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PREFACE

THERE have been two distinct methods of presenting

the subject of Trigonometry. In one the treatment is

purely geometrical, no attention being paid to the direc-

tion of lines. Here the algebraic signs of the functions

are assigned in a purely arbitrary manner, and none of

the proofs hold except for the particular figure. When
this method is employed, the result must be shown to be

general by some algebraic process.

In the second method all lines have direction as well as

magnitude, and the proofs are given in such a form that

they are general and hold for every possible figure. This

would seem to be the logical method of developing the

subject ; for Trigonometry is the connecting link between

elementary Geometry and those subjects in which Algebra
and Geometry are combined in such a way that the

directed line must be used constantly. This second

method has been employed in this work, which is in-

tended as a text-book for a fifty hour course in high
schools and the ordinary first year classes in college, and

is, therefore, made as elementary as possible. All matter

not required for such a course has been excluded.

We have attempted to avoid the usual mistake of mix-

ing the two methods mentioned above. Two distinct

proofs of the Addition Theorem are given. The first

employs the method of projection, the formulas for which

have been simplified by employing the French symbol for
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an angle between two directed lines; the second is a

geometric proof, similar to the one usually given, which

has also been made perfectly general. The second dem-

onstration may be preferred in a shorter course.

Carefully selected exercises are given at the end of

almost every article. In solving triangles, the natural

functions are used where the solution may be obtained

easily without the aid of logarithms. This method has

been followed because, where logarithms are used exclu-

sively, the student often does not know the meaning of

the operation he is performing. The subject of trigono-

metric equations, which is usually accorded little atten-

tion, is here given in a separate chapter, for it is thought
that in no other way can the student acquire so good a

knowledge of general principles or so great skill in

applying the formulas.

AUGUST, 1902,
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PART I

PLANE TRIGONOMETRY

CHAPTER I

FUNCTIONS OF ACUTE ANGLES

1. Definitions. Let ABO (Fig. 1) be a right triangle,

right-angled at C\ and let A'B' 0' be any second right

triangle which is similar to the first.

From the definition of similar triangles it follows that

ZA = /.A', and

OB
AB

O'B' AO AC
A'B' AB A'B'

and
OB C'B'

AO AC'

These five equations between the angles and the ratios

of the sides are true for any pair of similar right tri-

angles. Bat any two

right triangles are sim-

ilar, if an acute angle of

the one is equal to an

acute angle of the other,

or if any pair of homolo-

gous sides are propor-

tional. Hence if any
one of these five equations hold, the remaining four

also hold and the triangles are similar.

1
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It follows then that in every triangle equiangular with

ABO the ratios of the sides are the same as in ABO,
and that in every right triangle not equiangular with

ABO these ratios are not the same as in ABO; and,

conversely, if any right triangle has any one of these

ratios equal to the corresponding ratio of ABO, the

triangle must be equiangular with ABO.
The ratio, then, of any two sides of a right triangle is

a number which is entirely independent of the lengths of

those sides, and, if the

angle A is fixed, each of

these ratios has a deter-

minate value which is dif-

ferent from the value of

the corresponding ratio

A
^X*

O A' C' for any other angle.
FlG>1 '

These three ratios of

the sides of the triangle may then be spoken of as

functions of either of the acute angles of the triangle.

(One quantity, y, is said to be a function of another,

x, when y has a determinate value, or values, for every

value given to x.)

It has been found convenient to give names to these

ratios as follows : If A is either of the acute angles of a

right triangle (see Fig. 1),

sine of A = sin .

cosine

tangent

AB hypotenuse

A AO adiacent legof A = cos A = - ^ = J-->AB hypotenuse

of A = tenA=<= p
,

posite
}

eS
AC adjacent leg
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The abbreviations in the second column should always

be read the same as the first column.

Names are also given to the reciprocals of these ratios

as follows :

,.
,, A AB hypotenuse

cosecant of A = esc A = = ^
.

-
,

CJD opposite leg

f A A AB hypotenuse
secant of A = see A = - = ^ *AC adjacent leg

'. A AC adjacent leg"
cotangent of A = cot A = J

:
=-.

CB opposite leg

From these definitions it will be seen at once that

esc A =
, sec A = -, and cot A =

sin A cos A tan A

The last three ratios are used much less frequently than

the first three, and will usually be studied as the recip-

rocals of the first set. It is in this way that the student

is advised to memorize their definitions.

There are also two other functions which are occasion-

ally used. They are defined by the equations,

versed sine of A = vers A = 1 cos A.

coversed sine of A = covers A = 1 sin A.

The student should note that these eight quantities are

all abstract numbers^ since they are the ratios of two lines.

They are called the trigonometric functions of the angle A.
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EXERCISE I

In the following problems, C is the right angle of the

right triangle ABC, and the small letters a, b, c are used to

represent the lengths of the sides opposite the corresponding

angles j
that is, c represents the hypotenuse, a and b the legs.

1. Find all the functions of the angle A, if

(a) a= 5, 6 = 12. (c) a= 8, c = 17.

(6) 6= 4, c= 5. (d) a =10, c=15.

2. What are the functions of B in the same triangles ?

3. What relations do you notice between the functions of

A and B ?

4. Construct the angle whose (a) sine is f,

(b) tangent is 5, ^y (d) cotangent is 2,

(c) cosine is J,
-J >> Y \ (e) secant is 3.

5. Draw, on a large sheet of paper, a line AC 10 in. long.

At C erect a perpendicular, and at A lay off (with a protractor)

angles of 10, 20, etc. Measure carefully the sides of the

triangles thus formed, and from these measurements determine

(to two decimal places) the functions of the angles given in

the following table :

A
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SOLUTION. By definition,

a b
sin A = -

. and cos A = -
c' c

Hence a = c sin A = 12 sin 40 = 12 x .6428 = 7.7136,

and b = c cos A = 12 cos 40 = 12 x .7660 = 9.192.

7. Find c,ifA = 30 and a = 8.

8. Find A,iia = 171 and c = 500.

9. Find A, a, and c, if B = 50 and 6 6.

10. Find .4, 5, and c, if a = 91 and b = 250.

li

<g 11. Find 5, c, and a, if ^4 = 70 and b = 10.

12. Find A, a, and 6, if B = 20 and c = 20.

2. Functions of complementary angles. Using the

definitions of Art. 1 for the functions of angle B of the

triangle ABC, we have (see Fig. 2)

sin B =^ = cos A = cos (90 -
B),

cos B = = sin A = sin (90 #),

tan B =^ = cot A = cot (90 -
B),

CQiB =~ = tan J. = tan (90 -
5),

sec B = - = csc A = csc (90 B),
FIG. 2.

csc B = = sec A = sec (90 - 5).
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From which it appears that any function of an acute

angle is equal to the co-named function of its complementary

angle.

EXERCISE II

1. Express as functions of angles less than 45:

sin 70, cos85, sec 63, tan 56 48', cot 89 56

2. If cos x = sin x, find a value of x.

3. If tan x = cot 2 x, find a value of x.

4. If cos x = sin (45 + 2 x), find a value of x.

5. If A, B, and C are the angles of a triangle, show that

cos A=. si

3. Variation of the functions as the angle varies. Since

the trigonometric functions have been defined by the aid

of a right triangle, the angle A must be between

and 90, not including either of these. Later we shall

give definitions of the functions which will include all

angles, but for the present we shall confine our discus-

sion to angles between and

90.

Let the angle A begin with

small values and increase toward

B 90, and consider the changes

which will occur in each func-

tion. To fix our ideas, let AC
remain the same, while AB and

CB vary. For small angles

OB is small, and AB nearly

FIG. 3. equal to A 0. Hence the sine
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frl) and the tan^ent (^] are small
>
the cosine

.AB)

nearly unity, the secant (reciprocal of the cosine) a little

more than unity, while the cotangent and cosecant (recip-

rocals of the tangent and sine) are very large.

As the angle increases, both BC and AB increase and

approach equality. Hence the sine, tangent, and secant

increase, while the cosine, cotangent, and cosecant de-

crease. As the angle A approaches 90, AB and CB are

very large and nearly equal. Hence the sine approaches

unity, and the tangent and secant increase indefinitely.

The cosecant decreases toward unity, while the cosine and

cotangent decrease indefinitely.

It appears, then, that for angles less than 90 the

sine and cosine are less than unity,

secant and cosecant are greater than unity,

tangent and cotangent may have any positive value.

4. Functions of 45, 30, and 60.

(a) Functions of 45.

In the right triangle ABO (Fig. 4) let A O= OB = a.

Then angle A= angle B= 45, and AB= Vo"2+ a2= aV2~.

It follows at once from the defini-

tions of the functions that

sin 45 = cos 45 = -? = \ V2,

tan 45 = cot 45 = - = 1,
a

sec 45 = esc 45 = = V2.
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(b) Functions of 30 and 60.

Let each side of the equilateral triangle ABD (Fig. 5)

be represented by 2 a. Bisect

the angle B by the line BC.

Then this line bisects the base

AD and is perpendicular to it.

A right triangle ABC is thus

formed, in which angle A = 60

and angle =30. AlsoAB= 2 a,

AC= a, and BC= V-4 a2 - a2 =
aVS. It follows at once from the

definitions of the functions that

D

FIG. 5.

sin 60 = cos 30 = V3
9

'

cos 60 = sin 30 =
^-

=
|,

tan 60 = cot 30
a

cot 60 = tan 30 = --^ = i VS,

sec 60 = esc 30 =

esc 60 = sec 30 =

EXERCISE III

Find the numerical value of

1. 2 sin 30 cos 30 cot 60. 2. tan2 60 + 2 tan2 45.

NOTE. tan2 60 is equivalent to (tan GO )
2

,
or the square of the

tangent of 60.
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3. tan3 45 + 4 cos3 60.

4. 4 cos2 45 + tan2 60 + 3 sec2 30

5. sin 60 cos 30 + cos 60 sin 30

6. sin2 45 + cos2 60 - sin
2 30.

Prove tluit

PAO 2 tan 30=

8. sin 60 = 2 sin 30 cos 30.

9. cos 60 = 1 -2 sin2 30.

10. cos2 60 : cos2 45 : cos2 30 = 1 : 2 : 3.

5. Relations between the functions. It appeared at

once from the definitions of the six trigonometric func-

tions that they were not all independent ; for three of

them were defined as the reciprocals of the other three.

From these definitions we have the following relations :

sinA esc A = 1 9 [1]

cos .4 sec .4 = 1, [2]

* his /I'
1

We shall now show that there are other relations be-

tween these functions ; that, intact, each depends on the

others, so that, if one is giveii, all the

others may be found.

In the right triangle ABO,

Dividing by Alf,

we have
A&

or siii
2 ^! + cos2^ = 1. [4] FIG . G.
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Again dividing the same equation by AC2
,

we have - + 1 ,=

AC'2

or 1 + tan2A = sec2 A. [5]

Dividing the same equation by

wehave 1

or l+cot2^ = csc2^. [6]

Dividing sinA by cos A, we have

sin A ~AE CB

AB

But tanJ. =
A C

Hence

Since cotA =

cos^l

tan^l

cotA=^. [8]

These formulas should be carefully memorized by the

student, as they are in constant use throughout the

study of the subject. The student should also be per-

fectly familiar with the following forms, which may be

obtained easily from the formulas given above :
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sin.A = VI cos2 A. cos A = Vl sin2 ^.,

sec A = Vl -h tan2 A, esc A = Vl + cot2 A,

tan J. = Vsec2A 1, cot J. = VcscM 1.

One of the simplest applications of these formulas is in

finding the remaining functions, when any one function

of an angle is given.

For example, let sin A =
|-.

Then cos A = Vl-sin2 J. = Vl - J = -|
V3.

cos^L 1V3

cot ^1 =__ =-^ = V3,
tan^l

sec ^ = =-^ = * V3,
cosJ. 1.V3

i
esc A =-- = - = 2.

sinA

Again, let tan A = 5.

Then cot ^4 =

sec ^4. = Vl + tan2A = V26,

in^ = _J_= 5 V26,
esc ^4.

sec A
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EXERCISE IV

Find all the other functions of A, if

1. sinJ. = f. 6. esc ^4 = 10.

2. cos A = i. 7. sin -4 =
-J-}.

3. tan J. = 3. 8. cos A = f.

4. cot A = 6. 9. tan ^4 =
-|.

5. sec A = 2. 10. sec A = a.

11. Find all the other functions of 45 from the fact that

tan 45 = 1.

12. Find all the other functions of GO from the fact that

sec 60 = 2.

13. Find all the other functions of 30 from the fact that

cot30 = V3.

14. Find all the other functions of A in terms of

(a) sin A, (b) cos A, (c) tan A, (d) sec A.

15. Transform each of the following expressions into an-

other form which shall contain sin A only :

(a) ^AeofA+^A cot A
.

cos A cos A sm A

cos2 A cot A

(c)
sec2 A + cos2 A - tanl4 cot2 A.

v 16. Transform each of the following expressions into an-

other form which shall contain cos A only :

(a) sin A cos A tan A cot A.

(b} sec A 1
4.

tan A
cos A sin A

(c) sin2 A + cos2 A tan2 A cot2 -4.
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17. Transform each of the following expressions into an-

other form which shall contain tan A only :

(a) sin A cos A + cos A tan A -f sin A cot A.

/7N A A 1 sin A cos A
(b) sin A cot A

1 + sin A cos A

(c) sec A esc A + cot A.

6. Trigonometric identities. Another important use of

the formulas obtained in Art. 5 is in proving the identity

of certain trigonometric expressions.

The student should here make himself familiar with the

distinction between identities and conditional equations,

such as usually occur in algebra. An identity is an equa-

tion in which the two members are equal for every possible

value of the- variables in it
; while a conditional equation

holds only for certain values of these variables. For

example, 2x + 3 x = 5 x and' sin2 x + cos2 x 1 are identi-

ties ; while x2 2 x = 5 and sin x cos x are conditional

equations.

We are at present concerned only with the proof of

identities. The method to be employed is to change the

form of one of the members of the equation, by the applica-

tion of the formulas of Art. 5, until it has been made to

assume the form of the other member. Skill in choosing

the proper formulas to accomplish this result with the least

labor is acquired only after considerable practice ; but the

form which we wish to obtain will soon suggest to the

student which formulas he should use.

The following examples illustrate the mode of pro-

cedure :
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EXAMPLE 1. Prove that (1 cos2

A) sec2 A = tan2 A.

If we replace 1 cos2A by its equal sin2
^L, and sec2A

1 2 A

by -, the first member becomes
S1I
\ J , which is evi-

cos^-4 cos2
JL

dently equal to tan2 A.

EXAMPLE 2. Prove that esc2A tan2A - 1 = tan 2 A.

Here it is probably simplest to express the first member
in terms of the sine and cosine. This is often advisable.

It becomes

1 sin2
J. i 1 2/11 = _ 1 = sec2A 1 = tan2 A.

sin2A cos2A cos2 A

EXAMPLE 3. Prove that sec A tan A sin A = cos A.

As in the previous example, express the first member in

terms of the sine and cosine. It becomes

1 _ sin A . M _ 1 sin2 A _ cos2 A _ .

cos A cosA co A cos A

EXERCISE V

Prove the following identities :

1 . cos A tan A = sin A.

2. sinA sec A = tan A.

3. cos A esc A = cot A.

4. sin A sec A cot ^1 = 1.

5. sin2
^4 sec2 ^4 = sec?A 1.

^
sin J. cos^l _ ^
escA sec yl

7.
COS^
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8. tan2
^4 sin2 .4 = sin4 .4 see2

.4.

9. cot2A cos2A = cot2A cos2A.
#

10. tan A + cotA = sec A esc A.

11. sin4A cos4 .4 = sin2A cos2
.4.

12.
cos A sin A

tan A + cotJ
13.- = sin A cos A.

14

15.
sin.4

1 tanA 1 cotA

16. sec2A esc2
.4 = tan2

A-\- cot2.4 + 2.

' 17. sinA (tanA 1
)

cos A (cot ^4 1)
= secA esc A.

^ 18.

V 19.
^
1 + sinA

20. (sin A + cos ^4) (tan A + cot ^4)
= sec A + escA

2 1 . tan2
yl cot2A = sec2A esc

2 J. (sin
2 J. cos2

A) .

22. (1 + cot ^4 esc ^4) (1 + tan J. + sec A) = 2.

23. 2 vers ^4 + cos2A = 1 + vers2 A.

24. cot4 ^4+ cot2A = esc4 ^4 -cse2 A.

25 . (sin ^4 + esc ^4)
2 + (cos A -f sec ^4)

2 = tan2A + cot2 ^1 + 7



CHAPTER II

RIGHT TRIANGLES

7. Solution of right triangles. A right triangle may
be solved (that is, the unknown parts may be found)

when any two parts, one of which is a side, are given.

It is convenient to letter the triangle as in Fig. 7, the

small letters a, &, c representing

the lengths of the sides opposite

the corresponding angles.

When either A or B is known,

the other angle may be deter-

mined by subtracting the given

angle from 90. When any two

of the sides are known, the third

side may be found by the aid of the equation a2 + b2 = ft.

But when it is necessary to find the angles, having given

two sides, or to find the other sides, having given one side

and an angle, the trigonometric functions must be intro-

duced. The unknown parts may then be found by the

aid of the definitions of the functions,

v b

FIG. 7.

sin A =
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Choose that one of these formulas tvhicJi contains the two

given parts and one unknown part, and solve for the un-

known part; its numerical value may then be found by

the aid of a table of trigonometric functions.

If necessary, repeat the operation with one of the

other formulas to find the remaining parts.

Each of the unknown parts should be determined

directly from the given parts, without using the results

of a previous operation. The accuracy of the work may
then be tested by determining one of the given parts

from the parts just found.

The different cases which may arise might be separated,

and the particular formulas to be used in each indicated ;

but it is thought best to let the student determine the

best method of solving each problem, only giving a few

typical examples.

EXERCISE VI

2. Given c = 16 and A = 26 15'
;
find the remaining parts.

To obtain a, use

sm^. = -, or a = c sin A = 16 x .44229 = 7.0766.
c

To obtain b, use

cos^l = -, or b = c cos A = 16 x .89687 = 14.35.
C

The accuracy of these results may be tested by determining
whether they satisfy the equation a2

-f b
2 = c

2
.

The angle B is the complement of A, or 63 45'.

2. Given a = 8 and b = 12
;
find the remaining parts.

Here c may be found at once from the equation c
2 = a2 + b'

2
.

From this equation, c = V64 + 144 = 14.44.



18 PLANE TRIGONOMETRY [Cn. II, 8

To obtain A, use tan A = - = = .66666.
6 12

From this, by the aid of the tables,

A = 33 1'. B = 90 A = 56* 19'.

These results may be tested by determining whether they

satisfy either the equation for sin A or cos A.

Find the remaining parts in each of the following problems :

3. a = 3, 6 = 4. 7. 6 = 13, c =85.

S 4. a = 9, 6 = 40. y 8. a = 12, A = 34 42'.

5. a = 12, c = 13. ^9. c=15, = 23 34'.

I. a = 60, c = 61. /xlO. 6 = 17, A = 13 52'.

8. Solution by the aid of logarithms. The student

should now make himself familiar with the use of loga-

rithms by reading the explanation of the tables, and by

doing some of the problems given there. Logarithms are

not of great use in solving right triangles, since they do

not greatly decrease the labor involved ; but it is best to

become familiar with their use in solving simple problems.

EXERCISE VII

1. Given a = 12.73 and c = 43.18
;
find the remaining parts.

sinA = - - sin B = -, or 6 c sin B.
c c

Hence log sinA= log a log c. Hence log6= logc-J-logsiiiJ3.

log a = 1.10483 log c = 1.63528

log c = 1.63528 log sin = 9.98026

log sin A = 9.46955 log 6 = 1.61554

.4 = 17 8' 47". 6 = 41.26.

= 90 -^1 = 72 51 '13".
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2. Given ^4=43 48' and I =67.92
;
find the remaining parts.

Acos A = -, or c =
c cos A tan -4 = or a=btanA.

Hence log c= log b log cos A. Hence log a= log b -f- log tan A.

log 6 = 1.83200 log b = 1.83200

log cos A = 9.85839 log tan A = 9.98180

log c = 1.97361 log a = 1.81380

c = 94.10. a = 65.13.

Find the remaining parts in each of the following problems :

3. = 5678, 6 = 6789.
'

4. a = 2222, c = 3333.

5. a = .4545, c=.5454.

, 6. = 4567, 4 = 23 52'.

7. c = .8765, = 27 25'.

8. a = 206.14, .4 = 24 24'.

9. c = 2.383, 5 = 32 42'.

10. a = 1758, 6 = 1312.7.

11. a = .581, 6 = 13.5.

12. 6 = 75.84, A = S732'.

13. 6 = 8.4, c = 14.

14. a = 795, 6 = 164.

15. c=543.3,5=1720'35".
16. a = 1.456, yl=326'42".

17. a = .0065, c = .0094.

18. c = 765, .4=84 16'.

19. c = 1000,^l = 75 .

20. a = 1.006, c = 1.06.

9. Heights and distances. One of the applications of

Trigonometry is in finding the height of objects or the

distance between points, when that height or distance can-

not be easily measured. This is accomplished by measur-

ing other easily accessible lines and certain angles, and

computing the desired lines

from these data.

It is necessary to explain

a few terms used in such prob-

lems. Let A and B be two

points not in the same horizon-

tal plane, and let A C and BD FIG. 8.
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be horizontal lines through these points. If B is observed

from J., the angle CAB is called the angle of elevation

of B from A. If A is observed from B, the angle DBA
is called the angle of depression of A from B.

Again, let AB be any object,

and let Q be the point of ob-

servation. The angle ACB is

spoken of as the angle which AB
subtends at C.

The earlier problems of the

following exercise give simple

right triangles, and can be solved by the student without

further assistance.

EXERCISE VIII

1. A vertical pole 13 ft. high casts a shadow 21 ft. long.

What is the angle of elevation of the sun at this moment ?

2. How high is the tower which casts a shadow 125 ft.

long, when the angle of elevation of the sun is 28 20' ?

3. What is the angle of elevation of the top of a tower

150 ft. high at a point in the same horizontal plane as its foot

and 200 ft. distant ?

4. From the top of a tower 100 ft. high, the angle of de-

pression of an object in the same horizontal plane as its foot

is found to be 31. How far is the object from the tower ?

5. The angle of elevation of the top of a tower from a

point in the same horizontal plane and 57 ft. from its foot is

found to be 22 14'. How high is the tower ?

6. A building 95 ft. high stands on the bank of a river.

The angle of elevation of the top of the building from the

opposite bank of the river is found to be 25 10'. Find the

breadth of the river.
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7. The two equal legs of an isosceles triangle are each

10 ft. and the opposite side is 6 ft. Find the three angles.

NOTE. Draw the altitude of the triangle. Then there will be

two equal right triangles formed, in which the base is 3 ft. and the

hypotenuse is 10 ft.

8. From a point directly in front of the middle of a build-

ing and 100 ft. distant, the length of the building is found to

subtend an aogle of 34 15'. How long is the building?

9. Two trees stand directly opposite each other on a straight

road 80 ft. wide. From a point in the centre of the road the

line joining their trunks subtends an angle of 5 28'. How far

is the point from the trees ?

10. A circular balloon 10 yd. in diameter is noted by an

observer to subtend an angle of 40'. At the same time the

angle of elevation of its apparent lowest point is 50 10'. Find,

approximately, the height of the balloon.

11. A. flagstaff 20 ft. long stands on the corner of a building

150 ft. high. Find the angle subtended by the flagstaff at a

point 100 ft. from the foundation of the corner.

'
12. A strip of river bank is straight. It is 300 ft. long and

it subtends a right angle at a point on the opposite shore. The

a;igle between a line drawn from the point to one end of the

strip and the perpendicular from the point to the strip is 15.

Find the width of the river.

13. A ladder 30 ft. long leans against a house on one side

of a street making an angle of 60 with the street. On turning

the ladder about its foot till the top touches the house on the

opposite side, the angle is found to be 30. Find the width of

the street.

14. To find the height of a chimney a distance of 125 ft.

is measured from its base. From the point thus reached the

angle of elevation of the top of the chimney is found to be

48 25'. What is the height of the chimney ?
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15. From the top of a telegraph pole 35 ft. tall a wire 50 ft.

long is stretched to the ground. Find the angle which the

wire makes with the ground.

'16. A man lies on the ground with his eye to the edge of a

well and, looking into the well, he sees the reflection of the

opposite edge in the water. The direction in which he looks

makes with the vertical an angle of 17. The well is 6 ft.

broad. Find the distance from the edge of the well to the

surface of the water.

NOTE. The angle of reflection equals the angle of incidence.

" IT. From one point 6t oblservaQcm^cne angle of elevation) of

the top of a building is found to be 35. The observer walks

100 ft. directly away from the building in the same horizontal

plane and then finds the angle of elevation of the top of the

building to be 25. Find the height of the building.

SOLUTION. Let AB (Fig. 10) represent the face of the

building, and let C be the

first point of observation

and D the second point.

Then .405 = 35, CDB
= 25, and CD = 100 ft.

Draw CE perpendicular
to BD. Then in the right

triangle ODE,

FIG. 10.
CE= CD sin 25,

= 100 sin 25.

In the right triangle BCE, the angle CBE = 10.

CE 100 sin 25
Hence

In the right triangle

sin 10
C

sin 10

100 sin 25 sin 35

sin 10



CH. II, 9] RIGHT TRIANGLES 23

Applying logarithms, log 100 = 2.00000

log sin 25= 9.62595

log sin 35 = 9.75859

11.38454

log sin 10= 9.23967

logAB= 2.14487

AB = 139.6.

SECOND SOLUTION. -The following is another method of

solution in which natural functions are used.

In the right triangle ABC. - = tan 35.
y

In the right triangle ABD, -^
= tan 25.

y + 100

Solving this pair of equations for aj, we have

x = 100 tan 35 tan 25 = 100 x .70021 x .46631
"

tan 35 -tan 25 .2339

Applying logarithms, log 100 = 2.00000

log .70021= 9.84522

log .46631= 9.66868

11.51390

log .2339 = 9.36903

logAB= 2.14487

AB = 139.6.

18. The shadow of a tower standing on a level plane is found

to be 60 ft. longer when the sun's altitude is 30 than when it

is 45. Prove that the height of the tower is 30(1 + V3).
NOTE. Use second method.

19. Find the height of a chimney if the angle of elevation

of its top changes from 31 to 40 on walking toward it 80 ft.

'in a horizontal line through its base.

20. From the top of a cliff 100 ft. high the angles of de-

pression of two buoys, which are in the same vertical plane as

the observer, are found to be 5 and 15. Find the distance

between the buoys.



CHAPTER III

FUNCTIONS OF ANY ANGLE

10. Directed lines. If a point moves from A to B in

a straight line, we shall say that it generates the line

AB ;
if it moves from B to A, it generates the line BA.

The position from which the generating point starts is

called the initial point of the line ; the point where it

stops, the terminal point. In our study of Geometry,
AB and BA meant the same thing, the line joining A
and B without regard to its direction. But we shall

now find it convenient to distinguish between AB and BA
by calling one of them positive and the other negative.

When either direction

along a line has been

O ^ >X chosen as the positive

FlG 1L direction (as OX in

Fig. 11), then all dis-

tances measured along this line, or any line parallel to

it, in this direction, shall be represented by positive

numbers, and those in the opposite direction by negative

numbers.

In Fig. 11, if OX is chosen as the positive direction,

AB and MN are positive lines, while CB is a negative

line. The measures of AB and MN must, therefore, be

positive numbers ; but CB must be represented by a

negative number.
24
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The lines which we shall use in our further study will

all be directed lines, unless the opposite is expressly

stated, and we shall be concerned not so much with

the lines themselves as with the measure of those lines.

We shall therefore find it convenient to use the symbol
AB to represent

" the measure of the line AB "
(its

absolute magnitude with its proper sign attached) ;

while if we wish to speak of the line itself, we shall

write "the line AB."

Since the lines AB and BA are equal in magnitude
but opposite in direction,

AB = - BA.

11. THEOREM. If A, B, and O are any three points on

a straight line, ^^ + BC = AC.

When the three points are situated as in Fig. 11, the

theorem is evident, since all the numbers are positive,

and the measure of AC _ ^

equals the sum of the A.
_

O" JS

measures of AB and BC.

In Fig. 12, for the same reason as above

AB = AC+CB.

But, since we are dealing with numbers, we may
treat this as an ordinary equation. Hence

AC=AB-CB
A
FIG. 13.

.

"

In Fig. 13, CA + AB = OB.

Hence -AC + AB= - BC, or AC = AB + BC.
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Let the student place the points in other positions,

and show that the theorem holds in all cases.

This theorem may be readily extended into the fol-

lowing :

If A, B, J, K are any number of points on a line,

+ BC+ ...IJ+ JK= AK.

12. Angles. In the previous chapters only angles less

than 90 have been considered ; but the student is already

familiar, in his study of plane geometry, with angles be-

tween 90 and 180. In the further study of mathematics

it is convenient to regard an angle

asformed by a straight line revolv-

ing in the plane about some point

, t
/ ,

in the line. If a line starts from

\u \s the position OA and revolves in a
* \ /

\ \ y / fixed plane about the point into
V

4 "^ "
/ . . .

the position OB, it is said to gener-

ate the angle A OB. The position

from which the moving line starts

is called the initial side of the angle ; the position where it

stops, the terminal side. We shall regard the amount of

such rotation as the measure of the angle. In this sense

there is no restriction on the size of an angle, since there

is no limit to the possible amount of rotation of the mov-

ing line ; after performing a complete revolution in either

direction, it may continue to rotate as many times as

we please, generating angles of any magnitude in either

direction.

Since there are two directions in which the moving line

may be made to rotate, it is found convenient to distinguish
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between them by using positive and negative signs, just

as in algebra it is found convenient to attach signs to the

ordinary arithmetic number. There is no special reason

for choosing either direction rather than the other as

positive ; but the usual convention is to regard as positive

an angle formed by a line revolving in the direction op-

posite to the direction of rotation of the hands of a clock ;

the clockwise direction of rotation is then negative. In

reading an angle in the ordinary way a letter on the

initial line is read first ; for example, A OB means the

angle formed by a line in rotating from OA to OB, while

BOA means the angle formed by a line in rotating from

OB to OA. This method of reading an angle is evidently

ambiguous, since there is an indefinite number of positive

and negative angles, all of which must be read A OB. For

the rotating line, starting from OA, may make any number

of complete revolutions in either the positive or negative

direction and then continue to the position OB, and any
one of these angles must still be read A OB. Such angles

which have the same initial and terminal sides are called

congruent angles. It will be seen later that it is usually

unnecessary to distinguish between congruent angles, since

their trigonometric functions will be found to be the

same; but we shall understand that the smallest of the

congruent angles is meant unless another angle is indi-

cated by an arrow in the figure.

13. The measure of angles. The angular unit of meas-

ure with which the student is familiar is the degree, or

J^th part of one right angle. When we wish to measure

an angle, we say that it contains a certain number of these
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units. This system is convenient for numerical problems
in the solution of triangles, etc. But there is another

unit which is almost universally used in higher mathe-

matics. On the circumference of any circle lay off an

arc AB equal in length to the radius, and join its ex-

tremities to the centre of the circle. Since the ratio of

a circumference to its radius is constant (and equal to

2 TT), the arc AB is always the same fractional part of

a complete circumference, namely

Then, since angles at the cen-

tre of a circle are proportional to

the arcs which they subtend, the

angle AOB is the same fractional

part of four right angles, and is,

therefore, constant.
FlG> 15 '

This angle A OB is the unit angle

of circular measure, and is sometimes called a radian. The

circular measure of any angle is the ratio of that angle to

this unit angle, or the number of times the given angle con-

tains the unit angle.

It is usually written without the name of the unit.

Since a complete revolution, or four right angles, has

been shown to contain 2 TT radians, the circular measure

of a right angle is
^;

of an angle of 60,
^;

of 45,
^.

etc .

If a is the circular measure of any angle AOM and r is

the radius of the circle,

AOM arc^Of krcJLBf_~
r

Hence the circular measure of any angle is equal to the

arc it subtends divided by the radius, and, conversely, the
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length of any arc equals the radius multiplied by the number

expressing the circular measure of the angle. Or arc AM= ar.

Since there are 2 TT radians in a complete revolution, or 360,
orno

one radian = 57 17' 45", approximately.
2 7T

We have seen that it is convenient to call angles formed

in the counterclockwise direction of rotation- positive ;

the circular measures of such angles are, therefore, ex-

pressed by positive numbers, ^, -^, etc. ;
while the cir-

cular measures of angles formed in the clockwise direction

of rotation are negative numbers, ,
^

, etc.

EXERCISE IX

1 . Express in circular measure the angles 15, 30, 40, 120,

250, 300.

2. Express in degrees, minutes, and seconds the angles -,
**OK

7T Z 7T O 7T7T 7T 7T K

9' T' ~6~'

3. In a circle whose radius is 10 inches, what is the length

of an arc which subtends at the centre of the circle an angle of

3?T 7T 3 7T r,

T' 6' IT'

4. In. a circle whose radius is 5 inches, what is the circular

measure of an angle at the centre which subtends an arc of

10 inches ?

14. Addition of directed angles. If the moving line

starts from OA (in any one of these figures) and rotates

first through the angle A OB, and then through the

angle BOO, it is evident that the position 00 which

the line finally reaches is the same as if, starting from
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OA, it had rotated through the single angle AGO. The

angle A 00 is called the sum of the angles A OB and BOO.
That is Z.AOB + Z.BOO = Z.AOQ.

By a process similar to that used in Art. 11, it may be

shown that the measure of the sum of any number of

angles is equal to the sum of their measures, or that the

above equation holds when, instead of the angle, we

mean, in each case, the measure of the angle. It will

not be necessary to distinguish further between an angle

and its measure.

15. Angles between directed lines. We shall have

occasion to speak of the angle from the positive direc-

tion of one line to the positive direction of another line,

and it is convenient to have a symbol to represent it,

since the ordinary method of reading an angle is not suffi-

cient. We shall adopt the following notation : {AB, MN)
shall indicate the angle from the positive direction of

AB to the positive direction of MN. (Sometimes it is

more convenient to use single letters to represent the

lines, as a and 6, when the symbol (a, 6) will be used

for the same purpose.) In this symbol it is entirely

immaterial whether we write AB or BA, MN or NM ;

since it is always to indicate the angle between their positive

directions without reference to the way they are read.



CH. Ill, 16] FUNCTIONS OF ANY ANGLE 31

Here again, as in the

ordinary method of read-

ing an angle, the symbol

is ambiguous, since it may

represent any one of the

congruent angles ; but

the smallest of these will

be understood unless an-

other is indicated in the

figure. If the arrows

indicate the positive di-

rections of the lines, in Fig. 17 (a) (AB, MN} = AOM,
a positive acute angle ; while in Fig. 17 (li) (AB, MN)
= AON, a negative obtuse angle.

16. Functions of angles of any magnitude. We must

now define the trigonometric functions of an angle of any

magnitude. For this purpose, let the plane be divided

into four quadrants by a pair of indefinite lines perpen-

dicular to each other, one horizontal, X'X, called the

/-axis, and the other vertical, Yf

Y, called the X-axis.

Let the positive direction of the JT-axis be from left to

right, and let the positive direction of the JT-axis be up-

ward. Then all lines drawn parallel to these axes must

have the same positive directions ; that is, a line drawn to

the right or upward is positive, while lines drawn to the left

or downward are negative. The positive direction of any

line not parallel to one of the axes will be determined by
other conventions.

The point where the axes cross is called the origin. The

quadrants are numbered as in the figure.
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'II

X

For the purpose of defining the trigonometric functions

of any angle, let the angle

be placed with its vertex

at the origin and with its

initial line coincident with

OX, the positive segment
of the Jf-axis. It is called

an angle in the first, sec-

ond, third, or fourth quad-

rants, according to the

position of its terminal

-x

IV

Y
FIG. 18.

7T
line; that is, angles from to are angles in the first

2

quadrant, ^ to TT in the second quadrant, etc.

The positive direction of segments measured along the

terminal line of an angle will always be from the origin

along that terminal line.

For example, if we are considering the angle XOA, OA
is positive and OK is negative ; while if we are consider-

ing the angle XOK, OK is positive and OA is negative.

From any point P on the terminal line of the angle

XOA drop the perpendicular MP to the Jf-axis. Then

the trigonometric func-

tions of the angle XOA
are defined as follows :

sin XOA =

cos XOA =

tan XOA =

MP
OP'

OM.
OP'

MP
OM FIG. 19.
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The secant, cosecant, and the cotangent are defined

as the reciprocals of the cosine, sine, and tangent.

In each of these definitions the direction as well as the

magnitude of the lines is to be considered.

The point P may be taken as any point either on the

positive segment, OA, of the terminal line, or on OK,
the negative segment of that line. For the similarity of

the triangles shows that the ratios are the same numeri-

cally for all positions of P'; and the signs of the ratios

are also unchanged by a change of P from the positive

segment OA to the negative segment OK, since this

change simply reverses the signs of MP, OP, and OM.

From these definitions it appears that the value of any
function is the same for all congruent angles, since we are

concerned only with the positions of the initial and ter-

minal lines. The functions of Z XOA and Z XOK, which

differ by TT, are numerically equal, but may differ in sign.

17. Algebraic signs of the functions. These definitions,

when applied to angles less than , will be seen to agree

with the definitions in Chap. I. In the first quadrant all

the functions are positive, v
since OM, MP, and OP
are all positive. But in

the other quadrants the

signs of some of the func- v > m M \i/ M M
tions will be seen to be

negative. It will be sim-

plest always to place P
on the positive segment FIG. 20.

X
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of the terminal line of the angle, so that OP shall always
be positive, and it will only be necessary to consider the

signs of OM and MP.
In the second quadrant MP is positive and OM is nega-

tive. The sine and cosecant of angles in the second quad-

rant are, therefore, positive and all the other functions

negative.

In the third quadrant both MP and OM are negative,

so that all the functions of angles in the third quadrant are

negative except the tangent and the cotangent.

In the fourth quadrant OM is positive and MP negative.

The cosine and secant of angles in

the fourth quadrant are, therefore,

positive and all the other functions

negative.
~ X The student may find Fig. 21 use-

ful in remembering the signs of the

. functions in the different quadrants.

FlQ 21
The function written at the head of

each arrow is positive in the quad-

rants through which the arrow passes.

EXERCISE X

'1 Determine the signs of the functions of the following

angles: 100, 200, 300, 400, 500, 000, 700, -50, -15()
c

.

-350

%, In which quadrant must an angle lie, if

(a) its sine and cosine are negative,

(&) its cosine and tangent are negative,

(c) its sine is positive and its tangent is negative,

(d) its cosine is negative and its tangent is positive ?
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3. In which quadrants may an angle lie, if its cosine and

secant are negative ?

4. For what angles in each quadrant are the absolute values

of the sine and cosine the same ? For which of these angles

are they also alike in sign ?

5. Determine the limits for x between which sin x + cos x is

positive.

18. Functions of the quadrantal angles. The angles 0,

, TT,
-

,
and 2 TT, which have their terminal lines coinci-

dent with one of the axes, are called quadrantal angles.

It is necessary to consider the definitions of the functions

of these angles separately ; for in some cases these defini-

tions will be found to have no meaning.
Let XOP be a small angle and let it decrease. If the

length of OP remains fixed, MP
will decrease indefinitely, and

the length of OM will approach

that of OP. The sine

M

FIG. 22.

cosine

(MP\J
evidently

decrease indefinitely and ap-

proach zero as a limit
;
while the

(
)
approaches unity as a limit. Then sin = 0,

cos = 1, and tan = 0. Also, since secA= -, sec = 1.^^ cos ^
But when we consider the other reciprocal functions, the

cosecant and cotangent, we meet with a difficulty, since

the reciprocal of zero does not exist. There is, then, no

cosecant or cotangent of a zero angle. For small values of
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the angle XOP, the cosecant -73 and the cotangent

/OM\
f
-

J
are large, and they continue to increase without

limit as XOP approaches zero. This fact is usually

represented by writing esc = oo
,
and cot = oc . But

these equations must be distinctly understood to be abbre-

viations of the statement that, as an angle approaches zero,

its cotangent and cosecant increase indefinitely ; they
must never be understood to mean that the cotangent and

cosecant of a zero angle exists.

It is in this sense only that the symbol oo will be used

throughout this work. If, in the expression -, x is made
x

to decrease indefinitely, the value of - will increase indefi-
x

nitely. This may be abbreviated into - = oo
, which

"1
should be read - increases indefinitely, as x approaches

x

zero." This is sometimes abbreviated still further into

\ = oo . But this must never be interpreted as an ordinary

equation, in which one member is equal to the other. It

has no meaning whatever except as an abbreviation of the

sentence above.

When it is necessary to express the fact that the nega-

tive values of a variable increase numerically without

limit, the symbol oc will be used.

When the angle XOP increases toward ,
OM ap-

proaches zero and MP approaches equality with OP.

Then the sine
(-775)

an(i the cosecant - approach
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unity ; the cosine f
-

j
and the cotangent ( ) ap-\OP/ fMP\ \MP J

proach zero; while the tangent (-) and the secant

fOP\
f

j

increase indefinitely. Then

^
= 0, cot^=0, esc- = 1, tan x

and sec x

= 00,

= 00.

O M

FIG. 23. FIG 24.

It must be here noted that, if x is an angle in the second

quadrant (as XOP in Fig. 24), OM is negative, and hence

the tangent and secant are negative. If x is now made to

decrease toward , the negative values of these functions
2i

increase numerically without limit. This will be found

to be true in every case where any trigonometric function

becomes infinite. When the angle is made to approach

this value from one side, the function has positive values

which increase indefinitely, while if the angle is made to

approach this value from the opposite side, the function has

negative values which increase numerically without limit.

7T
This fact is usually expressed by writing tan = QD,

2
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But the student must keep constantly in mind the fact

that this is only an abbreviation for the statement made

above.

Let the student show in the same manner that the func-

tions of the other quadrarital angles are as follows :

sin TT = 0, cos TT = 1, tan TT = 0, sec TT = 1, esc TT = GO,

cot-TT oo.

sin TT = 1, cos TT = 0, tan TT = oo, sec TT = oo,

19. Line values of the functions. The trigonometric

functions have been denned as the ratios of lines to each

other, and are, therefore, abstract numbers. But, by the

aid of a circle drawn about the origin with unit radius,

lines may be found which will represent, in magnitude
and direction, the values and signs of the various func-

tions. This method of representing the functions will be

found to be an aid in remembering the changes in sign

and value of the func-
Y

tions.
T

Construct a circle

with its centre at the

origin, having as radius

a line which we shall

use as the unit of

length. Drop a per-

pendicular from the

point P where the ter-

minal line of the angle

meets the circle. Then
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smx, or - , is represented by MP both in magnitude

and sign, for the denominator OP is always positive unity.

In like manner, OM will always represent cos x.

To represent tan x, it is necessary to erect a perpen-

dicular at A, in order that the denominator of the ratio

AT
shall be the unit of measure. Then tan x = , and ATOA
will represent tan x. If the angle is in the second or

third quadrant, the line which is to represent the tangent

must still be drawn at A to meet the terminal line of

the angle, produced in the negative direction ; for, if it

is drawn at A', the denominator of the fraction would

be OA, which is equal to 1, and cannot, therefore, be

used as the unit of length.

The other functions may also be represented by lines,

but it seems best to think of them as the reciprocals of

the three given above. Thus, the secant of any angle has

the same sign as the cosine, and in magnitude is the

reciprocal of the cosine.

20. Variations of the functions. The changes in value

of the functions were partially considered in Art. 18.

But the student will find it much easier to remember

the changes in both sign and value by making use of

the line values discussed in the previous section.

The sine. The line MP (Fig. 26) which represents the

sine of XOP is seen, as the angle increases, to increase from

to 1 in the first quadrant ; to decrease from 1 to in the

second quadrant ;
to continue to decrease from to 1

in the third quadrant ; and to increase from 1 to
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P,

in the fourth quadrant. This variation in value and

sign may be represented by the aid of a curve as follows:

Let y = sin #, where

the angle x is expressed

in circular measure.

Then a graph of this

equation may be formed

just as is done in the

case of an ordinary alge-

braic equation. Using
a pair of perpendicular

axes, lay off from

along OX various val-

ues of #, and at the

points thus determined

erect perpendiculars, whose lengths are the corresponding

values of y. For example, take any convenient distance, as

OA, to represent an angle of , and at A erect a perpen-
2

dicular of unit length to represent the fact that sin = 1.

At B, midway between and A, erect a perpendicular equal

to -|-V2, or sin , etc. Do this for various values of x

between and 2 TT, and then pass a smooth curve through

their extremities. This curve will form a picture of all
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the changes in value and sign as the angle changes from

to 2 TT. It will be seen that the curve crosses the axis

at x = TT, since sin TT = ; that it remains below the axis

from x = TT to x = 2 ?r, forming a curve like that formed

above the axis from x= to # = TT; and that this curve

will be repeated indefinitely both to the right and left,

if x is allowed to take on all possible values.

The horizontal distance which represents a radian, and

the vertical distance which represents unity are usually

chosen equal.

The cosine. The
l^ine

OM (Fig. 26), which represents

the cosine of XOP, is seen, as the angle increases, to

decrease from 1 to in the first quadrant ; to decrease

FIG. 28.

from to 1 in the second quadrant; to increase from

1 to in the third quadrant; and to continue to

increase from t/ 1 in the fourth quadrant. Let the

student show that this variation is represented by the

figure given above. The form of this curve is seen to

be the same as that of the sine curve, but it is moved

along the axis a distance ^ to the left.
2

The tangent. It has been shown that the tangent is

always represented by a tangent to the unit circle drawn

from A. to meet the moving radius produced. Using the
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symbol 00 in the sense explained in Art. 18, it is easily

seen that, in the first quadrant, AT increases from to

+ oo
;
in the second quad-

rant, AT2
increases from

oo to ;
in the third

rp

quadrant, AT3
increases

X from to +00 ; and in

the fourth quadrant, AT
increases from oo to 0.

If we let y = tan x, the

variation of y will be

represented by a curve

starting at (Fig. 30) and going upward indefinitely, as x

approaches . Erect at the point x = a line MN

Q TT TT TT

X

FIG. 30.

perpendicular to the axis. For every value of x less than

7T
- there are finite values of the tangent, growing indefi-
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nitely large as x approaches . But when x =
, there

'

2

is no tangent. The curve, therefore, goes upward indefi*

nitely at the left of MN, never touching or crossing this

line, but constantly approaching it. Such a line is called

an asymptote of the curve. When x is slightly greater

than
^,

the tangent has a large negative value; it in-

creases toward as x approaches TT ; and increases indefi-

nitely as x approaches |TT. This branch of the curve has,

then, the two linesMN and US as asymptotes, and crosses

the axis at the point X = TT. When x increases from
|-7r,

the tangent again starts with a large negative value and

passes through the same changes as before. If x is

allowed to take all positive and negative values, there

will be a series of such branches, just alike, at intervals

of TT from each other.

The cotangent. Since the cotangent is the reciprocal

of the tangent, it decreases from co to in the first

quadrant; decreases from to GO in the second quad-

rant; decreases from -f- GO to in the third quadrant;
and decreases from to oo in the fourth quadrant.

The secant. Since the secant is the reciprocal of the

cosine, it increases from 1 to + GO in the first quadrant;
increases from GO to 1 in the second quadrant; de-

creases from 1 to GO in the third quadrant; and

decreases from + GO to 1 in the fourth quadrant.

The cosecant. Since the cosecant is the reciprocal of

the sine, it decreases from +00 to 1 in the first quadrant;
increases from 1 to -j-oo in the second quadrant; increases
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from GO to 1 in the third quadrant ; and decreases

from 1 to -co in the fourth quadrant.

EXERCISE XI

1. How many angles less than '360 have their cosine equal

to | ? In which quadrants do they lie
'

2. How many angles less than 720 have their tangents equal

to 5 ? In which quadrants do they lie '!

3. Are there two angles less than 180 which have the same

sine? the same cosine? the same tangent?

4. Construct the curve which represents the change in value

and sign of the cotangent.

5. Construct the curve which represents the change in value

and sign of the secant
;
the cosecant.



CHAPTER IV

RELATIONS BETWEEN THE FUNCTIONS

21. Relations between the functions of any angle. The
relations between the functions of an acute angle which

were proved in Art. 5 may v
easily be shown to hold for

all angles. In the triangle

MOP, it is always true that x- M

Y

FIG. 31.

By dividing successively by OP2
, OM2

, and MP2
,

we obtain, as in Art. 5,

sin2 a + cos2 a = 1,

1 -f- tan2 = sec2 a,

1 -f cot2 a = esc2 a.

It is also apparent from their definitions that

MP
MP< OP sin a cos a

tan a = - =
:
=

, and that cot = -:OM OM cos a sin a

OP
45
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EXERCISE XII

1. If sin# = i, find the possible values of the other func-

tions of x.

2. If cos x = i, and sin x is negative, find the other functions

of x.

3. If tan x = 3, and x is an angle in the fourth quadrant,
Hi id the other functions of x.

4. If sec x = 4, find the possible values of the other functions

>> x.

5. If secA =
,
find the possible values of the other

functions of A.
,^2 nj2

6. If sin^L equal -^ ^, find the values of cos A and cotA
x -\-y

7. If sin
,

mr -f- 2 mn -+- 2 ?i
2

22. Functions of a, a, IT a, -IT a. In this
2 2

article we shall determine the values of the functions

of a, , etc., in terms of functions of a. In proving
2

these relations, it is necessary to consider four cases ac-

cording to the quadrant in which ex, lies ; but the student

should first go over the demonstration in the simplest

case where a is an angle in the first quadrant, and then

assure himself that the demonstration applies to all values

of .

The formulas will be obtained for the sine, cosine, and

tangent only ; the three reciprocal functions are seldom

used and, if needed, formulas for them may be obtained

easily from those given.
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(a} Functions of <*.

47
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The above demonstration is therefore general, and a

may be any angle, positive or negative. These state-

ments apply also to the demonstrations which follow.

Functions of ^ .

jL

(6) FIG. 33. (c) (d)

7T
In any of these figures, let XOP = a and XOP f =

-|
+.

If OP' is taken equal to OP, the triangles .ftfOP and

M'OP 1 are equal ;
for the geometrical angles MOP and

M'P'O are equal, having their sides perpendicular.

Then the sides of these triangles are equal in magnitude,

but, when their signs are considered, OM' = MP, and

M'P' = OM.

OM7T
,

M'P f

Hence sm[-+ =
OP

= cos

- MP

= cot a.

Since the demonstration just given holds for all values

of ce, we may replace a by a.
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7T
Hence sin

[ )
=s cos ( a) = cos a,

cos ( ^ CM = sin ( a) = sin a,

tan
(
- a

)

= cot ( a) = cot a.

\2 /

Functions of TT a.

M

Y

(O)

M

P

FIG. 34.

Y'

<<9

111 either of the given figures let XOP = a, and
' = 7r + a. If OP' is taken equal to OP, the tri-

angles IfOP and Jf'OP' are equal, and M'P' = -MP,
and OM'=-OM.

M'P' MP
Hence sin (TT + a) = -^^ = ^ = - sin .a,

OP' OP

, Olf' - OM
cos (TT -f a) = = ^7 = cos

OP'

Olf'

OP

OM
= tan a.

Replacing a by a, we have

sin (TT )
= sin ( a) = sin a,

cos (TT a) = cos()= cos a,

tan (TT a) = tan()= tan a.
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(d) Functions of | TT a.

Let the student construct figures for the other values of

a and show that

sin (| TT + a) = cos os,

*

cos (f TT + )
= sin oc,

tan
(|-

TT -}- )= cot a

Also that

sin (| TT )
= cos

,

cos (|^ TT )
= sin a,

tan (| TT ) = cot a.

(e) Functions of 2 TT .

The functions of 2 TT cc are equal to the same functions

of #, since these angles are congruent. For the same

reason the functions of 2 HTT + a (where n is any integer

and a is any angle, positive or negative) are equal to the

same functions of .

23. Reduction of the functions of any angle to functions

of an angle less than . It appears from the results of

the previous article that the functions of any angle may
be obtained in terms of the functions of an angle less

than, or equal to, 45. This may be done by the aid of

the formulas there derived ;
but since the functions of

angles in the first quadrant are all positive, it is best

to use the following simple rule, which is easily derived

from the formulas of the previous article :

If 180 or 360 is subtracted from a given angle, or if the

given angle is subtracted from 180 or 360 (so as to obtain
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in either case an acute angle), the functions of the resulting

angle will be numerically equal to the same named functions

of the given angle ; while if the given angle is combined in

the same way ivith 90 or 270, the functions of the resulting

angle will be numerically equal to the co-named functions of

the given angle.

In any case, attach to the result the proper sign of the

function of the given angle, according to the quadrant in

which it lies.

' For example, to obtain sin 290. This is equal numeri-

cally to cos 20
; but since 290 is an angle in the fourth

quadrant and the sine is negative in that quadrant,

sin 290 = - cos 20.

Any multiple of 360 may be added to, or subtracted

from, an angle without changing the value or sign of any
of its functions.

EXERCISE XIII

1. Express each of the following functions in terms of func-

tions of angles not greater than 45.

(a) sin 100, (e) sin -110, (i) cos 395T~

(6) cos 245, (/) cos -125, (j) tan 560,

(c) tan 310, (g) tan -335, (&) sin ITT,

sec 190, (A) esc -25, (I) COS|TT.

2. Find all the functions of each of the following angles.

(See Art. 4.)

(a) 120, (e) 225, (i) 330,

(b) 135, (/)240, (j) -30,

(c) 150, (g) 300, (fc) -45,

(d) 210, (7i) 315, (I) -60.
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v 3. Prove geometrically the formulas for the functions of

37T
^ a \, (TT a), and

j

a
J

in terms of functions of a.

4. From the formulas for the functions of a and
(
--f a\

derive algebraically the formulas for the functions of
(?r a)

and^ J.

SUGGESTION. sin (TT a)
= sin - 4-

(

- a
)

= cos
(

- a

= sin a.

/ \

5. Obtain the functions of Y a
j

in terms of the functions

of a.

6. Obtain the functions of (a TT)
in terms of the functions,

of a.

24*. Projection. The projection of a point on a line

is the foot of the perpendicular dropped from the point

to the line.

The projection of one line on another is the locus of

the projections of its points, or the distance measured

along the second line from the

projection of the initial point

of the first line to the pro-

jection of its terminal point.

- In Fig. 36, CD is the pro-
c

FIQ ^
D

jection of AB on OX. The

direction as well as the mag-
nitude of CD must be considered, and CD will be

positive or negative according as it is drawn in the

positive or negative direction of OX.

Throughout the present work the projection will

always be upon two perpendicular axes, X'X and Y' Y.
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When we wish to speak of the projection of a line, as

AB, on the JT-axis, it will be written projx AB ; on the

I^-axis, projy AB. These symbols will always mean the

distance measured along the axes from the projection ofA
to the projection of B, and will be positive or negative

according as they are drawn to the right or upward,
or to the left or downward.

V
25*. Projection of a broken line. The sum of the pro-

jections on any axis of any series of lines, AB, BC, CD,

etc., in which the initial point of each line is joined to the

terminal point of the preceding line, is equal to the projec-

tion on the same axis of AD, the line which joins the

initial point of the first line with the terminal point of

the last line.

In Fig. 37, ab = proj^ AB, bc=p?ojx BC, etc. But

by Art U ' ab + be + cd = ad.

Hence pro].,.AB + proj^ BO + projx CD = projx AD.

If the terminal D of any such broken line coincides

with the initial point A, ad = 0, and we see that'

the projection of any closed

contour is zero.

The lines AB, BO, etc.,

are directed lines, but it

is not necessary that their

positive direction should be

from A to B, etc. The

measure of some of the lines as read may be positive

and of others negative without affecting the truth of

the theorem.
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26*. Projections on the axes of any line through the

origin. The definitions of the functions may be given

very concisely by the aid of projection. Let P be any

point on either the positive or negative segment of the

terminal side of the angle XOA. The angle (OJT, OP)
is then the same as the angle XOA. Also OM= proj^ OP,
and MP = proj ?/

OP. Substituting these expressions in

the definitions of the sine

and cosine given in Art. 16,

they become
M

,

and

FIG. 38. OP) = OP

Clearing of fractions, we have

proj^OP - OP cos(OJf, OP),

and pro}y OP = OP sin ( OX, OP) .

The student must remember that in these formulas

proj^OP and proj^OP are the measures of the distances

from the projection of to the projection of P, the signs

being determined by the directions of the axes ; that OP
is the measure of the line OP ; and that ( OX, OP) is the

angle from the positive direction of OX to the positive

direction of OP.

27*. Projections of any line on the axes. We shall

now proceed to obtain the more general formulas for the

projection of any line, AB, on the axes.

Through A, which may be either the positive or nega-

tive extremity of the line AB, draw a pair of axes, AX'
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and AY', parallel to the

given axes. The pro-

jections of AB on these

new axes are evidently

equal in magnitude and

direction to its projec-

tions on the original

axes, OX and OY'; and

the angles made by AB
with these axes are the same as those made by it with

the original axes. Then, from the formulas obtained in

the previous article,

= AB cos (OX, AB), [9]

= ABsin (OJT, AB). [10]

FIG. 39.

EXERCISE XIV

1. What are the projections on the axes of a line 5 inches

long which makes an angle with the X-axis of 30 ? of 100 ?

of 200 ?

2. If proj a!
AB = 3, and projy

AB = 4, find the length of

AB and the angle (OX, AB).

3. If AB = 10, and proj^JB = - 3, find the angle (OX, AB).

4. Describe an equilateral triangle (each side being 10

inches in length) by going from A to B, then to C, and back

to A. What is the angle (AB, BC) ? (AB,AC)? (BC,AB)?
What is the projection of AC on AB? of BC on AB? of

CA on BC?

5. In the triangle of problem 4 drop a perpendicular CD
from C on AB. Let its positive direction be from D to C.

What is the projection of BC on this perpendicular ? of CA ?

of AB ? What is the projection of DC on BC? on AC?
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28*. Functions of the sum and difference of two angles.

We shall now proceed to find the functions of the sum

and difference of two angles in terms of the functions of

those angles. Let the first angle a be placed in the posi-

tion XOA, and let the second angle /3 (=AOB} be added

to a, making + (3 (= XOB) . From any point P of the

FIG. 40.

terminal line OB of /3, drop a perpendicular KP on OA.

The positive direction of all lines in the figure except KP
is fixed by our former conventions ; for we have agreed

that the positive direction of the initial and terminal lines

of an angle shall be from the vertex along those lines.

To determine the positive direction of KP, draw from

a line OR, making with OA a positive angle Then

OR bears the same relation to OA that OY bears to OX;
and for any angle having OA as its initial line, the posi-

tive direction of KP, a perpendicular to OA, must be

taken parallel to OR.

From Art. 26 we have

But by Art. 25 the projection of OP on the !F-axis is
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equal to the sum of the projections of OK and KP on the

same axis. Hence

or by [10],

= -

[ <9JTsin( OX, OK) +KP sin (OX, KP)~] .

The angle (OX, OK) is seen at once to "be a, and since

the positive direction of KP is the same as that of OR,

(OX, KP) = XOR = + -

Hence sin ( OX, KP) = cos .

dK JfT*

Noting that = cos /3 and = sin (3, we have

sin (a + P) = sin a cos p + cos a sin p. [11]

In like manner,

Here cos (OX, OK) = cos ,

and cos ( OX, KP) = cos fa +
J

= sin a.

Hence cos (a + p) = cos a cos p - sin a sin p. [12]
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Since the magnitudes and directions of all the lines and

angles in the figure have been carefully considered in this

demonstration, it holds for all cases. But in order that

the student may assure himself of this fact, let him draw

various figures according to the same directions, using the

angles of different magnitudes (for example, see Fig. 42),

and go through this demonstration carefully, making sure

that every statement made above applies to every figure.

Y A

Let him also take note that the demonstration applies

letter for letter when fi is a negative angle (see Fig. 43).

We may, therefore, replace ft by fi in formulas [11]

and [12] and obtain the following formulas for the sine

and cosine of the difference of two angles :

sin [ + ( /3)]
= sin a cos ( /3) + cos a sin ( /3),

sin (a p) sin a cos p cos a sin p,

cos [ + ( /3)]
= cos a cos ( fi) sin a sin ( /3),

cos (a
-

p) = cos a cos p + sin a sin p. [14]
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29 . Second method of finding sin (a+ p ) and cos (a+ p) .

The following method of finding the formulas for sin( + )

and cos ( + /8) avoids the use of projection and may be pre-

ferred by some teachers.

Let Z XOA =
,
and

ZAOB=/3. ThenZXOB
= a -h @. Through any

point P of the line OB
draw PM perpendicular

to the X-axis and PTTper-

pendicular to the line OA.

ThroughK draw .BT^Vper-

pendicular to the Jf-axis

and LK parallel to the same axis.

FIG. 44.

Prolong LK toward

the right to S. Then Z SKA = a and Z SKP = a + 90.

Then sin
MP = NK LP
OP OP OP'

NK
OK

OK
OP

LP KP
KP

'

OP

But
NK
OK

= sin XOA = sin ce,

= cos/3,

= sin SKP = sin( + 90) = cos a,

OP
= sin/3.

Hence sin (a + p) = sin a cos p + cos a sin p, pi]
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AIAlso

But

. OM ON
,

NM
COB( + 0) = = +^ ,

=
ON OK KL
OK' OP KP

ON-- = cos XOA = cos a,OK
= cos ACS = cos

KP
OP'

~

- cos = cos (a -f 90) = - sin a,

KP
OP

= sin AOB = sin

Hence COS (a + P) = COS a COS P - Sill a sin p.

In Fig. 44 not only are a and /3 acute, but their sum

a + /3 is also acute. But the proof applies without change

B to Fig. 45, in which a -f /3 is

obtuse. The only difficulty

which the student is likely

to meet is the equation

OM=ON+NM,
_ which is used in finding

cos ( + /3) ; but this is seen

to hold in Fig. 45, when the

direction as well as the magnitudes of the lines is considered.

By a very slight change, this proof may be made per-

fectly general, so that it will apply to all values of a and

/3. Through draw OR, making a positive right angle

with OA, and having its positive direction from toward

R. Let KP, which is parallel to OR, have the same

positive direction as OR.

If, in the above demonstration, we replace Z.SKP by

N
FIG. 45.



CIL IV, 29] RELATIONS BETWEEN FUNCTIONS Gl

T, KP), we shall have taken account of the directions

of all lines and angles, and the demonstration will, there-

fore, be perfectly general, holding for all values of a and

ft, both positive and negative.

For example, consider Fig. 46, in which a and /3 are

both obtuse. The construction is the same as above.

From P, any point of the

terminal line of ft, draw

PM perpendicular to the

X-axis and PK perpen-

dicular to the line OA,

produced through the

origin . ThroughK draw

KN perpendicular to the

X-axis and LK parallel

to the same axis, prolong-
~r ^7' t i c* FIG. 46.

ing LK to the right to S.

Draw OR, making a positive right angle with OA. Let

the student now follow the demonstration on page 59.

The first statements are evident. In considering the

functions of **, since K is on the terminal line extended

through the origin, OK is negative, but by definition

sin a=
, and cos a= In determining the functionsOK OK

of ft, turn the book so that OR points upward. Then it

KP OK
is seen that, by definition, sin ft = -, and cos ft =

In determining the functions of (SK, KP), think of K
as a new origin and LS as a new X-axis. Then

KL
KPsin (tfJT, KP) = ,

and cos (SK, KP) =
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The student should have no difficulty in seeing that all

the other equations hold for this figure. Let him also

construct other figures according to the same directions

and go through the demonstration carefully, making sure

that every statement made above applies to every figure.

Since this demonstration holds for all values of a and

/3, we may replace ft by ft and obtain the following

formulas for the sine and cosine of the difference of two

angles :

sin [a + ( /3)]
= sin cos (/&)+ cos a sin ( y#),

sin (a
-

P) = sin a cos p - cos a sin p, [13]

cos [<* + ( /3)]
= cos acos( /3) sin a sin( /?),

cos (a
-

p) = cos a cos p + sin a sin p. [14]

30. tan(ap).

Since ten

we have tanQ
+ cos* sin

cos a cos p sin a sin /3

But this may be expressed entirely in terms of the tan-

gent by dividing both numerator and denominator by
cos a cos /3. This gives

In like manner, let the student show that

tan (a
_

p)
tan a -tan P

[1G]
1 +tanatanp
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EXERCISE XV

1. Find sin 75 from the functions of 30 and 45.

SOLUTION. sin 75 = sin (30 + 45),

= sin 30 cos 45 + cos 30 sin 45.

= J(V2+V6).
2. Find cos 75.

3. Find tan 75.

4. Find sin 15, cos 15, tan 15.

5. If sin a = ^ and sin ft
=

\, find sin (a + ft),
when a and ft

are both acute
:)
when they are both obtuse.

6. By the aid of formulas [11] to [14], prove the various

formulas for the functions of
(^ + a

)
(TT ) ?

etc. (See

Art. 22.)

7. Find sin(

SOLUTION. Replacing ft in formula [11] by ft -f- y, we have

sin [ + (/3 + y)]
= sin cos (ft -f- y) + cos a sin (ft + y)

= sin a (cos J3 cos y sin ft sin y) +
cos a (sin /? cos y 4- cos /? sin y)

= sin a cos /? cos y + cos a sin ft cos y +

cos a cos /2 sin y sin a sin ft sin y.

8. Find cos (a -f- y).

9. Find tan ( -f y).

Transform the first member into the second.

10. sin (a 4- ft) sin ( /?)
= sin2 sin2 /?.

11. cos (a + /?) cos (a ft)
= cos2 a sin2

ft.
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12. cos

g-)cosg-0)-sing-) sing-/?)
= sin ( -f 0).

13. cos (a -f ft)
cos a + sin a sin (a -f /?)

= cos ft.

tan tan 6 /14 . = tan ( fl) tan a.
cot + tan ft

31. Functions of twice an angle. If in formulas [11]

and [12] we place /8 = , they become

sin ( + )= sin cos a + cos sin a,

or sin 2 a = 2 sin a cos a, [17]

and cos (a -|- )
= cos a cos sin a sin a,

or cos 2 a= cos2 a - siii
2 a. [18, a]

By replacing cos2 a by 1 siii
2

, [18, a] becomes

cos2a^l-2sin2 a. [18, 6]

Also, by replacing sin2 a by 1 cos2
,
it becomes

cos2a = 2cos2 a- 1. [18, c]

These three forms for cos 2 a should be remembered, and

the one most convenient for the purpose in hand should

be used.

If we place ft = a in formula [15], it becomes

f tan a + tan a
tan +

1 tan a tan a

Q tilH fL r--< f\-^

or tai,2a= - V.
[19]
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The functions of 3 a, 4 a, etc., may be found in a similar

manner by letting ft = 2
,
etc.

These equations express the relations between the func-

tions of any angle and the functions of twice that angle.

It is not necessary that the angle in the first member

should be expressed as 2 a and that in the second as a. It

is only necessary that the angle in the first member should

be twice that in the second. We may then replace 2 a by

a, if at the same time we replace a by $ . These formulas

may then be written

sin a = 2 sin
^
a cos

^ a, [20]

cos a = cos2
*
a - sin2

\ a, [21, a]

= l-2sin2ia, [21, ft]

= 2cos2

|a-l, [21, c]

tana-
[22]

EXERCISE XVI

1. Find sin 2 a, if cos a = i-.

V%. Find cos 2 a, if tan a = 3.

\s 3. Find tan 2 a, if sin a = .6.

4. Find sin 3 a.

SOLUTION,

sin 3 a = sin (a -f 2 a)
= sin a cos 2 + cos a sin 2 a,

= sin a (1 2 sin2

) -f cos a 2 sin a cos a,

= sin a (1 2 sin 2

) -f- 2 sin (1 sinV),

= 3 sin a 4 sin3
a.
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*""

5. Find cos 3 a and tan 3 .

6. Find sin 4 a, cos 4 a, and tan 4 a.

7. Find sin 5
,
and cos 5 .

Transform the first member into the second.

Is* 8. 2 cot 2 = cot a tan rc.

9. 2 esc 2 a tan + cot a.

/^ 10. esc 2 + cot 2 = cot .

11.-)
- - = esc 2

l-tan2

[--a
V4

_ _ cos 4- sin cos sin <* ,

i & .
-

;

---
;

- = > tan & cc.

cos sin a cos + sin a

2 cot rc
13. tan 2 a =

cor 1

14 .

2 CQt 2 =
(1 + tan a) cot a.

1 tan a

1 sin2

cos 2 a

L-16. tan [- + ] + tan
[

- aW 2 sec 2
4 4

32. Functions of half an angle. It has been shown

in the previous article that

cos a = 1 2 sin2 1 a.

Solving this for sin
| a, we have

[23]



Cn. IV, 32] KELATIONS BETWEEN FUNCTIONS 67

Also from formula [21, c],

cos a = 2 cos2 a 1.

Solving for cos J ,
we have

i /I + cos ct ro j -\COS-a = \-^ [/4J

Dividing [23] by [24], we have

[25, a]

-
I-

sin a

(1 + cos a)
2 1 + cos a

These three forms for tan
|

should all be remembered,
and the one most convenient for the purpose in hand

should be used.

It must be noted that the sign before the radicals

does not mean that it has two values for any given

angle a, but that it is impossible to determine in gen-

eral what sign should be used. In any particular case,

determine the quadrant in which
|
a lies, and affix the

proper sign for each function. The ambiguous sign is

omitted before the last two forms, since 1 cos a and

1 -f- cos are always positive, and tan
| may easily be

shown always to have the same sign as sin a.

It is sometimes convenient to express the functions

of a in terms of the functions of 2 a. This may be done
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by replacing | a by a, and a by 2 a in the above formulas.

They then become

^, [26]

/I + cos 2 a
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V

2 tan- 1-tan2 "

10. - =sin. 11. -
1 + tan2 " l + tana "

12. tan - + cot
tj
= 2 esc .

13. 1 + cot a cot
" = esc a cot -.

y
14. tan i x + 2 sin2 1 a; cot x = sin ce.

\/ 15. tan3 1 a? (1 + cot2 1
x)

3 = 8 esc3
x.

33. Sum and difference of the sines and of the cosines of

two angles. In Art. 28, it has been showji that

sin ( + /3)
= sin a cos /3 + cos a sin /3,

sin ( )= sin ct cos /3 cos sin /?,

cos ( + /3)
= cos a cos /3 sin a sin /3,

cos Q /3)
= cos a cos /3 + sin a sin /3.

From these, by addition and subtraction, we have

sin (a + /3) -f- sin ( /3)
= 2 sin cos /3,

sin (a + ff) sin (a /9)
= 2 cos a sin yS,

cos ( + /3) + cos (a /3)
= 2 cos a cos /?,

cos (a -*~
/?) cos ( yS)

= 2 sin a sin /3.

If we let + =
.<!, and a /3

= B,

then a = (A + B), and /3
=
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Substituting these values in the equations above, they

become

sinA + sinB = 2sin^ + J5)cos^(^l
-

J3), [29, a]

sinA - sin B = 2 cos
\ (A + J5) sin \(A-B), [29, 5]

cos^l + cosJ5 = 2 cos
| (^ + J5)cos|(^

-
.B), [29, c]

cos^ - cos B = - 2 sin
*

(^. + JB) sin \(A-B). [29, d]

EXERCISE XVIII

Prove the following identities :

cos 3 ct cos 5 a

sin 7 a sin a cos 4 a
1 ^,- - --

sin 8 a sin 2 cos 5 a

\ sin a sin /? _ tan
-%- (ce ff)

sin + sin ^8 tan ^ (a + ^8)

4.
cos 5 cos 47

5. sin 2 a + sin 4 -f sin 6 = 4 cos a cos 2 a sin 3 a

6.
cos a + cos 2 a + cos 3

sin 2 + sin 2 ft _ tan Q + /?)

sin 2 sin 2 /?

~~
tan ( @)

8.
cos a -+- cos (3

9. 4^ a Sm
r

a = 2 cos a sec a.
Qir> A /v _L Qin s. rt

10.

sin 4 a. +

sin 75 - sin 15 _ V3
cos 75 + cos 15 3

'



CH. IV, 33] RELATIONS BETWEEN FUNCTIONS 71

EXERCISE XIX

Prove the following identities :

1 - tan a tan ft

2. (sin + cos a)
2 = 1 + sin 2 a.

3. cos4 sin4 a = cos 2 a.

4. tan 3 -a tan = 2 sin a sec 3 a.

5. cot a 2 cot 2 tan #.

ar/"- 4- P\ - 2 csc 2/3 + sec/?.-

7. sin - cos - = 1 sin a.

8. sin
[

- 4- a
}
sin

[ ^ a
)
= \ cos 2 a.

V4 J V4 J

9.14- tan a tan - sec a.

. tan
( 4- a ]

tan
(

- a
}

= 2 tan 2 a.

V4 / V4 /

f 11. sin 3 a 4- sin 2 a sin a = 4 sin a cos
"

cos -22
IT 12. sec2

a(l 4- sec 2 a)
= 2 sec 2 a.

. esc a 2 cot 2 a cos = 2 sin a.

14. cos 6 a = 32 cos6 a 48 cos4 a + 18 cos2 a 1.

sin a

esc 2 a 14- tan2 a

1 4- esc 2 a (1 4- tan )
2

. (cos 2 4- cos 2
ft)

2 + (sin 2 a 4- sin 2
/3)

2 = 4 cos2

(a

cos cos

. sin | a = (1 -f- 2 cos
a)-yi

cos a

2

20. 3 sin 2 a sin 6 a = 32 sin3 a cos3



CHAPTER V

INVERSE FUNCTIONS AND TRIGONOMETRIC EQUATIONS

(2n+l)7T

T
(2 n + '/n) TT

,

34. General values. If sin x = -, x = ^, or ^, or any

of the other angles which have the same terminal lines.

There are, then, an indefinite number of angles which

satisfy this equation, or any similar one. It is convenient

to have general formulas to express all angles which have

the same sine, cosine, or tangent, and we shall now pro-

ceed to find such formulas. We shall first obtain general

expressions for all angles which have their terminal lines

along one of the axes. Let n be

any integer, positive, negative, or

zero. Then all angles which

C have their terminal lines in coin-

cidence with the initial line OX
are represented by 2 nir ; for this

expression represents the series

of angles 0, 2 TT, 4?r, etc., and

2?r, 4?r, etc., which evidently contains all the angles

which have their terminal lines in coincidence with OX.

In like manner (2n + l)7r represents all the angles

which have their terminal lines in coincidence with OX' ;

for TT is the smallest of these angles and the addition or

subtraction of any multiple of 2 TT will evidently give the

same terminal line.

72

Y'

FIG. 47.
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Y
FIG. 48.

Let the student show that the angles which have their

terminal lines along OY are represented by (2n + J)TT;

and along OY' by (2w->7r.
If OP is the terminal line of any

angle ,
all the angles (positive and

negative) which have OP as their x'_; i^ ** y ^
terminal line are represented by 2 WTT

+ . All angles which differ from

each other by any multiple of 2 TT

have the same terminal line, and

hence the same functions. This fact is expressed by

saying that they are periodic functions, having a period

Of 27T.

Let the student show that the period of the tangent

is TT.

All angles ivMcTi have the same sine or cosecant as a may
be expressed by 2 mr + and (2 n + 1) TT .

For it was shown in Art. 22 that sin a = sin (TT a) .

Then all angles which have the same terminal lines as

a and ?r a are expressed by
2 nir + , and 2 n-rr + (TT a) or

(2 n + 1) TT a. Hence the

p theorem.

This result may also be shown

easily from Fig. 49, where a is

taken as an angle in the first

quadrant. Similar figures may
be drawn for any value of a.

Since esc a =
, these are also the formulas for all

sin a

angles which have the same cosecant.

o

Y
FIG. 49.
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EXAMPLE 1. Give general expressions for
,

if sin a

The smallest positive value of a is evidently Then
the general expressions for a are

2 nir + \ TT and (2 n -f 1) TT - \ TT,

(2 n + 1) TT and (2 ^ + f ) TT.

These are seen to represent the series of angles

or

-TT, TT,

|TT, J TT,

TT, etc.,

and
|TT, J TT, ---^-Tr, ---\

5
-7r, etc.

EXAMPLE 2. Give general expressions for a, if sin a

=-f
The smallest positive value of a is ^ ?r. Then the gen-

eral expressions for a are

2 mr + I TT and (2 n + 1) TT -
-J TT,

or (2/i + I) TT and (2 w - -J)
TT.

angles which have the same cosine or secant as ct may
be expressed by 2 mr a.

For it was shown in Art. 22 that cos a = cos ( a).

Then all angles which have the same terminal lines

as a and a are expressed by
2 mr + and 2 nir a

;
or in

one formula, 2 mr a. Hence
~

the theorem.

This result may also be shown

X-

FIG. 50. easily by the aid of Fig. 50.



CH. V, 34] INVERSE FUNCTIONS 75

EXAMPLE. Give the general expression for
,

if

cos a =
J. The smallest value of a is evidently | TT.

Then the general expression for a is 2 UTT f TT, or

(2*f>r.
J.ZZ angles which have the same tangent or cotangent as a

may be expressed by mr -f #

For it was shown in Art. 22 that tana = tan(?r+ a).

All angles which have the same terminal lines as a and

7r+ are expressed by 2n7r + a and 2njr + (TT + a), or

(2 M -f- 1) TT + a. But since 2 w and 2^ + 1 include all

integers, these two formulas may be written as the one,

TITT + a. Hence the theorem.

This result may also be shown by the aid of Fig. 51,

since it is evident that all

angles which have the same

tangent have their terminal

lines in the same line through
the origin. We shall evidently

reach one or the other of these FlG - 51 -

terminal lines when we add any multiple of TT to a.

EXERCISE XX

Give general expressions for x, if

1. sinx 0. 8. sec# = l.

2. cos x = 0. 9. sec x = 1.

3. tan x = 0. 10. tan x = 1.

4. sina? = l. 11. tan# = 1.

5. sin 05 = 1. 12. sin x = -

6. cos 05 = 1. 13. sin# =
7. cos x = 1. 14. cos x =
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15. cos# = jV2. ^X~23. cos-aj=l.

16. cos x \ V2. 24. sin x = 1.

17. sin x = ^ V3. 25. tan x = 2.

4^18. eosa? = JV3. 26. cosx =
-J.

^19. tan2
a? = i. 27. sec a; = 10.

^20. cos-a =
-J.

28. esc2
a; = 2.

21. tan a = 2 -VI 29. tan2
a? = 3.

22. secx = 2. 30. tan 2
a; = 7 4 V3.

35. Inverse trigonometric functions. Throughout all

the previous work the trigonometric ratios have been con-

sidered as functions of the angle ; but it is also possible

to think of the angle as a function of the trigonometric

ratios. For this purpose, if y sin #, it is convenient to

have a short method of writing the fact that " x is an

angle whose sine is y" The usual method employed in

this country is x = s'm~ l

y, which may be read "a; equals

anti-sine?/," or "inverse-sine y"; but the student must

remember that this is only an abbreviation for the longer

statement "a;, is an angle whose sine is ?/." With the

same meaning, we use x = cos" 1

y, x = tan" 1

y, x sec" 1

y,

etc. These are called inverse trigonometric or inverse

circular functions.

We have seen that when an angle is given, its trigo-

nometric functions are determined. For example, if

y = cos a;, y has a single determinate value for every

given value of x. But if a value is given to y, it has

been shown in the previous article that x has an indefinite

number of values. Thus, if y = -J-,
x = cos"1

\
?
= 2 nir

ô

We then may use x = cos" 1

1
and x = 2 mr as different
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methods of expressing the same idea. But in working
with inverse trigonometric functions we shall understand

that the least positive angle of the set is meant, unless the

contrary is stated. This least positive value is called the

principal value of the function.

With this meaning we may prove the equality of such

expressions as sin" 1 x and cos" 1 Vl x2 . But these two

expressions do not represent the same series of angles, as

may readily be seen by giving x a numerical value. If

x =
, Vl - x2 =

I V3, and

sin- 1
a; =30, 150, 390, 510, etc.,

while cos- 1 Vr^?= 30, 330, 390, 690, etc.

EXAMPLE 1. Prove that sin" 1 x = cos" 1 Vl x2
.

Let y=*sin OJ. Then x = s\ny. From this we see

that cos y = Vl x2
. Hence y = cos" 1 Vl x2

, and

sin" 1 x = cos" 1 Vl x2 .

EXAMPLE 2. Prove that tan" 1 x+ tan- 1 y= tan-1

1̂-xy
Let tan" 1 x = z and tan

~ l

y = w.

Then x = tan z and y = tan w.

T) , N tan z + tan w x + yBut tan (z + w) = = y
.

1 tan z tan w \ xy

Hence z + w tan" 1 ? ^
,

\xy
and tan" 1 x + tan" 1

y = tan" 1
^ ^

.
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1 r2
EXAMPLE 3. Prove that 2 tan-1 x = cos" 1 '-

Let tan" 1 x = y. Then x = tan ?/.

"1 9

We wish to show that 2 y = cos" 1
~ x

-

But cos 2 y = cos2'?/ sin2 ?/,

_ 1 tan2
?/

~
1 + tan2

y 1 -

Hence 2 /
= cos" 1

^

"I 9

and 2 tan" 1 x = cos" 1 - -

EXERCISE XXI

Prove the following identities for the principal values of the

inverse functions.

1. sin (cos-
1

1)
= 1V3. 3. tan (2 tan"

1

)
= f .

2 . tan (sin-
1

if) = -L2
. 4. tan ( ta.n- 1

if) = |.

5 . tan (tan-
1

J tan-1

1)= i.

6. cos"1 x = sin" 1 Vl x2
.

8. 2 cos- 1 x = sin-1

(2 a; Vl - x2
).

9. tan^i-f tan-1 i = -.

10. 3 tan-1 x = tan- 1
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11. tan(2tan-
1a)=-^- .

I -a2

2i a

14. sin (sin-
1 a + sin- 1

6)
= a Vl - 6* + 6 Vl - a2

.

15. tan- 1 1 + tan-1 1 + tan-1 1 + tan-1

f = -

36. Solution of trigonometric equations. In all the

previous work, except Art. 34, the equations with which

we have dealt have been true for all values of the angles,

and the student has been asked to prove this fact. There

is another important class of problems in which the

student is given an equation which is true only for cer-

tain values of the angle, and he is asked to determine the

values for which it is true. In other words, he is asked

to " solve the equation." The first step toward this end

is usually to transform the given equation into one which

contains a single trigonometric function of a single angle.

This function may then be looked upon as the unknown

quantity and its value may be obtained by the algebraic

solution of the equation for this unknown. If the equa-

tion can be reduced to either a simple or a quadratic

equation, the solution may be obtained by elementary

methods, and only such equations will be considered here.

The following problems illustrate the method of pro-

cedure in the simpler cases, where the equation contains

functions of a single angle only.
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EXAMPLE 1. Solve the equation sin x + esc x=2.

Since esc x =- , the equation becomes
sinx

sin x -\
-- = 2.

Clearing, sin2 x 2 sin x -f- 1 = 0.

Solving, sin x = 1,

x = sin"1
1,

*=!

All values of # are then represented by

EXAMPLE 2. Solve the equation sin # = tan2
a?.

Since tana; = 5HLE, the equation becomes
COS X

sin x =
cosa;

Clearing, sin # cos2
a; = sin2 x,

or sin x (cos
2 # sin x)= 0.

Hence sin x = 0,

and cos2 # sin # = 0.

The first of these equations gives at once

x = 0, or TT,

= 717T.
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The second equation, cos2 x sin x= 0, may be written

1 sin2 x sin x 0.

Solving as an affected quadratic in sin a?, we have

sin x =
~ l * V^= 0.61803, or -1.61803.

The second of these values is evidently impossible,

since sin a; cannot be numerically greater than 1. Im-

possible solutions of this nature are of frequent occurrence

in solving trigonometric equations. This value of sin a;

satisfies the original equation, but since there is no angle

whose sine is 1.61805, it does not give a possible solu-

tion of that equation.

From the other value of sin a;, we have x = sin" 1 .61803

= 38 10' 21". There will also be an angle in the second

quadrant, 180 - 38 10' 21". The general answers are

then nir, 2nir + 38 10' 21", and (2 n + I)TT
- 38 10' 21".

EXERCISE XXII

1 . cos2 x = sin2 x. 6. sec2
a? = 4 tan x.

2. 2 cos x = V3 cot x. 7. tan2 x sec x = 1.

3. tan x -f cot x = 2. 8. tan2 x + esc2 x = 3.

4. sec x + 2 cos x = 3. 9. 4 tan x cot x = 3.

5. sinic = tan#. 10. tan2 x + cot2 x = *-.

37. There are many equations in which it is convenient

to introduce expressions containing radicals when we

attempt to write the equation in terms of a single func-

tion. It will then be necessary to square the equation

in the solution; and in doing this an ambiguity will be
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introduced, and the solutions of the resulting equation
will contain not only the solutions of the original equa-

tion, but also the solutions of the equation obtained by
changing the sign before the radical. It then becomes

necessary, as in any radical equation, to determine, by
actual substitution, which of the results satisfy the given

equation. This difficulty may often be avoided by using
formulas which do not contain radicals, but it is not

always convenient to do this.

EXAMPLE. Solve the equation V3 sin x cos x = 1.

Replacing smx by Vl cos2 2-,

V3 Vl cos?x = 1 4- cos a;.

Squaring, 3 (1 cos2 #) =1 + 2 cosx + cos2 #.

Uniting, 4 cos2 x + 2 cos x 2 = 0.

Solving, cos#=|, or 1.

,
7T

x = , or TT.

o

If cos x
J,

sin x
| V3, and the equation is evi-

dently satisfied if sin x = -f- \ A/3, but not if sin x =
| A/3.

The solution ~ must, therefore, be discarded. It is
o

easily seen that the equation is satisfied when x = IT.

The general solutions are, then, (2 n+ J)TT, and (2 n-\-V)ir.

SECOND SOLUTION. This difficulty may be avoided in

any problem which is in the form a sin x + b cos x = c by
the following device : Divide the equation through by

Va2 + b2 . Then
a

may always be expressed as

Va2 + V b
the sine of some angle, and ~

as the cosine of
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the same angle. In this problem Va2 + 62 = 2. Dividing

V3 . 1 1
by 2,

Substituting =
sin^, and -=

cos^, we have
L O 2 O

sin sinx cos cosx = -, or cos(^-f#)=
--

.

2 \3 / 2

Hence

7r, and z=(2ra-l)7r, or

EXERCISE XXIII

1. sin aj cos a? = 0. **B. cot x tan x= since+ cos x.

2. sinic+ cosic = 1. If fl. cos cc + tan x = sec a?.

3. sin a? cos x = V|. ^"8. esc x = 1 + cot x.

4. esc a/* cot x = V3. 9. tan a? + sec x = VS.

^5. ^ cos x J sin x = ^. 10. 5 sin a; -f- 2 cos x = 5.

38. In the previous problems only functions of x have

occurred. If the equation contains functions of multiples

of #, as 2#, 3#, J#, etc., these may all be replaced by
their values in terms of functions of x, and the equation

solved as in the previous problems. But many equations

may be solved more readily by various devices, and some

may be solved by these devices which, if expressed in

functions of #, would give equations of the third or

higher degree, which the student could not solve. There

is an excellent chance for the display of the ingenuity

of the student in discovering methods for shortening the

work in many of these problems. A few of these are

illustrated in the following examples.
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EXAMPLE 1. Solve the equation

sin 3 x + sin 2 x + sin x = 0.

By formula [29, a],

sin 3 x + sin a; = 2 sin 2 a; cos x.

The given equation may then be written

sin 2 x = 2 sin 2 a; cos #.

From which sin 2 a; = 0, and cos x =
J.

Hence 2 z = WTT, # = (2 n f) TT.

* =
T*

The values of x less than 360 are seen to be 90, 120,

180, 240, 270.

EXAMPLE 2. Solve the equation

esc x cot x = V3.

By substitution this becomes

or

COS X

sin x sin x

1 cos x

sin a;

= V3,

VS.

This reduces, by formula [25, 5], to

tan
|-
# = VS.

Hence J # = nir 4- ?
o

and a;=(2 + f)7r.

The only value of x less than 360 is seen to be 120 C
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EXAMPLE 3. Solve the equation cos 3 x = cos 2x.

From Art. 34, cos 2 x = cos (2 mr 2 x).

Hence 3 x = 2 nir 2 #,

and # = 2 WTT, and 5 x = 2 WTT, or a? = | HTT.

The values of ^ less than 360 are seen to be 0, 72,

144, 216, 288.

EXAMPLE 4. Solve the equation

2 sin x sin 3 x = 1.

By formula [29, d~] this becomes

cos 2 x cos 4 a; = 1.

By formula [18, <?],

cos2#- (2cos
2 2# 1) = 1,

or 2 cos2 2 # = cos 2 x.

Solving,

cos 2 a; = 0, and cos 2 x = .

Hence 2z=, ,

2 o

and a;= WTTJ, or x n-rr
^.

The values of x less than 360 are seen to be 30, 45,

135, 150, 210, 225, 315, 330.



86 PLANE TRIGONOMETRY [Cn. V, 38

EXAMPLE 5. Solve the equation

sec x = 2 (sin x + cos x).

Replacing sec a; by , and reducing, we have
cos a;

1 = 2 sin x cos x + 2 cos2 re.

This might be solved by replacing sin x by VI cos2 re,

but we have seen that it is best to avoid the introduction

of radicals. But if we notice that 2 sin x cos x sin 2 re,

and 2 cos2 re 1 = cos 2 re, the equation becomes

sin 2 x + cos 2 x = 0.

Dividing by cos 2 x, tan 2 x = 1.

Hence 2 re = WTT + f TT,

-, WTT . oand re = - + | TT.

EXERCISE XXIV

1. sin 2 re = 2 cos re. 9. cos 2 re sinre = .

2. 4 cos 2 re + 3 cos re = 1. 10. tan 2 re tan 3 re = 1.

Vs. tan 2 re = tan re. 11. 2 sin2
re + sin2 2 re = 2.

4. 2 sin2 2 re = 1 cos 2 re. 12. sin re + cos re + sin 2 re = 2.

5. cos 3 re cos 5 re = sin re. 13. tan re = 4 sin 1 re.

6. cos 5 x+ cos 3 re+ cos re=0. 14. tan re tan 3 re = 2.

7. 2 cos re cos 3 re + 1 = 0. 15. cot re esc 2 re == 1.

8. tan 3 x = 3 tan re. 16. cos 3 re + 2 cos re = 0.
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EXERCISE XXV. REVIEW

1. If sec (9 = 3f,
find the value of tan -

2

K 2. If cot a = 2 V3, prove that sec a = V6 -f- V2, and that

esc a =V6 V2, numerically.

I/ 3. Prove that cos (135 + A)+ cos (135
- A)= -V2 cos -4.

4. Prove that (sec 15 + esc 15)
2 = 24.

5. Find the value of sin 15 + cos 15.

Vs. Prove that tan 75 -f cot 75 = 4.

7. Find the value of tan 105.

8. Prove that tan 60- tan 165= 2.

9. If vers A = -, find tan

10. Prove that sin
[

- + 6 }
= cosf

- _ 0\
V4 ) \ )

11. If tan ^4=
3

_, and tan B = _, find tan (A-B\
4-V3 4 + V3

12. Prove that cos 20 + cos 100 + cos 140 = 0.

13. The cosines of two of the angles of a triangle are f and

-f% respectively ;
find the tangent of the third angle.

14. Solve the equation sin x -\- cos x = sec x.

15. Construct geometrically an angle whose secant is 3.

16. Prove that cos2A + cos2

(A + 120) + cos2

(A - 120) = f.

17. Prove that vers (270 + A) vers (270- A)= cos2 A.

18. Solve the equation cot2 tan2 = 2 esc 9 sec 9.

19. Prove that 2
vers(|

+ ^ vers
f|~l)

= yers (7r
- e)'

20. Prove that 4 sin 20 sin 40 sin 80 = sin 60.



88 PLANE TRIGONOMETRY [Cn. V, 38

21. Prove that sin"1 - + sin-1 + sin" 1 = -.
5 13 65 2

22. If sin A =
,
and sin B = Jp ,

find tan (A + E).
n2 + 1 2 + 1

23. Express in terms respectively of the secant and cosecant

of A and B : (1) sec (A + 5), (2) esc (A-'B).

24. Prove that sec 105 = - V2 (V3 +.1).

25. Prove that tan^" 2 ^1 + tan^_^d = 2 secA
4 4

26. Prove that esc 2 a + cot 2 = cot .

27. Solve the equation sin2 2x sin2 x = \.

28. Prove that sec-1 3 = 2 cot'1V2.

29. Prove that tan" 1

^ + tan^l + tan' 1

^ + tan-1

^
= .

o o 7 o 4

30. If tan A + tan 2 ^4 = tan 3 A, prove that yl must be a

multiple of 60 or 90.



CHAPTER VI

OBLIQUE TRIANGLES

39. We shall now proceed to prove three theorems,

connecting the sides and angles of a triangle, which will

enable us to solve any triangle. In every case let the

triangle be lettered ABC, and let a, b, c represent the

lengths of the sides opposite the corresponding angles.

In these proofs no account is taken of the positive or

negative direction of the sides or angles. The letters

a, 5, and c simply represent the positive magnitudes of

the sides, and A., B, and C the interior angles of the

triangle. These forms of the theorems are, therefore,

only suited to the solution of triangles ; they cannot be

used when the directions as well as the magnitudes of the

sides and angles need to be considered. For the general

form of these theorems and their proof, see Art. 43.

40. Law of the sines. In any triangle, the sides are

proportional to the sines of the opposite angles.

G

A D
FIG. 52 (a).

B
FIG. 52 (6).

89
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In either Fig. 52 (a) or 52 (5), let the length of the

perpendicular DO be represented by h. Then in trian-

gle A CD,

In triangle D CB, sinB = -
a

(In Fig. 52 (6),
- = sin (TT

- B) = sin .

a

Hence by division,

By drawing perpendiculars from the other vertices, the

same relations may be shown to hold between any pair

of angles and sides.

b sin B a sin A
c sin O c sin (7

These three formulas may be written in the form

,

sinA sin B sin O

where r may be shown to be the radius of the circum-

scribed circle.

41. Law of the cosines. The square of any side of a

triangle is equal to the sum of the squares of the other two

sides diminished by twice the product of these sides and the

cosine of the included angle.

Since we are making no use of the directions of the

sides, the proof, when the included angle is obtuse, will
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differ slightly from the proof when the angle is acute.

It seems best, therefore, to give separate proofs of the

two cases.

c

A D
FIG. 53 (a).

U
FIG. 53 (6).

In Fig. 53 (a), BO
2 = CD2 + (AB - AD)*,

= CD2 + AS* + AI? - 2 AB-AD.

But CD2 + AD2 = AC 2
,
and AD = AC cos A.

Hence a2 = b2 + c2 2 be cos A.

In Fig. 53 (5), BC 2 = CD2 + (DA +

But Off + DA 2 = AC 2

,

and DA = AC cos CAD = - AC cos A.

Hence a2 = b2 + c'* - 2 be cos A. [31]

We see then that the formula holds for sides opposite

either acute or obtuse angles. In fact, the first proof is

sufficient, if account is taken of the directions of the lines

AB and AD.

By dropping perpendiculars from the other vertices,

similar expressions may be found for the other sides.

62 = c2 + a2 - 2 ca cos J5,

c* = a? + b*-2ab cos (7.
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42. Law of the tangents. The sum of any two sides of

a triangle is to their difference as the tangent of one-half

of the sum of the opposite angles is to the tangent of one-

half their difference.

From formula [30],

a_ _ sin .A

b sin.Z?

By composition and division, this proportion becomes

a + b _ sin A + sin B
a b sin A sin B

But, by formula [29, a~]
and [29, J],

sin A + sin B _ 2 sin 1 (A + B) cos \(A - B)
sin A - sin B

~
2 cos 1 (A + ^) sin l(A- .#)'

tan

46 tan Ql + J?)
Hence - v=- . [32]a ~ 6

In like manner, it may be shown that

b + c _ tanl(^+ C)
c
~~

tai (5 - Oy

a _ tan|((74- J.)==

c-atani(C'- A)

43.* General form of the law of the sines and the law of

the cosines. In the three laws just obtained only the

magnitude of the sides and of the interior angles have

been considered. No attention has been paid to the



CH. VI, 43] OBLIQUE TRIANGLES 93

signs of either the sides or angles. But in using

either the law of the sines or the law of the cosines in

other branches of mathematics, the sides and angles of

the triangles are often directed lines and angles, and it

is convenient to have a form of these laws which will

apply to such cases.

Law of the sines.

Let the sides of the triangle ABO be directed lines.

If the positive direction of A C is from A to (7, place the

*r-X
IS

FIG. 54 (a).

triangle with A at the origin, as in Fig. 54 (a) ;
if its

positive direction is from C to A, place it as in Fig.

54 (t).

In either figure,

DB = projy
AB =

proj^ CB.

Hence, by [10],

AB sin (AC, AB) = CB sin (AC,

or
AB
CB sin(AC,AB)

or, changing the sign of the denominator of the first

member and of the numerator of the second,

BC sin (6, c)
[33]
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In like manner, = ', etc.
OA sin (c, a)

Law of the cosines. Placing the triangle as in the pre-

vious demonstration,

in either figure, DA = DO + OA.

Squaring, DA* = DO* + OA2 +2DO.OA.

Adding Dl?, and noting that DA2 + BD* = A&,
= BC\ and that

DO=pvoj x 0=Ocos (OA, BO) = BO cos (BO, OA),

we have A& = BC2
+ CA 1

+ 2 BC C^ cos(BC, C^.). [34]

In like manner

= CA 2 + ^S2 + 2 (M - ^^ cos (OA, ^1^), etc.

In any numerical case these laws will be found to give

the same results as the special forms given in the previous

articles. To illustrate, consider

the triangle in Fig. 55, in which

the directions of the sides are

shown by arrows, and the lengths

of the sides are 2, 3, and 4. Let

the letters A, .Z?, and C represent,

-A K as usual, the magnitudes of the
FIG. 55.

interior angles of the triangle.

Then AB = 2, BC = 3, OA = - 4, (BC, CA) = Z.MOL
= - C, (OA, AB)= ^LAK= - A, (AB, 0)=
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r , P ,
, . 2 sin( C) sin (7

The law of tne sines gives
- = = -

A
-

6 sin ( A) sin. A

The law of the cosines gives

22 = 32 + (_ 4)2 + 2(3)(- 4) cos (- <7),

= 32 + 42 _ 2 . 3 . 4 cos <7.

44. Solution of oblique triangles. The three sides and

the three angles of a triangle are spoken of as the six

parts of the triangle. It is, in general, possible to find

the remaining parts, when any three of these are known,

if one of the known parts is a side. The process of finding

the three unknown parts is called solving the triangle.

Four cases are distinguished. There may be given

(1) two angles and one side,

(2) two sides and the included angle,

(3) two sides and an angle opposite one of them,

(4) three sides.

45. CASE I. Given two angles and one side. Let A, B,

and a be the known parts ; it is required to find (7, 6, and c.

The third angle is determined at once from the equation

(7 =180 -04 + 5).

In the law of the sines,

a _ sin A c _ sin

b sin.Z? a sin A
three of the four parts are known ; the fourth part (b or c)

may be found at once by the aid of the table of natural

sines.

The accuracy of the result may be tested by obtaining
j*-, i- mi ^
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one of the given parts from the three which have just

been found, by the aid of a formula which has not been

previously used.

EXERCISE XXVI

Find the remaining parts of the triangle, when

1. A = 7 21', = 50 30', a = 9.

SOLUTION.

C = 180 -
(7 21' + 50 30) = 122 9'.

, _ a sin B _ 9 x .7716 _ r . 9g=

sin^l
=

.1279

_ a sin C __ 9 x .8467 _^ ^=

smA~ .1279

2. A = 82 22', B = 43 20', a = 4.79.

3. B = 10 12', C = 46 36', 6 = 5.

4. A = 12 49', (7 = 141 59', a = 82.

5. A = 99 55', 5 = 45 1', a = 804.

6. = 4 20', C - 136 14', b = 51.

SOLUTION. Logarithms may be used to advantage in apply-

ing the law of the sines.

A = 180 -
(4 20' + 136 14')

= 39 26'.

a = _|1B ?
or log a = log 6 + log sin A log sin B.

sin jB

c =
,
or log c = log b + log sin C log sin B.

sin _o

log&= 1.70757 log&= 1.70757

log sin A = 9.80290 log sin (7 = 9.83993

11.51047 11.54750

log sin B = 8.87829 log sin J5 =_ 8.87829

loga= 2.63218 log c - 2.66921

a = 428.73. c - 466.88.
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7. A = 38 21' 47", B = 54 6' 8", a = 13.509.

8. B = 125 53' 52", C = 15 44' 21", c = 5.904.

9. 5 = 44 22' 49", C= 106 11' 53", a = 1879.4.

10. A = 41 13' 22", C = 71 19' 5", a = 55.

11. A = 48 24' 15", C = 31 13', c = 926.74.

12. 5 = 16 21\18", C= 24 17', b = 43.24.

46. CASE II. Given two sides and the included angle.

Let a, b, and C be the known parts ; it is required to find

A, B, and c.

The law of the cosines may be used to find the third side,

if the given sides are expressed in numbers which ma}7
- be

easily squared. The angles may then be found by the

law of the sines, as in the previous case.

EXERCISE XXVII

Find the third side of the triangle, when

1. A = 31, b = 6, c =10.

SOLUTION. a = -vW + c
2 2 be cos A,

= V36 + 100 - 120 x .8572,

= 5.756.

2. (7=50, a = 10, 6 = 11.

3. A = 60, b = 8, c = 15.

4. C=135, a=V3-l, 6=V2.

5. = 30, a = 3,c =
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47. Solution by logarithms. When the numbers which

express the length of the sides of the triangle contain a

number of figures, and it is necessary to find the angles,

the method given above is long, since the formula is not

adapted to the use of logarithms.

For the general treatment of this case by the aid of

logarithms, the law of the tangents is best suited. It

may be written

tan I (A - E) = ^ tan J (A + B).

The second member of this equation is completely known,

since a and b are given, and A + B 180 0. We may,

therefore, determine %(A B). From this, and the

value of |(J. + ^0, the values of A and B can be obtained

by addition and subtraction. The remaining sides may
then be found by the aid of the law of the sines.

EXERCISE XXVIII

Find the remaining parts of the triangle, if

1. a = 601, 6 = 289, and (7=100 19' 6".

SOLUTION. Apply the law of the tangents,

tan i (A-E) =^^ tan } (A + B),
a+J)

in which a + b = 890, a - b = 312,

and $(A + B) = (180
- 100 19' 6")

= 39 50' 27".

log (a -b) = 2.49415

log tan \ (A + B) = 9.92136

12.41551

log (a -f 6)
= 2.94939

log tan I (A
-

B)= 9.46612
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%(A - B) = 16 18' 14"

But i.
(.4 + 1?)

= 39 50' 27"

Hence A = 56 8' 41",

and B = 23 32' 13".

The remaining side may now be found by the law of the

sines, as in Case I.

. a = 23.34, 6 = 55.72, (7= 18 23'.

3. a = 576, 6 = 431, C= 73 16' 10".

4. c = .523, a =.726, 5 = 50 28".

5. 5 = .0073, c = .008, .4 = 100.

^6. a = 54.734, c = 65.791, 5 = 105 54'.

* 7. a = 1673, 5 = 2432, (7= 98 5' 15".

8. a = 3184, 6 = 917, C=349'16".

9. a = 31.84, 6 = 12.34, C= 88 12' 40".

10. a = 14.59, 6 = 3.99, C= 92 11' 18".

48. CASE III. Given two sides and the angle opposite

one of them. Let the given parts be A, a, and b.

It is shown in plane geometry that, when two sides

of a triangle and the angle opposite one of them are

given, there may be constructed, sometimes two triangles,

sometimes one, and sometimes no triangle, according

to the relation existing between the given sides and

angles.

If the given angle A is acute, and the opposite side a is

less than the adjacent side b but greater than the perpen-

dicular CD (= b sin A), there are two possible construc-

tions. Fig. 56 (a). ^^
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If A is acute, and a = b sin A or a > 5, there is one con-

struction. Fig. 56 ().

O o

(6) (0

FIG. 56.

If A is acute, and a<b sin A, no construction is possible.

Fig. 56 O).
If A is obtuse, there will be one construction if a > 5;

otherwise tnere will be no construction. Fig. 56 (d).

Many of these results appear also in the trigonometric

solution of the triangle. From the law of the sines,

sin B = b sin A

Since sin B cannot be greater than 1, we see at once

that there will be no solution if a < b sin A. Also that

there will be only one solution (.#=90) when a= bsmA.
When a > b sin A, there will be apparently two values

of B, one acute and the other obtuse, which are supple-

mentary. But both of these apparent values are not

always possible ; for, if a > 6, plane geometry tells us, that

A > B, and hence B cannot be obtuse.

Again, if A is obtuse, B must be acute, and there can be

only one solution. Bat here there will be no solution

when a<b-, for, if a < 6, A < B, and this is impossible

when A is obtuse.
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This discussion may be condensed into the following

table :

When A < 90, and b sin A < a < b, there are two solutions.

When A < 90, and a^b, there is one solution.

When A < 90, and a = b sin A, there is one solution.

When A < 90, and a<.bsiuA, there is no solution.

When A > 90, and a>b, there is one solution.

When A > 90, and a<b, there is no solution.

Before beginning the solution of any problem, the

student should determine the number of possible solu-

tions. If there is one solution, the law of the sines

gives the value of B. Then (7=180

(A + B). The side c may be found from the formula

_ a sin C
sin A

When there are two solutions, the method of procedure

is the same, except that there will be a second value of B,

which we shall call B' (= 180 - B). Then

It is always possible to determine the number of solu-

tions by attempting to solve the triangle. If there is no

solution, we shall obtain a positive value of log sin B,

which is impossible, since sin B cannot be greater than

unity. Again, if we attempt to obtain two solutions

where is only one, we shall find that the sum of two of

the angles of the triangle is greater than 180.
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EXERCISE XXIX

Find the remaining parts of the triangle, if

I. a = 6, 6=8, and .4 = 40.

SOLUTION. Since A is acute and b > a > 6 sin A, there

two solutions.

sin B =
,
or log sin B = log b -f log sinA log a.

ci

log b= 0.90309

log sinA= 9.80807

10.71116

log a = 0.77815

log sinB= 9.93301

Hence B= 58 59' 15",

and ' = 121 0'45".

C= 180 -(A + B) = 81 0'45",

C" = 180 - (A+ B 1

)
= 18 59' 15".

_ a sin (7
f _ a sin (7'

sin yl sin A

loga= 0.77815 loga= 0.77815

log sin C= J&99464 log sin (7
' = 9.51236

1O77279 10.29051

log sin A =
_9.80807 log sin A = 9.80807

logc= 0.96472 logc'= 0.48244

c= 9.2198. c'?= 3.037.

2. a = 77.04, 6 = 91.06, 5 = 519 r 6".

3. a = 80, 6 = 401, 5 = 84 16' 31".

4. a = 319, c = 481, A = 41 32' 40 ;;
.

5. a = 695, 6 = 345, B = 21 14' 25".
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6. a = 4.32, 6 = 7.61, B = 59 14'.

7. a = 704, 6 = 302, B = 25 14' 13".

8. a = 49, 6 = 45, = 17 41' 9".

. a = 242, 6 = 767, E= 36 53' 2".

10. c = 1042, 6 = 55.8, = 32 22' 42".

49. CASE IV. Given the three sides. If we solve

the equation a2 = 62 -f- c2 2 &GJ cos ^4. for cos -4,

^ _
we nave cos A = -

.

2 be

The corresponding formulas for the other angles are

C _
cos B = -

,
and cos C =,

.

2 ca 2 ab

When the sides of a triangle are expressed by small

numbers, the angles may be found easily from these

formulas, with the aid of a table of cosines. Each angle

should be found in this way, and the accuracy of the

result tested by adding the three angles.

EXERCISE XXX

1. Find the three angles, if a = 8, 6 = 5, c = 7.

SOLUTION. cos A = 25 + 49 ~ 64 = .1429. A = 81 47'.
70

cos B = 64 + 49
f

~ 25 = .7857. B = 38 13'.
11.Z

0=60.
80

Adding, A + B 4- C = 180, and the solution is accurate as

far as minutes
;
but since we are using a four-place table, we

cannot determine the seconds. With a five-place table, the

seconds may be determined with fair accuracy ;
but even with
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a five-place table the results may often differ a number of

seconds from the true value.

Find the three angles, if

2. a = 13, b = 8, c = 15.

3. a = 26, b = 31, c.= 21.

4. a = 25, 6 = 26, c = 27.

5. a = 17, 6 = 20, c = 27.

50. Solution by logarithms. When the sides of the

triangle are expressed by large numbers, this method is

long, since the formulas are not adapted to the use of

logarithms. They may, however, be changed into a dif-

ferent form, to which logarithms may be applied.

From formula [23],

sin A = 1 cos A.

Substituting in this the value of cosA obtained in Art. 49,

1-
sin A = 2 be

J
*

be

O- ft + c)(a+b-c)
4 be

For convenience, let a + b + c = 2 s. Then a b + 6

2(*
-

5), and a -f b - c = 2(s c).

Substituting these values,
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In like manner,

2JC
cos A =

Either of these formulas might be used for solving tri-

angles, when the three sides are given, arid are well

adapted to the use of logarithms. But for values of ^ A

near ,
the first is inaccurate (since the sine of such

angles changes very slowly) and the same is true of the

second for very small values of
|-
A. It is, therefore, best

to obtain the formula for tan J A, which may be used for

all angles,

8 a

If we let J(* -*X*-
s

this formula becomes

[85, a]
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Since r is not changed by interchanging the letters, the

corresponding formulas for the other angles are

^\C =^. [35, e]

These formulas are evidently well adapted to the use of

logarithms, and, since the tangent varies rapidly for angles

of any magnitude, they may be used in all cases. Each

of the angles should be found by these formulas, and the

accuracy of the work tested by adding the three values,,

With a five-place table the sum should not differ by more

than a few seconds from 180.

EXERCISE XXXI

1. Find the angles of the triangle, if a = 15.47, b = 17.39,

c = 22.88.

SOLUTION.. a = 15.47

b = 17.39

c = 22.88
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Find the three angles, if

2. a = 17, b = 113, c = 120.

3. a = 3359.4, b = 4216.3, c = 4098.7.

4. d -3.9009, 6 = 2.7147, c = 3.0012.

^X 5. a = 289, 6 = 601, c = 712.

6. a = 354.4, 6 = 277.9, c = 401.3.

7. a = 5.134, 6 = 7.268, c = 9.313.

8. a = 0.099, 6 = 0.101, c = 0.158.

9. a = 33.112, 6 = 44.224, c = 55.336.

51. Area of an oblique triangle. Let K denote the area

of the triangle ABC. Draw CD perpendicular to AB.

G

h

De D
FIG. 57 (a).

c B

FIG. 57 (b).

Then K
But in either figure CD = a sin B.

Hence = ~ ac sin B. [36]

In like manner it may be shown that

K= | ab sin C = J be sin A.

Or, the area of any triangle is equal to one-half of the

product of any two sides and the sine of the included angle.
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When the three sides of a triangle are given, the area

may be obtained as follows :

By formula [20] sin B=Z sin
J-
B cos |

B.

Hence K ac sin
|
B cos ^B.

Substituting in this expression the values of sin | B and

cos B obtained in Art. 50, we have

K= -- -
.

* ac

K = Vs(s-a)(s- &)(s-c). [37]

When any other three parts are given, find either two

sides and the included angle or the three sides, and apply

one of the above formulas.

EXERCISE XXXII

Find the area of each of the following triangles :

1. a = 5, 6 = 6, (7=78 9'.

2. a = 45.34, c = 56.45, B = 100 10'.

3. 6 = .1001, c = .3204, A = 30 33' 25".

4. a = 14, 6 = 14, c = 15.

^ 5. a =.39, b = .8, c=.89.

^6. a = 56, b = 90, c = 106.

v7. a = 318, 6 = 181, ^1 = 64 58'.

8.6 = 34.51, c = 183.94, A = 23 53' 17".

< 9. a = .7845, 6 = .07859, (7= 120 43' 50".

10. a = 23, A = 76 53' 25", B = 13 29' 15".
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EXERCISE XXXIII.

/-I. The diagonals of a parallelogram are 73 and 95, and they
cross each other at an angle of 35 28'. Find the sides and

angles of the parallelogram.

2. At one point of observation the horizontal angle sub-

tended by a round fort is 4 35'. On going 500 ft. directly

toward the fort, it is found to subtend an angle of 6. Find

the diameter of the fort.

^- 3. The parallel sides of a trapezoid are 16 and 23ft. The

angles at the extremities of the longer side are 35 54' and

76 20 '. Find the non-parallel sides.

4. A tower stands at the foot of an inclined plane whose

inclination to the horizon is 9; a line 100 ft. in length is

measured straight up the inclined plane from the foot of the

tower, and at the upper extremity of this line the tower sub-

tends an angle of 54. Find the height of the tower.

5. Looking out of a window, with his eye at the height of

15 ft. above the roadway, an observer finds that the angle of

elevation of the top of a telegraph pole is 17 18' 35", and the

angle of depression of its foot is 8 32' 15". Find the height
of the pole and its distance from the observer.

6. A and B are two points, 200 yards apart, on the bank of

a river, and C is a point on the opposite bank. The angles

ABC and BAC are respectively 54 30' and 65 30'. Find the

breadth of the river.

7. A ship sails due east past two headlands which are two

miles apart and bear in a line due south. Half an hour later

one of the headlands bears 15 south of west and the other 30.

What is the rate of the ship ?

8. What is the approximate distance at which a boy must

hold a coin one inch in diameter from his eye to conceal the

moon, if its apparent angular diameter is half a degree ?
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9. A balloon rises vertically at a horizontal distance of

3000 yards from an observer, who finds the angle of elevation

to be 15 when he first sights the balloon. When he again
measures the angle he finds it to be 30. Through what dis-

tance has the balloon risen between the two observations ?

10. A pole 10 ft. high stands upright in the ground. The

angle of elevation of the top of a tree from the foot of the

pole is 32 27', while the angle of elevation of the top of the pole

from the foot of the tree is 22 44'. Find the distance between

the pole and the tree, also the height of the tree.

11. A telegraph pole stands on the bank of a stream. Its

angle of elevation from a point directly opposite on the other

bank is 36 53', and from a point 60 ft. from the bank in a

straight line with the first point and the pole, the angle is

16 42'. Find the width of the stream and the height of the

telegraph pole.

12. A church stands on the bank of a river. From the

opposite side of the river the angle of elevation of the top of

the spire is found to be 57 25'. The observer moves back

200 ft. in a direct line with the foot of the spire and there

finds the angle of elevation to be 48 30'. Find the width of

the river.

13. A man wishing to determine roughly the length of a

pond finds that a line joining two stakes, driven one at each

end of the pond, runs N.W. He then takes 150 paces from

one of the stakes toward the N.E., turns and takes 200 paces
to the other stake. What is the length of the pond, if one of

the man's paces is
2-J-

ft. ? What is the angle through which

the man turns ?

14. The angle of elevation of a steeple is 71 34', when the

observer's eye is on a level with the bottom. From a window
25 ft. above the place where the observer stands the angle of

elevation is 69 27'. Find the observer's distance from the

steeple and the height of the steeple.
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15. A man at a station B at the foot of a mountain observes

the elevation of the summit A to be 50. He then walks one

mile toward the summit up an incline, making an angle of 30

with the horizon to a point C, and observes the angle ACB to

be 150. Find the height of the mountain.

16. A tower I ft. high stands in a plane. The angles of

depression from the top of the tower of two objects lying in the

plane in a direct line from the foot of the tower are for the

nearer a and for the more remote
/3.

Find the distance between

the objects.

17. Two inaccessible objects P and Q lie in a horizontal

plane. To find the distance PQ a base line AB of 500 yards is

measured in the plane. At its extremities A and B, the follow-

ing angles are measured: ZBAQ = 3612', ZQAP=5046',
Z ABP= 43 22', and PBQ = 72 9'. What is the distancePQ ?

18. There is a tower on the top of a hill. From a point in

the plane on which the hill stands the angle of elevation of the

base of the tower is 37, and of the top of the tower 50. From
another point straight away from the hill in a line through the

first point and 200 ft. from that point the angle of elevation

of the top of the tower is 31 22'. Find the height of the tower.

. An obelisk stands on a hill whose slope is uniform. A
man measured from the foot of the obelisk a distance of 32 ft.

directly down the hill and found the angle between the incline

and the top of the obelisk to be 45
;
after measuring down-

ward an additional distance of 68 ft., the angle found in the

same manner was 2147 f

. What is the height of the obelisk

and the inclination of the hillside ?

20. An observer in a ship sees two rocks, A and B, in the

same straight line N. 25 E. He then sails northwest for 4

miles, and observes A to bear due east and B northeast of his

new position. Find the distance from A to B.

21. The circular basin of a fountain subtends an angle of

25 at a distance of 44 ft. from the edge of the basin, measured

on a diameter produced. Find the radius of the basin. ;^ , /V
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22. From the top of a vertical tower whose height is 100 ft.,

the angle of depression of an object is observed to be 60,
and from the base to be 30; show that the vertical height of

the base of the tower above the object is 50 ft.

23. A flagstaff 40 ft. tall stands on a castle wall. At a

horizontal distance of 20 ft. from the foot of the wall the

flagstaff subtends an angle of 15. Find the height of the

wall.

24. The angle of elevation of a tower at a distance of 20

yards from its foot is three times as great as the angle of

elevation 100 yards from the same point. Show that the

height of the tower is ~~= ft.

25. Two parallel chords of a circle, lying on the same side

of the centre, subtend respectively 72 and 144 at the centre.

Show that the distance between the chords is half the radius

of the circle.

26. A person standing due south of a lighthouse observes

that his shadow, cast by the light at the top, is 24 ft. long ;
on

walking 100 yards due east, he finds his shadow to be 30 ft.

Supposing him to be 6 ft. high, find the height of the light

from the ground.

27. A man 5 ft. tall stands on the edge of a pond. The

angle of elevation' of a tree on the opposite bank is 45 and the

angle of depression of its reflection is 60. Find the height of

the tree.

NOTE. The reflection of the top of the tree appears as far below

the surface of the water as the top of the tree is above the water.

28. One end of a pole rests on the ground and the other end

touches the top of a window. When the lower end of the pole

is moved away 16 ft. farther from the wall, the top rests on

the sill of the window. If the first angle the pole makes with

the ground is 71 25' and the second 48 35', find the length of

the window.
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29. Two captive balloons are floating at equal heights in

calm air. A man standing in the straight line between their

points of attachment finds the angle of elevation of the nearer

balloon to be tan" 1
1. He then walks a distance of 240 ft. at

right angles to the straight line joining the points of attach-

ment and finds the angle of elevation of the same balloon to be

tan" 1

-|,
and that of the other tan"1

-/-$.
Find the height of the

balloons and the distance between their centres.

30. Wishing to find the inclination of a roadway rising from

a level park, a man walked 100 ft. up the incline and observed

the angle of depression of an object in the park to be 30. After

walking up the plane 100 ft. farther, the angle of depression

of the same object was 45. Show that the angle of inclination

is cot- 1

(2
-

31. Two persons stand facing each other on opposite sides

of a pool. They are of such heights that the eye of one is

5 ft. above the ground and that of the other 6 ft. When the

line of vision of each makes an angle of 54 with vertical, the

reflection of the eye of either is visible to the eye of the other.

What is the width of the pool ?

32. Viewed from the S.E. corner of a room the N.E. corner

has an elevation of and the S.W. corner of <. Find the

elevation of the N.W. corner, also the angles the diagonals
make with the edges of the room.

33. The angle of elevation of

a tower from a point A due south

is
,
and from a point B due west

of the first station it is
ft.

If the

distance, AB, between the two

stations is b, show that the height
of the tower is

6 sin a sin

V sin (a + ft)
sin (a

-
ft) FlG . 58 .
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34. A man walked up an inclined plane a feet and observed

the angle of depression of an object in a horizontal plane to be a.

When he had walked a distance of 2 a ft. further up the

incline the angle of depression was 2 a. Show that the angle

the incline makes with the horizontal plane is

1 4 sin- a

35. A man walks along the bank, AB, of a straight stream

and at A observes the greatest

angle subtended by two objects,

P and Q, on the opposite side

to be 75
;
he then walks a dis-

"tance of 300 ft. to B and finds

that the objects are in a straight

line, which makes an angle of 15 with the bank. Find the

distance between the objects.

NOTE. The point on the bank where the greatest angle, subtended

by the objects, is made, will be the point of tangency of a circle pass-

ing through them. Z.BPA = Z.QAB = can be expressed in terms

of 15, 75, and 90.

36. A person on the top of a tower observes the angles of

depression of two objects in the plane on which the tower

stands to be 60 and 30. He knows the distance between the

two objects to be 500 ft. The angle subtended at his eye by
,the line joining the two objects is 30. Find the height of the

tower.

37. From two stations a ft. apart a balloon is observed.

At one of the stations the horizontal angle between the balloon

and the other station is y, and the angle of elevation of the

balloon is a; at the other station the corresponding angles are 8

and
ft.

Show that the height of the balloon is

a sin y tan (3

sin (8 + y)

Also show that tan a sin 8 = tan ft sin y.
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38. An inclined plane AB, of length I,
has a vertical rod, PQ,

fastened to its surface at such a distance from its foot that the

upper end of the rod and the top
of the plane are in the same straight

line with a point D at a distance I

from the foot of the plane. The

angles subtended by the rod and
<

the part of the plane below are

each equal to a. Find the distance

at the foot of the rod from the lower end of the plane, also the

length of the rod.

A
FIG. 60.





PART II

SPHERICAL TRiaONOMETRY

CHAPTER VII

RIGHT AND QUADRANTAL TRIANGLES

52. A spherical triangle is a portion of the surface of

a sphere bounded by the arcs of three great circles which

intersect. Spherical Trigonometry is concerned with the

relations of the sides and angles of a spherical triangle,

and the computation of the unknown parts when any
three parts are given. In the following treatment a

knowledge of Solid Geometry is presupposed, but it is

thought best to begin with a statement of the definitions

and theorems which are most important for our subject.

Let ABO be a spherical

triangle on a sphere whose

centre is at 0. Join to

the vertices A, B, and (7,

and pass planes through
and the sides of the triangle.

These sides are measured

in degrees, and their measures

are, therefore, equal to the measures of the correspond-

ing plane angles A OB, BOO, 00A.
117
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A spherical angle is equal to the angle between tan-

gents to the sides of the angle, drawn at the vertex.

Hence the angle A is equal to the angle formed by draw-

ing, in the faces A OB and AOC, any two lines perpen-

dicular to OA at the same point.

A spherical angle may also be measured by the arc of a

great circle having the vertex of the angle as a pole and

intercepted between its sides.

We shall restrict our study of triangles to those in

which each of the angles and sides is less than 180. The

sum of the three sides may have any value less than 360,

while the sum of the angles must lie between 180 and

540.

A triangle may contain one, two, or three right angles,

or each of the angles may be greater than 90. If each

of the angles is a right angle, each of the sides is a quad-

rant, and it is called a tri-rectangular triangle.

Polar triangles are so related that the vertices of each

are the poles of the corresponding sides of the other.

Each angle of either triangle is the supplement of the

side lying opposite it in its polar triangle.

When one or more of the sides of a spherical triangle

are quadrants, it is called a quadrantal triangle.

EXERCISE XXXIV

1. Prove that, if a triangle has three right angles, it is its

own polar.

2. Prove that the polar of a right triangle is a quadrantal

triangle.

3. Prove that, if a triangle has two right angles, the sides

of the polar triangle opposite these are quadrants, and that

the third side measures the third angle of the given triangle.
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4. Prove that, if one side of a triangle is a quadrant,
either of the other sides and the angle opposite it are either

both less or both greater than 90.

5. Prove that, if a triangle has one right angle, each of its

remaining angles is in the same quadrant as the side oppo-
site it.

6. Prove that, if the sides about the right angle of a right

spherical triangle are in the same quadrant, the hypotenuse is

less than 90; while if they are in different quadrants the

hypotenuse is greater than 90.

7. Prove that, if one of the sides of a right triangle is equal
to the opposite angle, the remaining parts are each equal to 90.

8. The angles of a triangle are 80, 75, and 105. Find

the number of degrees in each side of the polar triangle, and, if

the radius of the sphere be 90 ft., compute their lengths in feet.

9. The sides of a spherical triangle are 70, 80, and 110.

Find the angles of its polar triangle.

10. In an equiangular spherical triangle each of the angles
is 120. Find the value of each side of the polar triangle. If

the angles increase to 180 each, state the limits of the tri-

angle and its polar.

53. Right triangles. Let the spherical triangle ABO
(Fig. 2) be right-angled at (7, and let each of the other

parts be less than 90. Pass planes through the sides

of the triangle and 0, the centre of the sphere. Repre-

sent the measure of the sides opposite A, B, and by
the corresponding small letters a, 5, c. Then these are

also the measures of the corresponding angles at 0.

That is,

Z.BOO=a, ZCOA = b, ZAOB=c.

Through B pass a plane BED perpendicular to OA.

Then EB and ED are perpendicular to OA, and the
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angle BED is the measure of the spherical angle A.

Also BD is perpendicular to

the plane AOC, since it is

the line of intersection of two

planes which are perpendicu-

lar to that plane. Then the

triangles BOE, BOD, DOE,
andBDE are all right triangles.FIG. 2.

Then COS G = OE
OB

Also OE= OD cos b = OB cos a cos b.

Hence

Again

Hence

cos c = cos a cos b.

1 a

EB OB sin c sin c

sin a = sine sin A.

Interchanging a and b, A and J5,

sin 6 = sin c sin J5.

Again cos J.
tan

0^ tan c tan

or cos A = tan 6 cot c.

Also cos .B = tana cot c.

Formula [4] may be written

sin b cos c
cos A =

But
sin

cos 5 sin c

= sin .#, and

[2]

[3]

[5]

cos 6
= cos a.
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Hence cosA = cos a sin B. [6]

Also cosB = cos b sin A. [7]

Substituting the values of cos a and cos b obtained from

these last equations in formula [1], we have

cos c = cotA cot B. [8]

A
. . , ED DBcotA cc&A

Again sin b = = =
OD DB cot a cot a

Hence sin b = tan a cot A. [9]

Also sin a = tan b cot B. [10]

In deriving these formulas we have used a triangle in

which none of the parts is greater than 90 ; but they

may be easily shown to hold

for any right triangle. Let

ABO (Fig. 3) be a right tri-
A.

angle in which a < 90 and

I > 90. Then by Problem 6,

Exercise xxxiv, c> 90. Con-

tinue the sides AB and AO until they meet at A f
.

A'BO is a right triangle in which each of the five parts

is less than 90.

Since each of the arcs ABA' and ACA' is a semicir-

cumference,

A'B = 180 -
<?, and OA r = 180 - b.

Then by formula [1],

cos (180
-

c)
= cos a cos (180

-
5),

or cos c= cos a cos b.

Let the student show that all the other formulas hold

for this case. Let him also construct a figure, and prove
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that these formulas hold when both a and b are greater

than 90.

54. Napier's rules of circular parts. As it is difficult

to remember these ten formulas, the following device

co B may be used as an aid to the

memory. The two legs of the

right triangle, the complements

^ of the two angles, and the com-

plement of the hypotenuse are

FlG - * called the circular parts. Place

these on the triangle as shown in Fig. 4, omitting

the right angle. Any one of these five parts may
be called the middle part; then the two parts on each

side of it are called the adjacent parts and the re-

maining two, the opposite parts. Then the ten formulas

obtained above may be condensed into the two following

rules :

The sine of the middle part is equal to the product of the

tangents of the adjacent parts.

The sine of the middle part is equal to the product of the

cosines of the opposite parts.

If we apply these rules, using each part successively

as the middle part, they will be found to give the ten

formulas of the previous article.

For example, if a is taken as the middle part, b and

co. B are the adjacent parts, and co. A and co. c are the

opposite parts. Then the first rule gives sin a = tan b

tan co. B = tan b cot B, which is formula [10]. The

second rule gives sin a = cos co. A cos co. c = sin A sin <?,

which is formula [2].
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55. Solution of right triangles. When any two of the

parts of a right spherical triangle are given, the remaining

parts may be determined by the aid of the ten formulas

of Art. 53. Six cases may occur. There ma}
r be given

1. the two legs,

2. one leg and the hypotenuse,

3. the two angles,

4. one angle and the adjacent side,

5. one angle and the opposite side,

6. one angle and the hypotenuse.

There will be one determinate solution in all of these

cases except case 5, where there may be two triangles

which satisfy the given conditions. This appears geo-

metrically if the sides AC
and AB of the triangle ABO
are extended to form a lune.

The angle A' equals angle A,

and the triangles ABO and

A'BC are right triangles

which contain a given angle A and the opposite side a.

The formula required for the solution of any problem
is best obtained by marking the two given parts and the

one required on Fig. 4. Then choose for the middle part

that one of the three which has the other two either as

adjacent or opposite parts. For example, if a and B are

given and c is wanted, co. B should be chosen as the

middle part. Then sin co. B = tan co. c tan a, or cos B
= tan a cot c, from which c may be obtained.

If a and c are given and A is wanted, a must be chosen as

the middle part ; then co. A and co. c are the opposite parts.
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When each of the parts of the spherical triangle which

are given is less than 90, the solution by the aid of

logarithms presents no new

difficulty. But if either of the

parts is greater than 90, care-

ful attention must be paid to

the signs of the functions. The

following example illustrates

the method of procedure.

EXAMPLE 1. Find the remaining parts of the right

spherical triangle in which a = 125 and b = 60.

By Napier's rules we find that

cos G = cos a cos

and

sin b = tan a cot A, or tan A =

sin a = tan b cot B, or tan B =

tan a

sin b

tan 5

sin a

Since a is between 90 and 180, cos a and tan a are nega-

tive, while sin a is positive. Then c and A are obtuse,

and B is acute.

log cosa = 9.75859

log cos b = 9. 69897

log cos c = 9.45756

180- c= 73 20' 3",

c = 106 39' 57".

log tan a = 10. 15477

log sin b = 9.93753

log tan A = 10.21724

180- A = 58 46' 2",

A = 121 13' 58".

log tan 5 = 10.23856

log sin a = 9.91336

log tanB= 10.32520

.g=6441' 20".
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EXAMPLE 2. Find the remaining parts of the right

spherical triangle in which a= 21 39' and J. = 42 10' 10".

The formulas needed for the solution in this case are

found to be sin c =
, sin b = tan a cot A, sinB = .

sinA * os a

Since each of the unknown parts is to be determined by
its sine, there will be two values of each less than 180.

From Example 5, Exercise xxxiv, it appears that a and

A must be in the same quadrant ; it is also evident from

the above formulas that there will be no solution unless

sinA > sin a.

log sin a = 9.56695 log tan a = 9.59872

log s'mA = 9.82693 log cot4 = 10.04298

log sin c = 9.74002 log sin b = 9.64170

c = 33 20' 15", b = 25 59' 28",

or = 146 39' 45". or = 154 0' 32".

log cos^4= 9.86991

log cos a = 9.96823

log sin5= 9.90168

S = 52 53',

or = 127 1'.

These values must be combined according to the laws

stated in Examples 5 and 6 in Exercise xxxiv. In this

problem all the values less than 90 form one solution

and those greater than 90, the other. This will be true

only in case the given parts are less than 90.
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EXERCISE XXXV

Find the remaining parts of the right spherical triangle in

wnich

1. a = 9 45' 19", b = 12 16' 42".

2. a = 28 26' 56", b = 29 37' 36".

3. c = 41 5' 6", A = 41 32' 38".

4. a = 12 16' 42", B= 79 29 '45".

5. A = 15 38' 6", B = 80 14' 41."

6. b = 48 27' 22", c = 56 15' 43".

7. B = 56 15' 43", c = 58 40' 13".

8. A = 47 37' 21", B = 61 33' 4".

9. a = 48 27' 22", c = 64 9' 43".

10. b = 74 21' 54", A = 38 57' 12".

11. a = 35, ^4 = 61.

12. b = 75 45', B = 65 38'.

13. b = 105 30', c = 80 25'.

14. b = 98 35', A = 47 38'.

15. b = 79 35', B = 80 25' 20".

56. Quadrantal triangles. If one side of a spherical

triangle is a quadrant, the angle opposite that side in

the polar triangle is a right angle.

From the two given parts of a quadraiital triangle two

parts of its polar triangle may be obtained. This right

triangle may then be solved and, from these solutions,

the unknown parts of the quadraiital triangle may be

obtained.
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EXERCISE XXXVI

Find the remaining parts of the spherical triangle in which

c = 90 and

1. C= 163 53' 38", A = 169 29' 45".

2. C = 141 2' 48", B = 142 5' 54".

3. B = 140 2' 56", a = 163 53' 38".

4. A = 148 40' 13", b = 127 54' 6".

5. a = 138 54' 54", b = 100 30' 15".

6. a = 65, A = 48 35'.

7. B = 50 38' 20", b = 75 37' 30".

8. C = 70 30' 28", b = 128 35' 12".



CHAPTER VIII

OBLIQUE TRIANGLES

57. Law of the sines. In the oblique spherical triangle

ABC draw the arc CD perpendicular to AB, forming the

two right spherical triangles ADC
and CDB.

Then by formula [2],

sin DC = sin a sin B,

and sin DC = sin b sin A.

Hence

sin a sin B = sin b sin A,

sin a sin A

FIG. 7.

or

In like manner

and

sin b sin />'

sin & _ sin B
t

sin c sin C

sin c_sin C
sin a sinA

In this proof we have used a figure

in which D falls between A and B\

but all of the statements will be seen

to be true for Fig. 8, in which D
falls without AB, if we note that, in

this case, sin DBC = sin (TT J5) =
sin B.

128
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58. Law of the cosines. Let ABC be a spherical tri-

angle in which two of the sides, b and <?, are each less than

a quadrant. Join its vertices

to 0, the centre of the sphere.

Through D, any point on OA,

pass a plane DEF perpen-

dicular to OA, cutting the 0-

planes OAO and OAB in the

lines DE and DF. Then

DE and DF are perpendicu-
FlG<

lar to OA, and /.EDF is the measure of the spherical

angle A.

In the triangle OEF, by [31], Pt. I,

EF* = OH2 + OF* -20E- OF cos EOF.

In the triangle DEF, by [31], Pt. I,

= DE2 + DF2 - 2 7X# DF cos

Equating these two values of ^/J?
7 and reducing, we have

OE - OF cos EOF = 01? + DE - DF cos EDF.

or cos a = cos & cose + sin b sine cos A. [12, a

In the above proof b and c were each taken less than a

quadrant. Let the student show by a method similar to

that used in Art. 53 that the formula holds for all values

of b and c.
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By interchanging letters in the cyclic order we have

cos b = cos c cos a + sin c sin a cos B 9 [12, ]

cos c = cos a cos 6 + sin a sin & cos C. [12, <?]

Let A'B' C' be the polar triangle of ABC. Since the

formulas just found hold for all triangles,

cos a 1 = cos b' cos c
f + sin >' sin c' cos ^4/,

cos b
f = cos r cos a r + sin <?' sin a f cos^ r

,

cos c
r = cos a f cos 6' + sin a r

sin 5' cos Cf
.

But a' = TT A, A' = TT a, etc. Substituting these

values and noting that sin (TT #) = sin rr, and cos (TT x)
= cos ar, we have

cos ^1 = - cos .B cos C + sin JS sin C cos , [1 3, a]

cos^ = - cos C cos ^1 + sin C sin ^1 cos ft, [13, Z>]

cos C = - cosA cos B + sin ^1 sin B cos c. [13, c]

59. Formulas [12] and [13] are unsuited to logarith-

mic computation ; but by a transformation very similar

to that used on page 104 of the Plane Trigonometry, we

may obtain from them formulas which are well adapted
to the use of logarithms.

From [12, a],

cos a cos b cos c
cos A =

sin b sin c
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But sin J A =V" , [231, Pt. 1,

sin o sin c cos a -}- cos o cos c

2 sin 5 sin c

foogft-.Q-ooaa
fe ^ pt ^V ci n n em /Z Sill Sill g

= /sinj_(a_ <?) sin
-j- (^ 5 + g)

sin 6 sin g

by [29, d], Pt. I.

Let a-f& + g=2s. Then i
(a + 5 c) = s c, etc.

.
T , /sin (s c) sin (s 5)Hence sm A ^L = \/

^ L
.

* cm n m />sin 6 sin <?

Also cos \A = ^
l +

f7

OS A
, [24], Pt. I,

Vcos
a cos

ty. ein /i ei

+ c)

2 sin 6 sin c

by [12] and [29, <*],
Pt. I,

sin ( s

sin b sin g

By division,

tan I A =
sin s sill (s a)

-^ Ji
dn (s a)

^
/sin (g a) sin (g 6) sin (g <?)

sin ( s a )
* sin s
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If we let k = >'i(''-0i(-a)''i"(-'0
sin s

tanH =
^(~^> [H]

tan l*= s-nr^)> t14'*]

tan
;
c
=^cf^)- C14'<1

Let the student obtain in a similar manner the following

formulas from formula [13] :

tan
|
a = K cos (8 - A) 9 [15, a]

tan|&
= JKcos(S--B), [15,5]

tan
I
c = K cos (S - C), [15, c]

in which 2 $ = A + B + C7
,
and

- cos 8
cos (tf

- A) cos (8 - B) cos (# - (7)

60. Napier^s analogies. Dividing [14, a] by [14, 5],

we have
sin ^A cos j B _ sin (s 5)

cos JJ. sin ! .B sin (s a)

By composition and division,

sin j-
^4. cos^B -\- cos j J. sin \ B _ sin (s b) + sin (s a)

sin JA cos J -S cos J A sin J j5 sin (s 6) sin (s )

Applying [11], [13], [29, a], [29,5], Pt. I, we have

[16]

tanc

tan^(a-ft)
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Multiplying [14, a] by [14, 5], we have

sin I A sin \ B __lfi__ _ sin (s c) ^

cos J A cos ^ B sin ( a) sin (s 6) sin s

By inversion ;
then by division and composition,

cos | A cos
j-
B sin

j-
J. sin

-j
J? _ sin s sin (s c)

cos J ^4. cos J -B + sin J ^4. sin ^ 5 sin s -f- sin (s c)

Applying [12], [14], [29, 6], [29, a], Pt. I, we have

cos|(^ +
B)^ ton|c

Let the student obtain in a similar manner the follow-

ing formulas from [15, a] and [15, 6] :

sin (a -b)

cos J (a + 6) cot|c

[18]

[19]

Let the student also obtain from each of the above four

formulas two others by interchanging the letters.

EXERCISE XXXVII

1. Show that J (a + &) and
|- (A + -B) may have any value

less than 180
;
but that each -of the other angles used in

Napier's analogies must be less than 90.

2. Show by the aid of formulas [17] and [19] that A + B is

less than, equal to, or greater than 180, according as a -f- b is

less than, equal to, or .greater than 180; and the converse.

3. Prove that in any spherical triangle each angle is greater

than the difference between 180 and the sum of the other two

angles.
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4. Deduce from Napier's Rules for the right-angled spheri-

cal triangle the relation

sin a _ sin A
sin b sin B

5. Show what changes occur in formulas [11, a, &, c], (1)

when C = 90, (2) when c = 90, (3) when B=C= 90.

6. If a perpendicular be dropped from vertex Oof an oblique

spherical triangle upon the opposite side AB, to meet it at X,

prove by Napier's Rules that, disregarding signs,

sin AX_ cotA
sin BX~ cotB'

7. By means of Napier's Rules, derive formulas for finding

in an oblique spherical triangle the parts required in the follow-

ing cases :

(a) Given A, C, a, required b.

(b) Given B, C, c, required b.

8. A certain point X on a sphere is joined to three points

P, Q, R on an arc of a great circle. By application of the law

of cosines to the triangles formed and by reduction, deduce the

formula, sin PQ cos RX+ sin QR cos PX sin PR cos QX= 0.

61. Solution of oblique spherical triangles. When any
three parts of a spherical triangle are given, the remaining

parts may be determined by the aid of the seven formulas,

[11] and [14] to [19].

Six cases may occur. There may be given

1. the three sides,

2. the three angles,

3. two sides and the included angle,

4. two angles and the included side,

5. two sides and the angle opposite one of them,

6. two angles and the side opposite one of them.
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There will be one determinate solution in each of the

first four cases, but in 5 and 6 there may be two solutions.

62. CASE I. Given the three sides cr, 6, and c.

The angles may be determined by formula [14].

tan \A =
,
tan 4 B =

,
01 " fat

a) sm (s b)

tan 1 = -

sin (s

k

sn

EXAMPLE 1. Find the three angles of the spherical

triangle in which

a = 16 6' 22", b = 52 5' 54", and c = 61 33' 4".

s = 64 52' 40",

log sin ()= 9.87627

log sin (s
-

b) = 9.34478

log sin (-<?)= 8.76364

27.98469

= 9.95684

s- a = 48 46' 18",

s-b =12 46' 46",

s-c = 3 19' 36".

log k = 9.01392

log sin (s
-

a) = 9.87627

log tan J A

log sin s

log &2

log&

log&

= 18.02785

= 9.01392

= 9.01392

log sin (s- 5) = 9.34478

log tan ^ B= 9.13765 log tan 1 B = 9.66914

38' 6". =50 2' 52".

log k = 9.01392

log sin (-<?)= 8.76364

log tan I O = 10.25028

C =121 19' 46".



136 SPHERICAL TRIGONOMETRY [Cn. VIII, 63

EXERCISE XXXVIII

Find the three angles of the spherical triangle in which

l.o= 22 35' 52", b= 40 9' 21", c= 56 52' 23".

2. a= 35 30' 24", b= 38 57' 12", c= 56 15' 43".

3. a= 39 20' 24", b= 41 5' 6", c= 60 22' 24".

4. o= 41 32' 38", 6= 44 44' 17", c= 57 10' 4".

5. a= 52 5' 54", 6= 61 33' 4", c= 83 34' 56".

6. a- 56 52' 23", b= 80 14' 41", c = 103 59' 30".

7. a = 6812'58", 6= 8014'41", c = 128 11' 15".

8. a= 9538'20", 6 = 10826'30", c= 5627'48".

9. a = 120 22' 40", 6 = 111 34' 27", c= 96 28' 35".

10. a= 56 20' 20", 6= 56 20' 20", c= 60 28' 38".

63. CASE II. Given the three angles A, B, and C.

The sides may be determined by formula [15].

tan 1 a = Kcos (tf
- A), tan J 5 = Jf cos (# - ^),

tan Jc= Trccs^- (7).

The logarithmic work is very similar to that of Case I.

EXERCISE XXXIX

Find the three sides of the spherical triangle in which

1. ^1 = 50 2' 56", B -56 52' 23", C= 86 34' 33".

2. ^ = 47 37' 21", B = 74 18' 19", C= 77 48' 18".

3. .4 = 45 26' 42", B = 47 37' 21", (7= 102 16' 42".

4. A = 15 38' 6", = 16 6' 22", C= 159 44' 26".
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64. CASE III. Given two sides and the included angle.

The two remaining angles may be determined by for-

mulas [18] and [19].

._. sin 47 (a b} , i ni

tan
|- (A + B)= cot * ~

cos I (a + b)

The third side may then be found by either [11], [16],

or [17].

EXAMPLE 1. Find the remaining parts of the spherical

triangle in which a = 40 9 ;

21", c = 79 29' 45", B =
50 2' 56".

Here we must use

i /- n A^ sin -J (<? a) , ! T>tan 4 (O A) = -; f-7
--

^ cot J- .B,
sin

I (c* + a)

and
cos c + <)

i-
(c
_

)
= 19 40 r

12", and J (c + a) = 59 49' 33".

log sin J (<?->= 9.52712 log cos J (<?-a)= 9.97389

log cot J^=10.33084 log cot -1^=10.33084

19.85796 20.30473

logsinj(c+ a)= 9.93677 log cos J (<?+ )= 9.70125

log tan -|( (7-^)= 9.92119 log tan \ (C+A) = 10. 60348

i
( (7- A) = 39 49' 46" (C+A) = 76 0' 28"

Hence A= 36 10' 42",

and O= 115 50' 14".
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rr i i -7 7 sin B sin aTo determine 0, use sin 6 = -
sin .A

log sin = 9.88456

log sin a = 9.80947

19.69403

log sin A = 9.77106

log sin b = 9.92297

b = 56 52' 27".

EXERCISE XL

Find the remaining parts of the spherical triangle in which

1.6 = 68 12' 58", c = 80 14' 41", A = 17 20' 54".

2. a = 27 59' 4", b = 41 5' 6", C= 123 44' 17".

3. a = 29 6' 11", c = 77 43' 18", B = 38 57' 12".

4. a = 41 5' 6", & = 60 20' 54", C= 77 43' 18".

5. c = 125 20', 6 = 175 36', A = 20 28' 46".

6. c = 98 35' 26", a = 39 48' 30", B = 47 28' 42".

7. 6 = 85 35' 20", c = 73 24' 26", .4 - 95 28' 40".

8. b = 140 38', a = 130 28', C=15034'.

65. CASE IV. Given two angles and the included side.

The two remaining sides may be determined by formulas

[16] and [17].

The third angle may then be found by either [10], [18],

or [19].

The logarithmic work is very similar to that of Case III.
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EXERCISE XLI

Find the remaining parts of the spherical triangle in which

1. c = 107 37' 55", A = 50 2' 56", B = 64 9' 43".

2. a = 50 2' 56", = 61 33' 4", O = 84 53' 48".

3. b = 56 52' 23", A = 41 32' 38", C = 111 47' 4".

4. a = 41 5' 6", = 56 15' 43", (7= 109 45' 36".

5. A = 48 39' 20", B = 69 28' 30", c = 58 24' 36".

6. A = 110 48' 24", C = 60 25' 48", b = 98 59' 30".

1. B = 98 35' 28", C= 99 52' 48", a = 50 50' 50".

8. A = 110 45' 38", B = 99 37' 18", c = 120 28' 20".

66. CASE V. Given two sides and the angle opposite one

of them. If a, 5, and A are given, B may be found from

formula fill. . , -

. sin o sin A
sin -o =

sin a

If sin b sin ^4. > sin a, there is no solution. But if

sin b sin A < sin a, there are sometimes two solutions.

After the two values of B have been obtained, the number

of solutions may be determined from the fact that the

greater side is opposite the greater angle. It will also

be necessary to see that the theorem of Problem 2, Exer-

cise xxxvii, is satisfied.

The remaining parts, c and C, may now be found from

formulas [16] and [18], or from [17] and [19].
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EXAMPLE 1. Find the remaining parts of tlie spherical

triangle in which a = 103 10', b = 120 12', B = 131 40'.

.
.,

sin a sin B
sin A = - --

sin o

log sin a = 9.98843

log sin B = 9.87334

19.86177

log sin b = 9.93665

log sin -4= 9.92512

A = 57 18' 45", or 122 41' 15".

Both of these values of A will be seen to satisfy the

conditions stated above. There are, therefore, two solu-

tions. Using the first value of A, we shall proceed to

find the corresponding values of c and 0.

J (a + 5) =111 41', (5-a) = 8 31',

|- (A + B)= 94 29' 22", \ (B-A) = 37 10' 37".

Since
-| (A + B) is near 90, more accurate results will

be obtained by using formulas [17] and [19], which contain

the cosine.

cot l (7=
cos + a

tan \ (B + X).
cos \(p a)

log cos %(B + A)= 8.89363 log cos J (b + a) = 9.56759

log tan J (5 4- a) = 10.40054 log tan | (B + A}= 11.10504

19^29417 20.67263

log cos $(B-A)= 9.90133 log cos J (5 -a) = 9.99518

log tan l c = 9.39284 log cot
-J-

= 10.67745

c = 27 45' 26". C= 23 44' 14".
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In each of the above formulas two factors in the second

member are negative. The first members are, therefore,

positive, and the acute values of | c and ^ O must be

chosen.

Using the second value of A we find, by the aid of the

same formulas, *= 113 28' 14", 0= 127 32' 56".

EXERCISE XLII

Find the remaining parts of the spherical triangle in which

1. a = 16 6' 22", c = 525'54", A = 15 38' 7".

2. Z> = 38 57' 12", c= 56 15' 43", = 47 37' 21".

3. 6 = 50 2' 56", c = 56 52' 23", = 64 9' 43".

4.6 = 28 35' 30", c = 30 28' 15", B = 85 38' 40".

5. S = 869', a = 72 18' 15", 6 = 71 54' 15".

6. J. = 12035'28", b = 98 48' 24", a = 105 30' 30".

7. ^ = 103 28' 12", 6 = 20 25' 35", a = 28 58' 25".

Show that the following triangle is impossible ;
also find a

value for c such that B shall be equal to 90.

8. 0=98 35' 28", b = 70 35' 24", c = 50 28' 22".

67. CASE VI. Given two angles and the side opposite

one of them.

If J., 5, and a are given, b may be found from

formula fill. . n -

. 7 sin U sin a
sin =

:

sin JL

The number of solutions may be determined as in Case V.

The remaining parts c and O may now be found as in

Case 5, by formulas [16] and [18], or by [17] and [19j.

The logarithmic work is very similar to that of Case V.
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EXERCISE XLIII

Find the remaining parts of the spherical triangle in which

1. b = 56 15' 43", = 38 57' 12", C= 138 54' 54".

2. b = 48 20', A = 76 50', B = 59 48'.

3. A = 70 30' 28", a = 45 28' 32", B = 60 20' 32'-'.

4. .4 = 78 47' 20", a = 63 49' 10", C = 80 25' 30".

5. c = 112 49' 24", (7= 152 49' 27.5", A = 29 42' 13.7".

6. C=S 48' 48", c = 85 26' 45", 5 = 23 49' 15".

7. A = 57 48' 23", B = 120 38' 27", a = 48 25' 20".

8. J. = 7028', a = 80 25' 40", C=12528'.

REVIEW EXERCISE

1. If a median be drawn from the vertex C of a spherical

triangle to the opposite side c, and the parts of the angle

adjacent to sides a and b of the triangle be named a and ft

respectively, show that 5^ =
sin ft sin a

2. The city of Quito is situated nearly on the equator and

its longitude is 78 50' west of Greenwich. The latitude of

Greenwich is 51 28'. Find the distance from Greenwich to

Quito (on the arc of a great circle). Assume the radius of the

earth to be 4000 miles.

3. In a spherical triangle whose sides are 48,* 57, and 65,

respectively, a median is drawn to the side whose length is 48

from the opposite vertex. Find the length of the median and

also the parts into which it divides the angle.

4. If the values of two sides of a spherical triangle are

and ft and the angle between them n, find the length of the

perpendicular upon the third side from the vertex of the

angle n.
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5. If a lune whose angle is a be drawn upon a sphere

whose radius is c feet, and an arc of a great circle be drawn to

intersect at equal angles the sides of the lune, making the part

of the arc so included /?,
find the distance from each vertex

of the lune to the transverse arc in feet.

6. A ship starting from a point on the equator in longitude

130 West sailed for 3 days, arriving at a point whose latitude

is 20 North and longitude 150 West. What was its rate per

hour, allowing the radius of the earth to be 4000 miles ?

7. The sides of a spherical triangle enclosing an angle

of 75 are respectively 60 and 54. Find the length of the

bisector of the angle and the angles it makes with the base.

8. There is a regular tetrahedron each of whose face

angles is 60. Find the angle between any two faces.

NOTE. Suppose one vertex of the tetrahedron to be at the centre

of a sphere whose radius is an edge of the tetrahedron. The other

three vertices of tho solid will determine upon the surface of the sphere

the vertices of a spherical triangle whose sides are measured by the

face angles of the tetrahedron.

9. If the face angle at the vertex of a regular four-sided

pyramid is 50, find the angle between any two lateral faces.

10. Find the area of a spherical triangle whose sides are

45 26', 53 44', 68 46', respectively, on a sphere whose radius

is 10 ft.

NOTE._ The formula for the area of a spherical triangle is:

area = """

^ ,
where E denotes the excess in degrees of the sum of

-LoU

the angles of the triangle over 180. This excess may be found when

the three sides of the triangle are given by THuilier's Formula,

tan I E = Vtan \ s tan \ (s
-

a) tan \ (.s
-

b) tan (*
- c)>

in which a, &, and c denote the sides of the triangle, and s, as usual,

the half sum of the sides.
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11. In a sphere of radius 12 is a spherical pyramid whose

base is a spherical triangle of which the sides are 85, 65,
and 120. The vertex of the pyramid being at the centre of

the sphere, find its volume.

12. If a line makes an angle with its projection on a

plane passing through one end of the line and if the projec-

tion makes an angle < with a second line drawn in a plane
which interse'cts the first plane in the line of the projection at

an angle of 30, show that the angle between the first line and

the second is cos"1

\ (2 cos cos < sin sin
</>).

13. A flight of stone steps faces due south. A rod rests

with one end on a step and leans against the edge of the step

above, in a plane perpendicular to the steps. At noon the

horizontal part of the shadow is marked on the step and also

the vertical part. If the rod makes an angle with the step

upon which its foot rests, show that t hours after noon the

angle the horizontal part of the shadow makes with its posi-

tion at noon may be determined by the equation tan x

= sin 6 tan t, and the angle the vertical part of the shadow

makes with its position at noon, by the equation tan?/

= cos tan t.

NOTE. This example illustrates the principle of both the hori-

zontal and the vertical sun dial. 6 represents the latitude of the

place. Let the lower end of the rod be the centre of a sphere whose

surface is pierced by the rod and its two horizontal shadows in three

points which are the vertices of a spherical right triangle. By means

of this triangle the first relation may be proved.
It should be remembered that each hour of time corresponds to 15.

14. If the longitude of New York is 40 43', find the angles

which the shadows the sun would cast at three o'clock P.M.

upon a dial constructed according to the principle of Ex. 13,

would make with the shadows cast at noon.
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ANSWERS

Exercise I, page 4

1. (a) sin A = ^, cos A =
if, tan A = T\, sec A =

Jjj,
esc J. = J/,

cot .4 = -^, vers .4 = T̂ , covers A = T
8
^.

(6) sin -4 = |, cos A = f ,
tan ^4 f ,

sec A =
,
esc J. = |, cot A = f .

(c) sin ^4 = T
8

r ,
cos A = Jf ,

tan ^4 = T%, sec J. = J, esc ^4 y ,

cot ^4 = -1

/.

(d) sin -4 = |, cos ^4 = | V5, tan ^1 =i f V5, sec ^1 = f V5, esc ^1 = f ,

cotA= JV6.

7. c = 16. 8. ^1 = 20. 9. ^1 = 40, a = 5.0346, c = 7.83.

10. A = 20, ^ = 70, c = 266. 11. B = 20, c = 29.24, a = 27.475.

12. .4 = 70, a = 18.794, b = 6.84.

Exercise II, page 6

1. cos 20, sin 5, esc 27, cot 33 12', tan 4'.

2. x = 45. 3. x = 30. 4. x = 15.

Exercise III, page 8

1. J. 2. 5. 3. f. 4. 9. 5. 1. 6. \.

Exercise IV, page 12

1. cos A = I \/7, tan .4 = f V7, sec J. = f V7, esc ^4 = f ,
cot ^1 = \/7.

2. sin ^ = | V6, tan ^1 = 2 \/6, sec A = 5, esc ^1 = & V6, cot .4 = & V6.

3. sin -4 = ^yVlO, cos ^4 = 3^ VlO, sec^l=VlO, csc^l = ^VlO,
cot -4 = |.

4. sin J_= ^V A/37, cos A = & A/37, tan -4 = |, sec JL = J V3T,
esc A = V3T.

5. See Art. 4.

147
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6.

cot A
7.

8.

9.

cot A

ANSWERS

sin A =
rV, cos A = & VTT, tan A =

-fa VTT, sec A = VTT,

cos A = j\, tan A = *, sec A = -1

/, esc -4 = |f, cot .4. =

sin A =
$, tan .4 = f ,

sec A f ,
esc ^4 =

,
cot ^4 = f .

sin 4 =

,
cos A = -, tan .4 = v a2

1, esc A =

14.

15.

(a)

00

fa*\
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Exercise VI, page 18

3. .4=36 52', 7?=53 8', c=5.

4. ^1=12 41', 5=77 19', c=41.

5. ,4=67 23', J?=2237', 6= 5.

7. -4=81 12', S= 8 48', a=84.

8. #=5518', 6 = 17.83, c= 21.08.

9. ^1=66 26', a= 13.75, 6= 5.997.

6. .4=79 37', 5=10 23', 6= 11. 10. 5=76 8', a=4.197, c=17.51.

Exercise VII, page 19

3. ^ = 39 54' 28", c = 8850.6.

4. A = 41 48' 35", 6 = 2484.3.

5. .4 = 56 26' 27", 6 = 0.3015.

6. 6 = 10322, c = 11287.

7. a =0.778, 6 = 0.4036.

8. 6 = 454.43, c = 499.

9. a = 2.005, 6 = 1.287.

10. A = 53 15' 6", c = 2194.

11. ^1 = 2 27' 52", c = 13.48.

12. a = 1760.5, c = 1762.2.

13. ^1 = 53 7' 48", a = 11.2.

14. ^1 = 78 20' 39", c = 811.74.

15. a = 518.61, 6 = 161.95.

16. 6 =24.187, c = 24.23.

17. A = 43 44' 51", 6 = 0.00679.

18. a = 761.17, 6 = 76.42.

19. a = 965.93, 6 = 258.82.

20. .4 = 71 38', 6 = 0.334.

1. 31 45' 33".

2. 67.4ft.

3. 36 52' 12".

4. 166.43ft.

5. 23.3ft.

6. 202.2ft.

Exercise VIII, page 20

7. 34 54' 54", 13. 40.98ft.

72 32' 33", 72 32' 33". 14. 140.88 ft.

8. 61.6ft. 15. 44 25' 37".

9. 838.8 ft. 16. 9.81 ft.

10. 660yd. 19. 169.3ft.

11. 3 13' 29". 20. 769.8ft.

12. 75ft.

. Exercise IX, page 29

1. ^TT, !-, 2^ | r> n^ !.. 2 . 36, 20, 120, 150, 900.

3. J*yf7r, 15 TT. 4. 2.

Exercise XII, page 46

1. cos x = f V6~, tan cc = TV VG~> sec x = r
5
2 V6, esc x = 5,

2. sin a; = - f V2, tan x = - 2 \/2, sec x = 3, cscx = - f\/2",

cotse =- JV2.
3. sinx = -j\VTo, cosx = fjyVIO, secx=VlO,

cot x = - .
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4. sinx = iVl5, coso: = |, tana; = Vl5, cscx = j^VlS,
cotx = ^VTs.

5. sin^l = ^ cos^ = x/x2 ~ y2
,
tan^ = ^

, csc^ = ?,
x Vx2 - va ^

Exercise XIV, page 55

1. |V3, f; -0.868,4.924; -4.698, -1.71.

2. 5,
- 53 8'; or - 5, 126 52'. . 3. 197 27' 28", or - 17 27' 28".

4. If the triangle is described in the positive direction of rotation, the

angles are 120, - 120, - 120, 5
;
- 5

;

- 5.

5. 5V3; -5V3; 0; 7
;
-

7J.

Exercise XV, page 63

2. i(V6->/2). 3. 2>V3._ 4.
-*-(
V6 - V2), i(V6 + V2), 2- V~3.

5. iV3 + iV2
;
- J-Vl - |V2.

8. cos a cos j3 cos 7+ cos a sin /3 sin 7 sin a sin /8 cos 7+ sin a cos j8 sin 7.

g
tan ct tan ft + tan 7 + tan a tan ft tan 7

1 + tan tan /3 tan a tan 7 + tan /3 tan 7

Exercise XVI, page 65

1. iV3. 2. -f. 3. 3.43.

5. cos3<* = 4cos3<*-3cos a. tan 3 g = 3 tan " ~
.

1-3 tan2

6. sin 4 ct = 8 sin ex, cos3 4 sin a cos a.

cos 4 a = 8 cos4 a - 8 cos2 a + 1.

tan4<*= 4tan-4tantt
m

1-6 tan2 a + tan4 a

7. sin 5 a = 5 sin a 20 sin 3 a + 16 sin5
,

cos 5 a = 5 cos a 20 cos3 a + 16 cos5 a.

Exercise XVII, page 68

1. 0.316, 0.9487
;
0.78.

2. sin2230'=^v2_V2, cos 22 30'=2+ V2, tan2230 f = V2-1.

4. sin 165 =J(v/0-v/
2), cos 165= -J(V2+ V6), tan 165= V3-2.
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Exercise XX, page 75

1. mr. 2. O-fi)7r. 3. nir. 4. (2n + ^)ir.

5. (2rc-|)7r. 6. 2 nir. 7. (2n+l)7r. 8. 2 n?r.

9. (2n+l)ir. 10. O + ^)TT. 11. (n + f)ir.

12. (2n-i)ir, (2n-f)ir. 13. (2n + )ir, (2 n + f)TT.

14. (2ni>. 15. (2nJ>. 16. (2n|)r.

Exercise XXII, page 81

1. 45, 135, 225, 315
;
mr -.

4

2. 60, 90, 120, 270; 2 nir -, 2 nir +, (2n + l)7r- ;
2 o 3

3. 45, 225
;
mr + -.

4. 0, 60, 300
;
2 nir, 2 mr 5. 0, 180; WTT.

o

6. 15, 75, 195, 255; mr + -^ mr +~
7. 60, 180, 300

;
2 mr -, (2 n + 1) TT.

o

8. 45, 135, 225, 315
;
mr -.

4

9. 45, 165 58', 225, 345 58'
;
mr + -, mr + tan-i(- ).

10. 30, 60, 120, 150, 210, 240, 300, 330; mr -, nir -.
6 3

Exercise XXIII, page 83

1. 45, 225
;
mr + - 3. 285, 345

;
2 mr -

,
2 WTT - .

2. 0, 90
;
2 WTT, 2 WTT + -. 4. 120

;
2 WTT -f .

2 3

5. 24 27', 261 49'
;
n 360 - 36 52' 61 19'.

6. 27 58', 135, 242 2', 315; mr + , Jsin-
1 (2V2 - 2).

7. 0, 90, 180; nir, 2wir+.

8. 0, 90; 2 nir, 2 nir +2:.

9. 30, 270
;
2 WTT + -, 2 WTT - -

6 2

10. 46 24', 90
;
2 mr + -, n 360 + 46 24'.

'

2
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Exercise XXIV, page 86

1. 90, 270; nir+f-

2. 51 19', 180, 308 41'; (2 n + !)JT, cos-if. 3. 0, 180; mr.

4. 0, 60, 120, 180, 240, 300; mr, (n + |)TT
-
6

5. 0, 7, 37i, 971, 127|, 180, etc.; mr,

6. 30, 60, 90, 120, 150, 210, 240, 270, 300, 330;

7. 45, 60, 120, 135, 225, 240, 300, 315; mr-, mr -.

8. 0, 180; mr.

9. 18, 162, 234, 306; sin-i
~ 1 V5

.

10. 18, 54, 90, 126, 162, etc.
;

11. 45, 90, 135, 225, 270, 315
;
mr -, mr + -.

4 2

12. 22 6', 67 54'
;

sin-i | (5
- Vl3).

13. 0, 65 4', 252 45'
;
2 mr,

14. 45, 67|, 90, 1571, 225, 247|, 270, 337|; mr +
1,

W7T 37T

T +
~F'

15. 22 30', 112 30'
;

nir + - .

16. 60, 90, 120, 240, 270, 300
;
mr ,

WTT + ^.
3 2

Exercise XXV, page 87

1. f. 5. \/6. 7. -2 -V3. 9. i. 11. f. 13.

14. 0, 45, 180, 225 ; nir, mr +
^.

18. 22|, 112J, 202|, 292^; \ I mr +-Y

23. (1)

(np + n + p - 1) (np - n - p - 1)

sec A sec 5
; (2)

esc A esc B
csc2.B-l-

27. 18, 54, 126, 162, 198, 234, 306, 342; sin-i (V5 1).
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Exercise XXVI, page 96

2. C = 54 18', 6 = 3.317, c = 3.925.

3. A = 123 12', a = 23.63, c = 20.51.

4. B =25 12', c = 227.7, 6 = 157.4.

5. C = 35 4', b = 577.3, c = 468.9.

7. O = 87 32' 5", 6 = 17.632, c = 21.746.

8. ^1 = 38 21' 47", a = 13.509, b = 17.632.

9. A = 29 25' 18", b = 2675.9, c = 3674.

10. B = 67 27' 33", b = 77.08, c = 79.06.

11. B - 100 22' 45", a = 1337.2, 6 = 1758.9.

12. ^4 = 139 21' 42", a = 100, c = 63.15.

Exercise XXVII, page 97

2. c = 8.9. 3. a = 13. 4. c = 2. 5. b = V3.

Exercise XXVIII, page 99

2. A = 12 22', B = 149 15', c = 34.37.

3. A = 64 19' 28", B = 42 24' 22", c = 612.06.

4. A = 84 12' 33", C = 45 46' 59", b = 0.5591.

5. # = 37 48' 5", C = 42 11' 55", a = 0.0117.

6. ^ = 33 5' 18", C r =410'42", 6 = 96.42.

7. 4 = 31 50' 20", .B = 50 4' 25", c = 3139.9.

8. A = 133 51' 34", 5=11 59' 10", c = 2479.2.

9. A = 70 22' 38", B = 21 24' 42", c = 33.787.

10. .4 = 72 40' 41", # = 158'1", c = 15.272.

Exercise XXIX, page 102

2. A = 41 13' 0", C = 87 37' 54", c = 116.82.

3. 4 = 11 26' 58", C = 84 16' 31", c = 401.

4. B = 48 27' 20", C = 90, b = 360.

5. A = 46 52' 10", C = 111 53' 25", c = 883.65.

A 1 = 133 7' 50", C' = 25 37' 45", fe = 411.92.

6. A = 29 11' 39", = 91 34' 21", c = 8.853.

7. ^1 = 83 40', C=715'47", c = 670.1.

4' = 96 20', C" = 58 25' 47", c' = 603.5.

8. -4 = 19 19' 3", (7 =142 59' 48", c = 89.15.

4' = 160 40' 57", C" = 1 37' 54", c' = 4.218.

9. 4 = 10 54' 58", C =132 12', c = 946.68.

10. A = 57 37' 18", C = 90, a = 88.
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Exercise XXX, page 103

2. .4 = 60, # = 32 12', C7 = 8748'.

3. A = 56 7', .# 81 47', C = 42 6'.

4. .4 = 56 15', 5 = 59 51', Cy = 6354'.

5. ^ = 38 57', = 47 41', C =93 22'.

Exercise XXXI, page 106

2. ^1 = 7 37' 42", B = 61 55' 38", C = 110 26'40".

3. ^1 = 47 38', _B = 681'6", C = 64 20' 54".

4. A = 85 55' 7", 5 = 43 57' 33", C = 50 7' 20".

5. J. = 23 32' 12", B = 56 8' 42", C = 100 19' 6".

6. .4 = 59 39' 30", # = 42 35' 20", C = 77 45' 10".

7. A = 33 15' 39", B = 50 56', C= 95 48' 21".

8. ^ = 37 22' 19", B = 38 15' 41", C =104 22'.

9. A - 36 45' 14", B = 53 3' 8", C = 90 11' 38".

Exercise XXXII, page 108

1. 14.68. 3. 0.00815. 5. 0.156. 7. 28621. 9. 0.0265.

2. 1259.6. 4. 88.66. 6. 2520. 8. 1285.3. 10. 63.34.

Exercise XXXIII, page 109

1. 27.65, 80.08
;
65 19' 58", 14. 75.13 ft.

;
225.4 ft.

114 40' 2". 15. 11646ft.

2. 169.45ft. 16. Z(cot|8-cota).
3. 4.43ft.; 7.35ft. 17. 753.1yd.
4. 114.41 ft. 18. 91.772 ft.

5. 46.14 ft.
;
99.92 ft. 19. 47.168 ft.

;
16 20'.

6. 171.08yd. 20. 8. 574 miles.

7. 13 miles per hour, nearly. 21. 12.15ft.

8. 114.6 in. 23. 20V3 ft.

9. 2000 (2V3- 3) yd. 26. 106ft.

10. 23.87 ft.
;
15.18 ft. 27. 5(2 + V3) ft.

11. 39.97 ft.
;
29.99 ft.

.
28. 9.24ft.

12. 520.44 ft. 29. 180 ft.
;
500 ft.

13. 330.72ft.
;
138 35' 30". 31. 15.14ft.

32. tan- 1 tan e tan ^
; tan- 1

(tan cot sec 0) ;

Vtan2
-f tan2

tan- 1
(tan cot sec 0) ;

tan"1
(cot cot Vtan2 + tan2 0) .

35. 50V6ft.
3g

I .
2Zsin2

36. 250V3ft.
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Exercise XXXIV, page 118

8. 100, 105, 75; 157.08, 164.934, 117.81. 9. 110, 100, 70.

10. 00
;
a great circle and its pole.

Exercise XXXV, page 126

1. c =15 38' 6", .4 = 38 57 '12", J3 = 525'54".

2. c=409'21", A = 47 37' 21", .B = 50 2' 56".

3. a= 25 50' 17", b = 33 7' 37", B = 56 15' 43".

4. & = 48 54' 54", c = 50 2' 56", A = 16 6' 22".

5. a = 12 16' 42", & = 51 2' 48", c = 52 5' 54". .

6. a = 33 7' 37", A = 41 5' 6", B = 64 9' 43".

7. a = 42 22' 39", 6 = 45 15' 43", .4 = 52 5' 54".

8. a = 39 57' 4", & = 49 50' 39", c = 60 22' 24" .

9. 6 = 48 54' 54", A = 56 15' 43", B = 56 52' 23".

10. a = 37 54' 6", c = 77 43' 18", B = 80 14' 41".

11. c= 40 58' 50", 6 = 22 50' 19", .S = 36 17' 17",

c = 139 1' 10'
,
6= 157 9' 41", B = 143 42' 43".

12. Impossible.

13. A = 127 30' 11", a = 128 32', B = 102 14' 30".

14. 5 = 96 19' 51.6", c = 95 48 '28", a = 47 18' 44".

15. a = 66 37', c = 85 52', ^1 = 66 57' 48".

a = 113 23'
,

c = 94 8', A = 113 2' 12".

Exercise XXXVI, page 127

1. B= 167 43' 18", a = 138 54' 54", b = 129 57' 4".

2. A= 170 14' 41", a = 164 21' 54", & = 102 16' 42".

3. C = 138 54' 54", A = 169 29' 45", & = 102 16' 42".

4. C= 138 15' 43", B = 146 15' 43", a = 132 22' 39".

5. C= 102 16' 42", A = 140 2' 56", B = 106 6' 22".

6. B = 31 54' 40", C = 55 50' 7", ft = 39 42' 23".

B = 148 5' 20", C = 124 9' 53", & = 140 17' 37".

7. A = 18 12' 24", C = 52 57' 12", a = 23 2' 44".

A = 161 47' 36", C = 127 2' 48", a = 156 57' 16".

8. B = 132 31' 45", A = 60 25' 39", a = 67 18' 38".

Exercise XXXVIII, page 136

1. A = 20 35' 37", B = 36 10' 39", C - 129 57' 4".

2. A = 43 2' 7", 5 = 47 37' 21", C = 102 16' 42".

3. .A = 45 26' 42", B = 47 37' 21", C = 102 16' 42".

4. A - 52 6 (

54", B = 56 52' 23", C = 88 42' 27".
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5. A = 50 2' 56", B = 58 40' 13", C = 105 6' 41".

6. A = 52 5' 54", B = 68 12' 58", C = 113 53' 57".

7. A = 52 5' 54", B = 56 52' 23", C = 138 5' 42".

8. A = 84 26' 48", B = 108 24' 54", C = 56 28' 32".

9. A = 126 18' 42", B = 119 42' 8", C = 111 51' 42".

10. A = 67 9' 28", B = 67 9' 28", C = 74 27' 56".

Exercise XXXIX, page 136

1. a = 36 10' 39", b = 40 9' 21", c = 50 13' 58".

2. a = 38 57' 12", b = 55 D
1' 2", c = 56 15' 43".

3. a = 39 20' 24", b = 41 5' 6", c = 60 22' 24".

4. a = 50 2' 56", 6 = 52 5' 54", c = 99 57' 42".

Exercise XL, page 138

l.o = 20 32' 33", B = 52 5' 54", C = 123 7' 37".

2. c = 60 22' 24", J. = 26 40' 20", B = 38 57' 12".

3. 6 = 56 15' 43", A = 21 34' 28", C = 132 22' 39".

4. c = 60 22' 24", ^ = 47 37' 21", B = 77 39' 26".

5. C = 21 41' 25", B = 178 0' 29", a = 50 33' 38".

6. C = 129 53' 4", ,4 = 29 47' 28", 6 = 71 45' 15".

7. B = 84 11' 45", C = 72 59' 41", a = 93 58' 18".

8. B = 161 46' 32", A = 157 58' 8", c = 85 19' 46".

Exercise XLI, page 139

1. a = 56 52' 23", b = 19 29' 45", C= 119 15' 56".

2. b = 52 5' 54", c = 63 21' 53'', A = 58 40' 13".

3. a = 44 44' 17", c = 8014'4i", = 52 5' 54".

4. b = 60 22' 24", c = 79 39' 38", A = 38 57' 12".

5. a = 40 12' 34", b = 53 38' 28", C=829'.
6.

'

o = 112 25' 37", c = 59 19' 25", B = 87 14'.

7. b = 108 20' 51", c = 108 58' 5", A = 53 53' 6".

8. o = 108 32' 10", b = 88 35' 18", C = 121 47' 14",

Exercise XLII, page 141

1. 6 = 40 32' 33", B = 39 9' 35", (7 = 129 57' 4".

6 = 61 33' 4", B = 121 19' 47", C = 50 2' 56".

2. a = 35 30' 24", A = 43 2' 7", (7 = 102 16' 42".

a = 55 1' 2", A = 74 18' 19", C = 77 43' 18".

3. a = 21 7' 35", A = 25 26' 16", O = 100 30' 15' .

a = 46 059", 4 = 47 39' 0", C = 79 29' 25".
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4. Impossible.

5. A = 90, C = 12 29' 4", c = 11 53' 42".

6. B = 61 59', c = 13 38' 16", C = 12 9' 24 '.

B = 118 1', c = 132 29' 46", C.= 138 48' 6".

7. -B = 44"28' 46", c = 16 35' 58", C = 34 59' 24".

8. c = 68 50' 36".

Exercise XLIII, page 142

1. a = 5 21' 59", c = 60 22' 24", A = 4 3' 15".

a = 77 43' 18", c = 119 37' 37", A = 47 37' 21".

2. A= 57 18' 43", C = 66 31' 42", c = 52 27' 4".

^1 = 122 41' 17", C = 152 14' 42", c = 156 15' 54".

3. b = 41 5' 17", c = 42 55' 48", C - 64 14'.

4. c = 64 26' 20", 6 =. 40 48' 50", B = 45 35' 50".

c =. 115 33' 40", b = 176 34' 16", B = 176 15' 4" ,

5. a = 90, & = 25 57' 12", B = 12 28' 38".

6. Impossible.

7. & = 49 30' 48", c = 2 5' 26", (7=2 21' 54".

b = 130 29' 12", c = 118 5' 56", C= 94 4' 4".

8. c = 121 33' 9", b = 77 39' 20", B = 69 0' 18",

Review Exercise

2. 5799.8 miles.

3. median = 58 3' 15".

angles = 26 12' 29" and 28 31' 6"._sin n tan a_ \

Vsin2 n + (tan a - tan ft cos n)
2
J*

tan - cot

5. .

180

6. 27 miles (nearly).

7. bisector = 50 35' 21".

angles = 84 34' and 95 26'.

8. 70 31' 43". 10. 42.43ft.

9. 87 15' 2". 11. 904.7808.

14. 33 7' 2"; 37 9' 37".
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