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PREFACE

The present work is intended as a text-book for class-

room use, and not as an exhaustive treatise on the sub-

ject. This object has been kept constantly in mind in

writing the book, and every subject has been treated from

this point of view. A large part of the book was mimeo-

graphed and tested by use for several years in the author's

classes in Harvard University.

The author has tried to meet the needs of a class which

occupies from sixty to seventy recitation hours upon the

subject, and it is thought that the book ought to be com-

pleted by the average class in that time. Necessarily

some subjects which usually find a place in books on

Analytic Geometry have been omitted ; but it is thought

that nothing has been omitted which has an important

bearing on future mathematical study.

The conies have been treated from their ratio defini-

tion, and much space and time have been gained by not

repeating proofs which are identical, or very similar, for

the three forms of the conic. Analytic methods are used

throughout the book, and the author has attempted to

give proofs which are concise and easily understood by

the average student, but, at the same time, mathemati-

cally rigorous. In this connection he would call atten-

tion to the proofs in oblique coordinates (Arts. 12, 28),

which are usually given without reference to the direc-

tions of the lines, and, therefore, do not hold if the

positions of the points are changed.
v
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yi PREFACE

Numerous problems, which have been selected with

great care, have been inserted after nearly every article.

In the early part of the book these are mainly numerical,

but later the student has been asked to prove a large

number of theorems. A considerable number of theorems

which are usually proved in the text are here inserted

as problems, and in many places the student has been

asked to derive formulas for two of the conies, after the

corresponding formulas for one of the conies have been

obtained. It is only by solving such problems that the

student can acquire any real grasp of the subject.

The attention of the teacher is also called to the two

chapters on loci (Chaps. VIII and XIV), in which a large

number of problems are given and the methods of solving

them discussed ; to the treatment of poles and polars by

the aid of harmonic division (Chap. XII); and to the

system of polar coordinates used in the Solid Geometry.

The author desires to acknowledge gratefully the assist-

ance of Mr. B. E. Carter of the Massachusetts Institute

of Technology, who has read with great care both manu-

script and proof ; of Mr. E. V. Huntington, who made

many valuable suggestions during the early stages of

the work ; and of Mr. W. R. Marsh, his colleague in the

preparation of the series, of which this volume is the first

to appear.

Cambridge,
November, 1900.
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PART I

PLANE ANALYTIC GEOMETRY

CHAPTER I

INTRODUCTION

1. Directed lines. — If a point moves from A to B in

a straight line, Ave shall say that it generates the line

AB ; if it moves from B to A, it generates the line BA.
In our study of Geometry, AB ^ ^ -

c
andBA meant the same thing,— j ^ B
the line joining A and B with- c j B
out regard to its direction. But FlG

-
1 «

we shall now find it convenient to distinguish between AB
and BA as if they were separate lines. The position from

which the generating point starts is called the initial point

of the line ; the point where it stops, the terminal point.

2. Addition of directed lines.— If a point moves in a

straight line from A to B (on any one of the lines in

Fig. 1) and then moves in that line, or in that line pro-

duced, to (7, the position which it finally reaches is evi-

dently the same as if, starting from A, it had moved
along the single line AC. The line AC is called the sum
of the lines AB and BO; that is, AB + BO=AO. Evi-

dently AB + BA = AA = 0, and hence AB = - BA.
l



2' ANALYTIC GEOMETRY [Ch. I, §§ 3,

4

3. Directed angles. — If a line starts from the position

OA and rotates in a fixed plane about the point into

the position OB, it is said to generate the angle A OB.

If it rotates from OB to OA, it generates the angle BOA.
We shall find it convenient to

^" ^-^B distinguish between the angles

/ ^ ^ / \ A OB and BOA as if they were

/ / jP^\ f\ separate angles. The position

\f
f \s qZ- _J \a from which the moving line

\ / / starts is called the initial side

^t ~S / of the angle ; the position where

^S it stops, the terminal side.

There is no limit to the pos-
Eig 2

sible amount of rotation of the

moving line ; after performing a complete revolution in

either direction, it may continue to rotate as many

times as we please, generating angles of any magnitude

in either direction. Angles which are not equal, but

have the same initial and terminal sides (1 and 3, or 2

and 4, Fig. 2) are called congruent angles.

In reading the angle AOB, it is not possible to dis-

tinguish between the various congruent angles which

have OA and OB for their initial and terminal lines, but

we shall understand that the smallest of the congruent

angles is meant, unless another angle is indicated by an

arrow in the figure.

4. Addition of directed angles. — If the moving line

starts from OA (in any one of these figures) and rotates

first through the angle A OB, and then through the angle

BOO, it is evident that the position 00, which the line
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finally reaches, is the same as if, starting from OA, it

had rotated through the single angle A 00. The angle

-^J3

Fig. 3.

A 00 is called the sum of the angles A OB and BOO;
that is, ZAOB +ZB0O=ZA0O. Evidently ZAOB +
ZBOA = 0, and hence ZAOB = -ZBOA.

5. Measurement of lines and angles. — The length of

a line, or the magnitude of an angle, may be represented

by a number, by the familiar process of measurement.

That is, the number of times which the given line or

angle contains an arbitrarily chosen unit may be used

to represent the length of the line or the magnitude of

the angle. But we have seen that it is necessary to

distinguish between the lines AB and BA, and that it

has followed from our definition of addition of lines that

AB = — BA. Hence, if the line AB is represented by a

positive number, the line BA ivill be represented by the

same number with a negative sign. In like manner, if

the angle A OB is represented by a positive number, the

angle BOA will be represented by the same number with

a negative sign. It follows, therefore, that opposite direc-

tions are indicated by opposite signs ; that is, if the length

of a line or the magnitude of an angle, generated in one direc-

tion, is represented by a positive number, then the length of

a line or the magnitude of an angle generated in the opposite
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direction, is represented by a negative number. Either of

two opposite directions may be chosen as the positive

direction ; then the other must be taken as the negative.

As all our work will be concerned with the algebraic

number rather than the geometric line which it represents,

it will not be necessary to distinguish between the line AB
and the number which represents its length. We shall

let AB stand for the number which represents the length of

the line from A to B. It is easily shown that the length

of the sum of two or more lines that run in the same or

in opposite directions is the algebraic sum of the lengths

of the separate lines. Hence it is still true that

AB+BC= AC, when AB, BO, and AC stand for the

lengths of the lines AB, BO, and AC. Since these are

now algebraic numbers, it follows that AB = AC— BO.

In like manner A OB will be used to represent the

magnitude of the angle instead of the angle itself. With

this meaning it will still be true that

ZAOB + ZBOC=ZAOC.

Also, ZAOB=ZAOC-ZBOC.

6. Angles between two lines. —
When two lines intersect at a point,

they form several angles at that point.

To avoid ambiguity, if the lines are

directed lines, we shall define the

angle between them as the angle from

the positive direction of the first line to

the positive direction of the second line,

the smallest of the congruent angles

being chosen.
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We shall adopt the following notation : Denoting the

intersecting lines by single letters, as a and b, the symbol

(a, b) shall indicate the angle from the positive direction

of the line a to the positive direction of the line 6, to be

read, "the angle from a to b."

It will sometimes be inconvenient to choose either direc-

tion of an unlimited line as positive. (As when the line

is given by its equation.) We shall then define the angle

which one line makes with another as the angle formed in

going from the second to the first in the positive direc-

tion of rotation.

It is customary to call the angle from a to b positive if

its rotation is opposite to that of the hands of a clock; nega-

tive if in the same direction as the hands.

7. Law of sines and law of cosines. — The two laws

concerning the sines and the cosines of the angles of a

triangle are often stated in trigonometry without regard

to the direction of the sides of

the triangle. But for our work

these must be stated in a more

accurate form. Let the posi-

tive direction of each side of

the triangle ABC be fixed. It
"

FlG 5

can be easily shown that these

two laws take the following form, when the directions of

the lines and angles are considered.

T p .
• AB sin (a, b)Law ot sines :

—- = .BO sin (6, c)

Law of cosines :

(AB) 2 = (BC) 2 + (CA) 2 + 2(BC)(CA) cos(a, b).
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8. The quadratic equation. — We shall have occasion to

use a few theorems in quadratic equations which it seems

advisable to reproduce here.

Any quadratic equation may be written in the form

ax2 -f bx + c = 0.

The two roots of this equation are

2 a



CHAPTER II

THE POINT

9. Cartesian coordinate systems. — The subject of Ana-

lytic Geometry is, as its name implies, a treatment of

Geometry by analytic or algebraic methods. It is then

essential to have the means of translating geometric

statements into algebraic and the reverse. Geometric

theorems involve the ideas of magnitude, position, and

direction. Algebraic methods of representing magnitude

and direction have been considered in the previous chapter.

The idea of position may be expressed algebraically in

many ways. But at present we shall confine ourselves to

two methods used in ordinary life. If we wish to locate

a town, Ave usually speak of it as being a certain distance

in a certain direction from some well-known location. In

the plane we must have a fixed point A from which to

measure the distance, and a fixed line AB from which to

measure the direction of any

point P. The point P is com-

pletely determined when the

angle BAP and the distance

AP are given. This system

of locating points in a plane is
1G '

called the Polar System, and will be discussed fully later.

Another method of fixing the position of a point on the

earth's surface is to give its latitude and longitude, or its

7
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AY

IT

X

III

A

IV

Y'

Fig. 7.

distance north or south and its distance east or west from

a given pair of perpendicular lines.

Constructing a pair of perpendicular lines X'X and

Y' Y in the plane, we may locate a point by saying that it

is m units above or below

X'X and n units to the

right or left of Y'Y. If

instead of using the words

above or below, right or

left, we understand that

all distances measured up-

ivard or to the right are

positive, and those meas-

ured downward or to the

left are negative, two num-

bers with the proper signs

attached will represent the distances of the point from the

two lines, and these two numbers taken together will locate

absolutely the position of any point in the plane. These

numbers, representing the distances of the point from the

two lines, with their proper signs attached, are called the

coordinates of the point. The distance NP, measured from

Y' Y, parallel toX rX, is called the abscissa, or jr-cobrdinate,

and the distance MP, measured from X'X, parallel to Y' Y,

is called the ordinate, or /-coordinate, of the point. The

line X'X is called the axis of abscissas, or Jf-axis, and

Y'Y the axis of ordinates, or X-axis. The two lines to-

gether are called the axes of coordinates, or coordinate axes,

and their intersection the origin of coordinates, or simply

the origin. The abscissa of a point is denoted by the

letter x, the ordinate by y, and the two coordinates are
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written in a parenthesis (x, y), the abscissa being always

written first.

It will be seen at once that any point in the plane can

be located by means of its coordinates, and that there will

always be a point which will correspond to any pair of

values we may choose, and that there will be only one

such point. We have then a simple means of representing

position in a plane by algebraic symbols. This system is

called the rectangular, and is a particular case of Cartesian

coordinates. In the general Cartesian system the axes

are not necessarily perpendicular to each other. In case

they are not perpendicular, the system is called oblique.

All the definitions given above hold for the oblique

system.

In Fig. 8, NP is the abscissa of P and MP is its ordi-

nate. While rectangular coordinates are more often used

because their formulas are

simpler, yet it will occa-

sionally be desirable to use

the more general system.

But rectangular coordi-

nates will always be un-

derstood unless another

system is distinctly speci-

fied.

In locating or 'plotting a

point whose coordinates are given, some convenient unit

of measure must first be chosen. Then measure off the

proper number of these units from the origin along each

axis in the direction indicated by the sign of the coordinate.

Through the points thus determined draw lines parallel

Fig. 8.
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to the axes, and their intersection will locate the point

whose coordinates were given. The following figures

illustrate the method. Coordinate paper having two per-

pendicular sets of parallel lines is very useful, and should

be obtained by the student.

C-A, 7)

(-2,-1

XS,8)

<x

(7,-5)

Y
Fig. 9. Fig. 10.

PROBLEMS

1. Plot the following points

:

(0, 0), (0, -3), (4, 0), (-4, 0), (-4, 6), (-3, -8).

2. Construct the" quadrilateral whose vertices are the points

(7, 2), (0, - 9), (- 3, - 1), and (- 6, 4).

3. What relation exists between the coordinates of two

points if the line joining them is bisected at the origin ?

4. What are the coordinates of the corners of a square

whose side is s, if the origin is at the centre of the square and

(a) the axes are parallel to the sides, (b) the axes coincide

with the diagonals ?

5. If one side of a parallelogram coincides with the X-axis

and one vertex is at the origin, express in the simplest way
the coordinates of the other vertices, (a) in rectangular coor-

dinates, (b) in oblique coordinates.

6. What are the coordinates of the vertices of an equi-

lateral triangle, if (a) one side coincides with the X-axis and
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the origin is at one vertex, (6) one side coincides with the

.X-axis and the origin is at the middle of this side, (c) if the

origin is at the centre of the triangle and the X-axis passes

through one vertex ?

10. Notation. — It will often be necessary to distinguish

between points which are fixed and those which, although

constrained to move in a certain path, yet can occupy

any position along this path. Fixed points will always

be distinguished by means of subscripts, being lettered

Pv PT etc., and represented by the coordinates (xv y^),

(.r
2

, t/
2), etc., while variable points will generally be rep-

resented by the simple variables (x, y). If variable

points whose movements are governed by different laws

are under consideration at the same time, they will be

distinguished by using (x, ?/), (V, ?/'), etc.

11. Distance between two points in rectangular coordi-

nates. — One of the first questions which naturally arises

concerning points is that of finding the distance between

them when their coordinates are given.

Let P
x
and P

2
(in either figure) be two points wdiose

coordinates are (xv y{) and (x
2, y2). Drop perpendicu-

M.

Y
Fig. 11.

M,
-A'
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i

lars on the X-axis and draw P
2
K to meet M

l
P

l
or that

line produced. Then x
l
= 0MV x

2
= 0M

2 , y x
=M

X
PV

and y2
= M

2
P

2
. It must be remembered that the coordi-

nates of any point are measured from the coordinate axes

and must be so read.

In either figure P
X
P

2
= V/yf* + KP?.

But P
2
K= M

2
M

X
= 0M

1
- 0M

2
= x

1
- xv

and KP
1
=M

l
P

l
- i%K= 3I.P, -M

2
P

2
= y x

- y2
.

Hence PXP, = V(asi - oc2)
2 4- (*/i - 2/ 2/

2
. [1]

This being a length merely, it is immaterial whether

it is read P
X
P

2
or P2

PV
It is necessary for the student to make himself familiar

at once with demonstrations of this kind in which a single

demonstration will ajiply to all possible cases. It might seem

at first that in Fig. 12 the equation KP
t
=M

1
P

1
—M

XK
does not hold. But if M

X
K is replaced by its equal

— KMV the equation is at once seen to be true.

Let the student draw various figures with the points

in different quadrants, and assure himself that the same

demonstration holds for all. Care must be taken to read

the lines always in the proper direction. For simplicity

the figures will usually be constructed in the first quad-

rant, but the student should always satisfy himself that

there is no restriction on their position, and that, if any

other figure is constructed and lettered in a correspond-

ing way, just the same demonstration will hold letter

for letter.
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12. Distance between two points in oblique coordinates. —
When the axes are oblique, draw M

1
P

1
and M

2
P

2 , the

ordinates of P
x
and jP

2, and the line P
2
K parallel to

the X-axis. Since P
2
K and KP

X
are to be expressed

in terms of the coordinates of P
x
and P

2, their positive

Fig. 13. Fig. 14.

directions will be the same as the positive directions of

the axes. The angle between them will always be a>,

and the generalized form of the law of the cosines

(Art. 7) gives

P
X
P

2
= Vp

2
jf

2 + jzpf + 2 P
2
K- KP

X
cos *»,

where not only the magnitudes, but also the directions

of the lines are considered. But

P
2
K=M

2
M

X
= 0M

1
- 0M

2
= x

x
- x

2 ,

and KP^M^-M^M^-MzP^y^yv
Substituting these values, we have

P\P% = V(a?! - a?2 )
2 + (2/i - Z/2

)'2 + 2(«i - a?2)(2/i - y-i) cos «, [2]

as the distance between two points in oblique coordinates.
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PROBLEMS

1. Find the distance between the two points whose rec-

tangular coordinates are (— 2, 6) and (1, 5).

Solution.— In using formulas [1] and [2] we may choose either of

the points for Pi and the other for P2 . Let (-2, 6) he the coordinates

of Pi, and (1, 5) the coordinates of P2 .

Then Pi

P

2 = V(- 2 - 1)* +(tt - 5)* = VlO.

2. Find the lengths of the sides of a triangle if the rec-

tangular coordinates of its vertices are (— 3, 4), (— G,— 1), and

(4,-5).

3. Find the lengths of the sides of the triangle, the coordi-

nates of whose vertices, referred to axes making an angle of

60° with each other, are (0, 0), (- 5, - 5), and (1, - 3).

4. What is the distance from the origin to the point (a, b)

in rectangular coordinates ? In oblique coordinates, if the

angle between the axes is 45° ?

5. Show that the points (G, 4), (2, 8), (3, - 2), and (- 1, 2)

are the vertices of a parallelogram.

6. Show that the lengths of the diagonals of any rectangle

are equal.

Note.— Take the two adjacent sides as axes and call the opposite

vertex («, b).

13. Points dividing a line in a given ratio. —The next

question to be discussed is that of finding the coordinates

of a point which will divide the line joining two given

points in any given ratio. We must first define what we

mean by "dividing the line joining two points in any

given ratio " ; for it has a larger meaning here than we

have been accustomed to give it.

If C is any point on the line AB, it is said to divide the
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lint' AB into the two parts AC and CB (care being taken

to read the two parts in just this way) whether the point

C lies between A and B or

beyond either. It will be —
seen that if the point lies

between A and £, the ratio, 77^, of the parts into which

it divides the line is positive ; while if it lies on AB pro

ducecl, the ratio is negative

Fig. 15.

AC
If has a value between

CB
AC

1 and — 1, C is nearer A, while if -— is greater than 1

or less than — 1, C is nearer B.

We shall now obtain the formulas for finding the coor-

dinates of the point P which divides the line P
X
P

2
*n ^ne

ratio m1
: m

<A

,, , P,P m,
or so that -—\-- = -

PI 2
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But P
X
K

X
= 0M - 0M

X
= x - xv

PK = 0M
2
-0M =x2 -z,

K
X
P =MP -MK1= y ~yv

KP
2
= M

2
P

2
- M

2
K=y

2
- y.

Substituting these values, we have

x-x
1 =d

m^
and y-y1 = wi

x
2
- x ma y2 — y m

2

Solving, » =""» + *"*, and ,=—* +»*. [3]

If the point P bisects the line P±PV m 1
— ra

2 , and the

formulas become

« =&±S, and „ = Ki±ife.
[4]

Let the student go over the demonstration carefully,

using the second figure, and assure himself that every

step holds as well for that as for the first. Let him also

construct other figures with the points in different posi-

tions, but using the same letters for corresponding points.

Since the demonstration depends only upon the simi-

larity of triangles, it will hold also in oblique coordinates.

The results are therefore general, and will apply to either

system of Cartesian coordinates.

14. Harmonic division. — If the line A C is divided by

the points B and 7), internally

—
' '

. and externally, in the same
Fig. 18. • , ,

.

,,
numerical ratio, or so that

—- = — ——
, the line .AC is said to be divided har-

Jo O AJ o
monically.
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Let the student show that the line BD will then be

divided harmonically by the points C and A, or so that

BC= BA
CD AD

The four points A, B, (7, and D are said to form a

harmonic range.

If parallel lines are drawn through the points A, B, C,

and D of a harmonic range,

their intersections A', B' , C\

and D', with any transversal,

will also be a harmonic range.

For, from plane geometry,

AB
BO

A'B'

B'C

Hence

and
AD A'D'

A
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2. Find the point which divides the line through (—3, —4)

and (5, 2) in the ratio — }.

3. Extend the line through (1, 5) and (—3, 4) beyond the

latter point until it is three times its original length. Find

the coordinates of its extremity.

4. In the triangle whose vertices are (0, 0), (0, 6), (5, 8),

find the point on each median which is two-thirds of the dis-

tance from the vertex to the middle point of the opposite side,

and show that these points coincide.

5. Show that the medians of any triangle meet in a point,

choosing the axes so that the vertices may be represented by

(0, 0), (a, 0), and (b, c).

6. In the right triangle whose vertices are (0, 0), (0, 6), and

(8, 0), show that the distance from the vertex of the right

angle to the middle point of the opposite side is equal to one-

half of the hypotenuse.

7. Prove that the theorem of problem 6 holds for any right

triangle.

Note. — Take the legs of the triangle as axes.

8. In the triangle whose vertices are A (— 1, 2), B (4, 5),

and (7(3, —.4), a line DE is drawn through the middle points

of the sides AB and AC. Show that BC = 2 DE.

9. Prove that the line joining the middle points of the sides

of a triangle is equal to one-half of the third side, using the

points (x
lf 2/j), (x2 y2), and (x3, ys) as the vertices of the triangle.

10. If the coordinates of three oMhe vertices of a parallelo-

gram are (0, 0), (8, 0), and (3, 5), find the coordinates of the

fourth vertex, which lies in the first quadrant.

11. Prove that the diagonals of any parallelogram bisect

each other.

12. In what ratio is the line joining the points (— 1, 6) and

(7, - 2) divided by the point (2, 3) ? by the point (10, - 5)?



Ch. II, § 14] THE POINT 19

13. The line joining the points (0, 3) and (9, 0) is divided

internally by the point (3, 2). Find the coordinates of the

point which divides it externally in the same numerical ratio.

14. Find the coordinates of the point P which forms, with

the points A (4, 1), B (2, - 2), and C (- 2, - 8), a harmonic

range, if (a) P is between A and 72; (b) P is between B and C.



CHAPTER III

LOCI

15. Equation of a locus. — In the previous chapter we
have considered fixed points only. If a point is made to

move in the plane according to some definite law, a curve

or locus is generated. (The term " curve " in Analytic

Geometry is applied to any locus, including straight

lines.) As, for example, a point which remains at a fixed

distance from a given fixed point generates a locus called

a circle ; a point which is always equally distant from

two intersecting lines generates a locus which is the

bisector of the angle between those lines ; a point which

is always equally distant from the ends of a line generates

the perpendicular bisector of that line, etc.

If now we can translate the statement of the law govern-

ing the movement of a point into an algebraic relation or

equation between the coordinates of the points which satisfy

the law, we shall have an equation which may be used to

represent the curve. For, if our translation is correct,

every point whose coordinates satisfy the equation will

occupy a position on the path generated by the moving

point, since the equation is only a restatement of the law

itself in algebraic language. There will be, moreover, no

position of the moving point whose coordinates do not

satisfy the equation. We shall then have obtained an

equation which is satisfied by the coordinates of every

20
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point on the locus, and by the coordinates of no point

not on the locus.

In the first example given above, if the fixed point is

taken as the origin, and if the moving point P remains

at a distance a from the fixed point, the relation between

the coordinates x and y of every position ofP is x2+ y
2= a2

.

For (Fig. 21) Oil
2 + MP2 = OP2

.

We see, moreover, that this

equation cannot be satisfied by

any point which is not at a dis-

tance a from 0. We have then
X-

translated the given condition

into algebraic language. The

equation and the curve bear to

each other the following recip- [y'

rocal relation : The coordinates Fig. 21.

of every point on the circle satisfy

the equation, and conversely, every point whose coordinates

satisfy the equation lies on the circle. When an equation

and a curve are connected by this relation, the equation

is spoken of as the equation of the curve, and the curve as

the locus of the equation.

Again, let a point move so as to remain equally distant

from the two axes. What is the algebraic translation of

this law, or, in other words, what is the algebraic equation

which must be satisfied by the coordinates of every point

governed by the law ? It is evidently x = y, and this is,

therefore, the equation of the bisector of the angle be-

tween OX and OY.

What is the equation of the bisector of the angle

between OY and OX'

1
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If a point moves so as to be always three units above

the X-axis, the ordinate of every point must be three,

while no restriction is placed on the abscissa of the point.

This law, translated into algebraic language, is, therefore,

y = 3 ; for this equation makes just the same statement

in regard to the position of every point which satisfies it.

What is the equation of the locus of points two units

to the left of the Y"-axis ?

What are the equations of the axes ?

The third illustration was the locus of a point which

moves so as always to be equally distant from two fixed

points.

Place the axes with the origin at one of the points, and

the X-axis coincident with the line joining the two points.

Let .the distance OA (Fig. 22)

between the two points be rep-

resented by a. Then the co5r-

dinates^ of the two points are

(0, 0) and (a, 0). We can

translate into an algebraic equa-

tion the statement that a point

P, coordinates (#, ?/), shall be

equally distant from the two

fixed points and J., by ex-

pressing the distances of P from each of the two points,

and equating these two expressions.

In Fig. 22,
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Squaring and reducing, we have, as the equation of the

desired locus,
a

x =
~i

Here the final result does not express so clearly as in the

previous cases that it is simply a translation of the state-

ment of the law. But it has been obtained by simple

algebraic reductions from this exact statement. The

result is, as we should expect, the perpendicular bisector

of the line joining the two fixed points.

We have in these simple cases been able to translate

the law governing the movement of a point in the plane

into an algebraic equation. There are many loci for

which this is possible. But the law may be stated in

such a way as to require other than algebraic symbols to

represent it. For example, the path of any fixed point

on the circumference of a wheel rolling on a straight line

in a plane is a perfectly definite curve. But the relation

between the coordinates cannot be expressed in a single

algebraic equation. It requires the introduction of trigo-

nometric functions.

If a point moves at random, no equation connecting the

coordinates of its different positions can be found ; for an

equation imposes a law upon the movement of the point.

PROBLEMS

1. Find the equation of the locus of points which are

equally distant from the points (1, 3) and (—2, 5).

2. Find the equation of the locus of points which are three

times as far from the X-axis as from the l^axis.

3. Find the equation of the locus of points which are five

units from the point (—3, 4).
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4. A point moves so as to be always five times as far from

the r"-axis as from the point (5, 0). Find the equation of its

locus.

5. A point moves so that the sum of the squares of its

distances from the points (0, 0) and (5, — 5) is always equal to

40. Find the equation of its locus.

6. A point moves so as to be always three times as far

from the point (1, — 2) as from the point (—3, 4). Find the

equation of its locus.

7. A point moves so that the sum of its distances from the

two axes is always equal to 10. Find the equation of its locus.

8. A point moves so that its distance from the X-axis is

always one-half its distance from the origin. Find the equation

of its locus.

9. A point moves so that its distance from the point

(—4, 1) is always equal to its distance from the origin. Find

the equation of its locus.

10. A point moves so that the square of its distance from

the origin is always equal to the sum of its distances from the

axes. Find the equation of its locus.

16. Locus of an equation. — Looking at the question

from the other side, let us consider what will be the

geometric interpretation of any given equation in x and y.

It is at once evident that only the coordinates of certain

points in the plane will satisfy the equation ; for, if we

give any particular value to x, one or more values of y
will be determined. The point, then, cannot occupy any

position at random in the plane, yet it is not confined to

a finite number of positions. For, since any value we

please may be assigned to x, there will be an indefinite

number of positions whose coordinates will satisfy the
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equation. Moreover, it appears that these points are not

scattered indiscriminately over the plane, since random

values of x and y will not satisfy the equation. Small

changes in the value of x will in general produce small

changes in the value of y. Points may therefore be

found as close as we please to each other, and from this

we may infer that they are situated on some curve. This

curve which contains all the points which satisfy the equation

and no others is called the locus of the equation.

17. Plotting the locus of an equation. — How shall we
determine the locus of any given equation ? Sometimes

the locus is at once evident. For example, what is the

geometric interpretation of the equation y = 3 ? The

equation says nothing concerning the abscissas of points

on the locus, but fixes the ordinate of every point. All

points which satisfy it must therefore lie at a distance of

three units above the X-axis. Hence the locus is a line

parallel to the X-axis, and three units above it.

Again, consider the equation x — y. It states in alge-

braic language that a point moves so as to remain equally

distant from the two axes. Its locus is therefore the line

which bisects the angle between the two axes.

Sometimes it is easy, as in these cases, to translate the

algebraic equation into the law which governs the move-

ment of the point, and hence determine the exact form

and position of the locus. But this is often difficult, and

we must have other means of determining the curve. We
can always determine as many points as we please on the

locus by giving to one of the coordinates a series of values

and determining the corresponding values of the other.
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Place these points in their proper positions in the plane,

and when a sufficient number has been obtained, a smooth

curve passed through them will show approximately the

form of the curve. The points can be determined as near

to each other as we please, and the approximation can be

carried to any required degree of accuracy. This is called

plotting the curve.

We shall plot the locus of the equation

Give consecutive values to x, and find the corresponding

values of y.

If x = 0,
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Again, let us plot the locus of the equation

25.x*-y*

Solving the equation for y, we have y = ± Va?2 — 25,

from which it appears that y is imaginary, so long as

— 5 < x < + 5. There will therefore be no points on the

locus for which x is numerically less than 5.

If x — 5, y — 1
x = — 5, y — ;

x = 6, y = ±VIlj x = -6, ?/ = ±Vll;

# = 7, y == ± V24 etc.

Plotting the points (5, 0), ((3, + Vll), (6, - Vll), etc.,

and passing a smooth

curve through them, we y

have the curve in Fig.

24. It can be seen from

the equation that each

branch goes off indefi-

nitely, never again turn-

ing toward either axis

;

for as x increases, y in-

creases indefinitely.

18. Symmetry. — A curve is said to be symmetrical

with respect to one of two axes (rectangular or oblique)

when that axis bisects every chord parallel to the other.

A curve is said to be symmetrical with respect to

a point when that point bisects every chord drawn

through it.

It is easily proved that if a curve is symmetrical with

respect to two axes, it is symmetrical with respect to
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their point of intersection. Now, if, upon substituting

any value for x in an equation, we find two values of ?/,

equal numerically but with opposite signs, the curve is

evidently symmetrical with respect to the X-axis. Or,

if, for every value of ?/, we find two values of x, equal

numerically but with opposite signs, the curve is evi-

dently symmetrical with respect to the T^-axis. If both

these occur, the curve must be symmetrical with respect

to the origin.

It appears that the first of these conditions can be

satisfied when y occurs in the equation in even powers

only, and the second when x occurs in even powers only.

A curve is therefore symmetrical with respect to the X-axis

tvhen its equation does not contain odd powers of y ; it is

symmetrical with respect to the Y-axis ivhen its equation

does not contain odd powers of x.

It is symmetrical with respect to the origin if its equation

contains no term of an odd degree in x and y.

We can therefore tell at once whether a curve is sym-

metrical with respect to either or both axes. This is

useful in plotting ; for if a curve is symmetrical with

respect to the Jf-axis, it is only necessary to plot the part

above that axis and form the same curve below ; if sym-

metrical with respect to the I^-axis, to plot the part at

the right of that axis and form the same curve at the

left.

The curve which we have just plotted, x2 — y
2 = 25,

is evidently symmetrical with respect to both axes. It

would have been sufficient to have plotted that part which

lies in the first quadrant and determined the rest of the

curve from this,
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PROBLEMS

1. Plot the loci of the following equations

:

(a) x2 + y
2 = 9- (/) 4 a? + 9 ?/

2 = 0.

(b) x2
-\-7f = 0. (g) 4or-9/ = 0.

(C) ^-^ = 0. (/t) i^ = 4a;.

(d) 4 a2 + 9 f = 36. (i) a2 = 4 y.

(e) 4ar
, -9</2 = 36. (j) y

2 = -±x.

2. Plot the locus of the equation

a2 + 2/-4a; + 4y-12=0.

The form of the equation shows at once that the curve is

not symmetrical with respect to either axis. Solving for x in

terms of y, we have

x2 -±x = l2-±y-2y2
,

or x = 2±V16-4:y-2y2
.

From which it appears that the locus is symmetrical with

respect to the line x = 2.

There will be real values of x only for those values of y which

make 16 — 4 y — 2 y
2 positive or zero. This expression vanishes

when y = 2, or — 4, and can be factored into (4 + y) (4 — 2 y).

It is evidently positive when — 4 < y < 2, and negative for all

other values of y.

Solving the given equation for y in terms of x, we have

jU + lx-x2

From which it appears that the locus is symmetrical with

respect to the line y=— 1.

The expression 14-+-4^ — x2 vanishes when x = 2 ±3V2,
and can be factored into (2 + 3V2 — x) (— 2 + 3V2 + x). It is

evidently positive when 2 — 3V2 < x < 2 + 3 V2, and negative

for all other values a;. There are then real points on the locus

only when 2 - 3V2 < x < 2 + 3 V2, and - 4 < y < 2.
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The curve is therefore symmetrical with respect to the two

lines x= 2 and y = — 1, and lies wholly within the four lines

<b=2-3V2, z = 2+3V2, y = -±, and y = 2.

Giving y the values — 4, — 3, — 2, — 1, 0, 1, and 2, we have

the following points on the locus

:

(2, -4), (2±ViO, -3), (G, -2), (-2, -2),

(2 ± 3V2, - 1), (6, 0), (- 2, 0), (2 ± VlO, 1), (2, 2).

Plotting these points and drawing a smooth curve through

them, we have a fairly clear notion of the form of the locus.

x
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19. Intercepts. — The distances from the origin to the

points where a curve cuts the axes are called the intercepts

of the curve.

One of the coordinates of such a point will always be

zero and the other will be the intercept. Hence the in-

tercepts on the X-axis can be found by substituting

y = in the equation and finding the corresponding values

of x ; the intercepts on the y-axis, by substituting x =
and finding the corresponding values of y.

20. Intersection of two curves. — When two curves in-

tersect, the coordinates of the point of intersection must

satisfy both equations. In order to find the coordinates

of such a point of intersection, it is only necessary to find

the values of x and y which will satisfy both equations, or

in other words, to solve the equations simultaneously.

21. Locus of u + kv =o and uv = o. — If all the terms

of an equation are transposed to the first member, we may
represent them by a single letter, as u or t>, and speak of

the equation as ?/ = or

v = 0. The letters u and

v are simply used as ab-

breviations for expres-

sions in x and y of any

degree. Then u = will

represent some curve, and

v = another curve. Let

us consider what will

be represented by the

equation u -h kv= 0, where Fig. 26.
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k is any constant quantity, positive or negative. Let

(xv yx ) be any point of intersection of the two curves

u — and v = 0. Its coordinates will satisfy both these

equations, and hence will satisfy the equation u + kv = 0.

The locus of u -f kv = must therefore pass through all the

points common to the two curves u = and v = 0. More-

over, it will not pass through any other point of either

curve. For the coordinates of any such point will cause

one of the expressions u or v to vanish, but not the other,

and therefore cannot satisfy the equation u -f- kv = 0.

Again, let us consider what will be represented by the

equation uv = 0. It is evident that the coordinates of

every point which cause either u or v to vanish will satisfy

this equation, and that the coordinates of no other point

can satisfy it. uv = must therefore represent the loci of

the two equations u = and v = 0, taken together. For

example, xy — represents both coordinate axes.

PROBLEMS

1. Find the intercepts of the curves whose equations are

given on page 29.

2. Find the points of intersection of the following curves

:

(a) x2
-f- if = 25 and x + y = 4.

(6) x~ + y
2 = 25 and 3x-4t/=25.

(C) ar + y
2 = 25 and x + 2 y = 10.

(d) 3.i-
9 + 4?/

2 = 24 and a2 -?/2 = 4.

(e) y
2 = 4:X and # — ?/ -f- 1 = 0.

(/) a-
9

-f 4?/
2 = 16 and 6y = x2 .

3. If the equations of the sides of a triangle are x + 7 y + 11

= 0, 3 x + ?/ — 7 = 0, and # — 3y + l = 0, find the length of

each of the medians.
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4. Which of the points (3, -1), (7, 2), (0, -2), and (8, ,3)

are on the locus of the equation 4 x — 7 y = 14.

5. Find the length of the chord of intersection of the loci

of 7? + y- = 13 and y- = 3 x 4- 3.

6. For what values of b are the two intersections of the

loci of y = 2 x + b and \f = 4 a; real and distinct ? imaginary ?

coincident ?

7. Write a single equation which will represent the two

bisectors of the angles between the axes.

8. Plot the two lines which are represented by each of the

following equations

:

(a) x2 + xy = 0. (c) 2x> 4- 5xy - 3y2 = 0.

(b) x2 -ox = -6. (d) 2if-xy + ±x-9y = -4:.



CHAPTER IV

THE STRAIGHT LINE

22. We have seen that, if we know the law of the move-

ment of a point, we can often determine the equation of

its locus. We shall now proceed to the systematic study

of a few such loci, beginning with the straight line.

The two most common ways of determining the position

of a line are to give either two points on it, or a single

point and the direction of the line. If either of these sets

of conditions is given, the line is fully determined, and we

should be able to find the algebraic relation which must be

satisfied by every point on it.

23. Line through two points.— Let the line pass through

the two points Pv (xv y^), and P2> (z
2 , y2),

and let P,

(#, y), be any point on the line. Draw the ordinates

3I
1
PV MP, and M

2
PV and the line P

X
K parallel to OX.

Then from the similarity of the two triangles P
X
LP and

Y P
1
KP

2
we have

LP KP
2..

Fig. 27.

P
X
L P

X
K

But LP = y- yx

P
X
L = x — xv

KP
2
= y2

- yv

P
1
K=x

2
-xv

34
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Substituting these values, we have

y -V\ = Vi-y\ t
1-5-1

This is then the algebraic relation between the coordi-

nates x and y of any point on the line and the constants

xv yv x
2 , and y2 , and is therefore the equation of the

line. It is called the two-point form of the equation of

the straight line.

Let the student show

that this equation cannot

be satisfied by the coor-

dinates of any point not

on the line.

The student should

here, and in all the fol-

lowing demonstrations,

assure himself that the

proof is perfectly general. Place the lines and points in

different positions, being careful to give the same letter

to corresponding points, and the demonstrations ought to

hold, letter for letter. For example, try Fig. 28 with the

above demonstration, being careful to note that

P
X
L = M

x
+ OM = OM - 0MV

LP = LM + MP =MP - ML,

P
1
K=3I

1
0-{- 0M

2
= 0M

2
- 0MV

KP, = KM, + M9PK
M

2
P

2
- M

2
K.

Equation [5] may be written in the determinate form

x % y 1

= o.
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24. Line determined by its intercepts. — If the two

given points should be, in particular, the points where the

line cuts the axes, or if, in other words, the intercepts a

and b are given, the equation can be found easily by sub-

stituting («, 0) for (xv y^) and (0, 5) for (#2 , y^) in

equation [5]. It becomes

y _ Q = b -
x — a — a

or reducing, — + ? = 1. [6]

This is called the intercept form of the equation of the

straight line.

. Let the student derive equation [6] geometrically with-

out using equation [5].

25. Oblique coordinates.— In obtaining these equations

of the straight line we have made no use of the fact that

the axes are perpendicular. The 011I3- idea used was the

similarity of triangles, which will be true in oblique as

well as rectangular coordinates. The results will hold

therefore for both systems of Cartesian coordinates.

PROBLEMS

1. Find the equation of the straight line through the points

(- 1, 5) and (6, 0).

Solution.— In applying formula [5] either point may be chosen as

Pi and the other as P2 . Here let (6, 0) be Pi and (- 1, 5) be P2 . Sub-

stituting in [5], we have as the equation of the line 5 x + 7 y = 30.

2. Find the equations of the lines through the following

points and find the intercepts of these lines on the axes

:

(a) (- 5, 4) and (S, - 1). (c) (4, 2) and (4, - 2).

(6) (0; 0) and (4, 3). (d) (3, 5) and (- 7, 5).
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3. Find the equation of the line whose intercepts are 3

and — 1.

4. Does the line joining the two points (6, 0) and (0, 4) pass

through the point (3, 2) ? the point (—4, 5) ?

5. What condition must be satisfied if the point (x
lf y{) lies

on the line joining the points (x2, y.,) and (x
3y y3) ?

6. The line joining the points (6, 2) and (7, — 3) is divided

in the ratio of 2 to 5. Find the equation of the line joining

the point (— 5, — 5) to the point of division.

7. The coordinates of the vertices of a triangle are (2, 1),

(3, —2), and (—4, — 1). Find the equation of the medians,

and show that the coordinates of the point of intersection of

any two medians satisfy the equation of the third, and that

the three medians therefore meet in a point.

8. What are the equations of the diagonals of the rectangle

whose vertices are (0, 0), (a, 0), (0, 6), and (a, b) ? Find the

point of intersection, and show that they bisect each other.

9. What system of lines is represented by the equation

yX
-+.
a o

1, if we keep a constant and allow b to vary ? if we

keep b constant and allow

a to vary ?

26. Line determined by

a point and its direction.

— If the second condi-

tion mentioned in Art.

22 be given,— a point on

the line and the direc-

tion of the line,— we can

obtain its equation as

follows

:

Let (xv y{) be the given point, and let the direction of

the line be determined by the angle <y which it makes with

Fig. 29.
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the positive direction of the X-axis measured in the posi-

tive direction of rotation. In the triangle KP
X
P,

KP
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28. Oblique coordinates. — In deriving equations [7]

and [8] we have made use of the fact that the axes are

rectangular. A separate demonstration is therefore

necessary in oblique coordinates.

Using the same construction and notation as in Art. 26,

it is again true that P
X
K = x — x

x
and KP = y — yv But

the triangle KP
X
P is

not right-angled, and in

order to find the ratio

between its sides we

must make use of the

law of the sines. Let

the positive direction of

P
X
P be taken along the

terminal line of the an-

gle 7. Then the angle

formed by the positive

direction of P
X
P with the positive direction of P

X
K is

always 7, and the angle formed by the positive direction

of ifi^ with the positive direction of P
X
P is (60—7).

Fig. 30.

Hence,
K?- = y=Jh = .

si°7
(See Art. 7)P

x
K x — x

x
sin (o> — 7)

or
sni (« — 7)

[9]

If the coordinates of the given point are (0, b), [9]

reduces to

y= . ^ ^ +&- [10]
Sill (ft) - y)

L J

When ay = 90°, these two forms will be seen to reduce

to the equations [7] and [8].
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PROBLEMS

1. What is the equation of the line which passes through

the point (—6, 6) and makes an angle of 60° with the X-axis ?

2. Find the equation of a straight line if

(a) b = 6 and y = 30°,

(b) b = -5 and y = tan" 1

f

,

(c) b = S, y = 30°, and <o = 00°.

3. Find the equation of the straight line through the inter-

section of the lines 2 x — 3 y = 4 and 3 x — y = o, and making

an angle of 120° with the X-axis.

4. What is the slope of the line whose intercept, on the

Y"-axis is 5 and which passes through the point (3, — 1) ?

5. What system of lines is represented by the equation

y = lx + b if we keep I constant and allow b to vary ? if we

keep b constant and allow I to vary ?

29. General equation of the first degree.— We have

found that the equation of every straight line given by

any of the preceding conditions is of. the first degree

in both rectangular and oblique coordinates. It now

remains to consider whether an equation of the^iirst

degree can represent any other locus.

Every such equation is included in the general form

where A, B, and C can have any values, positive, negative,

or zero.

If B^O, we can divide the equation by it, and trans-

posing, we have
A C

u B B
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A C
where —— and —- can liave any value. But the slope

form of the equation of a line has been shown to be

y = lx + b. (Arts. 27, 28)

Since 1= tan 7 or in oblique coordinates
sm ^—

L sin(ft>-7)J
and b is the intercept on the !F-axis, they can have any

real value whatever.

AVe have then reduced the general equation

Ax + By + O=
to the slope form of the equation of a line, and it must

represent that line for which

1 = and b = —

If B
B B

0, the general equation reduces at once to

a
X = —

which we know to be the equation of a line parallel to the

y-axis.

We have then shown

that the general equation

of the first degree always

represents a straight line.

Another method of

showing that the locus x_

of any equation of the

first degree is a straight

line is as follows :

FlG
* •

Let (xv ?/1), (xT y2), and (#3 , y%) be the coordinates of

any three points on the locus of the equation

Az + By + C=Q,
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These coordinates must satisfy the equation. Substi

tuting, we have

(1) Ax
1 + By1 + C=Q,

(2) Ax
2 + By

2 + C=0,

(3) ^%+%8 + (7=0.

Subtracting (2) from (1), we have

-A(x
2
- x

x)
= B(y

2
-

yi),

xn — x, B
or i -

y\-y<i A

Subtracting (3) from (2), we have

- A (x
z
- z2) = B (j/3

- y2),

or
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ABC
Hence, —1 = —1= -J, and the equations differ only by aA

2
-E>2

* 2

constant factor.

The converse is easily seen to be true : if tiro equation*

of the first degree differ only by a constant factor^ they rep-

resent the same straight line,

PROBLEMS

1. Find the values of a, b, and I for the line whose equation

is 2<c + 3y-12 = 0.

Solution. — The intercepts are found, as explained in Art. 19, to be

a — 6 and b = 4. The slope I may be found by changing the equation

into the slope form, as explained in Art. 29. Transposing and dividing

by 3, we have y = — § x + 4. Hence I = — §.

2. Find the values of a, b, and I for the lines represented

by the following equations, and construct the lines first by the

aid of the intercepts a and b, then by the aid of the slope I,

and the intercept b :

(a) x — ±y — 10 = 0, (c) 4# + # = 0,

(5) 3a_5 <?/+ 7 = o, (d) 2^ + 8 = 0.

3. Determine the values of A, B, and C, if the line

Ax + By -f- C = passes through the points (3, 0) and (2, — 1).

Solution'.— Since the line is to pass through these points, their coordi-

nates must satisfy its equation. By substitution, we obtain

3.4+ (7 = 0,

and 2A-B+C=Q,
two equations in A, B, and C, from which the values of two of them may
be obtained in terms of the third. Solving, we have C = — 3 A and

B = — A. The equation of the line is therefore

Ax - Ay - 3 A = 0,

cr x - y - 3 = 0.
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4. Find by the same method the equations of the lines

through the points

(a) (3, 1) and (-5,0),

(b) (0,-2) and (3,4),

(c) (0, 0) and (5, - 3).

5. Show that if two lines are parallel, their slopes must be

equal ; if perpendicular, the slope of one must be the negative

reciprocal of the slope of the other, [tan y = — cot(y + 90°).]

6. Select pairs of the following equations which represent

(a) parallel lines, (6) perpendicular lines

:

2x-3y = 6, x = -$y + 6,

4 x — 6 y = 7,

12aj + 8y = ll.

31. The angle which one line makes with another. —We
have defined the angle between two directed lines as the

angle between their positive directions. But when the

lines are given by their equations and no convention is

used to fix their posi-

tive directions, it is con-

venient to define the an-

gle which one line makes

with another as the angle

formed by going from the

second line to the first in

the positive direction of

rotation. This definition

always gives a definite

angle.

In Fig. 32, the angle which AB makes with MJV is

Z NOB, or its equal Z MOA ; the angle which MN makes

with AB is Z BOM or Z. AON. Let it be required to
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find the angle which AB makes with MN. Let the equa-

tions of AB and MN be given in the form

y = hx + hv

and y = l
2
x + b

2
.

From the figure # = y {
— y2 ,

and tan g = tan (7. -7.) =
tan 7, - tan 7, ,

1 + tan y x
tan y2

Hence tan0 = ^f-^-. [11, a]

If the equations are given in the form

A
1
x + B

1
y-{-C

1
= 0,

and A
2
x + i?

2 ?/ -f C2
= 0,

it was shown in Art. 29 that

*i = - -g
1 and h=~jf'

PROBLEMS

1. Find the angle which the line 5x — 3y = 10 makes with

the line x -f- 2 ?/ = 7.

Solution. — The angle is to be measured from the last line, and that

line therefore takes the place of MN in Fig. 32. Hence h = f, and

J.2
— — £. Substituting these values in [11, a],

tan = i-±i = 13,1—5 '

1 6

or 6 = tan" 1 13.

If the question is reversed, and we wish to find the angle which the

line x + 2 y = 7 makes with the line 5 x — 3 ?/ = 10, we must take h = — \
and h = f . Then

tan 6 = ~ ^ ~ I = _ 13
1-1

or = tan- 1 (- 13).
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2. Find the angle which the line 3x-\-oy — l = makes

with the line 11 a? — 2y + 3 = 0.

3. Find the interior angles of the quadrilateral whose ver-

tices are (3, 3), (5, - 3), (4, - 5), and (- 3, 0).

4. The equations of the sides of a triangle are #+8 y+ 11 = 0,

2 x — 3 y + 1 = 0, and 4 x + 5 ?/ + 6 = 0. Find one exterior

angle of the triangle and the two opposite interior angles.

32. Perpendicular and parallel lines. — If two lines are

parallel, tan 6 = 0, and therefore l
x
— l2

= 0, or

This appears also from the figure, since if two lines are

parallel, they must make the same angle with the X-axis.

If two lines are perpendicular, tan 6 = oo, and therefore

1 + lj
2
= 0, or

This appears also from the figure, since if the lines are

perpendicular,

7i = 72 - |-i and tan 7i = - cot 72< or ?
i
= ~ y'

If now we wish to obtain the equation of a line parallel

to a given line Ax + By + C= 0, the only condition which

must be satisfied is that it shall have the same slope.

This can be accomplished by writing the equation

Ax + By = &, where h is arbitrary. This will include all

lines parallel to the given line, for by varying k it can

be made to represent any one of the indefinite number

of such lines. The value of k in any particular problem

must be determined by some other condition. For

example, if it is to pass through a given point, k can be
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determined from the fact that the coordinates of this

point must satisfy the equation.

Again, if we wish to obtain the equation of a line per-

pendicular to the line Ax + By + C= 0, we must write

A B
an equation such that —l = -. Such an equation is

JDj A
Bx — Ay = k. This again contains all the lines perpen-

dicular to the given line. If the line is to pass through

a given point, k can be determined as before by the fact

that the coordinates of this point must satisfy the

equation.

PROBLEMS

1. Write the equations of the lines through (3, 4) which

are respectively parallel and perpendicular to the line

3 x — 5 y = 10.

Solution. — The equation of the line which is parallel will be of the

form 3 x — 5 y = k. Substituting (3, 4), we have k = — 11, and the equa-

tion of the parallel line is 3 x — by = — 11.

The equation of the perpendicular line will be of the form bx+ Sy= k.

Substituting (3, 4), k = 27, and the equation of the perpendicular line is

bx-\- Sy = 21.

2. Find the equation of the line through (5, 8) perpendicular

to 3 x + 7 y = 21.

3. In the triangle whose vertices are (0, 0), (6, 0), and (4, 8),

find (a) the equations of its sides
;
(b) the equations of perpen-

diculars from the vertices upon the opposite sides
;

(c) the

equations of the perpendicular bisectors of the sides
;

(d) the

equations of the medians.

4. Show that in the above problem the perpendiculars from

the vertices, the perpendicular bisectors, and the medians each

meet in a point.

5. Show that the points obtained in problem 4 lie on a line,

and obtain the ratio of the distances between them.

6. Show that in any triangle the medians meet in a point.
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Note. — Choose the axes of coordinates so that the origin is at one

vertex and the X-axis is coincident with one side of the triangle. The
coordinates of the vertices of the triangle may then be taken as (0, 0),

(a, 0), and (&, c).

7. Show that in any triangle the perpendiculars from the

vertices on the opposite sides meet in a point.

8. Show that in any triangle the perpendicular bisectors of

the sides meet in a point.

9. Show that the three points obtained in problems 6, 7,

and 8 lie on a line, and find the ratio of their distances from

each other.

10. Show that the line joining the middle points of two

sides of a triangle is parallel to the third side and equal to one

half of it.

11. Show that the diagonals of a square or rhombus are

perpendicular to each other.

33. Line making a given angle with a given line. — In

plane geometry it is usual to speak of two lines through

any given point and making a given angle with a given

line. But if we con-

sider the direction of

the angle, there can be

only one such line. For

if MN is the given line,

Pj the given point, and

(f>
the given angle, there

can be only a single line

which passes through P
x

and makes the angle <j>

with MN, where </> is measured in the positive direction of

rotation.
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Let ES be this line. Let the inclination of MN be yv
and of BS be 7. Then from [11, a],

tan d> = —L
.

* 1 + «,
Solving for 7, we have

, _ /
1
4- tan

(f)

1 — Zj tan (/>

The equation of BS will therefore be

If MS is parallel to J£ZV", tan
<f>
= 0, and the equation

becomes

If BS is perpendicular to ilifiV, tan
<f>
= go, and the

equation becomes

l
\

These formulas might be used to write the equations of

parallels and perpendiculars in place of the methods given

in the previous section.

PROBLEMS

1. Find the equation of the line through the origin which

makes an angle of 60° with the line x — 3 y = 10.

2. Find the equation of the line through (1, 4) which makes

an angle of 135° with the line joining (1, 4) with the intersec-

tion of 5 x — 2 y = 17 and 3 x + 4 y = 5.

34. Normal form of the equation of a straight line. —
If we have given the length of the perpendicular or nor-

mal from the origin on a line, together with the angle
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which this normal makes with the positive direction of the

.X-axis, the line is completely determined. The perpen-

dicular distance is represented by jt?, and the angle by a.

Through draw a line

making an angle a with

OX. If any distance Off

is laid off on this line

either in the positive di-

rection (along the termi-

nal line of the angle), or

in the negative direction,

and through H a line

AB, perpendicular to Off,

is drawn, that line is com-

pletely determined. It

is convenient to restrict a to positive values from 0° to

360°. In case we wish to speak of a complete set of parallel

lines without changing «, it will be necessary to allow p to

be either positive or negative, but every line in the plane

can be determined by positive values of both a and p, and

this will always be understood unless otherwise stated.

We have seen that the equation of the line AB in terms

of its intercepts is - + %- = 1.
a o

line

Fig. 34.

But for all positions of the

V P

and

-=cos«,
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This is called the normal form of the equation of a

straight line.

Let the student show that the equation of a straight

line in oblique coordinates in terms of a and p is

x cos a -f- y cos (o> — a) = p.

Note. — The equations - = cos a and - = sin a are true for all cases,
a b '

since if p is positive, a and cos a have the same sign, and also b and sin a.

While if p is negative, they have the opposite signs.

PROBLEMS

1. What is the equation of the straight line in which

(a) a = 60°, and p = 5 ? (d) a = 225°, and p = ?

(6) a = 120°, and j> = 5 ? (e) a= 45°, u> = 60°, and p = 1 ?

(c) «= 330°, and p= -5 ? (/) a= - 60°, <o= 135°, and p= 6 ?

35. Reduction of the general equation to the normal

form.— Since the general equation of the first degree

Ax H- By -f O = always represents a straight line, it

ought to be possible to reduce it to any one of the stand-

ard forms. We have already shown how to reduce it to

the slope form, and that

I = — — , and b = — — •

B B

The following method enables us to reduce it to the

normal form. If the two equations Ax + By + C=
and x cos a + y sin a — p = are to represent the same

line, it was shown in Art. 30 that they can differ only by

a constant factor. Let k be the quantity by which it is
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necessary to multiply Ax + By -f- C= to make it iden-

tical with x cos a -f- y sin a — p = 0.

Then Ar^L = cos «, &Z? = sin «, and kO= — p.

Squaring the first two and adding, we have

k2A2 + k2B* = cos2 a + sin2 a = 1.

Hence & = ± — . and the equation
VA2 + B2

A v + B
y + C =0 [16]

±VA* + B* ±y/A* + B* ±y/A* + Bf

is then identical with x cos a + y sin a —p = O!

If a and jt? are so chosen that ^> shall always be positive,

then in any numerical case that sign must be given to the

C
radical which will make . a negative number

± VA2 + B2

to correspond to — p. Hence the sign of the radical mast

be chosen opposite to the sign of O. This will always be

understood unless the contrary is stated.

PROBLEMS

1. Reduce the equation 3 x -f- 4 y = 10 to the normal form.

Solution. — Here ± VA2 + B2 = ± 5, and since C is negative, we must

divide by + 5, and the equation becomes f x + $ y = 2.

Hence cos a = f, sin a = f, and p = 2. The line can be easily plotted.

What would have been the values of a and p, if — 5 had been chosen ?

2. Reduce the following equations to the normal form and

plot the lines which they represent

:

(a) lx-3y = 25, (d) aj + 4 = 0,

(6) ».+ 2y = -8, (e) 5y-3 = 0,

(c) 2x-2/ = 0, (/) aj-3y + 4 = 0.
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3. What system of lines is represented by the equation

x cos a -f y sin a — p = 0, if we keep a constant and allow p to

vary ? If we keep j> constant and allow a to vary ?

36. Distance of a point from a line. — Let it be required

to find the distance of the point P
1
from the line AB when

the equation of AB is given in the form

x cos a + y sin a — p = 0.

Draw MJST through P
l
parallel to AB and continue the

perpendicular OH to meet it at K. The equation of MN
will be

x cos a + y sin a — p 1
= 0,

where p x
may be either positive or negative. For, as the

value of a is fixed and as MN can be any line parallel to

AB, it may be on the opposite side of the origin from AB,
and in this case p x

will be negative. (See Art. 34.)

Since P
x
lies on MN, its coordinates (xv y-^) must satisfy

the equation of MN,
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Hence x
x
cos a + yx

sin a = pv

Now whereverP
x
may lie, RP

X
=HK= OK- 011= px

- p.

Hence BPi = a?icosa + yisma-p, [17, a]

If the equation is given in the form Ax + By +(7=0,
it is necessary first to reduce it to the normal form and

then substitute x
x
for x and y x

for y.

Hence MP, = ±VJFTW
• [IT, 8]

TAe radical must be given the sign opposite to that of C.

It appears from the way RP
X
has been chosen that the

result will be positive when the point and the origin are on

opposite sides of the line ; negative, when they are on the

same side of the line.

PROBLEMS

1. Find the distance of the point (3, 5) from the line

2 X -3y + 6 = Q.

2. Find the distance of the origin from the line

3aj +4y-5 = 0.

3. Find the area of the triangle whose vertices are (0, 3),

(4, 0), and (5, 5) by calculating the length of one side and the

distance of the opposite vertex from that side.

4. Given the line Sx — 4y = 10 and the point (—3,5).

Find the equation of the line through the point perpendicular

to the given line ; find the point of intersection of this perpen-

dicular with the given line ; find the distance of the given point

from this point of intersection.

5. Use the method indicated above to find the distance from

the point (a^, yx) to the line Ax + By + C = 0,
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6. Find the distance bet ween the two parallel lines

7 x — 8 y = 15, and 7 x — 8 y -— 40.

Which line is nearer the origin?

7. Show that the point (3, 1) is on the same side of the line

x -+- 4 ?/ = 8 as the origin.

37. Oblique coordinates. — It will be noticed that sec-

tions 31-36 have reference to rectangular coordinates

only. The corresponding formulas in oblique coordinates

are rather complicated and seldom used. We shall simply

state what they are without obtaining them.

To reduce Ax -f By + '= to the normal form,

% cos a -+- y cos (to — a)= p, multiply the equation by

sin (o

^A2 + B*-2ABcosc0

The angle between two lines whose equations in oblique

coordinates are A
l
x+B

ly + C
1
=0 and A

2
x -fB2y + C

2
=

is

tan 6 = (A
X
B

2 -

A

2
B,~) sin <*

A
X
A

2 H- BX
B

2
— {A

1
B

2 -f- A^B^) cos <o

The condition for parallelism is the same as in rectangu-

A A
lar coordinates, —1 = -—2

. But the condition for perpen-

v i
l 2

dicularity is

A
X
A

2 + BXB2
- (A

X
B

2 + A2
B{) cos co = 0.

If, then, only parallel lines enter into a problem, oblique

coordinates may be used with advantage ; but if it is

necessary to use perpendicular lines, oblique coordinates

should be avoided.
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The equation of a line perpendicular to Ax+ By+ C=0

(B — A cos a)) x — (A — B cos co)y = k.

The distance of a point from a line is

x
x
cos a + y 1

cos (ft) — «) — ^?,

Q4.3?! + By
A
4- (?) sin ft)

or
VA2 + .B2 - 2ABcosa>

A'
/0

38. Bisector of the angle between two lines. — Let the

equations of the two lines AB and MN be

(1) Ax
x +^ + Cj = 0,

and

(2) ^ + ## + C
2
= 0,

and let (V, ?/) be any

point on the bisector of

the angle between them.

Since every point in the

bisector of an angle is

equally distant from the

sides, HP' and KP 1 are numerically equal. But

KP i = aj + By + c
1 and Hpt = Ay + By +^

±Vyl
1

2 +^
1

2 ' ±Vvl
2
2 + ^2

2

Hence the relation which must exist between a;' and y
in order that P' may be a point on the bisector is

Y'

Fig. 37.

Aix' + Bip' +Ci _ A2x' + B2y' + C2
(

± \/^ia + JSi2 ± V.42
2T#? [18]

If the signs of the denominators have been chosen in

accordance with the rule given in Art. 36, the positive

siern in the second member indicates that P' and the
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origin are either on the same side or on opposite sides

of each of the lines, and that therefore the equation repre-

sents the bisector of the angle in which the origin lies;

while if the minus sign is chosen, it represents the bisector

of the angle in which the origin does not lie.

If either C
x
or C

2
is zero, one or both of the lines pass

through the origin, and this test cannot be used.

PROBLEMS

1. Find the equations of the bisectors of the angles between

the two lines 3 x — 4 y = 10 and 4 x -f 3 y — 7. Show that the

two bisectors are perpendicular.

2. Show that the bisectors of any pair of supplementary

adjacent angles are perpendicular to each other, using the two

lines in Art. 38.

3. The equations of the sides of a triangle are 3a? = 4y,

4 x = — 3 y, and y = 6. Show that the bisectors of the interior

angles meet in a point. Show also that the bisector of the

interior angle at one vertex and the two bisectors of the

exterior angles at the other vertices meet in a point.

39. Lines through the intersection of two given lines. —
If the equations of two given lines are

(1) Ap + Btf+0^%
and (2) A

2
x + B$ -+-

2
= 0,

and we form the equation

(3) A
x
x + B

xy +CX
+ k(A

2
x^ + B2y + C

2)
= 0,

where k can have any value, it will represent for every

value of k some line through the intersection of .the first

two. For the coordinates of the point of intersection

of the loci of (1) and (2), which must satisfy both of
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these equations, must satisfy (3) also. Moreover, it

represents any line through their intersection, for k

can always be chosen so as to make the locus of (3)

pass through any given point. It is only necessary to

substitute the coordinates of the point in the equation

and determine k so that the equation is satisfied. In

this wa}r the equation of the line through the intersection

of two lines and any other point may be obtained without

actually finding the coordinates of the point of intersection.

If any other condition sufficient to determine the line

is given (for example, its slope), k can always be deter-

mined so that the line will satisfy the condition.

PROBLEMS

1

.

What is the equation of the line through the intersection

of 2 x + 3 y - 4 = and x + 2 y - 5 = 0, and the point (2, 3) ?

Solution. — The equation of any line through the intersection of the

given lines is

2x + 3y-4 + k(x + 2y- 5)= 0.

Since the line is to pass through the point (2, 3), these coordinates

must satisfy the equation.

Hence k = — 3,

Substituting this value, we have

x + 3y-ll=0,
as the equation desired.

2. What is the equation of the line passing through the

origin and the intersection of the lines x + oy — 8 = and

3. In the triangle whose sides are

5x-6y = 16, 4z + 5?/=20, and x + 2y = 0,

find the lines through the vertices and parallel to the opposite

sides without finding the coordinates of the vertices.
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4. Find the equation of a line through the intersection of

the lines 2x— 3y + l = and x+ 5 y -f 6 = 0, which is per-

pendicular to the first of these lines.

5. Find the equation of the line through the intersection

of the lines y = 7 x — 4 and y = — 2 x + 5, which makes an

angle of 60° with the X-axis.

6. Find the equation of the line through the intersection

of the lines 5y — 2x — 10 = and y-f4a?— 3 = 0, and also

through the intersection of the lines 10 y -f- x -f- 21 = and
3y-5x -fl = 0.

40. Area of a triangle. — If the coordinates of the

vertices of a triangle are given, the area of the triangle

may be found in the fol-

lowing manner

:

The area is equal to

the numerical value of

\HP^P
X
PV

Fig. 38.

0.

^
2)

2 + (^l-y2)
2

-

JIP
S

is the distance of —
P

3
from the line P

X
PT

The equation ofP
X
P

2
is

2 - Vi)x ~ 2 - x\)y - *iy* + xtfx

Hence HP = ^2
~ yi)x*~

^

2
~ X^y*

~

X^2+ X^K

and the area = \ [(y2-y{)xz
~(x%-x{)yz-

x

xy2
+a^yj,

= K («i - ^2)2/3 + (^2-^3)2/1 + (a?3 -a?i)2/2]. [19]

The form of the result is easily remembered since the

subscripts follow the cyclic order. The sign of the result
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may be disregarded, since it is only the numerical value

of the area we wish.

Formula [19] may be written in the determinate form

A = i \

PROBLEMS

1. Find the area of the triangle whose vertices are (1, — 3),

(-4, 3), and (5,5).

2. Show that the area of any quadrilateral is

[Oi?/2 - a^/O + (x2y3
- x3y2) + (x&4

- x^) + (xAyx
- x

ly,)\

3. What is the area of the quadrilateral the equations of

whose sides are x = 0, x+y=Q, x+2y=5, and 6x+y-\-58=0?

4. Obtain the formula for the area of a triangle by drop-

ping perpendiculars from each of the three vertices upon the

X-axis, and considering the trapezoids formed.

GENERAL PROBLEMS

1. Show that the triangle whose vertices are (3, 2),

(— 1, —3), and (—6, 1) is a right triangle.

2. An isosceles right triangle is constructed with the hy-

potenuse on the line x -f 4 y = 10, and the vertex of the right

angle at the point (3, 4). Find the coordinates of the other

vertices.

3. Find the equation of the line through the point (5, fi)

which forms with the axes a triangle whose area is 80. Four

solutions.

4. Find the equation of a line through the point (—1, 5)

such that the given point bisects that portion of the line be-

tween the axes.

5. Find the equation of a line through the point (3, — 6)

such that the given point divides that portion of the line be-

tween the axes in the ratio 3 : — 1.
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6. Find the equation of the line passing through the

point (8, 2) such that the portion of it included between the

lines x — 2y = 6 and x + y = 5 shall be bisected at the given

point.

7. On the line y — 5 = a segment is laid off, having

for the abscissas of its extremities 2 and 5, and upon this

segment an equilateral triangle is constructed. What are the

coordinates of the third vertex?

8. Find the point on the line 4?/ — 5x + 28 = which is

equidistant from the points (1, 5) and (7, — 3).

9. Find the points which are equidistant from the points

(4, — 3) and (7, 1), and at a distance 3 from the line 15 x -f- 8 y
= 120.

10. The coordinates of the vertices of a triangle are (5, 2),

(4, — 7), and (3, 7). The side joining the first two points is

ilivided in the ratio 4 : 7, and through this point lines are drawn
parallel to the other sides. Find their points of intersection

with the other sides.

11. On each side of the triangle in problem 10, find the

point which is equidistant from the other sides of the triangle.

12. The equations of the sides of a complete quadrilateral

are 2y+ 7 x=l4, x—2y=l, x+ky=— 4, and 7 x—ky=— 28.

Show that the middle points of the three diagonals lie on a

straight line.

13. Show that the perpendiculars let fall from any point of

the line 2 x + 11 y = 5 upon the two lines 24 x + 7 y = 20 and

4 x — 3 y = 2 are equal to each other.

14. Perpendiculars are dropped from the point (0, 4) to the

sides of a -triangle whose vertices are (1, 5), (5, — 1), and

(6, 0). Show that the feet of these perpendiculars lie on a line.

15. Find the equation of a line through the intersection of

the lines 2 x — 7 y = 3 and x + 3 y = 8, which is perpendicular

to the line joining the origin to the intersection of these lin»s
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16. Show that the four points (2, 1), (5, 4), (4, 7), and (1, 4)

are the vertices of a parallelogram.

17. Find the area of the triangle formed bylthe three lines

y = mxx + (?!, y = m<pc -f- c2, and x = 0.

18. What is the value of a if the three lines 3x + y — 2 = 0,

ax + 2 y — 3 = 0, and 2x — y — 3 = meet in a point ?

19. Lines are drawn through the vertices of a triangle

parallel to the opposite sides of the triangle, and the intersec-

tions of these lines are joined to the opposite vertices of the

triangle. Show that the joining lines meet in a point.

20. Prove analytically that the bisector of the interior angle

of a triangle divides the opposite side into segments propor-

tional to the adjacent sides of the triangle.

21. Prove that all straight lines, for which - + -=-, pass
a b 5

through a fixed point, and find the coordinates of that point.



CHAPTER V

POLAR COORDINATES

Fig. 39.

41. In Art. 9, the polar system of coordinates was men-

tioned. Let be a fixed point and OA a fixed line through

it. Then the position of any point

P is fixed if the angle A OP and

the distance OP are given. The

distance OP is called the radius

vector of the point P and is rep-

resented by p. Positive values

of p are laid off from along the

terminal line of the angle, negative values in the opposite

direction. The angle A OP is called the vectorial angle

and is represented by 6. The usual convention in regard

to angles will be followed,— the anti-clockwise direction

of rotation being con-

,p sidered positive. These

two quantities are called

the polar coordinates of

the point, and are written

(/o, 0). The line OA is

called the initial line, and

the point 0, the origin

or pole.

It appears that, while any pair of coordinates determine

a single point, there will be an indefinite number of pairs

of coordinates which will give the same point ; for there

63
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will be an indefinite number of angles which have the

same terminal line. If 6 is restricted to\values between

— 2 7r and 2 7r, any point may be determined by four sets

of coordinates.

If the polar coordinates of the point P in Fig. 40

are (/?, 0), the same point may also be determined by

(_p, + 180°), (-p, (9-180°), and 0,0-360°).

PROBLEMS

1. Plot the following points: (% j\ (6, f *), ($, -|\

(-10, -f,), (-2,1), (4,0), (-5, 0), (0,tt).

2. Write polar coordinates of each point in problem 1, in

which p and are both positive.

3. Show that the distance between two points whose polar

coordinates are (p1} X) and (p2, 2) is Vpi+pf—2plp2 cos(01
—

6

2).

42. Equation of a locus. — If the law according to which

a point moves is stated, it may often be translated into an

equation connecting p and 0. For example, if a point is to

remain at a distance a from the origin, the value of p for

every such point is a, while 6 can vary at pleasure. The

polar coordinate equation of a circle about the origin is,

therefore, p = a. The equation of any line through the

origin is evidently = k, for on such lines the value of p

is entirely unrestricted, while is fixed.

Again, as in Cartesian coordinates, an equation connect-

ing p and 6 restricts the points which satisfy it to a series

of positions which lie on some curve. The curve which

contains all the points whose coordinates satisfy an equa-

tion and no other points is called the locus of the equation,

and the equation is spoken of as the equation of the locus.
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PROBLEMS

1. What is the polar coordinate equation of a line which

makes an angle of — with the initial line and which passes
4

through the origin?

2. What is the equation of aline parallel to the initial line

and three units above it ?

3. Show that the equation of any line in terms of a and p is

p cos (0 — «) = p.

4. Show that the equation of a circle of radius r about the

point (pj, Ox) is p
2 + p

2 — 2 px p cos (0 — X) = j-2
.

5. A circle of radius r has its centre on the initial line and

passes through the origin ; show that its equation is

p = 2 r cos 6.

43. Plotting in polar coordinates. — The method of

finding the curve which is the locus of any equation in

polar coordinates is similar to that employed in rectangu-

lar coordinates. Sometimes the law of formation may be

determined directly from the equation, but it is usually

necessary to find various points on the curve by giving

values to one of the coordinates and finding the corre-

sponding values of the other ; these points are then

plotted and a smooth curve drawn through them.

Coordinate paper may be made by drawing circles about

the origin at a unit's distance from each other, and lines

through the origin, making any convenient angle with

each other. On this the position of the points may be

fixed accurately without measurement.

For convenience in plotting we insert a table of the

natural values of the trigonometric functions for every 5°

from 0° to 90°.
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44. Natural values of the sines, cosines, tangents, and

cotangents.
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(_ 4, 140°), etc. If we let vary from 180° to 360°, p will

pass through the same changes in value as before, and the

same points will be located. The curve has the form shown

Fig. 41.

in Fig. 41. The two tangents to the curve at the origin

make angles of 45° and 135° with the initial line, and are

therefore perpendicular to each other. The curve is called the

lemniscate.

3. Plot the locus of each of the following equations:

(a) p sin = a.

(b) P (l-cos0) = 2a.

(c) p = 2a(l-cos0).

(d) P
2 = a2 sin2 0.

(e) p cos = a cos 2 0.

(/) p = a cos 3 6.

(g) p = a sin 4 6.

(li) p
2 cos = a2 sin 3 0.

(0

0)

<*)

(m)

00

(0)

p
2 = cr cos 3 0.

p = a(sec0 + tan 0).

P = a(cos20 + sm26).

p = 2 a tan • sin 0.

p = a(l+2cos0).

p = aO.

a
P =
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CHAPTER VI

TRANSFORMATION OF COORDINATES

45. When the equation of a curve, referred to any sys-

tem of coordinates, is known, it is often desirable to obtain

the equation of the same curve, referred to some other

system. If we know its equation in Cartesian coordinates,

we may wish to obtain its equation in polar coordinates,

or the reverse. Or, knowing its Cartesian equation re-

ferred to a certain set of axes, we may wish to obtain its

equation referred to some other set of axes, in order to

obtain the simplest, or most useful form of its equation.

This can be done, if we can obtain the relation connecting

the coordinates of any point on the curve in the first sys-

tem of coordinates and the coordinates of the same point

in the second system.

We can transform from any Cartesian system to any

other by first changing

the origin without chang-

ing the direction of the

axes, and then revolving

., each of the axes through

some angle.

46. Transformation to

axes parallel to the original

axes.— Let OX and OY
Fig. 42 be any given pair of rec-

68

X'

M
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tangular axes, and let 0'X' and 0' Y' be a new pair, par-

allel to the old, and having for their origin the j)oint Q'
r

whose coordinates with respect to the original axes are x

and y . Let P be any point, and let its coordinates in

the first system be (x, y) and in the second (V, y').

From the figure, 031= OA + AM,

and MP = AO' + NP.

But 0M= x, OA = x , A3f= x\

MP = y, AO' = y , NP = y'.

Substituting these values, we find

« = «* + *,
and y =

2/ + y' L J

as the equations connecting the old and new coordinates,

and these equations will be found to hold wherever the

point P is placed in the plane.

If we have an equation, which expresses the law of

movement of a point by giving the relation between its

coordinates referred to the first pair of axes, the substi-

tution of these values for x and y will give the relation

which must exist between x' and y
1

', the coordinates of

the point referred to the second pair of axes, in order

that the point may move in the same path. It must be

understood that x' and y' are variables, like x and y.

The primes are only used to distinguish the coordinates

used in the two systems, and may be dropped after the

substitution has been made.

In the above demonstration no use has been made of the

fact that the axes are rectangular. The same formulas

will therefore hold for transforming from any set of

oblique axes to any parallel set.
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PROBLEMS

1. If the equation of a line referred to any given system of

Cartesian coordinates is 3 x + 4 y = 10, what is its equation

referred to a parallel system, the coordinates of whose origin,

referred to the original axes, are (—2, 5) ?

The formulas connecting the old coordinates of any point

with the new are 9 , ,

y = 5 + y'.

Substituting these in the equation of the line, we have

3(-2-f*') + 4(5 + v/') = 10,

or reducing and dropping primes,

3 x -f 4 y = — 4.

Construct the two sets of axes and plot the locus of each of

the equations, showing that the same line will be obtained in

both cases.

2. The equation of a line is Ax — 3y = S. Find the equa-

tion of the same line, referred to a set of axes, parallel to the

old, through the point (2, — 5) as origin.

Plot the locus with respect to both axes.

47. Transformation

from one set of rectangu-

lar axes to another, hav-

ing the same origin and

making an angle 8 with

the first set. — Let OX
and Y be the given set

of rectangular axes, and

OX' and OY' another

set of rectangular axes

making an angle 6 with the first set. Let the coordinates

of P with respect to the original axes be (#, y), and with

Fig. 43.
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respect to the new axes (V, //'). Draw its ordinates, MP
and NP, and the lines KN and LN parallel to OX and

OY. The angle at P is evidently equal to 6.

OM=x, MP = y, ON=x\ NP = i/'.

Then 0M= OL-KN.
But OL = OxYeos = x' cos ft

and KN= NP sin = y' sin (9.

Hence as = a*' cos - 2/' sin 0. [21, a]

In like manner

MP = LN+ KP
= OiVsin<9 4-iV

TPcos0

or y = a?' sin 9 + 2/' cos 0. [21, ft]

48. Transformation in which both the position of the

origin and the direction of the axes are changed. — If it be

required to change the position of the origin to the point

(x , y ), and at the same time to revolve the axes through

the angle 0, the two operations may be performed sepa-

rately, or we may combine the two previous formulas into

the one set,
, . , , M

05 = OCo 4- oc' cos 0-2/' Sill 0,

r221
y = 2/o + x' sin + y' cos 0.

*--"* J

PROBLEMS

1. Transform the equation 3 x + 7y = 8 to a new set of

axes parallel to the old set, and having the point (4, — 2)

as origin.

2. Show that the equation x2 + y
2 = a2

,
referred to rectan-

gular axes, will be unchanged by revolving the axes through

any angle, keeping the origin fixed.

3. Transform the equation x2 — y
2 = 10, referred to rectan

gular axes, to axes bisecting the angle between the old axes.
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4. Through what angle must the coordinate axes be turned,

if in its new position the X-axis goes through the point (5, 7) ?

5. Given the equation xr + y
2

-4- 8 x — ky = 0. To- what

point must the origin be changed to cause the terms in x and y
to disappear ?

6. Given the equation 2y2 + 2 xy + r + 4 = 0, referred to

rectangular axes. Through what angle must the axes be

turned to cause the term in xy to disappear ?

Fig. 44.
%

Let the student show that

49. Transformation from

any Cartesian system to any

other Cartesian system, hav-

ing the same origin. — In

Fig. 44, OX and OY are

the original axes, and co is

the angle between them ;

OX' and OY' are the new

axes; OX' and OY' make

angles 6 and cj> with OX.

sin w
r/
sinO-4>)

3

sinw

sin w

y'Sin*.
[23]

sin «

What do these formulas becotne when co — 90° ? When
co = 90° and $ = 6?

50. Degree of an equation not changed by transformation

of coordinates. — The degree of an equation cannot be

changed by transformation from one system of Cartesian

coordinates to any other. For we have seen that in each

case we replace x and y by expressions of the first degree
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in x f and y\ and that therefore the degree of the equation

cannot be raised. Neither can it be lowered, for it would

then be necessary to raise the degree in transforming

back to the original axes, since we must obtain the origi-

nal equation.

51. Transformation from rectangular to polar coordi-

nates. — Let it be required to find the equations of

transformation for transforming from a given set of rec-

tangular axes, OX and OY, to a polar system having

as its origin and OX as

its initial line.

The relations between

^, y, />, and 6 are seen at

once from the triangle

OMP; for sin0 = f^,
, n OM U±^

and cos u — —— , or

<JC = p cos e,

y = psin 9.

[24]

M -X

Fig. 45.

The formulas for transformation from polar to rectan-

gular coordinates are easily seen from the same triangle

to be

,*,.
[25]

8 = tan

It is not, however, generally necessary to use this

second set of formulas, as the transformation from polar

to rectangular coordinates can usually be made more

easily by the aid of the first set.
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PROBLEMS

1. Obtain the polar equation of the curve whose rectangular

equation is x2
-f- y

2 = r
2

.

Substituting x = p cos 6, and y = p sin 6, we have

9 9/li 9*9/1 9
p- cos- v + p- sin- = r,

or p
2 = r

2
, or p = r.

This is then the polar equation of the curve whose rectangu-

lar equation is xr + y- = r
2
.

2. Obtain the polar equations of the curves whose rectangu-

lar equations are

(a) a2x2
-\-b

2

y
2 = a2

b
2
,

(e) (x2 + iff = ±a2x2

y
2

,

(b) y
2 = 2 mx, (/) a:

2 + f + ** = 0,

(c) x2 -y2 = a2
, (g) y

2 =
7>

*_
,

(cf) (ar + ?/
2

)
2 = o 2

(.r
3 — ?/

2

), (/t) x2 + y
2 + 2 ax = aVx^ + tf.

3. Obtain the rectangular equation of the curve whose polar

equation is p = a cos 0.

We might make this transformation by using the two for-

mulas [25], but it will be found to be easier first to multiply

both members of the equation by p, giving

p- = ap cos 6.

Using the formulas x = p cos and p
2 = x2 + y

2
, this reduces

at once to x2 + y
2 = ax.

This is then the rectangular equation of the curve whose

polar equation is p = a cos 0.

4. Obtain the rectangular equations of the curves whose

polar equations are

(a) p = a sin 6, (/) p — a sin 2 6,

(b) p = a + ——, (g) p
2 cos2 = a2

,

(c) p = a (1 + cos 0), (li) P = a (cos 20 + sin 2 (9),

(d) p
2 = a2 cos 2 6, (i) p = a (1 + cos 2 0),

(e) p = a — b cos 0, (,;') p = 2 a tan • sin 0.



CHAPTER VII

THE CIRCLE

52. Equation. — The locus of points equidistant from

any fixed point is called a circle. Hence, to find the

equation of a circle, it

is necessary to express

the algebraic relation be-

tween the coordinates of

such points.

If the origin is taken

at the centre of the circle,

the equation is evidently

z2 + *2
, where

Fig. 46.

the radius of the circle.

For the distance of any

point (#, y) from the origin is Vx2 + y
2

.

If the centre be taken at any point C, whose coordinates

are (a, /3), the distance CP from the centre to any variable

point P is w(x — a) 2 + (y — /3)
2

. Hence the equation of

the circle is

If the centre is on the -X"-axis, /3 = 0,

reduces to
(x — «)

2 + y
2 = r2

;

[26]

and the equation

if on the P"-axis, a = 0, and the equation reduces to

x2 + iy - /3)
2 = r2 .

75
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Problem.— Find the equation of a circle, (a) tangent to

both axes
;

(b) passing through the origin and having its centre

on the X-axis.

53. General form of the equation. — Expanding [26],

we have
x2 + y

i _ 2 ax - 2 /3y + a2 + /3
2 - r2 = 0.

a and ft can have any value, positive or negative, and r

can have any positive value. Hence the equation is in

the general form of

#2 + 2/
2 + Zto + Ey + F=0, [27]

where D = -2a, U= - 2 j3, and F = a2 + /S2 - r2 . And

if an equation is to represent a circle, it must be in the

form of [27]. It will be noted that this is not the most

general form of the equation of the second degree. For

tins IS

Ax2 + Bxy + C>2 + Bx + Fy + F= 0.

When the two equations are compared, it will be seen

that the term in xy is wanting in [27], and that the coeffi-

cients of x2 and y
2 are equal, or

B=0, and A = C.

Hence both these conditions must be satisfied in order

that the general equation of the second degree may repre-

sent a circle.

But will it always represent a circle when these condi-

tions are satisfied ? It will be necessary to determine

whether there are always values of a, /3, and r which cor-

respond to all values of D, F, and F. Solving the equa-

tions given above for «, /3, and r, we have

-B n - B
/3 = —^, and r = l^B2 + F2 -±F.
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Hence there will always be real values for a and /3 for

all values of D, K and F. But if D2 + F 2 - 4 F< 0, the

value of r is imaginary, and there will be no point in the

plane which will satisfy the equation. But since it has

the form of the equation of a circle, it is said to represent

an imaginary circle.

Again, if D2 + F2 — 4 F= 0, r = 0, and the equation

represents the point («, /3) onl}r
. It is called a null circle.

We see then that we shall have a real circle only in

case D2 + F 2 — 4jP> 0. But no equation in the form

of [27] can represent any other locus. Hence it is said

to represent a circle,

real, if I)2 + F2 - 4 F > ;

null, if D2 + F2 -4F=Q
;

imaginary, if D2 + F2 - 4 F < 0.

54. Circle through three points. — We know from plane

geometry that three points not in a straight line determine

a circle. It ought therefore to be possible to find the

equation of the circle passing through three such points,

(xv 3/j), (x
2 , #2 ),

and
3 , y3). This may be done by

determining 2), F, and F of the general equation [27]

so that these coordinates will satisfy that equation.

Substituting these coordinates successively in equation

[27], we have

x 2 + y
2 + DXl + Eyi + F = Q,

x 2 + y
2 + Dx

2 + Fy
2 + F=0,

From these three equations it is always possible to

determine D, F, and F (if the three points do not lie on a
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line), and their values substituted in the general equation

[27] will give the equation of the circle through the

points.

PROBLEMS

1. What is the equation of a circle, if

(«) its centre is at the point (—2, 3), and r = G,

(b) its centre is at the point (— 3, —4), and r = 5,

(c) its centre is at the point (5, 3), and it is tangent to

the line 3 a,- — 2y = 10,

(d) its radius is 10, and it is tangent to the line 4 x+oy= 70

at the point (10, 10),

(e) it passes through the three points (4, 0), (— 2, 5), (0, —3),

(/) it circumscribes the triangle, the equations of whose

sides are x -+- 2 y — 5 = 0, 2 x + y — 7 = 0, and x — y -f 1 = 0,

(r/) it has the line joining the points (3, 4) and (— 2, 0) as a

diameter,

(h) it passes through the points (5, — 3) and (0, G) and has

its centre on the line 2 x — 3 y = 6,

(i) it passes through the points (5, —3) and (0, 6) and r=6?

2. Find the coordinates of the centre and the radius of each

of the following circles :

(a) x2 + y
2 + $x-6y-10 = 0,

(6) x2 + y~ + 8 x — 6 y -f- 50 = 0,

(c) ar + ?/
2 + 6?/-16 = 0,

(d) 3ar + 3?/
2 -7a:-8 = 0.

3. Show that if the equations of two circles differ only in

the constant term, they represent concentric circles.

4. Show that the equation of a circle in oblique coordinates

is in the form of

xr + 2 cos o) • xy + if + Dx + Ey + F=0.

What conditions must be satisfied by the general equation

of the second degree that it may represent a circle when referred

to any particular set of oblique coordinates ?
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5. Show that the equation of any circle through the points

of intersection of two given circles,

*2 + //'"' + Dp 4- E& + F, = 0,

and x2
-f }r + D.2x + E,y + F, = 0,

can be expressed in the form

x- + if + Dxx + E& + F, + % (.r + //

2 + XV? + Eojy + F2) = 0.

What is the locus of this equation when k= — 1 ?

6. Obtain the equation of the common chord of the two

circles,

x- + y- + 6x-y = 0,

and ar + y- — 4 y + 10 = 0,

and show that it is perpendicular to their line of centres.

7. Prove that the common chord of any pair of intersecting

circles is perpendicular to their line of centres.

8. What would be the statement of problems 5 and 7, if the

two circles do not intersect ?

55. Tangent. — A tangent to any curve is denned as

follows : Let a secant through a fixed point P
1
of the

curve intersect the curve again at P
2

. Let P
2 move

along the curve toward Pv The secant will revolve

about Pv and as P
2
approaches P

x
the secant will ap-

proach a certain limiting position. This line, which is

the limiting position approached by the secant as P
2

ap-

proaches Pv is called the tangent to the curve at Pv
The method of finding the equation of the tangent to

any curve of the second degree is the same for all. The

demonstration should, therefore, be studied carefully in

the case of the circle where the work is the simplest.
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According to the definition we must first write the

equation of a secant through two points, and then find

the limiting form which this equation approaches when

the two points approach coincidence.

Let (xv y{) and (x
1 + \ y^ + &) be the coordinates

of P
x
and P2, adjacent points on the circle x2 + y

2 = r2 .

The equation of the line through these two points is

(by [5])

y — y\ = k.

x — x
x

h

If we let P
2
approach Pv h and k will approach zero,

and the limit of the second member will be indeterminate.

This would be neces-

sary since we have

made no use of the

fact that P
2
must ap-

proach P
x

along the

circle. Unless P
2
ap-

proaches P
x

along

some curve, P
X
P

2
will

have no limiting posi-

tion. It will there-

fore be necessary to

determine in the case of each curve the value of the

k
expression - In the case of the circle about the origin,

ri

the coordinates of the points P
x
and P

2
must satisfy the

equation x2 + y
2 = r2 .

We have, therefore, (1) rr
x

2 + y^ = r2
,

Fig. 47.

and (2) x 2 + 2hx
1
+ h 2 + y

2 + 2 ky
l
+ k2 = r2 .
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Subtracting (1) from (2), we have

2 hx
x
+ A2 + 2 ky

t + k2 = 0,

k
or, transposing and solving for -,

ill

h_ 2 x
x + h

t

h~ 2 yi + k

Substituting in the former equation of the secant P
X
PV

we see that y _ ,fi _ 2x^ + h

x — x
x 2y1

-\-k

is another form of its equation in the circle x2
-f y

2 = r2 .

If now we let h and k decrease, the limit of the second

member is no longer indeterminate, but becomes K

The equation of the tangent is therefore *

V-Vx = \
x - x

x yl

which by the aid of (1) reduces to

scias + y\V = r2
. [28]

Let the student show by the same method that the

equation of the tangent to the circle

a* + yZ + Dx + IJy + F=0

is xix + 2/12/ +?(<*> + ^) +f (V + 2/i)+ F = 0. [29]

56. Normal. — The normal at any point of a curve is

the line through the point, perpendicular to the tangent at

the point. Its equation can be obtained by first writing

the equation of the tangent at the point, and then that of

a perpendicular to it through the point of contact.

The equation of the normal to the circle x2 + y
2 = r2, at

the point (x
xy^)^ is seen to be yx

x — x
xy = 0.
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PROBLEMS

1. Obtain the equations of the tangents and normals to the

following circles, and show that in each case the normal passes

through the centre of the circle

:

(a) x2 + f = 25, at (3, 4),

(6) x> -jly + 2*- 4y + 5 = 0, at (- 1, 2),

(c) x2 + y
2 — 14 x — 4 ?/ — 5 = 0, at the points whose abscissas

are 10.

(d) x2
-f- y

2 — 6 a* — 14 ?/ — 3 = 0, at the points whose abscissas

are 9.

2. Find the angle in which the two circles x2 + ?/
2 — 4 x = 1

and a*
2 + y

2 — 2 ?/ = 9 intersect.

Note. — The angle between two curves is the angle between their

tangents at the point of intersection.

3. Show that the following circles cut each other orthogo-

nally (or intersect at right angles)

:

tf + y
2 - 8a? + 4y+ 7 = 0,

x2 + y
2 - 10 x - 6 y + 21 = 0.

4. Show that the length of the tangent from the point

(xd Vi) to the circle x2 + y
2

-\- Dx + Ey -+- F= is

VV + 2/f + Bxx + Jg?y, + if.

Note. — Use the right triangle having for its legs the tangent and the

radius to the point of contact. The length of the hypotenuse is the dis-

tance from the point (a?i, y{) to the centre of the circle.

5. What is the length of the tangent from the point

(- 2, 6) to the circle x2 + y
2 + 2y = 5?

57. Tangents from an exterior point.— The equation of

the tangent which we have obtained can be applied only

when we know the coordinates of the point of contact
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( xv !/{). There are other conditions which will determine

the tangent. Consider first the tangent from a given

exterior point. The method of procedure may here be

best shown by an illustration.

Let it be required to find the equation of a tangent

from the point (5, 10) to the circle whose equation is

.^ + i/
2 = 1 oo.

Let the coordinates of the unknown point of contact

be (xv y^). Then the equation of the tangent will be

x
x
x + y xy = 100. Now this tangent is to pass through

the point (5, 10), and therefore these coordinates must

satisfy its equation, or

5^ + 10^ = 100.

This is one equation connecting x
1
and yv and the fact

that the point (xv y x } lies on the circle gives another,

^2 + ^2 = 100.

The algebraic solution of these equations gives

2-1 = 0,

10,
or

^=10, ^ = 6.

There are, therefore, as we should expect, two points of

contact of tangents from the given exterior point, viz. : (0, 10)

and (8, 6). Substituting these

values in the equation of the

tangent, we have

and

10 # = 100,

8 x + 6 y = 100,

as the equations of the tangents

through the point (5, 10).
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PROBLEMS

1. Obtain the equations of the tangents to the following

circles

:

(a) x- + y~ = 49, from (6, 8).

(b) x2 + y
2 -±x-22 = 0, from (- 2, 6).

(c) x2 + f + 5 y = 25, from (7, - 1).

2. Obtain in each of the problems the equation of the line

joining the points of contact of the two tangents.

3. Obtain in this way the equation of the chord of contact

of tangents from the exterior point (x
x , y{) to the circle

x2 + y
2 = r2

.

58. Tangent in terms of its slope. — When the slope of

the tangent is given, we might proceed as in Art. 57, for

we could obtain one equation by placing the slope of the

X-i

tangent, -, equal to the given slope. Solving this

with xf + y^ = 100, we could find x
x
and y x

just as before.

But another method is more important. The equation of

any line which has the given slope I may be written in the

form
7 , ,

y = lx + b.

It is then only necessary to find what value of b will

make it a tangent to the circle x2 + y
2 = r2 . Every line

of the system will cut the circle in two points, real,

imaginary, or coincident. If the points are coincident,

the line is a tangent. Starting the solution of y = lx + b

and x2 + y
2 = r2 , we have at once by substitution

(l + /2) aa + 2 lbx + b2 - 7^ =

for determining the abscissas of the points of inter-

section.
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This Avill in general have two distinct roots, but (by

Art ' 8)if
(2 lb)* =4(1 + P)(J2 -r»),

these roots are equal. This equation therefore gives the

value of £, which makes the line a tangent. Solving for

b, we have

b = ± rvr+?.

There are then two tangents to the circle which have

any given slope. Their equations are

y=lx± rVTTW. [30]

PROBLEMS

1. Obtain the equations of the tangents to the circle

x2 + y
2 = 49, which are (a) parallel to the line 3 x — 2 y = 10

;

(b) perpendicular to the same line.

2. Obtain the equations of the tangents to the circle

x2
-|- if -f. 6 x = 0, which are perpendicular to the line

x-3y.+ 4 = 0.

3. Determine the relation between a, b, and r if the line

-
' + -- = 1 is tangent to the circle ar + y

2 = r2 .

a b

4. Determine the value of k if the line 3x — Ay — k is

tangent to the circle x2
-+- y

2 — 8 x + 12 y — 44 = 0.

5. Find the condition which must be satisfied if the line

Ax + By + C = is tangent to the circle

x* + y
2 + Dx + Ey + F=0.

59. Chord of contact. — We have seen that, from any

point P
x
outside the circle x2 + y'z = r2 , two tangents can

be drawn to the circle. Let it be, required to find the
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equation of the chord P
2
P

3
through the two points of

contact of these tangents.

The equations of the tangents P
2
P

X
and P

3Px are

(by [28])

and x
3
x + y$ = r2.

Both these equations

X must be satisfied by

On Vi)-

Hence x
2
x

x -f y2yx
= r2,

and x
3
x

t + y3y 1
= r2 .

But these are just the

conditions which must be

satisfied if the points P
2
and P

3
are on the line

ocioc + y\\f = r2
. [31]

This is, therefore, the equation of the line P
2
P

3
which

is the chord of contact.

It Avill be noted that this equation has the same form as

the equation of the tangent. It represents the tangent if

the point P
x

is on the circle ; but if P
x

is outside the circle,

it is the equation of the chord of contact.

Let the student show that the equation of the chord of

contact of tangents from an exterior point to the circle

is 0. [32]

PROBLEMS

1. Find the length of the chord of contact of tangents from

the point (3, 4) to the circle $ + y
2 = 4.
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2. Find the equation of the circle which touches the line

2x — ?/ = 10 at the point (3, —4) and passes through the

point (5, 1).

3. Find the equation of the circle which passes through the

point (1, 1) and also through the intersections of the circles

'<•'+ .'/"— •> a;+4y=10, and x2+y2=5x. [See prob. 5, page 79.]

4. Find the equations of the three common chords of the

three circles in problem 1, page 84, and show that they inter-

sect in a point.

5. Find the equation of the circle inscribed in the triangle

whose sides are represented by the equations

4 x -f- 3 y — 10, x — 5 y = 15, and 3 x — 4 y = 8.

6. Find the area of the triangle formed by the axes of

coordinates and the tangent to the circle x2 + y
2 = r

2 at the

point (i\, yx).

7. Construct the circles x2 + y- — x -+- 2 y, and x2 + y
2 = 2x.

Find the equations of their line of centres, their common chord,

and points of intersection. Show that their common chord is

perpendicular to their line of centres. At what angles do the

circles intersect ?

8. Show that in any circle a line perpendicular to the tan-

gent at the point of contact passes through the centre.

9. Show that an angle inscribed in a semicircle is a right

angle.

10. Show that the perpendicular from any point of a circle

on a chord is a mean proportional between the perpendiculars

from the same point on the tangents at the extremities of the

chord.

11. Show that the chord of contact of tangents from an

exterior point is perpendicular to the line joining that point

to the centre of the circle.



CHAPTER VIII

LOCI

60. We have seen that when a property common to all

points of a locus is given, the translation of this property

into an algebraic equation between the coordinates of the

points gives the equation of the locus ; for this is just what

is meant by the equation of a locus,— an equation which is

satisfied by the coordinates of every point which satisfies

the given conditions, and by no other points. The actual

Avork then always consists in this translation of a condition

expressed in language into a relation between the coordinates

expressed in an algebraic equation. Any method which

enables us to do this may be employed. The simple

methods have already been exemplified in the previous

chapters. In these cases the law may be expressed as

an equation in x and y at once by the aid only of a sim-

ple geometrical construction. There are many problems

which may be solved in this way.

PROBLEMS

1 . The sum of the squares of the distances of a moving

point from two fixed points is constant. Find the locus

of the moving point.

Let the .X-axis pass through the fixed points, with the

origin midway between them. Then («, 0) and (— a, 0)

will represent the points. Let (x, y) be any position of

88
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tlic moving point. Then placing the sum of the squares

of the two distances equal to a constant, Jc, we have

+ [(.* + a)
2 + </*] = &.

This is then the equation which

must be satisfied by the coordi-

nates of all points fulfilling the

given conditions, and is there-

fore the equation of the locus

desired. Reducing, we have

A"
B(-a,o) A (a, o)

? + y* = v.

Y r

Fig. 50.

This is the equation of a circle about the origin. This

property of a circle might be used to define it as well as

the more familiar one. Most curves may be defined in

many ways ; for any property which is sufficient to

determine the curve completely may be used as its

definition.

2. The difference of the squares of the distances of a

moving point from two fixed points is constant. Show

that its locus is a line perpendicular to the line through

the two fixed points.

3. The distances of a moving point from two fixed

points are equal. Find the locus.

4. The distances of a moving point from two fixed

points are in the ratio of m to n. Show that the locus is

a circle. Find the centre and radius, and show that, if

m = w, the locus becomes the same as that obtained in

the previous problem.
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5. Find the locus of the centres of circles of radius r,

which pass through a fixed point (xv yx).

6. Find the locus of the centres of circles which pass

through two fixed points.

7. Find the locus of the centres of circles which touch

two given lines.

8. The sum of the squares of the distances of a moving

point from the sides of a square is constant. Find the

locus.

9. Find the locus of a point, the square of whose dis-

tance from a fixed point is m times its distance from a

fixed line.

Note. — Take the fixed line as the Y-axis, and let the X-axis pass

through the fixed point.

10. The sum of the squares of the distances of a moving

point from the four corners of a fixed square is constant.

Show that the locus is a circle whose centre is at the centre

of the square.

11. Given the base of a triangle and the distance from

one end of the base to the middle point of the opposite

side, find the locus of the vertex.

12. The sum of the squares of the perpendiculars let

fall from a moving point on the sides of an equilateral

triangle is constant. Find its locus.

13. The sum of the squares of the distances of a mov-

ing point from r fixed points is constant. Show that its

locus is a circle.

14. A line of given length moves so that its ends shall

always touch two lines at right angles to each other

Find the locus of the middle point.
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15. The three points (9, ilf, iV* lie on a line. Find the

locus of the point P, when ZOPM=ZMPN.
16. One side of a triangle and the angle opposite are

fixed. Find the locus of the vertex of the angle.

61. It is, however, often impossible to obtain easily

by direct geometrical methods the relation between the

coordinates. We may then find it necessary to introduce

certain other auxiliary variables, which we call param-

eters. These must be so chosen that it is possible to

express in equations the relation between the coordinates,

x and y, of the moving point and these parameters. If

we have introduced n parameters and can find n + 1

independent equations, it is always possible to combine

them in such a way as to eliminate all the n parameters

and leave a single equation connecting the coordinates of

the moving point. This resulting equation must be the

equation of the locus. The difficulty of the elimination

evidently increases with the number of parameters used.

When more than two or three are used, it becomes very

laborious. Care should therefore be taken to choose that

method which requires the introduction of the fewest

parameters.

The following problems illustrate some of the methods.

17. A straight line is drawn parallel to the base of

a triangle and its extremities are joined transversely to

those of the base. Find the locus of the intersection

of the joining lines.

Choose the base of the triangle as the JT-axis and a

perpendicular to this side through the opposite vertex
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as the Y-axis. Let DE be any position of the line par-

allel to the base. We are to find the locus of j?;

, the

point of intersection of the lines

b (o,b) CE and AD. Let the coordinates

of A be (a, 0); of B, (0, b); of

x C, O, 0); and of P', (V, /).
A (a,0) Any particular values of x' and y

evidently depend upon the posi-

Y tion of DE, and this depends upon

a single parameter, its distance

from OA. Let the equation of DE in any particular

position be y = k. We need the equations of the lines

CE and AD. It is therefore necessary to determine

the coordinates of D and E. The equation of AB is

- 4- ^ = 1, and by solving this equation with the equa-
a b

tion y = &, the coordinates of i? are easily found to be

, k). In like manner the coordinates of D are
b

found to be f -^—-—s k
J.

The equations of J.D and CE are

&&e + [(# — e)^ + 6'^]# — kab,

and &£># + [(c — a)6 + «&]# = kcb.

Now since these two lines both pass through P\ its

coordinates (V, y' ) must satisfy both equations, or

kbx' + [(« — c)6 + e&],/ = &a&,

and kbx' 4- [0? — &)& + ak~\y' = kcb.

Here then are two equations between x\ y\ and k.

The elimination of k will give a single equation in x'
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and y' which must be the equation of the locus of P'.

For it will be the algebraic expression of the relation

which must exist between the coordinates of P\ that

it may be 'the intersection of the two diagonals. The

elimination is here easily performed. For, adding, we

have
2 kbx r + k(a + e)y' = kb(a + c).

Dividing by k and dropping the primes, we have as

the equation of the locus,

2 bx + (a + c*)y = b(a + c').

Let the student find from the conditions of the problem

two points through which the curve must pass, and test

the result obtained above by substituting in it the coor-

dinates of these points.

18. Find the locus of the intersection of the diagonals

of rectangles inscribed in a given triangle.

19. On the sides of a given triangle measure off equal

distances from the extremities of the base, and at these

points erect perpendiculars to the sides. Find the locus

of the point of intersection of these perpendiculars.

20. The ends of the hypotenuse of a given right tri-

angle touch the coordinate axes. Find the locus of the

vertex of the right angle.

21. Parallel lines are drawn with their ends on the

two axes. Find the locus of the point which divides

them in the ratio of m : n.

22. One side and the opposite angle of a triangle are

fixed. Find the locus of the centre of the inscribed

circle.



94 ANALYTIC GEOMETRY [Ch. VIII, § 61

23. Each radius of the circle, x2 -f y
2 = r2 , is extended

a distance equal to the ordinate of its extremity. Find

the locus of its terminal point.

24. In a rectangle, ABCD, let EF and GcH be drawn

parallel respectively to AB and BO. Find the locus of

the intersection of HF and EG-.

25. In the previous problem let ABCD be any paral-

lelogram and solve with the aid of oblique coordinates.

26. Find the locus of the middle point of a system of

parallel chords of the circle x2
-f y

2 — r2 .

Let y = Ix + b be the equation of any one of the parallel

chords ; let (xv y^) and (z
2 , y2 )

be the coordinates of

the points where it cuts the circle, and (x\ y') the coor-

dinates of the point midway between these points. It

is required to find an equation connecting x' and y' which

may contain I but must not contain b.

Starting the solution of the two equations, y = lx + b

and x2 -h y
2 = r2, we have

(1 + l
2)x2 + 2lbx + b2 -r2 = 0,

the two roots of which must be x
1
and x

2
.

But x' = ^±^2-

Hence (1) x' = - -^~- (See Art. 8.)

Since the point (V, y'} lies on the line y = Ix + b, its

•coordinates must satisfy that equation, or

(2) y
f = Ix' + b.
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We have then two equations in a/, y\ Z, and Z>, from

which b must be eliminated. From (2) b= y' — lx'. Sub-

stituting this value in (1) and

reducing, we have as the equa-

tion of the desired locus

x -f ly = 0.

Since this equation is of the

first degree and contains no

constant term, it represents

a straight line through the

centre of the circle, and con-

forms to the ordinary definition of a diameter,

evidently perpendicular to the parallel chords.

It is

27. Find the Iogus of the middle points of chords which

pass through a fixed point (xv yx ) of the circle x2 + y
2 = r2 .

Let P\ (V, ?/ ), be the middle point of any chord through

Pv (xv y{). Let (xv y^) be the coordinates of P
2 , the

other extremity of the chord. From the formulas for

bisecting a line [4], we have

(1) x' = x, 4- x,

and (2) y' = U±±l2.

And, since P
2

is a point on

the circle,

(3) +

Here are three equations

between the variables x f and y\ the constants xv yv and r,

and the parameters x
2
and yv It is therefore possible
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to eliminate the parameters and obtain a single equation

in terms of the variables and constants only. Solving (1)

and (2) for x
2
and yv we have

x
2
= 2 x' - xv and y2

= 2 y
f -, yv

Substituting these values in (3), we have

4 a/» + 4 y' 2 - 4 a^' - 4 yt
y' + z

x
2 + yx

2 = r2 .

But a^2 + j/j
2 = r2, and, dropping primes, the equation

reduces to

x2 -{-y2 -x
1
x-y

1y = 0.

This is the equation of the locus of P' . It is a circle on

0P
1
as a diameter, since its centre is at the point I -J, 2l

J,

and it passes through the origin.

When, as in the above problem, we have to determine

the locus of a point situated on a moving line which

revolves about some fixed point in it, polar coordinates

are often convenient. The fixed point is taken as the

pole, and the distance from it to any position of the

Ŷ moving point becomes
"A the radius vector.

The following prob-

lem will illustrate the

method

:

28. Find the locus of

the middle points of

chords of the circle,

;r r\

which pass through a fixed point, (xv t^), not on the

circle.
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Le1 J\ be a fixed point through which the secant P
X
P

S

passes, and let it be required to find the locus of _P', the

middle point of P2Ps- Transform the equation of the

circle to polar coordinates, with P
1
as origin. The equa-

tions of transformation are (by [20] and [24]),

x = X-, 4- p cos 6,

(1)
1

y = Vi + p sin 0,

and the equation of the circle becomes

(2) p
2 + 2 (x

x
cos 6 + yx

sin 6) p + x
x
2 + y

2 - r2 = 0.

Let p' and 6' be the polar coordinates of P' . The vec-

torial angles of P
2

, P'', and P
3
are evidently the same,

and if 6' be substituted for 6 in (2), the solution of the

resulting equation,

p
2 + 2 Oj cos 0' + y.x

sin 6") p + ^2 + yx
2 - r2 = 0,

for ^ will give p2
and p3 , the two values of p for the points

P
2
and P

3
.

But / =^,
and p., + p3

= — 2 (a^ cos r + ^ sin 0'). (See Art. 8.)

ence p' = — (x
x
cos 6' + y 1

sin0').

This equation expresses the relation which must exist

between the polar coordinates of P'', and, dropping primes,

we have as the polar equation of the locus, referred to P
x

as origin,
p = — x

x
cos 6 — y x

sin 6.

The equations for transforming back to rectangular

coordinates, obtained from (1), are

p cos 6 = x — xv

and p sin 6 = y — yr
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From these we see that

If the polar equation of the loeus is multiplied by p,

and these values substituted, it becomes

(x - x
xy + (y- 2/j)

2 = - x
x
x + x 2 - y xy + y

2
,

or x2 + y
2 — x

x
x — y xy = 0.

This is the rectangular equation of the locus referred to

the original origin, and is seen to represent a circle on

OP
1
as diameter.

29. Solve problem 27 by means of polar coordinates,

and problem 28 by means of rectangular coordinates.

30. Find the locus of the points which divide in the

ratio m : n chords through a fixed point (xv y-^) of the

circle x2 + y
2 = r2 .

31. Lines through a fixed point P
1

cut the circle

x2 + y
2 = r2 in the points P

2
and P

g
. Find the locus of a

point P of this line, if

P p = ^ -Pl-**2 X ™1™3
,

1 " P
l
P

i + Pl
P

i

32. Chords through a fixed point of a circle are extended

their own length. Find the locus of their extremity.

33. Lines are drawn from a fixed point Pv meeting a

fixed circle in P
2

. On P
X
P

2
a point P is taken so that

P
X
P x P

X
P

2
= k2

. Find the locus of P.

34. Lines are drawn from a fixed point Pv meeting

a fixed line in P2
. Find the locus of the point which

divides P
X
P

2
in the ratio m : n.
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35. Lines are drawn from a fixed point Pv meeting a

fixed line in Pv Find the locus of a point P on these

lines if P
X
P x P

Y
P2

= P.

36. Find the locus of points from which tangents to

two given fixed circles are equal. (See problem 4, page

82.) Show that the locus is a line perpendicular to the

line joining the centres of the two circles.



CHAPTER IX

M

CONIC SECTIONS

62. Definition and equation. — If a point moves so that

the numerical ratio of its distance from a fixed point to its

distance from a fixed line

remains constant^ its locus

is called a conic.

Let the fixed line be

taken as the Z"-axis, and

X a perpendicular through

the fixed point F as the

X-axis. Let the perpen-

dicular distance OF of

the fixed point from the

fixed line be represented by m. Let P be any position

of the moving point. Then Ave are to find the equation

of the locus of P when
FP
MP

F

Fig. 55.

G) (any constant) = e.

But FP = V(x - m) 2+ y\ and MP == x.

Then (1) becomes —^ ) ~r V _
e<f

or

or

x2 — 2 mx + m2
-f- y

2 — e
2x2

,

(1 - e-)x2 - 2 mx + y- + m- = 0.

100

[33]
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This is then the general equation of a/ conic. The form

which it takes in any particular case depends upon the

values given to the constants, m and e.

The fixed line OM is called the directrix of the conic,

and the fixed point F, the focus. The value of the con-

stant ratio e is called the eccentricity. The line perpen-

dicular to the directrix through the focus is called the

transverse or principal axis of the conic. The points where

the transverse axis cuts the conic are the vertices.

63. Parabola. e = l.

When e = 1, equation [33] reduces to

7/
2 — 2 mx + m2 = 0.

This curve has but one vertex, which is evidently midway

between and F. For when y = 0, x = — . The equa-

tion will be reduced to a simpler form, if we transform to

this point as origin. The equations of transformation are

(by [20])

x = x +-9> and y = y

'

Substituting these values, the equation becomes

y2 = 2 moc. [34]

From this equation we see that the curve passes through

the origin; that it is symmetrical with respect to the

X-axis ; that it is real only to the right of the y-axis

;

and that as x increases, y increases, — at first more

rapidly than x, until x = —, then more and more slowly.

It has, therefore, the form shown in Fig. 56,
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But, for the study of the distant points, polar coordinates

are better adapted. Transforming to polar coordinates

with as origin, equa-

tion [34] becomes

_ 2 m cos 6
p ~

sin 2 e
'

"When 6 = 0, p is infinite,

and the curve, therefore,

does not cut the .X-axis

a second time. But if

we give to 6 any finite

value, however small, p

will have a finite value,

which will be very large

for small values of 0, and will decrease as 6 increases,

until for 6 = —
, p — 0. We see, then, that every line

through except the X-ax's cuts the curve a second tune, a

fact which does not appear from the rectangular form of

the equation. Yet the discussion of that form showed

that the curve constantly recedes from the X-axis. It can

be shown by the aid of the equation of the tangent that

the curve approaches parallelism with the X-axis.

This particular species of conic is called the parabola.

We have already defined the line iLCVas the directrix ;

the point F as the focus ; OX as the principal axis ; and

as the vertex of the curve. We saw that

Fig. 56.

DO \DF \m.

The coordinates of the focus, referred to as origin, are

therefore f — ,

771
The equation of the directrix h x— — —

,
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The line LI! through 1\ perpendicular to the -3T-axis

and terminated by the curve, is called the latus rectum.

The abscissa of 11 is seen to be — , and by substituting this

value for x in the equation of the parabola, its ordinate is

found to be m. The length of the latus rectum is there-

fore 2 m.

PROBLEMS

1. "What is the equation of the parabola having its vertex

at the origin, and its focus (a) on the X-axis, at a distance —

to the left of the origin
;

(b) on the I'-axis, above the origin

;

(c) on the I"-axis, below the origin ?

2. What is the equation of the parabola if the focus is at

the origin and the vertex at a distance — to the left of the

origin ?

3. What is the equation of the parabola, if its vertex is at

the point («, ft) and its axis is parallel to the X-axis ?

4. What is the equation of the parabola which has its ver-

tex at the origin and passes through the points (3, — 4) and

(-3, -4)?

5. Obtain the equation of the directrix, the coordinates of

the focus, and the length of the latus rectum in the parabola

64. Central conies. e^l.

We see from the form of the equation of a conic,

(1 - e2)x2 - 2 mx + y
2 + m2 = 0, [33]

that it always represents a curve symmetrical with respect

to the .X-axis. When e = l, we have seen that there is

but one value of x for each value of y. But when e =^= 1,

there will be, in general, two numerically unequal values
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of x for any given value of y. The curve is therefore

not symmetrical with respect to the Y"-axis. But it will

be shown to be symmetrical with respect to a line parallel

to that axis. Transform

the equation to a new ori-

gin midway between the

points where the curve

—«=

—

X cuts the X-axis. The

Z-axis will then be found

to be an axis of symmetry.

Placing y = in [33],

we have
Fig. 57.

(1 — e
2)x2 — 2 mx + m2 = 0.

The two solutions of this equation will give the inter-

cepts, OA and 0A f

, on the X-axis. Let these he denoted

by x
1
and x

2
. But we wish to know 00 (=#), being

the middle point of A'A.

Hence
- x

x
+ x^

But we know that the sum of the roots of a quadratic

is , where a and b are the coefficients of x2 and x
a

respectively. (Art. 8.)

Hence x
x
+ x

2
=
1-e'

, and x = 9/1

The equations for transforming from to C as origin

will then be (by [20])

x — x' +
m

-, and y = y'
'.
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Substituting in [33], it becomes

^ 1 + l-*2+ (l-,2
J)

2
J

+ y'2 - 2 w*
(
x' 4- r-^ ) + m2 =

Reducing and dropping primes,

Q.-W + 9
2 _ e1m 1

Dividing by
,-
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cepts on the P"-axis, ± aVl — e
2
, be represented by ± b,

equation [35] becomes

5+5- 1 - ^
But since we wish to Avork with equations having only

real coefficients, b cannot represent the same expression

when e > 1, for Vl — e2 would be imaginary. We then

let ± aVe2— 1 = ± b' , and equation [35] becomes

%-&-*• P"]

The b used in the first case is the actual intercept.

In the second case b' is the real coefficient of the imagi-

nary intercept, and
b2 = - b'\

We see then that there are three distinct forms which

the locus may take. If e = 1, the conic has been called a

parabola ; if e < 1, it is called an ellipse ; and if e > 1, an

hyperbola. The ellipse and hyperbola are called central

conies to distinguish them from the non-central conic, the

parabola. They may be treated together from the single

equation [35], or from their separate equations.

Let the student show that, if the directrix is taken

as the X-axis, and a perpendicular to it through the

focus as the J^-axis, the simplest equation of the central

conies is —

—

— + '^-==1. What is its form for the
«2(1 — e

l
) a 2,

ellipse ? hyperbola ?

65. Ellipse. e<l.

If, in Art. 64, we had solved the equation

(l-e2)x2 -2mx-\-m 2 ^0,
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we would have found for the intercepts on the X-axis,

x, =—, and X% =—
When e < 1, both these intercepts are positive, and there-

fore both A and A' lie to the right of the directrix OY.

One intercept, xv is evi-

dently less than m, and

therefore one point of

intersection is between

and F'. Since (9(7= -

-, 0C>0F\ and the

O ,A ,F'

Fig.

1-e2

points must take the po-

sitions indicated on the

figure.

We have shown that, when e < 1, the equation of the

conic referred to the new axes (see Fig. 58) is

^ + #1=1
a2 b* '

[36]

From the form of this equation we see that the curve is

symmetrical with respect to both axes, and hence to their

intersection ; that it cuts the X-axis at the points

(± a, 0), and the F-axis at (0, ± b) ; that the values of x

are real only for values of y from — b to + b ; and that

the values of y are real only for values of x from — a to

-f a. A more careful plotting of the points will show

that it has the form shown in Fig. 59.

The line D'lP has been called the directrix, and the

point F f the focus. Place the points F and D on the

X-axis so that CF=F'Q and CD = D'C, and draw DR
perpendicular to the X-axis. The symmetry of the curve
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shows that if we had used the line BH and the point F as

directrix and focus, and the same value of e, the same

curve would have been found as the locus. The curve

can be said therefore to have these two lines BR and

B'R' as directrices, and the two points F and F' as foci.

We can now obtain the relations between the various

lines in the figure. We have seen that

FB = D'F' = m,

CB = B'C =
1-e5

CA = A'C =a em

CB = B'0 =b = em

VI

It follows that CB = ~, and that the equations of the

directrices are

v =% and x=-^. [38]
e e
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Also that CF=CD-FI) = —^— - wi = -^- = ae.
1 — £2 l — ^2

It is convenient to let CF be represented by a single

letter c.

Then ae, or ^

In obtaining equation [36], we let b2 = a2 (l — e2~).

Solving for e2, we have

* = «L=JL [39]a2 u J

Comparing these two values of e, we have

a2 — b2 = c2
. [40]

From this we see that BF, being the hypotenuse of a

right triangle whose legs are c and 5, is equal to a. It

also shows that a is

always larger than b, or

that i'i(=2a), the

axis perpendicular to the

directrices, is larger than

B'B(=2b). A'A has

been called the trans- x~

verse or principal axis

;

B'B is called the conju-

gate or minor axis of the

curve.

If the foci of the ellipse

are on the I^-axis, the

vertex A also lies on that

axis, and B on the .X-axis (Fig. 60). Its equation is (see

end of Art. 64)

- + ^=1. [41]
b2 a2 L J
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All the formulas found above hold for [41], except the

equations of the directrices, which are

,

a
y = ±-

e

PROBLEMS

1. Find a, b, c, e, and the equations of the directrices in the

ellipse,

(a) 4a2 + 9?/
2 = 36, (b) 9x* + 4:y

2 = ?>6,

(c) 3ar° + 8>/
2 =10.

2. Find the equation of the ellipse having its centre at the

origin and its foci on the AT-axis, if

(a) a = 3 and b = 2, (d) b = 4 and c = 3,

(&) b = 3 and e = i, (e) a = 5 and c = 3,

(c) a = 6 and e = f, (/) c = 4 and e =
J.

3. Show that the length of the latus rectum (line through
2 b-

the focus perpendicular to the axis) of the ellipse is

4. Show that the circle is the limiting form of the ellipse

as a and b approach equality. What is the eccentricity of the

circle, and where are its foci and directrices ?

5. What is the equation of the ellipse which has its centre

at the origin and its axes coincident with the coordinate axes,

and which passes through the points (4, 1) and (— 3, 2) ?

6. What is the equation of an ellipse if its centre is at the

point (a, /3) and its axes are parallel to the coordinate axes ?

66. Hyperbola. e>l.

When e > 1, one of the intercepts, -, is positive,
1 + e

071

and less than ??i, while the other, , is negative. OC
1 — e

°

will also be negative. The points, A, A', (7, and .F, will,

therefore, take the positions indicated in Fig. 61.
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We have shown that, when e > 1, the equation of the

conic reduces to

A' AF

--^- = 1. r37i
a2

b'
2 L J

Again we see that the -

curve is symmetrical with

respect to hoth axes, and

hence with respect to the

origin; that it cuts the X-axis at the points (± a, 0), and

does not cut the !F-axis ; and that the values of y are real

only for values of x numerically equal to or greater than a.

The exact form can be obtained more readily from the polar

Fig. 61.

equation. Transforming —
a1

with C as origin, we have

22— = 1 to polar coordinates
b'

2 l

P
2 =

a2
b'

2

&'2 COs20-a2 sin2

When 6 = 0, p = ± a, and as 6 increases, the denomi-

nator decreases, the fraction increases, and the point

recedes from the origin. This will continue as long as

the denominator remains positive. As soon as the de-

nominator becomes negative, the value of p becomes

imaginary. There is then a value of beyond which

the curve does not exist. This value of 6 is that which

makes the denominator, b'
2 cos2 6 — a2 sin2 0, zero, or

a

For every value of 6 between

tan

6 = tan"

tan" 1
! and

there will be a real value of p, these val-

ues growing larger as 6 approaches tan
_1
(H—

j
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tan-1 ( ). The lines then which pass through the
V aJ

f V\ f V\
origin, making the angles tan M H

J
and tan _1

(
J

with the JT-axis, do not cut the curve, while every line

lying between these lines cuts the curve in two real points.

The curve must therefore approach parallelism with these

lines as the point recedes from the origin, and it will be

shown in the next article that the curve approaches coinci-

dence with these lines. Such a line is called an asymptote.

If we continue to increase 0, we see that there will be

no real value oi.p until tan 6 again becomes numerically

b>
less than — Then p goes through the same changes

a

in value, decreasing until it equals ± a. But we have

shown that the curve is symmetrical with respect to both

axes, and there is therefore no need of discussion beyond the

first quadrant. The following is the form of the hyperbola

:

7

Place the points F' and D' on the X-axis so that

F'C=OF md D'C=CD, and draw D'H' perpendicular
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to the X-axis. The symmetry of the curve again shows,

as in the ellipse, that the hyperbola may be said to have

two foci, J7 and F\ and two directrices, DR and D'

W

'.

We can now <>l>!lfc^tln' relations between the various

lines in the figure. ^Bliavc seen that

DF=FD' = m,

e*-r

CA = A'C =a = em

e
2 -l

CB = B'0 =b' =—

—

VeP-1

It follows that CD = -, and that the equations of the

directrices are

a t a
ac =

Also that

* = 2, and * = -?.
,

[42]

0F= CD +DF=^-+m = -pL = ae.
ez — 1 e& — 1

It is convenient to let OF be represented by a single

letter c.

Then c = ae,

e
or e = .

a

In obtaining equation [37], we let V 2 = a 2 (e2 — 1).

Solving for e2, we have

Comparing the two values of e, we have

a? + b'2 = c2
. [44]
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There is, in the hyperbola, no restriction on the relative

values of a and b'

.

Note.— In the following articles we shall follow the ordinary custom,

and use b in place of b'.

s f i til67. Asymptotes. — The slopes of the asymptotes were

seen [Art. 60] to be ± -. Hence their equations are

b . by=~ x
->
and y = ~

a
x >

or written as a single equation,

a2 b2

They are evidently the diagonals of the rectangle formed

by drawing lines parallel to the axes through A, A', B,

and B'.

It remains to be shown that the curve not only approaches

parallelism with these lines, but actually approaches coinci-

dence with them ; or that the perpendicular distance P
X
M

from any point P
x
on the hyperbola to the asymptote

decreases indefinitely, as P
x
recedes from the origin along

the curve. (See Fig. 62.)

Since the equation of the asjmiptote is bx — ay = 0,

P
1
M= bx

*
- ay

± - (By [17])
V62 + a2

But, since P
x

is a point on the curve,

b2x
x

2 — a2
y x

2 = a2b2
,

or, factoring,

bx
x
- ay

x
bx

x
+ ay

x



Ch. IX, § G7] CONIC SECTIONS 115

Hence 1\M
(^1 + a?/

1
)V^ + a2

This expression evidently decreases as x
1
and y x

in-

crease, approaching zero as a limit. The curve therefore

app roaches its asymptote indefinitely,

PROBLEMS

1. Find a, b, c, e, and the equations of the directrices and

asymptotes of the hyperbola,

(a) a*-25tf= 25, 0) 9x2 --if- = 3(j, (c) 2x2
-5f- = 20.

2. Find the equation of the hyperbola having its centre at

the origin and its foci on the X-axis, if

(a) a = 3 and b = 2, (d) b = 4 and c = 5,

(b) b = 3 and e = 2, (e) a = 4 and c = 5,

(c) a — 5 aild e = f

,

(/) c = 10 and e = 3.

3. What is the equation of an hyperbola, if its centre is at

the point («, /?) and its axes are parallel to the coordinate axes ?

4. What is the equation of the hyperbola which has its

centre at the origin and its foci on the X-axis, and which

passes through the points (5, 3) and (—3, 2) ?

5. Show that the latus rectum of the hyperbola is -—

•

6. Show that the foot of the perpendicular from the focus

of an hyperbola on an asymptote is at the distance a from the

centre and b from the focus.

7. Show that the circle of radius b, whose centre is at the

focus of an hyperbola, is tangent to the asymptote at the point

where it is cut by the directrix.

8. Show that the product of the two perpendiculars let fall

from any point of an hyperbola on the asymptotes is constant.
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68. Conjugate hyperbolas. — Tf, in deriving the equa-

tion of the conic, the directrix is taken as the X-axis, and

a perpendicular to it through the focus as the JT-axis, its

Fig. 03.

simplest form, in the case of the hyperbola, is

= 1.
#2

y
2
__

If the definitions of a and b are interchanged, using b to

represent the semi-transverse axis (which is here the real

intercept of the hyperbola on the !F-axis), the equation

becomes
</
2 _

/;-

1.

The hyperbolas — — *- = 1 and —— %— = — 1, where a
a2 ¥ a2 bl

and b have the same values, are closely related. The

transverse and conjugate axes of the first are respectively
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the conjugate and transverse axes of the second. Two
hyperbolas which are so related arc called conjugate

hyperbolas, either being conjugate to the other. Bui it

is convenient to speak of the first as the primary and the

second as the conjugate hyperbola.

The polar equation of the conjugate hyperbola,

- a%2

P
2 =

52 cog2 _ a2 sin2

differs from that of the primary hyperbola only in the sign

of the second member. It therefore gives real values for

p only for those values of 6 which gave imaginary values

for p in the primary hyperbolas. The conjugate hyperbola

has therefore the same asymptotes as the primary, but

is situated on the opposite sides of those asymptotes.

The value of c (= Va2 + 62) is the same for both the

primary and conjugate hyperbolas, and the four foci there-

fore lie on a circle having its centre at the origin. But

for the conjugate hyperbola e
r = 7, and the equations of

the directrices are y — ±—•

e

69. Equilateral or rectangular hyperbola.— If b = a,

the equation of the hyperbola becomes x2 — y
2 = a 2

. This

is called the equilateral hyperbola. The equations of its

asymptotes are x + y— and x — y = 0. They therefore

make an angle of 45° with the X-axis, and are perpen-

dicular to each other. From this fact it is often spoken

of as the rectangular hyperbola.

The equilateral hyperbola and its conjugate are evi-

dently equal to each other. Figure 63 shows an equi-

lateral hyperbola and its conjugate.
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PROBLEMS

1. Write the equation of an hyperbola conjugate to the

hyperbola 4 a,-
2 — y

2 = 4, and find its axes, eccentricity, latus

rectum, the coordinates of its foci, and the equations of its

directrices.

2. Find the eccentricity of the equilateral hyperbola.

3. Show that if e and e' are the eccentricities of two conju-

gate hyperbolas, — + — = 1 and ae = be'.

4. Find the equation of the equilateral hyperbola referred

to its asymptotes as axes.

Note. — Revolve the axes through the angle — 45°.

70. Focal radii of a central conic. — The distance of a

point on a conic from a focus is called a focal radius of the

point. Since there are two foci in a central conic, there

will be two focal radii for each point of the conic.

The distance FP
X

of

any point (xv y^) of the

ellipse from the right-

hand focus (ae, 0) is

(by [l])

V (x-
x
— ae) 2 + #!

2
.

But since (xv y±) is a

point on the ellipse

Fig. 64.
b2x2 + a2

y
2 = a2b2

,

its coordinates must satisfy this equation.

Hence Vx^^-T^
a?
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Substituting this value of y^ in the expression for the

distance, Ave have

FP
1
= yjx 2 - 2 aex

x
+ a2e2 + b2 - h

\ x 2
.

a2 — b2
Noting that — = e2 , and a2e2 + b2 = a2

,

a2

this reduces to

FP
X
= Va2 - '2 aex

1
+ e2x 2 = ±(a- exj.

The distance, F'PV of the point from the left-hand

focus may be found in the same way except that the coor-

dinates of F' are (— ae, 0).

Hence F'P
l
= ± (a + ex{).

Let the student show that, though the work in the case

of the hyperbola will be slightly different, the results will

be the same.

Since it is only the length of the focal radii that we

seek, it will be neces-

sary to determine in

each conic which sign

should be used before

the parenthesis, so that

it may express a posi-

tive distance. In the

ellipse a is always

greater than exv and the positive sign must therefore be

used in both cases.

Hence, in the ellipse,

FP
X
= a- exu

and F'P
1
= a + exu

[45]
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It will be necessary to consider the two branches of the

hyperbola separately. For the right-hand branch ex
x

is

always positive and greater than a; and the two dis-

tances are

FP-. = exi - a,

[46, »]
and F'P

1
= exi + a.

For the left-hand branch ex
1

is negative and greater in

absolute value than a ; and the two distances are

FP, = — exi + a,

[46, .5]

and F rP
1
= — ex x - a.

From these results we see that the sum of the two focal

radii of any point of an ellipse is 2 a. While in the hyper-

bola the difference of the tiro focal radii is 2 a. The

ellipse might therefore be defined as the locus of points,

the sum of whose distances from two fixed points is con-

stant ; and the hyperbola as the locus of points, the

difference of whose distances from two fixed points is

constant.

Let the student obtain the equations of the ellipse and

hyperbola in their ordinary forms from these definitions.

71. Mechanical construction of the conies. — The results

of the last section enable us to construct mechanically the

ellipse and hyperbola.

To construct the ellipse fix two pins at the foci, and

place around them a loop of string whose length is

2a + 2c. If a pencil is placed in the loop and moved

about the foci, keeping the string taut, it will describe an

ellipse. The proof is evident.
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Fig. 66.

An hyperbola may be traced in the following manner

Fix one end of a ruler at

one focus, F' . A string

whose length is 2 a less than

the length of the ruler is

attached to the focus F and

to the other end of the ruler.

A pencil, which holds the

string taut and against the ruler, will trace a branch of

the hyperbola. For in all positions of P,

F'P -FP=2a.
The parabola is per-

haps more easily traced

by points. Erect a per-

pendicular ML at any

point of the axis. With

F as a centre and a radius

equal to DM, describe an

arc, cutting ML at P.

Then P is a point of the

parabola. For JSTP=FP.
As many points as we

please may be found in this way and the parabola passed

through them.

72. Auxiliary circles.— The auxiliary circle of a cen-

tral conic is a circle described on the major axis as

diameter. Its equation is x2 + y
2 = a2

.

The circle described on the minor axis as diameter

is called the minor auxiliary circle. Its equation is

x2
-f y

2 = b2 .

Fig. 67.
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Points on the ellipse and auxiliary circle which have

the same abscissa are called corresponding points. In

Fig. 68.

Fig. 68, P
x
and R are corresponding points. The angle

M
X
CR is caHed the eccentric angle of the point Pv
There is a simple relation between the ordinates of the

corresponding points P
1
and R which may be found in

the following manner. Let the coordinates of P
l

be

(xv y^, and of R (xv ?/2).

Substituting these values for x and y in the equations

of the ellipse and circle respectively, we have

b2x^ + a 2
y 1

2 = a2b2
,

and x? -f- y
2 = a2

.

Multiplying the second equation by b2 and subtracting,

we have

or

a2
y

2 = b2y
2

,

v± = ± _.

y2
a

Or, the ordinate of any point of the ellipse is to the ordinate

of the corresponding point of the circle as b is to a.
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Let the student show that a similar relation holds

between the abscissas of points on the ellipse and minor

auxiliary circle which have the same ordinate. These are

also called corresponding points. Show that CR passes

through the corresponding point in the minor auxiliary

circle.

PROBLEMS

1. Find the focal radii of the ellipse ar + 9 y
2 = 18 for the

points whose abscissa is — 2.

2. Find the focal radii of the hyperbola 9 v? — 4 y
2 = 65 for

the points whose ordinate is 2.

3. Show that the distance of a point on an equilateral

hyperbola from the centre is a mean proportional between the

focal radii of the point.

4. Prove that the circle described on any focal radius of an

ellipse as a diameter is tangent to the auxiliary circle.

5. Prove that the auxiliary circle of an hyperbola passes

through the intersections of the directrices and asymptotes.

6. Show that the focal radius of any point of a parabola is

1

2

7. Show that the area of the ellipse is -n-ab.

Note. — Divide the major axis of the ellipse into any number of equal

parts, and on each of these parts inscribe rectangles in the ellipse and

auxiliary circle. The areas of these rectangles will be in the ratio b : a,

and by the theory of limits it may be shown that the areas of the ellipse

and auxiliary circle will be in the same ratio.

73. General equation of conies when axes are parallel to

the coordinate axes. — From the equations of the conies

which have been determined, we may obtain by transfor-

mation of coordinates the most general form of their

equations referred to any set of axes. A full discussion
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of this question will be taken up in Chapter XIII., where

it will be shown that every equation of the second degree

represents some form of the conic. For the present we

shall content ourselves with a very short discussion of

their equations when the coordinate axes are parallel to

the axes of the conic. When this is the case and the

coordinates of the centre are («, /3), the equations of the

central conies take the form.(by [20] )

(x - a) 2 Q/-/3) 2

a2 b*

The parabola whose vertex is at the point («, y8), and

whose axis is parallel to the Jf-axis, takes the form

(y-/3) 2 = ±2™<>-«).

If the axis of the parabola is parallel to the Y"-axis, its

equation is* 0-«) 2 =±2m(j/-/3).

In each case the term in xy is wanting, and all of the

equations are seen to be special cases of the general

equa ion ^ + ^ + J)x +^ +F= ^
If neither A nor C is zero in this equation, it may be

written in the form

aU + v-rr-^icfv* + Ev+ :E2V m + & - f-A
\
X+

A
X +

±A*)
+ t
V +

C y + 4Cr>riA + IC
F '

or, if we represent the second member by K,

(•+n) (»
+

2
+ v "

=1.K K
A O
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If A and C have the same sign, this takes the form of

the equation of the ellipse whose centre is at the point

and in which a — \ — , and b=\—-. The
-1A 26V _^ *0

ellipse wiH be real, null, or imaginary, according as a and

b are real, zero, or imaginary.

Let the student show that if A and have opposite

signs, the equation represents an hyperbola, or (if K= 0)

two intersecting lines.

Also that, if either A or is zero, the equation repre-

sents a parabola, or a pair of parallel lines.

PROBLEMS

1. Determine the nature and position of the locus of

2x2 + 3y2 -6x + 4:y = l0.

This equation may be written in the form

2(^-3x + f) + 3(.!/+| 2/ + |) = 10 + f + |=^)

(*-f)
2

, (y + f)
2
,-.

9 5 T 9 5
12 18

The locus is an ellipse, having its centre at the point

(f, — -§), and in which a = Vff, and b = V-f-f

•

2. Determine the nature and position of the locus of the

following equations

:

(a) x> + 2y2 -6x + y = 10, (d) 3ar - y
2 + Gy = 0,

0) a? + 4x-2y = W, (e) f + 2x-±y = 6

(c) ±x2 -3if-±x + S = 0,

3. Obtain the polar equation of each of the conies, the focus

being used as the origin and the transverse axis as the initial

line.



CHAPTER X

TANGENTS

74. The method of finding the equation of a tangent to

any conic at a given point is the same as that used in the

case of the circle (Art. 55}. The equation of a secant

through the given point Pv (xv y±), and an adjacent

point P
2 , (xx

+ h, yx
+ &),

on the curve is
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The equation of the secant may therefore be written

//
-

,y t = 2 b2x
x
+ b2h

x — x
1

2 cfiy
l
+ a2k

Now, if we let P
2
approach Pv h and & will approach

zero, and the limit of the second member is no longer

b2x
indeterminate, but becomes 1-

The equation of the tangent is therefore

y-y\ = ft
2
*i

7

x - x
x

a2
yx

or clearing of fractions and transposing,

b2x
x
x + a2

y^y = b2x 2 + a2
y

2
.

But b2x 2 + a2
y

2 = a2b\

and the equation of the tangent reduces to

b-xix + ary xy = a2b2
. [47]

Let the student show that the equation of the tangent to

the hyperbola,

b2x2 - ahf = a2b2 , is bx xx - cpyxy = aW-, [48]

the parabola, y
2=2mx, is y\y = m(x + xi), [^9]

the locus of the general equation of the second degree,

Ax2 + Bxy + Cy2 + Dx + Ey + F= 0,

is Axix+~-(x {y + yix)+ Cyxy

[50]

+ ~(x + x l ) + §(y + yO+F=o.

These formulas can be most easily remembered and

applied if we notice that they may be obtained from the
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equation of the conic by replacing x2 and y
2 by x

x
x and

constant quantities being unchanged.

The method of finding the equations of the tangents

from an exterior point is the same as that given for the

circle. (See Art. 57.)

Let the student show that the equation of the chord of

contact of tangents from an exterior point will, in each

case, take the same form as the equation of a tangent at

the point of contact. (See Art. 59.)

75. Normals.— The normal at any point of a conic is

the line through the point, perpendicular to the tangent

at the point.

It can be found in any case by writing the equation of

a tangent, and then writing the equation of a perpendicu-

lar to the tangent through the point of contact.

For example, the tangent to the ellipse has been found

to be b2x
x
x + a2y xy = a2b2 . A perpendicular to this line

will have the form a2
y x
x — b2x

Yy = k. Since the normal

passes through Pv k = cfiy^^ — b2x^jv and the equation

of the normal becomes

a2yx
x - b2x

xy = (a2 - b2)x
1yv

In like manner, the equation of the normal to the

hyperbola is ^ +^ =^ +^
and to the parabola is

y x
x + my = x

1y l
+ myv

The student should note that these formulas apply only

when the equations of the curves are in the simplest form.
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He is advised not to use them in solving problems, as

they are not easily remembered, but in each case to write

the equation of the tangent and then that of a perpen-

dicular to the tangent at the point of contact.

76. Subtangents and subnormals. — The projections on

the X-axis of those parts of the tangent and normal

included between the point of contact and the X-axis

are called the subtangent and subnormal.

Eig. 70.

In the ellipse (Fig. 70) MX
T is the subtangent and

JfjiV is the subnormal for the point Pv The equation

of the tangent at P
1

is b2x
x
x -f a2yxy = a2b2, and the equa-

tion of the normal is cPy
1
x—b2x

xy — (cP' — b2:)x
1yl

. Find-

ing the intercepts on the X-axis, we have

CT=~ and CN=^ ~ ^ xv

But M
X
T= CT- CM

X
= - ocf

OCi

and M^^Ctf-CM^ (a2 - b2)x^ V Xv

[51]

[52]
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2 2

Let the student show that for the hyperbola — — &-= 1,
a2 b2

the subtangent equals
a ~ a?1

> [53]

the subnormal equals -^«i, [54]

and that for the parabola y
2 = 2 mx,

the subtangent equals - 2 xi, L^li

the subnormal equals in, [5t>]

PROBLEMS

1. Find the equations of the tangents and normals to

(a) 3ar9 + 4?/
2 = l9 at (1, 2),

(6) 2ar*-2/2 = 14 at (3,-2),

(c) ?r = 6 ;i' at (6, — 6),

(t?) 2^2 -3a7/ + 6.T-2 = at (2,3).

2. Find the lengths of the snbtangents and subnormals

in (a), (6), and (c), problem 1.

3. Find the equations of the tangents to

(a) 16 x2 + 25 y
2 = 400 from (3, 4),

(b) y- = ±x from (-3, -2),

(c) ar- 3/ +2 a- + 19 = from (-1,2).

4. Find the chords of contact of the tangents in problem 3.

5. Find the lengths of the tangents and normals in («), (Jj),

and (c), problem 1.

Note.— The terms "length of tangent" and " length of normal 1
' are

used to indicate the distances on the tangent and normal from the point

of contact to the points where they cut the X-axis.

6. Find the angles between the ellipse 4 x2 + y
2 = 5, and

the parabola y
2 = 8 x, at their points of intersection.

7. Show how the subtangent or subnormal in the parabola

may be used to construct the tangent at any point of the curve.
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8. From the fact that the subnormal in the parabola is

constant, show that the tangent approaches parallelism with

the axis as the point of contact recedes from the origin.

9. Show that if the normals of an ellipse pass through

the centre, the ellipse is a circle.

10. Show that the distance from the focus of a parabola

to any tangent is one-half the length of the corresponding

normal.

11. Show that the focus of a parabola bisects the portion

of the axis intercepted by a tangent and the corresponding

normal.

77. Slope form of the equations of tangents. — For many
problems it is convenient to have the equation of the tan-

gent in terms of its slope only. This can be found for

each of the conies just as it was found for the circle in

Art. 58.

We shall give the outline of the work for the ellipse.

Starting the solution of the equation of any line, y= lx+ /3,

with the equation of the ellipse, b2x2
-f- a

2
y
2 — a2b2, we have,

for obtaining the abscissas of the points of intersection,

the equation

(52 + a2?2) 3,2 + 9 aH$x + a2
(/3

2 - b2) = 0.

There will be two solutions of this equation, and hence

two points where the line cuts the ellipse. But if (see

Art. 8)
4 aH2^ = 4 (b2 + a2

l
2~)Qa2P - a2b2),

or /3 = ±Va2
Z
2 + 62

,

the two solutions of this equation are equal, the two points

of intersection of the line with the ellipse have become

coincident, and the line is tangent to the ellipse.
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The equation of a tangent having a given slope I is

therefore ____.

y = lx± VaH2 + V2
. [57]

Let the student show that the equation of the tangent

having a given slope I is

for the hyperbola, b2x2 ~ a2
y
2 = a2b2

,

y = lx± y/aH2 - b2
, [58]

for the parabola, y
2 = 2 mx,

y = i* +fv [59]

PROBLEMS

1. Find the equations of the tangents to the ellipse

4 x2

-f y
2 = 4 which are parallel to the line 2a? — 4^ + 5 = 0.

2. Find the equation of the normal to the parabola y
2 = Sx,

which is parallel to the line 2 x -f 3 y = 10.

3. Find the equations of the tangents to the ellipse

x2 + 2 y
2 — x + y = 0, which are perpendicular to the line

x — 5 y = 6.

4. Find the condition which must be satisfied if the line

x2 v2

y = lx + fl is tangent to the hyperbola — — *-=— 1.

5. Find the points on each of the conies where the tangents

are equally inclined to the axes. For what case is the solution

impossible ?

6. Find the points on the ellipse and hyperbola where the

tangents are parallel to the line joining the positive extremi-

ties of the axes.

x 1/

7. Show that the line - + \ = 1 is tangent to
a p
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8. Find the equations of the common tangents to the ellipse

ar + 9 y
2 = 9, and the circle x2 + y

2 = 4.

Note.— Write the equation of the tangent to each curve in the slope

form and determine the value of I which will make the two equations

identical.

9. Find the equations of the common tangents to the

ellipse 4 ar + 9 y
2 = .'56, and the hyperbola x2 — y

2 = 16. Show
that there would be no common tangent, if the second member
of the equation of the hyperbola had any value less than 9.

Why ? Construct the figure.

10. Find the equations of the common tangents to the circle

ar + y
2 = 9, and the parabola y

2 = Sx. How many solutions

are there ? Why ? Construct the figure.

11. Show that two tangents can be drawn to any conic from

an exterior point.

12. Through any given point how many normals can be

drawn to (a) an ellipse, (b) a parabola ?

13. Obtain the equation of the tangent at the point P1 of

the parabola y
2 = 2 mx, by determining I in the slope form of

the equation of the tangent in terms of xx and yx.

78. Theorems concerning tangents and normals.— 1. The

tangent and normal at any point of an ellipse bisect the

exterior and interior angles respectively between the focal

radii drawn to the point of contact.

Let P^T and P
X
N be the tangent and normal to the

ellipse —--\-^-=\ at the point Pv We wish to show that
a2 b2

P
X
T bisects the angle FP

X
K, and that P

X
N bisects the

angle F'P^F.

It is a well-known theorem of elementary geometry that

the bisector of an interior angle of a triangle divides the

opposite side into segments which are proportional to the
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adjacent sides of the triangle. The converse theorem is

also true.

It is therefore sufficient to show that

F'P
X = F'JV

FP
X

JVF'

The equation of the normal P
X
N is

ahj^x - b\y = O2 - b2)x
lyv

Fig. 71.

a2 — b2

Its intercept CN on the X-axis is — xv or, since in

a2 — b2
a

the ellipse — = e
2

,

a2

CJSr=e2xv

Also, F fO=CF=ae.

Hence F ,N=F ,C+CN= ae + e
2x

x
= e(a + ex

x),

and NF=CF - CN= ae - e2x
x
= e(a - ex{).

But (by [45])

F,P
1
= a -f- exv and FP

X
= a — &rr
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Hence and the normal bisects the angle
F'P, = F'N
FP

X
NF'

F'

P

X
F. Since the tangent is perpendicular to the normal,

it bisects the supplementary angle FP
X
K.

Note.— It is upon this principle that whispering galleries are con-

structed. If the whole or part of the sides of a room is a surface formed

by revolving an ellipse about its major axis, all waves of sound, light, or

heat starting from one focus and striking this surface will be reflected to

the other focus.

2. In an hyperbola the tangent and normal at any point

bisect the interior and exterior angles respectively between the

focal radii.

3. If an ellipse and hyperbola are confocal (or have the

same foci), they intersect orthogonally (or at right angles).

Fig. 72.

Since the direction of a curve at any point is along the

tangent at that point, two curves intersect orthogonally,

if their tangents at the point of intersection are perpen-

dicular to each other. This is evidently the case here,

since the tangent to the ellipse bisects the exterior angle
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between the focal radii, and the tangent to the hvperbola

bisects the interior angle. The curves therefore intersect

orthogonally.

4. The tangent at any point of a parabola makes equal

angles with the focal radius drawn to the point of contact,

and with the axis of the curve.

In the parabola y
2 = 2 mx, let P

X
T and P

X
N be the tan-

gent and normal at Pv Join P
X
F and draw P^K parallel

Fig. 73.

to OX. We wish to prove that the angles TP
X
F and

FTP
X
are equal.

If we let the abscissa of P
x
be xv its ordinate will be

± V2 mxv since P
x

is a point on the parabola. Then the

equation of the tangent at P
x
is

± ^/2mx1
• y = m (x + x^) .

If in this equation we let y = 0, we find the intercept

OT to be —x,.

Hence TO m
xv and TF=x

1 + ^.

But FP
X
=\ (x

x
- |Y+ 2 mx

1
= x

x +
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Hence TF=FPV and the angles TP
X
F and FTP

1
are

equal. What other angles are also equal in the figure ?

Note. — Parabolic reflectors depend on this principle. If a surface is

formed by revolving a parabola about its axis, all waves of light, etc.,

which start from the focus will be reflected in lines parallel to the axis of

the parabola.

5. Two parabolas which have the same focus and axis,

but which are turned in opposite directions, cut each other

orthogonally.

6. The chord of contact of tangents to a parabola from

any point on the directrix passes through the focus.

Fig. 74.

The coordinates of any point L on the directrix may

be represented by ( — —, yA. The equation of P
X
PV the

chord of contact of tangents from this point, is

yxy = mx m?



y =
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rabola to the focus is perpendicular to the chord of contact

of tangents from the point.

Take the coordinates of the point L (Fig. 74) on the

directrix as (
— —

, y x ), and show that the line LF which

joins this point to the focus is perpendicular to the chord

mx
m-

of contact y xy

12. Prove the same theorem for the central conies.

13. The two tangents which may be drawn from an

exterior point to any conic subtend equal angles at the focus.

14. In the parabola the perpendicular from the focus on

any tangent meets it on the tangent at the vertex ; the per-

pendicular meets the directrix on the line through the point

parallel to the axis of the parabola.

The equation of the

tangent at any point (xv

yd is

y xy = mx 4- mxv
The equation of a per-

pendicular to the tangent

through the focus is

yx
x + my = ^1-

The coordinates of the

point of intersection of

these two lines are

(». t> Fig. 75.

They therefore meet on the F'-axis, which is the tan-

gent at the vertex.

Let the student prove the second part of the theorem,
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15. Show that theorem 14 does not hold for central

conies, but that the perpendiculars from the foci of a cen-

tral conic on any tangent meet the tangent on the circle

x* + y*= a2 . (See Chap. 14, Prob. 5.)

16. The perpendicular from a focus on any tangent to

a central conic meets the corresponding directrix on the line

joining the centre to the point of contact of the tangent.

17. In any conic, tangents at the ends of the latus rectum

meet the X-axis on the directrix.

18. The tangent at any point of the parabola meets the

directrix and latus rectum produced at points equally dis-

ta n t from the focus.

19. The product of the perpendiculars from the foci

of a central conic on any tangent is constant and equal

to P.

20. The semi-minor axis b of a central conic is a mean

proportional between a normal and the distance from the

centre to the corresponding tangent.

21. The tangents at any point of an ellipse and the cor-

responding point on the auxiliary circle pass through the

same point on the axis.

PROBLEMS

1. Show that, if the point of contact of a tangent to an

hyperbola moves off along the curve, the tangent approaches

the asymptote as its limiting position.

2. Find the equations of the tangents to the hyperbola

which pass through the centre. (Use slope form of the equa-

tion of the tangent.)

3. Show that the portion of any tangent to an hyperbola

included between the asymptotes is bisected at the point of

contact.
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4 Show that the area of the triangle formed by any tan-

gent to an hyperbola and the asymptotes is constant.

5. Through any point of an hyperbola parallels to the

asymptotes are drawn. Show that the area of the parallelo-

gram formed by these lines and the asymptotes is constant.

6. Show that the normal at one extremity of the latus

rectum of the parabola is parallel to the tangent at the other

extremity of the latus rectum.

7. Obtain the equation of the parabola referred to tangents

at the ends of the latus rectum as coordinate axes.

8. Show that the distances of the vertex and focus of a

parabola from the tangent at one end of the latus rectum are

in the ratio of 1 : 2.

9. Show that the directrix of a parabola is tangent to the

circle described on any focal chord as a diameter.

10. Show that the tangent at the vertex of a parabola is

tangent to the circle described on any focal radius of the

parabola as a diameter.

11. The tangent and normal at a point of the ellipse form

an isosceles triangle with the X-axis. Find the coordinates of

the point.

12. Prove that the angle between two tangents to a parabola

is one-half of the angle between the focal chords drawn to the

points of contact.

13. Show that the length of a normal in an equilateral

hyperbola is equal to the distance of the point of contact from

the centre.

14. Find the points on the conjugate axis of an hyperbola

from which tangents to the hyperbola are perpendicular to

each other.



CHAPTER XI

DIAMETERS

79. The diameter of a conic may be denned as the locus

of the middle points of a system of parallel chords. The

method of finding this locus has already been illustrated

for the circle on page 94.

We shall repeat the work for the ellipse -- -+-^= 1.

Let y = l
x
x -f- /3 be the equation of any one of the parallel

chords ; let (xv y^) and (z
2 , y2) be the coordinates of the

Fig. 76.

points where it cuts the ellipse, and (V, y
r%

) the coordinates

of the point midway between these two points.

142
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Starting the solution of the two equations, y — l
x
x-\-^

and b2x2 + a2y
2 = a2b2, we have

(J)
2 + a2

!
2
) x2 + 2 a\px + a2 (/& - b2) = 0,

the two roots of which must be x
1
and xT

But

Hence

xf = x1±x.

x>= *M-
b2 + a\2

[By Art. 8]

Since (V, y
1

) is on the line y = l
x
x 4- A y

r may be found

by substituting the value of x f in that equation. This

gives

Hence
y

cfil,

-
*2

'

or, dropping primes, we have as the equation of the

diameter,

b 2x + a-hy = 0. [60]

Fig. 78.
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Let the student show that the equation of a diameter oi

^2 2

the hyperbola, ^ — %- = 1, is b2x - a?hy = 0, T611
a2, ¥

the parabola, y
2 '=2mx, is l^y-m. [62]

The form of the equation of a diameter of an ellipse or

hyperbola shoivs that it passes through the centre of the conic,

and that it therefore conforms to the ordinary definition

of a diameter. But all the diameters of a parabola are

seen to be parallel to the axis.

Since any value may be given to lv all lines through

the centre of an ellipse or hyperbola and all lines parallel

to the axis of a parabola are diameters.

Let the student obtain the equation of the diameter of

each conic by the following method : Transform to polar

coordinates, with the middle point (V, y'j of any one of

the parallel chords as origin. If tan -1
l
x

is substituted

for 6 in this equation of the conic, the resulting values of

p should be equal in magnitude, but have opposite signs.

The necessaiy condition for this will be an equation be-

tween x\ y\ and lv which will therefore be the equation

of the diameter.

80. Conjugate diameters. — If we let l
2
be the slope

of the diameter which bisects a system of chords of slope

lv we see that for the ellipse

7
b2

7 7
&

and for the hyperbola

7
b2 77 b*
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Since in these expressions l
x
and l

2
are interchangeable,

it is evident that, if we started out with a system of

chords of slope Z
2, the corresponding diameter would have

l
x

for its slope. Hence the two diameters which have Z
x

and l
2 for their slopes are so related to each other that each

bisects all chords parallel to the other. Such diameters

are said to be conjugate to eacli other. Their equations

are y = l
x
x, and y = l

2
x,

where Z
x
and l

2
are connected by the relations given

above. In the ellipse, l
x
and l

2
have opposite signs, and

the diameters must pass through different quadrants.

But in the hyperbola, l
x
and l

2
have the same sign, and

the diameters must pass through the same quadrant. In

either case, as l
x
decreases in numerical value, l

2
increases,

and as one diameter approaches the major axis, the other

will approach the minor axis from one side or the other.

The limiting case is seen to be the two axes. They con-

form to the definition

of conjugate diameters,

since every line paral-

lel to one is bisected

by the other. They

are the only conjugate

diameters which are

perpendicular to each

other.

If in the ellipse one

diameter, P
X
KV starts

coincident with the major axis and revolves in the posi-

tive direction, its conjugate diameter, P
2
K

2 , will start

Fig. 79.
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coincident with the minor axis and also revolve in the

positive direction, since we have seen that the two must

pass through different quadrants.

Let the student show that the angle P
X
CPV in which

the minor axis lies, will always be obtuse.

If, in the hyperbola, J>
1
K

1
starts coincident with the

major axis and revolves in the positive direction, its

conjugate diameter, P
2
K

2, will start coincident with the

minor axis and revolve in the negative direction. For

the two diameters must remain in the same quadrant. Since

b2 b
the product of the two slopes is —, if L is less than -, /„

, a* a

must be greater than -, and the two diameters must there-
a

fore rernain on opposite sides of the asymptote. As l
x

approaches -, L also approaches -, and the asymptote
a a

is therefore the limiting position of both diameters. It
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is evident that only one of two conjugate diameters can cut

the hyperbola. But in speaking of the length of the other

diameter, we shall mean the distance, P
2
iT

2 , between the

points where it cuts the conjugate hyperbola.

81. Equation of conjugate diameter. — If one diameter

is n'iven in any way, as by means of its slope or the coor-

dinates of its extremity, it is easy to determine the con-

jugate diameter. For it is only necessary to write the

equation of a line through the centre whose slope bears

the required relation to the slope of the given line. If

the coordinates of P
l
(Fig. 79) are (xv yx), the equa-

tion of CP
l

is x
xy — yx

x = 0, and l
x
= — . Then for the

ellipse,
*

I = h2 = ^

,

2 a\ a^yl

and the equation of the conjugate diameter P
2^2 *s

9^ + mii = . T631
a2 b~ L J

The solution of this equation with the equation of the

ellipse gives for the coordinates of P9 ( f*i —l
), and

(ay bx \
" ^ " a '

for the coordinates of K -f1 l •

2
\ b a J

Let the student show that in the hyperbola the equa-

tion of a diameter conjugate to the diameter through

(a\, vO is

£!£_ 2i2= 0, [64]
a2 b-

L J

and that the coordinates of its extremities are

fay, bx,\ if ay, bx,\
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PROBLEMS

1. Find the equations of a pair of conjugate diameters of

the hyperbola x2 — 8 y
2 = 96, one of which bisects the chord

whose equation is 3 x — 8 y = 10.

2. Find the equation of the diameter of the parabola

y
2 = 6x, which bisects all chords parallel to the line x+3y= 8.

3. Find the equation of a diameter of the ellipse

£x2 + 9y2 = 36,

if one end of its conjugate diameter is (fV3, 1).

4. What is the equation of the chord of the ellipse

9 x2 + 36 f = 324, which is bisected by the point (4, 2) ?

5. Find the equation of a chord of the ellipse

13ar
9 + ll?/2 = 113

through the point (1, 3), which is bisected by the diameter

2y = 3x.

6. A diameter of the ellipse 15 1/

2 + 4 x2 = 60 is drawn
through the point (1, f). Find the equation of the conjugate

diameter and its points of intersection with the ellipse.

7. Find the length of the diameter of the hyperbola

9 x2 — 4 y
2 = 36, which is conjugate to the diameter y = 3 x.

8. What is the equation of the chord of the parabola

y
2 = 6 x, which is bisected by the point (4, 3) ?

9. A diameter of the hyperbola 4 x2 — 16 y
2 = 25 passes

through the point (1, — 2). Find its extremities and the

extremities of its conjugate diameter.

10. What is the relation between the slopes of the con-

jugate diameters of the equilateral hyperbola xy = k?

82. Theorems concerning diameters. — 1. In the ellipse

the sum of the squares of any tivo conjugate semi-diameters

is equal to the sum of the squares of the semi-axes.



Ch. XI, § 82] diameters 149

In Fig. 81, let CP
t
= a! and 0P

2
= b'. Then (by [1])

and

.12 — >. 2

bz a2

Fig. 81.

Adding, a' 2 + b'
2 = (a2 + 62)^ + (a2 + &2)

But since P
x

is on the ellipse,

%+^r= l, and a'2 + b'
2 = a2 + b2 .

az bz

2. In the hyperbola the difference of the squares of any

two conjugate semi-diameters is equal to the difference of the

squares of the semi-axes.

3. The product of the focal distances of any point on a

central conic is equal to the square of the semi-diameter

conjugate to the diameter through the point.
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Since the focal distances of the point (xv y^) have been

shown (Art. 70) to be a -f- ex1
and a — exv it is necessary

to show that b'
2 = a2 — e2x

x

2
. From theorem 1 we have

b2
+

a2
'

But since P
x
is a point on the ellipse,

W _
J2

-- "-I"tfy* = a2b2 -b2x 2
, or ^- = a2

b2x 2

Hence 5'2 = a2 — x? -\ ^-,
1 a2

ai-f'sL^)^, or (by [39]),

= a2 — A-, 2
.

4. Prove the same theorem for the hyperbola.

5. TAe tangents at the ends of a diameter of a central

conic are parallel to the conjugate diameter.

In the ellipse the equation of the tangent at P
1

is

a2 ^ b2
~~

This is seen at once to be parallel to the conjugate

diameter -^ + ¥j¥- = 0. In the same way the tangent

at P
2
can be shown to be parallel to PVKV

This theorem appears also from the fact that the tan-

gents are special cases of the system of parallel chords.

6. The tangent at the end of a diameter of the parabola

is parallel to the system of chords which the diameter bisects.

7. The area of the parallelogram formed by tangents at

the ends of conjugate diameters of a central conic equals the

area of the rectangle on the principal axes.
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Let ABED be the parallelogram formed by the tangents

at the ends of the conjugate diameters P
X
K

X
and P

2
K

2
.

B^^
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Let the student give the proof for the hyperbola.

r

8. In the hyperbola the parallelogram formed by the

tangents at the ends of conjugate diameters has its vertices

on the asymptotes.

9. In the hyperbola, the line joining the ends of conju-

gate diameters is parallel to one asymptote and is bisected

by the other.

10. Shoiv that the angle between two conjugate diameters

i
ab

sin
']'a'b

11. Conjugate diameters of the rectangular hyperbola are

equal.

12. The ellipse has a pair of equal conjugate diameters

which coincide with the asymptotes of the hyperbola, which

has the same axes as the ellipse.
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PROBLEMS

1. Prove that conjugate diameters of an equilateral hyper-

bola are equally inclined to the asymptotes.

2. Prove that any two perpendicular diameters of an equi-

lateral hyperbola are equal.

3. Prove that the straight lines drawn from any point in

an equilateral hyperbola to the extremities of any diameter

are inclined at equal angles to the asymptotes.

4. Prove that the points on either the major or minor

auxiliary circle, which correspond to the extremities of a

pair of conjugate diameters, subtend a right angle at the

centre of the ellipse.

5. Prove that chords drawn from any point of a central

conic to the extremities of a diameter (called supplemental

chords) are always parallel to a pair of conjugate diameters.

6. If Pi and P2 are the extremities of a pair of conjugate

diameters of a central conic, prove that the normals at Px and

P2 , and the perpendicular from the centre on P
2
P2 meet in a

point.

7. If a perpendicular is drawn from the focus of a central

conic to a diameter, show that it meets the conjugate diameter

on the corresponding directrix.

8. Tangents at the extremities of a pair of conjugate diam-

eters of an ellipse form a parallelogram (Fig. 82). Show that

the diagonals of this parallelogram are also a pair of conjugate

diameters.



CHAPTER XII

POLES AND POLARS

83. Harmonic division. — In Art. 14 we have said that

four points A, B, C, and D on a line form a harmonic
., AB AD A ,, ,

4 b c p range, if — = -— , and that

FlG
-
84 - the pairs of points A and C, and

B and D are then called conjugate harmonic points. From
this definition it is easily seen that if we keep A and C
fixed and allow B and D to move, as B approaches C, B
will also approach C, and as B approaches the middle

point of AC, B will recede indefinitely. When B coin-

cides with the middle point of AC, it has no conjugate

harmonic point. When B moves from the centre toward

A, B comes in from the left toward A.

It is desirable for our purposes to express the relation

between these points in terms of distances from A only.

From the definition, AB x CD = AD x BC. Substituting

CD = AD -AC and BC= A C - AB, this becomes

ABxAD-ABx AC= AD x AC - AD x AB,

2AB xAD
or AC= AB + AD

Let the student show that BD = -—— —-— . Connect
BA + BC

these results with harmonic progression in algebra by show-

ing that AC is a harmonic mean between AB and AD,
154
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84. Polar of a point.— The polar of a point with respect

to any conic is defined as the locus of points which divide

harmonically secants through the fixed point.

The methods of finding this locus are the same for all

the conies. In problem 31, Chapter VIII, the student

has been asked to find it for the circle by the aid of polar

—P,

Fig. 85.

coordinates. The same method might be employed here,

but it is thought best to use a very similar one, into

which, however, polar coordinates do not enter.

We shall find the polar of the point P
x
with respect to

the ellipse ^ + ay = a^
Transform to the point P

x
as origin by the aid of the

equations
x = x f + X,

— />/'

y + Vv
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The equation of the ellipse becomes

b2x2 + a2y
2 + 2 b2x

x
x + 2 a2

y xy + b2x 2 + a2
?^

2 - a262 = 0.

Let any line, y — Ix, through P
1
cut the ellipse in the

points P
2
and P

3
. We wish to find the locus of a point

P' on this line, so situated that Pv P2, P', and P
3
form

a harmonic range. By the theorem of Art. 14, Pv M2 ,

M, and M
z
will also form an harmonic range, and hence

If we start the solution of the equation of the line,

y = lx, with the equation of the ellipse, we have

(b2 + a2
/
2
) x2 + 2\b2x

x + aHyJ x + b2x 2 + a2
y

2 - a2b2 = 0,

rom which t

(see Art. 8)

from which to determine the values of x
2
and x

s
. Hence

_ b2x 2 + a2
y,

2 - a2b2
X^-

& + <£!*

A ,
2(b2x

l
+ a2ly

1 )and x
2 + x

s = - V+«2
Z
2

Hence ,^,^4-^-^
o1x

l + « t^i

Since P' lies on the line y = Ix, its coordinates satisfy

the equation, and y' = lx\ or l = ^-f Substituting this
SB

value of I in the equation above, and reducing, we have

as the equation of the locus, referred to the point P
x
as

origin,

b2x
x
x + (Py^y 4- b2x? + a2

y x

2 — a2b2 = 0.
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When transformed back to the original origin by the

aid of the equations x=x' — x
x
and y= y' — yv this equation

becomes
b2xix + oryx y= a2b2

, [65]

Since this equation is of the first degree, we have

arrived at the singular result that the locus is a straight

line. It is called the polar of the point P
l
with respect

to the ellipse, while the point P
x

is called the pole of the

line. The theory of poles and polars is of great impor-

tance in some branches of geometry.

Let the student show that the polar of the point

(xv y^) with respect to

(a) the circle, x2
-f y

2 = r2, is x xx + y xy = r2
, [Q6]

(b) the hyperbola,

b2x> - a2
y

2 = a2b2, is b2xxx - a2y xy = a2b2
, [67]

(e) the parabola, y
2 = 2 mx, is y xy = mx + mx\, [68]

(c?) the locus of the general equation,

Ax2 + Bxy + Cy2 + Dx + Uy + F=0,

is Axxx + — (y xx + x xy) + Cy xy

+ ¥>(x + x l ) + ^(y + y l)+F
[69]

85. Position of the polar. — From what we have said

about harmonic ranges, it is evident that the polar of every

point outside the conic cuts the conic, and that the polar

of every point within the conic does not cut it. The form

of the equation shows that, when the point is outside

the conic, the polar coincides with the chord of contact
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and, when the point is on the conic, the polar becomes the

tangent. Again, as P
x
recedes from the conic, its con-

jugate harmonic point P' approaches the middle of the

chord, and its polar, therefore, approaches coincidence

with a diameter. If the point P
l

is inside a central conic

and approaches the centre, the polar evidently recedes

indefinitely.

PROBLEMS

1. What is the equation of the polar of

(a) (1, — 2) with respect to the conic of' + 4 y
2 = 16 ?

(6) (6, — 4) with respect to the conic y
2 = 4 # ?

(c) (— 3, 2) with respect to the conic 5 x2 — 8 y
2 = 24 ?

(d) (0, 0) with respect to the conic

x2 +2xy + 3y2 -4: x-l0 = 0?

2 . What is the pole of the line 3 x — 2 y = 5 with respect

to the circle x2 + y
2 = 25 ?

Solution.— The polar of the point (xi, y{) with respect to the circle

is X\X + y\y = 25. We wish to find the values of Xi and yx which will

make this line coincident with the line 3 x — 2 y = 5, or 15 x — 10 y = 25.

They are evidently xi = 15 and y± = — 10.

3. What is the pole of the line 5 x + ky = 7 with respect

to the ellipse x2 + 2y2 =10?

4. What is the pole of the line x — y = 10 with respect to

the parabola y
2 = Sx?

5. What is the pole of the line Ax+By+ C=0 with respect

to the hyperbola b2x2 — a2

y
2 — a2b2 ?

6. Tangents are drawn to the circle y
2 = 10x — x2 at the

points where it is cut by the line y = 4 x — 7. What is their

point of intersection ?

7. Through the point (# 1? y{) a line is drawn parallel to the

polar of the point with respect to the ellipse b2x2 + a2
y
2 = a2

b'
2

.

Find the coordinates of the pole of this parallel.
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86. Theorems concerning poles and polars. — 1. If a

set of points lie on a line, their polars all p>a8S through

the pole of that line ; and conversely, if a set of lines pass

through a point, their poles lie on the polar of that point.

Let P
2
be the pole of the line MN, and P

1
any point

on MN We wish to show that MS, the polar of Pv
will pass through P

2
. If the coordinates of P

x
and P

2

are (xv y x )
and (x

2 , y2 ),

the equation of PS is

b2x
x
x + a2

y xy = a2b2
,

and of MN is

b2x
2
x + a2

y2y = a2b2 .

But we know that the

coordinates of P
1
must

satisfy the equation of

MN, or

b2x
2
x

x
+ a%y

1
= a2b2 .

Now this is just the condition which must be satisfied,

if P
2
lies on MS. Hence P

2
lies on MS, and as the point

P
x
moves along the line MN, its polar will revolve about

P
2 , the pole of MN
Let the student prove the converse theorem, and also

both theorems for the hyperbola and parabola.

It follows from this theorem that tangents at the

extremities of any chord through P
x
meet on MS. For

the pole of every chord through P
x

lies on MS, and we

have seen (Art. 85) that tangents at the extremities of

a chord intersect at the pole of that chord. From this

property the polar may be defined as the locus of the
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intersection of tangents at the extremities of chords

through any fixed point.

This property enables us to construct the polar of any

point ; for any number of points on the polar may be

Fig. 87.

determined by finding the intersections of tangents at

the extremities of chords through the point.

2. The polar of any point P
1
with respect to a central

conic is parallel to the tangent at the point where the diameter

through P
1
cuts the conic.

Y

Fig. 88.
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Let the coordinates of the point P
2
where CP

1
cuts the

hyperbola be (xv ya).
Then the equation of the tangent

2
k

b2x
2
x — a2y2y = a2b2

,

and the equation of the polar of P
x

is

b2x
x
x — a2y xy = a2b2 .

But since P
x
and P

2
are on the same line through the

x x
origin, — = —-, and these lines are evidently parallel.

Let the student prove the same theorem for the ellipse.

3. The polar of any point P
x
with respect to a parabola is

parallel to the tangent at the point where a diameter through

P
1
cuts the parabola.

Y

Fig. 89.

We may let the coordinates of P
2
be (xv y-[)> Then

the equation of the tangent at P
2

is yxy = mx + mxv and

the equation of the polar of P
1
is yxy = mx + mxv These

equations are seen at once to represent parallel lines.
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These two theorems show that the polar of a point on a

diameter is one of the system of parallel chords bisected

by that diameter.

4. If the line joining the centre C of any central conic to

any point P
x
cuts the conic in P

2
and the polar of P1

in P
3,

then CP
1
x CP

3
= OP*.

We shall give the proof for the hyperbola, using

Fig. 88.

The equation of QP
X

is y = — x. The coordinates of

P2, where this line cuts the hyperbola are found to be

ahx
l ~~A <%1and

-\Jb
2x^ — a2

y-f ^/b2x
x

2 — a2
y^

and the coordinates of P
3 , where it cuts the polar,

b2x
x
x — a2

yxy — a2b2
,

a2b2x
x

, a2b2y1

b2x
x
2 — a2

yx
2 b2x

x
2 — a2y x

2

Hence CP
X
= ^x 2 + y

2
,

^2 ~ V b2x 2 -a2
y

2

_ g%^X * + y*
3 " b2x 2 - a2

y
2 '

From these values we see at once that

CP
X
x CP

3
= OP 2

.

Let the student prove the same theorem for the ellipse.

Show that in the parabola (Fig. 89) P2
bisects the

line P
X
PV
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5. The line which joins any point to the centre of a circle

is perpendicular to the polar of the point with respect to the

circle.

The proof of this theorem appears at once as soon as the

equations of the lines are written. This theorem enables

us to state theorem 4 for the circle as follows :

6. The radius of a circle is a mean proportional between

the distance from the centre to any point and the distance

from the centre to the polar of that point.

7. The polar of the focus is the directrix in (a) the ellipse,

(b) the hyperbola, (c) the parabola.

The proof of this theorem appears at once in each case

when the coordinates of the focus are substituted in the

equation of the polar. This theorem is evidently equiva-

lent to theorems 6 and 7 on tangents.

8. Any chord through the focus of a conic is perpendicular

to the line joining its pole ivith the focus.

This theorem is equivalent to theorems 11 and 12 on

tangents and is proved in the same manner.

9. The line joining the centre of a central conic to any

point P
1
cuts the directrix in K. Show that the line KF is

perpendicular to the polar of Pv

10. Two triangles are so related that the vertices of the

first are the poles of the sides of the second, with respect

to a conic. Prove that the vertices of the second are also

poles of the sides of the first.

Two such triangles are said to be conjugate to each other.

If in any triangle the vertices are the poles of the opposite
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sides, the triangle and its conjugate coincide, and it is

called a self-conjugate triangle.

11. If a line is drawn through a point parallel to the axis

of a parabola, that portion of it included between the point

and its polar is bisected by the parabola.

How does this conform to the definition of harmonic

division ?

12. The two lines, which join the focus of a conic to any

point ctnd to the intersection of the polar of that point ivith

the corresponding directrix, are perpendicular to each other.

13. Write the equation of the polar of a point P
1
on

a diameter of a central conic. Let P
x
recede indefinitely

along the diameter and shoiv that the polar approaches, as its

limiting position, the diameter conjugate to the given diameter.

Show that this would be true, if the point receded along

any line parallel to the given diameter. How must this

theorem be stated for the parabola ?

PROBLEMS

1. Show that the polars of the same point, with respect

to two conjugate hyperbolas, are parallel.

2. Show that the four points, in which any line is cut by

the asymptotes of an hyperbola and by a pair of conjugate

diameters, form a harmonic range.

3. What is the polar of the focus of an ellipse, with

respect to the major auxiliary circle ?

4. Obtain the equation of the polar of the point Px
with

respect to the rectangular hyperbola xy = k. What are the

coordinates of the foci and the equations of the directrices

of this hyperbola? Prove that your results are correct by

showing that the directrix is the polar of the focus.
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5. Show that the polar of one extremity of a diameter of

an hyperbola, with respect to its conjugate hyperbola, is the

tangent at the other extremity of the given diameter.

6. If a perpendicular is let fall from any point P
x
upon

its polar, prove that the distance of the foot of this per-

pendicular from the focus is equal to the distance of the

point Px from the directrix of the parabola.

7. An ellipse and an hyperbola have the same transverse

and conjugate axes. Show that the polar of any point on

either curve, with respect to the other, is tangent to the

first curve.



CHAPTER XIII

GENERAL EQUATION OF THE SECOND DEGREE

87. We have seen that the equations of all the conies

are of the second degree. We shall now prove that an

equation of the second degree must always represent a

conic, either in one of the ordinary forms or in one of the

limiting cases, and show how to reduce any given equation

to the simplest equation of one of these conic sections.

88. Two straight lines. — We have seen that there

are certain equations of the second degree which can be

factored, and hence represent two straight lines.

Let us determine what condition must be satisfied by

the coefficients of the general equation,

(1) Ax2 + Bxy + Cy2 + Bx + Ey +F= 0,

when it can be separated into two linear factors. Arrang-

ing it according to the powers of x and solving, we have

(2) x =
- (By + i>) ± ^/(B2- 4 AO)y2+ ( 2 BB - ±AE)y + B2 - 4 AF.

2A

If the general equation is to be factored into two

linear factors, the quantity under the radical must be

a perfect square. The condition for this is

(3) (2BB-4AB) 2 - ±(B2 - ± AC)(B2 - 4 AF) = 0,

or (4) 4ACF+BBE-AE2 -CB2 -FB2 = Q.

166
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This is, then, the condition which must be satisfied by

the coefficients of the general equation, when it can be

separated into two linear factors. The first member is

called the discriminant of the equation. It is usually

represented by the letter A.

Note. — If A = 0, the work will have to be changed somewhat, but the

same form will always be obtained for the discriminant.

When this condition is satisfied, the equation can always

be factored, but it is not necessary that the factors should

be real. For if B2- 4 A C is negative, from (3), B2- 4AF
must also be negative, and while the expression under the

radical is a perfect square, its square root will contain

imaginary coefficients. The equation will in this case

break up into a pair of factors with imaginary coefficients,

and we speak of it as representing a pair of imaginary

lines. There will be, however, one real point on the

locus ; for the intersection of the two imaginary lines will

always be a real point.

If B2 — 4 AC is positive, the factors represent real and

intersecting lines.

If B2 -±AC=0, 2 BD- ±AE must also reduce to

zero, and the quantity under the radical is reduced to

D2 — 4 AF. The lines are therefore parallel. They are

real and distinct if D2 - 4 AF> 0,

real and coincident if D2 — 4 AF = 0,

imaginary if D2 — 4 AF< 0.

PROBLEMS

1. Obtain the discriminant by the following method: Let

the two factors be x -f b xy -f- <h and x -f b2y + c2 . Multiply, and

equate the coefficients of the product and those of the general
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equation. This will give five equations from which b^ cXl b2,

and c2 can be eliminated and the condition in terms of the

coefficients obtained.

2. Show that the following equations represent straight

lines, and find the factors in each case

:

f — xy — 5 x + 5 y = 0,

2x2 + 3xy + y
9--x-y = 0,

x* + 2xy + if + 2x + 2y + l = Q.

Case I. B2 - 4 AC^O.

89. Removal of the terms of the first degree.— If the

discriminant does not vanish, and if the equation does

represent some conic, it ought to be possible by suitable

transformations, either by changing the position of the

origin or by revolving the axes, or both, to reduce it to

one of the well-known forms.

Let us transform to a new origin (# , y ) and find the

values of x and y , if any, which will simplify the equa-

tion. The general equation becomes

(5) Ax2 + Bxy + Cy2 + D'x + E'y + F' = 0,

where (6) D' = 2 Ax + By + D,

(7) E< = Bx + 2 Cy + E,

and (8) F = Ax* + Bx y + Cy* + &x + Ey + F.

It appears then that we can choose x and y so that

any two of the last three terms shall vanish. Let them

be chosen so that D' and E' shall be zero, or so as to

satisfy the two equations,

(9) 2AxQ + By
Q + V^0,

and (10) Bx + 2 Oy + E = 0.
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,ri 2 CD -BE,
,

2AE-BD

The general equation is reduced by this transformation

(11) Ax2 + Bxy + 6y +'J" = 0,

in which the value of F' is found by substituting x and

yQ
for a; and y in equation (1).

But, if J92 — 4^1(7 = 0, no values can be found for x
Q

and y , and this transformation is therefore impossible.

Let this case be set aside for the present, and only those

cases be considered where B2 — 4 AC ^= 0, and where this

transformation is therefore possible.

We have reduced the equation to a form which shows

that the curve is symmetrical with respect to the origin,

for any line, y = Ix, through the origin meets it at two

points equally distant from the origin. But the term in

xy must be removed before it is symmetrical with respect

to the axes.

90. Removal of the term in jr/. — Let the axes be

revolved through any angle 6 by substituting

x = x 1 cos — y' sin #,

y = x r sin 6 + y' cos 0.

The equation now becomes

(12) A'x2 + B'xy + C'y2 + F' = 0,

where (13) A' = A cos2 + B sin cos + C sin2 0,

(14) B' = (C-A)am20+Bco820,

(15) C' = 4sin2 0-£sin0cos0-f-(7cos2
0,
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Evidently can be so chosen as to make any one of

the three coefficients zero. But it is the term in xy

which is not wanted. We shall then choose 6 so that

£'=0.
B

Hence (16) tan 2 6 =A-0
There will always be two values of 0, one acute and

the other obtuse, which will satisfy this equation. But,

for the sake of uniformity, we shall always choose the

acute value.

The equation will be reduced by this transformation to

(17) A'x2 +C>y2 + F = 0.

91. Determination of the coefficients A', C, and F' . — We
have shown how to determine F' ; and since tan 2 6 is

known, the values of A' and C may be found, and the

result fully determined. But much of the labor involved

may, in practice, be avoided by the following method

:

Adding equations (13) and (15), we have

(18) A' + C = A + a

Subtracting the same equations, we have

(19) A'-C'=(A- 67) cos 2 (9-f-^ sin 2 (9.

Squaring (19) and (14), and adding, we have

(20) (A! - Cr
)
2 + B12 = (A- O) 2 + B2

.

Squaring (18) and subtracting from (20), we have

(21) B'2 -4A rC' = B2 -4,AO.

These results hold good for all transformations from

one system of rectangular axes to another.
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If the general equation has been reduced to equation

(IT), B' = 0, and (21) reduces to

(22) 4A'Cf =4tAC-B*.

From the two equations (18) and (22), A' and C can

be found. But there will be two values of each, corre-

sponding to the two possible values of 0, and it will be

necessary to be able to choose the proper values.

We have let (C- A) sin 2 6 + £cos 2 6 = 0.

Multiplying this equation by (^4. — (7) and equation

(19) by B and subtracting, we have

(23) (B2 + (A- C)2
) sin 2 = B(A' - C).

If now the acute value of 6 be chosen, the first member
will always be positive, and the factors of the second

member, B and A' — C, must have the same sign. It will

be easy then to choose the proper values for A' and C'.

The determination of F' may also be considerably sim-

plified. Multiply equation (9) by x and (10) by y and

add. The sum is

2 Ax* + 2 Bx y + 2 Cy* + Dx + Ey
n
= 0.

Combining this with (8), we have

*" = f*o + fs'o+ -*
r
-

Substituting the values of x and y ,

CD2+AE2-BDE+B*F- 4 A OF= -A
B2 -±AC tf-lAQ

(24) F' =
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92. Nature of the locus. — The general equation has

now been reduced by transformation of coordinates to

the form
(IT) A'x2 + C'y2 + F' = 0.

Neither of the coefficients A ! or C can be zero, for

they must satisfy equation (22), and we are only con-

sidering the case where B2 — -±AC^0. If F' =£ 0, (17)

can be written in the form

-F' "*" -F'~
~aJ~ a

The nature of the curve evidently depends on the rela-

tive signs of A', C'', and F'. If A' and C have the same

sign and F' has the opposite sign, equation (17) will

represent a real ellipse; for it can be written in the

form
^ + £=1
a2 b2

If A', C 1

', and F' all have the same sign, equation (17)

can be written in the form

^ + ^ = - 1

a2 ^b2

This equation has no real locus, but is said to represent

an imaginary ellipse.

Again, if A 1 and C have opposite signs, the equations

will take one of the two forms

^_^2

-1 or ^-t- \

a2 b
2 ~ '

a2 6
2 ~

'
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according 1 as F' has the same sign as C or as A'. These

are both real hyperbolas.

From equation (22), 4 A' C = 4 A C — B2
, we see that

A' and C have the same or opposite signs according as

B2 — 4: AC is negative or positive. If then F' is not zero,

or what is the same tiling, if the discriminant does not

vanish, and if B2 — \ AC^ 0, the general equation has

been shown to represent

an ellipse, real or imaginary, when B2 — 4 AC< 0,

an hyperbola, always real, when B2 — 4 AC> 0.

If F' = 0, equation (17) reduces to

(25) A'x2 + C'y2 = 0.

When A' and C have the same sign, the equation may
be looked upon as representing a pair of imaginary lines,

since the equation can be separated into a pair of linear

factors with imaginary coefficients. These lines have a

real point of intersection, the origin. Or it may be looked

upon as the equation of an ellipse in which the axes have

become zero. From this point of view, it is spoken of as

representing a null ellipse.

• When A! and C have opposite signs, the equation can

always be separated into two real factors, representing

two real and intersecting lines.

These results will be seen to agree with those obtained

in Art. 88.

PROBLEMS

1. Determine the character of the locus of the following

equation, reduce it to its simplest form, and plot

:

5x2 + 2xy + 5y2 -12x-l2y = 0.
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Substituting these values for the coefficients in (4), we

obtain A = -1152. Also B2 -4AC = -96. The locus is

therefore an ellipse, real or imaginary.

The simplest method for determining the coordinates of the

centre is to write the equations (9) and (10) and solve for

x and y .

The first of these may be obtained by multiplying the coeffi-

cient of every term which contains x by the exponent of x,

decreasing that exponent by unity, and leaving out all terms

which do not contain- x. The second may be formed in a

similar way, using y. In this case they are

10 x + 2y - 12 = 0, and 2 x + 10yQ - 12 = 0.

From these the coordinates of the centre are found to be (1, 1).

From equation (24), F' = — 12. The equation, referred to

the point (1, 1) as origin, is then

Sx2 + 2xy + 5y2 -12 = 0.

Next revolve the axes through an angle 6, such that

tan 2, =-^ =^.
We have decided to use the acute value of 6, which is here -•

4

To determine A! and C, we use the equations (18) and (22)

or A r +C' = A + C = 10,

and 4 A'C = 4 AC - B2 = 96.

Solving, we have A' = 6 or 4, and C = 4 or G. But since

we chose the acute value of 6, we must choose A' and C so that

A' — C has the same sign as B. This is positive. Hence the

final form of the equation is

6x2 +4y2 = 12.
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But this is the equation of the curve referred to axes

with origin at the point

(1, 1), and making an angle

of - with the original axes.
4
Constructing these axes

and plotting the equation

Gar2 + 4/ = 12

with respect to them, we
have the locus of the origi-

nal equation, referred to the

original axes.

2. Determine the char- FlG - 90 -

acter of the loci of the following equations, reduce them to

their simplest forms, and plot

:

(a) 2a2 + 2f- 4^-47/4-1 = 0,

(b) x* + tf + 2x+2 = 0,

(c) ±xy- 2x + 2=0,
(d) y

2 -5xy + 6x2 -Ux + 5y + 4: = 0.

Case II. B2-AAC = 0.

93. Removal of the term in xy. — We have seen that, if

B2 — 4A = 0, it is not possible to transform to a new

origin such that the terms in x and y shall disappear. In

this case we shall first revolve the axes through an angle 0.

Proceeding as in Art. 90, we obtain the equation

A'x2 4- B'xy 4- O'f 4- D'x + E'y + F=0,
where (13) A f = A cos2 6 4- B sin 6 cos 6 4- tfsin2 0,

(14) B' = (C - A) sin20 + Bcos20,

(15) C = Asin2 -Bsin0cos0 + Ccos2
0,

(26) B' = Bcos0 + Esin0,

(27) E' = - 2) sin + E cos 0,
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The values of A', B\ and C are the. same as those used

in Art. 91. The results there obtained will therefore

apply here. These were,

(18) A' + C = A+ C,

and (21) B't-lA'C'^B't-'iAa

Let 6 be so chosen that B' = 0, or tan 20 = — -• Then
A — C

since B2 — \AQ = 0, it appears from (21) that either A!

or C must reduce to zero at the same time. It can easily

be shown that one of the two values of 6 will give A' = 0,

and the other, C = 0. Let that value be chosen which

will make

A' = A cos2 6 + B sin 6 cos + C sin2 = 0.

Solving, we have A + B tan 6 + C tan2
(9 = 0,

The general equation will be reduced by this transforma-

tion to

(29) O'f + D'x + B'y + F=Q,

where (30) C = A + C,

(3n^= BD-2AH
%

±V^2 + 4A2

and (32)^= ^B + 2AD
± V£2 + 4 A2

It appears then that C cannot vanish, since A and

Q have the same sign ; that D' or E' may vanish, but

since BD — 2 AE is the value of the discriminant when

B2 — 4 J. (7= 0, I)' cannot be zero unless A = 0.
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94. Removal of the term in /.— Transform equation

(29) to a new origin (:r , ?/ ). It becomes

(33) O'f + D'x + E"y + F' = 0,

where (34) E" = 2 O'y + E\

and (35) F> = C'y* + D'x
Q + E'y + F.

We can then, in general, choose such values for x and yQ

that E" = F' = 0. Solving the two equations

and C'y* + D% + E'i, + F=0,

, E' , J?' 2 - 4 67'^
we have y = -— , and x =

^ QJJ)]

If D' =£ 0, these values are always finite, and the trans-

formation is possible. The equation will be reduced by it to

(36) C'f + D'x = 0.

If D' = 0, no value can be obtained for x which will

make F' = 0. But if we transform to the point (0, ?/ ),

the equation will be reduced to

(37) C'y2 + F' = 0.

95. Nature of the locus. — When B2 -4AO=0, the

general equation has been reduced by transformation of

coordinates to one of the two forms

(36) Cy + 3'x=0,OTtf=--%;X%

D[

C

(37) C'f + Ff = 0,oTf = --^
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The first of these equations always represents a real

parabola. The second is obtained only when A = 0, and

represents, as we should expect, a pair of lines. In this

case the lines are evidently parallel and

real and distinct, if C and F ! have opposite signs,

real and coincident, if F' = 0,

imaginary, if (7'and F' have the same sign.

It has been shown that

(30) C' = A + C,

and (31) D>=-ZV- 2AE
,

and when A = 0, it can be shown that

4 AF - D2

(38) F' =
±A

From these values the reduced form of the equation can

be determined. But in any numerical problem the method

of the following section will be found to be simpler.

PROBLEM

1. Show that the above conditions which determine the

nature of the parallel lines are the same as those given at the

end of Art. 88.

96. Second method of reducing the general equation to a

simple form, when B2 - 4 AC = 0. — When B1 - 4 AO= 0,

the terms of the second degree in the general equation
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form a perfect square, and the equation can be written in

the form
(ax + cy) 2 + Dx + Ey + F= 0,

where a = V^L and e = V(7.

Introduce arbitrarily the quantity k inside the paren-

thesis, and subtract from the rest of the equation whatever

has been added by this introduction. It becomes

(ax + cy + 7c)
2 + (D - 2 ak)x +(E-2 ck)y + F-k2 = 0.

Now choose such a value for k that the two lines repre-

sented by the equations

ax -f- cy + k =

and (D- 2 a¥)x +(E- 2 ck)y + F-k2 =

shall be perpendicular to each other. Let I be such a

value of k. The equation will then take the form

(ax + cy + 2 = D'x + E'y + Ff
.

Divide both members of this equation by a2 + c2,

and both divide and multiply the second member by

VD/2 + E' 2
, and write the result in the form

fax + cy +W= Vi>'2 + E' 2 (D'x + E'y + F'\

\ ^a^+72 J <# + <? \ VI)'2 + E'2 J

But
x y— is the distance of the point (x, y) from
Vfl2 + c2

the line ax + cy + I = 0. Represent this by y
1
.
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Again, —x ^ —— is the distance of the point
vD'2 +m

(x, ?/) from the line D'x -\- E'y + F' = 0. Represent this

by#'. Then the equation reduces to

n _(y/D'* + E'*\_
l

where x' and y
f represent the perpendicular distances of

any point on the locus from the two perpendicular lines

D'x + E'y + F> =

and ax + cy -f I = 0.

It is therefore the equation of the curve referred to

these lines as Y and Jf-axes respectively. The positive

direction of the X-axis can be fixed by finding the inter-

cepts of the curve on the original axes, and determining

by inspection which way the parabola is turned.

PROBLEMS

1. Plot the locus of the equation

tf _ 2 xy + y
2 - 8 x + 16 = 0.

Following the method described above, write the equation in

the form

(x — y + k) 2 -(8 -f- 2 k)x + 2 ky + 16 - k2 = 0.

If the two lines represented by the equations

x — y + k =

and _(8 + 2 ft) a; -f 2 % + 16 - A:
2 =
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are perpendicular to each other, k = — 2. Substituting this

value in the equation and transposing, it becomes

(x-y-2y = 4:(x + y-3).

Dividing both members by a2 + c
2
, and both dividing and

multiplying the second member by V'

D

n
-f E'

2
, it becomes

(^)'= 2v2(^)V2 {
X + y -° \ or y'2 =2V2x',

where y' is the perpendicular distance of any point (#, y) of

the locus from the line x — y — 2 = 0, and where x' is the

distance from x-\-y—S=0.

It is therefore the equation

of the locus referred to

these lines as X and Y-

axes.

Construct the two lines.

From the original equation

we see that the curve

touches the X-axis at

the point (4, 0), and does

not cut the F-axis. It

is then easily seen which FlG
-
91 -

is the positive direction of the axis O'X', and the curve can be

plotted as in Fig. 91.

2. Plot by this method the locus of the following equations:

(a) x2 - 2 xy + y
2 - 6 x - 6 y + 9 = 0,

(6) x2 + 6 xy -f- 9 y
2 + x - 6 y - 9 = 0,

(c) 2x2 + $y2 + 8xy + x + y + 3 = 0,

(d) f - 2 x - 8 y + 10 = 0,

(e) 4:X2 + 4xy + y
2 + 6 = 0.
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when A = 0,
•

97. Summary.— It has been shown in this chapter that

the general equation of the second degree represents,

' and when B2 — 4 AC< 0, an ellipse (real or

imaginary),
when A * 0,

j ftnd when & _ 4 A Q = ^ ft parabola?

and when B1 — 4 A C > 0, an hyperbola

;

and when B2 — 4 AC< 0, a null ellipse (two

imaginary lines),

and when B2 — 4 A C= 0, two parallel lines

(real, coincident, or imaginary),

and when B2 — 4 A C> 0, two real intersect-

ing lines.

All of these forms may be obtained as plane sections of

a right circular cone, and are all included under the term

"conies." An equation of the second degree must therefore

represent some conic either in its regular or degenerate form.

PROBLEMS

Determine the nature of the locus of each of the following

equations

:

1. 3x?-2xy + y
2 + 2x + 2y + 5 = 0.

2. x2 + xy + y
2 + 2 x + 3y -3 = 0.

3. 2X2 - 5xy- 3/4-9 x- 13 y + 10 = 0.

4. 4z2 + 2xy-\f + 6x + 2y + 3 = 0.

5. 9x2 - 12xy + ±tf- 24 a; + 16 y- 9 = 0.

6. 9arJ -6a-?/ + ?/
2 + 4a; + 3?/ + 16 = 0.

7. 25 x2 + 40 xy + 16 y
2 + 70 x + 56 y + 49 = 0.

8. 13 a;
2 + 14 ajy + 5 y

2 + 14 x + 10 y + 5 = 0.

9. 4 x2 + 9 t/
2 - 8 a? + 54 y + 85 = 0.

10. 3a:2 + 10a^ + 7?/
2 + 4x-f-2?/ + l = 0.
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98. General equation in oblique coordinates.— If the

general equation is referred to axes which are oblique,

we can first transform to rectangular axes with the same

origin. The resulting equation will be in the form

A'x2 + B'xy + Cif + D'x + E'y + F'= 0.

This can then be treated by the methods of this chapter.

It must, therefore, represent a conic.

99. Conic through five points. — The general equation

of the second degree contains six constants, but only five

of these are independent, since any one we please may be

reduced to unity by division. Five conditions are therefore

sufficient to determine the conic. For example, it can be

made to pass through five points, and in general no more

than five. For, if the coordinates of the five points are

substituted in turn in the general equation, there will be

five equations from which, in general, we can determine

five coefficients in terms of the sixth, which will divide

out after substitution. If a sixth point were given, there

would be six simultaneous equations in five variables,

which is not possible unless some of the equations are not

independent. This will only happen when the sixth point

lies on the conic through the other five.

If three of the points lie on a line, the conic evidently

breaks up into this line and another line through the other

two. If four points lie on a line, the solution is indeter-

minate ; for this line and any other through the fifth

point will be a conic through the five given points.

Other conditions may be given, as in the case of the

circle, where A = C and B= 0. These two conditions
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restrict the number of points through which a circle can

be passed to three. Similarly, a parabola can be passed

through only four points, since the condition B1— 4 AC=Q
must be satisfied. But here, since the condition is a quad-

ratic, there may be two parabolas which pass through the

four points ; or imaginary solutions may be obtained, and

four points may therefore be chosen through which no real

parabola can be drawn.

PROBLEMS

1. Find the equation of a conic through the points

(a) (2, 3), (0, - 3), (2, 0), (5, 5), (- 5, - 5).

(6) (5, 3), (4, 4), (2, 6), (7, 1), (0, 0).

(o) (2, 4), (4, 3), (6, 2), (0, - 1), (1, 0).

2. Find the equation of a parabola through the points

(a) (0,0), (8,8), (4,2), (-4,2).

(b) (0, 0), (1, 0), (- 1, 1), (- 1, - 1).

(c) (4,3), (0,-4), (6,1), (-6,2).

(d) (12,-6), (3,0), (0,2), (-3,4).

3. Determine the nature of the conies obtained in problems

1 and 2.



CHAPTER XIV

PROBLEMS IN LOCI

1. Find the locus of the vertex of a right angle whose

1.
or ij'

sides are tangent to the ellipse — + *-

<(-

The equations of any two perpendicular tangents P'

K

and P'L may be written in the form

y Ip + 'y/lfcP + lPi

and t/ = ljc + ^l
2
*a2 + P,

where l
1
l2
= — 1. If JP

f

is their point of intersection, its

coordinates (V, y') must

satisfy both equations.

Substituting these co-

ordinates, and replacing

l
2
by , we have

y = ^+VZ
1

2a2 -h^2
,

Fig. 92.

two equations in x\ y\
and the variable param-

eter lv By eliminating lv we shall obtain a single equa-

tion in xr and y
f

. Clearing of fractions, transposing, and

squaring,

185
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y'2 - 2 l
x
x'y' + l

2x' 2 = l
2a2 + b2

l
2y'2 + 2 Z^y 4- x' 2 = a2 + ^

262

Adding, (l + Z
1
2)y 2 +(l + ?

1
2)^2= (l + ?

1

2)a2+ (l + Z
1
2
)62 .

Dividing by (1 + I
2
), y'2 + a:'

2 = a2 + 62
,

or x2 -+- ?/
2 = a2 + 62 .

The locus is the director circle, a circle having the same

centre and Va2 + b2 as radius.

2. Find the locus of the intersection of perpendicular

tangents to a parabola.

3. Find the locus of the intersection of tangents to the

ellipse if the product of their slopes is constant.

As in problem 1, the equations connecting x\ y\ lv and

Z
2 are

(i) / = z
1
^+VZ

1

2^2 + P,

(2) y' = l
2
x'+Vl

2
2a2 + b2

,

(3) 1,1, = k.

But the method of elimination used in that problem

will not apply here. Transpose and square (1) and (2),

y'2 - 2 l^'y* + l
2x'2 = l

2a2 + b2
,

y'2 - 2 l
2
x'y f + ?

2
V2 = J

2a2 + b2 .

Write these as affected quadratic equations in l
x
and Z

2,

(4) (a2 - xf2
) I

2 + 2 x'y\ + b2 - y' 2 = 0,

(5) (a2 - x'2) I
2 + 2 x'y'l

2 + b2 -y' 2 = Q

If now we write the equation

(6) (a2 - x'2
) z2 + 2 x'y'z + b2 -y'2 =0
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(an affected quadratic in 2), it appears from (4) and (5)

that l
x
and l

2
are the two roots of (6), and hence that

b2 — y' 2 b2 — y'2

lih = n2 U '
But llh = k- Hence ^-^T2 = k is the

equation of the desired locus. Dropping primes and

reducing, we have kx2 — y
2 = ka2 — b2 .

If k = — 1, it becomes x2
-h y

2 = a2 + b2 , as in problem 1.

4. Find the locus of the intersection of tangents to the

parabola if the product of their slopes is constant.

5. Find the locus of the feet of perpendiculars from

a focus on tangents in the (a) ellipse, (5) hyperbola,

(c) parabola.

6. Find the locus of the intersection of tangents at the

ends of conjugate diameters of an ellipse.

Note. — Solve this as a special case of problem 3.

7. Find the locus of the intersection of tangents at

the ends of conjugate diameters of an hyperbola.

8. Radii vectores are drawn at right angles from the

centre of an ellipse. Find the locus of the intersection of

tangents at their extremities.

9. Find the locus of the middle point of chords joining

the ends of conjugate diameters of an ellipse.

Let (V, y) be the middle point of any such chord. If

(rr^j) are the coordinates of Pv (

~~,
?
-—1

)
will be the

coordinates of P
2

.

ay. bx*
x*~b y^^r

Then x' = ^ »
and V*

= 2 '

or (1) 2 bx' = bx
x
— ayv

and (2) 2 ay' = ay
x
+ bxv
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Since (x
xy^) lies on the ellipse,

(3) b2x 2 +a2
y

2 = a2b2 .

From these three equations we can obtain a single

equation in x' and y' by

eliminating x
1
and yv

From (1) and (2),

„. _ hx' + ay'_

*-*
b

' -bx'

a

Fig. 93.

Substituting these val-

ues in (3), it reduces to

a? ,y^_ 1

'a
2 b2

~2

10. Find the locus of the vertex of a triangle whose

base is a line joining the foci and whose sides are parallel

to two conjugate diameters.

11. Find the locus of the middle point of chords

drawn through a fixed point in the (a) ellipse, (£>)

parabola.

12. Tangents are drawn to the parabola y
2 =2mx.

Find the locus of their pole with respect to the circle

x2 + y
2 = r2 .

13. The two circles x2 + y
2 = a2 and x2 + y

2 — ax =
are tangent internally. Find the locus of the centres

of circles which are tangent to both the given circles.
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Let the two circles be drawn, and let (V, y') be the

centre of any circle which is tangent to both circles.

Then the lines O'P' must

pass through B, the point

of contact of the two

circles, and OP' must

pass through 0. Hence,

P'0=00-OP'
= r- OP',

and P'B = P'0'-BO'

= P'0' -->

But P' C and P'B are

radii of the same circle.

Hence, r-OP' =P'0'

Fig. 94.

Or f-v.x' 2 4- y'2 4 + y
'2

Squaring and reducing, the equation of the locus re-

duces to 8 x2 + 9 y
2 — 4 rx — 4 r2 = 0. What curve is this

and how is it situated?

14. Find the locus of the centres of all circles which

pass through the point (0, 3) and are tangent internally

to x2 + y
2 = 25.

15. Find the locus of the centres of circles which are

tangent to a given circle and pass through a fixed point

outside of that circle.

16. Lines are drawn from the point (1, 1) to the

hyperbola x2 — y
2 = 1. Find the locus of the points which

divide these lines in the ratio of 2 to 1.
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17. Lines are drawn from the centre of the circle

x2 + y
2 = r2, cutting the circle in A and the line, x = a,

in B. Find the locus of P, if 0, A, B, and P form a

harmonic range. Show that the result will represent an

ellipse, hyperbola, or parabola, according as 4 r2 < a2,

4 r2 > a2, 4 r2 = a2 .

18. Find the locus of the vertex of a triangle if the

length of the base is c, and the product of the tangents

of the base angles is k.

Let P r be any position of the vertex of the triangle,

and 00 the base. We know that

tan OOP' • tanP'C0 = &.

But tan OOP = ^,
x'

and tan P'

6

7 = -^—-•

c — x

Hence the condition which

must be satisfied is

J2
Fig. 95. tf = Jc.

x\c - xf

)

Dropping primes and reducing, we have

Jcx2 + y
2 — hex = 0.

This will be an ellipse or hyperbola, according as h is

positive or negative. In either case the coordinates of

the centre will be & »)• and the semi-axes will be - and

19. Find the locus of the vertex of a triangle if the

length of the base is c, and the product of the tangents
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of the half base angles is k. Show that the locus is an

ellipse with the extremities of the base as foci.

Note. — Express the tangents of half the base angles in terms of the

ft)(* ~ Othree sides by the aid of the formula tan \ y s(s — a)

20. Find the locus of the vertex of a triangle if the

length of the base is c, and one of the base angles is twice

the other.

21. Find the locus of the intersection of tangents to the

(a) parabola, (5) ellipse, (<?) hyperbola, which include an

angle 6.

Show that if 6 = 90°, the results reduce to those ob-

tained in problems 1 and 2.

22. Find the locus of the centre of a circle which

passes through a fixed point and touches a given line.

23. A straight line, whose length is c, slides between

two perpendicular lines. Find the locus of the intersec-

tion of the medians of the triangles formed.

24. If a straight line passes through a fixed point,

find the locus of the middle point of that portion of it

intercepted between two perpendicular lines.

25. Tangents are drawn to a circle from a variable

point on a given fixed line. Prove that the locus of the

middle point of the chord of contact is another circle.

26. Find the locus of the intersection of a tangent to

the circle x2 + y
2 = a2, and a perpendicular on the tangent

from the point (a, 0).

27. Find the locus of the poles, with respect to the

parabola y
2 =z 2 rnx, of tangents to the parabola y

2= —2mx.
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28. Find the locus of the middle points of chords of

an ellipse whose poles lie on the auxiliary circle.

29. Find the locus of the intersection of two perpen-

dicular lines which are tangent respectively to two con-

focal ellipses.

Let the equation of the

two ellipses be

C1) T + S = 1 '

az b2

Since they are confocal,

the value of c will be the

F same in both. Hence

(3) a2 ~52 = a
1
2 -6

1
2

.

The equations of the tangents to (1) and (2) are

y = lx+ VPa2 + b2
,

y 7
T \ 72 +v.

Let (a;', ?/') be their point of intersection. Then

y' = lx
f +-VlW + b\

The elimination of Z will give a single equation in xl

and y'. Transpose and square.

y'2 - 2 Ix'y' + ZV2 = Z
2a2 + Z>

2

Zy2 4-2Zrry+ z'2 = a^ + V^2

Adding, (1 + P)y' 2 + (1 + Z
2>' 2 = a

x
2 + a2

Z
2 + b2 + V?2
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J kit from (3), af + h2 = «2 + b 2
.

Substituting and factoring, we have

(1 + l
2
)ij'

2 + (1 + P)x'2 = a\l + I
2
) + b 2(\ + Z

2
),

ij2 + s'2 = a2 + ^2
,

or, dropping the primes, we have for the equation of the

locus

x2 + y
2 = a2 + b 2

.

30. Find the locus of the intersection of two perpen-

dicular lines which are tangent respectively to two con-

focal parabolas.

Note. — Write the equation of the parabola referred to the focus as

origin, y
1 — 2 mx + w2

, and obtain the equation of the tangent to it in

terms of the slope, y = Ix + m^ + l^
>

31. Find the locus of the points of contact of tangents

drawn from a fixed point on the principal axis to a set

of confocal ellipses.

32. Find the locus of the middle points of chords in a

circle, which are tangent to an internal concentric ellipse.

Let (V, y') be the middle point of the chord, and

(xv 2/j) and (#2 , 3/2) its extremities. Then the equation

of the chord will be

The condition which makes this line tangent to the

ellipse W'x2 + a2
y
2 = a2b2 is

(1) (**i-**Jfj9*-*X# + 52.

\ x
2
— x

x J \x
2
— xj

Since (x
xy^) and Qr

2y^) are on the circle,
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(2) x* + y* = r\ and (8) <fc'+ ft
1 - **•

Also, (4) x' =
X-i±^, and (5) y> = y-l±Ms.

From these five equations Ave can eliminate xv yv xv
and yv and obtain a single equation in x' and y\ which

will be the equation of the locus.

33. Given two concentric ellipses, one within the other,

on the same axes. Find the locus of the pole of tangents

to the inner with respect to the outer.

34. Find the locus of the middle points of a set of

parallel chords intercepted between an hyperbola and its

conjugate.

35. Normals are drawn to an ellipse and the circum-

scribing circle at corresponding points. Find the locus

of their point of intersection.

36. A perpendicular is drawn from a focus of an ellipse

to any diameter. Find the locus of its intersection with

the conjugate diameter.

37. Find the locus of the middle point of all chords of

an ellipse of the same length 2 c.

Note. — Find the polar equation of the ellipse referred to the point

(sc', y') as origin. Then express the conditions that the two values of p

are each equal numerically to c, but opposite in sign. Eliminate 0.

38. Find the locus of the intersection of the ordinate

of any point of an ellipse, produced, with the perpendicu-

lar from the centre to the tangent at that point.



CHAPTER XV

HIGHER PLANE CURVES

100. Introduction. — Any locus which lies wholly in a

single plane, and which cannot be represented by an

algebraic equation of the first or second degree, is spoken

of as a higher plane curve. Their equations may be purely

algebraic, or they may involve functions other than alge-

braic, when they are spoken of as transcendental. There are

an infinite number of such curves ; but only a few of those

which are of importance in y

the study of the Calculus

will be discussed here.

101. The parabolas. —
The locus of any equa-

tion of the form y = axn

is called a parabola of the T >

/7th degree. It is usual

to restrict n to values

greater than unity. If

n = 2, we have the ordi-

nary parabola along the

F-axis. If n= 3, the

locus is called the cubi-

cal parabola, and has the

form shown in Fig. 97. If n

Fig. 97.

|, the locus is called the

semicubical parabola, and has the form shown in Fig. 98.

105
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All parabolas are similar to one of these three forms

according to the value given to n.

Let the student plot the locus

for various values of n. Let him

also show that, if n is an even

integer, or a fraction with an even

numerator and an odd denomina-

tor, the curve is similar to the

ordinary parabola ; if n is an odd

integer, or a fraction with an odd

numerator and an odd denomina-

tor, the curve is similar to Fig. 97 ;

while, if n is a fraction with an

odd numerator and an even de-

nominator, the curve is similar

to Fig. 98.

102. The Cassinian oval. —The
locus of a point, the product of

whose distances from two fixed points is constant, is

called a Cassinian oval. The two fixed points are called

the foci of the oval.

To find its rectangular

equation, let the X-axis

go through the two foci,

F and F, and let the

T-axis bisect FF . Take

OF equal to e, and let

(x, y) be the coordi-

nates of P, any point

on the locus.

Fig. 98.
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Then FP = V(z - c)2 + ~y\ and F'P = V(x + c) 2 + f.

But FP.F'P = m2
.

Hence [0 - c)2 + f] [O + c) 2 + y
2
] = m4

,

or (a? + y
2 + c2)

2 - 4 c2x2=m*

is the equation of the Cassinian oval.

The intercepts of the curve on the axes are ± Vc2 ± m2

and ± Vm2 — c2 . Hence if c<m, the curve cuts each axis

in two real points and has the form shown in Fig. 99.

While if e>ra, the curve cuts the X-axis in four real

points but does not cut the I^-axis. It must, therefore,

consist of two distinct ovals, as shown in Fig. 100.

If c = m, all the intercepts are zero and the curve

Fig. 100.

goes through the origin. In this case the equation re-

duces to

x2 + y
2 = 2 c2(x> - y

2
),

or in polar coordinates,

p
2 =2c2 cos 2 6.

This special form of the Cassinian oval is called the

lemniscate. It has already been discussed on page 67.
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103. The cissoid. — The cissoid may be defined as

follows : on any diameter OA of a circle, lay off equal dis-

tances CM and CN on each side of the centre, and at the

points M and N erect MK and NL perpendicular to the

diameter. Draw OK and OL.

The locus of the intersection of

OK with NL and OL with MK
is the cissoid of Diodes.

To obtain its rectangular equa-

tion, let OA be the X-axis and

the origin. Then 031= NA= x,

and

NL = VON- NA = V(2 a - x)x.

From the similarity of the tri-

angles OMP and ONL,

OM: ON:: MP : NL,

or x

:

: 2 a — x : : y : V(2 a — x):

Fig. 101.
Hence y

1 = -

za — x

which is the rectangular equation of the cissoid. It is

evidently symmetrical with respect to the X-axis, and

has the line x = 2a as an asymptote.

104. The conchoid. — Let A be a fixed point at a dis-

tance a from a fixed line OX. Draw the line AP
through A cutting OX at B, and on this line lay off a

constant distance BP(=b) both ways from B. The

locus of P is called the conchoid of Nicomedes.

To find its rectangular equation, take the fixed line
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OX as the X-axis, and OA as the F"-axis. Drop a per-

pendicular from P on the X-axis and continue it to meet

AK, drawn parallel to the same axis. Then

But

Hence

or

AP = V*2 + (# + a)2
, and #P = £.

AP = KP
BP MP

g2 -K,y + fl)
2

= Q/ + a)2

62 y2

Y

The fixed point ^1 is called the pole, and the fixed line

OX the directrix of the conchoid. If a < b, the curve has

the form shown in Fig. 102. If a — 5, there is no loop,

but the curve has a cusp at A. If a > 5, the lower branch

of the curve cuts the F-axis in a single point above A.

Note. — Among the most noted problems of the ancient mathema-

ticians were the Trisection of an Angle and the Duplication of the Cube

by the aid of ruler and compass alone. It has lately been shown that

the solution of these problems in this way is impossible. Both problems

involve the solution of a cubic equation, and both may be made to depend

upon the construction of two mean proportionals between two straight

lines. This has been accomplished in various ways by aid of higher

plane curves, and it was for this purpose that both the Conchoid and

Cissoid were invented.
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105. The cycloid. — The path described by a point on

the circumference of a circle which rolls on a straight

line is called a cycloid.

Let C be the centre of the moving circle of radius a,

and let P be the fixed point on its circumference. To

find the rectangular equation of the curve, let the X-axis

coincide with the fixed line, and choose as the origin of

coordinates one of the points where P coincides with

that line. Draw CM perpendicular to OX, and PK

Fig. 103.

parallel to the same line. Let 6 represent the circular

measure of the angle MCP through which the radius

CP has revolved. Let the coordinates of P be (x, y).

Then
x = OM- PK, and y = MC- KC.

But 0M= arc MP = a0,

PK= PC sin 0,

and KC= PC cos d.

Hence x — a (6 — sin 0),

y = a(l — cos 0).

If is eliminated from these two equations by finding
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its value in the second equation and substituting in the

first, we have

x = a vers-1 ( - ) — V2 ay — y
2

.

But this single equation is not so convenient to use as

the pair of equations from which it was obtained. These

two equations, containing a third variable, are equivalent

to the single equation from which 6 has been eliminated.

The locus consists of an infinite number of branches,

similar to the one shown in Fig. 103, extending both to

the right and to the left of the origin.

106. The hypocycloid.— The path described by a point on

the circumference of a circle which rolls on the inside of a

fixed circle is called a hypocycloid. Let a be the radius of

the fixed circle,

and b the radius

of the rolling cir-

cle. Let P be

the fixed point on

the rolling circle.

Take the centre

of the fixed

circle as the ori-

gin of coordinates

and let the X-axis

pass through A,

one of the points

where P coin- FlG
-
104 -

cides with the fixed circle. Consider the rectangular

coordinates (x, y) of any position of P. Drop perpen-

a x
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diculars from C and P to the X-axis, and through P draw

LR parallel to that axis. The radius OK of the fixed

circle, drawn through the point of contact K, passes

through the centre C of the rolling circle. Let ZA0K= $,

and ZPCK= 6. Then, since the arcs AK and PK are

equal, acf) = bd, or 6 = - </>.

o

Now x = 031= ON- PL,

y = MP = NC-LC.

But ON=00 cos
<f>
= (a - 5) cos <£,

iVrC= 0(7 sin (j> = (a-b) sin <£,

PZ = PC7 cos RPC=b cos [180° -(0- £)]

= — b cos (6 — $)= — b cos f——— j c/>,

and LC= b sin (0 — <£)= 5 sin (—-jr—- )<£•

Then x = (a — 5) cos $ + 6 cos f
———

] <£,

y = (a — b~) sin $ — b sin
(

~~

)
<f>.

As in the cycloid, these two equations, containing a

third variable </>, may be used in place of a single equa-

tion in x and y to represent the curve.

The most important special case is the four-cusped hypo-

cycloid, in which a = 4 b. The equations here reduce to

x = | a cos
<f> + \a cos 3 <£,

y = | a sin <j> — | a sin 3 (/>.

But sin 3 <£ = 3 sin </> — 4 sin3 c/>,

cos 3 <£ = 4 cos3 </> — 3 cos <j>.
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Hence x = a cos3 </>,

and y = a sin3
(f>.

Raising to the § power

and adding-, we have

X s + y
% = «*

as the rectangular equa-

tion of the four-cuspecl

hypocycloid. The form

of the curve is shown in

Fig. 105.
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107. The epicycloid. — The path described by a point

Fig. 106.
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on the circumference of a circle which rolls on the out-

side of a fixed circle is called an epicycloid.

Let the student show that the equations of the epi-

cycloid are

'a + b
s

x — (a-\-b~) cos (j> — b cos

y = (« + b) sin <\> — b sin

b

a + b

*

108. The cardioid. — An important special case of the

epicycloid is the cardioid, in which a = b; but instead of

Fig. 107.

obtaining its equation as a special case of that curve,

we shall find it easier to obtain its polar equation at once

from the definition.

Let 0, the original point of contact of the two circles,
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be chosen as the polar origin, and the diameter CA con-

tinued through this point as the polar axis. Let the

second circle roll on the first until the line of centres CC
makes an angle 0G7O"(= </>) with its original position,

and let P be the new position of the point of contact.

Then OP = p, and the angle AOP = 0. From and P
drop the perpendiculars OM and PN o\\ CC. Evidently

the arc OK equals the arc PK, and the angles PC C and

OCC are therefore equal. Then OM=PN, and OP is

parallel to CC. Then 6 = <£.

Now CC = CM+ MN+ NC = 2 a,

or 2 CM+ OP = 2 a,

or 2 a cos 6 -f p = 2 a,

or jo = 2 a (1 - cos 0).

109. The catenary.— The curve assumed by a perfectly

flexible chain of uniform weight per linear unit, when

suspended at its ends, is called a catenary. Its equation

may be obtained in the form

where e is the base of the Naperian system of logarithms,

and the origin of coordinates is a units below the lowest

point of the curve.

110. The spirals. — The curve traced by a point which

revolves about a fixed point, and, at the same time, re-

cedes from or approaches this point according to some

definite law, is called a spiral. The fixed point is called
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the centre, and the curve traced daring one revolution

is called a spire.

If any two radii vectores have the same ratio as the

angles they make with the initial line, the equation of

the spiral is evidently p = kO. The form of the curve

is shown in Fig. 108. The dotted line indicates the

portion of the locus obtained by

giving negative values.

Let the student plot the spirals

whose equations are

The curve whose equation is

log p = Jc0, or p = a9
, is called

the logarithmic spiral. When
= 0, p = 1. For increasing

positive values of 0, p increases

very rapidly ; while for decreas-

ing negative values of 0, p decreases more and more

slowly, and approaches zero as a limit. There are, there-

fore, an indefinite number of spires, growing smaller as

they wind about the origin, but never passing through

that point.

Fig. 108.



PART II

ANALYTIC GEOMETRY OF SPACE

CHAPTER I

COORDINATE SYSTEMS. THE POINT

1. In the following chapters on Analytic Geometry of

Space, a knowledge of the methods and results of Solid

Geometry and of Plane Analytic Geometry is presumed.

Many of the methods and formulas to be given for three

dimensions are closely analogous to methods and formulas

in two dimensions, with which the student is already

familiar ; and in all such cases the discussion will be

condensed into as brief a form as possible.

For convenience of reference, the following theorems

and definitions from solid geometry are cited :

If a straight line is perpendicular to a plane, it is per-

pendicular to every line through its foot in the plane.

If a straight line is perpendicular to any two straight

lines through its foot in a plane, it is perpendicular to the

plane.

The angle between two lines not in the same plane

is the same as the angle between two intersecting lines

parallel respectively to the given lines.

207
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The orthogonal projection of a point on a plane (o:* an

axis) is the foot of the perpendicular from the point to

the plane (or the axis). The projection of a portion

of a line or curve on a plane (or an axis) is the locus

of the projections of all its points.

The angle which a line makes with a plane is the angle

which it makes with its projection on the plane.

The angle between two planes is measured by the angle

between two lines, one in each plane, drawn perpendicular

to their intersection at the same point.

2. Rectangular coordinates. — In applying algebra to

the geometry of space, we must first devise some method

of representing the position of a point in space by

numbers.

Construct three mutually perpendicular planes, X-Y,
Y-Z, and Z-X, dividing all space into eight compart-

ments, called octants. These planes are spoken of as

coordinate planes, their point of intersection, 0, as the

origin, and their lines of intersection, OX, OY, and OZ,

as coordinate axes.

A point in space is located by means of its distances,

AP, BP, and CP, from the coordinate planes, measured

parallel to the coordinate axes. The three numbers which

represent these distances are called the rectangular coor-

dinates of the point, and are always written in the order

O* y, z).

We shall consider distances as positive when measured

to the right, forward, or upward ; that is, parallel to

OX, OY, and OZ. Distances measured in the opposite

directions will then be negative, The octant 0-XYZ is
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V

called the first, and the others may be numbered in any

convenient way.

The position of any point (#, y, z) may be determined

by taking on the axes the distances OL, OM, and 6W,

equal to these coordinates,

and through the points X,

M, iV, passing planes parallel

to the coordinate planes,

forming a rectangular par-

allelopiped ; the point of

intersection of these planes _

will be the point required.

It is evident that rectan-

gular coordinates in a plane

is a special case of this more

general system, in which one

of the coordinates has become zero. We ought therefore

to be able to reduce all of the formulas in three dimensions

to the corresponding formulas in two dimensions by plac-

ing z equal to zero.

-p<'
i—i—

> i

j i

J'

Fig. 1.

PROBLEMS

1. Plot the following points

:

(5, 4, 3), (- 3, 4, 1), (- 3, - 1, 2), (2, - 3, 1), (1, 1, - 2),

(-1, 4, -2), (-3, -2, -1), (4, -1, -2); (3, 4, 0),

(-2, 0, 1), (0, -1, 3); (5, 0, 0), (0, 3, 0), (0, 0, -2).

3. Distance between two points. — Let P
x
and P

2
be

any two points in space, and through each of them

pass three planes parallel to the coordinate planes, form-

ing a rectangular parallelopiped.
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Since the square of the diagonal of a rectangular

parallelopiped equals the

sum of the squares of its

edges,

iyy = />,*,' +JW
+P

1
T

1
'.

But P
1
B

1
= x

2
— xv

A#i = #2 - VV

and P\T
X
= z9— zv

Fig. 2.

Hence P
1
P

2
= V(*2 - #i) 2 + (2/2 - 2/O

2 + (s2 - »i)
2
. [1]

The distance, /a, of any point from the origin is

P =V^ + 2/
2 + z2

. [2]
evidently

4. To divide a line in any given ratio. — Let the point

P P mP divide the line P
X
P2

so that —J— =PP
Project the line P

X
P2

on the X- ^-plane, form-

ing the trapezoid P
1
C

2 ,

in which
1
P

1
= zv

C
2
P

2
= z

2 , and OP = z.

It will be noticed that

this is the same figure

used in Art. 13, Part I.

Hence

z- iniZ\ + m,\Zi
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If P
xP<i is projected un the other planes, we obtain in

like manner

= tggr , + mM d = rn^ + rnM
.

rg-,

ini + m* * " rni + m? L J

If the line is bisected, these formulas become

«=*4*. V=^tU\ and . = * + * [4]
2

PROBLEMS

1. Find the length of the line joining the two points

(3, 2, — 1) and (4, — 2, G) and the coordinates of the point

which divide this line in the ratio 3 : — 2.

2. Find the coordinates of the centre of gravity of the tri-

angle whose vertices are (.r„ yx , z^), (x.2j y.2, z2), and (x3, y.3, %).

3. Prove that in any tetraedron the four lines joining the

vertices with the centres of gravity of the opposite faces meet in

a point, which is three-fourths of the distance from each vertex

to the opposite face. (This point is the centre of gravity of

the tetraedron.)

4. Show that the centre of gravity of any tetraedron bisects

each of the four lines joining the middle points of the opposite

edges.

5. Show that the straight lines which join the middle points

of the opposite sides of any quadrilateral meet in a point and

are bisected at that point.

6. Show that the sum of the squares of the diagonals of any

quadrilateral is twice the sum of the squares of the lines which

join the middle points of the opposite sides.

5. Projection of a given line on a given axis. — It is

required to find the projection on the axis OX of the lind

AB which makes an anode a with the axis.
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Through A and B pass planes perpendicular to the axis,

cutting it at A' and B' . Then A'B' will be the pro-

jection of AB on OX. Through A draw the line AC
parallel to OX. Then

A C= A'B', and the angle

CAB=a. In the right

triangle ABC,

AC—X • = cos a.
AB

Hence

A'B' = AB cos a. [5]
Tig. 4.

That is, the projection of a line on an axis is equal to the

length of the line multiplied by the cosine of the angle which

the line makes with the axis.

The projection, A'B', of a directed line, AB, is evidently

a directed line. If a broken line AB, BC, CD is pro-

jected on an axis, the algebraic sum of the projections

of its parts will be the distance along the axis from the

projection of A to the projection of D. The projection on

any axis, then, of any closed path AB C...A in space, which

is looked upon as generated by the movement of a point

from A to B, B to C, etc., is zero.

6. Polar coordinates. — Let OX, OY, OZ be a set of

rectangular axes in space, and let P be any point. Draw

OP.

The position of P is evidently determined if we know

its distance p from the origin, and the angles a, /3, and 7

which OP makes with the coordinate axes.

The distance p is called the radius vector of the point
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P ; «, /3, and 7, the direction angles of the line OP ; and

the four quantities (jo, «, /3, 7), the polar coordinates of the

point. Cos a, cos /3, and cos 7 are called the direction

Fig. 5

cosines of the line OP, and may be represented by the

letters Z, ???., and n.

Let L, M, and JV be the projections of P on the axes.

Then OL = x, 031=7/ and ON=z; and from right tri-

angles we have
X = p COS a,

y = p COS P, [6]

» = p COS Y.

These equations give the relations between the rec-

tangular and polar coordinates of any point. Squaring

and adding, we have

x2 + y
2
-f 22 = p

2 (cos2 a + cos2 ft + cos2 7)

.

But from [2], p
2 = x2 + y

2 + z2 .

Hence cos2 a + cos2
p + cos2 y = !• [7]
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That is, the sum of the squares of the direction cosines

of any line is unity. Hence the four quantities used as

polar coordinates of a point are equivalent to only three

independent conditions, as we should expect.

We may always choose these coordinates so that they

shall all be positive and so that the angles «, /3, y shall

not be greater than 180°.

since any line parallel to OP makes the same angles

with the axes, we may define the direction cosines of any

line in space as the same as the direction cosines of a paral-

lel through the origin.

PROBLEMS

1. Find the direction angles of a line equally inclined to

the three axes.

2. If I, m, and n are the direction cosines of a line, show

that — I, — m, and — n are the direction cosines of the same

line running in the opposite direction.

3. Find the direction cosines of the line joining the origin

to the point (2, 6, 2), and the projection of the line on each of

the coordinate axes.

4. Find the direction cosines of the line joining the points

(2, 5, 1) and (3, 1, 8), and the projection of the line on each of

the coordinate axes.

5. Show that any three numbers are proportional to the

direction cosines of some line.

6. Find the direction cosines of a line which are propor-

tional to the numbers 1, 2, 3.

7. Show that the square of the distance between two points

whose polar coordinates are (p ly «1? /?2 , yx) and (p2, ci2, /?2, 72) is

p\ + P2
2 — 2 pip2 (cos % cos «, + cos /?! cos (3.2 + cos yx cos y2).

8. A line makes an angle of 60° with the X-axis, and 45 D

with the y-axis. What angle does it make with the Z-axis ?
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7. Spherical coordinates. — Let OX, OY, OZ be a set of

rectangular axes in space, and let P be any point. Draw

OP, and pass a plane through OZ and OP. The position

of any point in space is determined, if we know the dis-

Fig. 6.

tance p from the origin to the point ; the angle which

the plane ZOP makes with the fixed plane ZOX; and the

angle <p which OP makes with OZ.

The line OZ is called the polar axis, and the point the

pole. About as a centre describe a sphere with OP as

radius. The plane ZOP will intersect the sphere in a

meridian circle. The angle 6 may be called the longitude

of P, and the angle <£, the colatitude. The distance p is

called the radius vector and (jo, </>, 0) are called the spherical

coordinates of P. The arrows indicate the usual choice of

positive direction.
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Let the student show that the relations between rec-

tangular and spherical coordinates are

oc = p sin <|> cos 6,

y = p sin
<f>
sin 0, [8]

z — p cos <|>.

Note.— Spherical coordinates have usually been called polar coordi-

nates. But the application of the system described in Art. 6 is more

nearly analogous to the uses of polar coordinates in two dimensions.

8. Angle between two lines.— Let uv /3r 7r and «
2 , /32 , y2

be the direction angles of two lines, and let 6 be the angle

between them. Draw parallels to these lines through the

origin, and on each of these parallels take a point, as P
x

and P .

Then by [1]

Fig. 7.

*VY = Oi - ^) 2 + (jfi - y*y + Oi - *
2)

2
>

or by [6] = (p x
cos a

x
— p2

cos «
2)

2
~l~G i

cos ^i~p2 cos ^) 2

+ 0>icos7
1
-

/
?
2
cos7

2)
2

,

or by [7] = Pi+p^ — 2 p xp2
(cos a

x
cos a

2 + cos /3X cos fi2

-f- cosyj cos7
2 ).
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But by the law of the cosines

Hence cos = cos ax cos a2 + cos pi cos p2 + cos 71 cos 72. [9]

If the lines are perpendicular cos 6 = 0, and the condi-

tion for perpendicularity is

cos ai cos a2 4- cos Pi cos p3 + cos -yi cos Y2 = 0. [10]

If the lines are parallel, they must make the same angles

with the axes, and the conditions for parallelism are

01 =o2, Pi = p2 , and 71 = Y2. [11]

PROBLEMS

1. Show that the three lines whose direction cosines are

12-3-4. 4 12 3 . orirl 3 -4 1 2
T5> T^> T 3 J T¥> T 3 > T3 J

djllu T3 J T

3

> T

3

are mutually perpendicular.

2. Show that (3, 30°, 60°, 90°), and (5, 30°, 90°, 60°) are

possible polar coordinates of two points, and find the angle they

subtend at the origin.

3. Show that the conditions for parallelism are consistent

with [9] when = 0°.

4. Find the rectangular coordinates of the points in

problem 2.

5. Find the polar coordinates of the point (3, — 6, 2).

.

6. Find the angle subtended at the point (1, 2, 3) by the

points (2, 3, 4) and (5, 4, 3).
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9. Transformation of coordinates. Parallel axes.— If

the new axes are parallel to the old, and the coordinates

of the new origin, re-

ferred to the old axes, are

(# , y , 2 ), the equations

of transformation are

easily seen (see Fig. 8)
x to be

ac = x + oc'f

V = 2/o + V, [12]

Z = Z + Z .

10. Transformation of coordinates from one set of rec-

tangular axes to another which has the same origin. — Let

(«ii fiv Yj), («2 , £2 , 72), and («3 , /33 , y3 ) be the direction

angles of OX\ OY\ and

OZ' with respect to the

original axes. The coor-

dinates (#, y, 2) of any

point P are the projec-

tions of OP on OX, OF,

and OZ. But the broken

line made up of x\ y
!

, and

z' extends from to P,

and will therefore have

the same projections on Y

the axes as OP. Hence

(by Art. 5)

Fig. 9.

ac = x' COS ai + y' cos a2 + Z' COS a3 ,

y = 05' cos Pi + y' cos p2 + s' cos p3 ,

3 = 05' cos 71 + 2/' cos 72 + z' COS 73.

[13]
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Let the student show that the transformation of coordi-

nates cannot alter the degree of an equation. (See Art.

50 Part I.)

PROBLEMS

1. What will be the direction cosines of OX, OY, and OZ
referred to the new axes in Art. 10 ?

2. What six relations hold between a
lf ft, y1} u2 , ft, etc.,

from [7] ?

3. What six relations hold between u1} ft, yl9 a2, (32, etc.,

from [10] ?

4. Show that the twelve relations obtained in problems 2

and 3 are equivalent to only six independent conditions. How
many of the coefficients in equations [13] are independent ?



CHAPTER II

LOCI

11. Equation of a locus. — If a point moves in space

according to some law, it will generate some locus. As,

for example, a point keeping at a fixed distance from a

fixed point will generate the surface of a sphere. If we

can translate the statement of the law into an algebraic

relation between the coordinates of the points which satisfy

the law, we shall have, as in plane analytic geometry, an

equation which can be used to represent the locus. In

the above example, if the origin is at the centre, the equa-

tion of the surface will be x2 + y
2 + z2 = r2 ; for this states

that the point (x, y, z), which satisfies it, must remain at

the distance r from the origin.

The planes parallel to the coordinate planes are evi-

dently represented by x = kv y = &
2 , and z = Jc

s ; for these

equations state that the points which satisfy them are at a

fixed distance from the coordinate planes.

PROBLEMS

1

.

What are the equations of the coordinate planes ?

2. What are the equations of the planes bisecting the angles

between the X-Y and 5 -Z-planes ? Between the Y-Z and

Z-X-planes ?

3. What equation must be satisfied by the coordinates of a

point which remains at a distance of 5 units from the X-axis ?

5 units from the F-axis ? What is the locus in each case ?

220
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4. Find the equation of the locus of a point which is 5

units from the point (3, 2, 5).

5. What equations must be satisfied by the coordinates of

a point which is equidistant from the three points (1, 3, 8),

(- 6, - 4, 2), and (3, 2, 1) ?

12. Cylindrical surfaces. — If a cylindrical surface is

formed by the movement of a line, which remains parallel

to one of the axes, while moving along a directing curve

in the plane of the remaining axes, its equation in three

dimensions will be the same as the equation in two dimen-

sions of the directing curve, and will contain only two

variables. For, suppose the line remains parallel to the

Z-axis and the directing curve lies in the X-Z-plane ; then,

for any position of the line, the relation between the x and

y coordinates of any point on it will be the same as the

relation between the x and y coordinates of the point where

the line touches the directing curve, while the z coordi-

nate may have any value whatever. The equation in x

and y of the directing curve is, therefore, the only necessary

relation between the coordinates of any point on the sur-

face, and as it is not satisfied by any point not on the

surface, it is (when interpreted as an equation in three

dimensions) the equation of the surface.

In a similar manner, it may be shown that the equations

of cylindrical surfaces, whose elements are parallel to the

JT-axis, contain only y and z ;
parallel to the !F-axis, only

x and z.

13. Surfaces of revolution.— Surfaces generated by the

revolution of a plane curve about one of the coordinate

axes form another class of surfaces whose equations can

be determined easily.
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For example, let it be required to determine the equation

of the surface generated by the revolution of the ellipse

1 about the X-axis. Let P' (V, y\ z') be any

z

a? r
a
2_h

62

Fig. 10.

point on the surface, and through P' pass a plane perpen-

dicular to the X-axis. The section of the surface made

by this plane is evidently a circle. Hence LP' = LK.

But LP' = V/M^T2" and OL = x\

The coordinates of iT in the X-P-plane are, therefore,

x' and Vy2 + z'
2
, and since K is a point on the ellipse

1, these coordinates must satisfy that equation,
^2 f
a
2_h

62

or +
y"> + z> = 1.

Dropping primes, we have as the equation of an ellipsoid

of revolution about the X-axis,

a2
"^2 "^2

" '
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A general rule for finding the equation of a surface of

revolution, formed by revolving a plane curve about one

of the coordinate axes, may be stated thus: Replace in the

equation of the plane curve the coordinate perpendicular to

the axis of revolution by the square root of the sum of the

squares of itself and of the third coordinate.

PROBLEMS

1. Find the equation of the surface generated by a line

moving parallel to the Z-axis along

x2
if

(a) the ellipse - + |-2
= 1,

(b) the parabola y
2 = 2 mx,

(c) the line x + 3 y = 6.

2. What is the equation of a circular cylinder whose axis is

parallel to the F-axis and passes through the point (3, 0, 5),

and whose radius is 5.

3. Find the equation of the surface of revolution, formed by

revolving about the X-axis

(a) the line y = 4, (a cylinder)

(6) the line x = y, (a cone)

(c) the circle x2
-\- y

2 = r2

,
(a sphere)

(cZ) the parabola y
2 = 2 mx, (a paraboloid of revolution).

4. Obtain the equations of the hyperboloids of revolution

formed by revolving the hyperbola about (a) its transverse

axis ; (b) its conjugate axis.

14. Locus of an equation.— Again, as in plane analytic

geometry, an equation between x, y, and z expresses a

necessary relation between the coordinates of every point

which satisfies it, and hence cannot be satisfied by points

taken at random in space. It is easy to see that the
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points which satisfy it may be taken as near to each other

as we please. Moreover, any such equation represents a

surface of some kind, as we shall now prove.

Let/(:r, y, z)= Q be an equation of any degree between

x, y, and z. If we substitute x — k (any constant), the

resulting equation, f(y, z} = 0, must represent the rela-

tion between y and z for all points of the locus for which

x = k, or which lie in a plane at distance k from the

Y-Z-plane. But since the locus of /(?/, z) = lies wholly

in this plane, it is a plane curve. Hence the intersection

of any plane parallel to the Y-Z-plnne with the locus of

f(x, y, z) = is a plane curve. This can be proved in

like manner for all planes parallel to the X-Y and X-Z-
planes. If the axes are revolved through any angle, the

equation of the locus will be of the same general form

and every plane parallel to the new axes will cut it in a

plane curve. Hence all planes cut the locus in a plane

curve, and the locus is therefore a surface.

If, in particular, the equation is of the first degree, its

intersection with any of these planes will be a straight

line. An equation of the first degree therefore always

represents a plane.

If an equation does not contain a term in z, the relation

between x and y will not be changed by a change in z.

The sections of the locus parallel to the X-F-plane are

therefore all alike, and the locus is a cylindrical surface,

having all its elements parallel to the Z-axis. In like

manner, if an equation does not contain a term in y, it

represents a cylindrical surface parallel to the y-axis;

if it contains no term in x, a cylindrical surface parallel

to the X-axis.
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If in particular the equation is of the first degree, the

surface becomes a plane parallel to one of the axes.

If two equations are simultaneously satisfied by the

coordinates of points on a locus, that locus must consist

of the points common to the loci of the two equations.

Hence two equations of the form fx (#, y, z) = and

f2
(x, y, z) = 0, taken togetlier, represent a curve in space,

the intersection of the surfaces which they represent.

In particular, if these twTo equations are of the first

degree, this locus will be the intersection of the two

planes which they represent. Hence two equations of the

first degree, used simultaneously, represent a straight line.

Three equations used simultaneously are satisfied by the

coordinates of a finite number of points only, — the points

of intersection of the curve represented by two of the equa-

tions with the surface represented by the third.

The curves of intersection of any surface with the

coordinate planes are called the traces of the surface.

Their equations may be found from the equation of the

surface by placing each of the coordinates in turn equal

to zero.

The general method of determining the form of the

surface represented by any given equation will be taken

up in the chapter on quadric surfaces.

PROBLEMS

1. What surface is represented by the equations ?

(a) x = y, (d) x2 + y
2 = 25,

(!>) y = z, (e) x2 + f- + z
2= 25,

(c) x-y=5, (f)x*-2y = 0.
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2. Obtain the traces on each of the coordinate planes of the

loci of the following equations, and from these traces deter-

mine roughly the nature of the surface:

(a) x? + tf = 9, (d) y
2 = ±z,

(b) x-y + 2z = 10, (e)
J+J+ g^l,

(c)a? = 2y, (f)x> + tf-2z = 0.

3. What is the equation of the surface generated by the

revolution of the hyperbola xy = k about the X-axis.

4. What is the position of a line whose equations are

x + 3y = 10 and Sx — 4,y = S?

5. The equations of any two surfaces may be represented

by U= and V= 0, where U and Fare abbreviations for

algebraic expressions of any degree in x, y, and z. Show
that lU+kV=0 will represent a surface which passes

through all the points common to the loci of U= and

V= 0, and which meets neither of these surfaces at any

other points. Show also that the locus of UV= will

consist of the loci of TJ— and V= 0.



CHAPTER III

THE PLANE

15. Normal form of the equation of a plane. — Let ON
be the normal to the plane (a straight line of indefinite

extent perpendicular to the plane), and let <*, /3, and 7 be

the angles which this normal makes with the axes. Let

p be the perpendicular distance OK from the origin to

Fig. 11.

the plane, measured along the normal. Let P(x,y,z)

be any point in the plane. The line PK will be perpen-

dicular to ON, and the projection of OP on ON will be

OK or p. But the projection of OP on ON is the same

as the projection on ON of the broken line OL, LC, CP,

227
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or #, ?/, z. From [5] the projection of OL on OJV is

#cos«; of L C, y cos /3 ; of CP, 2 cos 7.

Hence oc cos a -f y cos p + 2 cos y -p = 0. [14]

This is called the normal form of the equation of a

plane.

The distance p is measured from the origin to the

plane, and is positive or negative according as it runs

in the positive or negative direction of the normal. It

is usually possible to choose the direction from the origin

to the plane as the positive direction of the normal, so

that p will usually be a positive number.

The angles «, /3, and 7 are measured from the positive

directions of the axes to the positive direction of the

normal.

16. Reduction of the general equation Ax + By + Cz

+ D = to the normal form. — It lias been shown in the

previous chapter that every equation of the first degree

represents a plane. Let the general equation of the first

degree, Ax + By + Cz + D = 0, be the equation of a plane,

and let x cos a + y cos /3 -f z cos 7 — p = be the equation

of the same plane in the normal form. Then, since the

two equations represent the same plane, they can differ

only by a common factor. Then JcA = cos a, kB = cos /3,

and JcC= cos 7. Hence h = , and the
± VJ 2 + B2 + O2

equation ^ T

a? + '
— 1/ +

+
,

n = = [151
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is in the normal form. If we wish to keep p positive, it

is necessary to choose the sign of the. radical opposite to

the sign of D. Then the coefficient of x is cos «, etc.

17. Equation of a plane in terms of its intercepts.— If

the intercepts of a plane on the axes are a, 5, and c, the

coordinates of the points where it cuts the axes are

(a, 0, 0), (0, 5, 0), and (0, 0, c). If these coordinates

are substituted successively in the general equation

Ax + By + Cz + D = 0,

we have a = -, 6 =—-, and c = -•

A B V

But the general equation may be written in the form

x y z _,+ 7T=L

A J5 (7

From this we have, by substitution,

°° + V +
s
= l [16]a b c L J

as the equation of a plane in terms of its intercepts.

18. Distance of a point from a plane. — Let it be re-

quired to find the distance of the point P
x
from the plane

UK, when the equation of UK is given in the form

x cos « 4- y cos /3 -f- z cos 7 — p = 0.

Pass a plane RS through Pv parallel to UK. Its

equation will be

x cos a + y cos /3 -f- 2 cos 7 — jt^ = 0,
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where p x
can be either positive or negative, since it

is the distance from the

origin to the plane BS,

measured along the nor-

mal to UK. The coordi-

nates of P
x
must satisfy

the equation of BS.

Hence

x
x
cos a -f yx

cos ft

+ z
x
cos 7 = pv

Now, whereverP
x
may

lie,

MP
X
= NN

X
= ON

x
- ON=p

x
-p

= x
x
cos a + y1

cos ft + z
1
cos 7 — p.

If the equation is given in the form

Ax + By + Cz + D = 0,

MP, = Ax * +^ + Czi+M
, r171

±V^ + B* + C2 L J

where the sign of the radical, is chosen opposite to that of

D. The distance MP
1

is positive when the point and

the origin are on opposite sides of the plane ; negative

when they are on the same side of the plane.

PROBLEMS

1. Given the plane 3x — Sy -\- z = 12, find

(a) the direction cosines of a normal,

(b) its distance from the origin,

(c) its distance from the point (3, — 2, 6),

(d) its intercepts.
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2. Find the equation of a plane, if the foot of the perpen-

dicular from the origin on it is the point (3, 1, — 5).

3. On which side of the plane 7 x-\-Ay = 5 is the point

(0, 7, 3) ? How is this plane situated ? What are its traces

on the coordinate planes ?

4. Show that the three planes 2x + 5y -\- 3 2 = 0, x — y
+ 42 = 2, and 1 y — 524-4 = intersect in a straight line.

5. Find the equation of the plane which bisects the

angle between the two planes A^x 4- B^ + Cxz + Dx
= and

Afc + 5^/4- C# 4- A = 0.

6. Find the equation of a plane through the origin and

the line of intersection of the planes x 4- 3 y — 4 z = 10 and

5y— 624-3 = 0. (See problem 5, page 214.)

19. The angle between two planes.— The angle between

two planes is easily seen to be equal to the angle between

their normals.

If the two planes are

x cos «! -f y cos /3
X
4- z cos yx

— p 1
= 0,

and x cos «
2
4- y cos /32 + 2 cos y2

— /?2
= 0,

the angle between them is given by

cos 9 = cos ai cos a2 + cos Pi cos p2 4- cos 71 cos 72. [18]

If the two planes are A
x
x 4- B

xy 4- C
x
z + D

l
= 0,

and J.
2
z -f- B2y 4- <?

2
2 4- i>

2
= 0,

the angle between them is given by

cose = AlA
* + BlB* + Cl^2 ["191

±V^ + .B^ + Cl2
' V^2

2 4" ^22 + C22

If the sign of the first radical is chosen opposite to the

sign of Dv and the sign of the second opposite to the sign
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of D
2 , 6 will be the angle between the positive directions

of normals to the planes.

20. Perpendicular and parallel planes. — If two planes

are perpendicular, cos 6 = 0,

and AiA 2 + BiB2 + dC2 = 0. [20]

If two planes are parallel, the direction cosines of their

normals must be equal,

or

and
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The coordinates of three points are three conditions

from which three such equations can be obtained; for

these sets of coordinates must each satisfy the general

equation. If the three points happen to lie on a line, the

equations for determining the coefficients will not be inde-

pendent, and the plane will not be determined.

Again, a plane can be determined which shall pass

through two points and also be perpendicular to a given

plane ; for the substitution of the coordinates of the two

points will give two equations between the coefficients,

and the condition for perpendicularity [20] will give a

third. If, however, the two points lie on the same normal

to the plane, the solution will be indeterminate, since the

conditions will not be independent. Again, a plane can be

determined which shall pass through one point and also

be parallel to a given plane ; for the substitution of the

coordinates of the point gives one equation between the

coefficients, and the conditions for parallelism [21] give

a second and third.

But here there is a simpler method ; if the equation of

the plane is Ax -f By + Cz + D = 0, any plane parallel

to it may be written in the form Ax -{-By + Cz +D
X
= 0,

since the conditions for parallelism are satisfied. We can

determine D
1
from the fact that the coordinates of the

point must satisfy the equation.

PROBLEMS

1. Find the equation of a plane through the points

(a) (4,2,1), (-1,-2,2), (0,4,-5),

(b) (-1,-1,-1), (3,2,-2), (2,0,0).
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Find the intercepts of these planes on the axes and their

distances from the origin.

2. Find the equation of a plane through the points (2, 1, —1)
and (1, 1, 2), and perpendicular to the plane 7 # -f- 4 ?/ — 4 z

-36 = 0.

3. Find the equation of a plane through the points (2, 0, —1)
and(l, —6,1), and perpendicular to the plane ox+3y— z— 4= 0.

4. Find the equation of a plane through the point (2, 1, —1)
and parallel to the plane 7 as + 4 y — 4 z + 36 = 0.

5. Find the equation of a plane which bisects the line join-

ing the two points (6, 4, 1) and (2, 4, —1), and is perpendicular

to that line.

6. Find the equation of a plane which passes through the

origin and is perpendicular to the two planes 2x— 4?/-}-3 2=12
and 7x + 2y + z = 0.

7. Prove that the six planes, each containing one edge of a

tetraedron and bisecting the opposite edge, meet in a point.

Note.— The coordinates of the point of intersection of three planes

may be found by solving the three equations simultaneously.

8. Prove that the six planes, each passing through the mid-

dle point of one edge of a tetraedron and being perpendicular

to the opposite edge, meet in a point.



CHAPTER IV

THE STRAIGHT LINE

22. Equations.— We have seen that, if a point moves

in space in such a way as to satisfy at the same time two

equations of the first degree, the locus which is generated

is the line of intersection of their planes. Then the two

equations

A
x
x + B

xy + C
x
z + 2>i

= 0,

and A2
x + B2y + C2

z + D2
=

will in general represent a line, the only exception being

when —J = —1 = —J., and the planes are parallel.
A

2
B

2
C
2

But the line may be determined by any pair of planes

which pass through it, and it is convenient to pick out

those planes which have the simplest form. The equa-

tion of any plane through the line can be written in the

form

A
x
x + BlV + C

x
z + J)

1
+ k(A

2
x + B2y + 2

z + D2
)= 0.

When none of the coefficients Av Bv etc., are zero, it

will always be possible to choose k in such a way as to

eliminate y and reduce the equation to the form x= mz+ a.

Again, k may be so chosen as to eliminate x and reduce

the equation to the form y = nz -f- b. Then the equations

x = mz + a,

and y = nz -f 6,

235
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each determine a plane through the line, and hence may

be used as the equations of the line. These planes are

seen to be the projecting planes of the line, perpendicular

to the X-Z and Y-Z-planes. The equations of any two of

the three projecting planes may be chosen as the equations

of the line.

In practice, to reduce the equations of a line to their

simplest form, we simply eliminate one of the variables

and then another from the two equations. Indeed, it is

evident algebraically that any set of values which satisfy

a pair of equations must also satisfy any equation which

can be deduced from them.

If some of the coefficients Av Bv etc., are zero, it will

always be possible by elimination to reduce the equations

to one of the three forms

x = mz + #> y = qx + c, x = e,

or
y = nz + 5, z = d, z =f.

The first form includes all lines not parallel to the X-Y-
plane ; the second, lines parallel to the X-!F-plane, but

not parallel to the y-axis ; the third, lines parallel to the

P-axis.

PROBLEMS

1. Write the equations of each of the coordinate axes.

2. Write the most general form of the equations of a line in

each of the coordinate planes
;
parallel to each of the coordi-

nate planes
;
parallel to each of the coordinate axes.

3. Show how to find the points where a given line pierces

the coordinate planes, and by this means plot the lines in

problem 4.
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4. Reduce these equations to their simplest forms

(a) 2a?-3# + z - 6 = 0, (6) 2x + 3y

x + 7/ — 3 z — 1 = 0.

(c) 2a?+ 4y + 3« + 6 = 0,

3a? + 6y + 22-l = 0. 3t/

(e) 2a>-3y- z + 2 = 0, (/) 4.y

4a?-6y + 32J-l = 0. 2t/

6 z - 12 = 0,

4# — t/ + 12z + 4 = 0.

(rt) 4 y + 3*+ 1=0,
— 2 12 = 0.

3z- 2 = 0,

2 + 4 = 0.

5. Find the equations of the line of intersection of the plane

2x — 3y -\- z — 6 = with the coordinate planes.

23. The equations of a line in terms of its direction

cosines and the coordinates of a point through which it

passes. — Let «, /3, and 7 be the direction angles of the

Fig. 13. c

line and P
t
a point through which it passes. Let P be

any point on the line. Then from the figure

x — x
x
= P

X
P cos a,

y-yl
= P

X
P cos ft

z — z
1
= P

X
P cos 7.
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Solving these for P
X
P, and equating the values, we have

aj - asi y - y\ z - Z\

cos a cos COS X

PROBLEMS

[22]

1

.

What form will these equations take when a = 90° ?

when a = 90°, and £ = 90° ?

2. Find the equations of a line through the point (— 1,

2, -3) if

(a) a = 60°, /? = 60°, y = 45°;

(6) a = 120°, (3 = 60°, y = 135°j

(c) cos a = | V3, cos /3 = i, cos y = 0.

Show that the given values are possible in each case and plot

the line.

3. Find the equations of a line through the origin, equally

inclined to the axes.

24. Given the equations of a line, to find its direction

cosines. — The method is best shown by an example. Let

the equations of a line, reduced to their simplest form, be

x = 5 z — 6, and y = 2 z + 3,

or

Let
cos « cos p cos y

be the equation of the same line. These equations are of

the same form and, since they represent the same line,

X
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and the denominators, 5, 2, and 1, are proportional to cos a,

cos /3, and cos 7. They can be made identical with them

by multiplying by a suitable factor R.

Then cos « = 5 R, cos /3 = 2 R, and cos y=R.

1
Then by [7] 25 R2 + 4 R? + R2 = 1, and i? =

Hence cos a = , cos /3 = t__ , cos 7 =

30

"30 V30' V30'

and the equation can be written in the form

a? + 6 _ y~3 _ g-0~5~" ~~T~~~T~'
V30 V30 V30

PROBLEMS

1. Show that, if the equations of a line can be written in

the form x = mz -\- a, and y = nz + &> they may be changed

into the form

# — a 2/ — & 2

Vm2 + w2
4- 1 Vm2 + w2 + 1 Vm2 + n2 + 1

where — m — = cos a,
n = cos /3,Vm2 + w2 + 1 Vm2 + ri

2 + 1

and — — = cos y.

Vm* + rr + 1

2. What form will the equations take, if their simplest

forms are

y = qx + c, aj = e,



240 ANALYTIC GEOMETRY OF SPACE [Ch. IV, § 25

3. Find the direction cosines of the lines whose equations are

(a) 2x + 3y-2z-13 = 0,

3x + 6y-2z-24: = 0.

(b) 2x + 2y-3z- 2 = 0,

4ic— y — z — 6 = 0.

(c) 2x + 4y + 3z + G = 0,

3x + 6y + 2z- 1 = 0.

(d) 4y + 3z + 1= 0,

3y-2z-12 = 0.

25. Equations of a line through two points.— Let (xv

yv Zj) and (:r
2 , yv z

2
~) be the two points. The equation

of any line through the first point is (by [22]),

x-x
x _ y-y x _ g- ^

cos a cos /3 cos 7

If the second point lies on this line,

xi ~ x
\ I/2 - V\ Z2~ z

\

cos a cos /3 cos 7

Dividing, we have, as the equations of a line through the

two points,

as-asi _y-yi_z-z\ 1-23-1

0C2 -vc\ 2/2 - 2/1 22 - Si

PROBLEMS

1. Establish equation [23] from an independent figure

without using equation [22].

2. Discuss the special cases of [23], when x2 = xx , y2 = yi,

or z2 = Zj.



Ch. IV, § 25] THE STRAIGHT LINE 241

3. Find the equations of a line passing through the points

(a) (0, 0, - 2) and (3, - 1, 0),

(b) (- 1, 3, 2) and (2, - 2, 4),

(c) (2, - 3, 1) and (2, - 3, - 1).

4. Find the equations of the line joining the origin with

the intersection of the planes

3 x - 2 y + z + 4 = 0,

a- + 4?/ + 2z = 0,

y-3z-7 = 0.

5. Are the three points (1, - 1, 2), (2, 3, - 1), and (3, 2, 2)

in a straight line ?

6. Show that the two lines

x-2 = 2 y-G = 3z,

and ±x -11 = ±y -13 = 3z

meet in a point, and that the equation of the plane in which

they lie is

2x-6y + 3z + U = 0.

7. Show that the line 4:X = 3y = — z is perpendicular to

the line 3 x = — y = — 4z.

8. Find the point of intersection of the line

2a -4 = 3?/ + 1 = 2 + 6

with the plane x -{- G y — o z = 16.

9. What is the equation of the plane determined by the

point (3, 2, — 1) and the line 2x — 5 = 5y + l = z?



CHAPTER V

QUADRIC SURFACES

26. The sphere. — A sphere maybe defined as the locus

of a point whose distance from a fixed point is constant.

If (# , y , Zq) is the centre and r the radius, the equa-

tion of the sphere is evidently

(x - aco) 2 + (y - 2/0)
2 + (s - zo) 2 = r2

. [24]

If the centre is at the origin, the equation becomes

a?2 + y2 + z2 = r2
. [25]

Expanding [24], we see that the equation of every

sphere is of the form

oc2 + y2 + z2 + Gx + Hy + Iz + K = 0, [26]
where

a _h _i
2 '

#o
_

2 '

z
°
~~

2'

and r = JV£2 + H2 + I2 - 4JT.

Every equation in the form of [26] will therefore repre-

sent a sphere,

real, if G2 + H2 + I2 - 4K> 0,

null, if G2 + H2 + I 2 - 4K= 0,

imaginary, if G* + ff* + J* - 4 ^T< 0.

Comparing [26] with the general equation of the second

degree,

Ax2 + By2 + Cz2 + Dyz + Ezx+Fxy+Gx+ iry+ Iz+ K=0,
242



Ch. V, § 26] QUADRIC SURFACES 243

we see that the general equation will represent a sphere, if

D = U=F=Q, and A = B = 0.

A sphere may, in general, be passed through any four

points ; for the substitution of their coordinates in [26]

will give four equations which will, in general, determine

G, J5T, 7, and if.

PROBLEMS

1. Find the equation of a sphere with

(a) centre at (5, — 2, 3), radius equal to 1.

(b) centre at (2, — 3, — 6), passing through the origin.

(c) centre on the Z-axis, radius a, passing through the

origin.

2. Find the centre and radius of each of the following

spheres, when real

:

(a) ar + 2/

2 + z
2 -2a + G?/-8z + 22 = 0.

(b) x2 + y
2 + z

2 + 10x-4: y + 2z + 5 = 0.

(c) 3a? + 3tf + 3z2 + 12x + 12 y + 18 2 + 3 = 0.

(d) x2
4-2,2 + 32 + 60;= 0.

(e) ar° + 2/
2 + z

2 + 4.T + 2/ + 5z + 21 = 0.

3. Find the equation of the sphere passing through the four

points,

(a) (2, 5, 14), (2, 10, 11), (2, 5, - 14), (2, - 10, - 11),

(6) (0, 0, 0), (2, 8, 0), (5, 0, 15), (- 3, 8, 1).

4. Find the equation of a sphere passing through the origin

and concentric with the sphere through the points (7, 7, 8),

(_ i, _ 5, - 8), (- 5, 7, - 6), (3, - 5, 10).

5. Find the equation of a sphere with its centre at the

origin and touching the sphere

& + f + z
2 - 8 x - 6y + 2Az + 48 = 0.

.
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6. Show that the equation of the sphere whose diameter is

the line joining the points (a^ yx , z^ and (x2, y2, z2) may be put

in the form

(x - x{) (x - x2) + (y- 2/0 (y - y2) + (z - z
Y) (z - z2) = 0.

7. Show that the equation x2 + y
2 + z

2 = r2 will have the

same form, if the axes are turned through any angle without

changing the origin.

27. Conicoids. — Any surface whose equation is of the

second degree in x, y, and z is called a quadric surface

or conicoid. The sphere is a special case of such a

surface.

It is possible, by suitable transformation of coordinates,

to reduce the general equation of the second degree in

x, y, and z to one or other of these two forms,

(1) Ax2 + By2 + Cz2 = D,

(2) Ax2 + By2 = Cz,

where ^4, B, C, and D may be any quantities, positive,

negative, or zero. But for our present discussion, let

neither A, B, nor vanish.

The locus of equation (1) is evidently symmetrical

with respect to each of the coordinate planes, and hence

with respect to the origin. Such surfaces are therefore

called central quadrics.

If D =£ 0, equation (1) may be written in the form

±^±g±*?=l. [27]a2 b2 c2 u J

If D = 0, it may be written
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Non-central quadrics arc included under equation (2).

It may be written in the form

g±g=2~ [20]

We shall now investigate the forms of the surfaces

represented by these equations.

28. The ellipsoid. ^ + £? + ^=l._ The surface is
a1 ¥ cl

symmetrical with respect to each of the coordinate planes.

Its intercepts on the X, Y, and Z-axes are ± a, ± b, and

± c. The section of the surface made by the X-Y-plane

is obtained by putting 2= 0, and its equation is -5+^ = 1,

which represents an ellipse with semi-axes a and b. The

section made by a plane parallel to this coordinate plane

is found by putting z = zv This gives

^ + t„ = l- Z
4, or t + t =1

a2 b2 c2 of
-j

which represents an ellipse, in the plane z = zv with

semi-axes a^l \ and byll —-L, the centre lying on

the Z-axis.

As z
1
increases numerically from to ± c, the section

diminishes in size, until when z
x
= c it shrinks to a null

ellipse, the single point (0, 0, <?). As z
x
increases nu-

merically beyond ± c, the section becomes imaginary

;

hence the surface does not extend beyond the planes

z = o and z = — c.

Similarly, the sections made by the coordinate planes
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Y-Z and Z-X and by planes parallel to them will be

found to be ellipses with centres along the X and Y-
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the surface is an ellipsoid of revolution about the i£-axis.

Similarly, — +% + — = 1 and — + £- + — = 1 repre-
a2, ¥ b1 a1 bz a1

sent ellipsoids of revolution about the X and y-axes

respectively.

If a = b = c, the ellipsoid becomes the sphere,

£2 + y
1 + 22 = #2 «

The equation ^- + ^--{- — = — 1 is not satisfied by any
a1 bl c2,

real values of #, ?/, and 2 ; it may be said to represent an

imaginary ellipsoid.

29. The unparted hyperboloid. ^ + |! _?? = 1. —The
a* bl e*

intercepts on the X and Y~-axes are ± a and ± 5, but the

surface does not cut the Z-axis.

The section of the surface made by the X-F-plane is the

ellipse — + *- = 1 ; the section made by the r"-Z-plane is
(V* 22

the hyperbola &-—- = 1, with its transverse axis, 2 5,

along the Y"-axis ; the section made by the Z-X-plane is the

hyperbola ——- = 1, with its transverse axis, 2 a, along

the A-axis.

The sections parallel to the X-!F-plane will be ellipses,

with their centres on the Z-axis ; the size of the ellipses

will increase without limit as the cutting plane recedes

from the X-JT-plane in either direction.

We have now sufficient information to draw the figure.

It is instructive, however, to investigate the plane sec-

tions parallel to the other two coordinate planes.



248 ANALYTIC GEOMETRY OF SPACE [Ch. V, § 29

The section made by the plane x = xv parallel to the

F-Z-plane, may be written

<r

P[1-=* C2 1
xf\
aV

= 1.

If x
x
< a, this represents an hyperbola with its transverse

axis parallel to the Praxis. As x
1
increases from to a, the

Fig. 16.

semi-axes both approach zero, and the hyperbola approaches

a pair of intersecting lines. When x
1
= a, the section is

the pair of straight lines, %- — z— — 0, in the plane x = a,
b2, c2,

intersecting on the -X"-axis. When x
x
> a, the equation

again represents an hyperbola, but the transverse axis is

now parallel to the Z-axis. As x
x
increases, the semi-axes

increase without limit.
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Similarly, the sections made by planes parallel to the

Z-X-plane will be found to be hyperbolas, the transverse

axis being parallel to the X-axis, when the distance of the

cutting plane is less than b, and parallel to the Z-axis, when

the cutting plane is beyond y = b ; the transition from one

set of hyperbolas to the other being a pair of intersecting

lines in the plane y = b.

wm^mmmmmmmmmmmmmmmmmmmmmmmmtmmm

Fig. 17.

The surface is called the hyperboloid of one sheet, or the

unparted hyperboloid, extending along the Z-axis. The

equations -+ \- + % = 1 and -r- — &- + \— 1 represent
a2 bl <? a2 ¥ cl

unparted hyperboloids, extending along the X and !F-axes

respectively; the hyperboloid in each case extending

along the axis whose coordinate has the unique sign in

the equation.

When a = b, the equation becomes — + ^- = 1,H
a2 a2 c2

which is the equation of an unparted hyperboloid of revo-



250 ANALYTIC GEOMETRY OF SPACE [Ch. V, § 30

lution about the Z-axis. The equations « + H— —

1

^2 V2 z2
«2

*- ^
and — — *- + — = 1 represent hyperboloids of revolution

^ ^ ^2

about the X and Praxes respectively.

30. The biparted hyperboloid. --?£ -- = !.-- The
a2 oJ e2

intercepts on the X-axis are ± a, hut the surface does not

cut the other axes.

Fig. 18.

The section of the surface made by the -X"- F"-plane is an

hyperbola, with its transverse axis 2 a along the X-axis

;

the section made by the Z-X-plane is also an hyperbola,

with its transverse axis 2 a along the X-axis ; the section

by the ^F-Z-plane is imaginary.

Sections made by planes parallel to the Y"-Z-plane are

imaginary for values of x between + a and — a. When
x = ± a, the sections are null ellipses, and for values of x

numerically greater than a the sections are ellipses, in-

creasing indefinitely as the cutting plane recedes from the

origin.

The sections of the surface made by planes parallel to
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the X-Y and Z-X-planes are hyperbolas, and it may also

be shown by the aid of transformation of coordinates that

all planes through the X-axis are hyperbolas.

This surface is called the hyperboloid of two sheets, or

the biparted hyperboloid, extending along the X-axis. The

Fig. 19.

equations __+|--=l and -__| + _ = 1 repre-

sent biparted hyperboloids extending along the Y and

Z-axes respectively.
)>£ yyw y L

If b = c, the equation becomes -- — &-—- = 1, which is

a1 c2 <?

the equation of a biparted hyperboloid of revolution about

the X-axis. The equations,

_E!_i_^_f!-l and _ rr2 _^4- 22
-l

aJ 6^ <r 62 6^ c
2

represent biparted hyperboloids of revolution about the

Y and Z-axes respectively.
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31. The cone. — + fr—- = 0. — A cone, or conical
az bz <r

surface, is a surface generated by a straight line passing

through a fixed point, called the vertex, and always touch-

ing some fixed curve. Any position of the generating

line is called an element of the cone.

When D = 0, we have seen (Art. 27) that the equation
rp2l qjA iy&

of the second degree reduces to — ± 'f- ± — = 0. If both
aA bz cL

the positive signs are used, the equation is satisfied by

the coordinates of the origin only, and is therefore said

to represent a null ellipsoid. If any other combination

of signs is used, it will be shown to represent a cone.
rfiii qjZ yit

Consider the equation — + f- = 0.
az ol <r

The section made by the X-I^-plane is a null ellipse;

the sections made by the Y-Z and Z-X-planes are pairs

of intersecting lines.

Sections parallel to the JT-I^plane are ellipses, increas-

ing indefinitely in size as the cutting plane recedes from

the origin. Sections parallel to the other coordinate

planes are hyperbolas.

Moreover, if (xv yv z^) is a point on the surface, then

any other point (kxv kyv kz^) on the line joining P
x
with

the origin will also lie on the surface ; hence the surface

is generated by a straight line passing through the origin,

and is a cone extending along the Z-axis.

The equations

_^ +g +j=0 and t
n
-t + t %

a2 ¥ cl a- ¥ cz

or the same equations with their signs changed, represent

cones extending along the X and y-axes respectively, the
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cone in each case extending along the axis whose coordi-

nate has the unique sign in the equation.

If the coefficients of the two terms which have the

same sign are equal, the equation will represent a cone

of revolution about the other axis.

32. Asymptotic cones.— The equation of the imparted

hyperboloid in polar coordinates is

2 / cos2 a cos2 ft _ cos2 y\ _ -j

or

V<*^
cos2 ft _ cos2 y

There will, therefore, be real points on the surface for

those values only of a,
ft, and y which make

cos2 « cos2 6 cos2 y r.

Let a', ft' , and y
r be values of a, ft, and 7, for which

this expression vanishes. Then, as a,
ft, and 7 approach

a', ft', and 7', the value of p will increase indefinitely,

and the line through the origin whose direction angles

are a',
ft', and y' may be said to meet the surface at

infinity. Such a line is called an asymptotic line.

Since the equation —— 1
- v—?- = is the

a1 ¥ c2

only condition which must be satisfied by the polar coordi-

nates of the points on all the asymptotic lines, it must

be the equation of the asymptotic cone, which contains

all these asymptotic lines of the surface. Multiplying
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by p'2 and transforming to rectangular coordinates, it

becomes
*l + £._ ?!=

n

a2 62 c2

Similarly it may be shown that the asymptotic cone

of the biparted hyperboloid is

x2 y1

a2 b2 <?
0.

33. The paraboloids. ^ ± ^ = 2 cz. — The surface

—- + y~ — 2 cz passes through the origin, but does not cut
(X

the axes at any other point. Sections made by planes

Fig. 20. Fig. 21.

parallel to the X-F-plane are ellipses whose axes increase

as the section recedes from the origin. Sections made by
planes parallel to the other coordinate planes are parabo-
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las, which have their axes parallel to the Z-axis. This

surface is shown in Fig. 20. It is called an elliptic parabo-

2 2

loid. If b = #, --
-f-

&- = 2 cz represents a paraboloid of
a' a

revolution about the Z-axis.

Fig. 23.
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Let the student discuss the form of the surface repre-
-v>2 n\lil

nted by the equation '— — ^- = 2czJ i
a2 b2

hyperbolic paraboloid. (See Fig. 22.)

-v>2 n\lil

sented by the equation '— — ^- = 2cz. It is called anJ L
a2 b2

PROBLEMS

1. Prove that in both the elliptic and hyperbolic parabo-

loids the sections parallel to the X-Z-plane are equal parab-

olas ; also that the sections parallel to the F-Z-plane are equal

parabolas.

2. Show from the results of problem 1 that a paraboloid

may be generated by the motion of a parabola, whose vertex

moves along a parabola lying in a plane, to which the plane

of the moving parabola is perpendicular ; the axes of the two

parabolas being parallel, and (a) in the elliptic paraboloid, their

concavities turned in the same direction
; (b) in the hyperbolic

paraboloid, their concavities turned in opposite directions.

3. Show that an ellipsoid may be generated by the motion

of a variable ellipse, whose plane is always parallel to a fixed

plane, and which changes its form in such a manner that the

extremities of its axes lie in two ellipses, which have a com-

mon axis, and whose planes are perpendicular to each other

and to the plane of the moving ellipse.

4. Find the equation of the cone, whose vertex is at the

centre of an ellipsoid, and which passes through all the points

of intersection of the ellipsoid and a given plane.

5. Find the equation of the cone, whose vertex is at the

centre of an ellipsoid, and which passes through all the points

common to the ellipsoid and a concentric sphere.

6. If a, b, c is the order of magnitude of the semi-axes of

the ellipsoid in problem 5, and if the radius of the sphere

is b, show that the cone breaks up into a pair of planes,

whose intersections with the ellipsoid are circles.
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34. Ruled surfaces. — A surface, through every point

of which a straight line may be drawn so as to lie entirely

in the surface, is called a ruled surface. Any one of these

lines which lie on the surface is called a generating line

of the surface.

The cylinder and cone are familiar examples of such

surfaces. We shall now show that the imparted hyper-

boloid and the hyperbolic paraboloid are also ruled surfaces.

The equation of the unparted hyperboloid may be

written in the form

^_z2 _y*
a* c2 62

'

or e+3(H)=K)M>
If now we write the two equations

a c k
x
\ oj

in which k
x
may have any value, it appears that every

point, whose coordinates simultaneously satisfy these

equations, will satisfy the equation of the hyperboloid,

and will therefore lie on the surface. But these two

equations, used simultaneously, are the equations of a

line, and, from what we have shown, that line must lie

wholly in the surface. But since h
l
may have any value,

there will be an indefinite number of such lines, and it

may be easily shown that one of them passes through

each point of the surface.
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In the same manner it may be shown that there is

another set of lines whose equations are

=K1+ f)
which lie wholly in the surface. A line of this set may

also be passed through any point of the surface. Hence,

through any point on this ruled surface, there may be

passed two lines which lie wholly in the surface. Each

line of one set cuts every line of the other set, but does

not cut any line of the same set.

Let the student show that the hyperbolic paraboloid is

also a ruled surface. Figures 17 and 23 show the two

sets of generating lines on both these surfaces. None

of the other conicoids are ruled surfaces.

PROBLEMS

1. Prove that, if a plane is passed through a generating

line of a conicoid, it will also cut it in another generating line.

Will the two generating lines belong to the same set ?

2. Prove that every generating line of the ruled paraboloid

is parallel to one of the planes - ± *- = 0.
a b

3. Obtain the equations of the generating lines which pass

through the point (x
lf ylf z^) of (a) the ruled paraboloid,

(6) the ruled hyperboloid.

4. Prove that the plane, which is determined by the centre

and any generating line of a ruled hyperboloid, cuts the sur-

face in a parallel generating line, and touches the asymptotic

cone in an element.

5. Show that, in both the ruled hyperboloid and the ruled

paraboloid, the projections of the generating lines on the prin-

cipal planes are tangent to the principal sections.
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35. Tangent planes. — A tangent line to a surface may

be defined as follows : Through P
x
and P

2 , two adjacent

points on the surface, draw a secant line. The limiting

position, which this secant approaches as P
2
approaches

Pv is called a tangent line to the surface at the point Pv
Since P

2
may approach P

x
along the surface in an

indefinite number of ways, there will be, in general, an

indefinite number of tangent lines at any point of a sur-

face. These will, in general, lie in a plane which is called

the tangent plane at the point Pv
We shall obtain the equation of the tangent plane at

the point P
x
of the ellipsoid

^-|_£? +^ = l.
a2 b2 c2

Transforming this equation to parallel axes with the

origin at P
x
(by [12]), and then to polar coordinates

(by [6]), we have as the equation of the ellipsoid in polar

coordinates (origin at P
2)

2 /cos
2 a cos2 /3 cos2 7

9
\ a2 b2 ~J~

l2p (xi
cosa

,

fficosff
(

giCQS7\ =0>
V a2 b2 c2 J

For every set of values of a, /3, 7 in this equation there

will correspond two values of p ; one value will always be

zero, which agrees with the fact that the origin is a point

on the surface : the other value is

— _ 9.

fx
x
cos a y

x
cos ft z

l
cos 7

V a2 b2 c2

. cos2 /3 cos2 7
b2 c2
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which gives the distance from P
x
to any second point P

of the ellipsoid, measured along the secant whose direc-

tion angles are a, /3, 7.

Now let P
2
approach P

x
along the ellipsoid ; then the

secant line through P
1
and P

2
will approach as its limit-

ing position a tangent line at Pv whose direction angles

we shall call «', fi\ 7'. That is, as P
2
approaches Pv

, -. x, cos a
,

y, cos 6
,

z, cos 7approaches zero, and —l— h ,«, + -1—5—- ap-

Hence, by the

theory of limits,

x
x
cos (t! y

x
cos ft z

x
cos y

r _ ~

a*~ ¥~
c2 " *

If (/o', «', ft, 7') are the polar coordinates of any point

on any one of the tangent lines through Pv this equation

expresses the only relation which must hold between those

coordinates, and is therefore the polar equation (referred

to P
1
as origin) of the locus of the tangent lines through

Pr Multiplying by p' and transforming to rectangular

coordinates (by [6]) we have ^ +M + fb| = 0. Again
a2 b2 c2

transforming to the original origin (by [12]), we have

a2 b2 c2 L J

as the required equation of the tangent plane.

Let the student show that the equations of the tangent

planes to the hyperboloids,

a2 b2 c2
'

are «*g ± tm-*& = 1 . [31]a2 b2 c2 L J
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the paraboloids, — ± ^- = 2 cz,

a1 ¥

are *& ±U& = e (.* + *d* [32]

36. Normals. — The line perpendicular to the tangent

at the point of contact is called the normal to the surface

at that point.

Its equation for any particular surface can be easily

obtained from the definition.

PROBLEMS

1. Prove that every tangent plane to a cone passes through

the vertex.

2. Prove that all the normal lines of a sphere pass through

the centre of the sphere.

3. Show that the length of a tangent to a sphere from the

point (#!, yn z
x) is the square root of the quantity obtained by

substituting (a^, yx, z{) for (x
f y, z) in the equation of the

sphere.

4. Show that the locus of points from which equal tangents

may be drawn to a sphere is a plane. This plane is called the

radical plane of the two spheres.

5. Prove that the radical planes of three spheres meet in a

line. This line is called the radical axis of the three spheres.

6. Prove that the radical plane of two spheres is perpen-

dicular to their line of centres.

7. Prove that the radical axis of three spheres is perpen-

dicular to the plane of their centres.

8. Show (from its definition) that the tangent plane at a

point P
x
of a ruled surface contains the two generating lines

of the surface which pass through Pv
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9. Prove that every plane which contains a generating line

of a ruled surface is tangent to the surface at some point on

the generating line.

37. Diametral planes.— The locus of the middle points

of a set of parallel chords of a quadric surface will be

found to be a plane. This plane is called a diametral

plane.

Let av fiv yx
be the direction angles of a set of parallel

chords in the ellipsoid, and let (V, y
f

', z') be the coordi-

nates of the middle point P' of any one of these chords.

Transform the equation of the ellipsoid to polar coor-

dinates with P' as origin. Its equation (by [12] and

[6]) is

2 /cos
2

ft cos2 /3 cos2 7\ 9 /Vcos a ?/'cos/3 g'cos y
P \~aT

+
b*

+
c2 J

P
\ a2 V <?

,

~'2 f/2 ~'2

^ a2
+

62
"*"

c2

The two values of p given by this equation are the two

distances from the origin to the ellipsoid, measured along

a line whose direction angles are «, /3, y. If «, /3, 7 have

the particular values av /3V yv the two distances are

equal but opposite in sign ; the sum of the roots of the

equation, regarded as a quadratic in p, will be zero, and

(by Introduction, Art. 8),

x' cos «
1

y'cosfi l
g'cosy

1 _ «

a2 ft
2 c2 " "

But #\ y, 2' are the coordinates of any point on the

required locus, referred to the original axes. Hence

00 COS ai , V COS pi . Z COS Yi _ q roo-l

a2 62 c2 L J
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is the equation of the diametral plane bisecting the chords

of the ellipsoid whose direction angles are av /3V 7r
The locus is evidently a plane passing through the

centre of the ellipsoid, and it is easily seen that any

plane passing through the centre will be a diametral

plane bisecting some system of parallel chords.

Let the student show that the equations of the diametral

planes of the hyperboloids,

the paraboloids,

a2 b2 <*
2 & L J

From the last equation it appears that the diametral

plane of a paraboloid is always imrallel to the axis of

the paraboloid.

The line of intersection of any two diametral planes is

called a diameter. All diameters of the central quadrics

evidently pass through the centre ; in the paraboloids they

are parallel to the axis.

It may be shown that in the central quadrics there are

three diameters which are so related that the plane of any

two bisects all chords parallel to the third. Such diame-

ters are said to be conjugate to each other ; and the plane

through any two of them is conjugate to the third.

PROBLEMS

1. Obtain the equation of the diametral plane conjugate to

a diameter through the point (x
Xi yly z^ of (a) the ellipsoid,

(b) the hyperboloids, (c) the paraboloids. (See [6].)
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2. Show that the tangent planes at the extremities of a

diameter are parallel to the diametral plane conjugate to the

given diameter.

3. Show that the relation which exists between the direction

cosines of any pair of conjugate diameters is

cos a x
cos a2 cos fa cos fa cos yj cos y2 _ n

cr b~ c

4. Prove that the diametral plane of a sphere is perpendic-

ular to the chords which it bisects, and that conjugate diame-

ters are perpendicular to each other.

5. Prove that every plane which passes through the centre

of a central conic, or is parallel to the axis of a non-central

conic, is a diametral plane, and find the direction cosines of the

chords which it bisects.

38. Polar Plane. — The locus of points which divide

harmonically secants drawn from a fixed point to a quadric

surface will be found to be a plane. It is called the polar

plane of the given point with respect to the quadric sur-

face. The fixed point is called the pole of the plane.

We shall obtain the equation of the polar plane of the

point P
x
with respect to the ellipsoid

x2 y2 z2 .

a2 b2 c2

We have seen that the polar coordinate equation of the

ellipsoid, referred to P
x
as origin, is

i

YC0S2 « COS2 /3 COS2 7\ /^COStf y.COS/3 Z.COSy

x_l iL
2 z 2

a2 ^ 62 ca
U
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Through the origin P
x
pass a secant whose direction

angles are «', ft', y'. Let the points where this secant cuts

the ellipsoid be P
2 (p2 , a', /3', 7') and P

s (j>3 , «', /3', 7'),

and on it locate a point P' (//, a', /?', 7') such that

p pi _ 2P \
P

2
X P\P

* or ,/ _ 1m..
P

1
P* +P1

PZ

' P
R2 + ps

Then /?3
and /93

are evidently the roots of the equation

/cos2 «' cos2 8' cos2 7
f

\

Hence (by Introduction, Art. 8)

a2
"*"

62
"*"

c2

P
'=-

x
x
cos a' y

x
cos /3' 2;

x
cos 7'

- +

This is an equation connecting the polar coordinates of

P\ and is, therefore, the polar equation of the desired

locus. Transforming to rectangular coordinates and to

the original origin, Ave have, as the equation of the polar

plane,

aZ + bl + C2 ~ 1-
L dt) J

Let the student obtain the equation of the polar plane

of a point with respect to each of the quadric surfaces.
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PROBLEMS

1. Prove that the polar plane of 1\ with respect to any

quadric surface passes through the points of contact of all the

tangent lines from Px to the surface.

2. Prove that the polar planes of all points in a given plane

pass through the pole of that plane ; and, conversely, the poles

of all planes passing through a given point lie on the polar

plane of that point.

3. Prove that the polar planes of all points on a given

diameter of a quadric surface are parallel to the tangent plane

at the extremity of the diameter.

4. Prove that the polar plane of Px with respect to a sphere

is perpendicular to the diameter through Pv

5. Prove that in the sphere the product of the distance of

the pole from the centre and the distance of the polar plane

from the centre is equal to the square of the radius.

6. Prove that the distances of two points from the centre of

a sphere are proportional to the distances of each from the

polar plane of the other.

LOCI PROBLEMS

1. Find the locus of points which are equally distant from

two intersecting planes. Show that it consists of two planes

which are perpendicular to each other.

2. Show that the locus of a point, the sum of the squares of

whose distances from any number of points is constant, is a

sphere.

3. A point moves so that the sum of the squares of its dis-

tances from the six faces of a cube is constant; show that its

locus is a sphere,
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4. ^l and B are two fixed points, and P moves so that

PA = nPB-, show that the locus of P is a sphere. Show also

that all such spheres, for different values of n, have a common
radical axis.

5. Show that the locus of the point of intersection of three

mutually perpendicular tangent planes to an ellipsoid is a sphere

about the centre of the ellipsoid, whose radius is Va2 + b
2 + c

2
.

6. Show that the locus of the point of intersection of three

mutually perpendicular tangent planes to a paraboloid is a

plane.

7. Find the locus of a point whose distance from a given

point bears a constant ratio to its distance from a fixed plane.

8. Three fixed points on a line lie, one in each coordinate

plane ; find the locus of any fourth fixed point of the line.

9. Show that the locus of the points, which divide in any

g.ven ratio all straight lines terminated by two fixed straight

lines, is a plane.

10. A line of constant length has its extremities on two

fixed straight lines j show that the locus of its middle point

is an ellipse.
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2 + 14 x - 19 y +55 = 0.

2. y = 3x. 7. x + ?/- 10 = 0.

3. x2 + ?/
2 + 6 x - 8 y = 0. 8. x2 - 3 ?/

2 = 0.

4. 24x2 + 25 ?/
2 - 250 x + 625 = 0. 9. 8x-2?/+17=0.

5. x2 + ?/
2 - 5 a: + 5 y + 5 = 0. 10. x2 + y

2 - x - y = 0.

Page 32
3. 2V5; |V2; jVl70, 6. &<£; 6>i; & =

fr

5. 6, 7. x2 - i/
2 = 0.

269
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Page 36
2. (a) 5x + 8y = 7. (c) x - 4 = 0.

(6) 3x-4y = 0. (tf)y-5 = 0.

3. x~Sy = S. 4. Yes. No.

5. 2/i (Xa - £3) +2/2 (£3 - »i)+ 2/3 (xi - x2) = 0.

6. 39 x - 79 y = 200.

7. Equations of medians, x — y — 1 = 0,

x + 2 y + 1 = 0,

x - 13 y - 9 = 0.

Point of intersection, (i, —
f).

8. Equations of diagonals, bx + ay = ab,

bx — ay — 0.

Point of intersection, [-» - V
V2 2J

Page 40
1. \/3x--j/=-6(V3 + l).

2. (a) >/3x-3y = - 18. (6) 3x - 5 y = 25. (c) x-y=-3
3. 7V3x + 7y = llV3-2. 4. -2.

Page 43

2. (a) a = 10, b = - f, I = J. 4. (a) x - 8 y + 5 = 0.

(6) « = -*, b = l,l = l (6)2*- y-2 = 0.

(c) a = 0, 6 = 0, Z = - 4. (c) 3 x + 5 y = 0.

(d) a = — 4, & = 00, Z = ao

Page 46

2. tan-1
(2^|). 3. 135°, tan-!(7), tan-i(6$), tan-i(lf).

4. Exterior angle between first two lines, tan_1(— |f). Opposite inte-

rior angles, tan" 1
(||), tan-!(-

-

2
^).

Page 47
2. 7x-3y = ll.

3. (a) y = 0, 4 x + y - 24 = 0, 2 x - y = 0.

(&) x - 4 y = 0, x + 2y-6 = 0, x - 4 = 0.

(c) x - 3 = 0, x - 4 y + 11 = 0, x + 2 y - 10 = 0.

(d) 4 x - 5 y = 0, x + y - 6 = 0, 8 x - y - 24 = 0.

Page 49

\. (6 + 5V'3)x-.-3y = 0. g. 7 x - 3 y + 5 = 0.
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Page 51

1. (a) x + y/3 y - 10 = 0. (6) x - V3 ?/ + 10 = 0.

(c) VSx-y + 10 = 0. (d) a + y = 0.

0) 4 x + (2 + 2 V3)y - 4 V2 = 0.

(/) 2 x - ( V2 -f V'0)y - 24 = 0.

1. T
33\/l3.

4. 4z + 3?/-3 =

Page 54

2. - 1.

(H. -tt); 7|.

3. 11$.

6. T
2
T
5
3 \/lT3 ; the first.

Page 57

1. x + 7y + 3 = 0',7x—y 17=0.

2. llz-35y=0.
3. 49 x + 98?/- 272 :

4. 3 x + 2 ?/ + 7 = 0.

Page 58

; 15 x - 18 y - 320 =

5. V3z-i/ + 3-V3
; 4 z + 5 ?/

:0. 6. 10 X-

3=0.

3 y + 4 = 0.

Page 60

1. 32. 3. 3263

Page 60. General Problems
2( 6 41"\ . /"78 23\

• VT7> T7J> UT» IT)

3.

4.

6.

7.

9.

11.

15.

2 x + 5 y = 40 ; 18 a + 5 y = 120 ; 6(2 + V7> + 5(2 ± y/l)y = 120.

5x-y+10 = 0. 5. 2x + 3?/ + 12 = 0;6x + ?/-12 = 0.

(a) x — 4 y = 0.

(31, 5±|V3). 8. (10,51).

(16f, -0&); (4|, -jf). 10. (8A* 1H)J 4tt, 3&).

/5VI97 ± 3V82 4V197 ± 14 V82\

V Vl97 +V82
/ 4V29 + 3V82

t

* V29+V82
/4V29 + 5V197

V V29 + VI97

5 x + y = 26.

Vl97±\/82 /

7V29 + 7V82 \.

V29 ± V82 /
'

- 7\Z29±2Vl97

V29+VI97
(Cl - C2)2

2 (mi — m2 )

17 18. 5. 21. (5,5).

Page 70

2. 4 x - 3 y + 15 = 0.
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Page 84

1. (a) (21±4V51)x+(28^3\/51)y = 350.

(b) x + 5 y - 28 = j 5 x - y + 10 = 0.

(c) 2 x - // = 15 ; 58 x + 71 */ = 335.

2. (a) 6 x + 8 ?/ - 49 = 0. (c) 14 x + 3 y = 55.

(6) 2 x - 3 ?/ + 9 = 0.

3. xi x + yi y = r2 .

Page 85
1. (a) 3a:-2y±7Vl3 = 0. (6) 2x + 3 y ± 7V13 = 0.

2. 3x + ?/ + 9±3VT0 = 0. 3. 1 + 1 = 1.

r- a 2 b~ r1

4. A: = 3G±20v/
G.

5. A2E2 +B2D2 +4BCE-2ABDE-4A2F-4 C2 + 4 ACD-4 B2F=0.

Page 86

1. f>/2T. 2. x2 + ?/
2
-f 52 x - 21 y- 265 = 0.

3. 2 x2 + 2 ?/
2 - 13 x - 6 ?/ + 15 = 0.

64V26 + 375\ 2
, / 2 V26 -f 435 \

2_ / 301

no/ V:25V26+170' \ 25V26 + 170/ \25>/26 + 170/

6. -^-. 7. 2x + y = 2; x - 2 y = ; (0,0), (f, |); tan"* 2.
2x01

Page 89

3. Perpendicular bisector of the line joining the two points.

5. Circle of radius r about (xi, y\).

6. Perpendicular bisector of the line joining the two points.

7. Bisector of the angle between the lines.

8. Circle about the centre of the square.

9. Circle whose centre is on the line through the fixed point, perpendic-

ular to the fixed line.

11. Circle whose centre is on the base of the triangle, extended.

12. Circle whose centre is at the centre of the triangle.

14. Circle whose centre is at the intersection of the two lines.

15. Circle whose centre is on the line OX.

18. Line through the centre of the base and the centre of the altitude of

the triangle.

19. A straight line.

20. Two lines through the origin.

21. A line through the origin.

22. A circle.

23. x2 + y
2 - rVx2 + y

2 = ry.
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24. A diagonal of the rectangle.

25. A diagonal of the parallelogram.

30. x2 + y
-2 _ _1«_ {XlX + yiy) = ( tULz

m + n \m + n,

31. xix + yxy = r2 .

32. An equal circle tangent to the given circle at the fixed point.

33. (x1
2+y l

2 -r2)[(x-xO 2+(y-y l )
2
] +2k2 (x lx+ y1y-x 1

2 -y{2
) + tf= 0.

34. A line parallel to the fixed line.

35 A circle.

Page 103

1. (a) y
2 = - 2 mx. (6) x2 = 2 my. (c) x2 = — 2 my.

2. y2 = 2 mx + m2
. 4. 4 x2 = — 9 y.

3. G/-/3)2 = 2m(x-a). 5. x = -2 ; (2, 0); 8.

Page 110

1. (a) a = 3, & = 2, c = V5, e = |V5, x = ± —-•

V5

(6) a = 3, 6 = 2, c=V5, e = | V5, y=±-iL
v5

(c) a = |V30, 6 = 1V5, c = | ^3, e = \
VTO, * = ± f V3.

2. (a )
4 *2 + 9 y

2 = 36. (d) 16 x2 + 25 y
2 = 400.

(6) 3 x2 + 4 ?/
2 = 36. (e) 16 x2 + 25 i/

2 = 400.

(c) 5 x2 + 9 ?/
2 = 180. (/) 8as* + 9y2 = U52.

5. 3x2 + 7 1/
2 = 55. 6. il^)l + iyj=jy = l.

a2 b2

Page 115

1. (a) a = 5, 6 = 1, c = V26, e = | V20, & = ±— , a; ± 5 y = 0.

V26

(6) a = 2, 6 = 3, c=Vl3, e = |Vl3, ac=±-4=, 3 x ± 2 y = 0.

Vl3

(c) a=Vl0, 6=2, c=VH, e= iV35, x=±fVl4, 2x±VlO>=0.
2. («) 4 x2 - 9 i/

2 = 36. (d) 16 x2 - 9 y
2 = 144.

(6) 3 x2 - y
2 = 9. O) 9 x2 - 16 y

2 = 144.

(c) 5 x2 - 4 y
2 = 125. (/) 72 x2 - 9 y

2 = 800.

3
(s-«) a _(y-fl)8

= ;L 4 Impossible .

a2 62

Page 118

1. 4 x2 — y
2 = - 4 ; a = 1, 6=2, e = |V5; latus rectum = 1 ; foci,

(0, ± V5) ; directrices, y = ± % V5.

2. V2. 4. 2xy = a2.
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Page 123

1. -y-v^; f^- 2 - |Vl3±|V66.

Page 130

1. (a) 3 ac + 8 y = 19 ; 8x-3y = 2.

(b) 3x + y = 7 ; x - 3 y = 9.

fr) x+2y = -6; 2»-y = 18.

(d) 5 x - y = - 8 ; 6 & + 5 y = 27.

2- (a) ¥; -I- (&) -l! 6. (c) -12; 3.

8. (a) y = 4; 3& + 2y = 17. 4. (a) 12 x + 25 y = 100

(b) x-y=-l; x + Sy=-9. (6)x4^3.
(c)» + 3y = 5;as-3y = -7. (c) y = 3.

5. (a) |\/73; ^V73. (6) fVTO; 2vT6.

(c) 6 a/5; 3V5. 6 tan-i(± 3).

Page 132

1. x-22/iVTT^O. 5 . (™, ±ml;
2. 18 x + 27 y = 88. V 2 '

3. 5x+2/_
V Va2 +&2 vW&2 /

4. /3 = ± V&2 - a2
Z
2
.

( x
«2

, ±
^ \

V Va2 - &2 Va2 - bV
Impossible in hyperbola when b > a.

V V2 V2/
8. 5 y ± xVlE ± 4\/l0 = 0. Four tangents.

9. 1 y ± 2 xV35 ± 4V91 = 0. Four tangents.

10. x ± yy/S + 6 = 0. Two tangents.. 12. (a) 4. (&) 3.

Page 148

1. 3 x - 8 y = ; x - 3 y = 0. 5. 20 x + 33 y = 125.

2. */ + 9 = 0. 6. 8x + 45y = 0;(
45_ , §—

V

3. 2*V§ + 3y = 0. 7. ^V3. ^±Vl51 TVl61/

4. x + 2 y = 8. 8x-y = l.

9. (± i Vl5, T i\/l5); (± § Vl5, T t^ Vl5). 10. h=- 12-

Page 158
1. (a) x - 8 y = 16. (c) 15 x + 16 y = - 24.

(b) x + 2 g = - 6. Cd) x + 5 = 0.
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6. (-If, H).

ANSWERS

4. (-10,4). 5. (-^, W\.

7
/ a2b2Xi a*b 2

y\ \

\62a;i2 + a-y{2 b'
2x{2 + cPyi2 )

1. Imaginary ellipse

2. Real ellipse.

3. Two intersecting lines.

4. Hyperbola.

5. Two parallel lines.

Page 182

6. Parabola.

7. Two coincident lines.

8. Point.

9. Point.

10. Hyperbola.

Page 186

4. x-.
2k

2. The directrix.

5. (a) x2 + y
2 = a2

; (6) x2 + y
2 = a2

;
(c) x = 0.

7. The asymptotes.

v2

' 6*
e. ^+r-2.

10. ft
2*2 + a-Y2 = 62c2.

12. 2/^-— x.

a4 6* a2 62

11. («) An ellipse
; (6) A parabola.

14. 25 x2 + 16 y
2 - 48 y - 64 = 0.

15. 2 r Vx J + y
l — 2 xxx - 2 ?/ii/ + Xi2 + y{2 — r2 = 0.

16. x2 x + fy-| = 0.

3 x2 — ?/
2 — 2 ex = 0. (Take the origin at the vertex of the smaller

angle.

)

22. A parabola.

24. 2 xy — y\X — Xiy = 0.

27. y
2 = -2 mx.

30. x =-r>L±m.
2

32. (x2 + y
2
)
2 = d2x2 + b2

y
2

.

34. 4 &!2xV2 - 4 rtiV = «i
2
&i

4
-

36. A directrix.

23. x2 + ?/
2 =-.

26. (x2 + y
2-2 ax) 2= a2(a-x) 2+a'V2

28. ab'2Vx2 + 2/
2 = 62x2 + d2

y
2

.

31. x2 + y
2 -(

c2 + m '2

)x + c2 = 0.

a4 64

35. Circle with radius a + b.

37. *f^+W1 + * + * = !

38. *- + ^=l.
a2 a4

.

ft
2
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Page 211

V^O; (6, -10, 20). 2. (*L±**±** Vi + ** + &, *i-r*2 + z*\

\ 3 3 3 /

COS"
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Page 236

1. x = y = 0; y = z = 0; z = x = 0.

2. -s = 0, Ax + 2ty + G = 0, etc.
;

2 = &, ^4x + #y + C = 0, etc.
;

s = A*i, ?/ = &2, etc.

4. (a) x = $z + l y = iz-i. (d) y = 2, z = - 3.

(?)) a: = -¥*, y = ^2 + 4. (e) * = fy--l, 2 = 1.

(c) e = - 4, a = - 2 y + 3. (f) y = -l, z = 2.

5. s = 0, « = f y + 3 ; x = 0, z = 3y + 6; y = 0,z=-2x + fi.

Page 238

2. (a) re = */ - 3, x = \\/2z + |V2 - 1.

(ft) se = -y+l, x = \\'2 z + l\/~2 - \.

(r) x = V3 y - 2V3 - 1, z = - 3.

3. x = y = z.

Page 240

3- (a) ?, =A jj. (c) 4=i =1. 0.
7 y/b V5

3' 3' 3*
(&) It % % (<0 1> 0,

Page 241

3. (a) x = -3y, (b) x = f z - 4, (c) a; = 2,

e = - 2 y - 2. y = - f * + 8. y = - 3.

4. x = 0,2 y + z = 0. 8. (4,1,-2). 9. 12 x - by - bz - 31 =

Page 243

1. (a) x2 + y* + z2 - 10 x + 4 y - 6 z + 37 = 0.

(6) x'2 + */
2 + 22 - 4 x + 6 y + 12 z = 0.

(c) x2 + if- + 22 ± 2 ax = 0.

2. (a) (1,-3, 4), 2. (d) (-3, 0,0), 3.

(b) (-5, 2, 1), 5. (e) Imaginary.

(c) (-2, -2, -3), 4.

3. (a) Indeterminate
;
points lie in a plane.

(b) x2 + y
2 + z2 -2x-8y-16z = 0.

4. x2 + y
2 + z*-2x-2y -2z = 0.

5. x2 + y
2 + s2 = 4.
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