\mid

HISTORY
 AN D

MEMOIRS OF THE

Royal Academy of Sciences at Paris:

$$
0 \mathrm{R}
$$

An Abridgment of all the Papers relating to Natural Pbilofophy, which have been publifh'd by the Members of that Illuftrious Society, from the Year 1699 to 1720 .
With many Curious Observations relating to the
Natural Hiftory and Anatomy of Animals, $\Xi^{2} c$.
Illuftrated with Copper-Plates.
*The Whole Translated and Abridged,
By $\mathcal{F} O H N M A R \mathcal{T} \Upsilon N$, F.R.S.
Profeffor of Botany in the University of Cambridge;
A N D
EPHRAIM CHAMBERS, F.R.S.
Author of the Universal Dictionary of Arts and Sciences.
VO L. III. 34306
LONDON:
Printed for Johsand Paul grafton, in Ludgate-freet; and
John course, near Tcmple-Bar. M.DCC.XLII.

$$
\begin{aligned}
& Q \\
& 46 \\
& A 133 \\
& 0.3
\end{aligned}
$$

$$
T A \underset{O F T H E}{A} L E
$$

PAPERS contained in the Abridgment of the History and Memoirs of the, Roýal Academy of Sciences, at Paris, for the Year Mdccili..

In the HISTORY.

I. N the light of bodies produced by frizion. II. On fire arms differently cbarged.
III. On fones, and particularly on thofe of the Sea.
IV. Of an extraordinery cure performed by a concest of mufc.
V. Of the multiplication of animalcules.
VI. Of the circulation of the blood in infeets.

VH. Of worms voided by fool.
VIII. Of the Iguana, an American lizard.
IX. Of the difference of the milk of European women, and Negreffes at Batavia.
X. Of an aurora borealis feen at Berlin.
XI. Of a new ifland near Santerini.
XII. Of a new way of conftrusing the map of a country.

In the MEMOIRS.

1. Obfervations on the quantity of rain, which fell at the obfervatory during the year $1 \%{ }^{\prime} \mathbf{o b}^{2}$ and on the thermometer and barometer, by M. de la Hire.
2. A macbine to retain the webeel, whick ferves to raife the rammer, to drive the piles, in Vol. III. $\mathrm{N}^{+} 24$. works of this nature, by M. de la Hire.
III. Of the irregularities of the apparent depref. fion of the borizon of the fea, by M. Caflini.
IV. Obfervations on fpiders, by M. Homberg. V. Of the effects of gunpowder, cbiefly in mines, by M. Chevalier.
VI. A new confrultion of fuices, by M. de la Hire.

ABRIDGMENT OFTHE

Philofophical Difcoveries

AND

OBSERVATIONS

INTHE
History of the Royal Academy of Sciences at Paris, for the Year 1707.
I. On the light of bodies produced by friction; tranfated by Mr. Cnambers.

THE new phofphorus difcovered by M. Bernoulli, and mentioned in the preceding papers, could not fail of raifing the curiofity of philofophers, and efpecially thofe of the academy, who had a fort of right to a difcovery made by one of its members. Among other experiments on this head, they came at length to the light which certain bodies yield, by rubbing in the dark ; the refult whereof is as follows.

As moft of thefe experiments were only made on bodies which yield light the moft eafily, as a cat's back when rubbed againft the hair in winter, or fugar, or fulphur pounded, $\mathcal{F} c$. there are certain conditions to be obferved.

Ift, That of the bodies rubbed againft each other, one of them at leaft mult be tranfparent, that the light may be feen through while it lafts, which ufually is during the time of fristion.

$$
\text { B } 2
$$

2d!y, plain, fmooth, and clean, that the contact may be the more immediate.

3 dly, The two bodies muft both be hard.
$4^{\text {thly, A great denfity, without a great degree }}$ of hardnefs, will alfo have its effect. Thus M. Bernoulli procures light, by rubbing an amalgama of mercury and tin upon a looking-glafs.

5thly, One of the two bodies muft be as thin as poffible, that it may be the eafier heated by friction, and may yield a quicker, as well as brisker, light. This M. Bernoulli tried on little copper-plates of different thickneffes.

6thly, Gold rubbed upon glafs, appeared the fitteft of all metals to afford light; but no body yields fo exquifite a light as a diamond, which comes nothing behind that of a live coal, briskly blown by the bellows ; nor is it any matter how thick the diamond is.

Hence M. Bernoulli concludes, that Mr. Boyle, notwithttanding all his skill in experimental philofophy, held a thing to be a kind of prodigy which was none, viz. a diamond of his, which yielded light when rubbed in the dark, to which he gave the magnificent appellation of adamas lucidus, yet had not this any particular priviledge, unlefs that is brightnefs continued a few moments after the friction, which we may add, was the foundation of part ot Mr. Boyle's efteem for it.

On occafion of thefe experiments of M. Bernoulli, M. Cafini the younger made others on the fame head to the effect following.
ift, A diamond, cut table-ways, being rubbed on a looking-glais, yielded a light almoft equal to that of a live coal, and which even appeared larger than the face of the diamonid.

Royal Academy of Sciences. 5
2dly, A diamond, cut facel-ways, yielded a lefs vivid light.

3 dly, A crown, and fome other pieces of filver, yielded lefs light than the facet-diamond.

4 thly, A copper double and a fol yielded very little.

All the bodies, in the fore-mentioned experiments, were rubbed upon glafs.

5thly, The table-diamond, when rubbed on a plate of filver, yielded light.

II. On fire-arms differently charged; tranflated by Mr. Chambers.

M.Carré informing the academy of fome experiments made by a friend upon fire-arms charged in different manners, it was thought proper to verify them ; which M. Cafini the younger, accordingly undertook.

He made a kind of machine, wherein was a piece of wood armed at one end, with a pretty thick plate of talc, whereon the feveral fhots were to be received. This plate was made moveable, fo as to give way, more or lefs, according as a greater or lefs impulfe was made on it; and at the fame time fhew, by the ftructure of the machine, how much it had given way.

Now from the experiments made by M. Coffini, it appears, ift, That the putting a wadding between the powder and ball, renders the effore the greater : the reafon is evident, and accordingly we find it the common practice.

2dly, That ceteris paribets, thofe balls which fit exactly the bore of the piece have the greateft effect, by reafon, doubtlefs, that they do not come out fo readily, but give time for a greater quantity of powder to take fire.

6 Tbe History and Memoirs of the

3 dly, That when the powder is rammed violently down, the effort is no greater, but rather fomewhat lefs, than when barely preffed down.

4thly, That gun-powder caft upon the ball, diminifhes its effect : the reafon may be, that the powder making its effort every way, that which is upon the ball muft needs give fome oppofition thereto, by acting counter to the motion which fhould bring it forth.

5thly, That this powder, though it diminifh the effect of the ball, increafes the noife.

6thly, That the ifre of the powder under the ball, communicates with that over it, even though the ball be exactly fitted to the bore, and lodged between two waddings: this appears from the great increafe of noife.

7thly, That taking a ball fomewhat lefs than the bore, and putting but little powder under it, and a good deal over it, one may fhoot with a very great noife, but no fenfible effect. They who have purchafed fecrets for becoming invulnerable, and have been fo cautious as to make trials thereof, have doubtlefs been impofed on by this artifice.
III. Upon fones, and particularly thofe of the fea; tronflated by Mir. Chambers.
M. Soulnon making a tour about the coaft of Normandy and Picerdy, and the country adjoining, had occafion to make fome phyfical reflections which he communicated to the academy.

The Galets are a kind of pebbles, commonly flat, round, and always very fmooth and polifhed, eiriven by the fea upon thole coafts. It is eafy to conceive, that their figure and polifh had arofe from their being lorg beaten and toft by the waves,

Royal Academy of Sciences. 7

 and rubbed one againft another; but there are ftore of them likewife found out at land. M. Saulmon learned, that when they dig their cellars at Caïux, abundance of thefe galets tumble in; and that at Brutel, which is a league from the fea, the fame thing had befallen: upon digging a well he further obferved, that the mountains of Bonauceil, Broye, and Quefnoy, which are eighteen leagues from the fea, are all covered with galets, which he alfo found in the valley of Clernoont, in the Beauvaifs; but obferved, that there were none on the top of the mountain, which is very high.Among the galets out at land, there are feveral whofe furface is very rough and irregular, befet with points; and what is more, this furface is a kind of bark, or rind, different from the reft of their fubftance; yet this feems to be their natural ftate: for no external caufe can ever have invefted them with this rind, but may, on the contrary, have ftripped them of it; and fuch caufe may be a long and violent friction. Add, That it is highly probable they are of the fame frecies with pebbles, which have a like rind, confiderably thick, and of a chalky confiftance.
M. Saulnnon makes no doubt, but that all thefe lands were formerly covered by the fea; a notion which had already been ftarted in the hiftory of 1706, with fome of the arguments which feem to prove it. To render it ftill more probable, at leaft with regard to the country where M. Satimon made his obfervations, he endeavours to fhew by the difpofition of the place, that when the feadidcover it, the currents formed between the mountains with the feveral eddies of water, mult neceffarily have thrown the greateft or leaft galets into the places where they are actually found; for it is obfervable,

8 The Mistory and Memoirs of the

 that the greater ind fmaller kinds are not ufually intermixed, and diftributed fome on the one fide, and fome on the other. It is evident upon M. Soulmoin's fuppofition, that the mountain, whofe top was free of galets, had rofe above the fea, and conicquently could not receive the driving fones upon its top; but to determine by the laws of motion of bodies circulating in, and with a fuid the feveral diftributions of galets that muft have Geen male in feveral places, would be both a topography and a phyfiology of fo nice a kind, that we think it ought not to be attempted. We ihallonly rciate two obfervations after Mi. Saulmon.The ift, That a hole 16 feet deep, being dug herizontally in the beach of Trefport, which is all ftony, difappeared in 30 years time; that the fea had eat this thicknefs of $: 6$ feet into the beach in that time. Now fuppofing, that it always grined at that rate, it would dig 1000 fathoms, or $\frac{1}{2}$ a league of ftone, in 12000 years; and i is evident from hiftory, that the fea has really advanced, or withdrawn, in a multitude of places; and that it has a general, though a very flow motion, whereby it changes its bounds.

2dly, Flints have not only a chalky rind, but their black and hard fubftance, which is properly the flint, may he fuppofed to have originally been no other than cha k, which had hardened by de-g-ees, and changed is colour. M. Saulmon produced flints of different ages, fome whereof had a greater or lefs quancity of chalk ftill remaining in their centre, white others had chalky veins difperfed through their black fubftance, and carried all the indications of their having arrived at their blacknefs and hardneis by length of time. He even corjectures, that the flints, when too old, turn rotten; and that it is fuch as thefe we find
with their black fubftance turned reddifh, lefs firm, and as it were rufty._-All which feems to tally with the fyltem of ftones arifing from feeds.
IV. Of an extraordinary cure performed by a concert of mufck.

An eminent mufician, who was a great compofer, was feized with a fever, which ftill increafing, became continued. On the 9 th day he fell into a violent delirium, havirg hardly any intermiffion, attended with cries, tears, terrors, and a perpetual want of neep. The 3 d day of this delirium, one of thofe natural infinets which is faid to make animals feek for thofe herbs which are proper for them, made him defire to hear a little concert in his chamber; it was with much diffculty that the phyfician confented to it. They played to him the cantata's of M. Bernier. From his firft hearing them tune their inflruments, his face affumed a ferene air, his eyes were compofed, the convulfions entirely ceafed, he fhed tears of pleafure, and his fenfes were affected with the mufick in fuch a manner, as he never felt before nor fince the cure; his fever ceafed during the whole concert; but as foon as it was ended, he relapfed. They did not neglect to continue the ufe of this unexpectediy fuccerfful medicine; the fever, and delirium always fufpended during the concert and mufick was become fo neceflary to him, that in the night he made a relation who watched with him, both fing and dance, thaugh her affiction made it difficult for her to comply with him. One night among the reft, when none but his nurfe was with him, who could only fing one miferable ballad, he was forced to be content, and even

10 The History and Memoirs of the

received fome benefit from it. In fhort, 10 days mufick quite cured him, without any other affiftance, except bleeding in the foot, which was the fecond time this had been done, and was fucceeded with a great evacuation. M. Dodart related this hiftory; which he had well attefted : he does not pretend, that this ought to ferve as an example or a rule, but it is pretty curious to fee in a man, whofe very foul, if I may fo fay, was become harmony, by a long continued cuftom, how concerrs by degrees reftored his fpirits to their natural courfe. It is not likely that a painter would have been cured thus by pictures; paintings have not fo great an influence as mufick over the motions of the fpirits, and no art in this refpect can equal it.

V. Of the multiplication of animalcules.

A philofopher, friend to M. Carré, who has been frequently mentioned in the preceding hiftories, imagined from fome experiments which he had made, that animalcules feen in the water with a microfcope do not multiply therein, but proceed from little invifible flies, which lay their eggs in the air. And indeed, as thefe animals are a kind of little worms, it is natural enough, that, like many other worms, they fhould all proceed from tome of the winged fpecies; but the obferver was convinced of his mittake. He boiled water and dung, and filled therewith two phials of equal fize; when they were lukewarm, he put into one of thefe phials, two little drops of water taken out of a veffel, wherein the water was full of thefe little animalcules; and 8 days after, he found this phial flled with an innumerable quantity of aniralcules, of the fame fpecies with thofe which
were in the drops of water. There were none to be perceived in the other phial, though the dung might probably have produced fome. They had both been ftopped very clofe. The multiplication of animalcules in water, is therefore hereby fettled; but more fo, if it is certain, that this philofopher faw them couple; at leaft, it is certain, that he faw them joined two and two. Perhaps this was to fight; but, do they always fight by pairs ?

VI. Of the circulation of blood in infects.

M. Lerwenboeck fays, That he could not obferve the circulation of blood in infects, and therefore imagines another way, by which he believes their life is maintained. But the philofopher, whom we juft now mentioned, who is well fkilled in the ufe of the mifcrofcope, fays, That he has diftinctly feen the circulation in the leg of a fpider.

VII. Of woorms voided by foool.

M. Homberg fays, That a young man of his acquaintance, who is in good health, has during thefe 4 or 5 years, voided every day by ftool, a great number of worms, about 5 or 6 lines long, though he eats neither fruits or fallads, and has made ufe of all known remedies. He once or twice voided above an ell and a half of a flat worm, divided by joints, called the foliums. It is hereby feen, how many eggs of infects there muft be in all that food which we leaft fufpect to contain any, which want nothing but the fomach; or, as I may call it, an oven fit to hatch them.

12 The History and Memoirs of the

VIII. Of the Iguana, an American lizard.

The iguana is a kind of lizard found through all parts of America, it is defcribed in Pifo's book, De utriufque India re naturati E medica.: It is amphibious, it has two ftomachs, in one of which there is often a flone, white on the outfide, and the infide very much like the colour of the Americon bezoar. It has the virtue of expelling the ftone and gravel in the kidneys, and cures the fupprefion of urine. It is adminiftred in very fine powder, with an equal quantity of the powder of nut-fhells, both together weighing a dram, in orange-flower water, if there is no fever, or fufpicion of an inflammation in the ureters, or in the bladder; in which cafe it muft be given in white wine, mixed with parfley water, or pellitory of the wall, or fome orher diuretick. It fometimes has effect in an hour's time, but at moft, in three hours. A Epanifr phyfician of Caraccas, having fent this account to M. DePas, a phyfician of Montpellier, who is with M. DesLandes, director of the Aflento company in Ameriç, and having related to him many experiments which he had made with the fone of the iguana, this letter has been fent to the academy.

1X. Of the difference of the milk of European somen, and Negreffes at Batavia.

M. Homberg fays, that European women who go to Batavia, cannot fuckle their children, their milk being fo falt that they will not take it ; whereas, the milk of the Negrefles, though their diet is the fame, is fweet and pleafant as ufual therefore they fuckle the children of the Dutch

Royal Academy of Sciences. I 3 and Englifh. He himfelf, who was born at $B a-$ tavia, was fuckled by a black. He thinks it probable, that when the Europenns are carried into fo hot a climate, being not made for it, thote veffels which in them are defigned to filtrate the milk, dilate too much, and give paffage to thofe falts which are not intended to enter into the compofition of this liquor; but that the women of thefe hot countries are, by their firf formation, fitted to generate good milk ; that is, either that the filtring veffels are naturally lefs, and do not afterwards dilate more than is neceffary, or are of a firmer texture, and lefs capable of dilatation; or fomething, in fhort, equivalent to this,

X. Of an aurora borealis feen at Berlin.

M. Leibnitz fent an account from Berlin, to M. l'Abté Bignon, that March 6, between 7 and 10 in the evening, there was feen in this city, and in the neighbouring country, an aurora borealis', which was fomething like that mentioned by M. Gaffendi, in the life of M. Pierefc. There were two luminous arches, one of which was higher than the other; both directly northward; their concavity turned downward; their chords parallel with the horizon. The fuperior arch was interrupted; ftreams of light went from the one to the other, which jult appeared, and vanifhed away.

XI. Of a new ifland near Santerini.

M. De la Lanne, conful in Candia, fent word to the conful of Tunis, that two miles from the illand of Santerini, which is feventy miles from Candia, a new ifland was perceived; which, at firft

I_{4} Thbe History and Memorss of the

 appeared only like a little veffel, but increafing daily, it became as big as a large fhip. It is furrounded with many other little iflands; and there continually proceed great flames from it. This novelty is the more furprifing, the water being in this place more than 60 braces deep; the fubterranneous fires muft therefore have ftrange force to throw up fuch a great heap of ftones fo high, through the fea. As in fome parts of Santerini, and of fome other inands of the Arcbipelago, the foil wholly confifts of pumice ftone, it is very likely, that thefe new inands are formed of thefe light ftones. M. de Cbafucil Gallaup, a gentleman of Provence, of great erudition and merit, has done me the honour to communicate this to me, of which he was informed by a letter from \mathscr{T} unis, which letter faid, this account was confirmed by the captain and failors of a fhip newly arrived from the Levant to Sufa, in the kingdom of Tunis, who were all eye-witneffes of the truth of what M. De la Laine had written.
XII. Of a new zasy of conftucting the map

of a country.

The great expence which attends the conitructing the map of a country geometrically, the length of time which it requires, and the fimall number of thofe who are capable, or who will take the pains to execute this work, are the reafons why few maps are conftructed geometrically; yet no others are abfolutely certain. Provided fuch cannot be had, M. Cbevalier propofes another method, which is not far fhort of the geometrical exactnefs; yet may be put in practice without any geomerry, requiring only care and attention.

Royal Academy of Sciences. I5

The arch of the horizon taken between the point where the fun rifes or fets, at any day whatfoever, and the point where it rifes or fets, when it is in the equator, is called the amplitude. It is then, at firt view, that the amplitude is greater in proportion to the diftance of the fun from the equator, or has a greater declination; and it is alfo feen from the different pofitions of the fphere, that the more oblique it is, or the higher the pole is elevated for any place, the greater is the amplitude, all the reft being equal. The declination of the fun, and the elevation of the pole, are therefore the two elements whereon the fize of the amplitude depends, and tables of the variation of the amplitudes are conftructed according to that of their elements.

I fuppofe the place where I am, for example Paris, to be in the centre of a pretty large circle defcribed on a paper, and divided into 360 . As I know by the tables, that the folftitial amplitude, the greateft of all at Paris, is 37 degrees omitting the minutes, I take on my circle for the equinoctial amplitude, or o , the point where its divifions begin, and the 37 degrees following anfivers to the folftitial amplitude. This fpace of 37 degrees anfwers to three months, and I divide it according to the table of amplitudes, to each day of 3 months, or rather from 5 to 5 days, becaufe the amplitudes have not any fenfible alteration from one day to another. I do the fame for the amplitudes of the other 9 months of the year.

I alfo fuppofe that the radius of my circle reprefents an extent of two leagues, and I divide it into 8 equal parts, which are confequently of a quarter of a league each, and through each of thefe divifions I defrribe circles concentrical with
the firft. M. Chevalier calls the papers, whereon thefe figures are, chaffis, or frames.

This done, on any day whereon the rifing or the fetting of the fun can be obferved, I have two wires on the frame directly perpendicular, one at the centre, the other at the outward circle, which anfwers to the day pitched upon, I place the frame exactly horizontally, and turn it in fuch a manner, that at the moment of the fun's rifing or fetting, the fhadow of the two wires is upon the fame right line, and I fix ic faft in this fituation. It is certain, that all the divifions of the outward circle will anfwer exactly to thofe of the horizon, that the goth degree, for example, afteran equinoctial amplitude, is a pole, $\mathcal{E} c$. in a word, that the frame is well rectified. Then if 1 am in a place high enough to furvey an extent of two leagues round, I direct a rule, which can be moved round the centre, exactly to a fteeple, at what place I pleafe; and I am certain, that this fteeple is in refpect to Paris, in the pofition determined by the rule, to the fouth-eatt, for example, and confequently it muft be defcribed in my frame on this line. It remains to be known at what point; now it is fuppofed, that I know pretty well the diftance of all thofe places which are within two leagues of the place were I divell, and this knowledge is more familiar in the country, where the frame will be moft in ufe. As it is divided into quarters of leagues, I place the fteeple according to its known diftance, either upon one of the concentrical circles, or between two circles, and cannot fall into any confiderable error therein.

What I have done in relation to Paris, M. Cbevalier would have 30 or 40 perions do round about Paris, at 2 leagues diftance at moft from

Royal Academy of Sciences. 17

 one another, each of them in relation to the place where they dwell; not that each fhould be obliged to make a frame, that work requiring the hand of a geometrician, but they being once made by an artift, copies may be fent to 30 or 40 perfons, who will then have only the trouble of laying out the lines of neighbouring places, as has been faid, and few are incapable of doing this. The 30 or 40 little maps being made, they mutt be returned to the geometrician, who undertands how to put them together, and thereby compofe a map of the country round Paris. As the fame frame is to be fent to all thofe defigned to be employed, it is fuppofed, that the amplitudes are the fame, as to places which are but little diftant, which is only fenfibly true. Nor c̣an this method of conftructing maps be ufeful, except as to a little tract of land; and it is proper, that the city, or principal place, on which alone the amplitudes are regulated, fhould be in the middle of that tract of land which is to be defcribed, that finall errors of particular places may compenfate for one another.It fhould feem, that without making ufe of amplitudes, the frame might be rectified by means of the meridian of the place, which is commonly known in the country; but it is only known in a grofs manner, and if it was neceffary to find it more exactly, few would fucceed in it. The method of rectifying by amplitudes, when the frame is quite finiflied, is more certain, and has no difficulty in it. Not but the other may alfo be ufed with fuccefs.

It may be obferved, in the method of the amplitudes, that an error, which may be imperceivable in a little tract of land; will be lefs fo if the work is performed in a tract of lefs latitude,

[^0]or in a time nearer to the equinoxes, for in thefe two circumftances, there is lefs differce in the amplitudes of different places. The latitude is the circumftance which makes leaft difference in them; and as in France it is prety extenfive, the operaticns near the equinoctial ought fo much the more carefully to be obferved there.

To have given here in general the $f(: \quad$ of M. Chevalier's method is fufficient. As a geometrician mult of neceffity be at the head of the work, he will eafily imagine what alterations certain particular circumftances require, and facilities which may be contrived for the operators. A bifhop, who has a genius for the fciences, may in this manner conftruct a map of his country, by help of his clergy, who will hardly be fenfible themfelves, that they are making geometrical operations. Many ufeful things, and fome which appear difficult, would almoft execute themfelves, if they who are in place, would give a firft motion to them.

A N

ABRIDGMENT

OFTHE

Philofophical Memoirs

OFTHE

Royal Academy of Sciences at Paris, for the Year 1707.
I. Obfervations on the quantity of rain, webich fell at the obfervatory during the year 1706, and on the thermometer and barometer, by M. de la Hire *.

THE obfervation which I have long made on the quantity of water which falls on the earth during each year, the refult of which I give in the memoirs of the academy, at the beginning of the fucceeding year, have excited many curious perfons, in different parts of the kingdom, to do the fame in the places where they dwell. Some of thefe obfervations have already been given in our memoirs, and have been compared with thofe made at Paris; but the moft confiderable is, that made by the marfhal de Vauban at Lifle, in Flanders, during ten years fucceffively, which I related fome time ago, and from thence concluded, that there is a little more rain in Flanders than at Paris.
*. Jan. 8, 1707.
C 2
Her

20

 The Histor y and Memoirs of theHere is the continuation of thefe obfervations, which were made here during the preceding year, in all the fame circumftances, and in the fame manner as thofe of the foregoing years. The height of water which fell at the oblervatory, was in

Jan.	Lines. 8 1	July	$\begin{aligned} & \text { ines } \\ & 1 \end{aligned}$
Feb.	$15^{\frac{4}{31}}$	Aug.	$5^{\frac{1}{4}}$
March	$3{ }^{\frac{1}{2} \frac{1}{8}}$	Sepr.	$18 \frac{1}{4} \frac{1}{8}$
April	$7{ }^{\frac{1}{2}}$	Octob.	$19{ }^{\frac{1}{4}}$
May	$23^{\frac{1}{2}}$	Nov.	17
June	$21 \frac{1}{2}$	Dec.	$30 \frac{14}{4} \frac{1}{8}$

Quantity of water in the whole year 183 lines $\frac{x}{2} \frac{2}{8}$, or 15 inches, 3 lines $\frac{5}{8}$.

This has been a very dry year, if the quantity of water, which has fallen, is in general confidered, which commonly ufed to be between 19 and 20 inches: but it mult be looked upon as one of the wetteft years, if it is confidered that the greatef rains commonly happen in the months of $\mathcal{F u l y}$ and Auguft, with forms, and that this. year it did not rain in both thefe months together much more than 18 lines.

Dry years are always advantageous to the corn in this country, the greatelt part of the land being moift and cold; for the weeds do not then grow, or turn the corn up.

As to the heat, I compute it by the thermometer, called the Florence thermometer, which is fixed in a place expofed to the air, but fhaded from the fun. It is at the 4 Sh degree of its divifion in the bottom of the caves of the obfervatory, where I fuppofe the air to be in a mean ftate of heat, and it begins to freeze when the liquor in the tube falls to 32 degrees. The loweft

Royal Academy of Sciences. 21
which the thermometer fell at the beginning of this year, was to $20 \frac{x}{2}$ degrees 7 an. 21 ; but it almoft immediately rofe again to 30 degrees, and the froft was but inconfiderable, and of little continuance; and in the firft 8 days of February, when the cold is commonly mof fevere, the thermometer always ftood at about 30 degrees. The $9^{\text {th }}$ of this month, it was at 45 degrees, which is almoft its mean ftate: the remainder of the month it was always near 30 degrees, which indicates a little froft. As to cold at the end of the year, it was inconfiderable, for it only froze Dec. 21, the thermometer then falling to $28 \frac{1}{2}$. There fell only a little fnow Feb .4.

Though the cold was not great, nor of long continuance, the heat on the contrary was very confiderable, and lafted long; for the thermometer almoft always ftood at near 60 degrees in the 3 months of Fune, Fuly, and Aug. The hotteft day was Aug. 8, wherein the thermometer was at 68 degrees about the fun's rifing, which is the time when I always obferve it, and wherein the air is the cooleft of the day. This very day, at 2 in the afternoon, which is the time when the air is hotteft, the thermometer rofe to near 82 degrees; whence the heat is known to have been very great, fince the thermometer rofe to 34 degrees above the mean itate; and had it fallen as much below it in the winter, it would have come to 14 degrees, which commonly indicates the greatelt cold that we ever fuffer in this country.
In thefe fort of obfervations regard ought to be had to the wind, which partly caufes heat and cold, therefore I alfo give much att-ntion to that. In the month of fan. the wind was always eafterly, inclining fometimes to the fouth,

$$
\mathrm{C}_{3} \text { in } 1
$$

22 The History and Memoirs of the

and fometimes to the north. At the beginning of Feb . it was wefterly; and towards the end of the month northerly. In March, it was pretty changeable, chiefly in the weft, but littie in the eaf, and paffing by the north. In April, at the beginning, towards the north-eaft ; and at the end, in the weft. In May, the weft wind prevailed. In \mathcal{F} une, it was almoft always near the fouth and weft. In $\mathcal{F u l y}$, at the beginning and end, near the weft; and in the middle near the north. In Aug. it was almoft always weft, inclining a little to the north, and very often to the fouth; which contributed much to the great heat. In Sept. almoft always fouth-weft. At the beginning of On. alfo fouth-weft ; and at the end, near foutheaft. In Nov. the wind was almoft always fouth, and a little thereabputs; but chiefly weftward. In Dec. almoft always fouth and fouth-weft.

The prevailing wind this year, was fouth-weft, as it is commonly in this country, becaufe of the neighbourhood of the fea; but this fouth-weft wind has always been very violent.

There were fome florms this fummer; but the moft confiderable happened \mathfrak{F} uly 2%, in the morning, with thunder; which did much damage in many places.

The barometer which ferves me for the weight of the air, is always placed at the top of the great hall of the obfervatory. March 10, the quickfilver rofe to 28 inches, 1 line $\frac{1}{2}$. Dec. 22 , it fell to 26 inches, 9 lines: the difference between thefe 2 heights was therefore I inch, 4 lines $\frac{1}{2}$, which is pretty near as ufual; but it feldom falls fo low, except with a very high foutherly wind of long continuance, as it was then. I have frequently obferved, that the quick-filver has been very high, though
though the wind has been foutherly, which is contrary to the common rule.

The tube of the barometer which I always make ufe of, is very llender and long; and I fufpect that there is a little air therein, which I cannot get out; for I have another, whofe tube is of a middling fize, wherein the quickfilver always ftands more than three lines higher. Light is feen in the vacuum of thefe barometers when the quickfilver is agitated; and one of them is that wherein M. Picard, of the academy, who was the firft that obferved it, made his firft oblervation on the light in the vacuum of barometers. We have alfo other barometers, conftructed in a mannerdifferent from the common ones; in which, even air has been fuffered to enter, yet they alfo give a light.

I alfo obferved, Dec. 3r, of this year, 1706, the declination of the needle, 9 degrees, 48 mi nutes, weftward, with the fame needle of 8 inches, length, and in the fame place where I ufed to obferve it every year, as I have related in preceding years.
II. A machine to retain the wibeel, which ferves to raife the rammer to drive the piles in the conftruction of bridges, kays, and other works of this nature, by M. de la Hire*.

The rammer, or beetle, which is ufed to drive great piles, is of 1000 or 2000 lb . weight; and is commonly raifed by a roller, which compofes a part of the crane or engine, which is to raife great weights.

* June 1, 170%.

24 The History and Memoirs of the

This rammer runs freely between two grooves; that the whole force thereof may fall on the head of the pile which is to be driven. But as the common rollers of engines are moved by 4 arms fixed to them it is difficult and tedious to turn them, which hinders the work; therefore a great wheel is fixed to this roller of 10 or 12 feet in diameter, as there is to great cranes, that men by walking or climbing in this wheel, may caufe the roller to turn more eafily and conveniently, as may be feen in the figure*.

In conftructing a great ftone bridge at Moulins, in Bourbon, after a new manner, by the direction and plan of M. Manfart, furveyor of the buildings, they are obliged to fink great piles, more than 20 feet deep, to get a good foundation; it is therefore neceffary to make ufe of a rammer of 2000 lb . weight. But as the great wheel which is apply'd to the roller, on which the rope of the rammer winds in proportion as it is raifed, is large enough to receive in it 4 men on a row, who climb up together on the crofs bars, or rounds, which form the breadth of this wheel, and almoft always to keep them in at the heighth of the axis or roller, to make the greater effort, this wheel muft be fopped every time the rammer goes down; for the weight of the men within it being no longer ftopped by the weight of the rammer, would carry the wheel fwiftly round ; and the men therein might be thrown down, and perhaps killed; therefore they are obliged to ftop this wheel with a hook faftened to a rope, and fixed to fome appointed place every time the rammer is let down. This is very troublefome; befides, it may happen, that the hook or rope may break by the force of the men's weight on the circum-

* Plate I. Fig. I.

Royal Academy of Sciences. 25

ference of the wheel, and then the labourers run the rifque of their lives.

But the men in the machine have not only this to fear; for fometimes the defcent of the rammer, or the hook, by which it is fupported, or the rope which is made ufe of, may break on a fudden in raifing it; and by thefe unforefeen accidents the labourers are in great danger, as has fometimes happened.

This obliged one of the king's chief architeets, who has the direction of this edifice, to propofe to me laft winter, that I hould find out fome remedy for all thefe inconveniencies, and make it fo eafy, that corpulent men, who are moft commonly employed in thefe works, may receive no hurt by any negligence, or inadvertency whatioever: This is what I thereupon contrived, and which is to be executed.

I firft confidered, that in all accidents which may happen to this machine, the rope which holds up the rammer, entirely flackens; and confequently, a piece muft be fixed in the timber work of the machine itfelf, which falling between the fteps or rounds of the wheel, and being capable of refifting any effort whatever, may retain it when the rope of the rammer is flack; and on the contrary, this piece muft difengage itfelf from thence when the rope is tight.

For this parpofe I made a fquare ABC* of either wood or iron, much wider than it is thick, forked near the end C , which is a little bent. In this forked part I fixed a litte roller or pully, fo that the cable or rope of the rammer, may move freely in this part, paffing under the pulley. To the other branch of the fquare $A B$, near the

* Fig. 2.
angle the fame thicknefs as the branch of the fquare. To conclude, in the end A of this branch BA, a hole is bored that an iron pin may be put therein.

In the compofing this engine, there are two pieces EF * mortifed parallel to each other, which help to ftrengthen it ; there is a fpace of 4 or 5 inches between them, in which I faften the fquare $A B C$, and fix it to the mortifes by a pin placed at the end A , but in fuch a manner that it has not too much room to play on the fides, which depends on the diftance between the mortifes, and on the thicknefs of the branch of the fquare.

Directly under thefe mortifed pieces goes the great wheel of the roller, which carries the rope of the rammer; and the machine is difpofed in fuch a manner, that when the cable GH, which comes from the top of the engine to the pully H, to be afterwards turned on the roller, is tight or ftrained; it holds up the fquare, paffing through the pully at C, fo that the bracket of the fquare D, does not touch the rounds of the wheel. But as foon as the rope GH flackens, the weight of the fquare itfelf, and the weight which the rope adds to it, by retting on the forked part, makes it turn upon the pin at A, and fall into the fellows of the great wheel ; and the bracket D falling immediately between the fleps or rounds, retains the wheel in this ftate, it being impoffible for it to turn; for the branch $A B$ of the fquare, being faftened between the mortifed pieces, can bear a very great effort.

But when the cable or rope of the roller is again ftrained, to fix the rammer to it, the fquare im. mediately rifes, and the bracket \mathbf{D} difengiges is-

Royal Academy of Sciences. 27
felf from the rounds of the wheel, which is then at liberty to turn round and raife the rammer.

This machine is very fimple and convenient, and may fave the lives of labourers and workmen employed in this bufinefs, and without any precaution.
III. Of the irregularities of the apparent depreffion of the borizon of the fea, by. M. Caffini * ; tranflated by Mr . Chambers.

After examining the ift obfervations of the apparent depreffion of the fenfible horizon of the fea, made by father Laval, in his obfervatory at Mlarfeilles, finding them different at different times, I defired him to continue his obfervations, to fee whether this difference would Atill continu: equally irregular.

The telefcope of the inftrument which he ufes, is raifed 144 Paris feet above the level of the fea, according to a levelling made by himfelf; which 144 feet high give the direct ray, which razes the furface of the fea an inclination of $13^{\prime} 14^{\prime \prime}$.

The leaft apparent depreffion obferved by father Laval, at this heighth during this winter, was 11^{\prime} $4^{\prime \prime \prime}$; and the difference between this height, and that of the direct ray, would be $1^{\prime} 28^{\prime \prime}$; which might be owing to the greateft refraction of the vifual ray, which razed the furface of the fea. But the greateft apparent depreffion obferved by him was $14^{\prime} 30^{\prime \prime}$, which exceeds that of the direct ray by $1^{\prime} 1^{\prime \prime}$; and this contrary to the rules of refraction, which fhould diminifh this inclination inftead of increafing it.

28 The History and Memoirs of the

We have already noted from feveral other obfervations, that a part of the furface of the fea, contiguous to the fenfible horizon, confounds itfelf as to fight, with the heaven itfelf; and that on this occafion, the apparent circumference of the fenfible horizon falls in the fea within cur fight. The vifual ray directed to this apparent circumference of the horizon of the fea declines; therefore on this occafion, from the direct ray which razes the furface of the fea, towards the lower fide, contrary to the inclination which the refracted ray raifing this furface ought to have.

Having communicated this remark to father Laval, and he not having occafion to diftinguifh this difference by 'any fenfible fign, it is evident how difficult it is io diftinguifh it; and how liable to error the method is of finding the magnitude of the diameter of the earth, by obferving the tangent of the fea without this circumfpection.

It appears by father Laval's obfervations, that this difference between the feveral apparent depreffions of the horizon of the fea, viewed from the fame place, does frequently exceed a $5^{\text {th }}$ part of the leait apparent inclination; fo that one might be deceived in this method by a 5 th part of the femi-diameter of the earth.

I have endeavoured to reduce the difference between the apparent inclination of the refracted ray, which razes the furface of the fea, and the real inclination of the direct ray, to certain rules; and it is evidently of great importance to examine, what degree of exactnefs a method is capable of, to prevent any expectation of more than it can afford.

By the multitude of obfervations made by father Laval, we learn, ift, That when we attempt to determine a diftance, or a fimall height, upon the furface of the fea, by a fingle obfervation of the depreffion

$$
\text { Royal Academy of Sciences. } 29
$$

depreffion of the horizon, we can only be fure of being within $\frac{2}{5}$ of the truth; and accordingly this is pretty nearly the difference found between the height of the obfervatory at Marfeilles, as taken by obfervations made at Marfeilles, and the real height found by levelling, the former being 175 feet, and the latter 144. 2dly, That having feveral obfervations of the apparent depreffion of the fea, made in the fame place at different times; and taking a medium between thefe obfervations, we fhall have the inclination nearly equal to that of the direct ray, which raifes the furface of the fea, which may ferve to determine the height and diftance, by the common method, to a tolerable exactnefs. 3 dly , That the variation of the apparent heights of the fea bears no uniform relation to the variation obferved at the fame time in the barometer and thermometer, which feems to confirm what we have frequently obferved, that the air which caufes the refraction, is of a different nature from that which balances the weight of liquors in vacuo.

We have frequently obferved the apparent depreffion of the fenfible horizon of the Mediterranean fea, from an elevation 6 times greater than that of the obfervatory at Marfeilles, and conftantly found it 42 min . withour any fenfible difference between one time and another, which fhews, that the refraction is much more variable at moderate heights, than at very large ones.

IV. Obfervations upon fpiders, by M. Homberg; tranflated by Mr. Chambers.

The colour and figure of an extraordinary kind of fpider, which I met withal, among the tuberofes in a garden at Toulon, raifed my curiofity to

30 The History and Memoirs of the

examine this; and afterwards all the other kinds of fiders I could find in. I made ufe of a microfcope for the difcovery of certain parts which the naked eye cannot diftinguifh, and have procured defigns of them larger than the life, to reprefent them fuch as they appeared thro' the microfcope.

I thall here only give the defcription of 6 principal kinds of thefe infects; to which, all the reft I have met withal, may be referred.

The 6 kinds are, 1 ft , the domeftick fpider; or that which makes its webo on the walls, and in the corners of rooms. 2dly, The garden fpider; or, that which makes its webb out of doors, ufually of a roundifh figure, and a loofe texture, in the centre whereof the animal lodges all day. 3 dly, The black fpider; found in caves, cellars, and holes of old walls. 4 thly, The wandring fpider, which does not lie ftill in its neft like the other kinds. 5thly, The field fpider with long legs, ufually called the fpinner. And frhly, The raging fpider, or the famous tarrantula.

By the way it may be proper to begin with a general defcription agreeing to all the kinds of fpiders ; and afterwards to note the particular characters of each: nor fhall I enter into a minute account of the ftructure of all the external parts of this infect, but confine myfelf to what is not eafily difcoverable by fimple infpection, and without the help of a microfcope.

The whole body of the fipider may be divided into the anterior part, the pofterior part, and the paws or legs; the anterior part contains the thorax and head; the poferior, the belly: thefe two parts are faftened together by a choak, or very narrow rim. In the generality of fpiders, the anterior part is covered with a hard fcaly cruft, and

Royal Academy of Sciences. 31

the pofterior, with a foft kin; the legs arife from the tborax, and are hard like the reft of it. This ftructure is very different from that of diverfe creeping and flying infects; for inftance, the maids*, and others, whofe belly and thorax adhere to each other by their whole extent without any choak, or contraction, tho' their thorax be invefted with a hard cruft, and the belly with a foft fkin, yet their head adheres to their thorax by a very narrow choak; again ants, wafps, and moft fies have their thorax and belly fattened by a choak, and their head and tborax by another.

All fpiders are covered with hair, their hard, as well as their foft parts.

They have eyes on various parts of their heads, of different fize and number, and differently placed; but all of them without Palpebra, or eyelids; and covered with a hard gloffy tranfparent cruft.

In the fore-part of the head is a kind of double claw, or gripe, like that of a lobfter, which, with the front of this animal, makes the whole fore-part of the head. See fig. 4, 5, 6. This claw confifts of two flattifh branched pieces, covered with a hard cruft or fhell, and faftened perpendicularly to the lower part of the front by a foft fkin, which ferves them as a joint or hinge to open and fhut upon. Thefe pieces are befet with little hard eminences at the two edges that meet, and thus become fit to catch, and hold their prey near the mouth which is behind the claw, in order to draw their food therefrom.

At the lower end of each of the branched pieces, is a hooked nail, fomewhat like the nails of a cat ; thefe nails are very large, hard, and jointed, fo that the animal can move them upwards and down${ }_{-}^{*}$ Adder-Bolts.

32
 The History and Memoirs of the

wards, without ftirring the branches themfelves. It is probable thefe nails ferve to fhut or clofe the ends of the claws, and gripe the prey to prevent its efcape; for by their means, the aperture of the claws forms a triangle clofed on all fides, which otherwife would be open at one end. See fig. 6 . Thefe nails being jointed, may likewife ferve to raife or fall the prey, as the animal finds occafion.

All fpiders have 8 jointed legs, like the legs of lobfters; and at the extremity of each, are two large hooked jointed nails.

Between the two mails of each extremity, is a body not unlike a wet fpunge, much like that found at the end of flies legs, and in all likelihood lerving for the fame purpofes; viz. to walk with the feet upwards upon fmooth polifhed bodies, where the hooks or nails would be of no ufe : thefe fipunges fupply a fort of vifcid liquor, which ferves to make them ftick or hang thereon: this vifcid Jiquor ftops with age, both in flies, and fpiders, fo that they become unable to wallk long up a perpendicular glafs. And we even find, that an old fpider or fly, happening to fall into a deep Cbina jar, is unable to get out again, and muft die of hunger.

And the fame thing befalls fididers with refpect to the matter, whereof they make their webb. An old fpider has no more of this matter left in its body, nor can fo much as refit its webb when broken, or difplaced; all it can do is to expel fome weaker fipider of the fame fpeciss, and pofiefs its neft, which I have frequently found it do. It is not unlikely, that the liquor at the extremities of the paws, is the fame with that which makes its webb, or at leaft near a-kin thereto, fince borh of them ceafe about the fame time; but of this we fhall fpeak more at large hereafter.

Befides the eight legs above-mentioned, wherewith the fpider walks, it has two others nearer the head, which are of no ufe in walking, but ferve it in lieu of arms and hands, to place and take back the prey which they hold in their claws, in order to flift and prefent different parts of it to their mouth. This fifth pair of legs, or thefe arms, are not formed a like in all the kinds of fpiders; in fome, they are perfectly like the other legs; and in others quite different. Their difference will be noted when we come to the different characters of each fpecies of fpiders.

Around the amus of all fpiders are four little mufcular papilla, or nipples, pretty broad about their bafes, and pointed at their extremities*, having a pretty free motion; every way from the middle of thefe papille, as through a mould, or wier-drawer's iron, iffues the vivid liquor, which produces the thread whereof their nefts ${ }^{\text {a }}$ and webs are formed. This mould has a fphincter to open and fhut it, by which means they can fyin bigger or fmaller at pleafure; and the fpider, being fufpended in the air by this thread, either ftops when this mould clofes, or continues to defcend by its own weight when it opens.

The manner wherein they make their webs, is as follows: when a fpider is to hang her work in a corner of a room, where fhe can eafily go to all the places the threads are to be faftened on, fhe opens and detaches the four nipples abovementioned immediately, upon which a little drop of vifcid liquor appears upon the tip of each. This drop being forcibly preffed againit the wall, fticks thereto by its natural gluen, and the fider removing from the place, new matter continues drawing thro' the hole; and thus is the

* Plate I, Fig. 10.

Vol. III. $\mathrm{N}^{\circ}, 24$.
D
firlt

34 The History and Memoirs of the

firtt thread form'd. Being arrived at the place of the wall, where fhe would have her web terminate, the preffes the end of her anus againft the fame, and thus faftens the other end of the thread, after the fame manner as the firt. This done, fhe withdraws about half a line from the firft, and here faftens the end of a fecond thread, which fhe fpins forth parallel to the former, till arriving at the other end of the firft thread, fhe faftens the fecond to the wall, and thus proceeds till the whole breadth of her intended web be finifhed. Thefe parallel and longitudinal threads, which may be called the warp of the web being finifhed, fhe proceeds to crofs or traverle them with other threads, and to this purpofe faftens one of their ends againft the wall, and the other upon the firft thread that had been drawn; thus leaving one fide of the web quite open for the flies tolcome in at. Thefe latter crofs threads may be called the woof of the web; and being all of them but new fpun, they eafily ftick to every thing they touch, and confequently to the warp they pafs over, wherein all the ftrength and firmnefs of this web confifts; whereas the firmnefs of our cloths depends on the interweaving of the threads of the woof between thofe of the warp.

To make the crofs-threads flick the firmer, the fpider works, with its four papilla, and fqueezes clofe all the parts where the interfections happen, as foon as one thread is laid upon another, remembering to triple, or quadruple the threads at the borders; to ftrengthen them the more, and prevent an erupture being made in the web.

A fpider may furnifh twice or thrice as much matter as is neceffary to make a web, provided fhe have not fpent too much in the firft; but if a new web be wanting after this, the muft either

Royal Academy of Sciences. 35 difpoffers fome other fpider by force, or find a vacant web, which is no unufual thing, by reafon the young fiders always relinquifh their firtt webs to make new ones. If the old fpider be not fupplied with any of thefe ways, it muft perifh, for there being no living without a web, at leaft for the domeftick fpiders, tho' fome of the reft need none. Thus much for the webs made in corners of rooms.

As to the webs made a-loft in gardens, $\mathcal{E}^{2} c$. where the fider cannot eafily come, the method of proceedure is thus: the animal places itfelf in a calm feafon on the end of fome branch of a tree, or any other body that projects far into the air, here ftanding firm on its 6 fore-feet, with the 2 hind ones, it draws a thread from its anus two or three yards long, which it lets float in the air till fuch time as the wind driving it againft fome folid body. It quickly fticks thereto by its natural gluten ; the animal from time to time pulls this thread towardsit, to learn whether the loofe end have yet faftened to any thing, which it learns by the refiftance it meets withal in pulling. Finding it fixed, it ftrains the thread a little, and fixes it with its papille to the place where it ftands. This thread now ferves it as a bridge, or ladder, to go to the place where chance has caft it, by which means fhe doubles this firlt thread, which The afterwards tripls, or quadruples, according as its greater or lefs length requires more or lefs ftrengthening. This done, the fpider places itfelf about the middle of this thread, and with is two hind paws draws from its anus a new thread, which it lets float like the former, till finding it fixed to fome body, fhe ftrains it a little, and then with a papilla faftens the end as perpendicularly as the can, on the middle of the firtt

36 The History and Memoirs of the

thread; proceeding afterwards to ftrengthen it, by doubling, or tripling, as in the former cafe. The like procefs the repeats fo offen till the middle of the firft thread become a centre; from whence proceed feveral radii, the work being continued till fuch time as fhe can go upon the crofs threads from the end of one of the radii, to the ends of all the reft This done, fhe fixes a new thread in the centre, and draws it along one of the radii, and from thence to the middle of one of the crofs threads, where fhe faftens it with her papille, and by this means makes as many radii as fhe finds proper. The radii all made, fhe returns to the centre, and there faftens a new thread, which fhe draws and faftens down in a fpiral direction upon the radii, from the centre to the magnitude fhe would have the web. This done, the takes up her lodging in the centre of the web, with her head always downwards, to avoid, as fhould feem, the too great brightnefs of the heavens, as having no eye-lids to refrain and modify it, or rather, to fuftain and reft her big belly on a large bafe of her thorax; whereas if fhe remained with her head upwards, the belly would only hang by a flender threád, wherewith it is faftened to the thorax, which might be incommodious.

The fpider only keeps in the centre of her web during the day-time; in the night, or when it rains, or blows hard, the retires into a lit:le cell, built at the extremity of her web, under the leaf of a tree, or plant, or fome other place ftronger, and more ftable than her web, and which may aiford her fheter from the rain. This place fle ulually choofes towards the higheft part of the web, that fhe may have immediate refige there on occafion; for moft fpiders afcend with more eafe and difpatch than defend.

Royal Academy of Sciences. 37

The fpider lies in wait for flies, or other infects, which entangle themfelves in her web, and which are to ferve it for food. When the fly is fmall, the fpider takes it in its claws, and bears it into her neft to fuck its juice; but when the fly is too big, in proportion to the fpider, and with its wings and claws might be liable to incommode her, the fpider in this cafe wraps her round and round, with a number of threads, which fhe draws from her anus, to fetter the fly, till fhe can no longer ftir either wing or feet; upon which the fpider carries it peaceably into her den, and feeds of it. Sometimes the fly happens to be fo big and ftrong, that the fpider cannot compafs it, in which cafe, inftead of entangling it more, the fpider loofens it, or even, if that cannot well be, breaks the part of the web where the fly hangs; and, lets it go, applying herfelf in the next place, either to mend her damaged web, or make a new one.

All male fpiders are fimaller than the female ones of the fame kind; and this to fuch degree, that I have found five or fix male garden fpiders lardly balancing one femule one. This is no uncommon thing in moft infects, tho' quite contrary to what we find in quadrupeds, where the males are always bigger and ftronger than the females.

The fipiders of all kinds are oviparous, with this difference, that dome of them, as the garden fider and fpinner, produce a great number of eggs; and others, as the houfe fpider, very few; they lay their eggs on a piece of the web, which they bind together in aiclufter, and brood on them in their neft. If they be driven out of the neft, in the time when they are hatching, they take this clufter of eggs in their claws above defcribed, and carry it with them. As foon as the little ones

3^{8} The History and Memoirs of the

are hatched, they begin to fpin, and enlarge at fuch rate, that one may almoft fee them grow; yet, without taking any food that I have been able to difcover; if a very fmall gnat happen to fall in their way, they fly upon and make fhew, as if they fed on it ; but if none come in a day or two, or even more, they ftill continue growing ass faft as if they had fed, augmenting every day to more than double their bulk.

The peculiar characters of each fpecies of fpiders, are taken from the different difpofitions of their eyes; not but there are other confiderable differences between them, but thefe not univerfal.

The domeftick, or houfe fpider, which makes the firft fpecies, has 8 little eyes nearly equal in its forehead, in an oval fituation*. This fpider makes a large web; its arms are perfectly like its legs, excepting that they are fomewhat fhorter, and that it never puts them to the ground. This fpecies changes its fkin yearly, even to the very legs, as lobfters do, which I have not obferved of any other kind. It is very long-lived, I having known one of them above four years, which had not grown any thing confiderable in body, but a great deal in legs. This fpider is liable to a difeale, which renders it frightful, being fometimes govered with fcales ftanding out an end, and the intervals thereof fwarming with vermin, much like the lice upon flies; but a deal fmaller. When the diftempered fpider runs faft, it throws off fome of its fcales, with the little vermin. The difeafe is very rare in our cold countries, nor have I ever obferved it out of Naples. The fpider, when feized therewith, never ftays long in a place; and if it be fhut up, foon dies.

- Fig 4.

Royal Academy of Sciences. 39

The fecond is the garden fpider, which makes a large round web in the air, and ufually poffeffes the middle thereof. It has 4 large eyes, placed fquare in the middle of the forehead, and 2 fmaller on either fide of the head ${ }^{*}$. The females of this fpecies have the largeft bellies I have known in fpiders ; the males are very fmall ; they are of different colours, but ufuaily feuille mori fpotted with white and brown; tho' fometimes they are all white, as thofe I obferved at Toulon, among the tuberofe flowers; and fome I have known all green; nor are they all of the fame fize, but the green ones are fmalleft, and the brown ones biggeft of all. Pouring fpirit of wine on thefe fpiders, they did not feem at all difturbed thereby, no more than with aqua fortis, or oil of vitriol; but oil of turpentine killed them in a moment; which accordingly I have frequently applied to deftroy broods of young fpiders of this kind; fome of them containing no lefs than a hundred a-piece, which, in a few days, will overrun a whole garden, and fpoil a great number of plants.

The third fpecies is that of fpiders in vaults and old walls. Thefe feem only to have fix eyes, all the other fpecies having eight. The eyes are placed two in the middle of the forehend, and two of each fide the head; all fix being nearly of the fame fize \dagger. The fpiders of this fpecies are all of them black, and very hairy; their legs are fhort, and they are ftronger and more mifchievous, as well as longer lived, than moft other fpiders. If you take one, it will defend itfelf and bite the inftrument it is held withal, and though pierced in the belly, will fometimes live two or three days; whereas all the ocher fpiders die * Fig $5 . \quad+$ Fig. 6. quickly upon piercing their belly; nor do they ever defend themfelves, or bite any thing when taken. In lieu of a web to catch flies, thefe only fpin a few threads, 7 or 8 inches long, which iffue from their nefts, like fo many radii, and are faftened to the wall around the hole where they inhabit; any infect walking on the wall, and fticking againft any of thefe threads, advertifes the fpider, who lies perdue in her tole, and, upon this notice, inftantly rufhes out with prodigious fwiftnefs, and feizes the infect. I have feen a vigorous wafp carriel off by one of thefe fpiders, which none of the ather fpecies would have touched, both on account of the $1 t$ ings thofe infects are armed withal, and ois the hard fcales wherewith their whole body is defended; but the fore part and legs of this fpider, being covered with a very hard fhell, and the kind part, or belly, with a thick clofe leather, if does not fear the wafp's fting; and its gripes are fe frong and hard, that they are able to break the fcales of the wafp.

The fourth fpecies of fpiders are thofe we call vagrants, by reafon they do not ftay at home in their refpective nefts, as all the other fpiders do, who wait quietly for their prey to come home to them; but, on the contrary, go out in queft of prey, and hunt it down with infinite wiles and itratagems. They have two large eyes in the middle of their forehead, and two fmall ones at the extremities of the forehead, two of the fame fize on the back of the head, and two very fmall ones between that and the forehead *. The fpiders of this fpecies are of different fizes and colours, white, black, red, brown, and fpotted. In one part of their body they are different from all

* Fig. 7.

Royal Academy of Sciences. 41

other fpecies, viz. the extremity of their arms, and 5 pair of legs, which terminates in a clufter, or in a plume of feathers; whereas in all the other fpiders, it terminates in two hooks, like the other legs. This plumage is ufually of the fame colour with the reft of the body, and fometimes equal in bulk to the whole head. The animal makes ufe of it, to throw upon the wings of flies it has caught, in order to prevent their motion and fluttering, which would greatly incommode it, in as much as this fpider wants the neceffary means, which others are furnifhed withal, of tying and entangling its prey.

The fifth fpecies is, That of field-fpiders, vulgarly called, fpinners. This fpecies has its forepart, or head, and thorax, flat horizontally, and almoft tranfparent, being covered with a very fine whitifh fleek fcale; it has a large black fpot on its head, which I take for the brain, which appears through the tranfparent fhe! 1 it is covered withal. This fpider has 8 eyes ranged in a very extraordinary manner, two of them in the middle of the fore-head, fo extremely finall and clofe to each other, that they appear like one little oval body: at the right and left of the fore-head, are two little prominences; and at the top of each of thefe, are three eyes, placed very near each other *; thefe eyes are bigger than the two in the middle; their cornea is very prominent, white, and tranfparent, though the fund be black; whereas, the eyes in the middle, are quite black. From each of thefe prominences, as well as from the two eyes in the middle, arife three very fenfible canals, which terminate in the black fpot, fuppofed above to be the brain. As thefe canals recede from the eyes, they approach towards each

[^1]other

42 The History and Memoirs of the

other, fo as to end almoft in the fame part of the brain: in them are the optic nerves probably lodged. The legs of thefe fpiders are much flenderer and longer in proportion, than thole of other kinds; but their arms are much fhorter, and more fefhy, bearing little or no refemblance to the legs, as they do in all other fpiders: their legs are fo full of hairs, that to the microicope, they appear like writing quills.

The famous tarantula makes the fixth fpecies of fpiders; it has the figure and apoearance of a common houfe fpider, but much ftronger, and more robult in all its parts: the leys, and bottom of its belly, are fpotted with black and white; but the top of its belly, with all the fore-part are quite black: its head and thorax are covered with one fingle black fhell, perfectly like a little tortoife: it has eight eyes, which are altogether different from thofe of other fpiders, both in colour, and confiftence. All the eyes of other fpiders, are either black, or red, bordering on black; and are covered with a hard tranfparent fcale, remaining fuch after their death; whereas, there are covered with a foft a: 1 moift cornea, which withers and finks when they are dead: their colour is white, bordering fomewhit on yellow, very bright, and fparkling like cats: ves, when viewed in the dark; they are fitunte four in a jequare figure, in the middle of the fo:e-head ; and four in a horizontal line, below the four finit: there laft border the botom of the forehead, and are placed immediately over the root of its gripe, or pinchers. Thefe tyes are of differeat bulk; the four arft are nearly alike, being about a line in diameter, and fufficiently vidible without a microfope; but the hater are not abore hat the diameter of the fomer. The tarantula
is very mifchievous, and will bite on its own accord, during the coupling feafon. I have feen them at Rome, but they are not minded, as having never been known to do any harm; but in the kingdom of Naples they do a deal of mifchief, by reafon we fuppofe the country is much hotter there than at Rome. The fymptoms which befall thofe wounded thereby, are very whimfical as well as the cure. They have been defcribed by feveral Italian and French authors; and tho' their hiftory appears fomewhat fabulous, it is real neverthelefs. An account of them has been given us by M. Geoffroy; and an extract thereof in the hiftory of the academy for the year 1702, to which we refer the reader.

An explanation of the figures, tranflated by J. M.
Fig. 4. Reprefents the eyes and claws of the houfe fpider.

Fig. 5. The garden fpider, which keeps in the air, in the middle of its web.

Fig. 6. The black fpider, which inhabits in the holes of old walls.

Fig. 7. The wandering fpider, which does not keep in one neft like the others, and goes out to hunt flies and other infects.

Fig. 8. The head and eyes of the field-fpider, commonly called the finner.

Fig. 9, 9. The tarantula.
Fig. ıo. A fpider reverfed, which fhews the papille of its anus, which it makes ufe of for the thread.

> V. of
V. Of the effect of gunpowder, chiefly in mines, by M. Chevalier *.

Every one knows, that gunpowder is a compofition of faltpetre, fulphur, and charcoal, beat and mixed together; and that a certain proportion is to be obferved in the mixture of thefe ingredients, and precautions taken in the choice of them, and in the manner of making the powder, which contribute to the goodnefs thereof. But this is not what we defign here to examine. It is of the effect of the powder, and chiefly in mines, which I propofe to treat.

The late marfhal de Vauban communicated to me a great number of experiments on this fubject. This grear man who was always employed in promoting the king's glory, and the grandeur of the ftate, having obferv'd on many occafions, that the fuccefs of mines did not always anfwer to expeitation, thought it neceffary by exact experiments to determine the different effects of mines in all the feveral circumitances wherein they may be employ'd; and from thence conclude on certain rules to be obferv'd on important occafions. The fuccefs has jultified thefe rules; but before 1 lay them down, I mult explain the reafon why gunpowder when it takes fire, is capable of making fuch great efferts.

Firft I confider, that air is neceffary to the action of the powder; for by experiments made in the air-pump, it will not take fire from a fint in the vacuum; and though it takes fire from the sun-beans, by means of a double convex-glats, get it is almoft withour any noife or effort.

[^2]Secondly,

Royal Academy of Sciences. $\overline{4} 5$

Secondly, The bodies whereof gunpowder is compofed, do not with equal facility take fire. Sulphur takes it more readily than charcoal, and charcoal than faltpetre, which is the predominant ingredient in the powder; there is commonly 3 parts of faltpetre, to one of both the other taken together. It is alfo to be fuppofed, that each of thefe bodies is compofed of parts of unequal aptnefs in taking fire.

Thirdly, The powder muft be very dry, that it may the fooner take fire; it mult be granulated that the flame may very fubtilely communicate itfelf through the fpaces left between the grains, which mult all perform their effort almoft at the fame time.
I. This being fuppofed, it may be conceived, that firlt the different bodies whereof fuwder is compofed, taking fire fucceffively, the fire directly impreffes its action on the firft or moft fubtile, which afterwards communicates a certain degree of velocity to the fecond; and the fecond to the third, and fo on till the whole matter being kindled, makes its effort.
2. Moft of thofe bodies againft which the powder acts, have alfo parts of unequal folidity capable of communicating to one another fucceifively the motion of the parts of the powder; and the effort of the parts of the powder will be fo much the more confiderable, the greater number there are of parts of unequal folidity, either in the ingredients of the powder, or in the bodies againt which it acts; (all things elfe being equal) and that thefe parts have with one another, and nearer relation to a geometrical progrefion, beginning at the moft fubtile, and proceeding to the moft grofs, as has been flown by the learned M. Havgens, in his Lows of Mo:ion, and after him br M. Carré.

46 The History and Memoirs of the

It may therefore be concluded, that the bodies alone whereof powder is compofed, being put in motion by fire, become capable by ftriking againft one another to contribute to the great effect which it produces: but I think it not poffible to reduce to calculation what fhare they have in it, becaufe the proportion of feveral parts of the bodies whereof powder is compofed, are not known, nor that of the bodies on which it acts.
II. Let us now examine what effort the air contained in the grains of powder, and that which fills all thoie little fpaces between the grains, is capable of producing by its fpring when it is dilated by the action of fire. Experiments have fhewn, that the fpring of the air becomes capable by the heat of boiling water, to fuftain a weight three times greater than what it will fuftain in a temperate degree of heat.

I fuppofe a certain bulk of powder, contains in all its pores, and between the โpaces of the grains, as much air, as it contains proper ingredients of the powder; thus 2 cubic feet of powder, which weigh about 140 lb . contain a cubic foot of air. If a mine is conceived to be charged with 140 lb . of powder, and that the aperture of this mine is a foot fquare, the air contained in the mine, will by the preflure of the external air, with which it is in equilibrio, fuftain a weight of more thars $2,200 \mathrm{lb}$. which is the weight of a prifm of quickfilver, whofe bafis is a foot \{quare, and 28 inches high. If to this air contained in the mine, a degree of heat is communicated equal to that of boiling water, it will become capable by its fpring, to futtain a weight of about $2,9 c 0 \mathrm{lb}$. that is a third more than before; thus if the weight which refifts the effort of this air, is lefs than jo0 l6. it will be lifted up. And if it is fuppofed that

Royal Academy of Sciences. 47
that the action of the fire, impreffes on the air a degree of heat 100 times greater than that which it receives from boiling water, it will become capable of fuftaining a weight 100 times greater. In this cafe, one cubic foot of air will fultain a weight of near $290,000 \mathrm{ll}$.

It has been fuppofed, that the action of fire augments the force of the fring of air only 100 times more than the heat of boiling water: but there is a probability, that it augments it confiderably more; for it is certain that the force of the fpring of the air when loaded, augments in the fame proportion as iss bulk would augment, if is was not loaded : thus by the heat of boiling water, the air would only augment its bulk one third ; but, by M. Aminonton's experiments, powder, which has taken fire, augments its bulk 4000 times; and it muft be imagined, that the air contained in the powder hath a great fhare in this increafe, which neverthelefs I do not think it poffible to determine exactly.

However, without having any regard to the motion, which may be produced from the diffcrent bodies, whereof the powder is compofed, ftriking againft one another, for this cannot be brought to a calculation; and only fuppofing, that the action of fire augments the force of the fpring of air 100 times more than the heat of boiling water, it has been juft now fhown, tiat one cubic foot of air, contained in two cubic feet of powder, is capable of fuitaining a weight of near $290,000 \mathrm{lb}$. but this effort being made from all parts againft the furface of all the bodies which furround the powder, as from a centre to the circumference, it is divided among all thefe bodies; fo that if a cubic mine is fuppofed, whofe fix faces equally give way, each face of the mine will fuf-
tain the fixth part of the whole effort of the powder which it contains; thus in the preceding fuppofition each face will futtain a weight of about $48,000 \mathrm{lb}$. but if there were five faces of this mine immoveable, the effort would fall entirely on the fixth, which would then fuftain the whole weight of $290,000 \mathrm{lb}$. This effort is much greater than what is found by experiments; for 140 lb . of powder raifes only about $30,000 \mathrm{lb}$. weight of earth, as refults from the experiments which Shall afterwards be given.

The reafon of this difference proceeded from many caufes; I. From the powder not taking fire all at once, the action of the firft fire is finifhed, or at leaft confiderably diminifhed at the time of the effort of the fecond.
2. A part of this effort is loft by the paffage which conveys the fire into the mine, and by the pores of thofe bodies which encompars the mine. Experience fhows, that in counter-mines 15 or 20 feet diftance from mines which have been played, there is an infupportable fmell of burnt powder; nay, that even the fmoak conveys itfelf through the earth.
3. The tenacity of the parts from being feparated is another obftacle; fo that a greater force is neceffary, for example, to raife $1,000 \mathrm{lb}$. of old mafonry well bound, than the fame quantity of new, or fuch as is not well bound; for, befides the weight of raiing them, this cohefion muft be alfo broken.
4. To fuftain the weight of the earth alone is not fufficient ; but a great part of the effort of powder is alfo employed in carrying it upwards with a certain velocity.
5. The refiftance of the furrounding air is another obftacle to be furmounted, to which no re-

Royal Academy of Sciences. 49

 gard is had in practice, though it is very confiderable, and perhaps the moft confiderable of all.III. To form a clear idea of the manner by which powder acts on bodies, let us fuppofe an immoveable gun fixed vertically with the mouth upwards, of an indefinite length, or at leaft long enough for a ball to make all the range which the powder can fend it; and having no regard to the friction of the ball in the barrel of the gun, let us fuppofe that it is applied immediately to the powder, and that it is fo perfect a caliber, as exactly to fit the barrel of the gun, fo that no air can pafs between; in order that we may only confider what can happen from the refiftance of the air, and the effort of the powder.

In this hypothefis, if fire is put to gunpowder, it will catch it fucceffively, and the ball will not go out till there is a fufficient quantity thereof, not only to get the better of the weight of the ball, but alfo of the column of air which refts upit. So that if the ball be fix inches in diameter, it will weigh near 33 lb . and the column of air will weigh about 440. Thus the ball will not be perceived to move, till that quar. tity of powder takes fire, which is able to move a weight of 473 lb . The powder continuing to take fire, it will fuccefively augment the fwif.nefs of the ball, till it has acquired its greateft velocity, which would be the fame with the inflamed parts of the powder, did not the air refift it ; but as the refiltance of the air, which the ball expels, augments in the proportion of the fquare of the velocities of the ball, there is a fixed time when this refiftance becomes equal to the new effort, which the ball receives from the powder. Thus when there is too great a quansVol. III. N ${ }^{0} .24$ E tity

50 The History and Memoirs of the

tity of powder in the gun, it will not augment the velocity of the ball. Suppofing therefore that there is in this gun only a fufficient quantity of powder, to give it the greateft velocity it is capable of acquiring, the effort of the powder will after that diminifh fucceffively, till it entirely ceafes; and then did not the air refift the motion of the ball, it would continue to move with a uniform fwifnefs, equal to its greateft acquired velocity : but the air continually refifting, the fwiftnefs of the ball diminifhes each inftant, fo that there is a fixed time, wherein the remaining impreffion, which the powder has given to the ball, is equal to the refirtance of the air, and then the ball can no longer move. But the weight of the air and of the ball acting againft it, with an effort of 473 lb . as has been faid, will repel the ball to the bottom of the gun, by accelerating its velocity, like all heavy bodies.

From what has been faid, it may be concluded,

1. That the beft powder (every thing elfe being equal) is that which fooneft take fire.
2. That the barrel of the gun, near the breech, nught to be fuch, that a greater quantity of powder may take fire therein before the ball goes out. This is the reafon why guns, with chambers, carry farther with an equal quantity of powder, or as far with a lefs quantity than thofe whofe barrel is entirely cylindrical.
3. That in a gun, whofe barrel is cylindrical, of a given length, there is a determined quantity of gunpowder which drives the ball as far as poffrble; and this quantity is fuch, as may have time to take fire winile the ball is in the gun. But the more powder there is on fire in the gun, the more darger there is of its burfting, becaule its

Royal Academy of Sciences. -5i

effort is greater, and it remains longer againt the fide of the gun.
4. That the longer that part of the gun is, through which the ball is to run, fuppofing it does not attain its greateft velocity, the more powder may be put into it; becaufe the ball taking up more time in paffing, a greater quantity of powder has time to take fire, of which it receives the impreffion. This is probably the reafon, that fome very long guns, fuch as the culverin of Nancy, carry much farther than common guns of the fame caliber.
5. That the quantity of powder with which a gun is charged, and the fhape of its barrel being determined, there is alfo a length in the gun which has all poffible advantages; fo that a greater length would leffen the range of the ball. This length is fuch, that the ball may go out of the mouth of the gun, when all the powder has made its effort; and if the quantity of powder is undetermined, this length is fuch, that the ball will go out of its mouth when it has acquired its greateft velocity. Therefore guns of the new invention, whofe barrel near the breech is fpherical or fpheroidal, in which the powder being more clofe together, takes fire more readily, are not fo long as thofe whofe barrel is cylindrical.
6. That the effort of the powder, towards one certain fide, is greater in proportion to the refiftance it meets with from the others; and thus the more difficult it is for a gun to recoil, whether becaufe of its weight, or any other impediment, the farther will it fend the ball. The dif. ficulty of conveying very heavy guns by land, and the expence requifite for this, caufe them to be made as light as poffible, provided they can refift the effort of the powder; but gurs mene

$$
\mathrm{E} 2
$$

52 The History and Memoirs of the

for fhips, are commonly much heavier than thofe defigned for land fervice.

Let us now apply what has been faid of the action of powder in general, to its particular effort in mines. I fuppofe it is known what a mine is, and the different kinds thereof, as Fourneaux, Fougades, \&c. The precautions which ought to be taken in digging and charging them, propping up the galleries and branches which lead to them, ftopping them up, the way of difpofing the fauciffe, which conveys the fire to it; all which things are well defcribed by thofe who have treated on mines. It is chiefly to determine the moft advantageous difpofition of them, and the quantity of powder with which they ought to be charged, that they may perform the effect propofed, that we were obliged to make thefe experiments.

Mines are either made in the body of the earth, fuch as are made by the befieged to blow up the batteries and works of the befiegers, before they make a lodgment on the covered way; or on rifing ground, where nothing joins to it either on the right or left, as to make a breach in ramparts made of earch; or to blow up walls, which may be diry or thrown down; to conclude, fometimes they are made ufe of to tear up rocks.

All the experiments have difcovered;

1. That the effect of the mine is always made on the weakeft fide; thus the difpofition of the chamber of a mine does not contribute to determine this effect, either to one fide or another, as the miners had fally imagined.
II. That a greater or lef quantity of powder is requifite, according to the inequality of the weight of thole bodies which the mane is to raite, andiacondig to the inequality of their cohefion,

Royal Academy of Scincees. 53

and the refult of all the experiments which have been made, to know what quantity of powder muft be ufed according to the different bodies, is to each cubic toife.

| | $l b$. of powder. |
| :--- | ---: | :--- |
| Of loofe earth | 9 or 10 |
| Of firm earth, and ftrong fand | 11 or 12 |
| Of fat clayey earth | 15 or 16 |
| Of new mafonry, but flightly bound 15 or 20 | |
| Of old mafonry, well bound | 25 or 30 |

III. The aperture of a mine, which has played in the body of the earth, being properly charged, is made in a cone, the diameter of whofe bafe is double the height taken from the centre of the mine.
IV. That when a mine is over-charged, it makes only a hole or well, whofe fuperior a perture is not greater than the chamber wherein the powder was lodged.
V. That befides the effort of the powder againft the bodies which it raifes, it alfo preffes and crufhes all the earth near it, both underneath and on the fides of it, and this preffure or crufh extends fo much the farther, as the furrounding bodies make lefs refiftance.

To account for all the effects refulting from thefe experiments, and afterwards determine the quantity of powder with which mines ought to be charged, and the moft advantageous difpofifion to produce the effects propofed by them.

Let us, I. conceive a mine, whereof all the parts furrounding it are incapable of compreffion, and make equal refittance, fuch as a bomb of equal thicknefs every where would make, fufpended in the air; it is evident that in this cafe, beffides the refiftance of the body, the effort of

54 The History and Memoirs of the

the powder muft furmount the weight of the furrounding air; and then the body muft be reduced to duft, or at leaft into very fmall pieces.

By the way, it muft be obferved, that the bomb differs from this fuppofed mine, only in its being a little thicker at the bottom, oppofite to the fufee than elfe where.

The bottom of the bomb, is made moft folid for two reafons. 1. That this part being heavieft, may turn towards the ground when the bomb falls, left it fhould be broken by its fhock againft thofe bodies which it meets with. 2, that it may not fall on the fufee, which might extinguifh it ; either of which cafes happening, the bomb would not execute the principal effect defigned, which is to convey the fire into the enemy's magazine, after having by its fall, made way through the vaulss or boards of the places, which contain them. Bombs are alfo on many occafions made ufe of in mines, as to blow up a butterefs in the walls of a rampart, when a breach is to be made in an invefted rampart, and in the fougades made for the defence of the cutfide af a place.

Let us in the fecond place conceive a mine, wherein all the bodies which encompafs it, are equally capable of compreffion, and make a refiftance with equal force on all fides. In this cafe, the firft effect of the fired powder, would be to crufl and comprefs equally all thefe bodies, and they will not be divided or feparated, till by their compreffion, they become capable of refinting its effort; fo the powder therein may be in fuch a fmall quantity, that its whole effect may only terminate in the comprefion of the adjacent bodies. This is the reafon, why in mines made in the earth, the chamber is fopped up with ftrong teams well fuppored; fometimes even

Royal Academy of Sciences. 5j

with fones that the adjacent parts may have more refiftance. It is eafy to conceive, that if the adjacent parts to the chamber of fuch a mine, as has been fuppofed, were unequally capable of compreffion, inftead of the compreffion extending equally in a fphere, as in the firft cafe, it would in this fecond cafe extend unequally.

To conclude, if is fuppofed that in a mine, all the encompaffing bodies are equally capable of compreffion, but that there is lefs refiftance on one fide than the other, as it happens to all mines which are made in the body of the earth, a fphere of compremion will immediately be made, whofe diameter will be fo much the greater, in proportion to the refiftance of the weakeft part on its being raifed; on which three things may be obferved.
r. If the effort of the powder is very great in proportion to the refiftance on the weak fide, the compreffion will not extend far ; and this part will be raifed fo fuddenly, that the neighbouring parts having not time to fhake, there will only be made a hole or well, whofe diameter will be very near equal to that of the chamber of the mine, the earth of which will be thrown at a great diftance. This is what happened when Verue was befieged by M. de Vindöne, the befieged fprang two mines, which being overloaded, did not blow up the batteries which annoyed them ; thefe mines made holes or wells wherein the befiegers made lodgements under fhelter.

Secondly, if the mine is under charged, it makes only a filmple comprefion, or at moft a little rifing near the weakeft part, as it happened at the fieges of Ciudad Rodrigo.

In fhort, if the mine is charged with a quansity of powder, between thefe two extremes, it

56 The History and Memoirs of the

will raife a cone of earth, the diameter of whofe bafe, will have a greater or lefs proportion to its height, from the centre of the mine, according as the effort of the powder is greater or lefs. And the moft advantageous effect, is when the diameter of the bafe of this cone is double its height; for then almoft all the earth which was raifed, falling back into the aperture of the mine, the enemy cannot make ufe of it for a lodgment. In order to produce this effect, the quantity of powder neceffary in proportion to the different bodies to be raifed by mines, has been determined by experiments.

To charge a mine therefore, that it may perform its effect with all poffible advantage, the weight of the bodies which are to be raifed muft be known; that is the folidity of the right cone muft be found, whofe bafe is double the height of the earth, over the centre of the mine, which is eafy to be found by the rules of geometry; the little cone contained in the chamber of the mine, may be fubtracted; but fuch minuteneffes are of no confequence, and the cube of its height may cven be taken for the folidity of this cone; thefe folidities are not fo much unlike, as to caufe any fenfible difference in the effect of the mine. Having found the folidity of this cone in cubic toifes, multiply the number of thefe toifes, by the number of pounds of powder neceffary to raife the bodies which it contains, as directed in the experiments; and if the cone to be raifed, contains bodies of different weights, a mean weight muft be taken between them all, having alfo regard to thole which have moft cohefion. It is in general beft to put rather a little too much powder than too Jittle. As to the difpofition of mines, it mult be obferved for a general sule, that the part

Royal Academy of Sciences. 57

 towards which we would determine its effect, fhould be the weakeft. We will not here enter into the particulars of this difpofition, it varies according to the variety of circumftances, in which they are employed, and the effects we would have them produce; and may eafily be concluded from the principles already laid down.VI. A new conforuction of fluices, by M. de la Hire *.

Sluices are commonly made on fmall rivers, which have no great fall, and but little water, the river is therefore ftopped at fome convenient place, that a fufficient quantity of water may be collected above it, to carry a boat; and when the boats are come to the fluice, they expeditiouny open it, and the boats pals through it, being fupported by the collected water.

The common way of fhutting fluices is very fimple, and of fmall expence, it is placing feveral pieces of fquare boards againft a groundfel fixed crofs the bortom of the river, and on the top againft another piece of wood, which alfo goes crofs the width of the river, and is parallel to the groundfel, but is eafily moved on a great pin at one end thereof; and the other end faftened to fome folid and firm body, when it is in a fituation parallel to the fell. All the boards which ftop the fluice, and are placed againft the fell, and the tranfverfe beam at the top, are called aiguilles, and are retained or held only by the water, which rifes by degrees in the canal, or river, above the nuice: but all thefe aiguilles are never placed fo exactly clofe to each other, as to prevent the

[^3]
The History and Memoirs of the

waters running between them; which is a great fault in thefe fort of nuices.

When the fluice is to be opened, they haften to take out thefe aiguilles, and turn the tranfverfe beam at the top, to give free paffage to the boat; but this cannot be done fo foon as not to endanger its running aground, or being faft on the groundfel in the middle of the fluice. Therefore it is the practice in many places to faften ropes to the top of all the aiguilies, the more eafily to draw them on fhore, and more expeditiouny than by fanding on the beam.

But here is a way of opening and fhutting nuices at once, and without trouble. They may be flhut or ftopped with two doors, fuch as are commonly made ufe of at the entrance and going out of great nuices. They are folding doors which bear againft one another, and make a àlient argle to the fide up the river: but the whole art confilts in the conftruction of the door.

Each folding door * AB is only a frame of wood, of fufficient ftrength, for the ufe and place. Theie frames are hung upon hinges at C, which are on the polts on each fide of the nuice, in the comimon manner of doors, and open upwards of the river: but the real doors, which thut the open part of the frames, are hung on hinges at D, on the upright battens of the frames, which are to join or meet when the doors fhut, and thefe doors open downward of the river contrary to the frames. Near E, they have each a little latch, or rather a hafp, with a hole, which admits a itaple, thro' which a pin may be put F, with a long handle like a bolt, that it may be placed in the hole or eye of the ftaple, when they are ftanding on the top of the door.

* Plate J. Fig. 1 t .

Royal Academy of Sciences. 59

It is, feen by this conftruction, that the doors E D, being faftened to the frames A B ; and the frames being one againft another, the canal of the river will be fhut or ftopped, and the water will rife againft thefe doors on the fide up the river; and when the fluice is to be opened; they need only draw out bath the pins or bolts: at the fame time; and immediately the two doors going with the ftream, the frames may be eafily placed on the fides of the canal, by drawing them with a chain or a rope $G B$, as they ftand on the fhore; for the water can have no great power over that part of the frame which is in it.

By this conftruction, it is alfo feen, that by drawing the frames to the fides of the canal, the doors ED will ftill continue with the ftream, but ar laft when the frames are quite open, the doors ED will be fhut and return to their place of themfelves, where they need only be faftened with the bolt.

In fhort, there will be no difficulty in fhutting up the fluice, for the water being then almoft on a level on both fides, has not more power againft the door on one fide than on the other.

The parts of thefe frames may be ftrengthened by two binders placed at the top, higher than the level of the water when it is retained, that it may take lefs hold of the parts of the frame, when that is to be opened.

It will be obferved, that it is not neceffury that the door fhould be always as high as the opening of the frame, it is fufficient if it keeps up the water in the canal high enough to carry the boats. Let it alfo be obferved, that two great latches may be put inftead of the two hafps, which are in the figure, to faften the door the ftronger, and better to the upright of the frame.

60 The History and Memoirs of the
frame. Thefe latches will faften into the catches which are to be fixed into the door poft, and there mult be to each of them a button faftened into the fame rod, which mult reach to the top of the door, and go through two ftaples, or rings, which are there to be fixed; fo that by pulling this rod, both the latches will lift up at once, and the fame rod will ferve to fhut them when the door is put again in its place, if the latches do not of themfelves fall into the catches by their own weight, and that of the rod.

A
 TABLE
 OFTHE

PAPERS contained in the Abridgment of the History and Memoirs of the Royal Academy of Sciences at Paris, for the Year Mdccuili.

In the HISTORY.

I. TPON tbunder.
II. Of fome Jbells inclofed in fone.
III. Of the force of rays of the fun in prefing and pujbing.
IV. Why in fummer ice melts fafter in vacuo, than in the air.
V. Why the tendereft glafes are leaft fubject to break by fire.
VI. Of the effect of the fun's beat on a pafe laid upon a piece of polifbed glafs.
VII. Of an extraordinary cure performed by mufick.
VIII. Of the neres ifand formed near Santerini.
IX. Of the metbod of meafuring the beights of places by the barometer.
X. Of a little Soell-fib that feeds upon mufcles.
XI. An account of Dr. John Scheuchzer's differtation on the origin of momntains.
XII. An account of Dr. John James Scheuchzer's differtation on cryftal.
XIII. An account of the fome author's differtation intitled, Pifcium Querelæ \& Vindiciæ.
XIV. On the generation of fitails.
XV. Of the eggs of the cuttle-fihb.
XVI. On the burning glaffes of the ancients.
XVII. A method of fopping borfes fuddenly.

In the MEMOIRS.

1. Obfervations on the quantity of rain which fell at the royal obfervatory at Paris, during the year 1707; and on the beigbts of the thermometer and barometer, by M. de la Hire.
II. A defcription of a new barometer, to know the weight of the air exaElly; with fome remarks on the common barometers, by M. de la Hire.
III. Refleftions on the variation of the needle, oblerved by the Sieur Houffaye, captain commandant of the Bip l'Aurore, during the expedition to the Ealt Indies, made by the fquadron commanded by the Baron de Pallieres, in 1704 and 1705 , by M. Caffini the for.
IV. Experiments aid oblervations on the dilatation of the air by boiling water, by M. de la Hire
V. Reflecions cia the offantions of the varition of the needle, wade on board the Maurepas, in the voyage to the South-fea; suith fome remarks of M. de la Verune, commander of that veffel, on the navigation of the coafts of America; and of the Terra del Fuego, by M. Caffini the fon.
VI. Conjectures on the pofition of the iflend of Meroe, by M. Deline.
VII. Reflections on the observations made by F. Laval, at the S. Baume; and other neigh-

A Table; © ${ }^{\circ}$ c.

neigbbouring mountains, by M. Caffini tbe fon.
VIII. An observation of a luminous circle about the fun, by M. de la Hire.
IX. An extract of the obfervations made in the Weft Indies in 1704, 1705, and 1706, by F. Feuillée, a minim, mathemoticion to the king ; compared with thofe which were made at the fame time, by M. Caffin: the fon.

A N

ABRIDGMENT O F THE

Philosophical Discoveries and Ob servations in the Histury of the Royal Academy of Sciences at Paris, for the Year 1708.
I. Upon tbunder; tranflated by Mr. Chambers.

NE have chymical operations in the air, as well as in the laboratories, and fometimes the very fame: thus thunder is only an inflammation occafioned by the mixture of a fulphurous matter, with an acid fpirit.

But a difficulty feems to arife hence, that thofe two matters when mixed together by a chymift, after they are once fet on fire, fpend themfelves intirely, fo that no new inflammation can be made without new materials; whereas, from one and the fame cloud, we frequently find a multitude of flafhes burit one after another, which indicate as many different inflammations. Now the inflammable matter in the cloud being diffipated in the firft flafh, how fhould any new ones be formed?
M. Homberg is of opinion, that the fame matters which take fire by their union, and by their firing become feparated again, may rejoyn each other anew, be kindled again; and thus for feveral times fucceffively. On earth this is impoffible, by reafon after they are once kindled, and by this means rendered extremely rare and light, the lower air being heavier than they, preffes them on all fides; and thus raifes them to a region where they

Royal Academy of Sciences. 65

 they are found in equilibrio to a thinner air; and thus are loft to us: but if the fame matters be raifed in exhalations from the bofom of the earth, they are already arrived at this region of equilibrium ; and 'tis here they are kindied, where of confequence they find no heavier air to raife them after the explofion, fo that they cannot be difinpated, but will remain where they were, and may rejoyn each other till fuch time as a fhower cait them down on the earth, and thus purge the air of them.This explication is the more probable as it is founded on the operation itfelf, which reprefents thunder; if in lieu of pouring fpirit of nitre haftily on an effential oyl, which will produce a fudden inflammation, it be poured on drop by drop, we fhall only find an effervefcence raifed without any inflammation, and the mixture of the two liquors becomes a refin ; which if put in a retort, and diftilled by degrees, will return the acid, and the oyl whereof it was formed : now this acid and oyl are ftill capable either of being kindled by mixing them again, or of producing a new refin, which will indure the fame operation it had undergone before, as long as you pleafe. Here the fire of the dillilhtion makes the fame feparation of the matters, as the explofion would have done, if they had been fuffered to kindle; whence it appears, that if they were not to fly from us, they would be as fit by their re-union to form a new flame, as a new refin.

As in each moment that a flafi of lightenirg ftrikes the eye, there is a large quantity of mater fet on fire, M. Homberes imagines, that fo many repeated inflammations may give a cerain determination to the air, and caule fome of thofe variable winds which blow indifierently from all pointa Vol. III. \mathbb{N}^{n}.24. F of

66 The History and Memoirs of the

of the horizon, and which are the only ones which we experience in thefe temperate climates. Hence perhaps it is, that we have more fouthern than northern winds, fince there are always violent thunders betwixt the tropicks, which are fouthwards, in refpect to us ; at leaft it is certain, that this notion will very well account why our winds blow in puffs, or blafts, fince the flafhes follow each other at fome diftance, and each gives its feveral blow; and if it were certain, that the regular or trade-winds blow more continuoufly, it would be a confirmation hereof.

II. Of fome feells inclofed in fone.

M. Tournefort has fhewed fome fhells inclofed in a bit of a rock, pierced by a great many cavities, which were as their habitation. The entrance of thefe cavities was often narrower than their bottom, fo that thefe animals after being entered therein when fmall, muft have grown there, and preffed the ftone being yet tender, in proportion as they grew.
> III. Of the force of the rays of the fun in prefling and pufbing.

We frould not have fufpected, that the rays of the fun had the force of preffing and pufhing, even when they are re-united by the burning mirrour. M. Homberg has obferved, that if he expofed to it a very light matter, fuch as Amziantbus, and in a pretty large quantity, it was reverfed by the rays of the foct:s above the coal which bore it, unlefs it was prefented very flowly, and one part after the other, fo that it was not ftruck too roughly by the jotk, nor all at once in the whole

Royal Academy of Sciences. 67 furface. Befides, M. Homberg having ftraitened a fpring of a watch, and engaged one end of it in a block of wood, he drove by repeated ftrokes againft the free end of the fpring, the focus of a lens of 12 or 13 inches diameter, and he faw that the fpring made very fenfible vibrations, as if it had been thruft with a ftick. This force of the matter of light agrees with the weight, that has been found in it by other experiments.
IV. Why in fummer ice melts fafter in vacuo, than in air.
M. Homberg has found, that in fummer, ice melts much fooner in vacuo, than in the air. The reafon of it is very plain; ice only melts by the action of the fubtile matter or æther, and in vacuo the whole fpace is filled only with this matter.
V. Why the tendereft glafjes are leaf fubject to break by fire.
M. Homberg has obferved, that tender glaffes, that is, fuch as have more falt in their compolition and lefs fand, or thofe which having more fand are very thin, are lefs futject to break at the fire and burning mirrour. It is eafy to fee that glafs is only brittle by the extreme heterogeneity of the particles of falt and fand, of which it is compofed, that it breaks by the difficulty that the fubtile matter, when it is ftrongly agitated, finds to move freely in the intertices of its parts, and that it finds lefs refiftance in the particles of falt, than in thofe of fand, which are more folid.

68 The History and Memorrs of the

VI. Of the effect of the fin's beat on a pafte laid upon a piece of polifbed glafs.

A perfon having applied to a piece of polifhed glafs about half a foot fquare, a pafte of Spanifb white, and fize, put it altogether in the fun during the great heats of the fummer. The pafte which was towards the fun, having been ftrongly heated, bent toward the fun, and rolled upward, in fuch a manner, that in this motion the lower furface, placed upon the glafs, raifed itfelf. But the fingularity of it was, that this furface raifed with it a flake of the glafs. This flake made a fort of varnifh upon the pafte like Delft ware; its thicknefs was unequal, but it did not exceed half a line. It is very furprifing that the adherence of the pafte upon the glafs fhould be fo ftrong; and allo that it fhould be able to puil off from the glafs fo confiderable a flake. It had been blown, and probably the cane, through which they blowed, had been plunged in the crucible at different times which had made it divide into feveral flakes, which however did not appear, becaufe they were very exactly applied to each other. We owe this obfervation to M. Geoffroy.
VII. Of an extraordinary cure performed by mufjck.

The extraordinary cure which we have fooken of in the hiftory of 1707 , is not fo much fo, or at leaft it is not any longer fingle. Here is another example which we had from M. de Mandajor, mayor of Alnis, in Langzedor, a man of fenfe and merit. A darcing maker of Alais, during

Royal Academy of Sciences. 69

 during the carnival of 1708, having been fo much the more fatigued in the exercifes of his profeffion, as they are the moft agreeable, fell fick with it the beginning of lent. He was attacked by a violent fever, and the fourth or fifth day he fell into a lethargy, which he was a great while a coming out of. He came out of it only to enter into a furious and filent delirium, in which he made continual attempts of getting out of his bed, threatning with his head and looks thofe who hindered him, and even all who were prefent; and obftinately refufed, conftantly without fpeaking, all the remedies that were offered to him. M. de Mandajor faw him in this condition; it came into his head, that perhaps mufick might recover a little this fo difordered an imagination, and he propofed it to the phyfician. He did not difapprove the thought, but he juftly feared the ridicule of the execution, which would have been yet infinitely greater, if the patient had died in the operation of fuch a remedy. A friend of the dancing-mafter, who was fu'ject to none of thefe difficulties, and who could play on the violin, took that of the fick perfon's, and began to play the airs that were moft familiar to him. They took. him to be more mad than the patient confined to his bed, and began to reproach him ; but prefently the fick perfon raifed himfelf upon his feat, as a man agreeably furprifed; his arms would beat time to the thaes; b.it becaufe they held him by force, he could o:ly fhew by his head the pleafure he felt. By degrees, even thofe who held his arms, finding the efret of the violin, fackened the violeace wich which they had held them, and gave w.y to his motion in proportion as they found he was no longer raving. At laft, at the end of a quarter of an bou: he hipe foundly,
70 The History and Memoirs of the

and tad during this neep a crifis, which brought him out of danger.
VIII. Of the new ifland formed near Santerini.

We are now better informed of the new inand which has raifed iefelf near that of Santerini, or Sointorin, which has been mentioned in the hiftory of 1707^{*}. A letter, that F. Bourgnon, a miffionary jefuite at Santorin, an eye witnefs of all this phoenomenon, has writ to M. de Feriol, the French ambaffador at the port, and that this minifter has fent into France, has been communicated to the academy.

May 23, 1707, at fun-rifing there was feen from Saintorin, 2 or 3 miles at fea, fomething like a floating rock which had not been feen before. Some believed it to be a veffel which was going to break againft fome little iflands or rocks which are there, and went to pillage it. They were furprifed to find it a new fhelf, and they were bold enough to get upon it, altho' it was yet moving, and encreafed almoft fenfibly under their feet. They brought back, as a teftimony of their courageous landing, fome pumice-ftones of an extraordinary finenefs and delicacy; and fome very large and exquifite oyfters, that the rock where they were fixed, had raifed wih it, from the bottom of the fea. They had a little earthquake in Santor in two days before the birth of this fhelf; it increafed very fenfibly as well in breadth as height, till the 13 th or $14^{\text {th }}$ of 7 unn, wirhout beng accompanied with any accident. It was then almoit half a mile in circumference, and 20 or 25 feet high. It was round and white; the earch was light, and had a little clay in it.

* Pag. 13 of this volume.

They

Royal Academy of Sciences. 7 I

They began to believe, that this new labour of nature was finifhed, but the water of the fea became fenfibly thick every day, and had the colour of various mineral fubftances; among which, fulphur was predominant, the waves had an agitation, and boiling, which came from the bottom. Thofe, who would approach the new inand, felt an immoderate heat, which hindered their accefs to it: at laft there fpread in the air a ftink which infected the whole inand of Santorin, and extremely incommoded the inhabitants; all this foretold fome terrible change to this part of the world, and fear reigned in every mind. In effect there was feen on the 16 th of $\mathfrak{F u l y}$, at fun-fet, a great chain of 17 or 18 obfcure black rocks, a little from one another, which went out of the bottom of the fea, towards the new inland, and feemed to be going to join foon together, and with it, which actually happened fome days afterwards. On the 18 th there came out of it for the firlt time, a very thick fmoke; and there were noifes heard which came out of the bottom of the new earth, fo much the more threatening, as they were alfo more hollow. The 1 gth the fire began to appear very weak at firft, but it increafed continually. Every night the new ifland feemed to be only made of a great number of furnaces, which vomited flames.And as if the heavens had a mind to contribute to this frightful illuminarion, there was feen one night toward the end of fuly, only for a few moments, a flream of fire which went from eaft to weft.

During this time, the inand juft forming increafed very much, even in height. The waters of the fea boiled more violeatly, they were more loaded with fulphur and vitrio!, and the infection was fo great at Santorin, that they could not

$$
\mathrm{F}_{4} \text { breathe, }
$$

Ti2 The History and Memoirs of the

breathe, efpecially when the wind drove the fmoak that way. Toward the end of Aug. the fubterraneous noifes became more frequent, and fo terrible, that they equalled that of 6 or 7 great cannons difcharged all at once, the fire made new openings every day, and it threw into the air fometimes a prodigious quantity of fine afhes, which did much camage to the harveft of Sontorin, fometimes a like quantity of little ftones inflamed, which caured a litte inand, whereon they fometimes fell, to appear all on fire; fometimes great burned rocks, which raifed themfelves like tomios and carcafes, and afterwards plonged into the fea at above 7 miles diftance.

Thefeterrible difcharges were become cortinually more frequentince the end of $A: g z^{2} f$; and, in fine, to the month of November, where F. Bourgnon's relation ends. It is very remarkable, that then it did not any more throw out fuch great Atones, nor in fo great a quantity, that the fea was not troubled any more, that its boiling was calmed, that the ftink was hardly fmelt any more at Santorin; and, on the other fide the fmoak was, every day blacker, thicker, and in greater abuadance, the fire was greater, the fhowers of ahes were daily, and the fubterraneotis noifes continual and fo violently, that it was hard to diftinguilh them from thunder. The account goes no tarther than the 2oth of November; and it is likely, that the prodigies of the new inand are not yet difpofed to ceafe.

That of Santorin itfelf, which was formerly called Therc, has paffed among the ancients for a new production. It is certain, that in 726,1427 , and 1573 , it has received additions by fubterraneous fires, or that the litele neighbouring inands were formed as the lark, which we have jutt mentịnend.

Royal Academy of Sciences. 73

tioned. There was allo in 1650 a furious ravage in Santorin and thereabouts, but without any other new production than that of a great bank, which perhaps will be the foundation of another inland. The fubterraneous furnace, which is in this part of the globe, muft be one of the moft ardent.
IX. Of the method of meafuring the beigbts of places by the barometer.
M. Fobn Fames Scbeuchzer, Doctor of Phyfick, at Zurick, and member of the royal focieties of England and Pruffia, having fent to the academy a great number of obfervations of the height of the barometer, which he has made in different towns of Switzerland, and upon fome mountains of that country, during the years 1705 , 1706, 170\%, M. Maraldi made ufe of them to find, according to the method explained in the memoirs of 1703^{*}, how much the places where they have been made, are elevated above the level of the fea. This method requires, that we know in what proportion the air is always dilated upwards; that we have correfpondent obfervations of the barometer, made in fome place, whofe elevation above the level of the fea is known, as M. Maraldi had his made at Paris, and that we fuppofe in a great extent of country, fuch as is that of France and Switzorland, that the barometer varies in the fame manner and in the fame time By this M. Maraldi found, for example, that mount Foch is elevated above the fea 1340 toifes, and as there is another pretty near it called Tittlifberg, always covered with ice and frow, which thofe of the country fay, is the highett mountain

[^4]
74 The History and Memoirs of the

of Switzerland, and which M. Scheucbzer believes to be elevated 2000 feet more than $70 c b$; it follows from hence, that the higheft mountains of Switzerland would be elevated 1660 toifes. They would be more fo than the Canigou, which is one of the Pyrenean mountains.

But it muft be owned, that this method for meafuring heights would be much more fure; if we were not obliged to fuppofe that the barometer varied in the fame manner and time in diftant places, which is not always true; and if in the fame country, where we would take a height, we had an obfervation of a barometer made at the fame time on the fea flore, or in fome other place, whofe elevation above the fea was known, then there would not remain any more uncertainty than in the hypothefis of the proportion, according to which the air that furrounds the earth dilates iffelf upwards.

And even this uncertainty begins to diffipate a little; and the progreffion, that M. Cafini has effablifhed for the dilatation of the air in the place above quoted, in 1703, is fufficiently proved.
F. Jäal having meafured geometrically feveral heights at Sainte Baume, and thereabouts, he afterwards carried a barometer thither, and has obferved how much lower it was there than at his obfervatory at Marreilles, of which he knew the elevation above the level of the fea. He has fent his meafures and obfervations to Meff. Caldini, who have found what ought to be ; according to their progreffion, the height of the mountains, which gave the falling oblerved in the barometer; and they have found the lame heights that F. Laval found elfewhere by geometrical mafures. There was only two or three toifes

Royal Academy of Sciences. 75 toifes difference, which is inconfiderable in proportion to great heights, and is befides almoft abfolutely unavoidable, becaufe in the leaft dilatation of the air a line of quickfilver anfwers to 6 toifes of air, and confequently, if in the obfervation of the height of the barometer made in the loweft place, we miftake half a line, which is very eafy, we miftake three toifes in the calculation, of the height, and much more, if the fame error is in the obfervation made at the higheft place. This is a general inconvenience of all the operations, where very fmall magnitudes give great ones, to which they anfwer.

To meafure the height by the barometer with the greateft certainty poffible, the two places where we obferve the greateft elevation and depreffion of the quickfilver muft be, as in F. Laval's operation, fo little diftant that we may not furpect the weight of the atmofphere to be different.

Of a little fbell-fifh, that feeds upon mufcles.
M. de Reaumur has obferved the way taken by a little fhell-fifh to feed upon mufcles, which is very fingular and dificult to explain. This fhell-filh is of the fame fpecies with thofe which are called in Le!in Trocbus, or Turbo, that is, its fhell is one piece, and turned fpirally. The finh comes half out of it when it pleafes, as the frails do out of theirs. The mufcle being inclofed in its two fhells would not feem likely to be the prey of this animal; and yet it is. It faftens itfelf to the fhell of a mufcle, pierces it with a round hole very exact, abour a line in diameter, and paffes into it a fort of trunk or little hollow cylindrical pipe, 5 or 6 lines long, which

76 The History and Memoirs of the

which it turns fpirally, and fucks the mufcle with it.

The difficulty is to know how it makes the hole. It is not with the trunk which fucks, for that is too foft and too tlunt to pierce a very hard fhell. M. de Reaumur, by the diffection of this animal, has not been able to find any part of it proper for this effect, though if it had any it muft be as fenfible as the hole; he has even met with many of thefe little fhell-fifhes faftened to mufcles, which they have not yet pierced quite through, he has feparated them, and feen nothing. He has alfo obferved, that thefe imperfect holes were almoft as large in the bottom as at their opening, which does not agree with the figure of an inftrument, which prob: bly would be more pointed at its extremity. Laftly, he has alfo feen oval holes, and it is difficult either for an infrument to make them, or for the fame that makes round to make oval.

He believes therefore that the animal may throw upon the mufcle fome drops of liguor capable of piercing the fhell. This chrop will naturally be round, and foretimes it becomes oval, becaufe it does not fall perpendiculary upon the mafle, or tecaufe the mufcle gives it fome little motion. To render this conjeEture fill more probable, it is to be wifhed, that in the imperfe holes, and where the animal feems itill to be working. M. de Rcoumur had found there this fort of aqua fortis.

He has obferved, that there is never any hole in all the circumference where the two fhells of the mufle join, and he attributes this to a very ingenious precaution in the animal that atacks it. Which is, that if the mufcle thould opera its Encils, the trunk of the Jittle fifh would rot be an the hote the it how make, it woud conty

Royal Academy of Sciences, 77

 turn it away, and then the mufcle in fhutting its fhells, would fqueeze it, and perhaps cut it, or at leaft would keep its enemy prifoner.M. de Reaumur has fometimes feen feveral holes upon the fame mufcle, and when he has found empty mufcle-fhells, he has almoft always feen of thefe holes, which makes him believe, that thefe fhell-fifh do not a little contribute to the deffruction of the mufcles.
XI. An account of Dr. John Scheuchzer's differtation on the origin of mountains.
M. Fobn Scbeucbzer, doctor of phyfick at Zurick, has done the academy the honour to dedicate to it a Latin differtation upon the origita of mountains, or upon the formation of the earth. which is not yet printed.

Defcartes, for it often happens that the hiftory of fome inquiries, or of fome difcoveries begin by him, is the firt who has thought of explaining mechanically the formation of the earth : afterward Steno, Burnet, Woodwert, and at lifi Scheucbzer have undertaken either to extend or rectify his ideas, and have added them together.

If the globe of the earth was perfectly foherical, that is, without mountains, and if the different beds of fand, clay and Itones, of which it is compofed, were every where, as they are in an infinite number of places, prety exactly parallel between themfelves, and concentrical to the furface of this globe, we frould cafly imagine that the whole had been formed of a torobien? fluit, if I may fo fay, and heterogenecus, rf which the dififerent parts, unequally heavy, wea'.i. naturally feparate from one another by the laws of gravity, and be ranked in differert circular beds, which would all hare had the cente of the

78 The History and Memoirs of the

globe for a common centre. Even this feparation would have made the fluidity ceafe. This fyftem would not only be poffible, but almoft neceffary, for we could hardly attribute to another caufe the parallelifm and concentricity of the ftrata. That the the earth was at firft a fluid, and that by the laws of motion it is become folid by time, and is difpofed as it is, or that God created it all at once in the ftate to which the laws of motion would have brought it, is the fame thing according to the ingenious reflection of M. Defcartes. It is indifferent whether God created the egg, or the fowl firt.

The parts of land and water animals, branches ard leaves, $\xi^{2} c$. found in beds of ftone, and that pretty deep, conifirm this fyftem of the fluidity of the earth. By what other means than this, could they be inclofed where they are? but it is alfo true, that we muft fuppofe a fecond formation of the beds or ftrata, much lefs ancient than the former, at the time of which the earth had neither plants nor animals. Steno eftablifhes feveral fecond formations, caufed in different times by extriordinary innundations, by earthquakes, and by the matter that the Vulcano's vomit. Burnet, Woodzoard, and M. Scboucbzer, chufe rather to attribute to the univerfal deluge a fecond general formation, which however does not exclude the particular ones of Steno.

But the mountains feem to fubvert the fyftem of the fluidity, they could never have rifen, fince all that is fuid becomes level. Neverthelefs this fyttem is fo probable in its felf, and fo well fupported in the greateft part of the terreftrial globe, that it deferves fome endeavours to preferve it. It is for this, that M. Scbeuclezer adopts the opinion of thofe, who have believed that after the uni-

Royal Academy of Sciences. 79

 verfal deluge, God being pleafed to make the waters enter again, into the fubterraneous refervoirs, had broken and difplaced with his all powerful hand, a great number of Atrata, which were before horizontal, and hed raifed them above the furface of the globe. The whole differtation was made to fupport this opinion.As thefe heights or eminencies mult have been of a very folid confiftance, M. Scbeuchzer obferves, that God raifed them only in places where there were a great mary beds of ftone. Fron hence it comes, that the countries where there is a great quantity, as Switzerland, are very mountainous, and that on the contrary, thofe which like Flanders, Germany, Hungary, and Poland, have only fand or clay, and that to a very great depth, are almoft intirely without mountains.

It was impoffible that the broken, difplaced, and elevated firata fhould remain horizontal; and we never find any in the mountains with this direction, but what remains of it, is that they are ftill parallel between themrelves, and this, fuppofing the difplacing, is in reality all that they could poffible preferve of it.
M. Scbeucbzer has obferved their different directions, in a whole chain of mountains of three leagues, upon the borders of the lake Uri, and has fent to the academy a very curious map of them. There is no horizontal bed there, the' they are all fo in the plains, and hardly any that makes a right angle with the horizon; we find indifferently all the other angles. It is vifible that this is underfood of the lurface or flopes of the beds. As to their direction, which we inoult fee, if one fuld of the mountain was cut accorting to its inclination to the horizor, they are very different in difiternt mountions, and fome-

80 The History and Memoirs of the

times in the fame. Some are in arches or vaulted; others are in a fort of triangle, and have fome very acute angles, but all the directions whatever of one bed, are always exactly parallel to thofe of many other neighbouring beds. What is here the moft fingular in M. Scbeucbzer's map, is the extreme direction of 2 different feries of beds, which meet at their convex parts, and form the figure of two branches of a curve that turns back.
M. Scheuchzer has made in the celebrated quarry of Glaris, from whence there has been drawn a great number of tables of ftone, an obfervation not very favourable to the fyftem of the fluidity, which however he does not diffemble. The beds of this quarry, which are but an inch thick, are of two different natures, and alternately hard and foft ; and to make tables of it that may be ufed, they mult cut a hard fratum with a foft one, without feparating them. The hard fuftains the foft which muft be at the top, when they work it, as it is in the quarry. One would think that in a fluid, all the heavieft part mult have precipitated to the bottom, and that there could not have been beds alternately lighter and heavier. Neverthelefs a fingle bed, where the lighteft is always at the top, proves alfo the fuidity, the whole difficu'ty remains in the alternate fituation of the beds. To give a folid fatisfaction of this difficuity, we had better wait for new obfervations which M. Scbeuchzer feems to promife, than to imagine any folution, how ingenious foever. Befides we tave already launched too far upon a work which belongs to this able philofopher, and which the academy has no right to aftume

Royal Academy of Sciences. 8 i

XII. An account of Dr. John James Scheuchzer's differtation on cryftal.
M. Fobn Fames Scheucbzer, brother to the former, and alfo doctor of phyfick at Zurrick, a great natural philofopher, has fent alfo to the academya Latin differtation upon cryftal, which he has not yet fublifhed.

There is a great deal of cryttal in the mountains of Switzerland, and it is a journey which the author made thither in 1705 , which occafioned this differtation. We have but too few of thefe fort of phyfical inquiries made by skilful perfons, who have feen them with their own eyes. M. Scheucbzer collected with great crudition all the different cryftals, perfect, or imperfect, coloured, mixed, and differently figured, which the ancient as well as modern authors have fpoken of; he ranges them under certain fpecies, and relates the different names that have been given them, or their fynonyma, which is known to be very ufefu! in fuch fubjects, and was wanting in this.

He afterwards enters into the philofophy of. the formation of cryftal, and even undertakes to prove geometrically the neceffity of the hexagonal figure, which is common to it. M. Scbeucbzer believes, according to the common fyftem, that the cryftal, as well as the precious ftones, has been liquid, and formed in ftones which were fo likewife. He feems perfuaded by experience, that there are no more new cryftals produced. Upon this foundation he conjectures, that when the exiesiour cruft of the earth had been extremely forewed by the waters of the univerfal deluge, the huid matter of cryital had penetrated it, and gathered together in the cavities and fiffures of the ftones, Vol. III. N ${ }^{\circ}$.26. G
where

82 The History and Memoirs of the

where it congealed by time. We mult not be furprized, that fo great a confufion as that which was caufed by the deluge upon the furface of the earth, is an epoch or an origin which frequently recurs in phyfical inquiries.
XIII. An account of the fame author's differtation, intitled, Pifcium quere'æ \& vindicix.

In a differtation of the fame author, printed under the title of Pifcium querela ξ^{3} vindicia, and fent to the academy, the univerfal deluge is more fenfibly pointed out.
M. Scheucbzer has made a fort of catalogue, of all the ftones that he knows, like thofe which we have fpoken of in the hift. of 1703^{*}, and 1706才, that is, which inclofe fifhes, or rather reprefentations, and at moft the fkeletons of fifhes. We have already faid how far thefe forts of ftones were from being, as has been commonly enough imagined, fports of nature, or fortnuitous paintings; and thus M. Scbeucbzer introduces the fifhes complaining that thefe ftones, which are really their tombs, are taken for meer ftones, wherein their figures are found engraven by chance; and that thefe curiofities are referred to the mineral kingdom, by taking them away from the animal kingdom to which they belong. The author is perfuaded that thefe fifhes buried in ftones, have been there ever fince the univerfal deluge, and this feems true, efpecially with regard to thofe which are found in places, where no other accident could have brought them, and where we cannot believe that there has ever been any water fince that time. Such is the quarry of Oningen in the diocefe of

* Vol. II. Page 13 . + Page 356 of the fame.

Conftance.

Royal Academy of Scincees. 83

Confance. Several of M. Scheucbzer's ftones have been taken out of it. 'The moft remarkable both for fize, and the perfection of the figure, is that which contains a great pike, of which there even remains in fome places petrified flefh. This proves alfo the reality of the animals if not more furely, at leaft more palpably than thofe delineations fo fine and delicate, which have no fubftance.

It is not only fifhes, that M. Scbeuchzer fhews in the cabinet of curiofities, which he expofes to the publick view ; there are alfo two bones of the vertebre of the back of a man, and alfo a feather of a bird found in ftone, but becaufe there is always found more of fifh, than any thing elfe, it is they that are the fpeakers in the common fubject of complaint. It is vifible, that there is nothing but fifhes, that have been able to remain wrapped up in this deep mud or nlime, which the deluge left upon the furface of the earth, and which afterwards hardning formed different beds. All that was not naturally able to penetrate at leaft to a certain depth, remained expofed to the air, or was uncovered foon after, and confequently was deftroyed. This is the reafon that there is found a much greater quantity of fhells than of fifhes inclofed in ftones, and almoft always the heavieft fhells. Their weight makes them fall lower in this general nime, and that which is found the loweft, is the beft preferved.

XIV. On the generation of finails. Tranflated by Mr. Chambers.

The philofopher that fhould be reproached with too much application, to the ftudy of fuch contemprible things as infects, might clear him-

84 The History and Memoirs of the

felf by only afking, whether the fmalleft pieces of God's handy-work are below our concern ; but it likewife happens, that thefe fame works which the generality of men have been pleafed to confider as the fmalleft, are really thofe where the moft contrivance, and the greiteft miracles of mechanifm appear, and if we henceforth prefer inquiries into the ftructure of the human body, nothing but our intereft can juftify us therein.

If a common garden-fnail be examined out of the coupling-feafon, and its body diffected with all the care poffible, nothing will be found therein that feems to have relation to generation, and yet as has already been obferved, in the memoir of M. Poupart, this animal is an hermaphrodite, and confequently muft have a greater apparatus of genital parts, than moft others. Every thing too that paffes in it, muft be of a very fingular nature ; the chief of thefe fingularities we fhall here deliver, but without explaining the mechanifm, whereby they are executed, which we referve for M. du Vernon's memoir on that fubject, we fhall there fee with amazement how much a fnail ftands nature in.

This animal on the right. fide of its neck, has a little almolt infenfible cleft, which leads into the cavity of the body, where the inteftines are found, very winding, and fluctuating, in its belly ; but at the time of copulation, all this changes form and the animal is metamorphofed, almoft throughout. The little kind of gut being now driven from the bottom of the belly towards the neck fwells, turns backwards, and difpofes itfelf in fuch manner, as to prefent itfelf to the cleft of the neck, which is now much dilated after the manner of a male and a female part, each ready to do its cffice; but this does not proceed till after the

Royal Academy of Sciences. 85

 fnail has met with another, and by feveral preliminary motions more vigorous, and as it were paffioned than one would expect from fo cold an animal, they have raifed each other into a proper difpofition, and are affured of a perfect underttanding.The better to affure themfelves of this, they have another very fingular expedient which they never fail to put in practice together. With the male and female part there iffues at the aperture of the neck, a kind of feear fhaped like the head of a lance, and terminating in a very acute point; now the two fnails turning the cleft in their neck towards each other, upon their coming to touch in that place, the fpear iffuing from one, pricks the other, and the mechanifm which plays it, is fuch, that it immediately hereupon leaves the part it belonged to, and either drops on the ground, or is carried off by the fnail it has pricked. This fnail inftantly withdraws, but foon after rejoyns the other, which it pricks in its turn, and after fuch mutual puncture, the copulation never fails of being confummated; whereas all the other preludes might have failed. The fpear emitted on either fide, feems intended to advertife the two fnails, that they are in equal readinefs, for in this hermaphrodite kind, there is not as in our's one principal and active fex, whofe difpofition alone might fuffice.

Snails ufe to couple three times at the diftance of about 15 days from each other, each time of copulation we find a new fpear, nature being at the expence of producing it, tho' for a ufe feemingly of little importance. M. du Verney compares this re-generation to that of a deer's head, and in effect there feems fome analogy between the fu ftance of the one and the other.

86 The History and Memoirs of the

After emitting, the fpear follows the reciprocal penetration of the male part of each fnail into the female one, and as they have each of them the two organs of generation difpofed alike, at the orifice of their neck, to make each organ correfpond to its refpective one, 'tis neceffary that one of the fnails have its head upwards, and the other downwards, which they practice accordingly.
Their copulation lafts 10 or 12 hours, and produces efpecially towards the beginning, either a ftupor or a tranfport, which hinders their giving any fign of fenfe. During all this time they never feparate, nor can be brought to it, do what you will; indeed they have a very cogent reafon for this firm embrace, which is, that the glans of the male part growing tumid, cannot get out at the paffage by which it entered. It may be about an hour arriving at this extenfion and till then no feminar matter is emitted.

What is more, the fomen is not yet formed, nor is it till after the copulation is begun that nature fo much as goes about it, or employs any of the ftructure neceifary to provide it. There is a fingularity likewife in the matter of the femen, which is not fluid, but of a confiftence like wax, and affumes the figure of the canals it paffes thro'. It is expelled by a motion like that of the inteftines, when they evacuate their contents; and during all the time of copulation, except the firft hour, creeps gently forwards from each fnail into the other.

The canal it iffues from is longer than that of the female, which firft receives it; but from hence it paffes into other veffels belonging to the female fex, where at length it occafions the fecundification, tho' not immediately after their firft copulation,

Royal Academy of Sciences. 87

 pulation, nor even the fecond, but only after the third.At the end of about 18 days they bring forth their eggs, by the aperture of their neck, and hide them in the ground with the utmoft care and induftry; and what is further remarkable is, that upon opening a fnail prefently before it lays, no eggs are found therein, but only a kind of little ligaments, or embryos, which fwim in a very limpid liquor; and make brisk motions therein. Thefe embryos beome eggs in the road ere they get forth ; that is, are invefted with membranes, which has furnifhed them by certain liquors, and afterwards hardened.

All this is only the ratural hiftory of the generation of fnails; 'tis only what is done, and not the manner of doing it. If this manner were left to the ableft naturalift to divine, it would doubtlefs prove a very intricate enigma ; accordingly it is thus far proved almof impenetrable, notwithftanding we have all the pieces of the mechanifm in our hand, and fee them played under our eyes.

XV. Of the eggs of the cuttle-fifb.

M. Saulmon having procured from the fea fome eggs of the cuttle-fifh in bunches, there was found in all of them a little cuttle-fifh, very well formed; they were each held by a pretiy long ligament to a thick trunk or common cord, out of which all thefe ligaments came, very much twited together. We do nor take them to be the fame thing with that which is called veficaria marina, and is believed by the failors to be this bunch of cuttlefifhes eggs, which the little fifhes are gone out of, and have left it dried. There is not any remain-

88 The History and Memoirs of the

der of thefe ligaments of the eggs feen in the ve. ficaria, at leaft we cannot be affured of themand the irregular veficles, or grains, which compofe them, feem glued together.

XVI. On the burning-glaffes of the ancients.

Altho' the academy does not propofe to make inquiries into antiquity, and is more employed in difcovering what is, than what was formerly thought, or what we may yet add to arts, than what has been practifed, it has however given a great deal of attention to an obfervation of M. de la Hire's, on the burning-glaffes being known to the ancients. The burning mirrours certainly were; for fome hiftorians have pretended that Arcbimedes made ufe of one to burn a fleet, and altho' they attribute to it an impofible efsect, this proves that they were known. But it is certain, that thefe mirrours, which they invensed, mult have been of metal, and concave, and had a focus by reflection, and we are commonly perfuaded, that the ancients did not at all know the focus by refrattion of convex-glaffes. Neverthelefs M. de la Hire has found them in the firft fcene of the fecond act of the Clouds of Arifiophones. Strepficdes is a dull, ftupid old fellow; who lays to Socrates, that he has thought of a fine invention not to pay his debts.

Strep. Haft thoul Seen at the druggifis this fine tranfparent fone, with wobich they kindle fire?

Socra. Is it not glafs that you mean?
Strep. True.
Socra. Well, rebat is it thou will do zoith it?
Strep. Wben they fball give me a fummons, I will take this foirs, and putting it to the fun, I

Royal Academy of Sciences. 89
toill makc the wobole writing of the fummons melt at a diftance.

We fee plainly, that this writing was drawn upon wax, with which fome other more folid matter was covered. This glaif, which kindled fire, and melted the wax at the fun, was not concave; for altho' it had by virtue of this figure a focus by reflection, this reflection which is necerfarily made upward, would have rendered the ufe of it very inconvenient, and very little popular ; the fummons mult have been held raifed in the air, that Strepfrades might have been able to have melted the writing, and it is not at all natural that he fhould make this fuppofition; whereas, with a convex glafs that burns downward, we might frike what we pleafe.

The fcholiaft on Arifopbanes fays upon this place, that it mult be meant of a round, thick glafs, made on purpofe for this ufe, which was rubbed with oil, and beated, to which a match was adjufted, or brought near; for the Greek expreffion is equivocal, and that in this manner the fire was kindled. We do not very well underftand what he means by his oil, unlefs it was made ufe of to give a greater polifh to the glafs; but in fhort, which is enough in this place, he imagined this glats to be convex, and it is a proof that in his time, which was much later than that of Arifophones, it was known that thefe glaffes burned.

We have no defign of making here a learned differtation, in which it would be thameful to have any ftroke of erudition efcape. We fhall only obferve, that Pliny lib. 36 and 37, fpeaks of balls of glafs, and balls of crytal, wobich veing expofed to the firn, burned eitber the cloaths or the filfor of the fick perrons, whom they intended

Vol, III، N°. 26 . H

But if they knew that they burned, how were they ignorant of their magnifying the objects? For it is difficult to imagine, that an invention fo agreeable, fo neceffary, and fo fimple was loft, even in the greateft barbarifm, and all the hiftorical monuments concur in fixing the origin of it toward the end of the $13^{\text {th }}$ century, when they began to difoover the ufe of fpectacles. If the Greek or Latin philofophers had known this augmentation of objects, would they not have made ufe of them in their inquiries, and would they not have mentioned them in their works an infinite number of times? There would have been even fpread into their language, as in ours, metaphors, and phrafes taken from them. It is true, that there are two or three paffages in Plautus, which feem to prove optick glaffes; but when we look upon them more nearly, they do not prove them any longer.

Why therefore were they ignorant of the moft neceffary ufe of the burning glafs? In the firft place, the falfe ideas of philofophers upon vifion, may have contributed to it. They believed that it was made, either by the flowing of I know not what fubftance, which came out of our eyes, and went to fearch for the objects, or by little reprefentatrons of objects in miniatute which came out of them, and fought our eyes; all their difficulty was only to choofe one of thefe two fyftems, both equilly falle; they had no fufpicion of our pencils, and foci, and confequently they did not tee any relation between a burning-glafs and the manner

Royal Academy of Sciences, 91

 manner in which vifion is made, and one of thefe things was not like to conduct them to the other. Befides, it feems that their burning-glaffes were balls of glafs, either folid or filled with water; and it is demonftrated by dioptricks, that the focus of a glafs fphere is diftant from it $\frac{1}{4}$ of its diameter. If thefe balls were but $\frac{x}{2}$ a foot in diameter, which is the greateft they can have, we muft then bring an object within I inch $\frac{x}{2}$ to perceive that it was magnified; and it is very natural, and even almoft neceffary, that when we have looked through thefe balls, we mult only have feen very diftant objects, which have not appeared greater, but only disfigured and confufed; the clear augmentation of diftant objects requires either very large fpheres, which is impracticable, and does not fall into whe, or very fmall portions of very large fpheres, which are in ufe at prefent with great fuccefs, and cannot hardly ever be fourd by chance, nor ealy to imagine by reafoning. Befides, to know this, the glafs muft be worked as we do, and according to all appearance, the ancients only knew how to blow it, and make veffels of it. It is not therefore furprizing, that the knowledge of burning-glaffes did not carry them farther; it is much more fo, that there was not 300 years between the fpectacles and telefcopes. Every thing is fow enough among, us, and perhaps we are juft upon the border of fome important difcovery, which we flall one day be furprized that we were not arrived at.
XVII. A metbod of fopping borfes fuddent:

It is faid to be a known fact, that horfes wisith run away, ftop all at once, if there is any thing

92 The History and Memoirs of the

thrown upon their head which hinders their feeing. This being fuppofed, M. Dalefme has fhewn a very eafy manner of difpofing two lines, which let fall at once upon the eyes of two coach horfes, two pieces of leather which are on the fide, in fuch a manner as immediately to hinder their feeing. There cords may be pulled from within the coach, and this would be a very eafy way of preventing a very fatal accident, and even the fear of it.

A N

ABRIDGMENT

OTTHE

Philosophical Memoirs of the Royal Academy of Sciences at Paris, for the Year 1708.
I. Obfervations on the quantity of rain, which fell at the royal objervatory at Paris, during theyear 1707, and on the beights of the thermometer and barometer, by M. de la Hire *.

1Obferved exactly each day of the year $1 \% 07$, in the eaft tower of the obfervatory on a level with the great hall, the heights of the thermometer and barometer, with the quantity of rain which fell, and in the fame manner as in the preceding years, and as I have there explained them. But it would be troublefome to relate thefe obfervations day by day, therefore I fhall only give the refult of each month : the height of the rain which fell was in

	Lines.		Lines.
Jan.	$4^{\frac{1}{8}}$	July	3^{8}
Feb.	IO	Aug.	$34^{\frac{3}{3}}$
March	11	Sept.	$9 \frac{9}{4}$
April	$4^{\frac{2}{8}}$	Octob.	41
May	$11^{\frac{3}{8}}$	Nov.	6
June	$16^{\frac{1}{8}}$	Dec.	$27^{\frac{3}{4}}$

The fum of the water of the whole year 215 lines or 17 inches, 1 l lines.

* Jañ. 7, 1708.

94 The History and Memoirs of the

Which varies very little from 19 inches, to which we have determined the mean height of the rain water of each year. Neverthelefs we may fay, that this year has been dry, at leaft the fpring, fince it has hardly rained at all in April, or $\frac{2}{3}$ of the beginning of May; however, the year has been fruifful in corn, as it generally happens in this country, becaufe the greatelt part of the ground is cool and moift. The 12th of Augufi, there fell 21 lines $\frac{\pi}{2}$ of water; and during the $4,5,6$ and 7 th of October, it rained 34 lines in height with a weft wind without ftorms. There fell fnow on the 5 th of March only; but it melted very foon, and gave $\frac{1}{2}$ a line of water.

The cold has not been confiderable during the whole year ; for my thermometer fell at the loweft but to 27 parts $\frac{1}{3}$ the firft of Fib. and in the greateft cold it falls to 31, but very feldom, and ic was at 48 at the bottom of the caves of the obfervatory; which we look upon to be the mean ftate of the air. It begins to frecze, when it is at 32 ; fo that it hardly froze this year, for the thermometer rofe again pretty foon; it was at the loweft at 3 I inches only, the Ift and 30 th of December.

If the cold has not been great, the heat on the contrary has been exceffive; for the thermometer rofe to tig $\frac{1}{亏}$ the 2 ift of Aug. the preceding day it was almont the fame, and towards 3 in the afternoon, when the air is the hotteft, the thermometer marked 82 ; thus the heat has exceeded the mean fate 34 parts or degrees, and the cold only on $\frac{7}{3}$. From whence we fee, that if the cold had teen as great as the heat was in proportion to the mean ftate, the thernometer flould have fallen to 14, as ic fometimes happens; for we fuppofe

Royal Academy of Sciences. 95 that the firit of wine may dilate itfelf above the mean ftate, with the fame eafe that it contracts itfelf below it.

The reigning wind of the whole year has been between the S. and W. as it is always in this country ; and it is that which commonly gives us rain, and in a greater quantity, for it comes from the fea with regard to us. But in April and May, the wind was often to the N . and thereabouts.

The barometer, upon which I make the obfervations, is always placed at the top of the great hall of the obfervatory, which is about 22 toifes above the mean height of the river, and this barometer marked 3 lines $\frac{1}{2}$ lefs height, than another which is at the fide, altho' they both make light in the vacuum by fhaking the quickfilver. This barometer was at 28 inches, 3 lines $\frac{2}{3}$ the 2 Ift of November, the higheft that it was the whole year, altho' the wind was then toward the W. and the sky very ferene; but the days before and after it tended to the N . This is pretty near the greateft height that it rifes to here. It fell at the loweft the 4 th of December, only to 27 inches, I line, which is much lefs than it falls fometimes, and the wind was then towards the S. W. and with very little rain. I hall give in another memor particular obfervations upon the barometer.

The declination of the magnetical needle was $10^{\circ} 10^{\prime}$ towards the W. December 28, 1707, in the fame place, and with the fame needle, of 8 inches, which I always ufe.

96 The History and Memoirs of the

1I. A defcription of a new barometer, to know the reeight of the air exactly; with fome remarks on the common barometer, by M. de la Hire *.

In philofophical inquiries, we have very often occafion to know exactly the weight of the air, what it is at a certain time and place, and it cannot be certainly known, but by the means of barometers. But in the fimple barometers, which are commonly made ufe of, and which appear to be the mott juft, we cannot know exactly this weight, becaufe of the little height of quickfilver which anfwers to a great height of air.

For as to the heat which dilates the air, or the cold which contracts it, they are only particular accidents in fome particular fpace upon the furface of the earth, which do not increafe or diminifh the effect of the gri:vity of the whole mafs of air, as may be demonftrated by what follows.

Let \dagger there be the phial A, with the bent tube B D, which is fixed to it at the bottom in B; and let there be alfo the little capillary tube EF, which is fixed to it at the top. If quickfilver is poured into the tube BD , through the aperture D , it will enter into the phial, and raife itfelf to the fame height as in the tube $\mathrm{B} D$, the air being able to go out by the tube EF, and when there is a little in the phial, we may feal the extremity of the fmall tube.

Now, if the phial A is immerged in water, luke-warm or a little hot, the air which is inclofed will dilate, and the quickfilver will rife in BD, as to G, by the force of the fipring of the dilated air, and it will defcend a little, as to the

[^5]
Royal Academy of Sciences. gj

 height HH , in the phial, fo that this dilatation will make it fuftain a height of quick filver H G; and if any body was inclofed in the air of the phial, it would then be in a much thinner air than it was before, and yet this body would be more compreffed than it was; for it will be beyond that which it was in the open air, by the weight of a column of quickfilver equal to H G , fince this dilated air makes the fame effort on all fides, that it made to fupport the column of quickfilver HG, and this according to the laws of liquid bodies, and it borrows this effort from the fides of the phial; but if this thinner air was only in fome open fpace about the earth, it muft be confidered as being inclofed in a thinnet air which furrounds it, of which it would borrow its effort, which could only be equal to that of the air, which is on the fides and above it, and in this cafe, the bodies inclofed in this thinner air would be no more compreffed, than if they were at the fame height in the thinner air.But to know exactly the weight of the air in a certain place, and in a certain time by the means of the barometer, there have been many invented, which give the difference much more fenfibly than the fimple barometer; but it does not feem to me that it has more conveniencies, or is more juft than that of M. Helygens, which is commonly called the double baromerer ; perhaps, becaufe of two tubes, and two boxes, or phials, which compofe it. M. Huygens has given a diefription of it in the Journal de Scevens of 1672, which is as follows.

This * barometer is compofed of two cylindrical glafs boxes A and B , of equal thicknefs or diameter, of 14 or 15 lines, and an inch in height.

* Plate II. Fig. 2

Vol. III. ND. 26 .

98 The History and Memoirs of the

Thefe boxes are joined by a tube ER of the fame material, and two lines diameter on the infide. This tube is bent at the bottom in R , where it joins to the box B. Above this box, there rifes another tube $C D$, whofe infide diameter muft be but a little more than a line.

There muft be between the middle of the box A, and the box B, about $2 y$ inches $\frac{1}{2}$.

They fill firft the box A, and the tube ER with quickfilver, holding it inclined, and having voided all the air that was inclofed with the quickfilver, they raife it up to put it in its vertical fituation, where it muft remain, the box A being upward, and the box B downward. Then the quickfilver muft remain toward the middle of the ,box A, as aifo in the box B; and between the two furfaces of the quickfilver in both boxes there will be the fame difference of height as in the fimple barometers, which fhews the gravity of the air with relation to the quickfilver fufpended in the box A , above that of the box B .

Afterwards there is common water poured through the tube D , in which there is mixed $\frac{x}{6}$ of aqua fortis to prevent its freezing in the winter, or fome other liquor which is coloured; and there is as much poured in, as quite fills the lower box B , and raifes the water in the tube to pretty near its middle in G, fuppofing the gravity of the air in its mean ftate.

After this conftruction, M. Huygens adds, that to find how much the differences marked by this barometer, are greater than thofe that the common barometer can make, there is a general rule, which is, that the proportion of the differences of this new barometer, to thofe of the common barometer, is as 14 times the fquare of the diameter of the bcxes, to once the fame plus 28

Royal Academy of Sciences. 99

 times the iquare of the diameter of the tube which contains the water.This double barometer is very convenient for ufe, in its fhewing the change of the weight of the atmofphere much more fenfibly than the fimple ones; and if they are conftructed according to the dimenfions and manner which M. Huygens propofes, they will be about twelve times more fenfible than the fimple. Neverthelefs it mult be obferved that the exactnefs, which we ought to hope from them, may be a little altered by the difficulty that the air may have to act upon the water of the little tube, and by the height where it may remain fufpended above the tube, either in rifing or falling, and this height may even change without the air changing its gravity.

For if the water is defcended in its tube by the increafe of weight of the atmofphere, the little tube being moittened in the face which the water has quitted, the water will at firf fupport itfelf higher than it ought, becaufe its parts are as it were hooked together, and to the inner fides of the tube; but it afterwards finks a little withour there happening any change to the atmofphere. On the contrary, when the atmofphere becomes lighter, the water does not rife faft enough, nor with the fame eafe that it ought, by reafon that it does not act freely. But thefe caufes of irregularity in this barometer might not be fo confiderable as thofe of the dilatation or condenfation of the liquor, with relation to the quickfilver in the heat and in the cold, of which I have made very exact obfervations upon thefe very barometers, for two years, as I fhall relate in another memoir, which muft increafe or diminifh the charge upon the quickfilver of the lower box.

100 The History and Memoirs of the

It was to avoid thefe accidents that I formerly propofed to M. Huygens, who was then retired into Hollond, and with whom I had a correpondence, to make fome alterations in his barometer, that I might not undertake any thing upon this fubject, which might make him uneafy, and alfo to have his approbation of it, if he thought that the thing deferved it; and this is the anfwer he made to my propofal. Your thought for the doubie barometer appears to me very good and ingonious, ard I fee that it may be made to snark fill greater differences thon ir mine, by prolonging at the top the tube of water above the tube of quickhtiver. Hague, Aug. 2.t, 1690.

After that time, I had neglected this invention; but at laft I have perfected it, and put it in fuch a ftate, that it will have pretty confiderable advantages over the double barometers, as M. Huygens has judged; and that they may be made as fenfible as we pleafe, and if it is not more fenfible than his own, it only wants $\frac{1}{9}$ of the quickfilver.

The figure * fhews the conftruction of this barometer, which is almoft like the double barometer; but the boxes A and B are only about 4 lines and half in diameter; the thicknefs of the tube CD on the infide is but a line in diameter, and the box K , which is joined to the top of the tube $C D$, is every way like and equal to both the others, but it mult have a little opening at the top. The three boxes are each 2 inches high, and the diftance between the middle of the two boxes A and B , ought to be pretty near $28 \mathrm{inch} . \frac{1}{2}$. As for the thicknelis of the tube, which joins the two boxes A and B, it is not at all determined, for this tube ferves only for communication, and * Plate II. Fis: 3.

Royal Academy of Sciences. Iot

 it is fufficient, that it be 1 or 2 lines infide diameter.The quickfilver is put into the boxes A and B, as in the double barometer, and from the quickfilver of the box B , to about the middle of the box K , there are two different liquors, which cannot mix together, and are diftinguifhed in G, in the little tube $C D$, towards the middle, when the atmofphere is of mean weight.
By the conftruction the three boxes being of equal diameter, they will always have the fame height of liquor, or the fame weight upon the quickfilver of the box B , in all its different heights, which will be $\frac{1}{1} \frac{1}{4}$ of B K, which is the height of the liquors above the quickfilver of the box B , in fupp ofing the liquors fenfibly of the fame weight between themfelves, and of the fame weight as the water, which is 14 times lighter than the quickfilver, according to M. Huygens; for the liquor will rife or fall as much in the box K , as the quickfilver in the bozes B and A , but it will rife in A, when it falls in B, and on the contrary.

In the alterations of the height of quickfilver or weight of air, it is evident, that the lower liquor GB will act as in the double barometer.

My barometer may be ufed as the fimple barometer, by fticking a little flip of paper divided into $\frac{x}{2}$ lines upon the upper and lower boxes, which marks the entire lines of the height of the quickfilver, which anfivers to the weight of the atmofphere; fo that we may always compare the true alteration of the atmofphere, with that which fhall be marked by the lower liquor, and inftead of dividing the height of the tube CD into parts at pleafure, which have no proportion to the height of the atmofphere, as is commonly done,

302 The History and Memoirs of the

divide it into two parts, which fhall reprefent the heights of the atmofphere, in lines of quickfilver, which may eafily be done.

For example, having found that the difference of the height of the quick filver in the boxes A and B , when the atmofphere is light, and the air at a mean ftate of heat, is 29 inches, 2 lines; and knowing the proportion of the weight of quickfilver to that of each of thefe liquors, and alfo their proportion of weight to the quickfilvei according to their heights, which is 2 inches, 2 lines, take away 29 incher, 2 lines, and the remainder will be 27 inches for the true height of the quickfilver, which fhews the weight of the atmofphere in this ftate, and in the time of obfervation.

This is the reafon that there muft be writ overagaint the point M , where the lower liquor is, in its tube, this height of 27 inches; and place alfo upon the boxes A and B, the two little llips of paper divided into $\frac{x}{2}$ lines, fo that their divifion which fhall be marked at the height of the quick filver be marked 25 inches.

If you have no regard to the alterations of the bulk of the liquors and quickfilver in cold and heat, with regard to the mean ftate, nor to the different heights of the lower liquor, which is a Jittle heavier than the other, it is evident that the quickifiver will fall or rife in its boxes, in the manner that I have before faid; for the Jiquors which we fuppofe very near of equal weight, will always chaige equally the quickfilver of the lower box. We need therefore only know the motion of the lower liquor in its tube, in proportion to the motion of the quickfilver in its boxes. This may be found by experiment, if, after the sert obfervation when the atmolphere was light, there,

Royal Academy of Sciences. 103

there be another made when it flall be heavy, the air being pretty near the fame ftate of heat: for we fhall have upon the divifion of the boxes the height of the quickfilver, which anfwers to the weight of the atmofphere; and fuppofing it to be an inch, that is to fay $\frac{x}{2}$ an inch upon each box, mark the height of the liquor, as in $\mathrm{Z}, 28$ inches; and divide the face M Z into the number of lines, which have been obferved for thefe two points M and Z, which is here 12, and continue thefe divifions above M and below Z, which is eafy to underftand. We fuppofe, that the tube and the boxes are of equal thicknels all the way; if not, for greater juftnefs we mult find by experiment other points of height of the liquor in different weights of the atmofphere.

We fee by what has been juft explained for the divifion, that if the true height of the quickfilver be known that anfwers at one time, as that which is here above marked, to the weight of the atmofphere, there need only be at firlt put the little nips of paper upon the boxes A and B, which mark this height over-againft the furface of the quickfilver, and alfo the fame height at the fide of the tube CD , over-againft the furface of the lower liquor, and we have only to know the proportion of the weight of the liquors to that of the quickfilver, and the reft is done of itfelf.

Obferve that the aqua fecunda made with $\frac{x}{5}$ of aqua fortis, is to the quickfilver in weight, according to the obfervations of M. Homberg, as pretty nigh I to 12 , which is alfo the proportion of oil of tartar, that is put into the double barometer, as I have found by the examinations that I have made.

There only remains for me to examine what muft happen to my batometer, by the dilatation

104 The History and Memoirs of the

and condenfation of the liquors, and of the quickfilver in the great cold and heat. By the experiment which I propofed before, where I took the mean ftate of the heat of the air, we found divifinos with which we might be contented, if a great exactnefs was not required; and fo much the more, as there being but little quickfilver and liquor in the boxes of this barometer, the alteration of heat and cold, beyond the mean ftate, can caufe no great difference; yet we may draw two lines parallel to M Z on each fide of it, and very near to it, and there mark alfo by experiment, in the great heat and cold, the divifions which fhall anfwer to the heights of the quickfilver of the boxes, and do alfo the fame thing for the divifions of the boxes; for as to the different conftitutions of the air between the extremes and the mean, it will not be difficult to judge of them.

Laftly, oil of tartar may be put for the lower liquor, as in the double barometer ; and fpirit of wine, or oil of petrolet:m, for the upper; which I believe to be more proper than putting firit of wine at the bottom, and oil of petroieum at the top, becaufe the oil of tartar alters its bulk lefs than the fpirit of wine by heat and cold; neverthelefs the fpirit of wine approaches nearer to the weight of the oil of petroleum, than to that of the oil of tartar. But there mult be a mark made upon the box K N , where the upper liquor is in a certain difpofition of the air and of the atmofphere, to know afterwards how much this liquor will be diminifhed by evaporation, and to put in again as much as there was at firft ; but the aparture of this little box may be lightly ftopped, which will not hinder the air from acting upon the liquor: and even a fmall flender tube may be

Royal Academy of Sciences. 105 applied to the top of this aperture, which will preferve the liquor longer.
III. Reflections on the variation of the needle; obferved by the Sieur Houffaye, captaint commandant of the 乃bip L'Aurore, during the expedition to the Eaft-Indies, made by the Squadron commanded by the baron de Pallieres, in 1704 and 1705 , by M. Caffini the fon*; tranflated by Mr. Chambers.

A journal of the obfervations of the needle, made by M. Houflaye, captain of the fhip $A u$ rora, in a voyage to the Eaft-Indies, in the fquadron commanded by the baron de Pallieres, was fent by the commiffioner of the marine in the eaft to the count de Pontchartrane, according to the orders which he had received for that puryofe. This officer, who has acquired great experience in eight feveral voyages to the Eaft-Indies, not only relates the obfervations which he made in his laft voyage, but alfo compares them with thofe he had made in feveral places in his former ones, with defign to fhew the increafe or diminution, to which the variation is fubject in length of time. He has alfo taken care to note the obfervations, which he made in the fight of the capes, iflands, and coafts in his paffage, and informs us, that he made ufe of the Mercator's chart of Pieter Goos, where the firt meridian paffes thro' the pike of Teneriff.——Having therefore a copy of this author's chart of the Eaft-Indies, we had an opportunity of comparing his obfervations with the variations laid down * April 25, 1708.

106 The History and Memoirs of the

in Dr. Halley's chart, allowing for the difference of longitudes between the two.

At their departure from Port Louis on the French coafts, the variation of the needle was found 5"- north-weft; in Dr. Halley's chart it is laid down as $6-\frac{8}{2}$ north-wert.

At 357 -long. and 22° north lat. the variation was found o; where in Dr. Halley's it is noted as $\mathbf{I}^{\circ}-\frac{1}{2}$ north-weft.

At $353^{\prime}-45^{\prime}$-long. and 16 - 30^{\prime} - fouth lat. the variation was found $2-\frac{x}{2}$ north-eaft; where in Dr. Halley's chart it is noted as $3-\frac{1}{2}$ north-eaft.

At 354° - long. and 18° - fouth lat. the variation was found $3-\frac{1}{2}$ north-eaft; where in Dr. Halley's chart it is $3-\frac{1}{+}$ north-eaft. This fame variation of $3^{n}-\frac{1}{2}$ north-eaft, continued as far as 23^{-}- fouth lat. Under the fame longitude of 354° - where in Dr. Halley's chart it is made $4^{\circ}-\frac{2}{3}$ north-eaft.

In thefe places M. Houfaye obferves the variation in 1682 was found 11°-_ north-eaft, fince which time it has conftantly diminifhed, fo as now only to be 4 or 5 -

The greateft variation north-eaft, which he found in this voyage was 6 _- the longitude being 367 - and the latitude 28 - fouthward, in which place it is reprefented in the chart as fomewhat under 5 - north-eaft. This variation diminifhes as you proceed eaftward, and at length turns to the north-weft; fo that within fight of the Cape of Good Hope, and along all the coafts of Angola, as far as Bengal, it is 9 or 10° - northweftwards; and is laid down accordingly in Dr. Halley's chart.

On the wellern fude of the bank Des Aiguilles, the variation was fomd 12° - north-weft, and

Royal Academy of Sciences. 107 on the eaftern fide of the fame bank $13^{\circ}-\frac{1}{2}$ to 14° - and is reprefented much the fame in Dr. Halley's chart.- In 1580, M. Houflove of ferves the variation at the Cape of Good liope was only from 7 to $7^{\circ}-\frac{t}{2}$ north-weft, fince which time it has been contimally increafing, as well as at the bank Des, Aiguilles.

Through the whole channel of Mofambicque, from 25° - fouth lat. as far as within fight of the bay of St. Augufine, in the inland of Madogafcar, the variation is found from 22 to 23° - northweft; and in the year 1682 was found from 18 to 19° - Dr. Halley's chart for the year 1700, reprefents it in the bay of St. Augufine, as $21^{\circ}-\frac{3}{4}$, which is fomewhat lefs than it was obferved in 1704, as it ought to be, by reafon of the annual increafe of the variation in this place.

Within fight of the inand of Guon de Nour, the variation was found 22° - north-weft, where in the chart it is $20^{\circ}-\frac{1}{3}$ north-weft.

Within fight of the inlands Mayotte, Amzuam, and Moely, the variation was found $20^{\circ}-30^{\prime}$ -north-weft; formerly it was only 18° - and in Dr. Halley's chart is 20° - north-weft.

Under the line at 70°-long. the variation was found $\mathbf{1} 6^{\circ}$ - north-weft ; where in Dr. Halley's chart it is $17^{\circ}-\frac{2}{3}$ north-weft.

At 87° - long. and 15° - north-lat. the varia: ion was found $10^{\circ}-30^{\prime}$ north-weft; where in Dr. Halley's chart it is 12° - north-weft.

Within fight of Canary at $1^{6}-30^{\prime}$ north lat. and all along the coafts of Malabar, the variation was found $6^{\circ}-30^{\prime}-$ north-welt, where the chart makes it 3° - north-weft.

AtCapeComorin in the variation was found \boldsymbol{y}° 30 - north-weft ; in the chart it is 7° —— $\frac{3}{3}$ north-weft.

108 The History and Memoirs of the

Within fight of Point Galle, in the inand of Ceilon, the variation was found 5° - $\frac{1}{2}$ northweft in the chart it is 6° ——— $\frac{1}{2}$.

Near the coalt of Coromandel, the variation was found 5° - north-weft, exactly the fame as in the chart.

In the inlands Andaman and Nicobar, the variation was found 3° - north-weft, precifely as in the chart.

Within fight of the ifland Diego Rodrigues, the variation was found $16 ?-30^{\circ}$ north-weft, which in the chart is 19° _ north-weft.

Within fight of the inand Mourice, the variacion was found 21° _ north-weft, where the chart gives it $20^{\circ}-\frac{1}{2}$ north-weft.

Within fight of the ifland Bourbon, the variation was found from $21^{\circ}-\frac{x}{2}$ to 22^{9} - northweft, where the chart gives it $21^{\circ} \longrightarrow$ northweft.

At 74° - long. and 25° - fouth lat. the variation was found $23^{\circ}-\frac{1}{2}$ north-weft, where the chart gives it $22^{\circ}-\frac{1}{2}$ north-weft.

At $72^{\circ}-45^{\prime}$ long. and $27^{\circ}-15^{\prime}$ fouth lat. the variation was found $24^{\circ}-30^{\prime}$ - where the chart gives it 23°-north weft.

The fame variation continued as far 65° 45^{\prime} - long. and $33^{\circ}-10^{\prime}$ fouth lat. where the chart makes it $23^{\rho}-\frac{2}{3}$ north-weft.

From this place the variation continually diminifhed, as they proceeded towards the Cape des Aiguilles about the middle whereof at $35^{\circ}-$ 30^{\prime} lat. the variation was found 13° _ northweft, and within fight of the Cape of Good Hope, and all tang the coafts of Angola, as already mentioned, from $9^{\circ}-\frac{x}{2}$ to 10° - north-weft; in Dr. Halley's chart the variation at the middle of the bank Des Aiguilles is 12° -

Royal Academy of Sciences. 109

At the Cape of Good Hope fomewhat above 10° - and along the coafts of Angola from $9 \frac{1}{2}$ to 10°

As you proceed hence towards the inland of St. Helena, the variation gradually diminifhes; fo that within fight of that ifland, on the eaftern fide, it was found I^{8} ——or I^{8}-- $\frac{1}{2}$ northweft, where the chart gives it fomewhat above I^{8} ___ north-weft.

At the inand of A fenfion, there is no variation, or at moft not a degree north-ealtwards ; the chart gives it $\frac{2}{3}$ of a degree north-ealtwards.

Proceeding hence for France, as you pafs the line at 357 or 35^{8} of longitude, there is no variation. The chart gives it a variation of $\frac{1}{2}$ a degree north-eaftwards.

As we approach the Azores, the needle begins to decline north-weftwards; fo that within fight of the inlands Corva and Flora, we find a variation of 4° to $4^{\circ}-30^{\prime}$ rorth-weftwards, where the chart gives it 5° - $\frac{1}{3}$ north-weftward.

As we approach Terre-Neuve, the variation increafes to 7 or 8° - and at length on the coalts of Britany dwindles to 5° - north-welt, as was obferved at our departure from Port Louls.

Many of thefe obfervations agree exatly with thofe of Dr.Halley's chart, and the generality of them only differ about a degree, which muft be allow'd a very great pitch of accuracy, conficering the difficulty of making exact obfervations of the variation at fea. This difference may alfo is fome meafure arife from the annual change found in the variation of the needle, which increafes in fome places and diminifhes in others, as appears from thefe obfervations. - For at 354° - lorgitude, and 20° - fouthern latitude, the variaiicn, which

I 10 The History and Memoirs of the

which is north-eaft, has in 22 years dwindled from 11" - to 5. At the Cape of Good Hope, the variation, which is north-weft, has in 24 years increafed 2 or 3° - and in the channel of Mofambicque, near the bay of St . Augufine, it has in 22 years increafed 4 or 5^{Q}-.
IV. Experiments and obfervations on the dilatation of the air by boiling zenter, by M. de la Hire *; tranflated by Mr. Chambers.
M. Amontons had long difcovered by experiments, that the heat of boiling water can only dilate air to a certain pitch, whatever degree of fire be employed to make it boil; when he propofed to the academy a rew thermometer, whereby to difcover the relation between the heat of air over the whole earth.

His experiments were chiefly made with a machine very ingeniouny contrived, tho' fomewhat compound and difficult of application, by means whereof he compreffed the air, in a glafs phial, with 27 inches of mercury, beyond its natural comprefion from the weight of the atmofphere. This phial was joined to a crooked glafs tube, wherein was mercury 27 inches above that in the phial, the ufe of his machine was to bring the mercury to this height, then he plunged the phial with its crooked tube in cold water, which at laft he placed over the fire till it boiled vigorounty; and this experiment being performed before the academy, it was obferved, that after the water boiled, the mercury fuftained in the tube rofe no higher, tho' the fire was confiderably increafed, than it did when it firlt began boiling.

[^6]This

Royal Academy of Sciences. iti

This experiment I thought very curious, but did not conceive why he made it with air compreffed with 27 inches of mercury beyond its natural load. To conclude from thence, that the air, fuch as on the furface of our earth, without further compreffion than that of the weight of the atmofphere, dilates itfelf by boiling water about $\frac{1}{3}$ of its former bulk, fince in thefe conclufions feveral things muft neceffarily be fuppofed about the nature of air, whereof we have no fatisfactory knowledge.

The firf experiments made by M. Amontons, led him infenfibly on to execute what he had projected, without giving him room to think of another fimpler, and confequently jufter method of attaining it. This was what induced me to make the following experiments of the dilatation of air, and its force, when heated by boiling water, to fuftain a certain height of mercury without introducing any foreign preffure, more than what arifes from the weight of the atmofphere, at the time and place of experiment. I took a glafs tube * A B C, bent in B, and to the extremity thereof C , faftened a phial D 2 inches in diameter, the tube was open in A, and its diameter about $\frac{3}{4}$ of a line on the irfide. Thus far agrees with the phial and tube ufed by M. Anoortons; but ir being impoffible to pour mercury into the tube, without comprefing the air in the phial, I taftened another very nender tube E F over the phial, which opening into it, Jet the air efcape in proportion as the mercury entered the tube A, till having poured the mercury into the tube $A B C$, about 2 lines higher than the aperture of the leffer tube in the phial, I fealed the extremity F of this leffer tube, the mercury being now

[^7]
112 The History and Memoirs of the

at the fame height in the phial as in the tube $A B$, and confequently the air in the phial, no more compreffed than the external air, which M. Amontons had not been able to attain, in pouring his mercury into the tube, as he himfelf confeffes in the memoirs of 1699 , which was doubtlefs what led him to comprefs it with 27 inches beyond its natural load, to make its compreffion about double of what it ufually is.

I obferved at the fame time the height of the barometer, which was 27 inches, 7 lines $\frac{x}{2}$, and the thermometer ftood at 42 degrees, which is always at 48 in the vaults of the obfervatory, and makes what I call the mean ftate of the air between heat and cold, the weather being moift with a fouth wind, and the day the I Ith of $D e$ cember, 1705.- Without more ado, I put the phial in water, and the water over the fire, till making it boil violently, the mercury rofe 8 inches, 5 lines in the tube A B above that in the phial; but the third of 27 inches, 7 lines $\frac{8}{2}$, is 9 inches, 2 lines $\frac{1}{2}$, and confequently the air in the ftate it was in, before its being dilated by the heat of the water, did not fuftain a height of mercury equal to $\frac{2}{3}$ of the weight of the atmofphere, but lefs by 9 lines $\frac{\pi}{2}$.

This operation I repeated on the 16th of Feb . 1706, with the fame phial as before, wherein the mercury had been left ever fince, the little tube ftill continuing fealed; but this time the thermometer only ftood at 38 degrees, and confequently the air in the phial was more contracted than in the former experiment, when the weather was warmer, and befides the barometer now ftood at 28 inches, 5 lines, and confequently the atmofphere was 9 lines $\frac{x}{2}$ of mercury heavier than before. On both thefe accounts, the mercury

Royal Academy of Scincees. il 3

thould have fallen in the tube were it was leff, and was found accordingly 1 inch, 6 lines lower than that in the phial.

Opening therefore the end of the little tube, to give room for the external air to prefs upon the mercury in the tube, it prefently rofe to the fame hight as that in the phial; then fealing the little tube anew, I put the phial in water, which I made boil; but found that the mercury now only rofe 8 inches above that in the phial, which is 5 lines lefs than before, and 14 lines $\frac{1}{2}$ lefs than $\frac{4}{3}$ of the weight of the atmofphere.

And yet as the air was colder and heavier, and confequently a greater number of its fpringy particles contained in the fame compafs of the phial, the heat of boiling water, which was the fame in both experiments, fhould rather have increafed its effect, and made it futtain a g: eater height of mercury; but the contrary being found, we muft of neceffity confefs, that the nature of the air is unknown to us, unlefs we fuppofe tha: the weight of the atmofphere acting on the mercury in the tube had more force to deprefs the air in the phial than the boiling water had to make the mercury rife, by opening and unfolding the fprings of the air inclofed in the phial.
'Tis true, that according to the fuppofition of M. Mariotte, which M. Amonions makes ufe of, to infer the dilatation of air by boili:g water, to be more than what it naturally is, viz. That the fprings of air are compreffed in the reciprocal ratio of the weights, we fhould always find the fame ratio between the weight of the atmofphere, and the weight of mercury raifed in the tube, as between the compreflion of the air by the weight of the atmofphere, and the effort made By the fame mercury in the tube to comprefs the Vol. III. $\mathrm{N}^{\circ} \cdot 26$. J quan-

is4 The History and Memoirs of the

quantity of air firft contained in the phial, which effort makes what we call the dilatation of the fprings of air by boiling water to fuftain a weight, tho' in reality thefe fprings be not dilated; for the heat of boiling water acting on the air inclofed in the phial, makes no fenfible alteration in its bu'k, while it obliges the mercury to rife a certain height in the tube, to make an equilibrium therewith. 'Tis therefore this height ot mercury in the tube, that always balances the effort of the boiling water on the air in the phial; fo that this air in the phial mult now be confidered as comprefferd by the weight of the atmofphere, and the height of the mercury in the tube likewife, tho, before it was only compreffed by the weight of the armofphere; and as the bulks of the air in the phial are to be in the reciprocal ratio of the incumbent weights, it will amount to the fame as introducing into the phial, where the mercury undergoes no fenfible change of height, a quantity of air compreffed by the two caufes, the weight of the atmofphere, and of the mercury in the tube, which had the fame ratio to the quantity of natural air in the phial; and this air likewife comprefled by the two former caufes, as the weight of the mercury in the tube would have to the weight of the atmofphere over the fame bafe. _-For an inftance.

Suppofing the weight of the armofphere equal to 27 inches of mercury, the height of the mercury in the tube 9 inches, and the capacity of the phial 4. irches, which lint we fuppole full of air, compreffed by the weight of the atmofyhere, before the mercury rifes in the tube. When the mercury is rifen 9 inches in the tube, the phial fill remaining full of air, this air muft be compreffed therein beyond what it was before in the recipro-
cal ratio of the incumbent weights, which are as 27 to 3^{6}, or 3 to 4 ; fo that it amounts to the fame thing, as if an inch of this compreffed air had been introduced into the phial, which inch of compreffed air would be the meafure of the effort, with regard to the 3 inches, into which the air of the whole phial would be reduced, which would balance the 9 inches height of mercury in the tube; whence it follows, that this fuppoled quantity of air introduced into the phial, which is the nseafure of the effort of boiling water on the air in the phial (it being the boiling that makes this effort) will always bear the fame ratio to the quantity of air naturally compreffed in the phial, as the height of mercury in the tube bears to the height of mercury, which balances the weight of the atmofphere.

Examining therefore our two experiments by this rule, we fhall have for the firft effort of the boiling water, with regard to the weight of the atmofphere, 8 inches, 5 lines, to 27 inches, 7 lines $\frac{1}{2}$, which is nearly as 10 to 33 ; but for the fecond, we fhall have it as 8 inches to 28 inches, 5 lines, which is nearly as so to $35 \frac{1}{2}$; whence it appears, that this ratio is far from $\frac{1}{3}$ of the weight of the atmofphere; and farther in the fecond experiment than the firt. Accordingly M. Amontons does not call it $\frac{1}{3}$; for he only learned it by induction but nearly $\frac{1}{3}$.

All our reafonings hitherto upon the dilatation of air by boiling water, is founded on the two known properties of air, piz. its being a Buid, and its parts being fpringy; for as to its weight, it need not be regarded in thele experiments, where its height in the phial is fo inconfiderable; fo that all the properties of fluid and fpringy bo-

116 The History and Memoirs of the

dies may be attributed to the air in thefe experiments.

Hence the mercury fhould only rife in the tube to a certain height, where it has fufficient force to bend, or ftrain the fprings of the air, to render it a balance to itfelf, which height will be the fame upon the iurface of the mercury contiguous to the compreffed air, whether we fuppofe a great deal of air, or a multitude of fprings, or only a few, for the fprings will fuftain each orher, and are all fuftained at laft by the parietes of the vefiel they are contained in.

This appears the more probable, as in taking one of thefe phials with its tube ABDE *, and pouing ne cury into it by the tube ED , till it rife to E in the tube $D E$, which is open, and only to F in the tube D B, which is faftened to the phial AB underneath B. 'Tis certain, that the air in the phin, and in the part BF of the tube $B D$, will $b=$ comprefed more than the external air, as beirg !uaden with a height of mercury EF; ard in this cere, if the whole phial be taken away, or only its communication with the tube $B D$ in B be flopped, 'ris eafy to infer, that the mercury will fill remain in F , and neither sife nor fall in the tube BD , tho' the compreffed air in BF have no longer any communication with that in the phial, which is compreffed likewife by thefe experiments, therefore it appears indifferent, whether the phial be fimall or great compared to the thicknefs of the tube.

Neverthelels as neither the contraction nor extenfion of fprings is infinite, but both of them lave their bounds, it follows, that frictly fpeaking, they mult not obferve the ratios of the incumbent weights, even for a little change of weight; hence we have rom to furpect, that experiments of the compreffion and dilatation of air, and as in fuch a fluid as air, compofed of fpringy particles, there may be fome particular property unknown to us, which may hinder its acting after the fame manner as other fluids. I have endeavoured to make fome difcovery hereof, and with this view contrived the following experiment, which tho' it bears fome refemblance to the former, is very different in the proportion of the tube to the quantity of air to be dilated by the boiling water.

I took the glafs tube * ABC , bent like a fyphon, one branch whereof $A B$ was 15 inches long, and the other BC only 8 , its extremity was drawn into a capillary tube CF , and the inner diameter of the fyphon was $\frac{1}{4}$ of an inch.

The fyphon being inverted, I poured mercury into it, which rifing equally in both branches of the fyphon, I only left 3 inches height of air in the fhorter branch, riz. from D to C , then feal. ing the extremity F of the capillary tube, I inftantly plunged the tube in water, which I made to boil. Upon this, I found that the mercury in the long branch AB , only rofe I inch, 8 lines $\frac{x}{2}$ above the level of what was firft in the fhort branch $B C$; but the mercury now fell as faft in the fhort branch, as it rofe in the long one, which was open a-top, and confequently the mercury rofe 3 inches, 5 lines; and the long branch above that in the fhort one: when the boiling water had dilated the air contained in it, the barometer then ftood at 28 inches, 3 lines, and the thermometer at 36 degrees $\frac{x}{2}$.

Now this experiment where the 3 inches height of air contained in the tube $B C$, reprefent a little \geqslant Fig. 5.
phial, with regard to the large tube $A B$, wherein the mercury rofe, gives nothing like what we learsed from the two former; but as the air dilated by the boiling water, poffeffed a greater fpace than it did before, which was not found in the former experiments, it could not here fuftain fo great a height of mercury, as it did there; and if we enquire by the rule of the air's being compreffed in the reciprocal ratio of the weights, what quantity of mercury mult be added to the long tube AB ; to reduce the air, heated or dilated by the boiling water, to its former bulk of 3 inches, we flall find upwards of 21 inches required; for it will be as three inches of air contained in the tube are to 31 inches 8 lines, which is the weight of the atmofiphere, with double the dilatation of the air in the clofe tube; fo are 4 inches 8 lines $\frac{x}{2}$, which is the whole air dilated in the clofe tube to the height 49 inches 8 lines $\frac{1}{2}$, from whence fubftracting the weight of the atmofphere $2 S$ inches, 3 lines, and likewife the fall of the mercury in the clofe tube, which is 1 inch, 8 lines $\frac{\pi}{2}$, the remainder is 19 irches, 9 lines, the lueght of mercury in the open tube, above that in the other tube, required to reduce the air in the clofe tube, which is dilated by the boiling water to irs firf bulk of 3 inches, and yet it fhould only be about 9 inches $\frac{x}{2}$, which is $\frac{x}{3}$ of the weight of the atmofphere. Hence thercfore I learn, that the quantity of the inclofed air, upon which the boiling water acts, may occafion a great diverfity in the refult of thefe experiments, and it would even feern to follow, that a littie quantity of air, dilated by boiling water, becomes more forcible than a great one.

Another experiment I made with regard to what M. Nugue had publifhed in the Menoirs de Tre-

Roüll Academy of Sciences. ily

voux for OEF. 1705, oblerving what M. Ammions had advanced in the memoirs of the academy, that the air is dilated, by the heat of boiling water, $\frac{2}{3}$ of its natural bulk, he made three feveral experiments to be fatisfied of it. -_By the fift, he found that air naturally comprefeed, as upon the furface of the earth, is dilated by boiling water in fuch manner, that the face it now poffefes is to its natural face, as 2 to 1 , or 4 to 2 , and not as 4 to 3, according to M. Ainontons; and he obferves very judicioutly, that the air, in his experiment, was not dilated to its utmort extent, by reafon part of this dilated air was encompafed with cold water, but makes no mention of another caufe, which likewife prevented its dilating, viz. the weight of the cold water, which had rofe above a hole, made in the bottom of the phial immerged in the water.
M. Nuguel's fecond experiment was fomewhat different from the former; and by this he found the dilated air to the natural air, as 16 to \mathbf{I}; but as he does not regard the height of the water in the boiler, whereby the air was dilated by means of a hole at the bottom of the phial, fo great a dilatation muft neceffarily have enfued.

His third experiment likewife gives the ratio of dilated to natural air, as 16 to 1 ; but I do not conceive how he could make it after the manner he relates; for the cold water no fooner enters the phial plunged in the boiling water, than the phial fhould break.

He obferves upon thefe three experiments, that the firt is very wide from the other two, which could never have rofe from the fingle caufe affigned by him.

The laft of them I repeated with all the "circumftance he mentions, and found that the bulk

120 The History and Memoirs of the

of the air, dilated by the heat of boiling water; was to that of natural air as 5 to 2 , or as $2 \frac{1}{2}$ to 1 nearly, which is very far from 16 to 1 , as found by him.

The grat difference among thefe experiments fhews, that there are fome circumftances not attended to, which may produce great effecis in the nature of air, and that we mult be warned elfe, from drawing any general confequence from a few particular obfervations, and condemning others, drawn from obfervations in the fame cale; what then occurred to me, as to the realon of the difference between M. Nuguet's obfervation and mine is as follows. M. Nuguet ufed a little phial, which only held 2 ounces, 7 drachms $\frac{1}{2}$ of water, whereas that I ufed, held 25 ounces, and as we can never judge fo well from an experiment in little as in large, there might fome diverfity arife from this quarter. I alfo obferved from M . Nuguel's account of his obfervations, that he firft filled his phial with water, and then emptying it, put it in the boiling water to dilate its air; now the little water, which might be leff therein, being raifed into bubbles, which would be put into a violent motion by the heat, I fancied, might not only extend the fprings of the air, but that poffening a large bulk, they might have carried off, as they iffued from the phial, moft of the air contained therein; as we find in eolipiles, which blow fo vehemently for a confiderable time, till to more water is left in the bowl. By this means only a little air mutt have been left in M. Nuguet's phial; whereas that which I ufed being firft well dried, the heat had nothing to act on, but the air contained in it; but as all air abounds more or lefs with watry particles, if this efficet had any place in thefe experiments, we we thould always find great differences in thofe made like the two former at different times, when the air was probably more replete with water at one time than another: from whence thofe of M. Amontons were exempted, by reafon they were made with three different phials at the fame time. This induced me to believe, that the moifture of the air, when heated by boiling water, might poffibly make confiderable differences as to the dilatation of the air, tho' it could not get out of the phial, as being retained by the mercury.

But being aware how wide our reafonings frequently are from the truth in phyfical matters, I refolved to repeat the experiment I had madeupon the dilatation of air by boiling water in a phial, and immediately after to make another with the fame phial, with a little water in it, either to confirm or overthrow the notion I had conceived about the difference between our experiments. -__ Accoidingly the 18 th of $7 u l y, 1708$, the barometer ftanding at 28 inches, and the thermometer at 55 degrees, which in the vaults of the obfervatory ftood at 48. The wind being wefterly and very moift with a little rain, I took a new glafs phial, as dry as the conftitution of the air would allow of, and weighing it, found it 6 drachms $\frac{5}{2}$; then 'fopping it well with a cork, thro' which I had put one of the legs of a fmall glafs fyphon, I cemented it well to the cork with fealing-wax, leaving the orher leg of the fyphon on the outfide. This phial I put in cold water, holding it down, fo as both the cork and the fyphon were immerged, taking care only to fink the nouth of the phial a little below the furface of the water, for fear the water hould make way by its weight into the phial.

Vol. III. $\mathrm{N}^{\circ}, 27$.

122 The History and Memoirs of the

This water being placed over a good fire, I prefently perceived a multitude of little bubbles begin to arife from the end of the fyphon, which fhewed that the air in the phial was beginning to dilate, and iffue at the end of the fyphon, by the heat it had conceived from the fire; but as the water heated more and more, the air bubbles rofe from the fyphon with more precipitation, which continued till fuch time as the water boiled out right, when there were bubbles fill feen to arife, tho' much lefs than before.

After the water had boiled fome time, 1 took it off the fire, keeping the end of the phial and fyphon Itill under water, that as the water in the copper, and the air in the phial fhould come to cool, no particle of air might get into the phial, either by the fyphon, or a ny little pores, that might be found in the cork; and to fhorten the operation, I laded fome of the hot water off, and fupplied its place with cold, which was continued till the water was entirely cooled; then taking the phial out, I found a good deal of water had entered it, while we were waiting for the cooling, and as a mark, that the air left in the phial, was of the fame denfity as the external air, a little water was left in the part of the fyphon, which traverfed the cork, and was fufpended and counterbalanced within the air in the phial and the external air.

Taking out the cork therefore and the fyphon, and wiping the phial well on the outfide, 1 found it weigh with the water in it 4 ounces, 2 drachms, then filling it with water to the height, whereat the bottom of the cork had been, which was equal to the ulk of air it contained when I put it in the water, I found it weigh 5 ounces, 2 crachms; fo that the air left in the phial, was
equal to an ounce of water, and from 5 ounces, 2 drachms, the weight of the water in the whole phial, with the phial itfelf, fubftracting the weight of the phial 6 drackms $\frac{1}{2}$, as I found it at firt. The remainder is 35 drachms $\frac{1}{5}$, which is equivalent to the whole air in the phial, when I put it in water.

Hence I infer, that the whole air of the phial, naturally compreffed by the weight of the atmofphere, was to that which remained after its dilatation by boiling water, as $35 \frac{\frac{1}{2}}{2}$ to 8 , which is fomewhat lefs than $4 \frac{1}{2}$ to \mathbf{I}. Yet is this dilatation much greater than what I had found before, which was only as $2 \frac{1}{2}$ to I: hence as the air was very moift in this laft experiment, I had reafon to imagine, that the particles of water diffufed thro' the air, might ba the occafion, as I had before fufpected of this extraordinary dilatation; for further fatisfaction therefore I inftantly proceeded to my laft experiment, as I had before refolved.

I poured the water out of the phial, and contenting myfelf to fhake it well without drying, I weighed it as before, and found it 6 drachms $\frac{1}{2}$, and II grains; fo that there were II grains of water fticking to its infide, then fitting in the cork and fyphon, I repeated the experiment as before, without omitting the leaft circumftance. The refult was, that the phial was found quite full of water, and that the ratio of the capacity of the phial to the remaining part, not poffefed by the water, was as $35 \frac{1}{2}$ to I, as I found by weighing as before. Hence I can no longer make any doubt, but that a little more or lefs water in the air, may occafion great variations in thefe experiments, fince bare 1 I grains of water in the pre-

124 The History and Memoirs of the
fent one, produced an effect 8 times greater than in the former experiment.

But tho' the phyfical account fhould be difallowed, yet the experiments will ftill ftand inconteftable, whereby fuch different dilatations of air by boiling water are produced; fo that we may at leaft infer hence, that no exact ftandard of heat over the whole earth can be had by this method, not even with ufing phials and tubes, like that I firft ufed, and which differs but little from thofe of M. Amontons, which are hardly portable.

Upon the whole, were it not better, in lieu of this contrivance, to fubltitute good fpirit of wine thermometers, all graduated alike by careful experiments, without minding thofe equal divifions commonly placed on them, which are of no fervice for making an exact comparifon; fince there is no knowing whether the infides of the tubes thro' their whole length, nor the proportion of the bowl to the tube? All required to this end, is to make feveral fuch thermometers nearly alike, and plunge them all into frozen water, leaving them fome time therein, and then marking the height of the liquor in each tube, the other divifions may be made after the fame manner, by warming the water gradually, and immerging all the thermometers in it, care muft be taken withal to mark a point, which may be called the mean degree between heat and cold; as that where the firit of wine ftands in the tubes in the vaults of the obfervatory, where it continues alike all the feafons of the year. Hence we might alfo learn, whether the deep mines and caverns of other countries, where the temperature of the external air cannot reach, afford the fame degree of heat as ours, and whether the differences of foil occafion any variation therein.

Royal Academy of Sciences. I25

V. Reflections on fome obfervations of the

 variation of the needle, made in a voyage to the South-fea, aboard the flip Maurepas, by M. de la Verune, commander of the faid JRip, with fome remarks on the navigation of the coalts of America and Terra del Fuego, by M. Caffini jun * tranflated by $M r$. Chambers.The abbot Bignon has lately given us the obfervations of the variation of the needle, made in the fhip Maurepas in its voyage to the Soutb-Sea, in the year 1706, 1707, and 1708, wherein care is taken to note that the longitudes are reckoned from the meridian of the pike of Teneriff, which gave us an opportunity of comparing them with the variations laid down in Dr. Halley's chart.

Thefe obfervations being very numerous, we fhall content ourflves to give the refult thereof, and only note fuch as wete made near, or in fight of any inlands, or coaft, and which will admit of an exact comparifon.

On the 27 th of December, 1706 , at 345° 44^{\prime} longitude, and $20^{\circ}-44^{\prime}$ fowh latitude, near the inland of $A / c \mathrm{cen}$ fon, the variation was found $7^{\circ}-30^{\prime}$ north-eaft. In Dr. Hailey's chart the variation at this place is fomewhat above 7° -north-eaft.

In December, 1707, at $295^{\circ}-12^{\prime}$ longitude, and $5^{\circ}-6$ - fouth latitude, near the inland of the Hermit, the variation was found 20° _ north-eaft; where in Dr. Halley's chart it is 20° - 30^{\prime} - north-eaft.

At $310^{\circ}-30$ - long. and $5^{2}{ }^{\circ}-19^{\prime}-$ fouth lat. near the inands of Sebalt, the variation * July 21, 17.08 .
was found 23° — north-eaft. In the chart it is $21^{\circ}-30^{\prime}-$ north-eaft.

In the other parts of his courfe, both going and returning from Cape Horn to the equinoctial, the variations obferved, commonly agree with thofe in the chart within a degree.

As to the variations in the Soutb-fea, Dr. Halley has not laid them down in his chart, for want of obfervations of them; for which reafon I have endeavoured to fupply in fome meafure that defect, by drawing lines to fhew the degrees of variations, from the obfervations made along the weftern coaft of Americ 2. The obfervations I chiefly make ufe of, were made near the coafts, which I fhall here relate, according to the order of the latitudes.

In Auguft, 1707, at 300 - 10^{\prime} - longitude, and $13^{\circ}-6^{\prime}$ - fouth latitude, near the point Canette, and that of St. Galland, the variation was found y° ——n north-eaft.

At $297^{\circ}-27^{\prime}$ - long. and $14^{\circ}-1^{\prime}$ fouth latitude, near Pijco, the variation was found 7° - north-eaft.

At $297^{\circ}-30^{\prime}$ - long. and $31^{\circ}-49^{\prime}$ fouth lat. near Valparezt, the variation was found 89 - north-eaft.

At $299^{\circ}-25^{\prime}-$ long. and $36^{\circ}-30^{\prime}-$ fouth lat. near the Conception, the variation was found 10° —_north-eaft.

From thefe obfervations it appears, that the variation of the needle increafes along the weftern coaft of America, as the fouthern latitude increafes, which is further confirmed by feveral obfervations, made at a little diftance from this coaft.——For at the latitude of $44^{\circ}-49^{\prime}$ the variation w as found 12° north-eaft.

Royal Academy of Sciences. 127
At the latitude of $48^{\circ}-5^{\prime}$ - the variation was found 13° —_ north-eaft.

At the latitude of $53^{\circ}-37^{\prime}$ - the variation was found 15° - north-eaft.

And at the latitude of $56^{\circ}-42^{\prime}$ - the variation was found 17° - north-eaft.

In other parts of the Chip's courfe, where it appears by the longitude expreffed, that it was feveral degrees diftant from the coafts, the variation is laid dowr differently under the fame parallels, which may ferve in fome meafure to determine the direction of the lines of variation, which we hope to be enabled to rectify by the obfervations that fhall hereafter be communicated; for befide that there are feveral of thefe obfervations, which it is very difficult to reconcile, we fhould have feveral made at different diftances from the coafts, ere we can pretend to determine the direction of thofe lines with any precifion.

I fhall here add fome obfervations of the variation delivered by Dampier, in his voyage round the world.

At the inlands of Sebalt, which he calls Sible de Ward, and defcribes them as 3 iflands fituate at $51^{\circ}-25^{\prime}$ - fouth latitude, he found the variation in the year $1683,23^{\circ}-10^{\prime}$ - north-ealt. I have already mentioned, that the variation was found near thefe inands $23^{\circ}-0^{\prime}$ - in the year 1707, whence it appears that there has been no fenfible difference in the variation during the fpace of 24 years, which feems to confirm what we have elfewhere obferved, that at Cape Horn the variation has not altered in the fpace of 100 years.

At 47°-10'- latitude in the South-fea, Dampier found the variation $15^{\circ}-\frac{x}{2}$ north-eaft.

128 The History and Memoirs of the

And at the latitude of 3° - he found the variation 8°, north-eaft.

By which laft obfervations it appears, that in the South-fea near the weftern coafts of America, the variation continually increafes, as you recede from the equinoctial, agreeably to what we have already infered from other obfervations.

To thefe obfervations of the needle, M. Clairambout, who fent them to the count de Pontchartrane, has joined fome remarks on the navigation of the eaftern coafts of Soutb America and Terra del Fuego, made by M.de la Verune; which, together with a particular map of thofe countries, which he has promifed to fend, may ferve to rectify feveral fea-charts, wherein he finds the inlands about Cape Horn prepofterounly placed.

His firft remark is, that the coafts from Cape St. Antbony, at the mouth of the river de la Pla$t a$ to the ftraits of Magellan are laid down, a point of the compars more eafterly than they really are.

Healfo obferves, that the diftance between the ftraits of Magellan to the ftraits of le Maire, as well as the fituation, are very ill expreffed in the common charts; for by his account, thofe two ftraits are 55 or 56 leagues diftant, and that of le Maire is fituate, to the north-weft 5° - north of the ftraits of Magellan. _ But it may be here obferved, that in Dr. Halley's chart, printed in 1700, and M. Delifle's chart of the ftraits of Magellan, printed in 1703, thofe two ftraits are laid down very agreeably to his obfervations.

He alfo obferves, that the Terra del Fuego is not near fo large, nor fo much fouthern as was imagined; and adds, that Cape Horn, which the common charts place $57^{\circ}-40^{\prime}$ - fouthern latitude, is only $55^{\circ}-40^{\prime}$ fouthern latitude.

Royal Academy of Sciences. I29
He adds, that the inands of Barnerelt, which the charts place in the fame latitude with Cape Horn, are fituate weft-north-weft of that Cope in $5^{69}-35^{\prime}$ - latitude. - In which he likewife agrees pretty nearly with M. Delijle's chart abovementioned.

He further obferves, that the ifiands of Bamasvelt are the moft fouthern lands; and that there is no danger in paffing between thofe intands and CapeHorn. The diftance from the fraits of le Maire to Cape Horn, which is eart-north-eaftwards of that ftrait, he obferves is 80 leagues, which agrees very well with the diftance expreffed in Dr s Halley's chart ; but much exceeds that in M. Delife's.

After doubling Cape Horn, there is no farther difficulty, the charts being all good, as well as the coafts found, and the weather moderate ao long Cbili and Peru.
M. de la Verune makes feveral other curions and ufeful obfervations on the navigation of theie feas; he points out the favourable icafon for paffing Cape Horn, and how to behive both in going and returning. The inand IFicmit he places 24 or 25 leagues from this Cape eaftwat, in the fame latitude, and makes it 18 or 20 laggues in compafs. He alfo determines the fituation of the ifland Sebalt, whofe eaftern point is fituate N. N.E. of the ftraits of le Maire, at about 55 leagnes diftance; and he takes them to form a kind of arcbipelago. At his return he faw them very ciftinctly, and found their fruation very dificrent from what is commonly fuppofed. He gives them an extent of 55 or 60 leagues, and notes that to avoid them, they are obibed to range the Terra del Friego, or to make a large ciriut, when the wind does not allow ir. Lafly, he ab-

Vol. III. $\mathrm{N}^{\mathrm{N}} .2 \%$.
ferves,

130 The History and Memoirs of the

ferves, that the lands of Brazil are laid down more eafterly than they really are, by which means all the fhips, which go from the ftraits of Magellan or le Maire, find on their arrival at Brazil an error of fome 200 leagues.

VI. Conjectures on the pofition of the ifland

 of Meroë, by M. Delifle *.In + all Etbiopia, which is a country of very great extent, there is nothing more celebrated among the ancients than the inland of Meroë, nor any thing fo difficult to find among the moderns, or that they lefs agree in. If what the ancients have faid of it be true, this ifland could arm 250,000 men, and maintain 400,000 artificers. It contained a great number of cities; the chief of which was that of Meroë, which has communicated its name to the inand, and ferved for a refidence to the queens, regia \mathcal{E}^{2} metropolis X thiopum. I fay to the queens, becaufe it feems the women reigned in this country to the exclufion of the men. In the time of Augufurs, it was a princefs with one cye indeed, but of a mafculine courage, virilis fane mulier, fed aliero oculo capla. She made an irruption into Egypt, which at that time belonged to the Romans, but was obliged to fend ambaffadors to Augufus. At the death of our faviour, there reigned another, one of whofe eunuchs was baptized by St. Pbilip, as may be feen in the Aits of the apoflles. When Nero fent fome of his guards into this country, to fearch for the fources of the Nile, it was alfo a princefs that reigned there, and all thefe three were called Candace; but we fee by a paffage of

[^8]
Royal Academy of Sciences. i3I

Pliny, that this name was for a long time become common to the queens.

If hiftorical differtations were fuffered here, infead of reciting only philofophical and mathematical difcuffions, we fhould relate what Diodorus and other authors have written to the advantage of this illand ; but we mult pars to the difficulty that there is to difcover it in the modern geography.

This difficulty proceeds a little from the memoirs, that we have upon Etbiopia; for we mult not hope, that without a reafonable knowledge of the prefent ftate of the world, we can make the relation of the ancient geography to the new. When they firft began in Europe to have commerce with the kings of Etbiopia, there were fome writers of no veracity, who, upon night informations, faid many things far from the truth, which threw the world into numberlefs errors, from which we have hardly yet been able to recover ; and it is upon the credit of thefe writers, that fuch wretched maps have been made, and that thefe places have been fo many ways diffigured, that an ambaffador of the king of Etbiopia faid, in Egypt, to young Thevenot, that our geographers had filled their country with monfters and cbimeras.

It is true, that the jefuits, who have been pretty long in this country, have given us better informations of it, and have made a map upon the fipot very different from thofe made in Europe. Befides F. Ballbazar Tellez, F. Nicolas Godinho, M. Ludolf, and others have given us defrriptions of the country upon much furer memoirs; but they have oally defcribed that part of Etbiopice, which we call Abyiziaia, and not that which we

132 The History and Memorrs of the

call Nubia; and yet this was neceflary to enable us to decide the queftion with any perfpectuity.

I fhall rot therefore undertake here to decide it; but the memoirs that I have received from that country under the protection of M. le Comte de Pontckartrain, enabled me to propofe at leaft fome conj ctures. M. du Roule, the king's enwoy irto Elbiopia, as well to obey the orders of the miniter, as to acquit himflef with more hor:our of the glorious employment, with which his majefty had honoured him, had taken in Egypt ali the information neceffiry for the road he was to go, which was none of the leate difficult parts of his commifion. He had mate a defrription of Nabia, and of the courfe of the Nite, upon the depofition of many Sclueites, or chiefs of families, who had travelled 15 or 20 times into Etbiopia, as well by the Nile, as through the deferts. He did me the favour to communicate to me what he had learned; and it is upon his memoirs that I fhall propofe my conjectures.
The ifland of MIercë was indubitably upon the Nile. The fource of the Nile, which was fa long fought for in vain by the ancients, is in 12° of north-latitude. Its cataracts, a little lefs celebrated, but much better known than its fource, are $23^{\circ} \frac{1}{2}$, and it is certainly between thefe two points, that the iland of Mercee mult be.
The ancients have faid, that this ifland was formed by the concourfe of the $A ; F a b o r a s$ and the Nile, and by another river named Afape, which falls in like manner into the Nile. That this ifland was terninated on the weft by the Nile, and was bounded on two other fides by the Alape and Afraboras; which fhews that it was but improperly called an inand, fince is was not inclofed

Royal Academy of Sciences. I 33

 on all fides, and it muft be like that which we call here l'IDe de France.Notwithftanding fo formal a defcription, Mercator and Ortelius have reprefented the inand of Meroë, as formed by two arms of the Nile, and called it Gueguere; and almoft every body have fuffered themfelves to be carried away by the authority of thefe two geographers, upon whofe credit they boldly pronounce, that the inland of Meroë is now known under the name of Gueguere. Neverthelefs the iflands that are formed by the Nile alone above the cataracts are all fmall, which cannot agree with what we have faid of the largenefs of that of Meroë, nor with the number of its cities and inhabitants, and befides there is not one that approaches to that of Gueguere.

The jefuits, who have been in Etbiopia, are perfuaded that the illand of Merce is nothing elfe but the kingdom of Gojame, which is almoft entirely inclofed by the river Nile, in the manner of a peninfula, as may be feen in the map; but this peninfula, which makes the kingdom of Gojame, is formed only ty the Nile, not by the Aftape, nor by the Altaboras, I mean not by any river that could be fuppofed to be the Aftape and the Aftabores, which is contrary to the defcription which the ancients have given of it. Befides the ciry of Meroë, the capital of this inland, mult have been placed between the 16 and 17 th degree of north latitude, as fhall be hereafter thewn; and the kingdom of Gojame does not go beyond the 13 th degree. In fhort, if that which we now call the kingdom of Gojome, had been the inand of Meroë, fo known by the ancients, would they not alfo have known the fources of the Nile, which are without difpute in the middle of this kingdom?

134 The History and Memoirs of the

Ifaac Voffrus, of the royal fociety of England, is one of thofe who lately has laboured the moft ufefully at geography; and altho' his pretended reformation of the longitudes has done him no honour, he has neverthelefs made excellent inquiries in thefe geographical works. He pretends that the peninfula, made by the river Ma $r e b$ on the fide of its fource, by a circuit almoft equal to that which the Nile makes about the kingdom of Gojame, is the ifland that we fearch for; but befides, that this inand is formed only by one fingle river, and not even by the Nile, contrary to what the ancients have faid of it, this peninfula, formed by the Mareb, has neither the extent nor the fituation that the ancients have given to the inland of Meroë. And what abfolutely deftroys this opinion is, that the city of Meroë, the capital of the ifland, was upon the Nile; and that the ifland, or peninfula of Mareb, is very diftant from it.

Cellarius, whofe geographical works are now famous among the learned, has collected in his ufual manner all that the ancients have faid of the illand of Mercë ; but he does not give any intelligence of the prefent ftate of that country, without which we cannot conclude any thing; he only feems to approve the opinion, which confounds the kingdom of Gojame with Mercë, which I have jult refuted.
F. Tellez, a jefuir, after having well confidered all that the mifionaries of his fociety have written upon Etbiopia, is perfuaded, that this is an imaginary ifland. If I had believed, that fuch an opinion could make any impreffion upon one's mind, I would begin by refuting it ; for it is ufelefs to reafon upon a thing that is not, or at deaft whofe exiftence is doubtful : but it is ftrange

Royal Academy of Sciences. 135

that any one can doubt of the exiftence of the inland of Meroë, after what has been noted by the ancients with relation to it. Pliny affirms, that Simonides ftayed there 5 years; and that after him Ariftocreon. Bion and Baflis have defcribed its length, breadth and diftance from the city of Syene and the Red-Sea, its fruitfulnefs, capital city, and have even related the number of its queens.

Ludolf, who has not been able to find this inland, any more than F. Tellez, has not however doubted but that in fome meafure it exifted; but he pretends, that it mult be fought for more to the weft than has yet been done, and that it is among the countries to which we do not travel. That if after all the inquiries that fhall be made, it is not found, we may fay that fome arm of the Nile is dried up, and that this is the realon that we cannot difcover it : but this author is not aware, that thofe who have lately travelled over Etbiopia, have long coafted the Nile, and that they mult, on the contrary, have left the inand of Meroë to the eaft, fince the Nile bounded it on the weft ; and that thus it mult be looked for to the eaft and not to the weft, as he fays. And as to the rivers drying up, I own that there are many of them in Africa, which having flowed fome time through fands or fpongy grounds, weaken infenfibly, and at laft difappear ; but we do not put the Nile nor the A,taboras in the number of thefe rivers; and the power, or rather the licence of geographers, altho' great, does not go fo far as to dry up rivers of this confequence.

Since therefore we mult find the inand of Meroë, and as it is the duty of a geographer to make the parallel of the ancient geography with the new, we may conjecture, that it is this fpace

136 The Hrstory and Memotrs of the

of ground which is between the Nile and the rivers Tacaze and Dender ; and I am going to endeavour to eftablifh this conjecture by the fituation of this country, which appears to me conformable to that which the ancients have given to the ifland of Meroë, by the rivers of which it is formed, by its extent, by its figure, and by fome other fingularities common to the ifland of Meroë, and to the country I have juft pointed oit.

The fituation of a place, or country, is pro ved by the degree under which it is fituated; and by the diftance of this place, or country, from other places that are known to us. The city which is the moft known of all there countries is the city of Syene: the latitude of it is not at all doubtful; and this is a fixed point, from which we may without fear, meafure the places about it. Pliny * affirms, that on the day of the fummer folftice at noon, bodies do not make any fhadow ; and for a proof of it, they have caufed a well to be digged, which at that time is quite light. In Syene oppido, Jolftitii die medio, nullann umbram jaci, puteumque ejus experimenti gratia factum, totumilluminari. Strabo has faid the fame things in other terms, which lhews, that the city of Syene is juft under the tropick of Cancer, at $23^{\circ} \frac{x}{2}$ of north latitude. Now from Syene, to the city of Meroe, according to the fame author, were reckoned 5,000 fadia, in going toward the fouth; and thete 5,000 ftadia reckoned in aftronomical meafures, make 7 degrees of a great circle, and give the pofition of the ciry of Meroe, at $15^{\circ} \frac{2}{2}$ from the equator.

This pofition of the city of Meroe, which agrees pretty juftly with that which Ptolemy gives it in the 4 th book of his geography, is alfo con* Lib. II. cap. 73. firmed
firm'd by another paflage in Pliny, who fays, that the city of Meroë has no fhadow at all, any more than that of Syene; and that this happens twice in the year, when the fun is in 18° of Tousrus, and 14° of Leo. In Meroe, qua eft caput gentis Æthiopum, bis in anno abjuini umbras, Sole duodeviceflimam Tauri partem, छv quartam decimam Leonis obtinente. Now it is certain, that when the fun is in thefe degrees jult mentioned, it has about 16 degrees $\frac{x}{2}$ of declination, which is the latitude that the ancients have given to the city of Meroë, and which refults from its diftance from that of Syene.

I could alfo prove by the climates the pofition of the city of Meroë: The antients have placed it in the middle of the firt climate, of which the longeft day is I_{3} hours, which gives by calculation 16 degrees $\frac{1}{2}$, which is the fame latitude that we have given to Meroë upon obfervations, and upon its diftance from the city of Syene. I have neglected in this calculation the refraction, becaufe it does not make any confiderable difference:

The ifland of Mercë was formed by the river Nile, and two other rivers, which came from the eaft, as, we have faid. Influmit in Nilum, fays Strabo, duo fumina ab oriente deicta, Ef Meroem ingentems infulam complectuntur. I cannot tell whether the antients knew any other rivers than thefe two, that flow into the Nile on the eaft fide; but we fee by the memoirs of M. $d u$ Roule, that there are but two confiderable ones, the rivers Tacaze, and Denair. The river Tacaze being as big as half the Nile, has very much the appearance of teing the 1 faboras of the antients: this is the opinion of Juan de Barros, the Livy of the Portugueze; and two things will not permic me to doubt it. The firft is, that according to

Vol III. $\mathrm{N}^{\mathrm{o}}, 2 \%$.
the

138 The History and Memoirs of the

the jefuits, who have been in Etbiopia, it enters into the Nile at $7^{8}{ }^{\frac{x}{2}}$ of latitude, which is within fome minutes near the fame height that Ptolemy gives to the outlet of the Aftaboras, 700 Stadia below the city of Meroï, as we fee by Strabo, Diodorus, and others.

The fecond thing that makes me believe the Tacaze to be the fame with the Aftaboras is, that this river is otherwife called Atbara, as we fee by the relation of the fcheiks of Nubia, and by that of a Recollet who has paffed this river in going into Etbiopia. Now the names Aibara and Aftaboras are not very different. I fuppofe that the Atbara is its true name, and that the Greeks have altered it as they have done many others, fince that fill happens pretty often to thofe who are obliged to ufe foreign names in their writings.

As for the river Aftape, it will probably be that of Dender; for there are only the two rivers, Atbara, and Dender, at leaft that are of any conFideration, which enter immediately into the Nile on the eaft fide.

The extent of the country that I have pointed out, is pretty near the fame as that which the ancients have allowed to the ifland of Meroë, Diodorus, and Strabo have made the length of it 3,000 ftadia, and the breadth 1,000 ; that is to fay they have allowed it 120 leagues of length, and 40 of breadth, which agrees here pretty well; whereas, neither the kingdom of Gojame, nor the Peninfula, formed by the river Mareb, approach to this extent.

And not only the extent is the fame, but alfo the figure of a buckler, which Diodorus and Strabo give to the inand of Merö, fufficiently agrees with the country that I fpeak of. Perhaps a fkilful painter might not think it exad ; but we mult not look for all the regularity of defigning in the figures that
antients have given to countries, no more than to thofe that they have given to the conftellations.

There would be but one thing to apprehend, that the plan, which I here reprefent, was not very certain ; and that to prove what I have advanced, I had only accommodated it to the opinion of the ancients, like the Lefbian architects, who finding it difficult to fuit the ftones to their model, made their model conform to the ftone. But to that I anfwer, that it is the rivers which make the figure, and the greateft part of this plan, and that thefe rivers with their fprings, their courfes, and their outlets, are drawn from the map that F. Hieronymo Lobo, Francifoo d' Almeyda, and other Portugueze jefuits, have made upon the fpot; that they are taken from the verbal depofitin:is of the fcheiks of Nubia, examined feparately by M. dit Roule from the itineraries of our French jefuits, and of the Sieur Poncet, whofe travels F. ie Gobiens caufed to be printed, and from fome other manufcript travels of Italian Recollets, fent into that country by the congregation de propaganda fide, of which I had collated copies.

Befides the affinity that I have related between the illand of Meroë, and the country that I propofe to reprefent it, there are alfo fome ochers, as the rains, the fruitfulnefs of the country, and the hunting of elephants.

Strabo fays, that the regular rains begin only at Mero ; and Pliny, that thofe who were fent by Nero to fearch for the fources of the Nile, began to find in thefe places trees, and plants, berbas demum circa Meroem fylvarumque aliquid apparuife, catera folitudines. And it is exactly the obfervation, that F. Brevedent has made in thefe very places. We quitted, fays he, the city of Corti, and the river Nile, to enter into the defert

$$
\mathrm{O}_{2}
$$

140 The History and Memoirs of the

of Bibouda. We began to fee trees and plants, the rains being firft met with in thefe quarters, whereas all the reft to that place was only watered by the overflowing of the Nile, or by the means of machines which raifed up the water to fpredd it upon the grounds, and this Poncet declares likewife in his itinerary. They might well fay like Pliny, cetera folitudines, they who had walked many days in fand, or parched grounds, where they neither found water, nor grafs, nor any thing but frightful folitudes. And without doubt it was in thefe defert places, that Combyfes, king of Perfia, having loft part of his army, was obliged to return into Egypt, without arriving at that part of Ethiopia which begins to be cultivated and inhabited; whereupon we cannot enough admire the vanity of thofe Greek authors, who would not willingly be ignorant of any thing, and who to find the origin of the name of Mercë, have written, that Cambyfes had taken this city, and had changed the name, which it formerly bore, into that of his finter, who was called Meroë, and that this princels was buried there.

They have very much praifed the fertility of the illand of Merce, and the great number of its inhabitants; and this agrees perfectly well with the country of which I peak. F. Paulet, a jefuit, fays, that beyond the Nile, over-againt Senna, the country fwarms with people; and that there may be feen thoufands of little villages'fpread over the whole country. I have a journey from the fame city of Sennar to Sonaquem, an ifland and port of the Reid-Sea, wherein it is faid, that the country which I defcribe, is well cultivated, and pecpled. And in the defcription of Nubia, made by M. dit Roulc, upon the relation of the people of the country, it appears, that in thefe places the

Royal Academy of Sciences. 141

 earth is fo fruifful, that they have three harvefts in a year.In fine, it is a little above Meroü, that they began to fee elephants according to Pliny. The Ptolomys, kings of Egypt, and among others the famous Pbiladelphus, who was fo attached to the knowledge of nature and of the fciences, fent hither to hunt thefe great animals, and had buile fome places for the convenience of thofe that were fent thither; and it has been oblerved in the journeys from Sennar to Souaquen, which I have juift mentioned, that beyond the river Aibara, toward the fame height that is pointed out by Pliity, they found in the mountains great quantities of elephants, and many other forts of animals.

It feems to me that to complete the probability of my conjecture, there needs no more than to find the city of Merce itfelf in the inland that I have juft fpoken of, or at leaft to difcover the ruins or remains of it. If Fofepbus and Heliodorus were to be credited, who place it at the uniting of the Nile and A_{j} taboras, it would not be difficult; we need only look for the conflux of thefe two rivers which would not be doubtful; but it is well known, that Heliodorus's hiftory of Etbiopia is only a romance, and there is great likelihood, that the little ftory which 70 opepbus makes concerning Mofes's expedition into Etbiopia, when he was, fays he, at the court of Pbarsob and general of his troops, does not merit any more credit, fince it is not found in the fcripture, nor in Pbilo; thus it will be better to have recourfe to Strabo, who fays, that the city of Mercë was 700 fadia above the union of the Affaboras and the Nile, or to Pliny who makes it 70,000 paces. There is found toward thefe places the city of Guerre, that our travellers fay is one of the moft confiderable

142 The History and Memoirs of the

of the cquntry. Might it not be what others call Meroü, or Gueguerë, by a fort of reduplication? But there is perhaps a rafhnefs in carrying meer conjectures fo far, and the academy profeffes a fevere exactnefs in the inquiries into truth.
VII. Reflections on the obfervations made by F. Laval, at St. Baum, and other neighbouring mountains, by M. Caffini, jun*. tranflated by Mr. Chambers.

Among a number of aftronomical and geographical obfervations fent by F. Laval, to the count de Pontchartrain, there are feveral of the height of the barometer made at St. Baum, and St. Pilon, on different days, and at different times of the day, which he has compared with thofe made at the fame time at his obfervatory at Marfeilles.

The better to perceive the relation between thofe obfervations he has made a table, in the ift column whereof are expreffed the days of the month, and times of the day, when fuch obfervations were made. The 2 d expreffes the heights of the mercury at the obfervatory at Marfeilles. The 3d and 4th the heighth of the mercury at the fame time at St. Baum, and St. Pilon. And the 5 th of the height of the thermometer at St. Pilon. _To thefe are added 3 other obfervations of the barometer.

The ift made at the foot of the rock St. Pilon, where it ceafes to be perpendicular, and joins with the flope of the mountain.——The 2d on the mountain des Beguignes, eaftward of St. Pilon. \longrightarrow A nd the 3d in the plain below St. Baum, called the plain d^{3} Aups.

[^9]

Royal Academy of Sciences. 143
To determine the height of thofe places with regard to each other, he meafured a bafe line of 155 fathoms in the plain $d^{\prime} A u p s$, and from the extreams of that bafe obferved the angles between St. Pilon and the mountain des Beguignes, then taking the angles of the apparent height of thofe mountains, he found the height of the mountain des Beguignes geometrically to be 264 fathom above the plain d'Aups, and that of St. Pilon 181 fathom above the fame plain, which fets the mountain des Beguignes 83 fathom above St. Pilon. ___For the height of the bottom of the rock where the ift obfervation was made, the rock being perpendicular from St. Pilon to this place, he had the convenience of meafuring it with a cord, and found it 63 fathom.

Now to find the refult of thefe obfervations of the barometer made at Marfeilles, and the places around, compared with the feveral elevations which were taken geometrically, we are firlt to confider, that the height of the obfervatory at Marfeilles above the furface of the fea is 24 fa thom, to which 2 lines and $\frac{1}{3}$ of mercury correfpond, as appears from the table in the memoirs for 1705.

Having therefore taken the differences between the heights of the mercury found at the fame time at the obfervatory, and at St. Pilon, which are 15 in number, and whereof the fmalleft is 2 inches, 9 lines $\frac{x}{2}$, and the greateft 2 inches 11 lines $\frac{3}{4}$, we took the mean between them all, which is 2 inches 10 lines $\frac{1}{4} \frac{3}{3}$, to which we added the 2 lines $\frac{2}{3}$ correfponding to the height of the obfervatory above the furface of the fea. The fum 3 inches o lines, are $\frac{28}{4}$, is the depreffure of the mercury correfponding to the elevation of $S_{\text {t. }}$ Pilon above the furface of the fen.-To which, in the table

144 The History and Memoirs of the

 above quoted, anfwer 48 I fathom, the height of St. Pilon above the fea according to the barometer.So by comparing the obfervations of the barometer made at the fame time at Mareilles, and at St. Baum, which are 16 in number, the fmalleft difference in the height of the mercury is found 2 inches 5 lines $\frac{1}{2}$, and the greateft 2 inches 6 lines ${ }_{4}^{3}$; and taking a medium between them all, we have 2 inches 6 lines $\frac{7}{43}$, which added to 2 lines $\frac{1}{3}$, for the height of the obfervatory gives 2 inches 8 lines $\frac{3 z}{48}$, for the height of St. Baum above the fea, the number correfponding to which in the table is 415 fathon $\frac{1}{2}$, which fubitracted from 481 fathom, the height of St. Pilon above the fea leaves 65 fathoms $\frac{1}{2}$ for the height of St. Pilon above St. Baum.———Yet this height by Father Laval's menfuration with a cord, was only 53 fathom; but the difference between the heights of St. Baum and St. Pilon is too fmall for any rules to be eftablifhed thereon; we fhall therefore proceed to examine what refults from the obfervations of heights, whofe difference is greater, as the plain d^{\prime} Aups, and the mountain des Beguignes, which is 284 fathom above the fane.

The height of the barometer on this mountain was found on the 2gth of fune 24 inches I line, at which time the mercury at Marreilles was 27 inches 4 lines high, which gives us a fall of 3 inches 3 lines between the obfervatory at Marfeilles and the top of the Beguignes, adding therefore the two lines $\frac{1}{3}$ for the height of the obfervatory above the fea, to thefe 3 inches 3 lines, we fhall have 3 inches 5 lines $\frac{t}{3}$ of mercury for the height of the mountain des Beguignes above the furface

Royal Academy of Sciences. i4

face of the fea, the number correfponding to which in the table is 559 fathom, I foot.

On the fame day the height of the mercury on the plain d^{3} Aups was found 25 inches 6 lines, at which time at the obfervatory at Marfeilles it was found 27 inches 4 lines $\frac{x}{4}$, the difference is 1 inch to lines $\frac{1}{4}$, which added to 2 lines $\frac{1}{3}$ for the height of the obfervatory above the fea, gives 2 inches - lines $\frac{1}{12}$ for the height of the plain $a^{5} A t_{0} p_{s}$ above the fea, the number correfponding to which in the table is 298 fathom, \mathbf{I} foot $\frac{1}{2}$. This fubtracted from 559 fathoms, the height of the Beguigzes, above the fea, gives 261 fathoms for the height of the mountain Beguignes above the phin d^{3} Aups, according to the different heights of the barometer, compared with the table above-mentioned, - which height F. Lival determined geometrically to be 264 fathoms, the difference therefore is only 3 fathoms: which is a precifion greater than we could ever have expected, confidering that an error of $\frac{1}{4}$ of a line in the obfervations of the height of the barometer, fuffices to make this difference.

So, if from 48 I fathoms, the height of St. Pilon above the fea according to the barometer, we fubftract the height of the plain d^{\prime} Aut p above the fea, which we have found to be 298 fathoms, I foot $\frac{x}{2}$, we fhall have the height of St. Pition above the plain d^{j} Aups, 182 fathoms, 5 feet $_{5}$ which is only i fathom, 5 feet more, than F. La val had determined it geometrically.

From thefe obfervations therefore it appears, that the difference between the heights of two places may be found with fufficient exaftnefs, by the rule above laid down, provided the height of the barometer, at the furfice of the fea, be known at the fame time. For want of an obfersation at

[^10]
146 The History and Memoirs of the

the furface of the fea, we may fuppofe the mean height of the mercury there to be 28 inches; but then we muft not expect to arrive at this piecifion.

Reflections on the apparent depreffion of the borizon of the fea.
The height of St. Pilon above the furface of the fea, being found by obfervations of the barometer, as we have elfewhere fhewn, to be 48 r . An enquiry may be made into the obfervations of the apparent depreffion of the horizon of the fea, made by the fame father on that mountain.

Thefe obfervations he has reprefented in a table, wherein are expreffed the ftate of the air and the wind, which blew at the time of obfervation, together with the correfpondent height of the barometer and thermometer.

The greateft apparent depreffion of the horizon of the fea was oblerved on the 25 th of fune, at 3 in the afternoon, to be $57,-45^{\prime \prime}$ - the weather then being hazy, and the wind at north-weft; the fmalleft was found on the 26 th of \mathfrak{F} une in the morning, to be $55^{\prime}-0^{\prime \prime}$ - - the fky being very clear, and the wind fouth-wefterly: taking therefore a medium between thefe two obfervations, which differ $1^{\prime}-45^{\prime \prime}$ - from each other, we fhall find the mean apparent depreffion to be $56^{\prime}-5^{2^{B}}$

Suppofing now the femi-diameter of the earth to be 3271600 fathoms, as we found it by our obfervations in prolonging the meridian, we fhall find, that at the height of St. Pilon above the fea, which is 48 I fathoms, the real depreffion of the horizon fhould be $5^{\prime \prime}$ - $57^{\prime \prime}$ - which is greater by $2^{\prime}-5^{\prime \prime}$ than the mean apparent depreffion $5^{6}-5^{\prime \prime}$ ———This excels muft be owing to the refraction, which raifes the appa-

Royal Academy of Sciences. 147

 rent vifual ray above the true one, by about the 28th part of the angle of the mean apparent depreffion.F. Laval remarks on his obfervations, that there is a variation in the refraction, at heights greater than thofe of the obfervatory at Marfeilles; but that this variation is not fo confiderable as in lower places; for in all the obfervations which he has had opportunity to make on St. Pilon, this variation never rofe above $1-45^{\prime \prime}$ - whereas at his obfervatory it has rifen to $3^{\prime}-20^{\prime \prime}$ —_In- Indeed as F. Laval has made a much greater number of fuch obfervations at Marfeilles, than at St. Pilon, 'tis poffible, that by further obfervation on that mountain, a greater difference might be found than he has yet met with.

The fame father alfo notes, that his obfervations confirm what he had mentioned in the memoirs fent to the academy, that the refraction is greateft when there is a fog in the air occafioned by a north-weft wind; and that it is even greater or lefs, as the wind is more or lefs frefh. On the contrary, that the fea never appeared lefs depreffed than on the 26 th of 7 une, in the morning, when the wind blew weakly from the fouth-weft, and the horizon was very clear. On the evening of that fame day, there being a great fog the refraction, was increafed by $\mathrm{I}^{\prime}-30^{\prime \prime}-$.. The weight and the hat of the air, feemed not to contribute any thing to the refraction, fince the barometer and thermometer were pretty much at the fame height on the 25 th and 2 fth of 7 une; and yet the difference of the refration was as great as he had ever known it.

148 The History and Memoirs of the

VIII. An oblervation of a luminous circle about the fun, by M. de la Hire *; tranflated by Mr. Chambers.
On the 9 th of April, in the prefent year, 1708 , at one in the afternoon, I perceived a large luminous ring about the fun very compleat in all its parts. The fun was in the centre of this ring, the diameter whereof was 36° — and his breadth a degree and half; the inner edge of the ring was pretty well defined, and of a colour bordering on red; but the outer was whitifh, and thus loit itfelf in the fizy. So much of the fky as appeared within the circle was very dark, and efpecially in that part contiguous to the circle. On the outfide it was much clearer and winter, tho ${ }^{3}$ the whole air was full of a fort of light fog, which had rofe a great height, there was no parbelion, or mock-fun, on this circle, as is frequently found on fuch circles near the horizon at fun-rife, where there are commonly two diametriadly oppolite to each other, and of the fame height with the fins; but 'tis very rare to obferve fuch circles in the meridian, and ftill rarer to fee parbelia on thein, elpecially when the fua is very high, and the ar well heated; as in eifect the pbanomenora can only be owing to particles of ice, which occafion this appearance by refracting the furis rays; and as thefe circles have always the fame cimater, it follows, that thofe icy particies muft always be of the fame figure; 'tis not fo eary to give a phyical folution of this phenomenon as of the rain-bow, the caufe whereof is evidently in the little drops of rain, which are fiphericat, and of which we can make a perfect imisation by mears of a listie phial full of water, * Agril 25, 170 .
nor need we wonder, if there occur fome differences in the obfervations of the diameters of thefe circles, as well as thofe of the rain-bow, fince in the latter, experience teaches us, that the different degrees of the heat of water produce a confiderable alteration.
IX. An extratt of the obfervations made in the Weft-Indies in 1704, 1705 , and 1706, by F. Feuillée, a minim, mathomatician to the king, compared with tho, ewhich were made at the fame time, by M. Caffini the fon *.
He fet out from Martinico, 7uly the 4 th, 1704, and arrived the 12 th at Golfo-iriste, which the Spaniards call Porto-cabeillo.
ObServations for the beight of the pole at Golfo Trifte, or Porto-cabeillo, July 12, 1704.
$\left.\begin{array}{l}\text { AtPorto-cabeilio,the meridian height } \\ \text { of the upper edge of the fun }\end{array}\right\} \begin{array}{lll}3 & 4^{8} & 5_{5}^{\prime \prime}\end{array}$
Refraction minus the parallax.
Therefore the true height of the
upper edge 754846
Semi-diameter of the fun 1550
Therefore the true height of the centre $\begin{array}{llll}78 & 32 & 5^{6}\end{array}$
Declination of the fun 21575^{2}
$\left.\begin{array}{l}\text { Therefore the fupplement of the } \\ \text { height of the equator }\end{array}\right\}$ roo 3048
And the height of the pole \quad IO 304^{8}
We fhall content ourfelves in the following obfervations, to give the height of the pole, which refults from the oblervations of the meridian height of the fun, having recred to the tefraction, parallax, femi-diameter, and ciectionion of the fun.

[^11]sjo The History and Memoirs of the

From whence we take the height of $\}$ the pole
Thefe obfervations concur in deter-? termining the height of the pole at $\}$ io 3050 Porto-cabeillo to be

Observations for the variations of the needle.
F. Feuillée fet out from this port the 14th of of fuly to go to Santa Martbe, where he arrived the 2 ift. He obferved, as he went along, the mountains of Sauta Martbe, which are of a prodigious height, and had their tops ftill covered with fnow, altho' the fun was near the zenith.

The 18th he obferved, between Porto cabeillo and Curacoa the variation of the needle, by the means of the amplitude, to be $6{ }^{2} 40^{\prime} \mathrm{N}$. E.

It is marked in Dr. Halley's map of variations in this place for the year 1700, about $7^{\circ} \mathrm{N}$. E.

The 20 near Cape des Eguilles, a little diftant from Santa Mertbe, he obferved the variation of the needle to be $7^{\circ} 61$.

It is marked in Dr. Halley's map in this place above 8° \qquad
Obervations for the height of the pole at Santa Marthe.
July 24, 1704, at Santa Martbe, the $\}$
meridian height of the upper edge $\} 8146 \quad 5$ of the fun was
Aus. the third
84835
Alug. the fourth
842410
In taking a mean between the height of the pole, which refults from thefe obfervations, we thall have the height of the pole
At Si. Mathe
II I9 55
The fe

Royal Academy of Sciences. i5i
Thefe obfervations were made 100 paces from the fea.

Obfervations for the beight of the pole at PortoBello.
Sept. 7, 1704, at Porto-Bello, the
meridian height of the upper edge $\} \begin{array}{lll}8^{\circ} & 3^{8} & 1_{7}^{\prime \prime}\end{array}$ of the fun
The 12 th
844449
The r $^{\text {th }}$
OET. the 3 d
8422 o
The $4^{\text {th }}$
The 22 d
763326
7611 o
692750
Taking a mean between the height of the pole which refults from thefe obfervations, we fhall have the height of the pole,
At Porto-Bello.
$933 \quad 5$
Obfervations of the fatellites of Jupiter, for the longitude of Porto-Bello.
OEfober 7 , At $2^{\text {l2 }} 4^{\prime} 25^{\prime \prime}$ in the morning at Porto-Bello, the immerfion of the firft fatellite into the fhadow of fupiter, the sky ferene and clear.
$7^{h} 33 \quad 5^{11}$ at Paris, by the corrected calculation.
$5^{h} 28^{\prime} 40^{\prime \prime}$ difference of the meridians between Paris and Porto-Bello, by which Porto-Bello is more eafterly.

Objervations of the length of the pendulums at Porto-Bello.
F. Feuillée applied himfelf during his ftay at Porto-Bello, which was above 3 months, in finding the length of the pendulum. He had for this purpofe fufpended a musket-ball to a thread

I52 The History and Memotrs of the of filk grafs, and having fpent the greateft pare of the day, whilit he ftayed in this port, in comparing the vibrations of this pendulum with that which he had brought from Fronce, he found that the length taken from the centre of the ball, being 3 feer, 5 lines $\frac{7}{12}$, agreed perfecily well with the mean motion.

According to this obfervation, the length of the pendulum at Porto-Bello is about 3 lines lefs than that which we obferved at Paris. It is alfo I line $\frac{3}{4}$ lefs than what was obferved at Caienne in I672, by M. Ricber, tho' this inand is 4 or 5 degrees nearer to the equator than Porto-Bello.

The length of the pendulum at Porto-Bello only differs about a line from that which was obferved in 1682 at Goree of 3 feet, 6 lines $\frac{5}{9}$, and at Gucalaloupe of 3 feet, 6 lines $\frac{1}{2}$.

Oberevations of the variation of the needle at Porto-Bello.

F. Feutillée having with great care drawn a meridian line upon a horizontal plane, placed there 3 compaffes of different fizes, the biggeft of which was 9 inches, 7 lines, and found the declination of the needle $7^{\ell} \cdot 25^{\prime} \mathrm{N}$. E.

This declination is marked in Dr. Halley's map above 9^{\prime} N.E.

Obfervations for the beight of the pole at the fort of Bocachica.
This fort is 3 leagues, or thereabouts, to the fouth of Cartbagiona, built at the entratice of the gulph.
Dec. I4, i yos. meridian height oftre
lower edge of the fun 5^{56} \& x"

Royal Academy of Sciences. 153 The 2oth, meridian height of the up- $\}_{56} 6_{2}^{\prime} 62_{2}^{\prime \prime}$ per edge
By the mean of thefe obfervations, we have the height of the pole at the $\}$ 1o 2025 fort of Bocacbica

Obfervations for the beigbt of the pole at Carthagena, 1705.
Fan. 1, 1705, at Cartbagena, meri-
dian height of the upper edge of $\} \begin{array}{ll}66 & 4620\end{array}$ the fun
fan. 2
565147
fan. 3
$57 \quad 3 \quad 2$
Taking a mean between the height of the pole, which refults from thefe obfervations, we fhall have the height of the pole,
At Cartbagena of 103025
Obfervation of the eclipse of the moon, Dec. 11, 1704, at: Carthagena.
At $\begin{array}{cccc}\text { h } & 0^{\prime} & \\ 0 & 5 & 17 & \text { in the morning, the beginning of }\end{array}$ the eclipfe.
$\begin{array}{lll}3 & 3^{6} & 3^{2}\end{array}$ end of the eclipfe.
24445 total duration.
F. Feuillée made this obfervation with M. Couplet the fon. They had a more favourable time than we had at Paris, where the fhadow of the earth did not appear well terminated; fo that we could only obferve the beginning of the eclipfe, and the immerfion of fome fpots. This is the refult of the comparifon of this obfervation, with thofe which were made at the royal obfervatory.

At 05147 in the morning at Cartbagena, the beginning of the eclipfe.

$$
\text { Vol.III. No. } 27
$$

I54 The History and Memoirs of the

At $6_{6}^{6} \quad 4$| \prime |
| :--- | at Paris, the beginning with a telefcope of 3 feet.

51253 difference of the meridians between Paris and Carlbagena.

- 5921 at Cartbagena, mare bumorum enters

612 o at Paris, the fhadow at the edge of mare bumorum
51239 difference
I 329 at Cartbagena, the beginning of Grimaldi
61430 at Paris, by Meff. de la Hire
5 11: I difference
I 645 at Carthagena, end of Grimaldi
61730 at Paris, by Meff. de la Hire
5 10 45 difference
I 99 at Cartbagena
621 o at Paris, by Meff. de la Hire
5 II 51 difference of the meridians between
Paris and Cartbagena
Taking a mean between the difference of the meridians which refults from thefe obfervations, we fhall have the difference of the meridians between Paris and Cartbagena 5 II' $50^{\prime \prime}$.

Obfervations of the fatellites of Jupiter at Carthagena, Jan. 8, 1705.
At 112846 in the evening at Cartbagena, the emerfion of the firf fatellite out of the fhadow of \mathfrak{F} upiter through fome fogs.
163954 at Paris by the corrected calculation.
5 II 8 Difference of the meridians between Paris and Cartbagena.

Royal Academy of Scincees. I 55 fan. 16.
 emerfion of the firt fatellite out of the fhadow of Fupiter, the heavens being clear and ferene.
63115 at Paris by the corrected calculation
51120 difference of the meridians between Paris and Cartbagena.
The laft obfervation having been made in ferene weather it feems beft to fix here, and determine the difference of the meridians between Pa ris, and Cartbagens of
Obfervations for the variation of the needle at Carthagena.
F. Feuillée has found by feveral obfervations the variation of the needle at Cartbagena to be $7^{\circ} 12^{\prime}$ N. E.
It is marked in that place in Dr. Halley's map of variations - 9° o N. E. Obfervations for the beight of the pole at fort St. Louis.
This fort is fituated to the fouth of the ifland of St. Domingo.

Feb. 21, 1705 , meridian height of the upper edge of the fun $61^{\circ} 32^{\prime} 5^{\prime \prime}$
Which gives for the height of the pole at fort St. Louis 18, $48 \quad 5$

Obforvations for the beight of the pole at the ifland of St. Thomas.
March 17, 1705, meridian height of the upper edge of the fun

Which gives the polar height for the inland of Si. Thomas

$$
\mathrm{Q}_{2} \quad 182155
$$

156 The History and Memoirs of the

 Obfervations made at Martinico.F. Feuillée went at the return from his voyage to Martinico, where he made new obfervations during his ftay.
He gives notice that his obfervations were made to the eaft of the inand at 7 or 8 leagues diftance from the place where Meff. des Hayes and du Glofs made theirs, fo that the difference of the meridians between Paris and the place where he has made his obfervations, mult be lefs than that which refults from Meff. des Hayes and du Glos's obfervations.
fune 28, 1y05, meridian height of the upper edge of the

Thefe obfervations give the height of the pole in the place where F. Feuillée made his obferva- tions at Martinico between 14' $42^{\prime} 5^{\prime \prime}$ and 14° $43^{\prime} 55^{\prime \prime}$, almoft the fame as that which refults from the obfervations, which he had made at the beginning of his voyage; therefore we may determine the height of the pole at this place to be $14^{\prime \prime} 43^{\prime} 0^{\prime \prime}$.

Obfervations of the fatellites of Jupiter at Martinico, the 1 Sth of October 1705 , at
" 1 "
3 ro 41 in the morning at Martinico, the immerfion of the fecond fatellite into the fhadow of fupiter.
The 19th of October, at
25647 in the morning at Martinico, the immerfion of the firf fatellite into the fhadow of \mathcal{F} upiter, the heaven being ferene.
7939 at Paris, by the corrected calculation.
41252 difference of the meridians between Paris and Martinico.
The 25 th of October, at
2054 in the morning at Martinico, the immerfion of the third fatellite into the fhadow of \mathcal{F} upiter.
51846 in the morning at Martinico, the emerfion of the third from the Shadow of $7 u p i t e r$.
31752 total duration in the fhadow of $7 \mathcal{F u}^{\circ}$ piter.
The 26 th of October, at
4516 in the morning at Martinico, the immerfion of the firft fatellite into the fhadow of fupiter near the zenith.
$9 \quad 424$ at Paris, by the corrected calculation.

158 The History and Memoirs of the

 Paris and Martivico.

The 4 th of November, at
I 1357 in the morning at Martinico, the immerfion of the firft fatellite into the fhadow of Jupiter.
52651 at Paris, by the corrected calculation by an obfervation of the following day.
1254 difference of the meridians between Paris and Martinico.
The 27 th of November,
I 1936 in the morning at Aianumico, the immerfion of the firft fatellite inte the shadow of Jupiter. The wind lliwis the telefcope.
$\begin{array}{llll}5 & 32 & 38 & \text { immerfion obferved at Paris. }\end{array}$
4132 difference of the meridians between Paris and Martinico.

The 27th of December, at
31014 in the morning at Martinico, the immerfion of the firft fatellite into the fhadow of \mathcal{F} upiter near the zenith.
72316 at Paris, by the corrected calculation.
4 I3 2 difference of the meridians between Paris and Martinico.

The 28 th of December, at
42742 in the morning at Martinico, the immerfion of the fecond fatellite into the fhadow of Fupiter.

The 28 th of February, 1706, at
102634 at night at M artinico, emerfion of the firft fatellite out of the fhudow of Fupiter near the zenith.

Royal Academy of Sciences. 159

${ }^{\text {n }} 4.18$ I" at Paris, by the corrected calculation.
4 i2 44 difference of the meridians between Paris and Martinico.
The 23d of March, at
104733 at night at Martinico, emerfion of the firt fatellite out of the fhadow of $7 u p i t e r$.
145929 at Paris, by the corrected calculation.
4 II 55 difference of the meridians between Paris and Martinico.

The 15 th of April, at
II 744 at night at Maptinico, emerfion of the firft fatelite out of the fhadow of Fupiter.
152044 at Paris, by the corrected calculation.
$4 \mathrm{I}_{3}$ o difference of the meridians between , Paris and Martinico.
Almoft all thefe obfervations concur in giving the difference of the meridians between Paris and Martinico $4^{\mathrm{h}} \mathrm{I}^{1} 0^{\prime \prime}$.

We had determined it by the comparifon of two oblervations, made at the fame time at P aris and at Martinico to be $4^{\text {b }} 132^{2 \prime \prime}$.

Therefore we may for greater exactnefs determine the difference of the meridians between Paris and Martinico to be $4^{b 1} 13^{\prime} 15^{\prime \prime}$.

Obfervations of the eclipfe of the moon, April 27, 1706, at Martinico at
8125^{3} at night, beginning of the eclipre
1049 o end of the eclipfe.
$236 \quad 2$ total duration
F. Feuillée obferved during the time of this eclipfe, the immerfion and emerfion of feveral fpots, of which we were not able to obferve the

i60 The History and Memoirs of the

correfponding ones at Paris, becaufe the fky was not very ferene. This is the refult of his obfervation with ours. 'At,
${ }^{n} 9{ }^{\prime}{ }^{\prime} 2^{\prime \prime}$ at Martinico promontorium acutum, quite in the fhadow.
1755 O at Paris the fhadow was at promontorium acutum
41258 difference of the meridians between Paris and Martinico.
Io 49 O the end of the eclipfe at Martinico.
15230 at Paris.
41330 difference of the meridians.
Taking a mean between the differences which refult from thefe two obfervations, we fhall have the difference of the meridians between Paris and Martinico $4^{n} \mathbf{1 3}^{\prime} \mathbf{1}^{\prime} 5^{\prime \prime}$.

The fame that we determined by the fatellites of Fupiter.

This eclipfe was obferved at the fame time at the port de Paix, in the inland of St. Domingo, where the end was feen at 9 " 40^{\prime}.

We fhall therefore have the difference of the meridians between Martinico and the port de P aix of $1^{\prime \prime} 9^{\prime} \mathrm{C}^{\prime \prime}$; which being added to the difference of the meridians between Paris and Martinico of $4^{17} 13^{\prime} 15^{\prime \prime}$, gives the difference of the meridians between Paris and the port de Paix, in the inand of St. Domingo, of $52^{\prime 2} 15^{\prime \prime}$.
Obfervations of the length of the perndulums at Martinico.
F. Fertillée having fufpended a musket-ball to a thread of filk-grafs, found by feveral obfervations, the length of the pendulum to be 3 feet, 5 lines $\frac{1}{1} \frac{5}{2}$, greater by $\frac{1}{4}$ of a line than what he found at Porto-Bcllo of 3 feet, 5 lines ${ }_{1} \frac{7}{2}$.

Obfervations of tbe variation of the needle.
F. Feuillée at his return to Martinico, found the variation of the needle to be $6^{\circ} 10^{\prime}$ N.E. pretty near the fame, that he had obferved in 1704 in the fame place.

All the obfervations juft related, added to thofe which are inferted in the travels of the academy, will ferve to determine pretty exactly the coaft of South America from Caienne to the Iftbmus of Panama, and the fituation of many of its inands.

$$
\underset{O \text { OFHE }}{\substack{A \\ \mathrm{~B}}}
$$

PAPERS contained in the Abridgment of the History and Memoirs of the Royal Academy of. Sciences at Paris, for the Year Mdccix.

In the HISTORY.

I. F the fbagreen, which comes from Turkey.
II. Of great cold coming with a foutb wind.
III. Of the Seine not being entirely frozen in the bard winter of 1709.
IV. Of a pullet with two bearts.
V. Of the legs of Sea-urcbins.

In the MEMOIRS.

I. Obfervations on the quantity of rain wbich fell at the obfervatory during the year 1708_{2} with the alterations wobich bappened to the thermometer and barometer, with regard to the beat and feafons, by M. de la Hire.
II. Obfervations on the quantity of rain water, and on the woinds, by M. le Comte du Pontbriand, at bis cafte two leagues weft from St. Malo; communacated to the academy by M. du Torar, of the academy, and compared with thofe which we bave amade at Paris at the royal obficenory, during the years 1 107 , and 170 O , by M. de la Hire.
III. Obfervations on the water which fell at Lyons, during the year 1708, by M. de la Hire.
IV. A comparifon of the barometrical obfervations made at Paris and at Zurich, in the year 1708, by M. Maraldi.
V. Obfervations on the motions of the tongue of the wood-pecker, by M. Mery.
VI. An explanation of fome faits in opticks, and of the manner in which vifon is performed, by M. de la Hire.
VII. An examination of a confiderable difficulty propofed by M. Huygens, againft the Cartefian fyiftem of the caufe of gravity, by M. Saurin.
VIII. Obfervations on the weight of the atmosphere, made at the caflle of Meudon with M. Huygens's double barometer, by M. de la Hire.
IX. A comparifon of the barometrical obfervations made in different places, by M. Maraldi.
X. Obfervations on cray-fif, by M. Geoffroy, jun.
XI. Of the formation and growth of the bells of land and water animals, either of the Sea or of rivers, by M. de Reaumur.
XII. Conjectures and reffictions on the matter of fire or of light, by M. Lemery the fon.
XIII. Obfervations on the evaporation which bappens to fluids during a great cold: with remarks on Some effects of the frof, by M. Gauteron, of the royal fociety of fiences at Montpellier.
XIV. The variation of the needle at Nuremberg, by M. Wurt-Z baur.

164 A Table, $\mathcal{E}^{\circ} c$.
XV. A comparifon of the objervation of the eclipfe of the moon, Sept. 29, 1708, made at Nuremberg, Genoa, and Marfeilles, by M. Caffini the fon.
XVI. Reflections on the obfervations of the eclipfe of the fun, March 11, 1709, made in different countries, by M. Caffini the fon.

A N

ABRIDGMENT

 OF THEPhilosophical Discoveries and $\mathrm{Ob}_{\text {- }}$ servations in the Histury of the Royal Academy of Sciences at Paris, for the Year 1709.
I. Of the fbagreen which comes from Turkey.
M. Faugeon having been curious to know what the fhagreen is, which comes from Turkey, inquired of M. Feriol, ambaffador at Conftantinople, from whom he received all the information that he defired. There is no animal of this name, as fome have imagined. They make the fhagreen of the fkin of the buttocks of horfes and mules, which is well tanned, and rendered as thin as poffible; it is preffed for a certain time, after being ftrewed with the fineft muftard-feed. When the feed takes well, the fkins are beautiful ; if not, there remain fome fmooth places called mirrours, which are a great blemifh. The fineft fhagreens are made at Conftantinople, and in fome parts of Syria.
II. Of great cold coming with a fouth-wind.

It has been thought furprifing, that the cold of the winter 1709, which was fo extraordinary, and rigorous, lafted feveral days at Paris, with the wind at fouth. To affign the reafon of it, M. de la Hire has faid, that the mountains of

The History and Memoirs of the

Auvergne, which are to the forth of Paris, were then all covered with fnow; and M. Homberg, that a very cold north-wind, which came a great way, and extended very far, having preceeded, the fouth wind was but a reflux of the fame air, which the north had driven, and had not been heated in any country. Thefe two caufes may eäfily be joyned together.
III. Of the Seine not being entively frozen in the bard winter of 1709 .

There were another wonder in that winter. Notwithtanding the extreme violence of the cold, the Seine was not entirely frozen at Paris, and the middle of its current was always free, only there floated fome grat flakes of ice in it. And yet, in lefs fevere winters, the Seine has been fo frozen, that carts might go upos it. M. Homberg is of opinion, that in our climate at leuft fuch great rivers would not freeze of themfelves, except toward the ellges, becaufe their current is always too ftrong to wards the middle; and therefore if they did not break the ice st the froar, which they never fail to do for differers 1 cafons, the middle would flow as ufial, and would not carry flakes of ice with it; fuppofing allo that there fell no fimali rivers into the grent ome; but as they do fall into it, the ice carnied by it in the middle comes for the mor fart from the fimall rivers, which are eafily frozen, and where popla break the ice; that there fakss being fupped either by a bridge, or bend of the river, or by any obftacle whatfoever, hold and fick together by the cold, and afterwards form a fort of cruft, which covers the whole furface of the river; and lattly,

Royal Academy of Sciences. 167

 laftly, that as the cold of 1709 was very fudden and fharp from its very beginning, the fmall rivers which fall into the Seine above Paris, froze all at once, and entirely; fo that their flakes which would have faftened on the furface of the Seine, could not be carried into it; at leaft in a fufficient quantity. It is pretty remarkable, that the very violence of the cold was partly the caufe that the Seine did not freeze.In the fame winter, the ice of the port of Copenbagen was 27 inches thick, even in the places where it was not accumulated. This fact is the more worthy of attention, becaufe in the great froft of 1683 , the royal fociety having caufed the thicknefs of the ice of the Tbames to be meafur'd, when they went upon it in coaches, found it to be but 11 inches.

IV. Of a pullet with two bearts.

M. Plantade, of the royal fociety of Montpellier, being at Paris, met with two pullets within a fhort face of time, each of which had two hearts. He gave thofe of the latt to M. Coflini the fon, who brought them to the academy. M. Littre foaked them in warm water, in order to examine them. They were of equal fize; and each of them very litcle lefs than the heart of a pullet of the fame age. They were pliced even with each other, at the diftance of half an inch ; each of them had its ventricles, its auricles, and all the blood-veifels, like common hearts; and had nothing fingular, except their being both faftened by their lower vina caza to cule of the lobes of the liver. M. Littre corijedures, that the blood of the right ventricle of the right heart

168 The History and Memoirs of the

went into the right lobe of the lungs; and the blood of the right ventricle of the left heart into the left lobe. As for the other circulation, either the aorte of both hearts might be united, and form but one, or the aorta of the right heart furnifhed blood to the parts of the right fide, and that of the left heart to the left fide; or both diftributed themfelves equally through the whole body, fo that there was always a double artery. Befides, as each of the hearts had almoft as much force as one fingle heart, this pullet had twice as much life as another, and if one heart failed it, it would have another to fupply the place. This confirmation, which, according to what has been feen, is probably not very rare in this fpecies, cannot be impofible in men, and perhaps it has already produced fome phonomena, which have confounded the naturalits.

- V. Of the legs of the jea-urcbins.

Naturalifts think that the fpines, with which the fea urchins are furrounded, ferve them to walk upon inftead of legs. But M. Gendolphe having obferved at Marfeilles that thefe animals walked pretty quick at the bottom of the fea, has difcovered, that this motion is not executed by their fpines, but by legs difpofed about their mouth, which is always turned againft the bottom of the fea; thefe legs immediately difappeared as foon as the urchins are taken from the bottom of the water, and thence came the common error. It was known that they walked, and they were not feen to have legs, becaufe they had not been feen walking in the fea. They are like thofe of a flat infect, called the fea-ftar, which

Royal Academy of Sciences. 169 which M. Gandolpbe has ftudied at Dunkirk, and has promifed a defcription of it, which probably we fhall never fee; for the academy have been informed of his death this year, and are afraid of lofing, with fo good a correfpondent, a great many fine obfervations.

Vol. III. $\mathrm{N}^{\circ} .28$.
A N

A N

ABRIDGMENT

OFTHE
Philosophical Memoirs of the Royal Academy of Sciences at Paris, fy the Year 1709.
I. Obfervations on the quantity of rain wheich fell at the obfervatory during the year 1708 , with the alterations which bappened to the thermometer and barometer, with regard to the beat and Jeafons, by M. de la Hire.
HE quantity of rain, which fell during the year 1708, was in

> Lines.

Jan.
Feb.
March
April
May
June
Total 219 lines $\frac{1}{2}$, or 18 inches $\frac{1}{4}$.
This quantity of water is not very far from 19 inches, to which we have fixed the mean years; and as M. Mariotte had formerly determined by like obfervations, which he had caufed to be made at Dijon by one of his friends.

The greateft quantity of rain that fell in one day, was but 10 lines about May 24, and OEt. 20; and with an almoft north wind, which is obfervable; for this wind feldom brings us the greateft rain.

The prevailing wind of this whole year, was the fonit:, and it feldom turned towards the north,

Royal Academy of Sciences. 17.

 and often to the eaft and weft. There were great fogs both at the beginning and end of this year.There fell three inches of fnow, Feb. 14, and about as much Nov. 14, and a little Dec. 5 .

During the whote year there were feveral ftorins, but not very violent.

My thermometer, which is at 48 parts of its divifion, in the mean ftate of the air, and at the bottom of the caves of the obfervatory, where it always reinains in the fame ftate, being expofed in an open place, but theltered from the wind and fün, was at the loweft at the beginning of the year, Feb 13. at 27 parts $\frac{1}{2}$; and it begins only to freeze in the country when it is at 32 parts, which fhews, that it was no very great cold at that time ; for before that day, and afterwards, it was always towards 35 or 40 parts. At the end of the year, on O OI. 29, it froze, the thermometer being at 29 parts, but without continuing; and the whole month of November was pretty mild in proportion to the feafon. The thermometer fell alfo to 25 parts Dec. 12; and on this day was the hardeft froft of the whole year, which was not very confiderable, for the thermometer fometimes falls to 13 parts.

The greateft heats of this year were Aug. 15 and 16 , as ufual; the fpirit of the thermometer rifing to 66 parts $\frac{1}{2}$ towards fun-rifing, and to 7^{6} parts about 3 in the afternoon. Thus the heat and cold of this year were nearly at the fame degree with regard to the mean ftate.

My barometer was at the loweft at 26 inches 9 lines $\frac{1}{2}$ Fan. 10, with a moderate fouth eaft wind, as it was on the days before and after; and it was at the higheft Nov. 17, at 28 inches I line $\frac{5}{6}$ with a low north north-eaft wind, and on the days before and after towards the fouth;

172 The History and Memoirs of the

fo that the difference between the loweft and the higheft was I inch 4 lines $\frac{1}{2}$ nearly. I have alfo another barometer, in which the quickfilver keeps up at three lines higher than in that which I make ufe of to mark my common obfervations every day, though thefe 2 barometers make light in the vacuum by agitating the quickfilver, which fhews there is no air in them, or very little in proportion to what is commonly thought. Thus this difference of heighth muft come only from the different weight of the quickfilvers.

I obferved the declination of the magnetical needle Dec. 27, and found it to be 10 ' 15^{\prime} to the weft. This needle is 8 inches long, and is that which I alwaysufe.

Royal Academy of Sciences. 173

II. Obfervations on the quantity of rain water and on the winds; by M. le Comte du Pontbriand, at bis caftle 2 leagues weft from St. Malo; communicated to the academy by M. du Torar of the academy, and compared with thofe which we bave made at Paris, at the royal obfervatory, during the years 1707 and 1708 , by M. de la Hire *.

Quantity of rain-water.

In 1707.	708.
At Pontbriand. At Paris.	At Pontbriand. At Paris.
Lines. Lin.	Lines. Lines.
Jan. - 9 ${ }^{\frac{1}{2}}$ - 5	35 - 28
Feb. - $20 \frac{\frac{1}{2}-10}{}$	$18 \frac{1}{2}-$ - 15
March-22-II	$22 \frac{1}{2}-16$
April - 7 - ${ }^{\frac{1}{2}}$ - 4	$36 \frac{1}{2}$ - ${ }^{1} 1 / \frac{8}{4}$
May - $6 \frac{1}{2}-11^{\frac{1}{2}}$	$26 \frac{1}{2}$ - $-30 \frac{4}{4}$
June - $31 \begin{aligned} & \text { 3 } \\ & \text { 3 }\end{aligned}$	24 -- - ${ }^{23 \frac{1}{8}}$
July - 40 - 38	$10-32$
Aug. - 38 - $34{ }^{\frac{3}{+}}$	$6 \frac{1}{2}$ ———— ${ }^{15}$
	$43^{\frac{1}{2}}$ - 12
Oct. - $32-41$	$35^{\frac{1}{2}}-$ - 15
Nov. - $10 \frac{1}{2}-6$	$11 \sim 6{ }^{\frac{5}{5}}$
Dec. - $-57^{\frac{2}{2}}-{ }^{2} 7^{\frac{3}{+}}$	$24^{\frac{1}{2}}$ - $9^{\frac{1}{4}}$
$\begin{array}{cccc} & & \text { Inch. } & \text { Lin. } \\ \text { Total at } \\ \text { Pontibrand } & 24 & 10 \frac{\pi}{4} \\ \text { Paris } & 17 & 11 \frac{\pi}{2}\end{array}$	$\left\lvert\, \begin{array}{cc} & \begin{array}{c} \text { Inch. } \end{array} \text { Lin. }^{4} \\ \text { Total at Pontbriand } & 24 \\ \text { Paris } & 18 \frac{\pi}{4} \end{array}\right.$

Some like obfervations, which M. le Comte du Pontbriand had communicated to us before, fhewed that it rained a little more towards St. Malo than at Paris, which is confirmed by the 2 years which we have juft compared.

[^12]
${ }^{1} 74$ The History and Memoirs of the

Ont we winds in 170%.

In fan. the winds were generally more to the S. at Paris than at Pontbriand, by a quarter of the compafs.

In $F e b$. almoft the fame.
In March the quite contrary to the preceding months.

In April much the fame as in for.
In May the winds were different in thefe two places.

In fune pretty much alike; but fometimes more to the S. at Paris than at Pontbriand, by a quarter of the compafs.

In fuly the wind almoft the fame, with very great heats, the 2 it at Paris, as at Pontbricnd, the wind being S. E. S. and S. W.

In Aug. pretty often more to the S. at Paris than at Pontbriand.

In Sept. the winds a little different in thefe two places.

In OCF. fometimes the fame, and fometimes oppofite.
In Nov. often the fame, but at Paizis fometimes more to the S . than at Pontbriand.

In Dec. often the fame, fometimes oppofite, but often at Paris more to the S. than at Pontbriand.

At Pontbriand the greateft rain on the fame day was 10 lines $\mathcal{F u l y} 3$, with a N. E. wind: that day the wind at Paris was S. W. with thunder, but without rain. In all the reft of the year, the greateft rains on the fame day rofe but to 6 lines at Poutbriand. But at Paris the rain was 16 lines fuly 15, with a ftrong wind towards the S; but at Pontbriand there fell bat 5 lines and half, with the fame wind tha: day

Royal Academy of Sciences. 175
At Paris the greateft rain was 21 lines $\frac{1}{2}$ Aug. 12, with a low wind towards the W. and at Pontbriand 5 lines, with a N. wind. In Oet. at Paris, the $4^{\text {th }}$ and $5^{\text {th }}$ together gave 24 lines, with a wind toward the W. and at Pontoriand 6 lines $\frac{1}{2}$, with a N. W. wind.

On the winds in xpos.

In 7 on. the wind more to the S . at Paris than at Pontbriand, and fometimes the fame.

In. $P_{e b}$. often the fame.
In March generally the fame.
In April the fame, but on fome days a little different.

In May at Pontbriand, the night between the 6th and 7 th a fharp froft, which blafted all the trees ; but at Paris fine weather: the winds different.

In Fune the winds different, and at Paris ufually more to the S.

In $7 u l y$ very few obfervations at Pontbriand, fo that nothing is difcovered of the difference.

In Aug. more to the S. at Paris than at Pontbriand.

In Sept. as in Aug.
In $O E Z$. the winds different in thefe two places.
In Nov. a little different.
In Dec. the fame.
We cannot make a very juft comparifon of all thefe winds; for M. du Pontbriand marks the rhumb only on thofe days when it rained.

At Pontbriand the greateft rain on one day was but 9 lines; the 20 and 27 of OEtober, the wind being S.E. and S: W. and 8 lines A pril 22, with a S. E. wind. Off. 20, at Paris, it rained so lines, with a ftrong N , wind. On the 27th,

176 The History and Memoirs of the
27th, at Paris no rain; wind N. April 22, at Paris no rain, foggy.

At Paris the greateft rain on one day was 11 lines $\frac{1}{2}$, May 24 , with a N. N. W. wind, and at Pontbriand 4 lines $\frac{1}{2}$, with a N. W. wind. At Paris 9 lines, July 2, wind S. W. at Pontbriand no rain. At Paris again, 10 lines OEt. 20 , as was marked above.
III. Obfervations on the water which fell at Lyons, during the year 1708, by M. de la Hire *
F. Fulcbiron has obferved exactly the quantity of rain water, and melted fnow, which fell at Lyons at the obfervatory of the jefuits, and in the fame manner that I obferve here; of which this is the refult of each month which he has communicated to me.

	In, Lin.			In. Lin.
Jan.	2	-	July	$1{ }^{1}{ }^{\frac{3}{4}}$
Feb.	3	$7 \frac{1}{2}$	Aug.	36
March	2	3 ${ }^{\frac{1}{6}}$	Sepr.	$77^{\frac{1}{4}}$
April	3	$9{ }^{\frac{1}{2}}$	Oct.	111
May	2	$2{ }^{\frac{1}{8}}$	Novem.	
June		${ }^{\frac{3}{4}}$	Dec.	2 13

Sum of the whole year 35 inches, 9 lines.
We fee by this, that the quantity of rain water at Lyons was double what it was at Paris; and it is not probable, that this cormes from the two great rivers which flow by it, and at molt could only form a great many fogs; but rather from the great mountains, which are but litcle diftant

[^13]Royal Academy of Scienecs. 177
from it, where there always falls much more water and fnow than in the plains.
IV. A comparifon of the barometrical obfervations made at Paris and at Zurick, during the firft fix months of the year 1708, by M. Maraldi.
M. Scbeuchzer has fent to the academy a memoir, wherein are feveral obfervations, which he has made at Zurick during the firlt fix months of the year 1708, on the barometer, thermometer, winds, conlticution of the air r_{2} quantity of rain which has fallen, and on the augmentation and diminution of the Limat, a river which paffes by Zurick. They were made every day of the month, and often twice on the fame day. To all thefe obfervations he adds others at the end of each month, upon the difeafes, which prevailed during that month.

For the barometrical obfervations, he made ufe of two tubes, one upright, the other inclined, in which the motion of the quickfilver is twice as fenfible as in the upright one. Thefe heights are divided into inches and lines of the Paris foot. Thefe two barometers often agree together, but fometimes there is a difference of 4 lines. In the comparifon which we have made of thefe obfervations with our own, we have made ufe of the upright barometer. To meafure the rain, he fays, he made ufe of the method of the academy and of the Paris meafure. He allo ufed the fame meafure, to know the augmentation and diminution of the Limat.
fan. 1, the barometer was at the obfervatory at 27 inches, 5 lines, the wind being S. At $Z u$ rick, with the fame wind, the barometer was at

Vol. III. $\mathrm{N}^{\mathrm{O}}, 28, \quad \mathrm{~T}$ 25

178 The History and Mfmoirs of the

26 inches, 3 lines; fo that the difference between the obfervatory and Zurick was 1 inch, 2 lines, by which the quickfilver was higheft at the obfervatory. The moft common and mean difference is 1 inch, 4 lines. After $\mathfrak{F a n . 1}$, the basometer rofe in both places till the 3 d , and then fell till the roth, when it was at Paris at 26 inches, 10 lines $\frac{x}{2}$, at Zurick, at 25 inches, in lines, which are almoft the loweft to which it falls at either place; thus it had fallen about 6 lines; in this interval the wind was at Paris S. or S. W. at Zurick it was at the fame time almoft quite cppofite; that is, N. or N. W. The barometer rofe the reft of the month. At Paris the 19th and 20 th, there were very violent S. W. winds. M. Scheucbzer obferves alfo, that on the 1 gth there was a ftrong S. W. wind ; and adds, that on the 25 th at $10 \mathrm{p} . \mathrm{m}$. there was a very violent wind, which threw down a great many chimneys. His thermometer was $\mathcal{F a n . ~ 2 9 , ~ a t ~}$ Io degrees, which is the loweft to which it fell. During the month of \mathcal{F} an. it rained at Zurick 18 lines $\frac{\pi}{2}$; at Paris it rained above 34 lines. The diminution of the Limat was 9 inches, the augmentation two.

At the beginning of $\mathrm{Feb}^{\text {b }}$. the barometer being very low at both places, it rofe from the 6th to the 9 th, in 3 days, a little more than 10 lines at Paris, and 8 lines at Zuriek; it then fell till the 16 th, and afterwards rofe till the 22 d , being as it had been Feb. 9, at Paris at 28 inches, 1 line, at Zurick at 26 inches, 8 lines, which are almoft the greateft heights to which it ufually rifes. During the month of $F_{i} b$. there generally prevailed the farne N. and N. W. wind at Paris and at Zurick, and in both thefe cities there fell the fame quanticy of rain, that is, 19 lines. The diminution
minution of the water of the Jimat in height was 9 inches $\frac{x}{2}$, and the augmentation 1 inch $\frac{x}{2}$.

There happened feveral variations in the height of the barometer in the month of March, and thefe variations happened on the fame days, and were almoft the fame at Paris and at Zurick. It continued elevated the two firlt days, and funk the third : it rofe the three following days, and funk again till the eleventh. After having rifen till the fixteenth, it funk a third time till the twenty-fecond. The wind was N. at Paris, and N. W. at Zurick. It rained at both places 17 lines. The augmentation of the Limat was 5 inches, equal to the diminution.

April 10, at Paris, the barometer was at 27 inches 2 lines $\frac{x}{2}$, with a weft-wind; at Zurick, it was 25 inches 11 lines, with a north-wind. The barometer rofe a little the following day in both cities, and it funk again the inth at Zurick and at Paris, where it continued to fall again the 13 th with a violent fouth-wind. It rained in April 26 lines at Paris; and 52 lines $\frac{3}{4}$ at Zuri ck. The Limat increafed 24 inches, and fell but $\frac{1}{2}$ an inch.

The days that the barometer continued higheft in May at both places were, the $7,8,9$, and 28th, and the days that it fell moft were the 16 th and xyth. The fame at both places. It rained in May, at Paris, 27 lines $\frac{2}{3}$; at Zurick, 21 lines $\frac{1}{2}$. The diminution of the Limat was 4 inches, and the augmentation 18.

During the month of 7 une, the barometer generally continued at a great height, except the 4,27 , and 30th, when it was at Paris at 27 inches 5 lines, at Zurick 26 inches i line. The days that it continued at the higheft were the 14 th and 15 th, being at Paris at 28 inches, and at Z urick at 26 inches 5 lines. It rained at Paris

180 The History and Memoirs of the

25 lines $\frac{2}{2}$, at Zurick 66 lines $\frac{x}{2}$. The augmentation of the Limat 21 inches, the diminution 7.

The greateft height to which the barometer rofe in the 6 firft months of this year was at Paris, on the 9th and 22d of Feb. to 28 inches 1 line; and the leaft height to which it fell, was Feb. 1, when it was at 26 inches to lines. So that the variation from the greateft to the leaft heighth was 1 inch 3 lines at Paris. At Zurick the greateft height was 26 inches 8 lines, $F e b$. 9, and 22. The leaft was 25 inches 11 lines, Feb . I. The difference is 9 lines, being lefs by 6 lines than what happened at Paris.

> A comparifon of the barometrical obfervations made at Paris, and at Zurick, the 6 laft months of the year 1708.

In 7 uly the barometer generally continued at a great height at both places; it was at a mean height only on the 6th and 7 th, being at Paris at 27 inches 7 lines; at Z urick at 26 inches 2 lines $\frac{5}{2}$ and 3 lines; fo that the difference was 1 inch 4 lines, as we have already concluded by other comparifons. The wind, which prevailed at the fame time in thefe two cities, has generally been different, and often oppofite. It was the fame only for 4 days, the 11 th, the 18 th, and the 22 d , being in both places north-eaft, and the 16th fouthweft. The thermometer was the higheft at Zu rick the 28th, at Paris the 2gth. In fuly it sained at Paris 28 lines, at Zurick 48. The waters of the Limat augmented to inches, and diminifhed 16; thus M. Scheuchzer fays, that the augmentation of the rivers does not anfwer to the quantity of rain, fince the Limat diminifhed more than it increafed, tho' there fell a great quantity of rain during the month of fuly.

Royal Academy of Sciences. 18 i

In Aug. the variation which happened to the height of the barometer was 4 lines at Paris, and 3 at Zurick. The winds were molt part of the time very different in thefe 2 cities. The day that the thermometer rofe the higheft, was the 15 th at Paris, the fame as at Zurick. It rained at Paris 22 lines $\frac{1}{3}$, at Z urick 35 lines $\frac{1}{2}$. The waters of the Limat increafed 3 inches in height, and diminifhed 22 inches.

In Sept. the day that the barometer was the higheft, was the firft, both at Paris, and at $Z u$ rick; and the day that it fell the loweft, was the 26th at both places. The roth, a fouth-eaft wind prevailed in both places; the 2oth, a fouthweft wind ; the 2 Ift , a fouth wind: on the other days the winds were different. It rained at Paris 12 lines, at Zurick 34. The Limat diminifhed 12 inches without having increafed.

In $O \mathscr{E}$. the barometer continued higheft the 6 th and 7 th, the s 8 th and the 19 th, both at Paris, and at Zurick. During almoft the whole month there were north, north-eaft, or north-weft winds. It rained at Paris 14 lines $\frac{2}{3}$, at Zurick 27 lines $\frac{1}{2}$. The perpendicular height of the waters of the Limat diminifhed 10 inches without having increafed.

In Nov. the days that the barometer was the higheft, were the ift, and the 1gth, the fame at Paris and at Zurick; and the day that it fell the loweft at both places was the 23 d . The fame wind prevailed the 24 th and 26 th . The coldeft day was the $25^{\text {th }}$ at both places. It rained at Paris 5 lines $\frac{x}{2}$, at Z urick 7. The diminution of the Limat was 6 inches without having increafed.

In Dec. the 14th was the day that the barometer was the lowett in both places. The days that thethermometer was the loweft, were at Paris

382 The History and Memoirs of the

the 1 ith and 14 th, at Zurick the 12 th and the 2gth. There was no day when the wind was the fame in both places. It rained at Paris 9 lines $\frac{2}{32}$ at Z urick it rained 21 lines $\frac{1}{2}$. The diminution of the Limat was 4 inches without augmentation.

The total fum of the rain which fell at Paris, according to our obfervations, was 20 i:sches one line; that which fell at Z urick is 30 inches; fo that there fellalmoft $\frac{1}{3}$ of rain more at Zurick, than at Paris. M. Scbeucbzer thinks it rains more in Swilferland, than in France, becaule of the great quantity of mountains, where the clouds being driven by the winds, commonly pour down in rain and fnow. The great quantity of rivers which proceed from thefe mountains, give room alfo to imagine that the rain falls there in greater abundance. He thinks allo, that there falls more rain in the countries near the fea, than in thofe which are inland. He fays, that at Upminfter, in England, according to Dr. Derbam's obfervations, it rains 19 inches of water, when at Townley in Larica/bire, there fall 39 inches.

In the 6 firf months of the year 1708 , the augmentation of the waters of the Limat was 75 inches $\frac{1}{2}$; the 6 laft it was 13; and the total augmentation 84 inches $\frac{2}{2}$. The diminution during the 6 firft months was 35 inches, and 67 in the 6 laft. The total diminution 102 inches, greater by 16 inches than the augmentation.
M. Scbeucbzer fays, that the augmentation of the waters in the rivers of Swifferland comes chiefly from the melting of the fnows upon the mountains, which appears by feveral torrents of that country, and in particular, by thofe which he calls Taminna, the waters of which increafe every evening, in fummer, often to a foot in height, tho' it has not rained all the day. From the diminution
minution of the waters of the Limat being greater than the augmentation, M. Scbeuchzer infers, that his country is colder than that which is farther from the Alps, where it is winter the greateft part of the year, there being in Swifferland but two months of fummer, which ought rather to be called a fring.
> V. Obfervations on the motions of the tongue of the wood-pecker, by M. Mery *.

In order to give a more juft explanation of the motions of the tongue of the wood-pecker, than that which appears in the works of M. Borelli and M. Perrault, I fhall defcribe more exactly than they have done all the parts on which its motions depend.

Notwithftanding the tongue of this bird feems to be very long, yet its proper length is certainly but 3 or 4 lines; for that of the body and branches of the os kyoides, which thefe authors have afcribed to it, do not belong to it in anatomical frrictnefs.

The tongue of the wood pecker is made of a very fhort little bone, covered with a horn of a faly lubftance; its figure is pyramidal ; it is articulated by its bafe, with the anterior extremity of the os byoides.

The os byoides is about 2 inches long, and $\frac{x}{2}$ a line thick ; it is articulated by its pofterior extremity, with 2 bony branches more flender than its body. Each branch is compofed of 2 bony threads of unequal length, joined together, and clofed at the end. The foremoft thread is but I inch $\frac{x}{2}$ long; the hinder, which was unknown to M. Borelli, is 5, or thereabouts, being united to a \# March 13.1709.

184 The History and Memoirs of the

little cartilage which terminates it; fo that eacls branch is 3 times as long as the body of the os byoides and that of the tongue together. Thefe branches which belong to the os byoides, are bent in form of an arch; the middle of which occupies the fides of the neck, the anterior extremities pafs under the beak, and are terminated in the body of the os byoides; their pofterior extremities pafs over the head, and enter the nofe on the right fide; but it is obfervable, that they are not articulated to it; which contributes very much to the egrefs of the tongue, as I thall fhew hereafter.

The os byoides and the anterior thread of its, branches, are inclofed in a fheath, formed of the membrane which lines the infide of the lower beak. The extremity of this fheath is united to the opening of the fcaly horn of the tongue. This heath is prolonged, when the tongue comes out of the beak, and contracts when it returns.

The fcaly horn, which covers the little bone of the tongue, is convex above, plane underneath, and hollow on the infide: it is armed on each fide with 6 very fine, tranfparent, and inflexible points: their extremity is a little turned towards the throat. It is probable that this horn, armed with thefe little ppints, is the inftrument with which the wood-pecker catches its prey; which he does with fo much the more eafe, as this inftrument is always lubricated with a glutinous matter, which is poured into the extremity of the lower beak by 2 excretory ducts, which go from 2 py ramidal glands fituated at the inner fides of this part.

To make ufe of this inftrument, nature has given the wood-pecker feveral mufcles, of which fome belong to the branches of the os hyoides: thefe draw the tongue out of the beak; others
belong to the fheath, which inclofes the body of the os byoides, with the anterior threads of its branches; thofe draw the tongue into the beak. Laftly, the tongue has its proper mufcles, which draw it up and down, and to each fide.

Each branch of the os byoides has but I mufcle, which alone is as long as the tongue, the os byoides, and one of its branches together; thefe 2 mufcles derive their origin from the internal, lateral, anterior part of the lower beak, and in retreating they involve the pofterior threads of the branches of the os byoides, and paffing above the head, they are at laft inferted at their extremities, whence proceed 2 elaftic ligaments, which uniting together form a third, which faftens them to the membrane of the nofe. Thefe ligaments are very fhort; but are eatily prolonged by being drawn. Now as the refiftance of thefe ligaments may eafily be furmounted by the contraction of thefe mufcles, it is eafy to conceive, that when they contract, they draw the pofterior extremities of the branches of the os byoides out of the nofe, and carrying them away on the fide of their origin, they drive the body of the os byoides, the anterior threads of its branches, and the tongue out of the beak; which they could not have done, notwithetanding the great flexibility of the os byoides, if its branches had been ftrictly faftened, or articulated with the bones of the nofe; for tho' the arches, which they defcribe, may be extended, they, could not have been fufficiently prolonged to drive the tongue 4 inches out of the beak; which they do with fo much more eafe, as they have their motion free in thefe mufles, where they are inclofed as in a canal, and allo are not articulated with the bones of the nofe.

Vow. III. No. 28.
U

i86 The Jistory and Memoirs of the

To draw the tongue into the beak, nature has given to the fheath which inclofes the os byoides, and the anterior threads of its branches, two mufcles to pull it back ; and becaufe their prolongation and contraction muft be equal to thofe of their antagonifts; fince the tongue makes the fame way in retreating into the beak, as it does in going out of it, nature has taken care to place thefe mufcles in the little fpace which is between the under part of the larynx and the end of the beak, to caufe each of them to make two circumvolutions a contrary way, about the upper part of the tracbea, whence thefe two mufcles draw their origin; after which they crofs one another behind the larynx, and at laft line the infide of the fheath to which they are united; now as its extremity is joined to the opening of the fcaly horn of the tongue, it happens that when thefe two mufcles contract, they pull and draw this fhesth backward, and thus drawing the tongue into the beak, they dirive back the pofterior extremities of the branches of the os byoides into the nofe. Thie 3 elaftic ligaments, which I have mentioned, ferve alfo to draw them back; for after having been prolonged by the mufcles, which draw the tongue out of the beak, they contract as foon as thele mufcles are relaxed, and draw into the nofe the branches of the os byoides, to which they are faftened.

There is above the skull a groove, which with the skin forms a canal, which inclofes the hinder part of the branches of the os byoides, with their mulcles, in which thefe parts have their motion free. This canal hinders the branches of the os byoides from receding either way when they are drawn forwards, and makes them eafily refume their place, when they are drawn backwards.

Royal. Academy of Sciences. 187

If we do but reflect on the length of the tongue, the os byoides, and its branches joined together, and on the origin and determinate infertion of the mufcles, which make the tongue of the woodpecker go in and out of the beak, it will be eafy to judge that M. Borelli was mittaken; for if we confider, that the tongue of this bird, the os byoides, and the branches joined together, are 8 inches in length, and that of this length there comes 4 inches out of the beak when it is drawn, we thall eafily conceive, that the tongue making the fame way in retreating, as it did in going out, the mufcles, which pull it backwards and forwards, mult each of them have prolongations and contractions of A inches, and that confequently they muft be above 4 inches long, not being able to contract their entire length. Thus, of the 4 firt mufcles, which M. Borelli allows the tongue for its motions, two taking their origin from the extremity of their lower beak, and the two from the fore part of the skull, and all the four being inferted into the middle of this length of 8 inches, it is vifible, that thefe mufcles could never have fuch an effect, fince at moft they would be each of them no more than 4 inches.
M. Borelli would not have fallen into this opinion, if he had obferved that the two mufcles; which rife from the beak, run through the whole extent of the body and branches of the os byoides. His miftake therefore comes from having divided each of thefe mufcles into two, and from having known that the anterior threads of the branches of the os byoides, at the end of which he places the infertion of the four firft mufcles of the tongue, which he has deleribed. As for thofe, which turn about the tratiba, he knew the true ufe of them.

I 88 The History and Memoirs of the

As for M. Perrault, he was much more miftaken than M. Borelli. For firft he makes no mention of the mufcles which incompafs the trachea, and yet it is by their action alone, that it is withdrawn into the beak. Secondly, he makes M. Borelli's 4 firt mufcles rife from the larynx, and fends two of them to the pofterior extremities of the branches of the os byoides, and the other two to their anterior extiemities, to draw the tongue in and out, and thereby he falls into the fame inconvenience with M . Borelli; but this miftake is the greater, as there goes no mufcle from the larynx, to be fattened to the branches of the os byoides.

In fhort, the whole inquiry which thefe gentlemen have madie to explain the motions of the tongue of the wood-pecker, is terminated in the muicles, which make it come in and out of the beak. It does not appear, that their anatomifts gave themfelves the trouble to penetrate farther into its ftructure : thence it comes that thefe gentlemen have told us nothing of the 4 mufcles proper to the tongue of this bird, by which it is moved up and down, and to each fide, whether it is placed within or without the beak.

All thefe mafcles derive their origin from the anterior part of the branches of the os byvides, two from one, and two from the other, and are terminated each of them in a long fender tendon; thefe four tendons embrace the body of the os byoides, and are inferted into the bare of the little bone of the torguie. When all thefe mufcles act together, they hold the tongue ftrait; when the mufcles of the upper part-contract at the fame time, they draw the tongue upwards; when thoie of the under pare are in action, they draw it downwards. But when two mutcles placed on

Royal Academy of Sciences. 189

 the fame fide act together, they pull it to that fide.Now, as of all the mufcles which ferve for the different motions of the tongue, only thefe four laft are inferted into it, it is vifible, that the mufcles, which pull it in and out, do not properly belong to it, but to the fheath and branches of the os hyoides, where thefe mufcles are inferted as I have fhewn; whence it follows, that the motions, which the tongue makes going in and out of the beak, belong alfo to thefe parts, and not to the tongue, fince in thefe two motions it may remain unmoveable.

An explanation of the figures in Plate III. Fig. r,

$$
2 \text {, and } 3 \text {. }
$$

A. The tongue of the wood-pecker.
B. The proper bone of its tongue.
C. The fcaly horn armed with points, in which this bone is received.
D. D. D. D. The four proper mufcles of the tongue.
E. The body of the os byoides.
F. F. Its two branches.
G. G. The anterior threads of thefe branches.
H. H. Their pofterior threads.
I. I. The two glands, which emit the glutinous matter to lubricate the tongue.
K. K. The apertures of the excretory veffels of thefe glands.
L. The membranous theath, which inciofes the os byoides, the anterior threads of its branches, the four mufcles of the tongue, and the anterior part of the two mufcles, which draw it back into the beak.
M. M. The two mufles, which puil the tongue out of the beak.

190 The History and Memoirs of the

N. N. The two mufcles, which pull it into the beak.
VI. An explanation of fome facts in opticks, and of the manner in which vifon is performed, by M. de la Hire \dagger.

We know that the pupil of the eye in molt animals contracts with a ftrong light, and opens confiderably in the dark. It is eafy to fee in the diffection of the eye, that the iris, which is perforated in the middle, where it is called the aperture of the pupil, is a circular mufcle, which can contract by retreating towards its circumference, which then increafes the aperture of the pupil; but in relaxing, its parts return from the centre of the pupil by an elaftic power; and this is what diminifhes the pupil.

To undertand rightly how this change can be made in the pupit by the action of the mufcle, we muft confider that the body of this mufcle is toward its circumference, where it is faftened within the eye, and that all its fibres feem to tend from the circumference toward the centre, which they do not reach; for they are terminated at the little circle, which forms the pupil. But this mufcle having a pretty confiderable thicknefs towards its head, if its fibres recede from each other according to the thicknefs of the mufcle, where there ought to be a great quantity of them, their extremity which forms the pupil, muft draw nearer to the head, and confequently dilate the pupil; but when the action of the mulcle ceafes, the fpring of the fame fibres may replace them in their firft ftate, and clofe the pupil; or there

[^14]
Royal Academy of Sciences. igi

 might be fome elaftick fibres in this mufcle, which would ferve only for this purpofe; or laftly, we might imagine another mufcle of but little thicknefs, couched upon the firt, the fibres of which would be circular, and ferve it for an antagonift ; for the circular fibres of this mufcle, receding from each other according to their plane, would clofe the pupil, the action of the other mufcle having ceafed; and this opinion feems to me the mofl natural, or I am moft inclined to follow it.But of two antagonift mufcles the ftrongeft will always prevail, when there is no particular determination for either: whence it follows, that if that which dilates the pupil is the ftrongeft, as it appears to be, we thall judge that the natural ftate of the pupil is to be dilated.

The action of opening and fhutting the pupil is not of that kind which we call voluntary, but of that which is neceffarily performed by a foreign caufe, as it happens to feveral parts of the bodies of animals.

It feems probable, that a very great light making too ftrong an impreffion upon the bottom of the eye, hurting, and in a manner burning it, as when we look at the fire, or at a white body expofed to the fun, obliges us immediately to clofe the pupil as much as poffible, to receive fewer of thefe too luminous rays, and to remove the danger which threatens the eye. On the contrary, when we look attentively at any object in the dark, we do all we can to fee diftinctly, and perfectly to difcern all the parts of it, which we cannot do withour the help of a pretty vivid light; wherefore we dilate the pupil, that there may enter into the eye a greater quantity of thefe feeble rays, which altogether will make a ftronger

192: The History and Memoirs of the

impreffion by reuniting themfelves in the principal organs of vifion.

But tho' we are expofed to a pretty ftrong light, we do not always clofe the pupil, when we are attentive to look upon any object, the image of which is to be ftrongly painted on the bottom of the eye, which is obfervable in thofe animals, which can clofe and dilate the pupil in an extraordinary manner, fuch as cats; for when they are" in a ftrong light and quier, their pupil is almoft quite fhut; and if any extraordinary object, which roufes their attention, prefents itfelf, we fee them open it at once as much as they can.

Nature feems to have given a particular ftructure to the iris of this fort of animals, that it fhould not clofe circularly, but fidewife, that it may open readily and confiderably in the dark, where they moft often feek their nourihment.

What attention foever we give to fee the fmall parts of an object, the pupil will always be lefs open in a ftrong light, than in the dark, efpecially if this attention lafts any time; for a ftrong light naturally obliges it to fhut, to hinder the principal organ of vifion from being hurt. Thus, in the dark, or in a faint light, we cannot queftion but that the pupil puts itfelf in its natural ftate of dilatation, and that it does not open fo much as the equilibrium of the mufcles, which compofe the iris, permits, as it happens to all the parts of the bodies of animals, which are moved by antagonift mufcles.

The following obfervation is pretty common, and thofe who have made it have always obferved the fame thing. If you plunge the head of a living cat into water, the pupil immediately quire opens itfelf, tho' the animal is expofed to very brighs

Royal Academy of Sciences. 193
bright objects; and then you may fee diftinctly the leaft parts that are at the bottom of the eye.

I undertake therefore to explain here by the laws of opticks:
ift. Why luminous objects do not by their prefence oblige the eye of this cat to fhut.

2 d . Why we fee the bottom of the eye diftinctly,

Let O * be a luminous or very bright object, of which the rays $O B$ come as parallel to each other as far as the cornea $B B$, the object O being at a moderate diftance from the eye. It is known that the eye being expofed to the air, the greateft refraction of the rays O B is made at firft upon the cornea, and that afterwards, after two other refractions, much lefs than the firft, upon the furfaces of the cryftalline, thefe rays meet in D , upon the bottom of the eye, which we call a good conformation.

But if the eye BBD is plunged in the water A A, fo that the furface A A is perpendicular to the rays OB, which come from the object O to the eye, then thefe rays OB meeting the furface of the water A A perpendicularly, will fuffer no refraction therein, and will enter the eye a-crofs its humours, which are but little different from the water, fuffering a little refraction therein ; whence ir follows, that they will have a direction to affemble towards E, very far beyond the eye, and confequently that they will meet the boctom of the eye in points FF, diftant from each other, inftead of meeting in the fame point D.

But the rays of the luminous point O, which are entered into the eye, occupying at that time a very conifiderable fpace FF on the bottom of the eye, will make but a very faint impreffion on it,

[^15]Vol. III. No 28.
X wheress

y 94 The History and Memoirs of the

whereas they would have touched it very briskly, if they had met in D ; wherefore this luminous object in this cafe mult not oblige the pupil to contract. Befides this animal being in a violent ftate, gives attention to all that furrounds it, which muft alfo oblige it to keep its pupil very open, as I have obfervect already.

For this reafon nature has given fifhes, which live in the water, a very convex, and almoft Spherical cryftalline, that the rays of objects, which are in the water, and fuffer but little refraction in paffing thro' the cornea, may turn fufficiently upon the furfaces of the cryltalline, io be collected on the bottom of the eye. And if we find, that fome divers perceive objects in the water at a greater diftance than they would in the air, it can be nothing but a particular cafe of the conformation of the eye of thefe divers, who having the fight very fhore, becaufe of the very convex figure of their cryftalline, can fee very diftinctly in the water, like fifhes, diftant objects of which the rays in the air would meet between the cryftalline and the bottom of the eye, and meeting the bottom of the eye in a confiderable fpace would be there confounded, and confequently would make a confufed vifion.

We muft now explain why, when the eye of the cat is immerged in water, we perceive diItinctly all the parts of the bottom of the eye, as if it was not filled with humours.

It is certain, that the larger the windows of any room are, the brighter the objects will be therein, and the more diftinctly feen: wherefore we have a better view of the parts of the bottom of the eye of the cat immerged in water, when the pupil is very much dilated, than if it was con. tracted. But it is not only the great aperture of

Royal Academy of Sciences. 125 the pupil, which makes us fee objecis untinctiy, fince in men, who have the guitio ferena, and whofe pupil is very open, we car perceive nothing at the bottom of the eye, which is expofed to the air. It is therefore the water, which touches the eye, that makes us fee thefe objects, and this is what we muft explain by the fame principles of opticks, which we ufed at firft.

When an eye well formed is in the air, the rays which diverge from a point D^{*} of its botom, having paffer thro' the three furfaces of its humours, turn from them in fuch a manner, as to come out almoft parallel to each other; wherefore we can fee this object D diftinctly; fince rays that are parallel, or almoft parallel, always make a diftinct vifion in our eye, and yet we do not fee this object D.

Let us now examine what mult happen to the fame rays, which diverge from the poin: D of the bottom of the eye of the animal, when it is immerged in water:

Let BBD , as before, be the eye of the animal immerged in water, of which the furface is A A. It follows, that the rays D B, which diverge from the point D of the bottom of the eye, being a little turned or refracted upon the two furfaces of the cryftalline, muft meet the cornea, while they are yet diverging: buc as in coming out of the cornea in B B, they meet the water AA, the refraction of which is not fenfibly different from that of the aqueous humour, where they paffed in touching the cornea, they muft continue their courfe in the fame right line, and continue ftill diverging quite to the furface of the water in A, whence at laft they mult go out to enter into the air, being yet more diverging than they were

[^16]in the water by the laws of dioptricks ; and confequently wherefoever we place our eye to receive thefe diverging rays, which are then directed as if they came from the point E, nearer to the cornea than the point D , we may very diftinctly perceive the point D, as placed at E and in the air.

This is what the plain furface of the water produces upon thefe rays; but there is alfo another obfervation to be made, which fhews us why we do not fee the object D of the bottom of the eye, when it is out of the water; and why we fee it when it is immerged.

The furface of all well polifhed bodies fends back the light, and fends it back or reflects ir fo much the more ftrongly as it is more polifhed; and if thefe polifhed bodies are alfo traniparent, a part of the light will pafs thro' the body, and another part will be reflected; and this will always be in proportion to the tranfparence and polifh. But as we have no bodies, whofe furface is more polifhed than that of liquids, we might fay there would enter into the eye expofed to the air, much fewer rays of light, than in the water, if the cornea was not always covered with a clear and unctuous liquor. This, therefore is not the reafon that we do not fee the bottom of the eye, when the cornea is expofed to the air; and that we do fee it, when the eye is in the water; for if the rays of light are reflected upon the cornea in the air, they will be reffected alfo upon the furface of the water, and almoft in equal quantity; which is contrary to the opinion of fome, who have pretended that a great many were loft upon the cornea in the air, and have not obferved, that no fewer were loft upon the furface of the water.

But it is not fo much the quantity of the rays that are reflected upon the cornea, or upon the water, that muft be confidered, in what may bring fome interruption to a very clear vifion, tho the rays are rightly difpofed to make it, as the direction of the fame rays reflected. For if thefe reflected rays are parallel, or nearly fo, to the axis of the eye, which meets the principal organ of vifion, where we fee the objects moft diftinctly, and where the object, which we confider attentively, is painted, we muft fee a pretty flrong light in this place, and this by its brightnefs will hinder the diftinguihing of thefe objects, which otherwife are of a dark colour; and this will happen to the cornea of an eye, tho' the light illuluminates it only allant. For the cornea being of a convex figure, fome rays may ftrike upon it obliquely, which will be directed almont according to the axis of the eye of him who looks; which does not happen to a plain furface, which would be perpendicular to this axis, where thefe rays would be reflected according to the fame inclination to the furface, with which they had met it. Wherefore we can fee much more diftinctly, and without the mixture of this foreign light, the parts of the bottom of the cat's eye immerged in water, than if it was expofed to the air. It is for this reafon alfo, that when we are in the air out of a room, and look thro' glafs, tho' ever fo clean, upon the objects therein, we cannot fee them without difficulty, becaufe of the inequality of the furface of the glafs, which refiects the light every way.

We may make the experiment of what I here advance, by looking at an object thro' a round glafs bottle, and afterwards thro' a piece of plain glafs, the light playing in the fame manner upon the fpherical and plain furfaces of thefe two glaffes:
ig 8 The History and Memoirs of the
for the head of him that looks near would hinder the rays which fhould fall upon the plain glafs, and might be reflected in the eye towards the axis of vifion; but it will not be the fame thing upon the furface of the glafs bottle, where fome will always enter the eye almof parallel to the axis, becaufe of the convex figure of the bottle.

In what I have hitherto faid, I did not think it neceffary to exprefs what part of the eye I took for the principal organ of fight. But one of the molt famous anatomilts of this company having examined the fact, which is the fubject of this memoir, and having accounted for it very learnedly by the motion of the animal fpirits in the eye of the cat, is for the choroides in oppofition to the retina, following, as he fays, the opinion of M. Mariotte.
M. Mariotte's difcovery is one of the moft curious that has been made in philofophy, and as the experiment is very eafy to make, we could not doubt of it. Yet I here repeat, that the defect of vifion at the place where the retiza is perforated by the choroides, proves norhing againft the retina, and that the choroides can only be confidered as an intermediate organ, which communicates to the retina the vibration or motion, whichit receives from the light with its different modifications. And can we look for the principal organ of a fenfe any where but in the nerves, which communicate with the brain, and can inform the foul under difierent appearances of what paffes out of the body, and that by the interpofition of a certain medium proper to move them; for the nerves are too delicate parts to be laid open.

It will be the fame with regard to the other fenfes, as to the fight, and we cannot fay, that the skin, which covers the whole body, is the

Royal Academy of Sciences. 199 principal organ of feeling, nor that the membrane of the drum of the ear is that of hearing; any more than that the skin of the tongue is that of tafting, becaufe, when this skin is burnt, we have no fenfation of taftes.

The black colour of the choroides is very proper to be fenfibly fhaken by all the different and leaft motions of light, as we fee in the experiment of the white paper expofed to a burning mirror, which cannot be inflanjed unlefs it is blackened; for the motion of the particles of the body which tranfmits the light, or the light iffelf, acts ftrongly among the points fet with black bodies wherein it is engaged; whereas it is only reflected upon white bodies, which are compofed only of very finooth parts like little mirrors. The retina therefore will not be fhaken by a refection of the luminous rays upon the choroides, which is black, as our anatomift pretends. In fhort, the conclufion of his memoir hhews me, that he is not of M. Mariotte's opinion, as he fays he is, but that he has followed mine, changing only the defimition of the principal organ of vifion, which he afcribes to the choroides, and I to the retina. Thus the whole difference between him and me will be in the name of the principal crgan, for he makes vifion confift in a reflection of the luminous rays upon the choroides, and I in a fhaking of the parts of the choroides, to be tranfmitted to the optic nerve or to the retina.

As for M. Mariotte'sopinion, he thinks, that the choroides is the principal and only organ of vifion, and that this membrane alone carries to the brain the fenfations of colcurs, fince being a production of the pia mater it accompanies the opticnerve all the Way to the eye, where being arrived, it forms the choroides; and laftly, that the optic nerve ferves

200 The History and Memoirs of the

only to contain the fpirits, and that it has no fibres.

But it feems to me not eafy to conceive, how the foul can have a fenfation of a very great quantity of objects, which are perceived all at once, and in the order in which they are ranged, without imagining an infinite number of very flender fibres, which compofe the optic nerve, and are difpofed in order on the whole furface of the retina, which the membrane alone of the pia mater, or of the choroides, could not do without a great confufion, even tho' it had fibres like thofe of the optic nerve. But we fee that the functions, which 1 have afcribed to the choroides and to the retina, are both together neceffary for vifion, and that one cannot be done without the other.

I could add alfo in this place, that we perceive colours only by a fenfation of heat; for no body imagines there is light without heat, whether this light comes directly from the luminous body, or by reflection. But as this heat is ufually fo faint, efpecially if the luminous body is very diftant from the body which it illuminates, there muft enter into the eye a pretty large quantity of thefe rays, and at the fame time they mult meet in a point upon the black body of the choroides, to make a ftronger impreffion upon it, and to make no confufion with thofe which come from other luminous points, and quite near, and modified in different manners, which the fenfe of feeling cannot perceive. This is a thought, which I think might be fupported by very ftrong reafons.

Royal Academy of Sciences. 20%

VII. An examination of a confiderable diffculty propofed by M. Huygens, againft the Cartetian fytem of the caufe of gravity, by M. Saurin *.

The moft ordinary effects of nature, which are the leaft ftriking to the vulgar, are not always fuch as give the leaft degree of exercife to philofophers. Such is the phenomenon of gravity. A ftone thrown up in the air falls down directly upon the furface of the earth ; people do not ufe to be furprifed at it: and yet to find the caufe of this fall, is one of the moft difficult problems to be refolved in phyficks; and we are not yet arrived to a folution"fufficiently demonftrated, which throws a full light upon all the difficulties.

I have undertaken a little treatife upon this fubject, which I have begun to read in our particular affemblies. The academy may fee, that I place the caufe of gravity in the centrifugal effort of the celeftial matter which furrounds us; and that I make this effort rife in it, from its circular motion about the axis of the earth, according to the notion of the Cartefan vortices. One of the principal objects that I have propofed in this little treatife, is to defend this opinion againft the difficulties, which have made two of the greateft geometricians of our age, M. Huygens, and Sir I. Newton who reject the bypotbefis of the vortices. M. Huygens makes three objections againft this bypotbefis, in his difcourfe on the caufe of gravity; but only two of them appear to me worthy of confideration. It is of one of thefe two, which has often been repeated after him by a great many authors of all fizes, that we find a folution in the

[^17]
202 The History and Memoirs of the

fecond Fournal des $S_{\text {gavans }}$ for the year 1703 . I was willing to expofe this folution before-hand to the criticifm of the learned, that I might be fure not to deceive myfelf in thinking it fupported by a true demonftration, and to take advantage of the new lights, which their reflections might give me. It has merited the attention of two authors, who pretend, not without reafon, to be profound in thefe matters, and are not much difpofed to favour me; but tho' they have combated it with a good deal of fpirit, one in his Recherches de Pbyfique E de Mathematique, and the other in the Memoires de Trevoux ; I will venture to fay, that they have not weakened the confidence that I had in the fecurity of this folution.

The other objection of M. Huygens is to be the fubject of this memoir, and I mutt own I am not yet perfectly fatisfied about it. Therefore I fhall not give this inquiry, as I did the former, the title of a folution, but of an examination.

In heavy bodies we perceive but two things clearly; one, that being let go in the air they move according to a direction which tends nearly to the centre of the earth; the other, that they endeavour to move according to the fame line when they are retained: and it is exactly this effort with which they prefs, or pufh what retains them. that is called gravity.

It is evident, that thefe two things are the effect of one and the fame caufe. The force, of what nature foever, which makes the heavy bodies move according to the conftant direction obferved by them, is the very fame that makes thefe todies prefs according to the fame direction, the plane oppofed to retain them.

The queftion therefore about gravity is, only to give the reafon of a certain motion, namely,
of that particular motion, which carries bodies towards the centre of the earth, which on that account are called heavy.

If we confult our notions of the phyfical caufe of motion, they will prefent us with nothing clear, nothing diftinct but the fhock or impulfe: thus it is by this principle that we mult give a reafon for the motion of which we are feeking for the caufe, or abandon this inquiry, and give up the hope of ever being able to explain in an intelligible and reafonable manner the phenomenon of gravity; and if we fhould not fucceed in explaining it by this principle, it will certainly fhew the infufficience of our knowledge, but not that of the principle.
See therefore according to this notion, in what manner we philofophife upon gravity with M. Huygens. Heavy bodies move toward the centre of the earth; therefore they are driven thither. Bodies cannot be driven but by other bodies in motion which fhock them; there are therefore other bodies in motion, which ftrike thofe which we call heavy, and by this fhock drive them whither we fee them tend. Thefe other bodies are not perceived; it is therefore a fubtile matter, which the delicacy of its parts hinders us from feeing; and as we know befides, by a thoufand other effects, that the earch fwims in a fluid of an inconceivable fubtily, which furrounds it on all fides, there is no room to quetion its being to this fubcile matter, that we are to afcribe the impulfe, which produces the motion of the heavy bodies.

But how does it produce it? To explain this in order, I fhould make long deductions; but I omit then, and come direetly to the point. It is its circulating about the earch with in exireme

204 The History and Memoirs of the

rapidity : in this circulating it makes an effort to recede from the earth; and the grofs bodies not having the fame motion, and not making the fame effort, muft be neceffarily driven towards the earth. Thus far M. Hiygens and I have gone hand in hand, and philofophifed in concert: but now we are going to part; and this is the point of our feparation. M. Huygens makes the celeftial matter move circularly every way about the centre of the earth ; that is, in his fyftem the centre of the earth is the common centre of all the circles defcribed by the celeftial matter: whereas, according to Defoartes, it is all moved the fame way about the axis from W. to E. and defcribes circles, of which the planes are parallel to that of the equator. It is this bypothefis that I defend againft the two objections of M.

Huygens.

The firt is drawn from the direction which heary bodies obferve in their fall. M. Huygens pretends, that in the fuppofition of parallel circles, defcribed by the celeftial matter, the bodies ought to fall according to lines perpendicular to the axis of the earth, and that they would be driven toward the centre only in the plane of the equator; whereas we learn from the experiment, that they every where follow the fame direction which tends to the centre. This is the objection, which I think I have fufficiently anfwered in the Fournal des Sçavans.

I hall now examine the fecond. M. Hurgens obferves, that to produce the degree of gravity, which we find in the terreftrial bodies, the velocity of the celeftial matter, which moves circularly, mult be much greater than the velocity of the daily motion of the earth about its own axis. Whence he concludes, that if the celeftial mater

Royal Academy of Sciences. 205 moved the fame way with a like velocity, it would be impoflible for it not to carry away with it all the bodies which are upon the furface of the earth, by the continual effort of fo rapid a motion, which does not happen.

I thall propofe this objection in its full Force. The bodies, which are upon the eatth, being carried away with it about is own axis in 24 hours, neceffarily make an effort themfelves to recede from the centre, and their effort is proportioned to the velocity, which carries them along. If the celeftial matter moved circularly, only with the fame velocity that the earth turns, it would make no more effort to recede from the centre of the earth, than the bodies do, which are upon the earth; and confequently there would be no gravity; thefe bodies being thrown into the air would not fall back again. To whatfoever place of the furrounding fluid they fhould be carried, and afterwards let go, they would remain fufpended and at reft, as they would be in equilibrio with an equal bulk of the celeftial matter.

The bodies therefore which are upon the earth, are heavy, and being thrown into the air, fall down again, only becaufe the celeftial matter makes more effort to recede from the common centre than they do: and if we retrench their effort from that of the celeftial matter, the quantity of effort which fhall remain, and is the degree of force with which they are driven toward the centre, will be exactly equal to their degree of gravity. Thus the celeftial matter muit circulate fafter than the earth turns; and the excefs of its velocity above that of the earth muft be fuch, that there may refult from it this quantity of effort equal to the degree of gravity of the terreftrial bodies.
M. Huygens has found by an exact inquiry, that it required the circular motion of the celeftial matter to be about 17 times as quick as that of the earth. This calculation is founded upon a curious propofition; but it is a little embarraffed. It may be made in an eafier manner by fuppofing the truth of another theorem, which is very eafily demonftrated. This theorem is, that in equal time the fpace run over by a body which falls perpendicularly, is to the fpace or arch run thro' by the celeftial matter, which moves circularly, and produces gravity, as the fame arch is to the diameter of the circle which it defcribes. And confequently if the number of feet, which this diameter contains, is multiplied by the number of feet, which a body that falls perpendicularly runs over in a fecond, this product will be equal to the fquare of the arch, run over alfo in a fecond by the celeftial matter. We know by experiments made with a great deal of exactnefs, that a body, which falls perpendicularly, runs ovei about 15 feet in a fecond: the diameter of the circle defcribed by the celeftial matter near the earth, not being fenfibly different from that of the earth itfelf, is $39,231,600$ feet. Therefore by the theorem, thefe 2 numbers mulciplied together, will give a product equal to the fquare of the arch run over by the celeftial matter; and the fquare root of this product, which is 2425^{8}, will be the number of feet equal to the arch run over. Therefore, to produce the degree of gravity, which we find upon the earth, the celeftial matter runs over 24,258 feet in a fecond.

The earth making a revolution in $23^{\prime} 56^{\prime}$, or in $86,160^{\prime \prime}$, and the circle which it defcribes, being $123,249,600$ feet, what it runs over in a fecond mutt be 1430 feet $\frac{\frac{1}{2}}{2}$. Thus the velocity of
the celeftial matter, which makes it run over 24,258 feet in a fecond, is to that of the earth, which runs over only 1430 in the fame time, as the firft of thefe numbers is to the fecond. Now if we divided thefe two numbers one by the other, we fhall find they are nearly as 17 to 1 . In meafuring therefore the degree of gravity by the fole centrifugal effort of the celeftial matter, which comes from its circular motion, it is demonftrated that the velocity of this motion mult be 17 times as great as that of the daily motion of the earth, or furpafs it 16 times.

But to know ftill more exactly how far the difficulty goes, let us examine what impreffion this prodigious velocity, which we are obliged to afcribe to the celeftial matter, can make upon the terreftrial bodies, and we fhall fee if any means will offer to render it infenfible.

The late M. Mariotte made a great number of experiments on the force of the fhock of fluids, and in particular of water and air. He has found*, that water going with a velocity, which makes it run thro' 3 feet $\frac{1}{4}$ in a fecond, and with this velocity ftriking perpendicularly a furface of $\frac{1}{2}$ a foot fquare, fuftains a weight of $3 \mathrm{lb}, \frac{3}{4}$. He has alfo determined, that the air going 24 times as faft, made exactly the fame effort. Thus the air running thro' 78 feet in a fecond, and with this velocity fhocking a furface of $\frac{1}{2}$ a foot fquare, oppofed perpendicularly to its courfe, would fuftain a weight of $3 \mathrm{lb} \cdot \frac{3}{4}$: but if we allow it the velocity by which the celeftial matter furpaffes that of the earth, what weight will it fuftain? It is eafy to calculate it. The efforts of the fame fluid, which goes with different velocities, are to each other as the fquares of the velocities. The velocity

[^18]
208. The HESTORy and MEMOIRS of the

of the aif, which makes it futtain $3 \mathrm{lb} . \frac{3}{4}$, is 78 feet in a fecond; that of the celeftial matter, the velocity of the earth being fubftracted from it, is $22, \$ 27 \frac{\pi}{2}$: fay, as the fquare of 78 is to the fquare of $22,827 \frac{1}{2}$, fo is the weight of $3 \mathrm{lb} . \frac{3}{4}$, to a 4 th term: this 4 th term will give the effort of the air, or the weight fought. In performing this operation, we find, that if the air went with the velocity of the celeftial matter, it would futtain a weight of above $320,000 \mathrm{lb}$.*

In this calculation, we have followed the determination of M. Mariotte, who allows to air a velocity only 24 times as great as that of water, to make it fupport the fame weight that water does; but other experiments prove, that it muit go 30 times as faft; and if we follow there experiments, the weight which the air will futtain with the velocity of the celeftial matter, will be diminifhed, but yet it will be more than 200,000 lb \dagger.

Such would be the force of the air carried along with the velocity, which agrees with the celeftial matter to produce gravity. Whence we fee, that tho' the effort of the celeftial matter moved with this rapidity fhould be but $2^{\frac{1}{0}} 0000$ part of that of the air, it would however fuftain the weight of one pound, by acting againft a furface of $\frac{x}{2}$ a foot fquare, and that if it was near $2,500,000$ times weaker, it would ftill fuftain the weight of an ounce; fo that if a body that weighed but an ounce was fufpended in the air at the end of a thread, and oppofed a furface of half a foot fquare

Royal Academy of Sciences. 209

to the courfe of the celeftial matter, it would drive it from weft to eaft, with an effort which would caufe it to make that way an angle of 45 degrees, abftracting all other refiftance but that of the fufpended body.

It would be impoffible, becaufe of the refiftance and continual agitation of the air, and of feveral other confiderations, to determine exactly how much the effort of the celeftial matter with equal velocity muft be weaker than that of the air to become infenfible, but it appears to me, that it muft be 3 or 4 millions of times. It remains to know, whether it can be fuppofed without abfurdity, or whether we can give any probable reafon of the weaknefs of this effort.

We know that fome fluids are more or lefs fluid than others, and that they make more or lefs refiftance to the motion of bodies; and confequently more or lefs effort againft bodies at reft, when the fluids themfelves are in motion. Thus we have juft feen, that the air muft go 30 times fafter than water, to have an equal impetus: whence it follows, that going with the fame velocity as water, it muft make 900 times lefs effort than water, 900 being the fquare of 30 . The rule which is given upon this point, is, that the efforts of different fluids which go with the fame velocity, are as their denfities; it is upon this principle alfo, that we make the air 900 times thinner than water. This confequence however might be falfe; for the rule upon which it is founded, is not exactly true, but when the fluids compared differ only in denfity. In that cafe it is eafy to comprehend, that if, of 2 fluids carried along with the fame velocity, one is for inftance twice lefs denfe than the ocher, it mult make twice lefs effort; for at each time the body,

$$
\text { Vol. III. } \mathrm{N}^{\circ} \cdot 29 \text {. } \quad \mathrm{Z} \quad \text { againft }
$$

210 The History and Memoirs of the

againft which it acts, is ftruck by twice fewer particles, and confequently is twice lefs ftruck. The rule therefore is certain and evident, but it is defective, becaufe there are in fluids a great many other differences to be regarded. The force of the fhock in thofe, which go equally faft, does not only depend on this, that in equal time they ftrike with the fum of the efforts a greater or lefs quantity of particles; but in this alfo, that they make more or lefs refiftance to the divifion; that is, the particles have more or lefs eale to be feparated or difplaced. Now a greater or lefs facility of being difplaced may have feveral caufes, and by the concourfe of all thefe caufes become as confiderable as we pleafe.

The firft caufe that prefents itfelf, is the different degree even of denfity. I have made ufe of denfity already: it is a double ufe that I make of it, but not a bad one; and it comes here under another confideration. It is plain, that a fluid muft be fo much the more ealy to divide, as its particles are lefs clofe, and lefs near to each other; that is, fo much the more as it is the lefs denfe. The more or lefs afperity, or inequality in the furfaces of the particles, and their figures more or lefs irregular and embarrafling, are two other caules worthy of attention, which may procluce great differences, with regard to the facility. of Ruirds to divide, and confequently in the force of their fhock.

I thought at firft, that I might add to thefe articles the different degree of fubtilty. And indeed it was natural enough to think, that, fuppofing all other things equal, the fluid, which had its particles the leaft grofs, fhould be divided with moft facility, and make leaft effort againft the obflacles oppofed to its courfe. This thought

Royal Academy of Sciences. 2 if quite pleafed me: it furnifhed me with the eafieft way in the world to reduce to nothing the force of the fhock of the celeftial matter, which we may make as fubtile as we will: but in feeking to demonftrate a propofition, which appeared to me fo probable, I have found, contrary to my expectation, tho' after Sir I. Neroton, that it was falfe, and that two fluids of the fame nature, and denfity, which differ only in the fimallnefs of their particles, make an equal refiftance to the motion of bodies; or, if the fluids themfelves move, have an equal impetus. I confefs I have been much grieved upon this head, and it was not till after thoroughly difputing againft my own demonftration, that I confented to throw it afide.

However, let the notion be ever fo falfe, from which I thought I might draw fo great an advantage; yet the more or lefs fubtilty is ftill a matesial confideration in another part; for a fluid, which fhould be fo fubtile, that all bodies would give it a free paffage thro' their pores, would without doubt ftrike thefe bodies with much lefs force than another fluid of the fame nature would, of which the particles would be too grofs to bs able to pafs thro' the pores of the bodies. It is evident, that tho' thefe two fluids were of the fame denfity, they would fall in proportion to the effect of the fhock in the cafe of two fluids unequally denfe ; all that in the fubtile fluid continues its courfe thro' the pores of the bodies, freely and without fhocking them, not being to be reckoned. Now how far nay not that go ?

The texture of the moft folid bodies is perhaps infinitely more rare than we think. What is very certain, is, that the fenfes and imagination deceive us therein. If we confult them, who would hay

212 The History and Memoirs of the

that what a bit of oak contains of its own proper matter makes but the 20th part of the bulk under which it appears? Perhaps it may not make the thoufandth part, or the hundred thoufandth; but at leaft it is eafy to demonftrate that it does not make the 2oth. The wood of oak weighs lefs than water, and water weighs near 19 times lefs than gold. A bit of oak therefore weighs more than 20 times lefs than a bit of gold of the fame bulk: but it is a principle demonftrated by M. Huygens himfelf, that the fpecifick weight of bodies exactly follows the proportion of the quantity of proper matter which they contain under an equal bulk. Upon this principle, a bit of oak contains 20 times lefs proper matter than a bit of gold of equal bulk; and confequently, by fuppofing the gold perfectly foiid, and without pores, which is very far from being true, the quantity of proper matter, which a piece of oak contains, is not the 2oth part of its bulk; certainly our eyes do not tellus fo. By the fame reafoning, a body, which thall weigh 20 times lefs than an equal bulk of oak, and 400 times lefs than an equal bulk of gold, will alfo contain 20 times lefs of its proper matter than the oak, and 400 times lefs than the gold : do the eyes judge thus of it?

I have no light into the abfolute folidity of bodies: I know by the weight the different proportions of denfity or rarenefs between them; but if we confider a body in itfelf, and without comparing it to others, it is impoffible to know what its abfolute degree of folidity is ; that is, to determine what proportion there is between the quantity of proper matter that it contains, and its bulk: thus I know that a piece of oak is 20 times lefs folid than an equal piece of gold; but then to what degree is this piece of gold 反olid?. How

Royal Academy of Sciences. 213 many pores has it? How much proper matter? This I am abfolutely ignorant of; or rather I know with the utmoft evidence, that it cannot be known ; and I dare advance this propofition, which may feem a paradox, that if we would maintain, that in a piece of gold, there is not of proper matter the hundred millionth part of its bulk, we might indeed maintain it without a pofitive proof, but we might boldly defy the natural philofophers to demonftrate the contrary.

I do not doubt but the imagination of thofe, who judge of every thing by their fenfes, is hocked at it. Gold is the moft heavy of all the bodies that we know: it has always feemed very ponderous to them, and therefore very mafly; this confufed notion will always pafs among them for an experiment as evident as a demonitration : but when we fupport a weight, the fenfe of gravity that we have is relative to the degree of ftrength that we have to futtain it: what a man finds light is an eiormous weight for a child, and we might have fuch a ftrength, that the moft heavy mafs would feem as light as a feather. Thus in judging by the fenfe, men a thoufand times ftronger than we, finding gold 1000 times lefs heavy than we find it, would alfo judge it to be 1000 times lefs folid than we judge it to be. To conclude, as neither the fenfes nor the imagination are to be heard upon this point, and as reafon does not fix any bounds for us, we may give to the texture of bodies all the rarenefs, as well as to the celeftial matter all the fubtlenefs of which we have need; provided only that the fuppofition which we fhall make for the effect that we would explain, is not oppofed by other effects.

Here is another article, upon which we cannot build too much, which is referred to that of the

214 The History and Memoirs of the

figures more or lefs embarraffing; that the particles of the celeftial matter have neither a determinate figure nor bignefs; each particle being able to divide, and dividing infinitely, according as there is occafion, and with the utmoft facility, they accommodate themfelves without difficulty to all forts of places; which diminifhes infinitely in the fluid its refiftance againft being difplaced, and fo much weakens its effort.

To all that we have faid upon the caufes which may contribute to render the effort of the celeftial matter infenfibie, we may add thofe experiments of Sir I. Neroton, which are in our favour. He made them to determine whether the celeftial matter, which penetrates all bodies, and fills their pores, had any fhare in the refiftance, which there bodies fuffer when they are moved in a fluid; and he has not found more refiftance on that fide, than if this matter did not exift, and the pores were entirely void. We fhall not take advantage however of his difcovery : what confequence could we draw from an infenfible refiftance in fuch weak motions as thofe of the experiments which we can make? But it is a matter of great furprize, that fo able a man as Sir I. Newton fhould conclude the vacuum from it, or be near concluding it, inviting us alfo to repeat the experiments, to convince ourfelves more and more of the pretended folidity of this conclufion.

If after all the confiderations that have juft been made, we fhould be ftruck as with an abfurdity, with this prodigious rapidity, which we afcribe to the celeftial matter near the earth, tho' it does not make itfelf felt there, there feems to be no other way to take, than to digeft this abfurdity, as we are obliged to digett fo many others in moft phyfical fubjects, and generally in mort of the objects

Royal Academy of Sciences. 215

 of our knowledge: for, in fhort, this abfurdity, whether pretended or true, to which the opinion, that I defend; leads, is found to be a neceffary confequence of the moft certain obfervations of the aftronomers, as I am going to demonitrate.The planets, which turn about the fun at different diftances; go fome of them fafter than the others: the famous Kepler was the firt, who obferved, that their velocities keep an inverted ratio of the fquare roots of their diftances. Suppofe for example, that the diftance of Venus from the fun is to that of Mercury, as 9 to 4 ; I take thefe numbers, becaufe they are convenient, and not very different from the exact proportion that thefe two diftances have between them; the fquare root of 9 is 3 , that of 4 is 2 : the fquare root of the diftance of Venus being therefore to the fquare root of the diftance of Mercury, as 3 to 2, we find, according to Kepler's rule, that in an inverted ratio, the velocity of Venus is to that of Mercury, as 2 to 3 .

All the obfervations confirm this rule; it is not only followed by the principal planets, which turn about the fun; but alfo exactly by the little planets, which make their revolutions about a principal one; this M. Cafini has fully verified in the fatellites of Fupiter, and given us a theory of them, and by his learned and ufeful difcoveries has a very great fhare in the glory of the progrefs, which aftronomy has made in our days, and a great one in the glory even of that which it fhall make after. It is the fame with the 5 fatellites of Saturn, as with the 4 of Fupiter. It is therefore a law inviolably obferved by the celeftia! bodies, in the fmall particular vortices, as well as in the great one: and as the moft reafonable bypothefis of the motion of the planets, or

216 The History and Memorrs of the

rather the only reafonable one is, that they follow the courfe of the celeftial matter, which carries them along, it is to the different velocities of the celeftial matter taken at different diftances from the centre of the vortex, that Kepler's rule muft be applied.

To come now to the demonftration, which I have promifed; if by this rule we find the velocity, which agrees with the celeftial matter near the earth, we fhall find that it muft be to that of the earth almoft as 17 to 1 , fuch exactly as we have already feen that the degree of gravity of the terreftrial bodies required : the calculation of it is neither long nor difficult.

The moon being diftant from us, or from the centre of our particular vortex about 60 femi-diameters of the earth, the circle, which it runs thro' about this centre, is 60 times as great as that defcribed by a point of the furface of the earth under the equator; and confequently it has 60 times more way to go to finifh its revolution, than this point has. Thus, if the moon fhould finifh its revolution only in 60 days, it would go as faft as the earth which turns in a day: if the revolution of the moon was finifhed in 30 days, its velocity would be double that of the earth under the equator: the moon employing but a little more than 27 days and half in its courfe, it follows that its velocity is a little more than double that of the earth. This being fuppofed, the diftance of the celeftial matter, which circulates here below, and is diftant from the centre of the vortex only one femidiameter of the earth, and the diftance of the moon, which we have made 60 of thefe femidiameters, are to each other, as 1 to 60 , and their fquare roots nearly as ito 8 , or as 2 to 16 , or as a litcle more than 2 to 17 ; therefore in an

Royal Academy of Sciences. 217

 inverted ratio, cor:formably to Kepler's rule, the velocity of the celeftial matter near us is to the velocity of that, which carries on the moon, as 17 to a little more than 2 ; but we have found that the velocity of the moon, or of the celeftial matter, of which it follows the courle, was really to the velocity of the earth, as a little more than 2 to 1 ; therefore the velocity of the celeftial matter here below, is to the velocity of the earth nearly, as 17 to 1. 2.E.D.Such is the perfect agreement, between what velocity the phenomenon of gravity requires in the celeftial matter, and what we find elfewhere, that it mult have in virtue of a law eftablifhed by the obfervations, aud demonftrated as the fundamental law of the whole fyftem of the univerfe, by the ingenious author of The New Explanation of the Motion of the Planets. If fo wonderful an agreement does not entirely deliver the mind from the trouble, which this rapid motion of the celeftial matter near the earth gives it, of which however we do not perceive any fenfible effect ; it muft at leaft difpofe it to receive more favourably the confiderations, which we have propofed to refolve, or weaken the objection of M. Huygens.

It is true, that a great many difficulties prefent themfelves; and I fhall not diffemble, that this very law, which the velocities of the planets follow, when confidered in the celeftial matter, is furrounded with difficulties; there are feveral which a little attention diffipates; it would be tedious and ufelefs to dwell upon them: there are others more confiderable, and among thefe two principal ones, which I fhall touch upon in a few words.

The firt offers itfelf immediately, and it is impoffible not to be ftruck with it. According

Vol III. $\mathrm{N}^{\circ} .29$.
A a

218 The Mistory and Memoirs of the

to Kepler's rule added to the bypothefis of our vor tices, the celeftial matter makes 17 revolutions about the earth in a day, whence comes it, that the earth makes but one? Why does not it follow the rule? This difficulty is common to the other vortices; 7upiter and Saturn turn each about his own centre; and both of them infinitely lefs quick than they ought to do according to the rule. The fun, which occupies the centre of the great vortex, turns in like manner about his own axis, and takes about 27 days and half in turning; whereas, according to the rule, it ought to employ but a little more than 3 hours. I confefs I am not fatisfied with the lights that I have into this difficulty, and that I have not any more folid anfwer to give, than that which may be feen in the new explanation of the motion of the planets, a work which it would be more eafy to criticize, than to make a better.

The other difficulty is Sir IJaac Nerwton's. In the midft of an uniform fluid, and at reft, that is, which has no other motion than the mere agitation of its parts every way, which renders it fluid, he conceives a folid fphere, which turns about an axis, almoft like the earth. This fphere, as it turns, makes a continual impreffion on a firft furface of the fluid, and this upon another, and this laft upon another, and fo on. On this arbitrary fuppofition, he inquires geometrically in what proportion the motion is communicated from each furface to the next, or what fhould be the proportion of the velocities at different diftances from the common centre; and his analy/s giving him a different proportion from that which is obferved in the planets, he concludes that they are not carried along by the fluid, and that the Cartefian

Royal Academy of Scienecs. 219

vortices are incompatible with the law eftablifhed by Kepler.

I pafs over a great number of reflections that might be made on Sir Ifaac Newton's demonftration: I am willing to admit it, but when I do admit it, I reject however the conclufion that he draws from it againft our vortices. It has no force but in virtue of the fuppofition, which Sir I. Nerwton takes for granted, of a fluid perfectly uniform, and every where of equal fluidity, and of a refiftance on the fide of the furfaces, in the ratio of the velocity. But if we fuppofe the fluidity to augment in proportion as it recedes from the centre, or a refiftance greater than in the ratio of the velocity, we fhall find without difficulty the fame proportion that is given by the rule.

What we fay here has not efcaped Sir I/anc Nerwton's exactnefs; he has exprefly obferved it ; but he contents himfelf with faying thefe fuppofitions would not be reafonable; and tho' the laft is inconteftable, he choofes rather to confider gravity as a quality inherent in bodies, and to renew the exploded notions of occult qualities and attraction. We muft not flatter ourfelves, that in all our phyfical inquiries, we can ever furmount all difficulties: but however let us always philofophize upon clear, mechanical principles; if we quit them, all the light that we can have is extinguifhed, and we are plunged anew into the old darknefs of peripatericifm, from which heaven preferve us.
VIII. Obfervations of the weight of the atmofphere, made at the cafte of Meudon, witth M. Huygen's double barometer, by M. de la Hire *; tranflated by Mr. Chambers.

- The Abbe de Lourvois having a curiofity to fee the practice of levelling, and how the weight of the atmorphere is found by obfervations of the barometer, I made the following ones in his prefence, with all the accuracy poffible.- We had the ufe of a very good telefcope level, and one of M . Huygens's double barometers, which we found in the caftle.

One morning at the bottom of the caftle, the liquor in the tube of the barometer ftood at 33 divifions $\frac{x}{2}$; upon which defcending by the iron grate in the great road leading to Verfailles, we found the liquor in the tube fallen to 28 divifions $\frac{x}{2}$, the fpace defcended being 159 feet, 3 inches, and the fall of the liquor 5 divifions from the firt ftation.

Continuing then to defcend in the great road leading to Paris, as far as the opening of a litcle path, which goes to the river, we found the liquor in the tube at 24 divifions $\frac{1}{2}$, where the fpace we had defcended was 106 feet, 3 inches, and the fall of the liquor from the former ftation was 4 divifions.

From this ftation to the river near the mills, we defcended 134 feet, 3 inches, when the liquor was found in the tube at 21 divifions, and confequently had fallen 3 divifions $\frac{x}{2}$.

After noon the barometer was carried to the wall of the mill-pond, at the top of the park,

[^19]
Royal Academy of Sciences. 221

where the liquor in the tube food at 38 divifions $\frac{x}{2}$, and by the levelling it appeared, that we had afcended above the level of the caftle 112 feet, 4 inches.

But returning in the evening to the caftle, I found the liquor in the tube at 3^{6} divifions, and confequently for thefe 112 feet, 4 inches, the liquor had altered 2 divifions $\frac{1}{2}$; but having found it in the morning at 33 divifions $\frac{r}{2}$, we learned that between morning and evening a change of 2 divifions $\frac{1}{2}$ had happened in the weight of the atmofphere.

The whole height from the river to the millpond was exactly level at feveral ftations, and found agreeably to the preceding obfervations 512 feet, I inch, or 85 fathoms, 2 feet, 1 inch, being the greateft elevation about Paris.

Towards the evening I found the difference between the furface of the mercury in the two cifterns of the barometer at the bottom of the caftle was exactly 29 inches, and the liquor in the tube was 12 inches $\frac{x}{2}$ above the mercury in the lower ciftern. The divifions of the tube for meafuring the height of the liquor, were equal to 4 lines and $\frac{s}{9}$, which I take for 4 lines $\frac{x}{2}$, on account of the fmallnefs of the difference, and for the eafe of calculation.

Now to deduce the exact weight of the atmofphere from thefe obfervations, they mult be reduced according to the ftructure of this barometer, as already explained in our memoir of barometers. But firft, in order to compare the heights of the liquor between the fide of the river, and the top of the mill-pond, the obfervations muft be reduced to the fame hour, by reafon of the change which happened in the weight of the atmofphere between morning and evening ; and as

222 The History and Memorrs of the

the obfervation at the river-fide was made about noon, I fhall reduce it to that made at the millpond in the evening, when the liquor was at 38 divifions $\frac{x}{2}$, on a fuppofition that the diminution of the atmorphere proceeded uniformly from morning to evening. Hence inftead of 2 I divifions obferved by the tivei-fide, I take $22 \frac{1}{4}$ by adding $\frac{x}{2}$ the difference between morning and evening, and fubtracting thefe 22 divifions $\frac{1}{4}$ from $38 \frac{1}{2}$, the remainder 16 divifions $\frac{1}{4}$ gives the alteration of the height of the liquor in an afcent of 512 feet under a confitution of air, fuch as that in the evening of the fame day.
The reduction of the divifions of the tube to the real leight of mercury, correiponding to the prsight of the atmofphere, will be eafily made Dy the rules I have already given, and the obfervation I made in the evering of 29 inches difference between the heights of mercury in the ciftern, when the liquor was 12 inches $\frac{7}{2}$ above the mercury in the lower; for fuppofing what I have actually found, that the weight of mercury is to the weight of the liquor in the tube, as i2 to 1 , dividing 150 lines (to 12 inches $\frac{1}{2}$) by 12 , we fhall have 12 lines $\frac{5}{2}$ for the height of mercury, equivalent to 150 lines of liquor. We mutt fubftract therefore 12 lines $\frac{1}{2}$ from the 29 inches difference between the heights of mercury in the cifterns, and the remaining 27 inches, 11 lines $\frac{\frac{\pi}{2}}{2}$ will be the height of mercury, which weighs as much as the atmofphere on the day of obfervation towards the evening at the height of the plain of the caftle at Meulon, which is 66 fathoms, 4 feet above the river Seine, againtt the mills in the month of Septernber, when it is ufually very Jow.

It remains to find the value of the divifions of the tube, with regard to the heights of mercury, which reprefent the weight of correfpondent divifions of the atmofphere. In thefe barometers, which are formed according to the proportions given by M. Huygens, where the diameter of the cifterns is 14 lines, and that of the tube I line, we fhall have it by a rule found in my former memoir, as 12 times the fquare of the diameters of the cifterns to the fquare of the fame diameter +23 times the fquare of the tube; fo are the divifions of the tube, or the heights of the liquor to the heights of mercury reprefented by them, which is here as 2352 to 219 ; wherefore the 16 divifions $\frac{1}{4}$, found between the higheft and loweft, which anfwer nearly to 73 lines, has about 6 lines $\frac{3}{4}$ for the true height of mercury, correfponding to the change of weight of the atmofphere, between the river-fide and the wall of the mill-pond in the park; fo that dividing 512 feet, which is that height by $6 \frac{3}{4}$, we fhall have 75 and $\frac{23}{2}$ or 12 fathoms, and nearly 4 feet height of atmofphere for a line of mercury, at a time when the weight of the whole atmofphere was 27 iaches, II lines $\frac{\pi}{2}$, at the furface of the ground in the caitle of Meudon ; and above the river, when it is low againft the mills, at the foot of the mountain, 66 fathoms, 4 feet. -We here make no account of the different weights of the atmofphere, in the different parts of this height, nor of the different afcents of the liquor, which might have arofe from the different heat at different times of the day, which dilates all liquors more or lefs, and even mercury itfelf; for that the heat was pretty much the fame at the beginning and ending of the obfervations. -

But as in the making thefe barometers they

224 The History and Memoirs of the

might have deviated a little from the proportion above-mentioned, between the diameters of the cifterns and the tube, I have made a calculus of what would enfue upon other proportions, and find that the difference would be very inconfiderable, tho' the diameters of the cifterns were 1 or 2 lines either bigger or lefs.

Tho' it cannot be doubted, that to find the weight of the atmofphere, it is much furer to go upon great heights than upon fmall ones, provided fuch heights be exactly known by reafon of the difficulty of making an exact eftimate of the heights of the mercury in the tube, yet I have not thought it amifs to make obfervations of leffer heights in order to find how they would agree with thofe of Meiidon.

Accordingly I have feveral times obferved the height of the mercury in different feafons, and different years, at the top of the terrafs of the obfervatory, and the bottom of the vaults and celJars thereof, in the fingle barometer; and taking a medium between all thefe heights which agreed with an obfervation I had made in Sept. 1705, the time when the air is nearly of the fame heat in the vaults, as at the top of the mercury of the barometer then ftanding at 28 inches in the large hall; and confequently the atmofphere being very heavy, as it was when the obfervations were made at Meudion; and the feafon being likewife the fame, I found a change of 2 lines $\frac{1}{4}$ in the heighth of the mercury, for 28 fathoms or 168 feet height of the atmofphere; and confequently for I line of mercury we have 74 feet $\frac{2}{3}$, or 12 fathom 2 feet $\frac{7}{3}$; and by the obfervations made at Meudon I found, for the fame line of mercury 12 fathoms 4 feet, the difference between which, viz. 1 foot $\frac{1}{3}$ is very inconfiderable in fuch obfervations.

Royal Academy of Sciences. 225

Another obfervation which I made at Toulcu

 in 1682, upon the mountain Claret, which is 257 fathoms above the furface of the fea, gave me in that feafon, and under thofe circumftances of air, fuppofing the air equally denfe in this whole height, 12 fathoms for 1 line of mercury.But it being certain that heat and cold may occafion fome alterations in barometers wherein the weight of the atmofphere has no concern, as I have fhewn in the memcir already cited; by reafon fome part of the air next the earth being heated more or lefs than the reft, will make a change in the bulk both of the mercury and the liquor ; befides, that a moift air when heated, dilates more forcibly than a drier, and confequently will fuftain the mercury to a height beyond what it would have from the bare weight of the atmofphere, \mathfrak{E}^{2} c. I have therefore made feveral obfervations and experiments to bring all thefe effects to fome further rules.

Placing a fingle barometer afide of one of M . Huygens's double ones, and of M. Anontons thermometers - by them, I obferved their feveral heights every day for 3 years together, without over-looking the leaft circumftance that might have any concern therein, but there having happened no confiderable cold in all that time, but only violent heats in the fummer, I compared the ftate of thefe barometers in the great heat, with that they were in at the mean heat of the air, as it is found in the vaults of the obfervatory, or at moft when it begins to freeze; and I found that the mercury in the fingle barometer does not undergo any fenfible change of height, whether it be expofed to the open funin the heat of fummer, or be in the fhade in a place moderately cold.

$$
\text { VoL. III. } \mathrm{N}^{\circ} .29, \quad \text { B b }
$$

226 The History and Memoirs of the
In the following observations I expreffed the height of the mercury in the fingle barometer, by inches, lines, and points, which are 6th parts of lines, the heights of the liquor in the double barometer being expreffed by the divifions on that barometer which are each equivalent to. 4 lines, but are reduced afterwards into lines.
I. The fingle barometer ftand- $\}_{27}^{\text {inch. }}$ lin. poi. ing at heats flood at
\qquad
And in a moderate degree of heat at $4 \mathrm{I} \quad \frac{x}{2}$

II. The ingle barometer ftanding at
$\begin{array}{lll}27 & 8 & 0\end{array}$
The double barometer in the great heats flood at
4. 2 div .
$\begin{array}{rlll}\text { And in a moderate degree of heat at } & \frac{37}{\frac{2}{4}} \\ \text { The difference is } & 4 & & { }^{\frac{3}{4}} \\ \text { Or } & & 19 & \end{array}$
III. The fingle barometer flank- $\}_{27}$ in 1

The double barometer in the great heats flood at

```
}33 div.
```

Ald in a moderate degree of heat at 28
The difference is
Or

19

Royal Academy of Sciences. 227

IV. The fingle barometer ftand- $\} \begin{array}{cc}27 & 9 \text { In. } 10\end{array}$ ing at
The double barometer in the great leate food at $\underline{\longrightarrow} 3^{8}$
And in a moderate degree of heat at
34

V. The fingle barometer ftand- $\}_{27}$ 10 0 ing at

The double barometer at a moderate degree of heat floed at _- $\} 33$

And the barometer being removed io the open air when it began to 30 freeze ftood at

The difference is $\mathbf{2}$
 Or $10 \frac{2}{3}$

Being defirous likervife to find what would befall the double barometer, when expofed to the fun about noon, in the greateft heats of $\mathfrak{F u l y}$, in the year 1708, and the better to difoover the effeets thereof, I placed M. Amontons's little fpirit of wine thernometer afide of it.

I obferved the liquor in the barometer at firft rife very flowly in comparifon of the fpirit of wine in the barometer, but after they had ftood upwards of an hour in the fun, carrying them back to their former place, which is in the fhade, I obferved the liquor in the barometer fill continued rifing, while the fpirit of wine, on the contrary, kept defcending apace, to recover its former ftate. Now tho' fpirit of wine be very fenfible of hear, and water very little in comparifon thereof; yet one would expect the fame thing to beB b 2

228 The History and Memoirs of the

fal the water in the barometer, and the fpirit in the thermometer, and that the caufe ceafing, the effect muft ceafe likewife. We find, however, that the mercury having received a much greater degree of heat than the liquor, and preferving it longer withal, by reafon of its greater denfity, continues ftill to heat the liquor, even when removed from the fun, and thus raifes it confiderably higher, than it was therein; and the rather, as the bulk of the mercury undergoes no fenfible change by heat and cold, as I found by expofing the fingle barometer to a hot fun.

As to the fpirit in the thermometer, the cafe is very diffetent; for being a fluid very ealy to be dilated by the fmalleft heat, it condenfes again with equal eafe upon the fmalleft cold.
'Tis beyond doubt, that the different heights above-mentioned, between the liquor in the double barometer, while the fingle barometer remained at the fame height, and confequently the atmofphere was equally heavy, arife chiefly from the dilatation of the liquor; whereof there is fufficient quantity in the phial, at the bottom of the barometer, and its tube flender: for upon the fmalleft fwelling of this liquor, by the heat, a very fenfible proof of it mult appear in the little tube, which however does not obtain fo much in my barometer; where, the liquor being but litthe, the elevation, occafioned by the heat, is inconfiderable. I have fhewn however how it may be applied, without falling into any error, by confounding the effect of the barometer with that of the thernometer, which, in the double barometer, oncafions great irregularities.
IX. A comparifon of the barometrical obfervations, made in different places, by M. Maraldi*.

To arrive at the knowledge of the caufe of the phenomena, obferved by the means of the barometer, it is not fufficient to have obfervations made only in one place, it is neceffary to make them alfo in different countries, to compare thefe obfervations together, to obferve the conformity between them, and their differences.

Without a great number of thefe obfervations, we are liable to miftakes in explaining by caufes, which would fuit only a particular country, phenomeno which may have more general caufes; and we might confider, as a property of the whole mafs of air, what agrees with it only in fome circumiftances, or in a certain extent of country.

Several learned men, who have perceived the phyfical ufes that may be drawn from baromecrical obfervations, have applied themfelves for fome time to make them in different countries. The marquis Salvago having communicated to me thofe which he had made at Genoa 3 years ago, I have compared them with our own, which were made at the fame time at the obfervatory. In comparing thefe obfervations, we have found fome, which had particulars in them, which I have thought worthy of being remarked. I fhall afterwards relate fome experiments on the dilatation of the air, made near the equinoctial, which I have had occafion to examine.

The marquis Saluago, in his obfervations made at Genoa, ufed a fimple barometer, divided into

* July 20, 2;09,
inches

230 The History and Memoirsiof the

inches and lines of the Paris foot. This barometer is fituated in an apartment, where the quickfilver remains a line lower than at the fea fhore, as has been found by obfervation; fo that ifws would reduce the obfervations of Genoa to the leyel of the fea, we muft atd a line to each height of quickfilver, which I fhall hereafter mention.

In the relation of thefe obfervations, we fhall not follow the order of time in which they were made; but I fhall begin with the moft remarlkable.

In 1707, at Paris, from Nore. 15 to 18, the barometer continued for 4 days at the height of 28 inches within about $\frac{1}{2}$ a line; the next day, Nov. 19; it fell to 27 inches, 4 lines, having fallen 8 lines in 24 hours; the next day, it rofe again io lines, being on Noversber 20, at 28 inches, 2 lines; during this variation the conftitution of the air did not change the sky having been very calm and ferene.

The fame year, at Genoa, from Nov. 15 to 18, the quickfilver continued at the height of a little more than 28 inches, as it had been the fame days at Paris. The next day, Nov. 19, at Gerioa, the wind being S. the barometer fell to 27 inches, 5 lines, having fallen in one day 7 lines at Geroa, almoft as it did the fame day at Paris. It remained only that day in the fame fituation;: but it rofe again the next day to 29 inches; and the 21 ft , to 28 inches, 2 lines, as it happened at Paris, the wind was turned to the N.

The fame year, from Nav. 20 to 28, the barometer remained at Genoz and at Paris generally. at 28 inches, I line. During thefe 8 days at Paris, the wind was fometimes at W: and fome-

ROYAE AGADEMY Of SCIENCES. 231 times at N: W. at Genea, the wind was always N.

Nov. 30 at Paris, the barometer fell to 27 inches, of lines, the wind being N. W. Dec. 1, it rofe again to 27 inches, 10 lines, the wind being W , and the weather fair ; the next day, it rofe 2 lines more, having been at 28 inches, fo that at Paris, from Nov. 28;50 30, it fell above an inch in two days; andifrom Now. 30 to Dec. I, it rofe 10 lines in 24 hours.

The fame variations almoft happened alfo at $G e$ noa on the fame days. By the obfervations of the marquis Salvago, from Nous. 28, when the barometer was at 28 . inches, 1 line, it fell the 3oth to 27 inches, 4 lines, having fallen 9 lines in two days, the wind being N. E. the next day, it rofe 5 or 6.lines, a little lefs than it had the fame day at Paris.

It appears from thefe obfervations, that great variations happen in a little time in the height of the barometer, both at Paris and Genoa; and that there is a great conformity in thefe variations, which happened at the fane time in fuch diftane countries. It appears alfo, that they have no great relation to the changes of the winds; for the variations of the barometer, which happened from Nov. 19 to 20, happened at Paris without any remarkable alteration of wind; and if on that day the barometer fell at Genoa with a S. E. wind, and rofe with a N. wind ; in the variation which happened the 28 th , the quickfilver fell with a N.E. wind which commonly makes it rife. So at Peris, the barometer fell with a N. W. wind, and rofe with a W. with which it ufed to fall. But what rapidity mult we afcribe to the winds, to caufe fuch quick alterations in cities fo diftant?

232 The History and Memoirs of the

It is not only in thefe fudden variations, which happen very feldom, that we find this conformity; there is the fame agreement alfo in the changes of the barometer, which are made more flowly, and happen in thefe two cities during the whole year.

As it would be tedious to relate all the obfervations made for the three laft years, in which this agreement is found, I have made choice of the moft remarkable.

At Paris. . At Genoa.

$\begin{array}{cccccccc}\text { 1706. } & & \text { Barom. Winds. } & \text { Barom. Winds. } \\ \text { fan. } & 1 . & 27 & \text { o } & \text { S. } & 27 & 3 & \\ & 7 . & 28 & 0 & \text { calm. } & 28 & 0 \frac{\pi}{2} & \mathrm{~N} .\end{array}$
Frorn $\mathfrak{F a n}$. 1 to 7 , in the fpace of 6 days, the quickfilver rofe 12 lines at Paris, and $9 \frac{5}{2}$ at Genoa.

Feb. 13.	27	3	S.	27	5	S. E.
19.	28	1	calm	27	$11 \frac{3}{2}$	N.

From Feb .13 to 19, in 6 days, the barometer rofe 10 lines at Paris, and 6 at Genoa.

OAF.	3r.	28	o calm.	28	o	calm.
Nov.	4.	26	9	S.E. rain	27	I
20. W.	27	II	S.	28	1	N.

By the obfervations of Oct. 31, and Nov. 4. in 4 days, the barometer fell at Paris 13 lines; it fell at the fame time at Genoa II lines, tho' the winds were different. Nov. 20, the barometer rofe to a great height, being the fame within about 2 lines in both thefe cities, tho' the wind was S. at Paris, and N. at Genoa.

Dec.	10	28	I calm	28	4	N.	
	15	27	1	W.	27	5	S.E.

Royal Academy of Sciences. 233
By thefe obfervations the barometer fell, in 5 days, about I inch at Paris and at Genoa.

At Paris. . At Genoa.

In 4 days, the barometer fell 6 lines at Paris, and 4 at Genoa, tho' the wind was very different. Fuly 2a. 27 II S. gentle 28 o N. gentle 24. 27 4 $4^{\frac{1}{2}}$ N.W. $27 \quad 6$ S.E.

Fully 20, the winds being oppofite at Paris and Genoa, the barometer rofe pretty equally; it fell afterwards 6 lines in each place, in 4 days, the winds having changed, and being ftill oppofite, that, is N. W. at Paris, and S. E. at Genoa.
Dec. 22. 2710 S. W.
28 o S.E.
27, 272 calm. 27.2 N. E.

In 5 days the barometer fell 8 lines at $P_{\text {aris, }}$ and 10 at Genoa.
1708.

Fan. 11. 26 io cal. and fair 27 S.W்.clo. 17. 278 S.W. 27 11 S.E. fair.

The barometer rofe in 6 days at Paris 10 lines, at Genoa 8, the winds being very different in thefe two cities.
Feb. 6. $27 \quad 2 \frac{3}{4} \mathrm{~W}$. $\quad 27 \quad 6 \frac{1}{3} \mathrm{~N}$.
10. 2710 calm $28 \circ \mathrm{~N}$.

By thefe obfervations the barometer rofe 6 lines in thefe two cities, the wind having been variable at Paris; at Genoa it was always N.
Vol. III. $\mathbf{N}^{\circ} \cdot 29 \quad \mathrm{C}$ e \quad March.

At Paris.

1708. Barom. Winds. Barom. Winds.

Mar.20. $\quad 27 \quad 8{ }_{4}^{3}$ calm and fair27 $\quad 7 \mathrm{calm}$ 22. $\quad 27 \quad 2 \mathrm{~N} . \quad 27 \quad 3 \frac{1}{3} \mathrm{~N}$.

The barometer being at a mean height, funk in 2 days 6 lines at Paris, 4 at Genoa, with a N. wind at both cities.

May 3.	27	11	28	0	N.
17.	27	4 S.W	27	$5^{\frac{3}{4}}$	S.E.
Nov. 19.	28	$2 \frac{1}{2}$ calm	28	2	calm
23.	27	6 N.W. $24 t b 27$	5	rain.	
24.	27	$11 \frac{3}{4}$ N.W. $25^{t h} .27$	10	N.	

The 19 th, the barometer being at a great height fell till the 23 d, and from the 23 d to the 24 th rofe 6 lines in a day. But at Genoa this variation was a day after it happened aţ Paris.
$\begin{array}{ccccccc}\text { Dec. } 10 . & 27 & 11 \frac{1}{2} \text { calm } & 27 & 11 & \mathrm{~N} . \\ 15 . & 27 & 1 & \text { rain } & 2 \% & 5 & \text { rain }\end{array}$
By all thefe obfervations, and a great many others, which I do not relate, it is manifeft, that there is a great agreement in the variations, which happen at the fame time at P aris and at $G(n) a$, whether thefe alterations were quick and fudden, like thofe which were firft related, or more now like the laft.

This correfpondence of the alcerations of the barometer, feems to have no great relation to the conftitution of the air, or to the winds, which prevail at the fame time in different countries; for the quickfilver rifes at Genoa, when it rifes atParis, and falls in like manner, whether there is the fame conftitution of the air, or whether the fame wind prevails in both thefe cities, which is very

Royal Academy of Sciences. 235 rare; or whether both of them are different. It would be a thing worth examining by obfervátions made in very diftant places, to what diftance fuch a conformity in the variations of the barometer is found.

This long feries of oblervations it Paris and Genoa, compared together, (hews, that to find the height of mountains, by barometrical experiments made at the fame time in different places, after the manner propofed in the memoirs of the academy, thofe muit be made ufe of, where the quickfilver keeps in the barometer at a mean height, and prefer thefe before others, where the quickfilver is found near to greater and fmaller elevations, becaufe in the mean heights of the quickfilver the differences between different countries are more uniform.

By the comparifon of the obfervations made with this choice, we find between Paris and Genoa a difference of 3 lines height of quickfilver, which it has at Genoa more than at Paris; and as in the obfervations at Genoa, the barometer is a line lower than it fhould be at the fea-fide, there refults a difference of 4 lines of quickfilver between the Paris obfervations, and thofe which fhould be made at Genoa by the fea-fide. This difference between the level of the fea at Genoa and at Paris agrees with what had been concluded by the obfervations of Paris and Colioure, related in the memoirs of 1703.

It has been obferved in this memoir, that the differences which happen to the barometer in the fame place, between the greateft and fmalleft ele vation, are greater in the northern than in the fouthern countries, where thefe differences leffen; fo that towards the equinoctial they are reduced to a trifle.

236 The History and Memoirs of the

Several obfervations received fince that time from feveral places, are conformable to this obfervation. At Upminfter, in England, which is more N. than Paris, the variations of the barometer are alfo greater than at Paris; thofe at Pa ris are greater than at Genoa; and the variations obferved at Genoa, are alfo greater than thofe which refult from the obfervations of F. Laval made laft year at Marfeilles, which is more fouthern then Genoa.

This remark, which is confirmed by a great number of obfervations made at the fame time in different places, does not agree with the obfervations made by M. Scheuchzer at Zurick thefe 3, laft years ; for tho' Zurick is much more to the N. than Genoa, the variations have been obferved to be fomething fmaller at Zurick, far from having been greater than at Genoa. In 1706, the difference between the greateft and leaft elevation. of the barometer was at Zurick 10 lines. At Ge noa, the fame year, this difference was I inch, I line. In 1707, at Zurick, it amounts to II lines; at Gerioa, it was 1 inch. In 1708, by the obfervations made at Zurick with the upright basometer, which I think preferable to the inclined one, the variation was 10 lines; at Genoa I inch; at Marfeilles 10 lines $\frac{x}{2}$, as at Zurick.

It muft be obferved, that the places of the obiervations, where this rule is found, are fituated at heights very little different from each other, and are but little elevated above the furface of the fea, as appears by the difference of the heights of the barometer, which is found between thefe obfervations, and with regard to thofe which have been made near the level of the fea. But it is not fo with regard to the obfervations of Zurick, which are not conformable to this rule. For by the ob-

Royal Academy of Sciences. 237
fervations made during the whole year 1 yo8 at Genoa and Zurick compared together, there is a difference of 1 inch, 8 lines of quickfilver, found between the level of the fea and Zurick; which Thews that the place of the Zurick obfervations is very much elevated above the places of the other obfervations, and Itill more above the level of the fea.

This variation of the barometer being lefs in the high places than in the low ones, is alfo confirmed by the obfervations fent laft year by F. Laval to the academy: for having made barometrical obfervations for 10 days together on the mountain of St. Pilon, which is more northward by z^{\prime} of a degree than Marfeilies; and is elevated above the level of the fea about 480 toifes; having compared them with thofe which were made at the fame time at the obfervatory at Marfeilles, he found that at Marreilles the barometer varied 2 lines $\frac{3}{4}$, when it varied but I line $\frac{3}{4}$ at St. Pilon.
F. Laval afcribes this difference partly to the heat, which is lefs in elevated than in low places, partly to the nature of the air, which being more rarefied in the elevated places, is lefs fubject to the alterations, which contribute either to its heavinefs or lightnefs.

We might fuppofe, that it is fome heterogeneous matter difperfed in the air, which caules a part of thefe variations; and has a greater effect in the lower air than in the upper.

Having compared together the barometrical experiments, which have been hitherto made in different parts of the earth during the whole year, I have found that the variations of the barometer obferved at Zuich approach much nearer to the variations obferved near the equinoctial, than the others made hitherto in Europe.

238 The History and Memoirs of the

I have examined on this occafion various experiments made near the equinoctial on the dilatation of the air, to fee whether the air of this climate by dilating followed the reciprocal ratio of the weights from which it is relieved, according to M. Mariotte's rule.

Thefe experiments were made at Malaca by F. de Beze, during a ftay of 7 months which he made at that place, which, tho' fituated in 2 degrees of north latitude, enjoys, according to the report of the fame father, a pretty temperate air for the climate, the heat being temperate, and not very variable.

Thefe experiments are related among the Ob fervations Pbyiques E Matbematiques, printed in 1692, with F. Gouie's notes in the following terms.
" An able philofopher told me before my de" parture from France, that he had been affured " that there was no feafible difference in the ba-
" rometer, found in all the places fituated be" tween the tropicks, provided the cbfervation
" was made in a place on a level with the fea.
" I was willing to examine the truth of this when
" I arrived in the Indies; and as I had no baro-
" meter mounted, I made ufe of a glafs tube 29
" inches long, fealed hermetically, and exactly
" divided into inches and lines, with which I
" made the Toricellian experiment in different
" places between the tropicks; but I have found
" every where a pretty fenfible difference in the
" elevation of the quickfilver, not only with
" regard to the different places where ob-
" ferved, but ofien alfo in the fame place, where
" the quickfilver was more or lefs elewated ac-
" cording to the differene divinnfious of the ni:";
" tho", to fuy the trath, this diference does not

Royal Academy of Sciences. 239

\&f equal that which is found out of the tropicks, " fince, according to what I have been able to " obferve, it does not exceed 5 or 6 lines.
"I have already fent to France the experiments "s which I had made on this fubject at Sianz and "P Pondicbery. Thefe are what we made at $M a$ "laca and Batavia.
"Having chofen at Malaca a day when the " air appeared very pure, and the heaven was " not covered with any clouds, to make the ex" periment: we found, that the quickfilver in " the tube kept up conitantly to the height of " 26 inches 6 lines above the furface of that " which was in the bafon.
"The heat was at that time pretty great for " the climate, and the thermometer was at $6,9 \mathrm{deg}$. "As I have obferved by feveral experiments, " that the quickfilver ufually kept up to a greater " height when the heat was lefs, and that it fell " when the heat increafed, tho' the fky was " equally ferene and clear, I thought it would be " proper to mark the degrees of the thermometer 's at the fame time, tho' there is not an exact " proportion between them.
"Being afterwards willing to try the elaftic " force of the air, we left three inches of air at " the top of a tube, and having reverfed it in " the quickfilver, where it immerged 7 lines, " that of the tube remained at the height of 20 " inches 7 lines above the furface of the other; " and the air dilated occupied 7 inches ro lines." Having afterwards left 7 inches, 6 lines of air, the quickfilver remained at the height of 16 inches, and the air dilated occupied 12 inch. 5 lin.

In confidering thefe obfervations, it is eafy to fee that they do not follow M. Mariotte's rule ; for in the firft experiment, 7 inches 10 lines of

240 The History aind Memoirs of the

 air dilated after the reverfing of the tube, to 3 inches of natural air before the reverfing, has not the fome proportion as 26 inches 6 lines in vacuo, to 5 inches lines excefs of 26 inches 6 lines, to 20 inches, lines, the height which the quickSivet had with the dilated air, as it ought to be wording to the rule. It is the fame with the fecon? experiment; but in thefe 2 experiments, the troporion of the dilated air to the natural air, It wat the atmofphere, to the difference betwern the Wight of quickfilver in the vacuum, and the hicigen the quickfilver with the dilated air.Having cilculated thefe 2 experiments, to know what the dilatation of the air fhould be by the common rule; in the firft where the natural air was 3 inches, after the reverfing the dilated air ought to occupy according to the rule 9 inches I I lines; but by the experiment it occupied no more than η inches 10 lines; the difference between the experiment and the rule is, 2 inches I line, by which the fpace occupied by the dilated air, was lefs.

In the fecond experiment, 7 inches 6 lines of natural air after the reverfing, ought according to the rule, to be dilated, and fill the fpace of 15 inches I line; but by the obfervation it occupied no more than 12 inches 5 lines; the difference between the obfervation and the rule is, 2 inches 8 lines, by which the obfervation is lefs; and confequently, according to thefe experiments, the air of Molaca does not follow the rule, and is lefs diJated thin that of Europe.

Befides thefe experiments made at a time when the air was pure and ferene, F. de Boze made others alifo, whilft the fky was lefs clear, and very cloudy, and that the height of the quickfilver in the vacuum was grenter than in the preceding obfervations.

They

Royal Academy of Sciences. 24 I

They are related afrer the firlt in the following manner.
"At the end of the moon, the fky being " very cloudy, and the air lefs clear than ordi" nary, I repeated thefe experiments in the fame " place, the thermometer was at 63 degrees.
"Having filled the tube with quick-filver, " and reverfed it in that of the bafon, where it " immerged one inch; it kept up at the height " of 26 inches 10 lines $\frac{2}{7}$ above the furface of the " quickfilver.
"Having afterwards put fome quickfilver in " the tube to the height of 26 inches, that there " might remain 3 inches of air, and having " pluaged it in the quickfilver, the air dilating it"felf, occupied 7 inches 5 lines $\frac{1}{2}$, and the " quickfilver 20 inches 6 lines $\frac{x}{2}$.
"Having left 6 inches of air, the quickfilver " kept at the height of 17 inches 2 lines $\frac{i}{4}$, and " the dilated air filled the reft of the fpace io " inches 9 lines $\frac{3}{4}$.
"Having left 9 inches of air, the quickfilver " occupied but 14 inches 6 lines, and the dilated "s air 13 inches 6 lines. Thefe experiments " were made in a place raifed 15 or 20 feet per" pendicular above the level of the fea."

By the comparifon which we have made of thefe obfervations with the ruie, we find the fame difference between them as in the preceding ob. fervations; for the 3 inches of natural air after the reverfing, dilated in fuch a manner as to occupy only 7 inches 5 lines $\frac{3}{2}$, whereas, by the rule, it ought to contain a fpace of 9 inches 6 lines $\frac{1}{2}$. The difference between the oblervation and the rule is 2 inches I line $\frac{x}{2}$, within about $\frac{1}{2}$ a live of what was found in the firft of the pre-

[^20]
242 The History and Memoirs of the

ceding experiments, which fhews the exactnefs of both of them.

In the fecond experiment, 6 inches of natural air inclofed in the tube, after the reverfing fills the face of 10 inches 9 lines $\frac{3}{4}$; this face, by the calculation founded upon the rule, fhould be 13 inches 3 lines. The difference is 2 inches 5 lines $\frac{3}{4}$, by which the dilatation is found lefs by the obfervation than by the rule.

In the laft experiment, 9 inches of natural air inclofed in the tube being dilated by the reverfing, occupied 13 inches 6 lines, and by the calculation founded upon the rule, it ought to fill 16 inches x line $\frac{1}{4}$. The difference is 2 inches 7 lines $\frac{x}{4}$, by which the experiment gives lefs than the rule.

It is therefore manifett by all the experiments of F. de Beze, that the dilatation of the air, which refults from them, is much fmaller than that of our air, and that it does not follow the proportion found by the experiments of Europe.

It might be fuppofed that this phanomexon comes from the particular contitution of the air of Malaca, which being very much rarified by the heat of the climate, is afterwards lefs fufceptible of fo great a dilatation as ours; but fo far as we may judge by experiments made in Europe, this explanation alone is not fufficient to give the reafon of the great difference between the dilatation of our air, and that of Malaca, even though we fhould fuppofe the heat which caufed this rarefaction to be as great as that of boiling water. Thefe are the oblervations which we made.

I took a tube 38 inches long, in which I put quickfilver to the height of 35 inches, fo that there remained 3 inches of air; I immerged this whole tube in boiling water, to ratefy the air contained in it; I afterwards flopped the aperture

Royal Academy of Sciences. 243,
with my finger, and having taken the tube out of the water, I reverfed it in the quickfilver; fo that above an inch was immerged. Immediately after the reverfing, the quickfilver kept within a few lines of where it keeps by the dilatation alone without having rarefied it. But the quickfilver was feen to rife in the tube, as faft as the air was condenfed in cooling; and when it was entirely cooled, the quickfilver rofe an inch and 2 lines more than it did immediately after the reverfing, and more than M. Mariotle's rule required; and confequently the rarefied air was lefs dilated than by the rule, by the fame quantity of 1 inch and 2 lines. We have found by the experiments of Malaca, that the 3 inches of air dilated 2 inches I line lefs, than by the rule; the air of Malaca therefore dilates lefs than our' air rarefied by the heat of boiling water.

I made the fame experiment upon 6 inches, and afterwards upon 9 inches of air, and I always found that our air rarefied by heat, dilated much lefs than the air of Maleca, and that the difference found with regard to the rule is twice as great in the air of Malace as in ours rarefied. Whence we may infer, that this lefs dilatation of the air of Malaca comes not only from the great heats of the climate, but from its own nature being lefs apt to dilate than ours.

As the air dilates otherwife at Malaca than it does in France, at an almoit equal height with the furface of the fea; and as in France the dilatation is found at great heights different from that which happens to the lower air, as refults from the obfervations made on the mountains of Auvergne and Roufillon, we may infer, that the whole mals of the air has not the property of dilating itfelf according to the ratio of the weights.

D d 2
We

244 The History and Memoirs of the

We may alio infer from thefe different dilatations, that the air is heterogeneous in thefe different parts, and that we fhould therefore be cautious of founding a general fyftem upon particular experiments, let them be ever fo certain and numerous.

It muft be obferved, that at Cayenne, the parallel of which differs from that of Malaca but 2. degrees $\frac{x}{2}$ towards the N . the refractions of the ftars have been found fmaller than in Europe. It would be a thing worth examining, whether any relation is found between the manner, in which the air is dilated under feveral climates, and the different refractions of the celeftial objects obferved. at equal heights above the furface of the fea.

X. Obferzations on cray-ffh, by M. Geof-

 froy, junior * ; tranlated by Mr. Chambers.Among the multitude of obfervations on the feveral parts of natural hiftory, there are fome fill obfcure, and as it were unknown, for want of being confirmed by new experiments : and yet the making new difcoveries is not enough to make philofophy flourifh, unlefs we prevent the old ones from being loft. Hence there is a neceffity for handling a-new fome fubjects which feem to have been neglected for a certain fpace of time, and of which nothing is known, but upon the credit of fome writer, whom it may not always be lafe to trutt.

In purfuing this method, one has the pleafure either of confirming the vulgar opinion, or of confuting it, or at leaft of clearing and explaining it; for when only a few perfons have treated a * Ang. 23, 8709.

Royal Academy of Sciences. 245

fubject, it rarely proves to be exhautted. This was what induced me to make obfervations a-new on the cray-fifh, and particularly on the ftones found therein at the time when they change their covers, and which, by reafon of their figure, are called crabs-eyes.

The common opinion touching thefe ftones is, that they are found in the brain of the animal, which is what Gefner, Agricola, and Rellicnius affirm ; and yet fo far are they from being in the brain, that they are rather found about its ftomach.

Van Helmont feems to have been the firft who apprehended this, but he having rendered himfelf fufpective on other occafions, his opinion could not make its way ; but the vulgar one ftill prevailed, except in a few perfons who could fee that experience was for him.

This author had obferved, that towards the middle of Fune the cray-fifhes begin to grow fick, as being the cime when they are to change their coats, or covers. For nine days, and upwards, they continue languifhing, and as it were dead; in which compafs of time, Helmont affirms, that a new membrane is formed, which inclofes the ftomach, and that between this and the former ftomach, a nilky liquor is difcharged, which, falling on either fide, hardens into ftone. This new membrane, according to him, arifes from the pellicle formed on the furface of the milky liquor, and growing into a new ftomach; the old one within it, and the remainder of the liquor with the ftones themfelves, refolve by little and little, and ferve the animal for food during 27 days that thefe ftones lalt ; for the animal eats nothing all this while, nor is there any thing elfe found in its ftomach.

246 The History and Memoirs of the

I have not been able to trace all thefe matters related by Van Helmont, but have made fome obfervations which agree with his.

I have found cray-fifhes very foft, and fo ready to quit their fhell, that it was quite raifed, fo as to let the new one appear under it, like a very thick membrane, which only wanted time to become as hard as that going off.

This outer fhell when it rofe, I found very thin, and the inner membrane, which ufes to line it, no longer adhering thereto, but forming a new fhell.- And the like I have obferved in the tail, commonly called the neck of the cray-fifh, where the fhells readily arofe, and let the membrane that was to fucceed them appear.

The fame I have found upon breaking the claws; fo that upon the whole we may fay, that while the craw-fifh is putting off its fhell, the inner membrane thereof feparates therefrom, and growing gradually thicker, at length forms a new fhell.

And I have fince obferved, that thofe which are beginning to quit their fhells, and whofe inner membrane is come to a competent thicknefs, have ftones in them perfectly formed, refembling in figure the heads of young mufhrooms.

To afcend to the origin of thefe ftones, I have opened cray-fifhes at other times of the year without finding any thing in them: but in my laft obfervations made this month of Auguft, opening fome vigorous cray-fifhes, which were only beginning to moult, in lieu of each ftone, I found a film or lamina, fwimming in the middle of a flimy fubftance, and which was perfectly the empbryo of the ftone. This ftone, with its llime, were inclofed in a little fiender membranous bag.

Royal Academy of Sciences. 247
I have found others, where the ftones were quite formed, and the ftomach folid and full of a brownifh liquor, very mouldy and fetid.

Under the bag where the fones are inclofed, I have found a flat membranous veficle, whofe ufe I do not underttand, only it has been obferved, that when the ftone difappears, this veficle becomes full of a fweet limpid water, and poffeffes the fame fpace as the ftone poffeffed. In others, I have found large fair ftones, and a new delicate membrane, inclofing the ftones and the ftomach. Upon raifing this membrane, there were 3 new teeth vifible thereon, fimilar in all refpects to thofe of the old flomach; fo that no doubt can any longer remain, whether this membrane becomes at length the real ftomach.

In cray - fifhes, which had caft their coats, I have found the ftomach full of a brown liquor, the membrane of the ftomach being here very tender, and no appearance of vifid matter in ir, nor any remains of the former ftomach. The ftones were much leffened, and appeared as if coroded by fome diffolvent; they were covered with a very fine membrane, which was the only thing that parted them from the cavity of the ftomach.

In other cray-finhes, which had moulted a longer time, I did not find the ftones in their ufual places, bur quite in the ftomach, where they were joined together by their concave parts.

In others, where the new fhell was almoft arrived at its full hardnefs, I found nothing in the place where the ftones ufed to be lodged, but a white fpot, which was no more than the two membranes of the veficle, that had contained the fone, flarunk clofe together. Upon opening the ftomach, I found it full of a yellow liquor and food,

248 The History and Memoirs of the

food, without any remains of a ftone; and have fometimes even found pieces of fhells, and claws of other cray fifhes half digetted therein. In thefe laft are likewife found the fpace formerly poffeffed by the ftones, taken up by another veficle, full of water, already mentioned. - All which obfervations prove,

Ift, That the ftones taken from the heads of cray-fifhes, are not lodged in their brain, but clofed in the ftomach, which is placed below.

2 dly, That they are not the feed or origin of the new fhell, as fome have imagined, fince they fubfift after the fhell is formed.
${ }_{3}$ dly, That upon cafting their fhells, they lilkewife change their fomach, without any apparent renovation in the other parts, excepting the inteftine, which feems to fhare the fate of the ftomach.

4 thly, That the ftones are not found till their featon of moulting, and that they are afterwards lodged in the new ftomach, where they continue leffening, and at length are totally confumed.
sthly, That thefe ftones, together with the old fomach, ferves the animal as food during its ficknefs, occafioned by the moulting.

Some authors imagine, that the blue colour of fome of thefe ftones arifes from a peculiar malady, incident to fome of them at the time of their moulcing. If this be not the real caufe, 'tis at Jeaft certain, that the ftones of this colour affumie a flefh colour by boiling; and I have even known them turn red by the mere heat of the fun.

Hence it is, that among thofe ufed in the fhops, fome are Llue, and others carnation; for I can farce conceive that the greateft part of the ftones, commonly fold, are counterfeit, as fome have afferted, on account that the great quantity thereof

Royal Academy of Sciences. 249
thereof in ufe, fince we find cray-fifhes enough almoft every where; befide, that thefe fones confift of layers, or firata, like bezoar, which art would have much ado to imitate; not to mention that they turn black, exfoliate and yield a urinous fmell upon calcination; a proof of their being really derived from the animal kingdom. To which may be added, that in the analy $/ s$, they yield an urinous fpirit, with a little volatile falt. -Upon the whole, 'tis more than probable, that the crabs eyes ufed among us, are taken from the living animals; and that the blue or ruddy ones, mixed among them, come from the fick and dead ones.

The virtues of crabs eyes are commonly fuppofed to be no other than as meer abforbents; but the following experiment will prove, that they have other properties, which carry them into the very mafs of blood.

A perfon having taken a potion, wherein crabs eyes were an ingredient for fome acrimonies which incommoded him, found himfelf feized all at once with an eryfipelas in the face, which hereby became ftrangely bloated, attended with violent prickings, the bleating reached his throat, and hindered his fwallowing. At firt, it was feared, that fomething had been mixed among the crabs eyes, or that they had been pounded in a brafs mortar, and had imbibed the pernicious quality thereof; upon which the fame potion was ordered with other crabs eyes, which ftill produced the fame effect, till at length the patient being informed that there were crabs eyes in the draught, eafed the phyfician of his perplexity, by telling him, that the had found the like every time fhe had taken crabs eyes; upon which, the crabs eyes being difcontinued, the

$$
\text { VoL. III. } \mathrm{N}^{\circ} \cdot 30 \text { E e fymptons }
$$

250 The History and Memoirs of the

fymptom ceafed, and it has been fince obferved, that crab's eyes had the fame effect on her fon ; upon which it may not be amifs to obferve, how much the effect of remedies may be difturbed by conititutions. Tho' we only fpeak of the ftones found in cray-fifhes: yet there is a fpecies of lobfters, called aftacus marinus, where they are likewife found. This fpecies is perfectly like our cray-fifhes, fetting its bulk afide.

To conclude; if fome people have an averfion for cray-fifhes, Van Helmont obferves, that thofe animals, in their turn, have fo great a one for hogs, that if any come near them, they prefently die. Hence, fays he, it is that in Brandenburg, where ftore of them are caught, the waggoners, who carry them, are obliged to keep watch all night, to prevent any hogs from paffing under their waggons; for that if only one paffed, there would not be a cray-fifh alive next morning.
XI. Of the formation and growth of the 乃bells of land and water animals, eitber of the jea or of rivers, by M. de Reaumur \dagger; tranlated by Mr. Chambers.

The wifdom of nature would not have done enough for the prefervation of animals, if, contenting herfelf to have framed their internal parts with wonderful art, fhe had not employed the fame addrefs to defend them againft other bodies around them, the too rude touches of fuch bodies would have quickly deftroyed thofe fo flender canals, and thofe fibres fo very fubtle, whereon their whole mechanifn depends. Hence we find thofe delicate parts invefted with diverfe coats, or

$$
\dagger \text { Nov. 1709. }
$$

Royal Academy of Sciences. 25 I

 covers, not eafy to be altered by the bodies around, being not only in an under skin, clofer and firmer than the reft ; but this ufually covered with hairs, feathers, fcales, or fhells. Under thefe little ramparts, if I may ufe the term, the animal machines are fheltered from all the attempts of bodies, which are continually rubbing and beating upon them; and the care of nature is even gone fo far, as to proportion a ftrength of thefe defences to the weaknefs of the parts within; I mean, that thofe animals, which either by their figure, or their foftnefs of their fubftance, lay them moft open to the bodies around, have the ftrongeft coverings. Thus we find fhells on thofe whofe fubftance is very foft and moift, and figure almoft flat or fpiral, which would otherwife, by this double difadvantage, be liable to lacerations from the ground, fand, or ftones they creep upon. The number of different kinds of animals, both in land and water, preferved by means of fuch fhells is immenfe; as is alfo the art and ingenuity they are framed withal. Nature feems to have taken pleafure in varying their ftructure, colour, and fhape; infomuch that the admirers of the beauties of the creation have moft of them made it their bufinefs to collect all they could meet withal, every new fhell furnifhing fome new curiofity; their cabinets, tho' they only contain a fmall pars of thofe which deck the univerfe, yet have enough to excite the admiration of all, who know how to admire. Hitherto indeed they feem to have confined themfelves to the bare contemplation of this beautiful piece of wo kmanfh:p, no body that I know of, having explained the manner wherein it is produced; fo that finding nothing to be learned on this head among authors, I confulted nature herfelf by feveral experiments; and Ee2
252 The History and Memoirs of the

'tis on the refult thereof the following fyttem is formed.
Tho' at firt fight, it may appear moft natural to explain the formation of fhells before their growth; yet I fhall here obferve a contrary order, and begin with explaining the manner in which they grow, by reafon this was eafier to be difcovered by experiments, and that it afforded an eafy infight into their formation; which, as one may fay, is only the firt degree of growth.

A body may grow in two different manners, or to fpeak more precifely, the little parts of matter which unite themfelves to thofe a body before confilted of, and hereby augment its bulk, may be joined to it in two different manners. The former when they have firft paffed thro' the body itfelf, and are prepared therein, and hereby rendered fit to poffers the place they are carried to, ere they become united thereto, which is commonly called, growing by vegetation, and in fchools, by intuffurception. Thus it is the fap mounts in plants, by litele canals in the plants themfelves; which, after preparing it, fuitably conveys it to diverfe parts of the plant, where it ftops and acheres, and confequently inlarges the body of fuch plant: and 'tis thus that the blood in an animal, being conveyed by the arteries to the extremes of the body, adheres to the flefh and augments its bulk.

The $2 d$ fpecies of growth is, when the new parts are applied to the body, without paffing through, or undergoing any preparation in the body itfelf, which is called growing by appofition, and in the fchools, by juxtapofition. Thus it is all thofe artificial plants grow produced by the chymifts, as likewife all chryftallifations, falts, $\Delta^{3} c$.

Royal Academy of Sciences. 253

Now the growth of fhells muft be performed after one of thefe two manners; they who make évery thing vegetate, even to fones, would hardly have furpected that fhells; which are wrought with fo much art, flould be produced by a fimple juxtapofition, and the analogy, which feems to be between them and bones (for may they not be confidered as external bones) feems to confirm the opinion, fince bones really vegetate; but there is no great ftrength in bare conjectures, and 'tis experiments alone, made on the things themfelves in queftion, that can fupport fuch reafonings; 'tis they alone mult fhow the way nature has been pleafed to take to arrive at her end; and by them we fhall hereafter fhew, that fhells are formed by a fimple appofition. My experiments indeed have only been made on fome fpecies of fliells, both of the fea, river, and land kinđ̛́s; but this I apprehend fufficient to intitle me to an explanation of the growth and formation of fhells in general, for the fame reafon, as the explaining how one plant vegetates, Cr in what manner nutrition is performed in one animal, would be allowed fufficient for all.

Hence I fhall content myfelf with relating the experiments, I have made on diverfe kinds of land frails, to prevent the tedious repetitions I muft fall into, were I to give the like experiments upon water-fnails, both fea and river kinds, upon feveral fpecies of two leaved fhells, as mufcles, pallourdes, pectongles, $छ c$. which it would not be eafy for many people to repeat after me; whereas every body may make them on land fnails. All I think neceffary to note is, that I inclofed the feveral kinds of fea and river fhellfifhes in little tubs, which I funk in the fea or river, after firt piercing them full of little holes,

254 The History and Memoirs of the

big enough to let in the water, but not to let out the fifhes; by which means I was enabled to make much the fame experiments, and with the fame fuccefs upon their fhells, as thofe I am going to relate upon the fhells of land fnails. Thus much laid down, I pafs on to explain the growth of fhells.

When the animal, which before exactly filled its fhell, grows, the fhell can no longer cover it all over, but neceffarily leaves part of the body bare, which bare part is always that next the aperture of the fhell; for the animal can only grow on that fide. All animals, which, like the fnails, inhabit twifted or fpiral flelis, are only capable of augmenting on the fide of their head, which is that of the orifice of the fhell; whereas the fifhes of two leaved Theils, as mufcles, are capable of growing in their whole circumference. Now in all the fpecies of fhell-fifhes, 'tis this fame part of the body, thus uncovered by the growth of the animal, that makes the fhell grow, and the mechanifm whereby it is effected, is as follows.
'Tis a neceffary effect of the laws of motion, that in liquids flowing in canals, when the the little part of fuch liquids, or any little foreign bodies mixed with them, which by reafon of their figure, or their likenefs, moves flower than the reft, mult recede from the centre of motion; that is, range themfelves near the fides of thofe canals; and it frequently happens, that fuch particles do likewife adhere to the inner furface of fuch canals, when they happen to be vifcid enough for that end. Of this we have inftances in the common water-pipes, whofe parietes upon opening them, are frequently found covered over with a little cruft of vilcid fubftance; and fome
wherein certain waters are conveyed, with a ftony crult ; it is certain withal, that the liquids, flowing in fuch canals, prefs, or impel their parietes on all fides, or which amounts to the fame, prefs the little vifcid or ftony particles of the crufts above-mentioned againft the fides; fo that if thefe canals were pierced like fieves, with a multitude of little holes of a proper figure, to give paffage only to fuch little vifcid and ftony bodies, they would break out of the canals, and place themfelves on the external furface thereof, and there form the cruft, as is feen on the infide; with this only difference, that the former is capable of becoming much thicker and ftronger, as being lefs expofed to the friction of the liquor, than that formed in the infide of the canal.

Now the growth of fhells is the work of a mechanifm of this kind; the external furface of the new-formed part of the body left bare by the old fhell, is full of a multitude of canals, wherein the proper fluids are circulating, that are to fuftain the animal; and a great number of vifcid and ftony particles are intermixed therewith, which being lefs fluid than thofe which compofe the liquids they are among, are caft neareft the fides of the veffels, which being full of an infinite number of pores at the external furface of the body proper to give them paffage, they eafily efcape out of their containing veffels, as being continually driven againft the fide by the circulating liquor, and place themfelves on the external furface of thefe canals, or rather over all the furface of the body not covered by the fhell, where they arrive with the more eafe, as all the pores give them a free exit; whereas feveral of the fe pores may be ftopped on the reft of the body by the fhell it is covered with.

25^{6} The History and Memoirs of the

Thefe particles of vifcid and fony matter being arrived at the external furface of the body, eafily adhere to each other, as well as to the extremity of the fhell ; and when the moft fubtle and fluid part of them is evaporated, they compore a little folid body, which is the firt layer, or ftratum, of the new piece of fhell, and other particles of a like matter to that of the firt fratum, whereof the circulating fluid contains enough, iffue from the fame veffels, by the fame mechanifm; here ir being no darger, that the firft firatum fhould have ftopped all the pores, and thus form a fecond fratum of fhell; and after the like manner arifes a third and a fourth, till the new fhell have arrived at a certain thicknefs, which is ufually much lefs than that of the old one, when the further growth of the animal gives rife to another new piece of thell.
'Tis the experiments I am now going to deliver, that are to thew whether this be the real manner of nature's proceeding, or whether all I have advanced be only matter of imagination.

I began with fuppofing that the animal grows before its hell, of which it is eafy to be fatisfied, by obferving a garden fnail at the time when its fhell is about to grow, or enlarge; for here it is vifibly too fmall to cover the body. On this occafion, they faften themfelves to the wall, where they remain at reft, and give opportunity for obferving a part of their body come beyond the fhell all around ; and this like all the reft of their body, is full of a prodigious number of little canals, as appears by the naked eye ; but much more by the microfcope.

The pores I have fuppofed in thefe canals, are too fmall to be vifible; but their exiftence may be evinced from their effects, with as much certainty

Royal Academy of Scienecs. 257

 certainty as if one faw them ever fo plainly. To do this, we need only break off a piece of the fhell of a fnail, without wounding its body, which may always be eafily done, by reafon it only fticks to it in one place; for in a little time after we fhould find the skin of the animal covered with a liquid fubftance, which could not have come from the veffels it was contained in, unlefs there had been pores in thofe veffels to let it pafs; and if for further fatisfaction this liquor be wiped off the skin with a linnen cloth, in a few hours more, you'll have a dew liquor o the like kind fucceeding it, which coming at once over the whole bare part, can only have paffed through its pores.'Tis this liquid, or rather the lefs fluid and moveable particles therein, that ferved to make the fhell grow; of this there will be no room to doubt, when it is confidered how it repairs the lofs of a piece of its thell, which may te clearly feen *, by putting a fnail, thus ftripped of a piece of hell, in a place where it may be commodiounly obferved. In a veffel, for inftance, where it does not remain long, ere it faftens againft the fides of the veffel, as it does againft a garden wall, when its fhell grows in the ufual courfe. Upon this the liquor is feen to thicken and fix, that is, its more volatile parts evaporate, and leave the groffer behind, which form a thin kind of cruft over all the naked part of the animal. This cruft may be perceived in four and twenty hours times, in which ftate it may be compared for its finenefs to a fidider's web. 'Tis this cruft that forms the firf firatum of the new fhell, which in a few days more grows thicker by the appofition of new layers under the firft,

* Plate III. E.g. 6.

Vol. III. N ${ }^{\text {D }}, 3_{0}$ Ff til!

258 The History and Memoirs of the

till in 10 or 12 days that the new piece of fhell is arrived at much the fame thicknefs as the reft.

When you would obferve the new piece of fhell arrive at this thicknefs, care muft be taken to put up a proper food with the animal, efpecially if the fracture were made near the aperture; for otherwife the bulk of its body will diminifh confiderably: fo that what fhell is left them, being large enough to cover them over, there are only the firft leaves of a new fhell formed; and it may in fome cafes be likewife proper to pull them from the fides of the veffels, when they continue there for féveral days together, in order to induce them to ufe the food, and repair the expence made in producing the filf leaves of a new piece of fhell.

For their food one may give them herbs, or even earth, and paper frequently fprinkled with water, for they will eat indifferently any of thofe things, which may fupply particles of matter firm enough to form a fhell ; and the earth, for inftance, muft needs abound with a multitude of little lamine, whence the ftones are formed that grow in its bofom; if fuch ftony lamine circulate with the liquors in the veffels of the frail, they muft doubtlefs be very fit to form the feveral frata of fhells. Now it may be fhewn, by a very eafy experiment, that fuch little ftony particles do circulate with the liquors: in order to this, one need only put a certain quantity of the liquor in a veffel, and expofe it fome days to the open air. After the futtleft part is evaporated, a folid matter will be found at the bottom, among which a multitude of little white friable corpufcles, like grains of fand, only thinner, will be found. 'Tis known likewife, that fnails at the beginning of winter make of this fame liquor a little lid, for the orifice of their fhell, to cover themfelves

Royal Academy of Sciences. 259 themfelves clofe up. This lid indeed is of a different texture, from that of the fhell; but it is folid, which is enough to fhew that there is plenty of folid particles mixed among the liquor; all the difference of texture between the lid and the fhell, probably arifes from the difference of the pores thro' which it paffed, in order to form them.

The fingle manner of forming a new piece of fhell, in the room of another broken off, might fuffice to prove, that thefe bodies do not vegetate; for if they grew by vegetation, there are only two ways for it, neither of which is compatible with the preceding experiment: for either thefe liquids, which the animal furnifhes for the growth of its fhell, and which on this bypotbefis, can only be conveyed to it, by the little part it is faftened by, which may here be confidered as the root of the fhell; either, I fay, thefe liquids muft here meet with canals to carry them to all parts of the fhell, or canals to carry them only to the extremity, which is to be enlarged. Now in both thofe fuppofitions, it would come to pafs, that when a piece of the fhell had been broke off, the liquid, flowing in fuch fhell, muft extravafate and pour forth at the rupture made in it. In which cafe, it would be on the circumference of the hole made in the fhell, that this liquid would be found, which, in reality, we only find on the body of the animal; and this liquor, after fixing, would make a kind of callus, which gradually enlarging, would at length clofe the hole. 'Tis thus the callus's have broken; bones are formed by the extraviafation of the juice, which before ferved to feed, and make them grow ; and 'tis thus that after cutting a piece of flefh from any part of the body, the adjacent flefh extends, and at iength covers the part before left bare. Laftly,

260 The History and Memoirs of the

the fame thing is found to befal trees; for upon cutting off a part, the juice oozing from it, forms a callus, which, by degrees, covers over the whole wound; but the quite contrary paffes in the production of the new piece of fhell, nothing comes out of the fhell, and the whole compafs of the hole clofes at the fame time, by the liquor oozing from the fubjacent body, and to prevent any furpicion, that this liquor iffues from the flacll in fome infenfible manner, and falling by its own weight, by the body of the animal, gathers in fufficient quantity, to compofe at Jength a reew piece of fhell, always placed directly under the old one, I fhall fubjoin two experiments, which, at the fame time, will remove this frraple, and demonftrate what has been already advanced.

* I have broke feveral frail-fhelis in two different manners, the firt by miking a large hole between the two extremities of the fhell; that is between the fhell and its orifice, and thro' the hole thruuting a piece of thin fkin between the animal and its fhell and faftening this fkin to the inner furface of the latter, fo as to clofe very accurately the hole made therein: here it is evident, that if the fhell were not formed of a liquid fpringing immediately from the body of the animal, but of another ozing from the fhell, a piece of new fle'l mult have forn'd itfelf on the external furface of the fkin ; and no fhell could poffibly be formed between the body of the fnail and this fkin : the contrary, however, came to pafs; the fide of the fkin which immediately touched the body, becoming lined with fhell, while nothing appeared on the other fide.
${ }^{*}$ Fig. 7:
The

Royal Academy of Sciences. 261

The fecond experiment is no lefs decifive than the former for breaking feveral fnail fhells, fo as to leffen the number of their circumvolutions : reducing for inftance a large garden-fhell ${ }^{*}$, which ufually confifts of 4 , or $4 \frac{1}{2}$, to $3 \frac{1}{2}$, or 4 ; and thus rendering them too fmall to cover the animal, I put them much in the fame condition as they were in, when the growth of the body left part of it bare; this done, I took, as in the former experiment, a piece of the thin fkin, as large as the aperture of the fhell; and thrufting part of it between the body of the fnail and the fhell, and faftening it to the irner furface of the latter, I turned the reft of the fkin over the external furface of the fhell, and faftened it in like manner thereto, fo that the whole circumference of the aperture of the fhell was covered with the fkin. Now if the fhell grew by a principal vegetation, one of thefe two things mutt happen, either that the piece of ikin thus clinging about it, would have hindered its growth; or the fhell growing and extending, would have carried the fkin with it. But the contrary happened, for the fhell grew, and the skin remained as I left it; the growth of the fhell being fo conducted, that the thicknefs of the skin remained between the new piece of fhell and the old; which latter therefore could contribute nothing to the formation of the former.

Nor is there any difficulty in conceiving how the little parts of folid matter, mixed among the fluid, fhould faften themfelves to each other, in order to form a firft ftratum of the new fhell; nor how a fecond fratum fhould unite itfelf to this firlt; a third to the fecond; and fo of the reft. At leaft this difficulty is no other than what we meet withal, in explaining the nexus of the parts \dagger Fig. 8.

262 The History and Memoirs of the

of all folid bodies; in effect, whatever fyltem we adopt, 'tis obvious, that fuch folid particles floating in a very vifcid liquor, are greatly difpofed to unite together, and form feveral Atrata, as above-mentioned, I proceed now to give an experiment, which may let fome light into the manner wherein this is effected.

I pounded fome fnail fhells in a mortar, and after reducing them into a very fine powder, paffed it thro' a very clofe fieve, in order to feparate the coarfer parts. This powder being put in a veffel, and vinegar caft thereon, 2 fermentation arofe, and a kind of pafte was formed, which being left to dry in the air, attained a confiderable hardnefs, efpecially the firf layer, or that next the air ; on the contrary, when I moiftened the fame powcler with water, a pafte indeed arofe; but upon its drying, the little particles of the powder crumbled again, and ceafed any longer to adhere. Hence it appears, that the acids analogous to thofe of vinegar, are proper to bind the particles whereof the fhell confifts together; they who make ufe at every turn of the acids in the air, may here find room for them, by fuppofing that they contribute to the coagaulating of the liquid, which fixes itfelf on the body of the fnail. But to make this conjecture carry a face of probability, it feems neceffary, that there fhould be fome acids found mixed with fea-water, to help congulate the liquids whereof fea-hhells are formed; whereas if this were true, the powder of a feafhell, mixed up with fea-water, and then dried, muft come to a better confiftance, than what we obferved the fnail-fhell did, when mixed with ri-ver-water, which in fact it does not.

Nor need we apprehend, that the firft leaf of a mell fould ftop all the paffages, by which the Jiquor

Royal Academy of Sciences. 2 \& 3 liquor is to iffue to form a fecond leaf, or Aratum; and fo of others, till it have arrived at a thicknefs. 'Tis hardly poffible, that the new leaf fhould clofe fo exactly about the body of the fnail, as intirely to ftop all the little pores thereof; but the difficulty vanifhes at once, upon confidering that this firft leaf could not be formed without a diminution in the bulk of the fnail's body, both on account of the folid particles, whereby the fhell is formed, and of a much larger quantity of fluid matters mixed among them, which had fince evaporated. Hence it follows, that there mult be room enough left between this new leaf and the body of the animal, for new liquor to place itfelf between them, and thus form a fecond fratum by the fame mechanifm as the firft, and fo a third, and as many more as is neceffary to give the fhell its due thicknefs.

The feveral ftrata, which compofe the thicknefs of fhells, become very fenfible upon throwing a fhell in the fire, and taking it out again, after it is a little burnt; for here its thicknefs fubdivides into a great number of different leaves, which are at a lictle diftance from each other, the fire having found an eafier paffage between thefe leaves than betweeen the leffer lamine each of thefe confifts of; and the like ufually happens in other bodies formed of frata. Wienels all thofe kinds of paftries, formed of what we commonly call puffpafte, the whole ftructure whereof is to be formed of alternate layers of pafte and butcer laid one over the other; which, upon baking, divide into feveral leaves or fhivers, by reafon paffages are eafieft opened by the fire, or are even found already open between the feveral layers, which can never be exactly applied one over the other thro' their whole extent.

264 The History and Memoirs of the

The feveral leaves may be eafily faftened to each other, without their faftening likewife to the body of the animal they are to cover, which the moifture of its skin mult neceffarily prevent; and if any flight adhefion fhould happen, the various motions of the animal within its fhell, would be enough to break them again.
${ }^{\prime}$ Tis a neceffary confequence of this fyftem of the growth of fhells, that their inlargement fhould only proceed by increafing the number of their fpiral wreaths or circumvolutions; and that the length of each circumvolution fhould always remain the fame, which accordingly is a matter of fact, one may eafily be convinced of, by only. reducing the fhell of a fnail, arrived at its utmoft' growth, to the fame number of circumvolutions as that of a young fnail of the fame fecies, the two fhells will be found of the fame fize. I have frequently compared the fhells of fnails newly hatched, or which I had even taken out of their tggs before hatching *, with other fhells of the largeft fnails of the fame fpecies, from which I had retrenched all but the like number of fipiral circumvolutions, as were in the little ones, in which cafe they appeared both equal. It may be added, that the number of thefe circumvolutions makes a confiderable addition to the fize of a fnail's fhell a fingle circumvolution, more or lefs occafioning a very fenfible difference, for the diameter of each circumvolution is near double that of the preceding one, and but half of the following one; whence it follows, that a half or even a $\frac{1}{4}$ of a circumvolution more nult make a confiderable enlargement; and yet it frequently proves difficult enough to difcover, whether a fhell con$\operatorname{tain} \frac{x}{2}$ or a $\frac{\frac{4}{4}}{4}$ of a circumvolution more or lefs
than another. The only fure way to compaie the number of circumvolutions between two Thells of the fame fpecies, is to compare large ones with very fmall ones, in which cafe the difference eafily appears.

What has been hitherto faid of the growth of fhells, will exempt us from the neceffity of entering into the derail of their firft formation; for 'tis eafy to conceive, that when the body of a little embryo, which is one day to fill a large Mell, is arrived at a certain ftate, wherein the feveral skins that inclofe it are of confifence enough to let pais thro' their pores the only liquor fit to form a Shell, this liquor mult place itfelf on fuch skirs, and thicken and fix there; and in one word, begin the formation of a fhell in the fame manner as it afterwards continues its growth. Snails do not leave their eggs, till they have firft covered themfelves with fuch a fhell, which now confilts of one circumvolution, and fomewhat more.

It remains to folve two difficulties, which feem pretty confiderable: the firt naturally arifes from the experiments above related, and ftands thus, the new piece of fhell, formed in lieu of the old one which had been pulled off, is of a whitifh colour, and confequently very different from the reft of the fhell, whence it fhould feem to be of a different texture, and may hence be inferred to have been formed after a different manner; fo that the foregoing experiments will determine nothing as to the ordinary way of growth.

To obviate this difficulty, it will be neceffiry to account for the regular variety of the colours in certain fhells, or the fame experiments, which fhew the caufe of fuch regularity, will effectually remove this objection.

Vol. III. $\mathrm{N}^{\circ} .30$.
Gg
This

This regular variety of colours is peculiarly obfervable in a little tpecies of garden fnails*; the ground of their fhell is white, citron coloured, yellow, or fome intermediate colour between thefe, and on this ground appear various ftripes, which twift firally like the fhell, and in fome fhells are black, in others brown and reddiih, in others the breadth of each ftripe gradually increafes as it approaches towards the aperture of the fhell ; and it fometimes happens, that two of them fpread fo much as to meet, and form only one broad itripe afterwards. In fome fhel's there are 5 or 6 fuch ftripes; others have but 3 or 4, and others only 2, or even a fingle one. A fort of white and brown ftripes may alfo be feen on the large garden-fnails; but they are much lefs confpicuous, and muft be viewed with fome attention; to diftinguifh one from another in each kind of fhells, the ftripes are not all of the fame breadth in the fame part of the fhell. There feems but one plaufible way of accounting for the variety of thefe colours on the principles we have here eftablifhed of the growth of chells by juxtapofition; for having confidered the skin of the animal as a kind of fieve, which gives paffage to the particles, which are to form the fhell, 'tis obvious, that if we conceive the skin as differently pierced in different parts, or which amounts to the fime, that it is compofed of different fieves, fome whereof pafs particles of different figures or natures, from thofe palfed by others, and deny entrance to thefe, it will follow, that fuch partidis of different nature or figure, muft form bodies, which will reflect the like differently, that is form pieces of thell of different colours.

[^21]'Tis likewife a neceffary confequence of the manner of growing of a fnail's fhell, that the whole furface of this fhell (I do not fay its whole thicknefs) fhould be formed by the collar of a fnail, as being the part next the head, and which therefore, upon the leaft growth of the animal, muft be left uncovered, 'tis this therefore that is to enlarge it ; and we may confider this as the manufacturer of the whole furface or circumference of the fhell: fo that it will fuffice, if this collar be compofed of different fieves, to form a fhell of different colours. For inftance, if it had two or three little fieves proper to tranfmit black or brown particles, and the fides of thofe fieves be parallel to each other, while the reft of its furface tranfmits other particles proper to exhibit yellow or citron colour ; for the fhell formed of particles paffed thro' thefe feveral fieves, muft evidently have a yellow or citron colour'd ground, with black or brown ftripes thereon, almoft parallel or approaching each other infenfibly, and which will become larger in proportion, as thefe fieves are enlarged.

Tho' we were to difcern nothing like thefe different fieves juft mentioned on the collar of the fnail, they afford us fo probable a folution of the diverfity of colours in fhells, that one would be induced to admit them, but fortunately enough they difcover themfelves, efpecially in the little fpecies of fnails, fo remarkable for the diftinctmefs of its ftripes *. Upon the ftripping one of thefe fnails of a part of its fhell, all the reft of the body appears of one uniform white colour, excepting the collar, where the white has more of a yellowifh caft; and befide this is befet with a number of black or brown ftripes, equal to that

* Fig. 10.

$$
\mathrm{Gg}_{2} \quad \text { of }
$$

268 Tbe History and Memoirs of the

of the ftripes of the fhell, and placed in the fame direction. Thofe fnails which have only one black ftripe on their fhell, having but one black fpot on their collar, and thofe which have 4 ftripes on their fhell, having 4 likewife on their collar : thefe ftripes are placed immediately under thofe of the fhell, and begin at about a line's diftance from the extremity of the collar, which itfelf is ufually fpotted with black all around; but the length of thefe ftripes in the collar differs in different fnails of the fame fpecies; one cannot overlook the fieves I have above-mentioned, in obferving thefe ftripes, whofe different colour abundantly proves the difference of their textures.

To remove all doubt, whether thefe fpots do the office of fieves different from thofe of the reft of the collar, and that the reft of the collar, which likewife appears of a different colour from the reft of the skin of the body, does alfo tranfmit particles of a different nature or figure, the bufinefs mult be to learn, whether experiments agree with this reafon; and all neceflary thereto, is to let a fnail repair the fhell, which has been torn from it; for if it appear, that fo much of their fhell as is formed over thefe black fripes is black, and what is formed between them is of a different colour, both from thofe ftripes, and from the reft of the body, it muft be allowed inconteftible, that thefe different parts do the different offices above affigned them. Now experience agrees perfectly with the reafon already laid down, * the fhell growing on the collar over the brown or black fripes, is itfelf brown or black ; that formed between them is white or yellow; and that on all the reft of the body white, but a different white from that of the collar when it happeris to

[^22]Royal Academy of Sciences. 2 E9
be white alfo: the fame is obfervable in the large garden-fnails, where all the fhell formed over their collar is brown, or of a colour like that of the old fhell, and the fhell on all the reft of their body white.

We come now to a fecond fcruple, which may arife upon repeating the experiments here related. The new fhell formed over the collar, in the room of the old piece broken off, fometimes proves of a different colour therefrom, which feem a contradiction to the account here laid down.

But there will be no great difficulty in reconciling this kind of irregularity with the reafonings and experiments above, when 'tis confidered that the new fhell formed over the collar never differs in colour from the old, unlefs its external furface be extreamly rough, and as it were furrowed over, while the reft of the fheil is quite fmooth.

This inequality of furface of the new fhell is occafioned by the motions the fnail puts forth, when it would re-enter its houfe before this part be thick enough to fuftain itfelf, without bearing on it ; for 'tis evident upon thus fhrinking it, when there is only one or a few leaves formed of the new piece of fhell, it muft bring the extremity of fuch pliant leaves towards the old fhell, and thus reducing them into a lefs compafs, makes diverfe folds therein, which of itfelf were almoft fufficient to change the colour of the new fhell; but there is fomething more in it; for the firt new feratum formed upon breaking off a large piece of old fhell is ufually white, by reafon the particles of the liquid difpofed to form a fhell of this colour, are tranfmitted more readily thro' the porcs than thofe which form a fhell of any other colour, as is evident enough, the reft of the body of

270 The History and Memoirs of the

the animal being palpably covered over with liquid ere any be perceived on the collar ; whence it happens, that this liquid fpreading upon the collar, forms the firft leaf of the fhell white; but this leaf being extreamly thin, is tranfparent likewife, and rarely hinders the fhell, which the collar itfelf produces afterwards, from appearing of its natural colour. Now, if the fnail happen to fhrink into its fhell when only this firf white layer is formed, it is clear, that it muft draw the extremities of fuch leaf towards each other, by reafon it adheres to it in forne places; and will occafion it to make pleats or folds, and increafe its thicknefs by diminifhing its breadth and tranfparence, which muft give the new fhell a kind of middle colour, between that ufually formed on the collar, and that on the reft of the body; but the internal furface of the new piece of fhell being always fmooth, muft always be of the colour naturally produced by the pores correfponding to it, and accordingly we find its colour diverfified after the fame manner as that of the old fhell, even when the external furface is of a different colour from what it fhould naturally have.

It would be wrong to conclude from what has been here fhewn of the formation of the ftripes which adorn certain fpecies of fhells; that the external furface of all fhells fhould either be Atriped, or have one uniform colour; and that there fhould be no fhells, whofe external furface exhibits fpots or ftains differently placed, irregularly figured, and feparated from each other by unequal diftances, fuch as the fhell, fig. 12. upon this ground, that fuch fpots cannot be produced on the furface of the fhell, without different fieves on the collar of the animals to tranfmit a different liquid from what paffes thro' the other places,

Royal Academy of Sciences. 271

places, and confequently withour the apparatus neceffary to produce a ftriped fhell ; for it is obvious, that the fieves muft have fubfifted during the whole formation of the fhell, in order to render this hell ftriped in its whole compafs ; but if it happens on the contrary, that thefe fieves change fo as the pores which before tranfmitted a liquid matter proper to form a brown fhell, become either too wide, or too narrow, or alter their figure in any other manner after filterating a certain quantity of their firft liquor, and the like alteration befall the reft which tranfmitted a liquid proper to form a white fhell; the confequence mult be, that the fhell now formed, will exhibit feveral black and white fpots, combined with the fame irregularity as the fieves had been altered.

This will not appear a fuppofition without all foundation, to fuch as confider, that certain alterations befall even the fieves of the collar of fnails, which produce ftriped fhells; for fome of thefe fhells may be found wherein the ftripes are very ftrong and vivid towards their aperture, while there is no appearance of any ftripes on the firft circumvolutions of the fpiral; that is, on thofe next the vertex of the fhell : now this change of colour can only proceed from a like change in the fieves of the collar ; 'tis true, we are to conceive much more confiderable changes on the collar of the animals which inhabit fuch frells as that of fig. II.; but thefe changes are equally poffible with the other.

The fluidity of the liquor whereof the fhell is formed, may allo have fome fhare in the irregular diftribution of the colours on fome kinds; for it is eafy to conceive, that if the liquid which fome animals yield for the formation of their fhell, be fluid enough to run eafily from one

272 The History and Memoirs of the

place to another, fhells may eafily come to be ir regularly marked, provided there be fieves on their collar, which tranfmit different liquids; fince in that cafe it muft frequently happen, that the liquid will not remain in the place where it was firft lodged; but that what for inftance was deftined to form a white fhell, fhall remove itfelf to a place where a liquid iffues that is to form a black fhell; as on the other hand, that which forms the black fhell, they run into a place where another liquor iffues to make a white fhell: now, as this muft happen very irregularly, according to the different pofitions the animal is in, where the fhell is formed, the fpots muft likewife be difpofed very irregularly.

Recourfe however muft be had to the firft of the two caufes above affigned, viz. a change of the texture of the fieves of the collar, in order to account for the regular pofition of the red fpots, in a fquare or rectangular figure, which adorn the fhell reprefented in fig. 13, it being neceffary to form it fuch, that the fieves in this fquare, or rectangular figure, which tranfmit the liquid proper to give fuch colour to the fhell, ftop, and open again at a certain rate.

Tho' the collar of the fnail trace out the whole circumference of the fhell, and tho' this fuffice to diftribute colours regularly thereon, yet it does not give it all its thicknefs, which receives a confiderable augmentation from the particles of the liquid iffuing from the pores of the reft of the fkin : this is eafily fhewn, for upon reducing the fhell of a large fnail to the fame number of circumvolutions, as that of a fmall one, tho' they appear equally large, yet that of the large one will be found the thicker: this increafed thicknefs of the fhell is particularly obfervable in fome fecies of firal
fea-fhells, where it fometimes rifes to fuch a pitch, that the firft circumvolutions of the fhell grow up; fo that the animal is obliged to withdraw its tail into the circumvolutions further off, as appears very fenfibly in fome fhells difected by M. Merry; one whereof is reprefented by fig. 13, where the fipaces a a a, formerly poffeffed by the body of the animal, are become quite folid.

The animal's tail not adhering to the vertex of the fhell, as fome have imagined, it can eafily difplace it; efpecially while the part whereby the animal is faftened to the fhell, is changing (for this part changes according as the body of the animal, makes more, or fewer, fpires:) thusa little fnail, for inftance, fhall be faftened by a part of its firft circumvolution, and when its grown bigger, fiall only be faftened by the fecond.

The laft frata formed by the fkin which does roi cover the collar of the fnail ought to be white agreeably to all that has been hitherto advanced, and they are fo accordingly, as may eafily bo perceived by, rubbing off the firft Arata of the external furface of thefe fhells, with a file; thofe which then remain appearing white, or the fame may be proved with lefs trouble by confidering, that the colours of the empty fhells found in gardens, are frequently almoft effaced, and fometimes appear quite white; the firft ftrata which are the orly coloured ones, having been carried off by too much attrition againft the ground.

The growth of halls being proportionate to that of the animals inhatiting them, is hardly fenfible; yet in the generality of hells, we can eafily diftinguith their feveral ftages, or degrees of growth : thefe aree expreffed by feveral little parallel eminences, which one would be apt to

$$
\text { Vol. III. } \mathrm{N}^{\circ} \cdot 30 \text {. H h take }
$$

274 The History and Memoirs of the
take for the fibres of the fhell; they are fpread over the whole furface in fuch as are flat, or two leaved; and over the whole breadth in thofe twifted fpiralwife. The leaft reflection on the manner above explained of the formation of fhells, will let us fee, that they cannot grow without producing the little eminences juift mentioned; for each new piece of fhell muft be faftened immediately under that preceeding it, which, of confequence, will be higher than this, by the whole thicknefs it had attained when the growth of the animal gave rife to this laft; ender which likewife muft be placed the piece produced next to this; by fuch means the fhell mult be covered with a multitude of little eminences parallel to each other, which may be diftinctly feen on the fhells of fnails \dagger, where they are very near together.
Each fhell ${ }^{*}$ has ufually tome of thefe eminences much more diftinct than others," and further afunder, which exprefs the different times when the fhell ceafed growing, and bears forme analogy to the different fhoots obfervable on each branch of a tree, the heat of fummer, or the cold of winter, putting a ftop to the growth of the animal which inhabits the fhell, as is eafily obferved in fnails, its fhell is ftopped of courfe while thofe feafons latt; I mean the extent or compafs of it, not its thicknefs, which is continually increafing by the flux of fluid particles from the body of the animal : hence when it begins to grow again, in a more favourable feafon, the new picce of thell it now produces, is faftened under a much thicker thell, than when its growth proceeds gradually; and confequently, that former term mult be expreffed by a larger eminence.

+ Fig. 6. * Fig. 7, is.

Royal Academy of Sciences. 275
There is one other thing which renders the feveral places where the fhell began growing, after having ceafed for fome time, fenfible, viz. a change of colour on the ftripes above-mentioned; the black or brown ftripes are in thefe places, of a much brighter colour, and fometimes fcarce different from the reft of the fhell; nor will the caufe of fuch change be far to feek, if it be remembered, that the \dagger fieves of the collar which tranfmit the liquid proper to form thefe black or brown ftripes, have their origin ai the extremity of the collar ; whence it is obvious, that the firlt ftratum of fhell drawn by the extremity of this collar, muft be of a different colour from that of the ftripes; but as the growth of the animal occafions the ftripes of the coliar to be found under this firft fhell, while it is yet very thin, but confequently tranfparent; it does not hinder the fhell produced under it, from appearing black whare it is fo; but when the animal has ceafed growing for fome time, it increafes the thicknefs of this fhell produced by the extremity of the collar, fo that the fhell which the ftripes of the collar produce under this laft, when the animal begins to grow again, being placed under a piece of fhell much thicker, and lefs tranfparent, the colour of thefe ftripes is the lefs difcernable: and thus appears different here, from what it is in the reft of the fripes.

The figure of certain fhells is what may now feem the moft difficult to reconcile with this theory of their growth, and accordingly make the fecond difficulty which I propofe to folve; the chief objections drawn from the figures of thells againft their growing by juxtapofition, may be reduced to 4 ; ift, The change of the curvity \dagger Fig. 7.

276 The History and Memoirs of the

in certain parts of fome fhells; for how on this fyftem fhould the curvity of fome fhells be produced, which, after extending for fome time outwards, turns again upon irfelf, as in fig. 15 , which reprefents the tranfverfe fection of a fhell of this kind, where it may be feen? But after the fhell has twifted from A through CCC to EEE, it turns back again to DDD, a meer appofition of parts ought rather to continue the fame curvity. adly, How are the horns produced which we find on certain fhells? By horns, I mean a kind of eminences feen on fome fpecies of fhells, which by their figure refemble the horns of fome animals, fuch are the eminences in fig. 14 and 15, reprefented by the letters CCC. 3 dly, How can the furrows, or flutings, be formed, which inrich the external furface of certain fhells, while their internal furface is perfectly fmooth? For why fhould fuch fhells be thicker through their whole length in fome places, than in others, as are thofe of fig. 17, 18, 19? Lafly, How can a cavity be formed, wherewith the body of the animal has no communication, and which runs all along the acclivity of the fhell, as that reprefented by E, fig. 7.

The fhells of land frails will yet furnifh an anfiver to the firft of thofe difficultiest. The \downarrow aft flage of growth of thefe fhells is a kind of rim or ledge, about a line broad, which turns outwards; whereas all the reft of the fhell turns inwards; this ledge formed, the growth of the fhells is at an end; they who may never have feen a fnail's fhell without fuch a ledge, feem to have fome reafon to conclude, that thefe fhells can never be produced by a fimple juxtapofition; for in that cafe they hould twift a contrary way from +Fig. 6.

Royal Academy of Scienges. 27% what they do; but if it be confidered, that fnails' of all ages and degrees of growth below the higheft, have no fuch ledge, the difficulty difappears, for the fame thing doubtlefs happen to fuch thells, as that of fig. 15. This Jedge is of the fame colour with the ftripes in the little ftriped frails, reprefented in fig. $1 \ddagger$, and accordingly the extremity of the collar is of the fame colour as the skin, which forms the ftripes, as may be feen in fig. 10.

The curvity of the fhell is unchangeable, unlefs that of the body of the animal, which is its mould, happen to change, 'tis eafy to imagine probable caufes of fuch a change in the growth of the fnail. For inftance, 'tis not unlikely, that the intemnal fibres of the collar may grow fafter than the external ones; the confequence whereof muft be the latter's pulling the collar of the fnail towards them, and obliging it to bend outwards.

As the different length of the fibres of the collar gives us an eafy conception, how it may come to be bent outwards; fo, by attending to this different length of the 'fame fibres, we may conceive how the bodies of feveral animals come to be twifted fpirally; for fuppofing that from the production of fuch animals, the fibres of a certain part of their furface are longer than thofe of the oppofite furface, 'tis evident the body will crook itfelf fo as, the furface, whofe fibres are fhorteft, will form the concave of the curvity ; and the other furface, whofe fibres are longeft, the convex which is enough to make the body of the animal defcribe a fpiral, fince it cannot grow without always bending thus on iffelf, provided its long and fhort fibres grow in the fame proportion. ${ }^{3}$ T Tis true, in the cafe above-mentioned, it would only defcribe firals, whofe feveral circumvolu-

278 The History and Memoirs of the
tions would be almoft in the fame plane; whereas few animals have the fhell or the body, which ferves it as a mould, twifted in this manner, but have the feveral fpires, both of their body and fhell, in different planes; but with one fuppofition more, we fhail eafily conceive how thofe laft fpirals are formed; for fuppofing, befide the two furfaces, whofe fibres have been laid down as longer one of them than the other, that there are two other directly oppofite furfaces, each of them comprehended between the preceding ones, but fmaller than them ; and that thefe two laft furfaces are alfo formed in fuch manner, that the fibres of the one are longer than the correfponding fibres of the other. This muft needs oblige the body of the animal to incline itfelf on one fide, and hereby form fpires fituate in different planes.

If land fnails happened to produce a ledge like that found at their laft term of growth, after the formation of each quarter of a circumvolution, and that their external fibres relaxing hereupon, they produced another quarter of a circumvolution, bent the fame way as the former; after which they produced a new ledge, and fo in a fuccelfion their fhell would be divided from fpace to fpace, by a number of fuch ledges, which would be a pretty ornament to it. 'T is \dagger by \boldsymbol{x} dike artifice, that the fhells of the feveral fpecies of fea fnails, which appear fo wonderfully wrought, are formed, the working being only fa many little ledges of fhell difpofed at certain diftances, which yet beautified in fuch manner, as if nature had been at the pains to carve it.
†Fig. 16, ${ }^{2} \%$

Royal Academy of Sciences. 279
The * horns found on fome fpecies of thells, are alfo produced by the fame mechanifm as the reft of the fhell, certain flefhy tubercles growing on the body of the filhes, which inhabit them, ferve them as moulds; end according as more or fewer of thefe tubercles are formed, while the animal grows one circumvolution, there are more or fewer of fuch horns in the fame circumvolution. They are hollow when thefe tubercles have remained on the body of the animal all its life-time; partly hollow, and partly folid, when the fame tubercles had been partly diffipated, and quite folid, when the tubercles had been quite vanifhed during the animal's life.

To the fame formation, and that of the ledges, we are to afcribe much fmaller eminences, which from their figure, may be called prickles, ufually found at the end of the terms of the fenfible growth of thefe fhells, as may be obferved in fig. 18.

The flutings found on the external furface of Inells, while their internal furfaces are perfectly fmooth, will not be lefs eafy to explain. It will fuffice to obferve, that the whole extremity of the furface of the animal's body is likewife fluted; and hence we may find the fhell likewife fluted in its internal furface to fome diftance from its extremity \dagger; but in regard the reft of the furface of the animal's body is fmooth and foft, the animal growing, and the part of its body not fluted, coming to correfpond to that of the fhell, which is what this part furnifhes; for the fhell ferves to fill or ftop the internal flutings, whence the fhell is only found fluted on its external furface, excepting only the firft lines of the breadth of its internal one.

280 The History and Memoirs of the
There * is a flat fea fhell, much like the kind called Si. Fames, whoie formation would have appeared very difficult; but for 'what we have fhewn of the formation of the flutings in other fhells, this fhell is likewife fluted, but the two fides of each flute are little canals inclofed on all fides with fhells, and perforated from the vortex of the fhell to its extremity. Tis eafy to fhew how thefe little canals may be formed, all required being to conceive, that the firft extremity of the body of the fifh is deeply fluted, and the reft of its body quite fmooth, and its fubftance too hard to enter the channel or fluting, formed by the extremity; fo that the reft of the body only produces a few leaves or fhells, which are applied over this fluting, without clofing it intirely, but leaving a little canal fuch as above related.

Before we come to explain the formation of the cavity running along the flight of certain fpecies of fhells, between which and the body there is no communication, it may be neceffary to define what we mean by flight. To form a precife idea thereof, it mult be obferved, that when the colJar of the animal draws the feveral fpiral circumvolutions of the fhell, that part of the exterral furface neareft the axis it winds about, forms fpires, whofe diameter or width is lefs than that of the fpires defcribed by the other points of the collar. Now that part of the fea-fhell formed by thefe fimaller fpires, is called its flight; a tolerable notion whereof may be conceived from the flight of a ftair-cafe.

To unfold the myftery of the formation of this cavity along the flight, it muft be firf obferved, that the upper furface of the co!lar is convex, and the lower concave ; as is evident hence, that the
$\stackrel{\text { * Fig. } 19 .}{ }$

Royal Academy of Sciences. 28 I firft is placed under the concavity of the fhell, and the fecond over its convexity: * now the upper furface of the collar being always left bare, by the growth of the animal, 'ris this that forms the new fhell, and that part of the upper furface of the collar, which traces the fmatheft fpires, is likewife that which produces the light of the fhell; imagire now the coliar of the animal to fpread and extend, in order to produce a new piece of fhell, and confequentily a new piece of the fight, as the animal is twifted within its whole fhell, we are to conceive at the fame time that a certain part of its body extends and winds about a part of the flight it had not before reached to ; this part thus applied to a new place of the flight is that where the lower furface of the collar makes an angle with the upper. Now if we conceive this part of the animal to be neither crooked nor flexible enough, to mould itfelf perfectly upon the part of the flight, it is new applied on, 'tis evident a little void fpace will be left between the flight, a part of the body of the animal, and a little piece of the old fhell found between this part of the body and the flight. The part of the body which contributes to inclofe this cavity, not being covered with fiell, will yield a liquor proper to form one; and by the production of this new piece of fhell, the litte hole will be furrounded on all fides; and 'tis apparent this fame hole mult run all aiong the fight by reafon the fhell cannot grow, but ir mult be formed at the fame time.

If the little part, which helps to inclofe the hole, emits ftore of liquor, the hole by this means will become quite folid, being ftopped up by the new fhell; this accordingly befalls feveral new

* Fig. 7.

Vol III. N°. 3 I ,

282 The History and Memoirs of the

fhells, whofe flights are much thicker than it feems they fhould be.

If the curvity of the fight diminifh enough to give the body of the animal room to mould it felf thereon, after the fhell has made a certain number of fpires, 'tis evident no more hole muft be formed, and that what is already formed muft be ftopped towards its upper furface. This accordingly actually befalls fnails, which have attained their laft degree of growth, or to whofe fhell the ledge is formed, as may be feen in fig. 11. The little fhell there reprefented has a little ledge B B B, and the hole which fhould appear in E , were it not arrived at its period of growth, is fopped up, by reafon of its arrival thereat. The fame thing befalls large fnails, and the only reafon why we fee the holes E in fig. 7 and 8, upon the flight of their fhell is, that they had not attained their utmoft growth; otherwife thofe holes would have been covered over as in fig. II.
When the collar draws the feveral fpires round a little cone, 'tis evident a little conical fpace mutt be left vacant in the middle of the hell; that is, a little cavity will appear, round which all the fpires are placed. Several fpecies of fea-fhells, as that of fig. 12, and diverfe kinds of land fnails have fuch a conical aperture.

If the vertex of the cone, round which the collar of the animal winds, be at the origin of the fhell, 'tis evident this hole muft terminate in the point of the fhell, which will clofe it here. Such is the hole of the fnail fhells above-mentioned, and that of fig. 12, which terminates where the fhell cornmences; but if the zertex of the cone be beyond the origin of the fhell, it muft be perforated throughout; and after this manner are feveral fea-fhells formed.

Royal Academy of Sciences. 283

Laftly, if we fuppofe the collar of the animal twift round a folid of fome crooked figure, in lieu of the cone above fuppofed, and the vertex of this folid to be at the origin of the fhell, 'tis likewife evident, that a hole will be formed in the fhell of the figure of fuch folid.

If the animal inhabiting fuch a fhell, form a cavity all along the flight thereof, fuch as we have already reprefented on the fhells of large garden-fnails, this its fhell muft be perforated with two feveral holes through its whole length, and confequently will have two oblong apertures*, wherewith the body of the animal has no communication.

Thefe two holes may fometimes alfo be produced after the fame manner as that running along the flight. To conceive this, we need only imagine, that the part which afterwards poffefles the place of that which has formed the hole, by reafon it could not mould itfelf upon the flight, that the part I fay of the animal's body that fucceeds this, cannot adapt itfelf exactly to the fhell it has produced.

A volume would hardly fuffice to relate all the remarkables in the figures of fhells, I have frefcribed myfelf narrower bounds, and the more willingly I do it, as there is fcarce any thing extraordinary in them, whofe formation may not be reduced to fomething already laid down.

> An explanation of the figures, trenflated by J.M.

Fig. 6. reprefents a fhell of a great garden fnail, broken in two different places. The letters A A A mark the circumvolution of the holes that have been made in it. We fee thefe holes

[^23]
284 The History and Memoirs of the

ftopped by new pieces of fhell, placed immediately under the old one. It muft be obferved, that this new fhell is not coloured like the old one, that it has not alfo different little lines, which may be called fibres of the fhell, though improperly becaufe of their figure ; and thefe fibres are marked diftirctly upon the old one.

Fig. 7. The letters A A A mark the circumvolution of an aperture made in the fhell. It is a piece of thin skin, which ftops this aperture; it is pafted to the inner furface of the fhell. B reprefents the new fhell, which has formed itfelf upon the furface of the skin which touched the body of the fnail.

D D is the circumvolution of the aperture of the fhell, which is not turned back like that of of fig. 6 .

E marks by a prick'd line the aperture of a hole, which runs along the whole flight of the fhell, quite to its fummit or point P.

C C is one of the notable bounds of the growth of the fhell. We there fee the rays almoft interrupted, or faintly traced.

Fig. 8, is the flell of a great garden fnail, of which the circumvolution of the aperture went juft to A, but broken according to the turn of this aperture, which is bouncid by the letters BCC. CCC is a bit of thir skin, which here appears pafted upon the outer furface of the fhell, but we mult alfo imagine it pafted upon the inner furface of the fame flell ; fo that it covers the whole edge of the fhell. which is confequently contained between the two extremities of this piece of thin skin. E D D D Q mark the new fhell which has been produced, and feparated from the old one by the thicknefs of the skin upon which it is applied.

Royal Academy of Sciences. 285

Fig. 9. reprefents the fhell of a fmall fnail, newly come out of its egg.

Fig. 10. is a fmall garden fnail, with 5 black or brown rays painted upon its fhell; the intervals between thefe rays are of a lemon colour. This fnail appears divefted of a part of its fheil, which went before to $A A A$, and is at prefent terminated in B B, which was done on purpofe to Shew the collar of this fnail, which is alfo marked with 5 rays C C C C C of a brown colour, but not fo deep as that of the fhell ; the origin of thefe rays is at fome little diftance from the extremity of the collar; and they ufually are but a line or two in length. The fpace between thefe rays, and that which is between the neareft extremity to the edge of the collar, and that edge of the collar A A is of a much brighter colour than that of the rays, and alfo more brown than that of the reft of the skin,' which is from the extremity of the rays CCCCC the moft diftant from AAA, quite to the fummit P of the fhell.

The edge A A A of the collar of the animal is of a brownifh colour.

Fig. 11. is alfo a ftriped fhell, with only 3 rays. There have two holes been made in this fhell, of which the fartheft from the collar is marked A, and the neareft DCC. The fhell which was formed to ftop the hole A, is of a different colour from the rays and their intervals. But that which fopped the hole DCC is of the fame colour with the old one; fo that the black rays are continued in CC, and D is of a lemon colour. This laft hole however is here painted not quite fo near the edge of the fhell as it fhould be.

B B B mark the return of this fhell, which was arrived at its laft degree of growth. This

286 The History and Memoirs of the

return is of a brown colour; it has alfo been feen (in fig. 10.) that the extremity of the edge of the collar is brown. The origin of the rays of the fhell is not at this return, as the origin of the rays of the collar is not at the extremity of this collar.

E marks the fhell, which then ftops the cavity along the fight.

Fig. 12. reprefents a fhell, called la Veuve; it is marked with different black fpots, of irregular figures, and placed irregularly on a white ground.

A+ A there is a hole, which goes juft to the fommit of the fhell. This Loice is formed very diferently from that of fys. 7 and 12 .

Fig. 13. is a fpecies of turbinites, upon which appear ciifurent little fquares, of a red colour, difpofed in a pretty regular proportion.

Fig. 14. is the fection of a flell, where the tail of the animal has been obliged to abandon the firft turns, becaufe they are grown quite folid. The letters A A AAAA mark the fpaces, which at firft were occupied by the body of the animal, and afterwards filled up. It fhews alfo that part of the fpace EB is become folid, namely that which is marked E , the body of the animal occupied only the fpaces B B, D D D D, $\mho c$.

C C C C are thofe eminences of Thells, which I have called horns, or fections of thole eminences.

Fig. 15. is the tranfverfe fection of a fhell, which after having made a certain number of fpiral turns in CCCC one way, turns back again in DDD.

A A are two holes, which are in the whole length of the fhel!, with which the body of the animal does not communicate, which occupies the fpaces B B B, \&

CCC are eminences, or little horns. Fig.

Royal Agademy of Sciences. 287

Fig. 16. is a fpecies of turbinites, which feems very artificially wrought. This ornament comes from different returns, fuch as the laft A A A difpofed from fpace to fpace.

Fig. 17. has alfo feveral returns like the preceding. But we may alfo obferve, that each of thefe returns is fluted.

B B is the inner furface of the fhell, which is fmooth, tho' the returns are fluted.

Fig. 18. is a fhell with the outer furface fluted, tho' the inner furface is fmooth.

CC, C C C, DD D are 3 bounds of very fenfible growths, the laft of which D D D D is adorned with feveral little eminences, which I have called points, becaule of their figure.

Fig. 19. is alfo a fluted fhell, but it has this fingularity, that each of the ribs of the flutings are themfelves little canals; that is, there remain void fpaces in the middle of thefe ribs through their whole length ; and thefe holes are furrounded with fhell in fuch a manner, that the body of the animal does not enter within. We have opened one of thefe canals marked $\mathrm{B}, \mathrm{D} \mathrm{D}, \mathrm{A} A, \mathrm{CC}$. It appears, that the inner furface D D, which is applied to the bociy of the animal, is terminated in A A, that is, thefe long holes are not fhut up from A A to the extremity C C, into which the body of the animal enters.
XII. Conjectures and Reflections upon the matter of light, or fire, by M. Lemery, jun. tranflated by Mr . Chambers.
The matter of fire is the ift, and moft powerful diffolvant of terreftial bodies, we having no other that penetrates fo dcep, and disjoins the component principles fo compleatly; it is to this matter the chymift is indebted for the fecrets he

$$
\stackrel{*}{-} \text { Nov. } 13,1707 .
$$

288 The History and Memoirs of the extorts from nature which he would never reveal unlefs forced, and as it were tortured by fo active a diffolvant.——Now a matter which contributes fo much to our knowledge of other bodies, does certainly deferve to be itfelf ftudied in its turn.

It is allowed to be the real principle of heat, light, and even of the fluidity or fufion of feveral terreftrial bodies, which, without the mixture and action of this matter would always remain in a folid form; but as it is not always found in fufficient plenty, or meets with bodies which make too much refiftance, we fometimes find, that inftead of liquifying or keeping them in their former fuidity, it engages itfelf in them, and becomes inclofed in fuch a manncr as to remain imprifoned, and to need fome external cawie to come to its affiftance, and open the cells on the outfide, wherein it was retained.

There are 2 remarkable circumftances in this imprifoned matter; the firft, That it fometimes makes a fenfible increafe in the weight of the body it is contained in; and the 2d, That it retains all its peculiar properties during the whole time of fuch captivity, wheroof it gives evident proofs, when ever occafion is given it, of breaking loofe from its confinement, and making an effect upon fome other body.

Every body will not allow of what I here attribute to the matter of fire, it is even alledged, that fuch doctrine is repugnant to our idea of what conftitutes the proper nature of this matter, and yet it is fupported by fo many and folid experiments, that feveral chymifts of the firft clafs, have been obliged to adopt it.- To fet it in a further light, and have the more pretence for ay!lying it to certain phanomena, which I propofe

Royal Academy of Scierces. 289 pore to account for in this memoir, and fome others, I fhall relate the experiments it is grounded upon, and anfwer fuch objections as are brought againf it; objections, which, notwithftanding all the verifimilitude given it by experiments, are of force fufficient to bring its truth in queftion.
Every boly knows, that feveral metalline bodies when expofed to the fire, as :egulus of antimony, lead, tir; and even mercury; notwithftanding that they loofe a great deal of their own fubftance, which flies into the air during the operation, are fo far from weighing lefs than they did before, which one would naturally expeet, that they weigh a great deal more. Now, the queftion is, whence this augmentation of weight thould arife? A'nd whether the fire, which reduces thefe bodies into the calcined ftate we fee them do not likewife give them this additional weight?

It may perhaps be anfwered, That this augmentation of weights arifes from the acids of the wood, or coals, which are introduced into thefe bodies, by means of the fire, and remain in them, when the particles of fire are gone off. But it is difficult to conceive, how a fufficient quantity of thefe acids fhould arrive at a calcined body to produce an augmentation, which, as M. Homberg obferves, fometimes amount to $\frac{1}{5}$ th part of the whole, it is certain ere they reach the body expofe to the fire, they mult pafs through the veffel wherein the matter is contained, and yet the vefils ufed in thefe operations are fuch as will hold the moft violent acids, without letting them tfape thro' their pores ; if therefore fome acids of wood find means to pafs awong with the particles of the fire, thro' the pores above-mentioned, yet the difficulty of paffing is fuch, as to

Yoi, III. NO: 3 I K k make

2 go The Histiory and Memoirs of the

make their number very fmall; fo that much the greateft part of the acids muft be ftopped; and retained by the particles of the veffel itfelf, which is ufually of a nature difpofed to abforb them; the matter of fire, on the contrary, paffing freely and plentifully through all kinds of veffels, mult be allowed much fitter to make this augmentation, which being very confiderable, will fuppofe a copious caufe, fuch as fire alore can furnifh; but what proves the point ftill more fully is, that upon expofing thefe bodies to the fur's rays collected by a burning-glafs, their weight is no lefs increafed than if they had been expoted to a common fire: now in this cafe all acids of wood, and coals, are effectually precluded; and whatever fuppofition we go upon, it will be equally difficult to exclude the fire from its flare in this phenomenon.

But befides proving that the matter of fire infinuates itfelf into certain boilies, and augments their weight, it muft likewife be fhewn, that this matter in being thus repofited in bodies, alters not its nature, but retains all the particular properties which conftitute it matter of fire.The proof of this fecond article will be a confirmation of the firt ; for if what is introduced into the bodies during their calcination, be the real matter of fire, when we conceive, that this matter engages itfelf, and refides therein, with all its native properties, it will be eafily allowed, that the augmentation of weight arifes chiefly therefrom.

Now the matter of fire retained in metalline bodies, is kept too clofe to be able to manifeft itFelf by any of the fenifible figns, which fhould make it known, and diftinguifh it from other matters ; the teafon is, that to become perceive-
able, it mult force its prifon doors, and make an attack upon fome other body; but the cells it is repofited in, are fo ftrong, and folid, that nothing lefs than a fire of fufion will fuffice to break them, and difengage the fiery particles contained in them.

It is otherwife with thofe which had infinuated into fteny or faline bodies, by means of calcination; for thefe bodies being of a laxer texture, water alone fuffices to make them a paffage out; for that by impinging againft the particles of thofe bodies, it not only deftroys the union, but reduces them into a fine powder, capable of being fuftained in the fluid: thus the reafon why limewater for inftance is a drier, and abforbent, is owing to the ftony particles it is replete with, and if lime fteeped in water be unfit for the ufes of building, it is by reafon its particles having been much attenuated by the fluid, unite again fo intimately as to 'form one compact and durable mals.

As water therefore difunites the particles of faline and ftony bodies when calcined, and grinds them fo very fmall, if there be any matter of fire lock'd up between the particles thereof, it muft efcape by means of this difunion; and this it does accordingly, throwing itfelf into the aqueous fluid which had delivered it, and which becomes more or lefs heated thereby, in propartion to the quantity of this matter.

Another remarkable effect is obferved in fome of thefe bodies; viz. That making a very ample provifion of the matter of fire, and being liable to let it loofe again upon the flenderent occafion, when they are applied upon an animal body, the fiery particles which iffue from them, and infinuate jnto the texture of the part, burn, and make an K k 2
efchar

292 The History and Memoirs of the efchar differing only in degree from that produced by a live coal, or a hot iron.

The eafinefs for the accounting for the effects above-mentioned, on the fuppofition of particles of fire latent in fuch bodies, is a violent prefumption in favour of the hypothefis; but what renders it inconteftable is, the manner wherein calcined bodies become difpofed for fuch effects, which is in confequence of their being expofed to the matter of fir ——_Add to this, that the p operties they acquire hereby, are the fime as thofe of natural fire; and that none of thefe effects are unaccountable for, without any tolerable fatisfaction upon any orher footing.

For to take a particular inftance, when lime caft in water turns that liquid hor, and makes it boil as fire would do, fhall this effect be attributed to any fermentative particles contained in the lime, and brought into action by the fire? With wnat ground can this be done, when we fand rothing in lime but a pure earth, Atripped of all fal:s, the fire feeming to have expelled all other matters to make room for itfelf? And how fhould a pirre earth, when fteepod in water, be able to heat it? But the particles of fire, fay they, are only fuch, by reafon of the rapid motion they are agitated with. Now fuppofing them engaged in the texture of grois bodies, they mult quickly loofe their motion, and confequently ceafe to be fire, and thus become incapable of the effects attributed to them, fo that fome other caufe mult be had recourfe to.

I anfwer, that the matter of fire muft be confidered as a fluid of a certain nature, and endued with properties peculiar to it, which diftinguifh it from all o:her fluids. Now I agree, that thefe properties depend on the rapid motion of the particles
ficles of this fluid; but conceive withal, that the Figure of each of thefe particles mult be taken inte the account: be this at it will, when this fluid happens to be detained in the texture of any grofs bodies, its condition, I fuppofe, is no worle than that of other fluids, and confequently muft have the fame fate: now water is likewife a liquid, whofe fluidity, as fhall hereafter be fhewn, defiends upon the matter of fire, and confequently whofe fluidity mult be much fhort of that of fire; and yet we fee water daily inclofed in numerous bodies without Joofing its fluidity, or any of the properties which characterize it; fo that upon bringing it forth, we find it the fame matter as before; and much more mult the matter in queftion, when in the fame circumftances, retain its nature, and be found upon its enlargement with the fame properties as before.

But it will be replied, that the bufinefs here is not about a comparifon, but to fhew how the particles of fire detained in a grofs body can preferve their motion. This we fhall confider accordingly, after firtt difpatching the following difficulty, the anfwer to which will naturally lead to that folution.
'Tis eafy to conceive how a grofs fluid, whofe particles are in a moderate agitation, fhould be retained in the texture of a folid body; but it is fcarce conceivable, but that a matter fo fubtil and active as fire, fhould nor find fome paffage out of the bedies it has been introduced into, or fhould not even make itfelf a paffage by the rapidity of its motion.

I anfwer, that as to what regards the activity of the matter of fire, it is certainly very great; and that when this matter is in a fufficient quantity to

294 The History and Memoirs of the

furmount the refiftance of a folid body, it makes its way thro' by breaking the continuity of its parts; but it is not always that it is in quantity fufficient for this purpofe; in which cafe its force being inferior, or only equal to the refiftance of the folid body it is inclofed in, all its activity and efforts remain ufelefs, unlefs they be affifted by fonie foreign caufe acting on the outfide.

As to the fubtilty of the particles of this matrer, it muft be allowed very confiderably; but the queftion will be, Whether the pores of the cells they are inclofed in may not be ftill fmaller? As we have no microfcope fine enough, nor any meafure exact enough to decide this point, and there being withal no inconverience in fuppofing the pores above-mentioned fmaller than the particles of fire, I inclined to this fuppofition, by reafon of the ftrong arguments we have, that the matter of fire is aclually retained in the texture of feveral bodies.

Nor do I pretend, that the pores thro' which the particles of fire cannot pafs, fhould be impenetrable to all other kinds of matter, for how fmall foever thefe particles be, I can conceive others 100 times fmaller, which can eafily pervade all pores, and whofe office may perhaps be to fill the vacuities of the univerfe; but notwithftanding that their fimallnefs furpaffes that of fire, I do not apprehend them fo proper to produce the effects here treated off, as the matter of fire-MM reafon is, that one of the chief properties of fire is to diffolve and liquify terreftrial bodies, which it effects by dividing and difuniting the particles, and giving each the neceffary motion to conftitute it a fluid; but the fubtil matter above-mentioned, finds fo open a paffage thro' all bodies, that it efcapes on every fide without making fo ftrong an

Royal Academy of Sciences. 295

 impreffion on thofe bodies as we fird from the matter of fire, which being lefs fubtil than the former, and confequently unable to purfue the fame roads, is forced to break the obftacles in its way, and thus deftroy the natural texture of the bodies; this reafoning might be confimed by feveral fenfible facts, of which, the following is one: if a net be fpread in the ftream of a river, the particles of water finding an eafy paffage thro' the holes or mafhes thereof, will do it no damage: but ifa body come which is too bulky to pafs thro' thofe mafhes, it muft either be ftopped thereby, or break the net; and the fame befalls the matter of light, which, according to its quantity and ftrength, is either detained in bodies, or diffolves them.Now to conceive without the help of any comparifon, how the matter of fire inclofed in the cells of a folid body, fhould be able to preferve its motion, we need only obferve, that there is a more fubtil matter continually pervading the pores of thefe cells, and which of conequence muft keep up the agitation of the particles refiding therein.
M. Saurin has fhewn, that we may fafely affirm, that the proper matter, even of the molt folid and heavy bodies, does hard'y make the 100,000 th part of their bulk. Now, though we fhould abate a good deal of this fuppofition, yet there would ftill be room enough in the moft folid bodies to give paffage, or even lodging, to a large quantity of foreign matter, in which cafe the fubtile matter abovementioned, paffing more copioully than can well be imagined, the fiery particles, notwithftanding their imprifonment, will not want caufes fufficient to mantain their fluidity and motion.

2.96 The History and Memoirs of the

In effect, tho' it hhould be granted, that the particles of fire engaged in a folid body, could not always preferve their motion therein, it would not follow hence, that they muft loofe their proper nature of fire; for it is not only to the rapidity of their motion, but alfo to their figure, and their fmallnefs, that their peculiar properties are owing: thus the particles of water are at reft when frozen ; and yet no body will fay, that they are effentially different now, from what they were before, fince we find the leaft agitation, or the fmalleft degree of hear, enables them again to produce effects which they had ftill remained fit for by their peculiar figure, and whereof no other body, though expofed to the fame heat, would ever be capable.

We likewife know, that falt is the matter of taftes, and has certain properties arifing from the peculiar figure of its parts, and yet it only acts when diffolved; or which amounts to the fame; when it floats in a fluid, which keeps its parcicles in motion. Now will any one alledge, that falt, when undiffolved, is not the matter of taltes, nor has the fpecial properties which characterize a falt? This can never be faid while its particles retain their effential figure, the chief fource of thele properties.

Hence, tho' it were true, that the retention of particles of fire in a folid body, fometimes robbed them of their motion, they would only be in the cafe of frozen water, or folid falt; and might be reftored to their former effects by recovering their motion.

It may perhaps be demanded, why the matter of fire, which had penetrated into a folid body, fhould not be able to get out again without the help of a foreign caufe to facilitate its, efcape, the paffages

Royal Academy of Sciences. 297

paffages having been open enough to let it in, cannot be too narrow for its exit.

I anfwer, that while the body is expofed to the fire, its pores are opened, and dilated, and feveral of the fiery particles which are continually entering it, go out again with the fame liberty fo long as the dilatation of the pores remains; but when the fire ceafes to act, the caufe of this dilatation ceafing likewife, the particles of the body which before had been fwelled, do now fhrink, and their pores return to their firft ftate; upon which the particles of fire which had infinuated into the cells of fuch body, are now utterly fhut up, beyond a poffibility of efcaping, till fome new dilatation of the pores, or a fufion of the body fet them free.
'Tis no wonder, that bodies, which, by their calcination have ftored up a large quantity of fire, fhould not afford any fenfe of heat upon touching; for as the particles of fire inclofed within them, cannot reach the hand, which is only applied on their furface, the effect will be the rame, as if they had no fire at all; as we find that falt is only fenfible to the tafte, when it is difengaged enough from all other bodies, to make an immediate impreffion upon the organ of that fenfe: and hence if a body newly taken from the fire, give a vehement fenfe of heat, this is not owing to the particles of fire imprifoned in it, but to thofe which have found paffages open enough to let them out: for we may fuppofe two kinds of pores, fome which are naturally big enough to give free paffage to the matter of fire at all times, and others which only afford it, when dilated by heat.

Laftly, it may be further asked, why the matter of fire inclofed in faline and ftony bodies, does Vol. III. $\mathrm{N}^{\mathrm{Q}} .3^{\mathrm{I}}$. L ! not

298 The History and Memoirs of the
not break the texture of the parts, which oppofe its efcape, fince we find water do it, which yet is incomparably lefs active than fire.

I anfwer, that if the quantity of matter in fire contained in lime, were as great as that of water poured on it, it would probably need no foreign affiftance to get forth; but notwithftanding all its activity, its quantity may be found fo fmall, compared to that of water, that the particles of water fhall be more effectual than thofe of fire. Now 'cis evident, that the fire procured from the bodies above-mentioned, is much lefs in'quantity than the water ufed to procure them.

Further as to fixed alcali falts, which likewife contain particles of fire; water, 'cis known, diffolves them with furprizing quicknefs, and fire itfelf would hardly be able to bring them fooner to fufion. If then water make fo perfect a difunion on the particles of thefe falts, it will hereby afford a free paflage to the matter of fire retained among thofe particles; and if nothing than a fire of fufion fuffice to prove the fame difunion in thefe falts, the matter of fire contained therein, being in much lefs quantity, and confequently much lefs powerful than that of a fire of fufion, stis evident on this occafion it mult act lefs effectually than water ; nor muft we fuppofe, that the liquid thus poured upon lime and alcaly falts, does alone open a paffage for the matter of fire, but there being all the room imaginable to fuppofe, that this matter ftill retains its motion within the bodies, we conclude, that 'tis continually at work in its prifon to force a way thro' the fame; and that if it prove unable, notwithftanding all its efforts, to make its efcape, without an extraneous aid, yet it contributes confiderably, and facilitates the effect of this aid.

Royal Academy of Sciences. 299

The fun only feems a vaft fund of the matter of fire, or if you had rather, a huge llame of the fame effential nature as ours, fince we find, that both the one and the other produce the very fame effects; but this luminary being at a great diftance from us, can only act on terreftrial bos dies, in 2 manners, viz. either by emanations and effluxes of his fubftance, emitted from thence to us, an hypothefis liable to feveral difficulties, and inadequate to certain of the phænomena, or by trains of the matter of this fire diffufed thro ${ }^{\circ}$ all the intervals of the fluid mafs, between the fun and us, which trains come to act upon terreftrial bodies, when preffed or impelled towards them by the prefence of the fun._—Each train may be confidered as a little fun continued, but fill depending upon the large one, which is the fource of their motion or action, upon terreftrial bodies.

Thefe trains which form the luminous rays, and are immediate agents of light, do not differ as to the matter from that of the fun itelf, as we find by certain experience : hence as the fun is a flame which produces the fame effeets as a culinary flame, we may infer the manner of its acting upon terreftrial bodies, from that wherein our flame is found to act: now we know, that upon plunging one of the abovementioned bodies in a common flame, 'tis the proper matter thereof, without any foreign affiltance, that penetrates, heats, and modifies them according to their pectuHiar nature; and, when the fame bodies are prefented to the fire without touching the flame, the impreffions they receive therefrom, are effentially the fame as thofe, which the flame, if immediately applied thereon, would have produced: the only difference is, as to more and lefs, fo that a body

300 The History and Memairs of the

acted on immediately by a little flame, will be heated and altered after the fame manner, as if placed at a confiderable diftance from a large flame.

All this gives a fufficient indication, that the matter of fire or light, interpofed between the flame and us, is of the fame nature as the flame itfelf; and why then fhould the luminous rays, which tranfmit the action of the fun to us, and feem only to be continuations therecf, be of a different matter from the fun's body? In effect, when collected by means of a burning glafs, they att with an equal or even more vigour, upon terreftrial bodies, than the moft violent flame could do, if immediately applied on the fame bodies; a proof not only that the matter of thefe rays is the fame as that of the flame; but alfo, that the flame confiits in a colleetion of a vaft quantity of the matter of light, which acts the more forcibl', as it is more copious, and collected clofer. On this footing, the fun only feems to differ from the rays of light, collected by a burning-glafs; in this, that the matter of light being there much more copious, and more collected than it is in the rays, would act more readily and forcibly upon bodies immediately applied thereto.
The vehement action of the rays united by a burning glafs, fhews, that the fluid, which in their natural thate feparates and extends them, does likewife ferve to moderate this action, and render it more fupportable; for without fuch medium, inftead of enlightening and exciting a gentle warmth, they would confume all bodies, and even deftroy the organ of fight. To explain this by a fenfible comparifon, the air is that to the reys of light, which water is to the particles of fire, in a Balbeunn Marix, the rays being rem-

Royaf Academy of Sciences. 307

 pered in their paffage thro' the air, as the fire is in its paffage thro' the water; or the rays of light might be compared to corofive fpirits, which tear and lacerate when they are pure, but produce an agreeable fharpnefs when diluted with a fufficient quantity of fome other fluid.The matter of fire driven by the fun upon terreftrial bodies, modifies them differently according to their refpective natures; fome it eafily puts and preferves in a ftate of fufion, and fuch are the particles of water, which originally are folid, and owe all their fluidity to the action of the matter of fire lodged amongft them : this we prove hence, that their fluidity remains while the fun determines a fufficient quantity of this matter, to convey his action upon terreftrial bodies; but in thofe feafons when he only fends a little, fuci little being infufficent to maintain the fufion of thefe particles, they relapfe into their firf fate of immobility, from whence they recover, prefenting them to the fire; or which amounts to the fame; and the fun begins to fhed a greater quantity of the matter of fire upon terreftrial bodies.

From what has been faid, we learn, ift, that ice is only a reftoration of the particles of water into their natural ftate; 2 dly , that the bare abfence of the matter of fire fuffices to effect this reftoration; and 3 dly, that the fluidity of water is a real fufion like that of metals expofed to the fire, only differing from it in this, that metals require a large quantity of particles of fire to liquify and fupport them in a ftate of liquification, whereas the particles of water feldom receive fo little fire, as to allow them to refume their natural folidity.

A nother effect of the matter of fire fhed upon terreftrial bodies is, to engage itfelf in certain

302 The History ana Memoirs of the

compofitions of falt, earth, water, $\xi^{\circ} c$. together with them to form oils, fats, and in fine all inflamable bodies, which only become fuch by the great quantity of particles of fire lodged in them. What leads me to this fentiment is, that upon decompounding thefe bodies, they turn intirely into falt, earth, water, and a fine fubtance, which paffes thro' the clofeft veffels, and maugre all the care of the beft artift, fpends itfelf in fuficient quantity to produce a confiderable diminution in the weight of what remains.
'Tis certain, that falt, earth and water, whether united together, or feparated, never become inflammable, but even ufually hinder, or retard the inflammability of bodies, which naturally have that property; it may even be afferted, that the eficet of thefe principles in the compofition of inflammable bodies, is only to ftop and arreft the matter of light or flame, which never rifes into the air under this form, except when the inflammable body having been firft expofed to the fire, that agent has broke the cells thereof, and given room for the inclofed matter to fly off.
'Tis the real matter therefore of fire or flame, which fteals from the artift in the cnaly/is of inflanmable bodies, all that remains of thofe bodies after the decompolition, being the materials whereof the cells were formed, in which this matter was retained ; it will be eafily allowed, that this matter, when free and left to itfelf, muft pervade the clofelt veffels, when we confider that there is no veffel but what the fire will readily penetrate, fo as to heat a fluid contained in it; and as to the caufe of inflammability, experience thewing us, that falt, earth, and water, in whatzerer circumftance is found, never becomes inflam-

Royal Academy of Sciences. 303

mable; to what can we more probably attribure the effect abovementioned, than to the matter of fire, which, as already proved, forms the flame, and gives it all its properties.

Nor need we be furprifed, that calcined metals, and all bodies in general, which have procured a ftock of light by calcination, do not kindle by the fire as oils do; for to make a body kindle fo as to be perceived, the luminous fubftance iffuing continually from it, muft be copious enough, and form a mals fufficiently firm to prefs the matter of light diffufed thro' the air vigoroully, and on all fides, fo that the particles of this matter ftriking each other fucceffively, and according to the direct determination communicated to them, do hereby tranfmit the preffions of the flame, to a diftance greater or lefs; but when only little particles of luminous fubftance, are diffufed from folid bodies, they prefently become fo darkened by the air around them, as to be difabled from making preffions efficacious, and extended enough, to become fenfible to the eye.

Upon the whole we conceive, that the matter of light lodged in inflammable bodies, expofed to the fires, iffues out every moment in much greater quantity, than the fame matter lodged in calcined metals; whether it be that fuch metals contain lefs of this matter than the oils, or whether having a clofer texture of parts, they do not allow it in free egrefs; but at each effort of the agent which obliges them to let go, they let only fmall parcels exhale, incable of fenfibly affecting the eye.

This reafoning perfectly agrees with a known fact, which is, that upon expofing very inflammable bodies, as paper or ftraw, to a toofmall fire, they fometimes confume intirely without cafting any flame, by reafon the external agent teing

304 The History and Memoirs of the too weak to expel a great quantity of the matter. lodged in fome bodies all at once, this whole matter flies off fucceffive in little invifible portions, anfwerable to the force which procures them deliverance.

We might here take occafion to account for feveral curiotis phenomena, wherein this fyftem of imprifoned fire perfectly quadrates, and which are even fo naturally deducible herefrom, that each phewomenon feems a kind of proof of the truth thereof. How precifely, for inftance, does the matter of light feem to agree with the phofphori, both natural and artificial ; and to thofe violent fermentations accompanied with flame, which the oyls ufed in fuch experiments, are obliged to exhale, when penetrated by nitrous, or vitriolic acids? But were I to enter into a precife detail of all the experiments of this kind, and the particular circumftances which accompany each, I fhould go far beyond the bound prefcribed for this paper, and incroach on the fubject of future ones.

I fhall only here obferve, that all phofphori in general may be confidered as a kind of fpunges, filled with the matter of light, which is fo feebly retained therein, as to need but very little external help to become capable of exhaling inder a luminous form, and even of burning and fetting on fire fuch bodies as come inits way.

It follows from the whole, that if the fun feem to be a kind of large receptacle, or fund of the matter of fire, we have an infinite number of petty receptacles in inflammable bodies, which feem to have been formed to fupply the want of the fun; in effect the prefence of fire being indifpenfibly neceffary to light and heat, and the great

lumi-

Royal Academy of Sciences. 305 luminary not being always in our hemifphere, but retiring to a great diftance from us in certain feafons, or which amounts to the fame, only determining a little quantity of the matter of light upon terreftrial bodies, we find a happy fubititute in the bofom of the earth, whereby to remove all the evils, into which the abfence or diftance of the fun would unavoidably throw us; I mean, a fufficient quantity of the matter of light, to form a fort of little funs, which warm and illuminate as well as the great one.
XIII. On the evaporation of fluids in cold weather, with remarks on jome effects of the frofts, by M. Gauteron, of the royal academy of Montpellier; tranflated by Mr. Chambers.

We ufually confider the evaporation of fluids as an effect of the heat, or motion of the ambient air, and it will appear furprizing, that a quite oppofite caufe fhould produce the fame effect; and that a fluid fhould lofe more of its parts in the fevereft froft, than while the air is in a temperate ftate. - Yet this is what I found in the great froft of this winter.

I have even obferved, that the greater the cold is, the greater has the evaporation been, and that ice itfelf loft confiderably, as much in proportion as the fluids which withftood the frof.

It began to freeze at Montpellier, on the 12 th of December, 1708, the wind being at north, $\frac{8}{4}$ from north-eaft, and the common thermometers ftanding at 10°, and that of M. Amontons's at the 53° : At 60° clock this evening, I expofed an ounce of common water, in a china cup, to be froze, which was done accordingly before

Vol. III. $\mathrm{N}^{\mathrm{O}} .3 \mathrm{I} . \mathrm{Mm}$ morning,

306 The History and Memoirs of the

morning, and weighing it at 8 a-clock the next day, I found that the water in freezing had loft 24 grains of its weight. This diminution was very real, fince, upon melting the ice, the water was found to have loft 12 grains more, notwithftanding all our precaution to prevent any fecond evaporation. - The fame experiment repeated feveral days running, gave me much the fame thing; with this difference, that the evaporation was much greater in a ftormy night, or when the wind was ftrong.

The thaw enfuing thereon, prevented the further profecuting of my experiments ; but it taking certainly again to froft on the night between the 6th and 7 th of Fanuary, I took occafion to make the following ones.

For on the night between the 7 th and 8 th, I expofed common water, brandy, oil of olives, oil of wallnuts, oil of turpentine, and mercury, an ounce of each, to the open air, the common thermometer ftanding at the fecond degree, and that of M. Amontons's at $51^{\circ}-6$ lin. - The water was prefently froze, and in an hour loft 6 grains; the oil of wallnuts loft 8 ; and the brandy and oil of turpentine each of them 12 , in the fame fpace of an hour, while the oil of olives and the mercury feemed rather to have gained than have loft their weight. Next day the diminution of the frozen water was found 36 grains; that of the oil of wallnuts, which did not freeze, 40 graine ; and thofe of the brandy and oil of turpentine, which alfo withttood the froft, 54 each ; the mercury and oil of olives remaining much in the fame ftate.
'Tis needlefs to note the evaporation produced day by day during the great cold; fince, under equal circumitances, the evaporation was nearly
the fame; but a vehement cold and ftrong winds, always made it greater than a lefs cold and calm weather.
'Tis obfervable, that the firmeft ice is not exempt from evaporation in a fevere cold; for we find it loofe 36 grains from 8 in the morning to 1 in the afternoon, and 36 grains more from that time to 3 in the evening; and the evaporation in the night was much as the fame rate; fo that the ice loft 100 grains in 24 hours, notwithftanding its feeming firmnefs and folidity, and this at a time, which feemed more proper to bind, than to loofen the fmalieft of its parts.

The night between the soth and inth of 7 an . proved the coldeft that has been felt in this country, the liquor in the common thermometer funk intirely into the bowl; and that of M. Amontons's ftood at $51^{\circ}-\mathrm{I}$ lin. which is almoft the extreme cold of the 8th climate; in effect, the cold was felt very pinching in the warmeft houfes, and few people could fleep foundly how well foever they were covered. This night the evaporation was very great, the common water loft 48 grains, the oil of wallnuts 54 , and the oil of turpentine and brandy 72 .

This is a fhort ftate of what I obferved on the evaporation of fluids in the great cold : my remarks upon froft are,

Firf, That the furface of freezing water appears wrinkled over, and that thefe wrinkles fomerimes form parallel lines, and fometimes radii, which feem to go from the centre to the circumference, and upon freezing it in a cylindrical phial, I have found hollow tubes, formed around the cylinder from top to bottom, and feeming to go from the circumference to the centre.

3 c8 The History and Memoirs of the

Secondly, That water covered a-top and at the fides with oil, froze about half an hour later than the water expofed naked to the air, and in freezing formed a bunch of ice about an inch above the furface of the oil.

Thirdly, That oil of wallinuts preferved water from a moderate froft, which oil of olives had not been able to do.

Fourthly, That hot water, ready to boil, froze about half an hour later than cold.

Fifthly, That brandy, oil of wallnuts, and oil of turpentine did not freeze at all.

Sixthly, That tho' the sky was very clear during the froft, yet the fun appeared a little pale.

Seventhly, That the orange and olive trees loft their leaves and branches, and moft of them died to the very root; and what is more, the laurels, yews, grannate trees, fig trees, jeffimines, "and fome oaks themfelves underwent the fame fateThe Rbone was froze 12 feet deep, and the pond de Thau, notwithttanding is natural ftorminefs, and its communicating with the fea, by a very fhort and broad canal, was fixed from end to end, and feveral perfons went from the baths of $B a$ laruck to Sette over the ice, a road unknown to our forefathers, and which perhaps will be fo to our pofterity.

Eighthly, That the thaw on the 23 d of $\mathcal{F} \mathrm{an}$. as allo that on the 26th of Feb. were followed with an epidemical catarrh, which fcarce any body efcaped.
All thefe effects muft have arofe from the fame caufe, viz. from the change in the air during the froft - My fentiment of this change is as follows.

The fun's rays ermitted in the winter, falling all obliquely on the furface of the earth, take up
more room thereon, and are lefs reflected upon themfelves; whence it follows; that the earth mult be lefs heated in the winter time, and that the werherial matter, maft fufceptible of motion, will recede to that part where the fun is moft perpendicular to the earth, leaving fuch æutherial matter as is leaft difpored for motion, on that part of the earth where it is winter.

Now the ætherial matter is commonly allowed the caufe of the motion of fluids, and chat the air of itfelf owes its motion and fluidity to the fame : hence all fluids muft remain in a ftate of ftiffnefs or condenfation, when this matter loofes, part of its force; and hence the air itfelf muft be: denfer in winter, than in any other feafon.

But we likewife find by feveral experiments, that the air contains a falt, which is fuppofed to be of a nature approaching that of nitre; now this, and the condenfation of the air being fuppofed, I fay, that the molecules of this nitrous falt muft be brought nearer, and confequently their bulks enlarged upon a condenfation of the air;' as on the contrary, they muft be divided and further attenuated by the motion of that fluid, if the fame thing befal all fluids, which have diffolved any falt; that is, if the heat of the fluid keep the falt exactly divided, and the coolnefs of ice, of of a fubterraneous place, give room for the particles of the diffolved falt to gather together and cryftallize, why muft the air, which is capable of rarcfaction and condenfation, be exempted from this general law?

And if the nitrous particles in the air be enlarged in a great cold, as cannot eafily be denied, they muft of confequence have a lefs thare of velocity; but the product of their maffes thus augmented by the velocity remaining, muft Itill give

310 The History and Memoirs of the

them a greater quantity of motion. - Nothing further is required to make the falt act more forcibly againft the particles of the fluid; and this 1 apprehend the real caufe of the great evapora. tion they undergo in cold weather.

Yet this aerial nitre cannot hinder a fluid from turning into ice, but on the contrary mult be a means of promoting the fame; for it is not the air or the nitre contained in it, but the æetherial matter that gives fluids their motion, and confequently 'tis on a diminution of the rorce of this latter, that the lofs or diminution of the motion of the former depends. Now the ætherial marter, befide its natural feeblenefs in the winter, muft loofe a great part of iss force, by acting againft the condenfed air, which is further replete with large molecules of falt; and thus muft neceffarily be rendered feeble in a fevere cold, and by no means in a condition for maintaining the motion of lluids; in a word, we may confider the air in frofty weather, as that ice charged with falt, commonly ufed for the freezing of certain liquors in fummer. Thefe liquors probably freeze by a diminution of the motion of the ætherial matter, which acting againit the ice, and the falt mixed together, the air, with all its heat, cannot hinder the concretion.

It may perhaps be urged, that fluids contain particles of air, which, according to M. Mariotte's obfervations, are in a ftate of compreffion 10 times greater than in the open atmofphere ; that the fprings of the air thus compreffed, unbend themfelves in the froft by a diminution of the motion of the fluid ; and that 'tis to the explofion of thefe fprings, that the evaporation of the particles of fluids in the froft are owing.

Royal Academy of Sciences. 3 if

Now I allow, that fluids contain a great deal of air; that this air is more compreffed in the fluids than in the open air; that the froft gives occafion for its fprings to unbend themfelves; and that thefe fprings unbend with the more force, on account of the compreffion they are in, and what is more, that this unbending of the fprings of the air is the caufe of the lightnefs and rarefaction of ice, as well as of the bubbles and tubules mentioned in my obfervations; but I cannot allow, that the action of thefe fprings is the caufe of evaporation, when I confider that both the fluids which freeze, and fuch as withftand the froft, undergo an evaporation proportional to the tenuity of their parts, and that ice, feveral days old, loofes full as much as water juft beginning to freeze. In fluids which do not freeze, the unbendings of the fprings of air cannot be very confiderable; and in ice, formed many days, thofe fprings mult have had their full play, and now left incapable of any further action.

It has been obferved, that when the ice begins to form, its furface is full of wrinkles, which are fometimes difpofed in parallel lines, and fometimes after the manner of radii, under which furface is a multitude of little frozen particles, in form of needles, or rather of funnels, whofe fmall end is turned to the furface of the water. Thefe funnels are eafily perceived in a cylindrical phial, when the liquor contained in it is intirely froze.

Now this difpofition of the ice thus beginning to be formed, is favourable to the contained air's efcaping out upon the fpring's beginning to unbend, and feems at the fame time to prohibit the entrance of the external air, which might otherwife take its place. Thus the air which re-

312 The History and Memoirs of the

mains in the freezing water, muft dilate with the more freedom, as being no longer compreffed by the external air; and hence probably arife the levity and rarefaction of ice, but not the evaporation of its particles.

It would be tedious to enter into an explication of all I have obferved upon ice; befides, that it may eafily be deduced from the principals al.ready laid down. From hence, for inftance, it appears, that the particles of oil of olives are more ramofe than thofe of oil of wallnuts; and that 'tis owing to thefe branches, which lock the parts faft together, that the aerial nitre is not able to carry them off; that the particles of wallnuts are more grofs, though lefs branchy, than thofe of oil of olives; and that it arifes hence, that the former is heavier, and dries quicker than the latter; and further, that the particles of the oil of wallnuts mutt be fmoother, and more Ilippery, and only touch in a few points of their furface; whence it is, that the wetherial matter, with all its weaknefs, can eafily move them, and hinder the oil from freezing; and hence it is, thofe particles are not firm enough to refift the impulfe of the aerial nitre, which carries them off; hence alfo appears that the tenuiry of the particles of brandy and oil of turpentine, favours their fuidity and evaporation; as for the heavy and globular particles of mercury, it appears, that fome more powerful agent, than the nitre of the air, is required to feparate them from their mafs.

Since the xtherial matter ftill maintains the fluidity of oil of wallnuts, 'tis no wonder, that the water covered with it, fhould withiftand the froft ; oil of wallnuts, on this occafion, doing the office of a kind of filtre, and giving entrance to a quantity of this matter, fufficient to maintain

Royal Academy of Sciences. 3 I 3

the fluidity of water; and if oil of olives likewife defend water a little while from the froft, 'tis by reafon this oil, which only condenfes by the cold, contains a little of the ætherial matter in its branches, by means whereof the water thus covered with oil of olives, is able to fuftain the cold longer, than if entirely deftitute of that affiftance; and if hot water freeze half an hour later than cold, 'tis by reafon fome time is fpent in laying afide the motion which the fire had given it ; and as to the palenefs of the fun in a fevere froft, who does not perceive, that the condenfation of the air, and the groffnefs of the nitrous particles contained in it, muft reflect abundance of its rays, and prevent their penetrating to us. Laftly, if a kind of gangreen appear on the frozen parts of trees and other plants, is not this owing to a corrofive falt, corrupting the texture thereof? The relation is fo near, between this gangreen, and that which befalls the parts of animals, that their caufe mult be near a-kin; corofive humours burn the parts of animals, and the aerial nitre has the fame effect on the parts of plants penetrabile frigus admrit.

I fhall clofe this memoir with fome reflections upon the epidemical catarrh, which fucceeded the thaws of the 23 d of 7 ann and the 26 th of $F=b$. - So many perfons were feized with it all at once, that it can be owing to nothing lefs than fome general caufe, which acted at the fame time upon all men. This caufe we find in the air reEpired after the thaw, whofe nitre having been much divided, was now reftored to its natural form : to explain myfelf,

The air conveyed into the lungs by the tracbea, fills the veficles, whereof that vifcus is compofed; and tho the blood do not enter into thefe

Vol. III. N°. $3 \mathrm{I}, \quad \mathrm{Na}$ veficles

314 The History and Memoirs of the

veficles, excepting a preternatural cafe; yet the blond in the pulmonary vein, being found more brifk and florid, than that in the artery, fhews, that it has undergone a confiderable change from the air in refpiration. Hence, as the air has no immediate action upon the blood, we may fuppofe, that the texture of the veficles of the lungs does the office of a kind of filtre, by feparating the nitrous part of the air; and that 'tis this nitrous part to which the florid lively fate of the blood in the pulnonary vein is owing, if now the nitrous particles in the air happen to be groffer than ufual, as we have fhewn muft be the cafe in a fevere cold, their proportion will be changed with refpect to the filtre, which is to feparate them; and hence only a fmall quantity will enter the blood, which, together with the external cold, will occafion that fluid to remain in a ftate of inactivity, during which the paffages of perfpiration being ftopped, the blood mult retain moft of i's ferous and ymphatick part, which will remain inclofed in its fulphurous ones, and only to be extricated threfrom by a general liquefaction. This 1 iuefaction of the humours muft happen upon a thaw ; for the nitre on this occafion dividing into little molecules, a great quantity of this falt muft mix haftily with the blood, and animating it, excite a fermentation, which fuffices to make an inftant feparation of a large quantity of lymph and ferum, which being thrown upon all the glands of the body, produces a headach, naufea, ftoppage of the nofe, cough, crudity, and abundance of urine, wearinefs, and fometimes a little feverihnefs.

The catarrh above defcribed is very different from what happens in a violent cold; in this Lat(e), the humours circulate with difficulty; and

Royal Academy of Sciences. 3 I5 by their thickening, occafion fome ferous parts to be feparated fron them; whence the hoarfenefs and cough, which are frequent:y accompanied with an involuntary weeping, by reafon of the lachrymal points, which are ftopped by the thickening of the mucus in the nofe.

Accordingly the two catarrhs are to be treated after a very different manner; thofe from co'd, are cured by remedies, which reftore the humours to their fluidity; and where there is a ftoppage of the head, the readieft remedy I know is, the perfume of amber, which doubtlefs acts by the quantity of volatils falt, and fulphur, contained therein; wine and brandy burnt with fugar, and tea, coffee, and chocolate, are proper for the fame reafon; feveral violent and very obftinate colds I alfo knew cured that winter with chicken broth, wherein an ounce of frakes flefh dried, with a handful of creffes had been boiled about $\frac{1}{4}$ of an hour.

As to catarrhs caught in the thaw, care mult be taken to prevent the too great diffolution of the humours, by boiled emulfions, rice-milk, watergruel, barley-water, and yolks of eggs, with fu-gar-candy, whey, and milk itfelf; narcotics, and phlebotomy, are proper in either kind of catarrh; and efpecially where the patient is harraffed with a cough, or any inflammation of the breaft is apprehended.
XIV. The variation of the needle at Nuremberg, by M. Wurtzelbaur,
M. Wurtzelbaur finds the variation of the needle at Nuremberg, to be near in degrees; and obferves, that it has not increafed fince the year

$$
\mathrm{Nn}_{2} \quad 12 \mathrm{~N}_{3}
$$

316 The History and Memoirs of the
1703, when he obferved it alfo to be 11 degrees.
XV. A comparifon of the obfervation of the ecliple of the moon, Sept. 29, 1708, made at. Nuremberg, Genoa, and Marfeilles, by M. Caffini the Jon ${ }^{*}$.
 berg.
83349 Beginning of the eclipfe at Genoa.
82045 Beginning of the eclipfe at Mar: feilles.

- 947 Difference of the meridians between Genoa and Nuremberg.
022 51 Difference of the meridians between Marfeilles and Nuremberg.
II 634 End of the eclipfe at Nuremberg.
105721 At Genoa.
104126 At Marfeilles.
- 913 Difference of the meridians between Genoa and Nuremberg.
0258 Difference of the meridians between Marfeilles and Nuremberg.
XVI. Reflections on the obfervations of the eclipfe of the fun, March 11,1709 , made in differcnt countries, by M. Caffini the fon*.
At Montpellier the end of the eclipre was obferved exactly at

$$
2.5549
$$

We find by the figure drawn up for the meridian of Paris, that it mult have happened there at

24930

[^24]Royal Academy of Sciences. 317
Which gives the difference of the $n, ~ "$ meridians

At Genoa the beginning of the eclipfe was obferved exactly at

0619

It muft have happened by the figure at

Which gives the difference of the meridians

At Bolonia the end was obferved with fome ambiguity at
It muft have happened by the fi-
gure at
Which gives the difference of the
meridians with fome ambiguity at
It muft have happened by the fi-
gure at
Which gives the difference of the
meridians with fome ambiguity at
It muft have happened by the fi-
gure at
Which gives the difference of the
meridians with fome ambiguity at
It muft have happened by the fi-
gure at
Which gives the difference of the
meridians

- 5952 - 34 o
- 2552

33435
25840

- 3555

T A B L E
 OFTHE

PAPERS contained in the Abridgment of the History and Memoirs of the Royal Academy of Sciences at Paris, for the Year Mdcci.

In the HISTORY.

1. N the progrefive motion of feveral fpecies of hell-fibes.
II. Of the glass ware of India.
III. Of a fort of acorn from Coromandel.
IV. Of the virtues of a nut called Bicuiba.
V. Of a woman delivered of a cbild, when above 80 years of age.
V1. Of the fatal effects of fome vapours in a baker's cellar.
VII. Of a remarkable ecbo.
VIII. Of figured fones.
IX. Of M. John James Scheuckzer's Herbarium diluvianum.
X. Of the count Marfigli's pbilofophical effay towards a biftory of the fea.
XI. Of a tænia found in a tench.
XII. The difcovery of an extraordinary fort of infert.
XIII. On the pond smufcles.

In the MEMOIRS.

I. Experiments on the elafieity of the air, by M. Carré.
II. $a b-$

ATAble, ©゚c.

II. Obfervations of the quantity of water which fell at the obfervatory during the year 1709, woith the flate of the thernometer and barometer, by M. de la Hire.
III. A comparifon of the obfervations which we bave made bere at the obfervatory on the rain and winds, with thofe wobich M. le Marquis de Pontbriand made at bis caftle near St. Malo, during the year 1709, by M. de la Hire.
IV. A comparifon of my obfervations with thofe of M. Scheuchzer, on the rain and conftitution of the air during the year 1709, at Zurich, in Switzerland, by M. de la Hire.
V. Of the neceffity of centering weell the object glafs of a telijcope, by M. Caffini the for.
VI. Observations on the bezoar, and on otber fub. ftances, wbich come near to it, by M. Geoffroy, jun.
VII. An infect of frails, by M. de Reaumur.
VIII. Reflections on the obfervations of the flux, and reflux of the fea, made at Dunkirk, by M. Baert, profeffor of bydrography, during the years 1701 and 1702, by M. Caflini the fon.
IX. Obfervations on a fort of talc, which is commonly found near Paris, upon banks of plaiferfones, by M. de la Hire.
X. Obfervations on the variation of the needle, with regard to Dr. Halley's map, with fome geograpbical remarks made upon fome fea-journals, by M. de Lifle.
XI. Reflections on the objervations of the flux and reflux of the fea, mode at Havre de Grace, by M. Boiffaye du Bocage, profeffor of bydrografhy, during the years 1701, and 1702, by M. Calfini the fon.
XII. Reflections on the obfervations of the tides made at Breft, and at Bayonne, by M, Caffini the fon.
XIII. An examination of the filk of Spiders, by M. de Reaumur.
XIV. Experiments on the effects of tbe wind, with regard to the thermometer, by M. Calfini the fon.
XV. Experiments on the thermameters, by M. de la Hire the fons.
XVI. An obfervation on the little bin-eggs revithout yolk, whicls are commonly called coch's-eggs, by M. Lapeyronie.
XVII. A comparijon of the obfervations of the eclipfe of the mincon, Feb. 13, 1710, made in different pinies by M. Maraldi.

A N

ABRIDGMENT

 O F THEPhilosophical Discoveries and Ob_{b} servations in the Histury of the Royal Academy of Sciences at Paris, for the Year 17 io.

1. On the progre/five motion of feveral fpecies of hesll-ffhes.

ALtho' animals in general have an indifpenfable occafion for the progreffive motion, either to feek for food, or for the males and females to meet together; yet many of them feem incapable of it meerly by their figure: of this fort are feveral fpecies of fhell-fifhes; and therefore M. de Reaumur has obferved them with a great deal of care, for they might walk in fecret; and an external action is often as difficule to difcover, as the internal ftructure of a part:

The late M. Poupart* had obferved, that the river-mufcles being laid upon the flat of their fhells, thrult out at pleafure a part, which on account of its ufe, may be called a leg or an arm, that they made ufe of it to hollow the fand under them, and confequently to fink foftly on one fide, fo as to be found at laft upon the edge of their fhell ; after which, they advanced this arm as far as poffible, and then refted upon its extremity to draw their fhell to them, and fo to trail themfelves in a fort of groove which they themfelves formed in the fand, and which fuftained the fhell

* Vol. II. p. 376 , of this abridgment.

$$
\text { VoL. III. } \mathrm{N}^{\mathrm{n}} \cdot 32 \text {. Oo }
$$

322 The History and Memoirs of the

on both fides. In looking at a mufcle, we fhould not guefs at this expedient, this mechanical refource.
M. de Reaumur has feen a like motion in the fea-mufcles, what may be called their leg or their arm, and which in its natural fate is 2 lines long, may come 2 inches out of the fhell; and the animal having feized upon fome fixed point with this arm fo extended, contracts it afterwards, and confequently advances by trailing.

By an almoft fimilar mechanifm, which M. de Renumur has been very minute in defribing, the cbana, or parr, another fort of fhell-fifh, walks upon the mud, or plunges into it. But he has obferved, that if it plunges therein, it is no farther than is admitted by the length of two horns, or tubes, which it can puifh cut of its fhell, and with which it takes in, and throws out the water, which in all probability it ftands in need of for its refpiration. Thefe horns mutt always be able to communicate with the water that is above it, and thence it happens, that even when it does not make ufe of them, for they are rot always in action, there is in the mud which covers it, one or two little holes of the diameter of its horns, which difcovers it.
The length of thefe horns in the other fhellfifhes, determines alfo the depth to which they fink in the mud.

The patella, lepas or limpet, which is an univalve flell-fifh, always faftened to a fone upon which the lower circumference of the fhell may be exactly applied, feems to have no other motion than the raifing of this fhell the height of a line, fo that its body may have a circumference of this magnitude, uncovered and naked. As foon as one touches it, the fhell fulls and covers it. But

Royal Academy of Sciences. 323
yet M. de Renumur has found in this animal, a progreffive motion upon the ftone to which it fticks.

The fea-nettle, which has the figure of a truncated cone, is in like manner always applied to a ftone, by the greateft bafe of this cone. Some circular mufcles form the plane of the two bafes, and fome ftrait mufcles go from one bafe to the other. The whole play of the progreffive motion confifts in general in this, that one half of the mufcles both ftrait and circular, on that fide to which the animal would go, fwells and extends itfelf, and confequently occupies a fmall part of a new place, whilft the other half finks, and is drawn by that which advances, or puthes it the fame way. This motion is no more quick, nor more fenfible than that of the hand of a clock.

There is another fea-nettle, which faftens itfelf to nothing, and is the moft odd of all animals with regard to its figure ; and is the moft fingular in the thinnefs of its confiftence, for it melts in one's hands. It would not be reckoned in the number of animals, if we did not fee in it a motion of $\int y$ fole and diafole, the only fign of life that it gives.

In the laft place, the fea-ftar with its 304 legs to each of the 5 rays of which it is compofed, goes never the fafter. Its 1520 legs give it no advantage over the mufcle, which has but one. What a prodigious variety is there in the works of nature! not only the great quicknefs of the motion, but even the extreme flownefs is executed after different manners.

Plate IV, fig. I. a fea-mufcle opened after the natural manner.
L its $l_{\text {leg }}$
Fig. 2. a fea-mufcle gaping, and putting forth its leg.

Fig. 3. a chama or purr opened, to fhew the parts ferving for the progreflive motion.
S the vertex of the fhell.
M M two mufcles, which are cut thro'.
I the leg, placed in the middle of the fhell, proceding from the vertex. Its whole extremity I is ftrait and fharp, it is only rounded overagainft the 2 flefhy tubes marked CC; whereas, on the other fide it advances a little, and forms a fort of blunted point marked P.

OO the inner aperture of the tubes CC .

- Fig. 4. a purr embracing the mud with its leg RCOr .

Fig. 5. A purr prolonging the horns or tubes CC , to draw in the water.
S the vertex.
B.B B the baife.

SB the breadth.
LL the length.
Fig. 6. a forc of hell-filh found on the coafts of Poitou, Aunis, and Saintonge, and there called, palourde." It is different from the chama peloris, and from the pelorde of the coalts of Provence.

C C the two horns or tubes.
Fig. 7. a palourde opened.
O the interior aperture of that horn which is farthef from the vertex.

I the leg.
Fig. 8. a fort of fhell-fifh found on the coafts of Poitou and Aunis, where it is called fourcion.

CC the horns or tubes.

Royal Academy of Sciences. 32ξ
Fig. 9. a fourdon opened.
I a part refembling a leg.
P the foot.
T the heel.
Fig. 10. a fourdon, with the leg, foot, and heel thruft out for walking.

Fig. in a tellina opened foo as fhew the leg.
Fig: i2. a teilina with the leg thruft forth, ready to open a way in the fand.
S the vertex.
CC. the horns or tubes.

Fig. 13. a tellina bending its leg to raife itfelf.
Fig. 14. another fpecies of tellina opened.
I the leg.
C C the horns or tubes.
Fig. 15. a tellina, with its leg thruft forth, ready to enter the fand.

A A the bounds of growth, marked fo diftinetly on the fhell, that they look like fmall pieces ftuck upon larger.

CC the horns or tubes.
I the leg.
Fig. 16. the fhell of a limpet faftened to a ftone.

Fig. 17. the animal taken out of the fhell.
AAA, $\mathcal{E}^{3} c$, that part of the animal which is uncovered by the fhell.

T the head.
C C two little horns bent towards it.
P a ihick flemy part in the middle of the opening of the fhell, which it makes ufe of for its progreffive motion.

Fig. 18. a fmall whelk, in which the organ of progreffion, or leg, is like that of a fnail.
E the leg.
C the lid with which it fhuts its fhell:

326 The History and Memoirs of the

\mathbf{P} the part which it puts upon its head, when it draws its leg into the fhell.

Fig. 19. the cancellus, called in Englifh, the wurong beir, or Bernard the berinit. It is a feaanimal without any fhell of its own, which lodges in the fhells of whelks, and other turbinated fhellfifhes.

DG its claws, like thofe of crabs and lobfters.

Fig. 20. II I three little bodies near its tborax, with which it faftens itfelf to the fhell.

A O is that part of the animal, which is covered only with a thin fkin, the reft having a fofter fhell than that of cray-finhes.

Fig. 21. a fea-nettle.
A a part of the fea-nettle, reprefented in this and the two following figures, refembling the vent of a large beaft, on which account thefe animals are called, by the common people in France, culs de chervaux, \&o culs a'anes.

BB the bafe which does not appear in this figure, becaufe the animal refts upon it; but it may be feen diftinctly in fig. 24.

Fig. 22. a fea-nettle with all its horns extended.

Fig. 23, another fea-nettle.
AIIFBD a fpace where anly the ftrait canals appear.

ACIFRA a fpace where only the circular canals appear.

IF TO a fpace where the ftrait canals partly appear, the circular canals being but partly fwoln.

COTR a fpace where the circular canals are fivoln.

Fig. 24. a fea-nettle reverfed, to fhew its bafe.

Royal Academy of Sciences. 327
Fig. 25. the mouth reverfed.
CC the circumference where the horns are faftened.

OOOO the circumference of the mouth reverfed.

It is by this mouth, that the animal takes in its food, and excludes its young.

I a little fort of inteftine turned fpirally.
Plate V. fig. 27. another fort of fea-nettle called fea-blubber, or fea-gelly.

D D the circumference or bafe.
CD the grand refervoirs or canals.
The circular circumferences DDD, $\mathcal{E} c$. EFEF, Ecc. receive the water only by the portion ED of the canals D ; whereas the band CCCC, $\mathcal{J}^{\circ} c$. EFEF, $\mho^{\circ} c$. the thicknefs of which increafes gradually EFEF, $\xi^{3} c$. to CCCC, \mathcal{E}^{3}. receives the water from 16 canals marked CE and CF.

BBBB four columns, which divide the feanettle as it were into 4 parts.

T a trunk, in which the 4 columns are united.
$\mathrm{R} \mathrm{R}, \mathcal{E} c$. the trunk divided into 8 branches.
P P an appendage to one of thefe branches.
L a fmall part of the canal left betiveen the apertures of the columns.

Fig. 28. reprefents fome of thefe parts more at Jarge.

T the trunk of the canal.
$\mathrm{R} R, \mathcal{E}^{2} c$. the branches into which the trunk is divided.

OO, ξ^{c}. the apertures of each of thefe branches.

Fig. 29. a fea-ftar.
R R one of its rays laid open.
B B two rows of tranfparent bodies like pearls.
Fig. 30, another fea-ftar reverfed, creeping under a ftone.

328 The History and Memoirs of the
A A in thefe two rays the ends of the legs appear.
S the mouth or fucker.
$\mathrm{D} D, \mathrm{~F}_{\mathrm{f}}$. five teeth about the fucker.
Fig. 31, an end of a ray magnified.
C C C bundles of tubes.
R R R the fkin.

II. Of the gla/s-ware of India.

M. de la Hire has been informed by a memoir that has beenfent him from Pondicbery, in the Indies, by F. Tachard, a miffionary jefuit in 1709 , that the glafs-ware of India, which is nor. fo fine as that of Cbina, or Japan, is made of the gum of a tree of the colour of white amber; or karabé, which they melt in two quarts of linfeed oil.
III. Of a fort of acorn from Coromandel.
M. de la Mare, a fea-officer, having brought from the Eaft-Indies, Brazil, and Peru feveral. forts of drugs, gave them to M. Saureur, who fhewed them to the academy. M. Genfray took: upon himfelf the examination of them. They were roots, feeds, woods, ftones, Ecc. He. compared thefe drugs,' as he faw them himfelf, and what was faid of them in the memoirs of M . de la Mare, with what was faid of them by the: authors, who have treated of thefe fubjects, and by that he endeavoured to find out, if what he had before him was what thofe authors haye defcribed. We fhall fupprefs the principal part of this work, altho' inquired into with a great deal of care, being only mere erudition, and we fhall
1.v. lat. III,

Rotal Academy of Sctences. 329
only take from it here, and in fome other places what belongs to philofophy.

There is on the coaft of Coromandel, a tree pretty much like our oaks, which bears a fort of acorn, out of which they draw an oil, like oil of olives. The Malabers make ufe of it in their food, for burning, and to colour their linnen. M, de la Mare, by their example eat of it in fallads, and finh fried with it ; and he had taught all the other officers of the coaft to eat it, who found it to be very geod.

IV. Of the virtues of a nut colled Bicuiba.

The nuts called bicuiba burn like cloth foaked in pitch, and it is in burning that they extract the oil, as M. de la Mare has tried at M. Boudin's, firtt phyfician to the late Dauphinefs. M. Fean Verdois, conful of the Frencl nation affirms, that he has cured many cancers with this oil, and that by eating one of thefe nuts, the colick is eafed.
V. Of a woman delivered of a cbild, when above 80 years of age.

The late bifhop of Sees has affirmed, that a man in his diocefe, whom he knew, being 94 years of age, had married a woman of 83, who in due time was delivered of a boy.
VI. Of the fatal effert of fome vapours in a baker's cellar.

A baker of Cbartres had put into his cellar, which was 36 fteps deep, and well vaulted, 7 or 8 tubs of embers out of his oven. His fon, 2 ftrong and robuft young man, going to carry
Vol. III. $\mathrm{N}^{\circ}, 3_{2}$. P p fome

330 The History and Memoirs of the

fome more embers, with a candle in his hand, the candle went out half way the ftairs, he came up, lighted it and went down again. When he was at the bottom of the cellar, he cried out for help, after which they heard no more of him. His brother, as ftrong as he, went down quickly, cried in the fame manner, and then ceafed. His wife went down after him, and a maid fervant after her, and it was ftill the fame thing. So ftrange an accident alarmed the whole neighbourhood; but no body was in hafte to go down into the cellar. There was only one neighbour, more zealous and bold, who not believing that thefe four perfons were dead, went down to give them his hand, and help them out. He cried out, and they faw no more of him. A paffenger, a very vigorous man, afked for a hook to draw fome of the people out of the cellar, without going down to the bottom, he threw the hook and drew up the maid, who, upon coming to the air, gave a figh: they opened a vein, but fhe did not bleed, and died upon the fpot.

The next day a friend of the baker's out of the country, faid, that he would draw up all the bodies with a hook, but for fear that he fhould find himfelf ill, without being able to get up again, he was let down into the cellar with a rope upon a wooden pully, and as foon as he fhould cry out, they were to draw him up again : he very foon cried out; but as they drew him up, the rope unhappily broke, and he fell back again; they mended as faft as they could this rope, which was broken pretty near the top of the cellar, but they could only bring him up dead. They opened him, his brains were in a manner dry, the meninges exceffively ftretched, the lungs marked with black fyots, the bowels blown up,

Royal Academy of Sciences. 33 I

and as thick as one's arm, inflamed, and as red as blood; and what was the molt particular, all the mufcles of the arans, thighs and legs, as it were, feparated from their parts.

The magiftrates took cognifance of this accident, for the publick intereft, and forbid agy one's going into the cellar, till they had taken the advice of phyficians, furgeons, and even of mafons. It was concluded, that the embers, which the baker had put into his cellar, were not well extinguifhed, that as there is a great deal of falt-petre in all the cellars of Cbartres, the great heat had raifed in that a very malignant vapour, which had caufed fo many fatal effects, that they ought to throw a great quantity of water into it, which would extinguifh the fire, and make the nitrous vapours fall. This was executed, and at the end of fome days they let down into the cellar a dog, tied to a plank, with a lighted candle. The dog did not die, and the candle did not go out, certain figns that all the danger was over. They took up the dead bodies, but fo corrupted by the water, that they could not be examined ; they were very much fwoln, and one had his tongue out of his mouth, as if he had been ftrangled. The academy had this hiftory from M. de la Hire. There is one almort of the fame fort in the hiftory of 1701 *.

VII. Of e remarkable ecbo.

M. l'Abbe Teinturier, the arch-deacon of Verdun, has fent to M. Caffini the fon, the account of an echo, that he has feen 3 leagues from Verdun. It is formed by two thick towers, detach'd from the boly of the houfe, and 26 toifes diftant

* Vol. I. pag 253 of this abridgment.

332 The History and Memoirs of the

from one another. One has a lower apartment of free-ftone vaulted; the other has only the porch fo. Each has its ftair-cafe. As all that belongs to echos may be called catoptricks of found, becaure the found reffects itfelf according to the fame laws, as the light does, we may look upon thefe two towers as two looking-glaffes, placed over-againft one another, which mutually fending back the rays of a light object, multiply the image of it, altho' continually weakening it, and make it always appear farther diftant. Thus when we are upon the line that joins the two towers, and pronounce a word with a pretty high voice, we hear it repeated 12 or 13 times, by equal intervals, and always weaker and weaker. If we go out of this line to a certain diftance, we hear no more of this echo, from the fame reafon, that we fhould fee no more of the image, if we Phould remove ourfelves too much from the fpace which is between the two looking glafles. If we are upon the line, which joins one of the towers to the body of the houfe, we orily heas one repetition, becaufe the two echos do not any more play together with regard to thofe that fpeak, but one alone.

VIII. Of fyurred fones.

M. Fobn Schucbzer being come to Paris, and having been prefent many times at the affemblies of the academy, of which he is one of the moft learned, and ufeful correfpondents, read a Latin differtation, which he addrefled to it, upon the figured ftones, that he has obferved in his journey into Flanders and France.

The quarries about Paris have at different depths of the beds, fometimes pretty thick, different

Royal Academy of Seiences. 333
ferent forts of fhells, ftrongly bound together either by earth or fand. When thefe fhells have preferved their fubittance, or their natural confiftence, they do not yet merit the name of figured fones, that is only proper when they are petrified ; but they deferve it ftill better, when after having ferved for a mould to a fubftance yet fluid, which has intirely filled them, and afterwards grown hard, their fubftance has been abfolutely deftroyed by time, and there remains only this petrified matter, which very exactly reprefents their interior figure. Then the whole that we fee is, in reality, only a figured ftone ; and this probability is fo ftrong, that there is need only to prove, that fome part of an animal has contributed to the formation of this ftone. The perfect conformity of the figures is a demonftration of it; to which M. Scbeucbzer adds, that about thefe ftones there is always in the quarries an empry fuace, which is exactly that which the fhell's filled.

There may figured ftones be found, whofe moulds may be unknown to us at prefent. The fhells, which have formed them, are not any more in our feas, or they have efcaped us. The great quantity of ftones, which certainly have been moulded in this manner, gives us a right to make this fuppofition. Perhaps even fome moulds may have been loft ; that is, fome fpecies of fhell may have perifhed; but to admit this thought, which is a little bold, we muft perceive in a fone pretty fenfible traces of this fort of formation.

Thus we do not admit it at prefent in explaining a ftone, which was thought to be found orily in Hungary and Tranfyivania, but has been found by M. Scheuchzer in Sweiferlands and in a ftill greater

334 The History and Memoirs of the

greater quantity in Picardy about Noyon. Clufius has called it Numi/male, becaufe of its figure; however, it does not fo much refemble a medal, or piece of money, às a glafs convex on both fides, but more elevated in the middle than the fpherical curve requires. Its two convex halves eafily feparate, and fometimes are found naturally feparated. Then we fee in the fone turns made fpirally, like thofe of a cord twifted about itfelf. Thefe turns are faftened by a fort of little filaments, which extend themfelves obliquely toward the circumfereace. The exterior furface of thene is fometimes polifhed, but ofner fet round with little points, whofe different feries are forts of irregular flutings. The generation of thefe forts of ftones, if we could never fufpect them to have been moulded, will perhaps reduce the philofophers to the hypothefis of feeds, ventured by the late M. Tournefort *.

To explain the fhells petrified, and fometimes buried under ground at great depths, or thofe which by a long feries of ages are confumed, after having left only the print of their figures, M. Scbeuchzer has recourfe to his hypothefis of the deluge already explained in the hiftory of 1708 t, which he has in common with his brother upon there forts of fubjects. If what we have related after M. Saulmon, in the hiftory of $1707 \pm$, does not abfolutely require this hypothefis, at leaft a confiderable part of what is land now, muft formerly have been fea.

We fhall not here pafs over in filence an idea, upon which, however, M. Scbeuchzer has declared that he did not pretend to infift, and which he has only propofed as a fort of philofophical drean. If we make-a great round bafon half
*Vol. I. pag. 4 ro. + Vol. III. pag. $72 . \ddagger$ Vol. III. p 6 .

Royal Academy of Sciences. 335

full of water, turn pretty faft round its centre, till at laft the water has taken all the fwiftnefs of the bafon, and ftop it fuddenly, the water will not ceafe continuing to move, and even with fo much force, that it would furmount the edge of the veffel. Thus if God fhould, at an inftant, ftop the turning of the earth about its axis, the waters of the fea would fpread themfelves with violence over the whole earth. This manner of expiaining the deluge is not lefs fimple than new; even when God exerts his extraordinary power, and fuperfedes thefe laws which the has framed with fo much fimplicity, we may imagine, that the miracle is performed alfo with the greateft fimplicity poffible.
IX. Of M. John James Scheuchzer's Herbarium Dilu ianum.
M. Fobn Fames Scbeucbzer's Herbarium Diluvianum, printed at Zurick in $1 \% 09$, and fent to the academy by the author, turns upon the fame principle with the work which we have juft mentioned, and with all thofe of both thefe brothers, mentioned in the hiftory of $1508+$. This extraordinary herbal is only compofed of plants, which, from the time of the deluge, having been buried in foft fubftances, have left the print of their figure upon them, when they were afterwards become petrified. They are only fimple figures without fubitance, buc fo perfect and fo exact, even in the moft minute particulars of what they reprefent, that it is impoffible to miftake them. Among a great number of plants, which are all of thefe countries, there is an In-

$$
\dagger \text { Vol. III. pag. 77, 81, } 82 .
$$

336 The History and Memolirs of the

dian one, the ftone of which was found in Saxomy, which agrees with an obfervation already made in the hitory of 1706^{*}. The ftrange confufion that the deluge muft have caufed upon the furface of the earth, renders the tranfportation of an Indian plant into Germany very poffible. According to the maniner in which the holy feripture explains it, we may equally place the beginning of the deluge, eithey in the fpring or the autumn; but M. Scheucbzer removes this uncertainty by fome of the plants of his herbal, and chiefly by an ear of barley. Their age is only that which they have here at the end of May. This is alfo confirmed by an infect or two, of which we alfo know the life fufficiently, and which are not older. Thefe are a new fort of medals, whofe dates are without comparifon more ancient, more important, and more fure, than thofe of all the Greek and Roman medals.

There are certain ftones which reprefent upon their furface, not like thofe of this herbal, a fingle part of a plant, or a fingle leaf, but fhrubs and little forrefts very beautiful. Thofe reprefent fo much, that they reprefent nothing, and in effect on examining them ever fo little, we fee that thefe trees, or fhrubs, do not reprefent any real plant. They are even fometimes accompanied with little caftles, or figures, which adorn the picture indeed, but render it unworthy of the herbal of the deluge. Thefe are true fports of nature. M. Scbeucbzer undertakes to explain the philofophy of thefe fports; that is, how certain juices which exuded from the pores of a ftone, as fait as it was formed, could fpread themfelves hetween two of the leaves, or Atrata, which comit, and trace there certain reprefentations

Royal Academy of Sciences. 337

 almoft regular, to which afterwards our imagination lends a little of what it wants. He has even rendered his explication fenfible to the eyes, by an experiment quite like it of two nabs of polifhed marble, which he rubs together, after having put fome oil between them. It fpreads there fo as to form trunks and branches.Among the remains of the deluge, M . Scbeucbzer reckons a great trunk of a tree, which he knows to be laid upon the fummit of mount Stella, the higheft mountain of the Alps. M. Fobn Scheuchzer has twice attempted to go and fee it with his own eyes, altho' the moft determined hunters have never been there but with fear; but the fnows have been an invincible obftacle. According to his eftimate, this trunk is raifed 4000 feet above the moft elevated place of thefe mountains, where any trees naturally grow, for beyond a certain height there grow none. Who could have carried it thither? With what defign? And what machine muft they have ufed?
> X. Of the count Marfigli's pbilofopbical effay towards a biftory of the fea.

The count Marfigli has fent to the academy a manufcript work, intitled, A Pbyjical EJJay on the Hiftory of the Sea, of which the has done it the honour of a dedication. He turned to the advantage of philofophy a ftay that he made on the coaft of Provence and Languedoc, and took that opportunity of ftudying the fea particularly. The manner in which he engaged in ir, is fufficient to fhew what the genius of obfervation is; and to give a model of it, he has formed a defign as extenfive as the fubject, he has embraced all the parts of it, and has undertaken to Vol. III. N°.32: Qq make make by himfelf all the experiments which can have relation to it. If we had a fufficient number of as good memoirs made by obfervers; who had been placed in different parts of the world, we fhould at laft have a natural hitory.

The work of count Marfigli is fo confiderable, that the extracts which the academy has caufed to be made from it, by M. Maraldi and Geoffroy, were themfelves pretty large works. We fhall here only give an idea of it incomparably fhorter, and we fhall be greatly affifted by their labours. The hiftory of the fea is divided into 5 parts. The firft treats of the difpofition of the botiom, or bafon of the fea. The fecond, of the nature of the water. The third, of its motions. The fourth, of the plants that grow there. The fifth, of the fifhes. This laft part is not finifhed, and the academy have not yet feen any thing of it. The whole is accompanied with a great number of figures, made with a great deal of care.

To difcover the nature and difpofition of the coafts, he has made different fmall voyages in barks, which are all contained between the cape of Siffe near Toulon, and the cape a' Agde in Languedoc. He has made others at fea, and fometimes at a leagues diftance, to examine the depth and nature of the bottom. He has found that the gulph of Lyons is cut afunder by a ridge, hid under the water, that the part which is from the land to this ridge is not above 70 braces deep, and that the other which is towards the main is 150 in fome places, and fometimes fo much that it cannot be founded. He calls it the abyfs ${ }^{*}$; he has fearched what the difpofition of the foil was, that is to fay, the order of different banks, or beds of earth, fand-rocks, \& \mathcal{F}. not only in the coalt, but alfo in the inands or neighbouring fhelves.

Royal Academy of Sciences. 339

This difpofition is found alike, fo that all the inands are only fragments of the firm land, and probably the bottom of the fea is a continuation of it. From hence we may conjecture, with count Marfigli, that the globe of the earth has a determinate organical ftructure, which has not fuffered great alterations, at leaft in a confiderable time.

He fhews, that fome beds of falt and bitumen are mixed among the beds of flone; and that upon the natural bottom of the fea there is formed an accidental bottom, by the mixture of different matters, fand, fhells, mud, $\mathcal{E}^{3} c$. which the glutinofity of the fea has ftrongly united, and ftuck together, and which are afterwards hardened fornetimes even till it petrifies. As thefe incruftations are neceffarily formed in Arata, there are fome in which the fifhers diftinguifh the annual augmentations; they have a furprizing variety of colours, which fometimes penetrate even into the ftony fubftance, but are oftener only fuperficial, and diffipate out of the water.

Some of the matters which form thefe incruftations, have afforded by chymiftry, principles fo like to thofe of marine plants, that we might furpect them to be fo; and much more, as they are fomerimes wholly fibrous. Such are the hard fea moffes, or licbens which fatten to the fone, and have almoft the fame hardnefs.

Count Marfigli found by a thermometer pluiged in the water, that the degree of heat there is equal at different depths; that in the winter it is fomething greater in this fea, than in the air ; and on the contrary in fummer; but pretty often cqual. Neverthelef's count Mairfigli has obferved allo, that many marine plants agree with thofe of the land, in thooting in the fpring oftener than in

[^25]
340 The History and Memoirs of the

other feafons. An accident prevented the experiments of the heat of the fea from being continued fo long as they fhould have been.

According to him, the fea-water, fuppofing it to be well chofen, is more clear and bright than any other water. As to its colour, it depends both upon its bottom, and the fky; and fo many other circumftances hitherto lefs known, that all the experiments of count Marfgli leave him ftill a great deal to defire upon this fubject.

It is more eafy to determine the caufes of its faltnefs and bitternefs, for we may well obferve the bitternefs as different from the falterefs. One is produced by the diffolution of beds, or banks of falt, the other by the diffolution of beds of bitumen.

Water is much more proper to diffolve the falt, than the bitumen, which is an oily matter: and in the fea-water the dofe of falt is much ftronger than the bitumen. Count Marfigli having taken 23 ounces 2 drams of ciftern-water, to make feawater of it, he put 6 drams of common falt into it, and only 48 grains of firit of pit-coal; for pitcoal is bituminous; and befides there are mines of it fcund in the moustains of Provence: and with this mixture he had an artificial feawater of the fame talte with the natural. Thefe 48 grains did not at all increafe the weight of the water weighed by the areometer.
The fmall quantity and lighinefs of this bituminous matter, are the caures, that the fea-warer diltilled, fo as to loofe its falterfs, has not however loft iss bitternefs, and a difagreeable tafte, nor even as is pretended an unwholiom quality. The diftillation which is maturally made by the fun, and whicily is very different from that of an alem-

Royal Academy of Sciences. 341

 alembic, perfectly purges the fea-water from its bitumen.There are in the earth fo many different matters, that the fea walhes, and of which it mult raife fome particles, that we may pretty juftly believe, that bitumen is not the only principle which mixes with the falt.

By what has been juft faid, we fee that in 24 ounces of fea-water, there are 6 drams of falt; or, which is the fame thing, that it contains the $32 d$ part of its weight of falt. But this is only true of the water taken at the furface of the fea, that at the bottom is more falt, and has the 2gth part of its weight of falt. The falteft waters are alfo the heavieft. Thofe which are upon the furface of the fea at the outlet of the Rbone, are lighter by $3_{3}^{\frac{1}{0}} 3$, than the waters farther diftant, and $\mathrm{e}-$ qually fuperficial ; and thefe ftill lighter than thofe which are farther diftant from land.

It is furprifing that the water of the fea, which does not want falt, has not diffolved all that it can diffolve. By count Marfigli's experiments, a quantity of water which ought to contain 6 drams of it, diffolved $4 \frac{2}{2}$ more; and the artificial fea-water 5. He conjectures, that the animals and plants of the fea, confume part of its falt; ; that another part of it diffipates in the air ; that the foft waters, which it receives not only from the rivers, but from the fprings of its bottom alfo, frefhen it ; but with all this he does not pretend, that the difficulty is intirely removed.

He has made 14 lb . of fea-water pafs through ${ }^{5} 5$ earthen pots, which he fucceffively filled with garden-mould and fea-fand. If they had been joined together, they would have made a cafcade of 75 inches long, and 5 broad. The 14 lb . of water having paffed both through the fand, and through

342 The History and Memoirs of the through the mould, were equally reduced to 5 lb . 2 ounces; but they were better frefhened by the fand, and deprived of a greater part of their weight. If the cafcade of fand had been twice as long, we might believe, that it would become almoft infipid. By this means the fea-water might become frefh by filtering through the bowels of the earth, if at the end of a certain time the filters fhould not fill with the falt which has been depofited in them.

The falt of the fuperficial waters is white, and that of the deep waters of a dark afh-colour. The firt is the only one in which there is found an acid, and is of a more biting faltenefs, and a much lefs fenfible bitternefs. From herce it comes, that at Peccais, in Languedoc, where they extract falt from deep well-waters, it muft be left expofed to the air for 3 years at leaft, before it is vended. This time is neceflary for it to lofe a bitternefs which would be infupportable. We fhall fupprefs a great number of obfervations upon the marine falt, becaufe this fubject is more known.

Count Marfigli has not had leifure to content himfelf fully upon the fact of the bitumen contained in the fea-water: however he believes it is this which produces the natural unctuoufnefs of this water, which even the diftillation does not take away from it. The great quantity of glue which fixes upon the flones and plants, the union of fo many heterogeneous bodies which glue together, the tartar which hardens in fome places the bottom of the fea, or inclofes feveral forts of matters, and chiefly the lithophytons, a marine plant. He has begun experiments at different times upon the tartarifations of the fea, which could not be carried far enough.

Royal Academy of Sciences. 343

He has obferved, that pulfe boiled in fea-water, came out of it more hard than when it was put in; that the flefh of mutton becomes white, and more tender than in foft water, but very falt and bitter; that the bread made with fea-water is falt, and may very well be eaten while it is new; but when it is ftale, it acquires an exceffive bitternefs.

The fea has three forts of motions, the flux and reflux, the currents, and the undulations. We know that the Mediterranean has no flux or reflux, at leaft univerfally; and in effect, according to the common fyftem, it muft not have any, fince it is not under the courfe of the moon. However, as an almoft infenfible flux and reflux might eafily efcape the obfervations which are commonly made, count Marfigli has made new ones, which this motion could not have efcaped; and it was not at all perceived in the places where the obfervations were made.

Count Marjggli has not difcovered any rule in the currents, altho' he has not fpared his voyages, nor his trouble. He has not been able to verify what is commonly faid of this famous current, which coalts the whole Mediterraneon, as if it was formed by the entrance of the waters of the ocean, and by their return. But he believes he has difcovered fomething very fingular. During the fummer, and in the time of the coral filhing, they perceive at the fide of the abyfs, a current which feems to have a relation to the motion of the fun upon the horizon, but fo that it is always oppofite to it. When the fun is in the eaftern part of its diurnal courfe, that is to fay, from its rifing till noon, the current goes to the weft; and at noon it turns to the north, and afterwards to the eaft. They have not obferved if it goes to the fouth at

344 The History and Memolrs of the

 midnight; this would agree with the reft, and even appears neceffary.As to the undulation, it is fufficient to know the exceffes of it. Count Marfigli has obferved between Maguelone and Peyrole, that in a great tempeft the waves rofe η feet above the common level of the fea. At the mountainous fhores, fuch as thofe of Provence, a furious fouth-weft wind raifes the water only 5 feet, but the percuffion that it makes againft the rocks, drives it fometimes to 8 . This is not comparable to the poeric tempefts.

XI. Of a tænia found in a tench.

M. Geoffroy, junior, fhewed a trenia found in a very found and fat tench, like to thofe which are found in man, only it was not divided by rings. It had only ftripes, or folds, perpendicular to its length, according to which another great ftripe went from the head to the tail, dividing it into equal halves. It was intire, and 2 feet $\frac{1}{2}$ long. We do not know that there has been hitherto any taria found in fifhes.
> XII. The difcovery of an extraordinary fort of infect.

We muft be furprifed to fee that a little body pretty exactly oval, and whofe great diameter, which is of above a line, is to the fmall as 3 to 2 ; which has a very polifhed furface of the colour of roafted coffee, with a fmall pearl-coloured band in the middle; and which, with thefe appearances, would hardly be taken for an animal, and at moof but for an egg, fhould however leap in a garden, taifing itfelf $\frac{x}{2}$ an inch, and fometimes leaping as high as 2 . When we would have it leap, we need only expofe it to the fun, or hold it in the hand when it is hot. M. Carré, to whom we owe this obfervation; opened the bag of one of thefe little bodies, it is thick and folid in proportion to its bignefs, and it had need be fo to bear their leaps, and it inclofes a very white little worm, of which the back is cut with tranfverfe and parallel rings, and the belly very flat, and without feet. We perceive two little black points on the fide of the head. As the figure of its belly hinders it from entirely filling the bag, it has room to make a leap there by gathering up its body, and afterwards opening it haftily. It is thus that it raifes up its houfe in the air. It muft be very vigorous, for this houfe is a very great weight in proportion to it; and yet it raifes it very high, and carries it a great way, and that very often. M. Carré kept one for two months in a box, without perceiving any alteration in it. This little animal is a riddle pretty difficult to explain. How does it nourifh itfelf in this bag fo well clofed? How does it multiply in this prifon? For, although it fhould multiply in the manner that mufcles do*, how fhould its eggs get out?

XIII. On the pond mufcles.

We know well enough, at leaft to a certain point, the animals that are moft expofed to our eyes, and with which we have the greateft commerce. But there is an infinite number of otherss which the little need that we have of them, the difficulty of obferving them, a certain contempt which we have for them on account of their little,

[^26] nefs,

346 The History and Memoirs of the

 nefs, or their figure makes us neglect them, or abfolutely deprive us of them. Thefe are chiefly infects, and ihells.Who would imagine that there is an animal which receives its nourihment, and refpires only at the anus, which has neither veins nor arteries, and has no circulation in it? We need not mention its being a hermaphrodite, for that is a wonder at prefent too common; but it differs from all the other hermaphrodites hitherto known, in its multiplying independently of another animal of its own fpecies, and is itfelf alone both father and mother of what it produces. Here is a quite new idea of an animal; it is the pond mufcle, the ftructure of which, M. Mery has difcovered, notwithftanding its fhape is fo odd, and difcourageing, on account of its exceffive fingularity.
What we may call the head of the muifle, tho' we can find neither eyes, nor ears, nor tongue in it, but only an aperture which may be called iss mouth, is an imnioveable part, faftened to one of the fhells, in fuch a manner, that it cannot go out to feek for nourifhment, but nourihment muft come to it. This nourifhment is nothing but water, which, when the fhells open, enters into the anus of the mufcle, which opens at the fame time, and paffes thence into certain refervoirs or canals contained between the interior furface of the fhell, and the exterior furface of the animal, and at laft goes into the mouth, when compelled by a certain motion.

At the bottom of the mouth are two canals to receive the water. One throws feveral branches into the body mufcle, one of which terninates in the heart. The other is a fort of infeftine, which firt paffes through

Royal Academy of Sciences. 347

the brain, then makes feveral circumvolutions in the liver, and at parting from thence, traverfes the heart in a right line, and ends in the anus.

This brain and liver are fuch no otherwife than as we pleafe to call them fo, but the heart deferves that name a little better. It has a ventricle, and 2 auricles; and the alternate motions of fyfole and diaftole in the ventricle and auricles; but it has neither veins, nor arteries: the water brought to it by its canal, enters from the ventricle into the auricles, and returns from the auricles into the ventricle, and makes a flight reprefentation of circulation, without any apparent effect ; for being once arrived at this heart, it has no way to get out again. What muft become then of the quantity there collected? Probably there is no collection made, becaufe the animal does not make the water flow continually thro' the mouth into the heart; and when a certain quantity has entered, the contractions of the heart fqueeze it thro' the pores, and drive it into the neighbouring parts, which abforb it, and are thereby nourifhed.

The canal which M. Mery calls the inteftine, and which, as well as the other, receives the water immediately from the mouth, does not feem fit to carry the nourifhment to the parts, becaufe it has no branches to diffribute ir. However it contains at its beginning and end, two different fubftances; the firft of which may be water digefted, that is, the nutritious juices drawn from it ; and the others may be the excrement.

The mufcle cannor breath, till it is raifed upon the furface of the water, and it raifes itfelf like other fifhes, by dilating the cavity in which is contains the air. Then it is its anus too that receives the air from without, and carries it into the RI 2 : lungs
34^{8} The History and Memoirs of the lungs, for is is generally funk at the bottom of the water.

It has ovaries, and feminal veficles. Thefe two forts of organs are equally compofed of tubes ranged by the fide of each other, all thut at the fame end, and opened at the oppofite end. We do not diftinguifin thefe parts by their fructure, which is all alike to the eye, but the difference of their contents, and fo much the more as the ovaries are always full of eggs in winter, and empty in fummer, and as the veficles are in all feafons in like manner, but little filled with their milt, which confequently feems to flow out continually. All the tubes difcharge themfelves inio the anus, and M. Mery imagines, that when the eggs are depofited in their feafon, they cannot fail of meeting with the milt or feed which fertilizes them. The animal therefore has no need of another to affift in its generation.
M. Mery does not agree with the late M. Poupart concerning the progreffive motion of pond mufcles*. He apprehends, that their whole belly, which comes two inches out of their fhells whenfoever they will, in the form of a keel of a mip, creeps upon the mud, juft as the belly of a ferpent does upon the ground. He defcribes the mufcles, which, by their alternate contractions, make the whole play of this mechanifm.

He is alfo of opinion, that the thell of the mufcle is not formed as M. de Reaumur has found the fnail-hell to be formed + . Here the firft circumvolutions are no larger in a great old fnail, which proves that the fhell is not a member of the animal, and that it is formed by a fucceffive addition of foreign parts; but fome bands that

See p. 328 of this volume. + See g. 250 of this volume.

Royal Academy of Sceinces. 349 we perceive on a mufcle fhell, are largelt in the biggeft mufcles. Befides the mufcle has 8 tendons faftened to the inner furface of its fhell ; if the fhells did not grow in the fame manner as the flefh, thefe which are faftened at firt in certain p laces of the growing mufcle, muft continally change their faftening to the laft growth of the animal ; and how could that be poffible? The difficulty is confiderable, but perhaps it is no more than 3 difficulty.

A N

ABRIDGMENT OFTHE

Philosophical Memoirs of the Royal Academy of Sciences at Paris, for the Year 1710.
I. Experiments upon the elafticity of the air, by M. Carré *; tranflated by Mr. Chambers.

MParent gives us fome experiments in the - hiftory of the academy for the year $1 ; 08$, whereby he pretends to prove, that the air has no fpring; but the point feems of too much importance to be given up, either upon M. Parenh's experiments, or his reafonings without fome further examination; for it can never be too much confidered, how liable we are to fall into errors, in drawing conclufions from one or two experiments, which may have fucceeded agreeably to our opinion; efpecially when they go counter to an eftablifhed doctrine, warranted by a mulcitude of experiments.

My intention therefore is to repeat M. Parent's experiments, together with fome others tending to the fame matter, in order to which it may be neceffary to tranfcribe the account thereof, given by M. Fontenelle. - "A very extraor" dinary and furprifing experiment, agrees with " or rather proves this fentiment. M. Parent " took feveral round glafs phials about an inch in " diameter, and having long narrow necks, from "s 8 to 10 inches long, and a line wide; in each * July 1,09.
" of thefe, he put a little quantity of a different
" liquor as water, wine, fpirit of wine, oil of "tartar, petrol and mercury ; then putting their " necks thro' holes made in the receiver of an "air-pump, he exhaufted the air, after which
's melting that part of the neck, which was on
" the outfide, with a lamp, and twifting it about " the weight of the ambient air quickly fealed it " hermetically ; fo that there could be no
" doubt but the phials were all well emptied of
" air. At the fame time there were other like
" phials, fealed after the fame manner, but full
" of air, both the one and the other were laid
" upon burning coals, whereupon thofe full of air,
" by the great augmentation which the heat muft
" have occafioned in the ftrength of the fpring,
'، fhould have burlt with great noife ; whereas,
" in reality, they only melted gently through
" the aperture ; and on the contrary, thofe which
" contained no air, but only a little liquor, made
" all a great detonation, and burft in pieces.
" Now, what becomes of the fpring of the air
" in this experiment? The ætherial matter car-
" ried by the fire into the former phials, could
" not make fo great an effort againft their inter-
" nal parietes, by means of fuch fubtile and deli-
" cate particles, as thofe of air are, as by means
ec of more maffive particles of the other liquors.
" Hereby we can eafily explain how moitture
" may produce thofe extraordinary effects, com-
"t monly attributed to the fpring of the air, nor
" need we any longer be in pain to undertand
" how fuch a fpring fhould act in great rarefacti-
" ons, where the particles of air do not feem to
's touch, or bear upon one another; but this
" perhaps would be to extend our confequences
" further, than as yet may be allowed of. There

352 The History and Memoirs of the

" is a certain maturity required in phyfical truths;
" which time alone can give them."
Here follow my experiments. —— I procured 4 little glafs phials to be made with long necks, like thofe ufed by M. Parent, and prepared after the fame marner. The firt was full of common air; the 2d exhaufted of its air ; the 3 d full of air, with a little common water; and the 4 th empty of air, but containing a little quantity of water. I fealed them all hermetically, and laying one after another upon the burning coals, the confequence was, that the phial, which contained nothing but common air, and which remained fome time without fhewing any effect, as beir.g fomewhat thicker than the refl, opened at a place where it was fomewhat flretched before, and produced a kind of hiffing by the air iffuing from it, wishout any great violence. The fecond had pretty much the fame effect, but the hiffing was fomewhat more confiderable, the part of the phial moft heated having ftretched fomewhat further, and yielded more quickly. The third made a violent detonation, and burft into very lictle pieces in a very fhort time. The fourth likewife burf with fome noife, and very quickly, tho ${ }^{3}$ only a very fmall hole was made in it.
After this, I made 4 other little phials like the Former. The firt, which was full of air, remained on the coals a confiderable time, ere it produced its effect; but it ftretehed till at length it burft, with a confiderable noife, and difcovered a large aperture.

The fecond, which was likewife full of air, produced much the fame effect, but with lefs noife, the part at which it opened was ftretched more, and the hole fmaller.

The third and fourth, which were emptied of air, funk inwards without burfting; and effe-

Roysl Academy of Sciences. 353 cially the fourth, in fuch manner, as that half the convexity which touched the coals became clofed exactly to the other half, and only made a hollow hemifphere. The fame fhould always happen in this experiment, fince the external air, though much dilated by the heat, muft prefs more ftrongly than the thin air included can poffibly refift, and confequently the part molt heated muft be driven inwards; and if the fame did not hold in the firft experiment, 'twas probable, by reafon there was air, or fome other matter enough left in the phial to make it burft.

Not being yet fully fatisfied with thefe experiments, I made 15 other little phials like the former; an account whereof, and of the effects they yielded in the fire, follows.

The firt, which was full of common air, being laid on the coals burft in pieces in a very fhort time, and with a little noife, which had not been found in any fimilar experiment before.

The fecond, which was emptied of its air, melted without burfting, and turned into a hollow hemifphere, as above-mentioned.

The third, which was full of air with a little water, burft quickly with a great noife.

The fourth, which was void of air, but had a little water, burft in a fhort time, with a noife fomewhat greater than the former.

The fifth, which was full of water, remained but a little time on the coals ere it burt, and threw them all around with a very great noife.

The fixth, being full of water, exhaulted of air, its neck broke off, and it became a kind of eolipile, which continued a confiderable time; and tho' the fire were very vehement, the phial fuffered no change.

$$
\text { VOL. III. N }{ }^{2} \cdot 32 \text {. Sf } \quad \text { The }
$$

354 The History and Memoirs of the

The feventh, being exhaufted of air, had a little coloured fpirit of wine in it, this burft almoft as foon as laid on the coals with confiderable noife.

The eighth, which was full of air, with a little fea-falt in powder therein, melted, and yielded a little hole with fome noife.

The ninch, being full of air, with a little faltpetre, made a fmall hole in a very fhort time, with a little noife.

The tenth, which was full of air, with a little urine, burft in a fhort time, with a confiderable noife.

The eleventh, having no air, but a hittle falt water in it, burft in a fhort time, with a great noife.

The twelfh, having no air, but a little aurum fulmizans, burt as foon as laid on the coals, with a little noife.

The thirteenth, having no air, but a little fulphur, melted and funk inwards, without burfting, the fulphur alfo melted, and rofe to the top of the neck of the phial.

The fourteenth, being full of air, together with a little lamp-oil, remained a confiderable time on the coal, but burft at length with a confiderable noife.

The fifteenth, was exhautted of air, but had a little drop of mercury about a line in diameter therein, this remained 3 minutes on the coals without undergoing any change, and when it had been cooled, was laid on the fire again for 7 or 8 minutes without any effect, the mercury ftill keeping to the top of the neck, only a little flaw was perceived in it.

It appears therefore, that all thefe experiments, mntead of deftroying the fpring of the air, tend sather to confirm it; but it likewife appears,

Royal Academy of Scienics. 355

that neither the fpring nor the dilatation of the ircluded air, are the immediate caufe of the noife and fracture of the glaffes; fince fome of the phials, which were full of air, burft without making any noife; the reafon whereof may be, that the ftrength of the air's fpring, as well as that of other bodies, confifting only in the unbending of its parts, and acting equally every way, and this fucceffively in proportion to theaction of the fubtil matter, in its pores. This power diftributing itfelf thro' all the parts of the phial it is contained in, that molt heated coming at length to melt, yields and gives the air paffage, which accordly iffues out much after the manner as out of an eolipile; for that it does not dilate fuddenly enough to burf the fides of the phial; but when the air is mixed with other particles of matter fufceptible of a great motion, and a quick and fudden dilatation, it then produces the noife above-mentioned, and fhatters the veffel to pieces. We do not well conceive the mechanifm, whereby thefe little particles of matter make this havock, and it muft be confeffed, the fmalleft experiments are often fufficient to perplex a naturalift, who owns no other power, or virtue in bodies, but what arifes from the motion and figure of their parts.

Not foreign to this purpofe, are two other experiments, which prove the furprizing force of the dilatation of air, which thofe who deal in fuch experiments, will do well to obferve, for fear of taking harm. - An eolipile, being placed on the coals, and the fire raifed to a confiderable pitch, it flew from off the trevit againft the foot of a table, a yard off, with force fufficient to batter it, and continued whirling for fome time after.

356 The History and Memoirs of the

The fecond experiment was made in the academy Del Cimento, where a glafs tube was taken about a foot and half long, whofe extremities terminated in two globules of equal capacity ; one whereof was open, as if the tube had been continued thro' it, then a quantity of brandy was poured into the tube, fufficient to fill the lower globule and half the tube; after which the aperture of the upper globule was fealed hermetically, the whole being plunged in a veffel full of oil, which was made boiling hot, by continually blowing on the fire, the brandy rofe into the upper globule, and burft the whole with fo much violence, that ufing another time a copper veffel, in lieu of a glafs one, its bottom was broke out; and another time when an iron veffel was made ufe of, near the thicknefs of a crownpiece, it burft in like manner, and carried with it a fplinter broke off from the pavement.
II. Obfervations of the quantity of water, which fell at the obfervatory during the year 1709, with the flate of the thermometer and barometer, by M. de la Hire *.

The quantity of water which fell, either in rain or melted fnow was in.

	Lin.		Li
Jan.	22	July	18
Feb.	13	Aug.	10
March	20	Sepr.	29
April	3.7	Oct.	17
May	32	Novem.	
June	45	Dec.	1 I

The fum of the water of the whole year 1709, is 261 lines $\frac{1}{8}$, or 21 inches, 9 lines $\frac{1}{8}$, which is * Jan. 8, 17 I o.

Royal Academy of Sciences. 357

a little more than the mean years, which we have determined to be 19 inches.

We fee by thefe obfervations, that the 3 months of April, May, and June have afforded almoft as much water as the other 9 , and it is what generally happens in $\mathcal{F u n e}$, $\mathfrak{F u l y}$, and Auguft; and this is the reaton that the fummer corn, which is fown very late, has yielded a great deal. The great quantity of fnow, which fell during the winter, has perhaps contributed to the fertility of the land ; and if the wheat and rye had not been frozen in the root, this year would have been very plentiful.

The thermometer which I ufe for meafuring the heat and cold, is the fame which I have preferved for about 40 years; but as it has been placed at different expofures to the heavens, except for the laft 15 years, we cannot make a very exact comparifon of the firlt obfervations with the laft. However all thefe obfervations being always made at the day-break when the air is the coldeft, we may conclude by them pretty exactly all that we can know by the means of this inftrument. I fhall only obferve, that the judgment, which we commonly make of the cold, depends upon many particular circumftances, as the wind, the humidity of the air, the heat or cold of the preceding days, the expofure of the place where one is, and the conftitution of bodies, which may confiderably alter it ; therefore it will be always more fure to refer to the thermometer.

The cold, at the beginning of this year, was exceffive, with a great deal of fnow; for my thermometer fell to 5 parts, the $13^{\text {th }}$ and 14 th of Fanuary; and the following days being a little rifen, it returned to 6 parts the 2oth, and the 2.Ift to $5 . \frac{3}{4}$, but afterwards the cold diminifhed gradually.

35^{8} The History and Memorrs of the

 gradually. This great cold was very fenfible, for the 4th of this month this thermometer was at 42 parts, which is very near a mean ftate, which 1 have determined to 4^{8}; the 6 th, it came to 30 ; the 7 th, to 22 ; the 10th, to 9 ; and at laft, the 13 th, to 5 . It was without doubt this fudden change which appeared fo extraordinary, and what is ftill more furprizing is, that this great cold came without any confiderable wind, or it had only a gentle one towards the fouth, and then when the wind increafed, and turned towards the N. the cold leffened. This cold S. wind muft fhew us what really happened in the countries to the fouth of us, where the fea was frozen in fome parts of the coaft of Provence, and where the greatelt part of the fruit-trees, died as well as in this country.I had never obferved this thermometer to fall folow as this year. I only find in my regifters, that the 6th of Fibruary, 1695, the thermometer was fallen to 7 parts in the place where it is at prefent ; and the cold of that year, which had begun in 1694, was looked upon as one of the greateft that had been for a great while, but we fee that it is not at all to compare to that of this year. I have alfo obferved fometimes this thermometer at 13 parts, but very feldom.

The winter of this year lafted a great while; For the 13th of March it froze again very hard, the thermometer being at 24 parts, and the froft beginning when it is at 32 .

We find in Mezeray's Hift. of France, that the winter of the year 1608 was very long and very fevere, and that the greateft part of the young trees were frozen: however that year was very plentiful, altho' they call it the year of the great froft ; but by the comparifon of the plenty

Royal Academy of Sciences. 359 and of the lofs of trees, the laft winter mult have furpaffed it.

The thermometer was at the higheft at 6_{3} parts the inth of Auguft, half an hour after 4 in the morning, and towards 3 in the affernoon at 75 parts. In the mean ftate, it is at 48 degrees at the bottom of the caves of the obfervatory. The heat of this year bas been much lefs than that of 1707, when the thermometer rofe to almolt 70 parts, \mathcal{F} uly 21 , in the morning, and in the afternoon to 82 , which is the higheft it has been in this country, wishout being expofed to the fun.

To compare the obfervations of my thermometer with thofe that hould be made with M. Amontons's, of which he has had a great many diftributed in feveral places, I have placed one, which he has made with a great deal of care, next to that which I commonly ufe; but as it had ferved for fome particular obfervations, I had not put it clofe to mine till laft May. We know that all M. Amontons's thermometers have their 54 th degree, or 54 inches, which marks the temperature of the air of the caves of the obfervarory, as in mine the 4 Sth does. I obferved then, that when M. Amonton's thermometer was at 55 inches, 8 lines, mine was at 63 parts; fo that 15 parts of mine anfwer to 20 lines of M Ammontons's. But when mine marked 28 parts laft December, M. Amontons's marked 5I inches, 6 lin. which gives in mine 20 parts below the mean ftate, and in that of M. Amontons's 30 parts, which is a very different proportion from the firft, and might be cauted by the inequality of the infide of the tubes; and as that of M. Amontons's is very fmall, and mine middling, I fhould believe that the inequality might be greater in

360 The History and Memoirs of the
M. Amontons, than in mine. However, we may know by this, that we can have nothing very exact in the comparifon of thermometers in different countries, and for the fame time, unlefs the thermometers have been rectified by one another in all forts of degrees of heat and cold, and I believe it will not 'be poffible to find two equal ; that is, of which equal degrees in the divifions anfwer to equal degrees of heat or cold.

As for my barometer, it is always placed at the top of the great hall of the obfervatory; I Found it at the higheft at 28 inches, 3 lines $\frac{1}{2}$ Fan. 19, with a calm and ferene sky, which was about the time of the greateft cold; and the 3 Ift of December, it was at 28 inches, 3 lines $\frac{1}{6}$, with a very thick fog and calm. It was alfo feveral times beyond 28 inches, with different winds, partaking rather of the N. than of the S. and always without rain. I obferved this barometer at the loweft at 26 inches, 7 lines $\frac{x}{2}$, with a ftrong fouth wind, and moderate rain, Dec. 16. The difference between the greateft and leait heights of the barometer, was therefore 1 inch, 8 lines, which is a little more than the mean difference that is obferved here, and is 1 inch, 6 lines. This inftrument was pretty exact in foretelling rain and fair weather, according to the common notion.

I obferved the declination of the loadfone with the fame needle of 8 inches long, and in the fame place where I ufed, and as I have fhewed in the memoirs of the preceding years. The 24 th of Dec. laft, I found this declination 10° 30^{\prime} toward the W. from whence we know that this declination increafes almoft the fame quantity each year.

Royal Academy of Sciences. 361

III. A comparifon of the obfervations which we made bere at the obfervatory on the rain and winds, with thofe which M. le Marquis de Pontbriand made at bis caftle near S. Malo, during the year 1709, by M. de la Hire *.

It is for fome years, that M. du Torar has communicated to us the obfervations, that M . le Marquis de Pontbriand makes at his caftle, in the fame manner that I make them here, upon the rain. He found, that there fell in melted fnow and water in the month of

	Lines.		Lines.
Jan.	$33 \frac{1}{4}$	July	$18 \frac{1}{4}$
Feb.	$17 \frac{2}{2}$	Aug.	5
March	$30 \frac{1}{4}$	Sept.	5
April	$30 \frac{1}{2}$	Octob.	14
May	$26 . \frac{1}{4}$	Nov.	3
June	$23 \frac{3}{4}$	Decem.	17

and during the whole year 225 lines, or 18 inches, 9 lines.

This quantity of water is lefs than what we found here, which was 21 inches, 9 lines, and this is extraordinary; for we had obferved the preceding years that it rained much lefs here than in that country, which is upon the border of the fea.

We fee by the memoirs of M. de Pontbriand, that the hard froft began fome days fooner in that place than at Paris; but it fnowed here at the fame time with a N. W. wind. There was

* March $1,1710$.

Vol. III. N?. 3.3.
T 6
but

362 The History and Memoirs of the

but little wind at Paris, and that was towards the fouth.

The month of $\mathcal{F a n}$. gave there 33 lines $\frac{x}{4}$ of water, and at Paris only 22 lines $\frac{x}{2}$. The memoir fays, that the hard froft diminifhed at the end of \mathcal{F} an. and began again in $F_{e} b$. and that the night between the 23 d and 24 th , it was as hard as from the 6th to the 18 th of \mathcal{F} an. At Paris, it began again alfo in Feb . pretty near the fame time; but it was much lefs than in $\mathcal{F a n}$.

He adds alfo that the winds were very violent at N. W. but at Paris they were only very gentle, and toward the S.

He fays, in fine, that the cold has not been fo great with him, as in the middle of Bretagne; which muft appear to have been fo, becaule of the proximity of the fea, the humid vapours of which abforb a part of the great cold, as, we learn from all the experiments; for during the hard froft, the air is extremely dry, and as foon as it becomes damp, it thaws.

I hall alfo here obferve that I faw, in 1579 , in the king's garden at Breft, fome very fine ananas, or pine-apples in the open ground, and I believe they had paffed the winter there; perhaps the maritime foil contributed to it, for I do not believe they can be raifed in this country.

In Fune they had at Pontbriand only 23 lines $\frac{3}{4}$ of water, and at Paris 45 lines $\frac{1}{2}$: alfo at Pa r is the $25^{\text {th }}$ and 26 th, it rained 9 lines, and at Pontbriand only $2 \frac{5}{2}$.

In Auguft we had a ftorm in the night between the 11 th and 12 th, with 7 lines $\frac{1}{2}$ of water, and they had none at Pontbriand.

In Septenber we had again a ftorm here the night between the 13th and 14, which gave 9 lines of water, and none at Pontbriand; befides

Royal Academy of Sciences. 363 there fell only 5 lines of water during this whole month at Pontbriand, and above 29 lines at Paris.

In Nov. the quantity of water at Pontoriand was 3 lines $\frac{1}{4}$, and at Paris a little lefs than I line $\frac{1}{2}$.

In Dec. we had here during the night of the 15 th and 16 th a fort of hurricane.
In general, all the winds of the year are a little different at Pontbriand and at Paris, and pretty often they tend more to the N. at Pontbriand than at Paris; which may be occafioned by the direction of the Engli/b channel, and by all the coants of Germany, Denmark and Norway, and chiefly when the wind comes between the N. and W.
IV. A comparifon of my obfervations with thofe of M. Scheuchzer, on the rain and and conftitution of the air, during the year 1709, at Zurick, in Switzerland, by M. de la Hire ${ }^{\text {*. }}$
M. Scheuclezer has fent me the obfervations that he has made upon the quansity of water which fell at Zurick, where he ftayed during the year 1709; by which we fee that the firft fix months have given him 172 lines $\frac{2}{2}$ of water, Pa_{a} r is meafure, and the laft 208 lines, which make in all $390 \frac{1}{2}$ lines, or 32 inches, 6 lines $\frac{\frac{1}{2}}{2}$; but at Paris, there fell only 2 t inches, 9 lines $\frac{1}{8}$: he adds, that this year has furnifhed i inch, 10 $\frac{\pi}{2}$ lines more than the preceding.

By the comparifon of thefe obfervations we

$$
\text { * May } 24,1710 .
$$

364 The History and Memoirs of the

know, that it rains much more in Switzerland than at Paris.

I had already remarked by the obfervations of the rain made at Lyons, that it rained there much more than at Paris, which I attributed to the mountains of Switzerland, which are not very diftant from it; and which is confirmed by thefe laft obfervations. For it is not to be doubted but that the vapours, which are fupported in the air in a flat country, and are much lower than the high mountains, when they come to meet, ftop, and condenfe there in a cold feafon into fnow, which muft produce much more water, being driven by the winds againft the rocks, than in the places where they do not ftop at all; and if the air is hot enough to hinder thefe vapours from freezing, they gather together and fall in rain, befides the fnow which then melts, and of which one part rifes alfo in vapour, caufes there very great rains.

As for M. Scheucbzer's obfervations upon the increafes and diminutions of the river Limage, they naturally follow thofe of the rains and meltings of the fnow in the feafon when that happens.

He alfo adds his obfervations upon the barometer and thermometer, where he fhews that the greateft height of the quickfilver of the barometer was 26 inches, 10 lines $\frac{1}{2}$, the 19 th of $\mathcal{F a n}$. and the loweft 26 inches the 20th and 28th of Feb . and confequently the difference was only 10 lines $\frac{x}{2}$, as in the year 1708 .

The moft remarkable thing is, that my barometer was alfo at the higheft the 19th of \mathcal{Y} an. at 28 inches, 3 lines $\frac{x}{2}$, with a calm, which is the fame day that it was at the higheft at Zurick, and that the difference is 17 lines; and if we would conclude from hence the different heights

Royal Academy of Scienees. 365

of the places where thefe obfervations have been made, in fuppofing for one line of this difference 12 toifes, 3 feet, as I have determined in thefe quarters, we fhould fay, that the place where M. Scbeucbzer obferved, is higher than the middle of the obfervatory where my barometer is, by 212 toifes $\frac{x}{2}$. But the different heights at which we fee the fame quickfilver keep in different tubes, altho' in the fame place, may leave us fome fufpicion of the true difference of the heights of thefe places.

As to the leaft heights of M. Scbeuchzer's barometer, which was at 26 inches the 20th and 28th of $P e b$. it does not altogether agree with mine in the fame days; for Feb . the 28 th , I had 27 inches, 2 lines, with a moderate wind, and confequently the difference of our barometers will be that day 14 lines inftead of 15 , which I found in the greateft height: perhaps our obfervations were not made in the fame hour, and the wind might alfo occafion fome alteration ; M. Scbeuch$z e r$ does not mark thefe circumftances. But $F e b$. 20 , mine was at 26 inches, 10 lines, with a high wind at fun-rifing; thus the difference would be only 10 lines, inftead of 14 or 15 by the other obfervations, and mine would be lower than it ought by 4 or 5 lines. Nor was my barometer at the loweft on thofe days, for I obferved it Dec. 16, at 26 inches, 7 lines $\frac{1}{2}$, with a high fouth wind; thus the quickfilver of the barometer has much greater alterations at Paris, than at Zurick in Switzerland.

I think we might attribute thefe forts of inequalities, to particular caufes; for it is not probable that they can come from the different heights of the atmofphere, which make the weight of it, in places not very diftant from one another. May

366 The History and Memoirs of the

we not believe, that when there is a high wind and many clouds, and chiefly in the mountains, as in Switzerland, the wind fhould comprefs and condenfe the air inclofed between the furface of the earth, the rocks and the clouds ; fo that it will then make a much ftronger impreffion upon the quickfilver of the barometer, than if there had not been any wind? But as in thefe forts of places, where there is a great deal of water, it is feldom that they have neither winds nor clouds, fo the quickfilver of the barometer will for thefe reafons fupport itfelf there almoft always higher than in the plains.

I can fay nothing to M. Scheucbzer's obfervations of the thermometer, altho' I have one of M. Amontons's like his, which is a thick glafs phial with a little quickfilver, which rifes into a little tube open at the top, as he had conftructed them to make the experiment of boiling water, but I never make ufe of it, becaufe it is fubject to the different changes of the weight of the air.
> V. Of the necelfity of centring well the object glafs of a telefcope, by M. Caflini the fon*.

For the obferving the apparent diftances of the ftars, they formerly made ufe of circles, femi-cicles, or quadrants, divided into degrees and minutes, and furnifhed with four fights, of which two were fixed and placed, one at the beginning of the divifion, and the other diametrically oppofite. The other two were born upon a rule moveable about the centre of the inftrument, by the moderns called alhidade.

Since the invention of telefcopes, they have fubflituted to the fights two telefcopes, one of

[^27]
Royal Academy of Seiences. 367

 which is fixed upon a line parallel to the radius, which paffes through the beginning of the divifion, the other is placed upon a rule which turns about the centre. They place at the focus of the object-glaffes of thefe telefcopes, two threads which crofs one another in the axis at right angles, one of which is parallel to the plane of the inftrument, and the other is perpendicular to it. They put the eye-glafs into a tube, which finks into that of the telefcope, fo that the threads which crofs one another are at its focus, that their interfection may be well diftinguifhed.Thefe telefcopes thus difpofed have a great advantage over fights, becaufe we diftinguifh by their means the terreftrial and celeftial objects, with much more perfpicuity, and obferve more exactly their diftance between themfelves, by placing them exactly in the interfection of the threads which crofs one another at their focus at right angles; but it is neceffary, that the object-glaffes be well centred, that is to fay, that they be every where of equal thicknefs at their circumference. For let, $1,2,3,4$ *, be the tube of a telefcope, which has at one end of its extremities an objectglafs A, B, C, D well centred, fo that the centre E of this glafs be exactly in the axis $\mathrm{S}, \mathrm{E}, \mathrm{I}, \mathrm{O}$, of the telefcope; let there be at the other extremity an eye.glafs GH , of which let the centre I be alfo in the axis of the telefcope. Let S be a very diftant object, out of which proceed the rays SB, S D fuppofed to be parallel, which falling upon the furface of the glafs B D, are refracted and reunited in the axis in L , which is the interfection of the two threads of filk MN, PR, which cut one another at right angles, and of which M N is vertical, and P R horizontal. We

[^28]> fuppofe

368 The History and Memoirs of the

fuppofe the point L to be placed to the focus of the lens GH, in fuch a manner, that the rays GL, HL, which proceed from this point, and fall upon the furface of the lens G H, are reunited in O . The eye being at O will fee the object S in L in the axis of the telefcope, and confequently in its true fituation.

If we move the object-glafs $A B C D$ to abcd, fo that the centre of the glais be, for example, in \mathbf{F}; then the rays, that proceed from the object S , will be reunited at the point T , to the extremity of the axis SFT, which paffes through the centre of the glafs F, and the rays which proceed from the point T , and fall upon the eyeglafs GH , will be reunited at the point V , where the eye being placed, will fee the object S in T , in a very different fituation from that where it appeared, when the object-glafs was at the centre of the telefcope.

If we now fuppofe, that we would obferve the diftance between two ftars with two telefcopes, one of which has its object-glafs well centred, and the other not; if we incline the inftrument to obferve the apparent diftance of the two ftars, the well-centred telefcope turning by this motion about its axis, the centre \mathbf{E} of the object-glafs refts in the axis of the telefcope, and its focus falls upon the point L the interfection of the threads; but the centre F of the object-glats not well centred, will, by this motion defcribe a little circle about the axis EL of the telefcope, and the point T, where the rays are then reunited will defcribe alfo a like circle about the centre L ; fo that the apparent diftance between thefe two ftars obferved with two telefcopes, one of which has its objectglafs well centred, and the other not, will not be their true diftance, and will be fubject to irregu-

Royal Academy of Sciences. 369 larities, which cannot be remedied, but by cenring the two object-glaffs exactly, or directing them one upon the other to the fame objeet, which comes to the fame thing.
VI. Obfervations on the bezoar, and on otber Jubfances which come near to it, by M. Geoffroy, junior.

The bezoar is thought by fome to derive its name from the Perfian word pazer or pazon, which fignifies a goai: and according to fome others, it comes from the Hebrew or Cbaldian word beluzaar, which fignifies counterpoijon.

The firft ftones, known under the name of bezoar, were brought from the eaft. After the difcovery of America, there came fome, which bearing fome refemblance to the former, both in ftructure and virtue, had the fame name alfo, with this difference, that the firft are called oriental, and the others occidental bezoars. There are other ftony fubftances alfo taken from animals and difpofed in ftrata, which have been called bezoar, with the addition of the name of the animal, as bezoar of the ape, and bezoar of the cayman. Some taking the word bezoar in the fignification of counterpoifon, have applied it indifferently to all fubftances endued with that virtue ; hence it has been given to chymical compofitions, as mineral and jovia! bezoar. Others have called the powder of the heart and liver of vipers, animal bezoar. The name of bezar or bezoartic, has alfo been given to fome artiacia! powders or ftones, in which bezoar is an ingredient. Such are the different bezoartic powders, the countefs of Ken's powder, the ftones formed of this powder, and the Goa fone,

VoL. III. N ${ }^{D}$.33. Uu

370 The History and Memoirs of the

As the bezoar has been obferved to be difpofed in Atrata, the name has been given to a fort of figured ftone, found in America in feveral places, to which alfo the fame virtues are afcribed. There are bezoars found alfo in Italy, Sicily, feveral parts of France, and efpecially in Languedoc.

Thefe are the different fubftances in general, which we know under the name of bezoar. But properly fpeaking, the bezoar is a ftony fubftance taken from fome animal, compofed of feveral frata, or coats like onions, and endowed with fome power of refifting poifon. The two principal fpecies of it are, as we have faid, the oriental and occidental. It is not eafy to diftinguih what animals they are that produce them; becaufe what agrees with only one of them, may have been afcribed to both. We know in general, that this ftone is found in the ftomach of a fort of wild goat which browzes upon aromatic plants. If we may believe Tavernier, there are feveral found in the fame animal, as may be known by feeling. Thefe ftones are of different fhapes and fizes: fome are fhaped like a kidney; others are round, or oblong, or of an irregular figure. Each ftone is compofed of feveral plates, and formed of a greenifh or olive-coloured fubftance, fpeckled with whire. Thefe plates adhere to each other in fuch a manner, as to fhew upon breaking feveral Arata of fubtances of a different thicknefs, and fometimes of a different colour. In breaking thefe ftones, fome plates part with great evennefs from the reft. The fame thing happens upon rubbing them pretty brifkly. The middle or centre of the ftone is commonly a hard, gravelly, fmooth fubftance. The bezoartic firata, which cover this mafs, are cafily crufhed by the teeth;

Royal Academy of Sciences. 371

 and flick to them as if they were fomething glutinous, and tinge the fpittle.They kindle eafily in the fire, and feem to contain fome volatile falt and oil. The matter which remains is like the caput mortuum left in the retort after the diftilation of animal fubftances. Thefe ftones are very fmooth on the ouffide, but fometimes a little rugged, and like fhagreen in fome of their circumvoutions. They are pretty tender, and give a yellow, greenifh, or olivecoloured tinge to paper rubbed with chalk, cerufe, or lime, on being drawn pretty hard over them, becaufe they wear away, and leave fome of their parts upon thofe materials. I have fteeped 2 of thefe ftones cold ; $\mathbf{1}$ in water, and the other in fpirits of wine, for 12 hours, without finding any alteration in them. I have left the fame ftone in water for feveral days, and there came only a little matter from it, which juft troubled the water, and yet the water or fpirit of wine had penetrated both of them.

In the great number of bezoar ftones which I have opened, I have found that many, as fome authors relate, had chaff, hair, marcafites, ftones, or gravelly fubitances united together, and as hard as a ftone in the middle. I have alfo found talc, wood, kernels almoft like cherry ftones, alfo myrobalan ftones, quarters of other fruit-fones, kernels of caffra, and kidney-beans inclofed in a coat, or outer membrane, hardened by the matter which has ormed the bezoar, and having their own membrane drawn back, and dried, after having been fwoln. In others, the firft coat of the kidney bean was confumed; and the ftones founded like eagle-ftones. I have attempted to prick fome of thefe ftones with a red-hot needle to fee whethey were counterfeit, but it did

372 The History and Memoirs of the

not enter, and only imbrowned the place where it was applied; which authors propofe as one of the principal marks by which the good bezoar may be known, imagining that thofe are to be rejected, in which kidney-beans are found, which they look upon as a proof that they have been falfified by the people of the country.

They advife us to choofe the bezoar in ftones of a middling bignefs, of a brown colour, turning quick lime yellow, and chalk green, not diffolving in water, and not rifing in bubbles about the part pierced with a red-hot iron, for that would fhew it to be mixed with fome refins. The plates alfo mult be fine, difpofed in firata, and the ftones mult be taken from animals which live upon the mountains, fuch as thofe of Perfia. After all it feems pretty difficult to me, to counterfeit the bezoar ; and with a little practice we may eafily difcover the cheat; if there is any. For if it was counterfeited with plafter, or any fuch like matter, it would not change either with the fire or water, it might colour the quick-lime with any tircture that was given it ; and, in a word, undergo all the proofs, though it was counterfeit.

Nor is it to be imagined, that in order to counterfeit them, they pick out all thefe different fubftances which ferve as a bafe to the frata, of which they are compofed, fince they need only begin a little ball of the fame patte, which probably is not fo rare, that they have occafion to be faving of it.

I think the fubftances inclofed in the bezoar ferve perfectly well to inform us of the manner in which it is produced, as is obferved by Tavernier ; who tells us, thefe flones are formed about little buds, or tops of the branches of a plant: \because

Royal Academy of Sciences. 373

 buds of Tavernier may be the kidney-beans fpoken of by Monard, which 1 have obferved. Thefe folid and undigefted bodies remaining in the ftomach of the animal, may irritate its glands, of which the lymph thickened with the leaven of the Atomach, ftill loaded with the juice of the aromatic plants on which it has juft brouzed, may have been able to form the Jrata, fo fmooth and exactly united, that art would find a difficulty in imitating it. I obferve alfo, that whatfoever body makes the centre of this ftone, the frata of it are fo fine, and fo well turned, that the ftone outwardly takes the figure of the fubitance contained within.If, for example, there is a ftraw, the ftone will be long; if it is a ftone, it will preferve the figure of it; if it is a kidney-bean, the radicle will appear on the outfide; and a line which feparates very ditinetly the 2 lobes of the bean; in fhort, we may know by the fhape and weight of them, what they contain. Thus, as in the choice of fo precious a fubftance as the bezoar, we have not the liberty of opening all, after having been well affured of a certain number of the moft doubtful, upon which we fhall have made the preceding experiments, we mult refer to the fight and feeling. By the fight we examine the colour immediately, which mult neither be too pale, nor too deep; in the fecond place, the finenefs of the grain, the fmoothnefs, and the clofeners of its texture, which keeps the plates from rifing eafily above one another. It muft alfo be obferved, that they have a regular fhape, as of a kidney, a bird's egg, or fomething like thefe. The touch may alio judge of the matter inclofed within the bezoar, which we may eafily derermine by the weight of it. If, for example,

374 The History and Memoirs of the

the bezoar is heavy, the bafis will be a ftone, or fome other matter, which fills up the greateft part of it; but if it is light, it will be hollow within, or contain only fome light matter, as hair, or fome of the vegetable fubifances already mentioned. The ftones which rattle, fhew there is a fruit within, which being dried, takes up lefs room; and fometimes it is rotted or broken into a duft, which fome authors greatly efteem.

I have alio obferved, that when bezoars are fhaped like kidneys, are light and rattle, they have ufually a kidney-bean in the iniddle. Thofe which are light, round, and a little flatted, contain a round flat fruit, almoft of the fhape of a caffia ftone. Moreover, though thefe flones fhould inclofe a ligneous kernel, or even bits of wood, the lightnets fhould make them preferable to thofe which contain ftones, which allo will be a great deal heavier, provided the bezoartic matter anfwers the other proofs.

The whole preparation of bezoar for common ufe in medicine is, to reduce it to a fine powder, either to give it in fubftance, or to make it enter into fome compoficions, obferving to powder only the bezoartic part, and to fepirate all the foreign matters which may be found in the heart of the bezoar, efpecially when they are ftones or other fubftances, which have no bezoartic virtue.

There is a great diverfity of opicions about the animal which yields the bezoar. It appears, that the oriental, which is brought to us from Egypt, Perfin, India, and Cbina, is produced by a fort of gour, called by the Per, ians, Pazin, or by a wild goat of a larger fize than ordinary, as nimiole as a ftag, with its horns reverfed on is back, whence Clufus callis it Cafricerva.

That

Royal Academy of Sciences. 375

That which is brought from America, is produced by a fort of goat, which is not at all, or but very litrle different from the other, except in its horns.

The different opinion of authors concerning the names and figure of this animal make me believe, that theie ftones may be found in feveral fpecies of animals, and that each has defcribed what he has feen. The fame reafon may ferve to prove the caufe of the different colours of the bezoar.

The occidental hezoar is eafily diftingufhed by its being paler. It is fometimes of a light grey, ingendered upon foreign fubftances, like the oriental bezoar. The plates are fometimes thicker and ftriped in their thicknefs.

The foffil bezoars are a fort of ftones formed in frata, having the figure of the animal bezoar. They are ufually of a light grey, their frata are very thin, they have no fmell, and are ufed in the fame difeafes with the other bezoars. Ainerica, as I have already faid, furnifhes us with a great many of thefe bezoars, as well as Itci!, and feveral parts of France.

Thofe who have treated of the bezoar, as Cafpar Baubinus have comprehended under this name, a great many fubftances that have no relation to it, which can only caufe confufion in natural hiftory. If therefore we would range in a convenient order, all that can partake of he the name of bezoar, I believe it would be proper to make 5 claffes of them.

The firft would contain the true bezoars, which are the oriental and occidental.

In the fecond we might place all the fones taken from animals, which refemble the bezoar in their ftructure and vertue, as the b zoar of the ape, that of the Coyman, alfo the different forts of pearls, and the crab's cyes.

376 The History and Memoirs of the

In the third, the different forts of foffil bezoars.

In the fourth, fubftances figured like the bezoar without its virtues, as the human ftone, either of the bladder, kidneys, or gall-bladder, with thofe which are found in the gall-bladder of oxen, and ocher animals.
In the fifth, the egagropile, which are a fort of balls of different figures, pretty light, formed of a mafs of hairs and fibres of plants, which the animals could not digeft. Thefe fibres and hairs are fo interwoven as to form but one body, which refembles a ball of fett. There are fome which are covered again with a thin bezoartic cruft. They comnionly grow in the firft ftomach of alf ruminating animals, or in the ftomach of thofe which do not ruminate. Such are the fone of the wild porcupine, and the other balls of hair found in goats, cows, osen, and other animals.
VII. An infect upon frails, by M. de Reaumur; * tranflated by Mr. Chambers.

All the animals hitherto obferved which live upon other animals, may be reduced to two kinds; for either they live on the external furface of the body of the animal, as the lice found on quadrupeds, birds, and even feveral infects, as flies, beetles, hornets, $\mathcal{E} c$. or they live in the body of the animal, under which kind may be ranged the feveral forts of worms which have been difcovered by diffection in the todies of feveral animals.

The new infects I have obferved on fnails does not come under either of thefe kinds, but has fomething in common to both; for it fometimes

* July 9, risio.

Rayal Academy of Sciences. 377

inhabits the external furface of the body of the frail, and fometimes hides irfelf in the vifcer thereof.

By the collar of a fnail is meant, that part which encompaffes its neck. This collar is of a confiderable thicknefs; and 'tis little other than the thicknefs of this collar we perceive when the fnail fhrinks into its fhell, fo as neither to let jis head nor bafis be feen, of which you may conceive an idea by $f g .2$, the triangular face B fituate in the middle of the aperture of the fhell is a remainder of the bafis of the animal, which is furrounded on all fides by the thicknefs of the collar ; and 'tis on this part of the collar, that the infects we are to fpeak off are found, they are reprefented in the fame figure by the letters CCCC, $\mathcal{E}^{2} c$. or rather by the dotted lines which proceeding from thofe letters, terminate in thefe animalcules; they are never eafier to obferve, than when the frail is thus totally inclofed in its fhell, tho' they may be perceived in feveral other circumftances. The bare eye without any affiftance of the microfcope, fuffices to difcover them; but they are rarely feen at reft, being in a continual hurry, running about with great agility, which is fomewhat fingular; the motion of fuch kinds of infects being ufually very flow.

Notwithftanding the fmallnefs of thefe animalcules, there is not room for them to go upon the upper furfaces of the body of the fnail, the fhell being too exact ly fitted thereon; but there is territory enough beffdes to travel in; the frail giving them entrance, as oft as it opens its cnus. This anus is likewife placed in the thicknefs of the collar , in the place marked by A ; it is here reprefented thut; but the animal rarely comes out of is fhell without opening it; befides, that it opens

VoL. III. N°.33. $\mathrm{X} \times$ is
37^{8} The History and Memoirs of the
it on feveral other occafions, it may be feen open in fig. 3. where it is alfo denoted by the letter A.

It feems as if the little infects waited with impatience for the favourable minute, when entrance fhould be given them into the ample theatre of the inteftines of the fnail, at leaft they never mifs the opportunity of prefenting themfelves when occafion offers; gathering to the edge of the hole, they immediately nip into the fame, running along the parietes thereof, fo that a few minutes after, not one infect is left on the collar. The letter \mathbf{D} in fig. 3. Thews fome of thefe anmalcules preparing to enter into the inteftines by the anus.

The eagernefs wherewith they endeavour to get in, feems an indication that this is their moft commodious place of refidence, how then fhould they come on the collar? Tis poffible they never do it but againft their inclination, of which the continual hurry they are under feems a proof. In effect the fnail obliges them to go lodge there, as often as it voids its excrements ; for thofe excrements poffeffing almoft the whole width of the inteftine, muft neceflarily drive before them every thing they meet in their way. The little infects therefore upon their arrival at the edge of the anus, are forced to go upon the collar, and in regard this operation of the fnail continues fome time they walk about all this while on the collar, as having it not in their power to re-enter when they pleafe, in regard the fnail has frequently thut the door, while they were frifking on the outfide.

What has been hitherto faid, may be obferved of all the fpecies of frails, tho' mott frequently of the large garden fnails reprefented in fig. 2 and 3. But there are fome forts wherein this infect may be difrovered, even in the middle of the intel-

Royal Academy of Sciences. 379 tines; as in the little fpecies of fnails reprefented by fig. 4 and 5. The Characteriftick of this fpecies is a kind of lid denoted by O , confilting of a matter equally folid with that of the fhell, and by means whereof the animal can inclofe itfelf all around when it pleafes, as fea fnails do, whereas the collar of the common land-fnails is bare, unlefs in winter and fome dry feafons, when they ftop the aperture of their fhell with a kind of foam which comes to a confiftence as it dries ; but this occafional lid never adheres to the body of the animal, like that above mentioned; nor is it comparable thereto in folidity. Breaking the fhell of one of thefe little fnails abuut the place E fig. 4. and thus laying the fkin of the animal bare as in fig. 5 . the infect will be frequently difcovered in the very body of the fnail, by reafon this coat or fkin is traniparent, and lets us fee thro' it, as thro' a glafs; the letter C reprefents two infects, as viewed thro' the fkins of the frail.

Tho' we find thefe infects on all the fpecies of fnails, yet not at all times indifferently, and very rarely in rainy feafons. Not to give our felves ufelefs trouble, we are only to look for them after a drought, which perhaps may be proper to hatch them, or even to prevent the deftruction of thofe already formed. When the earth is very moilt, the body of the fnail is faturated with water, which afterwards oozing much more vifcid thro' the collar and bife of the fnail, forms feveral drops thereon, the finatleft of which drops fuffices to deftroy feveral of thefe infects; not that they are afraid of being drowned therein, as in a kind of little fea, this liquor is to them a folid body, and each drop may be to them, what the fall of a building is to us. I mean it may overwhelm and crufh them by its weight, whenever by the motion

3 8o Tlie History: and Mimolrs of the

of the fnail, one of thefe drops happen to be tumbled from one place to another.

Be this as it will, 'tis certain that dryniefs promotes their formation, as appears from the following fact, which I have repeated feveral times; gathering frails in moift weather, and after a careful examination finding no infeets in them, I put them in veffels where the lofs of the watry humour, continually evaporating from them, could not be repaired, and viewing the fame fnails fometime after, I never failed to find feveral infects thereon, havirg fometimes told twenty on the fame animal. In 5 or 6 day; I have fometimes found a few, but in 3 weeks never failed of a large quantity.

The body alone of the fnail is a foil proper for thefe infects, which are never feën on the fhell; or if they be compelled thither are not long 'ere they recover the collar, from whence they were driven.

To the bare eye they ufually appear of a very white colour, though fome of them feem a little brownifh, and others lightly tirged with red.

A good microfcope is neceffary to perceive their feveral parts diftinetly; by this they appear as in fig. 6 and 7 ; the former whereof reprefents their upper fide, and the latter their under fide. The letter T in each figure fhews their trunk, which however only appears in part in fig. 6; but the manner in which it bends under may be feén. This trunk in all likelihood ferves them to fuck the frail ; it is placed in the middle between two little horns CC, which are very movable, like thofe of cther infeets, both upwards, downwards, and laterally; and what is more, are capable of extending and contracting, like the

Roval Acâdemy of Sceenees. $3^{8 x}$
horns of faails; whence the animalcule is frequently feen without perceiving its horns,

Its bosy is divided into 6 annuli, and the anterior part to which the trunk and horns are joyned. It has 4 legs on each fide, the 2 foremoft whereof are articulated to the anterior part; and the 2 hind ones to the firft ring; the fecond and third are faftened further from each other, than the firt and fecond ; or the third and fourch: thefe legs are befet with large hairs, and feem to terminate in three or four points, much like the legs of feveral kinds of beetles, when the jaft articulation is removed, which terminates in two little hooks. Their back is round, and raifed with regard to their fides, which are likewife rounded, and have 3 or 4 large hairs upon them; their anus is likewife furrounded with 4 or 5 hairs of an equal length ; but there are none on its beily.
VIII. Reflections on the obfervations of the flux and reflux of the fea made at Dunkirk, by M. Baert, profeflor of bydrograpby, during the years 1701, and 1702; by M. Caffini, jun. * tranflated by M. Chambers.

Obfervations of the ebbing and flowing of the fea, being of great importance for the fecurity of navigation, and for the choice of times molt fuitable for coming in, or going out of ports, and it being withal of great confequence to the fciences, to learn whether they have any connection with the motions of the moon; and whether the variations to which they are fubject, are reducible to any rules, a circular memoir was drawn up

[^29]
382 The History and Memoirs of the

by the academy, and at their requeft, fent by the count de Pontchartrane, into feveral ports of France, with orders to make exact journals of fuch obfervations.

Among others, M. Baert, profeffor of hydrography at Dunkirk, wis intrufted with this care, of which he acquitted himfelf with all the application and accuracy that could be defired.He chofe a place for his obfervations in the inclofure of the admiralty, where the fea has no other confiderable motion, but that of the flux and reflux; here he built a lodge both for fhelter from the weather, and to prevent being difturbed in his obfervations: this done, he fixed a fquare tube * E.FGH, perpendicular to the furface of the fea, being compofed of 4 boards open as bottom in GH, that the water might enter freely in, and rife to a level with the fea, and clofed a-top in EF, by a lid EAF, which had a little hole in A, 14 lines in diameter, thro' which paffed a wooden ruler T K, on the lower extremity whereof was a little fquare board LM, fomewhat blunted at the corners to prevent friction; under which board was faftened a piece of cork 4 inches thick, which floating on the furface of the water, made the wooden ruler TK rife and fall according as the tide rofe and fell. This ruler was divided into feet and inches, whereby to eftimate the increafe or diminution of the tide. We omit in this account feveral circumftances of this machine, which fhews the great accuracy of M. Baerl's obfervations, and are related at large in a letter to father Gouye.

It may be neceffary here ta obferve, that all the meafures of the height of the fea were taken with regard to a fixed point, which is on a level with

[^30]
Royal Academy of Sciences. 383

 the top of the boaids bordering the key, near the nuice of the bafon, diredly on the afcent towards the citadel, which is a part of the key which the fea never goes beyond; nor muft it be omitted, that the direction of the canal at Dunkirk, is north-weft by north, that its length from the mole-heads near the road to the place of obfervation is 1435 fathoms, and its breadth 36 fathoms at the mouth, and 16 where narroweft ; notwithftanding which, there is no confiderable difference between the time of high water at the place of obfervation, and that againft Risbanc, as was found 5 feveral times, by the fineft days of fummer, by minute watches.-For underftanding of what follows, it mult be obferved, that we call it high water when the flood is rofe to its greateft height; and low water when the ebb is fallen to its greatelt depth. The greateft tides are thofe when the ficod is the higheft poffible; and the fmalleit tides thofe when the flood is the loweft pofble.The journal of M. Bacrt's obfervations of the tides, begins on the $24^{\text {th }}$ of March, 1701, and ends on the 3 ift of Moy, 1702; it expreffes for every day the height of the water in the time of flood, and fome hours before and after, with regard to the fixed point abovementioned, increafing in number downwards, in order to find the proportion between all the heights of tides which he had occafion to obferve. To find the precife time he had drawn a meridian line with grear exactnefs, whereby to regulate his clock from time to time; thus obferving the hour and minute wherein the water was at the fame height, both in rifing and falling, he took the middic between the two obfervations which were neareft the high water, the one before, and the other aftet it, for the precife time of high water, which te

3^{84} The History and Mentorrs of the

found more convenient than to make ufe of red= moter diftances, having obferved in many experiments, that the fea falls fomewhat more flowly than it rifes. He alfo obferved the winds, and the temperature of the air on each day of obfervation.

As to the irregularity of the progreflion obferved both in the rifing and falling of the tide, M. Baert dares not determine, whether the winds be the caufe, or whether we are to fuppofe that the fea is moved by waves far diftant from each other ; and by others which follow clofe together. _As to that balancing upwards and downwards, obferved at each high-water, he takes the caufe to be natural; for as the fea in approaching the coafts meets with an obftacle, it may rife a little above is level, which will oblige it to return again; and thus make a flow fort of vibrations near the place where the obftacle is, which will fcarce be perceivable elfewhere, by reafon of the winds.

To be able to compare the obfervations of high water, and fee whecher their irregularity be reducible to any rule more certain than has yet been done, M. Baert has drawn a table wherein is expreffed for every day from the 24 th of March, 1701, to the laft of May 1702, the moon's place at noon in longitude and laticude in two feparate columns ; her age at the time of high water in a third column ; the precife time of high water in a fourth ; the height of water below the fixed point in the fifth; the moon's paffige over the meridian; in the fixth, and in the feventh, and eighth, the direction and ftrength of the wind and flate of the weather.
The firft thing that occurs upon confidering the times of bigh water at Dunkirk is, that on the

Royal Academy of Sciences. 385

days of full moon the flood happens about noon, though not fo exactly, but that we fometimes find a difference of a whole hour, as may be obferved in the 15 fucceffive obfervations made thereof; the high water which came the earlieft, was on the $1 \mathrm{~g}^{\text {th }}$ of 7 fuly , at 24 minutes paft 11 in the morning ; and the lateft on the 17 th of September, at 24 minutes paft 12 in the afternoon, which gives a variation of an hour in the times of the tides on the days of full moon ; which variation being divided into 2 , gives the mean time of high water at Dunkirk, about 6 minutes before noon.

To fix fome rule in this variation of the time of the tides, on the days of full moon it mult be obferved, that the retardations of the tide from one day to another, bears fome analogy to the motion of the moon, whofe paffage over the meridian is retarded about 49 minutes daily. On this footing, when the times of full moon concurs with the time of high water, there muft neither be anticipation, nor retardation, in the time of high water; but when the full moon happens in the morning before high water, the moon's paffage over a horary circle, is retarded two minutes in an hour, with regard to the fun; and confequently there mult be an equal retardation in the time of high water ; whereas, when the full moon happens after high water, the moon being root yet at its full, when the water is at its height, there muft be an acceleration in the time of high water obferved.

Suppofing this acceleration, or retardation of 2 minutes in an hour, we have a rule for determining the variation of the tides on the days of full moon.-. For an inftance, on the 19th of 7uly, 1701, the high water was found at 24 Vol. III. N^{o}.33. Y y \quad mi-

3^{86} The History and Memorrs of the

minutes paft II in the morning, which is the greateft acceleration obferved by M. Baert; and full moon for that day is marked in the almanack at 50 minutes paft 11 in the evening; hence the high water muift have gained about 24 minutes, which being fubftracted from in hours, 54 min , the mean time of the tides at Dunkirk, gives II hours, 30 minutes for the time of high water, within 6 minutes of that found by obfervation. - Again, on the 17th of Sept. 1por, the day on which the greateft retardation of the tides was found, high water happened at 24 min . paft 12, and full moon at 56 min . paft 5 in the morning, confequently high water, by the rule above affigned, mult have been retarded 12 min . which added to 1 I hours, 54 min . give 12 hours, 6 min . for the time of high water, within 18 min. of that found by obfervation.

It mult be obferved, that whereas in the obfervation of the 1 gth of $\mathcal{F u l y}$, the wind was north-north-eaft ; on the 17th of September, it was fouth and very frefh at the time of high water, which might have contributed to the retardation of the tide; for the waves being driven by the tide againt the coafts of Dunkirk, from north to fouth, their motion might eafily be retarded by the fouthern wind, which coming from fhore, blew directly againft the tide; furmifing from this obfervation, that the winds, according to their different directions, may occafion either accelerations, or retardations of the tide, we examined the obfervations made on the 15 th of Nov. 1701, the day of full moon, the wind being at fouth, and very frefh, according to the rule above laid down, full moon having happened at 4 minutes palt 5 in the evening, we mult fubitract 10 min .

Royal Academy of Sciences. 387

From II hours, 54 min . which gives the time of high water at II hours, 44 min . in the morning, 16 min. earlier than in the obfervation, which fixed it at 12 hours, 0 min . In this obfervation therefore, as well as in that of September, there was a retardation in the tide, which may likewife be attributed to the wind, which blowing at fouth-weft, muft have checked the motion of the tide. On the contrary, in the high water on the 12th of April, 1702, full moon happened at $0^{\prime \prime}-13^{\prime}$ in the evening, and it was high water at $11^{b}-45^{\prime}$ in the morning, the wind being at north-north-weft, and very frehh. By the rule therefore, high water fhould have happened at $1 \mathrm{I}^{3}$ 54^{\prime}, which is 9^{\prime} later than was actually obferved : fo that in this obfervation was an acceleration, which may be attributed to the north-north-weft wind, which blowing directly on the coaft, concurred with the tide, and made it earlier than it would otherwife have been.

In the other tides, obferved by M. Baert at full moons, the winds were either weak, or fo difpofed, that they could neither hinder nor promote the motion of the tide any thing confiderably, fo that no regard was had to the effects produced by them.

When a like comparifon of M. Baert's obfervations of high water for 15 fucceffive new moons, from the 8th of April, 1701 , to the 26 th of May, 1702, we find, that the earlieft came on the 2 gth of Nov. at $1 \mathrm{I}^{\prime \prime}-2 \mathrm{O}^{\prime} \frac{1}{2}$ in the morning, the new moon for that day being at $10^{10}-11^{1}$ in the evening; and that the lateft was found on the 27 th of April, 1702 , at $0-47^{\prime}$ in the evening. A new moon happening that day at 3 54 in the morning, the difference between the

$$
\mathrm{Yy}_{2} \quad \text { times }
$$

388 The History and Memoirs of the
times of thefe two tides being divided into two, we have the mean time of high water at Dunkirk in the new moons, at $12-4^{\prime}$, which only differs 10^{\prime} from the mean time of the tides at full moon.

This difference being inconfiderable, high water at Dunkirk may be fuppofed in the new moons, as well as in the full moons, to happen at $1 \mathrm{I}^{\prime \prime}-54^{\prime}$ in the morning; fo that ufing the rule above prefcribed for determining the variations of the tides, on the days of full moon, we hall have the time of high water on the 8th of May, 1701, at $12^{\text {h }}-15$, which is within 20 min . of what was actually obferved; and the time of high water on the 27 th of April, 1701, at $12^{\text {in }}$ 30^{\prime}, within 37^{\prime} of the obfervation, which, in fome meafure, reconciles thofe two obfervations, which were $I^{11}-26$ diftant from each other

As to the winds obferved at the time of high water in the new moons, they do not feem to haften or retard the flood, fo regularly as was obferved in the full moons, which may arife hence, that the motion of the tide arifes from a complication of feveral caufes, fome whereof may be unknown; befides, that 'tis difficult to afcertain the precife time of high water. The time while it remains full flood, without either fenfibly rifing, or falling, being according to M. Baert's obfervation, from 12 to 20 , or 30^{\prime}, it mult be obferved, that the tides happening on the days of full and new moons, are not the higheft tides; but that the higheft happen 1,2 , or 3 days after, as appears from 30 obfervations made thereof, only two of which happened the day before full moon; fo that upon a medium, one may fuppofe, that the higheft tide at Dirnkirk hap-

Royal Academy of Sciences. 389

pens two days after new or full moon, as M . Baert has obferved.
'Tis commonly fuppofed, that the higheft tides happen in the new and full moons next the equinoxes, and yet by comparing the obfervations made at Dunkirk, we find, that the higheft tide happened on the 30th of Nov. 1701, when its height above the fixed point a day after full moon, was found 3 feet, 2 inches; and on the 27 th and 28th of Feb . 1702, when it was found 3 feet, 3 inches.

The great height of thefe two tides, 'tis true, may be attributed to fome extraordinary caule ; for on the 29th of Nov. 1701, the day of new moon, the high water was found 6 feet, 8 inches, below the fixed point, which was one of the loweft tides that had been obferved; and on the day following, it was found 3 feet, 2 inches, which, as above noted, was the higheft tide that had been known at Dunkirk. On this and the preceding day, there was a violent fouth-weft wind, which on the day of new moon, might have driven back the waters, and hindered their rifing to the ufual height, till returning with more impetuoftry on the day following, they rofe even beyond their cuftomary pitch, and thus made a kind of balance; in effect on the next day, viz, the firft of December was obferved 4 feet, 2 inches below the fixed point, which is above a foot lower than on the day before; and on the fecond of December, it was 3 feet, II inches higher than on the firft ; whereas, according to the common rule, it fhould all along have been on the finking hand, fo that we may fuppofe this alternate motion caufed by a violent fouth-weft wind to have lafted 4 days.

390 The History and Memoirs of the

Much the fame fluctuation was obferved on the 27th and 28 th of Feb .1 1702, when the height of the fixed point above the fea was found 3 feet, 3 inches; for on the 26th of Feb . the day of new moon, the high water was obferved 5 feet, 6 inches below the fame fixed point, occafioned by a great north-weft wind. On the 2η th in the morning, the wind was fouth-weft, and at 10 a-clock turned to north-weft, high water on this day was obferved 3 feet, 3 inches below the fixed point, which is 2 feet. 3 inches higher, than on the day preceding. On the 28 th, it was found at the fame height ; but on the firft of March, high water was found 2 feet, 7 inches lower, than on the 28th of Feb. and on the fecond of March, it was a full foot higher, than on the firit, tho' it fhould rather have funk ; fo that here was a kind of vibration, excepting that there was no variation between the heights of the 27th and 28th of Feb. which might be owing to the winds fhifting fo fuddenly, from fouth-eaft to north-weft, on the 27 th in the morning.

We have fufficient grounds therefore to fuppofe, that the winds may increafe or diminifh the height of the tides, after the fame manner as they have been thewn to occafion accelerations and retardations thercin; and 'tis probable likewife, that the difpofition of the channel of the fea, and the fituation of the fhores, may contribute their mare to the producing variations very difficult to be reduced to any certain rules.

As the higheft tides after new and full moon, do not always happen at Dunkirk about the equinoxes, it has been enquired, whether fome other caufe, for inftance, the different diftance of the

Royal Academy of Sciences. 391

 moon from the earth, might not contribute to their increafe, or diminution. - For fuppofing, as we may very eafily do, that the caufe of the ebbing and flowing of the fea arifes from the preffion of the moon, upon the fluid matter between the moon and the earth, it will follow, that the further diftant the moon is from the earth, the lefs will this preffion te, and confequently the tide the lower; on the contrary, the nearer the moon is to the earth, the greater will be its preffion, and confequently the tide higher.According to our theory of the moon, which gives an exact reprefentation of the motion of that planet, and its feveral diftances from the earth, fuch as found from the apparent variation of its diameter, 'tis fuppofed, that when the fun's place meets with the place of the moon's apogee, the moon being now in conjunction, is at her greateft diftance from the earth; and, on the contrary, at its fmalleft diftance, when in oppofition. About 6 months after, when the fun meets with the moon's perigee, the moon is then at her leaft diftance from the earth in conjunctions, and at the greateft in oppofitions; and when the fun is 3 figns diftant from the moon's apogee or perigee, on each fide the moon is at the fame diftance from the earth, whether fhe be in conjunction or oppofition.

If we now compare M. Baert's obfervations, made when the fun was near the apogee and perigee of the moon, for about the mean diftances, we fhall find, that the high and low tides, both in the new and full moons, correfpond to the different diftances of the moon from the earth; and that when the fun is in the mean diftances, the tides are pretty nearly of an equal height in

392 The History and Memoirs of the the conjunctions or oppofitions immediately following.

For an inflance, in the full moon which happened on the 2 Ift of March, 1701 , the fun was near the moon's apogee, being 17 degrees 16 , therefrom, the moon therefore being then in oppofition, was according to our theory near the earth, and confequently the tide muft have been high accordingly. On the 26 th of March, two days after full moon, the height of the fixed point above the furface of the water, was 4 feet, 3 inches, which was one of the higheft tides that had been obferved. - And in the next new moon that happened on the 8th of April, the diftance of the fun from the moon's apogee being r^{fo} - $\mathrm{O}^{\prime}-2 \mathrm{I}^{\prime}$ the moon was farther diftant from the earth than in the preceding oppofition; whence it follows, that the tide mult have been lower, as it was obferved accordingly, the height of the fixed point above the level of the fea on the 1oth of April being found 5 feet, 8 inches.
'Tis true, according to the common opinion, which fuppofes that the higheft tides happen neareft the equinoxes, the tide mult have been higher on the 26 th of March, than on the roth of A pril; but for the fame reafon, in the following full moon of the 22d of April, the diftance from the equinox being ircreafed, the tide fhould have been lower than on the 1oth of A pril; whereas it was really higher by i foot, I inch, conformably to what fhould have been from the fituation of the moon, which was farther from the earth on the 8th of April, than on the 22d: whence it appears, that the higheft or loweft tides bear a nearer relation to the diftance of the moon from

Royal Acadimy of Sciences. 393

the earth, than to the diftance of the fun from the equinoxes.

For the eafier making this comparifon, we have drawn up the following table; in the firt column whereof are expreffed the days and hours of the new and full moons; in the 2 d , the time of high water obferved at Dunkirk, on the days of new and full maon; in the 3 d , the time of high water calculated according to the preceding rule; in the 4 th 2 the height: of the fixed point above the furface of the fea at the time of high water; in the 5 th, the fun's ditance from the apogee of the moon; in the 6th, the diftance of the moon from the earth, at the time of new and full moon, with regard to the mean diftance, which is fuppoled to be 100000 parts; in the 7 th, the day of the higheft tide ; and in the 8th, the height of the Fixed point above the furface of the fea.

Voi. III. N ${ }^{\circ} \cdot 33$
$2 z$
A

394 The History and Memoirs of the

$A \mathcal{T} A B L E$ of the times and beights of the

	me of new moons.	and full		$\left\|\begin{array}{l} \text { Tme of thig } \\ \text { arer for fond } \\ \text { fionalculd } \end{array}\right\|$	
	1701.	H. M.	H. M.	H. M.	F.In.L.
	24 Mar. at	836 M .	1145	12	411
	8 Apr .	1054 M .	1221	1156	511
	22 Apr .	516 E .	1144	1143	53
	8 May,	142 M .	1235	1215	
	22 May,	218 M .	128	1213	
	6 June,	228 E .	II 50	1149	
	20 June,	- 26 E.	1143	1153	6
	6 July,	O 58 M .	129	$\begin{array}{lll}12 & 16 \\ 115\end{array}$	510
	19 July,	II 50 E .	11124	1130	
	4 Aug.	1015 M .	1148	1157	57
	18 Aug.	26 E.	12	1150	
	2 Sept.	65 E.	$1 \begin{array}{ll}11 & 37\end{array}$	1142	576
	17 Sept.	556 M .	1224	126	
	2 Oct.	220 M	11.46	1213	311
	16 Oct.	1124 E	1142	1131	
	31 Oct	1124 M .	II 39	1155	
	15 Nov.	54 E .	120	1144	510
	29 Nov.	1011 E.	$1120 \frac{1}{2}$	$\frac{1}{2} 1133$	
	15 Dec.	10 sm .	11 55	II 57	611
	29 Dec.	1047 M .	. 1151 - $\frac{1}{2}$	$\frac{2}{2}$ II 56	
	$14 \text { Jan. }$	112		1216	
	28 Jan.	138 M .	II 46	1215	
	12 Feb .	32 E .	1132	1148	
	26 Feb .	615 E .	II 57	1141	
	14 Mar.	148 M .	1213	112 14	
	28 Mar.	117 M	$1210 \frac{1}{2}$	$\frac{1}{2}$ II 56	510
	12 Apr .	- 13 E .	1.145	1153	4
	27 Apr.	349 M .	1247	1210	511
	11 May,	459 E .	II 36	1144	
	26 May,	827 E.	1147	1137	16.10

Royal Academy of Sciences. 395

tides, in the new end full moons at Dunkirk.

Z2 2

396 The History and Memoirs of the

By this table it appears, that when the fun's diftance from the apogee of the moon is abous 3 or 9 figns, the height of the water on the day of the higheft tide, is nearly equal both in conjunctions and oppofitions.

As to the loweft tides, out of the new and full moons, they do not ufually happen in the quadratures, but 1, 2, or 3 days after; fo that we may fuppofe them at a medium, to happen 2 days after the firft and laft quarter; as we likewife obferve, that the higheit tides commonly happen 2 days after the new and full moon.

The loweft tide happened on the 8th of $F_{6} b$. 1702, the high water being then 10 feet, 2 inches below the fixed point ; and the higheft tide, as already obferved, was on the 3oth of Norem. 1701, when the high water was 3 feet, 2 inches below the fame point ; fo that the difference between the higheft and loweft tides at Dunkirk was 7 feet. But what is further remarkable is, that the height of the tides, which happen in the quadratures, feems likewife to depend on the diftance of the moon from the earth, the flood being found higher when the moon is near the earth, and lower when the is farther diftant from it; fo as the height is much the fame in the firft and laft quarter, when the moon is equally diftant from the earth.

According to the theory of the moon, when the fun is about three figns diftant from the moon's apogee, the moon in her quarter is in perigee, and in her laft quarter in apogee, and confequently the flood fhould be higher in the firft quarter, and lower in the laft. On the conqrary, when the fun is about 9 figns diftant from the moon's apogee, the moon, if in her firft quar-

Royal Academy of Sciences. 397 ter, is in apogee, and in her laft in perigee ; confequently high water mult be lower in the firft than in the laft quarter; and when the fun is either in the moon's apogee, or perigee, the moon is at an equal diftance from the earth, both in the firtt and laft quarter, and confequently the tides muft be equal in each.

But the agreement between the heights of the tides, and the different diftances of the moon from the earth in the quadratures, will be more eafily obferved, by means of the following table.

39^{8} The History and Memoirs of the

$A \mathcal{T} A B L E$ of the times and beiglots of

Royal Academy of Sceinces. 399

the tides in the quadratures at Dunkirk.

400 The History and Memoirs of the

If now we confider the retardation of the tides, from day to day, we fhall find it liable to feveral irregularities, there being a retardation of $\mathrm{I}^{\text {' }}-54^{\prime}$, between the 2d and 3d of Aprit, 1701, and an anticipation of 30^{\prime}, between the 35 th and 16 th of OEtober; fo that it would be difficult to give rules for finding the time of high water daily at Dunkirk, within a few minutes of truth, as we have done for the days of new and full moon.
Our firft enquiry was, whether thofe irregularities bore any analogy to thofe of the true motion of the moon, which gains or lofes, with regard to the mean motion; but finding, that they were frequently a contrary way, I have been obliged to look elfewherc for the caufes of fuch variations. - In order hereto, we have compared the times of high water, obferved on the days of the quadratures, and find, that on the day of the firft and laft quarter of the moon high water happens at Dunkirk, nearly about the tame time as we had before obferved, that high water happens searly at the fame time in the new and full moons.

Among the 29 obfervations made at the quadratures, that, wherein the flood was moft accelerated, happened on the 26th of Auguft, 1701, at $4^{\text {h }}-31^{\prime}$; and that wherein it was moft retarded, on the 7 th of December, 1701, at $5^{11}-$ $5^{8^{\prime}}:$ fo that there is a variation of 1 - 27^{\prime}, in the time of high water at the quadratures, which is greater by I^{\prime}, than that obferved at new and full moons.

To affign fome rule for this variation, we fuppofe, that the mean time of high water in the quadratures happens at Dunkirk at $5-6^{\prime}$ in the evening, and to or from this time add, or fubftract ${ }^{1}$ for every hour, which the time of the quadrature,

Royal Academy of Sciences. 40 I

 quadrature, expreffed in the almanack, anticipates or comes behind this mean time of high water.-For an inftance on the 3 Ift of Marcb, 1701, the day of the quadrature, high water was obferved at Dunkirk at $5-36^{\prime}$ in the evening. Now the laft quarter of the moon is fixed for that day at $6-32$ in the morning, by the almanack ; and the difference between $6-32^{\prime}$ in the morning, and $5-6^{\prime}$ in the evening, the mean time of high water in the quadratures is to - 34^{\prime}; to which, at the rate of 2^{\prime} per hour, anfwer $2 \mathrm{I}^{\prime}$, which added to $5^{\prime \prime}-6^{\prime}$, give $5-27^{\prime}$ for the time of high water on the 3 ift of $\operatorname{March}, 1$ 1701, which is within g^{\prime} of the time obferved.The mean time of high water at Dunkirk, in the new and full moons, being at $1 \mathrm{I}^{\prime \prime}-54^{\prime}$ in the morning, and in the quadratures at in - -6^{\prime}, we have $5^{11}-12^{1}$ for the interval between the times of the tides from the new and full moons to the quadratures, which is much lefs than that of the quadratures, to the new and full moons; accordingly a greater retardation, from one day to another, is obferved in the tides fucceeding the quadratures, than in thofe which fucceed the new and full moons; the caufe whereof may be attributed to this, that the tides being lower about the quadratures, than about the full moons, the fea, which grows higher every day, as it approaches the new or full moon, fpends more time in furpaffing the height of the preceding day; whereas, from the new and full moons to the quadratures, the fea finding no obitacle, but being affitted by its own weight, defcends with the greater velocity, and confequently renders the intervals between the tides fhorter.

After afcertaining the time of high water in the new and full moons, and quadratures, we confiVol. III. N^{e}.34, Aaa dered

402 The History and Memoirs of the
dered anew all the obfervations made at Dunkirk, during the fpace of 14 months, and determined the mean time of high water for ever, both after new and full moon, and after the quadratures. We alfo formed rules of the variations they are Jiable to, with regard to the times of the new and full moons, and quadratures preceding the given day.

By thefe rules, among 434 obfervations related by M. Baert, there are only two wherein the time of high water, determined by the rule, is 54 minutes different from the time obferved. This difference will not appear very great, confidering what a number of irregularities may occur in the obfervations, there being fometimes a doubt of a whole hour in determining the time of high water, as was obferved on the $27^{\text {th }}$ of February, 1702; when it was firt found high water at 0 "8^{\prime} in the evening. After which the fea funk fome inches, but rofe again at $0^{\prime \prime}-5 \gamma^{\prime}$ to the fame height; it had been at 49 ' before, where it remained till $\mathbf{1}^{\prime \prime}-\mathrm{10}^{\prime}$; and M. Baert fixed the time of high water for this day at $\mathrm{I}^{\prime \prime}-7^{\prime} \frac{1}{2}$.

For the eafier finding the time of high water on any given day, we prefent the following table of the retardation of the tides, both after the new and full moons, and after the quadratures; the tides are here laid down for every 12 a clock, for the conveniency of finding the morning and evening tides. ——By means of this table, and of the rules fubjoined, the true time of high water may be found at Dunkirk for any given day, which may be of fervice to pilots for chufing the moft proper times to enter, or come out of that port.

Royal Academy of Sciences. 403

$\begin{gathered} \mathcal{T} A B L E \text { of } \\ \text { of the } \end{gathered}$
12
,
121
2618
122
123
$123 \quad 4120 \quad 12$
221
1242119
$014 \quad 391878016$

Rule firt, To find the time of high water at Dunkirk for the days of new and full moon, and of the quadratures.

Find in the almanack the time of new or full moon, and of the quadratures, and take the difference between this and the mean time of high water, expreffed for the day of that phafis, the double of this difference will be the number of minutes to be added to the mean time of high water, in cafe the time of the phafis anticipate the
mean

404 The History and Memorrs of the

 mean time of high water, or, on the contrary, to be fubitracted in cafe fuch time come after that of high water, the refult whereof will be the true tirne of high water required.For an inftance, firft, fuppofe the time of high water required for the day of full moon in April, 1701.

Full moon by the almanack falls on the 22d of April, at $5-161$ in the evening, the difference between this $5-16^{\prime}$ in the evening, and $11^{b}-54^{\prime}$ in the morning, the mean time of high water in the new and full moons at Dunkirk, as laid down in the table, is $5-22^{\prime}$; the double whereof, viz. $10^{\prime}-44^{\prime \prime}$ is the number of minutes to be fubftracted from $11^{1 \prime}-54$, on account of the full moon's coming after the time of high water, the remainder is $\mathbf{I I}^{\text {b }}-43^{\text {, }}$, the true time of high water in the morning of the 22d of April. M. Baert obferved it that day at $1 \mathrm{I}^{\prime \prime}-44^{\prime}$.

For a fecond inftance, fuppofe the time of high water required for the day of the firft quadrature of the moon in April, 1701.

The almanack fixes the firlt quadrature of the moon to the 16 th of April, at $2^{\prime \prime}-8^{\prime}$ in the morning, the difference between which time and $5-6^{\prime}$ in the evening, the mean time of high water in the quadratures at Dunkirk is $14^{\prime}-58^{\prime}$, whofe double 30 is the number of min.to be added to 5 "- 6^{\prime}, by reafon the time of quadrature anticipates the mean time of high water. The fum, viz. $5^{\prime \prime}-3^{6 \prime}$ in the evening, gives the true time of high water on the 16 th of April. M. Baert found it that day at $5-40^{\prime}$.

Second rule to find the time of high water at Dunkirk, for any given day.

Find by the firft rule the time of high water, the day of full or new moon, or of one of the

Royal Academy of Sciences. 405 quadratures, immediately preceding the given day; to this add the retardation of the tides, correfponding to the difference between the given day, and the day of the preceding phafis, the fum will be the time of high water for the day required. -To find the time of high water immediately preceding, or following that now found, we mult fubftract or add the difference correfponding to 12 .

For an irftance, fuppofe the hour of high water required for the 26 th of Marcb, 170 I.

In the almanack, we find that the pbafis immediately preceding the 26th of March, is full moon, which happens on the 24 th of March, at $8-36$ in the morning, the difference between $8^{3}-3^{6}$ in the morning, and $11^{\prime \prime}-54^{\prime}$ the mean time of high water at Dunkirk, is $3^{\prime}-18^{\prime \prime}$; the double whereof $6^{\prime \prime}-36^{\prime \prime}$, being added to $1 \mathrm{x}^{\prime \prime}-54$ gives the time of high water at $12-1^{\prime}$, on the $24^{\text {th }}$ of March, the day of full moon. To this add, $\mathbf{x}^{\prime \prime}-30^{\prime \prime}$, the retardation of the tides correfponding to two days after full moon, the refult gives the time of high water, on the 26 th of March, 1701, at $\mathbf{1}^{\prime}-31^{\prime}$ in the evening, the very fame as was obferved by M. Baert. To find the time of high water, which happened in the morning, and the fame day, take the difference between $\mathrm{I}^{\prime \prime}-30^{\prime}$ and $1-14^{\prime}$, viz. 19^{\prime}, which fubftracted from $1^{\text {n }}-31^{\prime}$, the time of high water in the evening, gives $\mathbf{1}^{n}-12^{\prime}$ for the true time of high water in the morning.

For a fecond inftance, fuppofe the time of high water required for the 6 th of A pril, 170 I.

By the almanack we learn, that the third quadrature of the moon, which is the phafis immediately preceding the given day, happened on the 3 Ift of March, 1701, at $6-32^{\prime}$ in the morning,

406 The History and Memoirs of the

ing, the difference between this 6 - $3^{\prime 2}$ in the morning, and $5^{\prime \prime}-6^{\prime}$ in the evening, the mean time of high water at Dunkirk, in the quadratures, is $10^{\prime \prime}-34^{\prime}$; whofe double $21^{\prime}-8^{\prime \prime}$ being added to $5-6^{\prime}$, by reafon the time of the 3 d quadrature comes before $5^{\prime \prime}-6^{\prime}$, gives the time of high water at Dunkirk. On the 3 Ift of March, 1% OI, the day of the laft quadrature, at $5^{\prime}-27^{\prime}$ in the evening, the difference between the 3 Ift of Mar. the day of the third quadrature, and the 6th of April, the day given, is 6 days the correfponding retardation, to which in the table is $6^{\prime \prime}-12^{\prime}$, which added to $5^{\prime \prime}-27^{\prime}$, gives the time of high water at Dunkirk, for the 6th of April, 1701 , at $11^{\prime \prime}-39^{\prime}$ in the evening. \quad To find the time of high water, which happened in the morning, take the difference between $6-12^{\prime}$, and $5-50^{\prime}$, viz. 22^{\prime}, which fubftracted from $11^{\prime \prime}$ 39^{\prime}, the time of high water on the 6th of April, in the evening, gives $11^{h}-17^{\prime}$, for the true time of high water in the morning of the fame day. M. Baert found it II -21^{\prime} this morning .

Third rule, to find in any given month the times of the higheft tides, moft proper for entering or coming out of the port of Dunkirk.

Find, by the preceding rule, the time of high water for the 2d days after the new and full moons of that month, and you will have the time required.

For an inftance, the full moon of the month of March, happening on the $24^{\text {th }}$ at $8-36^{6}$ in the morning, we feek by the 2 d rule the time of high water on the 26th of March, which, in the inftance there given, is found at $1-31^{\prime}$ in the evening. M. Baert obferved it high waser this day at $1^{\prime \prime}-31^{\prime}$ in the evening; and the tide

Royal Academy of Sciences. 407 tide was higher than in any of the preceding or following days.

Fourth rule, to find the day and hour of the higheft tide, which will happen in any given month.

By the aftronomical tables, take the moon's diameter for the day of new and full moon; if this diameter be greater on the day of the new than of the full moon, the tide will be higheft this month 2 days after the new moon; but if the moon's diameter be greater on the day of full than of new moon, the tide will be higheft this month 2 days after the full moon.

For an inftance, fuppofe the higheft tide required in the month of $\mathrm{April}, 1701$ -

By the tabie, we find the diameter of the moon, on the 8th of April, the day of new moon, to be $14^{\prime}-53^{\prime \prime}$, and on the 22 d of A pril, the day of full moon, to be $15^{\prime}-2^{4 \prime}$, confequently the highert tide in this month will be on the $24^{\text {th, }}$, which agrees with M. Baerl's obfervation.

Fifth rule, to find the day and hour of the loweft tide, which will happen in any given month.

Find, by the aftronomical tables, the moon's diameter for the day of the firft and laft quadrature, if this diameter be fmaller on the day of the firft quadrature, the leaft tide this month will be 2 days after the firtt quadrature. On the contrary, if the moon's diameter be the leaft on the day of the laft quadrature, the loweft tide that month will be 2 days after the laft quadrature.

For an inftance, fuppofe the leaft tide required for the month of Fune, 170 I .

By the tables, we find the diameter of the moon, on the $13^{\text {th }}$ of 7 fure, the day of the firlt quadrature, to be $16^{\prime}-C^{\prime \prime}$, and on the 28th of

408 The History and Memoirs of the
Fune, the day of the laft quadrature, to be $14^{\prime}-47^{\prime \prime}$, confequently the fmalleft tide in the month of June, iyoi, muft have happened on the zoth of that month, agreeably to the obfervations of M. Baert.
IX. Obfervations on a kind of talc, commonly found near Paris, over the banks of plafterftones, by M. de la Hire *; tranflated by Mr. Chambers.

One of the moft curious among tranfparent ftones, and that which may give moft employment to the naturalifts to account for its effects is what we commonly call ifland cryftal. 'Tis extremely tranfparent, and clearer even than the fineft glafs; but might be more properly called a talc than a cryftal, for the reafons alledged hereafter. Its difcovery we owe to Erafinus Bartholin, a celebrated Dani/b mathematician, who firft laid it before the publick, in a treatife upon the fubject, printed in 1670. M. Huygens has alfo been very large on the properties of this ftone, in his treatife of light, printed in 1690.

Having two large pieces of this ftone in my poffeffion, I was willing to examine it, by feveral experiments, and in different manners, both for my own fatisfaction, and for the afcertaining of what thofe gentlemen have faid of it. It ought, as already hinted, to be called a talc, rather than a cryftal, it being one of its chief properties to cleave readily every way, but ftill parallel to one of thofe 6 phafes, whereof its figure confifts, which is always an oblique angled parallelipiped, and confequently its fragments will

[^31]Royal Academy of Scienecs, 409 all beparallelipipeds, whofe 8 folid angles are placed fimilarly in the fmalleft pieces, as in the largeft.

The 6 faces, whereof it is formed, are oblique angled parallelograms, whofe two oppofite obtufe angles are each 101 degrees, 30^{\prime}, and confequently the two others being the complements thereof, muft be each 78^{8} - 30^{\prime} : this I have learnt by my obfervations.

In this para! lelipiped are only 2 folid angles, which are oppofite to each other, and formed by 3 of the obtufe angles of the faces; the other 6 are each comprehended between one obtufe angle and two acute ones, there being in all 12 equal obtufe angles, and as many equal acute ones.

The inclinations of the faces make two kinds of angles; 6 whereof are obtufe, comprehending each 105 degrees, and 6 acute ones of 75° each, which are the complements of the former.Thefe meafures are fomewhat different from thofe of Meff. Bartbolin and Huygens, which may arife from the difficulty of making exact obfervations thereof, by reafon the acute angles are not fo well defined as the obtufe ones.

Thus much for the figure of the ftone.But what is more remarkable in it is, that it reprefents all the objects feen thro' two of its parallel faces double; the diftance between the two images appearing fo much the greater, :as the faces are further diftant from each other, or the cryftal thicker. This phenomenon is the moft fenfible, when the object is a black point, or a line drawn on the face of the ftone.

The doubling of the object, however, is not the only thing to be confidered in this ftone; bus the manner wherein this is done, which is always in the line paffing thro' the object, which is paVol. III. N®. 34 , Bbb ralled

410 The History and Memoirs of the

rallel to that whereby the obtufe angle of the face the object is upon is bifected.

This double image of the fame object fhews, that there mult be a double refraction in thefe bodies, and accordingly two very different ones have been diftinctly obferved. The firft, common to that found in all tranfparent bodies, and depending on the inclination of the incident ray, to the line perpendicular to the face of the body when the refraction is made. The fecond, peculiar to this cryftal, and arifing from another inclination of the incident ray, to another line inclined to the fame face. - Hence it follows, that if the incident ray be united with one of thefe lines, it will not undergo the refraction belonging to that line, but will undergo that depending on the other ; and confequently the image will always be double in every other inclination.

I have made feveral experiments, and have likewife repeated them feveral ways; the refult whereof is, that in the firft of the two refractions, the fine of the angle of incidence in the air, is to the fine of the angle refracted in the body as 5 to 3 ; whence we learn, that this refraction of the body, notwithftanding its foftnefs, furpaffes that of the glafs, which is only as $4 \frac{1}{2}$ to 3 .

As eo the 2d refraction which is peculiar to this body, and makes the object double, Bartkolin takes it to depend upon a line, or ray, always parallel to the edges of the faces next thofe where the refraction is made; but Huygens denies this line to be parallel to thofe edges ; for myfelf, after examining the point with great attention, I find this line more perpendicular to the furface of the cryltal by I°, which is no great matter in an enquiry of this kind: further I find the fines of the angles

Royal Academy of Sciences. 4 It angles of incidence in the air with regard to this line; and in this 2 d refraction to be to the fines of the refracted angles nearly as $4 \frac{I}{2}$ to 3 , which is much like that of glafs.
' T is obfervable, that the image produced by the fecond refraction, always appears lower than that produced by the firft; the reafon whereof is eafily affigned from the laws of dioptricks, as alfo why each of the two images only appears with $\frac{1}{2}$ the ftrength it would have, if viewed without the interpofition of any other body. Hence it is, that when the parts of the two images cover each other, as will happen in a certain fituation to a black ftroke upon the cryftal, this part will appear twice as ftrong as any where elfe.

Myj examination of the Inland talc led me to confider that found in this country over the banks of plafter-ftone; for we muft not neglect what is committed unto us, and which would appear curious in a foreign country to beftow all our attention upon what comes afar.

This plafter talc is a tranfparent ftone which bears a near refemblance to that brought from the Levant, except in point of figure, which is very fingular, and is conftantly the fame in all the pieces we have feen; its relation to the real talc confifts in its cleaving readily into thin leaves, or lameila, equally traniparent with thofe of common talc, but fmaller, and more brittle.

We meet with ftore of pieces of this ftone, of a moderate bulk, in a fratum of white fatty earth, over the blocks of ftone whereof the plafter of Paris is made; they are diftributed thro' this earth, wherein it is known they are formed without any order or uniformity, being thrown as it were at random, and feveral almoft joining one to

$$
\text { B b b } 2 \text { another }
$$

412 The History and Memoirs of the

another with the intervention only of a little of the fatty earth.

The figure * of this talc refembles the barbed point of an arrow, as appears by ABCD which reprefents one of its faces; for there are always two parallel to each other, according to which the fone cleaves into leaves; and one of thefe faces is bigger than the other. We find pieces from 12 to 15 inches long, all forked at the broad end as in CAD, the other end B terminating in a point; the pieces in thicknefs of a moderate fize, are about I inch : thro' the 2 parallel faces we perceive objects very clearly, at leaft in the white pieces; for there are fome yellow and brownifh ones which are but little tranfparent.

Each piece is naturally divided into two lengthways, as appears by the right line AB , proceding from the cleft A to the point B; and the plane which parts them is perpendicular to the faces; but the two pieces are ufually united, being only diftinguifhed from each other by the inequality of the fubftance found in this part, where there is fometimes likewife found, a little of the earth wherein the talc is formed: in fome parts of it we alfo find a hard ftony kind of crult.

The fides which terminate this ftone, do not ufually make right angles with the faces; but an acute angle of 75 degrees on the broad fide of the face, and its complement on the other ; and hence it is, that the two faces are not of the fame bignefs in every piece: the fides naturally are not fmooth and polifhed, being only formed of the extremities of the feveral lamine, which are always covered with a thin yellowih cruft ; and

[^32]hence objects only appear very confufedly thro' thefe fides unlefs the cruft be removed, and a varnifh laid over, which is not eafy to execute, by reafon of the fmall connection between the lamine.

One of the points of the fork is fometimes found a little feparate from its piece, being only joined irregularly thereto, by a little of the fatty earth; and upon feparating them quite, we find that thefe points only adhered to the reft by pieces of lamine, about a line thick, which enter more or lefs into the body of the ftone, and make bond as the mafons call it therewith.

Upon removing fome of the rough lamella on the furface of this talc, we clearly difcern lines therein, as EF proceeding from the middle line AB, towards the edges on either fide; and making an acute angle AEF , with the fame middle line towards the fork A , of about 60° : we alfo perceive other lines as GH proceeding from the middle towards the edges, and making an acute angle BGH towards the point B of 50°, fo that the acute angle formed at the meeting of thofe 2 lines is 70°.

Hence it always happens, that upon cleaving the talc into thin pieces, which can only be done with a fharp knife, beginning at the exterior edges affer firft removing the cruft : moft of thefe lamince break into triangles, whofe angles are conftantly 50,60 , and 70 degrees, which is a very fingular property of this ftone. We alfo find certain fragments of thofe thin lamelle, in figure of a parallellogram compofed of 2 of thefe triangles joyned together.

Hence we may probably infer, that the mafs of thefe talc ftones, confifts only of thin lamelloe nenderly faftened to each other, each whereof is

414 The History and Memoirs of the

formed of little triangular lamella, as the elements thereof which are ftrongly faftened to each other at their edges, whence they have a confiderable firmnefs; each of which little elementary triangles has 3 unequal acute angles; viz. of 50,60 , and 70°, as appears from the pieces of broken lamelle, which are only affemblages of the fame elementary triangles, and form triangles like their elements; for thefe lamella are very brittle, and yet afford the fame angle, when, or howfoever broken.

If the fides of thefe elementary triangles do not make a right angle with their face, but an angle of 75 degrees on one fide, and its complement on the other, which however is more than can be obferved, it would likewife follow, that upon joining together in the fame order, the whole fide of a piece formed by them, would have this inclination to the face, which is eafily obferved.

From the difference of the angles in the elementary triangles, it will likewile follow, that according to their feveral arangements in forming the lemelle, the fides of thofe lamelle will either be parallel to the line in the middle, or inclined thereto in 10°, which alfo forms the point of the piece; the faces whereof are always inclined 10° to the middle line on either fide, when they are inclined at all, which happens almoft univerfally; for the angle AEF being conftantly 60n, and the angle BGH , or BEI, or BEK 50°, the angle EEI or FEK, will neceffarily be 70°; and if the triangle FEI, whofe angle FEI fhould be 70°, have its angle EFI 60°, and confequently the other EIF of 50 , it will follow, that the fide FI will be parallel to AB ; but if the angle EFI, or EFK be 50 degrees, and the other EKF 60, the line FK will make an angle

Royal Academy of Sciences. 415 with the middle an angle of 10°, which we ufually find accordingly. Thefe 2 cafes may happen in the firft formation of the leaves by the triangles, as FEK taking an inverted fituation, the angle in E fill remaining the fame; and as we may fuppofe, that before the forming of thefe leaves, their elementary triangles floated in a liquid fubftance; by the motion whereof they were ranged afide of each other, in a certain order, agreeable to their figure; whence it happened, that the fides of the lamelle might become inclined to each other, in an angle of 10 degrees; for I only here confider $\frac{x}{2}$ the intire lamelice which is always divided into two by a line, as AB; but if in fuch formation of the lamellice, one of them by any accident happened to take a different pofition, the reft adapting themfelves thereto by the motion of the fluid, formed the fides of the lamellice parallel to each other.

It was in this formation of the lamelle, that they acquired their hardnefs, which became pretty confiderable by their elements joining to each other at their fides; but the lamelle having ftill a liquid matter between them, which could only be drained off in time, it hence happened that they did not adhere any thing confiderably to each other by their furfaces; fo that if there be the leaft foreign matter left between them, they will always be eafier to feparate from each other than to be broke a-crofs.

As to the fork CAD, its formation feems to be as follows, the angle formed by each horn as ACH or ADH is ufually 50° which is the fmalleft of the 3 angles of the element, and if the exterior fide of the piece make an angle with the middle line of 10^{2} towards the point, it follows, that the angle of the fork CAD mult be 120 de-

416 The History and Memoirs of the

grees, which is very near what we actually find in fome pieces of this talc.——Now if any foreign body have been found about A to hinder the 2 elementary triangles, which fhould have keen difpofed therein from uniting to thofe of the fides (fomething of which kind we actually find in the difunion of the horns, from the body of the talc by a piece of earth as abovementioned) in this cafe, the connection between the lamine being interrupted, the reft muft have continued forming, and terminate at length in the point of the horn, by lines parallel on one fide to EF, and on the other in AC and AD; for the natural figure of the elementary triangles in joining together, will always form triangles fimilar to the elements.

What has hitherto been obferved of the quantities of the angles in the talc, is only what obtains in the general, there being feveral 'irregularities found therein, occafioned in the formation by foreign bodies, which diverting the elementary triangles, have made them affume external figures different from what would naturally have arofe from the affemblage of elements; yet without any fuch thing being perceivable in the body, on account of the fmallnefs of thofe elements, as we find by fome of the fides which are a little crooked, and by certain angles which are lefs or greater than thofe of the elements, in which care thefe fides mult have little dentures; fome whereof are perceivable in the irregular fractures of the lamella: in fine, we find fome pieces of talc which have others faftened on their fides; in others the point is extended into a paralellipiped only on one fide, and towards the point of others, we find another piece form'd as ufual, but oppofite to the firft, with a thoufand other varieties which are as it were the lufus of this formation.

Royal Academy of Sciences. 417
After examining the figure of this talc, I applied my felf to the obfervation of its refractions. Thefe, I firt confidered between the 2 parallel faces, the only way wherein the ftone is naturally tranfparent; and then in planes perpendicular to thofe faces, as is ufually done in meafuring the refraction. Then in all the other directions, as lengthwife from the middle of the point, towards the fork; then fide-wife, breadth-wife, perpendicularly to the middle line, $E^{3} c$. and every where under all the different angles of incliation, found the fine of the angle of incidence in the air, to the fine of the angle refracted in the body as 5 to $3 \frac{1}{3}$, which is the fame as that from air into glafs; and the fame likewife with that peculiar to Ifland cryftal, which deferves a fpecial attention ; laftly, feparating a piece of talc into two, by :he plane which divides its length, and is perpendicular to the faces, I examined what the refraction would be a-crofs the thicknefs of its fide, fuch refraction being made in a plane parallel to the faces, which is impracticable while the two halfs are joyned together, both by reaion of the too great thicknefs, and of the foulnefs of the middle part where the feparation is; but having cleanfed this part, and fmeared it over with a little gumwater, as alfo the outer edge which is commonly rough, till a black body might be difcerned thro' it, I found, that the refraction this way was the fame as before ; viz. as 5 to $3 \frac{1}{3}$.

But being fearce fatisfied with all thefe obfervations, I was further willing to know whether the clefts or fluws, perceived on the fide of this ftone, might not produce fome particular effect; to m. ke which the more apparent, I applied an iron wire lengthwife over thefe clefts, and looking thro' the

[^33]
418 The History and Memoirs of the

talc, found its image appear in two different places, or at leaft much larger than it really was, with a clear fpace between the two; then moving the wire gently, but ftill in its former direction, I perceived the image jump, as it were, from one place to another, but fill double; to render thefe obfervations the more confpicuous, by reafon the talc is very dim when viewed fideways, it muft be held vear the light of a candle, and the iron wier applied full upon it.

Here it will be required to produce phyfical reafons of all thefe effects, not only of the talc, but of Ifand cryftal, which it fo nearly refembles; from whence light might perhaps be let into moft other tranfparent bodies, as diamond rock, cryftal, allom, $\mathcal{E} c$. which are all natural productions; and in all appearance are formed of an affemblage of elements, fimilar to each other, which determine their figure: but this I referve for another memoir.

At Pafly near Paris, round the mineral fpring, are likewife found little pieces of talc, of the fame fpecies as that of the plafter quarries, being fiffile like them into thin lamelle; 'tis very clear and tranfparent, and fenfibly formed of the fame triangular elements, as that of plafter; but the figure of its two parallel faces, according to which it cleaves, is a parallelogram with two acute angles of 50 degrees each. Its fides make an angle, with the faces of 125 degrees on each fide, tho' 'tis difficult to meafure them exactly, by reafon the fides are not fmooth, as being only formed of the extremities of lamella, which leaves feveral inequalities along the fides.

What is moft remarkable in this talc, is a prominent angle, of about 110°, which it makes about the middle of its thicknefs on either fide ;

Royal Academy of Sciences. 419 fide ; fo that its figure would be a parallelipiped, with 6 faces, provided its two ends, or bafes, were plain; but they alfo make a prominant angle about the middle of 140 degrees.

As to the refraction of this talc, I have not been able to find the exact quantity thereof, by reafon the pieces are too fmall; nor do I find, that objects appear double through its parallel faces.

Sir Ifaac Nervton gives his obfervations upon ifland crytal, with an abltrufe fort of folution of its effects in his opticks.

An Explanation of the Terms of Art ujed in this volume, which were not explained at the end of the former volumes.

A

ALbidade, is an Arabic word, ufed to exprefs a moveable rule applied to an inftrument for obferving heights and lengths. It is alfo called a diopter.

Apogeum, or 'apogee, is a point in the heavens, in which the fun, moon, or any planet, is at its greateft poffible diftance from the earth.

Arcometer is an inftrument ufed to meafure the denfity or gravity of fluids. That which is ufed by the royal academy of fciences at Paris, is a glafs bottle balanced with quickfilver, having a very narrow neck, divided all along into equal parts. It is immerged in liquors, which they would compare together, and the weight of them is determined by the degree to which the areometer finks; that in which it finks moft being the lighteft liquor.

B

Brace, a meafure of 5 Paris feet and 4 incles, or about 5 feet, 7 inches $\frac{2}{2}$ of our meafure.

C

Caliber, the bore or width of a fire-arm, or the diameter of its mouth, or of the ball that it carriés.

Cbamber, or fourneau, or furnace of a mine, is that part in which the powder is placed. The

Royal Academy of Sciences. 42 I

cavity of it is about 5 or 6 cubical feet, and is charged with about 1000 lb . of powder, or lefs, according to the earth that is to be raifed.

Cboroides, the inner coat of the eye.
Cornea, one of the coats of the eye, fo called, becaufe it is tranfparent like horn.

D

Diafole, the motion of the heart, by which it dilates itfelf: it is oppofite to the fyjtole, by which it contracts itfelf.

E

Eolipyle, a hydraulic inftrument, confifting of a hollow metalline ball, with a flender neck or pipe, having a very fmall aperture. It is heated red hot, in order to rarefy the air, and then thrown into water. There will enter as much water into it, as may ferve to fill the vacuum left by the air condenfed by the coldnefs of the water. It is then fet before the fire again, and the air rufhes out with a furprifing impetuofity, and for a confiderable time.

F

Fougade, or fougafle, is a little fourneau, or chamber of a mine made in form of a well, 8 or 10 feet broad, and 10 or 12 deep, which is digged under fome work intended to be blown up. It is charged with facks or barrels of gunpowder, and is fet fire to like other mines with a fauciffe.

Fourneau of a mine, fee chamber.

M

Mortife, or mortoife, an incifion into the thicknefs of a piece of wood, which is to receive another piece called a tenon.

422 The History and Memoirs of the

0

Os byoides, a bone fo called, becaufe it refembles the Greek letter Y. It lies at the root of the tongue.

P

Perigeum, or perigee, is a point of the heavens, in which the fun, moon, or any planet is at its leaft poffible diftance from the earth.

Pia mater, a thin and delicate double membrane, which lies under the dur a mater, and immediately covers the fubftance of the brain.

S

Sauciffe, or faufage, is a little roll of pitched cloth, 2 inches in diameter, filled with good powder, and having a flow fufee faftened to it. It reaches quite to the chamber of the mine, and is ufed to fet it on fire.

Sylole, that motion of the heart, by which is contracts itfelf. It is oppofite to the diafole, by which it dilates itfelf.

A

GENERAL INDEX

OFTHE

CONTENTS

OFTHE

THIRD VOLUME.

A

ACORN from Coromandel - 328 Air, the dilatation of it by boiling water confidered. 110
—— Experiments on the elafticity of it. $\quad 350$
America, remarks on the navigation of its coafts. 125 Amplitude, what it is. 15
Animalcules, the multiplication of them. 10 Aftaboras of the ancients thought to be the Tacaze. 137 Aftape of the ancients thought to be the Dender. 138 Atbara, a name given to the Tacaze. ib. Atmorphere, the weight of it. 220 Aurora borealis feen at Berlin. I3

B

Baker's cellar, the fatal effects of fome vapours there. 329 Barometer obferved. $\quad 22,95,171,360,364$
———luminous.
—— a new one defcribed.
it. the method of meafuring the beights of places by
Birometrical obfervations, made at Paris and at Zurick, compared.

I NDEX.

Barometical obfervations upon St. Baum, and the neigh.bouring mountains.142解 229
Batavia, the difference of the milk
there, and that of Negrefles. 12
St. Baum, barometical obfervations made there. 142
Beguignes, the height of it. 142
Berlin, an aurora borealis feen there. 133
Bezoar, obfervations on it. 369
Bernard the hermit, a fort of ffho. 326
Bicuiba, a fort of nut, its virtues. 329
Bitumen contained in the fea-water. 342
Boca Cinca, its latitude. 152
Blood, circulation of it in infects. II
Bolonia, the difference of its meridian from tbat of Paris.
Bombs confidered. 317
Brazli, its pofition in the maps erroneous. 130
Burning-glaftes of the ancients. 88
C
Cancellus, a fort of fifb. 326
Cancers cured. 329
Candace, the common name of the queens of Meroe. 130
Cape Horn, its pofition in the maps erronesus. 128
Cartefian §iflem of the caulfe of gravity vindicated. 2 201
Carthagena, its latitude. 153
-_- longitude. $153,154,155$
Catarrh, an cpidemical one, which fucceeded a thaw. 313
C.ts, the particular fructure of their eyes. 192- plunged in water, the effict on their eyes confidered.
Centring well the object-glafs of a telefope, the neceffity of it. 366
Chama or purr, a fort of fhell-fig. 322
Circulation of blood in infects. II
Cobwebs, how made. 33
Cold, cominr with a fouth wind. 165
Colick eafed 329
Coromandel, a fort of acorn from that country. 328
Crabs-eyes, obfervations on them. 245

I N D E X.

Cray-fifh, obfervations on them.
pag. 244
Cryftal, a difertation on it. 81

- of Inand. 408
Cuttle-fin, the eggs of it confidered.D
Declination of the needle obfrved. 23, 95, 105, 172,
Dender, a confderable river foving into the Nile. 137
—_thought to be the Aftape of the anciones. 138
Dunkirk, the tides oblerved there. 381
E
Echo, a remarkable one near Verdun. 331
Eclipfe, of the moon at Nuremberg, Genoa, and Mar- feilles. 316
-_-_-_ $u n$ in in differcent countries. 316 376
Egagropilx, what they are.
Egagropilx, what they are.
Ethiopia, the maps of that country very erroneous. 131
$-\mathrm{F}$
Fire, conjectures on the matter of it. 287
Fire-arms differently cbarged. 6
Fifihes petrififed. 82
Flints, their generation. 8
Fluids, the evaporation of them in cold weather. 305
Flux and reflux of the fea obferved at Dunkirk. 381
Friction, light of bodies produced therebj. 3
Frofts, fome effects of them. 305

G

Galets, a fort of fones. 6
Genoa, difference of its meridian from thofe of Marfeilles and Nuremberg.
from that of Paris. 317
Glaffes, why the tendereft are leaft fulject to brak by fire. 67Glafs ware of India.328
Vol.IV. N ${ }^{\mathrm{U}} .34$. Ddd

INDEX.

pag.
pag.
Gojame falfy fuppofed to be the Meroe of the ancients. 133
Golfo-trifte, obfervations made there. 149
Gravel expelled from the kidnies. 12
Gravity, the Cartefian fyftem of the caufe of it vindicated. 201
Gueguere fally fuppofed to be the Meroe of the ancients. 133 Guerre, a city of Ethiopia. 141
Gunpowder, the effect of it, chiefty in mines. 44
H
Hearts, two in a pullet. 167
Hogs, injurious to cray-fib. 250
Hosizon of the fea, the irregularities of its apparent prefion. 27
the apparent depreflisn of it. 146
Horres, a metbod of fopping them fuddsnly. 91
I
Ice, why it melts fafler in vacuo, than in air. 67

- at Copenhagen, its thicknefs in the hard winter of

1709. 167

- the thicknefs of it on the Thames in 1683. ibid.
Iguana, a fort of American lizard. 12
India, the glafs-ware of that country. 328
Infects, circulation of the blood in them. 15
——an extraordinary fort. 344
upon fnails. 376
Ifland, a nezv one near Santerini. 13, 70
L
Latitude of Bocachica. 152
- Carthagena. 153
———Fort St. Louis in Domingo. 155
-_ Santa Marthe. 150
- Martinico. 156
———Porto-Cabeillo. 149, 150———Porto-Bello.
. ——St. Thomas Ifand. 151

I NDEX.

Lepas, a fort of hell-fif.
pag. 322
Light of bodies produced by friction. 3
\longrightarrow of the barometer.

- conjectures on the matter of it. 287
Limat, a river of Switzerland, the augmentation and di-minution of it obferved.177
Limpet, a fart of Shell-fijb. 322
Longitude of Car:hagena. 153, 154, 155
-_Martinico. 157
, Poro-Bello. 151
St. Louis, a fort in St. Domingo, its latitukte. 155
Lyons, the quantity of rain objerved there. 176

M

Machine to retain the wheel, which ferves to raife the rammer to drives piles. 23
Malaca, the air dilates otherwife there than in France.
Map of 242
Map of a country, a new way of conft ucting it. 14
Marfeilles, diffrrence of its meridian from thofe of Genoa and Nuremberg. 316
St. Marthe, its latitude. 150
Martinico, its latitude. 156
Meroe, conjectures on the pofition of that ifand. 130
—— gaverned only by queens. ibid.
—— its true fituation. 132, 135
——not an ifland but a peninfula. 132
—_ Jufpected by forme to be an imaginary ijland. 134
\ldots its diftance from Syene. 136

- its pofition by the climates. 1.37
——by what rivers formed. ibid.
- its figure. 138
Milk, the diference between that of European women and Negrefles. 12
Mines, the efferd of runpowder in them. 44
Muntpellier, the difference of its meridian from that of
Paris.
316
Moon eclipfed at Nuremberg, Genoa, and Mareilles. 3^{16}
Motion pragrelfive of fiveral jpecies of foell-figes. 321
Mountains, the origin of them.
Ddd 2

I NDEX.

Mufcles of the pond.pag.
——a little Jhell-fifh that feeds upon them.346
Mufick, an extraordinary cure performed by it. 9,
N
Needle magnetical, its declination 23, 95, 105, 125,$150,152,155,172,315,360$
Negreffes, the difference between their milk and that ofEuropean zoomen.12
Nile, the fources of it where fituated. 133
Nuremberg, the variation of the nepall obferved there. 315
-_- difference of its meridian from thofe of Mar- feilles and Genoa. 316
0
$\mathrm{Ob} \cdot \mathrm{ect}-\mathrm{g}$!a fs of a telcs cope, the neceffity of centring it well. 366
Opticks, fome faets in them explained. 190
P
Palourde, a fort of hell-ffo. 324
Patella, a fort of Jhell-fijb. 322
Pendulum, the length of it at Porto-Bello. 151Piles, a macbine to retain the whal, which ferves to raifethe rammer to drive them.23
St. Pilon, barometrical obfervations made there. 142
Pont-briand, the weather obferved there. 173
Porto-Bello, its longitude and latitude. 151
Porto-cabeillo, obfervations made thcre. 149
Port de Paix, in St. Domingo, its longitude. 160
Progrefive motion of five aljpaices of jbell-fifios. 321
Pullet zuith two bearts. 167
Purr, a fort of foell-fin. 322

R

Rain, the quantity of it obferved. 19, 93, 170, 173, 176, $356,36 \mathrm{I}, 363$

I N D E X.

S

Santerini, a new ifland near it.
pag. 13,71
Sea, the phyyical biffory of it. 337

- nettlcs, their progreflive motion. 323
- urchins, confiderations on their legs.
Seine, why it was not entirely frozen in the hard winter of1709.166
Shagreen, an account of it. 165
Shells inclofed in fone. 66
——of land and water animals, bow they are formed andgrow.250
Shell-fifh, a fmall one that feeds upon mufcles. 75
—— the progreffive motion of feveral of them. 321
Sight, the principal organ of it. 198
Sluices, a new confrruction of them. 57
Snails, their generation. 83
——an infect upon them. 376
Solium, a worm in the buman body. II
Sourdon, a fort of hell- fifh. 324
South-fea, a voyage thither. 125
Spectacles, when dijcovered. 90
Spider, the circulation of blood in its leg. II
——obfervations on thefe infects. 29
——their manner of making their webs. 33
——their manner of catching fies. 37, 40
——their different 万pecies. 38
Spinner, a fort of foider. 41
Stone expelled from the kidneys. 12
Stones of the fea. 6
- figured. 332
Sun eclipfed in lifferent countries. 316
- a luminous circle obferved about it. 148
- the force of its rays in preffing and pufhing. 66
- the effect of its beat on a pafte, laid lipon a piece of po- lijbed glafs. 68
Suppreffion of urine cured. 12
Switzerland, a great deal of cryftal found in the mountains there. 81
Sjene, its pofition. 136

I NDEX.

T

pag.
Tacaze, a confiderable river, that fiows into the Nile. 137
——called alfo Atbora. 138
——thought to be the Aftabora of the ancients. 137
Trenia found in a tench, 344
Talc, obfervations on a fort of it. 408
Tarantula, a fpecies of foider. 42
Telefcope, the neceffrty of centring well its object-glafs. 366
Tench, a tænia found in one. 344
Terra del Fuego, remarks un the navigation of its confts.125
Thermometer sbferved. 20, 94, 171, 357
St. Thomas ifland its latitude. 155
Thunder confidered. 64
Tides obferved at Dunkirk. 3^{81}
V.
Vapours in a baker's cellar, the fatal effects of them. 329
Veficaria Marina not the eggs of the cuttle-ffl. 87
Vifion, the principalorgan of it. 198
W
Weft-Indies, obfervations made thare. 149
Whelk or buccinul, a fort of Sell-fjh. 325
Winds obferved. 22, 95, 170, 174
Woman delivered of a child, when above 80 years of age. 339
Woodpecker, oibervations an its tongue. 183
Worms voided by fool. 11
Wrong-heir, a fort of fis. 326
Z
Zurick, barametrisal blicruatims made ticre. 1.7

A N
 $\begin{array}{lllll}I & N & D & E & X\end{array}$
 $0 . F$

AUTHORS NAMES.

A.

AGricola 245. F. Francifo Almeyda 139.
M. Amontons 47, 110 to 113, 115, 119, 12I, 124.4 $225,227,305,306,307,359,366$.
Archimedes 88.
Ariftophanes 88,89.
B.
M. Baert 3^{81} to $3^{84}, 3^{86}$ to $389,31,402,404,405$, 406, 408.
Juan de Barros 137.
Bartholin 408, 409, 410.
Bafilis 135.
Cafpar Bauhinus 375.
Bellonius 245.
M. Bernier 9 .
M. Bernouli 3, 4 .
F. de Beze 238, 240, 242.
M. P'Abbe Bignon 13, 125 .

Bion 134.
M. Borelli $183,187,188$
M. Boudin 328.
F. Bourg-

An Index of Authors Names.

F. Bourgnon, 70, 72.

Mr. Boyle 4.
F. Brevedent 139 .

Burnet 77, 78 .

C.

M. Carré $5,10,45,345$.
M. Caffini 4, 5, $27,74,105,125,142,149,167$, $215,316,331,366,38 \mathrm{r}$.
Cellarius ${ }^{1} 34$.
M. de Chafteuil Gallaup 14 .
M. Chevalier 14, 16, $18,44$.
M. Clairambaut 128.

Clufius 334, 374.
M. Couplet 153.

D.

M. Dalefme 92.

Dampier 127.
M. Delife 128, 129 .
M. Defcartes 77, 78, 204.

Diodorus 131,138 .
M. Dodart IO.
F.
M. Felibien 8.
M. de Feriol $70,165$.
F. Feuillée $149,150,151,153,155,156,159,160$, 161.
M. Fontenelle 350 .
G.

Gandolphe 168, ri6g.
Gaffendi 13 .
M. Gauteron 305.
M. Geoffroy $68,244,328,338,344,369$.

Gefner 245.

An Index of Authors Names.

M. des Glos 156.
F. le Gobiens 139 .
F. Nicola Godinho 13I.

Pieter Goos 105.
F. Gouye 238, 382.

Dr. Halley 106, 107, 108, 109, 125, 126, 128, 129, 150, 152, 155.
M. des Hayes 156 .

Heliodorus 14 II .
Van Helmont 245, 246, 250.
M. de la Hire 19, $57,88,93,96,110,148,154,165$, $170,173,175,190,220,328,331,356,361,363$, 408.
M. Homberg II, 12, 29, 64, 65, 66, 67, 103, 166, 289.

Sieur Houflaye 105, 106, 10%.
M. Huygens 20, 45, 97, 98, 99, 100, 101, 202, 203, 204, 206, 212, 217, 220, 223, 225, 438, 409, 410.
I.
M. Jaugeon 165 .

Jofephus I4I.
K.

Kepler 215 to 219 .

> L.

Lactantius 90.
M. des Landes 12.
M. de la Lanne 13, 14 .
F. Laval $27,28,74,75,141,145,147,236,237$.
M. Leibnits 13 .
M. Lemery, jun. 287.
M. Lewenhoeck 11 .
M. Littre 167.
F. Hieronymo Lobo 139.

Abbé de Louvois 220.
M: Ludolf I 3 I , I 35 .

An Index of Authors Names.

M.
M. de Mandajor 69.
M. Manfart 24.
M. Maraldi 73, 177, 229, 338.
M. de la Mare 328, 329.
M. Mariotte ${ }_{11}$, 170, 198, 199, 207, 208, 238, 239 , 243, 310.
Count Marfigli 337 to 344 .
Mercator 133.
M. Mery $183,273,346,347,348$.

Mezeray 358.
Monard 373.

$$
\mathrm{N} .
$$

Sir Yraac Newton 201, $111,214,218,219,419$. M. Nuguet i18, 119 , 120 .
O.

Ortelius 133.

P.

M. Parent 350, 352.
M. de Pas 12.
F. Paulet 140.
M. Perrault $183,188$.
M. Picard 23.

Pifo 12.
M. Plantade 16%

Plautus 90 .
Pliny $89,131,135,136,137,139,140,14$.
Sieur Poncet I 39,140 .
M. la Comte de Pontbriand 173, 175, 361.
M. de Pontchartrain 382.
M. Poupart 84, 32 I, 348.

Ptolemy 136, 138 .

An Index of Authors Names.

R.
M. de Reaumur 75, 76, 77, 250, 321, 322, 323, 348, 376.
M. Richer 152 .
M. du Roule 132, 137, 139, 140.
S.

Marquis Salvago 229, 23I.
M. Saulmon, $6,7,8,87,334$.
M. Saurin 201, 295.
M. Sauveur 328.
M. John Scheuckzer, 77, 78, 79, 83, 177, 178, 180, $182,23^{6}, 332,333,334,337,363$ to 366 .
M. John James Scheuchzer 73, 74, 8x, 82, 83, 335, 336, 337.
Steno 77, 78.
S:rabo $136,137,138,139,141$.
T.
F. Tachard 328.

Tavernier 370, 373.
Abbe Teinturier 331.
F. Balthazar Tellez 131, 134, 135 .
M. du Torar 173, 361.
M. Tournefort 66, 334 .
V.
M. de Vauban 19, 44.

M: Jean Verdois 328.
M du Verney $84,85$.
M. de la Verune $125,129$.

Ifade Voffius 134.
w.

Woodward 77, 78.
M. Wurtze!baur 315.
Ee2

BOOKS Printed for J. and P. Knapton, at the Crown in Ludgate-freet.

THe Works of Samuel Clarke, D. D. late Rector of St. Yames's, Weftminfer. With a Preface, giving fome Account of the Life, Writings, and Character of the Author, by Benjamin Lord Bithop of W ininibefer. In Four Volumes, Folio.

A fimall Number is printed on Large Paper.
The Sermons of Dr. Samuel Clarke, in Two Volumes, Folio: Being the Firft and Second Volumes of his Works; containing all the Sermons publifhed in his Life-time, and his Polthumous Sermons.

Homeri Ilias Grece \& Latine. Annotationes in ufum Sereniffrmi Principis Gulielmi Ducis de Cumberland Regio Juflu Scripfit atque Edidit Samelel Clarke, S. T. P. Editio Tertia. 2 Vols. Oetavo.

Homeri Odyssea Grece \& Latine. Item Batrachomyomachia, Hymni \& Epigrammata, Homero vulgo alcripta. Edidit Annotationes ex Notis Nonnullis Manufriptis à Samuel Clarke, S. T. P. defuncto relictis partim collectas, adjecit Samuel Clarke, S.R.S. 2 Vols. Quarto.

A fmall Number of Homeri Odyyea is printed on Large Paper.
The Analogy of RELIGION, NATURAL and REVEALED to the Confitution and Courfe of NAture. To which are added, Two Brief Differtations: I. Of Perfonal Identity. II. Of the Nature of Virtue. By Joseph Butler, LL.D. now Lord Bifhop of Brijzol. The Third Edition, $8 v o$.
Fifteen Sermons preached at the Rolls Chapel. By Ioseph Butler, LL.D. now Lord Bihhop of Brijol. The Third Edition, 8 vo.
The History of England, bv Mr. Rapin de Thoyras. Tranfated into Englijh, with additional Notes, by N. Tindal, M. A. In Two Volumes, Follo. Price $2 l .2 \mathrm{~s}$. in Sheets.

BOOKS Printed, © \mathcal{F}.

The Heads of the Kings and Sovereign Queens, with fome of the moft Illuftrious Princes of the Royal Family, engraven with Ornaments and Decorations, by Mr. Vertue: On forty-two Copper-Plates, proper to be bound with Mr. Rapin's Hiftory. Price Il. Is.

The Monuments of the Kings, with their Epitaphs and Infcriptions, engraven on Folio Copper-Plates, fit to be bound with Mr. Rapin's Hiftory. Price 12s. 6 d .

Mr. ROLLIN's Ancient Hiftory of the Egyptians, Carthaginians, Afyrians, Babjlonians, Medes and Perfians, Macedonians and Grecians. Tranflated from the French. In Ten Volumes, in $12 m \mathrm{~m}$, with Frontifpieces beautifully engraven, a Chronological Table, and Copious Index.

Mr. ROLLIN's Hiftory of the Arts and Sciences of the Ancients, illuftrated with fifty Copper-Places. In Four Volumes, 8 vo.

The Roman History, from the Foundation of Rome, to the End of the Commonwealth. By Mr. Rollin.

The Manners and Cuftoms of the Romans. I. Of their Manners in Private Life, their Habits, Ornaments, Buildings, Chariots, Feafts, Eo'c. II. Of their different Kinds of Government and Magiftrates. III. Of the Revenues and Forces of the State ; and of War. IV. Of their Religion, Shews, and Cutoms, obferved in them. Tranflated from the French, \&vo. Price 5 s.

Quintiliani Inftitutionum Oratoriarum Libri. XII. ad ufum Scholarum accommodati, recifis quæ minus neceffaria vifa funt, \& brevibus Notis illuftrati ; à CAROLO ROLLIN, 8rנo.

Selecta Poemata Italorum qui Latine fcripferunt. Cura cujufdam Anonymi Anno 1684. congefta, iterum in lucem data, una cum aliorum Italorum operibus. Accurante A. POPE. 2 Vol. pret. 6 s.

The Principles and Connexion of Natural and Revealed Refigion diftinctly confidered. By Arthur Ashley Sykes, D. D. 8 qu.

BOOKS Printed © © C .

The Religion of Nature Delineated. Tt 6th Edition. To which is added a Preface, containin ${ }^{2}$ General Account of the Life, Character and Wri tings of the Author, 4 to.
Reflexions upon Learning; wherein is thewr the Infufficiency thereof, in its feveral Particulars, ir order to evince the Ufefulnefs and Neceffity ot Revelation, The Seventh Edition, 8vo.

Military Memoirs and Maxims of Marfhal Turenne. Interiperfed with others, taken from the beit Authors and Obfervation, with Remarks. By A. Williamson, Brigadier-General. Price 2 s .6 d .

A Preservative againft Popery, in feveral feJect Difcourfes upon the Principil Heads of Contro verfy between Protefants and Papijss: Written and publifhed by the moft eminent Dirines of the Church of England, chicfly in the Reign of King James-11." In Three Volumes Folio.
A Treatife concerning Eternal and Immutable MoRality. Bu Ralph Cudworth, D. D. formerly Mafter of Chrift's. College in Cambridge. With a Preface by the Right Reverend Edward Lord Bifhop of Durban,

A Defence of Natural and Reveated ReliGion: Buing a Collection of the Scrmons preached at the Lecture founded by the Honourable Robort Bogle, Eiq; In Three Tolumes, Folio.
The Militarv Fiffory of CHARLES XII. King of SIFEDEN. Written by exprefs Order of his Majefy, hy M. GLSTAVUS ADLERFELD, Clamberlain to the King. To which is added an exar Account of the Battie of Paltocica, with a Journal of the King's Retreat to Ecmior. Illuftrated wi.h the Plan of Sieges and Battles. In Three Volumes, S vo. Rohault's Suttem of Natura! Philofophy, with John Clafke, D. D. Dear, of omber, Two V':

```
Q
    Académie des sciences, Paris
        The philosophical history
    Al33 and memoirs of the Poval
v. }3\mathrm{ Academy of Sciences at Paris:
Physical & or, An abridgment...
Applied Sum
Secialis
```


PLEASE DO NOT REMOVE
 CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

[^0]: Vol. III. $\mathrm{N}^{\mathrm{O}} .24$.

[^1]: ${ }^{*}$ Fig. 8.

[^2]: * Nov. 12, 1:0\%.

[^3]: * Dec. 3, 1707.

[^4]: * Vol, II. Page E_{5} of this abridgment.

[^5]: * March 21, 1708.
 \dagger Plate If. Fig. s.

[^6]: * July 24,1 , 208.

[^7]: ${ }^{*}$ Plate II. Fig. 4.

[^8]: * Nov. 14 , : 708.
 \dagger Plate II. Fig. 7.
 Pliny,

[^9]: * Dec. 22, 1708.

[^10]: Yol. III. ND. 2%.

[^11]: * December 20, $17 \mathrm{~F}^{\circ}$

[^12]: * Fe 9.1709.

[^13]: * April $1_{3}, 5_{1} 09$.

[^14]: + March 30, 1709.

[^15]: * Nate III. Fig. 4.

[^16]: * Fig. 5.

[^17]: Vol. III. N ${ }^{\bullet}, 29$.
 Y
 fecond

[^18]: * Mouvement des eaux, p. 187, and 195°

[^19]: * June 5,1709 .

[^20]: Vol. III. N°.30. D d ceding

[^21]: * Fig. 980

[^22]: *Fig. 1 .

[^23]: ${ }^{*}$ Fig. 15 .

[^24]: * March 2; 1;og.
 \dagger April 17, 1709.

[^25]: Qq 2
 other

[^26]: - See the following article.

[^27]: * March 26, 1710.

[^28]: * Plate VI. Fig. r .

[^29]: * July 12, 175 .

[^30]: *Fig. 8.

[^31]: * July 19,1710 .

[^32]: * Plate VI. fig. 9.

[^33]: Vol. III. $\mathrm{N}^{\circ} \cdot 34$. Ccc tulc,

