180
18

 $\cos _{5}$

\square

(2)

PHYSICAL AND CHEMICAL DATA OF

NITROGEN FIXATION.

WITH 47 DIAGRAMS.

Specially Compiled for Use in Connection with the SYNTHESIS AND OXIDATION OF AMMONIA AND THE PREPARATION AND PURIFICATION OF HYDROGEN.
M.I.D. RESEARCH LABORATORY, UNIVERSITY COLLEGE, December, 1918.

Price 3 s. Net.

INTRODUCTION.

This publication, containing a summary of physical and chemical data relating to the problems of nitrogen fixation, was first issued by the Munitions Inventions Department in April last and several hundred copies have now been circulated to British and Allied Government Departments and controlled works. Numerons enquiries have since been received from others desirous of obtaining copies and it has therefore been decided to place it on sale to the general public. At the suggestion of the Controller of Munitions Inventions, it may perhaps be useful if I indicate briefly its origin and objects.

In the course of the investigations proceeding at the M.I.D. Research Laboratory on certain processes for nitrogen fixation and allied problems, it became necessary to collect from all kinds of sources, some of which were not easily accessible, data relating to the subjects of the researches in question. At the outset, members of the Staff invesiigating the various branches had dealt with their different problems individually, but it became evident that much time would be saved if a more detailed critical examination of the chemical and physical constants available was undertaken and a compilation made summarising in a handy form the more important of these. I therefore requested Mr. G. W. Todd, D.Sc., B.A., Physicist to the M.I.D. Laboratory, to undertake this task, acting inyself as general editor. This first publication has been compiled mainly by him after consultation with Lieut. H. C. Greenwond, D.Sc., Capts. J. R. Partington, D.Sc., and E. K. Rideal, Ph.D., and Dr. H. S. Taylor, the heads of sections of the Laboratory dealing with synthetic ammonia, the oxidation of ammonia, and the preparation and purification of hydrogen, respectively. On some of the subjects dealt with Dr. Todd has not been satisfied with gathering together from the different sources the meagre information available, but has exhibited considerable ingenuity in utilising these to advantage. In the majority of cases reference has been made to the original papers, instead of simply extracting the required figures from the usual books of constants.

The graphic form of presentation has been adopted deliberately, since for most purposes amply sufficient accuracy in the value required can usually be obtained by the use of graphs instead of a table, interpolation thus being altogether avoided. At the same time by means of a graph there is often also presented a general grasp of the facts not-at once obvious from columns of figures. Thus the curve of freezing points of nitric acid (Fig. 25) shows that there are three different concentrations of acid having a freezing-point of $-30^{\circ} \mathrm{C}$., and five strengths freezing at $-40^{\circ} \mathrm{C}$.

Although only few of the data here presented depend on actual determinations carried out at the M.I.D. Laboratory, a considerable number of the tables and curves embody the results of special investigations and computations. Dr. Todd's mathematical treatment of the very important question of the oxidation of nitric oxide to peroxide, given in the Nitric Acid section, should be of distinct service in its application to tower design in the arc process for the fixation of nitrogen and in the ammonia oxidation and Häusser processes. So far as I am aware, his work offers the first general mathematical solution of the problem. Again, the data on the behaviour of oxygen, nitrogen and hydrogen gases under pressure depend on a theoretical investigation of the whole question of the departure from Boyle's law of gases under high pressure, made by Mr. C. Cochrane, M.A., B.Sc. His results, which have been closely confirmed by subsequent experiments, show that, contrary to preconceived ideas, the divergence is of an order which is much too large to be neglected in technical practice. As an example of specially computed tables may be instanced the series of curves representing the percentage of ammonia and of nitrogen peroxide theoretically removable from a mixture containing the gas in varying percentages. These have been calculated so as to give, in a convenient form, full details as to the theoretiral possibilities of the process of separation of the liquefiable constituent by freezing.

This publication in its present form is to be regarded rather as an instalment than as a completed work, and the Munitions Inventions Department would be glad to have their attention drawn to any errors which it may contain, and to receive from users any criticisms or suggestions for its improvement, especially in regard to data the incorporation of which would render it more valuable. One or two minor corrections only have been introduced into this second issue, which is substantially a reprint of the earlier edition. That the errors frequently found in the first edition of a book of this kind were so few is due to the care with which the original manuscript was prepared for the press and the proofs corrected by Mr. William Hill, B.A., of the Headquarters Staff of the Munitions Inventions Department. J. A. HARKER, Director of Research.
Munitions Inventions Research Iaboratory,

CONTENTS.

GAS DATA.

Section I. PAGE

1. Deviation of Hydrogen and Nitrogen from Boyle’s Law at High Pressures. Amagat's pV Curves for Hydrogen and Nitrogen 5
2. Hydrogen-Nitrogen Mixture ($\mathrm{N}_{2}+3 \mathrm{H}_{2}$) at High Pressures 6
3. Van der Waals' Constants and Critical Data 7
4. Density of Gases 8
5. Viscosity of Gases 8
(a) Air, $\mathrm{N}_{2}, \mathrm{H}_{2}, \mathrm{NO}$, Steam, \&c. 9
(b) Mixtures of N_{2} and H_{2} 9, 10
(c) $\mathrm{N}_{2}+3 \mathrm{H}_{2}$ mixture at different temperatures 10
(d) NH_{3} and H_{2} mixtures at 12° to $13^{\circ} \mathrm{C}$. 10
6. Specific Heat of Gases 11
(a) At constant pressure 11
(b) At constant volume 12
(c) Specific heat of $\mathrm{N}_{2}+3 \mathrm{H}_{3}$ mixture under pressure 13
(d) Specific heat of $\mathrm{N}_{2}+3 \mathrm{H}_{2}+n$ per cent. NH_{3} mixtures 14
(e) Ratio of specific heats 14
7. Thermal Conductivity of Gases 15
(a) Air, Hydrogen, Nitrogen, Ammonia, Nitric Oxide, \&cc. - 16, 17
(b) Conductivity of Gaseous mixtures 17
(c) Conductivity of $\mathrm{N}_{2}+3 \mathrm{H}_{2}$ mixture 17
Section II. AMMONLA DATA.
8. Ammonia Equilibrium 18
Variation with pressure and temperature 18
9. Vapour Pressure of Anhydrous Ammonia 18
(a) Condensation of NH_{3} from a Gaseous Mixture 19
(b) Percentage of NH_{3} theoretically removable by cooling 20
10. Vapour Pressure of Ammonia Solutions 20
(a) Total pressures at different temperatures and concentrations 20
(b) Partial pressures of NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ above solutions - 20, 21
11. Density of Anhydrous Ammonia at different Temperatures - 21
12. Melting Point and Boiling Point of Anhydrous Ammonia - 21
13. Density of Ammonia Solutions at $15^{\circ} \mathrm{C}$. - 21
14. Solubility of Ammonia at different Temperatures and Pressures 21
15. Freezing Points of Aqueous Ammonia - 22
16. Heats of Solution of Liquid and Gaseous Ammonia 22
17. Heat of Formation of Ammonia from its Elements - 22.
18. Specific Heats of Anhydrous and Aqueous Ammonia - 26
19. Latent Heats of Ammonia - 23
Section III. NITRIC ACID DATA.
20. Specific Gravity of Aqueous $\mathrm{HNO}_{3} \mathrm{at} 15^{\circ} \mathrm{C}$. - 24
21. Bolling Points of Pure $\mathrm{HNO}_{3}(99 \cdot 79$ per cent.) at different Pressures 24
22. Boiling Points of Aqueous HNO_{3} at different Pressures 24
23. Vapour Pressure of Aqueous HNO_{3} at different Pressures 24
24. Influence of non-volatile water-retaining Agents on the Maximum Boiling-poiny Mixture 24
25. Freezing Points of Aqueous HNO_{3} 24
26. Heat of Solution of Nitric Acid 24
Section III.-cont. page
27. Vapour Pressures of Oxides of Nitrogen 25
(a) Condensation of nitrogen-peroxide from a gaseous mixture 25
(b) Percentage of total peroxide theoretically removable by cooling 25
28. Velocity of the Reactions $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow \mathrm{NO}_{2}$ and $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$ at Constant Pressure and Constant Volume 25
To find the Velocity Constant 27
To find the time required for Oxidation 27
29. Equilibria - 29
HYDROGEN PURIFICATION DATA.
Section IV.
30. Water-Gas Equilibrium - 32
31. Carbon-Carbon Dioxide Equilibrium - 32
32. Carbon Monoxide-Oxygen Equilibrium - 33
33. Dissociation of Water Vapour 34
34. Equilibria between the Oxides of Iron and Carbon 34
35. Iron Oxide-Hydroaen Equilibrium - 35
36. Methane-Hyirogen Equilibrium 35
37. Dissociation of Sulphuretted Hydrogen - 36
38. Dissociation of Carbon Bisulphide - 36
Section V. MISCELLANEOUS DATA.
39. Hydrometer Readings - 37
40. Specific Gravity of Solutions at Ordinary Temperatures - 37
41. Specific Gravity of and Percentage of Salt in Saturated Solutions 37
42. Solubilities at different Temperatures 37
43. Vapour 'Tension of Water at different Temperatures 37
44. Vapour Tension of NaNO_{3} and KNO_{3} Solutions for Varying Concentrations and Temperatures. 37
45. Freezing Points of:
(1) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ (2) $\mathrm{NH}_{4} \mathrm{NO}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$, $\}$ Solutions for Various Concentrations - 37
(3) Mixtures of NO_{2} and NO - 38
46. Heats of Formation - 38
47. Heats of Modification-change - 38
48. Latent Heats of Fusion - 39
49. Latent Heats of Vaporisation - 39
MISCELLANEOUS CONVERSION TABLES - 40-43
GRAPHS - following 44
INDEX - 45
Further general information on Chemical and Physical Constants may be obtained from :-
Physical and Chemical Constants.-Kaye and Laby (Longmans). 1916, 2nd ed., pp. 153. Referred to in the text as "Kaye and Laby."
Smithsonian Physical Tables.-Fowle (Smithsonian Institution). 1916, 6th ed., pp. 343.
Recueil de Constantes Physiques.-Abraham and Sacerdote (Gautier-Villars). 1913, pp. 753.
Tables Annuelles Internutionales'de Constantes.-1912 et seq. (Gautier-Villars).
Physikalisch-Chemische Tabellen.-Landolt-Bornstein-Roth. 1912, 4th ed., pp. 1313. Referred to in the text as "Landolt."
Physico-Chemical T'ables.-Castell-Evans (Griffin). 2 vols., pp. 1235.
Also from :-
Ready Reference Tables.-Hering (Chapman and Hall). 1914, pp. 196.
Technical Chemist's Handbook.-Lunge (Gurney and Jackson). 1916, pp. 264.
Chemist's Year-Book.-Atack (Sherratt and Hughes). 1917, 2 vols. pp. 990.

SECTION I. GAS DATA.

1. Deviation of Hydrogen and Nitrogen from Boyle's Law at High Pressures.

A "perfect" gas obeys Boyle's law $P V=R T$, where $P=$ pressure, $V=$ volume, and $T=$ absolute temperature. When T is constant, $P V$ should be constant. Real gases follow this law closely up to pressures of the order of 50 atmospheres, but depart from it considerably at high pressures (see Amagat's curves, Fig. 1). According to Boyle's law, the pressure is proportional to the density, provided the temperature is constant.

Natterer (Pogg. Ann., LXII., p. 139; XCIV., p. 436) put equal increments of gas into a constant volume and measured the resulting pressures. His values for hydrogen and for nitrogen are given below :-

HYDROGEN.

NO. OF MASSES INTRODUCED.	1	8	28	68	128	138	238	248	418	498	608	758	908	1,008
Pressure in Atmos.	1	8	28	68	134	146	274	287	539	685	958	1,434	2,044	2,790

NITROGEN.

No. Of MASSES INTRODUCED.	1	15	75	225	235	355	415	495	605	705
Pressure in Atmos.	1	15	75	240	252	444	600	882	1,640	2,790

Evidently P is not proportional to the density even in the cases of the nearly "perfect" gases hydrogen and nitrogen. In high-pressure gas work this divergence from Boyle's law must be taken into account.

The most reliable data for hydrogen and nitrogen are those of Amagat, given graphically in Fig. 1, where the product $P V$ is plotted against P, the temperatures being given on the curves.

Since no gas obeys Boyle's law exactly, a cylinder of gas at n atmospheres will not yield exactly n times its volume of gas at atmospheric pressure. If gas cylinders of equal volume contain respectively hydrogen, nitrogen, and carbon dioxide at $16^{\circ} \mathrm{C}$. and at a pressure of 120 atmospheres, they will yield at the same temperature and at atmospheric pressure 111.3 times their volume of hydrogen, 120 times their volume of nitrogen and 485 times their volume of carbon dioxide.

The following table, which Mr. C. Cochrane has deduced from the PV curves of Amagat and other observers, gives the relative volumes occupied by various gases when the pressure is reduced from the value given at the head of the column to 1 atmosphere :-

[^0]This table shows that the departures from Boyle's law, even for a gas such as hydrogen, are of considerable technical importance. Thus a purchaser buying hydrogen according to an accurate pressure gauge would be receiving, if the cylinder had its nominal capacity at 120 atmospheres (the usual working pressure), only $92 \cdot 7$ per cent. of his proper amount, and if the pressure were higher a still smaller proportion. For oxygen, on the contrary, the error is in the reverse direction, the table showing that the purchaser would receive over 5 per cent. too much at 100 atmospheres.

These considerations are of importance in estimating, for example, the number of cylinders of compressed hydrogen required to fill a balloon or airship of given volume.

2. Hydrogen-Nitrogen Mixture $\left(\mathbf{N}_{2}+3 \mathbf{H}_{2}\right)$ at High Pressures.

In connection with the synthesis of ammonia, it is often necessary to fill cylinders with the component gases in the right proportions at 100 to 200 atmospheres pressure. One accurate method of doing this would be to mix the gases in the correct proportions at atmospheric pressure before compression, but it is often much more convenient to compress first one gas into the cylinder and then add the other. If the final pressure of a $\left(\mathrm{N}_{2}+3 \mathrm{H}_{2}\right)$ mixture is to be, say, 200 atmospheres, it will not be correct, even for technical purposes, to add nitrogen at 50 atmospheres and fill up with hydrogen to 200 atmospheres, on account of the deviations from Boyle's law. Mr. C. Cochrane, assuming Leduc's law that "the volume occupied by a mixture of gases is equal to the sum of the - volumes which the component gases would separately occupy at the same temperature and under the same pressure as the mixture," has deduced the following table for use when the gases are pumped separately into the cylinders:-

GAS MIXTURES FOR THE SYNTHESIS OF AMMONIA.

Temperature $=16^{\circ} \mathrm{C}$.

If Final Pressure of Mixture is to be	Then Initial Prebsure of Hydrogen should be	Or Initial Pressure of Nitrogen should be
atm. (abs.) 25	atm. (abs.) $19 \cdot 0$	atm. (abs.) $6 \cdot 0$
50	$38 \cdot 0$	$12 \cdot 2$
75	$56 \cdot 0$	$18 \cdot 0$
100	$75 \cdot 0$	$23 \cdot 6$
125	$94 \cdot 0$	$29 \cdot 3$
150	$111 \cdot 0$	$34 \cdot 4$
175	$130 \cdot 0$	$39 \cdot 5$
200	$148 \cdot 0$	$44 \cdot 5$

Thus, if it is desired to fill a cylinder to a final pressure of 200 atmospheres and the hydrogen is put in first, the pressure of hydrogen should be adjusted to 148 atmospheres, the nitrogen being afterwards added up to a gauge reading of 200 atmospheres. But if the nitrogen is filled in first, only $44 \cdot 5$ atmospheres are required, instead of 50 , which would be the case if Boyle's law were obeyed, the ratio of the partial pressure of the nitrogen to that of the hydrogen being actually 1 to $3 \cdot 49$, instead of the theoretical 1 to 3.

The figures in the table have been calculated from Amagat's $P V$ curves, and it has been found that cylinders pumped up with the gases according to them contain the correct $\left(\mathrm{N}_{2}+3 \mathrm{H}_{2}\right)$ mixture for the synthesis of ammonia.

3. Van der Waals' Constants and Critical Data.

Several "real" gas equations have been proposed, the best known being that of Van der Waals :

$$
\left(P+\frac{a}{V^{2}}\right)(V-b)=R T
$$

where a, b are constants characteristic of the gas. The following table has been taken from Physical and Chemical Constants (Kaye and Laby), p. 34 :-

| GAS. |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |

The critical temperature is the highest temperature at which a gas can be liquefied by compressing it.

The critical pressure is the pressure which produces liquefaction at the critical temperature.
The critical volume is given in the above table as the ratio of the volume that the gas occupies at the critical temperature and pressure to the volume it would occupy at $0^{\circ} \mathrm{C}$. and 760 mm .

Taking pressures in atmospheres and the volume at $0^{\circ} \mathrm{C}$. and 1 atmosphere as 1 , then

$$
R=\frac{P V}{T}=\frac{1}{273}
$$

In these units b is in terms of the volume of the gas at $0^{\circ} \mathrm{C}$. and 1 atmosphere.

$$
a=\frac{27 R^{2} T_{c}{ }^{2}}{64 P_{c}} \quad \text { and } \quad b=\frac{R T_{c}}{8 P_{c}}
$$

Van der Waals' equation affords an explanation of the form of Amagat's curves. The equation may be written-

$$
\begin{gathered}
\left(P V+\frac{a}{V}\right)\left(1-\frac{b}{V}\right)=R T . \quad \therefore P V=\frac{R T}{1-b \rho}-a \rho, \text { where } \rho=\frac{1}{V} \\
\therefore \frac{d}{d \rho}(P V)=\frac{b R T}{(1-b \rho)^{2}}-a
\end{gathered}
$$

Hence there is a minimum value of $P D$ for a density given by $\frac{b R T}{(1-b \rho)^{2}}=a$.
If this equation gives a positive value for ρ the curves are like those of N_{2}. If ρ is negative the $P V$ curves are like those of H_{2} (Fig. 1). As T diminishes, ρ for the minimum $P V$ increases. This can be seen in the N_{2} curves. At much lower temperatures, $P V$ for H_{2} should also show an initial diminution with increasing P or ρ.

4. Density of Gases.

The following table, from the figures given in "Kaye \& Laby " (p.26), gives the density of various gases at $v^{\circ} \mathrm{C}$. and 760 mm . pressure :-

DENSITY OF GASES.

DENSITY OF NITROGEN PEROXIDE.

The density (oxygen $=16$) of nitrogen peroxide at different temperatures and 760 mm . pressure ("Kaye \& Laby," p. 26) is given below :-

Temp. ${ }^{\circ}$ C. -	-	-	$26^{\circ} \cdot 7$	$39^{\circ} \cdot 8$	$60^{\circ} \cdot 2$	$80^{\circ} \cdot 6$	$100^{\circ} \cdot 1$	$121^{\circ} \cdot 5$	$154^{\circ} \cdot 0$	$183^{\circ} \cdot 2$
Density $\quad-\quad-$	-	$38 \cdot 37$	$35 \cdot 62$	$30 \cdot 12$	$26 \cdot 06$	$24 \cdot 33$	$23 \cdot 46$	$22 \cdot 88$	$22 \cdot 73$	

These figures indicate that, while at the lower ranges the gas is almust completely $\mathrm{N}_{2} \mathrm{O}_{4}$, at the higher temperatures above, say $140^{\circ} \mathrm{C}$., it is practically completely dissociated.

5. Viscosity of Gases.

The viscosity of a fluid is measured by the tangential force on unit area of either of two parallel planes at unit distance apart, one of which is fixed while the other moves with the unit of velocity, the space between being filled with the fluid. Or, we may say that the viscosity coefficient $\eta \boldsymbol{\eta}$ is the ratio of the tangential stress T to the velocity gradient $\frac{d v}{d x}$.

$$
T=\eta \frac{d r}{d x}
$$

T is measured in dynes per sq. $\mathrm{cm} . ; v$ is measured in cm. per sec.; x is measured in cm .
The viscosity of a gas changes considerably with temperature, but is practically independent of pressure.
(a)-VISCOSITY OF GASES.

Gas.		Temperature ${ }^{\circ} \mathrm{C}$.	Viscosity (η_{t})
Air -	- -	$\begin{array}{r} -21 \\ 0 \end{array}$	$\begin{array}{r} 0.000164 \\ 0171 \end{array}$
Hydrogen	- -	$\begin{array}{r} -21 \\ 0 \\ 15 \\ 99 \\ 302 \end{array}$	$\begin{array}{r} n \cdot 0000819 \\ 0841 \\ 0889 \\ 0 \cdot 000106 \\ 139 \end{array}$
Nitrogen	- -	$\begin{array}{r} -21 \\ 0 \\ 11 \\ 54 \\ 183 \end{array}$	$\begin{array}{r} 0.000157 \\ 166 \\ 171 \\ 190 \\ 246 \end{array}$
Oxygen -	- -	$\begin{array}{r} 0 \\ 15 \\ 15 \\ 54 \end{array}$	$\begin{array}{r} 0.000187 \\ 195 \\ 216 \end{array}$
Nitric Oxide	- -	0 20	$\begin{array}{r} 0 \cdot 000165 \\ 186 \end{array}$
Water Vapour -	- -	$\begin{array}{r} 0 \\ 15 \\ 100 \end{array}$	$\begin{array}{r} 0 \cdot 000090 \\ 097 \\ 132 \end{array}$

Sutherland gives for the variation with temperature :-

$$
\eta_{t}=\eta_{0} \frac{273+C}{\theta+C}\left(\frac{\theta}{273}\right)^{\frac{3}{2}}
$$

where $\theta=$ absolute temperature and $C=$ constant.
(b)-VISCOSITY OF N_{2} AND H_{2} MIXTURES.

Reference:-Kleint, Ver. phys. Ges., 7, 146, 1905.

Per cent. H_{2}.	Per cent. N_{2}.	Temperature ${ }^{\circ} \mathrm{C}$.	$\eta_{t} \times 10^{7}$	$\eta_{0} \times 10^{7}$	Sutherland's C.
$0 \cdot 0$	$100 \cdot 0$	$\begin{array}{r} 14 \cdot 6 \\ 99 \cdot 8 \\ 182 \cdot 7 \end{array}$	$\begin{aligned} & 1742 \\ & 2125 \\ & 2459 \end{aligned}$	1671	118
$19 \cdot 97$	$80 \cdot 03$	$\begin{array}{r} 15 \cdot 7 \\ 99 \cdot 6 \\ 183 \cdot 1 \end{array}$	$\begin{aligned} & 1714 \\ & 2077 \\ & 2405 \end{aligned}$	1639	114
$36 \cdot 20$	$63 \cdot 80$	$14 \cdot 2$ 99.7 183.4	1659 2011 2321	1595	104

[Table continued over
(b)-VISCOSITY OF N_{2} AND H_{2} MIXTURES (continued).

Per cent. H_{2}.	Per cent. N_{2}.	Temperature ${ }^{\circ} \mathrm{C}$.	$-\eta_{t} \times 10^{7}$	$\eta_{0} \times 10^{7}$	Sutherland's C.
$53 \cdot 55$	$46 \cdot 45$	$\begin{array}{r} 14 \cdot 6 \\ 99 \cdot 8 \\ 183 \cdot 4 \end{array}$	$\begin{aligned} & 1583 \\ & 1921 \\ & 2216 \end{aligned}$	1522	104
$82 \cdot 61$	$17 \cdot 39$	$\begin{array}{r} 17 \cdot 0 \\ 99 \cdot 9 \\ 183 \cdot 2 \end{array}$	$\begin{aligned} & 1328 \\ & 1593 \\ & 1829 \end{aligned}$	1269	94
$93 \cdot 62$	$6 \cdot 38$	$\begin{array}{r} 16 \cdot 7 \\ 99 \cdot 9 \\ 183 \cdot 7 \end{array}$	$\begin{aligned} & 1116 \\ & 1329 \\ & 1529 \end{aligned}$	1067	86
$100 \cdot 0$	$0 \cdot 0$	$\begin{array}{r} 13 \cdot 0 \\ 100 \cdot 4 \\ 183 \cdot 8 \end{array}$	$\begin{array}{r} 873 \\ 1050 \\ 1212 \end{array}$	841	91

From Kleint's results we can deduce the viscosity of $\mathrm{N}_{2}+3 \mathrm{H}_{2}$ mixture at different temperatures.
The following table is deduced from Kleint's figures :-
(c)--VISCOSITY OF $\mathrm{N}_{2}+3 \mathrm{H}_{2}$ MIXTURE AT VARIOUS TEMPERATURES.

Temp. ${ }^{\circ}$ C. -	0	17	100	183	
$\eta \times 10^{7}-$	-	1850	1450	1710	1970

Putting these figures into Sutherland's formula gives $C=96$, whence-

$$
\eta_{500} \times 10^{7}=2760 \quad \eta_{600} \times 10^{7}=2950
$$

(d)-VISCOSITY OF NH_{3} AND H_{2} MIXTURES AT 12° TO $13^{\circ} \mathrm{C}$.

Reference:--Thomsen, Ann. d. Phys., 36, pp. 825, 832.

Vol. of H_{2} in 100 Vols. Mixture	$0 \cdot 0$	$8 \cdot 2$	$20 \cdot 1$	$33 \cdot 9$	$53 \cdot 6$	$68 \cdot 4$	$79 \cdot 1$	$90 \cdot 2$	$100 \cdot 0$
$\eta \times 10^{7}-\quad-\quad-\quad-$	1005	1017	1042	1068	1102	1104	1089.	1036	915

Note on the Flow of Gases through Pipes.
When the velocity of flow of a gas is below a critical value, depending on the density and viscosity and on the diameter of the tube, the gas moves in stream-lines parallel to the axis of the tube Above this critical velocity the stream-lines disappear and the flow becomes turbulent.

The critical velocity $V_{c}=k \eta_{\rho r}^{\eta}$ for small pipes up to, say, 5 cm . diam., where k is a constant, ρ is the gas density and r is the tube radius. When V_{c}, η, ρ and r are in C.G.S. units, k is 10^{3} in round numbers.

Below the critical velocity the pressure drop along a tube is proportional to the velocity of gas flow. Above the critical velocity the pressure drop is practically proportional to the square of the velocity.

6. Specific Heat of Gases.

The specific heat of a substance is the quantity of heat in gm. calories required to raise 1 gram of it through $1^{\circ} \mathrm{C}$. The specific heat of a gas at constant pressure C_{p} is always greater than the specific heat at constant volume C_{v}.

Thermodynamics gives

$$
C_{p}-C_{v}=T\left(\frac{d p}{d T}\right)_{v}\left(\frac{d v}{d T}\right)_{p}
$$

Whence for a gas which follows Boyle's law, $C_{p}-C_{v}=R$; and for a gas which follows Van der Waals' law, $C_{p}-C_{v}=R\left\{1+2 a \frac{(v-b)^{2}}{R T v}\right\} \quad R$ in gm. cals. per gm. mol. $=1 \cdot 985$.

(a) SPECIFIC HEATS AT CONSTANT PRESSURE.

AIr.
The following Table for Air (C_{p} and its variation with temperature) is taken from Landolt, p. 773 :-

TEMP. ${ }^{\circ} \mathrm{C} .-$	-	-183°	-30° to $+10^{\circ}$	0° to 100°	20° to 440°	20° to 630°	20° to 880°
$C_{p}-$	-	0.253	0.238	0.237	0.237	0.243	0.243

Witkowski gives variation with temperature and pressure as follows :-

atmosphere		-	-	-	-102° to $+98^{\circ} \mathrm{C}$	0.
40 atmospheres	-	-	-	-140°	0.237	
40	$"$	-	-	-	-	-120°
40	$"$	-	-	-	-	-50°
70	$"$	-	-	-	-	-120°
70	$"$	-	-	-	-	-50°

The following table, showing the variation with pressure of C_{p} for air at $60^{\circ} \mathrm{C}$., is given by Holborn and Jakob (Z. Ver. deut. Ing., 58, 1429, 1914). Three observers are in fair agreement.

Pressure. (Atmospheres).	Holborn and Jakob's Values.	Lussana's Values.	Vogel's Values.	Noell's Values.
$\begin{array}{r} 1 \\ 25 \\ 50 \\ 100 \\ 150 \\ 200 \end{array}$	$\begin{array}{r} 0.2415 \\ .2490 \\ .2554 \\ .2690 \\ .2821 \\ .2925 \end{array}$	$\begin{array}{r} 0 \cdot 2370 \\ \cdot 2711 \\ \cdot 3061 \\ \cdot 3675 \\ \cdot 4195 \end{array}$	$\begin{array}{r} 0 \cdot \overline{2480} \\ \cdot 2543 \\ \cdot 2664 \\ \cdot 2770 \\ \cdot 2853 \end{array}$	$\begin{array}{r} 0 \cdot \overline{2490} \\ \cdot 2568 \\ \cdot 2701 \\ \cdot 2812 \\ \cdot 2893 \end{array}$

6. Specific Heat of Gases (continued).

Recent experiments of Holborn and Jakob (Z. Ver. deut. Ing., 61, p. 146, 1917) give for air at $60^{\circ} \mathrm{C}$. between pressures of 1 and 300 atmospheres :-

$$
10^{4} \mathrm{C}_{p}=2414+2 \cdot 86 p+0 \cdot 0005 p^{2}-0 \cdot 0000106 p^{3}
$$

Hydrogen.

Regnault	-	-28° to $+9^{\circ} \mathrm{C}$.	-	-	-
Wiedemann -	-	$+21^{\circ}$ to $+100^{\circ}-$	-	-	-
Regnault	-	$+12^{\circ}$ to $+198^{\circ}$	-	-	-

Lussana gives variation with pressure :1 atmosphere, $3 \cdot 402$; 30 atmospheres, $3 \cdot 788$.
Nitrogen.
Scheele and Heuse - - at $20^{\circ} \mathrm{C}$. - - - 0.249
Regnault - - 0° to 200° - - - 0.244
Alt gives for liquid nitrogen -208° to 196° - \quad - $\quad 0.430$
Ammonia.
Wiedemann - - 23° to $100^{\circ} \mathrm{C}$ - - -0.520

$\prime \prime$	-	-	27° to 200°	-	-	-	-
Nernst	-	-	365° to 680°	-	-	-	-

Tamaru (Z. Electroch., 21, p. 240, 1915) gives for ammonia-

$$
C_{p}=8 \cdot 62+0 \cdot 0035 t+5 \cdot 1 \times 10^{-6} t^{2}
$$

where C_{p} is the heat in gm. cals. required to raise 1 gm . mol. through $1^{\circ} \mathrm{C}$. at a temperature $t^{\circ} \mathrm{C}$.
Nitrous Oxide:
Wiedemann - - - 26° to $103^{\circ} \mathrm{C}$ - 0.213
Nitric Oxide:
Regnault - - - $\quad 13^{\circ}$ to $172^{\circ} \mathrm{C}$ - 0.232
Nitric Peroxide :
Berthelot and Ogier = - $\quad 27^{\circ}$ to $67^{\circ} \mathrm{C} .-1 \cdot 625$
Water Vapour:
Holborn and Henning - - at $100^{\circ} \mathrm{C}$. - - 0.465
(b) SPECIFIC HEATS AT CONSTANT VOLUME.

AIR.
Holborn
and
Henning $\left\{\begin{array}{cccccccc}- & - & - & \text { at } 100^{\circ} \mathrm{C} . & - & - & - & 0.163 \\ - & - & - & " 600^{\circ} \mathrm{C} & - & - & - & 0.173 \\ & - & - & - & \# 1100^{\circ} \mathrm{C} . & - & - & - \\ 0\end{array}\right.$

Hydrogen.
Joly - - - \quad at $50^{\circ} \mathrm{C}$. - - $2 \cdot 40$
Pier - - - -0° to $2500^{\circ} \mathrm{C}$. - - $2 \cdot 89$
Nitrogen.
Pier - - - -0° to $2500^{\circ} \mathrm{C}$. - 0.215
Mallard and Le Chatelier give for N_{2} up to $3000^{\circ} \mathrm{C}$.

$$
C_{v}=0 \cdot 170+0 \cdot 0000872 t
$$

Ammonia
Voller - - - at $18^{\circ} \mathrm{C}$ - - - $0 \cdot 390$
Water Vapour.
Pier - - - - at $100^{\circ} \mathrm{C}$. - - - $0 \cdot 340$

(c) SPECIFIC HEAT AT CONSTANT PRESSURE OF $\mathrm{N}_{2}+3 \mathrm{H}_{2}$ MIXTURE UNDER VARIOUS PRESSURES.

Assuming, as is justifiable, that the heat capacity of the mixture is the sum of the heat capacities of the constituents, we obtain

$$
C_{P}=0.806 \text { between } 0^{\circ} \text { and } 100^{\circ} \mathrm{C} . \text { and at } 1 \mathrm{~atm} \text {. pressure. }
$$

Holborn and Jakob's figures show that for air at 60° C. a linear law holds, namely :-

$$
C_{P}=C_{1}\{1+(P-1) a\}
$$

where $P=$ absolute pressure in atmospheres, $\alpha=0.0013$, and $C_{1}=$ specific heat at 1 atmosphere.
Assuming the linear law and taking Witkowski's values at low temperatures, we get

$$
\text { for air at }-50^{\circ} \mathrm{C} . \quad \alpha=0.0056 \text {; at }-120^{\circ} \mathrm{C} . \quad \alpha=0.011
$$

These scanty data suggest that αT^{2} (where T is the absolute temperature) is constant, so that

$$
\frac{d \alpha}{d T^{\prime}}=-\frac{\text { constant }}{T}
$$

When T is great, the change of α with T will be small and negative.
The only other datum on change of specific heat with pressure is that of Lussana, given above for hydrogen. Assuming the linear law, then, for hydrogen at ordinary temperatures $a=0 \cdot 0037$.* If we take α for nitrogen to be the same as α for air, i.e., $0 \cdot 0013$, we shall not make a grave error in putting α for $\mathrm{N}_{2}+3 \mathrm{H}_{2}$ mixture equal to $0 \cdot 0025$ at ordinary temperatures.

Hence we may take the specific heat at constant pressure of $\mathrm{N}_{2}+3 \mathrm{H}_{2}$ mixture as given by :

$$
C_{P}=C_{1}\{1+0.0025(P-1)\} ; \text { or, } C_{P}=0.80+0.002(P-1)
$$

At high temperatures the coefficient of $(P-1)$ may be slightly less.
The following values are deduced from this expression* :-

P atmospheres	-	-	-	-	-	1	30	50	100	150
200										
Specific heat at cons. press.	-	-	-	0.80	0.85	0.90	1.00	1.10	1.20	

Thermodynamics gives

$$
\begin{gathered}
\frac{d}{d p}\left(C_{p}\right)=-T\left(\frac{d^{2} v}{d T^{2}}\right)_{p} \\
C_{P}-C_{1}=-T \int_{1}^{P}\left(\frac{d^{2} v}{d T^{2}}\right) d p
\end{gathered}
$$

Modifying Van der Waals' equation to

$$
p v=R T+p b-\frac{a p}{R T}, \text { we get }\left(\frac{d^{2} v}{d T^{2}}\right)_{p}=-\frac{2 a}{R T^{3}} .
$$

Whence

$$
C_{p}-C_{1}=\frac{2 a}{R T^{2}}(P-1), \text { or, } C_{p}=C_{1}\left\{1+\frac{2 a}{R T^{2}}(P-1)\right\}
$$

'I'his gives

$$
\frac{d \alpha}{d T}=-\frac{\text { constant }}{T^{3}}
$$

Modifications of the other gas equations also give approximately linear relations between C_{p} and pressure.

* Experiments made in the M.I.D. laboratory on hydrogen suggest a much lower value for α, so that the figures in the table may be too high.-Tत.W.T.

6. Specific Heat of Gases (continued).

(d) SPECIFIC HEAT OF $\mathrm{N}_{2}+3 \mathrm{H}_{2}+\mathrm{n}$ Per Cent. NH N_{3} MIXTURES.

Assuming that the heat capacity of the mixture is the sum of the heat capacities of the constituents, the following table has been calculated for 1. atmosphere pressure at ordinary temperatures :-

Per cent. NH_{3} (by vol.)	-	-	-	-	0	1	2	3	4	5	
Specific heat	-	-	-	-	-	0.806	0.802	0.797	0.790	0.782	0.779

Taking the pressure coefficient as 0.025 , approximate values of the specific heat at higher pressures can be obtained.

At temperatures of $365^{\circ} \mathrm{C}$. to $680^{\circ} \mathrm{C}$. Nernst gives C_{p} for ammonia as $0 \cdot 65$. This, however, does not affect the figures in the above table, the percentages of ammonia being so small.
(e) RATIO OF THE SPECIFIC HEATS (γ).

The ratio of the specific heats of air, nitrogen and hydrogen is for all practical purposes independent of the temperature.

AIr.
γ at different temperatures (various observers). Reference :-Landolt, p. 775.

TEMP. ${ }^{\circ} \mathrm{C}$.	-	-181°	-156°	0°	18°	100°	900°	950°
$\gamma-\quad-\quad-$	1.34	1.39	1.405	1.405	1.403	1.39	1.34	
ObSERVER - -	Cook		Wüllner	Röntgen	Leduc	Kalähne	Stevens	

Partington (Phys. Zeit., 1913) gives at $18^{\circ} \mathrm{C} ., \gamma=1 \cdot 403$.
Holborn and Henning obtain from explosion experiments (Ann. d. Phys., 23, 1907) :-

Temp. ${ }^{\circ} \mathrm{C}$.	-	-	-	100°	600°	1100°
γ	-	-	-	-	1.404	1.38

The ratio γ may change considerably with pressure, as the following table for air at $-79^{\circ} \mathrm{C}$. (Koch) shows:-

| Press. (atm.) - | 1 | 25 | 50 | 100 | 150 | 200 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\gamma-$ | 1.405 | 1.569 | 1.767 | 2.200 | 2.469 | 2.333 |

Apparently γ has a maximum value in the neighbourhood of 150 atmos., where its value is 75 per cent. greater than its value at 1 atmosphere. It is impossible to say whether this same increase would take place if the temperature were 500° or $600^{\circ} \mathrm{C}$., instead of $-79^{\circ} \mathrm{C}$.

Hydrogen.

$$
\begin{array}{rlllllll}
\gamma & =1.41- & - & - & - & - & - & - \\
- & - & - & \text { Cazin. } \\
& =1 \cdot 38- & - & - & - & - & - & - \\
& & - & \text { Maneu } \\
& =1.408\left(4^{\circ} \text { to } 16^{\circ} \mathrm{C} .\right) & - & - & - & - & - & -
\end{array}
$$

No data are available for different pressures.

Nitrogen.

$$
\begin{array}{rlllllll}
\gamma & \left.=1.45 \text { (at }-192^{\circ} \text { C. }\right) & - & - & - & - & - & - \\
& =1.41 & - & - & - & - & - & - \\
& - & - & \text { Calentiner. } \\
& =1.389- & - & - & - & - & - & - \\
\text { Rohlf. }
\end{array}
$$

No data are available for different pressures.
Ammonia.

$$
\begin{array}{rllllll}
\gamma & =1.262\left(21^{\circ} \text { to } 40^{\circ} \mathrm{C} .\right)- & - & - & - & - & - \\
& - & - & \text { Müller. } \\
& =1.317\left(0^{\circ}\right) & - & - & - & - & - \\
& = & - & - & - & - & - \\
& =1.277\left(100^{\circ}\right) & - & - & - & - & -
\end{array}
$$

No data are available for different pressures.

Hydrogen-Nitrogen Mixtures.

For any mixtures of N_{2} and H_{2} at ordinary temperatures and pressures, $\gamma=1 \cdot 40$. The same value may be taken when a small percentage of NH_{3} is present.

At high pressures the value of γ may be considerably changed. (See Air.)
Nitric Oxide:

$$
\gamma=1 \cdot 394 \quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad \text { Masson. }
$$

Nitric Tetroxide $\left(\mathrm{N}_{2} \mathrm{O}_{4}\right)$:

$$
\begin{array}{rlrlrl}
\gamma & =1 \cdot 172\left(20^{\circ} \mathrm{C} .\right) & (15 \text { per cent. dissociated } ; \text { press. }=641 \mathrm{~mm} .) . & & \text { Natanson. } \\
& =1 \cdot 274\left(22^{\circ} \mathrm{C} .\right)(60 & & & & ; \text { press. }=44 \mathrm{~mm} .) .
\end{array} \begin{array}{ll}
\text { Natanson. }
\end{array}
$$

$\begin{array}{llllllllll}\text { Nitric Peroxide : } & & & & & & & \\ \quad \gamma=1.31\left(150^{\circ} \mathrm{C} .\right) & - & - & - & - & - & - & - & - & \text { Natanson. } \\ \text { WATER VAPOUR: } & & & & & & & & & \\ \gamma=1.305\left(100^{\circ} \mathrm{C} .\right) & - & - & - & - & - & - & - & - & \text { Makower. }\end{array}$

7. Thermal Conductivity of Gases.

If two opposite faces of a cm. cube of substance are maintained at temperatures differing by $1^{\circ} \mathrm{C}$., then the heat in gm. cals. which passes through the cube in 1 second is the thermal conductivity of the material.

The kinetic theory of gases leads to the expression for thermal conductivity

$$
k=A_{\eta} C_{v}
$$

where $A=1 \cdot 6$ for diatomic gases or $2 \cdot 6$ for monatomic gases; $\eta=$ viscosity coefficient; $C_{v}=$ specific heat at constant volume.

Pollock (Phil. Mag., 31, p. 52) gives A as a function of γ.

$$
A=\frac{7 \cdot 32(\gamma-1)}{\gamma^{1 \cdot 3}}
$$

According to the kinetic theory the viscosity coefficient η should be independent of pressure, and for a wide range of pressures experiment agrees with theory. It follows that k should be independent of pressure provided C_{v} is also independent of pressure. We have seen that both C_{p} and γ may have

7. Thermal Conductivity of Gases (continued).

pressure coefficients and, if these pressure coefficients are unequal, C_{v} will not be independent of pressure. The thermal conductivity of a gas may, therefore, have a different value at pressures of 200 atmospheres.

In this connection it is interesting to see what the application of thermodynamics suggests. We have

$$
\frac{d}{d v}\left(C_{v}\right)=T\left(\frac{d^{2} p}{d T^{2}}\right)_{v}
$$

A gas which follows Van der Waals' law gives $\left(\frac{d^{2} p}{d T^{2}}\right)_{v}=0$, whence C_{v} is independent of the volume of gas and therefore independent of the pressure.

Other gas equations (such as that of Clausius) give, however,

$$
\left(\frac{d^{2} p}{d T^{2}}\right)_{v}=f(T, v)
$$

so that C_{v} is not independent of the pressure. Investigation shows that C_{v} may be taken approximately as a linear function of the pressure, the coefficient not necessarily being the same as the pressure coefficient of C_{p}.

(a) THERMAL CONDUCTIVITY OF GASES.

Nearly all experiments on thermal conductivity of gases have been carried out at pressures of a few cm . of mercury to avoid convection difficulties.

Gas.	Temperature ${ }^{\circ} \mathrm{C}$.	k	Temperature Coefficient.	ObSERVER.
AIR at low pressures ($1-3 \mathrm{~cm}$.)	0° $"$ $"$ $"$ $"$ $"$	$\begin{array}{r} 0 \cdot 0000492 \\ 568 \\ 483 \\ 562 \\ 557 \\ 467 \\ 479 \end{array}$	$\begin{array}{r} 0.00203 \\ 183 \\ 281 \\ -360 \\ - \end{array}$	Kundt and Warburg. Winkelmann. Graetz. Schleiermacher. Müller. Eckerlein. Compan (Landolt, p. 742).
	at 1 atm 55°	osphere $0 \cdot 0000571$		Todd (Proc. Roy. Soc., A. 83, 1909).
HYDROGEN at low pressures ($1-3 \mathrm{~cm}$.)	$\begin{aligned} & 0^{\circ} \\ & " \\ & ", \\ & ", \end{aligned}$	$\begin{array}{r} \hline 0 \cdot 000327 \\ 319 \\ 410 \\ 318 \\ 387 \end{array}$	$\begin{gathered} 0 \cdot 00206 \\ 22 \\ 275 \\ 42 \\ - \end{gathered}$	Winkelmann. Graetz. Schleiermacher. Eckerlein. Günther (Landolt, p. 742).
NITROGEN at low pressures ($1-3 \mathrm{~cm}$.)	$0^{\circ}{ }^{\circ}$	$\begin{array}{r} 0 \cdot 0000569 \\ 524 \end{array}$	-	Günther. Winkelmann (Landolt, p. 742).
	$55^{\circ} \text { at } 1 \mathrm{~atm}$	osphere $0 \cdot 0000569$	-	Todd (Proc. Roy. Soc., A. 83, 1909).
AMMONIA at low pressure	$\begin{array}{r} 0^{\circ} \\ 100^{\circ} \end{array}$	$\begin{array}{r} 0 \cdot 0000458 \\ 709 \end{array}$	$0 \cdot 00513$	Winkelmann (Landolt, p. 742).

[Table continued on $\dot{p} .17$.
(a) THERMAL CONDUCTIVITY OF GASES (continued).

Gas.	Temprrature ${ }^{\circ} \mathrm{C}$.	k	Temperature Coefficlent.	Observer.
NITROUS OXIDE at low pressure	$\begin{array}{r} 0^{\circ} \\ 100^{\circ} \end{array}$	$\begin{array}{r} 0 \cdot 0000350 \\ 506 \end{array}$	-	Winkelmann.
NITRIC OXIDE	8°	0.0000460	-	Winkelmann.
	$\begin{aligned} & \text { at } 1 \text { atmos phere } \\ & 55^{\circ} \\ & 0.0000539 \end{aligned}$		-	Todd.
NITRIC PEROXIDE	at 1 atmos 55°	$\begin{aligned} & \text { phere } \\ & 0 \cdot 0000888 \end{aligned}$	-	Todd.

(b) CONDUCTIVITY OF GASEOUS MIXTURES.

When the constituents of the mixture have nearly the same viscosities and not very different specific heats, the thermal conductivity may be obtained from the viscosity of the mixture by applying the formula :-

$$
k=A \eta C=A \eta \frac{C_{p}}{\gamma}
$$

This equation, however, gives incorrect values when the viscosities of the constituents are not of the same magnitude. Thus, for air, the above formula gives a value for the thermal conductivity in fair agreement with experimental determinations. For $\left(\mathrm{N}_{2}+3 \mathrm{H}_{2}\right)$ mixture the formula gives a value which is probably much too low.

It can be shown theoretically that the thermal conductivity of a mixture of two gases is given by

$$
k=\frac{k_{1}}{1+A \frac{p_{2}}{p_{1}}}+\frac{k_{2}}{1+B \frac{p_{1}}{p_{2}}}
$$

where k_{1} and k_{2} are the conductivities of the constituents,
" p_{1} " p_{2} ", partial pressures of the constituents,

$$
\text { and } A=\frac{1}{4} \sqrt{\frac{1}{2}\left(1+\frac{m_{1}}{m_{2}}\right)}\left\{1+\left(\frac{\eta_{1}}{\eta_{2}}\right)^{\frac{1}{2}} \times\left(\frac{m_{2}}{m_{1}}\right)^{\frac{1}{4}}\right\}^{2}
$$

where η_{1} and η_{2} are viscosities, m_{1} and m_{2} are masses of molecules and $B=\frac{\eta}{\eta_{1}} A$.
(c) CONDUCTIVITY OF $\left(\mathrm{N}_{2}+3 \mathrm{H}_{2}\right)$ MIXTURE.

Let us take the following data for the constituent gases:-

$$
\begin{aligned}
\text { at } 0^{\circ} \text { C. }\left\{\begin{array}{lll}
\text { Hydrogen } & k_{1}=0.00035 & \eta_{1}=0.0000841 . \\
\text { Nitrogen } & k_{2}=0.000052 & \eta_{2}=0.000166 .
\end{array}\right. \\
\text { at } 100^{\circ} \text { C. }\left\{\begin{array}{ll}
\text { Hydrogen } & k_{1}=0.00044 \\
\text { Nitrogen } & k_{2}=0.000068
\end{array} \eta_{2}=0.0000106 .\right.
\end{aligned}
$$

At each temperature,

$$
\frac{m_{2}}{m_{1}}=14, \frac{\eta_{1}}{\eta_{2}}=0.51, \frac{p_{1}}{p_{2}}=3
$$

Whence $A=1 \cdot 14$, and $B=2 \cdot 24$, giving

$$
k_{0}=0.00026 \text { and } k_{100}=0.00033
$$

SECTION II.
 AMMONIA DATA.

1. Ammonia Equilibrium.

PERCENTAGE OF AMMONIA IN EQUILIBRIUM WITH THE MIXED GASES $\left(\mathrm{N}_{2}+3 \mathrm{H}_{2}\right)$.

Haber gives the following table for the equilibrium at various temperatures and pressures (Z. Electroch., 20, 600, 1914). The figures have been plotted in Figs. 2 and 3 :-

$t^{\circ} \mathrm{C}$.	Per Cent. NH_{3} in Equilibrium at Pressures (in Atmospheres) of			
	1	30	100	200
200	$15 \cdot 3$	$67 \cdot 6$	$80 \cdot 6$	$85 \cdot 8$
300	$2 \cdot 18$	$31 \cdot 8$	$52 \cdot 1$	$62 \cdot 8$
400	$0 \cdot 44$	$10 \cdot 7$	$25 \cdot 1$	$36 \cdot 3$
500	-129	$3 \cdot 62$	$10 \cdot 4$	$17 \cdot 6$
600	-049	$1 \cdot 43$	$4 \cdot 47$	$8 \cdot 25$
700	-0223	$0 \cdot 66$	$2 \cdot 14$	$4 \cdot 11$
800	-0117	$.35$	1.15	$2 \cdot 24$
900	-0069	$\cdot 21$	$0 \cdot 68$	$1 \cdot 34$
1,000	-0044	$\cdot 13$. 44	$0 \cdot 87$

Haber gives the following formula for the equilibrium constant at a pressure of 1 atmosphere, which agrees well with experimental determinations between the temperatures $500^{\circ} \mathrm{C}$. and $1000^{\circ} \mathrm{C}$.

$$
\log _{10} K_{p}=\frac{13200}{4 \cdot 571 T}-6 \cdot 134, T \text { being the absolute temperature. }
$$

If the partial pressures of $\mathrm{NH}_{3}, \mathrm{~N}_{2}$, and H_{2} are respectively $p_{N H_{3}}, p_{N_{2}}$ and $p_{H_{2}}$, then

$$
K_{p}=\frac{p_{N H_{3}}}{p_{N_{2}}^{\frac{1}{2}} \times p_{H_{2}}^{\frac{8}{2}}}
$$

If the percentage of NH_{3} is small and the total pressure is 1 atmosphere, we may take

$$
p_{N H_{\mathrm{3}}}=\left(\frac{1}{4}\right)^{\frac{1}{2}} \times\left(\frac{3}{4}\right)^{\frac{3}{2}} \times K_{p}=0.325 K_{p}, p_{N H_{3}} \text { being in atmospheres. }
$$

Hence, if E is the equilibrium percentage of NH_{3}, we have at 1 atmosphere between $500^{\circ} \mathrm{C}$ and $1000^{\circ} \mathrm{C}$.

$$
\log _{10} E=\frac{13,200}{4 \cdot 571 T}-4 \cdot 622
$$

which agrees well with the figures for 1 atmosphere given in the table.

2. Vapour Pressure of Anhydrous Ammonia.

The results obtained by various experimenters (see Landolt's tables, p. 379) on the vapour pressure of anhydrous ammonia are given in the following table. The results have been plotted in the graphs
in Fig. 4, which also give, of course, the boiling points of anhydrous ammonia at different pressures. The data deduced therefrom concerning the condensation of ammonia from gaseous mixtures are given in paragraphs (a) and (b).

VAPOUR PRESSURE OF ANHYDROUS AMMONIA.

Temperature ${ }^{\circ} \mathrm{C}$.		essure of Saturated Vapour.
$\begin{aligned} & -80 \\ & -77 \cdot 6 \text { (Solid) } \\ & -70 \\ & -60 \\ & -50 \\ & -40 \\ & -30 \\ & -25 \\ & -20 \\ & -15 \\ & -10 \\ & -5 \\ & 0^{\circ} \\ & +5 \\ & 10 \\ & 15 \\ & 20 \\ & 25 \\ & 30 \\ & 35 \\ & 40 \\ & 45 \\ & 50 \\ & 55 \\ & 60 \\ & 65 \\ & 70 \\ & 75 \\ & 80 \\ & 85 \\ & 90 \\ & 95 \\ & 100 \end{aligned}$	867 mm. (D) 1098 $"$ $"$ 1393 $"$ $"$ 1726 $"$, $"$ 2146 $"$, $"$ 2617 $"$ $"$	

(a) CONDENSAIION OF AMMONIA FROM A GASEOUS MIXTURE.

In Figs. 5 and 6 graphs have been constructed from Fig. 4 showing at what temperatures and total pressures, condensation should begin for various percentages (by volume) of ammonia in a gaseous mixture. These graphs give the maximum percentages of ammonia that can exist in a gaseous mixture under various temperatures and pressures. Thus at $-10^{\circ} \mathrm{C}$ and 140 atmospheres the ammonia content cannot be greater than 2 per cent. (Fig. 5).

The graphs were obtained by reasoning as follows. Let the vapour pressure of anhydrous ammonia at $t^{\circ} \mathrm{C}$. be p_{i}. In other words, the boiling point of liquid ammonia under a pressure p_{l} is $t^{\circ} \mathrm{C}$.

2. Vapour Pressure of Anhydrous Ammonia (continued).

If a not easily liquefiable gas contains 50 per cent. NH_{3} at a temperature of $t^{\circ} \mathrm{C}$., obviously the total pressure must be $2 p_{\imath}$ before liquefaction of the NH_{3} sets in. Generally, if x per cent. NH_{3} is present at $t^{\circ} \mathrm{C}$., the pressure required for liquefaction to begin will be $\frac{100}{x} p_{i}$.

(b) PERCENTAGE OF AMMONIA THEORETICALLY REMOVABLE BY COOLING.

Further graphs (Figs. 7, 8 and 9) have been constructed from Figs. 5 and 6 showing the percentage of ammonia which, theoretically, can be removed from gaseous mixtures by cooling under pressures of $50,100,150$ and 200 atmospheres.

These have been obtained in the following way. Let the NH_{3} content be x per cent. By increasing the pressure on the gas or by lowering the temperature we can reach a point (shown by Figs. 5 and 6) at which condensation will begin in a mixture containing, say, y per cent. NH_{3}; that is to say, $x-y$ per cent. will have been liquefied, i.e., a fraction $\frac{x-y}{x}$ of the original content of ammonia.

3. Vapour Pressure of Ammonia Solutions.

(a) TOTAL PRESSURE (AMMONIA + WATER VAPOUR) AT DIFFERENT TEMPERATURES AND CONCENTRATIONS.

The following table (Hilde Mollier, Fors. d.ver. deutsch. Ing., Berlin, 1909) gives the total pressures in mm . In Fig. 10 the resultsare graphed in convenient form, the pressures being given in atmospheres :-

Per cent. NH_{3}	Pressure in MM. of Mercury.													
	20°	30°	40°	50°	60°	70°	80°	90°	100°	110°	120°	130°	140°	150°
5								972	1342	1831	2447	3235	4200	5350
10						770	1091	1520	2060	2745	3620	4672	5890	7500
15					823	1166	1616	2200	2937	3850	4980	6350		
20				840	1200	1670	2270	3055	4030	5210	6708			
25			837	1208	1680	2308	3120	4145	5400	6950				
30		820	1197	1676	2320	3155	4200	5510	7070					
35	793	1157	1652	2305	3142	4238	5570	7155						
40	1103	1594	2260	3120	4190	5550	7135							
45	1487	2138	3000	4080	5410	7030								
50	1960	2790	3850	5210	6810									

(b) PARTIAL PRESSURES OF AMMONIA AND WATER VAPOUR ABOVE SOLUTIONS.

Perman (J. Chem. Soc., $83,2,1169,1903$) has measured the partial pressures at different temperatures for various concentrations of ammonia. Some of his figures are given in the Table below.

These have been plotted in Fig. 11 and the graphs in Figs. 12 and 13 have been constructed from Fig. 11 to give at a glance the value of the partial pressure at any temperature. Figures 12 and 13 have been deduced from Perman's figures and must be considered as approximate only.

It is interesting to note that according to Perman's figures the partial pressure of water vapour above a 5 or 6 per cent. solution at $0^{\circ} \mathrm{C}$. is greater than the vapour tension of pure water at that temperature.

PARTIAL PRESSURE OF NH_{3} AND OF $\mathrm{H}_{2} \mathrm{O}$ ABOVE SOLUTIONS.

$t^{\circ} \mathrm{C}$.	Per Cent. NH_{3}	Partial Pressure-mm.		$t^{\circ} \mathrm{C}$.	$\begin{aligned} & \text { Per Cent. } \\ & \mathrm{NH}_{3} \end{aligned}$	Partial Pressure-mm.	
		NH_{3}	$\mathrm{H}_{2} \mathrm{O}$			NH_{3}	$\mathrm{H}_{2} \mathrm{O}$
0	$4 \cdot 72$	$11 \cdot 4$	$5 \cdot 1$	$30 \cdot 09$	$3 \cdot 93$	$41 \cdot 2$	$31 \cdot 1$
	$9 \cdot 15$	$24 \cdot 8$	$5 \cdot 3$		$7 \cdot 43$	$86 \cdot 3$	$29 \cdot 2$
	$14 \cdot 73$	$51 \cdot 3$	$4 \cdot 1$		$12 \cdot 77$	$175 \cdot 0$	$26 \cdot 6$
	$19 \cdot 62$	$82 \cdot 5$	$3 \cdot 0$		$17 \cdot 84$	$291 \cdot 1$	$24 \cdot 3$
	$22 \cdot 90$	$116 \cdot 6$	$2 \cdot 8$		$21 \cdot 47$	$404 \cdot 6$	$22 \cdot 1$
10				40	$3 \cdot 79$	$61 \cdot 1$	$53 \cdot 5$ -
	$4 \cdot 16$	$16 \cdot 5$	$9 \cdot 1$		$11 \cdot 06$	$218 \cdot 5$	$49 \cdot 1$
	$8 \cdot 26$	$37 \cdot 2$	$8 \cdot 8$		$15 \cdot 55$	$353 \cdot 6$	$44 \cdot 1$
	$12 \cdot 32$	$64 \cdot 2$	$7 \cdot 6$		$20 \cdot 85$	$576 \cdot 1$	
	10.88	$95 \cdot 1$ $149 \cdot 2$	7. ${ }^{7}$	50	$3 \cdot 29$	$79 \cdot 1$	$89 \cdot 6$
	$21 \cdot 83$	$169 \cdot 8$	$5 \cdot 5$		$8 \cdot 91$	$246 \cdot 6$	$83 \cdot 0$
$19 \cdot 9$					$14 \cdot 15$	$451 \cdot 4$	$77 \cdot 0$
	$6 \cdot 18$	$46 \cdot 0$	$16 \cdot 4$		$14 \cdot 94$	$487 \cdot 1$	$7{ }^{\prime} 2$
	$10 \cdot 15$	$80 \cdot 6$	$15 \cdot 1$	60		$136 \cdot 9$	$144 \cdot 1$
	$16 \cdot 64$	$166 \cdot 1$	$12 \cdot 9$		$7 \cdot 78$	$300 \cdot 4$	$138 \cdot 5$
	$23 \cdot 37$	$302 \cdot 4$	$10 \cdot 3$		$11 \cdot 31$	$475 \cdot 8$	$130 \cdot 4$

4. Density of Anhydrous Ammonia at different Temperatures.

Fig. 14 has been plotted from the results of Lange (Z. Ges. Kälte-Ind., 5, 39, 1898) and Dieterici (Z. Ges. Kälte-Ind., 11, 21 and 47, 1904). Tables are not given, but the experimental determinations are shown in the graphs, and the density of saturated vapour is also given.

5. Melting Point and Boiling Point of Anhydrous Ammonia.

Meliting Point:-
$-75^{\circ} \mathrm{C} \quad$ Faraday - $\quad 1845$
$-75 \cdot 5^{\circ} \mathrm{C}$. Ladenburg - $\quad 1900$
$-77 \cdot 7^{\circ}$ C. Brill - - 1906

Boiling Point : -
$\begin{array}{llll}-33 \cdot 46^{\circ} & \text { C. } & \text { Gibbs } & 1905 \\ -33 \cdot 1^{\circ} & \text { C. } & \text { Brill } & -1906 \\ -33 \cdot 5^{\circ} & \text { C. } & \text { Perman } & 1906 \\ -34 \cdot 6^{\circ} & \text { C. } & \text { Burrell and } \\ & & & \\ & & \text { Robertson } & 1916\end{array}$

6. Density of Ammonia Solutions at $15^{\circ} \mathbf{C}$.

The figures of Lunge and Wiernik (Z. angew. Chem., 2, 181, 1889) are plotted in Fig. 15. The graph gives:-(a) percentage NH_{3} from specific gravity or from Twaddell degrees; (b) gms. NH_{3} per litre solution from specific gravity ; ${ }^{\circ}(c)$ lb. of NH_{3} pér gallon from specific gravity.

7. Solubility of Ammonia at different Temperatures and Pressures.

These graphs (Fig. 16) show what weight of NH_{3} will dissolve in unit weight of water at temperatures from $0^{\circ} \mathrm{C}$. to $100^{\circ} \mathrm{C}$. under pressures up to $2 \frac{1}{2}$ atmospheres. Since the heat of solution is great, it is to be understood that the temperatures referred to are final temperatures.

8. Freezing Points for various Concentrations of Ammonia.

The experimental determinations of F. H. Rupert (J. Amer. Chem. Soc., 32, 749) lie very closely on the graph in Fig. 17.

9. Heats of Solution of Liquid and Gaseous Ammonia.

Hilde Mollier (Z. Ver. deut. Ing., p. 424, 1909) has measured the heat of solution of 1 kgm . of ammonia when dissolved in various percentage solutions of ammonia. The graph in Fig. 18A explains itself.

10. Heat of Formation of Ammonia from its Elements.

Fig. 18B gives Nernst's values of the heat of formation in gm. cals. per gm. mol. at different temperatures. (Nernst, Z. Electroch., p. 100, 1910).

Tamaru (Z. Electroch., 21, 201, 1915! gives for the heat of formation in gm. cals. per gm. mol. at 1 atm . pressure :-

Temp. ${ }^{\circ} \mathrm{C}$.	659°	554°	503°	466°
Ht. F.	13,100	12,900	12,700	12,670

11. Specific Heats of Anhydrous and Aqueous Ammonia.

(a) Anhydrous Ammonia.

The following table shows the specific heat of Anhydrous Ammonia at different temperatures :-

Temp. ${ }^{\circ} \mathrm{C}$.	Specific Heat.	ObServer.
- 103 to -188 (solid)	$0 \cdot 50$	Dewar.
${ }_{0}^{0}$ to 26 (liquid)	0.878 0.894	\} Lüdeking and Starr.
26 " $40 \times$	0.894 1.021	Elleau and Ennis.
0 "	0.876	,
10 "	1.140	
30 "	$1 \cdot 218$	Drewes.
40 50	$1 \cdot 231$	Drewes.
60 ",	$1 \cdot 239$ 1.240	
60 70 0	1.240 1.233	
$\begin{array}{rrrr}0 & \prime & 20 & " \\ 20 & & 50 & \end{array}$	$1 \cdot 152$	$\}$ Keyes and Babcock.
20 " 50 "	1-172	\} J. Am. Ch. S., 39, 1917.

(b) Ammonia Solutions.
$\left.\begin{array}{lllllll}\mathrm{NH}_{3}+31 \mathrm{H}_{2} \mathrm{O}(3 \text { per cent. solution }) & - & -18^{\circ} \mathrm{C} & 0 \cdot 997 \\ \mathrm{NH}_{3}+51 \mathrm{H}_{2} \mathrm{O}(1.8 & , & ", & - & -18^{\circ} \mathrm{C} & 0 \cdot 999 \\ \mathrm{NH}_{3}+101 \mathrm{H}_{2} \mathrm{O}(0.9 & \# & ") & - & -18^{\circ} \mathrm{C} & 0 \cdot 999\end{array}\right\}$ Thomsen.

12. Latent Heats of Ammonia.

The following table shows the latent heats of fusion and vaporisation of Ammonia in kgm . Calories:-

	Temperature${ }^{\circ} \mathrm{C} \text {. }$	Latent Heat (Kg. Cals.) for		ObSERVER.
		1 kgm .	J gm. mol.	
Fusion Vaporisation	$\begin{gathered} -75^{\circ} \mathrm{C} . \\ -33 \cdot 4 \\ -33 \cdot 46 \\ 7 \cdot 8 \\ 11 \cdot 04 \\ 16 \cdot 0 \\ 17 \cdot 0 \end{gathered}$	$\begin{aligned} & 108 \cdot 1 \\ & 321 \cdot 3 \\ & 341 \cdot 0 \\ & 294 \cdot 21 \\ & 291 \cdot 32 \\ & 297 \cdot 38 \\ & 296 \cdot 5 \end{aligned}$	$\begin{aligned} & 1 \cdot 84 \\ & 5 \cdot 46 \\ & 5 \cdot 81 \\ & 5 \cdot 01 \\ & 4 \cdot 961 \\ & 5 \cdot 064 \\ & 5 \cdot 05 \end{aligned}$	Massol. Estreicher and Schnerr. Franklin and Kraus. Regnault. v. S"trombeck.

SECTION III.

NITRIC ACID DATA.

1. Specific Gravity of HNO_{3} Solutions at $15^{\circ} \mathbf{~ C .}$

Various observers closely agree. The graph (Fig. 19) has been plotted from Lunge and Rey (Z. angew. Chem., 4, 165, 1891). It gives Twaddell degrees, specific gravity, percentage HNO_{3}, gms. HNO_{3} per litre of solution, $\mathrm{lb} . \mathrm{HNO}_{3}$ per gall. of solution.

2. Boiling Points of Pure $\mathrm{HNO}_{3}(99 \cdot 79$ per cent.) at different Pressures.

The data for the graph (Fig. 20) have been taken from Creighton and Githens (J. Frankhn Inst., p. 161, 1915). The experimental points lie very closely on the given curve. The graph gives also the total vapour pressure above pure HNO_{3} at different temperatures.

3. Boiling Points of Aqueous HNO_{3} at different Pressures.

The data for this graph (Fig. 21) have been taken from the same source as for the preceding graph.

4. Vapour Pressure of Aqueous HNO_{3} at different Temperatures.

Two graphs (Figs. 22 and 23), plotted from Creighton and Githens' paper, give :-
(a) total pressure against molecular percentage HNO_{3}, and
(b) total pressure against percentage HNO_{3} by weight.

The graphs in Fig. 23 also give the Boiling Points of Aqueous Solutions of HNO_{3} at different pressures.

5. Influence of Non-volatile Water-retaining Agents on the Maximum Boiling-point Misture.

Reference: Creighton and Smith (J. Franklin Inst., p. 703, 1915).
The presence of KHSO_{4} produces no change in the position of the maximum boiling-point.
The presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$ raises the boiling point of HNO_{3} solutions and also decreases the HNO_{3} content of the maximum boiling-point mixture. The decrease is greater the greater the addition of $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Diminution of pressure causes a very slight decrease in the HNO_{3} content of the maximum boiling-point mixture.

The graphs (Fig. 24) are taken from Creightcn and Smith's paper. The percentage HNO_{3} refers to dehydrating-agent-free solution.

6. Freezing Points of Aqueous HNO_{3}.

Fig. 25 has been plotted from the determinations of F. W. Kuster and R. Kremann (Zeit. anorg. Chem., 41, 1, 1904).

7. Heat of Solution of Nitric?Acid.

The following table gives the heat of solution in kgm. Calories when 1 gm . mol. of HNO_{3} is dissolved in $m \mathrm{gm}$. mols. of $\mathrm{H}_{2} \mathrm{O}$. Thomsen's figures are for $18^{\circ} \mathrm{C}$. Berthelot's are for $10^{\circ} \mathrm{C}$.:

m	$0 \cdot 5$	1	$1 \cdot 5$	2	$2 \cdot 5$	3	4	5	6	8	10	20	40	80	100	160	200	320
Thom.	$2 \cdot 00$	$3 \cdot 29$	$4 \cdot 16$	-	$5 \cdot 27$	$5 \cdot 71$		$6 \cdot 66$	-	-	7-32	7-46	$7 \cdot 44$	7-42	$7 \cdot 44$	$7 \cdot 45$	-	7-49
Bert.	$2 \cdot 03$	$3 \cdot 34$	$4 \cdot 16$	$4 \cdot 86$	-	5•76	$6 \cdot 39$	$6 \cdot 36$	$6 \cdot 98$	7-22	7-27	$7 \cdot 36$	$7 \cdot 27$	-	7-21	-	7-18	-

[^1]Berthelot, Ann. Ch. Phys., 5, 4, 468, 1875.

8. Vapour Pressures of Oxides of Nitrogen.

The experimental data on Vapour Pressures of Oxides of Nitrogen have been plotted in Figs. 26, 27, and 28, the authors and their papers being given at the head of the graphs. Egerton (Trans. Chem. Soc., p. 652, 1914) states that his results for solid $\mathrm{N}_{2} \mathrm{O}_{4}$ closely follow the equation $\log p=\overline{14} \cdot 9166+\theta(0 \cdot 0604)$. The following data concerning the Condensation of Nitrogen Peroxide from Gaseous Mixtures have been deduced from these experimental curves.
(a) Condensation of Nitrogen-Peroxide from a Gaseous Mixture.

Fig. 29 has been constructed from the vapour pressure curves of nitrogen peroxide. It shows at what temperatures and (total) pressures condensation should begin for various percentages by volume of peroxide present in the gas. For example, take Curve IV., which is for a 10 per cent. gas. At $-10^{\circ} \mathrm{C}$. condensation will begin at a pressure of 2 atmospheres; any peroxide in excess of 10 per cent. will be liquefied, For the method of construction of these graphs see Ammonia, p. 19.

(b) Percentage of the total Peroxide theoretically removable by Cooling.

Two sets of graphs (Figs. 30 and 31) have been constructed from Fig. 29 showing the percentage of peroxide theoretically removable by cooling from a 10 per cent. and from a 15 per cent. mixture at different pressures. The pressure in atmospheres is given by the number on the curve.

Example.- 90 per cent. removal required from a 15 per cent. mixture:-From the curves we see that this can be done (a) at $-15^{\circ} \mathrm{C}$. by the application of 10 atmospheres; (b) at $-28^{\circ} \mathrm{C}$. by 5 atmospheres ; (c) at $-36^{\circ} \mathrm{C}$. by 3 atmospheres, and so on. For the method of construction of these graphs see Ammonia, p. 20.

9. The Velocity of Reaction between Nitric Oxide and Oxygen.*

This has been experimentally investigated at constant pressure by Lunge and Berl (Z. angew. Ch., $20,1716,1907$). Their results are given in Fig. 32, which shows the percentage of NO converted at any given time from the beginning of the reaction. It has been found possible to construct general curves for the reaction at constant volume and constant pressure.

The following table (see Fig. 32, Curve II.) gives some of the actual experimental values obtained by Lunge and Berl :-

Initial mixture : 125 cc. $\mathrm{NO}+500 \mathrm{cc}$. Air.
Temperature : $20^{\circ} \mathrm{C}$. Pressure constant.

	Percentage by Volume of	
Time:	NO.	NO_{2}.
	Seconds.	$100 \cdot$
0	$47 \cdot 51$	0
1.76	$38 \cdot 67$	$52 \cdot 49$
$2 \cdot 64$	$30 \cdot 95$	$61 \cdot 33$
3.96	$19 \cdot 44$	$69 \cdot 05$
$7 \cdot 92$	$14 \cdot 72$	$80 \cdot 56$
$13 \cdot 78$	$8 \cdot 23$	$85 \cdot 28$
29.92		$91 \cdot 77$

[^2]
9. The Velocity of Reaction between Nitric Oxide and Oxygen (continued).

At constant volume it is immaterial whether NO_{2} or $\mathrm{N}_{2} \mathrm{O}_{4}$ is produced. Fig. 33 gives the velocity of reaction when oxygen is in excess. The presence of an inert gas has very little, if any, effect on the reaction. Fig. 34 is obtained from Fig. 33 and explains itself.

The reaction at constant pressure is complicated by volume changes and two sets of curves (Figs. 35 and 36) have been constructed assuming :-(a) that the reaction is $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$, (b) that the reaction is $2 \mathrm{NO}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$. For warm gases at ordinary pressures, when the concentration is small, the tetroxide is practically all dissociated and the reaction may be taken as $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$.

Lunge and Berl's Curve I. (Fig. 32) corresponds to $p=8, p$ being the ratio of the concentration of the O_{2} to NO_{2}. Curve II. corresponds to $p=1 \cdot 6$.

On comparing the sets of curves it will be observed that the reaction is slowest at constant volume and quickest when $\mathrm{N}_{2} \mathrm{O}_{4}$ is formed at constant pressure.

The following indicates the method by which the curves have been obtained :-

1. Constant Volume Reaction.

The velocity of reaction is given by

$$
\frac{d x}{d t}=k(a-x)^{2}(b-x)
$$

where $\quad a=$ initial concentration of NO in gm. mols. per litre.
$b=, \quad$, ${ }^{\circ} \mathrm{O}_{2}, \quad " \quad$, $x=$ change in concentration in time t.
Since there are 2 molecules of NO in the reaction we take,

$$
a=\frac{1}{2} \text { total No. of gm. mols. of NO in } 1 \text { litre of the reaction space, }
$$

while $\quad b=$ total No. of gm. mols. of O_{2} in 1 litre of the reaction space.
Putting $\frac{x}{a}=X$, i.e., the fraction of NO converted, and $\frac{b}{a}=p$, we get

$$
\frac{d X}{d t}=k a^{2}(1-X)^{2}(p-X) . \quad k \text { is the velocity constant. }
$$

Integrating gives

$$
k a^{2} t=\int_{0}^{X} \frac{d X}{(1-X)^{2}(p-X)^{\prime}}
$$

from which the curves (Fig. 33) have been constructed. (See Todd, Phil. Mag., 35, 281.)

2. Constant Pressure Reaction.

In this case the volume changes. If the volume of the reaction space at time t is v, then the velocity of the reaction is given by

$$
\frac{d}{d t}\binom{x}{v}=k\left(\frac{a-x}{v}\right)^{2}\left(\frac{b-x}{v}\right)
$$

where a is now $\frac{1}{2}$ (total No. of gm. mols. of NO in the reaction space v),
and $\quad b=\left(\right.$ total No. of gm. mols. of O_{2} in the space v),

$$
\begin{aligned}
x & =\frac{1}{2} \text { (No. of gm. mols. of NO converted) } \\
& =\left(\text { No. of gm. mols. of } \mathrm{O}_{2}\right. \text { used up). }
\end{aligned}
$$

On putting $\frac{x}{a}=X$, the fraction of NO converted
and $\quad \frac{b}{c}=p$, we get by a treatment which is too long to be given here :-

$$
k\left(\frac{a}{v_{0}}\right)^{2} t=\int_{0}^{X} \frac{1+\frac{3 a}{p+2} X}{(1-X)^{2}(p-X)} d X
$$

from which the curves (Figs. 35 and 36) have been constructed. (See Todd, Phil. Mag., 35, 435.)

In this equation $\left(\frac{a}{v_{0}}\right)$ is the initial concentration, defined as above, of the NO in gm. mols. per litre; (it corresponds to a in the previous equation).

$$
\begin{aligned}
& \text { When the reaction is } 2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}, a=-\frac{1}{3} \\
& \quad " \quad \text { " } \quad, \quad 2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}, a=-\frac{2}{3} .
\end{aligned}
$$

USE OF THE CURVES.

(a) To find the Velocity Constant.

As an example of the use of the curves let us find the velocity constant k, using Lunge and Berl's Curve I., Fig. 32. At the beginning of the reaction Lunge and Berl had present 125 cc . NO $+500 \mathrm{cc} . \mathrm{O}_{2}$, i.e., the value of a for NO was $62 \cdot 5 \mathrm{cc}$. per 625 cc . Since 1 gm . mol. occupies $22 \cdot 4$ litres at $0^{\circ} \mathrm{C}^{2}$. (say, 24 at Lunge and Berl's temperature) the initial concentration of NO in gm. mols. per litre was

$$
\frac{62 \cdot 5}{24000} \div \frac{625}{1000}=\frac{1}{240}=\frac{a}{v_{0}}
$$

Lunge and Berl's Curve I. (Fig. 32) corresponds to $p=\frac{500}{62 \cdot 5}=8$ on the theoretical curves.
For the reactions $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$, and $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$ we get :-

Reaction.	Per cent. no converted.	Time from Lunge and Beri's Curve. Seconds.	$k\left(\frac{a}{x_{0}}\right)^{2} t \text { FROM THE }$ Theoretical Curve.	Whences $k=$
$\begin{aligned} & 2 \mathrm{NO}+\mathrm{O}_{2} \\ & \rightarrow 2 \mathrm{NO}_{2} \end{aligned}$	$\begin{aligned} & 75 \\ & 85 \\ & 90 \\ & 94 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 0 \cdot 375 \\ & 0 \cdot 75 \\ & 1 \cdot 15 \\ & 1 \cdot 95 \end{aligned}$	$\begin{aligned} & 21800 \\ & 21800 \\ & 22000 \\ & 22400 \end{aligned}$
$\begin{aligned} 2 \mathrm{NO} & +\mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \end{aligned}$	$\begin{aligned} & 75 \\ & 85 \\ & 90 \\ & 94 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & 0 \cdot 370 \\ & 0 \cdot 67 \\ & 1 \cdot 05 \\ & 1 \cdot 70 \end{aligned}$	$\begin{aligned} & 21300 \\ & 19200 \\ & 20100 \\ & 19600 \end{aligned}$

Since the product of the reaction at ordinary temperatures is chiefly NO_{2} we will take the velocity constant as $k=22000$ (Temp. $=20^{\circ} \mathrm{C}$.).

(b) To find the Time required for Oxidation.

Let us further illustrate the application of the curves by finding the time required for the oxidation of NO to NO_{2} for a definite initial concentration of NO and for various excesses of O_{2}.

Take, for example, the oxidation of NO in the ammonia oxidation process. Suppose that the gas produced after passing through the converter and condensing arrangements consists of oxygen-free nitrogen containing 1 volume of NO in 7 volumes. Let air be admitted for the conversion to NO_{2}. Since there is a large excess of inactive gas the reaction may be regarded as taking place at constant volume (Fig. 33).

Take $p=1$, i.e., just sufficient O_{2} for complete oxidation. To 7 volumes of gas we must add $2 \frac{1}{2}$ volumes of air, making the total volume $9 \frac{1}{2}$; therefore the initial concentration of NO is a $\frac{1}{2}$ vol. in $9 \frac{1}{2}$ vols., or in gm. mols. per litre

$$
a=\frac{\frac{1}{2}}{24000} \div \frac{9 \frac{1}{2}}{1000}=0 \cdot 00218, \quad \therefore \quad k a^{2}=22000 \times(0 \cdot 00218)^{2}=0 \cdot 10 \check{o}
$$

9. The Velocity of Reaction between Nitric Oxide and Oxygen (continued).

For 90 per cent. conversion, $k a^{2} t=50, \quad \therefore \quad t=\frac{50}{0 \cdot 105}=476 \mathrm{sec} .=7 \mathrm{~min} .56 \mathrm{sec}$.
Take $p=2$, i.e., add 5 vols. air to 7 vols. gas,

$$
a=\frac{\frac{1}{2}}{24000} \div \frac{12}{1000}=0.00174, \quad \therefore \quad k a^{2}=22000 \times(0.00174)^{2}=0 \cdot 066
$$

For 90 per cent. conversion, Fig. 33 gives $k a^{2} t=7 \cdot 5, \quad \therefore \quad t=\frac{7 \cdot 5}{0 \cdot 066}=113 \mathrm{sec} .=1 \mathrm{~min} .53 \mathrm{sec}$.
For 95 per cent. conversion, $k a^{2} t=17, \quad \therefore \quad t=\frac{17}{0.066}=256 \mathrm{sec} .=4 \mathrm{~min} .16 \mathrm{sec}$.
Proceeding in the same way we obtain the results in the following table, assuming that initial content of $\mathrm{NO}=1$ vol. in 7 vols., air is added to convert to NO_{2}, temperature $=20^{\circ} \mathrm{C}$. :-

	FOR 90 PER CENT. CONVERSION.					FOR 95 PER CENT. CONVERSION.			
Vol. of air added Orig. vol. of mixture	$\frac{2 \frac{1}{2}}{7}=0 \cdot 36$	$\frac{5}{7}=0 \cdot 71$	$\frac{7 \frac{1}{2}}{7}=1 \cdot 1$	$\frac{10}{7}=1 \cdot 4$	$\frac{12 \frac{1}{2}}{7}=1 \cdot 8$	$\frac{5}{7}=0.71$	$\frac{71}{7}=1 \cdot 1$	$\frac{10}{7}=1 \cdot 4$	$\frac{12 \frac{1}{2}}{7}=1 \cdot 8$
Time (min.) - -	$7 \cdot 9$	1.9	1.5	$1 \cdot 4$	$1 \cdot 5$	$4 \cdot 3$	$3 \cdot 5$	$3 \cdot 1$	$3 \cdot 3$

N.B.-It is impossible to get 90 per cent. conversion with a contact time of less than 1.4 minutes ; or to get 95 per cent. conversion with a contact time of less than $3 \cdot 1$ minutes. For quicker reaction times for the above concentration of NO, pure oxygen would have to be introduced. The calculation of the times of reaction would be done as has been indicated.

It should be remembered that the above calculations assume no absorption of the NO_{2} produced.
In the arc processes the percentage of NO is very low. Assuming the mixture is air containing 2 per cent. NO we have $p=19$ approximately. The curves in Fig. 33 do not go up to $p=19$, but we proceed thus:-

$$
\begin{aligned}
& k a^{2} t=\int_{0}^{x} \frac{d X}{(1-X)^{2}(p-X)}=\frac{1}{(p-1)^{2}}\left\{\log _{e} \frac{p(1-X)}{p-X}+\frac{X(p-1)}{1-X}\right\} \\
& a=\frac{1}{24000} \div 100 \\
& 1000=0.00042 \quad \therefore k a^{2}=22000 \times(0.00042)^{2}=0.00388
\end{aligned}
$$

For 50 per cent. conversion, i.e., $X=0.5 \quad k a^{2} t=0.0502 \quad \therefore t=13.0$ secs.
For $90 \quad, \quad " \quad$ i.e., $X=0.9 \quad k a^{2} t=0.495 \quad \therefore t=128$ secs.
These figures hold good at a temperature of $20^{\circ} \mathrm{C}$. The temperature coefficient of the reaction up to temperatures such as are met with in tower practice has not been definitely established, but is probably small.

Working on lines indicated in the preceding pages, it has been possible to deduce a general expression for the time of oxidation of nitric oxide in arc gases.

The time in seconds required for the oxidation of a fraction X of the nitric oxide present in an arc process gas consisting of air containing P per cent. of nitric oxide is given by

$$
t=\frac{2 \cdot 62 \times 10^{4}}{(200-7 P)^{2}}\left\{\frac{X(200-7 P)}{5 P(1-X)}+\log _{e} \frac{(200-2 P)(1-X)}{(200-2 P-5 X)}\right\}
$$

when the gases are at a temperature of $20^{\circ} \mathrm{C}$.

From this expression we get the following table, the results being plotted in Fig. 37 :-

X	$P=0.5$ per cent.	$P=1$ per cent.	$P=1 \cdot 5$ per cent.	$P=2$ per cenc.
	$t(\mathrm{sec})$.	t (sec.)	$t(\mathrm{sec})$.	$t(\mathrm{sec})$.
	$52 \cdot 9$			
6	$79 \cdot 5$	$26 \cdot 7$	$17 \cdot 9$	$13 \cdot 5$
.7	$124 \cdot 0$	$40 \cdot 0$	$26 \cdot 9$	$20 \cdot 4$
.8	$213 \cdot 0$	$62 \cdot 4$	$41 \cdot 5$	$32 \cdot 0$
.9	$480 \cdot 0$	$108 \cdot 0$	$72 \cdot 3$	$55 \cdot 1$
		$250 \cdot 0$	$164 \cdot 0$	$125 \cdot 0$

To be completely general the expression for t should contain a function of the temperature as a factor. No data appear to be available for the determination of this function.

10. Equilibria.

The reaction velocity of the reversible reaction

$$
A+B+. . . . \rightleftharpoons X+Y+
$$

is given by

$$
\frac{d C}{d t}=k_{1}\left(C_{A} C_{B}\right)-k_{2}\left(C_{X} C_{Y}\right)
$$

where C denotes concentration, k_{1} and k_{2} are the velocity constants of the forward and backward reactions respectively.

Equilibrium is reached when $\frac{d C}{d t}=0$,

$$
\text { or } \quad \frac{k_{1}}{k_{2}}=\frac{C_{X} C_{Y} \cdot}{} \cdot \frac{\cdot}{2} \cdot
$$

The ratio $\frac{k_{1}}{k_{2}}=K$ is called the equilibrium constant. From it is determined the constitution of the equilibrium mixture. It must be remembered that when partial pressures are substituted for concentrations, K may depend on the total pressure. It is much safer to measure concentrations in gm . mols. per litre. K is then only dependent on temperature.

In what follows, unless otherwise stated, concentrations in gm. mols. per litre are shown thus [NO], temperatures Centigrade are denoted by t, absolute temperatures by T, and logs are to the base 10 .

$$
\mathrm{N}_{2} \mathrm{O}_{4} \rightleftarrows 2 \mathrm{NO}_{2}:-
$$

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]} ; \quad \log _{10} K_{\mathrm{c}}=7 \cdot 3374-\frac{266}{T}
$$

Reference: Natanson, Wied. Ann. [3], 24, 454, 1885; 27, 606, 1886. Bodenstein, physik. Chem., 69, 43, 1909.

Haber (Technical Gas Reactions) gives at 1 atmosphere pressure :-

$t^{\circ} \mathrm{C}$.	0°	18.3°	49.9°	73.6°	99.8°
K_{p}	8.06	3.71	1.116	0.544	0.273

where $K_{p}=\frac{p_{N_{s} O_{4}}^{\frac{1}{2}}}{p_{\mathrm{NO}_{2}}}$
10. Equilibria (continued).

If $x=$ degree of dissociation

$$
K_{p}=\frac{\sqrt{1-x^{2}}}{2 x} \times \frac{1}{P^{\frac{1}{2}}}, \text { where } P=\text { total pressure in atmos. }
$$

For $P=1$ and $x=\frac{1}{2}$, then $K_{p}=0.865$. According to the table, this is for a temperature of approximately 64° C., i.e., $\mathrm{N}_{2} \mathrm{O}_{4}$ is half dissociated at 1 atmosphere at $64^{\circ} \mathrm{C}$. (Compare with Fig. 38). Richardson's experimental results (J. Chem. Soc., 51, 402) are given-in Fig. 38.
$\underline{2 \mathrm{NO}_{2} \rightleftarrows 2 \mathrm{NO}+\mathrm{O}_{2}:-}$

$$
K_{\mathrm{c}}=\frac{[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{NO}_{2}\right]^{2}} ; \log K=-\frac{6000}{T^{-}}+0.75 \log T+4.086
$$

T° abs. -	500°	600°	700°	800°	900°	$1,000^{\circ}$
$K_{e}-\quad-$	1.32×10^{-6}	1.51×10^{-4}	4.55×10^{-3}	5.90×10^{-2}	0.436	2.19

Reference: Bodenstein and Katayama, Z. physik. Chem., 69, 44, 1909. See Fig. 38 for Richardson's experimental results.
$\underline{2 \mathrm{NO} \rightleftarrows \mathrm{N}_{2}+\mathrm{O}_{2}:-}$

$$
K_{\mathrm{c}}=\frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]} ; \log \sqrt{K_{\mathrm{c}}}=\log 0 \cdot 0249-2 \cdot 148 \frac{2200-T}{T}
$$

$t^{\circ} \mathrm{C} \ldots \ldots$	1227°	1727°	2227°	2727°	
$\sqrt{ } K_{\mathrm{c}}-$	-	-	2.48×10^{-3}	15.3×10^{-3}	45.5×10^{-3}

Reference : Nernst, Z. anorg. Chem., 49, 226, 1906.

COMBUSTION OF AIR TO NO.

In Col. 5 of the following table

$$
K=\frac{p_{N O}}{p_{N_{2}}^{\frac{z_{2}}{2}} \times p_{O_{2}}^{\frac{1}{2}}}
$$

N. = Nernst, Göttinger Nachrichten (1904), p. 261.
J. \& F. = Jellinek and Finckh, Z. anorg. Chem., 45, 116, 1905 ; 49, 212 and 229, 1906.

T° abs.	Per cent. N_{2}	Per cent. O_{2}	Per cent. NO.	K	OBSERVER.		
1811	$78 \cdot 92$	$20 \cdot 72$	$0 \cdot 37$ 1877	$78 \cdot 89$	$20 \cdot 69$		$0 \cdot 42$
:---							
2023							

10. Equilibria (continued).
$\underline{4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightleftarrows 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}}:-$

$$
K=\frac{p_{N O}^{4} \times p_{H_{2} \mathrm{O}}^{6}}{p_{N H_{3}}^{4} \times p_{O_{2}}^{5}}
$$

Partington (The Alkali Industry, 1918, p. 228), gives

$$
\log K=\frac{44280}{T}+32 \cdot 14
$$

$\underline{\mathrm{N}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightleftarrows 2 \mathrm{NO}+2 \mathrm{H}_{2}:-}$
Reference: O. F. Tower, Ber. d. ch. Ges., 38, 2945, 1905.

SECTION IV.

HYDROGEN PURIFICATION DATA.

The data contained in this section deal chiefly with those equilibria which form the basis of the more important methods for the technical preparation and purification of hydrogen.

The remarks on equilibrium made on p. 29 apply to this section also.

1. Water-gas Equilibrium.

$\underline{\mathrm{H}_{2} \mathrm{O}+\mathrm{CO} \rightleftarrows \mathrm{CO}_{2}+\mathrm{H}_{2}}$.

$$
K_{\mathrm{p}}=K_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{CO}]}{\left[\mathrm{H}_{2}\right]\left[\mathrm{CO}_{2}\right]}
$$

$\log K=-\frac{2170}{T}+0 \cdot 979 \log T^{2}-1 \cdot\left(082 \times 10^{-3} T+1 \cdot 734 \times 10^{-7} T^{2}-0 \cdot \hat{0} 2858\right.$.

T° abs.	1000°	1200°	1300°	1400°	1500°	1600°	1700°	1800°	1900°	2000°
K	-	0.68	1.34	1.73	2.12	2.52	2.92	3.31	3.69	4.07

Reference :-F. Haber, Z. physik. Chem., 68, 731.
Figures for lower temperatures calculated from the above formula are given in the following table:-

$t^{\circ} \mathrm{C}$.	127°	227°	327°	427°	527°	627°	727°
K	0.00049	0.0059	0.031	0.085	0.221	0.369	0.676

These values of K have been plotted in Fig. 39.
Abegg (Handbuch der anorg. Chemie) gives :-

$$
\log K=-\frac{2232}{T}-0.0836 \log T-0.00022 T+2 \cdot 5084
$$

2. Carbon-Carbon dioxide Equilibrium.

$$
2 \mathrm{CO} \rightleftarrows \mathrm{CO}_{2}+\mathrm{C} .
$$

Rhead \& Wheeler (J. Chem. Soc. 99, 1151) give a modified form of Le Chatelier's formula for the equilibrium constant, namely :-

$$
K=\frac{38 \cdot 055+2 \cdot 02 T-0 \cdot 0031 T^{2}}{2 T}+\log _{\mathrm{e}} P+\log _{\mathrm{e}} \frac{C_{1}^{2}}{C_{2}}
$$

where $P=$ total press. in atm., $C_{1}=$ conc. of $\mathrm{CQ}, C_{2}=$ conc. of $\mathrm{CO}_{2}, C_{1}+C_{2}=1$.

$t^{\circ} \mathrm{C}$.				P	Per Cent. CO_{2}.	Per Cent. Co.
$800-$	-	-	-	$1 \cdot 23$ to 3.05	$1.6 \cdot 12$ to $28 \cdot 40$	$83 \cdot 88$ to $71 \cdot 60$
$900-$	-	-	-	0.65 to $2 \cdot 90$	$2 \cdot 17$ to $9 \cdot 05$	$97 \cdot 80$ to 90.95
$950-$	-	-	-	$0 \cdot 69$ to $3 \cdot 18$	$1 \cdot 11$ to $4 \cdot 42$	$98 \cdot 89$ to $95 \cdot 58$
$1000-$	-	-	-	$0 \cdot 66$ to 3.78	$0 \cdot 65$ to $3 \cdot 17$	$99 \cdot 35$ to $96 \cdot 83$
1050 -	-	-	-	$0 \cdot 83$ to 3.06	$0 \cdot 52$ to 1.42	$99 \cdot 53$ to $98 \cdot 53$
1100 -	-	-	-	$1 \cdot 33$ to $3 \cdot 64$	$0 \cdot 35$ to 0.92	$99 \cdot 65$ to $99 \cdot 08$

The effect of pressure on the equilibrium percentage of CO_{2} at temperatures between $900^{\circ} \mathrm{C}$. and 1100° C. is shown in Fig. 40 taken from Rhead and Wheeler's paper.

Boudouard (Ann. Ch. Phys., VIII., 24, 5, 1901) gives the equilibrium percentage of COz as follows :-

$t^{\circ} \mathrm{C}-$	445°	650°	800°	925°
Per Cent. $\mathrm{CO}_{2}-$	100	61	$6 \cdot 6$	$4 \cdot 0$

Abegg (Handbuch der anorg. Chemie) gives

$$
\log K=\frac{9130}{T}-9 \cdot 3 \quad \text { where } K=\frac{p_{C O_{2}}}{p_{C o}^{2}}
$$

Rhead and Wheeler (J.C.S., 97, 2189) have determined the velocity constants for the separate reactions $2 \mathrm{CO} \rightarrow \mathrm{CO}_{2}+\mathrm{C}$ and $\mathrm{CO}_{2}+\mathrm{C} \rightarrow 2 \mathrm{CO}$.

In the following tables the velocity constant k_{0} has been obtained from $\frac{1}{t} \log \frac{C_{0}}{\bar{C}_{t}}=k$.

Time. (Hours.)	Temperature $=850^{\circ} \mathrm{C}$.			Time. (Hours.)	Temperature $=850^{\circ} \mathrm{C}$.		
	P at $0^{\circ} \mathrm{C}$.	$P_{\mathrm{CO}_{2}}$	$k_{\mathrm{CO}_{2}}$		P at $0^{\circ} \mathrm{C}$.	$P_{\text {co }}$	${ }^{\text {co }}$
0	$258 \cdot 6$	$257 \cdot 6$	--	0	$463 \cdot 0$	$453 \cdot 7$	-
1	$292 \cdot 3$	$224 \cdot 9$	$0 \cdot 0590$	24	$459 \cdot 2$	$446 \cdot 1$	$0 \cdot 00030$
2	$317 \cdot 8$	$199 \cdot 4$	-0555	48	$453 \cdot 9$	$435 \cdot 5$	-00037
4	$356 \cdot 3$	$160 \cdot 9$	-0511	72	$452 \cdot 1$	$431 \cdot 9$	30
6	$389 \cdot 0$	$128 \cdot 2$	-0505	96	$448 \cdot 0$	$423 \cdot 7$	31
8	$415 \cdot 8$	101.4	-0506	120	$447 \cdot 2$	$422 \cdot 1$	26
12	$439 \cdot 5$	$77 \cdot 7$	-0434				

3. Carbon monoxide-Oxygen Equilibrium.

$\underline{2 \mathrm{CO}_{2} \rightleftharpoons 2 \mathrm{CO}+\mathrm{O}_{2} .}$

$$
K_{C}=\frac{P}{R T} \frac{x^{3}}{(2+x)(1-x)^{2}}=\frac{[C O]^{2}\left[\mathrm{O}_{2}\right]}{\left[C O_{2}\right]^{2}}
$$

According to Nernst and v. Wartenberg (Z. physik. Chem., 56, 548, 1906)$\log K_{c}=15 \cdot 48-\frac{29600}{T}+2.93 \log \frac{T}{1000}-1 \cdot 286 \times 10^{-3}(T-1000)+1 \cdot 61 \times 10^{-7}\left(T^{2}-1000^{2}\right)$.

The following figures give the percentage dissociation observed by Bjerrum (Z. physik. Chem, 79,1912) :-

t° C. -	2367°	2606°	2627°	2672°	2843°
Per Cent.	$21 \cdot 0$	$51 \cdot 7$	$49 \cdot 2$	$64 \cdot 7$	$76 \cdot 1$

Haber (Technical Gas Reactions) gives for the most probable values for the percentage dissociation of CO_{2} at different temperatures and pressures:-

T° abs.	10 atm .	1 atm .	$0 \cdot 1 \mathrm{~atm}$.	0.01 atm .
1000	7.31×10^{-6}	1.58×10^{-5}	3.4×10^{-5}	$7 \cdot 31 \times 10^{-5}$
1500	1.88×10^{-2}	$4 \cdot 06 \times 10^{-2}$	$8 \cdot 72 \times 10^{-2}$	$0 \cdot 188$
2000	$0 \cdot 818$	1.77	$3 \cdot 73$	$7 \cdot 88$
2500	$7 \cdot 08$	$15 \cdot 8$	$30 \cdot 7$	$53 \cdot 0$

4. Dissociation of Water Vapour.

$$
\underline{2 \mathrm{H}_{2} 0 \rightleftarrows 2 \mathrm{H}_{2}+\mathrm{O}_{2}} .
$$

Nernst and v. Wartenberg (Z. physik. Chem., $56,534,1906$) give
$\log K_{c}=11 \cdot 46-\frac{25030}{T}+2 \cdot 38 \log \frac{T}{1000}-1 \cdot 38 \times 10^{-4}(T-1000)-6.85 \times 10^{-8}\left(T^{2}-1000^{2}\right)$.
Bjerrum (Z. physik. Chem., 79, 1912) observed the following percentage dissociation at various temperatures :-

$t^{\circ} \mathrm{C}$.	-	2027°	2369°	2425°	2488°	2561°	2656°
Per Cent.	-	2.6	4.3	7.5	$8 \cdot 6$	$9 \cdot 8$	$11 \cdot 1$

Haber (Technical Gas Reactions) gives for the most probable values for the percentage dissociation of $\mathrm{H}_{2} \mathrm{O}$ at different temperatures and pressures :-

T° abs.	10 atm.	1 atm.	0.1 atm.	0.01 atm.
1000	1.39×10^{-5}	$3 \cdot 00 \times 10^{-5}$	6.46×10^{-5} 1500	1.03×10^{-2}
2000	0.273	2.21×10^{-2}	$4 \cdot 76 \times 10^{-2}$	1.39×10^{-4}
2500	1.98	0.588	0.103	

5. Equilibrium between the Oxides of Iron and Carbon.

(a) $\mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{CO} \rightleftarrows 3 \mathrm{FeO}+\mathrm{CO}_{2}$.
(b) $\mathrm{FeO}+\mathrm{CO} \rightleftarrows \mathrm{Fe} \quad+\mathrm{CO}_{2}$.

The equilibrium percentages, by volume, of CO_{2} at different temperatures for the equilibrià (a) and (b) have been experimentally determined by Baur and Glaessner (Z. physik. Chem., 43, 358, 1903). The curves given in Fig. 41 are taken from their paper.

6. Iron Oxide-Hydrogen Equilibrium.

$3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}$.

The equilibrium pressure of hydrogen at different temperatures is given by Deville (Lieb. Ann., 157, 71, 1871) as follows :-

Temperature ${ }^{\circ} \mathrm{C}$.	-	-	200°	265°	360°	440°	765°	920°	1000°
Partial Pressure of H_{2} in cms. -	9.59	6.42	4.04	2.58	1.28	0.92	0.51		

Preuner (Z. physik. Chem., 47, 385, 1904) gives-

$t^{\circ} \mathrm{C}$.	900°	1025°	$11 \check{ } 0^{\circ}$
$\frac{p\left(\mathrm{H}_{2} \mathrm{O}\right)}{p\left(\mathrm{H}_{2}\right)}$	0.69	0.78	0.86

\%. Methane-Hydrogen Equilibrium.
C. (amorph.) $+2 \mathrm{H}_{2} \rightleftarrows \mathrm{CH}_{4}$.

Abegg (Handbuch der anorg. Chemie) gives-

$$
\begin{gathered}
\log K=\frac{4050}{T}-3 \cdot 027 \log T-0 \cdot 0006424 T+4 \cdot 617 \\
\text { where } K=\frac{p_{O H_{4}}}{p^{2} H_{2}}
\end{gathered}
$$

whence

$t^{\circ} \mathrm{C}$.	300°	400°	500°	600°	700°	800°
Per Cent. $\mathrm{CH}_{4}-$	$96 \cdot 90$	$86 \cdot 16$	62.53	31.68	11.07	4.41
Per Cent. $\mathrm{H}_{2}-$	$3 \cdot 10$	$13 \cdot 84$	37.47	68.32	88.93	95.59

Mayer and Altmayer (Ber. Berichte, 40, 2134, 1907) give for 1 atmosphere pressure-

$t^{\circ} \mathrm{C}$.	-	250°	450°	550°	750°	850
Per Cent. $\mathrm{CH}_{4}-$	98.79	76.80	46.69	6.08	1.59	

Pring (J. Cȟem. $\widetilde{\text { Doc., }} 97,509$) gives-

8. Dissociation of Sulphuretted Hydrogen.

$2 \mathrm{H}_{2} \mathrm{~S} \rightleftharpoons 2 \mathrm{H}_{2}+\mathrm{S}_{2}$.

$$
K_{p}=P^{\frac{x^{3}}{(2+x)(1-x)^{2}}}=\frac{p^{2} \mathbf{H}_{2} \times p_{\mathrm{S}_{2}}}{p^{2} \mathbf{H}_{2} \mathrm{~S}}
$$

Preuner and Schupp (Z. physik. Chem., 68, 157, 1909) give :-

$t^{\circ} \mathrm{C}$.	750°	830°	945°	1065°	1132°	
$K_{p} \times 10^{4}-$	-	0.89	3.8	24.5	118	260
Per Cent.	-	-	5.5	$8 \cdot 7$	$15 \cdot 6$	$24 \cdot 7$

9. Dissociation of Carbon Bisulphide.

C (amorph.) $+\mathrm{S}_{2} \rightleftarrows \mathrm{CS}_{2}$.

$$
K_{c}=\frac{\left[\mathrm{S}_{2}\right]}{\left[\mathrm{CS}_{2}\right]} ; \quad \begin{array}{|c|c|c|c|c|}
\hline t^{\circ} \mathrm{C} & 823^{\circ} & 906^{\circ} & 1009^{\circ} & 1110^{\circ} \\
\hline K_{\mathrm{c}} & 0.078 & 0.115 & 0.179 & 0.258 \\
\hline
\end{array}
$$

Reference : Koref, Z. anorg. Chem., 66, 88.

SECTION V.
 MISCELLANEOUS DATA.

1. Hydrometer Readings.

A graph is given showing the relation between Twaddell and Baumé degrees and specific gravity (Fig. 42). Twaddell degrees are a linear function of specific gravity, Baumé degrees are not.

$$
\text { sp. gr. }=1+\frac{\text { Twaddell degrees }}{200} . \text { Twaddell degrees }=200(\mathrm{sp} . \text { gr. }-1)
$$

2. Specific Gravity of Solutions at Ordinary Temperatures.

The graphs in Fig. 43 give the percentage salt in a solution when the specific gravity is known. (Taken from various sources.)
3. Specific Gravity and Percentage of Salt in Solutions saturated at ordinary Temperatures.
(The percentage refers to weight of anhydrous salt in 100 parts by weight of solution.)

4. Solubilities at Different Temperatures.

Graphs are given (Fig. 44) showing the amount of salt which will dissolve in 100 grams of $\mathrm{H}_{2} \mathrm{O}$ at different temperatures. (From various sources.)

5. Vapour Tension of Water at Different Temperatures.

The numbers given in Landolt's tables (page 360) have been plotted in Fig. 45. To get the vapour tension in mm . at any temperature, multiply the ordinate by the factor on the curve.

6. Vapour Tension of NaNO_{3} and KNO_{3} Solutions.

The graphs (Fig. 46) show the vapour tension of NaNO_{3} solutions for varying concentrations and temperatures. The curves also give the boiling points of the solutions under reduced pressure.

7. Freezing Points.

The graphs (Fig. 47) show at what temperature solidification begins for

> (1) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{H}_{2} \mathrm{O}$
> (2) $\mathrm{NH}_{4} \mathrm{NO}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$
solutions for various concentrations, and indicate the nature of the solid.

FREEZING POINTS OF MIXTURES OF NO_{2} AND NO.

Percentage by Weight of NO_{2}.	Nature of Solid.	Temperature ${ }^{\circ} \mathrm{C}$.
$\begin{array}{r} 99 \cdot 9 \\ 91 \cdot 2 \\ 82 \cdot 9 \\ 80 \cdot 0 \\ 71 \cdot 0 \\ 65 \cdot 5 \\ 63 \cdot 6 \\ 61 \cdot 3 \\ \geq 61 \cdot 3 \end{array}$	$\begin{gathered} \mathrm{NO}_{2} \\ \mathrm{NO}_{2}+\mathrm{N}_{2} \mathrm{O}_{3} \\ \mathrm{~N}_{2} \mathrm{O}_{3} \end{gathered}$	$\begin{aligned} & =10 \cdot 0^{\circ} \\ & =18 \cdot 0^{\circ} \\ & =31 \cdot 7^{\circ} \\ & =37 \cdot 7^{\circ} \\ & =73 \cdot 0^{\circ} \\ & -112 \cdot 5^{\circ} \\ & -108 \cdot 5^{\circ} \\ & -104.5^{\circ} \end{aligned}$

8. Heats of Formation.

The following table gives the molecular heat of formation, from the elements, in kilogram Calories per gram-molecule, at $15^{\circ} \mathrm{C}$. to $20^{\circ} \mathrm{C}$.:-

			Mol. H.F. in Kgm. Cals.		

9. Heats of Modification-change.

The following table gives the heat of change of modification (solid to solid) in kgm . Calories per gm. molecule :-

10. Latent Heats of Fusion.

The following table gives the latent heat of fusion in kgm. Calories per kgm. and per gin. molecule :-

11. Latent Heats of Vaporisation.

The table gives the latent heat of vaporisation in kgm. Calories per kgm. and per gm. molecule :-

		Vaporisation TemperaTURE. ${ }^{\circ} \mathrm{C}$.	Latent Heat for		Observer.	
		$\begin{gathered} 1 \mathrm{KGM} . \\ (\mathrm{kgm} . \text { Cals. }) . \end{gathered}$	1 GR. MOL. (kgm. Cals.).			
NH_{3}	- - -		- 33.4	$321 \cdot 3$	$5 \cdot 46$	Estreicher and Schnerr.
	- - -	- $33 \cdot 46$	$341 \cdot 0$	$5 \cdot 81$	Franklin and Kraus.	
" -	- -	$7 \cdot 8$	$294 \cdot 21$	$5 \cdot 01$	Regnault.	
"	- - -	$11 \cdot 04$	$291 \cdot 32$	$4 \cdot 961$	"	
" -	- - -	$16 \cdot 0$	$297 \cdot 38$	$5 \cdot 064$		
$\mathrm{NH}_{4} \mathrm{Cl} \mathrm{Cl}^{-}$	- - -	$17 \cdot 0$	$296 \cdot 5$	$5 \cdot 05$	v. Strombeck.	
HNO_{3} -	- - -	850	$115 \cdot 1$	$37 \cdot 9$ $7 \cdot 25$	Marignac.	
$\mathrm{H}_{2} \mathrm{SO}_{4}$ -	- - -	326	$122 \cdot 1$	$11 \cdot 98$	Person.	
$\mathrm{N}_{2} \mathrm{O}$	- - -	- 20	$66 \cdot 9$	$2 \cdot 94$	Cailletet and Mathias.	
"	- - -	0	$59 \cdot 5$	$2 \cdot 62$	" "	
".	- - -	20	$43 \cdot 25$	$1 \cdot 90$	"	
"	- - -	35	$9 \cdot 87$	$0 \cdot 43$	" "	
	- - -	$36 \cdot 4$	$0 \cdot 0$	$0 \cdot 0$	Bront	
$\mathrm{N}_{2} \mathrm{O}_{5}$ -	- -	50	$44 \cdot 8$	$4 \cdot 84$	Berthelot.	
$\mathrm{N}_{2} \mathrm{~N}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$ (in		18	$93 \cdot 5$ $598 \cdot 0$	$8 \cdot 66$ 10.8		
$\begin{gathered} \mathrm{H}_{2} \mathrm{O} \\ \text { cal.). } \end{gathered}$	terms of 15°	0	$598 \cdot 0$	$10 \cdot 8$	(Mean value). Dieterici, Henning, Griffiths.	
"	" "	100	$539 \cdot 0$	$9 \cdot 67$	(Mean value). Joly, Harker, Callendar, Henning, Smith.	

MISCELLANEOU'S CONVERSION TABLES.

LENGTH.

To convert	Multiply by Factor F.	$\log _{10} \mathrm{~F}$.	To convert	Multiply by Factor F.	$\log _{10} \mathrm{~F}$.
Yards to cm. -	$91 \cdot 44$	$1 \cdot 9611$	Feet to metres -	0•3048	T. 4840
Cm. "yds. -	$0 \cdot 01094$	$\overline{2} \cdot 03886$	Metres to feet -	$3 \cdot 2808$	$0 \cdot 5160$
Feet ", cm. -	$30 \cdot 48$	$\stackrel{1}{2} \cdot 4840$	Yards to metres	${ }^{0} 1.91444$	1.9611
Cm. "ft. -	0.0328	$2 \cdot 5160$	Metres to yards	$1 \cdot 0936$	
Inches ", cm. -	$2 \cdot 540$	0-4048			
Cm. "ins. -	$0 \cdot 3937$	1-5952			

To convert	Multiply by Factor F .	$\log _{10} \mathrm{~F}$.	To convert	Multiply by Factor F.	$\log _{10} \mathrm{~F}$.
Sq. in. to sq. cm.	$6 \cdot 4516$	$0 \cdot 8097$	Sq. cm. to sq.ft.	0.001076	$\overline{3} \cdot 0320$
Sq. cm. to sq.in.	$0 \cdot 1550$	T•1903	-Sq.yds. to sq. m.	$0 \cdot 8361$	1.9223
Sq. ft. to sq. cm.	$929 \cdot 03$	$2 \cdot 9680$	Sq.m. to sq. yds.	$1 \cdot 1960$	$0 \cdot 0777$

VOLUME.

To convert	Multiply by Factor F.	$\log _{10} \mathrm{~F}$.	To convert	Multiply by Factor F.	$\log _{10} \mathrm{~F}$.
Cu. in. to cu. cm.	$16 \cdot 387$	$1 \cdot 2145$	Pints to litres	$0 \cdot 5682$	1.7545
Cu.cm., cu. in.	$0 \cdot 0610$	2•7855	Litres "pints	$1 \cdot 7598$	$0 \cdot 2455$
Cu.ft., $\mathrm{cu}^{\text {cm. m. }}$	$0 \cdot 02832$	$\overline{2} \cdot 4520$	Gals. ", cu. in.	$277 \cdot 41$	$2 \cdot 4431$
Cu. m. ", cu ft.	$35 \cdot 314$	$1 \cdot 5480$	Cu. in. „gals.	$0 \cdot 003605$	$\overline{3} \cdot 5569$
Cu. ft. „, litres	$28 \cdot 317$	$1 \cdot 4520$	Gals. ", cu. ft.	0-1605	1-2056
Litres "cu. fit.	$0 \cdot 03531$	2. 5480	Cu.ft. ", gals. -	$6 \cdot 2290$	0•7944
Gals. "litres	$4 \cdot 546$	$0 \cdot 6576$			
Litres , gals.	$0 \cdot 2200$	1. 3424			

MASS.

To convert	Multiply by Factor F.	$\log _{10} \mathrm{~F}$.	To convert	Multiply by Factor F'.	$\log _{10} \mathrm{~F}$.
Lb. to kgm .	$0 \cdot 45359$	1. 6567	Grains to gms. -	$0 \cdot 0648$	$\overline{2} \cdot 8116$
Kgm. to lb.	$2 \cdot 2046$	$0 \cdot 3433$	Gms. to grains -	$15 \cdot 432$	1-1884
Oz . to gms.	$28 \cdot 350$	$1 \cdot 4525$	Tons to kgm. -	$1016 \cdot 0$	$3 \cdot 0069$
Gms. to oz.	$0 \cdot 03527$	こ. 5475	Kgm . to tons -	$0 \cdot 000984$	4.9931

DENSITY.

To convert	Multiply by Factor F.	$\log _{10}$ F.	
Lb. per cu. ft. to gms. per cu. cm.	-	-	$0 \cdot 016018$ Gms. per cu. cm. to lb . per $\mathrm{cu} . \mathrm{ft}$.

FORCE.

To convert		Multiply by Factor F.	$\log _{10}$ F.	
Lb. weight to dynes -	-	-	-	-

VELOCITY.

Feet per Min.	Cm. per Sec.	Feet per Sec.	Miles per Hour.	Metres per Sec.
1	$0 \cdot 5080$	$0 \cdot 01667$	$0 \cdot 01136$	$0 \cdot 00508$
$1 \cdot 969$	1	$0 \cdot 0328$	$0 \cdot 02237$	$0 \cdot 0100$
$60 \cdot 0$	$30 \cdot 48$	1	$0 \cdot 6818$	0.3048
$88 \cdot 0$	$44 \cdot 70$	1.467	1	$0 \cdot 4470$
$196 \cdot 9$	$100 \cdot 0$	3-281	$2 \cdot 237$	1

RATE OF FLOW.

Litres per Hour.	$\mathrm{Cu} . \mathrm{Cm}$. per Sec.	$\mathrm{Cu} . \mathrm{Ft}$. per Hour.	Litres per Min.	Cu. Metres per Hour.	$\mathrm{Cu} . \mathrm{Ft}$. per Min.	Cu.Ft. per Sec.
1	$0 \cdot 278$	$0 \cdot 0353$	$0 \cdot 0167$	$0 \cdot 001$	0.000588	$9 \cdot 81 \times 10^{-6}$
$3 \cdot 60$		$0 \cdot 1271$	$0 \cdot 060$	$0 \cdot 00360$	$0 \cdot 002119$	$0 \cdot 0000353$
$28 \cdot 32$	$7 \cdot 867$		$0 \cdot 472$	$0 \cdot 02832$	$0 \cdot 01667$	$0 \cdot 000278$
$60 \cdot 0$	$16 \cdot 67$	$2 \cdot 119$	1	$0 \cdot 060$	$0 \cdot 0353$	0.000588
$1000 \cdot 0$	$277 \cdot 8$	$35 \cdot 31$	$16 \cdot 67$	1	$0 \cdot 5885$	0.00981
$1699 \cdot 0$	$472 \cdot 0$	$60 \cdot 0$	$28 \cdot 32$	$1 \cdot 699$	1	$0 \cdot 01667$
$28317 \cdot 0$	$7867 \cdot 0$	$1000 \cdot 0$	$472 \cdot 0$	$28 \cdot 32$	$16 \cdot 67$	$0 \cdot 2778$
101940 0	$28317 \cdot 0$	$3600 \cdot 0$	$1699 \cdot 0$	101-94	$60 \cdot 0$	1

ENERGY.*

Joules.	Gm. Cals.	$\begin{aligned} & \text { Brit. Therm. } \\ & \text { Units } \\ & \text { (B.Th.U.). } \end{aligned}$	Pound-Deg. Cent. Heat Units (C.H.U.).	Watt. Hrs.	Kgm. Cals.	H.P.Hours.	Kilowatt Hours.
1	$0 \cdot 2389$	$0 \cdot 0_{3} 9480$	$0 \cdot 0_{3} 5266$	$0 \cdot 0_{3} 2778$	$0 \cdot 0_{3} 2389$	$0 \cdot 06373$	$0 \cdot 0_{6} 278$
$4 \cdot 186$	1	$0 \cdot 00397$	0.00221	$0 \cdot 001163$	$0 \cdot 00100$	$0 \cdot 0.156$	D. $0_{5} 116$
1055	$252 \cdot 0$	1	$0 \cdot 5555$	- 2930	$0 \cdot 2520$	$0 \cdot 0.393$	$0 \cdot 0_{3} 293$
1899	$453 \cdot 6$	$1 \cdot 800$	1	$0 \cdot 5274$	$0 \cdot 4536$	$0 \cdot 0.707$	$0 \cdot 03527$
3600	$860 \cdot 0$	$3 \cdot 413$	$1 \cdot 896$	1	0.8600	$0 \cdot 00134$	$0 \cdot 00100$
4186	1000	$3 \cdot 968$	$2 \cdot 205$	$1 \cdot 163$	1	$0 \cdot 00156$	$0 \cdot 00116$
2684000	641200	2545	1414	$745 \cdot 6$	$641 \cdot 2$	1	$0 \cdot 7456$
3600000	860000	3413	1896	1000	860	$1 \cdot 341$	I

Heat Emission of 1 gm. cal. per sq. cm. per sec:
$=13270$ B.Th.U. per sq. ft. per hour.
$=7372$ C.H.U.
Thermal Conductivity.
To convert thermal conductivities expressed in C.G.S. units into B.Th.U. per sq. ft. per hoar for a fall of $1^{\circ} \mathrm{F}$. difference of temperature through 1 in . thickness, multiply by 2903.

CALORIFIC VALUE.

Grm. Cals. Per Cu. Ft.	Pound-Deg. Cent. Heat Units (C.H.U.) Per Cu. Metre.	Kgm. Cals. Per Cu. Metre.	Brit. Therm. Units (B.Th.U.) Per Cu. Ft.	Pound-Deg. Cent. Heat Units (C.H.U.) Per Cu. Ft.
$\begin{gathered} 1 \\ 12 \cdot 84 \\ 28 \cdot 31 \\ 251 \cdot 9 \\ 453 \cdot 5 \end{gathered}$	$\begin{gathered} 0 \cdot 0778 \\ 1 \\ 2 \cdot 205 \\ 19 \cdot 62 \\ 35 \cdot 32 \end{gathered}$	$\begin{gathered} 0.0353 \\ 0.4536 \\ 1 \\ 8.90 \\ 16.02 \end{gathered}$	$\begin{aligned} & 0 \cdot 00397 \\ & 0 \cdot 0510 \\ & 0 \cdot 1123 \\ & 1 \\ & 1 \cdot 8 \end{aligned}$	$\begin{aligned} & 0.00221 \\ & 0.028 .3 \\ & 0.0624 \\ & 0.555 \\ & \quad 1 \end{aligned}$

* The subscript figures indicate the number of zeros in the conrersion factor given.

POWER. RATE OF DOING WORK.*

| Fout-1b. | Kgm.
 Metres per Min.
 Min. | Watts.
 (Joules
 per Sec.). | Foot-lb.
 per See. | Gram.-
 Cals.
 per Sec. | Kgin.
 Metres per
 Sec. | Brit.
 Therm.
 Units.
 (B.Th.U.)
 per Min. | Pound-
 Deg. Cent.
 Heat
 Units.
 C.H.U.)
 per Min. | Kgm.-Cals.
 per Min. | Horse-
 Power. | Kilowatts. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

PRESSURE.

Dynes per $\mathrm{Sq} . \mathrm{Cm}$.	Lb. per Sq. Ft.	Mm. of Mereury.	Feet of Water.	Inches of Mercury.	Lb. per Sq. In.	Metres of Water.	Kg. per Sq Cm .	Atmospheres.	Tons per Sq. ln.
1	$0 \cdot 002089$	$0 \cdot 000750$	$0 \cdot 043346$	0.042954	$0 \cdot 0.1451$	$0 \cdot 0,1019$	$0 \cdot 051019$	$0 \cdot 0_{6} 9860$	$0 \cdot 0.648$
$478 \cdot 7$	1	$0 \cdot 3591$	$0 \cdot 01602$	0.01414	$0 \cdot 00694$	$0 \cdot 00488$	$0 \cdot 000488$	$0 \cdot 03472$	$0 \cdot(0) 310$
1333	$2 \cdot 785$	1	$0 \cdot 0446$	0.0394	$0 \cdot 01934$	$0 \cdot 1359$	$0 \cdot 601359$	$0 \cdot 001316$	$0 \cdot 05863$
29885	$62 \cdot 43$	22.42	1	0.8826	$0 \cdot 4335$	0.3048	$0 \cdot 03048$	$0 \cdot 02917$	$0 \cdot 0_{3} 193$
33850	$70 \cdot 73$	$25 \cdot 40$	$1 \cdot 133$	1	$0 \cdot 4912$	$0 \cdot 3453$	0.03453	$0 \cdot 03342$	$0 \cdot 0_{3} 219$
68920	$144 \cdot 0$	$51 \cdot 71$	2.307	$2 \cdot 036$	1	$0 \cdot 7031$	0.0703	$0 \cdot 06804$	$0 \cdot)_{3} 446$
98060	$204 \cdot 8$	$73 \cdot 56$	3.281	$2 \cdot 896$	1.422	1	$0 \cdot 1$	$0 \cdot 09678$	$0 \cdot 0_{3} 635$
9806×10^{2}	2048.0	$735 \cdot 6$	$32 \cdot 81$	28.96	14.22	$10 \cdot 00$	1	$0 \cdot 9678$	$0 \cdot 00635$
1013×10^{3}	2116.0	$760 \cdot 0$	$33 \cdot 90$	29.92	$14 \cdot 70$	$10 \cdot 33$	$1 \cdot 033$	1	$0 \cdot 00656$
1544×10^{5}	3225×10^{2}	1158×10^{2}	5167	4560	2240	1574	$157 \cdot 4$	$152 \cdot 4$	1

* See footnote to page 42.

GRAPHS.

SECTION I.-GAS DATA.

FIG.

1. Amagat's $P V$ Curves for Hydrogen and Nitrogen.

SECTION II.-AMMONIA DATA.

2,3 Ammonia Equilibrium, giving per cent. NH_{3} in equilibrium with $\mathrm{N}_{2}+3 \mathrm{H}_{2}$ at different Temperatures and Pressures.
4. Vapour Tension of Anhydrous Ammonia at different Temperatures.

5, 6. Temperature and Pressure at which Ammonia begins to condense from a Gaseous Mixture. 7,8,9. Removal of Ammonia from Gaseous Mixtures by Cooling at Pressures of 50, 100, 150 and 200 Atmospheres.
10 Vapour Pressure of Ammonia Solutions at dffferent Temperatures.
11. Partial Pressures of NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ above Ammonta Solutions.
12. Partial Pressures of $\mathrm{H}_{2} \mathrm{O}$ above Ammonia Solutions.
13. Partial Pressures of NH_{3} above Ammonta Solutions.
14. Density of Liquid Ammonia at different Temperatures; also the Density of the Saturated Vapour over Liquid Ammonia.
15. Specific Gravity of Ammonia Solutions at $15^{\circ} \mathrm{C}$.
16. Solubility of Ammonia at different Temperatures and Pressures.
17. Freezing Points of Ammonia Solutions.

18a. Heat of Solution of Liquid and Gaseous Ammonia.
18b. Heat of Formatron of Ammonia.

SECTION III.-NITRIC ACID DATA.

19. Specific Gravity of Nitric Acid Solutions at $15^{\circ} \mathrm{C}$.
20. Bolling Point of Pure Nitric Acid at different Pressures.
21. Boiling Points of Aqueous Nitric Acid under dieferent Pressures.

22, 23. Vapour Pressure of Aqueous Nitric Acid at different Temperatures.
24. Influence of $\mathrm{H}_{2} \mathrm{SO}_{4}$ on the Boiling Polnt of Aqueous Nitric Acid.
25. Freezing Points of Aqueous Nitrio Acid.
26. Vapour Pressures of $\mathrm{N}_{2} \mathrm{O}_{3}$ and $\mathrm{N}_{2} \mathrm{O}_{4}$.
27. Vapour Pressure of Solid $\mathrm{N}_{2} \mathrm{O}_{4}$.
28. Vafour Pressures of NO and $\mathrm{N}_{2} \mathrm{O}$.
29. Temperature and Pressure at which Nitrogen Peroxide begins to condense from a Gaseous Mixture.
30. Removal of Nitrogen Peroxide from a 15 per cent. Gaseous Mixture by Cooling and Pressure.
31. Removal of Nitrogen Peroxide from a 10 per cent. Gaseous Mixture by Cooling and Pressure.
32. Vilocity of Oxidation of Nitric Oxide at Constant Pressure.
33. Thiboretical Curves for the Oxidation of Nitric Oxide at Constant Volume.
34. Further Curves deduced from Fig. 33.

35, 36. Theoretical Curves for the Oxidation of Nitric Oxide at Constant Pressure.
37. Time of Oxidation of Nitric Oxide in Air Mixtures.
38. Dissociation of Nitrogen Tetroxide and of Nitrogen Peroxide.

SECTION IV.-HYDROGEN PURIFICATION DATA.

39. Water-gas Equilibrium.
40. Dissociation of Carbon Monoxide: Effect of Pressure on the Equilibrium Percentage of Carbon Dioxide in the presence of Carbon.
41. Oxides of Iron-Oxides of Carbon Equilibria.

SECTION V.-MISCELLANEOUS DATA.

42. Specific Gravity from Hydrometer Readings.
43. Specleic Gravity of Salt Solutions.
44. Solubilities at various Temperatures.
45. Vapour Tension of Water at different Temperatures.
46. Vapour Tension of NaNO_{3} and KNO_{3} Solutions at different Temperatures.
47. Freezing Points of Solutions of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{NH}_{4} \mathrm{NO}_{3}$.

I N DEX.

Page. fig.
ArR:

 combustion of, to NO

 density of - 8
 ratio of specific heats of
specific heats of 11
thermal conductivity of 16
viscosity of
Amagat: $P V$ curves for hydrogen and nitrogen 9
Ammonia:
anhydrous,
density of 21
melting and boiling point 21
specific heat of 19
condensation, from gaseous mixtures 19
equilibrium
effect of pressure and temperature on 18-23
heat of formation of 18
latent heats of
-oxidation equilibrium 14
partial pressure of, in solutions removal by cooling and pressure solubility of solutions :
freezing points of -4 5, 6
data 8 2, 3 18B 18A
specific gravity of 21 15
vapour pressure of 10
Ammonium Nitrate Solutions, freezing points of 47
Areas, conversion factors for 40
Ard Process Gases, oxidation of NO in 37
Baumé Hydrometer Readings 37 42
Boiling Point of :
anhydrous ammonia
aqueous nitric acid, effect of $\mathrm{H}_{2} \mathrm{SO}_{4}$ on 21 24 24
$\left(\mathrm{HNO}_{3}\right)$ mixture, maximum 24
pure nitric acid, variation with pressure 24
British Thermal Unit (B.Th.U.), conversion factora for 42
Calcium Nitrate Solution, freezing points of 37
Calorie, conversion factors for 42 21 24 20
Calorific Values, conversion factors fol ${ }^{\circ}$ 42
bisulphide, dissociation of 36
 32, 33 -
dioxide, dissociation of" "
under high pressure
monoxide-oxygen equilibrium 33,34 -
oxides-iron oxides 34 47
Carbon: 5 41
Combustion :
heats of 38
of air to nitric oxide 5,6 -
Compression o
of ammonia from a gaseous mixture 19 5-9
, nitrogen peroxide from a gaseous mixture 29-3
Conductiviry, thermal, of gases

PAGE. FIG
Heats,
latent, of :ammonia - - - 2339
vaporisation 39
of formation 38
of modification-change 38
specific, of :
ammonia 22
gases 11
Horse-power :
conversion factors for 43
-hour, conversion factors for 42
Hydrogen :
at high pressure 5
deviation of, from Boyle's law 5
-methane equilibrium 35
-nitrogen mixture $\mathrm{N}_{2}+3 \mathrm{H}_{2}$
at high pressure6
conductivity of - 17
specific heat of - 13
viscosity of 10
purification data 32
$P V$ curves for $-$$-1$
Hydrometer Readings 42
ICE, vapour pressure of 45
Iron Oxides:
-carbon oxides equilibrium
41
-hydrogen equilibrium 35
Joules, conversion factors for 42
Kilowatts, conversion factors for 43
Latent Heats:
of ammonia 23
of fusion 39
of vaporisation 39
Lengths, conversion tables for 40
Mass, conversion tables for 40
Maximum Boiling Point (HNO_{3}) Mixture 24
Melting Point of:
anhydrous ammonia 21
aqueous ammonia - 22
aqueous nitric acid 2417
Melting Points 39
Methane-Hydrogen Equilibrium35
Miscellaneous Data 3725
Nitric Acid,
aqueous:
specific gravity of 19
boiling points of 21
effect of $\mathrm{H}_{2} \mathrm{SO}_{4}$ on boiling point of 24
freezing points of 25
maximum boiling point mixture 24
vapour pressure of22, 23
data24=24-3
heat of solution of24
pure:boiling point2420
vapour pressure 20
Nitric Oxide:
combustion of air to 30
dissociation of 30—
—
—
—
—--—I
二

FIG.I.

FIG.2.
AMMONIA EQUILIBRIUM.
\% NH_{3} IN EQUILIBRIUM WITH THE MIXED GASES AT DIFFERENT TEMPERATURES \& PRESSURES.
FOR $\mathrm{N}_{2}+3 \mathrm{H}_{2}+$ AMMONIA MIXTURE ONLY.

FIG.3.

AMMONIA EQUILIBRIUM.
THE NUMBERS ON THE GRAPHS GIVE THE PRESSURE IN ATMOSPHERES.
(Based on Habers Figures)

FIG. 4

TEMPERATURE \& PRESSURE AT WHICH CONDENSATION SHOULD JUST BEGIN FOR VARIOUS PERCENTAGES(BVVOL) OF AMMONIA.
(CALCULATED FROM VAPOUR PRESSUREDATA)

9898. $17171 / 153$.

TEMPERATURE \& PRESSURE AT WHICH CONDENSATION SHOULD JUST BEGIN FOR PERCENTAGES OF NH_{3} (BYvOL) UP TO 1.0%.

FIG. 6.

$\frac{\mathbf{v}}{\mathbf{c}}$
REMOVAL OF NH_{3} FROM GASEOUS MIXTURES BY COOLING. (CALCULATED FROM VAPOUR PRESSURE DATA.)

REMOVAL OF NH_{3} FROM GASEOUS MIXTURES BY COOLING AT 150 ATMOSPHERES. (From vapour pressure data)

THE CONTENT OF $\mathrm{NH}_{3}(\%$ BY VOL) IS GIVEN ON THE CURVES. THE ORDINATES GIVE \% OF NH 3 CONTENT REMOVED.

FIG. 9.

PARTIAL PRESSURE OF WATER VAPOUR ABOVE AMMONIA SOLUTIONS. NUMBERS ON THE GRAPHS GIVE $\% \mathrm{NH}_{3}$ IN THE SOLUTION.

DENSITY OF LIQUID AMMONIA AT DIFFERENT TEMPERATURES.

- LANGE $1898 \cdots$ DIETERICI $1904 \times \times \times x$

SOLUBILITY OF AMMONIA IN H2O AT DIFFERENT TEMPERATURES \& PRESS (See Castell - Evans, II p. 1002)

HEAT OF FORMATION OF NH3 FROM ITS ELEMENTS.

NERNST. Z.ELECTROCHEM.1910.P.100.												

TWADDELL DEGREES.
FIG. 19.

INFLUENCE OF $\mathrm{H}_{2} \mathrm{SO}_{4}$ ON THE BOILING POINTS OF AQUFCUS HNO_{3} CREIGHTON \& SMITH J.FRANKLIN INST. I915 P. 706.

FIG. 24.

\circ	8	0	0	0
0	1	0	0	9

F1G.28.

LIQUEFACTION OF NITROGEN PEROXIDE.
(IN THE PRESENCE OF GASES OF VERY LOW BOILING POINT)
FROM VAPOUR PRESSURE DATA THE $\% \mathrm{NO}_{2}$ (BY VOL).
PRESENT IN THE GAS IS SHOWN ON THE CURVES

FIG. 39.

DISSOCIATION OF CARBON MONOXIDE

(at temperatures indicated)

$$
2 \mathrm{CO} \rightleftharpoons \mathrm{CO}_{2}+\mathrm{C} .
$$

Rhead \& Wheeler. J.C.S. 99. 1/5/.

EQUILIBRIA BETWEEN OXIDES OF IRON AND CARBON.

YE 11390

$$
\begin{array}{ll}
593632 & \text { TP245 } \\
& \text { N } 8475
\end{array}
$$

(2)

[^0]: * Carbon dioxide is liquid at pressures greater than 90 atmospheres.

[^1]: Reference : Thomsen, Thermochem. Ontersuch., Bd. 3. Leipzig, 1883.

[^2]: * This subject has been deliberately dealt with in detail in the text partly because of its novelty, and partly in order to render possible its application by the user of the tables to any technical process involving the oxidatiou of nitric oxide.-J.A.H.

