&md Jo
curve ascends, increases, and the increments of cos become negative.

* When the retarding force is independent of the velocity, as in the case of fric-

tion, the/(^) in the above expression is linear; when this force is dependent upon
the velocity, as for the resistance of the air,/(^) will, in general, be an infinite and

diverging series in the powers of t
;
whether the force is due to either, or both

combined, of these causes, the above expression for the velocity of rotation may
howe\spr be used for the present purpose.
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But as the values of t on this branch of the curve are nearly double those

or equal values of of the descending one, the integral / f(t)d.cosO

will become zero at some point ff\ before has regained its initial value,

at which point -j-will
be the same as for the corresponding point g of

the cycloid. Above the point g' the term . . / f{t) d.cosd be-

comes negative and (with its negative sign) becomes additive and there-

dip
fore, above g' the values of -7- are always greater than for corresponding

points of the cycloid. Hence the angular velocity of the axis can never

become zero and consequently the axis cannot rise to its initial elevation

and form a cusp, but must make an inflexion and culminate at a, below

the initial elevation.

Commencing a second descent from a' with an initial velocity^ the suc-

ceeding wave will be flattened (as shown in treating the subject of "
initial

gyratory velocities"), the second culmination a^ will not (as a similar

train of reasoning to that just gone through for the first undulation proves)
be as high as

ttj
: and jpari ratione^ each succeeding wave will be more

flattened and extended than the preceding, until they soon virtually dis-

appear, and the curve becomes a descending helix.

After these undulations have disappeared, as the descent is only due
to loss of rotary velocity (and consequently loss of deflecting force)
measured by/(^), it is evident that the future character of the hehx will

be determined by this function.

In fact, as the descending velocity
— is then very minute compared

dip
with the horizontal velocity

—
,

its square may be neglected in the 2nd

equat, (6); and, equating the values of sin (9

-^ deduced from these

two equations, we shall have

By differentiating both members and m^ng various reductions we get

\
Mgr

S A
Mgy __3sin2^~2_ (7

A Vsin^sin2^-2^^""-^'^^^^
an equation which, after the disappearance of the undulations^ gives the
value of d in terms of t.

A.sf{t) increases d diminishes in the first member, to the limit corre-

sponding to sin^ ^z=f which makes the numerator of the fraction in the
first member 0, and the denominator a maximum

; showing, to that limit,
a constant descent of the axis, or a descending helix for the curve.

As the values of /(^) hejondf (t)
=: n do not belong to the question,

there can be no farther descent below that value of d which reduces the
first member to zero

;
or beyond sin^^^ f.
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At this elevation, as the dejlecting force has vanished entirely with the

rotary velocity, it is evident the elevation of the axis must be maintained

by the centrifugal force alone, due to the gyratory velocity.
In fact, if we calculate directly the angle to which the axis must fall

from a horizontal position, in order that the velocity generated shall be

just sufficient, if deflected into horizontal gyration, to exert a centrifugal
force adequate to maintain it, we shall find this same value, sin^ =f.*

In reality, the air resists gyration as well as rotation, and hence the

descent will continue
;
but if a gyroscope could be placed in a perfect

vacuum, and the slight friction at the point of support be entirely an-

nulled, the axis would descend in a helix until it reached this limit, at

which it would forever gyrate, though the rotation of the disk would soon

by friction of the axle, entirely cease.

* If the solid of revolution is of dimensions so small that it may be considered

concentrated in its centre of gravity, it would require, in the fall of its axis through

angle 90°- 9, the velocity^2 gycos^; and this velocity, deflected into horizontal gy-

ration in a circle whose radius is 7 sin 6, would create a centrifugal force 2 a ——
,^ sm 6

008^9 ,

whose component normal to the axis of figure is 2
^r
—— . Equatmg to this the

opposing component of gravity g sin 9, we get sin29 =f, as in the text.

For finite dimensions of the solid, the direct determination of the limit in question,

is more complicated, and it is scarcely necessary to introduce it here.
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