

IN MEMORIAM FLORIAN CAJORI

Morian Cajori

June Curs

617,621,622

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

PLANE AND SPHERICAL

TRIGONOMETRY

BY

LEVI L. CONANT, Ph.D.

PROFESSOR OF MATHEMATICS IN THE WORCESTER
POLYTECHNIC INSTITUTE

NEW YORK .:. CINCINNATI .:. CHICAGO

AMERICAN BOOK COMPANY

QA531 C65

COPYRIGHT, 1909, BY LEVI L. CONANT.

ENTERED AT STATIONERS' HALL, LONDON.

PREFACE

In this work the author has attempted to produce a text-book which should present in a concise and yet thorough manner an adequate treatment of both the theoretical and the practical sides of elementary trigonometry. The material here presented has been gathered and tested during the course of many years of experience in the class room, and the arrangement and method of presentation are the result of numerous experiments made for the purpose of ascertaining what could be done most effectively in the limited time usually devoted to this subject.

The problems given in connection with the different cases under the solution of triangles are nearly all new, and are well graded and sufficiently numerous to give the student ample preparation for the various problems that arise in plane surveying and in elementary astronomical and geodetic work. That portion of the book which treats of theoretical trigonometry has been written in the attempt to present this aspect of the subject in the simplest and clearest manner, and at the same time with the design of equipping the student for the more advanced work in pure and applied mathematics which is pursued in the later years of his college course.

The best English, French, and Italian text-books have been consulted, as well as those published in this country. For assistance in the preparation of the work thanks are due to my colleague, Professor Arthur D. Butterfield, to Professor W. B. Fite of Cornell University, to Professor O. S. Stetson of Syracuse University, to Mr. C. G. Brown, head of the department of mathematics in the Englewood, New Jersey, High School, and to Mr. J. A. Bullard, instructor in mathematics in the Worcester Polytechnic Institute.

LEVI L. CONANT.

Worcester Polytechnic Institute, Worcester, Mass.

Engineer's Transit, with Gradienter

CONTENTS

PLANE TRIGONOMETRY

CHAPTER I.	THE MEASUREMENT OF ANGULAR MAGNITUDE	PAGES 7-19
II.	TRIGONOMETRIC FUNCTIONS OF AN ACUTE ANGLE .	20-30
- III.	Values of the Functions of Certain Useful Angles	31 - 35
IV.	THE RIGHT TRIANGLE	36 - 50
v.	The Application of Algebraic Signs to Trigo-	
	NOMETRY	51–7 3
VI.	TRIGONOMETRIC FUNCTIONS OF ANY ANGLE	74 - 84
VII.	GENERAL EXPRESSION FOR ALL ANGLES HAVING A	
	GIVEN TRIGONOMETRIC FUNCTION	85–91
VIII.	RELATIONS BETWEEN THE TRIGONOMETRIC FUNCTIONS	
	of Two or More Angles	92 - 105
IX.	Functions of Multiple and Submultiple Angles .	106-113
X.	Inverse Trigonometric Functions	114-121
XI.	THE GENERAL SOLUTION OF TRIGONOMETRIC EQUATIONS	122 - 130
XII.	THE OBLIQUE TRIANGLE	131–155
XIII.	MISCELLANEOUS PROBLEMS IN HEIGHTS AND DISTANCES	156-165
XIV.	Functions of very Small Angles — Hyperbolic	
	Functions — Trigonometric Elimination	166-175
	SPHERICAL TRIGONOMETRY	
XV.	GENERAL THEOREMS AND FORMULAS	177–193
XVI.	Solution of Spherical Triangles	194-213

GREEK ALPHABET

Greek is written with the following twenty-four letters:

Fo	PRM	Name		LATIN EQUIVALENT
\mathbf{A}	a	alpha		a
\mathbf{B}	$oldsymbol{eta}$	beta		b
Γ	γ	gamma		g
Δ	δ	delta	٠.	d
\mathbf{E}^{-}	ϵ	epsilon		ĕ
\mathbf{Z}	. ζ	zeta		${f z}$
H	η	eta		ē
Θ	heta 4	theta		th
I	ι	iota		i
K	κ	kappa		c, k
Λ	λ	lambda		1
\mathbf{M}	μ	mu		m
N	ν	nu		n
Ξ	ξ	xi		x
O	o	omicron	a	ŏ
П	π	pi		p
P	ρ	rho		\mathbf{r}
Σ	σς	sigma		s
\mathbf{T}	au	tau	\	t
Υ	υ	upsilon		y
Φ	ϕ	phi		${f ph}$
\mathbf{X}	χ	chi		$\mathbf{c}\mathbf{h}$
Ψ	ψ	psi		ps
Ω	ω	omeya		ō
		6	16.	

PLANE TRIGONOMETRY

CHAPTER I

THE MEASUREMENT OF ANGULAR MAGNITUDE

1. The size and shape of a plane triangle can be completely determined when any three of its six parts are known, provided at least one of the known parts is a side.

By means of certain ratios called trigonometric functions, which will be defined later, trigonometry enables us to investigate and to determine the unknown parts and the area of a triangle when any three of the parts are known, provided at least one of the known parts is a side. Hence, in its most elementary sense,

Trigonometry is that branch of mathematics which treats of the solution of triangles. During the past two centuries the sense in which the word "trigonometry" is used has been greatly extended, and it is now understood to include the general subject of mathematical investigation by means of trigonometric functions.

Plane trigonometry treats of plane triangles, and of plane angles and their functions.

2. Angles. In its geometric sense the word "angle" is defined as the difference in direction of two intersecting lines. In trigonometry, however, this word receives an extension of meaning, which must be fully understood at the outset.

Suppose two straight lines, OA and OB, are drawn from the point O in such a manner that they very nearly coincide. Let one of the lines, OA, remain fixed in position, while the other, OB, revolves on the point O as a pivot. We are now free to revolve OB, either back into actual coincidence with OA, or

forward, so as to enlarge the opening between the lines. At any point of the revolution the angle AOB may be said to have been formed, or generated, by the revolution of the line OB.

In plane geometry angles greater than 180° are seldom employed, but in trigonometry the freest possible use is made of such angles. Trigonometry even considers angles greater than 360°, meaning by an angle of that magnitude merely the amount of revolution that has been performed by the moving or generating line.

As an illustration of the meaning of the word "angle" used in this sense, consider the movement of one of the hands of the clock. Let the minute hand start from the position it occupies at noon. In fifteen minutes it will move over or generate an angle of 90°; in thirty minutes an angle of 180°; in forty-five minutes an angle of 270° ; and in one hour an angle of 360° . Continuing, we may say that in two hours the minute hand will move over an angle of 720° , in three hours an angle of 1080° , in four hours an angle of 1440° , in n hours an angle of $n \times 360^{\circ}$, etc.

Again, suppose a runner to be competing in a two-mile race on a circular track a quarter of a mile in length. If we suppose a line to be drawn connecting the position of the runner with the center of the circle formed by the track, the position of the runner both on the track and in the race can be described at any instant with perfect accuracy by giving the magnitude of the angle through which this line has revolved since the beginning of the race.

Thus, when the line has revolved through an angle, and hence the runner has traversed an arc, of 180°, he has completed one eighth of a mile; when he has traversed an arc of 360°, he has completed one fourth of a mile; and when he has finished the race, he has run around the track eight times. In other words, when he has finished the race the line that connects him with the center of the track has revolved through an angle of $8 \times 360^{\circ}$, or 2880° . During this time the runner has traversed an arc of the same magnitude, *i.e.* of 2880° .

It is at once seen that an idea is here introduced which is an extension of the idea of the angle as it is ordinarily used in geometry. This idea, which is fundamental in all work in trigonometry involving angles, is the idea of formation or generation in connection with the angle. Evidently a definition of this word is required which differs from that to which the student has become accustomed in geometry; and in the extended sense here used, the term "angle" may be defined as follows:

An angle is that relation of two lines which is measured by the amount of revolution necessary to make one coincide with the other.

- 3. The point about which the generating line revolves is called the origin. The generating line is called the radius vector. The line with which the radius vector coincides when in its original position is called the initial line; and the line with which it coincides when in its final position is called the terminal line.
- 4. Positive and negative angles. It is convenient, and often necessary, to know not only the size of an angle, but also the direction in which the radius vector has moved while generating the angle. For this reason it is customary to speak of angles as being either positive or negative.

If the radius vector moves in a direction opposite to that of the hands of a watch when the face of the watch is toward the observer, the angle it generates is said to be **positive**. The motion of the radius vector as it generates the angle is then said to be *counter-clockwise*.

If the radius vector moves in the same direction as the hands of a watch when the face of the watch is toward the observer, the angle it generates is said to be negative. The motion of the radius vector is then called *clockwise*.

The angles AOB_1 and AOB_2 are positive angles, and the angles AOB_3 and AOB_4 are negative angles. The initial line in each case is OA, and the terminal lines are OB_1 , OB_2 , OB_3 , OB_4 , respectively. The direction of rotation for each angle is indicated by the arrowhead.

5. Angles are often described by referring them to some position with reference to two intersecting lines, at right angles to each other, of which one is horizontal and the other vertical. It is customary to regard the horizontal line extending toward the right as the initial line for all angles, when nothing is said to the contrary.

If the radius vector, as shown in the figure, occupies any position between OX and OY, then the angle XOB_1 is said to be

in the first quadrant. If the radius vector is between OY and OX', the angle XOB_2 is said to be in the second quadrant. Similarly, XOB_3 is said to be in the third quadrant, and XOB_4 in the fourth quadrant. These expressions only mean, of course, that the terminal lines lie in the first, second, third, and fourth quadrants respectively.

- 6. In practical work the unit of measure that is always employed in dealing with angular magnitudes is the **right angle** or some fraction of the right angle. This unit is chosen because:
 - (i) The right angle is a constant angle.
 - (ii) It is easy to draw or to construct in a practical manner.
- (iii) It is the most familiar of all angles, entering as it does most frequently into the practical uses of life.

In geometry the right angle is the unit universally used.

In trigonometry two systems of measurement, involving the use of two different units, are in common use.

7. The sexagesimal system. In this system the unit of measure is the right angle. The right angle is divided into 90 equal parts, called degrees; each degree is divided into 60 equal parts, called minutes; and each minute is divided into 60 equal parts, called seconds. The symbols 1°, 1′, 1″, are employed to denote one degree, one minute, and one second respectively.

60 seconds (60") = one minute. 60 minutes (60') = one degree. 90 degrees (90°) = one right angle.

This system is almost universally employed where numerical measurements are to be made. It is, however, inconvenient because of the multipliers, 60 and 90, which it introduces into computations.

Another system, called the centesimal system, was proposed in France a little over a century ago. In this system the right angle is divided into 100 equal parts called grades, the grade is divided into 100 equal parts called minutes, and the minute is divided into 100 equal parts called seconds. The centesimal system has been used to some extent in France, but its use has never been looked upon with favor in other countries. If its use were to become general, an enormous amount of labor would have to be expended in the re-computation of existing tables. For this reason the centesimal system, in spite of its intrinsic advantage over the sexagesimal system, will probably never come into general use.

EXERCISE I

Express the following angles in terms of a right angle:

 1. 30°.
 3. 68° 14′.
 5. 228° 46′.

 2. 120°.
 4. 114° 38′ 12″.
 6. 321° 14′ 22″.

7. The angles of a right triangle are in arithmetical progression, and the greatest angle is three times the least; what is the number of degrees in each angle?

Show by a figure the position of the revolving line when it has generated each of the following angles:

8. $\frac{3}{5}$ rt. angle.	11. $2\frac{1}{3}$ rt. angles.	14. -150°
-----------------------------	--------------------------------	--------------------

9.
$$-\frac{2}{3}$$
 rt. angle. 12. $4\frac{2}{3}$ rt. angles. 15. 275°.

10.
$$-1\frac{1}{2}$$
 rt. angles. 13. $17\frac{1}{2}$ rt. angles. 16. 1225°.

17. The angles of a triangle are such that the first contains a certain number of degrees, the second 10 times as many minutes, and the third 120 times as many seconds; find each angle.

18. How many degrees are passed over by each of the hands of a watch in one hour?

Represent by a figure each of the following angular magnitudes:

19.
$$1\frac{1}{2} + 2\frac{1}{3}$$
 rt. angles. **23.** 4 rt. angles.

20.
$$2\frac{1}{2} - 1\frac{1}{3}$$
 rt. angles. **24.** $4n$ rt. angles (n integral).

21.
$$-4$$
 rt. angles. **25.** $(4n+1)$ rt. angles.

22.
$$-6\frac{1}{2}$$
 rt. angles. **26.** $(4n-2)$ rt. angles.

8. Circular measure. Another system for the measurement of angles has, in modern times, come into vogue. It is exten-

sively used in work connected with higher branches of mathematics, and is the almost universal unit employed in theoretical investigations.

The unit of circular measure is the radian, which is obtained as follows:

On the circumference of a circle lay off an arc, AB, equal in length to the radius of the circle, OA. The angle

AOB is called a radian. Accordingly:

A radian is an angle at the center of a circle, subtended by an arc equal in length to the radius of the circle.

In order to use the radian as a unit of measure, it is necessary to prove that it is a constant angle; or, in other words, it is necessary to prove that the magnitude of the radian is the same for all circles.

9. Theorem. The radian is a constant angle.

By definition the radian is measured by an arc equal in length to the radius. Also,

An angle of two right angles is measured by an arc equal to one half the circumference.

Therefore, since angles at the center of a circle are to each other as the arcs by which they are subtended (Geom.),

$$\frac{\text{a radian}}{\text{2 rt. angles}} = \frac{\text{radius}}{\text{semi-circumference}} = \frac{R}{\pi R} = \frac{1}{\pi}.$$

... a radian =
$$\frac{1}{\pi}$$
 of 2 right angles = $\frac{1}{\pi} \times 180^{\circ} = 57.2958^{\circ}$
= 57° 17′ 44.8″ nearly.

Therefore the radian is a constant angle.

10. The reason for the use of this unit may now be readily understood.

Since
$$1 \text{ radian} = \frac{2 \text{ rt. } \angle 5}{\pi},$$

$$\therefore \pi \text{ radians} = 2 \text{ rt. } \angle 5 = 180^{\circ}.$$
Similarly,
$$\frac{\pi}{2} \text{ radians} = 1 \text{ rt. } \angle = 90^{\circ}.$$

$$\frac{\pi}{6} \text{ radians} = \frac{1}{3} \text{ rt. } \angle = 30^{\circ}.$$

$$\frac{\pi}{3} \text{ radians} = 60^{\circ}.$$

$$\frac{2}{3} \pi \text{ radians} = 120^{\circ}.$$

$$\frac{2}{3} \pi \text{ radians} = 270^{\circ}.$$

$$2 \pi \text{ radians} = 4 \text{ rt. } \angle 5 = 360^{\circ}.$$

$$5 \pi \text{ radians} = 10 \text{ rt. } \angle 5 = 900^{\circ}.$$

$$18 \pi \text{ radians} = 36 \text{ rt. } \angle 5 = 3240^{\circ}.$$

This gives a method for the expression of the value of an angle that is often far more convenient than that furnished by the sexagesimal system. It is especially useful in dealing with angles of great magnitude, and it greatly simplifies many of the investigations and formulas of trigonometry.

11. The symbol r is often used as the symbol to denote radians. Thus, 6^r would stand for 6 radians, θ^r for θ radians, π^r for π radians, etc.

When the value of the angle is expressed in terms of π , and when the unit is the radian, it is customary to omit the r and to give the value of the angle in terms of π alone, the r being understood. Thus, when referring to angular magnitude, π means π radians, $\frac{\pi}{2}$ means $\frac{\pi}{2}$ radians, 6π means 6π radians, When the word "radians" is omitted, the student should mentally supply it, or he may readily fall into the error of supposing that π alone means 180°. The value of π is the same here as in geometry, i.e. 3.14159. Neither π nor any multiple of π can by itself ever denote an angle. It simply tells how many radians the angle contains. Too great care cannot be exercised in keeping this distinction clear.

12. To find the number of degrees in an angle containing a given number of radians, and vice versa.

 $180^{\circ} = \pi$ radians. Since $1^{\circ} = \frac{\pi}{180}$ of a radian, $1^r = \frac{180}{\pi}$ of a degree. and

Hence,

To convert radians into degrees, multiply the number of radians $by \frac{180}{\pi}$.

To convert degrees into radians, multiply the number of degrees $by \frac{\pi}{180}$.

EXERCISE II

1. How many degrees are there in 3 radians?

$$1r = \frac{180^{\circ}}{\pi}$$
, $3r = 3 \times \frac{180}{\pi} = \frac{540}{\pi} = 171.89$ nearly $= 171^{\circ} 53' 24''$ nearly.

How many radians are there in 113° 15'?

 $113^{\circ} 15' = 113.25^{\circ}$.

Since

$$1^{\circ} = \frac{\pi^r}{180},$$

$$1^{\circ} = \frac{\pi^r}{180},$$

$$113.25^{\circ} = 113.25 \times \frac{\pi^r}{180}$$

$$= \frac{113.25 \times 3.14159}{180}$$

$$= 1.976 + \text{radians}.$$

Express in degrees, minutes, and seconds the following angles:

- 3. $\frac{\pi^r}{6}$.
- 5. $\frac{\pi^r}{5}$. 7. $\frac{3 \pi^r}{2}$.
- 9. $3 \pi^r$.

- 4. $\frac{2 \pi^r}{2}$.
- 6. $\frac{3 \pi^r}{10}$. 8. $\frac{5 \pi^r}{6}$.
- 10. $15 \pi^r$.

Express in radians the following angles:

- 11. 45°.
- 14. 225°.
- **17.** 286° 38′.
 - 20. A°.

- 120°.
- **15.** 60° 30′. **18.** 684° 26′.
- **21.** $\frac{90^{\circ}}{\pi}$.

- 13. 135°.
- **16.** 115° 45′. **19.** *n*°.
- 22. \78.126°.

The difference between two acute angles of a right triangle is $\frac{\pi}{\varepsilon}$ radians; find the value of each of the angles in degrees.

24. If one of the angles of a triangle is 56° and a second angle is $\frac{2\pi}{5}$ radians, find the value of the third angle.

25. The angles of a triangle are in A. P., and the smallest is an angle of 36°; find the value of each in radians.

26. The value of the angles of a triangle are in A. P., and the number of degrees in the least is to the number of radians in the greatest as $60:\pi$; find each angle in degrees.

27. The value of one of the interior angles of one regular polygon is to the value of one of the interior angles of another regular polygon as 3:4, and the number of sides in the first is to the number of sides in the second as 2.3; find the number of sides in each.

- 28. Find the number of radians in one of the interior angles of a regular pentagon; a regular heptagon; a regular nonagon.
- 29. The angles of a triangle are in A. P., and the number of radians in the least angle is to the number of degrees in the mean angle as 1:120; find the value of each angle in radians.
- 30. The angles of a quadrilateral are in A. P., and the greatest is double the least; find the value of each angle in radians.
- 31. Express in degrees and in radians the angle between the hour hand and the minute hand of a clock at (1) five o'clock; (2) quarter-past nine; (3) half-past ten.
- 32. At what time between four and five o'clock are the hour and the minute hands of a clock 90° apart? At what time are they 180° apart?
- 13. Theorem. The circular measure of an angle whose vertex is at the center of a circle is the ratio of its intercepted arc to the radius of the circle.

Hence, the number of radians in any angle is found by dividing the arc which subtends that angle by the radius of the circle.

The formula just obtained is often expressed in the following convenient, though somewhat incorrect, form:

$$arc = angle \times radius.$$
 (1)

The meaning of this formula is, that the length of any arc of a circle is equal to the length of the radius of the circle multiplied by the number of radians in the angle subtended by the arc.

EXERCISE III

1. Find in degrees the angle subtended at the center of a circle whose radius is 30 ft. by an arc whose length is 46 ft. 6 in.

In this circle the arc which subtends an angle equal to a radian is 30 ft. in length, and the required angle is subtended by an arc whose length is 46.5 ft.

$$\therefore \frac{46.5}{30} \text{ radians} = \frac{465}{300} \times \frac{180}{\pi} = 88.8^{\circ}.$$
 Ans.

2. In a circle whose radius is 8 ft., what is the length of the arc subtended by an angle at the center, of 26° 38′?

Let
$$x = \text{the length of the required arc.}$$

Then, $\frac{x}{8} = \text{the number of radians in } 26^{\circ} 38'$
 $= 26\frac{38}{60} \times \frac{\pi}{180}$. (See Art. 13.)
 $= \frac{1598}{10800} \times \frac{27}{7}$ ft.
 $x = 3.72$ ft. nearly.

3. In running at a uniform speed on a circular track, a man traverses in one minute an arc which subtends at the center of the track an angle of $3\frac{1}{7}$ radians. If each lap is 880 yd., how long does it take him to run a mile?

Let x = the number of yards traversed during each minute.

Then,
$$x = 3\frac{1}{7} \times R$$
. (See Art. 13.)
$$= \frac{22 R}{7} = \frac{22}{7} \times 140 = 440 \text{ yards.}$$
 Since $\frac{1760}{440} = 4$,

therefore he can run a mile in 4 min.

- **4.** The radius of a circle is 15 ft.; find the number of radians in an angle at the center subtended by an arc of $26\frac{1}{2}$ ft.
- 5. The radius of a circle is 32 ft.; find the number of degrees in a central angle subtended by an arc of 5π ft.
- 6. The fly wheel of an engine makes 3 revolutions per second; how long will it take it to turn through 5 radians?
- 7. The minute hand of a tower clock is 2 ft. 4 in. long; through how many inches does its extremity move in half an hour?

- 8. A horse is picketed to a stake; how long must the rope be to enable the horse to graze over an arc of 104.72 yd., the angular measurement of this distance being 150°?
- 9. What is the difference between the latitude of two places, one of which is 150 mi. north of the other, the radius of the earth being reckoned as 4000 mi.?
- 10. The angle subtended by the sun's diameter at the eye of an observer is 32'; find approximately the diameter of the sun, if its distance from the observer is 92,500,000 mi.

Note. In this example the diameter of the sun, which is really the chord of an arc of which the observer's eye is the center, may be regarded as coinciding with the arc which it subtends.

- 11. Calling the earth a sphere, and the arc of a great circle on its surface subtended by an angle of 1° at the center $69\frac{1}{6}$ mi., what is the radius of the earth?
- 12. A railway train is traveling at the rate of 60 mi. an hour on a circular arc of two thirds of a mile radius; through what angle does it turn in 10 sec.?
- 13. The radius of a circle is 3 m.; find approximately, in radians, the arc subtended by a chord whose length is also 3 m.
- 14. How many seconds are there in an angle at the center of a circle subtended by an arc one mile in length, the radius of the circle being 4000 mi.?
- 15. In the circle of Ex. 14, what is the length of an arc that subtends an angle of 3' at the center?
- 16. What is the ratio of the radii of two circles, if the semi-circumference of the greater is equal in length to an arc of the smaller which subtends an angle of 225° at the center?
- 17. If an arc 1.309 m. long subtends at the center of a circle whose radius is 10 m. an angle of 7° 30′, what is the ratio of the circumference of a circle to its diameter?
- 18. The circumference of a circle is divided into four parts which are in A. P., and the greatest part is twice the least; find the number of radians in the central angle subtended by each of the respective arcs into which the circumference is divided.

- 19. The diameter of a circle is 80 m., and an arc whose length is 15.75 m. subtends a central angle of 22° 30′; find the value of π to four decimal places.
- 20. How many radians are there in a central angle subtended by an arc of 20''?
- 21. The semicircumference of a certain circle is equal to its diameter plus a given arc; find the central angle subtended by that arc.
- 22. Find the radius of a globe such that the distance of 3 in. on its surface, measured on an arc of a great circle, may subtend at the center an angle of 1° 45′.
- 23. At what distance does a telegraph pole, 24 ft. high, subtend an angle of 10′, the eye of the observer being on the same level as the foot of the pole?

Note. The suggestion made in connection with Ex. 10 applies to this problem also. When a chord and its arc differ but little from each other it is often convenient to use the arc in place of the chord.

- 24. At what distance will a church spire 100 ft. high subtend an angle of 9', the angle being measured from the level on which the church stands?
- 25. The difference between two angles is $\frac{2\pi}{9}$ radians, and their sum is 76°; what is the value of each of the angles?
- 26. If an incline rises 5 ft. in 300 ft., find the angle it makes with its projection on the horizontal plane.
 - **27.** How many radians are there in an angle of a° ?
 - **28.** How many radians are there in an angle of 10''? $(\pi = \frac{355}{13}).$

CHAPTER II

TRIGONOMETRIC FUNCTIONS OF AN ACUTE ANGLE

14. In the present chapter only acute angles will be considered. In Chapter V the definitions here given will be extended to angles of any magnitude.

Let any line having a given initial position OA begin to revolve on O as a pivot, in a direction opposite to the direction

in which the hands of a clock move. Let the angle which it generates be the acute angle AOA'.

From any point in either side of the angle,

as P in the side OA', let fall a perpendicular PM to the other side of the angle.

The trigonometric functions, or ratios, of the angle AOA' are then defined as follows:

The sine of the angle AOA' is the ratio $\frac{MP}{OP} = \frac{\text{side opposite}}{\text{hypotenuse}}$

The cosine of the angle AOA' is the ratio $\frac{OM}{OP} = \frac{\text{side adjacent}}{\text{hypotenuse}}$.

The tangent of the angle A OA' is the ratio $\frac{MP}{OM} = \frac{\text{side opposite}}{\text{side adjacent}}$

The cotangent of the angle AOA' is the ratio $\frac{OM}{MP} = \frac{\text{side adjacent}}{\text{side opposite}}$.

The secant of the angle AOA' is the ratio $\frac{OP}{OM} = \frac{\text{hypotenuse}}{\text{side adjacent}}$

The cosecant of the angle A OA' is the ratio $\frac{OP}{MP} = \frac{\text{hypotenuse}}{\text{side opposite}}$.

In addition to these there are two other functions, less frequently used,

versed sine of AOA' = 1 - cosine of AOA', coversed sine of AOA' = 1 - sine of AOA'.

In writing, it is customary to abbreviate the words "sine," "cosine," "tangent," etc., and to express the functions of any given angle, x, as follows:

 $\sin x$, $\cos x$, $\tan x$, $\cot x$, $\sec x$, $\csc x$, $\operatorname{vers} x$, $\operatorname{covers} x$.

It should be noted at the very beginning that these functions are mere numbers, and their values can be expressed numerically whenever the angle to which they belong is known. Thus, $\sin x$ may equal $\frac{1}{2}$, $\frac{1}{3}$, or any other proper fraction; $\tan x$ may equal 2, 5, 18, or any other real number whatever. The expression $\sin x$, for example, is a single symbol, and is to be regarded as the name of the number which expresses the value of the particular ratio in question. The expressions $\sin x$, $\cos x$, etc., have no meaning unless some angle is associated with them.

15. The trigonometric functions are always constant for the same angle.

From any points in either side of the angle x, as A, A', A'', drop perpendiculars AB, A'B', A''B'' to the other side. Then, by geometry, the triangles AOB, A'OB', A''OB'' are similar, and their homologous sides are proportional. Therefore,

$$\frac{BA}{OA} = \frac{B'A'}{OA'} = \frac{B''A''}{OA''} = \sin x,$$

$$\frac{OB}{OA} = \frac{OB'}{OA'} = \frac{OB''}{OA''} = \cos x,$$

and similarly for the other functions.

Hence, the value of any function of x remains unchanged as long as the value of the angle itself remains unchanged.

Any increase or decrease in the size of the angle produces a change in the value of the function, or ratio. From this it is readily seen why these ratios are called *functions of the angle*.

From the last paragraph the following important results may now be stated:

- (1) To every acute angle there corresponds one and only one value of each trigonometric function.
- (2) Two unequal acute angles have different trigonometric functions.
- (3) To each value of any trigonometric function there is but one corresponding acute angle.
- 16. Fundamental relations between the trigonometric functions of an acute angle. From the definitions given in Art. 14 it follows immediately that the sine of the angle x is the reciprocal of the cosecant x; also that cosine x is the reciprocal of secant x, and that tangent x is the reciprocal of cotangent x. That is,

$$\sin x = \frac{1}{\csc x}, \text{ or } \sin x \csc x = 1,$$

$$\cos x = \frac{1}{\sec x}, \text{ or } \cos x \sec x = 1,$$

$$\tan x = \frac{1}{\cot x}, \text{ or } \tan x \cot x = 1.$$

Also, it follows from the definitions that

$$\tan x = \frac{\sin x}{\cos x}$$
, and $\cot x = \frac{\cos x}{\sin x}$ (2)

In the right triangle ABC, $a^2 + b^2 = c^2$. Therefore,

$$\begin{aligned} \frac{a^2}{c^2} + \frac{b^2}{c^2} &= 1, \\ \frac{c^2}{b^2} &= 1 + \frac{a^2}{b^2}, \\ \frac{c^2}{a^2} &= 1 + \frac{b^2}{a^2}. \end{aligned}$$

and

From these equations it follows that

$$\sin^2 x + \cos^2 x = 1,\tag{3}$$

$$\sec^2 x = 1 + \tan^2 x,\tag{4}$$

$$\csc^2 x = 1 + \cot^2 x. \tag{5}$$

17. From the definitions of the trigonometric functions, p. 20, it follows that in any right triangle any function of either of the acute angles is equal to the corresponding co-function of the other acute angle. For example,

sin
$$A = \frac{a}{c}$$
, and $\cos B = \frac{a}{c}$. $\therefore \sin A = \cos B = \cos(90^{\circ} - A)$.
Similarly, $\cos A = \sin B = \sin(90^{\circ} - A)$, $\tan A = \cot B = \cot(90^{\circ} - A)$, $\cot A = \tan B = \tan(90^{\circ} - A)$, $\sec A = \csc B = \csc(90^{\circ} - A)$, $\csc A = \sec B = \sec(90^{\circ} - A)$, $\cot A = \cot B = \cot(90^{\circ} - A)$, $\cot A = \cot B = \cot(90^{\circ} - A)$, $\cot A = \cot B = \cot(90^{\circ} - A)$, $\cot A = \cot B = \cot(90^{\circ} - A)$, $\cot A = \cot B = \cot(90^{\circ} - A)$, $\cot A = \cot B = \cot(90^{\circ} - A)$.

Hence,

Any function of an acute angle is equal to the corresponding cofunction of its complement.

The meaning of the prefix co, in cosine, cotangent, cosecant, and coversed sine appears from the above. The cosine of an angle is the complement-sine, i.e. the sine of the complement of that angle: the tangent of an angle is the cotangent of its complementary angle; and a similar statement may be made for the secant and for the versed sine of an angle.

ORAL EXERCISES

Prove the following relations:

1. $\sin A \cot A = \cos A$.

Solution. Using only the left number of the equation, we proceed as follows:

$$\sin A \cot A = \sin A \frac{\cos A}{\sin A} \quad (Art. 16, (2).)$$
$$= \cos A.$$

 $\therefore \sin A \cot A = \cos A.$

- 2. $\cos A \tan A = \sin A$.
- 3. $(\sec A \tan A)(\sec A + \tan A) = 1$.
- **4.** $(\csc A \cot A)(\csc A + \cot A) = 1.$
- 5. $(\tan A + \cot A) \sin A \cos A = 1$.

6.
$$(\tan A - \cot A) \sin A \cos A = \sin^2 A - \cos^2 A$$
.

7.
$$\sin^2 \theta \div \csc^2 \theta = \sin^4 \theta$$
.

8.
$$\sin^4 \theta - \cos^4 \theta = \sin^2 \theta - \cos^2 \theta$$
.

9.
$$(\sin \theta - \cos \theta)^2 = 1 - 2\sin \theta \cos \theta$$
.

10.
$$(\sin \theta - \cos \theta)^2 + (\sin \theta + \cos \theta)^2 = 2$$
.

11.
$$\sec \theta \cot \theta = \csc \theta$$
.

12.
$$(\tan \theta + \cot \theta)^2 = \sec^2 \theta + \csc^2 \theta$$
.

13.
$$\cot^2 \theta \cos^2 \theta = \cot^2 \theta - \cos^2 \theta$$
.

14.
$$\sin^2\theta + \csc^2\theta + 2 = (\sin\theta + \csc\theta)^2$$
.

15. vers
$$\theta(1 + \cos \theta) = \sin^2 \theta$$
.

16.
$$\sin^2 \theta + \text{vers}^2 \theta = 2(1 - \cos \theta)$$
.

17.
$$\sec \theta - \sin \theta \tan \theta = \cos \theta$$
.

18.
$$\csc \theta - \cos \theta \cot \theta = \sin \theta$$
.

19.
$$\sec^2\theta - \tan^2\theta = \sin^2\theta + \cos^2\theta.$$

20.
$$\csc^2 \theta - \cot^2 \theta = \sin^2 \theta + \cos^2 \theta$$
.

EXERCISE IV

Prove the following identities:

1.
$$\cos^4 \theta - \sin^4 \theta = 2 \cos^2 \theta - 1$$
.

Solution. Using only the left member of the equation, we proceed as follows: $\cos^4 \theta - \sin^4 \theta = (\cos^2 \theta + \sin^2 \theta)(\cos^2 \theta - \sin^2 \theta)$

=
$$(1) (\cos^2 \theta - \sin^2 \theta)$$

= $\cos^2 \theta - (1 - \cos^2 \theta)$ (Art. 16, (3).)
= $2 \cos^2 \theta - 1$.

$$\therefore \cos^4 \theta - \sin^4 \theta = 2 \cos^2 \theta - 1.$$

2.
$$\sin^3 \theta + \cos^3 \theta = (\sin \theta + \cos \theta)(1 - \sin \theta \cos \theta)$$
.

3.
$$\frac{\sin A}{1 + \cos A} + \frac{1 + \cos A}{\sin A} = 2 \csc A$$
.

4.
$$(1 + \sin a + \cos a)^2 = 2(1 + \sin a)(1 + \cos a)$$
.

5.
$$(\cos^3 \theta - \sin^3 \theta) = (\cos \theta - \sin \theta)(1 + \sin \theta \cos \theta)$$
.

6.
$$\cos^2 \beta (\sec^2 \beta - 2\sin^2 \beta) = \cos^4 \beta + \sin^4 \beta$$
.

7.
$$\frac{\sin \beta}{1 - \sin \beta} + \frac{1 + \sin \beta}{\sin \beta} = \sec^2 \beta (\csc \beta + 1).$$

8.
$$\tan a + \tan \beta = \tan a \tan \beta (\cot a + \cot \beta)$$
.

9.
$$\cot a + \tan \beta = \cot a \tan \beta (\tan a + \cot \beta)$$
.

10.
$$\cos^6 a + \sin^6 a = 1 - 3\sin^2 a \cos^2 a$$
.

11.
$$\sqrt{\frac{1-\sin A}{1+\sin A}} = \sec A - \tan A.$$

12.
$$\sin^2 \theta \tan^2 \theta + \cos^2 \theta \cot^2 \theta = \tan^2 \theta + \cot^2 \theta - 1$$
.

13.
$$\frac{\csc A}{\csc A - 1} + \frac{\csc A}{\csc A + 1} = 2 \sec^2 A$$
.

14.
$$\frac{\csc A}{\cot A + \tan A} = \cos A.$$

15.
$$(1 - \sin a - \cos a)^2 (1 + \sin a + \cos a)^2 = 4 \sin^2 a \cos^2 a$$
.

16.
$$(\sec A + \cos A)(\sec A - \cos A) = \tan^2 A + \sin^2 A$$
.

$$17. \quad \frac{1}{\cot A + \tan A} = \sin A \cos A.$$

18.
$$\frac{1 - \tan A}{1 + \tan A} = \frac{\cot A - 1}{\cot A + 1}$$
.

19.
$$\sin^3 A \cos A + \cos^3 A \sin A = \sin A \cos A$$
.

20.
$$\sin^2 A \cos^2 A + \cos^4 A = 1 - \sin^2 A$$
.

21.
$$\frac{\csc a - \sec a}{\cot a + \tan a} = \frac{\cot a - \tan a}{\csc a + \sec a}$$

22.
$$\frac{1 + \tan^2 A}{1 + \cot^2 A} = \frac{\sin^2 A}{\cos^2 A}$$
.

23.
$$\frac{\sec A - \tan A}{\sec A + \tan A} = 1 - 2 \sec A \tan A + 2 \tan^2 A$$
.

24.
$$\tan^2 a \sec^2 a + \cot^2 a \csc^2 a$$

= $\sec^4 a \csc^4 a - 3 \sec^2 a \csc^2 a$.

26.
$$\frac{\cos A}{1 - \tan A} + \frac{\sin A}{1 - \cot A} = \sin A + \cos A.$$

27.
$$\cot^4 A + \cot^2 A = \csc^4 A - \csc^2 A$$
.

28.
$$\sqrt{\csc^2 A - 1} = \cos A \csc A$$
.

29.
$$\tan^2 A - \sin^2 A = \sin^4 A \sec^2 A$$
.

30.
$$(1 + \cot A - \csc A)(1 + \tan A + \sec A) = 2$$
.

31.
$$\frac{1}{\csc A - \cot A} - \frac{1}{\sin A} = \frac{1}{\sin A} - \frac{1}{\csc A + \cot A}$$
.

32.
$$\frac{\cot A \cos A}{\cot A + \cos A} = \frac{\cot A - \cos A}{\cot A \cos A}.$$

33.
$$2 - \operatorname{vers}^2 \theta = \sin^2 \theta + 2 \cos \theta.$$

34.
$$\sin^8 A - \cos^8 A = (\sin^2 A - \cos^2 A)(1 - 2\sin^2 A \cos^2 A)$$
.

35.
$$\frac{\cos A \csc A - \sin A \sec A}{\cos A + \sin A} = \csc A - \sec A.$$

36.
$$\frac{\tan A + \sec A - 1}{\tan A - \sec A + 1} = \frac{1 + \sin A}{\cos A}$$
.

37.
$$(\tan a + \csc \beta)^2 - (\cot \beta - \sec a)^2$$

= $2 \tan a \cot \beta (\csc a + \sec \beta)$.

38.
$$2 \sec^2 a - \sec^4 a - 2 \csc^2 a + \csc^4 a = \cot^4 a - \tan^4 a$$
.

39.
$$(\sin a + \csc a)^2 + (\cos a + \sec a)^2 = \tan^2 a + \cot^2 a + 7$$
.

40.
$$(1 + \cot A + \tan A)(\sin A - \cos A) = \frac{\sec A}{\csc^2 A} - \frac{\csc A}{\sec^2 A}$$

41.
$$2 \text{ vers } A + \cos^2 A = 1 + \text{ vers}^2 A.$$

42.
$$\frac{\sec x - \tan x}{\sec x + \tan x} = 1 + 2 \tan x (\tan x - \sec x).$$

43.
$$\frac{2\sin\theta\cos\theta - \cos\theta}{1 - \sin\theta + \sin^2\theta - \cos^2\theta} = \cot\theta.$$

44.
$$(\sin a \cos \beta + \cos a \sin \beta)^2 + (\cos a \cos \beta - \sin a \sin \beta)^2 = 1$$
.

45.
$$(\tan \theta + \sec \theta)^2 = \frac{1 + \sin \theta}{1 - \sin \theta}$$

a

18. Limits of the values of the trigonometric functions of an acute angle.

Since

$$\sin^2 A + \cos^2 A = 1,$$

and since each term, being a square, is positive, neither $\sin^2 A$ nor $\cos^2 A$ can be greater than unity. Hence, neither $\sin A$ nor $\cos A$ can be numerically greater than unity.

Since $\csc A$ is the reciprocal of $\sin A$, and $\sec A$ is the reciprocal of $\cos A$, both $\sec A$ and $\csc A$ can have any values numerically greater than unity, but neither can ever be numerically less than unity.

Since

$$\sec^2 A = 1 + \tan^2 A,$$

$$\tan A = \sqrt{\sec^2 A - 1}.$$

Hence, $\tan A$ can have any value between 0 and ∞ . And since $\cot A$ is the reciprocal of $\tan A$, therefore $\cot A$ can have any value between ∞ and 0.

These results are summarized as follows:

When A is an acute angle,

 $\sin A$ can take any value between 0 and +1,

 $\cos A$ can take any value between + 1 and 0,

 $\tan A$ can take any value between 0 and $+\infty$,

 $\cot A$ can take any value between $+\infty$ and 0,

 $\sec A$ can take any value between + 1 and $+\infty$,

 $\csc A$ can take any value between $+\infty$ and +1.

These results also follow directly from the definitions of the functions of an acute angle, p. 20.

19. To express all the trigonometric functions in terms of any one of them.

From any point in either side of the angle A let fall a perpendicular upon the other side. Let the hypotenuse of the right triangle thus formed be taken as unity,

and call the perpendicular a. Then the remaining side of the right triangle is $\sqrt{1-a^2}$. Then,

$$\sin A = \frac{a}{1} = a = \sin A,$$

$$\cos A = \sqrt{1 - a^2} = \sqrt{1 - \sin^2 A},$$

$$\tan A = \frac{a}{\sqrt{1 - a^2}} = \frac{\sin A}{\sqrt{1 - \sin^2 A}},$$

$$\cot A = \frac{\sqrt{1 - a^2}}{a} = \frac{\sqrt{1 - \sin^2 A}}{\sin A},$$

$$\sec A = \frac{1}{\sqrt{1 - a^2}} = \frac{1}{\sqrt{1 - \sin^2 A}},$$

$$\csc A = \frac{1}{a} = \frac{1}{\sin A}.$$

This gives the value of each of the functions, except the vers A and the covers A, in terms of $\sin A$.

To express the values of the functions in terms of $\cos A$, $\tan A$, or of any other given function of A, proceed in a similar manner. It is not best, however, to assume the hypotenuse equal to unity for all cases. Sometimes the side opposite the given angle should be taken as unity, and sometimes the side

c adjacent. For example, to find the other functions of A in terms of tan A, assume the side adjacent A equal to unity, and let the side opposite the same angle equal a; then the

hypotenuse of the right triangle equals $\sqrt{1+a^2}$, and the required values are found as follows:

$$\tan A = \frac{a}{1} = a = \tan A,$$

$$\sin A = \frac{a}{\sqrt{1+a^2}} = \frac{\tan A}{\sqrt{1+\tan^2 A}},$$

$$\cos A = \frac{1}{\sqrt{1 + a^2}} = \frac{1}{\sqrt{1 + \tan^2 A}},$$

$$\cot A = \frac{1}{a} = \frac{1}{\tan A},$$

$$\sec A = \frac{\sqrt{1 + a^2}}{1} = \sqrt{1 + \tan^2 A},$$

$$\csc A = \frac{\sqrt{1 + a^2}}{a} = \frac{\sqrt{1 + \tan^2 A}}{\tan A}.$$

In this work it will be noticed that the side adjacent to A is assumed equal to unity, while in the preceding the hypotenuse was assumed to be unity. Any other supposition might be made with equal correctness, but no other would be equally convenient.

EXERCISE V

1. Express all the other functions of θ in terms of $\cos \theta$.

This problem can be solved, and the required values found, in a manner similar to that employed in finding the values of each of the other functions in terms of $\sin \theta$, or $\tan \theta$, which has just been illustrated. Or the values can be found by means of the relations deduced in Art. 16. Thus:

$$\sin \theta = \sqrt{1 - \cos^2 \theta},$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\sqrt{1 - \cos^2 \theta}}{\cos \theta},$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{\cos \theta}{\sqrt{1 - \cos^2 \theta}}, \text{ etc.}$$

- 2. Express all the other functions of θ in terms of $\cot \theta$.
- 3. Express all the other functions of θ in terms of $\sec \theta$.
- **4.** Express all the other functions of θ in terms of $\csc \theta$.
 - 5. Given $\sin \theta = \frac{2}{5}$, find $\cos \theta$ and $\tan \theta$.

$$\cos \theta = \sqrt{1 - \sin^2 \theta} = \sqrt{1 - \frac{4}{25}} = \frac{1}{5}\sqrt{21}.$$
$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{2}{5} \div \frac{1}{5}\sqrt{21} = \frac{2}{5} \times \frac{5}{\sqrt{21}} = \frac{2}{\sqrt{21}} = \frac{2}{21}\sqrt{21}.$$

6. Construct the angle θ if $\tan \theta = \frac{2}{7}$.

The angle θ may be considered one of the acute angles of a right triangle. Hence, to construct θ we have only to construct a right triangle whose legs are respectively 2 and 7. Since $\tan \theta = \frac{2}{7}$, θ is the acute angle opposite the side 2.

- 7. If $\sin \theta = \frac{3}{11}$, find $\sec \theta$. $\frac{11}{28}\sqrt{7}$
- **8.** If $\sin A = \frac{6.0}{6.1}$, find vers A.
- **9.** If $\cos \theta = \frac{3}{5}$, find $\csc \theta$ and $\tan \theta$.
- 10. If $\cos \theta = \frac{3}{7}$, find $\cot \theta$ and $\sec \theta$.
- 11. If $\tan A = \frac{11}{60}$, find $\sec A$ and $\cos A$.
- 12. If $\tan A = \frac{3}{4}$, find $\csc A$ and $\cos A$.
- 13. If $\cot A = \frac{5}{6}$, find $\sin A$ and $\cos A$.
- 14. If $\sec B = 5$, find $\sin B$ and $\tan B$.
- **15.** If $\sec B = \frac{61}{60}$, find $\tan B$ and $\operatorname{vers} B$.
- 16. If $\csc A = 8$, find $\cos A$ and $\tan A$.
- 17. If $\csc A = \frac{9}{5}$, find $\sin A$ and $\sec A$.
- 18. Find all the functions of each of the acute angles, A, B, of the right triangle whose sides are 8, 15, 17.
- 19. Find all the functions of each of the acute angles, A, B, of the right triangle whose sides are x + y, $\frac{2xy}{x-y}$, $\frac{x^2 + y^2}{x-y}$.
 - **20.** If $\sin^2 \theta + \cos \theta = \frac{29}{25}$, find $\tan \theta$.
 - **21.** If $\tan^2 \theta \sec \theta = 5$, find $\cos \theta$.
 - 22. If $10 \sin^2 \theta 5 \cos \theta = -\frac{2}{5}$, find $\csc \theta$.
 - 23. If $\sin \theta + \cot \theta = \frac{3}{11} \frac{6}{6}$, find $\cos \theta$.
 - **24.** If $\sin \theta = a$ and $\tan \theta = b$, prove $(1 a^2)(1 + b^2) = 1$.

19,21,23

CHAPTER III

VALUES OF THE FUNCTIONS OF CERTAIN USEFUL ANGLES

20. Functions of an angle of 0° . If the angle A is very small, then in considering the value of $\sin A$, that is, the ratio $\frac{CB}{AB}$, it is at once seen that the numerator, CB, is very small in comparison with the denominator, AB. Hence, the numerical value of $\sin A$ is very small when the angle A is very small. Also, if A decreases, the numerator of the fraction will also decrease, while the denominator will remain constant; and as the angle approaches 0° as a limit, the sine of the angle will also approach 0 as a limit. When the angle becomes 0° , that is, when AB coincides with AC, we shall have CB = 0,

and AB = AC. Hence, $\sin 0^{\circ} = \frac{CB}{AB} = 0$, $\tan 0^{\circ} = \frac{CB}{AC} = 0$, $\sec 0^{\circ} = \frac{AB}{AC} = 1$,

$$\cos 0^{\circ} = \frac{A \, C}{A \, B} = 1, \qquad \cot 0^{\circ} = \frac{A \, C}{C \, B} = \infty , \qquad \csc 0^{\circ} = \frac{A \, B}{C \, B} = \infty .$$

When we say that $\sin A = 0$ when $A = 0^{\circ}$, we simply mean that, if A is made small enough, we can make the value of CB, and hence the value of $\sin A$ as small as we please; or, to express the same statement in different words, we can make $\sin A$ smaller than any assignable quantity.

Hence, as stated above, $\sin A$ approaches 0 as a limit when A approaches 0° as a limit.

In a similar manner, we interpret the statements $\cos 0^{\circ} = 1$, $\tan 90^{\circ} = \infty$, etc., as meaning that $\cos A$ approaches 1 as a limit, $\tan A$ approaches ∞ as a limit, etc., when A approaches 0° as a limit, when A approaches 90° as a limit, etc.

21. Functions of an angle of 30°. Let OAC be an equilateral triangle; then is it also equiangular. From the vertex O draw OB perpendicular to AC. Then in the right triangle OAB the angle A = 60°, and the angle AOB = 30°. Also,

the leg
$$AB = \frac{1}{2} AC = \frac{1}{2} OA$$
.

Let AB = a. Then OA = 2a, and

$$OB = \sqrt{OA^2 - AB^2} = \sqrt{4 a^2 - a^2} = \sqrt{3 a^2} = a\sqrt{3}$$
.

The trigonometric functions of 30° can now be found as follows:

$$\sin 30^{\circ} = \frac{BA}{OA} = \frac{a}{2a} = \frac{1}{2},$$

$$\cos 30^{\circ} = \frac{OB}{OA} = \frac{a\sqrt{3}}{2a} = \frac{1}{2}\sqrt{3},$$

$$a \quad \tan 30^{\circ} = \frac{BA}{OB} = \frac{a}{a\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{3}\sqrt{3},$$

$$\cot 30^{\circ} = \frac{OB}{BA} = \frac{a\sqrt{3}}{a} = \sqrt{3},$$

$$\cot 30^{\circ} = \frac{OA}{BA} = \frac{a\sqrt{3}}{a} = \frac{2}{\sqrt{3}} = \frac{2}{3}\sqrt{3},$$

$$\csc 30^{\circ} = \frac{OA}{BA} = \frac{2a}{a} = 2.$$

22. Functions of an angle of 45° . Let OAB be an isosceles right triangle. Each of the acute angles is 45° , and the leg OB equals the leg AB.

Let AB = a. Then OB = a and $OA = a\sqrt{2}$, and we have: $\sin 45^{\circ} = \frac{BA}{OA} = \frac{a}{\sqrt{2}a} = \frac{1}{\sqrt{2}} = \frac{1}{2}\sqrt{2},$ $\cos 45^{\circ} = \frac{OB}{OA} = \frac{a}{\sqrt{2}a} = \frac{1}{\sqrt{2}} = \frac{1}{2}\sqrt{2},$

$$\tan 45^{\circ} = \frac{BA}{OB} = \frac{a}{a} = 1,$$

$$\cot 45^{\circ} = \frac{OB}{BA} = \frac{a}{a} = 1,$$

$$\sec 45^{\circ} = \frac{OA}{OB} = \frac{\sqrt{2} a}{a} = \sqrt{2},$$

$$\csc 45^{\circ} = \frac{OA}{BA} = \frac{\sqrt{2} a}{a} = \sqrt{2}.$$

23. Functions of an angle of 60° . Let OAC be an equilateral triangle. Then is it also equiangular. From the vertex A draw AB perpendicular to OC. Then in the right triangle OAB, angle $O=60^{\circ}$, and angle $OAB=30^{\circ}$. Also, $OB=\frac{1}{2}$ $OC=\frac{1}{2}$ OA.

Let
$$OB = a$$
. Then $OA = 2 a$, and $AB = \sqrt{OA^2 - OB^2}$
= $\sqrt{4 a^2 - a^2} = \sqrt{3 a^2} = a \sqrt{3}$.

The trigonometric functions of 60° can now be found as follows:

$$\sin 60^{\circ} = \frac{BA}{OA} = \frac{a\sqrt{3}}{2a} = \frac{\sqrt{3}}{2} = \frac{1}{2}\sqrt{3},$$

$$\cos 60^{\circ} = \frac{OB}{OA} = \frac{a}{2a} = \frac{1}{2},$$

$$\tan 60^{\circ} = \frac{BA}{OB} = \frac{a\sqrt{3}}{a} = \sqrt{3},$$

$$\cot 60^{\circ} = \frac{OB}{BA} = \frac{a}{a\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{3}\sqrt{3},$$

$$\sec^{\circ} 60^{\circ} = \frac{OA}{OB} = \frac{2a}{a} = 2,$$

$$\csc 60^{\circ} = \frac{OA}{BA} = \frac{2a}{a\sqrt{2}} = \frac{2}{3}\sqrt{3}.$$

24. Functions of an angle of 90° . Let the angle A OB (p. 34) be very nearly a right angle. Then the angle A is very small, and B the foot of the perpendicular from A to OB is very near the vertex O. When the angle O approaches a right angle, AB

CONANT'S TRIG. - 3

, 4

will approach coincidence with AO, and B will approach coincidence with O. Hence,

The real meaning of these equations is that, as the angle approaches 90° as a limit, the sine of the angle approaches 1 as a limit, the cosine approaches 0 as a limit, the tangent approaches ∞ as a limit, etc. It is, however, customary to say $\sin 90^{\circ} = 1$, $\cos 90^{\circ} = 0$, $\tan 90^{\circ} = \infty$, etc.

A more complete discussion of the values of the trigonometric functions for limiting cases such as the above is given later. See Art. 41, p. 59.

25. In the following table are collected the results obtained in the last five sections. These results are exceedingly important, and the student should become thoroughly familiar with them before proceeding further.

	0°	30°	45°	60°	90°
sine	0	1/2	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{3}$	1
cosine	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}$	0
tangent	0	$\frac{1}{3}\sqrt{3}$	1	$\sqrt{3}$	œ
cotangent_	œ	$\sqrt{3}$	1	$\frac{1}{3}\sqrt{3}$	0
secant	1	$\frac{2}{3}\sqrt{3}$	$\sqrt{2}$	2	xo
cosecant	œ	2	$\sqrt{2}$	$\frac{2}{3}\sqrt{3}$	1

It is necessary to commit to memory only one half of this table. The remainder can be obtained at any time by means of the relations which were found in Art. 17, of which the following is a condensed statement: Any trigonometric function of an acute angle is equal to the corresponding co-function of its complement.

EXERCISE VI

Verify the following:

- 1. $\cos 0^{\circ} + \sin 30^{\circ} + \sin 90^{\circ} = 2\frac{1}{2}$.
- 2. $\cos 0^{\circ} \cos 60^{\circ} + \sin 0^{\circ} \sin 60^{\circ} + \sin 30^{\circ} = 1$.
- 3. $\tan^2 30^\circ + \sec^2 30^\circ = 1\frac{2}{3}$.
- 4. $\cos^2 60^\circ + \cos^2 45^\circ + \cos^2 30^\circ = \frac{3}{3}$.
- 5. $\sin 60^{\circ} \cos 30^{\circ} + \cos 60^{\circ} \sin 30^{\circ} = 1$.
- 6. $\sin^2 30^\circ \tan^2 45^\circ + \sec^2 60^\circ \sin^2 90^\circ = 4\frac{1}{4}$.
- 7. $(\sin 30^{\circ} + \cos 60^{\circ}) (\sec 45^{\circ} + \csc 45^{\circ}) = 2\sqrt{2}$.
- 8. $\sin 30^{\circ} \sin 45^{\circ} \sin 60^{\circ} \tan 60^{\circ} = \frac{3}{8} \sqrt{2}$.
- 9. $\cot 30^{\circ} \tan 60^{\circ} \sin 45^{\circ} \cos 45^{\circ} = \frac{3}{2}$.
- 10. $\tan^2 45^\circ + \sin^2 30^\circ \cos^2 30^\circ \frac{3}{4} \tan^2 30^\circ = \frac{1}{4}$.

Prove the following identities:

- 11. $\sin A \cos (90^{\circ} A) \sec (90^{\circ} A) \equiv \sin A$.
- **12.** $\cos A \cos (90^{\circ} A) \sin (90^{\circ} A) \csc A \equiv \cos^2 A$.
- 13. $\tan (90^{\circ} A) \cot (90^{\circ} A) \tan A$ $\equiv \cos (90^{\circ} - A) \csc (90^{\circ} - A).$

14.
$$\frac{\cos{(90^{\circ} - A)}}{\csc{(90^{\circ} - A)}} \cdot \frac{\cot{(90^{\circ} - A)}}{\sin{A}} \equiv \sin{A}.$$

- **15.** $\cos^2 A \sec^2 (90^{\circ} A) \tan^2 A \cot^2 (90^{\circ} A) \equiv \tan^2 A.$
- 16. $\frac{\tan^2(90^\circ A)}{\sin^2 A} \cdot \frac{\cos^2 A}{\cot^2(90^\circ A)} \cdot \frac{\csc^2(90^\circ A)}{\sec^2(90^\circ A)} \equiv \cot^4 A.$
- 17. $\frac{\cos(90^{\circ} A)}{\text{covers } A} \cdot \frac{1 \cos(90^{\circ} A)}{\sin(90 A)} \equiv \tan A.$
- **18.** $\sec^2 A \equiv 1 + \cos^2(90^\circ A)\csc^2(90^\circ A)$.
- **19.** $\csc^2 A \equiv 1 + \sin^2(90^\circ A)\sec^2(90^\circ A)$.
- **20.** $\frac{\cot^2(90^\circ A)}{\csc^2(90^\circ A)} \cdot \frac{\tan^2(90^\circ A)}{\sin^2(90^\circ A)} \equiv 1.$

Ad.

14

CHAPTER IV

THE RIGHT TRIANGLE

- 26. In order to solve a right triangle, two parts besides the right angle must be given, of which at least one must be a side. The known parts may be:
 - 1. An acute angle and the hypotenuse.
 - 2. An acute angle and the opposite leg.
 - 3. An acute angle and the adjacent leg.
 - 4. The hypotenuse and either leg.
 - 5. The two legs.
- 27. In the preceding sections we have seen that the trigonometric functions are pure numbers; and in the case of the angles 0°, 30°, 45°, 60°, and 90°, the values of these functions have been ascertained. From a trigonometric table the values of the functions of any angle can be found; and by the aid of these values the solution of any triangle can be effected.

The method for each case arising under right triangles is illustrated by the following examples:

Case 1
Given
$$A = 61^{\circ} 22'$$
, $c = 46.2$; find B , a , b .

(1)
$$B = 90^{\circ} - 61^{\circ} 22' = 28^{\circ} 38'.$$

(2)
$$\sin A = \frac{a}{c}$$
 : $a = c \sin A$
= 46.2 × 0.8777.
: $a = 40.54$.

(3)
$$\cos A = \frac{b}{c}$$
 $\therefore b = c \cos A$
= 46.2×0.4792 .
 $\therefore b = 22.14$.

Case 2

Given $A = 31^{\circ} 17'$, a = 321; find B, c, b.

(1)
$$B = 90^{\circ} - 31^{\circ} 17' = 58^{\circ} 43'.$$

(2)
$$\sin A = \frac{a}{c} \cdot \cdot \cdot \cdot c = \frac{a}{\sin A}$$

= $\frac{321}{0.5193} = 618.14$.
 $\therefore c = 618.14$.

$$c = 618.14$$
.

(3)
$$\tan A = \frac{a}{b}$$
. $\therefore b = \frac{a}{\tan A}$
= $\frac{321}{0.6076}$.
 $\therefore b = 528.31$.

Case 3

Given $A = 43^{\circ} 42'$, b = 38.6; find B, a, c.

(1)
$$B = 90^{\circ} - 43^{\circ} 42' = 46^{\circ} 18'$$
.

(2)
$$\tan A = \frac{a}{b} \cdot \therefore a = b \tan A$$

= 38.6 × 0.9556.
 $\therefore a = 36.89$.

(3)
$$\cos A = \frac{b}{c}$$
 $\therefore c = \frac{b}{\cos A}$

$$= \frac{38.6}{0.7230}$$

$$\therefore c = 53.39.$$

Case 4

Given a = 36.4, c = 48.4; find A, B, b.

(1)
$$\sin A = \frac{a}{c}$$

= $\frac{36.4}{48.4}$
= 0.7521, nearly.
 $\therefore A = 48^{\circ} 46'$.

(2)
$$B = 90^{\circ} - 48^{\circ} 46' = 41^{\circ} 14'$$
.

(3)
$$\tan A = \frac{a}{b} \cdot \therefore b = \frac{a}{\tan A}$$

$$= \frac{36.4}{1.141} \cdot \therefore b = 31.9.$$

The value of b could also be found directly by means of the familiar geometric relation

$$c^2 = a^2 + b^2,$$

from which we have

$$b = \sqrt{c^2 - a^2}.$$

Case 5

Given a = 34.9, b = 38.6; find A, B, c.

(1)
$$\tan A = \frac{a}{b}$$

$$= \frac{34.9}{38.6}$$

$$= 0.9041.$$

$$\therefore A = 42^{\circ}7'.$$
(2) $B = 90^{\circ} - 42^{\circ}7' = 47^{\circ}53'.$

(3)
$$\sin A = \frac{a}{c} \cdot \cdot \cdot \cdot c = \frac{a}{\sin A}$$

= $\frac{34.9}{0.6706}$.

The value of c can also be found directly by means of the relation

$$c^2 = \sqrt{a^2 + b^2}.$$

From the methods of solution illustrated in the examples given in Art. 27, we deduce the following general rule:

Rule for the solution of right triangles. From the equation $A + B = 90^{\circ}$, and from the equations that define the functions of an acute angle of a right triangle, select an equation in which the required part is the only unknown quantity. From this equation find an expression for the required part, and compute the value of this part from the expression thus obtained.

If a and c, or b and c, have values that differ but little from each other, the methods here given will yield inaccurate results. In such cases the method of Art. 101, p. 144, should be employed.

The student will find it advantageous to check his results in all cases, to avoid numerical errors as far as possible. Any method of checking can be employed that involves a process of solution different from the one used in first obtaining the required part.

THE RIGHT TRIANGLE

Chap IV In the following examples, use the first two parts as the given parts, and solve for the three remaining parts:

$$\bar{7}$$
 1. $A = 21^{\circ} 19'$, $c = 18$. $B = 68^{\circ} 41'$, $a = 6.5$, $b = 16.8$.

2.
$$B = 40^{\circ} 44'$$
, $c = 31$. $A = 49^{\circ} 16'$, $b = 20.2$, $a = 23.5$.

3.
$$A = 71^{\circ} 38'$$
, $c = 5.4$. $B = 18^{\circ} 22'$, $a = 5.12$, $b = 1.7$.

4.
$$B = 13^{\circ} 14'$$
, $c = 92$. $A = 72^{\circ} 46'$, $b = 21$, $a = 89.6$.

5.
$$A = 63^{\circ} 11'$$
, $a = 12$. $B = 26^{\circ} 49'$, $b = 6.1$, $c = 13.4$.

6.
$$B = 43^{\circ} 52'$$
, $b = 70$. $A = 46^{\circ} 8'$, $a = 72.8$, $c = 101$.

7.
$$A = 10^{\circ} 36'$$
, $b = 42$. $B = 70^{\circ} 24'$, $a = 15$, $c = 44.6$.

8.
$$B = 56^{\circ} 17'$$
, $a = 9$. $A = 33^{\circ} 43'$, $b = 13.5$, $c = 16.2$.
9. $a = 12.6$, $c = 26$. $A = 28^{\circ} 59'$, $B = 61^{\circ} 1'$, $b = 22.7$.

10.
$$b = 42.6$$
, $c = 46$. $A = 22^{\circ} 10'$, $B = 67^{\circ} 50'$, $a = 17.4$.

SOLUTION BY LOGARITHMS

28. Problems in the solution of triangles can usually be performed quite as expeditiously by the use of logarithms as by the use of the actual values of the trigonometric functions, and in many cases the amount of labor is very greatly reduced by the use of logarithms.

The method of solution by logarithms in the different cases that arise in connection with right triangles is illustrated by the following problems:

Case 1

Given
$$A = 59^{\circ} 17'$$
, $c = 42.68$; find B , a , b ,

(1)
$$B = 90^{\circ} - 59^{\circ} 17' = 30^{\circ} 43'$$
.

(2)
$$\sin A = \frac{a}{c}$$
 $\therefore a = c \sin A$.
 $\log a = \log c + \log \sin A$.
 $\log c = 1.63022$

$$\log c = 1.63022$$

$$\log \sin A = 9.93435 - 10$$

$$\log a = 1.56457$$

$$\therefore a = 36.69.$$

(3)
$$\cos A = \frac{b}{c}$$
; $b = c \cos A$.

 $\log c = 1.63022$ $\log \cos A = 9.70824 - 10$ $\log b = 1.33846$ b = 21.8.

11.

Case 2

Given $A = 55^{\circ} 11'$, a = 68.34; find B, b, c.

(1)
$$B = 90^{\circ} - 55^{\circ}$$
, $11' = 34^{\circ}49'$.

(2)
$$\tan A = \frac{a}{b}$$
 $\therefore b = \frac{a}{\tan A}$ \cdot $\log b = \log a + \operatorname{colog} \tan A$.

$$\log b = \log a + \operatorname{colog} \tan A$$
$$\log a = 1.83467$$

$$\log \tan A = 9.84227 -$$

$$colog tan A = \underbrace{9.84227 - 10}_{\text{log } b = 1.67694}$$

$$b = 47.527.$$

(3)
$$\sin A = \frac{a}{c}$$
 $\therefore c = \frac{a}{\sin A}$ $\log c = \log a + \operatorname{colog} \sin A$. $\log a = 1.83467$

$$colog \sin A = 0.08567$$

$$\log c = 1.92034$$

 $\therefore c = 83.242$.

CASE 3

Given $A = 49^{\circ} 13'$, b = 72.3; find B, a, c.

(1)
$$B = 90^{\circ} - 49^{\circ} 13' = 40^{\circ} 47'$$
.

(2)
$$\tan A = \frac{a}{b}$$
 $\therefore a = b \tan A$.

$$\log a = \log b + \log \tan A.$$

$$\log b = 1.85914$$

55°11

$$\log \tan A = 10.06416 - 10$$

$$\log a = 1.92330 - 10$$

$$a = 83.81.$$

(3)
$$\cos A = \frac{b}{c} \cdot \cdot \cdot \cdot c = \frac{b}{\cos A} \cdot$$

$$\log c = \log b + \operatorname{colog} \, \cos A.$$

$$\log b = 1.85914.$$

$$\operatorname{colog} \operatorname{cos} A = \underbrace{0.18495}_{2.04400}$$

$$\log c = 2.04409$$

$$c = 110.68$$

Case 4

Given c = 61.14, a = 48.56; find A, B, b.

(1)
$$\sin A = \frac{a}{\cdot}$$

$$\log \sin A = \log a + \operatorname{colog} c.$$

$$\log a = 1.68628$$

$$colog c = 8.21367 - 10$$

$$\log \sin A = \overline{9.89995 - 10}$$

$$A = 52^{\circ} 35'$$
.

(2)
$$\cos A = \frac{b}{c}$$
. $\therefore b = c \cos A$.
 $\log b = \log c + \log \cos A$.
 $\log c = 1.78633$.
 $\log \cos A = 9.78362 - 10$
 $\log b = 1.56995$
 $b = 37.149$.

(3)
$$\tan B = \frac{b}{a}$$
.
$$\log \tan B = \log b + \operatorname{colog} a.$$

$$\log b = 1.56995$$

$$\operatorname{colog} a = 8.31372 - 10$$

$$\log \tan B = 9.88367 - 10$$

$$\therefore B = 37^{\circ} 25'.$$

Case 5

Given a = 126, b = 198; find A, B, c.

(1)
$$\tan A = \frac{a}{b}$$
.
 $\log \tan A = \log a + \operatorname{colog} b$.
 $\log a = 2.10037$
 $\operatorname{colog} b = 7.70333 - 10$
 $\log \tan A = 9.80370 - 10$
 $\therefore A = 32^{\circ}28'$.

(2)
$$\tan B = \frac{b}{a}$$
.

 $\log \tan B = \log b + \operatorname{colog} a$.

 $\log b = 2.29667$
 $\operatorname{colog} a = 7.89963 - 10$
 $\log \tan B = 10.19630 - 10$
 $\therefore B = 57^{\circ} 32'$.

(3)
$$\sin A = \frac{a}{c}$$
.
$$c = \frac{a}{\sin A},$$

$$\log c = \log a + \operatorname{colog} \sin A.$$

$$\log a = 2.10037$$

$$\operatorname{colog} \sin A = 0.27018$$

$$\log c = 2.37055$$

$$\therefore c = 234.72.$$

Note. In the last two cases the angle B might have been found directly by subtracting A from 90° . It is, however, better to determine the value of the second angle independently, as a means of checking the work.

2

AREA OF THE RIGHT TRIANGLE

29. The area of any triangle is equal to one half the product of the base and the altitude. In the case of the right triangle either of the legs can be regarded as the base and the other as the altitude. Hence the area of a right triangle can be found when any two parts are known, provided one or both the known parts are sides, by computing, if necessary, the legs of the triangle, and then taking one half their product. That is,

If a, b, denote the legs of a right triangle, and \triangle the area, then $\triangle = \frac{1}{2} ab. \tag{1}$

Ex. 1. In the right triangle ABC, given $A = 36^{\circ}$ 14', a = 26.8; to find the area.

First find log b by the method of Case 2, p. 40. Then we have

$$\log \Delta = \log a + \log b + \operatorname{colog} 2.$$

$$\log a = 1.42813$$

$$\log b = 1.56315$$

$$\operatorname{colog} 2 = 9.69897 - 10$$

$$\log \Delta = 2.69025$$

$$\therefore \Delta = 490.06.$$

Ex. 2. In the right triangle ABC, given $A = 40^{\circ}$ 23, c = 39.6; to find the area.

First find $\log a$ and $\log b$ as in Case 1, p. 39. Then we have

log
$$\triangle$$
 = log a + log b + colog 2.
log a = 1.40921
log b = 1.47950
colog 2 = $\frac{9.69897 - 10}{2.58768}$
∴ \triangle = 386.97.

EXERCISE VIII

Solve the following right triangles, finding the angles to the nearest minute:

1. Given
$$A = 34^{\circ} \ 10'$$
, $a = 21$;
find $B = 55^{\circ} \ 50'$, $b = 30.939$, $c = 37.39$.

2. Given
$$B = 50^{\circ} 12'$$
, $a = 65$;
find $A = 39^{\circ} 48'$, $b = 78.15$, $c = 101.55$.

- 3. Given $B = 47^{\circ} 15'$, c = 54.39; find $A = 42^{\circ} 45'$, a = 36.92, b = 39.94.
 - 4. Given $A = 31^{\circ} 25'$, c = 45.62; find $B = 58^{\circ} 35'$, b = 38.93, a = 23.78.
 - 5. Given $A = 29^{\circ} 17'$, c = 31.68; find $B = 60^{\circ} 43'$, a = 15.495, b = 27.63.
 - **6.** Given $A = 49^{\circ} 17'$, c = 36.48; find $B = 40^{\circ} 43'$, a = 27.65, b = 23.796.
 - 7. Given $A = 41^{\circ} 9'$, b = 156; find $B = 48^{\circ} 51'$, a = 136.33, c = 207.17.
 - **8.** Given $B = 59^{\circ} 11'$, b = 221; find $A = 30^{\circ} 49'$, a = 131.83, c = 257.33.
 - 9. Given $B = 62^{\circ} 55'$, c = 92.4; find $A = 27^{\circ} 5'$, a = 42.068, b = 82.268.
 - **10.** Given $A = 29^{\circ} 31'$, a = 290.6; find $B = 60^{\circ} 29'$, b = 513.29, c = 589.85.
 - 11. Given $B = 45^{\circ} 20'$, a = 41.46; find $A = 44^{\circ} 40'$, b = 41.946, c = 58.979.
 - 12. Given a = 20.08, c = 28.26; find $A = 45^{\circ} 17'$, $B = 44^{\circ} 43'$, b = 19.885.
 - 13. Given $B = 55^{\circ} 13'$, a = 72.96; find $A = 34^{\circ} 47'$, b = 105.04, c = 127.89.
 - **14.** Given $B = 51^{\circ} 19'$, b = 106.8; find $A = 38^{\circ} 41'$, a = 85.512, c = 136.81.
 - **15.** Given $B = 59^{\circ} 49'$, a = 254.36; find $A = 30^{\circ} 11'$, b = 437.33, c = 505.92.
 - **16.** Given $A = 51^{\circ} 50'$, b = 6.813; find $B = 38^{\circ} 10'$, a = 8.668, c = 11.025.
 - 17. Given $B = 57^{\circ} 46'$, b = 0.0688; find $A = 32^{\circ} 14'$, a = 0.04338, c = 0.08134.

18. Given
$$b = 963.3$$
, $c = 1465$; find $A = 48^{\circ} 53'$, $B = 41^{\circ} 7'$, $a = 1103.7$.

19. Given
$$a = 691$$
, $c = 877.62$; find $A = 51^{\circ} 56'$, $B = 38^{\circ} 4'$, $b = 541.05$.

20. Given
$$a = 62.36$$
, $b = 33.823$; find $A = 61^{\circ} 32'$, $B = 28^{\circ} 28'$, $c = 70.96$.

In the following examples find the required angles to the nearest second:

21. Given
$$A = 41^{\circ} 38' 20''$$
, $b = 262.38$; find $B = 48^{\circ} 21' 40''$, $a = 233.27$, $c = 351.08$.

22. Given
$$A = 71^{\circ} 14' 12''$$
, $c = 129.3$; find $B = 18^{\circ} 45' 48''$, $a = 122.43$, $b = 41.6$.

23. Given
$$A = 41^{\circ} \ 17' \ 30''$$
, $a = 29.41$; find $B = 48^{\circ} \ 42' \ 30''$, $b = 33.486$, $c = 44.568$.

24. Given
$$B = 61^{\circ} 12' 15''$$
, $c = 382.6$; find $A = 28^{\circ} 47' 45''$, $a = 184.29$, $b = 335.29$.

25. Given
$$b = 1426$$
, $c = 2291.2$; find $A = 51^{\circ} 30' 38''$, $B = 38^{\circ} 29' 22''$, $a = 1793.38$.

26. Given
$$B = 54^{\circ} 2' 28''$$
, $a = 49.628$; find $A = 35^{\circ} 57' 32''$, $b = 68.41$, $c = 84.514$.

27. Given
$$a = 35.421$$
, $b = 18.168$; find $A = 62^{\circ} 50' 46''$, $B = 27^{\circ} 9' 14''$, $c = 39.81$.

28. Given
$$a = 39.313$$
, $b = 19.852$; find $A = 63^{\circ} 12' 26''$, $B = 26^{\circ} 47' 34''$, $c = 44.036$.

29. Given
$$a = 126.43$$
, $b = 131.52$; find $A = 43^{\circ} 52' 9''$, $B = 46^{\circ} 7' 51''$, $c = 182.44$.

30. Given
$$a = 476.32$$
, $c = 812.36$; find $A = 35^{\circ} 53' 53''$, $B = 54^{\circ} 6' 7''$, $b = 658.05$.

31. Given
$$A = 68^{\circ} \ 17' \ 22''$$
, $c = 269.4$; find $B = 21^{\circ} \ 42' \ 38''$, $a = 250.29$, $b = 99.658$.

In the following ten examples find the area of the triangle in each case, having given:

32.
$$a = 10,$$
 $b = 12.$

37.
$$A = 42^{\circ} 27', b = 50.$$

33.
$$a = 268$$
, $b = 316$.

38.
$$A = 54^{\circ} 24', c = 90.$$

34.
$$a = 3,$$
 $c = 5.$

39.
$$B = 39^{\circ} 55', a = 294.$$

35.
$$b = 20.7844$$
, $c = 24$.

40.
$$B = 66^{\circ} 36', b = 48.$$

36.
$$A = 35^{\circ}$$
, $a = 16$.

41.
$$B = 70^{\circ} 52'$$
, $c = 582$.

42. Find the value of \triangle in terms of a and c.

Find the value of \triangle in terms of a and A.

44. Find the value of \triangle in terms of a and B.

Find the value of \triangle in terms of c and A.

46. Given
$$\triangle = 72$$
.

$$a = 9$$
:

$$a = 9$$
; find A .

47. Given
$$\triangle = 72$$
, $b = 9$;

find
$$A$$
.

48. Given
$$\triangle = 250$$
,

$$A = 40^{\circ};$$

find
$$\alpha$$
.

49. Given $\triangle = 250$, $B = 29^{\circ} 30'$; find a.

50. Given $\triangle = 254.2$, c = 32; find B.

51. The hypotenuse of a right triangle is 28 and one of the legs is 13. Find the angle opposite the given leg.

52. The legs of a right triangle are 36 and 39, respectively. Find the angle opposite the shorter leg.

53. The tangent of one of the acute angles of a right triangle is $\frac{9}{21}$. Find the angle.

54. The cotangent of one of the acute angles of a right triangle is 14. What is the angle?

55. One of the acute angles of a right triangle is 49° 38′ and the adjacent leg is 68.42. Find the hypotenuse and the other leg.

56. The legs of a right triangle are 41625.3 and 11362.7, respectively. Find the larger angle.

57. The hypotenuse of a right triangle is 262.46 and one of the acute angles is 28° 15′ 42″. Find the opposite leg.

0

- **58.** The legs of a right triangle are 515.38 and 221.34, respectively. Find the hypotenuse.
- 59. One of the acute angles of a right triangle is 46° 21′ and the adjacent leg is 26.38. Find by natural functions the other leg and the hypotenuse.

Angle of elevation and angle of depression. The angle of elevation of an object above the point of observation is the

angle between a line from the eye of the observer to the object and a horizontal line in the same vertical plane. The angle of depression of an object below the point of observation is the angle between a line from the eye of the

observer to the object and a horizontal line in the same vertical plane.

In the figure, BAC is the angle of elevation of the point B above the point A; and DBA is the angle of depression of the point A below the point B.

- 60. The angle of elevation of the top of a tower 80 ft. high is 41° 49′. What is the distance of the point of observation from the foot of the tower?
- 61. At a distance of 31.15 ft. from the foot of a vertical cliff the angle of elevation of the top of the cliff is 56° 18′. What is the height of the cliff?
- 62. From the top of a monument the angle of depression of a point on the ground, on the same level as the foot of the monument, is 43° 41′. The point is found by measurement to be 128.29 ft. distant from the foot of the monument. What is the height of the monument?
- 63. From the top of a hill 304 ft. 9 in. in height the angle of depression of an object on the ground is 40° 37′. What is the distance of the object from a point directly below the point of observation and on the same level with the object?
- 64. What is the height of a tree that casts a shadow 42.6 ft. long when the angle of elevation of the sun is 60° 11′?

- 65. What must be the length of a ladder set at an angle of 71° 14′ with the ground to reach a window 21.88 ft. high?
- **66.** To find the width of a river a point P is selected on one bank, and a distance of 138.2 ft. is measured parallel to the course of the river from the given point P to a point Q. Directly opposite Q, on the other side of the river, is the point S, and the angle SPQ is found to be 66° 11′. What is the width of the river?
- 67. A guy rope 49.11 ft. long is attached to the top of a mast, and makes an angle of 50° 56′ with the level of the ground. What is the height of the mast?
- + 68. The top of a flag pole, broken by the wind, falls so that it touches the ground at a distance of 19.73 ft. from the foot of the pole, and is inclined to the ground at an angle of 65° 40′. What is the height of the portion that remains standing, and what was the total height of the pole?
- 69. What is the angle of elevation of an inclined plane that rises 26 ft. in a horizontal distance of 31.9 ft.?
- 70. A man walking on a level plain toward a tower observes that at a certain point the angle of elevation of the top of the tower is 30°; on walking 300 ft. directly toward the tower the angle of elevation of the top is found to be 60°. What is the height of the tower?

Solution. Let x = the height of the tower and y = the distance from the second point of observation to the foot of the tower.

From the triangle
$$ACD$$
 $\frac{x}{300+y} = \tan 30^{\circ} = \frac{1}{\sqrt{3}}$,

 $\therefore y = \sqrt{3} x - 300;$

from the triangle $BCD \frac{x}{y} = \tan 60^{\circ} = \sqrt{3}$,

$$y = \frac{x}{\sqrt{3}};$$

equating these values of y, we have

$$\sqrt{3} x - 300 = \frac{x}{\sqrt{3}},$$

$$2 x = 300 \times 1.732,$$

$$x = 259.8.$$

65

Note. In solving problem 70 natural functions have been employed. On p. 156 a method will be given by means of which problems of this kind can be solved by the use of logarithms. In the following problems it is recommended that natural functions be employed.

- 71. At a point on a level plain the angle of elevation of the top of a church spire is 45°, and at a point 50 ft. nearer, and in the same straight line with the first point and the church, the corresponding angle of elevation is 60°. What is the height of the spire?
 - 72. From the top of a cliff 150 ft. high the angles of depression of the top and bottom of a tower are 30° and 60°, respectively. What is the height of the tower?
 - 73. The angles of elevation of the top of a tower, taken at two points 268 ft. apart and in the same straight line with the tower, are 21° 14′ and 53° 46′, respectively. What is the height of the tower?
 - 74. At the foot of a mountain the angle of elevation of the summit is 45°; one mile up the slope of the mountain, which rises at an inclination of 30°, the angle of elevation of the summit is 60°. What is the height of the mountain?
 - 75. At a certain point south of a tower the angle of elevation of the top of the tower is 60°, and at a point 300 ft. east of the point the corresponding angle of elevation is 30°. What is the height of the tower?

30. The isosceles triangle. The perpendicular from the vertex, C, of an isosceles triangle to the base divides the triangle into two equal right triangles.

Any two parts of either of these right triangles being given, one or both of which are sides, the right

triangle can be completely determined. Therefore the isosceles triangle also can be completely determined.

Denoting the base of the isosceles triangle by c, and the altitude by h, the area, \triangle , is given by the formula

$$\Delta = \frac{1}{2} ch. \tag{1}$$

31. The regular polygon. A regular polygon is divided into equal isosceles triangles by lines drawn from the center to the

vertices of the polygon. Each of the isosceles triangles is divided into two equal right triangles by the apothem of the polygon.

Any side of either of these right triangles being given, the polygon can be completely determined if the number of sides is known.

For the angles at the center of the polygon can be found when

the number of sides, n, is known, by dividing 360° by n. Taking one half of this angle as one of the acute angles of the right triangle, and combining it with the given side, we have at our disposal two parts of a right triangle, one of which is a side. The remaining parts can then be found by the methods already given for the solution of right triangles.

Denoting the perimeter of the polygon by p and the apothem by h, the area of the polygon can be found by the following formula: $\triangle = \frac{1}{2} ph. \tag{1}$

It should be remembered that the legs of the isosceles triangles are radii of the circumscribed circle, and the apothem is the radius of the inscribed circle of the polygon.

EXERCISE IX

Solve the following isosceles triangles, finding the part indicated in each case:

X	1.	Given	c = 83.2,	h = 56.9;	find C .
X	2.	Given	c = 92.56,	h = 59.72;	find C .
	3.	Given	c = 252.64,	$C = 62^{\circ} 28' 36'';$	find a .
	4.	Given	$C = 142^{\circ} \ 27' \ 44'',$	a = 92.452;	find c .
	5.	Given	$C = 102^{\circ} 44' 42'',$	h = 92.96;	find a .
	6.	Given	c = 85.32,	h = 49.84;	find A .
+	7.	Given	c = 136.48,	h = 60.51;	find a .
*	8.	Given	h = 1426.3,	a = 2291.2;	find A .
1	,	CONAN	IT'S TRIG4		

- **9.** Find the value of \triangle in terms of α and C.
- 10. Find the value of \triangle in terms of a and A.
- 11. Find the value of \triangle in terms of h and A.

Solve the following regular polygons, having given:

12. n = 10, c = 3.

14. n = 6, c = 12.

13. n = 8, h = 2.

15. n = 20, a = 10.

- → 16. What is the area of a regular octagon formed by cutting away the corners of a square whose side is 6?
- _____ 17. What is the area of a circle inscribed in an equilateral triangle whose side is 20?
- **18.** What is the area of a regular polygon of 18 sides if the radius of the circumscribed circle is 2?
- 19. One of the diagonals of a regular pentagon is 12.15. What is the area of the pentagon? 97.0% >
- 20. Compute the area of a regular heptagon if the length of one of its sides is 13.88.
- 21. The radius of the circumscribed circle of a regular dodecagon is 27. What is the area?

12, 16, 18, 20, 21

CHAPTER V

THE APPLICATION OF ALGEBRAIC SIGNS TO TRIGO-NOMETRY

32. In the preceding work no attempt has been made to apply the definitions of any of the trigonometric functions to any except positive acute angles.

These definitions will now be extended so as to apply to negative as well as to positive angles, and to angles of any magnitude whatever.

33. The coördinate axes. The location of a point or a line lying in a given plane is often described by referring it to two intersecting straight lines in that plane, called coördinate axes. These lines are usually drawn perpendicular to each other.

Let the two lines XX' and YY' intersect at right angles. Then the plane of these lines is divided into four quadrants, designated as the first, second, third, and fourth quadrants, respectively. These quadrants are numbered as indicated in the figure.

34. Coördinates of a point in a plane. The location of any point in the plane determined by the axes XX' and YY' is described by means of its perpendicular distances from these axes.

The distance of a point from YY' measured along a line parallel to XX' is called the abscissa of the point; and the distance of a point from XX', measured on a line parallel to YY' is called the **ordinate** of the point.

The abscissa of a point is usually designated by the letter x,

and the ordinate by the letter y. These two distances, taken together, are called the coordinates of the point.

The line XX' is called the axis of abscissas, and the line YY' is called the axis of ordinates. These axes are, for the sake of brevity, often called the x-axis and the y-axis, respectively. Their point of intersection, O, is called the **origin**.

Any abscissa measured to the right of YY' is considered positive, and any abscissa measured to the left of YY' is considered negative.

Any ordinate measured above XX' is considered positive, and any ordinate measured below XX' is considered negative.

The coördinates of a point determine its position completely. For example, if the point A is 4 units from YY' and 6 units

from XX', its position can be located as follows: measure off on XX' a distance equal to 4 units, and through the point thus found draw a line parallel to YY'. Also, measure off on YY' a distance equal to 6 units, and through the point thus determined, draw a line parallel to XX'. The intersection, A, of these two lines is the required

point. The abscissa of A is 4, and its ordinate is 6, and this point, whose location is given by means of its coördinates, is called the point (4, 6).

The point B, located in a similar manner, has for its coördinates x = -3 and y = 4; and this point B is called the point (-3, 4). The point C is called the point (-4, -5); and the point D is called the point (6, -3). In a similar manner we can locate any other point (a, b), where a and b are any real quantities whatever, either positive or negative.

35. Trigonometric functions of any angle. Let the line OA (p. 53) start from OX and revolve in a positive direction until it occupies a position in any one of the four quadrants. From any point P in the revolving line draw a perpendicular PM to the axis of abscissas, XX'. In each of the four figures we have

OM = x and MP = y. Let the distance OP = r. The trigonometric functions of the angle XOA, which may be represented by θ , are then, for all positions of OA, defined as follows:

The functions vers θ and covers θ are defined in a manner similar to that employed in the case of the right triangle, as follows: vers $\theta = 1 - \cos \theta$.

 $covers \theta = 1 - sin \theta.$

Note. In the case of $\cot 0^{\circ}$, $\csc 0^{\circ}$, $\tan 90^{\circ}$, $\sec 90^{\circ}$, $\cot 180^{\circ}$, $\csc 180^{\circ}$, $\tan 270^{\circ}$, $\sec 270^{\circ}$, $\cot 360^{\circ}$ and $\csc 360^{\circ}$, these definitions fail. For, taking as an illustration the tangent of 90° , we have in that case a fraction whose numerator is r and whose denominator is 0. The value of $\tan 90^{\circ}$ is, then, if we attempt to use the above definition, given by this fraction whose numerator is r, and whose denominator is 0. But there is no such thing as division by 0, hence, according to the definition given, the symbol $\tan 90^{\circ}$ has no meaning. This and other similar cases will be discussed later. (See pp. 57-63.)

36. In a manner precisely similar to that employed in Art. 16 it can be proved that, for any value whatever of θ the following relations are true:

$$\sin^2\theta + \cos^2\theta = 1; \tag{1}$$

$$\sec^2\theta = 1 + \tan^2\theta; \qquad (2)$$

$$\csc^2 \theta = 1 + \cot^2 \theta. \tag{3}$$

Also, from the definitions of the functions, the following relations are immediately derived:

$$\sin \theta = \frac{1}{\csc \theta}, \ \therefore \sin \theta \csc \theta = 1, \tag{4}$$

$$\cos \theta = \frac{1}{\sec \theta}, \ \therefore \cos \theta \sec \theta = 1,$$
 (5)

$$\tan \theta = \frac{1}{\cot \theta}, \ \therefore \ \tan \theta \cot \theta = 1. \tag{6}$$

Also, since,
$$\cos \theta = \frac{x}{r}, \quad x = r \cos \theta,$$
 (7)

$$\sin\theta = \frac{y}{r}, \ \ \therefore \ \ y = r\sin\theta, \tag{8}$$

$$\tan \theta = \frac{y}{x}, \ \ \therefore \ \ y = x \tan \theta. \tag{9}$$

37. Signs of the trigonometric functions. In dealing with the functions of an acute angle of a right triangle (Art. 14, p. 20), no attention was paid to the question of positive or negative signs. All lines employed in that connection were considered positive; hence the value of each of the functions was considered positive. But in dealing with the general angle we have to consider both positive and negative lines, and as a result the signs of the functions undergo certain changes as the revolving line passes from quadrant to quadrant.

First Quadrant. Assume that the revolving line is always positive, and let it occupy any position in the first quadrant.

In this position both x and y are positive; hence, since r is also positive, both numerator and denominator are positive in the case of each of the functions. Therefore all the trigonometric functions are positive for the angle in the first quadrant.

Second Quadrant. Let the revolving line occupy any position in the second quadrant. In this case x is negative and y is positive; and we have the following results:

The sine is a fraction whose numerator and denominator are both positive; therefore the sine of an angle in the second quadrant is positive.

The cosine is a fraction whose numerator is negative and whose denominator is positive; therefore the cosine of an angle in the second quadrant is negative.

The tangent is a fraction whose numerator is positive and whose denominator is negative; therefore the tangent of an angle in the second quadrant is negative.

The cotangent is a fraction whose numerator is negative and whose denominator is positive; therefore the cotangent of an angle in the second quadrant is negative.

The secant is a fraction whose numerator is positive and whose denominator is negative; therefore the secant of an angle in the second quadrant is negative.

The cosecant is a fraction whose numerator and denominator are both positive; therefore the cosecant of an angle in the second quadrant is positive.

Third Quadrant. Let the revolving line occupy any position in the third quadrant. In this case both x and y are negative; therefore the following results can at once be obtained:

The sine is negative.
The cosine is negative.
The tangent is positive.
The cotangent is positive.
The secant is negative.
The cosecant is negative.

Fourth Quadrant. Let the revolving line occupy any position in the fourth quadrant. In this case x is positive and y is negative; therefore the following results can at once be obtained:

The sine is negative.

The cosine is positive.
The tangent is negative.
The cotangent is negative.
The secant is positive.
The cosecant is negative.

The above results are conveniently grouped together by means of the following table:

		Y			
sine	+	Ī	sine	+	
cosine	_		\mathbf{c} osine	+	
${f tangent}$	-		tangént	+	
cotangent	_		cotangent	+	
secant	_	ļ	secant	+	
cosecant	+		cosecant	+	
~~.					
X'					•X
sine	-		sine	_	•X
	-		sine cosine	_ +	-X
sine	- - +			- + -	-X
sine cosine	- - + +		cosine	- + -	-X
sine cosine tangent	- + +		cosine tangent	- + - - +	-X
sine cosine tangent cotangent	- + + -		cosine tangent cotangent	- + - + + -	-X

From the definitions of the versed sine and of the coversed sine it follows that these two functions are always positive.

// 38. Changes in sign and magnitude of the trigonometric functions as the angle increases from 0° to 360° .

As before, we assume for the revolving line a constant length, r. As the revolving line starts from its initial position we have x = r, and y = 0. As the angle θ , which is generated by the revolution of this line, increases from 0° to 90° , y increases and x decreases; and when OA coincides with OY, we have x = 0, and y = r. Hence, as the angle increases from 0° to 90° , x decreases from r to 0, and y increases from 0 to r.

As the angle increases from 90° to 180°, x decreases — increases numerically — from 0 to -r and y decreases from r to 0.

As the angle increases from 180° to 270° , x increases — decreases numerically — from -r to 0 and y decreases — increases numerically — from 0 to -r.

As the angle increases from 270° to 360° , x increases from 0 to r and y increases — decreases numerically — from -r to 0.

Inasmuch as all changes in sign and magnitude among the trigonometric functions are directly dependent on the changes just noted, the following results are now obtained without difficulty.

13

39. Sine. As the angle increases from 0° to 90° the numerator of the fraction that expresses the value of the sine increases from 0 to r, and the denominator r remains constant. the sine increases from 0 to 1. As the angle increases still further, the numerator begins to decrease, the denominator still remaining constant, and at 180° the numerator becomes 0. Hence as the angle increases from 90° to 180° the sine decreases from 1 to 0. As the revolving line enters the third quadrant, y becomes negative and continues to decrease algebraically, becoming -r when the angle equals 270°. Hence in the third quadrant the sine is negative, and as the angle increases from 180° to 270° the sine decreases from 0 to -1. In the fourth quadrant y continues negative; but as the angle increases y increases algebraically, and when the revolving line reaches its original position, y again becomes 0. Hence as the angle increases from 270° to 360° the sine is negative, and increases from -1 to 0.

Collecting the above results for the sake of convenience we have the following statement:

In the first quadrant the sine increases from 0 to 1; in the second it decreases from 1 to 0; in the third it decreases from 0 to -1; in the fourth it increases from -1 to 0.

40. Cosine. In a manner similar to that employed in the case of the sine, the following results are obtained:

As the angle increases from 0° to 90° the cosine decreases from $\frac{r}{r}$ to $\frac{0}{r}$, *i.e.* from 1 to 0. As the angle increases from 90° to 180° the cosine decreases — increases numerically — from $\frac{0}{r}$ to $\frac{-r}{r}$, *i.e.* from 0 to -1. As the angle increases from 180° to 270° the cosine increases — decreases numerically — from $\frac{-r}{r}$ to $\frac{0}{r}$, *i.e.* from -1 to 0. As the angle increases from 270° to 360° the cosine increases from $\frac{0}{r}$ to $\frac{r}{r}$, *i.e.* from 0 to 1.

41. Tangent. The value of the tangent is the value of the fraction $\frac{y}{x}$. When the angle is very small, the numerator of this fraction is very small, and the denominator is very nearly equal to r. Hence the tangent of the angle is very small; or, as it is commonly expressed, when the angle equals 0° , the tangent of the angle is also equal to 0.

As the angle increases the numerator y increases and the denominator x decreases. Hence the tangent of the angle increases. When the angle is nearly 90°, the numerator is very nearly equal to r; and as the angle approaches 90° the value of the numerator continually increases, approaching r as its limit. At the same time the value of the denominator continually decreases, approaching 0 as its limit. Hence, as θ approaches 90° the value of tan θ can be made to exceed any finite number previously assigned, no matter how great that number may be. This is usually expressed by saying that when the angle is equal to 90°, the tangent of the angle is equal to infinity. Hence,

In the first quadrant the tangent increases from $\frac{0}{r}$ to $\frac{r}{0}$, *i.e.* from 0 to ∞ .

In the second quadrant the denominator x becomes negative while the numerator y remains positive. Hence the tangent

of an angle in the second quadrant is negative. When the angle is but little greater than 90°, the numerator is very nearly equal to r and the denominator is very small, and nega-Therefore, as the revolving line enters the second quadrant, the numerical value of the tangent can be taken to be greater than any negative finite limit previously assigned. That is, when the angle is in the second quadrant and differs from 90° by an amount that is less than any finite number assigned in advance, no matter how small that number may be, the tangent of the angle is negative and is numerically greater than any finite limit assigned in advance. To express this we shall say that $\tan 90^{\circ} = -\infty$. It is thus seen that $\tan 90^{\circ}$ will be called equal to either $+\infty$ or $-\infty$ according as the angle is approaching the limit 90° from the positive direction, or as the revolving line is leaving the position at which the angle equals 90° and is just entering the second quadrant. As the angle increases, the numerator decreases and the denominator, which is negative, increases numerically. Hence, the tangent decreases numerically - increases algebraically - and when the angle becomes equal to 180°, the tangent becomes equal to 0. Hence,

In the second quadrant the tangent increases from $\frac{r}{0}$ to $\frac{0}{-r}$, i.e. from $-\infty$ to 0.

In the third quadrant both numerator and denominator are negative. Hence the tangent is positive. The numerator increases numerically from 0 to -r, and the denominator decreases numerically from -r to 0. Hence,

In the third quadrant the tangent increases from $\frac{0}{-r}$ to $\frac{-r}{0}$, i.e. from 0 to ∞ .

In the fourth quadrant the numerator is negative and the denominator is positive. Hence the tangent is negative. The numerator decreases numerically from -r to 0, and the denominator increases from 0 to r. Hence,

In the fourth quadrant the tangent increases from $\frac{-r}{0}$ to $\frac{0}{r}$, i.e. from $-\infty$ to 0.

The same restriction is to be observed with respect to the value of tan 270° as was noted in connection with tan 90°. That is, if the angle is in the third quadrant and is approaching 270° as its limit, the tangent of the angle can be made to exceed

in magnitude any finite positive limit previously assigned. If it is in the fourth quadrant, the tangent is negative and can be made to exceed in numerical magnitude any finite limit previously assigned. For this reason it is customary to say that $\tan 270^\circ = \pm \infty$.

42. Cotangent. The value of the cotangent is the value of the fraction $\frac{x}{y}$. When the angle is very small, the numerator is nearly equal to r and the denominator is nearly equal to 0. Hence the value of the cotangent of 0° is infinity. Then, letting the angle increase, and reasoning in the same manner as in the case of the tangent, we obtain the following results:

In the first quadrant the cotangent is positive and decreases from $\frac{r}{0}$ to $\frac{0}{r}$, *i.e.* from ∞ to 0.

In the second quadrant the cotangent is negative and decreases from $\frac{0}{r}$ to $\frac{-r}{0}$, i.e. from 0 to $-\infty$.

In the third quadrant the cotangent is positive and decreases from $\frac{-r}{0}$ to $\frac{0}{-r}$, *i.e.* from ∞ to 0.

In the fourth quadrant the cotangent is negative and decreases from $\frac{0}{-r}$ to $\frac{r}{0}$, i.e. from 0 to $-\infty$.

Remarks similar to those made in connection with tan 90° and tan 270° apply to cot 0°, cot 180°, and cot 360°.

43. Secant. The value of the secant is the value of the fraction $\frac{r}{x}$. The numerator remains constant for all positions of the revolving line, while the denominator varies. When the angle is very small, the numerator and the denominator are approximately equal. Hence the secant of 0° is equal to unity. As the angle increases the denominator x decreases, thus causing the value of the secant to increase. When the angle is nearly equal to 90° , the denominator is nearly equal to 0, and approaches 0 as its limit. Therefore the secant can be

made to exceed any finite limit previously assigned. We shall express this by saying that sec $90^{\circ} = \infty$. Hence,

As the angle increases from 0° to 90° the secant increases from $\frac{r}{r}$ to $\frac{r}{0}$, i.e. from +1 to + ∞ .

When the revolving line enters the second quadrant the denominator x becomes negative and begins to increase numerically — decrease algebraically — becoming equal to -r when the angle becomes 180°. Hence, beginning with a negative value numerically greater than any finite limit assigned in advance, the secant increases — decreases numerically — until it reaches the value -1. Hence,

As the angle increases from 90° to 180° the secant increases from $\frac{r}{0}$ to $\frac{r}{-r}$, i.e. from $-\infty$ to -1.

In the third quadrant the denominator continues negative, but begins to decrease — increase numerically — as soon as the revolving line enters the quadrant. At 270° the denominator becomes 0. Hence,

As the angle increases from 180° to 270° the secant decreases from $\frac{r}{-r}$ to $\frac{r}{0}$, *i.e.* from -1 to $-\infty$.

In the fourth quadrant the denominator again becomes positive, and increases from 0 to r as the angle increases from 270° to 360°, returning to its original value when the revolving line completes one entire revolution. Hence,

As the angle increases from 270° to 360° the secant decreases from $\frac{r}{0}$ to $\frac{r}{r}$, *i.e.* from ∞ to 1.

The same restriction is to be observed with respect to the value of sec 270° as was noted in connection with sec 90°. That is, if the angle is in the third quadrant and is approaching 270° as its limit, the secant of the angle can be made to exceed in numerical magnitude any finite negative limit assigned in advance. If the angle is in the fourth quadrant, the secant is positive, and can be made to exceed in magnitude any finite positive limit assigned in advance. We shall express this by saying that sec $270^{\circ} = \pm \infty$.

44. Cosecant. The value of the cosecant is the value of the fraction $\frac{r}{y}$. Remembering that the numerator remains con-

stant, and tracing out the changes in sign and magnitude of the denominator, as in the case of the secant, we obtain the following results:

As the angle increases from 0° to 90° the cosecant decreases from $\frac{r}{0}$ to $\frac{r}{r}$, *i.e.* from ∞ to 1.

As the angle increases from 90° to 180° the cosecant increases from $\frac{r}{r}$ to $\frac{r}{0}$, i.e. from 1 to ∞ .

As the angle increases from 180° to 270° the cosecant increases from $\frac{r}{0}$ to $\frac{r}{-r}$, *i.e.* from $-\infty$ to -1.

As the angle increases from 270° to 360° the cosecant decreases from $\frac{r}{-r}$ to $\frac{r}{0}$, *i.e.* from -1 to $-\infty$.

Remarks similar to those made in connection with sec 90° and sec 270° apply to esc 0°, esc 180°, and esc 360°.

The changes that take place in the sign and magnitude of the different trigonometric functions are conveniently grouped together in the following table:

		Y	
	SECOND QUADRANT	1	FIRST QUADRANT
sine	decreases from 1 to 0	sine	increases from 0 to 1
cosine	decreases from 0 to -1	cosine	decreases from 1 to 0
tangent	increases from $-\infty$ to 0	tangent	increases from 0 to ∞
cotangent	decreases from 0 to $-\infty$	cotangent	t decreases from ∞ to 0
secant	increases from $-\infty$ to -1	secant	increases from 1 to ∞
cosecant	increases from 1 to ∞	cosecant	decreases from ∞ to 1
		1	
X'			X
X'	THIRD QUADRANT		FOURTH QUADRANT
sine	THIRD QUADRANT decreases from 0 to - 1	sine	FOURTH QUADRANT increases from -1 to 0
		sine cosine	•
sine	decreases from $0 \text{ to} - 1$		increases from -1 to 0
sine cosine tangent	decreases from 0 to -1 increases from -1 to 0	cosine tangent	increases from -1 to 0 increases from 0 to 1
sine cosine tangent	decreases from 0 to -1 increases from -1 to 0 increases from 0 to ∞	cosine tangent	increases from -1 to 0 increases from 0 to 1 increases from $-\infty$ to 0
sine cosine tangent cotangent	decreases from 0 to -1 increases from -1 to 0 increases from 0 to ∞ t decreases from ∞ to 0	cosine tangent cotangent	increases from -1 to 0 increases from 0 to 1 increases from $-\infty$ to 0 t decreases from 0 to $-\infty$ decreases from ∞ to 1

45. After the changes in sign and magnitude have been obtained for the first three functions, the corresponding changes for the last three can be found by remembering that the

cotangent, secant, and cosecant are the reciprocals of the tangent, the cosine, and the sine respectively. The student should verify the above results by obtaining them in this manner also.

In connection with the general definitions of the trigonometric functions given on p. 53, it was noted that these definitions failed in the case of certain functions for certain values of the angle. These cases have been explained in some detail in Arts. 41-44, and we now have definitions of the tangent, the cotangent, the secant, and the cosecant of any angle from 0° to 360° inclusive; and hence, by the usual considerations, Arts. 50-57, definitions of these functions for any angle whatever.

In order that the relations between $\tan 90^\circ$ and $\cot 90^\circ$, $\tan 270^\circ$ and $\cot 270^\circ$, $\sec 90^\circ$ and $\cos 90^\circ$, etc., may be the same as that between the same functions in the case of other angles we shall say that $\frac{1}{\infty} = 0$, and $\frac{1}{0} = \infty$. But the student is cautioned that " ∞ " is not a number in the usual sense of the word, and that these two equations are not to be taken literally. They are used merely for the sake of expressing concisely the result of a definite limiting process, a process much more complicated than that of ordinary division.

46. Geometrical representation of the trigonometric functions.

The trigonometric functions are pure numbers, the value in each case being a ratio between two given magnitudes. These magnitudes are represented by lines, and if the length of the revolving line is properly chosen, it is possible to represent the values of the functions themselves by lines.

Let the revolving line be the radius of a circle, and let its value be assumed to be unity.

The sine of the angle AOB is $\frac{CD}{OD}$. But since OD=1, we may say $\sin \theta = \frac{CD}{OD} = \frac{CD}{1} = CD$. Similarly,

Similarly,

$$\cos \theta = \frac{OC}{OD} = \frac{OC}{1} = OC,$$

$$\tan \theta = \frac{CD}{OC} = \frac{AB}{OA} = \frac{AB}{1} = AB,$$

$$\cot \theta = \frac{OC}{CD} = \frac{GH}{OG} = \frac{GH}{1} = GH,$$

$$\sec \theta = \frac{OD}{OC} = \frac{OB}{OA} = \frac{OB}{1} = OB,$$

$$\csc \theta = \frac{OD}{CD} = \frac{OH}{OG} = \frac{OH}{1} = OH,$$

$$\operatorname{vers} \theta = 1 - \cos \theta = OA - OC = AC,$$

$$\operatorname{covers} \theta = 1 - \sin \theta = OG - OE = GE.$$

For an angle of the second quadrant the so-called "line values" of the trigonometric functions are obtained as follows:

$$\sin \theta = \frac{CD}{OD} = \frac{CD}{1} = CD,$$

$$\cos \theta = \frac{OC}{OD} = \frac{OC}{1} = OC,$$

$$\tan \theta = \frac{CD}{OC} = \frac{AB}{OA} = \frac{AB}{1} = AB,$$

$$\cot \theta = \frac{OC}{CD} = \frac{GH}{OG} = \frac{GH}{1} = GH,$$

$$\sec \theta = \frac{OD}{OC} = \frac{OB}{OA} = \frac{OB}{1} = OB,$$

$$\csc \theta = \frac{OD}{CD} = \frac{OH}{OG} = \frac{OH}{1} = OH,$$

The change in sign when OC is replaced by CO in obtaining the value of the versed sine should be noted carefully.

covers $\theta = 1 - \sin \theta = OG - OE = EG$.

vers $\theta = 1 - \cos \theta = 0A - 0C = 0A + CO = CA$,

For angles of the third and fourth quadrants the line values are obtained in a manner similar to that employed in connection with angles of the first two quadrants. The figures are lettered so that the following values hold for both:

The signs of the trigonometric functions when used as lines are, of course, the same as when they are used as ratios. It will be noticed that when the line that represents the sine extends upward from the axis of abscissas, or horizontal diameter, the sine is positive; when it extends downward, the

O M

13,4

sine is negative. The cosine is positive when the line that represents its value extends toward the right from the origin, negative when it extends toward the left. The tangent is positive when its line extends upward from the axis of abscissas, or horizontal diameter, negative when it extends downward. The cotangent is positive when its line extends toward the right from the axis of ordinates, or vertical diameter, negative when it extends toward the left. The secant and the cosecant are positive when their respective lines extend in the same direction from the origin as the revolving line, negative when they extend in an opposite direction. The versed sine is considered as extending toward the right from the foot of the sine, and the coversed sine upward from the foot of the perpendicular dropped from the extremity of the revolving line to the vertical diameter. Both are always positive.

The trigonometric functions were originally used as lines; and the numerical value was, in each case, the length of the line in terms of the revolving line, or the radius of the circle, taken as a unit. There are certain advantages connected with the use of these line values, but for general purposes the ratios are so much more convenient than the line values that they have now come into almost universal use.

47. Limiting values of the trigonometric functions. In discussing the variation in the values of the different functions the following limits were found. In the case of the sine the positive limit was 1, and the negative limit was -1. For the cosine also these limits were +1 and -1 respectively. For the tangent and the cotangent the limits were $+\infty$ and $-\infty$. For the secant and the cosecant it was found that the positive values that these functions could take were comprehended between +1 and $+\infty$, and the negative values between -1 and $-\infty$. Hence, we can make the following definite statement respecting the limits between which the different functions can vary:

The sine can take any value between +1 and -1.

The cosine can take any value between +1 and -1.

The tangent can take any value between $+\infty$ and $-\infty$.

The cotangent can take any value between $+\infty$ and $-\infty$.

The secant can take any value between +1 and $+\infty$, and between -1 and $-\infty$.

The cosecant can take any value between +1 and $+\infty$, and between -1 and $-\infty$.

From the definitions of the versed sine and the coversed sine it follows that each of these functions can take any value between 0 and +2.

48. Graphs of the trigonometric functions. The graphs of the trigonometric functions can be plotted in the ordinary manner if the values of the angles are taken as ordinates and the corresponding values of the functions as abscissas.

Sine. For the sine we form the following table of values from the equation $y = \sin x$.

In this table the values of the sine are, for convenience in plotting, given decimally, instead of in the ordinary common fractions.

y

Continuing this table, and plotting the points thus determined, we find that the graph is a curve consisting of an infinite number of waves like those in the figure. By using negative values of the angle we obtain similar waves at the left of the origin. The curve is called the sine curve, or sinusoid.

Cosine. The graph of the equation

$$y = \cos x$$

is found in a similar manner. Forming a table of values, and plotting the points determined by these values, we find that the cosine curve has the following form.

Tangent. The table of values for x and y formed from the equation $y = \tan x$ is as follows.

	x	y			
	0°	0			
	30°	.58			
	45°	1			
	60°	1.73			
	90°	œ			
	120°	-1.73	l		
	135°	- 1			
	150°	58			
	180°	0			
	210°	.58			
Ì	225°	1			
	240°	1.73			
	270°	∞			
	300°	- 1.73			
	315°	- 1			
-	330°	58			
	360°	0			
	390°	.58			
	etc.	etc.			

Continuing the table, and plotting the points determined by the values thus found, we obtain the tangent curve, which consists of an infinite number of branches, each like one of those in the figure. Negative values of the angle give an infinite number of like branches at the left of the origin.

Cotangent. The graph of the equation

$$y = \cot x$$

is similar to that of $y = \tan x$, except that the points where the different branches cross the x-axis are 90° to the right of those where the tangent curve branches cross, and the curvature is toward the right instead of toward the left. The form of the graph is shown in the following figure.

x	y			
00	တ			
30°	1.73			
45°	1			
60°	.58			
90°	0			
120°	58			
135°	- 1			
150°	-1.73			
180°	- x			
210°	1.73			
225°	1			
240°	.58			
270°	0			
300°	58			
315°	- 1			
330°	- 1.73			
360°	× ×			
390°	1.73			
etc.	etc.			

Secant. The table of values for the equation

$$y = \sec x$$

can readily be found if it is remembered that $\sec x$ is the reciprocal of $\cos x$. The graph has the form shown in the first figure on p. 71.

Cosecant. The graph of the cosecant is similar in form to that of the secant, but the relative position of the various

branches with respect to the y-axis is different. The graph is shown in the following figure.

49. Periods of the trigonometric functions. In considering the changes in value through which the functions pass as the angle increases, it is seen that the sine, for example, takes all its possible values, in both increasing and decreasing order of change, while the angle is increasing from 0° to 360°. As the angle increases from 360° to 720° the values of the sine which were obtained in the first 360° are repeated, this repetition of values occurring in the original order. The same cycle of values will again occur in the next 360°, and so on, for each complete revolution of the generating, or revolving line. The angle formed by the generating line while this regular recurrence of values takes place is called the period of the sine; and in accordance with this result we may say that

The period of the sine is 360° , or 2π .

A similar course of reasoning shows us that 360° is also the period of the cosine, of the secant, and of the cosecant.

The values of the tangent repeat themselves completely with each increase of 180° in the angle. Hence,

The period of the tangent is 180° , or π .

The period of the cotangent is the same as the period of the tangent.

EXERCISE X

- 1. Trace the changes in sign and magnitude of sin θ as θ varies from $-\frac{\pi}{2}$ to $-\frac{3\pi}{2}$; from -270° to -450° .
- 2. Trace the changes in sign and magnitude of $\cos A$ as A varies from $-\pi$ to -2π .
- 3. Trace the changes in sign and magnitude of $\tan A$ as A varies from -180° to -540° .
- **4.** Trace the changes in sign and magnitude of sec \boldsymbol{A} as \boldsymbol{A} varies from -90° to -270° .

Find the value of each of the following:

- 5. $\sin \theta + \cos \theta$ when $\theta = 60^{\circ}$.
- 6. $\sin^2 \theta + 2 \cos \theta$ when $\theta = 45^\circ$.
- 7. $\sin A + \tan A \text{ when } A = 135^{\circ}$.
- 8. $\sin 60^{\circ} + \tan 240^{\circ}$.
- 9. $\cos 0^{\circ} \cos 30^{\circ} + \tan 135^{\circ} \cot 315^{\circ}$.
- 10. $\cos 0^{\circ} \tan 60^{\circ} \sec^2 30^{\circ} \cot 225^{\circ}$.
- 11. $2 \sin 90^{\circ} \sec^2 30^{\circ} + \cos 180^{\circ} \tan 315^{\circ}$.
- 12. $2\sec^2\pi\cos 0^\circ + 3\sin^3\frac{3\pi}{2} \csc\frac{\pi}{2}$
- 13. $\cos \pi \tan \frac{\pi}{4} \sec^2 \frac{11\pi}{6} \tan^2 \frac{3\pi}{4}$.
- 14. For which of the following values of θ is $\sin \theta \cos \theta$ positive and for which is it negative?

$$\theta = 0^{\circ}; \ \theta = 60^{\circ}; \ \theta = 120^{\circ}; \ \theta = 210^{\circ}; \ \theta = 240^{\circ}; \ \theta = 300^{\circ}; \ \theta = 330^{\circ}.$$

11/1/2

15. For which of the following values of θ is $\sin \theta + \cos \theta$ positive and for which is it negative?

$$\theta = 135^{\circ}; \ \theta = 210^{\circ}; \ \theta = 300^{\circ}; \ \theta = 315^{\circ}; \ \theta = 330^{\circ}.$$

- 16. Prove that $\sec^6 \theta \tan^6 \theta = 3 \sec^2 \theta \tan^2 \theta + 1$.
- 17. If $\cos \theta = \frac{a^2 b^2}{a^2 + b^2}$, find $\sin \theta$ and $\tan \theta$.
- **18.** If $\tan \theta = \frac{2a^2 + 2a}{2a + 1}$, find $\cos \theta$ and $\sin \theta$.
- 19. Prove the equation $\sin \theta = x + \frac{1}{x}$ impossible for all real values of x.
- 20. Prove the equation $\sec^2 \theta = \frac{4xy}{(x+y)^2}$ impossible unless x = y.

CHAPTER VI

TRIGONOMETRIC FUNCTIONS OF ANY ANGLE

50. Functions of an angle $-\theta$ in terms of functions of θ . Let the revolving line OA generate an angle θ , of any magnitude. The final position of OA is, then, in any one of the four quadrants, as shown in the figures. Also, let the line OA' generate an angle $-\theta$, equal in magnitude to the positive angle θ , generated by OA.

Take OB = OB', and from B and B' draw perpendiculars BC, B'C', to XX'. Then are the triangles OBC, OB'C', equal geometrically, since they are right triangles having the hypotenuse and an acute angle of one equal respectively to the hypotenuse and an acute angle of the other. Hence the points C, C', coincide, BC = B'C', and OC = O'C'.

For convenience, let OB = r, OB' = r', BC = y, B'C' = y', OC = x, OC' = x'; then for each of the four figures we have

$$\sin (-\theta) = \frac{y'}{r'} = \frac{-y}{r} = -\sin \theta,$$

$$\cos (-\theta) = \frac{x'}{r'} = \frac{x}{r} = \cos \theta,$$

$$\tan (-\theta) = \frac{y'}{x'} = \frac{-y}{x} = -\tan \theta,$$

$$\cot (-\theta) = \frac{x'}{y'} = \frac{x}{-y} = -\cot \theta,$$

$$\sec (-\theta) = \frac{r'}{x'} = \frac{r}{x} = \sec \theta,$$

$$\csc (-\theta) = \frac{r'}{y'} = \frac{r}{-y} = -\csc \theta.$$

EXAMPLES.

1.
$$\sin(-30^\circ) = -\sin 30^\circ = -\frac{1}{2}$$
,

2.
$$\cos(-45^\circ) = \cos 45^\circ = \frac{\sqrt{2}}{2}$$

3.
$$\tan (-60^\circ) = -\tan 60^\circ = -\sqrt{3}$$
.

51. Functions of an angle $90^{\circ} - \theta$ in terms of functions of θ . Let the revolving line OA (p. 76) generate an angle θ , of any magnitude, and at the same time let OA' generate an angle whose magnitude is $90^{\circ} - \theta$.

As before, take OB = OB', and from B, B', draw perpendiculars BC, B'C', to XX'. The triangles OBC, OB'C', are, in each of the four figures, equal geometrically. The proof should be supplied by the student.

With the same notation as in the previous figures we have, considering only the actual lengths of the lines, and paying no attention to positive and negative signs, r = r', y = x', x = y'.

The following equations then hold true for all possible cases:

$$\sin (90^{\circ} - \theta) = \frac{y'}{r'} = \frac{x}{r} = \cos \theta,$$

$$\cos (90^{\circ} - \theta) = \frac{x'}{r'} = \frac{y}{r} = \sin \theta,$$

$$\tan (90^{\circ} - \theta) = \frac{y'}{x'} = \frac{x}{y} = \cot \theta,$$

$$\cot (90^{\circ} - \theta) = \frac{x'}{y'} = \frac{y}{x} = \tan \theta,$$

$$\sec (90^{\circ} - \theta) = \frac{r'}{x'} = \frac{r}{y} = \csc \theta,$$

$$\csc (90^{\circ} - \theta) = \frac{r'}{y'} = \frac{r}{x} = \sec \theta.$$

Note. For the special case that occurs when θ is an acute angle, these relations were established independently in connection with the definitions of the functions of an acute angle of a right triangle (Art. 17, p. 23).

52. Functions of an angle $90^{\circ} + \theta$ in terms of functions of θ . Let the revolving line OA generate an angle θ , of any magnitude, and at the same time let OA' generate an angle whose magnitude is $90^{\circ} + \theta$.

As in each of the previous cases, take OB = OB', and from B, B', draw perpendiculars BC, B'C', to XX'. The triangles OBC, OB'C' are, in each of the four figures, equal geometrically. The proof should be supplied by the student.

With the notation used in the previous cases we have, considering only the actual lengths of the lines, and paying no attention to positive and negative signs, r = r', x = y', y = x'. If positive and negative signs are taken into account, these equations become r = r', x = y', y = -x'.

The following equations then hold true for all possible cases:

$$\sin (90^\circ + \theta) = \frac{y'}{r'} = \frac{x}{r} = \cos \theta,$$

$$\cos (90^\circ + \theta) = \frac{x'}{r'} = \frac{-y}{r} = -\sin \theta,$$

$$\tan (90^\circ + \theta) = \frac{y'}{x'} = \frac{x}{-y} = -\cot \theta,$$

$$\cot (90^\circ + \theta) = \frac{x'}{y'} = \frac{-y}{x} = -\tan \theta,$$

$$\sec (90^\circ + \theta) = \frac{r'}{x'} = \frac{r}{-y} = -\csc \theta,$$

$$\csc (90^\circ + \theta) = \frac{r'}{y'} = \frac{r}{x} = -\sec \theta.$$

EXAMPLES.

PLES.

1.
$$\sin (90^{\circ} + 30^{\circ}) = \cos 30^{\circ} = \frac{1}{2}\sqrt{3}$$
,

2. $\cos (90^{\circ} + 45^{\circ}) = -\sin 45^{\circ} = -\frac{1}{2}\sqrt{2}$,

3. $\tan (90^{\circ} + 60^{\circ}) = -\cot 60^{\circ} = -\frac{1}{3}\sqrt{3}$,

4. $\cot (90^{\circ} + 120^{\circ}) = -\tan 120^{\circ} = -(-\sqrt{3}) = \sqrt{3}$,

5. $\sec (90^{\circ} + 135^{\circ}) = -\csc 135^{\circ} = -\sqrt{2}$,

6. $\csc (90^{\circ} + 150^{\circ}) = \sec 150^{\circ} = -\frac{2}{3}\sqrt{3}$.

53. Functions of an angle $180^{\circ} - \theta$ in terms of functions of θ . Let the revolving line OA generate an angle θ , of any magnitude, and at the same time let OA' generate an angle whose magnitude is $180^{\circ} - \theta$.

As in the previous cases, take OB = OB', and from B, B', draw perpendiculars BC, B'C', to XX'. The triangles OBC, OB'C', are, in each of the four figures, equal geometrically. The student should supply the proof.

With the notation used in the previous cases we have, considering only the actual lengths of the lines, and paying no attention to positive and negative signs, r = r', x = x', y = y'. If positive and negative signs are taken into account, the second equation becomes x = -x'.

The following equations then hold true for all possible cases:

$$\sin (180^{\circ} - \theta) = \frac{y'}{r'} = \frac{y}{r} = \sin \theta,$$

$$\cos (180^{\circ} - \theta) = \frac{x'}{r'} = \frac{-x}{r} = -\cos \theta,$$

$$\tan (180^{\circ} - \theta) = \frac{y'}{x'} = \frac{y}{-x} = -\tan \theta,$$

$$\cot (180^{\circ} - \theta) = \frac{x'}{y'} = \frac{-x}{y} = -\cot \theta,$$

$$\sec (180^{\circ} - \theta) = \frac{r'}{x'} = \frac{r}{-x} = -\sec \theta,$$

$$\csc (180^{\circ} - \theta) = \frac{r'}{y'} = \frac{r}{y} = -\sec \theta.$$

EXAMPLES.

1.
$$\sin (180^\circ - 30^\circ) = \sin 30^\circ = \frac{1}{2}$$
.

2.
$$\cos (180^{\circ} - 60^{\circ}) = -\cos 60^{\circ} = -\frac{1}{2}$$

3.
$$\tan (180^\circ - 45^\circ) = -\tan 45^\circ = -1$$
,

4.
$$\cot (180^{\circ} - 120^{\circ}) = -\cot 120^{\circ} = -\left(-\frac{\sqrt{3}}{3}\right) = \frac{1}{3}\sqrt{3},$$

5.
$$\sec (180^{\circ} - 135^{\circ}) = -\sec 135^{\circ} = -(-\sqrt{2}) = \sqrt{2}$$
,

6.
$$\csc (180^{\circ} - 150^{\circ}) = \csc 150^{\circ} = 2.$$

54. Functions of an angle $180^{\circ} + \theta$ in terms of functions of θ . Let the revolving line OA generate an angle θ , of any magnitude, and at the same time let OA' generate an angle whose magnitude is $180^{\circ} + \theta$.

As in the cases already considered, take OB = OB', and from B, B', draw perpendiculars BC, B'C', to XX'. The triangles OBC, OB'C', are, in each of the four figures, equal geometrically. The student should supply the proof.

With the notation used in the previous cases we have, considering only the actual lengths of the lines, and paying no attention to positive and negative signs, r=r', x=x', y=y'. If positive and negative signs are taken into account, the last two equations become x=-x', y=-y' respectively.

The following equations then hold true for all possible cases:

$$\sin (180^{\circ} + \theta) = \frac{y'}{r'} = \frac{-y}{r} = -\sin \theta,$$

$$\cos (180^{\circ} + \theta) = \frac{x'}{r'} = \frac{-x}{r} = -\cos \theta,$$

$$\tan (180^{\circ} + \theta) = \frac{y'}{x'} = \frac{-y}{-x} = \tan \theta,$$

$$\cot (180^{\circ} + \theta) = \frac{x'}{y'} = \frac{-x}{-y} = \cot \theta,$$

$$\sec (180^{\circ} + \theta) = \frac{r'}{x'} = \frac{r}{-y} = -\sec \theta,$$

$$\csc (180^{\circ} + \theta) = \frac{r'}{y'} = \frac{r}{-x} = -\csc \theta.$$

EXAMPLES.

1.
$$\sin(180^\circ + 30^\circ) = -\sin 30^\circ = -\frac{1}{2}$$
,

2.
$$\cos(180^\circ + 45^\circ) = -\cos 45^\circ = -\frac{1}{2}\sqrt{2}$$
,

3.
$$\tan(180^\circ + 60^\circ) = \tan 60^\circ = \sqrt{3}$$
,

4.
$$\cot(180^\circ + 120^\circ) = \cot 120^\circ = -\frac{1}{3}\sqrt{3}$$
,

5.
$$\sec(180^{\circ} + 135^{\circ}) = -\sec 135^{\circ} = -(-\sqrt{2}) = \sqrt{2}$$
,

6.
$$\csc(180^{\circ} + 150^{\circ}) = -\csc 150^{\circ} = -2$$
.

55. In a manner precisely similar to that employed in the preceding sections, we can determine the functions of an angle $270^{\circ} - \theta$ in terms of functions of θ . The figures for each quadrant should be constructed by the student, and the values obtained, as in the cases which have just been considered.

These relations, true for all values of θ , are as follows:

$$\sin(270^{\circ} - \theta) = -\cos\theta,$$

$$\cos(270^{\circ} - \theta) = -\sin\theta,$$

$$\tan(270^{\circ} - \theta) = \cot\theta,$$

$$\cot(270^{\circ} - \theta) = \tan\theta,$$

$$\sec(270^{\circ} - \theta) = -\csc\theta,$$

$$\csc(270^{\circ} - \theta) = -\sec\theta.$$

56. The corresponding values of functions of an angle $270^{\circ} + \theta$ in terms of functions of θ can also be obtained in a manner similar to that employed in the cases already discussed (Art. 50-54). These values are as follows:

$$\sin(270^{\circ} + \theta) = -\cos\theta,$$

$$\cos(270^{\circ} + \theta) = \sin\theta,$$

CONANT'S TRIG. - 6

12

$$\tan (270^{\circ} + \theta) = -\cot \theta,$$

$$\cot (270^{\circ} + \theta) = -\tan \theta,$$

$$\sec (270^{\circ} + \theta) = -\sec \theta,$$

$$\csc (270^{\circ} + \theta) = -\sec \theta.$$

EXAMPLES.

$$\sin (270^{\circ} - 210^{\circ}) = -\cos 210^{\circ} = -(-\frac{1}{2}\sqrt{3}) = \frac{1}{2}\sqrt{3},$$

$$\cos (270^{\circ} - 150^{\circ}) = -\sin 150^{\circ} = -\frac{1}{2},$$

$$\tan (270^{\circ} + 135^{\circ}) = -\cot 135^{\circ} = -(-1) = 1,$$

$$\cot (270^{\circ} - 240^{\circ} = \tan 240^{\circ} = \sqrt{3},$$

$$\sec (270^{\circ} + 30^{\circ}) = \csc 30^{\circ} = 2,$$

$$\csc (270^{\circ} + 60^{\circ}) = -\sec 60^{\circ} = -2.$$

57. Functions of an angle $360^{\circ} + \theta$ in terms of functions of θ . When the revolving line has generated an angle $360^{\circ} + \theta$, its position is the same as that occupied after it has generated the angle θ . Hence,

The functions of an angle $360^{\circ} + \theta$ are the same as the corresponding functions of θ .

Also, since the revolving line returns to its initial position after any number of complete revolutions, in either a positive or negative direction, it follows that, when n is any positive or negative integer or zero,

Functions of an angle $n \times 360^{\circ} + \theta$ are equal to the corresponding functions of θ .

In a similar manner it may be shown that the functions of $n \times 360^{\circ} - \theta$ are equal to the corresponding functions of $-\theta$.

58. By means of the equations contained in Arts. 50–57, pp. 74–82, the functions of any angle can be found in terms of functions of an angle less than 90°.

For example,
$$\sin 2151^{\circ} = \sin (5 \times 360^{\circ} + 351^{\circ})$$

 $= \sin 351^{\circ}$
 $= \sin (270^{\circ} + 81^{\circ})$
 $= -\cos 81^{\circ}$.
Similarly, $\cos (-2058^{\circ}) = \cos 2058^{\circ}$
 $= \cos (5 \times 360^{\circ} + 258^{\circ})$
 $= \cos 258^{\circ}$
 $= \cos (270^{\circ} - 12^{\circ})$
 $= -\sin 12^{\circ}$.

By reductions of this kind it is easy to find the values of functions of any large angle, either positive or negative. Multiples of 360° should first be subtracted, and the remainder of the reduction performed by the theorems of this chapter.

59. The following table contains the values of the functions of the angles between 0° and 360° which are of most frequent occurrence in elementary mathematics.

	00	900	4~0	600	000	1000	10*2	1:02	1.000	2502
	0°	30°	45°	. 60°	90°	120°	135°	150°	180°	270°
sine	0	$\frac{1}{2}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{3}$	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}$	0	- 1
cosine	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{1}{2}\sqrt{2}$	$-\frac{1}{2}\sqrt{3}$	-1	0
tangent	0	$\frac{1}{3}\sqrt{3}$	1	$\sqrt{3}$	± &	$-\sqrt{3}$	-1	$-\frac{1}{3}\sqrt{3}$,0	± ∞
cotangent	± %	$\sqrt{3}$	1	$\frac{1}{3}\sqrt{3}$	0	$-\frac{1}{3}\sqrt{3}$	- 1	$-\sqrt{3}$	± ∞	0
secant	1	$\frac{2}{3}\sqrt{3}$	$\sqrt{2}$	2	$\pm \infty$	- 2	$-\sqrt{2}$	$-\frac{2}{3}\sqrt{3}$	- 1	±∞
cosecant	± ∞	2	$\sqrt{2}$	$\frac{2}{3}\sqrt{3}$	1	$\frac{2}{3}\sqrt{3}$	$\sqrt{2}$	2	± ∞	- 1

Note. In the above table the double sign, which is used wherever the value ∞ occurs, signifies that either the positive or the negative value is obtained according as the revolving line approaches the given position from the one or from the other side. For example, $\tan 90^\circ = +\infty$ if the revolving line approaches the positive portion of the y-axis from the right, i.e. through positive rotation; $\tan 90^\circ = -\infty$ if the revolving line approaches the same position from the left, i.e. through negative rotation.

EXERCISE XI

Prove that

- 1. $\sin 210^{\circ} \tan 225^{\circ} + \cos 300^{\circ} \cot 315^{\circ} = -1$.
- 2. $\cos 240^{\circ} \cos 120^{\circ} \sin 120^{\circ} \cos 150^{\circ} = 1$.
- 3. $\tan 120^{\circ} \cot 150^{\circ} + \sec 120^{\circ} \csc 150^{\circ} = -1$.
- 4. $\tan 675^{\circ} \sec 540^{\circ} + \cot 495^{\circ} \csc 450^{\circ} = 0$.

- 5. For what values of A between 0° and 360° are $\sin A$ and $\cos A$ equal? For what values are $\tan A$ and $\cot A$ equal?
- 6. What sign has $\sin A + \cos A$ for the following angles? $A=120^\circ$; $A=135^\circ$; $A=150^\circ$; $A=300^\circ$; $A=315^\circ$; $A=690^\circ$; $A=\frac{6\pi}{7}$.
- 7. What sign has $\sin A \cos A$ for each of the following angles? $A = 210^{\circ}$; $A = 225^{\circ}$; $A = 240^{\circ}$; $A = 300^{\circ}$; $A = 625^{\circ}$; $A = 780^{\circ}$; $A = \frac{5\pi}{3}$.
 - 8. What sign has $\tan A \cot A$ for each of the following angles? $A=60^\circ$; $A=120^\circ$; $A=135^\circ$; $A=150^\circ$; $A=210^\circ$; $A=225^\circ$; $A=\frac{11}{6}$.
- 9. Find all the angles less than 360° that satisfy the following relations:

Towing relations:
(a)
$$\sin \theta = -\frac{\sqrt{3}}{2}$$
; (b) $\cos \theta = -\frac{\sqrt{3}}{2}$; (c) $\tan \theta = -1$;
(d) $\cot \theta = \sqrt{3}$.

- **10.** Prove $\sec (A 180^{\circ}) = -\sec A$.
- ____ 11. Prove $\cot (A 270^{\circ}) = -\tan A$.
 - 12. Prove $\cos A + \cos (90^{\circ} + A) + \cos (180^{\circ} A)$ - $\cos (270^{\circ} - A) = 0$.
 - 13. Prove

$$\frac{\tan{(180^{\circ} + A)}}{\tan{(180^{\circ} - A)}} \cdot \frac{\cot{(270^{\circ} - A)}}{\cot{(270^{\circ} + A)}} \cdot \frac{\sec{(360^{\circ} - A)}}{\csc{(360^{\circ} + A)}} = \tan{A}.$$

14. Find the value of

$$\frac{\sin\left(-A\right)}{\cos\left(90^{\circ}+A\right)} + \frac{\cos\left(-A\right)}{\sin\left(90^{\circ}+A\right)} + \frac{\tan\left(-A\right)}{\cot\left(90^{\circ}+A\right)}$$

15. Express in simplest form

$$\frac{\cos{(180^{\circ}-A)}}{\sin{(180^{\circ}+A)}}\cdot\frac{\tan{(270^{\circ}-A)}}{\cot{(270^{\circ}+A)}}\cdot\sec{A}.$$

PCA.

CHAPTER VII

GENERAL EXPRESSION FOR ALL ANGLES HAVING A GIVEN TRIGONOMETRIC FUNCTION

60. From the definitions of the trigonometric functions it is evident that a given angle can have but one sine, one cosine, one tangent, etc.

But the converse statement is not true. A given sine may belong to any one of an infinite number of angles. The same is true of the cosine, the tangent, or of any of the other trigonometric functions. This has already been alluded to incidentally (Arts. 50–57, pp. 74–82). Expressions will now be found for all angles that have a given sine, a given cosine, a given tangent, etc.

61. When the revolving line has made one complete revolution in either direction, it has generated an angle of $\pm 2\pi$ radians; when it has made two complete revolutions, it has generated an angle of $\pm 4\pi$ radians; and, in general, when it has made three, four, five, etc., revolutions, it has generated an angle of $\pm 6\pi$, $\pm 8\pi$, $\pm 10\pi$, etc., radians.

These statements may be combined into a single expression by means of the following statement:

When the revolving line has made any number of complete revolutions in either direction, it has generated an angle of $2 n\pi$ radians, where n is some positive or negative integer or zero.

62. General expression for all angles that have the same sine. Let XOA (p. 86) be any convenient angle, α , and let XOA' be equal to $\pi - \alpha$. By Art. 53, the sine of XOA =the sine of XOA'; or $\sin \alpha = \sin (\pi - \alpha)$. Also, $\pi - \alpha$ is the only other angle between 0° and 360°, or between 0 and 2π whose sine is equal to the sine of α . But (Art. 61) any angle whose initial line coincides with OX and whose terminal line also coincides

with OX is represented by the expression $2 n\pi$. Hence, all angles whose initial lines coincide with OX and whose terminal lines coincide with OA are represented by the expression $2 n\pi + \alpha$.

Any angle whose initial line coincides with OX and whose terminal line coincides with OX' is represented by the expression $2n\pi + \pi$, or $(2n+1)\pi$. Hence, all angles whose initial lines coincide with OX and whose terminal lines coincide with OA' are represented by the expression $(2n+1)\pi - \alpha$. These two expressions, $2n\pi + \alpha$ and $(2n+1)\pi - \alpha$, are both included in the more general expression $n\pi + (-1)^n\alpha$; that is, α is to be added to any even multiple of π , and subtracted from any odd multiple of π . This will be understood if successive values are substituted for n, and the resulting positions of the terminal line noted. This is conveniently done by means of the following table:

If
$$n = 0$$
, $n\pi + (-1)^n \alpha = \alpha$, $n = 1$, $n\pi + (-1)^n \alpha = \pi - \alpha$, $n = 2$, $n\pi + (-1)^n \alpha = 2\pi + \alpha$, $n = 3$, $n\pi + (-1)^n \alpha = 3\pi - \alpha$, $n = 4$, $n\pi + (-1)^n \alpha = 4\pi + \alpha$, $n = 5$, $n\pi + (-1)^n \alpha = 5\pi - \alpha$, $n = 6$, $n\pi + (-1)^n \alpha = 6\pi + \alpha$, $n = 7$, $n\pi + (-1)^n \alpha = 7\pi - \alpha$, $n = 8$, $n\pi + (-1)^n \alpha = 8\pi + \alpha$, $n = 9$, $n\pi + (-1)^n \alpha = 9\pi - \alpha$, $n = -1$, $n\pi + (-1)^n \alpha = -\pi - \alpha$, $n = -2$, $n\pi + (-1)^n \alpha = -2\pi + \alpha$.

In this table we observe that whenever n is an even number, the expression $(-1)^n = +1$, and the angle that the revolving line has then generated is (Art. 61, p. 85) a certain number of complete revolutions plus the angle α . If n is an odd number, the expression $(-1)^n = -1$, and the angle that the revolving

line has generated is a certain number of complete revolutions plus a half revolution, minus the angle α . That is,

The expression $n\pi + (-1)^n \alpha$ is a general expression for all angles that have the same sine as the angle α .

63. In this connection it should be noted that, when n is any positive or negative integer or zero, 2n is, by definition, an even number, and 2n+1 is an odd number.

64. General expression for all angles that have the same cosine.

The cosine of the angle $360^{\circ} - a$, or $2\pi - a$, is equal to the

cosine of the angle α ; and $2\pi - \alpha$ is the only angle between 0 and 2π that has the same cosine as the angle α .

But, reasoning in the same manner X as in Art. 62, all angles whose initial lines coincide with OX and whose terminal lines coincide with OA are included in the expression $2n\pi + a$;

and all angles whose initial lines coincide with OX and whose terminal lines coincide with OA' are included in the expression $2 n\pi - a$. Hence,

The expression $2n\pi \pm \alpha$ is a general expression for all angles that have the same cosine as the angle α .

65. General expression for all angles that have the same tangent. The tangent of $180^{\circ} + \alpha$, or $\pi + \alpha$, is equal to the tangent of α ; and $\pi + \alpha$ is the only angle between 0 and 2π that has the same tangent as the angle α (see fig. p. 88).

All angles whose initial lines coincide with OX and whose terminal lines coincide with OA are included in the general expression $2n\pi + \alpha$, and all angles whose initial lines coincide with OX and whose terminal lines coincide with OA' are included in the general expression $(2n+1)\pi + \alpha$. But, since 2n signifies only even integers, and 2n+1 only odd integers, while n includes all integers, both even and odd, the two expressions, $2n\pi + \alpha$ and $(2n+1)\pi + \alpha$, can be combined as follows:

The expression $n\pi + a$ is a general expression for all angles that have the same tangent as the angle a.

66. Since $\cot \alpha$ is the reciprocal of $\tan \alpha$, the general expression for all angles that have the same cotangent as the angle α

is $n\pi + \alpha$.

Since $\sec \alpha$ is the reciprocal of $\cos \alpha$, the general expression for all angles that have the same secant as the angle α is $2n\pi \pm \alpha$.

Since $\csc \alpha$ is the reciprocal of $\sin \alpha$, the general expression for all angles that have the same cosecant as the angle α is $n\pi + (-1)^n\alpha$.

67. In the following examples, and in practical work generally, the smallest positive value of α is taken. This is done simply for convenience, the results just obtained being perfectly general.

EXERCISE XII

1. What is the general expression for all angles whose sine is $\frac{1}{2}$?

The smallest positive angle whose sine equals $\frac{1}{2}$ is 30°, or $\frac{\pi}{6}.$

$$\therefore \theta = \frac{\pi}{6}$$
 is the smallest positive angle,

and (Art. 62) $\theta = n\pi + (-1)^n \frac{\pi}{6}$ is the general expression for all angles whose sine is $\frac{1}{3}$.

2. What is the general expression for all angles whose tangent is $\sqrt{3}$?

The smallest positive angle whose tangent is $\sqrt{3}$ is 60°, or $\frac{\pi}{3}$.

$$\therefore \theta = \frac{\pi}{3}$$
 is the smallest positive angle,

and (Art. 65) $\theta = n\pi + \frac{\pi}{3}$ is the general expression for all angles whose tangent is $\sqrt{3}$.

3. What is the general expression for all angles whose cosine is $-\frac{1}{2}$, and whose tangent is $-\sqrt{3}$?

The only angles between 0° and 360° whose cosine is $-\frac{1}{2}$ are 120° and 240°. The only angles between 0° and 360° whose tangent is $-\sqrt{3}$ are 120° and 300.

The only angle that satisfies both these conditions is 120°, or $\frac{2}{3}\pi$.

$$\therefore \theta = 2 n\pi + \frac{2}{3} \pi.$$

Another general expression for the same angles is $(2n+1)\pi - \frac{1}{3}\pi$.

Find the general value of θ which satisfies each of the following equations:

4.
$$\sin \theta = \frac{1}{2}\sqrt{2}$$
.

5.
$$\sin \theta = 1$$
.

6.
$$\sin \theta = -\frac{1}{2}\sqrt{3}$$
.

7.
$$\sin \theta = -\frac{1}{2}$$
.

8.
$$\cos \theta = \frac{1}{2} \sqrt{3}$$
.

9.
$$\cos \theta = -\frac{1}{2}\sqrt{2}$$
.

10.
$$\cos \theta = 0$$
.

11.
$$\cos \theta = -1$$
.

12.
$$\tan \theta = 1$$
.

13.
$$\tan \theta = -\frac{1}{3}\sqrt{3}$$
.

14.
$$\sin^2 \theta = \frac{1}{4}$$
.

15.
$$\cos^2 \theta = \frac{1}{2}$$
.

16.
$$3 \tan^2 \theta = 1$$
.

17.
$$3 \sec^2 \theta = 4$$
.

18.
$$\cot^2 \theta = 1$$
.

19.
$$\tan^2 \theta = 2 \sin^2 \theta$$
.

20.
$$2 \tan^2 \theta = \sec^2 \theta$$
.

21. What is the general value of θ that satisfies both of the following equations?

$$\sin \theta = \frac{1}{2}\sqrt{3}$$
, and $\cos \theta = \frac{1}{2}$.

22. What is the general value of θ that satisfies both of the following equations?

$$\sin \theta = -\frac{1}{2}$$
, and $\cos \theta = -\frac{1}{2}\sqrt{3}$.

In the following five examples, show that the same angles are indicated by both the given expressions.

23.
$$n\pi + \frac{\pi}{2}$$
, and $2n\pi \pm \frac{\pi}{2}$.

24.
$$n\pi + (-1)^n \frac{\pi}{3}$$
, and $2n\pi + \frac{\pi}{2} \pm \frac{\pi}{6}$.

25.
$$n\pi - \frac{\pi}{6}$$
, and $n\pi + \frac{5}{6}\pi$.

26.
$$n\pi + \frac{\pi}{3}$$
, and $-n\pi + \frac{\pi}{3}$.

27.
$$(4n+3)\frac{\pi}{2}$$
, and $2n\pi-\frac{\pi}{2}$.

68. An equation involving trigonometric functions of an unknown angle is called a trigonometric equation.

The solution of a trigonometric equation involves the determination of all angles that satisfy the equation.

In solving a trigonometric equation, the smallest positive angle that satisfies it should first be determined, and then the general value should be found for all angles that satisfy it. This has been illustrated in the examples of Exercise XII, and will be still further shown in those of the following set.

EXERCISE XIII

1. Solve the equation $\cos^2 \theta + 2 \sin^2 \theta = \frac{5}{4}$.

This may be written

$$\cos^2 \theta + 2 - 2\cos^2 \theta = \frac{5}{4}.$$

$$\therefore \cos^2 \theta = \frac{3}{4}.$$

$$\cos \theta = \pm \frac{1}{2}\sqrt{3}.$$

The smallest positive angle whose cosine is $\frac{1}{2}\sqrt{3}$ is 30°, or $\frac{\pi}{6}$.

Therefore, using the positive result, $\theta = 2 n\pi \pm \frac{\pi}{6}$

Also, the smallest positive angle whose cosine is $-\frac{1}{2}\sqrt{3}$ is 150°, or $\frac{5}{6}\pi$.

Therefore, using the negative result, $\theta = 2 n\pi \pm \frac{5}{6} \pi$, or $(2 n + 1) \pi \pm \frac{\pi}{6}$.

These two sets of values may be combined in the single expression $n\pi \pm \frac{\pi}{6}$. $\therefore \theta = n\pi \pm \frac{\pi}{6}$.

2. Solve the equation $2\cos^2\theta - \sqrt{3}\sin\theta + 1 = 0$.

This may be written

2 - 2 sin²
$$\theta$$
 - $\sqrt{3}$ sin θ + 1 = 0.
2 sin² θ + $\sqrt{3}$ sin θ - 3 = 0.
(sin θ + $\sqrt{3}$) (2 sin θ - $\sqrt{3}$) = 0.
 \therefore sin θ = - $\sqrt{3}$, or sin θ = $\frac{1}{2}\sqrt{3}$.

Factoring,

The sine of an angle cannot be numerically greater than 1; therefore, the first equation gives no solution.

The smallest positive angle that satisfies the equation

$$\sin \theta = \frac{1}{2} \sqrt{3},$$

$$\theta = 60^{\circ}, \text{ or } \frac{\pi}{3},$$

is

and (Art. 62) the general expression for the value of all angles that have the same sine as 60° is $\theta = n\pi + (-1)^{n\frac{\pi}{2}}$.

Therefore, the most general expression for all angles that satisfy the original equation is $n\pi + (-1)^n \frac{\pi}{3}$.

3. Solve the equation $\tan 4 \theta = \cot 3 \theta$.

This may be written
$$\tan 4\theta = \tan \left(\frac{\pi}{2} - 3\theta\right)$$
, by Art. 51,

$$= \tan \left(n\pi + \frac{\pi}{2} - 3\theta\right)$$
, by Art. 65.

$$\therefore 4\theta = n\pi + \frac{\pi}{2} - 3\theta$$
,

$$7 \theta = n\pi + \frac{\pi}{2}.$$

$$\theta = \frac{1}{7} \left(n\pi + \frac{\pi}{2} \right).$$

Solve the following equations, finding the general value of θ in each case:

$$\mathbf{4.} \quad 2\sin^2\theta - \cos\theta = 1.$$

$$\mathbf{6.} \quad \cot^2 \theta - \csc \theta = 1.$$

7.
$$\cos^2 \theta - \sin \theta = \frac{1}{4}$$
.

8.
$$2\sin^2\theta + 3\cos\theta = 0$$
.

9.
$$2\cos^2\theta + \cos\theta = 1$$
.

10.
$$\sin^2 \theta - 2 \cos \theta + \frac{1}{4} = 0$$
.

11.
$$3\sin^2\theta - 2\sin\theta = 1$$
.

12.
$$\sec^2 \theta + \tan^2 \theta = 3$$
.

13.
$$\csc^2 \theta - \cot \theta = 3$$
.

14.
$$\tan^2 \theta + \cot^2 \theta = 2$$
.

14.
$$\tan^2 \theta + \cot^2 \theta = 2$$

15. $\sin 5 \theta = \sin 2 \theta$.

14

16.
$$\sin 3\theta = \sin 9\theta$$
.

17.
$$\cos 6 \theta = \cos 2 \theta$$
.

18.
$$\cos 4 \theta = \cos 5 \theta$$
.

19.
$$\cos m\theta = \cos n\theta$$
.

20.
$$\cos 4 \theta = \sin 2 \theta$$
.

21.
$$\sin 4\theta = \cos 2\theta$$
.

22.
$$\tan 2 \theta = \tan 3 \theta$$
.

23.
$$\cot 5 \theta = \cot 2 \theta$$
.

24.
$$\tan 4 \theta = \cot 5 \theta$$
.

25.
$$\tan m\theta + \cot n\theta = 0$$
.

26.
$$\tan 2 \theta \tan \theta = 1$$
.

by. 8.

4-11-15

CHAPTER VIII

RELATIONS BETWEEN THE TRIGONOMETRIC FUNCTIONS OF TWO OR MORE ANGLES

69. Sine and cosine of the sum of two angles. Let x and y be acute angles, and let x + y be either acute or obtuse. In both figures the lettering is so arranged that the following demonstrations apply to either case.

From C, any point in OB, draw $CD \perp XX'$, and $CE \perp OA$; and from E draw $EH \parallel XX'$ and $EF \perp XX'$.

Since

$$\angle x = \angle OEH = 90^{\circ} - \angle HEC = \angle HCE$$
,
 $\therefore \angle x = \angle HCE$.

Then we have

$$\sin(x + y) = \frac{DC}{OC}$$

$$= \frac{DH + HC}{OC}$$

$$= \frac{FE}{OC} + \frac{HC}{OC}$$

$$= \frac{FE}{OE} \frac{OE}{OC} + \frac{HC}{CE} \frac{CE}{OC}$$

$$= \sin x \cos y + \cos \angle HCE \sin y.$$

 $\therefore \sin(x+y) = \sin x \cos y + \cos x \sin y. \tag{1}$

Also,
$$\cos(x + y) = \frac{OD}{OC}$$

$$= \frac{OF - DF}{OC}$$

$$= \frac{OF}{OC} - \frac{HE}{OC}$$

$$= \frac{OF}{OE} \frac{OE}{OC} - \frac{HE}{CE} \frac{CE}{OC}$$

$$= \cos x \cos y - \sin \angle HCE \sin y.$$

$$\therefore \cos(x + y) = \cos x \cos y - \sin x \sin y.$$
(2)

92

70. The above proofs are given only for the case when both xand y are acute.

To prove the formulas true for all values of x and y we proceed as follows:

Let x and y be acute angles, and let $x_1 = 90^{\circ} + x$; then we have (Art. 52),

$$\sin x_1 = \cos x, \text{ and } \cos x_1 = -\sin x. \tag{1}$$

Then,

$$\sin (x + y) = \sin (90^{\circ} + x + y)$$

= $\cos (x + y)$, (Art. 52) (2)

where x and y are both acute angles.

But (Art. 69, p. 92) when x and y are both acute angles,

$$\cos(x+y) = \cos x \cos y - \sin x \sin y.$$

Substituting in this equation the values given in (1) and (2), we have

$$\sin(x_1 + y) = \sin x_1 \cos y + \cos x_1 \sin y.$$
 Q.E.D.

In like manner,

$$\cos(x_1 + y) = \cos(90^\circ + x + y)$$

= -\sin(x + y), (Art. 52) (3)

where x and y are both acute angles.

But (Art. 69, p. 92) when x and y are both acute angles,

$$-\sin(x+y) = -\sin x \cos y - \cos x \sin y.$$

Substituting in this equation the values given in (1) and (3), we have

$$\cos(x_1 + y) = \cos x_1 \cos y - \sin x_1 \sin y.$$
 Q.E.D

Formulas (1) and (2) (Art. 69, p. 92) have now been proved for the case when x is obtuse and y is acute.

Letting $y_1 = (90^{\circ} + y)$, and proceeding in the same manner, we can establish these formulas for the case when both angles are obtuse.

Then, letting $x_2 = 90^{\circ} + x_1$, $y_2 = 90^{\circ} + y_1$, $x_3 = 90^{\circ} + x_2$, etc., and proceeding in a precisely similar manner, we can establish the formulas for all possible values of x and y.

71. Sine and cosine of the difference of two angles. Let x and y be two acute angles, placed as represented in the figure. is here assumed that x > y.

From C, any point in the final position of the generating line OA, draw $CD \perp OX$ and $CE \perp OB$. Prolong DC, and from E draw $EH \parallel OX$, intersecting DC produced in H.

Since
$$\angle x = \angle BEH = 90^{\circ} - \angle HEC = \angle ECH$$
, X' $O \neq D$ $\therefore \angle x = \angle ECH$.

Then,
$$\sin(x - y) = \frac{CD}{OC}$$

$$= \frac{FE - HC}{OC}$$

$$= \frac{FE}{OE} \frac{OE}{OC} - \frac{HC}{EC} \frac{EC}{OC}$$

$$= \sin x \cos y - \cos \angle ECH \sin y.$$

$$\therefore \sin(x - y) = \sin x \cos y - \cos x \sin y.$$
(1)

In like manner, $\cos(x-y) = \frac{\partial D}{\partial G}$ $=\frac{OF+FD}{OC}$ $=\frac{OF}{OC}+\frac{EH}{OC}$ $= \frac{OF}{OE} \frac{OE}{OC} + \frac{EH}{EC} \frac{EC}{OC}$ $=\cos x\cos y + \sin \angle ECH\sin y$

These proofs have been given on the assumption that x > y. To prove that they are true when x < y, we proceed as follows:

 $\therefore \cos(x-y) = \cos x \cos y + \sin x \sin y.$

$$\sin (x - y) = \sin [-(y - x)]$$

$$= -\sin (y - x), \qquad (Art. 50, p. 75)$$

$$= -\sin y \cos x + \cos y \sin x,$$

(2)

or, rearranging the terms and the factors in each term,

$$\sin(x - y) = \sin x \cos y - \cos x \sin y. \qquad Q. E. D. \quad (3)$$

In like manner,

$$\cos(x - y) = \cos[-(y - x)]$$

$$= \cos(y - x)$$

$$= \cos y \cos x + \sin y \sin x,$$
(Art. 50)

or, rearranging the factors in each term,

$$\cos(x-y) = \cos x \cos y + \sin x \sin y. \qquad Q. E. D. \quad (4)$$

72. The formulas of Art. 71 have now been proved for all cases when x and y are both acute angles. To prove that they are true for all possible values of x and y, we proceed as follows:

Let x and y be acute angles, and let $x_1 = 90^{\circ} + x$. Then,

$$\sin x_1 = \cos x, \text{ and } \cos x_1 = -\sin x. \tag{1}$$

Then we have $\sin(x_1 - y) = \sin(90^\circ + x - y)$ $=\cos(x-y)$. (Art. 52) (2) But since x and y are acute angles,

$$\cos(x - y) = \cos x \cos y + \sin x \sin y. \tag{3}$$

Substituting in (3) the values given in (1) and (2), we have

$$\sin(x_1 - y) = \sin x_1 \cos y - \cos x_1 \sin y$$
. Q. E. D. (4)

In like manner,

$$\cos(x_1 - y) = \cos(90^\circ + x - y) = -\sin(x - y). \tag{5}$$

But since x and y are acute angles,

$$-\sin(x - y) = -(\sin x \cos y - \cos x \sin y).$$
(Art. 71, p. 94) (6)

Substituting in (6) the values given in (1) and (5), we have

$$\cos(x_1 - y) = \cos x_1 \cos y + \sin x_1 \sin y$$
. Q. E. D. (7)

Formulas (1) and (2) (Art. 71, p. 94) have now been proved for the case when x is an obtuse angle and y is an acute angle.

Letting $y_1 = 90^{\circ} + y$, and proceeding as before, we can establish these formulas for the case when both angles are obtuse.

Then, letting $x_2 = 90^{\circ} + x_1$, $y_2 = 90^{\circ} + y_1$, $x_3 = 90^{\circ} + x_2$, etc., and proceeding in a precisely similar manner, we can establish the formulas for all possible values of x and y.

EXERCISE XIV

1. Find the value of sin 75°.

$$\sin 75^{\circ} = \sin (45^{\circ} + 30^{\circ})$$

$$= \sin 45^{\circ} \cos 30^{\circ} + \cos 45^{\circ} \sin 30^{\circ}$$

$$= \frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \frac{1}{2}$$

$$= \frac{\sqrt{3} + 1}{2\sqrt{2}}.$$

2. Find the value of sin 15°.

$$\sin 45^{\circ} = \sin (45^{\circ} - 30^{\circ})$$

$$= \sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ}$$

$$= \frac{1}{\sqrt{2}} \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \frac{1}{2}$$

$$= \frac{\sqrt{3} - 1}{2\sqrt{2}}.$$

3. Find the value of cos 105°.

$$\begin{aligned} \cos 105^{\circ} &= \cos \left(60^{\circ} + 45^{\circ} \right) \\ &= \cos 60^{\circ} \cos 45^{\circ} - \sin 60^{\circ} \sin 45^{\circ} \\ &= \frac{1}{2} \frac{1}{\sqrt{2}} - \frac{\sqrt{3}}{2} \frac{1}{\sqrt{2}} \\ &= \frac{1 - \sqrt{3}}{2\sqrt{2}}. \end{aligned}$$

- 4. If $\sin \alpha = \frac{3}{5}$ and $\sin \beta = \frac{12}{13}$, find $\sin (\alpha \beta)$.
- 5. If $\sin \alpha = \frac{3}{5}$ and $\cos \beta = \frac{12}{13}$, find $\cos (\alpha + \beta)$.
 - 6. If $\cos \alpha = \frac{40}{41}$, and $\cos \beta = \frac{4}{5}$, find $\cos (\alpha \beta)$.

Prove that

7.
$$\sin (60^{\circ} + \theta) - \sin \theta = \sin (60^{\circ} - \theta)$$
.

- 8. $\sin 105^{\circ} + \cos 105^{\circ} = \cos 45^{\circ}$.
 - 9. $\sin 75^{\circ} \sin 15^{\circ} = \cos 105^{\circ} + \cos 15^{\circ}$.
- 10. $\sin (45^{\circ} \theta) \cos (45^{\circ} \phi) \cos (45^{\circ} \theta) \sin (45^{\circ} \phi) = \sin (\phi \theta).$

HINT. Let $x=45^{\circ}-\theta$ and $y=45^{\circ}-\phi$. Then compare with (1), Art. 66. The converse application of the x-y formulas, as illustrated by this example, is of frequent occurrence.

11.
$$\sin (45^{\circ} + \theta) \cos (45^{\circ} - \phi) + \cos (45^{\circ} + \theta) \sin (45^{\circ} - \phi)$$

= $\cos (\theta - \phi)$.

12.
$$\cos(45^{\circ} - \theta)\cos(45^{\circ} + \theta) - \sin(45^{\circ} - \theta)\sin(45^{\circ} + \theta) = 0.$$

13.
$$\cos (30^{\circ} + \alpha) \cos (30^{\circ} - \alpha) + \sin (30^{\circ} + \alpha) \sin (30^{\circ} - \alpha)$$

= $\cos 2 \alpha$.

14.
$$\cos \alpha \cos (\beta - \alpha) - \sin \alpha \sin (\beta - \alpha) = \cos \beta$$
.

15.
$$\sin (n+1)\alpha \sin (n-1)\alpha + \cos (n+1)\alpha \cos (n-1)\alpha = \cos 2\alpha$$
.

16.
$$\sin (n+1)\alpha \sin (n+2)\alpha + \cos (n+1)\alpha \cos (n+2)\alpha$$

= $\cos \alpha$.

17.
$$\sin (\alpha - \beta + 15) \cos (\beta - \alpha + 15)$$

 $-\cos (\alpha - \beta + 15) \sin (\beta - \alpha + 15) = \sin (2 \alpha - 2 \beta).$

cl

The following examples are of especial importance, and are often used as standard formulas.

18.
$$\sin 75^{\circ} = \cos 15^{\circ} = \frac{\sqrt{3} + 1}{2\sqrt{2}}.$$
19.
$$\sin 15^{\circ} = \cos 75^{\circ} = \frac{\sqrt{3} + 1}{2\sqrt{2}}.$$

20.
$$\cos(x+y)\cos(x-y) = \cos^2 x - \sin^2 y$$
.

21.
$$\sin(x+y)\sin(x-y) = \cos^2 y - \cos^2 x$$
.

73. Tangent of the sum and of the difference of two angles. For all values of x and y we have (Art. 69)

and
$$\sin(x+y) = \sin x \cos y + \cos x \sin y,$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y.$$

$$\tan(x+y) = \frac{\sin x \cos y + \cos x \sin y}{\cos x \cos y - \sin x \sin y}.$$

Dividing both numerator and denominator by $\cos x \cos y$, we have

$$\tan(x+y) = \frac{\frac{\sin x \cos y}{\cos x \cos y} + \frac{\cos x \sin y}{\cos x \cos y}}{\frac{\cos x \cos y}{\cos x \cos y} - \frac{\sin x \sin y}{\cos x \cos y}}$$

$$= \frac{\frac{\sin x}{\cos x} + \frac{\sin y}{\cos y}}{1 - \frac{\sin x \sin y}{\cos x \cos y}}.$$

$$\therefore \tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}.$$
(1)

In like manner,

$$\tan (x - y) = \frac{\sin (x - y)}{\cos (x - y)}$$

$$= \frac{\sin x \cos y - \cos x \sin y}{\cos x \cos y + \sin x \sin y}$$

$$= \frac{\frac{\sin x \cos y}{\cos x \cos y} - \frac{\cos x \sin y}{\cos x \cos y}}{\frac{\cos x \cos y}{\cos x \cos y} + \frac{\sin x \sin y}{\cos x \cos y}}$$

$$= \frac{\frac{\sin x}{\cos x} - \frac{\sin y}{\cos x}}{1 + \frac{\sin x \sin y}{\cos x \cos y}}.$$

$$\therefore \tan (x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}.$$
 (2)

74. Cotangent of the sum and of the difference of two angles. For all values of x and y we have

$$\cot(x+y) = \frac{\cos(x+y)}{\sin(x+y)}.$$

Expanding $\cos(x+y)$ and $\sin(x+y)$, dividing both numerator and denominator by $\sin x \sin y$, and reducing, we have

 $\cot(x+y) = \frac{\cot x \cot y - 1}{\cot x + \cot y}.$ (1)

In a similar manner it can be proved that

$$\cot(x-y) = \frac{\cot x \cot y + 1}{\cot y - \cot x}.$$
 (2)

- 75. Formulas (1) and (2), Art. 69, (1) and (2), Art. 71, (1) and (2), Art. 73, and (1) and (2), Art. 74, are often referred to as the addition and subtraction formulas. The addition formulas are sometimes known as the x + y formulas, and the subtraction formulas as the x y formulas. When reference is made to both groups together, the general expression, "the x-y formulas," is often employed.
- 76. From the formulas for the functions of the sum of two angles the formulas for the functions of the sum of three angles are at once obtained, as follows:

$$\sin(x + y + z) = \sin[(x + y) + z]$$

$$= \sin(x + y) \cos z + \cos(x + y) \sin z$$

$$= (\sin x \cos y + \cos x \sin y) \cos z$$

$$+ (\cos x \cos y - \sin x \sin y) \sin z.$$

$$\sin(x + y + z) = \sin x \cos y \cos z + \cos x \sin y \cos z$$

$$+ \cos x \cos y \sin z - \sin x \sin y \sin z.$$
(1)

In like manner it can be proved that

$$\cos(x + y + z) = \cos x \cos y \cos z - \cos x \sin y \sin z$$

$$-\sin x \cos y \sin z - \sin x \sin y \cos z,$$
(2)

and that

$$\tan(x+y+z) = \frac{\sin(x+y+z)}{\cos(x+y+z)}$$

$$= \frac{\tan x + \tan y + \tan z - \tan x \tan y \tan z}{1 - \tan x \tan y - \tan z - \tan y \tan z}.$$
 (3)

EXERCISE XV

- 1. If
$$\tan \alpha = \frac{1}{2}$$
 and $\tan \beta = \frac{1}{3}$, find $\tan (\alpha + \beta)$.

2. If
$$\tan \alpha = \frac{3}{4}$$
 and $\tan \beta = \frac{40}{41}$, find $\tan (\beta - \alpha)$.

3. If
$$\tan \alpha = \frac{4}{3}$$
 and $\cot \beta = \frac{5}{12}$, find $\cot (\alpha + \beta)$.

4. If
$$\tan \alpha = \frac{4}{3}$$
 and $\beta = 45^{\circ}$, find $\tan (\alpha + \beta)$.

5. If
$$\tan \alpha = \frac{1}{2}$$
 and $\tan \beta = \frac{1}{3}$, find $\tan (2\alpha + \beta)$.

6. If
$$\tan \alpha = \frac{n}{n+1}$$
 and $\tan \beta = \frac{1}{2n+1}$, find $\tan (\alpha + \beta)$.

7. If
$$\tan \alpha = \frac{5}{6}$$
 and $\tan \beta = \frac{1}{11}$, prove that $\alpha + \beta = 45^{\circ}$.

The next four examples are of especial importance, and are often used as standard formulas.

8.
$$\tan(45^{\circ} + x) = \frac{1 + \tan x}{1 - \tan x}$$
.

11.
$$\tan 75^{\circ} = \cot 15^{\circ} = 2 + \sqrt{3}$$
.

9.
$$\tan(45^{\circ}-x) = \frac{1-\tan x}{1+\tan x}$$
.

12.
$$\cot\left(\frac{\pi}{4} + \theta\right) = \frac{\cot\theta - 1}{\cot\theta + 1}$$

10.
$$\tan 15^\circ = \cot 75^\circ = 2 - \sqrt{3}$$
.

13.
$$\cot\left(\frac{\pi}{4} - \theta\right) = \frac{\cot\theta + 1}{\cot\theta - 1}$$

14.
$$\tan\left(\frac{\pi}{4} + \theta\right) \tan\left(\frac{3\pi}{4} + \theta\right) = -1.$$

15. Prove the identity $\cos(\alpha + \beta)\cos\beta + \sin(\alpha + \beta)\sin\beta = \cos\alpha$.

HINT. Let $\alpha + \beta = x$ and $\beta = y$. Then compare with (2), Art. 69. Many of the remaining examples can be worked without difficulty by applying the addition or subtraction formulas directly.

16.
$$\sin 2\alpha \cos \alpha + \cos 2\alpha \sin \alpha = \sin 3\alpha$$
.

17.
$$\sin 3 \alpha \cos \alpha - \cos 3 \alpha \sin \alpha = \sin 2 \alpha$$
.

18.
$$\cos 3 \alpha \cos 2 \alpha - \sin 3 \alpha \sin 2 \alpha = \cos 5 \alpha$$
.

19.
$$\frac{\sin 2\alpha}{\sec \alpha} + \frac{\cos 2\alpha}{\csc \alpha} = \sin 3\alpha.$$

20.
$$\sin(60^{\circ} + \alpha)\cos(30^{\circ} + \alpha) - \cos(60^{\circ} + \alpha)\sin(30^{\circ} + \alpha) = \frac{1}{2}$$
.

21.
$$\frac{\tan 2\alpha + \tan \alpha}{1 - \tan 2\alpha \tan \alpha} = \tan 3\alpha.$$

22.
$$\frac{\tan{(\alpha+\beta)} + \tan{(\alpha-\beta)}}{1 - \tan{(\alpha+\beta)}\tan{(\alpha-\beta)}} = \tan{2\alpha}.$$

all

odd

23.
$$\frac{\tan \alpha - \tan (\alpha - \beta)}{1 + \tan \alpha \tan (\alpha - \beta)} = \tan \beta.$$

24.
$$\frac{\cot 3 \alpha \cot 2 \alpha + 1}{\cot 2 \alpha - \cot 3 \alpha} = \cot \alpha.$$

25.
$$\tan 2\theta - \tan \theta = \tan \theta \sec 2\theta$$
.

26.
$$\sec 2\theta = 1 + \tan 2\theta \tan \theta$$
.

27.
$$\csc 2\theta = \cot \theta - \cot 2\theta$$
.

28.
$$\frac{\tan 3 \theta - \tan 2 \theta}{1 + \tan 3 \theta \tan 2 \theta} = \frac{\tan 4 \theta - \tan 3 \theta}{1 + \tan 4 \theta \tan 3 \theta}$$

29.
$$\tan (45^{\circ} + \theta) - \tan (45^{\circ} - \theta) = \frac{4 \tan \theta}{1 - \tan^2 \theta}$$

$$30. \quad \frac{\sin(x+y)}{\cos(x-y)} = \frac{\cot x + \cot y}{1 + \cot x \cot y}.$$

77. The algebraic sum of two sines or of two cosines in the form of a product. For all values of x and y we have (Arts. 69)

$$\sin(x+y) = \sin x \cos y + \cos x \sin y,$$

and

$$\sin(x-y) = \sin x \cos y - \cos x \sin y.$$

Adding and subtracting, we have

$$\sin(x+y) + \sin(x-y) = 2\sin x \cos y,\tag{1}$$

and

$$\sin(x+y) - \sin(x-y) = 2\cos x \sin y. \tag{2}$$

Also (Arts. 69 and 71),

$$\cos(x + y) = \cos x \cos y - \sin x \sin y,$$

$$\cos(x - y) = \cos x \cos y + \sin x \sin y.$$

and

Adding and subtracting, as before, we have

$$\cos(x+y) + \cos(x-y) = 2\cos x \cos y,$$
 (3)

and Let

$$\cos(x+y) - \cos(x-y) = -2\sin x \sin y.$$

$$x+y=u, \text{ and } x-y=v.$$
(4)

Solving these two equations for x and y,

$$x = \frac{u+v}{2}$$
, and $y = \frac{u-v}{2}$.

Substituting these values of x and y in (1), (2), (3), and (4), we have

$$\sin u + \sin v = 2\sin\frac{u+v}{2}\cos\frac{u-v}{2};\tag{5}$$

$$\sin u - \sin v = 2\cos\frac{u+v}{2}\sin\frac{v-v}{2};\tag{6}$$

$$\cos u + \cos v = 2\cos\frac{u+v}{2}\cos\frac{u-v}{2};\tag{7}$$

$$\cos u - \cos v = -2\sin\frac{u+v}{2}\sin\frac{u-v}{2}.$$
 (8)

These formulas are among the most important of all the formulas of trigonometry. The student should commit them carefully to memory, and become perfectly familiar with their application. They will sometimes be referred to as the *u-v* formulas.

As illustrations of the manner in which certain expressions can be simplified by the application of one or more of these processes, the following examples are given:

1.
$$\sin 70^{\circ} - \sin 10^{\circ} = 2 \cos \frac{70^{\circ} + 10^{\circ}}{2} \sin \frac{70^{\circ} - 10^{\circ}}{2}$$

$$= 2 \cos 40^{\circ} \sin 30^{\circ}$$

$$= \cos 40^{\circ}.$$
2. $\frac{\sin 75^{\circ} - \sin 15^{\circ}}{\cos 75^{\circ} + \cos 15^{\circ}} = \frac{2 \cos \frac{75^{\circ} + 15^{\circ}}{2} \sin \frac{75^{\circ} - 15^{\circ}}{2}}{2 \cos \frac{75^{\circ} + 15^{\circ}}{2} \cos \frac{75^{\circ} - 15^{\circ}}{2}}$

$$= \frac{2 \cos 45^{\circ} \sin 30^{\circ}}{2 \cos 45^{\circ} \cos 30^{\circ}}$$

$$= \tan 30^{\circ}$$

$$= \frac{1}{3} \sqrt{3} = 0.57735.$$
3. $\frac{(\sin 6\theta + \sin 2\theta)(\cos 2\theta - \cos 4\theta)}{(\sin 5\theta + \sin \theta)(\cos 3\theta - \cos 5\theta)}$

$$= \frac{(2 \sin 4\theta \cos 2\theta)(2 \sin 3\theta \sin \theta)}{(2 \sin 3\theta \cos 2\theta)(2 \sin 4\theta \sin \theta)} = 1.$$

EXERCISE XVI

Prove the following relations:

1.
$$\sin 70^{\circ} + \sin 50^{\circ} = \sqrt{3} \cos 10^{\circ}$$
.

2.
$$\frac{\sin 8\theta - \sin 6\theta}{\cos 8\theta + \cos 6\theta} = \tan \theta.$$
 3.
$$\frac{\sin 2\theta + \sin 6\theta}{\cos 2\theta + \cos 6\theta} = \tan 4\theta.$$

4.
$$\frac{\sin 5 \theta - \sin \theta}{\sin 6 \theta - \sin 2 \theta} = \cos 3 \theta \sec 4 \theta.$$

5.
$$\frac{\sin 2 A + \sin 2 B}{\sin 2 A - \sin 2 B} = \tan (A + B) \cot (A - B).$$

6.
$$\frac{\sin \theta + \sin 2\theta}{\cos \theta - \cos 2\theta} = \cot \frac{\theta}{2}.$$
 7.
$$\frac{\sin A + \sin B}{\cos A + \cos B} = \tan \frac{(A+B)}{2}.$$

8.
$$\frac{\sin A - \sin B}{\cos B - \cos A} = \cot \frac{(A+B)}{2}$$

9.
$$\sin(A+B) + \cos(A-B) = 2\sin(45^{\circ} + B)\cos(45^{\circ} - A)$$
.

10.
$$\frac{\cos 5 A - \cos 3 A}{\sin 5 A - \sin 3 A} + \frac{\cos 2 A - \cos 4 A}{\sin 4 A - \sin 2 A} = -\frac{\sin A}{\cos 4 A \cos 3 A}$$

11.
$$\sin(60^{\circ} + A) - \sin(60^{\circ} - A) = \sin A$$
.

12.
$$\cos(30^{\circ} - \theta) + \cos(30^{\circ} + \theta) = \sqrt{3}\cos\theta$$
.

13.
$$\cos\left(\frac{\pi}{4} + \theta\right) - \cos\left(\frac{\pi}{4} - \theta\right) = -\sqrt{2}\sin\theta$$
.

14.
$$\frac{\sin\theta + \sin 3\theta + \sin 5\theta + \sin 7\theta}{\cos\theta + \cos 3\theta + \cos 5\theta + \cos 7\theta} = \tan 4\theta.$$

15.
$$\frac{\sin \theta - \sin 5 \theta + \sin 9 \theta - \sin 13 \theta}{\cos \theta - \cos 5 \theta - \cos 9 \theta + \cos 13 \theta} = \cot 4 \theta.$$

16.
$$\frac{\sin x + \sin y}{\sin x - \sin y} = \tan \frac{x + y}{2} \cot \frac{x - y}{2}$$

17.
$$\frac{\cos x + \cos y}{\cos x - \cos y} = \cot \frac{x + y}{2} \cot \frac{y - x}{2}$$

18.
$$\cos 3\theta + \cos 5\theta + \cos 7\theta + \cos 15\theta = 4\cos 4\theta\cos 5\theta\cos 6\theta$$
.

19.
$$\frac{\cos(2A - 3B) + \cos 3B}{\sin(2A - 3B) + \sin 3B} = \cot A.$$

20.
$$\sin 50^{\circ} + \sin 10^{\circ} - \sin 70^{\circ} = 0$$
.

21.
$$\frac{\cos(A-3B)-\cos(3A+B)}{\sin(3A+B)+\sin(A-3B)} = \tan(A+2B).$$

22.
$$\sin 80^\circ + \sin 70^\circ - \sin 10^\circ - \sin 20^\circ = + \sin 40^\circ + \sin 50^\circ$$
.

23.
$$\cos x + \cos 2x + \cos 4x + \cos 5x = 4\cos \frac{x}{2}\cos \frac{3x}{2}\cos 3x$$
.

24.
$$\sin(\alpha + \beta + \gamma) + \sin(\alpha - \beta - \gamma) + \sin(\alpha + \beta - \gamma) + \sin(\alpha - \beta + \gamma) = 4 \sin \alpha \cos \beta \cos \gamma$$
.

25.
$$\sin 2\alpha + \sin 2\beta + \sin 2\gamma - \sin 2(\alpha + \beta + \gamma)$$

= $4\sin(\beta + \gamma)\sin(\gamma + \alpha)\sin(\alpha + \beta)$.

26.
$$\frac{\cos\theta + 2\cos3\theta + \cos5\theta}{\cos3\theta + 2\cos5\theta + \cos7\theta} = \frac{\cos3\theta}{\cos5\theta}$$

27.
$$\frac{\sin 3\theta + 2\sin 5\theta + \sin 7\theta}{\sin \theta + 2\sin 3\theta + \sin 5\theta} = \sin 5\theta \csc 3\theta.$$

28.
$$\frac{\sin(A+B) - 2\sin A + \sin(A-B)}{\cos(A+B) - 2\cos A + \cos(A-B)} = \tan A.$$

29.

$$\frac{\cos(x+y+z) + \cos(-x+y+z) + \cos(x-y+z) + \cos(x+y-z)}{\sin(x+y+z) + \sin(-x+y+z) - \sin(x-y+z) + \sin(x+y-z)}$$
= cot y.

30. $\cos 20^\circ + \cos 100^\circ + \cos 140^\circ = 0$.

78. The product of two sines, of two cosines, or of a sine and a cosine expressed in the form of an algebraic sum.

In (1), (2), (3), and (4), Art. 77, the *u-v* formulas are expressed in a form which is quite as important as that already considered, and which is so convenient, and of such frequent application that the formulas are here reproduced in that form. Using the left for the right and the right for the left members, they are

$$2\sin x\cos y = \sin(x+y) + \sin(x-y); \tag{1}$$

$$2\cos x \sin y = \sin(x+y) - \sin(x-y); \qquad (2)$$

$$2\cos x\cos y = \cos(x+y) + \cos(x-y); \tag{3}$$

$$-2\sin x\sin y = \cos(x+y) - \cos(x-y). \tag{4}$$

These formulas are the converse of the *u-v* formulas, and may be conveniently referred to by that name. The two groups taken together are useful in solving problems and in performing investigations which, without them, could be handled only with the greatest difficulty.

EXERCISE XVII

1. Express in the form of a sum or difference $2 \sin 6 \theta \sin 4 \theta$.

$$2 \sin \theta \theta \sin \theta = -(\cos(\theta \theta + \theta)) + \cos(\theta \theta - \theta)$$
$$= -(\cos \theta - \cos \theta)$$
$$= \cos \theta - \cos \theta.$$

2. Express in the form of a sum or difference $\cos(A-2B)$ $\sin(A+2B)$.

$$\cos(A - 2B)\sin(A + 2B) = \frac{1}{2}(\sin 2A - \sin(-4B))$$
$$= \frac{1}{2}(\sin 2A + \sin 4B).$$

3. Find the value of $2 \sin 75^{\circ} \sin 15^{\circ}$.

$$2 \sin 75^{\circ} \sin 15^{\circ} = \cos (75^{\circ} - 15^{\circ}) - \cos (75^{\circ} + 15^{\circ})$$
$$= \cos 60^{\circ} - \cos 90^{\circ}$$
$$= \frac{1}{2} - 0$$
$$= \frac{1}{2}.$$

Express as a sum or difference the following:

4. $2\sin 6\theta\cos 2\theta$.

8. $\cos \frac{\theta}{4} \cos \frac{3\theta}{4}$.

5. $2\cos 4\theta \sin 2\theta$.

2 sin (2 A+B) cos (A-B).
 2 cos 3 A cos (A-2 B).

6. $\cos \frac{\theta}{2} \sin \frac{3\theta}{2}$. 7. $\sin \frac{5\theta}{2} \cos \frac{7\theta}{2}$.

11. $\sin (60^{\circ} + \theta) \cos (60^{\circ} - \theta)$.

Prove the following identities:

12.
$$\cos(120^{\circ} + \theta)\cos(120^{\circ} - \theta) = \frac{1}{4}(2\cos 2\theta - 1)$$
.

13.
$$\cos(30^{\circ} - \theta)\cos(60^{\circ} - \theta) = \frac{1}{2}(2\sin 2\theta + \sqrt{3}).$$

14.
$$\sin(120^{\circ} - \theta)\cos(60^{\circ} + \theta) = \frac{1}{2}(\sin(60^{\circ} - 2\theta)).$$

15.
$$\sin (\theta + 45^{\circ}) \sin (\theta - 45^{\circ}) = -\frac{1}{2} \cos 2 \theta$$
.

16.
$$\cos 3\theta \sin 2\theta - \cos 4\theta \sin \theta = \cos 2\theta \sin \theta$$
.

17.
$$\sin 3\theta \sin 6\theta + \sin \theta \sin 2\theta = \sin 4\theta \sin 5\theta$$
.

18.
$$\sin 2\theta \cos \theta + \sin 6\theta \cos \theta = \sin 3\theta \cos 2\theta + \sin 5\theta \cos 2\theta$$
.

19.
$$\cos (40^{\circ} - \theta) \cos (40^{\circ} + \theta) + \cos (50^{\circ} + \theta) \cos (50^{\circ} - \theta) = \cos 2\theta$$
.

8)

20.
$$\sin A \cos (A + B) - \cos A \sin (A - B) = \cos 2 A \sin B$$
.

21.
$$2\cos\frac{3\pi}{11}\cos\frac{4\pi}{11} + \cos\frac{4\pi}{11} + \cos\frac{10\pi}{11} = 0.$$

22.
$$4 \sin A \sin B \sin C = \sin (B + C - A) + \sin (C + A - B) + \sin (A + B - C) - \sin (A + B + C)$$
.

23.
$$\frac{\cos 3 A \sin 2 A - \cos 4 A \sin A}{\cos 5 A \cos 2 A - \cos 4 A \cos 3 A} = -\cot 2 A.$$

24.
$$4 \sin \theta \sin (60^{\circ} + \theta) \sin (60^{\circ} - \theta) = \sin 3\theta$$
.

25.
$$4\cos\theta\cos\left(\frac{2\pi}{3}+\theta\right)\cos\left(\frac{2\pi}{3}-\theta\right)=\cos 3\theta.$$

26.
$$\sin 20^{\circ} \sin 40^{\circ} \sin 80^{\circ} = \frac{1}{8} \sqrt{3}$$
.

27.
$$\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ} = \frac{1}{8}$$
.

CHAPTER IX

FUNCTIONS OF MULTIPLE AND SUBMULTIPLE ANGLES

79. Functions of an angle in terms of functions of half the angle. If in the addition formulas, Arts. 69, 71, 73, and 74, we put x = y, we have

$$\sin (x + x) = \sin x \cos x + \cos x \sin x,$$

$$\cos (x + x) = \cos x \cos x - \sin x \sin x,$$

$$\tan (x + x) = \tan x + \tan x$$

$$\tan (x+x) = \frac{\tan x + \tan x}{1 - \tan x \tan x},$$

and

$$\cot(x+x) = \frac{\cot x \cot x - 1}{\cot x + \cot x};$$

i.e. $\sin 2 x = 2 \sin x \cos x; \tag{1}$

$$\cos 2 x = \cos^2 x - \sin^2 x; \qquad (2)$$

$$\tan 2 x = \frac{2 \tan x}{1 - \tan^2 x};$$
 (3)

$$\cot 2 x = \frac{\cot^2 x - 1}{2 \cot x} \tag{4}$$

In these formulas 2x may have any value whatever; or, in other words, 2x is any angle whatever.

Hence, these formulas are to be regarded as formulas for expressing the values of functions of an angle in terms of functions of half the angle. They may also, of course, be regarded as formulas for expressing the functions of twice an angle in terms of functions of the angle itself.

80. If we let $2x = \theta$, we have the formulas in the following useful form:

 $\sin \theta = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}; \tag{1}$

$$\cos \theta = \cos^2 \frac{\theta}{2} - \sin^2 \frac{\theta}{2}$$

$$= 1 - 2\sin^2 \frac{\theta}{2}$$

$$= 2\cos^2 \frac{\theta}{2} - 1.$$

$$\tan \theta = \frac{2\tan \frac{\theta}{2}}{1 - \tan^2 \frac{\theta}{2}};$$
(3)

$$\cot \theta = \frac{\cot^2 \frac{\theta}{2} - 1}{2 \cot \frac{\theta}{2}}.$$

81. Functions of an angle 3x in terms of functions of x.

If in the addition formulas we put y = 2x, we obtain expressions for the value of functions of 3x in terms of functions of x, as follows:

$$\sin(x + 2x) = \sin x \cos 2x + \cos x \sin 2x$$

$$= \sin x (\cos^2 x - \sin^2 x) + \cos x \cdot 2 \sin x \cos x$$

$$= \sin x (1 - 2\sin^2 x) + 2\sin x (1 - \sin^2 x)$$

$$= \sin x - 2\sin^3 x + 2\sin x - 2\sin^3 x.$$

$$\therefore \sin 3 \ x = 3 \sin x - 4 \sin^3 x. \tag{1}$$

In like manner,

$$\cos(x + 2x) = \cos x \cos 2x - \sin x \sin 2x$$

$$= \cos x (\cos^2 x - \sin^2 x) - \sin x \cdot 2 \sin x \cos x$$

$$= \cos x (2\cos^2 x - 1) - 2 (1 - \cos^2 x) \cos x$$

$$= 2\cos^3 x - \cos x - 2\cos x + 2\cos^3 x.$$

$$\therefore \cos 3 \ x = 4 \cos^3 x - 3 \cos x. \tag{2}$$

Also,
$$\tan 3x = \frac{\tan x + \tan 2x}{1 - \tan x \tan 2x} = \frac{\tan x + \frac{2 \tan x}{1 - \tan^2 x}}{1 - \tan x \frac{2 \tan x}{1 - \tan^2 x}}$$

$$\therefore \tan 3 \ x = \frac{3 \tan x \ge \tan^3 x}{1 - 3 \tan^2 x}. \tag{3}$$

In a similar manner it is possible to obtain formulas for the functions of higher multiples of x in terms of functions of x.

82. Functions of an angle expressed in terms of functions of twice the angle.

Since
$$\cos 2x = 1 - 2\sin^2 x$$
, we have $2\sin^2 x = 1 - \cos 2x$.

$$\therefore \sin x = \pm \sqrt{\frac{1 - \cos 2 x}{2}}.$$
 (1)

Also,

$$\cos 2 x = 2 \cos^2 x - 1,$$

 $2 \cos^2 x = 1 + \cos 2 x.$

$$\therefore \cos x = \pm \sqrt{\frac{1 + \cos 2 x}{2}}.$$
 (2)

Dividing (1) by (2) we have
$$\tan x = \pm \sqrt{\frac{1 - \cos 2 x}{1 + \cos 2 x}}.$$
 (3)

These formulas are often given in the following form, where

$$x = \frac{\theta}{2}.$$

$$\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}}.$$
 (4)

$$\cos\frac{\theta}{2} = \pm\sqrt{\frac{1+\cos\theta}{2}}.$$
 (5)

$$\tan\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{1+\cos\theta}}.$$
 (6)

In this form they are to be regarded as formulas for expressing the values of functions of a half-angle in terms of functions of the angle itself.

The magnitude of the angle determines which of the two signs preceding the radical is to be employed.

EXERCISE XVIII

- 1. If $\sin \theta = \frac{1}{3}$, find $\sin 2\theta$ and $\sin 3\theta$.
- 2. If $\sin \theta = \frac{1}{4}$, find $\cos 2\theta$ and $\cos 3\theta$.
- 3. If $\cos \theta = \frac{3}{5}$, find $\sin 2\theta$ and $\cos 3\theta$.
- **4.** If $\tan \theta = \frac{1}{2}$, find $\tan 2 \theta$ and $\tan 3 \theta$.
- 5. If $\tan \theta = \frac{1}{3}$, find $\sin 2\theta$ and $\tan 3\theta$.

Prove the following identities:

6.
$$\cos^4 \theta - \sin^4 \theta = \cos 2 \theta$$
.

9.
$$\frac{\cot \theta - \tan \theta}{\cot \theta + \tan \theta} = \cos 2 \theta.$$

7.
$$\tan \theta + \cot \theta = 2 \csc 2\theta$$
.

8.
$$\cot \theta - \tan \theta = \frac{2}{\tan 2 \theta}$$
. 10. $\sec 2 \theta = \frac{\cot^2 \theta + 1}{\cot^2 \theta - 1}$.

The next six equations are especially important, and may be regarded as standard formulas.

11.
$$\left(\sin\frac{\theta}{2} + \cos\frac{\theta}{2}\right)^2 = 1 + \sin\theta$$
. 18. $\cos 2\theta = \frac{2 - \sec^2\theta}{\sec^2\theta}$.

12.
$$\tan \theta = \frac{\sin 2 \theta}{1 + \cos 2 \theta}$$
.

(of p) ma (of ro) on

19.
$$\sin^2 \frac{\theta}{2} = \frac{\sec \theta - 1}{2 \sec \theta}$$
.

13.
$$\cot \theta = \frac{\sin 2 \theta}{1 - \cos 2 \theta}$$
.

20.
$$\frac{\cos\theta}{1-\sin\theta}=\tan\left(\frac{\pi}{4}+\frac{\theta}{2}\right).$$

14.
$$\tan \frac{\theta}{2} = \frac{1 - \cos \theta}{\sin \theta}$$
.

15.
$$\cot \frac{\theta}{2} = \frac{1 + \cos \theta}{\sin \theta}$$
.

21.
$$\frac{\sin(A+B)}{\cos(A-B)} = \frac{\tan\frac{A+B}{2}}{\tan\frac{A+B}{2}}$$
22.
$$\frac{\cos 2\theta}{1+\sin 2\theta} = \tan (45^{\circ}-\theta)$$

16.
$$\left(\sin\frac{\theta}{2} - \cos\frac{\theta}{2}\right)^2 = 1 - \sin\theta$$
.

9. 22.
$$\frac{\cos 2\theta}{1 + \sin 2\theta} = \tan (45^{\circ} - \theta)$$
23.
$$\frac{\sin 3\theta}{\sin \theta} - \frac{\cos 3\theta}{\cos \theta} = 2.$$

$$\frac{\cos (A + B)}{\cos (A + B)} = \tan \frac{A}{2} \tan \frac{B}{2}.$$

17.
$$2\cos^2\frac{\theta}{2} = \frac{1+\sec\theta}{\sec\theta}$$
.

$$23. \frac{\sin 3 \theta}{\sin \theta} - \frac{\cos 3 \theta}{\cos \theta} = 2.$$

24.
$$\frac{1 - \cos A + \cos B - \cos (A + B)}{1 + \cos A - \cos B - \cos (A + B)} = \tan \frac{A}{2} \tan \frac{B}{2}$$

25.
$$\tan (45^{\circ} + \theta) + \tan (45^{\circ} - \theta) = \frac{2}{\cos 2\theta}$$

26.
$$\tan 2\theta - \sec \theta \sin \theta = \tan \theta \sec 2\theta$$
.

27.
$$\frac{\sin^2 \alpha - \sin^2 \beta}{\sin \alpha \cos \alpha - \sin \beta \cos \beta} = \tan (\alpha + \beta).$$

28.
$$\frac{\cos\theta + \sin\theta}{\cos\theta - \sin\theta} - \frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta} = 2\tan 2\theta.$$

1- 60(A+B)-(co)A-co)B

29.
$$\frac{\cos{(\theta + 15^\circ)}}{\sin{(\theta + 15^\circ)}} - \frac{\sin{(\theta - 15^\circ)}}{\cos{(\theta - 15^\circ)}} = \frac{4\cos{2\theta}}{1 + 2\sin{2\theta}}.$$

30.
$$\frac{\cos 2\theta + \cos \theta + 1}{\sin 2\theta + \sin \theta} = \cot \theta.$$

31.
$$\frac{1 - \cos 2\theta + \sin 2\theta}{1 + \cos 2\theta + \sin 2\theta} = \tan \theta.$$

32.
$$\frac{-\tan\theta+1}{\tan\theta+1} = \frac{1-\sin 2\theta}{\cos 2\theta}.$$

33.
$$\frac{\sin 2\theta}{1 - \cos 2\theta} \cdot \frac{1 - \cos \theta}{\cos \theta} = \tan \frac{\theta}{2}.$$

34.
$$\frac{\sin((n+1)\theta + \sin((n-1)\theta + 2\sin n\theta)}{\cos((n-1)\theta - \cos((n+1)\theta)} = \cot\frac{\theta}{2}.$$

35.
$$\frac{\cos 3\theta + \sin 3\theta}{\cos \theta - \sin \theta} = 1 + 2\sin 2\theta.$$

36.
$$\sin 6\theta + \sin 4\theta - \sin 2\theta = 4 \sin 2\theta \cos \theta \cos 3\theta$$
.

37.
$$(\sec 2\theta + 1)\sqrt{\sec^2\theta - 1} = \tan 2\theta$$
.

38.
$$4\cos\theta\cos(60^{\circ} - \theta)\cos(60^{\circ} + \ell) = \cos 3\theta$$
.

39.
$$16 \cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = 1.$$

40.
$$\tan (45^{\circ} + \theta) = \sqrt{\frac{1 + \sin 2\theta}{1 - \sin 2\theta}}$$

41.
$$\frac{\sin{(n+1)\theta} - \sin{(n-1)\theta}}{\cos{(n+1)\theta} + \cos{(n-1)\theta} + 2\cos{n\theta}} = \tan{\frac{\theta}{2}}.$$

42.
$$\cos^2(n+1)\theta - \cos^2 n\theta = -\sin(2n+1)\theta \sin \theta$$
.

83. Identities that are true for angles whose sum is 180° or 90°. When three angles are involved whose sum is either 90° or 180°, many relations are found to exist that do not hold true for angles in general.

For, if $A + B + C = 180^{\circ}$, we have (Art. 53, p. 78), $\sin(A+B) = \sin C$, $\cos(A+B) = -\cos C$, $\tan(A+B) = -\tan C$, and similar relations hold between functions of the sum of any two of the given angles, and the corresponding functions of the third angle, since the sum of any two is the supplement of the third.

Also, if $\frac{A}{2} + \frac{B}{2} + \frac{C}{2} = 90^{\circ}$, the sum of any two of these angles is the complement of the third. Therefore,

$$\sin\left(\frac{A}{2} + \frac{B}{2}\right) = \cos\frac{C}{2}, \cos\left(\frac{A}{2} + \frac{B}{2}\right) = \sin\frac{C}{2}, \tan\left(\frac{A}{2} + \frac{B}{2}\right) = \cot\frac{C}{2},$$

and similar relations hold between functions of the sum of any two of the angles and the corresponding co-functions of the third.

Ex. 1. If
$$A + B + C = 180^{\circ}$$
, prove that $\sin 2A + \sin 2B - \sin 2C = 4\cos A\cos B\sin C$.

Left member =
$$2 \sin (A + B) \cos (A - B) - 2 \sin C \cos C$$

= $2 \sin C \cos (A - B) + 2 \sin C \cos (A + B)$
= $2 \sin C [\cos (A + B) + \cos (A - B)]$
= $2 \sin C (2 \cos A \cos B)$
= $4 \cos A \cos B \sin C$.

Ex. 2. If
$$A + B + C = 180^{\circ}$$
, prove that $\cos A + \cos B + \cos C = 1 + 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$.

$$\begin{aligned} \text{Left member} &= 2\cos\frac{A+B}{2}\cos\frac{A-B}{2} + 1 - 2\sin^2\frac{C}{2} \\ &= 1 + 2\sin\frac{C}{2}\cos\frac{A-B}{2} - 2\sin^2\frac{C}{2} \\ &= 1 + 2\sin\frac{C}{2}\Big(\cos\frac{A-B}{2} - \sin\frac{C}{2}\Big) \\ &= 1 + 2\sin\frac{C}{2}\Big(\cos\frac{A-B}{2} - \cos\frac{A+B}{2}\Big) \\ &= 1 + 2\sin\frac{C}{2}\Big(2\sin\frac{A}{2}\sin\frac{B}{2}\Big) \\ &= 1 + 4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}. \end{aligned}$$

Ex. 3. If $A + B + C = 180^{\circ}$, prove that

 $\tan A + \tan B + \tan C = \tan A \tan B \tan C$.

Since $A + B = 180^{\circ} - C$, $\tan (A + B) = -\tan C$;

i.e. $\frac{\tan A + \tan B}{1 - \tan A \tan B} = -\tan C.$

Clearing of fractions, $\tan A + \tan B = -\tan C + \tan A \tan B \tan C$. $\therefore \tan A + \tan B + \tan C = \tan A \tan B \tan C$.

EXERCISE XIX

If $A + B + C = 180^{\circ}$, prove that

- **1.** $\sin 2A + \sin 2B + \sin 2C = 4 \sin A \sin B \sin C$.
- 2. $\cos 2A + \cos 2B + \cos 2C = -1 4 \cos A \cos B \cos C$
- 3. $\cos 2A \cos 2B + \cos 2C = 1 4 \sin A \cos B \sin C$
- 4. $\sin 2A \sin 2B \sin 2C = -4 \sin A \cos B \cos C$.
- 5. $\cos A + \cos B \cos C = -1 + 4 \cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2}$.
- 6. $\sin A + \sin B + \sin C = 4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$.
- 7. $\sin A + \sin B \sin C = 4 \sin \frac{A}{2} \frac{\partial B}{\partial C} \cos \frac{C}{2}$.
- 8. $\sin^2 A + \sin^2 B \sin^2 C = 2 \sin A \sin B \cos C$.
- 9. $\cos^2 A + \cos^2 B \cos^2 C = 1 2 \sin A \sin B \cos C$. $1 + \cos A + B \cos A - B - \cos A - B - \cos C = 1 + \cos (A - B) + \cos (A - B) + \cos (A - B)$
- 10. $\frac{\sin A + \sin B \sin C}{\sin A + \sin B + \sin C} = \tan \frac{A}{2} \tan \frac{B}{2}. = l 2 \cos C$
- 11. $\frac{\sin 2A + \sin 2B + \sin 2C}{\sin 2A + \sin 2B \sin 2C} = \cot A \cot B$.
- 12. $\frac{1+\cos A \cos B + \cos C}{1+\cos A + \cos B \cos C} = \tan \frac{B}{2} \cot \frac{C}{2}.$
- 13. $\frac{\sin 2A + \sin 2B + \sin 2C}{\sin A + \sin B + \sin C} = 8 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}.$

cot B (cot A + cot C) + Cot A cot C = cot B | $\frac{\cot A \cot C}{\cot (A + C)}$ + cot A cot C = 1.

MULTIPLE AND SUBMULTIPLE ANGLES, 113

14. $\cot A \cot B + \cot B \cot C + \cot C \cot A = 1$.

.

15. $\tan \frac{A}{2} \tan \frac{B}{2} + \tan \frac{B}{2} \tan \frac{C}{2} + \tan \frac{C}{2} \tan \frac{A}{2} = 1.$

16. $\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \cot \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2}$

17. $\sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2} = 1 - 2\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}$.

18. $\cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2} = 4 \cos \frac{A+B}{4} \cos \frac{B+C}{4} \cos \frac{C-A}{4}$.

19. $\sin (A + B - C) + \sin (B + C - A) + \sin (C + A - B)$ = $4 \sin A \sin B \sin C$.

 $= 4\sin\frac{A-B}{2}\sin\frac{B-C}{2}\sin\frac{C-A}{2}.$

20. $\sin (A + 2B) + \sin (B + 2C) + \sin (C + 2A)$

CHAPTER X

INVERSE TRIGONOMETRIC FUNCTIONS

84. If $\sin \theta = a$, where a is any known quantity, θ may have any one of an infinite number of values. The symbol " $\sin^{-1} a$ " is used to denote the angle whose sine is a, and is, accordingly, read "the angle whose sine is a." It is sometimes called the *inverse sine*, or the *anti sine* of a.

To illustrate the use of this notation, let us take the equation

$$\cos\theta = \frac{1}{2}.\tag{1}$$

We know from this that θ may equal 60°, 300°, 420°, 660°, To state the fact that θ may equal any one of these angles, we employ the equation $\theta = \cos^{-1} \frac{1}{2}$, (2)

which is read " θ = the angle whose cosine is $\frac{1}{2}$."

We are then to understand that (1) and (2) are inverse statements, the former asserting that the cosine of some angle, θ , is equal to $\frac{1}{2}$, and the latter asserting that θ is the angle whose cosine is $\frac{1}{2}$.

From (2) we also understand that 60°, 300°, 420°, ..., are angles that satisfy the equation, since the cosine of each of these angles is $\frac{1}{2}$. In other words, (2) is satisfied by any of the angles (Art. 64, p. 87) included in the general expression

$$2 n\pi \pm \frac{\pi}{3}$$
.

Similarly, if

 $\tan \theta = 1$,

then the equation

 $\theta = \tan^{-1} 1$

asserts that θ may equal 45°, 225°, 405°, That is, θ may have any one of the values represented by the expression

$$n\pi + \frac{\pi}{4}$$
.

It is strongly urged that the student become familiar at the outset with the idea that the expressions $\sin^{-1} 1$, $\cos^{-1} \frac{1}{2}$, $\tan^{-1} \sqrt{3}$, etc., are single symbols, and denote angles. They represent angles just as definitely as do the symbols θ , ϕ , A, B, x, y, etc., which are used so frequently for that purpose. The only point to be noted is, that the angle which is represented in this manner is described by means of one of its trigonometric functions.

85. Angles expressed by the symbols $\sin^{-1} a$, $\cos^{-1} \frac{1}{2}\sqrt{3}$, $\tan^{-1} 1$, etc., are called inverse trigonometric functions, or inverse circular functions.

Since a central angle has the same magnitude in degrees as the intercepted arc, these functions are used to represent arcs as well as angles. The notation arc $\sin a$, arc $\cos \frac{1}{2}$, arc $\tan \frac{1}{3}\sqrt{3}$, etc., is often used instead of $\sin^{-1} a$, $\cos^{-1} \frac{1}{2}$, $\tan^{-1} \frac{1}{3}\sqrt{3}$, etc.

In using the notation here adopted, the student should note that the symbol -1 is not an algebraic exponent. That is,

$$\sin^{-1} a$$
 is not the same as $(\sin a)^{-1}$.

The former expression denotes the angle whose sine is a, and the latter denotes $\frac{1}{\sin a}$, or $\csc a$.

86. The smallest numerical value of an angle whose sine, cosine, tangent, etc., have given values, is called the principal value of the angle.

Thus, the principal values of

$$\sin^{-1}\frac{1}{2}$$
, $\cos^{-1}\left(-\frac{1}{2}\right)$, $\tan^{-1}(-1)$, $\cot^{-1}\frac{\sqrt{3}}{3}$, are 30°, $\pm 120^{\circ}$, -45° , 60°.

In a case like the second, where two values are given, which are numerically equal but have opposite signs, the positive value is usually understood. Thus, the principal value of $\cos^{-1}(-\frac{1}{2})$ is usually considered to be 120°.

To avoid ambiguity, it will be understood that, when any of these symbols are employed, the principal values of the angles are referred to.

If a is positive, the principal values of all the inverse functions except vers⁻¹a and covers⁻¹a lie between 0° and 90°. The principal value of vers⁻¹a lies between 0° and 180°, and the

principal value of covers⁻¹ a lies between 0° and 90°, or between 180° and 270°.

If a is negative, the principal values of $\sin^{-1}a$ and $\csc^{-1}a$ lie between 0° and -90°, or between 180° and 270°. The principal values of $\cos^{-1}a$ and $\sec^{-1}a$ lie between 90° and 180°, or between -90° and -180°. The principal values of $\tan^{-1}a$ and $\cot^{-1}a$ lie between 90° and 180°. As stated above, the positive values of these angles are usually employed. Since vers θ and covers θ are always positive, vers⁻¹a and covers⁻¹a are impossible when a is negative.

87. Ex. 1. Prove that
$$\sin^{-1}\frac{3}{5} + \cos^{-1}\frac{12}{13} = \cos^{-1}\frac{33}{65}$$
. (1)

Let
$$\sin^{-1} \frac{3}{5} = \alpha$$
, $\cos^{-1} \frac{1}{13} = \beta$, $\cos^{-1} \frac{3}{65} = \gamma$.
Then, $\sin \alpha = \frac{3}{5}$, $\cos \beta = \frac{1}{13}$, $\cos \gamma = \frac{3}{65}$.
We are to prove that $\alpha + \beta = \gamma$. (2)

This can be done by proving that any function of $\alpha + \beta$ is equal to the same function of γ , since, if two sines, two cosines, two tangents, ..., are equal, the principal values of the angles are also equal.

In this case we select the cosines; and we are now to prove that

$$\cos\left(\alpha+\beta\right) = \cos\gamma. \tag{3}$$

Expanding,
$$\cos \alpha \cos \beta - \sin \alpha \sin \beta = \cos \gamma$$
. (4)

The values of $\cos \beta$, $\sin \alpha$, and $\cos \gamma$ are already known; and, obtaining the values of $\cos \alpha$ and $\sin \beta$ from the figures in the margin, and substituting in (4), we have

$$\begin{array}{l} \frac{4}{5} \cdot \frac{12}{13} - \frac{3}{8} \cdot \frac{5}{13} = \frac{88}{65}, \\ \frac{48}{65} - \frac{1}{65} = \frac{83}{65}. \\ \therefore \cos(\alpha + \beta) = \cos \gamma. \\ \therefore \alpha + \beta = \gamma. \end{array}$$

Ex. 2. Prove that
$$\cos^{-1}\frac{3}{5} + \sin^{-1}\frac{5}{13} + \sin^{-1}\frac{16}{65} = \frac{\pi}{2}$$
.

Let
$$\cos^{-1}\frac{3}{5} = \alpha$$
, $\sin^{-1}\frac{5}{15} = \beta$, $\sin^{-1}\frac{16}{65} = \gamma$.
Then, $\cos \alpha = \frac{3}{5}$, $\sin \beta = \frac{5}{15}$, $\sin \gamma = \frac{16}{65}$.

We are to prove that $\alpha + \beta + \gamma = \frac{\pi}{2}$,

or,
$$\alpha + \beta = \frac{\pi}{2} - \gamma$$
.

Selecting in this case the sines, we proceed as follows:

$$\sin(\alpha + \beta) = \sin\left(\frac{\pi}{2} - \gamma\right)$$
$$= \cos\gamma.$$

 $\sin \alpha \cos \beta + \cos \alpha \sin \beta = \cos \gamma$.

Substituting numerical values, we have

$$\frac{4}{5} \cdot \frac{1}{13} + \frac{3}{5} \cdot \frac{5}{13} = \frac{6}{6} \frac{3}{5},$$

$$\frac{4}{6} \frac{3}{5} + \frac{1}{6} \frac{5}{5} = \frac{6}{6} \frac{3}{5}.$$

$$\therefore \alpha + \beta = \frac{\pi}{2} - \gamma.$$

$$\alpha + \beta + \gamma = \frac{\pi}{2}.$$

Ex. 3. Prove that

$$2 \sin^{-1} \frac{1}{\sqrt{10}} + \tan^{-1} \frac{1}{7} - \cos^{-1} \frac{1}{\sqrt{2}} = 0.$$

$$\sin^{-1} \frac{1}{\sqrt{10}} = \alpha, \quad \tan^{-1} \frac{1}{7} = \beta, \quad \cos^{-1} \frac{1}{\sqrt{2}} = \gamma.$$

$$\sin \alpha = \frac{1}{\sqrt{10}}, \quad \tan \beta = \frac{1}{7}, \quad \cos \gamma = \frac{1}{\sqrt{2}}.$$

We are to prove that $2 \alpha + \beta - \gamma = 0$, $2\alpha + \beta = \gamma$. or,

Selecting the tangents as convenient functions to deal with in this case, we proceed as follows:

$$\tan (2 \alpha + \beta) = \tan \gamma$$
The left member
$$= \frac{\tan 2 \alpha + \tan \beta}{1 - \tan 2 \alpha \tan \beta}.$$

$$= \frac{\frac{2 \tan \alpha}{1 - \tan^2 \alpha} + \tan \beta}{1 - \frac{2 \tan \alpha}{1 - \tan^2 \alpha} \tan \beta} = \frac{\frac{\frac{2}{3}}{1 - \frac{1}{\alpha}} + \frac{1}{7}}{1 - \frac{\frac{2}{3}}{1 - \frac{1}{9}} \cdot \frac{1}{7}}$$

$$= \frac{\frac{150}{50}}{150} = 1.$$

$$\tan \gamma = 1.$$

$$\therefore \tan (2 \alpha + \beta) = \tan \gamma.$$

$$\therefore 2 \alpha + \beta = \gamma,$$

$$2 \alpha + \beta = \gamma,$$

$$2 \alpha + \beta - \gamma = 0.$$

But

Ex. 4. Prove that

$$2 \sin^{-1} \frac{2}{\sqrt{13}} + \cos^{-1} \frac{16}{65} + \frac{1}{2} \tan^{-1} \frac{24}{7} = \pi.$$
Let $\sin^{-1} \frac{2}{\sqrt{13}} = \alpha$, $\cos^{-1} \frac{16}{65} = \beta$, $\tan^{-1} \frac{24}{7} = \gamma$.

Then, $\sin \alpha = \frac{2}{\sqrt{13}}$, $\cos \beta = \frac{16}{65}$, $\tan \gamma = \frac{24}{7}$.

We are to prove that
$$2 \alpha + \beta + \frac{1}{2} \gamma = \pi,$$

$$2 \alpha + \beta = \pi - \frac{1}{2} \gamma$$

 $2\alpha + \beta = \pi - \frac{1}{2}\gamma.$

Selecting the sines as the most convenient functions with which to work in this case, we proceed as follows:

$$\sin(2\alpha + \beta) = \sin(\pi - \frac{1}{2}\gamma).$$

$$\sin 2\alpha \cos \beta + \cos 2\alpha \sin \beta = \sin \frac{1}{2}\gamma.$$
(1)

All the functions of α , β , and γ can be determined at once from the proper figures; and the values of $\sin 2\alpha$, $\cos 2\beta$, and $\sin \frac{1}{2}\gamma$ must be computed.

$$\sin 2 \alpha = 2 \sin \alpha \cos \alpha = 2 \cdot \frac{2}{\sqrt{13}} \cdot \frac{3}{\sqrt{13}} = \frac{12}{13}$$

$$\cos 2 \alpha = \cos^2 \alpha - \sin^2 \alpha = \frac{9}{13} - \frac{4}{13} = \frac{5}{13}$$

$$\sin\frac{1}{2}\gamma = \sqrt{\frac{1 - \cos\gamma}{2}} = \sqrt{\frac{1 - \frac{7}{25}}{2}} = \frac{3}{5}.$$

Substituting in (1), we have

$$\frac{\frac{1}{13} \cdot \frac{6}{6} \frac{6}{5} + \frac{5}{13} \cdot \frac{6}{6} \frac{8}{5} = \frac{3}{5},}{845} = \frac{3}{5},$$

$$\frac{\frac{3}{6} = \frac{3}{5}}{845} = \frac{3}{5}.$$

$$2 \alpha + \beta = \pi - \frac{1}{2} \gamma.$$

$$2 \alpha + \beta + \frac{1}{2} \gamma = \pi.$$

EXERCISE XX

Prove that

1.
$$\sin^{-1}\frac{8}{17} = \cos^{-1}\frac{15}{17}$$
. 3. $\cos^{-1}\frac{63}{65} = \csc^{-1}\frac{65}{16}$.

3.
$$\cos^{-1}\frac{63}{65} = \csc^{-1}\frac{65}{16}$$

2.
$$\sin^{-1}\frac{5}{13} = \tan^{-1}\frac{5}{12}$$
.

2.
$$\sin^{-1}\frac{5}{13} = \tan^{-1}\frac{5}{12}$$
. 4. $\sin^{-1}\frac{3}{5} = 2\sin^{-1}\frac{1}{\sqrt{10}}$.

5.
$$\tan^{-1}\frac{4}{3} - \tan^{-1}\frac{1}{7} = \tan^{-1}1$$
.

6.
$$\sin^{-1}\frac{16}{65} + \cos^{-1}\frac{12}{13} = \sin^{-1}\frac{3}{5}$$
.

7.
$$\sin^{-1}\frac{3}{5} + \tan^{-1}\frac{3}{5} = \tan^{-1}\frac{27}{11}$$
.

8.
$$\tan^{-1}\frac{2}{11} + \cot^{-1}\frac{24}{7} = \tan^{-1}\frac{1}{2}$$
.

- 9.
$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \sin^{-1}\frac{1}{\sqrt{2}}$$

$$- \quad \textbf{10.} \quad \sin^{-1}\frac{1}{\sqrt{5}} + \tan^{-1}\frac{1}{3} = \cos^{-1}\frac{1}{\sqrt{2}}.$$

- 11.
$$\cot^{-1}\frac{84}{13} + \cot^{-1}\frac{15}{8} = \cot^{-1}\frac{4}{3}$$
.

12.
$$2 \tan^{-1} \frac{2}{3} = \cot^{-1} \frac{5}{12}$$
.

13.
$$2 \tan^{-1} \frac{1}{5} + \tan^{-1} \frac{1}{4} = \tan^{-1} \frac{3}{4} \frac{2}{5}$$
.

14.
$$\tan^{-1}\frac{2}{9} + \cot^{-1}4 = \frac{1}{2}\cos^{-1}\frac{3}{5}$$
.

15.
$$\sin^{-1}\frac{3}{5} + \cot^{-1}\frac{5}{3} - \tan^{-1}\frac{8}{19} = \frac{\pi}{4}$$

16.
$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \tan^{-1}\frac{5}{6} + \tan^{-1}\frac{1}{11}$$

17.
$$\tan^{-1}\frac{4}{5} = \frac{1}{2}\cot^{-1}\frac{9}{40}$$
.

18.
$$2\cos^{-1}\frac{12}{13} = \tan^{-1}\frac{120}{119}$$
.

all

19.
$$\cos^{-1} x = 2 \cos^{-1} \sqrt{\frac{1+x}{2}}$$
.

13 14

20.
$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy}$$

21.
$$\tan^{-1} x + \cot^{-1} (x+1) = \tan^{-1} (x^2 + x + 1)$$
.

22.
$$\tan^{-1}\frac{x}{y} - \tan^{-1}\frac{x-y}{x+y} = \frac{\pi}{4}$$

23.
$$\sin^{-1} a + \cos^{-1} b = \cos^{-1} (b\sqrt{1-a^2} - a\sqrt{1-b^2}).$$

24.
$$\tan^{-1}\frac{a-b}{1+ab} + \tan^{-1}\frac{b-c}{1+bc} + \tan^{-1}\frac{c-a}{1+ca} = 0.$$

25.
$$\sin(2\sin^{-1}a) = 2 a \sqrt{1-a^2}$$
.

$$26. \sin\left(\cos^{-1}\frac{4}{5}\right) = \tan\left(\sin^{-1}\frac{3}{\sqrt{34}}\right).$$

27.
$$\sin(\sin^{-1} a + \sin^{-1} b) = a\sqrt{1 - b^2} + b\sqrt{1 - a^2}$$
.

28.
$$\tan (\tan^{-1} a + \tan^{-1} b) = \frac{a+b}{1-ab}$$

29.
$$\tan (2 \tan^{-1} a) = \frac{2 a}{1 - a}$$

30.
$$\cos(2\tan^{-1}\frac{1}{7}) = \sin(4\tan^{-1}\frac{1}{3}).$$

88. Solution of equations expressed in the inverse notation. The method of solution of equations that are expressed in terms of inverse functions is best illustrated by means of examples.

Ex. 1. Solve the equation

$$\tan^{-1}(x+1) + \tan^{-1}(x-1) = \tan^{-1}\frac{8}{31}$$

Let $\tan^{-1}(x+1) = \alpha$, $\tan^{-1}(x-1) = \beta$,

 $\tan^{-1}\tfrac{8}{31}=\gamma.$

Then, $\tan \alpha = x + 1$,

 $\tan \beta = x - 1, \qquad \tan \gamma = \frac{8}{31}.$

To find what values of x will satisfy the equation

$$\alpha + \beta = \gamma$$

when $\tan \alpha$, $\tan \beta$, and $\tan \gamma$ have the above values, we proceed as follows:

$$\tan (\alpha + \beta) = \tan \gamma.$$

Then the left member

$$= \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

$$= \frac{(x+1) + (x-1)}{1 - (x+1)(x-1)}$$

$$= \frac{2x}{2 - x^2}$$

Equating this to tan y, we have

$$\frac{2x}{2-x^2} = \frac{8}{31},$$

$$62x = 16 - 8x^2.$$

$$x = 1, \text{ or } -8.$$

Solving, we have

The second value is inadmissible as long as we use the principal value of the angles. Therefore, $x = \frac{1}{4}$.

Ex. 2. Solve the equation

$$\tan^{-1} x + \tan^{-1} (1 - x) = 2 \tan^{-1} \sqrt{x - x^2}.$$
Let
$$\tan^{-1} x = \alpha, \qquad \tan^{-1} (1 - x) = \beta, \qquad \tan^{-1} \sqrt{x - x^2} = \gamma.$$
Then,
$$\tan \alpha = x, \qquad \tan \beta = 1 - x, \qquad \tan \gamma = \sqrt{x - x^2}.$$

To find what values of x will satisfy the equation we proceed as follows:

$$\tan (\alpha + \beta) = \tan 2 \gamma,$$

$$\frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = \frac{2 \tan \gamma}{1 - \tan^2 \gamma},$$

$$\frac{x + (1 - x)}{1 - x(1 - x)} = \frac{2\sqrt{x - x^2}}{1 - x + x^2},$$

$$1 = 2\sqrt{x - x^2}.$$

$$x = \frac{1}{2}.$$

Solving,

Let

EXERCISE XXI

Solve the following equations:

1.
$$\sin^{-1} x = \cos^{-1} x$$
.

2.
$$\sin^{-1} x = \cos^{-1} (-x)$$
.

3.
$$\tan^{-1} x = \cot^{-1} x$$
.

4.
$$\tan^{-1} x = \cot^{-1} (-x)$$
.

5.
$$\sin^{-1}\frac{5}{x} + \sin^{-1}\frac{12}{x} = \frac{\pi}{2}$$

6.
$$\sin^{-1} x + \sin^{-1} 2 x = \frac{\pi}{3}$$

7.
$$\tan^{-1} x + 2 \tan^{-1} \frac{1}{x} = \frac{2\pi}{3}$$

8.
$$\cot^{-1} x + \cot^{-1} 2 x = \frac{3 \pi}{4}$$

9.
$$\tan^{-1}(x+1) - \cot^{-1}\frac{1}{x-1} = \tan^{-1}\frac{1}{2}$$

10.
$$\tan^{-1} 2x + \tan^{-1} 3x = \frac{3\pi}{4}$$

11.
$$\cos^{-1}x - \cos^{-1}\sqrt{1-x^2} = \cos^{-1}x\sqrt{3}$$
.

12.
$$\sin^{-1}(3x-2) + \cos^{-1}x = \cos^{-1}\sqrt{1-x^2}$$
. $\chi = \frac{1}{3}$

13.
$$\tan^{-1} \frac{x-1}{x-2} + \tan^{-1} \frac{x+1}{x+2} = \frac{\pi}{4}$$

14.
$$2 \tan^{-1} \frac{1}{2} + \sin^{-1} \frac{4}{5} = \sin^{-1} \frac{1}{x}$$

15.
$$\sin(\cot^{-1}\frac{1}{2}) = \tan(\cos^{-1}\sqrt{x}).$$

16.
$$\tan(\cos^{-1}x) = \sin(\cot^{-1}\frac{1}{2})$$
.

17.
$$\sin^{-1}\frac{1}{x} = \sin^{-1}\frac{1}{a} + \sin^{-1}\frac{1}{b}$$

$$\Rightarrow$$
 18. $\frac{1}{2} \tan^{-1} \left(\frac{2}{\sin x} \right) = \tan^{-1} (\cos x)$.

19.
$$\csc^{-1} x = \sec^{-1} \frac{a}{\sqrt{a^2 - 1}} + \cos^{-1} \frac{\sqrt{b^2 - 1}}{b}$$

20.
$$\cos^{-1}\frac{x^2-1}{x^2+1} + \tan^{-1}\frac{2x}{x^2-1} = \frac{2\pi}{3}$$

21.
$$\tan^{-1}\frac{x+1}{x-1} + \tan\frac{x-1}{x} = \tan^{-1}(-7)$$
.

7,8 P.121 Gy. 13,14,155,6 119112 11 1-6

CHAPTER XI

THE GENERAL SOLUTION OF TRIGONOMETRIC EQUA-

89. A trigonometric equation is an equation in which the unknown quantity or quantities appear in the form of trigonometric functions.

These equations have been used with the utmost freedom in previous chapters, though no formal definition has been given until the present time. They have been used in many different ways, involving one or more functions, one or more angles, and one or more values of the given angles in any single equation.

At first the only angles used were acute angles, and an equation was understood to involve functions of an acute angle only. Then the idea was introduced of an angle unrestricted in magnitude; and after this had been done, all results were freed from the restraints which had previously been imposed by the fact that we were dealing with acute angles only.

A large class of the equations with which we have previously been concerned consist of trigonometric identities, that is, equations in which both sides had the same value for all possible values of the angles employed, though the form might be different.

Examples of these are the formulas that have been proved from time to time, as, $\sin^2\theta + \cos^2\theta = 1$; $\sin(x+y) = \sin x \cos y + \cos x \sin y$; etc. Equations of this kind are true for all possible values of the angle or angles involved.

But trigonometric equations are, of course, not ordinarily true for all values of the angles involved. For example, if we consider the equation $\cos \theta = \frac{1}{2}$,

we see at once that we can assign but two values of θ between 0° and 360° that satisfy this equation. In other words,

 $\cos \theta = \frac{1}{2}$ is true only for $\theta = 60^{\circ}$ and $\theta = 300^{\circ}$, as long as θ is restricted to values between 0° and 360° . If angles of unrestricted magnitude are allowed, $\cos \theta = \frac{1}{2}$ is satisfied by all values of θ that are included in the general expression

$$\theta = 2 n\pi \pm \frac{\pi}{3},$$

and by no other values.

In like manner, the equation

$$\tan \theta = \frac{1}{3}\sqrt{3}$$

is satisfied by all values of θ that are given by the general expression

 $\theta = n\pi + \frac{\pi}{6},$

and by no other values;

$$\sin\theta = \frac{1}{2}\sqrt{2}$$

by those values of θ that are given by the expression

$$\theta = n\pi + (-1)^n \frac{\pi}{4},$$

and by no other values; and so on for other examples that might be given. In all these illustrations it is to be understood that n is any positive or negative integer or zero.

The solution of an equation is the determination of the value of the angle or angles that satisfy the equation. In Art. 67, p. 88, a method of solution was given by means of which some of the simpler forms of trigonometric equations could be treated. But at that time only a limited number of the formulas of transformation were at our disposal. Hence, the number of classes of equations that could be handled was necessarily quite limited.

The methods of reduction and transformation that are now available make it possible to solve many classes of equations that were formerly quite out of our reach, and also to simplify some of the methods previously employed. The present chapter will illustrate some of the simpler cases of this kind.

This work should be looked upon as an extension of that given in Art. 68, p. 90.

90. Solution of equations of the form

$$a\cos\theta + b\sin\theta = c. \tag{1}$$

A simple method of solving equations of this form is furnished by the introduction of what are termed auxiliary angles, as follows:

Assume a right triangle whose legs are a, b, and designate by ϕ the angle lying opposite the leg b. The hypotenuse of this right triangle is $\sqrt{a^2+b^2}$, and we now have

$$\cos \phi = \frac{a}{\sqrt{a^2 + b^2}}$$
, and $\sin \phi = \frac{b}{\sqrt{a^2 + b^2}}$.

Dividing each member of the original equation by $\sqrt{a^2 + b^2}$, we have

$$\frac{a}{\sqrt{a^2+b^2}}\cos\theta + \frac{b}{\sqrt{a^2+b^2}}\sin\theta = \frac{c}{\sqrt{a^2+b^2}}.$$
 (2)

Substituting $\cos \phi$ and $\sin \phi$ for their respective values in this equation we have

$$\cos \phi \cos \theta + \sin \phi \sin \theta = \frac{c}{\sqrt{a^2 + b^2}},$$

or,
$$\cos(\theta - \phi) = \frac{c}{\sqrt{a^2 + b^2}}.$$

Since a, b, and c are known, $\cos(\theta - \phi)$ is known, and $\theta - \phi$ can at once be found from the tables. Calling this angle α , for convenience we have

$$\cos (\theta - \phi) = \cos \alpha.$$

$$\therefore \quad \theta - \phi = 2 n\pi \pm \alpha, \text{ Art. 64, p. 87.}$$

$$\theta = 2 n\pi + \phi \pm \alpha.$$

The cosine of an angle can never be numerically greater than unity. Hence, in dealing with the equation $\cos(\theta - \phi) = \frac{c}{\sqrt{a^2 + b^2}}$ it is to be remembered that we must have $c \equiv \sqrt{a^2 + b^2}$. If $c > \sqrt{a^2 + b^2}$, there is no real value of $\theta - \phi$ which will satisfy the equation.

Ex. 1. Solve the equation $\sqrt{3}\cos\theta + \sin\theta = \sqrt{2}$.

Dividing both sides of the equation by $\sqrt{3+1}$, i.e. by 2, we have

$$\frac{1}{2}\sqrt{3}\cos\theta + \frac{1}{2}\sin\theta = \frac{1}{2}\sqrt{2}.$$

In this case we have $a = \sqrt{3}$, b = 1, and $\sqrt{a^2 + b^2} = 2$. Hence, the auxiliary angle ϕ is equal to 30°. The original equation then becomes

$$\cos 30^{\circ} \cos \theta + \sin 30^{\circ} \sin \theta = \frac{1}{2}\sqrt{2}.$$
$$\cos (\theta - 30^{\circ}) = \frac{1}{2}\sqrt{2}.$$

But $\frac{1}{2}\sqrt{2}$ is the cosine of 45°. Hence, we write

$$\cos(\theta - 30^\circ) = \cos 45^\circ.$$

$$\therefore \theta - 30^\circ = 2 n\pi \pm \frac{\pi}{4},$$

$$\theta = 2 n\pi + \frac{\pi}{6} \pm \frac{\pi}{4} \cdot$$

Solve the equation $5\cos\theta + 2\sin\theta = 4$.

In this problem we have a = 5, and b = 2. Dividing both sides of the equation by $\sqrt{a^2+b^2}$, we have

$$\frac{5}{\sqrt{29}}\cos\theta + \frac{2}{\sqrt{29}}\sin\theta = \frac{4}{\sqrt{29}}.$$
 (1)

In the preceding example we were able to find the value of ϕ from the familiar coefficients $\frac{\sqrt{3}}{2}$ and $\frac{1}{2}$, which we already knew were the cosine and sine respectively of 30°. But in this example we have unfamiliar values to consider.

From the figure on the margin of the page we see that ϕ is an angle whose cotangent is $\frac{2}{5}$. Turning to the tables, we find that the value of ϕ is 68° 12′; and (1) can now be written

$$\cos 68^{\circ} 12' \cos \theta + \sin 68^{\circ} 12' \sin \theta = \frac{4}{\sqrt{29}}$$

Letting α equal the angle whose cosine is $\frac{4}{\sqrt{32}}$ this becomes

$$\cos\left(\theta - 68^{\circ} \, 12'\right) = \cos\,\alpha.$$

Reducing the value of $\frac{4}{\sqrt{29}}$ to a decimal, we find it to be 0.7428; and, consulting the tables, we find that the angle whose cosine is 0.7428 is 42°2'. Therefore, $\cos(\theta - 68^{\circ} 12') = \cos 42^{\circ} 2',$

$$8(\theta - 66^{\circ} 12') \equiv \cos 42^{\circ} 2',$$

$$\theta - 68^{\circ} 12' = 2 n\pi \pm 42^{\circ} 2',$$

$$\theta = 2 n\pi + 68^{\circ} 12' \pm 42^{\circ} 2'.$$

Note. Each of the foregoing examples could have been solved by replacing either $\sin \theta$ or $\cos \theta$ by its value in terms of the other, then obtaining the value of the single function involved, and finally obtaining the value of θ from the value of this function. But the process just explained is much simpler and better.

91. Solution of equations involving multiple angles. The simplest forms of equations involving multiple angles have already been considered (Art. 68, p. 90). But these, and also many other forms of equations in which multiple angles appear, are more conveniently treated by means of the various reduction formulas that are now available.

The following problems will illustrate some of the methods of most frequent application.

Ex. 1. Solve the equation $\sin 3\theta + \sin 7\theta = \sin 5\theta$.

By (5), Art. 77, p. 100, we have

$$2 \sin 5 \theta \cos 2 \theta = \sin 5 \theta.$$

$$\therefore \sin 5 \theta = 0, \text{ or } \cos 2 \theta = \frac{1}{2}.$$
If
$$\sin 5 \theta = 0, \text{ then } 5 \theta = n\pi.$$

$$\therefore \theta = \frac{n\pi}{5}.$$
If
$$\cos 2 \theta = \frac{1}{2}, \text{ then } 2 \theta = 2 n\pi \pm \frac{\pi}{3}.$$

$$\therefore \theta = n\pi \pm \frac{\pi}{6}.$$

Therefore, the general values of θ that satisfy the equation

$$\sin 3 \theta + \sin 7 \theta = \sin 5 \theta,$$

 $\theta = \frac{n\pi}{5}$, and $\theta = n\pi \pm \frac{\pi}{6}$.

are

Ex. 2. Solve the equation $\cos 4\theta - \cos 6\theta - \sin 2\theta = 0$.

Applying the proper reduction formulas, we have

$$2 \sin 5 \theta \sin \theta - 2 \sin \theta \cos \theta = 0.$$

$$\therefore \sin \theta (\sin 5 \theta - \cos \theta) = 0.$$

From the first factor we have

$$\sin \theta = 0.$$

$$\therefore \theta = n\pi.$$
(1)

From the second factor we have

$$\cos \theta = \sin 5 \theta$$

$$= \cos \left(\frac{\pi}{2} - 5 \theta\right).$$

$$\therefore \theta = 2 n\pi \pm \left(\frac{\pi}{2} - 5 \theta\right).$$

Using the positive sign, we have

$$6 \theta = 2 n\pi + \frac{\pi}{2}.$$

$$\therefore \theta = \frac{n\pi}{3} + \frac{\pi}{12}.$$
(2)

Using the negative sign, we have

$$-4 \theta = 2 n\pi - \frac{\pi}{2},$$
$$4 \theta = 2 n\pi + \frac{\pi}{2},$$

[the sign of n being left unchanged because n denotes all negative as well as all positive integers? $\theta = \frac{n\pi}{2} + \frac{\pi}{2}$ (3)

Collecting the values given in (1), (2), and (3), we have as the general values of θ that satisfy the given equation

$$\theta = n\pi$$
, $\theta = \frac{n\pi}{3} + \frac{\pi}{12}$, and $\theta = \frac{n\pi}{2} + \frac{\pi}{8}$.

Ex. 3. Solve the equation $\cos 2 x = \cos x + \sin x.$

Expressing $\cos 2x$ in terms of functions of x we have

$$\cos^2 x - \sin^2 x = \cos x + \sin x;$$

$$(\cos x + \sin x)(\cos x - \sin x) = \cos x + \sin x.$$

$$\therefore \cos x + \sin x = 0,$$

$$\cos x - \sin x = 1.$$
(1)

From (1) we have
$$\tan x = -1$$
.
 $\therefore x = n\pi - \frac{\pi}{2}$

$$\therefore x = n\pi - \frac{\pi}{4}$$

From (2) we have

$$\frac{1}{\sqrt{2}}\cos x - \frac{1}{\sqrt{2}}\sin x = \frac{1}{\sqrt{2}},$$
$$\cos \frac{\pi}{4}\cos x - \sin \frac{\pi}{4}\sin x = \cos \frac{\pi}{4},$$

or,

$$\cos\left(x + \frac{\pi}{4}\right) = \cos\frac{\pi}{4}.$$

$$\therefore x + \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{4}.$$

$$x = 2 n\pi$$
, or $x = 2 n\pi - \frac{\pi}{2}$.

EXERCISE XXII

Solve the following equations:

1.
$$\cos x - \sqrt{3} \sin x = 1$$
.

2.
$$\sin x - \sqrt{3} \cos x = 1$$
.

3.
$$\sin \theta + \sqrt{3} \cos \theta = \sqrt{2}$$
.

4.
$$\sqrt{3}\sin\theta - \cos\theta = \sqrt{2}$$
.

$$\overline{5}$$
. $\sin \theta + \cos \theta = \sqrt{2}$.

6.
$$\cos \alpha - \sin \alpha = \frac{1}{2}\sqrt{2}$$

7.
$$\cos \alpha + \sin \alpha = -\sqrt{2}$$
.

8.
$$\sin m\theta + \sin n\theta = 0$$
.

9.
$$\cos m\theta + \cos n\theta = 0$$
.

10.
$$3\sin x + 2\cos x = 2$$
.

11.
$$6\cos\theta - 3\sin\theta = 3$$
.

12.
$$4\cos\theta - 3\sin\theta = 5$$
.

13.
$$\sin 7 x - \sin 4 x + \sin x = 0$$
.

$$-$$
 14. $\sin 5x - \sin 3x + \sin x = 0$.

15.
$$\sin 7 x - \sin x = \sin 3 x$$
.

16.
$$\sin 4x - \sin 2x = \cos 3x$$
.

17.
$$\cos \theta + \cos 2 \theta + \cos 3 \theta = 0$$
.

18.
$$\sin \theta + \sin 2 \theta + \sin 3 \theta = 0$$
.

19.
$$\cos 7 \theta - \cos \theta = -\sin 4 \theta$$
.

20.
$$\cos 2\theta - \cos \theta - \sin 2\theta + \sin \theta = 0$$
.

21.
$$\sin 4 \theta - \sin 3 \theta + \sin 2 \theta - \sin \theta = 0$$
.

22.
$$\cos 7 \theta + \cos 5 \theta + \cos 3 \theta + \cos \theta = 0$$
.

23.
$$2\cos 2\theta = \cos 3\theta + \sin \theta$$
.

24.
$$\cos k \theta - \cos (k-2) \theta = \sin \theta$$
.

25.
$$\sin 5 \theta \cos \theta - \sin 6 \theta \cos 2 \theta = 0$$
.

$$26. \sin\frac{k+1}{2}\theta - \sin\frac{k-1}{2}\theta = \sin\theta.$$

27.
$$\cos 3 \theta + 2 \cos \theta = 0$$
.

28.
$$\cos 2 \theta + \sin 3 \theta = 0$$
.

29.
$$\cos 5\theta + \cos \theta = \sqrt{2}\cos 3\theta$$
.

30.
$$\sin \theta + \sqrt{3} \cos 4 \theta = \sin 7 \theta$$
.

31.
$$\cos 2 \theta - \cos^2 \theta = 0$$
.

36.
$$\cot \theta - \tan \theta = 2$$
.

32.
$$\cos 3 \theta + 8 \cos^3 \theta = 0$$
.

$$37. \sec \theta - \csc \theta = 2\sqrt{2}.$$

33.
$$\sin 3 \theta - 8 \sin^3 \theta = 0$$
.

38.
$$\cot 2\theta - \cot \theta = -2$$
.

34.
$$\sin 2\theta + 3\sin \theta = 0$$
.

39.
$$\sec 4 \theta - \sec 2 \theta = 2$$
.

35.
$$\csc \theta - \cot \theta = \sqrt{3}$$
.

40.
$$\sec \theta + \csc \theta = 2\sqrt{2}$$
.

41.
$$\tan 3\theta + \tan 2\theta + \tan \theta = 0$$
.

42.
$$\tan 3 \theta - \tan 2 \theta - \tan \theta = 0$$
.

43.
$$\tan 3\theta + \tan \theta = 2 \tan 2\theta$$
.

44.
$$\sin 5\theta \cos \theta - \sin 4\theta \cos 2\theta = 0$$
.

Review 7)

92. Changes in sign and magnitude of the expression $a \cos x$ In connection with the solution of equations of the form $a\cos x + b\sin x = 0$

it is often useful to trace the changes in sign and magnitude of the left member of the equation as x increases from 0° to 360°.

The simplest case occurs when a=1 and b=1; in which case we have simply $\sin x + \cos x$ to examine. Proceeding as in Art. 90 we have

$$\cos x + \sin x = \sqrt{2} \left[\frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x \right]$$
$$= \sqrt{2} (\sin x \cos 45^\circ + \cos x \sin 45^\circ)$$
$$= \sqrt{2} \sin (x + 45^\circ).$$

For convenience we replace $\cos x + \sin x$ by y, and then, forming the equation $y = \sqrt{2}\sin(x+45^\circ)$, we form the following table of values.

Plotting the graph by the method explained in Art. 48, we have the following result.

Since the greatest value that the sine of any angle can have is 1, the maximum value of this expression occurs when $\sin(x+45^\circ)=1$, i.e. when $x=45^\circ$. This gives $\sqrt{2}$ as the maximum value of the expression $\sin x + \cos x$.

In like manner, the minimum value of the expression is $-\sqrt{2}$, which corresponds to the angle $x = 225^{\circ}$.

If the table of values is extended, and the graph is plotted for values of x greater than 360°, the values of y, *i.e.* of $\cos x + \sin x$, will be repeated in their original order; that is, $\cos x + \sin x$ is a periodic function with a period of 360°. (See Art. 49, p. 71.)

93. When a or b, or both a and b, are different from unity, the process is slightly modified, as follows:

$$a\cos x + b\sin x = \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} \cos x + \frac{b}{\sqrt{a^2 + b^2}} \sin x \right)$$
$$= \sqrt{a^2 + b^2} \left(\cos x \cos a + \sin x \sin a \right)$$
$$= \sqrt{a^2 + b^2} \cos (x - a).$$

Here, as is readily seen from the figure on the margin of the page, it has been assumed that α is the angle whose cosine is $\frac{a}{\sqrt{a^2+b^2}}$ and whose sine is

 $\frac{b}{\sqrt{a^2+b^2}}$. When a and b are known, a can be found, as in

Art. 90, p. 124.

The table of values can then be obtained and the graph constructed, as in the preceding case.

Since $\cos(x-a)$ has 1 for its maximum value and -1 for its minimum value, the expression $a\cos x + b\sin x$ has $\sqrt{a^2 + b^2}$ for its maximum value and $-\sqrt{a^2 - b^2}$ for its minimum value.

Note. In computing the table of values for the purpose of constructing the graph, the values of y can always be obtained directly from the expression as it is originally given, without any reduction whatever. This is sometimes preferable; and in certain cases, as for example the functions given in Examples 7, 9, 10, and 11 in the following set, it is easier to compute the values directly than to compute them after transforming the expression.

EXERCISE XXIII

Trace the changes in sign and magnitude of the following expressions as x increases from 0° to 360° . Find the period and construct the graph in each case.

1.
$$\sin x - \cos x$$
. **5.** $\sin x + \sqrt{3} \cos x$. **9.** $\cos 3 \theta$.

2.
$$\sqrt{3}\sin x + \cos x$$
. **6.** $2\sin x + 3\cos x$. **10.** $\sin 3\theta$.

3.
$$\sin x + \sqrt{3} \cos x$$
. 7. $\cos 2\theta$.

3.
$$\sin x + \sqrt{3} \cos x$$
. **7.** $\cos 2\theta$. **12.** $\frac{\sin 2\theta - \sin \theta}{\cos 2\theta + \cos \theta}$.

CHAPTER XII

THE OBLIQUE TRIANGLE

94. The law of sines. Let A, B, C denote the angles of a triangle, and a, b, c respectively the sides opposite.

From any vertex, as C, draw CD perpendicular to AB, meeting AB, or AB produced, in D.

From the first figure we have

$$\frac{h}{b} = \sin A.$$

 $h = b \sin A$.

$$\frac{h}{a} = \sin B$$
.

 $h = a \sin B$.

Also,

Equating these values of h we have

$$b \sin A = a \sin B$$
.

From the second figure we have

$$\frac{h}{h} = \sin A.$$

$$h = b \sin A$$
.

Also,

$$\frac{h}{a} = \sin\left(180^\circ - B\right) = \sin B,$$

whence as before,

$$b \sin A = a \sin B$$
,

Therefore in either case we have the same result,

 $b \sin A = a \sin B$;

i.e.

$$\frac{a}{b} = \frac{\sin A}{\sin B}.$$
 (1)

In like manner drawing perpendiculars from the vertices A and B to the opposite sides respectively we can prove that

$$\frac{b}{c} = \frac{\sin B}{\sin C},\tag{2}$$

and

$$\frac{a}{c} = \frac{\sin A}{\sin C}.$$
 (3)

The results obtained in (1), (2), and (3) enable us to state the law of sines as follows:

The sides of a triangle are proportional to the sines of the opposite angles.

Equations (1), (2), and (3) are often combined and written in the following manner:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}.$$
 (4)

95. The geometric meaning of each of the three ratios just stated will be understood from the following:

Let ABC be any triangle, and let a circle be circumscribed about the triangle. From the center O to the vertices of the triangle draw the radii OA, OB, OC, respectively, and also draw OD perpendicular to AB.

By geometry

$$\angle AOB = 2 \angle C$$
.
 $\therefore \angle AOD = \angle C$.

From this we have

$$AD = r \sin \angle A OD,$$

= $r \sin C$.
$$\therefore c = 2 r \sin C.$$

In like manner it can be proved that

$$a = 2 r \sin A$$
,

and

$$b=2r\sin B$$
.

Equating the values of 2r obtained from these three equations we have a b c r

 $2r = \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$. That is,

The ratio of any side of a triangle to the sine of the opposite angle is equal to the diameter of the circumscribed circle.

96. The law of cosines. Let ABC be any triangle, and let CD, the perpendicular from the vertex C to the opposite side, meet AB, produced if necessary, in D.

From the first figure we have

$$a^{2} = h^{2} + \overline{BD^{2}}$$

$$= h^{2} + (c - AD)^{2}$$

$$= h^{2} + c^{2} - 2c \cdot AD + \overline{AD^{2}}$$

$$= (h^{2} + AD^{2}) + c^{2} - 2c \cdot AD$$

$$= b^{2} + c^{2} - 2c \cdot b \cos A.$$

$$\therefore \cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}.$$

From the second figure we have

$$a^{2} = h^{2} + BD^{2}$$

$$= h^{2} + (AD - c)^{2}$$

$$= h^{2} + AD^{2} - 2c \cdot AD + c^{2}$$

$$= b^{2} + c^{2} - 2c \cdot b \cos A.$$

$$\therefore \cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc} \cdot$$
(2)

Therefore, the same result is obtained for both triangles.

In like manner, drawing perpendiculars from A and B to the opposite sides respectively, we can prove that

$$\cos B = \frac{c^2 + a^2 - b^2}{2 \ ca},\tag{2}$$

and
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$
 (3)

Equations (1), (2), and (3) are often useful when expressed in the following form:

$$a^{2} = b^{2} + c^{2} - 2 bc \cos A,$$

$$b^{2} = c^{2} + a^{2} - 2 ca \cos B,$$

$$c^{2} = a^{2} + b^{2} - 2 ab \cos C.$$
(4)

The law of cosines can now be stated as follows:

The square of any side of a triangle is equal to the sum of the squares of the other two sides minus twice their product into the cosine of the included angle.

97. The law of tangents. We have already proved that, in any triangle, $\frac{a}{b} = \frac{\sin A}{\sin B}.$

Therefore, considering this equation as a proportion, and taking the four quantities by division and composition,

$$\frac{a-b}{a+b} = \frac{\sin A - \sin B}{\sin A + \sin B}$$

$$= \frac{2\cos\frac{A+B}{2}\sin\frac{A-B}{2}}{2\sin\frac{A+B}{2}\cos\frac{A-B}{2}}$$

$$= \cot\frac{A+B}{2}\tan\frac{A-B}{2}$$

$$\therefore \frac{a-b}{a+b} = \frac{\tan\frac{A-B}{2}}{\tan\frac{A+B}{2}}.$$
(1)

In like manner it can be proved that

$$\frac{a-c}{a+c} = \frac{\tan\frac{A-C}{2}}{\tan\frac{A+C}{2}},\tag{2}$$

and
$$\frac{b-c}{b+c} = \frac{\tan\frac{B-C}{2}}{\tan\frac{B+C}{2}}.$$
 (3)

17/

The law of tangents can now be stated as follows:

The difference of two sides of a triangle is to their sum as the tangent of half the difference of the opposite angles is to the tangent of half their sum.

Note. In using the formulas of this section it is better to let the greater side and the greater angle precede the smaller in all cases. The formulas are true, whichever order is used; but if the smaller side and the smaller angle precede the greater side and the greater angle respectively, negative numbers are introduced, and if logarithms are to be employed, these numbers should be avoided whenever it is possible to do so.

- **98.** The given parts. In the solution of oblique plane triangles four cases occur. In each case three parts are given, as follows:
 - 1. One side and two angles.
 - 2. Two sides and the angle opposite one of them.
 - 3. Two sides and the included angle.
 - 4. Three sides.

The formulas developed in Arts. 94–97 are sufficient for the solution of every possible case that can arise. These cases will now be considered separately.

- **99.** Case 1. Given one side and two angles. Let the given angles be A and B, and the given side a. The formulas for solution are as follows:
 - 1. $C = 180^{\circ} (A + B)$.
 - 2. $\frac{b}{a} = \frac{\sin B}{\sin A}$, $\therefore b = \frac{a \sin B}{\sin A}$.
 - 3. $\frac{c}{a} = \frac{\sin C}{\sin A}$, $\therefore c = \frac{a \sin C}{\sin A}$.

Ex. 1. Given a = 467, $A = 56^{\circ} 28'$, $B = 69^{\circ} 14'$; find the remaining parts.

The work may be conveniently arranged as follows:

$$C = 180^{\circ} - (A + B) = 54^{\circ} 18'$$
.

(1) By natural functions.

$$b = a \times \sin B + \sin A = 467 \times 0.9350 + 0.8336 = 523.8.$$

 $c = a \times \sin C + \sin A = 467 \times 0.8121 + 0.8336 = 454.95.$

(2) By logarithms.

$$\log b = \log a + \log \sin B - \log \sin A$$

$$= \log a + \log \sin B + \operatorname{colog} \sin A.$$

$$\log c = \log a + \log \sin C - \log \sin A$$

$$= \log a + \log \sin C + \operatorname{colog} \sin A.$$

$$\log a = 2.66932$$

$$\log \sin B = 9.97083 - 10$$

$$\operatorname{colog} \sin A = \underbrace{0.07906}_{2.71921}$$

$$0 = 0.07906$$

$$2.65798$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 = 0.07906$$

$$0 =$$

Note. To insure accuracy the student should check all results by solving each problem by a second method, entirely independent of the first; or by the same method, using a different combination of parts. In the case under consideration it is usually sufficient to employ the same method, i.e. the law of sines, combining the parts in a manner different from that employed in the first place. For example, after c has been found we can solve again for

b by the formula $b = \frac{c \sin B}{\sin C}$, as follows:

$$\log c = 2.65798$$

$$\log \sin B = 9.97083 - 10$$

$$\operatorname{colog} \sin C = \underbrace{0.09040}_{\log b = 2.71921}$$

$$b = 523.85 \text{ check.}$$

EXERCISE XXIV

Solve the following triangles:

- 1. Given a = 438.3, $A = 43^{\circ} 50' 24''$, $B = 69^{\circ} 30' 12''$. Ans. $C = 66^{\circ} 39' 24''$, b = 592.74, c = 580.74.
- **2.** Given b = 421, $A = 31^{\circ} 12'$, $B = 36^{\circ} 20'$. Ans. $C = 112^{\circ} 28'$, a = 368.08, c = 656.63.
- **3.** Given a = 412, $A = 58^{\circ} 14'$, $B = 65^{\circ} 37'$. Ans. $C = 56^{\circ} 9'$, b = 441.37, c = 402.45.
- **4.** Given b = 81.5, $B = 43^{\circ} 44' 18''$, $C = 75^{\circ} 2' 42''$. Ans. $A = 61^{\circ} 13'$, a = 103.32, c = 113.89.
- 5. Given c = 77.93, $B = 22^{\circ} 15' 20''$, $C = 41^{\circ} 50' 30''$.

 Ans. $A = 115^{\circ} 58' 10''$, a = 105.07, b = 44.23, 45
- 6. Given e = 6.98, $A = 25^{\circ} 7' 10''$, $C = 36^{\circ} 12' 24''$. Ans. $B = 118^{\circ} 40' 80''$, A = 5.016, b = 10.37.

- 7. Given a = 928.4, $A = 61^{\circ} 17' 15''$, $C = 58^{\circ} 18' 40''$. Ans. $B = 60^{\circ} 24' 5''$, c = 900.78, b = 920.45.
- 8. Given a = 328.4, $A = 29^{\circ} 41' 12''$, $B = 37^{\circ} 50' 24''$. Ans. $C = 112^{\circ} 28' 24''$, b = 406.77, c = 612.73.
- Given A = 64° 35′, C = 73° 49′, a = 213.47.
 Ans. B = 41° 36′, b = 156.92, c = 226.98.
- **10.** Given $A = 41^{\circ} 23' 47''$, $B = 124^{\circ} 49'$, b = 65.536. Ans. $C = 13^{\circ} 47' 13''$, a = 52.788, c = 19.023.
- 11. Two points, A and B, are separated by a body of water. In order to find the distance between them a line AC is measured 612.3 ft. in length, and the angles BAC, ACB are measured and are found to be 49° 17′ and 68° 11′ respectively. What is the distance from A to B?
- 12. It is desired to find the distance of a lighthouse A to each of two stations B, C, situated on shore, and in the same horizontal plane with the base of the lighthouse. BC is $2\frac{1}{4}$ miles, $\angle ABC$ is 39° 38', and $\angle ACB$ is 74° 56'. Find AB and AC.
- 13. The angles of elevation of a balloon that has ascended vertically between two stations one mile apart on a level plain, and in the same vertical plane with the balloon, are 29° 41′ and 37° 17′ respectively. What is the distance of the balloon from each station, and what is its vertical height above the plain?
- 14. Solve the preceding problem on the supposition that both the stations are on the same side of the balloon.
- 15. To find the width of a stream a line AB, 351 ft. long, is measured on one side, parallel to the bank. On the opposite side of the stream a stake C is set, and the angles CAB, CBA, are observed and are found to be 38° 17′ and 31° 29′ respectively. What is the width of the stream?
- 16. From the top and bottom of a column the angles of elevation of the top of a tower 236 ft. high standing on the same horizontal plane are 44° 27′ and 61° 31′ respectively. What is the height of the column?

- 17. When the altitude of the sun is 49° 52′, a pole standing on the slope of a hill inclined 16° 55′ to the level of the plain casts a shadow directly down the hill a distance of 45 ft. 8 in. What is the height of the pole?
- 18. An observer in a balloon measures the angle of depression of an object on the ground and finds it to be 63° 58′. After ascending vertically 582 ft. he finds the angle of depression of the same object 74° 49′. What was the height of the balloon at the time of the first observation?
- 19. From a ship the bearings of two objects were found to be N.N.W. and N.E. by N., respectively. After sailing due east 10 miles the two objects were in a line bearing W.N.W. How far apart were the objects?

Note. For an explanation of the term "bearing," and for instruction in reading angles by means of the compass, see p. 176.

- 20. From a ship a lighthouse bears N. 21° 12′ E. After the ship has sailed S. 25° 12′ E. $2\frac{1}{4}$ miles the lighthouse bears due north. Find the distance of the lighthouse from the last point of observation.
- 100. Case 2. Given two sides and the angle opposite one of them. Let the given parts be the sides a and b, and the angle A. The required parts can be found in the following manner: By the law of sines

$$\frac{\sin B}{\sin A} = \frac{b}{a}, \qquad \therefore \sin B = \frac{b \sin A}{a}. \tag{1}$$

From this equation the angle B can be found.

Then,
$$C = 180^{\circ} - (A + B)$$
.
Also, $\frac{c}{a} = \frac{\sin C}{\sin A}$, $\therefore c = \frac{a \sin C}{\sin A}$ (2)

In solving for the angle opposite the second side, in this case the angle B, it is to be noted that two solutions are possible, since the sines of supplementary angles are equal (Art. 53, p. 79).

The following considerations will determine the number of solutions for any given set of conditions.

If a > b, then A > B, and B is necessarily an acute angle, since a triangle can have but one obtuse angle. Therefore there is one and only one solution.

If a = b, then A = B, and both A and B are acute angles. fore there is one and only one solution, an isosceles triangle.

If a < b, then A < B, and A is an acute angle. In this case B may

One solution, a > bbe either acute or obtuse, and there will be two solutions if a > CD, the perpendicular drawn from the vertex C to AB, produced if necessary. That is, either of the two triangles AB_1C, AB_2C , will satisfy the given conditions. But the perpendicular $CD = b \sin A$. Therefore, if A is acute and a < b, and

Two solutions, $a > b \sin A$

One solution, $a = b \sin A$

if $a > b \sin A$, there are two solutions. The angles AB_1C_1 AB_2C , are supplementary, since $\angle AB_1C = \angle B_1B_2C$. angles are given by the formula

$$\sin B = \frac{b \sin A}{a}$$
.

If $a = b \sin A$, that is, if a is equal to the perpendicular CD, This is also seen from there is but one solution, a right triangle. the fact that when $a = b \sin A$, the value of $\sin B$ reduces to unity. This gives $B = 90^{\circ}$.

If $a < b \sin A$, that is, if a is less than the perpendicular CD, there is no solution, and the triangle is impossible. This is also seen from the fact that when $a < b \sin A$, the fraction $\frac{b \sin A}{a}$ is greater than unity.

this fraction is in all cases equal to $\sin B$; and as the sine of an angle can never exceed unity the triangle is therefore impossible.

These results may be summarized as follows:

Two solutions.

A acute, a < b, and $a > b \sin A$.

One solution.

- (a) A obtuse and a > b.
- (b) A acute and $a = b \sin A$.
- (c) A acute and a > b.

No solution.

- (a) A acute and $a < b \sin A$.
- (b) A obtuse and a = b or a < b.

To determine the number of solutions, first note whether A is acute or obtuse. Then, on examining the different cases just studied, it is seen that there can never be more than one solution unless A is acute and the side opposite A is less than the side adjacent. In this case there may be two solutions, one solution, or no solution.

The comparison between a and b sin A is often most conveniently made by means of the natural value of sin A. In many cases the computation can be performed mentally; for all that is now desired is to determine whether a is less than, equal to, or greater than b sin A.

If logarithms are used, we compute $\log \sin B$. The results are as follows.

- (a) $\log \sin B > 0$, no solution.
- (b) $\log \sin B = 0$, one solution, a right triangle.
- (e) $\log \sin B < 0$, one solution if a > b, and two solutions if a < b and A is acute.

The student should bear in mind that the given parts are not necessarily a, b, and A; they may be any two sides and the angle opposite one of them. If other parts are given than those mentioned above, the proper modifications should be made in the formulas for determining the number of solutions.

Ex. 1. Given a = 26, b = 72, $A = 30^{\circ}$; find the remaining parts.

Since $\sin A = \frac{1}{2}$, we have $b \sin A = 36$. Hence, the triangle is impossible as a < 36.

Ex. 2. Given a = 88, b = 103, $A = 120^{\circ}$; find the remaining parts.

Here A is obtuse and a < b; therefore the triangle is impossible.

Ex. 3. Given a = 738.4, b = 1185.7, $A = 79^{\circ} 38' 40''$; find the remaining parts.

Solving by logarithms we proceed as follows:

$$\sin B = \frac{b \sin A}{a}$$
, $\log b = 3.07397$ $\log \sin A = 9.99287 - 10$ $\operatorname{colog} a = \frac{7.13171 - 10}{10.19855 - 10}$ Since $\log \sin B > 0$, there is no solution.

Ex. 4. Given a = 28.2, c = 45.65, $A = 38^{\circ} 7' 7.5''$; find the remaining parts.

Proceeding as in Ex. 3 we have

$$\sin C = \frac{c \sin A}{a}$$
,
 $\log c = 1.65944$ $\therefore C = 90^{\circ}$, and the triangle is a $\log \sin A = 9.79081 - 10$ right triangle.
 $\operatorname{colog} a = 8.54975 - 10$
 $\log \sin C = 10.00000 - 10$

Solving for B and b by the usual methods employed in the case of right triangles (Arts. 26 and 27, pp. 36-38), we find $B = 51^{\circ} 50' 52.5''$, b = 35.998.

Ex. 5. Given a = 67.53, b = 56.82, $A = 77^{\circ} 14' 19''$; find the remaining parts.

Here a > b and A is acute; therefore there is but one solution. The unknown parts are found in the following manner:

$$\begin{array}{c} \log b = 1.75450 \\ \log \sin A = 9.98914 - 10 \\ \operatorname{colog} a = 8.17050 - 10 \\ \log \sin B = 9.91414 - 10 \\ \therefore B = 55^{\circ} 8' 47''. \\ \log b = 1.75450 \\ \log \sin C = 9.86843 - 10 \\ \operatorname{colog} \sin A = 0.08586 \\ \log c = 1.70879 \\ \therefore c = 51.143. \end{array} \qquad \begin{array}{c} C = 180^{\circ} - (A + B) \\ = 46^{\circ} 36' 54'' \\ \text{Check:} \\ \log a = 1.82950 \\ \log \sin C = 9.86843 - 10 \\ \operatorname{colog} \sin A = 0.01086 \\ \log c = 1.70879 \\ c = 51.143 \end{array}$$

+ Ex. 6. Given a = 168.32, b = 221.46, $A = 33^{\circ} 39' 16''$; find the remaining parts.

In this case the simplest method of finding the number of solutions is to obtain the value of $b \sin A$ by multiplying the value of b, 221.46, by the natural value of $\sin A$, and comparing the result with 168.32, the value of a. The sine of 33°39′16" is approximately 0.55. Hence, it is seen at a glance that $b \sin A$ is a trifle over one half of 221.46; that is, much less than a Hence, since A is acute and a < b, there are two solutions.

The work of computation, exhibited in compact form, is as follows:

$\log b = 2.34529$	$\log a = 2.22613$	2.22613
$\log \sin A = 9.74365 - 10$	$\log \sin C = 9.99396 - 10$	9.35729 - 10
$colog \ a = 7.77387 - 10$	$\operatorname{colog sin} A = \underline{0.25635}$	0.25635
$\log \sin B = 9.86281 - 10$	$\log c = 2.47644$	1.83977
$\therefore B_1 = 46^{\circ} 48' 50'',$	$c_1 = 299.53, c_2 = 60.53$	69.147.
$B_2 = 133^{\circ} 11' 10''$.		
$C = 99^{\circ} 31' 54''$, or,	13° 9′ 34″.	

Note. The method of checking results is the same as that used in connection with Case 1. In Ex. 5 above the check work for c is given. After a little practice this work can be performed with great rapidity. Every result obtained by the student should be subjected to a check of some kind.

EXERCISE XXV

1. Determine the number of solutions in each of the following cases:

8				
	a = 3	0,	b = 60,	$A = 30^{\circ}$.
	a=2	0,	b = 60,	$A = 30^{\circ}$.
	a=4	0,	b = 60,	$A = 30^{\circ}$.
	$) \qquad a = 7$	50,	b = 638,	$A = 69^{\circ} 30'$.
	$) \qquad a = 3$	8.8,	b = 45.5,	$A = 60^{\circ}$.
	a = 2	26,	b = 196,	$A = 123^{\circ} 40'$.
2.	ven $a=1$	09.68,	c = 467,	$A = 13^{\circ} 35'$;
2.	a = 4 a = 7 a = 3	50, 8.8, 26,	b = 638, b = 45.5,	$A = 69^{\circ} 3$ $A = 60^{\circ}$. $A = 123^{\circ}$

find
$$C=90^{\circ}$$
, $B=76^{\circ} 25'$, $b=453.94$.

3. Given
$$a=392$$
, $b=124$, $A=36^{\circ}41'42''$; find $B=10^{\circ}53'45''$ $C=132^{\circ}24'33''$ $c=484.37$.

4. Given
$$a = 168.2$$
, $b = 218.6$, $A = 34^{\circ} 22' 50''$; find $B_1 = 47^{\circ} 12' 49''$, $C_1 = 98^{\circ} 24' 21''$, $c_1 = 294.67$, $B_2 = 132^{\circ} 47' 11''$, $C_2 = 12^{\circ} 49' 59''$, $c_2 = 66.16$.

6. Given
$$a=506$$
, $b=432$, $A=36^{\circ}7'12''$; find $B=30^{\circ}13'$, $C=113^{\circ}39'48''$, $c=786.22$.

7. Given
$$a = 36.27$$
, $b = 23.96$, $B = 30^{\circ} 26' 14''$; find $A_1 = 50^{\circ} 4' 24''$, $C_1 = 99^{\circ} 29' 22''$, $c_1 = 46.65$, $A_2 = 129^{\circ} 55' 36''$, $C_2 = 19^{\circ} 38' 10''$, $c_2 = 15.894$.

8. Given
$$a = 283.4$$
, $b = 268.5$, $A = 60^{\circ} 40' 26''$; find $B = 55^{\circ} 41' 23''$, $C = 63^{\circ} 38' 11$, $c = 291.25$.

10. Given
$$a=628.2$$
, $b=234.4$, $A=119^{\circ}40'40''$; find $B=18^{\circ}54'58''$, $C=41^{\circ}24'22''$, $c=478.22$.

12. Given
$$a=158$$
, $b=179$, $A=21^{\circ} 17' 22''$; find $B=24^{\circ} 17' 18''$, $C=134^{\circ} 25' 20''$, $c=310.8$, $B'=155^{\circ} 42' 42''$, $C'=2^{\circ} 59' 56''$, $c'=22.77$.

13. Given
$$a=36.38$$
, $b=23.92$, $A=39^{\circ}2'14''$; find $B=24^{\circ}27'49''$, $C=116^{\circ}29'57''$, $c=51.69$.

14. Given
$$a = 0.09593$$
, $b = 0.16864$, $B = 125^{\circ} 33'$; find $A = 27^{\circ} 34' 12''$, $C = 26^{\circ} 52' 48''$, $c = 0.09375$.

15. Given
$$a = 354.16$$
, $b = 433.86$, $A = 36^{\circ} 1' 4''$; find $B_1 = 46^{\circ} 5' 5''$, $C_1 = 97^{\circ} 53' 51''$, $c_1 = 596.57$, $B_2 = 133^{\circ} 54' 55''$, $C_2 = 10^{\circ} 4' 1''$, $c_2 = 105.26$.

16. Given
$$a = 25.675$$
, $b = 50.139$, $B = 68^{\circ} 4' 14''$; find $A = 28^{\circ} 21' 42''$, $C = 83^{\circ} 34' 4''$, $c = 53.709$.

17. Given
$$a=542.99$$
, $b=310.71$, $A=122^{\circ}49'17''$; find $B=28^{\circ}44'34''$, $C=28^{\circ}26'9''$, $c=307.66$.

19. Given
$$a=56.82$$
, $b=67.53$, $B=77^{\circ} 14' 19''$; find $A=55^{\circ} 8' 47''$, $C=47^{\circ} 36' 54''$, $c=51.14$.

101. Given two sides and their included angle.

First method. When one angle C is given, the remaining angles can be found by the law of tangents (Art. 97, p. 134), which can be expressed in the following manner:

$$\tan \frac{A-B}{2} = \frac{a-b}{a+b} \tan \frac{A+B}{2}.$$

The angle $\frac{A+B}{2} = 90^{\circ} - \frac{C}{2}$. Hence, its value is known, and the value of $\frac{A-B}{2}$ can be obtained from the above equation.

The values of \overline{A} and \overline{B} can then be found as follows:

$$\frac{A+B}{2} + \frac{A-B}{2} = A,$$

and

$$\frac{A+B}{2} - \frac{A-B}{2} = B.$$

The remaining side c can now be found by the law of sines in either of the two following ways:

$$c = \frac{a \sin C}{\sin A}$$
, or $c = \frac{b \sin C}{\sin B}$.

Second method. The third side c can be found directly by the law of cosines (Art. 96, p. 133), as follows:

$$c = \sqrt{a^2 + b^2 - 2ab\cos C};$$

and the angles A and B can then be found by the law of sines, as follows:

 $\sin A = \frac{a \sin C}{c}$, $\sin B = \frac{b \sin C}{c}$.

Third method. In the triangle ABC let the given parts be a, b, C. From the vertex B draw BD perpendicular to AC.

Then,'
$$BD = a \sin C,$$
 and
$$DC = a \cos C.$$
 Now
$$\tan A = \frac{BD}{AD}$$

$$= \frac{BD}{AC - DC}.$$

Substituting in this equation the values of BD and DC, we have

 $\tan A = \frac{a \sin C}{b - a \cos C}.$

In like manner, drawing a perpendicular from A to the side BC it can be proved that

 $\tan B = \frac{b \sin C}{a - b \cos C}.$

The third side can now be found by the law of sines, as under the first method.

Note. The first method is the best for use when all the unknown parts are desired. If only the third side is desired, the second method can be used to advantage. The second and third methods are not suitable for computation by means of logarithms.

Ex. 1. Given a = 138.65, b = 226.19, $C = 59^{\circ} 12' 54''$; find the remaining parts.

$$b - a = 78.54$$

$$b + a = 364.84$$

$$B + A = 120^{\circ} 47' 6''$$

$$\frac{B + A}{2} = 60^{\circ} 23' 33''$$

$$\frac{B - A}{2} = 22^{\circ} 53' 31''$$

$$A = 37^{\circ} 30' 2''$$

$$B = 83^{\circ} 17' 4''$$

$$conant's trig. -10
$$\log(b - a) = 1.94221$$

$$\log \tan \frac{B + A}{2} = 10.24546 - 10$$

$$colog (b + a) = 7.43790 - 10$$

$$\log \tan \frac{B - A}{2} = 9.62557 - 10$$$$

 $\begin{array}{ccccc} Check: & & & & & & & & & \\ \log a = & 2.14192 & & & \log b = 2.35447 \\ \log \sin C = & 9.93494 - 10 & & \log \sin C = 9.93494 - 10 \\ \operatorname{colog} \sin A = & 10.21554 - 10 & & \operatorname{colog} \sin B = & 0.00299 \\ \log c = & 2.29240 & & \log c = & 2.29240 \\ c = & 196.06 & & c = & 196.06 \end{array}$

Note. In the solution of this problem b precedes a since b > a. (Compare Art. 97, p. 134.) In finding c we use A rather than B, because B is so near 90° that any solution obtained by means of its sine is likely to be inaccurate.

Note. In Ex. 1 the check solution gives a result exactly equal to that obtained by the original solution. In the work near the top of p. 136 the check solution also gave a result exactly equal to that obtained in the original solution. In general, however, the check solution may be expected to differ slightly from the original.

Ex. 2. Given a = 7, c = 9, $B = 60^{\circ}$; find the third side b.

In this problem the second method furnishes the solution with the smallest amount of labor.

$$b^{2} = a^{2} + c^{2} - 2 ac \cos B,$$

$$b = \sqrt{49 + 81 - 2 \cdot 7 \cdot 9 \cdot \frac{1}{2}} = \sqrt{67}.$$

$$\therefore b = 8.1854.$$

EXERCISE XXVI

1. Given a = 426, b = 582, $C = 52^{\circ} 18'$; find $A = 46^{\circ} 21' 16''$, $B = 81^{\circ} 20' 44''$, c = 465.8.

2. Given b = 123, c = 211, $A = 115^{\circ} 22'$; find $B = 41^{\circ} 46' 45''$, $C = 22^{\circ} 51' 15''$, a = 286.16.

3. Given a = 121.6, c = 192.2, $B = 114^{\circ}.42'$; find $A = 24^{\circ}.26'.49''$, $C = 40^{\circ}.51'.11''$, b = 266.94.

4. Given a = 619, b = 515, $C = 39^{\circ} 17'$; find $A = 84^{\circ} 46' 10''$, $B = 55^{\circ} 56' 50''$, c = 393.56.

5. Given b = 35.218, c = 54.176, $A = 32^{\circ} 48' 14''$; find $B = 37^{\circ} 49' 35''$, $C = 109^{\circ} 22' 11''$, a = 31.112.

6. Given a = 46.792, c = 61.234, $B = 45^{\circ} 29' 16''$; find $A = 49^{\circ} 34' 5''$, $C = 84^{\circ} 56' 39''$, b = 43.836.

- 7. Given b = 718.01, c = 228.88, $A = 68^{\circ} 55' 2''$; find $B = 92^{\circ} 30' 47''$, $C = 18^{\circ} 34' 11''$, a = 670.61.
- **8.** Given b = 2478.1, c = 5134.8, $A = 137^{\circ} 8' 49''$; find $B = 13^{\circ} 37' 43.5''$, $C = 29^{\circ} 13' 27.5''$, a = 7152.5.
- 9. Given a = 4.1203, b = 4.9538, $C = 65^{\circ} 38' 52''$; find $A = 47^{\circ} 4' 18''$, $B = 65^{\circ} 16' 50''$, c = 4.9683.
- 10. Given a = 0.59217, b = 0.21833, $C = 41^{\circ} 37' 4''$; find $A = 119^{\circ} 42' 18''$, $B = 18^{\circ} 40' 38''$, c = 0.4528.
- 11. Two objects A and B are separated by a body of water. In order to find the distance between them a third point C is chosen from which each of these points is visible, and the following measurements are made: CA = 2560 ft., CB = 3120 ft., and $\angle ACB = 105^{\circ}$ 35'. Find the distance from A to B.
- 12. If two sides of a triangle are 68.6 ft. and 92.2 ft. respectively and the included angle is 112° 42′, what is the third side?
- 13. Find the distance between two points A, B, which are separated by a marsh, when the distances of these points from a third point C are 4214 ft. and 6932 ft. respectively, and the angle ACB is 51°11.
- 14. In an isosceles triangle each of the equal sides is 9 and the included angle is 60°. Find the third side.
- 15. In an isosceles triangle each of the equal sides is 9 and the included angle is 120°. Find the third side.
- 16. There are two points, A, B, on the bank of a river, but owing to a curve in its course it is impossible to measure the distance between them directly. A third point C is chosen such that the distances AC = 1460 ft. and BC = 1680 ft. can be measured, and the angle ACB is found to be 68° 42' 30''. What is the distance from A to B?
- 17. In a given triangle two of the sides are 6 and 9 respectively, and the included angle is 38°. What is the third side?
- 18. The diagonals of a parallelogram are 8 and 10 respectively, and they intersect at an angle of 60°. What are the sides of the parallelogram?

- 19. If two sides of a triangle are 1468 and 2136 respectively and the included angle is 72° 21' 14", what are the values of the other angles?
- 20. There are two points, A, B, so situated that they are not visible from each other, and there is no other point from which To find the distance from A to B two other both can be seen. points C, D, are selected so that A and D are visible from C, and B and C are visible from D; and the following measurements are made: CD = 826.5 ft., $\angle ACD = 121^{\circ} 12'$, $\angle BCD =$ $58^{\circ}55'$, $\angle ADC = 49^{\circ}12'$, $\angle ADB = 62^{\circ}38'$. What is the distance from A to B?
- 102. Given the three sides a, b, c. When the three sides of a triangle are given, the angles can be found directly from the formulas proved in Art. 96, p. 133.

$$\cos A = \frac{b^2 + c^2 - a^2}{2 bc};\tag{1}$$

$$\cos B = \frac{c^2 + a^2 - b^2}{2 \ ca};\tag{2}$$

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}.$$
 (3)

In order to obtain a form suitable for computation by means of logarithms we proceed as follows:

Let the sum of the sides of the triangle a + b + c = 2s. a + b - c = 2(s - c)

Then,

$$b+c-a = 2 (s-a),$$

$$c+a-b = 2 (s-b).$$

$$1-\cos A = 1 - \frac{b^2+c^2-a^2}{2 bc}$$

$$= \frac{2 bc - (b^2+c^2-a^2)}{2 bc}$$

$$= \frac{a^2 - (b-c)^2}{2 bc}$$

$$= \frac{(a+b-c)(a-b+c)}{2 bc}$$

$$= \frac{2 (s-b)(s-c)}{bc}.$$

Also (Art. 82, p. 108), $1 - \cos A = 2 \sin^2 \frac{A}{2}$.

$$\therefore \sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}.$$
 (4)

Note. Since $A < 180^{\circ}$, being one of the angles of a triangle, $\frac{A}{2} < 90^{\circ}$; therefore $\sin \frac{A}{2}$, $\cos \frac{A}{2}$, and $\tan \frac{A}{2}$ are positive. Hence the radical in (4), and the corresponding expressions in (5) and (6) below, are always positive.

In like manner,
$$1 + \cos A = 1 + \frac{b^2 + c^2 - a^2}{2bc}$$

$$= \frac{2bc + b^2 + c^2 - a^2}{2bc}$$

$$= \frac{(b+c)^2 - a^2}{2bc}$$

$$= \frac{(b+c-a)(b+c+a)}{2bc}$$

$$= \frac{2s(s-a)}{bc}.$$

Also (Art. 82, p. 108), $1 + \cos A = 2 \cos^2 \frac{A}{2}$.

$$\therefore \cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}.$$
 (5)

Dividing (4) by (5), we have

$$\tan\frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}.$$
 (6)

In like manner it can be proved that

$$\sin \frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{ca}}, \quad \sin \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{ab}}.$$

$$\cos \frac{B}{2} = \sqrt{\frac{s(s-b)}{ca}},$$
 $\cos \frac{C}{2} = \sqrt{\frac{s(s-c)}{ab}}.$

$$\tan \frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{s(s-b)}}, \qquad \tan \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$$

Any one of the three formulas just given can be used in finding the angle required. If the half angle is very small, the cosine formula will not give a result as accurate as either the sine formula or the tangent formula, since the cosines of angles that are very small differ but little from each other; and for a similar reason the sine formula should not be used when the half angle is near 90°. In general the tangent formula is better than either of the others.

To insure as great a degree of accuracy as possible, it is better to solve for all the angles rather than solve for two angles and then subtract their sum from 180°. If each angle is computed separately and their sum is found to be within two or three seconds of 180°, the work of solution is probably correct.

If all the angles are to be computed, the following variation of the tangent formula may be found useful.

$$\tan \frac{A}{2} = \sqrt{\frac{(s-a)(s-b)(s-c)}{s(s-a)^2}}$$

$$= \frac{1}{s-a} \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}.$$
Putting
$$\sqrt{\frac{(s-a)(s-b)(s-c)}{s}} = r,$$
(7)

we have

$$\tan\frac{A}{2} = \frac{r}{s-a}.$$
 (8)

In like manner,

$$\tan\frac{B}{2} = \frac{r}{s-b};\tag{9}$$

$$\tan\frac{C}{2} = \frac{r}{s-c} \tag{10}$$

Ex. 1. Given a = 79.3, b = 94.2, c = 66.9; find all the angles.

The work of solving for A and B is as follows:

$$a = 79.3$$
 $s - a = 40.9$
 $b = 94.2$
 $s - b = 26$
 $c = 66.9$
 $s - c = 53.3$
 $2 = 240.4$
 $s = 120.2$

$$\log(s-b) = 1.41497$$

$$\log(s-c) = 1.72673$$

$$\log(s-c) = 1.72673$$

$$\log(s-a) = 8.38828 - 10$$

$$\log(s = 7.92010 - 10)$$

$$2)19.45008 - 20$$

$$\log \tan \frac{A}{2} = 9.72504 - 10$$

$$\frac{A}{2} = 27^{\circ} 57' 56''.$$

$$A = 55^{\circ} 55' 52''.$$

$$\log(s-c) = 1.72673$$

$$\log(s-c) = 1.61172$$

$$\cos(s(s-b)) = 8.58503 - 10$$

$$\cos(s = b) = 9.28503 - 10$$

$$\cos(s = b) = 9.28503 - 10$$

$$\sin(s = b) = 9.92179 - 10$$

$$\frac{B}{2} = 9.92179 - 10$$

$$\frac{B}{2} = 39^{\circ} 52' 6.9''.$$

$$B = 79^{\circ} 44' 13.8''.$$

$$A + B = 135^{\circ} 40' 5.8''.$$

$$C = 44^{\circ} 19' 54.2''.$$

If the value of C is found by logarithms in the same manner as were the values of A and B, it will be found to be $44^{\circ}19'$ 56.8'', which is 2.6'' larger than the value found by subtracting the sum of A and B from 180° . The sum of the three angles, when all are found independently, is $180^{\circ}0'$ 2.6''. The sum of the three angles determined in this manner is rarely equal to exactly 180° . This is due to the fact that logarithmic computation is almost always slightly inexact. It is customary in practical work to divide the error among the three angles according to the probable amount for each angle.

Ex. 2. Solve the preceding example by the use of formulas (8), (9), and (10).

In solving by this method it is best to find all the logarithms at the outset, and then to subtract the logarithms of s-a, s-b, s-c, respectively, from the logarithm of r. A compact arrangement of the work can be secured by following the model below.

EXERCISE XXVII

- Find $A = 54^{\circ} 22' 43''$, $B = 57^{\circ} 20' 32''$, $C = 68^{\circ} 16' 44''$.
- 2. Given a = 54, b = 52, c = 68; find $A = 51^{\circ} 24' 3.8''$, $B = 48^{\circ} 48' 52.8''$, $C = 79^{\circ} 47' 7.6''$.
 - 3. Given a=35, b=41, c=47; find $A=46^{\circ}\,15'\,5''$, $B=57^{\circ}\,48'\,16''$, $C=75^{\circ}\,56'\,41.5''$.
 - 4. Given a = 73, b = 82, c = 91; find $A = 49^{\circ} 34' 58''$, $B = 58^{\circ} 46' 58''$, $C = 71^{\circ} 38' 4''$.
 - 5. Given a = 47, b = 51, c = 58; find $A = 50^{\circ} 35' 18''$, $B = 56^{\circ} 58' 4''$, $C = 72^{\circ} 26' 40''$.
 - 6. Given a=286, b=321, c=463; find $A=37^{\circ}33'57''$, $B=43^{\circ}10'46''$, $C=99^{\circ}15'23''$.
 - 7. Given a = 138, b = 246, c = 321; find $A = 23^{\circ} 47' 23''$, $B = 45^{\circ} 58' 41''$, $C = 110^{\circ} 14'$
 - **8.** Given a = 196, b = 211, c = 173; find $A = 60^{\circ} 25' 31''$, $B = 69^{\circ} 26'$, $C = 50^{\circ} 8' 36''$.
 - 9. Given a=48.3, b=53.2, c=62.7; find $A=48^{\circ}\ 24'\ 24''$, $B=55^{\circ}\ 27'\ 44''$, $C=76^{\circ}\ 7'\ 55''$.
 - 10. Given a = 226.4, b = 431.6, c = 316.8; find $A = 30^{\circ} 35' 53''$, $B = 103^{\circ} 58' 55''$ $C = 45^{\circ} 25' 8''$.
 - 11. Given a = 262.43, b = 514.36, c = 556.25; find $A = \frac{50^{\circ} 59^{\circ} 48^{\prime\prime}}{2^{\circ} 8^{\circ} 1^{\circ} 4^{\circ}}$, $B = \frac{59^{\circ} 48^{\prime\prime} 44^{\prime\prime}}{2^{\circ} 4^{\circ} 4^{\circ}}$, $C = \frac{69^{\circ} 11^{\prime\prime} 32^{\prime\prime}}{2^{\circ} 4^{\circ} 1^{\circ}}$.
 - 12. Given a = 2243.8, b = 2469.2, c = 3125.6; find $A = 45^{\circ} 26' 3''$, $B = 51^{\circ} 37' 42''$, $C = 82^{\circ} 56' 19''$.

0147-7

13. Given a = 25617, b = 34178, c = 23194; find $A = 48^{\circ} 31' 56''$, $B = 88^{\circ} 44' 34''$, $C = 42^{\circ} 43' 30''$.

- 14. Given a = 0.34177, b = 0.45623, c = 0.58216; find $A = 35^{\circ} 54' 30''$, $B = 51^{\circ} 31' 34''$, $C = 92^{\circ} 33' 56''$.
- **15.** Given a = 11.682, b = 14.468, c = 20.386; find $A = 34^{\circ} 6' 13''$, $B = 43^{\circ} 58' 47''$, $C = 101^{\circ} 54' 58''$.
- **16.** Given a = 1.9141, b = 1.8365, c = 1.2854; find $A = 73^{\circ} 14' 32,''$ $B = 66^{\circ} 44' 22''$, $C = 40^{\circ} 1' 5''$.
- 17. The sides of a triangle are respectively 36.92, 31.84, 26.14. Find the smallest angle of the triangle.
- 18. The sides of a triangle are in the ratio of 29:21:38.

 Find the medium angle.
- 19. The sides of a triangle are to each other as 3:4:5. Find 147 10 all the angles.
- **20.** In a given triangle a = 8, b = 8, c = 8. Find all the angles.
- 21. Three cities are respectively 22.6, 21.4, 19.6 miles apart. If the curvature of the earth is disregarded, what angles are made by the lines joining the cities?
- 22. In discussing the solution of a triangle when two sides and the angle opposite one of them are given, it was noted that two solutions were possible when an angle was found by means of its sine. Why does not a similar ambiguity exist when an angle is found by means of formula (4), p. 149?
 - 23. The sides of a triangle are a = 7, b = 8, c = 5. Find the angle A.
 - **24.** The sides of a triangle are a = 7, b = 5, c = 3. Find the angle A.
 - 25. An object 16.2 ft. in length is so situated that one end is $17\frac{1}{2}$ ft. and the other is 11.9 ft. from the eye of an observer. What angle does the object subtend at the eye?

Pys 15-3-13 | Pase 153-14

14-7-8 | 14-7-9

In geometry it was proved that the 103. Area of a triangle. area of a triangle (Δ) can be found by either of the following formulas:

 $\triangle = \frac{1}{9}$ base \times altitude, $\Delta = \sqrt{s(s-a)(s-b)(s-c)}.$ or,

The work of finding the area of a triangle can be greatly simplified by trigonometry, as will be seen from the following section.

Given two sides and the included angle. 104. Case 1. area of any triangle is equal to one half the product of the base and the altitude. Therefore, using either of the following figures,

In like manner it can be proved that

$$\Delta = \frac{1}{2} bc \sin A, \tag{2}$$

and

$$\Delta = \frac{1}{2} ab \sin C. \tag{3}$$

(1)

Given a side and the two adjacent angles. By the law of sines (Art. 94, p. 131),

$$a: c = \sin A : \sin C$$
.
 $c = \frac{a \sin C}{\sin A}$.

Substituting this value of c in (1), Case 1, we have.

$$\Delta = \frac{a^2 \sin B \sin C}{2 \sin A}.$$

But since $A + B + C = 180^{\circ}$, $\sin A = \sin (B + C)$;

$$\therefore \triangle = \frac{a^2 \sin B \sin C}{2 \sin (B + C)}.$$
 (4)

CASE 3. Given the three sides. In Art. 80, p. 106, it was proved that

 $\sin A = 2\sin\frac{A}{2}\cos\frac{A}{2}.$

But (Art. 102, p. 149),

$$\sin\frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}},$$

and

$$\cos\frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}.$$

Substituting these values in the above equation, we have

$$\sin A = \frac{2}{bc} \sqrt{s(s-a)(s-b)(s-c)}.$$

Substituting this value of $\sin A$ in (2), we have

$$\Delta = \sqrt{s(s-a)(s-b)(s-c)}.$$
 (5)

CASE 4. Given three sides and the radius of the circumscribed circle. By Art. 95, p. 132, we have

$$\sin A = \frac{a}{2r},$$

where r is the radius of the circumscribed circle. Substituting this value in (2), we have

$$\triangle = \frac{abc}{4r}.$$
 (6)

 $\mathbf{C}_{\mathbf{ASE}}$ 5. Given three sides and the radius of the inscribed circle.

Let r be the radius of the inscribed circle. The triangle can be divided into three triangles whose bases are a, b, c, respectively, and whose common altitude is r. Then

$$\Delta = \frac{1}{2} r(a+b+c). \tag{7}$$

CHAPTER XIII

MISCELLANEOUS PROBLEMS IN HEIGHTS AND DISTANCES

105. In this chapter certain problems will be considered that are frequently met in land surveying, railroad work, The degree of accuracy required in practical problems of this kind can only be known after the nature of the special problem under consideration is known. Hence, in the examples that are here considered no attempt is made to conform to the ordinary practice of field surveyors. In many classes of problems that they are called upon to solve a sufficient degree of accuracy is secured if the angles are measured to single minutes and the computations are performed by means of fourplace tables of logarithms; while in others the measurements are made with the greatest possible accuracy and the computations are performed with the aid of eight-, ten-, or twelve-place For this reason it is quite impracticable for an elementary text-book in trigonometry to attempt to conform to field usage.

The tables used in the solution of the problems in this chapter are five-place tables.

106. The height of an object by means of observations made at distant points.

Let AB represent the height of an object, and let C, D, be two points of observation on the same level with A, so

situated that A, C, D, are in the same straight line. Let the angle of elevation of B at C be a, and at D be β , and let DC=a. Then from the triangle ABC

$$\frac{x}{BC} = \sin a, \tag{1}$$

and from the triangle DCB

$$\frac{BC}{a} = \frac{\sin \beta}{\sin(\alpha - \beta)}.$$

$$\therefore BC = \frac{a \sin \beta}{\sin(\alpha - \beta)}.$$
(2)

Substituting this value of BC in (1), and reducing we have

$$x = \frac{a \sin a \sin \beta}{\sin (a - \beta)},$$

a formula which gives the value of x in a form suitable for computation either by logarithms or by natural functions.

Ex. 1. What is the height of a tower when the angles of elevation of the top of the tower from two points 250 ft. apart on the ground and in the same straight line with the foot of the tower are 30° and 60° respectively?

Here
$$a = 250$$
, $a = 60^{\circ}$, and $\beta = 30^{\circ}$. Therefore
$$x = \frac{250 \sin 60^{\circ} \sin 30^{\circ}}{\sin 30^{\circ}}$$
$$= 250 \cdot \frac{1}{2} \sqrt{3} = 216.5 \text{ ft.}$$

107. If the height of an object is to be determined, and no two points can be found that are in the same straight line, and at the same time conveniently situated for observation, the following method is often employed:

From A measure AB in any convenient direction. Let the angle of elevation of the top of the object D, measured at A, be α , and let the distance AB be α . At A and B measure the angles $DAB = \beta$, and $DBA = \gamma$, respectively. Then in the triangle ADB $\triangle ADB = 180^{\circ} - (\beta + \gamma)$.

Therefore,

$$\frac{AD}{a} = \frac{\sin \gamma}{\sin (180^{\circ} - (\beta + \gamma))} = \frac{\sin \gamma}{\sin (\beta + \gamma)}$$

Using the value of AD obtained from this equation, we have

$$x = AD \sin \alpha = \frac{a \sin a \sin \gamma}{\sin (\beta + \gamma)}$$

MISCELLANEOUS EXAMPLES

THE RIGHT TRIANGLE

- 1. The angle of elevation of the top of a vertical cliff 426.28 ft. high, taken from a point on the same level as the foot of the cliff, is 59° 51′ 14″. What is the distance from the foot of the cliff to the point where the observation was taken?
- 2. A pole 36 ft. high casts a shadow 39 ft. long. What is the angle of elevation of the top of the pole, measured at the extremity of the shadow?
- 3. The height of a room is 12.62 ft. and its length is 14.44 ft. What is the angle of elevation of one of the upper corners of the room taken at the lower corner on the same side?
- **4.** What is the elevation of the sun when a tree 31.6 ft. high casts a shadow 42.9 ft. in length?
- 5. What angle does a ladder 25.2 ft. long make with the ground when it just reaches the sill of a window 18.95 ft. above the level on which the foot of the ladder rests?
- 6. The angle of depression of a point on the ground, measured from the top of a building 49.27 ft. high, is 34° 6′ 36″. What is the distance from the foot of the building to the given point?
- 7. The length of the diagonal of a rectangular field is 247.39 ft., and the angle between the diagonal and the shorter side of the field is 29° 40′ 36″. What is the width of the field?
- 8. A path measuring 256.4 ft. in length leads diagonally across a rectangular plot of ground, making with one of the sides an angle of 61° 12′ 52″. What is the length of the side?
- 9. The angle of elevation of a balloon measured at a certain point is 71° 14′ 12″, and from this point to a point directly below the balloon the horizontal distance is 415.9 ft. What is the height of the balloon and its distance from the point of observation?

- 10. A kite is fastened to a string 483.2 ft. long, and the string makes an angle of 63° 19′ 28″ with the level of the ground. What is the vertical height of the kite above the ground, no allowance being made for the sagging of the string?
- 11. To ascertain the width of a river a distance AB is measured along one of the banks 262.38 ft. Directly across the river from B is a point C, and the angle BAC is found upon measurement to be 41° 38' 20''. Required the width of the river.
- 12. Two forces, of 198.52 lb. and 393.13 lb. respectively, are acting at right angles to each other. What is the resultant of the two forces, and what is the angle which the direction of each force makes with the resultant?
- 13. What is the radius of the parallel passing through a point on the earth's surface whose latitude is 43° 15′, the radius of the earth being reckoned as 3956 mi.?
- a certain point is 29° 177, and from a point 362.4 ft. nearer, measured directly toward the hill, the angle of elevation is 48° 12′. Required the height of the hill.
- 15. From the top of a mountain the angles of depression of two milestones 2 mi. apart and in the same vertical plane with the top of the mountain are 10° 14′ 42″ and 5° 38′ 46″ respectively. What is the height of the mountain?
- 16. A flagstaff which is broken at a certain distance above the ground falls so that its tip touches the ground at a distance of 13.5 ft. from the foot of the portion which remains standing. The length of the part broken over is 35.1 ft. What was the total height of the staff before it was broken over?
- 17. If the angle of depression of the visible horizon, observed from the top of a mountain 3 mi. in height, is 2°13′59″, what is the diameter of the earth?
- 18 A ladder 30 ft. long when set in a certain position between two buildings will reach a point 20 ft. from the ground on one of the buildings, and on being turned over without having the position of its foot changed it reaches a

ALIB

34.16

point on the other building 15 ft. from the ground. What is the angle between the two positions of the ladder? (Solve by natural functions.)

- 19. A lighthouse 50 ft. high stands on the top of a rock. The angle of elevation of the top of the rock and of the top of the lighthouse, measured from the deck of a vessel, are 6° 5′ and 6° 58″ respectively. What is the height of the rock, and the distance from the vessel to the foot of the rock? (Solve by natural functions.)
- 20. At any point on the earth's surface a line is drawn tangent to the surface at that point. If the earth is considered a sphere whose diameter is 7912.4 mi., how far from the surface will the line be at the end of 1 mi.?
- 21. A building 50 ft. high stands at the foot of a hill, and from the top of the hill the angles of depression of the top and of the bottom of the building are 45° 15′ and 47° 12′ respectively. What is the height of the hill?
- 22. The angles of a triangle are 1:2:3, and the perpendicular from the greatest angle to the side opposite is 15 ft. Required the sides of the triangle.
- 23. A bridge of five equal spans crosses a river, each span measuring 100 ft. from center to center. From a boat moored in line with one of the middle piers the length of the bridge subtends a right angle. What is the distance from the boat to the bridge? (Solve by natural functions.)
- 24. An observer on a vessel at anchor sees another vessel due north of him; at the end of fifteen minutes it bears E., and half an hour later it bears S.E. How long after it is first seen is it nearest the observer, and in what direction is it sailing, its course being supposed to be in a straight line from the time of the first to the time of the last observation? (Solve by natural functions.)
- 25. A statue on a column subtends the same angle at distances of 27 and of 33 ft. from the column. If the tangent of the angle equals $\frac{1}{10}$, what is the height of the statue? (Solve by natural functions.)

- 26. A tower 145 ft. high stands on an elevation 75 ft. high. At what point in the plain on which the elevation stands must an observation be made in order that the tower and the height of the elevation may subtend equal angles? (Solve by natural functions.)
- 27. A flagstaff 50 ft. high stands in the center of a plot of ground in the form of an equilateral triangle. Each side of the triangle subtends at the top of the staff an angle of 60°. What is the length of one of the sides of the triangle? (Solve by natural functions.)
- **28.** A tower stands on the slope of a hill that has an inclination of 15° to the level of the plain. At a point 80 ft. farther up the hill it is found that the tower subtends an angle of 30°. Prove that the tower is $40(\sqrt{6}-\sqrt{2})$ ft. in height.
- 29. At a distance of 300 ft. from the foot of a tower the angle of elevation is one third as great as it is at a distance of 60 ft. What is the height of the tower?

THE OBLIQUE TRIANGLE

- 30. The angles of elevation of a balloon measured at the same instant at two points on level ground and in the same vertical plane as the balloon are 41° 56′ and 28° 14′ respectively. The two points from which the angles are measured are 3462 ft. apart and on the same side of the balloon. Required its height at the time of observation.
- 31. The angle of depression of an object viewed from the top of a tower is 50° 12′ 56″, and the angle of depression of a second object 250 ft. farther away, and in a straight line with the first object and the foot of the tower is 31° 19′ 54″. What is the height of the tower?
- 32. The angles of depression of two objects on a level plain, viewed from an elevation in the same vertical plane with the objects, are 48° 12′ and 29° 17′ respectively, and the distance between the two points is 362.4 ft. Required the height of the point of observation.

v

- 33. The sides of a triangular plot of ground are 138 ft., 246 ft., and 321 ft. respectively. What is the greatest angle formed by the sides?
- 34. Two objects are separated by a building, and it is required to find the distance between them. At a third point, distant 268 ft. and 315 ft. respectively from the given objects, the angle subtended by the line connecting the objects is measured and is found to be 108° 17′. What is the distance between the objects?
- 35. What is the distance between two points A, B, when the distances from these points to a third point C are 6282 ft. and 2344 ft. respectively, and the angle BAC is 119° 40′ 40″? Is more than one solution possible? Why? (See Art. 100, p. 138.)
- 36. The distance between two points A, B, cannot be obtained directly by the use of the chain or tape because of an intervening body of water. A third point C is chosen from which both A and B are visible, and the following measurements are then made: AC = 3101.8 ft., $\angle CAB = 51^{\circ}$ 28′, $\angle ABC = 70^{\circ}$ 37′ 33″. What is the required distance?
- 37. In a system of triangulation the sides of a triangle connecting the stations on the tops of three hills have been computed and have been found to be 54,692.73 ft., 61,284.39 ft., and 42,798.64 ft. respectively. What are the values of the angles of this triangle as computed from the sides?
- \ 38. An observation station A is set up in a field along one side of which runs a straight, level road. Two points of observation on the road, B, C, one fourth of a mile apart, are chosen, on opposite sides of the first station and the angles ABC, ACB, are measured and found to be 46° 20′ 28″ and 38° 24′ 48″ respectively. What is the distance from the station A to the road?
- 39. The distances from a point on shore to two buoys are known to be 1286 ft. and 2466 ft. respectively, and the angle subtended at that point by the line connecting the buoys is 42° 14′ 16″. What is the distance between the buoys?

- 40. A tripod is set up on a rock, and to find the distance from the tripod to the shore a line 8500 ft. in length is measured along the shore, and at each extremity of the line the angle is measured which subtends the line connecting the tripod with the other end of the line. The angles are found to be 46° 28′ and 43° 32′ respectively. Find the distance from the tripod to the line of measurement along the shore.
- from a third vessel sailing east to be in a straight line due north. After sailing an hour and a half one of the vessels bears N.W. and the other W.N.W. Find the rate at which the vessel is sailing.
- 42. The distance between two points A, B, is to be determined, where B is accessible and A is not. A kite is sent up and made fast, and its position C is determined to be 517.3 yd. vertically above D, which is on the same level with A and B. The following angles are then measured: $ACB = 13^{\circ} 15' 15''$, $CAD = 21^{\circ} 9' 18''$, $DBC = 23^{\circ} 15' 34''$. What is the distance from A to B? 3
- ⁰ **43.** Two forces, of 410 lb. and 320 lb. respectively, are acting at an angle of 51° 37′. Required the direction and intensity of the resultant.
- U 44. A kite A has been sent up and is fastened to the ground at a point C. The kite has drifted a certain distance and now stands directly above a point B, which is on the same level as C, but is separated from it by obstacles which render direct measurement impracticable; and the height of the kite is desired. To ascertain this a line is measured from C to a point D, 4262.4 ft. in length, and the following angles are measured: $ACB = 31^{\circ} 17' 14''$, $ACD = 66^{\circ} 14' 52''$, $CDA = 52^{\circ} 51' 38''$. Required the vertical height of the kite above the point B. (See Art. 107.)
- 5 45. Two rocks are to be charted. To ascertain the distance between them the angles of elevation of a point at the top of a cliff 527.4 ft. high are taken and are found to be 21° 8′ 16″ and 23° 14′ 20″ respectively, and the angle subtended by the

1 2

line connecting the rocks, measured at a point at the top of the cliff, is 16° 3′ 30″. Required the distance between the rocks.

- 46. A balloon, A, is sighted at the same instant from two points, B, C, which are on the same level, and are 262.4 ft. apart. The angle of elevation of the balloon at B is 41° 15′ 24″, $\angle ABC = 62^{\circ}$ 48′ 14″, $\angle ACB = 59^{\circ}$ 14′ 21″. What is the height of the balloon at the instant of observation?
- 47. A tower stands on the slope of a hill which makes an angle of 16° with the horizon. At a distance of 95 ft. from the foot of the tower, measured directly up the side of the hill, the height of the tower subtends an angle of 38°. What is the height of the tower?
- 48. A tree stands E.S.E. of an observer, and at noon the extremity of the shadow of the tree is directly N.E. of the position in which he is standing. The length of the shadow is 60 ft., and the angle of elevation of the top of the tree viewed from the position of the observer is 45°. What is the height of the tree? (Solve by natural functions.)
- 49. It is required to find the distance between two points, A, B, neither of which is accessible. For that purpose a base line, CD, 4968 ft. long, is measured, and the following angles are observed: $ACD = 108^{\circ} 14'$, $BCD = 41^{\circ} 15'$, $BDC = 115^{\circ} 21'$, $ADC = 39^{\circ} 42'$. What is the distance from A to B?
- 50. Two points are so situated that it is not possible to measure directly from one to the other, but observations can be taken at either point. Two other points, C, D, are chosen, 5226 ft. apart, and the following angles are measured: $ACB = 15^{\circ} 18' 24''$, $DAC = 21^{\circ} 12' 46''$, $DBC = 23^{\circ} 18' 42''$, $ADC = BDC = 90^{\circ}$. What is the distance from A to B?
- 51. To find the distance between two inaccessible points, A, B, two other points, C, D, are chosen, so situated that from either of them the three other points can be seen; and the following measurements are then made: CD = 826.5 ft., $\angle ACD = 121^{\circ} 12'$, $\angle BCD = 58^{\circ} 55'$, $\angle ADC = 49^{\circ} 12'$, $\angle ADB = 62^{\circ} 38'$. What is the distance from A to B?

- 52. Two points, A, B, are so situated that only one point, C, can be found which is conveniently situated for observation, from which both can be seen. A fourth point, D, is found from which A and C can be seen, and a fifth point, E, from which B and C can be seen. The following measurements are taken, from which it is required that the distance from A to B shall be computed: CD = 6428.72 ft., CE = 5872.54 ft., $\angle ACB = 66^{\circ}$ 14', $\angle BCE = 41^{\circ}$ 17', $\angle CEB = 117^{\circ}$ 42', $\angle ACD = 69^{\circ}$ 38', $\angle CDA = 64^{\circ}$ 21'.
- 53. Two points, A, B, are so situated that no point can be found from which both can be seen. Two other points, C, D, are found, so placed that A and D can be seen from C and B from D, and also two additional points, E, F, so placed that A and C can be seen from F, and B and D from E. The following data can now be obtained for the determination of the distance from A to B: CD = 1254 ft., CF = 1216 ft., DE = 1216 ft., $\angle AFC = 78^{\circ} 14' 15''$, $\angle FCA = 53^{\circ} 51' 40''$, $\angle ACD = 52^{\circ} 17' 18''$, $\angle CDB = 155^{\circ} 24' 20''$, $\angle BDE = 53^{\circ} 49' 8''$, $\angle DEB = 82^{\circ} 57'$. What is the length of the line AB?

CHAPTER XIV

FUNCTIONS OF VERY SMALL ANGLES — HYPERBOLIC FUNCTIONS — TRIGONOMETRIC ELIMINATION

108. Trigonometric functions of very small angles. Let A OB be any angle less than 90°. With O as a center and any radius OA describe a circle.

Draw BC perpendicular to OA, and produce it to intersect the circle in B'.

Draw tangents to the circle at B, B'. These tangents will, by geometry, intersect OA produced in the same point D. Then

chord
$$BB' < \text{arc } BB' < BD + B'D$$
.

Dividing by 2, CB < are AB < DB.

$$\therefore \frac{CB}{OB} < \frac{\text{are } AB}{OB} < \frac{BD}{OB}.$$

But $\frac{CB}{OB} = \sin \theta$, $\frac{BD}{OB} = \tan \theta$, and $\frac{\operatorname{arc} AB}{OB} = \operatorname{the}$ circular measure of the angle θ , or of the arc AB (Art. 13, p. 16). Therefore, $\sin \theta < \theta < \tan \theta$.

This important result may be expressed as follows:

When $\theta < 90^{\circ}$, $\sin \theta$, θ , and $\tan \theta$ are in the ascending order of magnitude.

109. Dividing the inequality just obtained by $\sin \theta$, we have

$$1 < \frac{\theta}{\sin \theta} < \sec \theta,$$

or,
$$1 > \frac{\sin \theta}{\theta} > \cos \theta.$$

Therefore, $\frac{\sin \theta}{\theta}$ lies between 1 and $\cos \theta$ for all values of θ between 0 and $\frac{\pi}{2}$.

But as θ approaches 0 as its limit, $\cos \theta$ approaches 1 as its limit; and at the same time $\frac{1}{\cos \theta}$ approaches 1 as its limit.

Therefore, when θ is very small, and is approaching 0 as its limit, $\frac{\sin \theta}{\theta}$ lies between 1 and a quantity that may be made to differ from 1 by a quantity ϵ which may be made as small as we please; and as θ approaches 0 as its limit, ϵ also approaches 0 as its limit.

0 as its limit.

In other words, when θ approaches 0 as its limit, $\frac{\sin \theta}{\theta}$ approaches 1 as its limit. This fact is often expressed by the statement that when θ is very small, $\sin \theta = \theta$, approximately.

In like manner it can be shown that as θ approaches 0 as its limit, $\tan \theta$ will also approach the limit 0; that is, when θ is very small, $\tan \theta = \theta$ approximately.

From the above it follows also that when θ is very small, $\sin \theta = \tan \theta$, approximately.

In this discussion it should be remembered that θ is expressed in circular measure; *i.e.* θ is the number of radians in the angle or arc under consideration.

EXERCISE XXVIII

1. Find the sine and the cosine of 1'.

Let x be the circular measure of 1'.

Then,
$$x = \frac{2 \pi}{360 \times 60} = \frac{3.14159}{10800} = 0.000290888 + .$$

Therefore, since $x > \sin x > 0$, (Art. 108) $\sin 1^{t}$ lies between 0 and 0.000290889.

Also,
$$\cos 1' = \sqrt{1 - \sin^2 1'}$$

 $> \sqrt{1 - (0.000290888)^2}$
 > 0.9999999 .
 $\therefore \cos 1' = 0.9999999 + .$ (1)

But (Art. 108, p. 166), $\sin x > x \cos x$.

$$\therefore \sin 1' > 0.000290888 \times 0.9999999 \\ < 0.000290887.$$

Therefore, $\sin 1'$ lies between (1) and (2); i.e.

 $\sin 1' = 0.00029088^{+},$

and the next decimal place is either 7 or 8.

Find approximately the values of the following:

2.
$$\sin 10'$$
.
3. $\cos 10'$.
4. $\sin 7'$.
5. $\sin 15'$.
7. $\sin 8''$.

HYPERBOLIC FUNCTIONS

110. In the differential calculus it is proved that the following equations are true for all values of x:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots; \tag{1}$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots;$$
 (2)

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots,$$
 (3)

where $e = 2.7182818 \cdots$ is the base of the natural system of logarithms. In (1) and (2) x is the value of the angle or are expressed in radians.

If in (3) x is replaced by ix, where $i = \sqrt{-1}$, we have

$$e^{ix} = 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \cdots$$

$$= \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots\right) + i\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots\right). \tag{4}$$

The series in the first parenthesis is the same as the right member of (2), and that in the second parenthesis is the same as the right member of (1). Hence, replacing these series by their values, we have equation (4) in the following form:

$$e^{ix} = \cos x + i \sin x. \tag{5}$$

In a precisely similar manner it may be shown that

$$e^{-ix} = \cos x - i\sin x. \tag{6}$$

Adding (5) and (6), and dividing by 2, we have

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}.\tag{7}$$

Subtracting (6) from (5) and dividing by 2i, and the corresponding value for $\sin x$ is obtained:

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}.\tag{8}$$

These equations give the values of the sine and the cosine of any angle whatever in exponential form.

111. If in (5) and (6) of the preceding section we replace x by ix, the following equations are obtained:

$$e^{-x} = \cos ix + i \sin ix; \tag{1}$$

$$e^x = \cos ix - i\sin ix. \tag{2}$$

By addition and subtraction we obtain from these the results below: $e^x + e^{-x}$

 $\cos ix = \frac{e^x + e^{-x}}{2};\tag{3}$

$$\sin ix = \frac{i(e^x - e^{-x})}{2}.$$
 (4)

It will be noticed that the exponential functions which occur in the right-hand members of (3) and (4) possess a striking similarity to those which appear in (7) and (8) of the preceding section. It has been found convenient to make use of this similarity, and, corresponding to the exponential values of $\sin x$ and $\cos x$ given in those equations, to give the following definitions:

 $\frac{e^x + e^{-x}}{2}$ is called the hyperbolic cosine of x,

and $\frac{e^x - e^{-x}}{2}$ is called the hyperbolic sine of x.

These functions are written in abbreviated form $\cosh x$ and and $\sinh x$ respectively. Accordingly we have

$$\cosh x = \frac{e^x + e^{-x}}{3} = \cos ix; \tag{5}$$

$$\sinh x = \frac{e^x - e^{-x}}{2} = -i \sin ix.$$
 (6)

The name hyperbolic is applied to these functions because they bear to the equilateral hyperbola a relation analogous to that which $\sin x$ and $\cos x$ bear to the circle. (Art. 46, p. 64.)

The other hyperbolic functions are defined as follows:

$$tanh x = \frac{\sinh x}{\cosh x};$$
(7)

$$\coth x = \frac{\cosh x}{\sinh x};\tag{8}$$

$$\operatorname{sech} x = \frac{1}{\cosh x}; \tag{9}$$

$$\operatorname{csch} x = \frac{1}{\sinh x}.\tag{10}$$

112. Ex. 1. Prove the relation $\sinh 0 = 0$.

By (6), Art. 111, we have

$$\sinh 0 = \frac{e^0 - e^0}{2} = \frac{0}{2} = 0.$$

Ex. 2. Prove the relation

$$\sinh (x + y) = \sinh x \cosh y + \cosh x \sinh y$$
.

By definition

$$\sinh (x + y) = -i (\sin (ix + iy))$$

$$= -i (\sin ix \cos iy + \cos ix \sin iy)$$

$$= -i (i \sinh x \cosh y + i \cosh x \sinh y)$$

$$= \sinh x \cosh y + \cosh x \sinh y.$$

Ex. 3. Prove the relation

$$\sinh x + \sinh y = 2 \sinh \frac{x+y}{2} \cosh \frac{x-y}{2}.$$

By definition

$$\sinh x + \sinh y = -i\left(\sin ix + \sin iy\right)$$

$$= -i\left(2\sin\frac{i(x+y)}{2}\cos\frac{i(x-y)}{2}\right)$$

$$= 2\left(-i\sin\frac{i(x+y)}{2}\cos\frac{i(x-y)}{2}\right)$$

$$= 2\sinh\frac{x+y}{2}\cosh\frac{x-y}{2}.$$

9. $\sin(-ix) = -\sin ix$. 10. $\cos(-ix) = \cos ix$.

12. $\sinh(-x) = -\sinh x$. 13. $\cosh(-x) = \cosh x$.

14. $\coth(-x) = -\coth x$.

16. $\operatorname{csch}(-x) = -\operatorname{csch} x$.

17. $\cosh^2 x - \sinh^2 x = 1$.

18. $\operatorname{sech}^2 x + \tanh^2 x = 1$.

15. $\operatorname{sech}(-x) = \operatorname{sech} x$.

11. $\tan ix = i \tanh x$.

EXERCISE XXIX

Prove the following identities:

1.
$$\cosh 0 = 1$$
.

$$2. \sinh \frac{\pi i}{2} = i.$$

$$3. \cosh \frac{\pi i}{2} = 0.$$

4.
$$\sinh \pi i = 0$$
.

5.
$$\cosh \pi i = -1$$
.

6.
$$\sinh 2 n\pi = 0$$
.

7.
$$\cosh 2 n\pi = 1$$
.

8.
$$\tanh 0 = 0$$
.

19.
$$\operatorname{csch}^2 x - \operatorname{coth}^2 x = -1$$
.

19.
$$\csc x - \cot x = -1$$
.

20.
$$\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$$
.

21.
$$\sinh 2x = 2 \sinh x \cosh x$$
.

22.
$$\cosh 2 x = \cosh^2 x + \sinh^2 x$$
.

23.
$$\sinh x - \sinh y = 2 \cosh \frac{x+y}{2} \sinh \frac{x-y}{2}$$

24.
$$\cosh x + \cosh y = 2 \cosh \frac{x+y}{2} \cosh \frac{x-y}{2}$$

25.
$$\cosh x - \cosh y = 2 \sinh \frac{x+y}{2} \sinh \frac{x-y}{2}$$

113. The notation for inverse hyperbolic functions is the same as for inverse circular functions (Art. 84, p. 114).

If
$$y = \sinh x$$
,
then, $x = \sinh^{-1} y$.

But by (6), p. 169,
$$y = \frac{e^x - e^{-x}}{2}$$
.

Solving this equation for x, we have

$$x = \log(y + \sqrt{y^2 + 1}).$$

$$\therefore \sinh^{-1} y = \log(y + \sqrt{y^2 + 1}).$$
(1)

In like manner,
$$\cosh^{-1} y = \log (y + \sqrt{y^2 - 1});$$
 (2)

$$\tanh^{-1} y = \frac{1}{2} \log \frac{1+y}{1-y}; \tag{3}$$

$$\coth^{-1} y = \tanh^{-1} \frac{1}{y} = \frac{1}{2} \log \frac{y+1}{y-1}; \tag{4}$$

$$\operatorname{sech}^{-1} y = \cosh^{-1} \frac{1}{y} = \log \frac{1 + \sqrt{1 - y^2}}{y}; \qquad (5)$$

$$\operatorname{csch}^{-1} y = \sinh^{-1} \frac{1}{y} = \log \frac{1 + \sqrt{1 + y^2}}{y}.$$
 (6)

EXERCISE XXX

Prove the following relations:

1.
$$\tanh^{-1} \frac{2x}{1+x^2} = 2 \tanh^{-1} x$$
.

2.
$$\sinh^{-1} 2 x = 2 \sinh^{-1} x \cosh^{-1} x$$
.

3.
$$\sinh^{-1} x = \cosh^{-1} \sqrt{1 + x^2}$$
.

4.
$$\sinh^{-1} x = \tanh^{-1} \frac{x}{\sqrt{1+x^2}}$$

5.
$$\tanh^{-1} x + \tanh^{-1} y = \tanh^{-1} \frac{x+y}{1+xy}$$

ELIMINATION

114. It often happens that two or more equations are given that contain trigonometric functions of some angle, or perhaps of more than one angle. From these equations a single equation is to be obtained from which all trigonometric functions have been eliminated.

In theory the required elimination can always be performed, but in practice this often involves processes that are somewhat complicated; and the desired results are obtained with a greater or less degree of difficulty.

No general rule for work of this kind can be given; and the process is best illustrated by a few examples.

115. Ex. 1. Find the values of r and θ from the equations

$$r\sin\theta = a; \tag{1}$$

$$r\cos\theta = b. \tag{2}$$

Squaring and adding,

$$r^{2}(\sin^{2}\theta + \cos^{2}\theta) = a^{2} + b^{2},$$

 $r^{2} = a^{2} + b^{2},$
 $r = \sqrt{a^{2} + b^{2}}.$

Also, dividing (1) by (2),

$$\tan \theta = \frac{a}{b},$$

$$\theta = \tan^{-1} \frac{a}{b}.$$

Ex. 2. Find the equation of relation between a and b if $\sin^3 \theta = a$, and $\cos^3 \theta = b$.

From the values here given we have

$$\sin \theta = a^{\frac{1}{3}}$$
, and $\cos \theta = b^{\frac{1}{3}}$.

But for all values of θ , $\sin^2 \theta + \cos^2 \theta = 1$.

Therefore, substituting, $a^{\frac{2}{3}} + b^{\frac{2}{3}} = 1$, which is the equation desired.

Ex. 3. Eliminate θ from the equations,

$$a \cos \theta + b \sin \theta = c,$$

 $d \cos \theta + e \sin \theta = f.$

Solving by any of the ordinary methods of elimination,

$$\sin \theta = \frac{cd - af}{bd - ae},$$

$$\cos\theta = \frac{bf - ce}{bd - ae}.$$

Substituting these values of $\sin \theta$ and $\cos \theta$ in

$$\sin^2 \theta + \cos^2 \theta = 1,$$

and reducing, we have

$$(bf - ce)^2 + (cd - af)^2 = (bd - ae)^2$$
.

Ex. 4. Eliminate θ from the equations

$$\cot \theta + \tan \theta = a; \tag{1}$$

$$\sec \theta - \cos \theta = b. \tag{2}$$

From (1)
$$a = \frac{1}{\tan \theta} + \tan \theta = \frac{1 + \tan^2 \theta}{\tan \theta}.$$
$$\therefore a = \frac{\sec^2 \theta}{\tan \theta}.$$
 (3)

or,

From (2)
$$b = \sec \theta - \frac{1}{\sec \theta} = \frac{\sec^2 \theta - 1}{\sec \theta}.$$

$$\therefore b = \frac{\tan^2 \theta}{\sec \theta}.$$
 (4)

From (3) and (4) $a^2b = \sec^3\theta$, and $ab^2 = \tan^3\theta$.

But $\sec^2 \theta - \tan^2 \theta = 1.$

 $\therefore (a^2b)^{\frac{2}{3}} - (ab^2)^{\frac{2}{3}} = 1,$ $a^{\frac{4}{3}}b^{\frac{2}{3}} - a^{\frac{2}{3}}b^{\frac{4}{3}} = 1.$

Ex. 5. Eliminate θ from the equations

$$\frac{x}{a}\cos\theta - \frac{y}{b}\sin\theta = \cos 2\theta; \tag{1}$$

$$\frac{x}{a}\sin\theta + \frac{y}{b}\cos\theta = 2\sin 2\theta. \tag{2}$$

Multiplying (1) by $\cos \theta$ and (2) by $\sin \theta$ and adding the resulting equations, we obtain

 $\frac{x}{a} = \cos \theta \cos 2 \theta + 2 \sin 2 \theta \sin \theta$ $= \cos \theta \cos 2 \theta + \sin \theta \sin 2 \theta + \sin \theta \sin 2 \theta$ $= \cos \theta + 2 \sin^2 \theta \cos \theta.$ (3)

In like manner, multiplying (1) by $\sin \theta$ and (2) by $\cos \theta$ and subtracting, we obtain

 $\frac{y}{b} = 2\sin 2\theta \cos \theta - \cos 2\theta \sin \theta$ $= \sin \theta + 2\sin \theta \cos^2 \theta. \tag{4}$

Adding (3) and (4),

$$\frac{x}{a} + \frac{y}{b} = \cos \theta + \sin \theta + 2 \sin \theta \cos \theta (\cos \theta + \sin \theta)$$

$$= (\cos \theta + \sin \theta)(1 + 2 \sin \theta \cos \theta)$$

$$= (\cos \theta + \sin \theta)(\cos^2 \theta + \sin^2 \theta + 2 \sin \theta \cos \theta)$$

$$= (\cos \theta + \sin \theta)^3.$$

$$\therefore \cos \theta + \sin \theta = \left(\frac{x}{a} + \frac{y}{b}\right)^{\frac{1}{3}}.$$
 (5)

By subtracting (4) from (3) and reducing the result, we find that

$$\cos \theta - \sin \theta = \left(\frac{x}{a} - \frac{y}{b}\right)^{\frac{1}{3}}.$$
 (6)

Squaring (5) and (6) and adding the results, we obtain the following, which is the desired equation:

$$2 = \left(\frac{x}{a} + \frac{y}{b}\right)^{\frac{2}{3}} + \left(\frac{x}{a} - \frac{y}{b}\right)^{\frac{2}{3}}.$$

Ex. 6. From the following simultaneous equations, find the values of r, ϕ , θ :

$$r\sin\theta\cos\phi = a; \qquad (1)$$

$$r\cos\theta\cos\phi = b; \tag{2}$$

$$r\sin\phi = c. \tag{3}$$

Dividing (1) by (2),
$$\tan \theta = \frac{a}{b}$$
 $\therefore \theta = \tan^{-1} \frac{a}{b}$. (4)

Squaring (1) and (2) and adding,

$$r^2\cos^2\phi = a^2 + b^2. \tag{5}$$

Taking the square root of (5), and then dividing (3) by this result,

$$\tan \phi = \frac{c}{\sqrt{a^2 + b^2}} \quad \therefore \phi = \tan^{-1} \frac{c}{\sqrt{a^2 + b^2}}.$$
 (6)

Squaring (3) and adding the result to (5),

$$r^2 = a^2 + b^2 + c^2,$$

 $r = \sqrt{a^2 + b^2 + c^2}.$

EXERCISE XXXI

1. Find r and θ if $r \sin \theta = 1.25$ and $r \cos \theta = 2.165$.

Eliminate θ from the equations following:

2.
$$a\cos\theta + b\sin\theta = c$$
, and $b\cos\theta - a\sin\theta = d$.

3.
$$\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$$
, and $\frac{x}{a}\sin\theta - \frac{y}{b}\cos\theta = 1$.

4.
$$a \sec \theta - b \tan \theta = c$$
, and $d \sec \theta + c \tan \theta = b$.

5.
$$a \cos 2\theta = b \sin \theta$$
, and $c \sin 2\theta = d \cos \theta$.

6.
$$\cos \theta + \sin \theta = a$$
, and $\cos 2 \theta = b$.

7.
$$\sin \theta + \cos \theta = a$$
, and $\tan \theta + \cot \theta = b$.

8.
$$\cot \theta + \cos \theta = a$$
, and $\cot \theta - \cos \theta = b$.

9.
$$\sin \theta - \cos \theta = a$$
, and $\csc \theta - \sin \theta = b$.

10.
$$\sin \theta + \cos \theta \sin 2\theta = a$$
, and $\cos \theta + \sin \theta \sin 2\theta = b$.

11.
$$\sec \theta - \cos \theta = a$$
, and $\csc \theta - \sin \theta = b$.

Eliminate θ and ϕ from the following equations:

12.
$$\tan \theta + \tan \phi = a$$
, $\cot \theta + \cot \phi = b$, and $\theta + \phi = a$.

13.
$$\sin \theta + \sin \phi = a$$
, $\cos \theta + \cos \phi = b$, and $\theta - \phi = a$.

14. $a\cos^2\theta + b\sin^2\theta = c\cos^2\phi$, $a\sin^2\theta + b\cos^2\theta = d\sin^2\phi$, and $c\tan^2\theta - d\tan^2\phi = 0$.

MARINER'S COMPASS

SPHERICAL TRIGONOMETRY

CHAPTER XV

GENERAL THEOREMS AND FORMULAS

- 116. Spherical trigonometry is that branch of trigonometry which treats of the solution of spherical triangles.
- 117. The following definitions and theorems are to be found in works on solid geometry. For a discussion of the definitions and for proofs of the theorems the student is referred to any text-book on that subject.

DEFINITIONS AND THEOREMS

- 1. The curve of intersection of a plane and a sphere is a circle.
- 2. A great circle is a circle formed by a plane that passes through the center of the sphere.
- 3. A small circle is a circle formed by a plane that intersects the sphere without passing through its center.
- 4. Through any two points on the surface of a sphere one and only one great circle can be passed, unless these points are at opposite extremities of a diameter of the sphere.
- 5. A spherical angle is the angle between two arcs of great circles. It is equal to the angle between the tangents to the two circles drawn at their point of intersection; it is also equal in angular magnitude to the dihedral angle formed by the planes of the two great circles.
- 6. A spherical polygon is a portion of the surface of the sphere bounded by three or more arcs of great circles.
 - 7. A spherical triangle is a spherical polygon of three sides.

118. Let ABC be any spherical triangle, and O the center of the sphere on whose surface the triangle is drawn. The

vertices are represented geometrically by the letters A, B, C, and the same letters are used to designate the angles lying at these vertices respectively. The sides opposite these angles are designated by the corresponding letters a, b, c. Since

O is the center of the sphere, OA = OB = OC, each being a radius of the same sphere. Also, the arcs a, b, c, are the measures of the central angles BOC, AOC, AOB, respectively.

THEOREMS. The following theorems on spherical triangles were proved in solid geometry.

- I. The sum of any two sides of a spherical triangle is greater than the third side.*
- II. In any spherical triangle the greatest side is opposite the greatest angle, and conversely. Also, equal sides are opposite equal angles.
 - III. Any angle of a spherical triangle is less than 180°.
- IV. The sum of the angles of a spherical triangle is greater than 180° and less than 540° ; i.e. $180^{\circ} < A + B + C < 540^{\circ}$.
 - V. Any side of a spherical triangle is less than 180°.
- VI. The sum of the sides of a spherical traingle is less than 360° ; i.e. $a + b + c < 360^{\circ}$.
- VII. The difference of any two angles of a spherical triangle has the same sign as the difference of the corresponding opposite sides; e.g. A B and a b are of the same sign.
- VIII. If from the vertices of a spherical triangle as poles, arcs of great circles are drawn, a second spherical triangle will be formed which is called the **polar** of the first triangle.

Let ABC be any spherical triangle, and a', b', c' be arcs of great circles drawn with A, B, C, respectively as poles. If these arcs are extended and the great circles are fully drawn, the surface of the sphere is divided into

* Three great circles intersect on the surface of a sphere in such a way as to form eight triangles; and one of these triangles always satisfies the theorems of this section. Only such triangles are considered in this work.

eight spherical triangles. That triangle A'B'C' is called the **polar** of ABC which is so situated that A and A' lie on the same side of BC; B and B' on the same side of AC; C and C' on the same side of AB.

N Any angle of a spherical triangle is the supplement of the side opposite in its polar.

If ABC is the polar of A'B'C', then conversely A'B'C' is the polar of ABC.

Let ABC and A'B'C' be two polar triangles, and let a, b, c, and a', b', c', be the sides opposite the like-named angles in the two triangles respectively.

Spherical triangles are called isosceles, equilateral, equiangular, right, and oblique under the same conditions as are the corresponding plane triangles.

It is to be remembered, however, that a spherical triangle may have one, two, or three right angles. If it contains two right angles, it is called a bi-rectangular spherical triangle; and if it contains three right angles, it is a tri-rectangular spherical triangle.

Note. The length of a side of a spherical triangle, expressed in linear measure, can not be determined until the radius of the sphere is known.

119. Fundamental Theorem. To express a side of a spherical triangle in terms of the other two sides and of the angle opposite:

Let ABC be a spherical triangle and O the center of the sphere.

From D, any point in the radius OA, draw DE, DF, perpendicular to OA, in the planes OAB, OAC, respectively. Connect EF.

Then is the plane angle EDF equal to the angle A (Art. 117, p. 177).

In the plane triangles DEF, OEF, we have (Art. 96,

p. 133)
$$EF^2 = DE^2 + DF^2 - 2 DE \cdot DF \cos A,$$

and $EF^2 = OE^2 + OF^2 - 2 OE \cdot OF \cos a.$

Equating these values of EF^2 and transposing, we have $OE^2 - DE^2 + OF^2 - DF^2 + 2 DE \cdot DF \cos A - 2 OE \cdot OF \cos a = 0$.

Substituting OD^2 for $OE^2 - DE^2$, and also for $OF^2 - DF^2$, this becomes

$$2 OD^2 + 2 DE \cdot DF \cos A - 2 OE \cdot OF \cos a = 0.$$

Dividing by $2 OE \cdot OF$,

$$\frac{OD}{OE} \cdot \frac{OD}{OF} + \frac{DE}{OE} \cdot \frac{DF}{OF} \cos A - \cos a = 0;$$

$$\cos a = \cos b \cos c + \sin b \sin c \cos A.$$
(1)

i.e.

120. An examination of the figure which accompanies the demonstration in the preceding article shows that the implied

supposition is there made that both b and c are less than 90°, but that no restriction is placed on a.

In order to establish the truth of the theorem for all values of a and b we proceed as follows:

Let b be greater than 90°. Produce the arcs CA and CB until they intersect again in C'.

Since $AC > 90^{\circ}$, we have $AC' < 90^{\circ}$. Therefore in the triangle ABC', $AC' < 90^{\circ}$,

and, by hypothesis, $AB < 90^{\circ}$, while BC' is unrestricted.

Applying (1), Art. 119, to the triangle
$$ABC'$$
, we have
$$\cos a' = \cos b' \cos c + \sin b' \sin c \cos \angle C'AB. \tag{1}$$

But (Art. 53, p. 78),
$$\cos a' = -\cos a$$
,
 $\cos b' = -\cos b$,
and $\cos \angle C' A B = -\cos A$.

and

Substituting these values in (1), we have
$$\cos a = \cos b \cos c + \sin b \sin c \cos A$$
.

In like manner it can be shown that the theorem remains true if a and b are both greater than 90°. Hence, it is true for all spherical triangles which come within the scope of our work.

Also, by drawing the perpendiculars DE, DF, from some point in the radius OB in the planes BOC, BOA, respectively, in the figure of Art. 119, we can obtain a corresponding formula for expressing the value of $\cos b$; and by drawing these perpendiculars from some point in the radius OC, in the planes COA, COB, respectively, a similar formula for the value of $\cos c$. Therefore,

$$\cos a = \cos b \cos c + \sin b \sin c \cos A,$$

$$\cos b = \cos c \cos a + \sin c \sin a \cos B,$$

$$\cos c = \cos a \cos b + \sin a \sin b \cos C.$$
(2)

The above are relations involving the sides and one of the angles of a spherical triangle.

From these equations the following are at once derived:

$$\cos A = \frac{\cos a - \cos b \cos c}{\sin b \sin c},$$

$$\cos B = \frac{\cos b - \cos c \cos a}{\sin c \sin a},$$

$$\cos C = \frac{\cos c - \cos a \cos b}{\sin a \sin b}.$$
(3)

These relations express the values of the cosines of the angles of a spherical triangle in terms of the sides of the triangles.

- **121.** After the first of the three formulas in (2) or in (3) in the preceding article has been obtained the others can be derived from it by a cyclic interchange of the letters a, b, c, replacing at the same time A by B, and B by C.
- 122. The law of sines. From plane trigonometry we have the relation $\sin^2 A = 1 \cos^2 A$.

Replacing $\cos^2 A$ by its value from (3) in the preceding section,

$$\sin^{2} A = 1 - \frac{(\cos a - \cos b \cos c)^{2}}{\sin^{2} b \sin^{2} c}$$

$$= \frac{\sin^{2} b \sin^{2} c - (\cos a - \cos b \cos c)^{2}}{\sin^{2} b \sin^{2} c}$$

$$= \frac{(1 - \cos^{2} b)(1 - \cos^{2} c) - (\cos a - \cos b \cos c)^{2}}{\sin^{2} b \sin^{2} c}.$$

Expanding, reducing, and rearranging terms, we have

$$\sin^2 A = \frac{1 - \cos^2 a - \cos^2 b - \cos^2 c + 2\cos a\cos b\cos c}{\sin^2 b\sin^2 c}.$$

Dividing both sides of the equation by $\sin^2 a$ and extracting the square root, we obtain

$$\frac{\sin A}{\sin a} = \frac{\sqrt{1 - \cos^2 a - \cos^2 b - \cos^2 c + 2\cos a\cos b\cos c}}{\sin a\sin b\sin c}.$$
 (1)

In a precisely similar manner it can be proved that $\frac{\sin B}{\sin b}$ and also that $\frac{\sin C}{\sin c}$ have the same value. Therefore, since each of these ratios has the same value, they are equal to each other.

$$\therefore \frac{\sin A}{\sin a} = \frac{\sin B}{\sin b} = \frac{\sin C}{\sin c},$$
 (2)

which is the law of sines. It may be stated in words as follows:

The sines of the sides of a spherical triangle are to each other as the sines of the opposite angles.

An inspection of (1) shows that a cyclic interchange of the letters a, b, c, and A, B, C, leaves the right member of the equation unchanged, while the left member is changed into $\frac{\sin B}{\sin b}$ and $\frac{\sin C}{\sin c}$ successively. Hence, after (1) has been proved, (2) can be established by cyclic interchange of letters.

123. To derive a relation involving the angles and one of the sides of a spherical triangle.

Let A'B'C' and ABC be two spherical triangles polar to each other. Then (Art. 118, p. 179),

$$a' = 180^{\circ} - A,$$

 $b' = 180^{\circ} - B,$
 $c' = 180^{\circ} - C.$ (1)

By (1), Art. 119, p. 180,

$$\cos a' = \cos b' \cos c' + \sin b' \sin c' \cos A'. \tag{2}$$

But, by (1),

$$\cos a' = -\cos A,$$
 $\sin b' = \sin B,$
 $\cos b' = -\cos B,$ $\sin c' = \sin C,$
 $\cos c' = -\cos C.$ $\cos A' = -\cos a.$

Substituting these values in (2), we have

$$-\cos A = \cos B \cos C - \sin B \sin C \cos a.$$

In like manner we can obtain corresponding values for $\cos B$ and for $\cos C$.

Therefore,

$$\cos A = -\cos B \cos C + \sin B \sin C \cos a,$$

$$\cos B = -\cos C \cos A + \sin C \sin A \cos b,$$

$$\cos C = -\cos A \cos B + \sin A \sin B \cos c.$$
(3)

From these equations the following are at once derived:

$$\cos a = \frac{\cos A + \cos B \cos C}{\sin B \sin C},$$

$$\cos b = \frac{\cos B + \cos C \cos A}{\sin C \sin A},$$

$$\cos c = \frac{\cos C + \cos A \cos B}{\sin A \sin B}.$$
(4)

124. To derive a relation involving two angles and the sides of a spherical triangle.

Resuming (1), Art. 119, p. 180, we have $\cos a = \cos b \cos c + \sin b \sin c \cos A$.

Substituting in this equation the value of $\cos c$ obtained from (2), Art. 120, p. 181,

 $\cos a = \cos b (\cos a \cos b + \sin a \sin b \cos C) + \sin b \sin c \cos A$ $= \cos a \cos^2 b + \sin a \sin b \cos b \cos C + \sin b \sin c \cos A.$ $\cos a (1 - \cos^2 b) = \sin a \sin b \cos b \cos C + \sin b \sin c \cos A.$

Substituting for $1 - \cos^2 b$ its value, $\sin^2 b$, and dividing both sides of the equation by $\sin b$, we obtain the desired relation,

$$\cos a \sin b = \sin a \cos b \cos C + \sin c \cos A. \tag{1}$$

In like manner we can obtain corresponding expressions for the value of $\cos a \sin c$, of $\cos b \sin c$, etc. Therefore,

 $\cos a \sin b = \sin a \cos b \cos C + \sin c \cos A,$ $\cos a \sin c = \sin a \cos c \cos B + \sin b \cos A,$ $\cos b \sin a = \sin b \cos a \cos C + \sin c \cos B,$ $\cos b \sin c = \sin b \cos c \cos A + \sin a \cos B,$ $\cos c \sin b = \sin c \cos b \cos A + \sin a \cos C,$ $\cos c \sin a = \sin c \cos a \cos B + \sin b \cos C,$ (2)

125. To derive a relation involving two sides and the angles of a spherical triangle.

Resuming the first equation under (3), Art. 123, p. 183, we have $\cos A = -\cos B \cos C + \sin B \sin C \cos a$.

Substituting in this equation the value of $\cos C$ obtained from the third equation of the same set,

$$\cos A = -\cos B \left(-\cos A \cos B + \sin A \sin B \cos c\right) + \sin B \sin C \cos a$$

 $= \cos A \cos^2 B - \sin A \sin B \cos B \cos c + \sin B \sin C \cos a.$

Transposing and factoring,

 $\cos A (1 - \cos^2 B) = -\sin A \sin B \cos B \cos c + \sin B \sin C \cos a.$

Replacing $1 - \cos^2 B$ by its value, $\sin^2 B$, and dividing both sides of the equation by $\sin B$, we obtain the desired relation,

$$\cos A \sin B = \cos a \sin C - \cos c \sin A \cos B. \tag{1}$$

In like manner we can obtain corresponding expressions for the value of $\cos A \sin C$, $\cos B \sin A$, etc. Therefore,

$$\cos A \sin B = \cos a \sin C - \cos c \cos B \sin A,$$

$$\cos A \sin C = \cos a \sin B - \cos b \cos C \sin A,$$

$$\cos C \sin B = \cos c \sin A - \cos a \cos B \sin C,$$

$$\cos C \sin A = \cos c \sin B - \cos b \cos A \sin C,$$

$$\cos B \sin A = \cos b \sin C - \cos c \cos A \sin B,$$

$$\cos B \sin C = \cos b \sin A - \cos a \cos C \sin B.$$
(2)

126. From the formulas in Art. 124 a group of important relations is derived, as follows:

From the first of the six formulas there given we have

$$\cos a \sin b = \sin a \cos b \cos C + \sin c \cos A$$
.

Dividing both sides of the equation by $\sin a$,

$$\frac{\cos a}{\sin a}\sin b = \cos b\cos C + \frac{\sin c}{\sin a}\cos A.$$

Replacing $\frac{\sin c}{\sin a}$ by its equal $\frac{\sin C}{\sin A}$, this becomes

$$\cot a \sin b = \cos b \cos C + \sin C \frac{\cos A}{\sin A}$$

$$\therefore \cot a \sin b = \cos b \cos C + \sin C \cot A. \tag{1}$$

In like manner we can obtain corresponding expressions for the value of $\cot a \sin c$, $\cot b \sin a$, etc. Therefore,

$$\cot a \sin b = \cos b \cos C + \sin C \cot A,$$

$$\cot a \sin c = \cos c \cos B + \sin B \cot A,$$

$$\cot b \sin c = \cos c \cos A + \sin A \cot B,$$

$$\cot b \sin a = \cos a \cos C + \sin C \cot B,$$

$$\cot c \sin a = \cos a \cos B + \sin B \cot C,$$

$$\cot c \sin b = \cos b \cos A + \sin A \cot C.$$
(2)

127. The values of $\sin \frac{A}{2}$, $\cos \frac{A}{2}$, $\tan \frac{A}{2}$, etc., in terms of the sides of the triangle.

From (3), Art. 120, p. 181,

$$\cos A = \frac{\cos a - \cos b \cos c}{\sin b \sin c}.$$

From this we have

$$1 - \cos A = \frac{\sin b \sin c + \cos b \cos c - \cos a}{\sin b \sin c},$$

by Art. 68,
$$= \frac{\cos(b-c) - \cos a}{\sin b \sin c}.$$

Dividing by 2, and applying (8), Art. 77, p. 100,

$$\frac{1-\cos A}{2} = \frac{\sin\frac{a+b-c}{2}\sin\frac{a-b+c}{2}}{\sin b\sin c}.$$

Putting a+b+b=2 s, and replacing $\frac{1-\cos A}{2}$ by its equal $\sin^2\frac{A}{2}$ (Art. 82, p. 108), we have

$$\sin^2\frac{A}{2} = \frac{\sin\ (s-b)\sin\ (s-c)}{\sin\ b\sin\ c} \, \cdot$$

$$\therefore \sin \frac{A}{2} = \sqrt{\frac{\sin(s-b)\sin(s-c)}{\sin b \sin c}}.$$
 (1)

In like manner,

$$1 + \cos A = \frac{\sin b \sin c - \cos b \cos c + \cos a}{\sin b \sin c},$$

$$\frac{1+\cos A}{2} = \frac{\cos a - \cos (b+c)}{2\sin b \sin c},$$

$$\cos^2 \frac{A}{2} = \frac{\sin \frac{a+b+c}{2} \sin \frac{b+c-a}{2}}{\sin b \sin c},$$

$$\cos\frac{A}{2} = \sqrt{\frac{\sin s \sin (s - a)}{\sin b \sin c}}.$$
 (2)

Dividing (1) by (2), we have

$$\tan\frac{A}{2} = \sqrt{\frac{\sin(s-b)\sin(s-c)}{\sin s\sin(s-a)}}.$$
 (3)

Since any angle of a spherical triangle is less than 180°, all the functions of the half angles are positive; *i.e.* $\sin \frac{A}{2}$, $\cos \frac{A}{2}$, $\tan \frac{A}{2}$, are all positive. Therefore the signs of the radical expressions in (1), (2), and (3) are positive.

Since s, a, b, c, s-a, s-b, s-c are severally less than 180° and positive, the values obtained in (1), (2), and (3) are real.

128. The values of $\sin \frac{a}{2}$, $\cos \frac{a}{2}$, $\tan \frac{a}{2}$, etc., in terms of the angles of the triangle.

From (4), Art. 123, p. 183,

$$\cos a = \frac{\cos A + \cos B \cos C}{\sin B \sin C}.$$

Therefore, $1-\cos a = \frac{\sin B \sin C - \cos B \cos C - \cos A}{\sin B \sin C}$.

$$= \frac{-\cos(B+C) - \cos A}{\sin B \sin C},$$

and

$$1 + \cos a = \frac{\sin B \sin C + \cos B \cos C + \cos A}{\sin B \sin C}$$

$$= \frac{\cos{(B-C)} + \cos{A}}{\sin{B}\sin{C}}.$$

Putting A + B + C = 2 S, and proceeding as in the last section, we obtain

$$\sin\frac{a}{2} = \sqrt{\frac{-\cos S\cos(S - A)}{\sin B\sin C}};\tag{1}$$

$$\cos\frac{a}{2} = \sqrt{\frac{\cos(S-B)\cos(S-C)}{\sin B\sin C}};$$
 (2)

$$\tan \frac{a}{2} = \sqrt{\frac{-\cos S \cos (S - A)}{\cos (S - B) \cos (S - C)}}.$$
 (3)

Since any side of a spherical triangle is less than 180°, all the functions of the half sides are positive; *i.e.* $\sin \frac{a}{2}$, $\cos \frac{a}{2}$, $\tan \frac{a}{2}$, are all positive. Therefore the signs of the radical expressions in (1), (2), and (3) are positive.

To prove that these expressions are real we proceed as follows: Let A'B'C' be the polar triangle of ABC, and let a', b', c', be the sides of A'B'C' which lie opposite the angles A, B, C, respectively of the original triangle.

Then, since a', b', c', are supplements of A, B, C, respectively, and since a' < b' + c', we have

$$180^{\circ} - A < (180^{\circ} - B) + (180^{\circ} - C).$$
ang, $B + C - A < 180^{\circ}$;

Transposing, i.e.

$$S - A < 90^{\circ}$$
.

Therefore,

$$\cos(S-A)$$
 is positive.

Also, since A + B + C lies between 360° and 540°, S lies between 180° and 270°. Hence $\cos S$ is negative; *i.e.* $-\cos S$ is positive.

Therefore the radical expressions in (1), (2), and (3) are real.

129. Gauss's equations. From Art. 69, p. 92,

$$\cos\left(\frac{A}{2} + \frac{B}{2}\right) = \cos\frac{A}{2}\cos\frac{B}{2} - \sin\frac{A}{2}\sin\frac{B}{2}.$$

Substituting in this equation the values of $\cos \frac{A}{2}$ and $\sin \frac{A}{2}$, and corresponding values for $\cos \frac{B}{2}$ and $\sin \frac{B}{2}$ (Art. 127, p. 186), we have

$$\cos\left(\frac{A}{2} + \frac{B}{2}\right) = \sqrt{\frac{\sin s \sin (s-a)}{\sin b \sin c}} \cdot \sqrt{\frac{\sin s \sin (s-b)}{\sin a \sin c}}$$

$$-\sqrt{\frac{\sin (s-b) \sin (s-c)}{\sin b \sin c}} \cdot \sqrt{\frac{\sin (s-a) \sin (s-c)}{\sin a \sin c}}$$

$$= \frac{\sin s - \sin (s-c)}{\sin c} \sqrt{\frac{\sin (s-a) \sin (s-b)}{\sin b \sin a}}.$$

But by Art. 77, p. 100, and Art. 80, p. 106,

$$\frac{\sin s - \sin (s - c)}{\sin c} = \frac{2 \cos \frac{2s - c}{2} \sin \frac{c}{2}}{2 \sin \frac{c}{2} \cos \frac{c}{2}}$$

$$= \frac{\cos \frac{a + b}{2}}{\cos \frac{c}{2}},$$
(1)

and by Art. 127, p. 186,

$$\sqrt{\frac{\sin(s-a)\sin(s-b)}{\sin a\sin b}} = \sin\frac{C}{2}.$$

Substituting these values in (1), and reducing, we have

$$\cos\frac{A+B}{2} = \frac{\cos\frac{a+b}{2}}{\cos\frac{c}{2}}\sin\frac{C}{2}.$$
 (2)

In like manner corresponding values can be obtained for $\sin \frac{A+B}{2}$, $\sin \frac{A-B}{2}$, and $\cos \frac{A-B}{2}$. These four relations, which are commonly known as Gauss's Equations, are as follows:

$$\cos\frac{A+B}{2} = \frac{\cos\frac{a+b}{2}}{\cos\frac{c}{2}}\sin\frac{C}{2};$$
 (3)

$$\sin\frac{A+B}{2} = \frac{\cos\frac{a-b}{2}}{\cos\frac{c}{2}}\cos\frac{C}{2};\tag{4}$$

$$\cos\frac{A-B}{2} = \frac{\sin\frac{a+b}{2}}{\sin\frac{c}{2}}\sin\frac{C}{2};\tag{5}$$

$$\sin\frac{A-B}{2} = \frac{\sin\frac{a-b}{2}}{\sin\frac{c}{2}}\cos\frac{C}{2}.$$
 (6)

130. Napier's analogies. From Gauss's Equations the following are derived. The method of derivation is obvious, and the work is left as an exercise for the student.

$$\tan\frac{A+B}{2} = \frac{\cos\frac{a-b}{2}}{\cos\frac{a+b}{2}}\cot\frac{C}{2};\tag{1}$$

$$\tan\frac{A-B}{2} = \frac{\sin\frac{a-b}{2}}{\sin\frac{a+b}{2}}\cot\frac{C}{2};$$
 (2)

$$\tan\frac{a+b}{2} = \frac{\cos\frac{A-B}{2}}{\cos\frac{A+B}{2}} \tan\frac{c}{2};$$
 (3)

$$\tan\frac{a-b}{2} = \frac{\sin\frac{A-B}{2}}{\sin\frac{A+B}{2}} \tan\frac{c}{2}.$$
 (4)

131. Special formulas for the solution of spherical right triangles. If one of the angles of the triangle, as C, is a right angle, the following special formulas are derived from those established in the preceding sections:

From (2), Art. 120, p. 181,

$$\cos c = \cos a \cos b + \sin a \sin b \cos C. \tag{1}$$

But, since $C = 90^{\circ}$, $\cos C = 0$. Therefore the second term of the right member becomes zero. Therefore,

$$\cos c = \cos a \cos b$$
.

In a manner similar to that just employed, the following formulas are derived for the special case when C is a right angle.

From (2), Art. 122, p. 182, formulas for finding either of the oblique angles when the hypotenuse and the opposite leg are given.

$$\sin A = \frac{\sin a}{\sin c},
\sin B = \frac{\sin b}{\sin c}.$$
(2)

and

From (3), Art. 123, p. 183, formulas for finding either of the oblique angles when the opposite leg and the other oblique angle are given. $\cos A = \cos a \sin R$

 $\cos A = \cos a \sin B,$ $\cos B = \cos b \sin A.$ (3)

From (2) and (3) are derived the following formulas for finding an oblique angle when the hypotenuse and the adjacent leg are given.

 $\cos A = \tan b \cot c,$ $\cos B = \tan a \cot c.$ (4)

From (2), Art. 126, p. 185, formulas for finding the oblique angles when the legs are given.

$$\tan A = \frac{\tan a}{\sin b},$$

$$\tan B = \frac{\tan b}{\sin a}.$$
(5)

From (3), Art. 123, p. 183, formulas for finding the legs when the two oblique angles are given.

$$\cos a = \frac{\cos A}{\sin B},$$

$$\cos b = \frac{\cos B}{\sin A}.$$
(6)

Multiplying together the two formulas just obtained, and replacing the left member of the product, $\cos a \cos b$, by its value given in (1), we have the following formula for finding the hypotenuse when the two oblique angles are given:

$$\cos c = \cot A \cot B. \tag{7}$$

132. Napier's rules. The formulas of the last section are sufficient for the solution of every possible case that can arise under spherical right triangles. But it is often better to solve the various cases that arise under right triangles by two convenient and simple rules devised by Napier, the inventor of logarithms.

These rules are constructed by supposing that a right triangle has five parts. These parts, which are usually called Napier's parts, are

- (1) The two legs.
- (2) The complement of the hypotenuse.
- (3) The complements of the two oblique angles.

The right angle is not considered, and plays no part whatever in the solution of a triangle by this method.

Any one of the five parts may be regarded as the middle part. The two parts immediately adjacent to this are called the adjacent parts, and the other two are called the opposite parts.

Napier's rules for the solution of spherical right triangles are as follows:

- 1. The sine of the middle part is equal to the product of the tangents of the adjacent parts.
- 2. The sine of the middle part is equal to the product of the cosines of the opposite parts.

The similarity of the vowel sounds in the syllables tan-, adand co-, op- renders it easy to remember these rules, and also to distinguish them from each other.

To test the correctness of these rules, assume any three parts as the given parts. For example, let the given parts be a, b,

and co-A. In this case b is the middle part, and a, co-A, are to be considered adjacent parts. Hence we have

$$\sin b = \tan a \tan (co \cdot A)$$

= $\tan a \cot A$.

This is the same as the first of the two formulas under (5), Art. 131, p. 191, which has already been proved to be true.

As another illustration, let the given parts be a, co A, co-B. Here co-A is the middle part, and a, co-B are to be considered opposite parts. Hence

$$\sin (co-A) = \cos a \cos (co-B),$$

 $\cos A = \cos a \sin B.$

This is the same as the first of the two formulas under (3), Art. 130, p. 190, which has already been proved to be true.

In like manner Napier's rules as applied to any other group of three parts will be found to reduce to one of the formulas already proved.

133. DEFINITION. Two angles, or an angle and a side, are said to be of the same species when both are greater or both are less than 90°; they are said to be of opposite species when one is greater and the other is less than 90°.

In any right triangle if a and b are of the same species, the hypotenuse c is less than 90°; if a and b are of opposite species, c is greater than 90°.

This follows from (1), Art. 130, p. 190. For if a and b are both greater or both less than 90°, the product $\cos a \cos b$ is positive. Therefore $\cos c$ is positive; therefore c is less than 90°.

But if a and b are of opposite species, the product $\cos a$ $\cos b$ is negative. Therefore $\cos c$ is negative; therefore c is greater than 90°.

EXERCISE XXXII

- 1. Prove that in any right triangle a leg and the angle opposite are of the same species.
- 2. By the aid of Napier's rules derive the formulas in (6), Art. 131, p. 190.
- **3.** If the hypotenuse of a right triangle is equal to 90°, what must be the values of a and b? Why?
 - 4. Prove $\tan^2 \frac{B}{2} = \frac{\sin (c-a)}{\sin (c+a)}$.
 - 5. Prove $\tan^2 \frac{C}{2} = \frac{\cos (A+B)}{\cos (B-A)}$.
- **6.** If $a = 90^{\circ}$ and $b = 90^{\circ}$, what must be the values of the remaining parts of the right triangle?
- 7. In a right triangle a side and the hypotenuse are of the same or of opposite species according as the included angle is less or greater than 90°.

SOLUTION OF SPHERICAL TRIANGLES

134. A spherical triangle is determined when any three of its parts are known. That is, when any three parts are given, the remaining parts can be computed.

In the solution of spherical triangles we have six cases to consider, as follows: having given,

(1) The three sides.

2

- (2) Two sides and the included angle.
- (3) Two sides and the angle opposite one of them.
- (4) Two angles and the side opposite one of them.
- (5) Two angles and the included side.
- (6) The three angles.
- 135. The right triangle. We proceed first to the consideration of the right triangle. We shall suppose that C is the right angle; and here, as in Plane Trigonometry, only two parts are known in addition to the right angle.
- 136. Ambiguous cases. Whenever a solution is obtained by means of the sine or the cosecant, the solution is ambiguous, because, both sine and cosecant being positive in the second quadrant as well as in the first, a given value of either of these functions is, in general, satisfied by two angles, one in the first and the other in the second quadrant.

Hence, whenever a required part of a spherical triangle is found by means of the sine or the cosecant, it is necessary to test the result, and to determine whether or not both solutions are admissible.

When a solution is found by means of the cosine, tangent, cotangent, or secant, there is no ambiguity, since each of these functions is positive in the first quadrant and negative in the second quadrant.

For this reason it is of great importance that the student should note carefully the sign of each of the functions that appear in an equation.

137. Case 1. Given two legs, a and b; to find c, A, B. The formulas for solution are contained in (1) and (5), Art. 131, p. 190, or are obtained directly from Napier's Rules, and are as follows:

$$\cos c = \cos a \cos b; \tag{1}$$

$$\tan A = \frac{\tan a}{\sin b};\tag{2}$$

$$\tan B = \frac{\tan b}{\sin a}.$$
 (3)

 $B = 39^{\circ} 45' 32''$.

For a check formula use $\cos c = \cot A \cot B$.

Ex. 1. Given $a = 46^{\circ} 50'$, $b = 31^{\circ} 15'$; find c, A, B.

$$\log \cos a = 9.83513 - 10$$

$$\log \cos b = 9.93192 - 10$$

$$\log \cos c = 9.76705 - 10.$$

$$\therefore c = 54^{\circ} 12' 25''.$$

$$\log \tan a = 10.02781 - 10$$

$$\operatorname{colog} \sin b = \frac{10.28502 - 10}{10.31283 - 10}.$$

$$A = 64^{\circ} 3' 9''.$$

$$\log \tan a = 9.86295 - 10$$

$$\log \tan B = 9.92011 - 10.$$

$$B = 39^{\circ} 45' 32''.$$

Since c is obtained by means of its cosine and A and B by means of their tangents, there is no ambiguity respecting the Both a and b are in the first quadrant; therefore $\cos a$ and cos b are positive. It follows from this that the right member of (1) is positive when applied to this particular problem; therefore $\cos c$ is positive, and consequently c is in the first quadrant.

In like manner it can be shown that A and B are in the first quadrant.

When only one solution exists that will satisfy the conditions of a problem, the solution is said to be unique.

Ex. 2. Given
$$a = 38^{\circ} 44' 40''$$
, $b = 42^{\circ} 26' 28''$; find $c = 54^{\circ} 51' 37''$, $A = 49^{\circ} 56' 12''$, $B = 55^{\circ} 36' 44''$.

138. Case 2. Given the hypotenuse c, and one of the legs a; to find b, A, B. The formulas for solution are (Art. 131, p. 190)

$$\cos b = \frac{\cos c}{\cos a},$$

$$\sin A = \frac{\sin a}{\sin c},$$

$$\cos B = \frac{\tan a}{\tan c}.$$

For a check formula use

$$\cos B = \cos b \sin A$$
 (Art. 131, p. 191).

The solutions for b and B, being obtained in each case by means of a cosine, are unique.

The solution for A, being obtained by means of its sine, is apparently ambiguous. But by Art. 133, p. 193, a and A are of the same species. Hence, as a is given, the species of A becomes known at once, and the ambiguity disappears.

Ex. 1. Given
$$c = 54^{\circ} 36' 30''$$
, $a = 23^{\circ} 17' 40''$; find $b = 50^{\circ} 54' 30''$, $A = 29^{\circ} 1' 5''$, $B = 72^{\circ} 11' 20''$.

Ex. 2. Given
$$c = 98^{\circ} 15' 12''$$
, $a = 133^{\circ} 40' 24''$; find $b = 78^{\circ} 0' 7''$, $A = 133^{\circ} 2' 30''$, $B = 81^{\circ} 15' 40''$.

139. Case 3. Given one of the legs a and the opposite angle A; to find b, c, B. The formulas for solution are as follows, (Art. 131, p. 190):

$$\sin c = \frac{\sin a}{\sin A},$$

$$\sin b = \frac{\tan a}{\tan A},$$

$$\sin B = \frac{\cos A}{\cos a}.$$

For a check formula use
$$\sin b = \frac{\tan a}{\tan A}$$
. (Art. 131, p. 191)

The solution is ambiguous, being obtained in each case by means of a sine. The different cases that may arise are as follows:

- (1) If a=A, then $\sin a = \sin A$, $\tan a = \tan A$, and $\cos a = \cos A$; therefore $\sin c = 1$, $\sin b = 1$, and $\sin B = 1$. Hence the solution is unique.
- (2) If c and a are of the same species, then $B < 90^{\circ}$; therefore $b < 90^{\circ}$ (Ex. 7, p. 193).
- (3) If c and a are of opposite species, then $B > 90^{\circ}$; therefore $b > 90^{\circ}$ (Ex. 7, p. 193).

After c has been computed b and B may be found, if other formulas than those given above are desired, by the following (Art. 131, p. 191):

 $\cos b = \frac{\cos c}{\cos a},$

 $\cos B = \frac{\tan a}{\tan c}.$

These formulas give unique solutions for b and B, but for obtaining c it is necessary to make use of the sine. As any given value of the sine is satisfied by two supplementary values of the angle, this case often gives two solutions.

Ex. 1. Given
$$a=70^{\circ} 55' 50''$$
, $A=82^{\circ} 58' 6''$;
Find $c_1=72^{\circ} 13' 45''$, $b_1=20^{\circ} 54' 18''$, $B_1=22^{\circ} 0' 19''$.
or, $c_2=107^{\circ} 46' 15''$, $b_2=159^{\circ} 5' 42''$, $B_2=157^{\circ} 59' 41''$.

Ex. 2. Given $a = 76^{\circ} 59' 59''$, $A = 39^{\circ} 50' 56''$. The triangle is impossible. Why?

140. Case 4. Given one of the legs a and the adjacent angle B; to find c, b, A. The formulas for solution are (Art. 131, p. 191)

 $\tan c = \frac{\tan a}{\cos B},$ $\cos A = \cos a \sin B,$ $\tan b = \sin a \tan B.$

For a check formula use $\cos A = \frac{\tan b}{\tan c}$. (Art. 131, p. 191)

The solution is unique. Why?

Ex. 1. Given
$$a = 21^{\circ} 5' 15''$$
, $B = 39^{\circ} 8' 10''$; find $c = 26^{\circ} 26' 6''$, $A = 53^{\circ} 55' 13''$, $b = 16^{\circ} 19' 5''$.

Ex. 2. Given
$$a = 59^{\circ} 27' 32''$$
, $B = 36^{\circ} 24' 25''$; find $c = 64^{\circ} 35' 56''$, $b = 32^{\circ} 25' 17''$, $A = 72^{\circ} 26' 47''$.

141. Case 5. Given the hypotenuse c and one of the oblique angles A; to find a, b, B. The formulas for solution are (Art. 131, p. 190)

 $\sin a = \sin c \sin A,$ $\tan b = \tan c \cos A,$ $\cot B = \cos c \tan A.$

For a check formula use

$$\sin a = \tan b \cot B$$
 (Art. 131, p. 191).

The solution for a, being obtained by means of its sine, is apparently ambiguous. But since A is given, and since a and A are of the same species, the proper value of a can always be determined. Hence the solution is unique.

Ex. 1. Given
$$c = 117^{\circ} 39' 48''$$
, $A = 127^{\circ} 20' 25''$; find $a = 135^{\circ} 14' 18''$, $b = 49^{\circ} 9' 58''$, $B = 58^{\circ} 40' 37''$.

Ex. 2. Given
$$e = 68^{\circ} 50' 31''$$
, $A = 55^{\circ} 11' 17''$; find $a = 49^{\circ} 58'$, $b = 55^{\circ} 51' 53''$, $B = 62^{\circ} 33' 58''$.

142. Case 6. Given the two oblique angles A, B; to find a, b, c. The formulas for solution are (Art. 131, p. 191)

$$\cos a = \frac{\cos A}{\sin B},$$

$$\cos b = \frac{\cos B}{\sin A},$$

$$\cos c = \cot A \cot B.$$

For a check formula use

 $\cos c = \cos a \cos b$ (Art. 131, p. 190).

The solution is unique.

- Ex. 1. Given $A = 63^{\circ} 25' 32''$, $B = 136^{\circ} 1' 27''$; find $a = 49^{\circ} 53' 16''$, $b = 143^{\circ} 34' 30''$, $c = 121^{\circ} 13' 34''$.
- Ex. 2. Given $A = 119^{\circ} 20' 11''$, $B = 114^{\circ} 7' 35''$; find $a = 122^{\circ} 28' 6''$, $b = 117^{\circ} 57' 42''$, $c = 75^{\circ} 25' 16''$.
- 143. The isosceles spherical triangle. An isosceles spherical triangle can always be solved by means of the formulas employed in the solution of spherical right triangles; for, by passing an arc of a great circle through the vertex and the middle point of the side opposite, the isosceles triangle can always be divided into two symmetrical right triangles.

EXERCISE XXXIII

- 1. In a right spherical triangle given $c = 20^{\circ}$ 50' 52", $a = 15^{\circ}$ 12' 44"; find b, A, B.
- **2.** In a right spherical triangle given $a = 75^{\circ} 28' 24''$, $b = 33^{\circ} 37' 8''$; find c, A, B.
- 3. In a right spherical triangle given $a = 66^{\circ}$ 9' 9", $A = 155^{\circ}$ 49' 46"; find b e, B.
- **4.** In a right spherical triangle given $a = 122^{\circ}$ 5', $B = 125^{\circ}$ 40'; find b, c, A.
- 5. In a right spherical triangle given $c = 115^{\circ}$ 35' 4", $A = 57^{\circ}$ 29'; find a, b, B.
- **6.** In a right spherical triangle given $A=45^{\circ}$ 23' 8", $B=58^{\circ}$ 17'; find a, b, c.
- 7. In a right spherical triangle given $c = 80^{\circ} 28' 44''$, $A = 33^{\circ} 20' 24''$; find a, b, B.
- **8.** In a right spherical triangle given $c = 139^{\circ}$ 42′, $a = 21^{\circ}$ 47′ 46″; find b, A, B.
- 9. In a right spherical triangle given $a = 110^{\circ}$ 38′, $B = 153^{\circ}$ 55′ 40″; find b, c, A.
- 10. In a right spherical triangle given $a = 112^{\circ}$ 49', $A = 100^{\circ}$ 27'; find b, c, B.

- 11. In a right spherical triangle given $a = 55^{\circ}$ 52′, $b = 34^{\circ} 46' 42''$; find c, A, B.
- 12. In a right spherical triangle given $A = 54^{\circ}$ 20', $B = 64^{\circ}$ 49' 51"; find a, b, c.
- 13. In a right spherical triangle if a = b, prove that $\cos^2 a = \cos c$.
 - 14. In a right spherical triangle prove that $\sin b = \cos c \tan a \tan B$.
 - 15. In a right spherical triangle prove that $\sin^2 A + \sin^2 B = 1 + \sin^2 a \sin^2 B$.
 - 16. In a right spherical triangle prove that $\sin (b+c) = 2\cos^2 \frac{A}{2}\cos b \sin c.$

THE OBLIQUE SPHERICAL TRIANGLE

- 144. In solving oblique spherical triangles we have six cases to consider, as follows:
- CASE 1. Given the three sides a, b, c; to find A, B, C. The formulas for solution are (Art. 127, p. 186)

$$\tan\frac{A}{2} = \sqrt{\frac{\sin(s-b)\sin(s-c)}{\sin s\sin(s-a)}};$$
(1)

$$\tan \frac{B}{2} = \sqrt{\frac{\sin(s-c)\sin(s-a)}{\sin s \sin(s-b)}};$$
(2)

$$\tan\frac{C}{2} = \sqrt{\frac{\sin(s-a)\sin(s-b)}{\sin s\sin(s-c)}}.$$
 (3)

The corresponding formulas for the sines or for the cosines of the half angles may be employed (Art. 127, p. 186), but in general the tangent formulas are to be preferred.

If all the angles are to be found, a saving of labor can be effected in the following manner.

Multiply both numerator and denominator of the fraction under the radical sign in (1) by $\sin (s-a)$. Then let

$$\tan r = \sqrt{\frac{\sin(s-a)\sin(s-b)\sin(s-c)}{\sin s}},$$

and we may write

$$\tan\frac{A}{2} = \frac{\tan r}{\sin(s-a)}.$$

Making the corresponding changes in (2) and (3), we have the three equations:

$$\tan\frac{A}{2} = \frac{\tan r}{\sin(s-a)},$$

$$\tan\frac{B}{2} = \frac{\tan r}{\sin(s-b)},$$

$$\tan\frac{C}{2} = \frac{\tan r}{\sin(s-c)}.$$

If these formulas are employed, it will be found that the work of solution can be more compactly arranged and more conveniently carried out than by the use of any other method.

Ex. 1. Given $a = 51^{\circ} 43' 18''$, $b = 38^{\circ} 2' 20''$, $c = 75^{\circ} 11' 30''$; find A.

$$\begin{array}{lll} a = 51^{\circ} \ 43' \ 18'' & \log \sin (s-b) = 9.84518 - 10 \\ b = 38^{\circ} \ 2' \ 20'' & \log \sin (s-c) = 9.10311 - 10 \\ c = 75^{\circ} \ 11' \ 30'' & \operatorname{colog} \sin s = 0.00375 \\ 2 \ s = \overline{164^{\circ} \ 57' \ 8''} & \operatorname{colog} \sin (s-a) = \underline{0.29127} \\ s = 82^{\circ} \ 28' \ 34'' \\ s - b = 44^{\circ} \ 26' \ 14'' & \underline{s-c} = 7^{\circ} \ 17' \ 4'' \\ s = 82^{\circ} \ 28' \ 34'' & Check. \end{array}$$

$$\begin{array}{ll} \log \sin (s-b) = 9.84518 - 10 \\ \log \sin (s-c) = 9.10311 - 10 \\ \operatorname{colog} \sin (s-c) = 9.10311 - 10 \\ \operatorname{$$

Ex. 2. Given $a = 125^{\circ} 40' 14''$, $b = 53^{\circ} 56' 12''$, $c = 98^{\circ} 51' 16''$; find A, B, C.

LA, D, C	
$a = 125^{\circ} 40' 14''$	$\log \tan \frac{A}{2} = 0.28031$
$b = 53^{\circ} 56' 12''$	
$c = 98^{\circ} 51' 16''$	$\log \tan \frac{B}{2} = 9.65185 - 10$
$2s = 278^{\circ} \ 27' \ 42''$	
$s = 139^{\circ} 13' 51''$	$\log \tan \frac{C}{2} = \underline{9.83894 - 10}$
$s - a = 13^{\circ} 33' 37''$	$\frac{A}{2} = 62^{\circ} \ 19' \ 33''$
$s - b = 85^{\circ} \ 17' \ 39''$	2
$s - c = 40^{\circ} \ 22' \ 35''$	$\frac{B}{2} = 24^{\circ} \ 9' \ 38''$
$\log \sin (s - a) = 9.37008 - 10$	$\frac{C}{2} = 34^{\circ} \ 36' \ 40''$
$\log \sin (s - b) = 9.99854 - 10$	4
$\log \sin (s - c) = 9.81145 - 10$	$A = 124^{\circ} 39' 6''$
$\operatorname{colog} \sin s = 0.12071$	$B = 48^{\circ} 19' 16''$
$\log \tan^2 r = 19.30078 - 20$	$C = 69^{\circ} \ 13' \ 20''$
$\log \tan r = 9.65039 - 10$	

EXERCISE XXXIV

- 1. In a spherical triangle given $a = 119^{\circ} 22' 27''$, $b = 60^{\circ} 44' 40''$, $c = 108^{\circ} 37' 3''$; find A, B, C.
- **2.** In a spherical triangle given $a = 53^{\circ} 42'$, $b = 118^{\circ} 39' 28''$, $c = 130^{\circ} 38' 20''$; find A, B, C.
- 3. In a spherical triangle given $a = 129^{\circ} 17' 36''$, $b = 109^{\circ} 29' 18''$, $c = 83^{\circ} 14'$; find the largest angle.
- 4. In a spherical triangle given $a = 22^{\circ} 56' 46''$, $b = 60^{\circ} 47'$, $c = 69^{\circ} 49' 32''$; find B and C.
- 145. Case 2. Given two sides a, b, and the included angle, c; to find A, B, c. The angles A, B, may be found by the first two of Napier's Analogies (Art. 130, p. 190):

$$\tan\frac{A+B}{2} = \frac{\cos\frac{a-b}{2}}{\cos\frac{a+b}{2}}\cot\frac{C}{2},$$

$$\tan \frac{A - B}{2} = \frac{\sin \frac{a - b}{2}}{\sin \frac{a + b}{2}} \cot \frac{C}{2}.$$

From the values of $\frac{A-B}{2}$ and $\frac{A+B}{2}$ obtained from these equations the values of A and B can at once be found.

The value of c can then be obtained from any one of Gauss's Equations (Art. 129, p. 189); for example,

$$\cos\frac{c}{2} = \frac{\cos\frac{a+b}{2}}{\cos\frac{A+B}{2}}\sin\frac{C}{2}.$$

The solution is unique.

EXERCISE XXXV

- 1. In a spherical triangle given $a = 85^{\circ} 54' 16''$, $b = 125^{\circ} 7' 27''$, $C = 52^{\circ} 6' 26''$; find A, B, c.
- **2.** In a spherical triangle given $a = 119^{\circ} 32' 30''$, $b = 86^{\circ} 31' 35''$, $C = 49^{\circ} 40' 22''$; find A, B, c.
- 3. In a spherical triangle given $b = 61^{\circ} 23' 18''$, $c = 48^{\circ} 30' 6''$, $A = 60^{\circ} 53' 24''$; find B, C, a.
- **4.** In a spherical triangle given $a=72^{\circ}40'40''$, $c=110^{\circ}33'38''$, $B=53^{\circ}50'20''$; find A, C, b.
- 5. In a spherical triangle given $b = 68^{\circ} 20' 25''$, $c = 52^{\circ} 18' 15''$, $A = 117^{\circ} 12' 20''$; find B, C, a.
- 146. Case 3. Given two sides a, b, and the angle opposite one of them A; to find B, C, c. The value of B can be found by means of the law of sines (Art. 122, p. 182), from which we have

 $\sin B = \frac{\sin A}{\sin a} \sin b. \tag{1}$

After B has been determined C and c can be found by the use of the first and the third of Napier's Analogies.

$$\cot \frac{C}{2} = \frac{\cos \frac{a+b}{2}}{\cos \frac{a-b}{2}} \tan \frac{A+B}{2}; \tag{2}$$

$$\tan\frac{e}{2} = \frac{\cos\frac{A+B}{2}}{\cos\frac{A-B}{2}} \tan\frac{a+b}{2}.$$
 (3)

Since B is determined by means of its sine, the solution is ambiguous.

The following tests may be conveniently employed to determine the number of solutions.

If $\sin A \sin b > \sin a$, there is no solution; for in that case $\sin B > 1$, which is impossible.

If $\sin A \sin b < \sin a$, (1) is satisfied by two supplementary values of B. But $\frac{A+B}{2}$ and $\frac{a+b}{2}$ are necessarily of the same

species. Therefore, if both these values of B satisfy this condition, there are two solutions; if not, there is but one.

Note. To make use of the test just given it is necessary that we first solve for B. There are several methods of testing for the number of solutions without first finding B, but it is not thought best to include any of them in this work. For a full explanation of them the student is referred to more extended treatises on the subject of Spherical Trigonometry.

Ex. 1. Given $a = 56^{\circ} 30'$, $b = 31^{\circ} 20'$, $A = 105^{\circ} 11' 10''$; find B, C, c.

Since in this case $\sin A \sin b < \sin a$, there may be either one or two solutions. To test for the number of solutions we find the possible values of B.

$$\log \sin A = 9.98456 - 10$$
$$\log \sin b = 9.71602 - 10$$

 $colog \sin a = 0.07889$

$$\log \sin B = \overline{9.77947 - 10}$$

 $B = 37^{\circ} \ 0' \ 3'',$

$$B = 142^{\circ} 59' 57''$$
.

We have from data given, $\frac{a+b}{2} < 90^{\circ}$.

$$\therefore \frac{A+B}{2} < 90^{\circ}.$$

This shows that only the smaller of the two values of B is admissible.

Therefore there is but one solution.

or,

The work of solution may be compactly and conveniently arranged as follows:

$$a + b = 87^{\circ} 50'$$

$$a - b = 25^{\circ} 10'$$

$$A + B = 142^{\circ} 11' 13''$$

$$A - B = 68^{\circ} 11' 7''$$

$$\log \sin \frac{A + B}{2} = 9.97591 - 10$$

$$\log \tan \frac{a - b}{2} = 9.34874 - 10$$

$$\log \tan \frac{c}{2} = 9.57605 - 10$$

$$\frac{c}{2} = 20^{\circ} 38' 38''$$

$$c = 41^{\circ} 17' 16''$$

$$\frac{a + b}{2} = 43^{\circ} 35'$$

$$\frac{a - b}{2} = 12^{\circ} 35$$

$$\frac{A + B}{2} = 71^{\circ} 5' 36.5''$$

$$\frac{A - B}{2} = 34^{\circ} 5' 33.5''$$

$$\log \sin \frac{a + b}{2} = 9.84112 - 10$$

$$\log \sin \frac{a - b}{2} = 0.66182$$

$$\log \tan \frac{A - B}{2} = 9.83053 - 10$$

$$\log \cot \frac{C}{2} = 0.33347$$

EXERCISE XXXVI

- 1. In a spherical triangle given $a = 71^{\circ} 14'$, $b = 122^{\circ} 27' 18''$, $A = 77^{\circ} 23' 24''$; find B, C, c.
- **2.** In a spherical triangle given $a = 80^{\circ} 5' 16''$, $b = 82^{\circ} 4'$, $A = 83^{\circ} 34' 12''$; find B, C, c.
- **3.** In a spherical triangle given $a = 151^{\circ} 22' 30''$, $b = 133^{\circ} 31' 25''$, $A = 143^{\circ} 32' 28''$; find B, C, c.
- **4.** In a spherical triangle given $a = 30^{\circ} 38'$, $b = 31^{\circ} 29' 45''$, $A = 87^{\circ} 53' 20''$; find the remaining parts.
- 147 Case 4. Given two angles A, B, and the side opposite one of them a; to find C, b, c. As in the preceding case one of the parts, in this case b, can be found by means of the law of sines, from which we have (Art. 122, p. 182)

$$\sin b = \frac{\sin B}{\sin A} \sin a \,. \tag{1}$$

The values of c and C can then be found by means of the fourth and the second of Napier's Analogies:

$$\tan\frac{c}{2} = \frac{\sin\frac{A+B}{2}}{\sin\frac{A-B}{2}}\tan\frac{a-b}{2};$$
 (2)

$$\cot \frac{C}{2} = \frac{\sin \frac{a+b}{2}}{\sin \frac{a-b}{2}} \tan \frac{A-B}{2}.$$
 (3)

The solution is ambiguous, the value of b being determined by means of its sine.

If $\sin B \sin a > \sin A$, there is no solution; for in that case $\sin b > 1$, which is impossible.

If $\sin B \sin a < \sin A$, (1) is satisfied by two supplementary values of b. To ascertain whether or not both these values are admissible we proceed in a manner similar to that employed in the last case. If both values of b satisfy the condition imposed by the fact that $\frac{A+B}{2}$ and $\frac{a+b}{2}$ are of the same species, there are two solutions; otherwise there is but one.

Note. The number of solutions can always be determined by forming the polar of the given triangle and then determining by the tests under Case 3 the number of solutions of that triangle. The number of solutions of the given triangle is always the same as the number of solutions of its polar.

Ex. 1. Given $A = 29^{\circ} 43' 12''$, $B = 45^{\circ} 4' 18''$, $a = 36^{\circ} 19' 32''$; find b, c, C.

In this case $\sin B \sin a < \sin A$; therefore there may be either one or two solutions. Solving for b, we proceed as follows:

$$\log \sin B = 9.85003 - 10$$

$$\log \sin a = 9.77260 - 10$$

$$\operatorname{colog sin} A = 0.30473$$

$$\log \sin b = 9.92736 - 10$$

$$b = 57^{\circ} 48' 38'',$$

$$b = 122^{\circ} 13' 22''.$$

or,

We have from data given, $\frac{A+B}{2} < 90^{\circ}$.

$$\therefore \frac{a+b}{2} < 90^{\circ}.$$

Both of the values of b just found satisfy this condition. Hence, there are two solutions. The values of C and c can now be found in the ordinary manner, both values of b being employed.

EXERCISE XXXVII

- 1. In a spherical triangle given $A = 109^{\circ} 20' 10''$, $B = 134^{\circ} 16' 24''$, $a = 148^{\circ} 48' 40''$; find b, c, C.
- **2.** In a spherical triangle given $A = 113^{\circ} 30'$, $B = 125^{\circ} 31' 34''$, $a = 66^{\circ} 44' 40''$; find b, c, C.
- 3. In a spherical triangle given $A = 28^{\circ} 35' 5''$, $B = 47^{\circ} 51' 15''$, $a = 38^{\circ} 41' 32''$; find b, c, C.
- **4.** In a spherical triangle given $A = 24^{\circ} 30'$, $B = 38^{\circ} 15'$, $a = 65^{\circ} 22'$; find b, c, C.
- 148. Case 5. Given a side c and the two adjacent angles A, B; to find a, b, C. The third and fourth of Napier's Analogies may be used for determining the values of a and b (Art. 130, p. 190):

$$\tan\frac{a+b}{2} = \frac{\cos\frac{A-B}{2}}{\cos\frac{A+B}{2}} \tan\frac{c}{2}.$$

$$\tan \frac{a-b}{2} = \frac{\sin \frac{A-B}{2}}{\sin \frac{A+B}{2}} \tan \frac{c}{2}.$$

From these formulas the values of a and b can be obtained. The value of C can then be found by means of the first of Napier's Analogies:

$$\tan\frac{C}{2} = \frac{\cos\frac{a-b}{2}}{\cos\frac{a+b}{2}}\cot\frac{A+B}{2}.$$

The solution is unique.

Ex. 1. Given $A = 108^{\circ} 28' \cdot 55''$, $B = 38^{\circ} 11' \cdot 27''$, $c = 52^{\circ} \cdot 29'$; find a, b, C.

$$\frac{A-B}{2} = 35^{\circ} 8' 44'' \qquad \log \sin \frac{A-B}{2} = 9.76016 - 10$$

$$\frac{A+B}{2} = 73^{\circ} 20' 11'' \qquad \log \tan \frac{c}{2} = 9.69282 - 10$$

$$\frac{c}{2} = 26^{\circ} 14' 30'' \qquad \operatorname{colog} \sin \frac{A+B}{2} = 0.01863$$

$$\log \cos \frac{A-B}{2} = 9.91259 - 10$$

$$\log \tan \frac{c}{2} = 9.69282 - 10$$

$$\log \tan \frac{a+b}{2} = 0.54250 \qquad \log \cos \frac{a-b}{2} = 9.98174 - 10$$

$$\log \tan \frac{a+b}{2} = 10.14791 - 10 \qquad \log \cot \frac{A+B}{2} = 9.47599 - 10$$

$$\frac{a+b}{2} = 54^{\circ} 34' 24.4'' \qquad \operatorname{colog} \cos \frac{a+b}{2} = 0.23682$$

$$\frac{a-b}{2} = 16^{\circ} 30' 1.3'' \qquad \log \cot \frac{C}{2} = 9.69455 - 10$$

$$a = 71^{\circ} 4' 26''$$

$$b = 38^{\circ} 4' 23'' \qquad C = 52^{\circ} 39' 52''$$

EXERCISE XXXVIII

- 1. In a spherical triangle given $A = 126^{\circ} 40' 50''$, $B = 81^{\circ} 45' 42''$, $c = 51^{\circ} 56' 12''$; find a, b, C.
- 2. In a spherical triangle given $B = 27^{\circ} 27' 36''$, $C = 40^{\circ} 44' 20''$, $a = 155^{\circ} 16'$; find b, c, A.
- 3. In a spherical triangle given $A = 127^{\circ} 19' 38''$, $C = 108^{\circ} 41' 30''$, $b = 125^{\circ} 22' 32''$; find a, c, B.
- **4.** In a spherical triangle given $A = 154^{\circ} 20' 42''$, $B = 79^{\circ} 16' 22''$, $c = 85^{\circ} 24' 28''$; find a, b, C.
- 149. Case 6. Given the three angles A, B, C; to find the three sides a, b, c. Any of the three groups of formulas in Art. 128, p. 187, can be used. The formulas for the tangents are recommended in preference to those for the sines or for the cosines.

$$\tan\frac{a}{2} = \sqrt{\frac{-\cos S \cos(S - A)}{\cos(S - B)\cos(S - C)}};$$
(1)

$$\tan\frac{b}{2} = \sqrt{\frac{-\cos S \cos (S - B)}{\cos (S - C)\cos (S - A)}};$$
(2)

$$\tan\frac{c}{2} = \sqrt{\frac{-\cos S \cos (S - C)}{\cos (S - A) \cos (S - B)}}.$$
 (3)

If all three of the sides are to be found, it is convenient to proceed in a manner similar to that employed in Art. 144, p. 200, where three sides were given and three angles were to be found.

Multiplying both numerator and denominator of the fraction under the radical sign in (1) by $\cos(S-A)$ we have

$$\tan \frac{a}{2} = \sqrt{\frac{-\cos S \cos^2 (S - A)}{\cos (S - A) \cos (S - B) \cos (S - C)}}$$

Putting
$$\tan R = \sqrt{\frac{-\cos S}{\cos (S-A)\cos (S-B)\cos (S-C)}}$$
,

we may write

$$\tan\frac{a}{2} = \tan R \cos (S - A).$$

Making the corresponding changes in (2) and (3), we have the three equations

$$\tan\frac{a}{2} = \tan R \cos{(S-A)},$$

$$\tan\frac{b}{2} = \tan R \cos (S - B),$$

$$\tan\frac{c}{2} = \tan R \cos(S - C).$$

The solution is unique.

CONANT'S TRIG. - 14

Ex. 1. Given
$$A = 221^{\circ}$$
, $B = 128^{\circ}$, $C = 153^{\circ}$; to find a.

The formula for $\tan \frac{a}{2}$, with the algebraic sign of each factor written above it for convenience, is as follows:

$$\tan \frac{a}{2} = \sqrt{\frac{-\cos S \cos (S - A)}{\cos (S - B) \cos (S - C)}}.$$

$$A = 221^{\circ} \qquad \log \cos S = 9.51264 - 10$$

$$B = 128^{\circ} \qquad \log \cos (S - A) = 9.93753 - 10$$

$$C = 153^{\circ} \qquad \text{colog } \cos (S - B) = 0.26389$$

$$2 S = 502^{\circ} \qquad \text{colog } \cos (S - C) = 0.85644$$

$$2 S = 251^{\circ} \qquad 2)20.57050 - 20$$

$$S = 4 = 30^{\circ} \qquad \log \tan \frac{a}{2} = 10.28525 - 10$$

$$S - B = 123^{\circ} \qquad \frac{a}{2} = 62^{\circ} 35' 35''$$

$$S - C = 98^{\circ} \qquad a = 125^{\circ} 11' 10''$$

The result is real (Art. 128, p. 187), the four negative signs under the radical producing a positive quantity.

Ex. 2. Given $A = 21^{\circ} 26' 20''$, $B = 56^{\circ} 46' 28''$, $C = 115^{\circ} 23' 4''$; find a, b, c.

Proceeding by the second method, we first find the value of $\log \tan R$. The following is suggested as a convenient arrangement of the work:

$$\tan R = \sqrt{\frac{-\cos S}{+\cos (S-A)\cos (S-B)\cos (S-C)}}.$$

$$A = 21^{\circ} 26' 20''$$

$$B = 56^{\circ} 46' 28''$$

$$C = 115^{\circ} 23' 4''$$

$$2 S = 193^{\circ} 35' 52''$$

$$S = 96^{\circ} 47' 56''$$

$$S - A = 75^{\circ} 21' 36''$$

$$S - B = 40^{\circ} 1' 28''$$

$$S - C = -19^{\circ} 24' 52''$$

$$\log \cos S = 9.07330 - 10$$

$$\cosh S = 0.11590$$

$$\cosh S - A = 36^{\circ} 35' 4.6''$$

$$\cosh S - A = 36^{\circ} 35' 35' 35'$$

EXERCISE XXXIX

1. In a spherical triangle given $A = 121^{\circ} 40' 24''$, $B = 60^{\circ} 12' 22''$, $C = 105^{\circ} 40'$; find a, b, c.

2. In a spherical triangle given $A = 58^{\circ} 20' 27''$, $B = 84^{\circ} 30' 30''$, $C = 61^{\circ} 35' 10''$; find a, b, c.

3. In a spherical triangle given $A = 105^{\circ} 14' 4''$, $B = 55^{\circ} 31' 24''$, $C = 88^{\circ} 51' 6''$; find a, b, c.

4. In a spherical triangle given $A = 171^{\circ} 49' 33''$, $B = 5^{\circ} 15' 23''$, $C = 9^{\circ} 18' 28''$; find a, b, c.

THE AREA OF A SPHERICAL TRIANGLE

150. In considering the problem of finding the area of a spherical triangle we have two principal cases to consider.

I. Given the three angles A, B, C.

Let r = radius of sphere.

 $E = \text{spherical excess} = A + B + C - 180^{\circ}$.

 \triangle = area of triangle.

It is proved in geometry that the area of a spherical triangle is to the area of the surface of the sphere as its spherical excess, in degrees, is to 720°. Hence, we have

$$\Delta: 4 \pi r^2 = E: 720^{\circ}.$$

$$\therefore \Delta = \frac{E}{180^{\circ}} \pi r^2.$$

II. Given the three sides a, b, c.

The problem is to express the value of E in terms of the sides.

(1) CAGNOLI'S THEOREM.

$$\sin \frac{E}{2} = \sin \frac{A + B + C - \pi}{2}$$

$$= \sin \frac{A + B}{2} \cos \frac{C - \pi}{2} + \cos \frac{A + B}{2} \sin \frac{C - \pi}{2}$$

$$= \sin \frac{A + B}{2} \sin \frac{C}{2} - \cos \frac{A + B}{2} \cos \frac{C}{2}$$

$$= \frac{\sin\frac{C}{2}\cos\frac{C}{2}}{\cos\frac{c}{2}} \left(\cos\frac{a-b}{2} - \cos\frac{a+b}{2}\right) \text{ (Art. 130, p. 190)}$$

$$= \frac{\sin\frac{C}{2}\cos\frac{C}{2}\left(2\sin\frac{a}{2}\sin\frac{b}{2}\right)}{\cos\frac{c}{2}}$$
 (Art. 77, p. 100)

$$= \frac{\sin\frac{a}{2}\sin\frac{b}{2}}{\cos\frac{c}{2}} \cdot \frac{2\sqrt{\sin s \sin (s-a)\sin (s-b)\sin (s-c)}}{\sin a \sin b}.$$
(Art. 127, p. 186)

Replacing $\sin a$ and $\sin b$ by their values (Art. 80, p. 106) and canceling, we have

$$\sin\frac{E}{2} = \frac{\sqrt{\sin s \sin (s-a) \sin (s-b) \sin (s-c)}}{2\cos\frac{a}{2}\cos\frac{b}{2}\cos\frac{c}{2}}.$$

(2)- L'HUILIER'S THEOREM. This theorem, which expresses the value of E by means of its tangent, is derived as follows:

$$\tan \frac{E}{4} = \frac{\sin \frac{E}{4}}{\cos \frac{E}{4}} = \frac{\sin \frac{A+B+C-\pi}{4}}{\cos \frac{A+B+C-\pi}{4}}$$

$$= \frac{\sin\frac{A+B+C-\pi}{4}}{\cos\frac{A+B+C-\pi}{4}} \cdot \frac{\cos\frac{A+B+\pi-C}{4}}{\cos\frac{A+B+\pi-C}{4}}$$

$$= \frac{\sin \frac{A+B}{2} - \sin \frac{\pi - C}{2}}{\cos \frac{A+B}{2} + \cos \frac{\pi - C}{2}}$$
 (Art. 77, p. 100)

$$= \frac{\sin\frac{A+B}{2} - \cos\frac{C}{2}}{\cos\frac{A+B}{2} + \sin\frac{C}{2}}$$

$$= \frac{\cos\frac{a-b}{2} - \cos\frac{c}{2}}{\cos\frac{a+b}{2} + \cos\frac{c}{2}} \cdot \frac{\cos\frac{C}{2}}{\sin\frac{C}{2}}$$

$$= \frac{\sin\frac{s-b}{2}\sin\frac{s-a}{2}}{\cos\frac{s}{2}\cos\frac{s-c}{2}} \cot\frac{C}{2}.$$
(Art. 129, p. 189)
$$= \sqrt{\tan\frac{s}{2}\tan\frac{s-a}{2}\tan\frac{s-b}{2}\tan\frac{s-c}{2}}.$$
(Art. 77, p. 100)

(3) All other cases may be solved by first finding the three sides or the three angles, and then applying the proper formula.

ANSWERS

PLANE TRIGONOMETRY

Exercise I. Pages 11, 12

1. $\frac{1}{3}$.

2. 11.

3. 0.7581+.

4. 1.2737+.

5. 2.5419-.

6. 3.5693+,

7. 40°, 60°, 80°.

17. 5°, 25°, 150°.

18. 30°, 360°, 21600°.

Exercise II. Pages 14-16

3. 30°.

4. 120°.

17. $\frac{8599 \, \pi}{}$

23. 27°, 63°.

5. 36°.

13. $\frac{3\pi}{4}$.

18. $\frac{20533 \pi}{5400}$.

24. 52°, 56°, 72°.

6. 54°.

25. $\frac{\pi}{5}$, $\frac{\pi}{2}$, $\frac{7\pi}{15}$.

7. 270°.

19. $\frac{n\pi}{180}$.

26. 30°, 60°, 90°.

8. 150°.

14. $\frac{5 \pi}{4}$.

20. $\frac{A\pi}{100}$.

27. 4, 6.

9. 540°. 10. 2700°. 15. $\frac{121 \pi}{360}$.

21. 1.

28. $\frac{3\pi}{5}$, $\frac{5\pi}{7}$, $\frac{7\pi}{9}$.

11. $\frac{\pi}{4}$.

16. $\frac{463 \pi}{720}$.

29. $\frac{1}{2}$, $\frac{\pi}{2}$, $\frac{2\pi}{2}$, $-\frac{1}{2}$.

30. $\frac{\pi}{3}$, $\frac{4\pi}{9}$, $\frac{5\pi}{9}$, $\frac{2\pi}{3}$.

31. 150° , $\frac{5\pi}{6}$; 82° 30', $\frac{11\pi}{24}$; 135° , $\frac{3\pi}{4}$.

32. $5\frac{10}{11}$ minutes past four; $54\frac{6}{11}$ minutes past four.

Exercise III. Pages 17-19

5. 1.77.

6. 28° 7′ 30″.

7. 0.265 sec.

8. 40 yd.

9. 2° 8′ 52.8″.

10. 861,031 mi. (approximately).

11. 3962.95.

12. 14° 19′ 26.2′′.

13. 1.047 radians,

14. 51.56.

15. 102 ft. (approximately).

16. 5:4.

17. 3.1416.

18. $\frac{\pi}{2}$, $\frac{4}{0}\pi$, $\frac{5}{0}\pi$, $\frac{2}{2}\pi$.

19. 3.1416.

20. 0.000097+.

21. 65° 24′ 30.4″.

22. 98^{2}_{11} .

23. 1 mi. 908 ft. nearly.

24. 7 mi. 1237.2 ft.

25. 18° and 58°.

26. 19.099'.

27. $\frac{60 \ a\pi}{10800}$.

28. 0.00004848.

Exercise V. Pages 29, 30

- 11. $\frac{61}{60}$, $\frac{60}{61}$. 7. $\frac{4}{11}\sqrt{7}$.
- 8. 50.

- 15. $\frac{1}{60}$, $\frac{1}{61}$.
- 16. $\frac{3}{8}\sqrt{7}$, $\frac{1}{23}\sqrt{7}$. 12. 5, 4.
- 13. $\frac{6}{61}\sqrt{61}$, $\frac{5}{61}\sqrt{61}$.
- 17. $\frac{5}{9}$, $\frac{9}{28}\sqrt{14}$.

10. $\frac{3}{20}\sqrt{10}, \frac{7}{3}$.

9. $\frac{5}{4}$, $\frac{4}{3}$.

- 14. $\frac{2}{5}\sqrt{6}$, $2\sqrt{6}$.
- **18.** $\sin A = \frac{8}{17}$, $\cos A = \frac{15}{17}$, etc.; $\sin B = \frac{15}{17}$, $\cos B = \frac{8}{17}$, etc.
- **19.** $\sin A = \frac{x^2 y^2}{x^2 + y^2}$, $\cos A = \frac{2xy}{x^2 + y^2}$, etc.; $\sin B = \frac{2xy}{x^2 + y^2}$, $\cos B = \frac{x^2 y^2}{x^2 + y^2}$, etc.
- 20. $\frac{3}{4}$.

Exercise VIII. Pages 42-48

- **32**. 60.
- **43**. $\frac{1}{2} a^2 \cot A$.
- **53**. 23° 11′ 55″.
- **63**. 355.34.

- **33**. 45188.
- **44.** $\frac{1}{2} a^2 \tan B$.
- **54**. 38° 9′ 25′′.
- 64. 74.335.

- **34**. 6.
- **45.** $\frac{1}{2}c^2\sin A\cos A$. **55.** 80.49, 105.64.
- **65**. 42.838.

- **35**. 124.71.
- **46**. 29° 22′.
- **56**. 74° 43′ 54″.
- **66**. 313.1. 67. 38.13.

- **36**. 182.8. 37. 1143.4.
- 47. 60° 38′. **48**. 20.48.
- **57**. 124.27. **58**. 560.88.
- **68.** 43.63.

- **38**. 1916.64.
- **49.** 33.64.
- **59**. 25.165, 36.458. **69**. 39° 11′.

- **39**. 36157.5.
- **50**. 41° 36′.
- **60**. 89.44.
- 71. 118.3.

- 40. 498.51.
- **51.** 24° 54′ 16″. **61.** 46.71. **52.** 42° 42′ 34′′.
 - **62.** 122.53.
- 72. 100. 73. 145.58.

41. 52444.44. **42.** $\frac{1}{2} a \sqrt{c^2 - a^2}$.

Exercise IX. Pages 49, 50

- 1. 64° 20′ 26″.
- 2. 75° 32′ 50″.
- 3. 243.57.
- 4. 175.068.
- **5.** 148.91′.
- 6. 300 174.49 26 4
- 7. 91.204.

- 9. $na^2\sin\frac{C}{2}\cos\frac{C}{2}$.
- 10. $na^2 \sin A \cos A$.
- 11. $nh^2 \cot A$.
- 12. $\Delta = 69.24$.
- 13. $\Delta = 1325.46$.
- 14. $\Delta = 3741.18$.

- 15. $\Delta = 309.01$.
- 16. $\Delta = 29.82$. 17. $\Delta = 104.71$.
 - 18. $\Delta = 12.312$.
 - 19. $\Delta = 115.92$.
 - **20.** $\Delta = 700.616$.
 - **21**. $\Delta = 2186.95$.

8. 3° 34′ 8″.

Exercise X. Pages 72, 73

- 5. $\frac{\sqrt{3}+1}{2}$. 7. $\frac{\sqrt{2}-2}{2}$. 9. $\frac{\sqrt{3}+2}{2}$. 11. $\frac{11}{3}$. 12. -2.
- 6. $\frac{1+2\sqrt{2}}{2}$. 8. $\frac{3\sqrt{3}}{2}$. 10. $\frac{3\sqrt{3}-4}{3}$. 13. $-\frac{7}{3}$.

- 14. Positive for 60°, 120°, 210°, 330°; negative for 0°, 240°, 300°.
- 15. Positive for 330°; negative for 210°, 300°; zero for 135°.

17.
$$\frac{2 ab}{a^2 + b^2}$$
, $\frac{2 ab}{a^2 - b^2}$

18.
$$\frac{2 a + 1}{2 a^2 + 2 a + 1}$$
, $\frac{2 a^2 + 2 a}{2 a + 2 a + 1}$.

Exercise XI. Pages 83, 84

- 5. 45° and 225°; 45°, 135°, 225°, 315°.
- 6. Positive for 120° and 690°; negative for 150°, 300, and $\frac{6\pi}{7}$; zero for 135° and 315°.
- 7. Positive for 210° and 780°; negative for 240°, 300°, 625° and $\frac{5 \pi}{3}$; zero for 225°.
- **8.** Positive for 60° , 150° , and $\frac{11 \pi}{6}$; negative for 120° and 210° ; zero for 135° and 225° .
- **9.** (a) 240° and 300° ; (b) 210° and 330° ; (c) 135° and 315° ; (d) 30° and 210° .
 - 14. 3.
 - 15. $-\cot^2 A \csc A$.

Exercise XII. Pages 88, 89

4.
$$\theta = n\pi + (-1)^n \frac{\pi}{4}$$

14.
$$\theta = n\pi \pm \frac{\pi}{e}$$

$$\mathbf{5.} \ \theta = 2 \ n\pi + \frac{\pi}{2}.$$

15.
$$\theta = n\pi \pm \frac{\pi}{4}$$

6.
$$\theta = n\pi - (-1)^n \frac{\pi}{2}$$

$$16. \ \theta = n\pi \pm \frac{\pi}{8}.$$

7.
$$\theta = n\pi - (-1)^n \frac{\pi}{6}$$

17.
$$\theta = n\pi \pm \frac{\pi}{6}$$
.

8.
$$\theta = 2 \ n\pi \pm \frac{\pi}{6}$$

18.
$$\theta = n\pi \pm \frac{\pi}{4}$$
.

9.
$$\theta = (2 n + 1)\pi \pm \frac{\pi}{4}$$

19.
$$\theta = n\pi \text{ or } n\pi \pm \frac{\pi}{4}$$

10.
$$\theta = 2 n\pi \pm \frac{\pi}{2}$$

$$20. \quad \theta = n\pi \pm \frac{\pi}{4}.$$

11.
$$\theta = (2n+1)\pi$$
.

21.
$$\theta = 2 n\pi + \frac{\pi}{2}$$

12.
$$\theta = n\pi + \frac{\pi}{4}$$

22.
$$\theta = (2 n + 1) \pi + \frac{\pi}{e}$$

13.
$$\theta = n\pi - \frac{\pi}{6}$$

Exercise XIII. Pages 90, 91

4.
$$2 n\pi \pm \frac{\pi}{3}$$
, or $(2 n + 1)\pi$.

5.
$$2 n\pi$$
, or $2 n\pi \pm \frac{\pi}{3}$.

6.
$$n\pi + (-1)^n \frac{\pi}{6}$$
, or $n\pi + (-1)^n \frac{3\pi}{2}$.

7.
$$n\pi + (-1)^n \frac{\pi}{6}$$

8.
$$2 n\pi \pm \frac{2 \pi}{3}$$
.

9.
$$2 n\pi \pm \frac{\pi}{3}$$
, or $(2 n + 1)\pi$.

10.
$$2 n\pi \pm \frac{\pi}{3}$$
.

11.
$$2 n\pi + \frac{\pi}{2}$$
, or $\sin \theta = -\frac{1}{3}$.

12.
$$n\pi \pm \frac{\pi}{4}$$
.

$$V$$
. 13. $n\pi + \frac{\pi}{4}$, or cot $\theta = \frac{1}{2}$.

14.
$$n\pi \pm \frac{\pi}{4}$$
.

15.
$$(2 n + 1) \frac{\pi}{7}$$
, or $\frac{2 n\pi}{3}$.

16.
$$\frac{n\pi}{6} + \frac{\pi}{12}$$
, or $\frac{n\pi}{3}$

17.
$$\frac{n\pi}{4}$$
, or $\frac{n\pi}{2}$.

18.
$$2 n\pi$$
, or $\frac{2 n\pi}{9}$.

19.
$$\frac{2 r \pi}{m-n}$$
, or $\frac{2 r \pi}{m+n}$.

20.
$$n\pi - \frac{\pi}{4}$$
, or $\frac{n\pi}{3} + \frac{\pi}{12}$.

21.
$$n\pi + \frac{\pi}{4}$$
, or $\frac{n\pi}{3} + \frac{\pi}{12}$.

22.
$$n\pi$$
.

23.
$$\frac{n\pi}{3}$$
.

24.
$$\frac{n\pi}{9} + \frac{\pi}{18}$$
.

25.
$$\frac{(2r+1)\pi}{2(m-n)}$$

26.
$$(2 n + 1) \frac{\pi}{6}$$

Exercise XIV. Pages 95-97

4.
$$-\frac{33}{65}$$
.

5.
$$\frac{3}{6}\frac{3}{5}$$
.

6.
$$\frac{157}{205}$$
.

Exercise XV. Pages 99, 100

1. 1. 2.
$$\frac{3.7}{2.84}$$
. 3. $-\frac{3.3}{5.6}$. 4. -4. 5. 3.

Exercise XVIII. Pages 108-110

1.
$$\frac{4\sqrt{2}}{9}$$
, $\frac{23}{27}$.

2.
$$\frac{7}{8}$$
, $\frac{3\sqrt{15}}{16}$

3.
$$\frac{24}{25}$$
, $-\frac{117}{125}$

2.
$$\frac{7}{8}$$
, $\frac{3\sqrt{15}}{16}$. **3.** $\frac{24}{25}$, $-\frac{117}{25}$. **5.** $\frac{3\sqrt{10}}{5}$, $1\frac{5}{25}$.

Exercise XXI. Pages 120, 121

1.
$$\pm \frac{1}{2}\sqrt{2}$$
.

6.
$$\frac{\sqrt{3}}{2\sqrt{3}}$$

9.
$$\frac{1}{2}$$
.

13.
$$\pm \frac{1}{2}\sqrt{2}$$
.

2.
$$\pm \frac{1}{2}\sqrt{2}$$
. 3 ± 1

$$\frac{1}{2\sqrt{7}}$$

6.
$$\frac{\sqrt{3}}{2\sqrt{7}}$$
 9. $\frac{1}{2}$ 10. 1 or $-\frac{1}{6}$.

14.
$$\frac{25}{24}$$
.

3.
$$\pm 1$$
.

11. 0 or
$$\pm \frac{1}{2}$$
.

4. x imaginary.
5. 13 8.
$$\frac{-3 \pm \sqrt{17}}{4}$$
. 12. 1 or $\frac{1}{2}$.

16.
$$\frac{1}{3}\sqrt{5}$$
.

8.
$$\frac{-3 \pm \sqrt{1}}{4}$$

17.
$$\frac{ab}{\sqrt{a^2-1}+\sqrt{b^2-1}}$$
. 19. $\frac{ab}{\sqrt{a^2-1}+\sqrt{b^2-1}}$.

20.
$$\sqrt{3}$$
. 21. 2,

18.
$$n\pi$$
 or $n\pi + \frac{\pi}{4}$.

Exercise XXII. Page 127, 128

1.
$$2 n\pi$$
, or $2 n\pi - \frac{2\pi}{3}$.

2.
$$2 n\pi + \frac{\pi}{2}$$
, or $(2 n + 1)\pi + \frac{\pi}{6}$.

3.
$$2n\pi + \frac{5\pi}{12}$$
, or $2n\pi - \frac{\pi}{12}$.

4.
$$n\pi + \frac{\pi}{6} + (-1)^n \frac{\pi}{4}$$
.

5.
$$2 n\pi + \frac{\pi}{4}$$
.

6.
$$2 n\pi + \frac{\pi}{12}$$
, or $2n\pi - \frac{7 \pi}{12}$

7.
$$2 n\pi + \frac{5 \pi}{4}$$
, or $2 n\pi - \frac{3 \pi}{4}$.

8.
$$\frac{2 k\pi}{m+n}$$
, or $\frac{(2 k+1)\pi}{m-n}$.

9.
$$\frac{(2k+1)\pi}{m+n}$$
.

10.
$$2 n\pi$$
, or $2 n\pi + 112^{\circ} 38^{\prime}$.

22.
$$(2 n + 1) \frac{\pi}{2}$$
, $(2 n + 1) \frac{\pi}{4}$, or $(2 n + 1) \frac{\pi}{8}$.

21. $2 n\pi$, $(2 n + 1) \frac{\pi}{2}$, or $(2 n + 1) \frac{\pi}{5}$.

35.
$$2 n\pi$$
, or $2 n\pi + \frac{2 \pi}{3}$.

36.
$$\frac{n\pi}{2} + \frac{\pi}{8}$$

37.
$$n\pi - \frac{\pi}{4}$$
, or $\frac{n\pi}{2} + (-1)^n \frac{\pi}{12}$

11. $n\pi + (-1)^n 36^\circ 52'$, or $2 n\pi - \frac{\pi}{2}$.

12. $2 n\pi - 36^{\circ} 52'$.

13. $\frac{n\pi}{4}$, or $\frac{2n\pi}{2} \pm \frac{\pi}{2}$.

14. $\frac{n\pi}{2}$, or $n\pi \pm \frac{\pi}{6}$.

15. $\frac{n\pi}{2}$, or $\frac{n\pi}{2} \pm \frac{\pi}{12}$.

16. $\frac{2 n\pi}{2} \pm \frac{\pi}{6}$, or $n\pi + (-1)^n \frac{\pi}{6}$.

17. $\frac{n\pi}{2} + \frac{\pi}{4}$, or $2 n\pi \pm \frac{2 \pi}{2}$.

19. $\frac{n\pi}{4}$, or $\frac{n\pi}{3} + (-1)^n \frac{\pi}{19}$.

18. $\frac{n\pi}{2}$, or $2 n\pi \pm \frac{2\pi}{2}$.

20. $2 n\pi$, or $(4 n + 3) \frac{\pi}{a}$.

38.
$$\frac{n\pi}{2} + (-1)^n \frac{\pi}{12}$$

39.
$$(2n+1)\frac{\pi}{10}$$
, or $(2n+1)\frac{\pi}{2}$.

40.
$$n\pi + \frac{\pi}{4}$$
, or $\frac{n\pi}{2} - (-1)^n \frac{\pi}{12}$.

41.
$$\frac{n\pi}{2}$$
, or $n\pi \pm \frac{\pi}{3}$.

42.
$$n\pi$$
, or $n\pi \pm \frac{\pi}{3}$

43.
$$n\pi$$
, or $\frac{n\pi}{2}$.

44.
$$n\pi$$
, or $\frac{n\pi}{3} + \frac{\pi}{6}$.

23. $2 n\pi$, or $n\pi \pm \frac{\pi}{4}$.

24.
$$n\pi$$
, or $\frac{1}{n-1}\left(n\pi-(-1)^n\frac{\pi}{6}\right)$.

25.
$$n\pi$$
, or $(2 n + 1) \frac{\pi}{14}$.

26.
$$2 n\pi$$
, or $\frac{4 n\pi}{n+1}$, or $\frac{4 n\pi}{n-1}$.

27.
$$n\pi \pm \frac{\pi}{3}$$
, or $2 n\pi \pm \frac{\pi}{2}$.

28.
$$2 n\pi - \frac{\pi}{2}$$
, or $\frac{2 n\pi}{5} - \frac{\pi}{10}$.

29.
$$n\pi \pm \frac{\pi}{8}$$
, or $(2 n + 1) \frac{\pi}{6}$.

30.
$$(2 n + 1) \frac{\pi}{8}$$
, or $\frac{n\pi}{3} + (-1)^n \frac{\pi}{9}$.

32.
$$(2n+1)\frac{\pi}{2}$$
, or $n\pi \pm \frac{\pi}{3}$.

33.
$$n\pi$$
, or $n\pi \pm \frac{\pi}{6}$.

Exercise XXIV. Pages 136-138

- 11. 640.65 ft.
- **12.** AC = 8332.2 ft., AB = 12163.53 ft.
 - 13. Distances 2841.2 ft., 3475.46 ft. Height 1721.08 ft.
 - 14. Distances 11975.68 ft., 24182.77 ft. Height 19769.54 ft.
 - 15. 121.04 ft. 16. 171.15 ft. 17. 110.39 ft. 19. 4.588 mi. 20. 4.506 mi.

Exercise XXVI. Pages 146-148

- 11. 4536.4 ft.
- 13. 5402.6 ft.
- **15**. 15.6.
- 17. 5.65.

- 12. 134.49 ft.
- **14**. 9.
- 16. 1781.2 ft.
- **18**. 4.58: 9.81.
- **19.** $A = 39^{\circ} 46' 0.4''$, $B = 68^{\circ} 2' 45.6''$. **20.** 4494.3 ft.

Exercise XXVII. Pages 152, 153

17. 43° 55′ 13″.

20. 60°, 60°, 60°.

18. 49° 8′ 46″.

21. 66° 44′ 2″, 60° 26′ 53″, 52° 49′ 9″.

19. 30°, 60°, 90°.

- **23**. 60°.
- 24. 120°.

12. 440.36 lb.; 63° 12′ 26″, 26° 47′ 34″.

25. 73° 44′.

Miscellaneous Examples. Pages 158-165

- 1. 247.56 ft. 2. 42° 42! 34".
- 3. 41° 9′ 7″.
- 5. 48° 45′ 44″. 7. 122.48 ft.
- **9.** Height = 1224.3 ft.; distance = 1292.9 ft.
- 4. 36° 22′ 21″.
- 6. 72.75 ft.
- 8. 123.47 ft.

11. 233.27 ft.

- 10. 431.78 ft.

- 13. 2881.46 mi.
- 15. 2304.52 ft.
- 17. 7912.8 mi.

- **14.** 407.61 ft.

- 16. 67.5 ft.
- 18. 108° 11'.

- **19.** Height = 350.67 ft., distance = 3205.15 ft.
- 20. 8.0076 in.

- 21. 746 ft.
- **22**. 17.32, 30, 34.64.
- 23. 244.95.

- **24.** $\tan^{-1}\frac{2}{3}$; $\frac{9}{52}$ of an hour.
- **26.** 136.13 ft. from the foot of the tower.
- 25. 6 ft. 27. 61.24 ft.

- 29. 109.9 ft.
- **31**. 308.66 ft.
- 33. 110° 16′. 56′ 35. 4782.2 ft.

- **30.** 4621.1 ft.
- **32.** 407.61 ft. **34.** 473.3 ft.
- 36. 2785.6 ft.

- **37.** 60° 20′ 8″, 76° 49′ 18″, 42° 50′ 29″.

- 38. 595.84 ft.

- **39.** 1743,36 ft.

- 40. 4244.4 ft.
- 41. 9.1 mi. an hour. 42. 383.37 yd.
- 43. Resultant = 658.36 lb.; angle bet resultant and greater force $22^{\circ} 23' 43''$.
- 44. 2019.62 ft.
- **47.** 63.08.
- **50**. 3883 ft.
- **52.** 13451.52 ft.

- 45. 410.35 ft.
- **48**. 45.92 ft.
- **51**. 4494.3 ft. **53**. 1949.77 ft.

- **46**. 178.88 ft.
- **49.** 10520.49 ft.

Exercise XXVIII. Pages 167, 168

- **2**. 0.0029089.
- **4**. 0.002036.
- 6. 0.99999.

- 0.9999958.
- **5**. 0.004363.
- 7. 0.00003878.

Exercise XXXI. Page 175

- 1. $r = 2.5, \theta = 2.165$.
- 2. $a^2 + b^2 = c^2 + d^2$.
- 3. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2$.

- 5. $2 ac^2 ad^2 = bcd$.
- 6. $a^4 2a^2 + b^2 = 0$.
- 7. $a^2b b = 2$.
- 8. $(a^2 b^2)^2 16 ab = 0$.

- 4. $a^2 + d^2 = b^2 + c^2$.
- 9. $(a^2+1)^2+2b(a^2+1)(a+b)-4(a+b)^2=0$.
- 10. $(a+b)^{\frac{2}{3}} + (a-b)^{\frac{2}{3}} = 2$.
- **12.** $(a b) \tan \alpha + ab = 0$.
- 11. $a^{\frac{2}{3}} + b^{\frac{2}{3}} (ab)^{-\frac{2}{3}} = 0$.
- 13. $a^2 b^2 2 \cos \alpha 2 = 0$. 14. (a + b)(c + d) - 2 cd = 0.

SPHERICAL TRIGONOMETRY

Exercise XXXIII. Pages 199, 200

- 1. $b = 14^{\circ} 25' 20''$, $A = 47^{\circ} 30' 46''$, $B = 44^{\circ} 25' 26''$.
- **2.** $c = 77^{\circ} 56' 37''$, $A = 81^{\circ} 50' 9''$, $B = 34^{\circ} 28' 58''$.
- 3. Impossible.
- **4.** $c = 69^{\circ} 55' 18''$, $b = 130^{\circ} 15' 58''$, $A = 115^{\circ} 33' 51''$.
- 5. $a = 49^{\circ} 30' 54''$, $b = 131^{\circ} 41' 29''$, $B = 124^{\circ} 6' 53''$.
- **6.** $a = 34^{\circ} \cdot 20' \cdot 53''$, $b = 42^{\circ} \cdot 23' \cdot 40''$, $c = 52^{\circ} \cdot 25' \cdot 39''$.
- 7. $a = 80^{\circ} 28' 44''$, $b = 78^{\circ} 38' 54''$, $B = 83^{\circ} 47' 23''$.
- **8.** $b = 145^{\circ} 13' 27''$, $A = 35^{\circ} 2' 7''$, $B = 118^{\circ} 8' 2''$.
- **9.** $b = 155^{\circ} 23' 47''$, $c = 71^{\circ} 18' 48''$, $A = 98^{\circ} 54' 34''$.
- **10.** $b_1 = 153^{\circ} 59' 53'', c_1 = 69^{\circ} 36',$ $B_1 = 152^{\circ} 6' 47''.$ $b_2 = 26^{\circ} 0' 7'',$ $c_2 = 110^{\circ} 24',$ $B_2 = 27^{\circ} 53' 13''.$
- 11. $c = 62^{\circ} 33' 19''$, $A = 68^{\circ} 51' 35''$, $B = 39^{\circ} 59' 48''$.
- **12.** $a = 49^{\circ} 53' 28'', b = 58^{\circ} 26', c = 70^{\circ} 17' 27'',$

Exercise XXXIV. Page 202

- 1. $A = 113^{\circ} 51^{\prime} 22^{\prime\prime}$, $B = 66^{\circ} 17^{\prime} 20^{\prime\prime}$, $C = 96^{\circ} 0^{\prime} 18^{\prime\prime}$.
- **2.** $A = 65^{\circ} 10'$, $B = 98^{\circ} 50' 37''$, $C = 125^{\circ} 17' 48''$.
- **3.** $A = 129^{\circ} 22' 58''$, $B = 109^{\circ} 41' 38''$, $C = 97^{\circ} 21' 36''$.
- **4.** $A = 23^{\circ} 16' 48''$, $B = 62^{\circ} 13' 34''$, $C = 107^{\circ} 54' 18''$.

Exercise XXXV. Page 203

- 1. $A = 117^{\circ} 33' 50''$, $B = 46^{\circ} 37' 46''$, $c = 62^{\circ} 36' 45''$.
- **2.** $A = 116^{\circ} 0' 7''$, $B = 51^{\circ} 34' 15''$, $c = 57^{\circ} 51' 26''$.
- **3.** $B = 101^{\circ} 4' 47''$, $C = 40^{\circ} 8' 22''$, $a = 57^{\circ} 31' 43''$.
- **4.** $A = 35^{\circ} 18' 32''$, $C = 126^{\circ} 39' 6''$, $b = 77^{\circ} 10' 36''$.
- **5.** $B = 69^{\circ} 28' 26''$, $C = 42^{\circ} 13' 34''$, $a = 76^{\circ} 17' 36''$.

Exercise XXXVI. Page 205

- 1. $B = 119^{\circ} 34' 43''$, $C = 96^{\circ} 55' 26''$, $c = 105^{\circ} 36' 14''$.
- **2.** $B = 63^{\circ} 1' 40''$, $C = 84^{\circ} 50' 28''$, $c = 80^{\circ} 51' 28''$.
- 3. $B_1 = 63^{\circ} 55' 10''$. $C_1 = 33^{\circ} 51' 5''$, $c_1 = 26^{\circ} 41' 4''$. $B_2 = 116^{\circ} 4' 50''$, $C_2 = 92^{\circ} 8' 32''$, $c_2 = 53^{\circ} 40' 8''$.
- 4. Impossible.

Exercise XXXVII. Page 207

1. $b = 156^{\circ} 51' 40''$	$c = 30^{\circ} 57' 43'',$	$C = 69^{\circ} 37' 20''$.
2. $b = 125^{\circ} 22' 40''$,	$c = 155^{\circ} 48' 12'',$	$C = 155^{\circ} 50' 58''$.
3. $b_1 = 75^{\circ} 38' 40''$	$c_1 = 102^{\circ} 0' 42'',$	$C_1 = 48^{\circ} 27' 53''$.
4. $b_2 = 104^{\circ} 21' 20''$	$c_2 = 134^{\circ} 30' 27'',$	$C_2 = 146^{\circ} 55' 13''$.

Exercise XXXVIII. Page 208

1. $a = 129^{\circ} 29' 29''$,	$b = 107^{\circ} 45' 45''$	$C = 54^{\circ} 54' 16''$.
2. $b = 36^{\circ} 23' 38'',$	$c = 122^{\circ} 53' 23'',$	$A = 161^{\circ} 1' 28''$.
3. $a = 123^{\circ} 21' 30''$,	$c = 84^{\circ} 15' 24'',$	$B = 129^{\circ} 4' 47''$.
4. $a = 153^{\circ} 51' 21''$,	$b = 89^{\circ} 26'$,	$C = 78^{\circ} \ 21' \ 23''$.

Exercise XXXIX. Page 211

1. $a = 142^{\circ} 5' 25''$,	$b = 38^{\circ} 47' 39'',$	$c = 135^{\circ} 57' 44''$.
2. $a = 49^{\circ} 20' 39''$,	$b = 62^{\circ} 31' 13'',$	$c = 51^{\circ} 37' 5''$.
3. $a = 107^{\circ} 45' 46''$,	$b = 54^{\circ} 27' 19'',$	$c = 99^{\circ} 18' 46''$.
4 $a = 118^{\circ} 59! 50!!$	$b = 34^{\circ} \ 20' \ 45''$	$c = 84^{\circ} 53' 32''$

FIVE-PLACE

LOGARITHMIC AND TRIGONOMETRIC

TABLES

BASED ON THE TABLES OF F. G. GAUSS

ARRANGED BY

LEVI L. CONANT, Ph.D.

NEW YORK :: CINCINNATI :: CHICAGO $A\ M\ E\ R\ I\ C\ A\ N \quad B\ O\ O\ K \quad C\ O\ M\ P\ A\ N\ Y$

COPYRIGHT, 1909, BY

AMERICAN BOOK COMPANY.

Entered at Stationers' Hall, London.

CONANT TRIG. TABLES.

W. P. I

INTRODUCTION

1. A logarithm is the exponent by which a number a must be affected in order that the result shall be a given number m. That is, if $a^x = m$, then x is called the logarithm of m to the base a. The above equation written in logarithmic form is $\log_a m = x$.

Any positive number except 1 may be used as the base of a system of logarithms. In practical work involving numerical computation 10 is the base that is universally employed.

All computations by means of logarithms are based on the following theorems:

2. The logarithm of a product is equal to the sum of the logarithms of the factors.

PROOF. Let m and n be any two positive numbers, and let x and y be their logarithms respectively. Then

$$m \cdot n = 10^x \cdot 10^y = 10^{x+y}$$
.
 $\therefore \log(mn) = x + y = \log m + \log n$.

3. The logarithm of a quotient is equal to the logarithm of the dividend minus the logarithm of the divisor.

PROOF.
$$\frac{m}{n} = \frac{10^x}{10^y} = 10^{x-y}.$$
$$\therefore \log \frac{m}{n} = x - y = \log m - \log n.$$

4. The logarithm of any power of a number is equal to the logarithm of the number multiplied by the index of the power.

Proof.
$$m^{y} = (10^{x})^{y} = 10^{xy}.$$
$$\therefore \log m^{y} = xy = y \log m.$$

5. The logarithm of any root of a number is equal to the logarithm of the number divided by the index of the root.

PROOF.
$$\sqrt[y]{m} = \sqrt[y]{10^x} = 10^{\frac{x}{y}}.$$
$$\therefore \log \sqrt[y]{m} = \frac{x}{y} = \frac{\log m}{y}.$$

6. The logarithm of any integral power or root of 10 is an integral number. The logarithms of all other positive numbers are fractions.

Negative numbers have no logarithms. If any logarithmic computation is to be performed which involves negative numbers, the problem should be solved as though the numbers were all positive; and the algebraic sign of the result should then be determined by the usual methods of algebra.

- 7. The logarithm of a number consists of two parts, an integral part and a decimal. The integral part is called the characteristic, and the decimal part the mantissa. As logarithms are usually printed the mantissa is always positive. The characteristic may be positive, negative, or zero. The characteristic of the logarithm of any number may be found by one of the following rules:
- I. The characteristic of the logarithm of a number greater than one is positive, and is one less than the number of digits in the integral part of the number.
- II. The characteristic of the logarithm of a decimal fraction is negative, and is numerically one greater than the number of ciphers immediately after the decimal point.

For example, the characteristic of the logarithm of 3286 is 3; of 294645 is 5; of 0.0241 is -2; of 0.000649 is -4.

For the sake of convenience a negative characteristic is often changed in form by adding to it and subtracting from it the number 10. For example, if the characteristic of a logarithm is -2, and the mantissa is .38416, the logarithm may be written 8.38416 - 10. If the characteristic is -1 and the mantissa is .74925, the logarithm may be written 9.74925 - 10. If the negative forms of the characteristics are retained, the above logarithms are written $\overline{2}.38416$ and $\overline{1}.74925$ respectively. When it is remembered that the mantissas are positive, the reason for writing the negative sign of a characteristic above instead of before it will be readily understood.

In all work connected with the logarithms in the following tables the characteristics, when negative, are to be understood as being increased and diminished by 10.

TABLE I

Directions for finding the logarithm of a number.

8. When the number is between 1 and 100.

The entire logarithm, including both characteristic and mantissa, is given on p. 9.

9. Numbers containing one or two significant figures.

The mantissa is found on p. 9. It is the same for all numbers containing the same significant figures arranged in the same order, no matter where the decimal point is placed.

The characteristic is found by means of the rules given above. For example,

$$\log 53 = 1.72428,$$
 $\log .53 = 9.72428 - 10,$ $\log 5.3 = 0.72428,$ $\log .053 = 8.72428 - 10.$

10. Numbers containing three significant figures.

The number, no attention being paid to the decimal point, is found at the left of the page in the column headed No. The mantissa is found on a line with the number, and in the column headed 0. The characteristic is found as before, by one or the other of the rules on p. 4.

For example,

$$\log 763 = 2.88252,$$
 $\log .0763 = 8.88252 - 10,$ $\log 76.3 = 1.88252,$ $\log .00763 = 7.88252 - 10.$

11. Numbers containing four significant figures.

The first three significant figures are found in the column headed No., and the fourth is at the top of the page. On a line with the first three figures, and in the column headed by the fourth figure, the mantissa is found. The characteristic is determined as in the previous cases.

For example,

$$\begin{array}{ll} \log\ 296300 = 5.47173, & \log\ .2963 = 9.47173 - 10, \\ \log\ \ 29.63 = 1.47173, & \log\ .0002963 = 6.47173 - 10. \end{array}$$

12. Numbers containing more than four significant figures.

Let the number whose logarithm is required be 61487. Since the number lies between 61480 and 61490, the logarithm of the required number lies between the logarithms of those numbers, *i.e.* between 4.78873 and 4.78880.

Now
$$\log 61490 = 4.78880$$
 and $\log 61480 = 4.78873$ giving a difference of 00007

Hence, we see that an increase of 10 in the number produces an increase of .00007 in the logarithm. But the actual increase we have to consider in the number is 7. Now if an increase of 10 in the number produces an increase of .00007 in the logarithm, an increase of 7 in the number will produce an increase of $\frac{7}{10}$ of .00007, or .000049. Calling this correction .00005, we have

 $\begin{array}{c} \log 61480 = 4.78873 \\ \text{correction} = \underline{.00005} \\ \therefore \log 61487 = 4.78878 \end{array}$

It is here assumed that an increase in the number is accompanied by a proportional increase in the logarithm of the number. This is not true; but in obtaining logarithms from a table, that assumption is always made. If greater accuracy is desired, it will be necessary to use tables containing a greater number of figures.

Directions for finding the number corresponding to a given logarithm.

13. Logarithms whose mantissas are found in the table.

When the exact mantissa of a logarithm is found in the table, the first three significant figures of the number corresponding to the logarithm are found in the column headed No., and on a line with the given mantissa. The fourth significant figure is at the top of the column in which the given mantissa is found.

For example,

2.68529 is the logarithm of 484.5. See p. 17.

9.68529 - 10 is the logarithm of 0.4845.

7.68529 - 10 is the logarithm of 0.004845.

5.68529 is the logarithm of 484500.

14. Logarithms whose mantissas are not found in the table.

When the exact mantissa of the given logarithm is not found in the table, the first four significant figures of the number corresponding to the logarithm are the same as the first four significant figures of the number corresponding to the next smaller logarithm. The remaining figures are found by interpolation, as illustrated in the following.

To find the number corresponding to the logarithm 3.44127.

Number corresponding to 3.44138 is 2763 See p. 13.

Number corresponding to $\frac{3.44122}{.00016}$ is $\frac{2762}{1}$

Thus we see that an increase of .00016 in the logarithm corresponds to an increase of 1 in the number. But the given logarithm, 3.44127, is .00005 greater than the logarithm of the number 2762.

Therefore, the increase in the required number is $\frac{0.0005}{0.0016}$, or, more simply, $\frac{5}{16}$ of 1. This gives .31 as the required increase. Hence 2762.31 is the number whose logarithm is 3.44127.

Similarly,

78.565 is the number whose logarithm is 1.89523. 58317.5 is the number whose logarithm is 4.76580. .17532 is the number whose logarithm is 9.24383-10.

15. Cologarithms.

The cologarithm of a number is the logarithm of the reciprocal of that number.

Since the reciprocal of a number is unity divided by that number, and since the logarithm of unity is 0, it follows that the cologarithm of a number is found by subtracting the logarithm of the number from 0, or from 10-10.

For example,

$$\operatorname{colog}\,256 = \log\,\tfrac{1}{2\,5\,6} = \log\,1 - \log\,256 = 0 \, - \, 2.40824 = -\,\,2.40824.$$

To avoid the use of negative logarithms the above work is performed, and the value of the above result is expressed as follows:

$$\log 1 = 10.00000 - 10$$
$$\log 256 = 2.40824$$
$$\therefore \operatorname{colog} 256 = 7.59176 - 10.$$

From the definition of a cologarithm it follows that the effect of subtracting the logarithm of a number is the same as that of adding its cologarithm. For example, finding the logarithm of $\frac{293}{473}$ by each of the two possible methods, we have:

By Logarithms		By Cologarithms
$\log 293 = 12.46687 - 10$		$\log 293 = 2.46687$
$\log 478 = 2.67943$	ė	colog 478 = 7.32057 - 10
Subtracting, $9.78744 - 10$		Adding, $9.78744 - 10$

The result is the same in both cases.

TABLE III

This table contains the logarithmic sine and tangent for every second from 0' to 3', and the logarithmic cosine and cotangent for every second from 89° 57' to 90°; the logarithmic sine, cosine, and tangent for every ten seconds from 0° to 2°, and the logarithmic sine, cosine, and cotangent for every ten seconds from 88° to 90°; and the logarithmic sine, cosine, tangent, and cotangent for every minute from 1° to 89°.

16. The logarithmic sine, cosine, tangent, or cotangent of an angle less than 90° .

If the angle is less than 45°, use the column having the name of the proper function at the top, and the column of minutes at the left of the page; if the angle is between 45° and 90°, use the column having the name of the proper function at the bottom, and the column of minutes at the right of the page.

To illustrate the use of this table, let us find the logarithm of $\sin 26^{\circ} 28' 12''$.

By p. 48,
$$\log \sin 26^{\circ} 28' = 9.64902 - 10$$
.

The difference between $\log \sin 26^{\circ} 28'$ and $\log \sin 26^{\circ} 29'$ is .00025. Increasing the former by $\frac{12}{60}$ of this difference, or .00005, we have

$$\log \sin 26^{\circ} 28' 12'' = 9.64907 - 10.$$

As a further illustration, find log tan 71° 38′ 13″.

By p. 44,
$$\log \tan 71^{\circ} 38' = 10.47885 - 10$$
.

Increasing this by $\frac{19}{60}$ of .00042, *i.e.* by .00013, we have $\log \tan 71^{\circ} 38' 19'' = 10.47898 - 10$.

If the logarithm of a cosine or of a cotangent is to be found, the correction for seconds must be *subtracted*, since these functions decrease as the angle increases from 0° to 90°.

17. The angle corresponding to a logarithmic sine, cosine, tangent, or cotangent.

Find the angle whose log tan = 9.65647 - 10.

The next smaller logarithmic tangent is (p. 47) 9.65636 - 10, which corresponds to an angle of $24^{\circ} 23'$. The difference between this logarithm and the log tan $24^{\circ} 24'$ is .00033, and the difference between log tan $24^{\circ} 23'$ and the given logarithm is .00011. Therefore, the angle corresponding to the next smaller logarithm, *i.e.* $24^{\circ} 23'$, must be increased by $\frac{1}{33}$ of 60'', *i.e.* by 20''. Hence,

$$9.65647 - 10 = \log \tan 24^{\circ} 23' 20''$$
.

In the case of the logarithm of the cosine or of the cotangent we work from the next *larger* logarithm to the next smaller, instead of from the smaller to the larger as in the case of the sine and the tangent.

TABLE IV

This table contains the numerical or natural values of the sine, cosine, tangent, and cotangent for every minute from 0° to 90°.

TABLE I

THE COMMON OR BRIGGS

LOGARITHMS

OF THE NATURAL NUMBERS

FROM 1 TO 10000

1-100

No.	Log.	No.	Log.	No.	Log.	No.	Log.	No.	Log.
0		20	1. 30 103	40	1. 60 206	60	1.77815	80	1.90 309
1	0.00000	21	1.32 222	41	1.61278	61	1.78 533	81	1.90 849
2	0.30103	22	1.34242	42	1.62 325	62	1.79 239	82	1. 91 381
3	0.47712	23	1.36 173	43	1. 63 347	63	1.79 934	83	1.91908
4	0.60 206	24	1.38 021	44	1.64345	64	1. 80 618	84	1. 92 428
5	0.69897	25	1. 39 794	45	1. 65 321	65	1.81 291	85	1.92942
6	0.77815	26	1.41497	46	1.66276	66	1.81954	86	_1. 93 + <u>5</u> 0
7	0.84 510	27	1.43 136	47	1.67 210	67	1.82607	87	1. 93 952
8	0.90309	28	1.44716	48	1.68 124	68	1.83 251	88	1.94448
_9	0. 95 424	29	1.46 240	49	1.69 020	69	1. 83 88 <u>5</u>	89	1. 94 939
	1.00000	30	1. 47 712	50	1, 69 897	70	1. 84 510	90	1. 95 424
11	1. 04 139	31	1. 49 136	51	1. 70 757	71	1. 85 126	91	1, 95 904
12	1. 07 918	32	1. 50 515	52	1. 71 600	72	1. 85 733	92	1.96379
13	1. 11 394	33	1. 51 851	53	1. 72 428	73	1, 86 332	93	1.96848
14	1. 14 613	34	1. 53 148	54	1. 73 239 •	74	1.86923	94	1.97 313
15	1. 17 609	35	1. 54 407	55	1. 74 036	75	1.87 506	95	1. 97 772
16	1.20 412	36	1.55630	56	1.74819	76	1.88081	96	1. 98 227
17	1. 23 045	37	1.56 820	57	1.75 587	77	1.88649	97	1.98 677
18	1. 25 527	38	1.57978	58	1.763+3	78	1.89 209	98	1. 99 123
19	1. 27 875	39	1.59106	59	1.77 085	79	1.89763	99	1. 99 564
20	1. 30 103	40	1. 60 206	60	1. 77 815	80	1.90 309	100	2.00 000

					00 1.	· ·				
No.	0	1	2	3	4	5	6	7	8	9
100 101 102 103 104	00 000 00 432 00 860 01 284 01 703	00 475	00 087 00 518 00 945 01 368 01 787	00 130 00 561 00 988 01 410 01 828	00 173 00 604 01 030 01 452 01 870	00 217 00 647 01 072 01 494 01 912		00 303 00 732 01 157 01 578 01 99 <u>5</u>	00 346 00 77 <u>5</u> 01 199 01 620 02 036	00 389 00 817 01 242 01 662 02 078
105 106 107 108 109	02 119 02 531 02 938 03 342 03 743	02 160 02 572 02 979 03 383 03 782	02 202 02 612 03 019 03 423 03 822	02 243 02 653 03 060 03 463 03 862	02 284 02 694 03 100 03 503 03 902	02 325 02 73 <u>5</u> 03 141 03 543 03 941	02 776 03 181 03 583	02 407 02 816 03 222 03 623 04 021		02 490 02 898 03 302 03 703 04 100
110 111 112 113 114	04 139 04 532 04 922 05 308 05 690	04 179 04 571 04 961 05 346 05 729	04 218 04 610 04 999 05 38 <u>5</u> 05 767	04 258 04 6 <u>5</u> 0 05 038 05 423 05 80 <u>5</u>	04 297 04 689 05 077 05 461 05 843	04 336 04 727 05 115 05 500 05 881	05 154 05 538	04 41 <u>5</u> 04 80 <u>5</u> 05 192 05 576 05 956		04 493 04 883 05 269 05 652 06 032
115 116 117 118 119	06 070 06 446 06 819 07 188 07 55 <u>5</u>	06 108 06 483 06 856 07 22 <u>5</u> 07 591	06 145 06 521 06 893 07 262 07 628	06 183 06 558 06 930 07 298 07 664	06 221 06 595 06 967 07 335 07 700	06 258 06 633 07 004 07 372 07 737	06 296 06 670 07·041 07 408 07 773	06 333 06 707 07 078 07 445 07 809	06 371 06 744 07 11 <u>5</u> 07 482 07 846	06 408 06 781 07 151 07 518 07 882
120 121 122 123 124	07 918 08 279 08 636 08 991 09 342	07 954 08 314 08 672 09 026 09 377	07 990 08 350 08 707 09 061 09 412	08 027 08 386 08 743 09 096 09 447	08 063 08 422 08 778 09 132 09 482	08 099 08 458 08 814 09 167 09 517	08 13 <u>5</u> 08 49 <u>3</u> 08 8 4 9 09 202 09 552	08 171 08 529 08 884 09 237 09 587	08 207 08 56 <u>5</u> 08 920 09 272 09 621	08 243 08 600 08 955 09 307 09 656
125 126 127 128 129	09 691 10 037 10 380 10 721 11 059	09 726 10 072 10 41 <u>5</u> 10 75 <u>5</u> 11 093	09 760 10 106 10 449 10 789 11 126	09 795 10 140 10 483 10 823 11 160	09 830 10 17 <u>5</u> 10 51 <u>7</u> 10 85 <u>7</u> 11 193	09 864 10 209 10 551 10 890 11 227	09 899 10 243 10 585 10 924 11 261	09 934 10 278 10 619 10 958 11 294	09 968 10 312 10 653 10 992 11 327	10 003 10 346 10 687 11 025 11 361
130 131 132 133 134	11 394 11 727 12 057 12 385 12 710	11 428 11 760 12 090 12 418 12 743	11 461 11 793 12 123 12 450 12 775	11 494 11 826 12 156 12 483 12 808	11 528 11 860 12 189 12 516 12 840	11 561 11 893 12 222 12 548 12 872	11 594 11 926 12 254 12 581 12 905	11 628 11 959 12 287 12 613 12 937	11 661 11 992 12 320 12 646 12 969	11 694 12 024 12 352 12 678 13 001
135 136 137 138 139	13 033 13 354 13 672 13 988 14 301	13 066 13 386 13 704 14 019 14 333	13 098 13 418 13 735 14 051 14 364	13 130 13 4 <u>5</u> 0 13 767 14 082 14 395	13 162 13 481 13 799 14 114 14 426	13 194 13 513 13 830 14 14 <u>5</u> 14 457	13 226 13 545 13 862 14 176 14 489	13 258 13 577 13 893 14 208 14 520	13 290 13 609 13 92 <u>5</u> 14 239 14 551	13 322 13 640 13 956 14 270 14 5
140 141 142 143 144	14 922 15 229 15 534		14 983 15 290 15 594	15 014 15 320 15 <u>625</u>	14 737 15 04 <u>5</u> 15 351 15 65 <u>5</u> 15 957	14 768 15 076 15 381 15 685 15 987		15 137 15 442 15 746	14 860 15 168 15 473 15 776 16 077	14 891 15 198 15 503 15 806 16 107
145 146 147 148 149	16 137 16 435 16 732 17 026 17 319	16 167 16 465 16 761 17 056 17 348	16 197 16 49 <u>5</u> 16 791 17 08 <u>5</u> 17 377	16 227 16 524 16 820 17 114 17 406	16 256 16 554 16 850 17 143 17 435	16 879 17 173	17 202	16 643	16 376 16 673 16 967 17 260 17 551	16 406 16 702 16 997 17 289 17 580
No.	0	1	· 2	3	4	5	6	7	8	9

			•		90 <u>-1</u> 9					1.1
No.	0	1	2	3	4	5	6	7	8	9
150	17 609	17 638	17 667	17 696	17 72 <u>5</u>	17 754	17 782	17 811	17 840	17 869
151	17 898	17 926	17 955	17 984	18 013	18 041	18 070	18 099	18 127	18 156
152	18 184	18 213	18 241	18 270	18 298	18 327	18 355	18 384	18 412	18 441
153	18 469	18 498	18 526	18 554	18 583	18 611	18 639	18 667	18 696	18 724
\154	18 752	18 780	18 808	18 837	18 86 <u>5</u>	18 893	18 921	18 949	18 977	19 005
155	19 033	19 061	19 089	19 117	19 145	19 173	19 201	19 229	19 257	19 28 <u>5</u>
156	19 312	19 340	19 368	19 396	19 424	19 451	19 479	19 507	19 53 <u>5</u>	19 562
157	19 590	19 618	19 645	19 673	19 700	19 728	19 756	19 783	19 811	19 838
158	19 866	19 893	19 921	19 948	19 976	20 003	20 030	20 058	20 085	20 112
159	20 140	20 167	20 194	20 222	20 249	20 276	20 303	20 330	20 358	20 38 <u>5</u>
160	20 412	20 439	20 466	20.493	20 520	20 548	20 57 <u>5</u>	20 602	20 629	20 656
161	20 683	20 710	20 737	20.763	20 790	20 817	20 844	20 871	20 898	20 925
162	20 952	20 978	21 005	21.032	21 059	21 085	21 112	21 139	21 165	21 192
163	21 219	21 245	21 272	21.299	21 325	21 352	21 378	21 40 <u>5</u>	21 431	21 458
164	21 484	21 511	21 537	21.564	21 590	21 617	21 643	21 669	21 696	21 722
165	21 748	21 77 <u>5</u>	21 801	21 827	21 854	21 880	21 906	21 932	21 958	21 98 <u>5</u>
166	22 011	22 037	22 063	22 089	22 115	22 141	22 167	22 194	22 220	22 246
167	22 272	22 298	22 324	22 350	22 376	22 401	22 427	22 453	22 479	22 505
168	22 531	22 557	22 583	22 608	22 634	22 660	22 686	22 712	22 737	22 763
169	22 789	22 81+	22 840	22 866	22 891	22 917	22 943	22 968	22 994	23 019
170	23 04 <u>5</u>	23 070	23 096	23 121	23 147	23 172	23 198	23 223	23 249	23 274
171	23 300	23 325	23 350	23 376	23 401	23 426	23 452	23 477	23 502	23 528
172	23 553	23 578	23 603	23 629	23 654	23 679	23 704	23 729	23 754	23 779
173	23 80 <u>5</u>	23 830	23 85 <u>5</u>	23 880	23 90 <u>5</u>	23 930	23 955	23 980	24 00 <u>5</u>	24 030
174	24 05 <u>5</u>	24 080	24 10 <u>5</u>	24 130	24 15 <u>5</u>	24 180	24 204	24 229	24 254	24 279
175 176 177 178 179	24 304 24 551 24 797 25 042 25 285	24 329 24 576 24 822 25 066 25 310	24 353 24 601 24 846 25 091 25 334	24 378 24 625 24 871 25 115 25 358	24 403 24 6 <u>5</u> 0 24 8 <u>9</u> 5 25 139 25 382	24 428 24 674 24 920 25 164 25 406	24 452 24 699 24 944 25 188 25 431	24 477 24 724 24 969 25 212 25 45 <u>5</u>	24 748 24 993 25 237	24 527 24 773 25 018 25 261 25 503
180	25 527	25 551		25 600	25 624	25 648	25 672	25 696	25 720	25 744
181	25 768	25 792		25 840	25 864	25 888	25 912	25 935	25 959	25 983
182	26 007	26 031		26 079	26 102	26 126	26 150	26 174	26 198	26 221
183	26 245	26 269		26 316	26 340	26 364	26 387	26 411	26 43 <u>5</u>	26 458
184	26 482	26 505		26 553	26 576	26 600	26 623	26 647	26 670	26 694
185 186		26 741 26 97 <u>5</u> 27 207 27 439 27 669	26 764 26 998 27 231 27 462 27 692	26 788 27 021 27 254 27 485 27 715	26 811 27 04 <u>5</u> 27 277 27 508 27 738	26 834 27 068 27 300 27 531 27 761	26 858 27 091 27 323 27 554 27 784	26 881 27 114 27 346 27 577 27 807	26 90 <u>5</u> 27 138 27 370 27 600 27 830	26 928 27 161 27 393 27 623 27 852
191 192 193 194	28 556	27 898 28 126 28 353 28 578 28 803	28 601	28 623		27 989 28 217 28 443 28 668 28 892	28 466 28 691			
195	29 003	29 026	29 048	29 070	29 092	29 11 <u>5</u>		29 159	29 181	29 203
196	29 226	29 248	29 270	29 292	29 314	29 336		29 380	29 403	29 42 <u>5</u>
197	29 447	29 469	29 491	29 513	29 53 <u>5</u>	29 557		29 601	29 623	29 64 <u>5</u>
198	29 667	29 688	29 710	29 732	29 754	29 776		29 820	29 842	29 86 <u>3</u>
199	29 885	29 907	29 929	29 951	29 973	29 994		30 038	30 060	30 081
No.	0	1	2	3	4	5	6	7	8	÷ 9

				~	00-2	40				
No.	0	1	2	3	4	5	6	7	8	9
200	30 103	30 12 <u>5</u>	30 146	30 168	30 190	30 211	30 233	30 25 <u>5</u>	30 276	30 298
201	30 320	30 34 <u>1</u>	30 363	30 384	30 406	30 428	30 449	30 47 <u>1</u>	30 492	30 514
202	30 535	30 55 <u>7</u>	30 578	30 600	30 621	30 613	30 664	30 685	30 707	30 728
203	30 750	30 771	30 792	30 814	30 835	30 856	30 878	30 899	30 920	30 942
204	30 963	30 98 4	31 006	31 027	31 048	31 069	31 091	31 112	31 133	31 154
205	31 175	31 197	31 218	31 239	31 260	31 281	31 302	31 323	31 34 <u>5</u>	31 366
206	31 387	31 408	31 429	31 450	31 471	31 492	31 513	31 534	31 555	31 576
207	31 597	31 618	31 639	31 660	31 681	31 702	31 723	31 744	31 76 <u>5</u>	31 785
208	31 806	31 827	31 848	31 869	31 890	31 911	31 931	31 952	31 973	31 994
209	32 01 <u>5</u>	32 035	32 056	32 077	32 098	32 118	32 139	32 160	32 181	32 201
210	32 222	32 243	32 263	32 284	32 30 <u>5</u>	32 325	32 346	32 366	32 387	32 408
211	32 428	32 449	32 469	32 490	32 510	32 531	32 552	32 572	32 593	32 613
212	32 634	32 654	32 67 <u>5</u>	32 69 <u>5</u>	32 715	32 736	32 756	32 777	32 797	32 818
213	32 838	32 858	32 879	32 899	32 919	32 940	32 960	32 980	33 001	33 021
214	33 041	33 062	33 082	33 102	33 122	33 143	33 163	33 183	33 203	33 224
215	33 244	33 264	33 284	33 304	33 32 <u>5</u>	33 34 <u>5</u>	33 36 <u>5</u>	33 385	33 405	33 425
216	33 445	33 465	33 486	33 506	33 526	33 546	33 566	33 586	33 606	33 626
217	33 646	33 666	33 686	33 706	33 726	33 746	33 766	33 786	33 806	33 826
218	33 846	33 866	33 885	33 905	33 925	33 945	33 965	33 98 <u>5</u>	34 00 <u>5</u>	34 02 <u>5</u>
219	34 044	34 064	34 084	34 104	34 124	34 143	34 163	34 183	34 203	34 223
220	34 242	34 262	34 282	34 301	34 321	34 341	34 361	34 380	34 400	34 420
221	34 439	34 459	34 479	34 498	34 518	34 537	34 557	34 577	34 596	34 616
222	34 635	34 65 <u>5</u>	34 674	34 694	34 713	34 733	34 753	34 7 9 2	34 792	34 811
223	34 830	34 8 <u>5</u> 0	34 869	34 889	34 908	34 928	34 947	34 967	34 986	35 005
224	35 02 <u>5</u>	35 044	35 064	35 083	35 102	35 122	35 141	35 160	35 180	35 199
225	35 218	35 238	35 257	35 276	35 295	35 31 <u>5</u>	35 334	35 353	35 372	35 392
226	35 411	35 430	35 449	35 468	35 488	35 507	35 526	35 545	35 564	35 583
227	35 603	35 622	35 641	35 660	35 679	35 698	35 717	35 736	35 755	35 774
228	35 793	35 813	35 832	35 851	35 870	35 889	35 908	35 927	35 946	35 96 <u>5</u>
229	35 984	36 003	36 021	36 040	36 059	36 078	36 097	36 116	36 135	36 1 54
230	36 173	36 192	36 211	36 229	36 248	36 267	36 286	36 30 <u>5</u>	36 324	36 342
231	36 361	36 380	36 399	36 418	36 436	36 455	36 474	36 493	36 511	36 530
232	36 549	36 568	36 586	36 60 <u>5</u>	36 624	36 642	36 661	36 680	36 698	36 717
233	36 736	36 754	36 773	36 79 <u>1</u>	36 810	36 829	36 847	36 866	36 884	36 903
234	36 922	36 940	36 959	36 977	36 996	37 014	37 033	37 051	37 070	37 088
235 236 237 238 239	37 107 37 291 37 47 <u>5</u> 37 658 37 840	37 125 37 310 37 493 37 676 37 858	37 144 37 328 37 511 37 694 37 876	37 162 37 346 37 530 37 712 37 894	37 181 37 36 <u>5</u> 37 54 <u>8</u> 37 731 37 912	37 199 37 383 37 566 37 749 37 931	37 218 37 401 37 58 <u>5</u> 37 76 <u>7</u> 37 949	37 236 37 420 37 603 37 785 37 967	37 254 37 438 37 621 37 803 37 98 <u>5</u>	37 273 37 457
240 241 242 243 244	38 021 38 202 38 382 38 561 38 739	38 039 38 220 38 399 38 578 38 757	38.417	38 075 38 256 38 435 38 614 38 792	38 093 38 274 38 453 38 632 38 810	38 471	38 130 38 310 38 489 38 668 38 846	38 507 38 686	38 166 38 346 38 52 <u>5</u> 38 703 38 881	38 364 38 543 38 721 38 899
245	38 917	3\$ 934	38 952	38 970	38 987	39 005	39 023	39 041	39 058	39 076
246	39 094	39 111	39 129	39 146	39 164	39 182	39 199	39 217	39 23 <u>5</u>	39 252
247	39 270	39 287	39 30 <u>5</u>	39 322	39 340	39 358	39 375	39 393	39 410	39 428
248	39 445	39 463	39 480	39 498	39 515	39 533	39 550	39 568	39 585	39 602
249	39 620	39 637	39 65 <u>5</u>	39 672	39 690	39 707	39 724	39 742	39 759	39 777
No.	0	1	. 2	3	4	5	6	7	8	9

	1.									
No.	0	1	2	3	4	5	6	7	8	9
250 251 252 253 254	39 794 39 967 40 140 40 312 40 483	39 98 <u>5</u> 40 157	39 829 40 002 40 17 <u>5</u> 40 346 40 518		39 863 40 037 40 209 40 381 40 552	40 054 40 226 40 398	39 898 40 071 40 243 40 41 <u>5</u> 40 586		40 278 40 449	39 950 40 123 40 29 <u>5</u> 40 466 40 637
255 256 257 258 259	40 654 40 824 40 993 41 162 41 330	40 671 40 841 41 010 41 179 41 347	40 688 40 858 41 027 41 196 41 363	40 705 40 87 <u>5</u> 41 04 1 41 212 41 380	40 722 40 892 41 061 41 229 41 397	40 909 41 078	40 926 41 09 <u>5</u> 41 26 <u>3</u>	40 773 40 943 41 111 41 280 41 447		40 807 40 976 41 145 41 313 41 481
260 261 262 263 264		41 514 41 681 41 847 42 012 42 177	41 531 41 697 41 863 42 029 42 193	41 547 41 714 41 880 42 045 42 210	41 564 41 731 41 896 42 062 42 226	41 581 41 747 41 913 42 078 42 243	41 597 41 764 41 929 42 09 <u>5</u> 42 259	41 614 41 780 41 946 42 111 42 275	41797	41 647 41 814 41 979 42 144 42 308
265 ⁻ 266 267 268 269	42 22 <u>5</u> 42 48 <u>8</u> 42 651 42 813 42 975	42 341 42 504 42 667 42 830 42 991	42 357 42 521 42 684 42 846 43 008	42 374 42 537 42 700 42 862 43 024	42 390 42 553 42 716 42 878 43 040	42 570 42 732 42 894		42 439 42 602 42 76 <u>5</u> 42 927 43 088		42 472 42 63 <u>5</u> 42 797 42 959 43 120
270 271 272 273 274	43 136 43 297 43 457 43 616 43 775	43 152 43 313 43 473 43 632 43 791	43 169 43 329 43 489 43 648 43 807	43 18 <u>5</u> 43 34 <u>5</u> 43 50 <u>5</u> 43 66 1 43 823	43 201 43 361 43 521 43 680 43 838	43 217 43 377 43 537 43 696 43 854	43 393 43 553 43 712	43 249 43 409 43 569 43 727 43 886	43 42 <u>5</u> 43 58 <u>4</u> 43 743	43 281 43 441 43 600 43 759 43 917
275 276 277 278 279	43 933 44 091 44 248 44 404 44 560		44 12 2 44 279 44 436	43 981 44 138 44 295 44 451 44 607	43 996 44 154 44 311 44 467 44 623		44 185		,44 217 44 373 44 529	44 075 44 232 44 389 44 54 <u>5</u> 44 700
280 281 282 283 •284	44 716 44 871 45 02 <u>5</u> 45 179 45 332	44 731 44 886 45 040 45 194 45 347		44 762 44 917 45 071 45 225 45 378	44 778 44 932 45 086 45 240 45 393	44 793 44 948 45 102 45 255 45 408	44 809 44 963 45 117 45 271 45 423	44 824 44 979 45 133 45 286 45 439	44 994 45 1♣8 45 301	44 855 45 010 45 163 45 317 45 469
285 286 287 288 289	45 484 45 637 45 788 45 939 46 090		45 51 <u>5</u> 45 667 45 818 45 969 46 120	45 530 45 682 45 834 45 984 46 13 <u>5</u>	45 545 45 697 45 849 46 000 46 1 <u>5</u> 0	45 561 45 712 45 864 46 01 <u>5</u> 46 16 <u>5</u>	45 576 45 528 45 879 46 030 46 180	46 04 <u>5</u>	45 606 45 758 45 909 46 060 46 210	45 621 45 773 45 924 46 07 <u>5</u> 46 22 <u>5</u>
290 291 292 293 294	46 389 46 538 46 687	46 25 <u>5</u> 46 404 46 553 46 702 46 8 <u>5</u> 0	46 419 46 568 46 716	46 434 46 583 46 731	46 746		46 479 46 627 46 776	46 34 <u>5</u> 46 49 <u>1</u> 46 642 46 790 46 938	46 509 46 657	46 374 46 523 46 672 46 820 46 967
295 296 297 298 299	47 129 47 276 47 422 47 567	46 997 47 144 47 290 47 436 47 582	47 30 <u>5</u>	47 026 47 173 47 319 47 465 47 611	47 041 47 188 47 334 47 480 47 625	47 056 47 202 47 349 47 494 47 640	47 070 47 217 47 363 47 509 47 654		47 100 47 246 47 392 47 538 47 683	47 114 47 261 47 407 47 553 47 698
No.	0	1	2	3	4	5	6	7	8	9

	1									
No.	0	1	2	3	4	5	6	7	8	9
300	47 712	47 727	47 741	47 756	47 770	47 784	47 799	47 813	47 828	47 842
301	47 857	47 871	47 885	47 900	47 914	47 929	47 943	47 958	47 972	47 986
302	48 001	48 015	48 029	48 044	48 058	48 073	48 087	48 101	48 116	48 130
303	48 144	48 159	48 173	48 187	48 202	48 216	48 230	48 244	48 259	48 273
304	48 287	48 302	48 316	48 330	48 344	48 359	48 373	48 387	48 401	48 416
305	48 430	48 444	48 458	48 473	48 487	48 501	48 515	48 530	48 544	48 558
306	48 572	48 586	48 601	48 61 <u>5</u>	48 629	48 643	48 657	48 671	48 686	48 700
307	48 714	48 728	48 742	48 756	48 770	48 78 <u>5</u>	48 799	48 813	48 827	48 841
308	48 855	48 869	48 883	48 897	48 911	48 926	48 940	48 954	48 968	48 982
309	48 996	49 010	49 024	49 038	49 052	49 066	49 080	49 094	49 108	49 122
310	49 136	49 150	49 164	49 178	49 192	49 206	49 220	49 234	49 248	49 262
311	49 276	49 290	49 304	49 318	49 332	49 346	49 360	49 374	49 388	49 402
312	49 415	49 429	49 443	49 457	49 471	49 485	49 499	49 513	49 527	49 541
313	49 554	49 568	49 582	49 596	49 610	49 624	49 638	49 651	49 665	49 679
314	49 693	49 707	49 721	49 734	49 748	49 762	49 776	49 790	49 803	49 817
315	49 831	49 84 <u>5</u>	49 859	49 872	49 886	49 900	49 914	49 927	49 941	49 95 <u>5</u> 50 092 50 229 50 365 50 501
316	49 969.	49 982	49 996	50 010	50 024	50 037	50 051	50 06 <u>5</u>	50 079	
317	50 106	50 120	50 133	50 147	50 161	50 174	50 188	50 20 <u>2</u>	50 215	
318	50 243	50 256	50 270	50 284	50 297	50 311	50 32 <u>5</u>	50 338	50 352	
319	50 379	50 393	50 406	50 420	50 433	50 447	50 46 <u>1</u>	50 474	50 488	
320	50 51 <u>5</u>	50 529	50 542	50 556	50 569	50 583	50 596	50 610	50 623	50 637
321	50 65 <u>1</u>	50 664	50 678	50 691	50 70 <u>5</u>	50 718	50 732	50 745	50 759	50 772
322	50 786	50 799	50 813	50 826	50 840	50 853	50 866	50 880	50 893	50 907
323	50 920	50 934	50 947	50 961	50 974	50 987	51 001	51 014	51 028	51 041
324	51 05 <u>5</u>	51 068	51 081	51 09 <u>5</u>	51 108	51 121	51 13 <u>5</u>	51 148	51 162	51 17 <u>5</u>
325	51 188	51 335	51 215	51 228	51 242	51 255	51 268	51 282	51 295	51 308
326	51 322		51 348	51 362	51 375	51 388	51 402	51 415	51 428	51 441
327	51 415		51 481	51 49 <u>5</u>	51 508	51 521	51 534	51 548	51 561	51 574
328	51 587		51 614	51 627	51 640	51 654	51 667	51 680	51 693	51 706
329	51 520		51 746	51 759	51 772	51 786	51 799	51 812	51 825	51 838
330	51 851	51 86 <u>5</u>	51 878	51 891	51 904	51 917	51 930	51 943	51 957	51 970
331	51 983	51 996	52 009	52 022	52 035	52 048	52 061	52 07 <u>5</u>	52 088	52 101
332	52 114	52 127	52 140	52 153	52 166	52 179	52 192	52 205	52 218	52 231
333	52 244	52 257	52 270	52 284	52 297	52 310	52 323	52 336	52 349	52 362
334	52 37 <u>5</u>	52 388	52 401	52 414	52 427	52 440	52 453	52 466	52 479	52 492
335	52 504	52 517	52 530	52 543	52 556	52 569	52 582	52 595	52 608	52 621
336	52 634	52 647	52 660	52 673	52 686	52 699	52 711	52 724	52 737	52 750
337	52 763	52 776	52 789	52 802	52 81 <u>5</u>	52 827	52 840	52 853	52 866	52 879
338	52 892	52 90 <u>5</u>	52 917	52 930	52 943	52 956	52 969	52 982	52 994	53 007
339	53 020	53 033	53 046	53 058	53 071	53 084	53 097	53 110	53 122	53 135
340 341 342 343 344		53 161 53 288 53 415 53 542 53 668		53 186 53 314 53 441 53 567 53 694	53 199 53 326 53 453 53 580 53 706		53 224 53 352 53 479 53 605 53 732	53 237 53 364 53 491 53 618 53 744	53 250 53 377 53 504 53 631 53 757	53 263 53 390 53 517 53 643 53 769
345	53 782	53 794	53 807	53 820	53 832	53 84 <u>5</u>	53 857	53 870	53 882	53 895
346	53 908	53 920	53 933	53 945	53 958	53 970	53 983	53 995	54 008	54 020
347	54 033	54 045	54 058	54 070	54 083	54 095	54 108	54 120	54 133	54 145
348	54 158	54 170	54 183	54 195	54 208	54 220	54 233	54 245	54 258	54 270
349	54 283	54 29 <u>5</u>	54 307	54 320	54 332	54 34 <u>5</u>	54 357	54 370	54 382	54 394
No.	0	1	2	3	4	5	6	7	8	9

No.	0	1	2	3	4	5	6	7	8	9
350	54 407	54 419	54 432	\54 444	54 456	54 460	54 481	54 494	54 506	54 518
351	54 531	54 543	54 555	54 568		54 593		54 617	54 630	
352	54 654	54 667	54 679	54 691	54 704	54 716			54 753	
353 354	54 777 54 900	54 790 54 913	54 802 54 92 <u>5</u>	54 814 54 937	54 827 54 949	54 839 54 962	54 851 54 974		54 876 54 998	
355	55 023	55 035	55 047	55 060	55 072	55 084	55 096	55 108	55 121	55 133
356 357	55 14 <u>5</u> 55 267	55 157 55 279	55 169 55 291	55 182 55 303	55 194 55 315	55 206	55 218	55 230	55 242	55 25 5
358	55 388	55 400	55 413	55 425	55 437	55 328 55 449	55 340 55 461	55 352 55 473	55 364 55 485	55 376 55 497
359	55 509	55 522	55 534	55 546	55 558	55 570	55 582	55 594	55 606	
360 361	55 630 55 751	55 642	55 654	55 666	55 678	55 691	55 703	55 715	55 727	55 739
362	55 751 55 871	55 763 55 883	55 77 <u>5</u> 55 895	55 787 55 907	55 799 55 919	55 811 55 931	55 823 55 943	55 83 <u>5</u> 55 955	55•847 55 967	55 859 55 979
363	55 991	56 003	$5601\bar{5}$	56 027	56 038	56 050	56 062	$5607\overline{4}$	56 086	
364	56 110	56 122	56 134	56 146	56 158	56 170	56 182	56 194	56 205	56 217
365	56 229		56 253	56 26 <u>5</u>	56 277	56 289	56 301	56 312	56 324	56 336
366. 367	56 348 56 467	56 360 56 478	56 372 56 490	56 384 56 502	56 396 56 514	56 407 56 526	56 419 56 538	56 431 56 549	56 443 56 561	56 45 <u>5</u> 56 573
368	56 58 <u>5</u>	56 597	56 608	56 620	56 632	56 644	56 656	56 667	56 679	
369	56 703	56 714	56 726	56 738	56 7 <u>5</u> 0	56 761	56 773	56 78 <u>5</u>	56 797	56 808
370 371	56 820 56 937	56 832 56 949	56 844	56 855	56 867	56 879	56 891	56 902	56 914	56 926
372	57 054	57 066	56 961 57 078	56 972 57 089	56 984 57 101	56 996 57 113	57 008 57 124	57 019 57 136	57 031 57 148	57 043 57 159
373	57 171	57 183	57 194	57 206	57 217	57 229	57 241	57 252	57 264	57 276
374	57 287	57 299	57 310	57 322	57 334	57 345	57 357	57 368	57 380	57 392
375 376	57 403 57 519	57 41 <u>5</u> 57 530	57 426 57 542	57 438 57 553	57 449 57 565	57 461 57 576	57 473 57 588	57 484 57 600	57 496 57 611	57 507 57 623
377	57 634	57 646	57 657	57 669	57 680	57 692	57 703	57 71 <u>5</u>	57 726	57 738
378 379	57 749 57 864	57 761 57 875	57 772 57 887	57 784 57 898	57 795 57 910	57 807 57 921	57 818 57 933	57 830 57 944	57 841 57 955	57,852 57,967
380 381	57 978 58 092	57 990 58 104	58 001 58 115	58 013 58 127	58 024 58 138	58 035 58 149	58 047 58 161	58 058 58 172	58 070 58 184	58 081 58 195
382	58 206	58 218	58 229	58 240	58 252	58 263	58 274	58 286	58 297	58 309
383	58 320 58 433	58 331	58 343	58 354	58 365	58 377	58 388	58 399	58 410	58 422
384		58 444	58 456	58 467	58 478	58 490	58 501	58 512	58 524	58 53 <u>5</u>
385 386	58 546 58 659	58 557 58 670	58 569 58 681	58 580 58 692	58 591 58 704	58 602 58 715	58 614 58 726	58 62 <u>5</u> 58 737	58 636 58 749	58 647
387	58 771	58 782	58 794	58 805	58 816	58 827	58 838	58 850	58 861	58 760 58 872
388	58 883	58 894	58 906	58 917	58 928	58 939	58 950	$589\overline{6}1$	58 973	58 984
389	58 99 <u>5</u>	59 006	59 017	59 028	59 040	59 051	59 062	59 073	59 084	59 095
390		59 118	59 129	59 140	59 151	59 162	59 173	59 184		59 207
391 392		59 229 59 340	59 240 59 351	59 251 59 362	59 262 59 373	59 273 59 384	59 28 1 59 395	59 295 59 406		59 318 59 428
393	59 439	59 450	59 461	59 472	59 483	59 494	59 506	59 517	59 528	59 539
394	59 5 <u>5</u> 0	59 561	59 572	59 583	59 594	59 60 <u>5</u>	59 616	59 627	59 638	59 649
395 396	59 660 59 770	59 671 59 780	59 682 59 791	59 693 59 802	59 704 59 813	59 71 <u>5</u> 59 824	59 726 59 835	59 737 59 846	59 748- 59 857	59 759 59 868
397	59 879	59 890	59 901	59 912	59 923	59 934	59 94 <u>5</u>	59 956	59 966	59 977
398	59 988	59 999	60 010	60 021	60 032	60 043	$6005\overline{4}$	60 06 <u>5</u>	60 076	60 0 6
399	60 097	60 108	60 119	60 130	60 141	60 152	60 163	60 173	60 184	60 195
No.	0	1	2	3	4	5	6	7	8	9

No.	0	1	2	3	4	5	6	7	8	9
400 +01 +02 +03 +04	60 206 60 314 60 423 60 531 60 638	60 217 60 325 60 433 60 541 60 649	60 228 60 336 60 444 60 552 60 660		60 249 60 358 60 466 60 574 60 681	60 260 60 369 60 477 60 584 60 692	60 271 60 379 60 487 60 595 60 703	60 282 60 390 60 498 60 606 60 713	60 293 60 401 60 509 60 617 60 724	
405 406 407 408 409	60 746 60 853 60 959 61 066 61 172	60 756 60 863 60 970 61 077 61 183	60 874	60 778 60 88 <u>5</u> 60 991 61 098 61 204	60 788 60 895 61 002 61 109 61 21 <u>5</u>			60 821 60 927 61 034 61 140 61 247	60 831 60 938 61 04 <u>5</u> 61 151 61 257	60 842 60 949 61 055 61 162 61 268
410 411 412 413 414	61 384	61 289 61 39 <u>5</u> 61 500 61 606 61 711		61 416 61 521	61 321 61 426 61 532 61 637 61 742	61 331 61 437 61 542 61 648 61 752	61 342 61 448 61 553 61 658 61 763	61 352 61 458 61 563 61 669 61 773	61 469 61 574	61 584
415 416 417 418 419	61 909 62 014 62 118	61 815 61 920 62 024 62 128 62 232	61 930 62 034 62 138	61 941 62 04 <u>5</u> 62 149	61 847 61 951 62 055 62 159 62 263	61 857 61 962 62 066 62 170 62 273	61 972 62 076 62 180	61 878 61 982 62 086 62 190 62 294	61 993 62 097 62 201	61 899 62 003 62 107 62 211 62 31 <u>5</u>
420 421 422 423 424	62 32 <u>5</u> 62 42 <u>8</u> 62 531 62 634 62 737		62 449 62 552 62 65 <u>5</u>	62 356 62 459 62 562 62 665 62 767		62 583 62 685	62 490 62 593	62 603 62 706	62 511 62 613 62 716	62 624
425 426 427 428 429	62 839 62 941 63 043 63 144 63 246	62 951 63 053 63 15 <u>5</u>	62 859 62 961 63 063 63 16 <u>5</u> 63 266	$63\ 175$	62 S80 62 982 63 083 63 18 <u>5</u> 63 286	62 890 62 992 63 094 63 195 63 296		62 910 63 012 63 114 63 215 63 317		62 931 63 033 63 134 63 236 63 337
430 +31 +32 +33 +34	63 347 63 448 63 548 63 649 63 749	63 659	63 367 63 468 63 568 63 669 63 769	63 478	63 387 63 488 63 589 63 689 63 789	63 397 63 498 63 599 63 699 63 799	63 508 63 609 63 709		63 428 63 528 63 629 63 729 63 829	63 438 63 538 63 639 63 739 63 839
435 436 437 438 439	63 849 63 949 64 048 64 147 64 246	63 959 64 058 64 157		63 979 64 078 64 177	63 889 63 988 64 088 64 187 64 286	63 899 63 998 64 098 64 197 64 296	64 008 64 108	64 118 64 217	63 929 64 028 64 128 64 227 64 326	63 939 64 038 64 137 64 237 64 335
440 441 442 443 414	64 444 64 542 64 640	64 355 64 454 64 552 64 650 64 748	64 464 64 562 64 660	64 473 64 572 64 670	64 38 <u>5</u> 64 48 <u>3</u> 64 582 64 680 64 777		64 503 64 601 64 699		64 523 64 621 64 719	64 532 64 631 64 729
415 116 117 118 419		65 137	64 953 65 050	64 963 65 060 65 157	64 875 64 972 65 070 65 167 65 263	64 982 65 079	65 089 65 186	65 002 65 099	64 914 65 011 65 108 65 205 65 302	64 924 65 021 65 118 65 21 <u>5</u> 65 312
No.	0	1	2	3	4	5	6	7	8	9

						1				
No.	0	1	2	3	4	5	6	7	8	9
450	65 321	65 331	65 3+1	65 350	65 360	65 369	65 379	65 389	65 398	65 408
451	65 418	65 427	65 437	65 447	65 456	65 466	65 475	65 485	65 49 <u>5</u>	65 504
452	65 514	65 523	65 533	65 543	65 552	65 562	65 571	65 581	65 591	65 600
453	65 610	65 619	65 629	65 639	65 648	65 658	65 667	65 677	65 686	65 696
454	65 706	65 715	65 72 <u>5</u>	65 734	65 744	65 753	65 763	65 772	65 782	65 792
455	65 801	65 811	65 820	65 830	65 839	65 849	65 858	65 868	65 877	65 887
456	65 896	65 906	65 916	65 925	65 93 <u>5</u>	65 944	65 954	65 963	65 973	65 982
457	65 992	66 001	66 011	66 020	66 030	66 039	66 049	66 058	66 068	66 077
458	66 087	66 096	66 106	66 11 <u>5</u>	66 124	66 134	66 143	66 153	66 162	66 172
459	66 181	66 191	66 200	66 210	66 219	66 229	66 238	66 247	66 257	66 266
460	66 276	66 285	66 29 <u>5</u>	66 304	66 314	66 323	66 332	66 342	66 351	66 361
461	66 370	66 380	66 38 <u>9</u>	66 398	66 408	66 417	66 427	66 436	66 445	66 45 <u>5</u>
462	66 464	66 474	66 <u>4</u> 83	66 492	66 502	66 511	66 521	66 530	66 539	66 549
463	66 558	66 567	66 577	66 586	66 596	66 60 <u>5</u>	66 614	66 624	66 633	66 642
464	66 652	66 661	66 671	66 680	66 689	66 699	66 708	66 717	66 727	66 736
465	66 745	66 75 <u>5</u>	66 764	66 773	66 783	66 792	66 801	66 811	66 820	66 829
466	66 839	66 848	66 857	66 867	66 876	66 885	66 894	66 904	66 913	66 922
467	66 932	66 941	66 950	66 960	66 969	66 978	66 987	66 997	67 006	67 015
468	67 02 <u>5</u>	67 034	67 0+3	67 052	67 062	67 071	67 080	67 089	67 099	67 108
469	67 117	67 127	67 136	67 145	67 154	67 164	67 173	67 182	67 191	67 201
470	67 210	67 219	67 228	67 237	67 247	67 256	67 265	67 274	67 284	67 293
471	67 302	67 311	67 321	67 330	67 339	67 348	67 357	67 367	67 376	67 38 <u>5</u>
472	67 394	67 403	67 413	67 422	67 431	67 440	67 449	67 459	67 468	67 477
473	67 486	67 495	67 504	67 514	67 523	67 532	67 541	67 550	67 560	67 569
474	67 578	67 587	67 596	67 605	67 614	67 624	67 633	67 642	67 651	67 660
475	67 669	67 679	67 688	67 697	67 706	67 715	67 724	67 733	67 742	67 752
476	67 761	67 770	67 779	67 788	67 797	67 806	67 815	67 82 <u>5</u>	67 834	67 843
477	67 852	67 861	67 870	67 879	67 888	67 897	67 996	67 916	67 92 <u>5</u>	67 934
478	67 943	67 952	67 961	67 970	67 979	67 988	67 997	68 006	68 015	68 024
479	68 034	68 043	68 052	68 061	68 070	68 079	68 088	68 097	68 106	68 115
480	68 124	68 133	68 142	68 151	68 160	68 169	68 178	68 187	68 196	68 205
481	68 21 <u>5</u>	68 224	68 233	68 242	68 251	68 260	68 269	68 278	68 287	68 296
482	68 30 <u>5</u>	68 314	68 323	68 332	68 341	68 3 <u>5</u> 0	68 359	68 368	68 377	68 386
483	68 39 <u>5</u>	68 404	68 413	68 422	68 431	68 440	68 449	68 458	68 467	68 476
484	68 48 <u>5</u>	68 494	68 502	68 511	68 520	68 529	68 538	68 547	68 556	68 565
485	68 574	68 583	68 592	68 601	68 610	68 619	68 628	68 637	68 646	68 65 <u>5</u>
486	68 664	68 673	68 681	68 690	68 699	68 708	68 717	68 726	68 735	68 744
487	68 753	68 762	68 771	68 780	68 789	68 797	68 806	68 815	68 824	68 833
488	68 842	68 851	68 860	68 869	68 878	68 886	68 895	68 904	68 913	68 922
489	68 931	68 940	68 949	68 958	68 966	68 975	68 984	68 993	69 002	69 011
490	69 020		69 037	69 046	69 055	69 064	69 073	69 082	69 090	69 099-
491	69 108		69 126	69 13 <u>5</u>	69 144	69 152	69 161	69 170	69 179	69 188
492	69 197		69 214	69 223	69 232	69 241	69 249	69 258	69 267	69 276
493	69 285		69 302	69 311	69 320	69 329	69 338	69 346	69 355	69 364
494	69 373		69 390	69 399	69 408	69 417	69 425	69 434	69 443	69 452
495	69 461	69 469	69 478	69 487	69 496	69 504	69 513	69 522	69 531	69 539
496	69 548	69 557	69 566	69 574	69 583	69 592	69 601	69 609	69 618	69 627
497	69 636	69 644	69 653	69 662	69 671	69 679	69 688	69 697	69 705	69 714
498	69 723	69 732	69 740	69 749	69 758	69 767	69 775	69 784	69 793	69 801
499	69 810	69 819	69 827	69 836	69 84 <u>5</u>	69 854	69 862	69 871	69 880	69 888
No.	O	1	. 2	3	4	5	6	7	_ 8	9

					00 0	10	-			
No.	0	1	. 2	3	4	5	6	7	8,	9
500	69 897	69 906	69 914	69 923	69 932	69 940	69 949	69 958	69 966	69 975
501	69 984	69 992	70 001	70 010	70 018	70 027	70 036	70 044	70 053	70 062
502	70 070	70 079	70 088	70 096	70 105	70 114	70 122	70 131	70 140	70 148
503	70 157	70 165	70 174	70 183	70 191	70 200	70 209	70 217	70 226	70 234
504	70 243	70 252	70 260	70 269	70 278	70 286	70 29 <u>5</u>	70 303	70 312	70 321
505	70 329	70 338	70 346	70 35 <u>5</u>	70 364	70 372	70 381	70 389	70 398	70 406
506	70 415	70 424	70 432	70 44 <u>1</u>	70 449	70 458	70 467	70 475	70 484	70 492
507	70 501	70 509	70 518	70 526	70 535	70 544	70 552	70 561	70 569	70 578
508	70 586	70 59 <u>5</u>	70 603	70 612	70 621	70 629	70 638	70 646	70 65 <u>5</u>	70 663
509	70 672	70 680	70 689	70 697	70 706	70 714	70 723	70 731	70 740	70 749
510	70 757	70 766	70 774	70 783	70 791	70 800	70 808	70 817	70 825	70 834
511	70 842	70 851	70 859	70 868	70 876	70 88 <u>5</u>	70 893	70 902	70 910	70 919
512	70 927	70 935	70 944	70 952	70 961	70 969	70 978	70 986	70 99 <u>5</u>	71 003
513	71 012	71 020	71 029	71 037	71 046	71 054	71 063	71 071	71 079	71 088
514	71 096	71 10 <u>5</u>	71 113	71 122	71 130	71 139	71 147	71 155	71 164	71 172
515	71 181	71 189	71 198	71 206	71 214	71 223	71 231	71 240	71 248	71 257
516	71 26 <u>5</u>	71 273	71 282	71 290	71 299	71 307	71 315	71 324	71 332	71 341
517	71 34 <u>9</u>	71 357	71 366	71 374	71 383	71 391	71 399	71 408	71 416	71 42 <u>5</u>
518	71 433	71 441	71 4 <u>5</u> 0	71 458	71 466	71 47 <u>5</u>	71 483	71 492	71 <u>5</u> 00	71 508
519	71 517	71 525	71 5 <u>3</u> 3	71 542	71 550	71 559	71 567	71 575	71 584	71 592
520	71 600	71 609	71 617	71 625	71 634	71 642	71 650	71 659	71 667	71 675
521	71 684	71 692	71 700	71 709	71 717	71 725	71 734	71 742	71 750	71 759
522	71 767	71 775	71 784	71 792	71 800	71 809	71 817	71 825	71 834	71 842
523	71 850	71 858	71 867	71 875	71 883	71 892	71 900	71 908	71 917	71 92 <u>5</u>
524	71 933	71 941	71 9 <u>5</u> 0	71 958	71 966	71 97 <u>5</u>	71 983	71 991	71 999	72 008
525	72 016	72 024	72 032	72 041	72 049	72 057	72 066	72 074	72 082	72 090
526	72 099	72 107	72 115	72 123	72 132	72 140	72 148	72 156	72 165	72 173
527	72 181	72 189	72 198	72 206	72 214	72 222	72 230	72 239	72 247	72 255
528	72 263	72 272	72 280	72 288	72 296	72 304	72 313	72 321	72 329	72 337
529	72 346	72 354	72 362	72 370	72 378	72 387	72 39 <u>5</u>	72 403	72 411	72 419
530	72 428	72 436	72 444	72 452	72 460	72 469	72 477	72 48 <u>5</u>	72 493	72 501
531	72 509	72 518	72 526	72 534	72 542	72 550	72 558	72 567	72 57 <u>5</u>	72 583
532	72 591	72 599	72 607	72 616	72 624	72 632	72 640	72 648	72 656	72 66 <u>5</u>
533	72 673	72 681	72 689	72 697	72 705	72 713	72 722	72 730	72 738	72 746
534	72 754	72 762	72 770	72 779	72 787	72 795	72 803	72 811	72 819	72 827
535	72 835	72 843	72 852	72 860	72 868	72 876	72 884	72 892	72 900	72 908
536	72 916	72 925	72 933	72 941	72 949	72 957	72 965	72 973	72 981	72 989
537	72 997	73 006	73 014	73 022	73 030	73 038	73 046	73 054	73 062	73 070
538	73 078	73 086	73 094	73 102	73 111	73 119	73 127	73 13 <u>5</u>	73 143	73 151
539	73 159	73 167	73 17 <u>5</u>	73 183	73 191	73 199	73 207	73 215	73 223	73 231
540	73 239	73 247	73 255	73 263	73 272	73 280		73 296	73 304	73 312
541	73 320	73 328	73 336	73 344	73 352	73 360		73 376	73 384	73 392
542	73 400	73 408	73 416	73 424	73 432	73 440		73 456	73 464	73 472
543	73 480	73 488	73 496	73 504	73 512	73 520		73 536	73 544	73 552
544	73 560	73 568	73 576	73 584	73 592	73 600		73 616	73 624	73 632
545	73 640	73 648	73 656	73 664	73 672	73 679	73 687	73 695	73 703	73 711
546	73 719	73 727	73 735	73 743	73 751	73 759	73 767	73 775	73 783	73 791
547	73 799	73 807	73 81 <u>5</u>	73 823	73 830	73 838	73 846	73 854	73 862	73 870
548	73 878	73 886	73 894	73 902	73 910	73 918	73 926	73 933	73 941	73 949
549	73 957	73 965	73 973	73 981	73 989	73 997	74 00 <u>5</u>	74 013	74 020	74 028
No.	0	1	2	3	4	5	6	7	8	9

No.	0	1	2	3	4	5	6	7	8	9
550	74 036	74 044	74 052	74 060	74 068	74 076	74 084	74 092	74 099	74 107
551	74 115	74 123	74 131	74 139	74 147	74 15 <u>5</u>	74 162	74 170	74 178	74 186
552	74 194	74 202	74 210	74 218	74 225	74 233	74 241	74 249	74 257	74 26 <u>5</u>
553	74 273	74 280	74 288	74 296	74 304	74 312	74 320	74 327	74 335	74 343
554 555 556 557 558 559	74 351 74 429 74 507 74 586 74 663 74 741	74 359 74 437 74 515 74 593 74 671 74 749	74 367 74 44 <u>5</u> 74 523 74 601 74 679 74 757	74 374 74 453 74 531 74 609 74 687 74 764	74 382 74 461 74 539 74 617 74 69 <u>5</u> 74 772	74 390 74 468 74 547 74 624 74 702 74 780	74 398 74 476 74 554 74 632 74 710 74 788	74 484 74 562 74 640 74 718 74 796	74 414 74 492 74 570 74 648 74 726 74 803	74 421 74 <u>5</u> 00 74 <u>5</u> 78 74 656 74 733 74 811
560 561 562 563 564	74 819	74 827	74 834	74 842	74 850	74 858	74 865	74 873	74 881	74 889
	74 896	74 904	74 912	74 920	74 927	74 93 <u>5</u>	74 943	74 950	74 958	74 966
	74 974	74 981	74 989	74 997	75 005	75 01 <u>2</u>	75 020	75 028	75 035	75 043
	75 051	75 059	75 066	75 074	75 082	75 089	75 097	75 10 <u>5</u>	75 113	75 120
	75 128	75 136	75 143	75 151	75 159	75 166	75 174	75 182	75 189	75 197
565	75 20 <u>5</u>	75 213	75 220	75 228	75 236	75 243	75 251	75 259	75 266	75 274
566	75 28 <u>2</u>	75 289	75 297	75 30 <u>5</u>	75 312	75 320	75 328	75 335	75 343	75 351
567	75 35 <u>8</u>	75 366	75 374	75 38 <u>1</u>	75 389	75 397	75 404	75 412	75 420	75 427
568	75 43 <u>5</u>	75 442	75 450	75 458	75 465	75 473	75 481	75 488	75 496	75 504
569	75 51 <u>1</u>	75 519	75 526	75 534	75 542	75 549	75 557	75 56 <u>5</u>	75 572	75 580
570	75 587	75 595	75 603	75 610	75 618	75 626	75 633	75 641	75 648	75 656
571	75 664	75 671	75 679	75 686	75 694	75 702	75 709	75 717	75 724	75 732
572	75 740	75 747	75 75 <u>5</u>	75 762	75 770	75 778	75 785	75 793	75 800	75 808
573	75 815	75 823	75 83 <u>1</u>	75 838	75 846	75 853	75 861	75 868	75 876	75 884
574	75 891	75 899	75 906	75 914	75 921	75 929	75 937	75 944	75 952	75 959
575	75 967	75 974	75 982	75 989	75 997	76 00 <u>5</u>	76 012	76 020	76 027	76 03 <u>5</u> 76 110 76 185 76 260 76 335
576	76 042	76 050	76 057	76 06 <u>5</u>	76 072	76 080	76 087	76 09 <u>5</u>	76 103	
577	76 118	76 125	76 133	76 14 <u>0</u>	76 148	76 155	76 163	76 170	76 178	
578	76 193	76 200	76 208	76 215	76 223	76 230	76 238	76 245	76 253	
579	76 268	76 275	76 283	76 290	76 298	76 305	76 313	76 320	76 328	
580	76 343	76 350	76 358	76 365	76 373	76 380	76 388	76 395	76 403	76 410
581	76 418	76 425	76 433	76 440	76 448	76 455	76 462	76 470	76 477	76 48 <u>5</u>
582	76 492	76 500	76 507	76 51 <u>5</u>	76 522	76 530	76 537	76 54 <u>5</u>	76 552	76 55 <u>9</u>
583	76 567	76 574	76 582	76 589	76 597	76 604	76 612	76 619	76 626	76 634
584	76 641	76 649	76 656	76 664	76 671	76 678	76 686	76 693	76 701	76 708
585	76 716	76 723	76 730	76 738	76 745	76 753	76 760	76 768	76 77 <u>5</u>	76 782
586	76 790	76 797	76 80 <u>5</u>	76 812	76 819	76 827	76 834	76 842	76 849	76 856
587	76 864	76 871	76 879	76 886	76 893	76 901	76 908	76 916	76 923	76 930
588	76 938	76 945	76 953	76 960	76 967	76 97 <u>5</u>	76 982	76 989	76 997	77 004
589	77 012	77 019	77 026	77 034	77 041	77 048	77 056	77 063	77 070	77 078
590	77 085	77 093	77 100	77 107	77 11 <u>5</u> 77 188 77 262 77 33 <u>5</u> 77 408	77 122	77 129	77 137	77 144	77 151
591	77 159	77 166	77 173	77 181		77 195	77 203	77 210	77 217	77 22 <u>5</u>
592	77 232	77 240	77 247	77 254		77 269	77 276	77 283	77 291	77 298
593	77 305	77 313	77 320	77 327		77 342	77 349	77 357	77 364	77 371
594	77 379	77 386	77 393	77 401		77 415	77 422	77 430	77 437	77 444
595	77 452	77 459	77 466	77 474	77 481	77 488	77 495	77 503	77 510	77 517
596	77 52 <u>5</u>	77 532	77 539	77 546	77 554	77 561	77 568	77 576	77 583	77 590
597	77 597	77 60 <u>5</u>	77 612	77 619	77 627	77 634	77 641	77 648	77 656	77 663
598	77 670	77 677	77 68 <u>5</u>	77 692	77 699	77 706	77 714	77 721	77 728	77 735
599	77 743	77 7 <u>5</u> 0	77 757	77 764	77 772	77 779	77 786	77 793	77 801	77 808
No.	0	1	2	3	4	5	6	7	8	9

No.	0	1	2	3	4	5	6	7	8	9
600	77 815	77 822	77 830	77 837	77 844	77 851	77 859	77 866	77 873	77 880
601	77 887	77 89 <u>5</u>	77 902	77 909	77 916	77 924	77 931	77 938	77 945	77 952
602	77 960	77 967	77 974	77 981	77 988	77 996	78 003	78 010	78 017	78 025
603	78 032	78 039	78 046	78 053	78 061	78 068	78 07 <u>5</u>	78 082	78 089	78 097
604	78 104	78 111	78 118	78 125	78 132	78 140	78 147	78 154	78 161	78 168
605	78 176	78 183	78 190	78 197	78 204	78 211	78 219	78 226	78 233	78 240
606	78 247	78 254	78 262	78 269	78 276	78 283	78 290	78 297	78 30 <u>5</u>	78 312
607	78 319	78 326	78 333	78 340	78 347	78 35 <u>5</u>	78 362	78 369	78 376	78 383
608	78 390	78 398	78 40 <u>5</u>	78 412	78 419	78 426	78 433	78 440	78 447	78 45 <u>5</u>
609	78 462	78 469	78 476	78 483	78 490	78 497	78 504	78 512	78 519	78 526
610	78 533	78 540	78 547	78 554	78 561	78 569	78 576	78 583	78 590	78 597
611	78 604	78 611	78 618	78 625	78 633	78 640	78 647	78 654	78 661	78 668
612	78 675	78 682	78 689	78 696	78 704	78 711	78 718	78 72 <u>5</u>	78 732	78 739
613	78 746	78 753	78 760	78 767	78 774	78 781	78 789	78 796	78 803	78 810 °
614	78 817	78 824	78 831	78 838	78 845	78 852	78 859	78 866	78 873	78 880
615	78 888	78 89 <u>5</u>	78 902	78 909	78 916	78 923	78 930	78 937	78 944	78 951
616	78 958	78 965	78 972	78 979	78 986	78 993	79 000	79 007	79 014	79 021
617	79 029	79 036	79 043	79 0 <u>5</u> 0	79 057	79 064	79 071	79 078	79 08 <u>5</u>	79 092
618	79 099	79 106	79 113	79 1 <u>2</u> 0	79 127	79 134	79 141	79 148	79 155	79 162
619	79 169	79 176	79 183	79 190	79 197	79 204	79 211	79 218	79 225	79 232
620	79 239	79 246	79 253	79 260	79 267	79 274	79 281	79 288	79 295	79 302
621	79 309	79 316	79 323	79 330	79 337	79 344	79 351	79 358	79 365	79 372
622	79 379	79 386	79 393	79 400	79 407	79 414	79 421	79 428	79 43 <u>5</u>	79 442
623	79 449	79 456	79 463	79°470	79 477	79 484	79 491	79 498	79 50 <u>5</u>	79 511
624	79 518	79 525	79 532	79 539	79 546	79 553	79 560	79 567	79 574	79 581
625	79 588	79 59 <u>5</u>	79 602	79 609	79 616	79 623	79 630	79 637	79 644	79 650
626	79 657	79 66 1	79 671	79 678	79 685	79 692	79 699	79 706	79 713	79 720
627	79 727	79 73 1	79 741	79 748	79 754	79 761	79 768	79 775	79 782	79 789
628	79 796	79 803	79 810	79 817	79 824	79 831	79 837	79 844	79 851	79 858
629	79 865	79 872	79 879	79 886	79 893	79 900	79 906	79 913	79 920	79 927
630	79 934	79 941	79 948	79 95 <u>5</u>	79 962	79 969	79 975	79 982	79 989	79 996
631	80 003	80 010	80 017	80 024	80 030	80 037	80 044	80 051	80 058	80 06 <u>5</u>
632	80 072	80 079	80 085	80 092	80 099	80 106	80 113	80 120	80 127	80 134
633	80 140	80 147	80 154	80 161	80 168	80 175	80 182	80 188	80 195	80 202
634	80 209	80 216	80 223	80 229	80 236	80 243	80 250	80 257	80 264	80 271
635	80 277	80 284	80 291	80 298	80 30 <u>5</u>	80 312	80 318	80 325	80 332	80 339
636	80 346	80 353	80 359	80 366	80 37 <u>3</u>	80 380	80 387	80 393	80 400	80 407
637	80 414	80 421	80 428	80 434	80 441	80 448	80 455	80 462	80 468	80 475
638	80 482	80 489	80 496	80 502	80 509	80 516	80 523	80 530	80 536	80 543
639	80 550	80 557	80 564	80 570	80 577	80 584	80 591	80 598	80 604	80 611
640	80 618	80 62 <u>5</u>	80 632	80 638	80 645	80 652	80 659	80 665	80 672	80 679
641	80 686	80 69 <u>3</u>	80 699	80 706	80 713	80 720	80 72 6	80 733	80 740	80 747
642	80 754	80 760	80 767	80 774	80 781	80 787	80 794	80 801	80 808	80 814
643	80 821	80 828	80 83 <u>5</u>	80 841	80 848	80 85 <u>5</u>	80 862	80 868	80 875	80 882
644	80 889	80 895	80 902	80 909	80 916	80 922	80 929	80 936	80 943	80 949
645	80 956	80 963	80 969	80 976	80 983	80 990	80 996	81 003	81 010	81 017
646	81 023	81 030	81 037	81 043	81 050	81 057	81 064	81 070	81 077	81 084
647	81 090	81 097	81 104	81 111	81 117	81 124	81 131	81 137	81 144	81 151
648	81 158	81 164	81 171	81 178	81 184	81 191	81 198	81 204	81 211	81 218
649	81 224	81 231	81 238	81 24 <u>5</u>	81 251	81 258	81 26 <u>5</u>	81 271	81 278	81 28 <u>5</u>
No.	0	1	2	3	4	5	6	7	8	9

					00 0	00				
No.	0	1	2	3	4	5	6	7	8	9
650	81 291	81 298	81 30 <u>5</u>	81 311	81 318	81 32 <u>5</u>	81 331	81 338	81 34 <u>5</u>	S1 351
651	81 358	81 36 <u>5</u>	81 37 <u>1</u>	81 378	81 385	81 391	81 398	81 40 <u>5</u>	81 411	81 418
652	81 42 <u>5</u>	81 431	81 438	81 44 <u>5</u>	81 451	81 458	81 46 <u>5</u>	81 471	81 478	81 48 <u>5</u>
653	81 491	81 498	81 50 <u>5</u>	81 511	81 518	81 52 <u>5</u>	81 531	81 538	81 544	81 551
654	81 558	81 564	81 57 <u>1</u>	81 578	81 584	81 591	81 598	81 604	81 611	81 617
655	81 624	81 631	81 637	81 644	81 651	81 657	81 664	81 671	81 677	81 684
656	81 690	81 697	81 704	81 710	81 717	81 723	81 730	81 737	81 743	81 7 <u>5</u> 0
657	81 757	81 763	81 770	81 776	81 783	81 790	81 796	81 803	81 809	81 816
658	81 823	81 829	81 836	81 842	81 849	81 856	81 862	81 869	81 875	81 882
659	81 889	81 895	81 902	81 908	81 91 <u>5</u>	81 921	81 928	81 93 <u>5</u>	81 941	81 948
660	81 954	81 961	81 968	81 974	81 981	81 987	81 994	82 000	82 007	82 014
661	82 020	82 027	82 033	82 040	82 046	82 053	82 060	82 066	82 073	82 079
662	82 086	82 092	82 099	82 105	82 112	82 119	82 125	82 132	82 138	82 14 <u>5</u>
663	82 151	82 158	82 164	82 171	82 178	82 184	82 191	82 197	82 204	82 210
664	82 217	82 223	82 230	82 236	82 243	82 249	82 256	82 263	82 269	82 276
665	82 282	82 289	82 295	82 302	82 308	82 31 <u>5</u>	82 321	82 328	82 334	82 341
666	82 347	82 354	82 360	82 367	82 373	82 380	82 387	82 393	82 400	82 406
667	82 413	82 419	82 426	82 432	82 439	82 445	82 452	82 458	82 46 <u>5</u>	82 471
668	82 478	82 484	82 491	82 497	82 504	82 510	82 517	82 523	82 530	82 536
669	82 543	82 549	82 556	82 562	82 569	82 575	82 582	82 588	82 59 <u>5</u>	82 601
670	82 607	82 614	82 620	82 627	82 633	82 640	82 646	82 653	82 659	82 666
671	82 672	82 679	82 685	82 692	82 698	82 70 <u>5</u>	82 711	82 718	82 724	82 730
672	82 737	82 743	82 7 <u>5</u> 0	82 756	82 763	82 769	82 776	82 782	82 789	82 795
673	82 802	82 808	82 81+	82 821	82 827	82 834	82 840	82 847	82 853	82 860
674	82 866	82 872	82 879	82 885	82 892	82 898	82 90 <u>5</u>	82 911	82 918	82 924
675	82 930	82 937	82 943	82 950	82 956	82 963	82 969	82 975	82 982	82 988
676	82 99 <u>5</u>	83 001	83 008	83 014	83 020	83 027	83 033	83 040	83 046	83 052
677	83 059	83 065	83 072	83 078	83 08 <u>5</u>	83 091	83 097	83 104	83 110	83 117
678	83 123	83 129	83 136	83 142	83 149	83 15 <u>5</u>	83 161	83 168	83 174	83 181
679	83 187	83 193	83 200	83 206	83 213	83 219	83 225	83 232	83 238	83 24 <u>5</u>
680	83 251	83 257	83 264	83 270	83 276	83 283	83 289	83 296	83 302	83 308
681	83 31 <u>5</u>	83 321	83 327	83 334	83 340	83 347	83 353	83 359	83 366	83 372
682	83 37 <u>8</u>	83 38 <u>5</u>	83 391	83 398	83 404	83 410	83 417	83 423	83 429	83 436
683	83 4+2	83 448	83 45 <u>5</u>	83 461	83 467	83 474	83 480	83 487	83 493	83 499
684	83 506	83 512	83 518	83 52 <u>5</u>	83 531	83 537	83 544	83 550	83 556	83 563
685	83 569	83 575	83 582	83 588	83 594	83 601	83 607	83 613	83 620	83 626
686	83 632	83 639	83 645	83 651	83 658	83 664	83 670	83 677	83 683	83 689
687	83 696	83 702	83 708	83 71 <u>5</u>	83 721	83 727	83 734	83 740	83 746	83 753
688	83 759	83 765	83 771	83 778	83 784	83 790	83 797	83 803	83 809	83 816
689	83 822	83 828	83 83 <u>5</u>	83 841	83 847	83 853	83 860	83 866	83 872	83 879
690 691 692 693 694	83 88 <u>5</u> 83 948 84 011 84 073 84 136	83 891 83 954 84 017 84 080 84 142	83 897 83 960 84 023 84 086 84 148	84 092		83 916 83 979 84 042 84 10 <u>5</u> 84 167		83 929 83 992 84 05 <u>5</u> 84 117 84 180	84 123	83 942 84 004 84 067 84 130 84 192
695	84 198	84 20 <u>5</u>	84 211	84 217	84 223	84 230	84 236	84 242	84 248	81 25 <u>5</u>
696	84 261	84 267	84 273	84 280	84 286	84 292	84 298	84 30 <u>5</u>	84 311	84 317
697	84 323	84 330	84 336	84 342	84 348	84 354	84 361	84 367	84 373	84 379
698	84 386	84 392	84 398	84 404	84 410	84 417	84 423	84 429	84 435	84 442
699	84 448	84 454	84 460	84 466	84 473	84 479	84 48 <u>5</u>	84 491	84 497	84 504
No.	0	1	2	3	4	5	6	7	8	9

					00.	10				
No.	0	1	2	3	4	5	6	7	8	. 9
700	84 510	84 516	84 522	84 528	84 53 <u>5</u>	84 541	84 547	84 553	84 559	84 566
701	84 572	84 578	84 584	84 590	84 59 <u>7</u>	84 603	84 609	84 615	84 621	84 628
702	84 634	84 640	84 646	84 652	84 65 <u>8</u>	84 66 <u>5</u>	84 671	84 677	84 683	84 689
703	84 696	84 702	84 708	84 714	84 720	84 726	84 733	84 739	84 74 <u>5</u>	84 751
704	84 757	84 763	84 770	84 776	84 782	84 788	84 794	84 800	84 807	84 813
705	84 819	84 825	84 831	84 837	84 844	84 8 <u>5</u> 0	84 856	84 862	84 868	84 874
706	84 880	84 887	84 893	84 899	84 905	84 911	84 917	84 924	84 930	84 936
707	84 942	84 948	84 954	84 960	84 967	84 973	84 979	84 98 <u>5</u>	84 991	84 997
708	85 003	85 009	85 016	85 022	85 028	85 034	85 040	85 046	85 052	85 058
709	85 06 <u>5</u>	85 071	85 077	85 083	85 089	85 095	85 101	85 107	85 114	85 120
710	85 126	85 132	85 138	85 144	85 150	85 156	85 163	85 169	85 17 <u>5</u>	85 181
711	85 187	85 193	85 199	85 205	85 211	85 217	85 224	85 230	85 236	85 242
712	85 248	85 254	85 260	85 266	85 272	85 278	85 28 <u>5</u>	85 291	85 297	85 303
713	85 309	85 315	85 321	85 327	85 333	85 339	85 345	85 352	85 358	85 364
714	85 370	85 376	85 382	85 388	85 394	85 400	85 406	85 412	85 418	85 42 <u>5</u>
715	85 431	85 437	85 443	85 449	85 45 <u>5</u>	85 461	85 467	85 473	85 479	85 485
716	85 491	85 497	85 503	85 509	85 516	85 522	85 528	85 534	85 540	85 546
717	85 552	85 558	85 564	85 570	85 576	85 582	85 588	85 594	85 600	85 606
718	85 612	85 618	85 62 <u>5</u>	85 631	85 637	85 643	85 649	85 65 <u>5</u>	85 661	85 667
719	85 673	85 679	85 68 <u>5</u>	85 691	85 697	85 703	85 709	85 715	85 721	85 727
720	85 733	85 739	85 745	85 751	85 757	85 763	85 769	85 775	85 781	85 788
721	85 794	85 800	85 806	85 812	85 818	85 824	85 830	85 836	85 842	85 848
722	85 854	85 860	85 866	85 872	85 878	85 884	85 890	85 896	85 902	85 908
723	85 914	85 920	85 926	85 932	85 938	85 944	85 950	85 956	85 962	85 968
724	85 974	85 980	85 986	85 992	85 998	86 004	86 010	86 016	86 022	86 028
725	86 034	86 040	86 046	86 052	86 058	86 064	86 070	86 076	86 082	86 088
726	86 094	86 100	86 106	86 112	86 118	86 124	86 130	86 136	86 141	86 147
727	86 153	86 159	86 165	86 171	86 177	86 183	86 189	86 195	86 201	86 207
728	86 213	86 219	86 225	86 231	86 237	86 243	86 249	86 25 <u>5</u>	86 261	86 267
729	86 273	86 279	86 28 <u>5</u>	86 291	86 297	86 303	86 308	86 314	86 320	86 326
730	86 332	86 338	86 344	86 350	86 356	86 362	86 368	86 374	86 380	86 386
731	86 392	86 398	86 404	86 410	86 415	86 421	86 427	86 433	86 439	86 445
732	86 451	86 457	86 463	86 469	86 47 <u>5</u>	86 481	86 487	86 493	86 499	86 504
733	86 510	86 516	86 522	86 528	86 534	86 540	86 546	86 552	86 558	86 564
734	86 570	86 576	86 581	86 587	86 593	86 599	86 605	86 611	86 617	86 623
735	86 629	86 63 <u>5</u>	86 641	86 646	86 652	86 658	86 664	86 670	86 676	86 682
736	86 688	86 694	86 700	86 705	86 711	86 717	86 723	86 729	86 73 <u>5</u>	86 741
737	86 747	86 753	86 759	86 764	86 770	86 776	86 782	86 788	86 794	86 800
738	86 806	86 812	86 817	86 823	86 829	86 835	86 841	86 847	86 853	86 859
739	86 864	86 870	86 876	86 882	86 888	86 894	86 900	86 906	86 911	86 917
740 741 742 743 744	86 923 86 982 87 040 87 099 87 157	87 10 <u>5</u>	87 111	86 941 86 999 87 058 87 116 87 17 <u>5</u>	87 064 87 122	87 128	87 017 87 075	86 964 87 023 87 081 87 140 87 198	87 146	86 976 87 03 <u>5</u> 87 093 87 151 87 210
745 746 747 748 749	87 216 87 274 87 332 87 390 87 448	87 280 87 338 87 396	87 344 87 402	87 233 87 291 87 349 87 408 87 466	87 413	87 24 <u>5</u> 87 303 87 361 87 419 87 477	87 367 87 42 <u>5</u>	87 256 87 31 <u>5</u> 87 373 87 431 87 489	87 320 87 379 87 437	87 268 87 326 87 384 87 442 87 500
No.	0	1	2	3	4	5	6	7	. 8	9

					00 1	00				
No.	0	1	2	3	4	5	6	7	8	9
750 751 752 753 754	87 506	87 512	87 518	87 523	87 529	87 535	87 541	87 547	87 552	87 558
	87 564	87 570	87 576	87 581	87 587	87 593	87 599	87 604	87 610	87 616
	87 622	87 628	87 633	87 639	87 645	87 651	87 656	87 662	87 668	87 674
	87 679	87 685	87 691	87 697	87 703	87 708	87 714	87 720	87 726	87 731
	87 737	87 743	87 749	87 754	87 760	87 766	87 772	87 777	87 783	87 789
755	87 79 <u>5</u>	87 800	87 806	87 812	87 818	87 823	87 829	87 83 <u>5</u>	87 841	87 846
756	87 852	87 858	87 864	87 869	87 875	87 881	87 887	87 89 <u>2</u>	87 898	87 904
757	87 910	87 915	87 921	87 927	87 933	87 938	87 944	87 9 <u>5</u> 0	87 955	87 961
758	87 967	87 973	87 978	87 984	87 990	87 996	88 001	88 007	88 013	88 018
759	88 024	88 030	88 036	88 041	88 047	88 053	88 058	88 064	88 070	88 076
760	88 081	88 087	88 093	88 098	88 104	88 110	88 116	88 121	88 127	88 133
761	88 138	88 144	88 150	88 156	88 161	88 167	88 173	88 178	88 184	88 190
762	88 195	88 201	88 207	88 213	88 218	88 224	88 230	88 235	88 241	88 247
763	88 252	88 258	88 264	88 270	88 275	88 281	88 287	88 292	88 298	88 304
764	88 309	88 315	88 321	88 326	88 332	88 338	88 343	88 349	88 35 <u>5</u>	88 360
765	88 366	88 372	88 377	88 383	88 389	88 39 <u>5</u>	88 400	88 406	88 412	88 417
766	88 423	88 429	88 434	88 440	88 446	88 45 <u>1</u>	88 457	88 463	88 468	88 474
767	88 480	88 485	88 491	88 497	88 502	88 508	88 513	88 519	88 52 <u>5</u>	88 530
768	88 536	88 542	88 547	88 553	88 559	88 564	88 570	88 576	88 581	88 587
769	88 593	88 598	88 604	88 610	88 615	88 62 <u>1</u>	88 627	88 632	88 638	88 643
770	88 649	88 65 <u>5</u>	88 660	88 666	88 672	88 677	88 683	88 689	88 694	88 700
771	88 705	88 71 <u>1</u>	88 717	88 722	88 728	88 734	88 739	88 74 <u>5</u>	88 750	88 756
772	88 762	88 767	88 773	88 779	88 784	88 790	88 795	88 80 <u>1</u>	88 807	88 812
773	88 818	88 824	88 829	88 83 <u>5</u>	88 840	88 846	88 852	88 857	88 863	88 868
774	88 874	88 880	88 885	88 89 <u>1</u>	88 897	88 902	88 908	88 913	88 919	88 92 <u>5</u>
775	88 930	88 936	88 941	88 947	88 953	88 958	88 964	88 969	88 97 <u>5</u>	88 981
776	88 986	88 992	88 997	89 003	89 009	89 014	89 020	89 025	89 031	89 037
777	- 89 042	89 048	89 053	89 059	89 064	89 070	89 076	89 081	89 087	89 092
778	89 098	89 104	89 109	89 11 <u>5</u>	89 120	89 126	89 131	89 137	89 143	89 148
779	89 154	89 159	89 16 <u>5</u>	89 170	89 176	89 182	89 187	89 193	89 198	89 204
780	89 209	89 215	89 221	89 226	89 232	89 237	89 243	89 248	89 254	89 260
781	89 265	89 271	89 276	89 282	89 287	89 293	89 298	89 304	89 310	89 315
782	89 321	89 326	89 332	89 337	89 343	89 348	89 354	89 360	89 365	89 371
783	89 376	89 382	89 387	89 393	89 398	89 404	89 409	89 41 <u>5</u>	89 421	89 426
784	89 432	89 437	89 443	89 448	89 454	89 459	89 46 <u>5</u>	89 470	89 476	89 481
785	89 487	89 492	89 498	89 504	89 509	89 51 <u>5</u>	89 520	89 526	89 531	89 537
786	89 542	89 548	89 553	89 559	89 564	89 570	89 575	89 581	89 586	89 592
787	89 597	89 603	89 609	89 614	89 620	89 625	89 631	89 636	89 642	89 647
788	89 653	89 658	89 664	89 669	89 67 <u>5</u>	89 680	89 686	89 691	89 697	89 702
789	89 708	89 713	89 719	89 724	89 730	89 735	89 741	89 746	89 752	89 757
790	89 763	89 768	89 774	89 779	89 78 <u>5</u>	89 790	89 796	89 801	89 807	89 812
791	89 818	89 823	89 829	89 834	89 840	89 845	89 851	89 856	89 862	89 867
792	89 873	89 878	89 883	89 889	89 894	89 900	89 905	89 911	89 916	89 922
793	89 927	89 933	89 938	89 944	89 949	89 95 <u>5</u>	89 960	89 966	89 971	89 977
794	89 982	89 988	89 993	89 998	90 004	90 009	90 01 <u>5</u>	90 020	90 026	90 031
795	90 037	90 042	90 048	90 053	90 059	90 064	90 069	90 07 <u>5</u>	90 080	90 086
796	90 091	90 097	90 102	90 108	90 113	90 119	90 124	90 129	90 13 <u>5</u>	90 140
797	90 146	90 151	90 157	90 162	90 168	90 173	90 179	90 184	90 189	90 19 <u>5</u>
798	90 200	90 206	90 211	90 217	90 222	90 227	90 233	90 238	90 244	90 249
799	90 25 <u>5</u>	90 260	90 266	90 271	90 276	90 282	90 287	90 293	90 298	90 304
No.	0	1	2	3	4	5	6	7	8	9

					00 0					
No.	0	1	2	3	4	5	6	7	8	9
800	90 309	90 314	90 320	90 325	90 331	90 336	90 342	90 347	90 352	90 358
801	90 363	90 369	90 374	90 380	90 38 <u>5</u>	90 390	90 396	90 401	90 407	90 412
802	90 417	90 423	90 428	90 434	90 439	90 44 <u>5</u>	90 4 <u>5</u> 0	90 455	90 461	90 466
803	90 472	90 477	90 482	90 488	90 493	90 499	90 504	90 509	90 51 <u>5</u>	90 520
804	90 526	90 531	90 536	90 542	90 547	90 553	90 558	90 563	90 569	90 574
805	90 580	90 58 <u>5</u>	90 590	90 596	90 601	90 607	90 612	90 617	90 623	90 628
806	90 634	90 639	90 644	90 650	90 655	90 660	90 666	90 671	90 677	90 682
807	90 687	90 693	90 698	90 703	90 709	90 714	90 720	90 725	90 730	90 736
808	90 741	90 747	90 752	90 757	90 763	90 768	90 773	90 779	90 784	90 789
809	90 79 <u>5</u>	90 800	90 806	90 811	90 816	90 822	90 827	90 832	90 838	90 843
810	90 849	90 854	90 859	90 86 <u>5</u>	90 870	90 875	90 881	90 886	90 891	90 897
811	90 902	90 907	90 913	90 918	90 924	90 929	90 934	90 940	90 94 <u>5</u>	90 950
812	90 956	90 961	90 966	90 972	90 977	90 982	90 988	90 993	90 998	91 004
813	91 009	91 014	91 020	91 025	91 030	91 036	91 041	91 046	91 052	91 057
814	91 062	91 068	91 073	91 078	91 084	91 089	91 094	91 100	91 105	91 110
815	91 116	91 121	91 126	91 132	91 137	91 142	91 148	91 153	91 158	91 164
816	91 169	91 174	91 180	91 18 <u>5</u>	91 190	91 196	91 201	91 206	91 212	91 217
817	91 222	91 228	91 233	91 238	91 243	91 249	91 254	91 259	91 26 <u>5</u>	91 270
818	91 275	91 281	91 286	91 291	91 297	91 302	91 307	91 312	91 318	91 323
819	91 328	91 334	91 339	91 344	91 3 <u>5</u> 0	91 35 <u>5</u>	91 360	91 365	91 371	91 376
820	91 381	91 387	91 392	91 397	91 403	91 408	91 413	91 418	91 424	91 429
821	91 434	91 440	91 44 <u>5</u>	91 450	91 455	91 461	91 466	91 471	91 477	91 482
822	91 487	91 492	91 498	91 503	91 508	91 514	91 519	91 524	91 529	91 53 <u>5</u>
823	91 540	91 545	91 551	91 556	91 561	91 566	91 572	91 577	91 582	91 587
824	91 593	91 598	91 603	91 609	91 614	91 619	91 624	91 630	91 63 <u>5</u>	91 640
825	91 645	91 651	91 656	91 661	91 666	91 672	91 677	91 682	91 687	91 693
826	91 698	91 703	91 709	91 714	91 719	91 724	91 730	91 73 <u>5</u>	91 740	91 745
827	91 751	91 756	91 761	91 766	91 772	91 777	91 782	91 787	91 793	91 798
828	91 803	91 808	91 814	91 819	91 824	91 829	91 834	91 840	91 84 <u>5</u>	91 850
829	91 855	91 861	91 866	91 871	91 876	91 882	91 887	91 892	91 897	91 903
830	91 908	91 913	91 918	91 924	91 929	91 934	91 939	91 944	91 9 <u>5</u> 0	91 955
831	91 960	91 965	91 971	91 976	91 981	91 986	91 991	91 997	92 002	92 007
832	92 012	92 018	92 023	92 028	92 033	92 038	92 044	92 049	92 054	92 059
833	92 06 <u>5</u>	92 070	92 07 <u>5</u>	92 080	92 085	92 091	92 096	92 101	92 106	92 111
834	92 117	92 122	92 127	92 132	92 137	92 143	92 148	92 153	92 158	92 163
835	92 169	92 174	92 179	92 184	92 189	92 19 <u>5</u>	92 200	92 205	92 210	92 215
836	92 221	92 226	92 231	92 236	92 241	92 247	92 252	92 257	92 262	92 267
837	92 273	92 278	92 283	92 288	92 293	92 298	92 304	92 309	92 314	92 319
838	92 324	92 330	92 33 <u>5</u>	92 340	92 345	92 350	92 355	92 361	92 366	92 371
839	92 376	92 381	92 387	92 392	92 397	92 402	92 407	92 412	92 418	92 423
840 841 842 843 844	92 531	92 433 92 48 <u>5</u> 92 536 92 588 92 639	92 542 92 593		92 449 92 500 92 552 92 603 92 65 <u>5</u>				92 469 92 521 92 572 92 624 92 675	
845	92 686	92 691	92 696	92 701	92 706	92 711	92 716	92 722	92 727	92 732
846	92 737	92 742	92 747	92 752	92 758	92 763	92 768	92 773	92 778	92 783
847	92 788	92 793	92 799	92 804	92 809	92 814	92 819	92 824	92 829	92 834
848	92 840	92 84 <u>5</u>	92 850	92 85 <u>5</u>	92 860	92 865	92 870	92 875	92 881	92 886
849	92 891	92 896	92 901	92 906	92 911	92 916	92 921	92 927	92 932	92 937
No.	0	1	2	3	4	5	6	7	8	9

					<u> </u>	00				
No.	0	1	2	3	4	5	6	7	8	9
850	92 942	92 947	92 952	92 957	92 962	92 967	92 973	92 978	92 983	92 988
851	92 993	92 998	93 003	93 008	93 013	93 018	93 024	93 029	93 034	93 039
· 852	93 044	93 049	93 054	93 059	93 064	93 069	93 07 <u>5</u>	93 080	93 08 <u>5</u>	93 090
853	93 09 <u>5</u>	93 100	93 105	93 110	93 115	93 120	93 125	93 131	93 136	93 141
854	93 146	93 151	93 156	93 161	93 166	93 171	93 176	93 181	93 186	93 192
855	93 197	93 202	93 207	93 212	93 217	93 222	93 227	93 232	93 237	93 242
856	93 247	93 252	93 258	93 263	93 268	93 273	93 278	93 283	93 288	93 293
857	93 298	93 303	93 308	93 313	93 318	93 323	93 328	93 334	93 339	93 344
858	93 349	93 354	93 359	93 364	93 369	93 374	93 379	93 384	93 389	93 394
859	93 399	93 404	93 409	93 414	93 420	93 42 <u>5</u>	93 430	93 43 <u>5</u>	93 440	93 44 <u>5</u>
860	93 4 <u>5</u> 0	93 45 <u>5</u>	93 460	93 46 <u>5</u>	93 470	93 475	93 480	93 485	93 490	93 495
861	93 5 <u>0</u> 0	93 505	93 510	93 515	93 520	93 526	93 531	93 536	93 541	93 546
862	93 5 <u>5</u> 1	93 556	93 561	93 566	93 571	93 576	93 581	93 586	93 591	93 596
863	93 6 <u>0</u> 1	93 606	93 611	93 616	93 621	93 626	93 631	93 636	93 641	93 646
864	93 6 <u>5</u> 1	93 656	93 661	93 666	93 671	93 676	93 682	93 687	93 692	93 697
865	93 702	93 707	93 712	93 717	93 722	93 727	93 732	93 737	93 742	93 747
866	93 752	93 757	93 762	93 767	93 772	93 777	93 782	93 787	93 792	93 797
867	93 802	93 807	93 812	93 817	93 822	93 827	93 832	93 837	93 842	93 847
868	93 852	93 857	93 862	93 867	93 872	93 877	93 882	93 887	93 892	93 897
869	93 902	93 907	93 912	93 917	93 922	93 927	93 932	93 937	93 942	93 947
870	93 952	93 957	93 962	93 967	93 972	93 977	93 982	93 987	93 992	93 997
871	94 002	94 007	94 012	94 017	94 022	94 027	94 032	94 037	94 042	94 047
872	94 052	94 057	94 062	94 067	94 072	94 077	94 082	94 086	94 091	94 096
873	94 101	94 106	94 111	94 116	94 121	94 126	94 131	94 136	94 141	94 146
874	94 151	94 156	94 161	94 166	94 171	94 176	94 181	94 186	94 191	94 196
875	94 201	94 206	94 211	94 216	94 221	94 226	94 231	94 236	94 240	94 245
876	94 250	94 255	94 260	94 265	94 270	94 275	94 280	94 285	94 290	94 295
877	94 300	94 30 <u>5</u>	94 310	94 31 <u>5</u>	94 320	94 32 <u>5</u>	94 330	94 33 <u>5</u>	94 340	94 34 <u>5</u>
878	94 349	94 354	94 359	94 364	94 369	94 374	94 379	94 384	94 389	94 394
879	94 399	94 404	94 409	94 414	94 419	94 424	94 429	94 433	94 438	94 443
880	94 448	94 453	94 458	94 463	94 468	94 473	94 478	94 483	94 488	94 493
881	94 498	94 503	94 507	94 512	94 517	94 522	94 527	94 532	94 537	94 542
882	94 547	94 552	94 557	94 562	94 567	94 571	94 576	94 581	94 586	94 591
883	94 596	94 601	94 606	94 611	94 616	94 621	94 626	94 630	94 635	94 640
884	94 645	94 650	94 655	94 660	94 66 <u>5</u>	94 670	94 675	94 680	94 68 <u>5</u>	94 689
885	94 694	94 699	94 704	94 709	94 714	94 719	94 724	94 729	94 734	94 738
886	94 743	94 748	94 753	94 758	94 763	94 768	94 773	94 778	94 783	94 787
887	94 792	94 797	94 802	94 807	94 812	94 817	94 822	94 827	94 832	94 836
888	94 841	94 846	94 851	94 856	94 861	94 866	94 871	94 876	94 880	94 885
889	94 890	94 895	94 900	94 90 <u>5</u>	94 910	94 91 <u>5</u>	94 919	94 924	94 929	94 934
890 891 892 893 894	94 939 94 988 95 036 95 085 95 134		94 949 94 998 95 046 95 09 <u>5</u> 95 143	95 100	94 959 95 007 95 056 95 10 <u>5</u> 95 15 <u>3</u>	94 963 95 012 95 061 95 109 95 158	94 968 95 017 95 066 95 114 95 163	94 973 95 022 95 071 95 119 95 168	94 978 95 027 95 075 95 124 95 173	94 983 95 032 95 080 95 129 95 177
895	95 182	95 187	95 192	95 197	95 202	95 207	95 211	95 216	95 221	95 226
896	95 231	95 236	95 240	95 245	95 250	95 255	95 260	95 26 <u>5</u>	95 270	95 274
897	95 279	95 284	95 289	95 294	95 299	95 303	95 308	95 313	95 318	95 323
898	95 328	95 332	95 337	95 342	95 347	95 352	95 357	95 361	95 366	95 371
899	95 376	95 381	95 386	95 390	95 395	95 400	95 40 <u>5</u>	95 410	95 415	95 419
No.	0	1	2	3	4	5	6	7	8	9

No.	0	1	2	3	4	5	6	7	8	9
900	95 424	95 429	95 434	95 439	95 414	95 448	95 453	95 458	95 463	95 468
901	95 472	95 477	95 482	95 487	95 492	95 497	95 501	95 5 06	95 511	95 516
902	95 521	95 525	95 530	95 535	95 540	95 54 <u>5</u>	95 5 <u>5</u> 0	95 554	95 559	95 564
903	95 569	95 574	95 578	95 583	95 588	95 593	95 5 <u>9</u> 8	95 602	95 607	95 612
904	95 617	95 622	95 626	95 631	95 636	95 641	95 646	95 650	95 655	95 660
905	95 66 <u>5</u>	95 670	95 674	95 679	95 684	95 689	95 694	95 698	95 703	95 708
906	95 71 <u>3</u>	95 718	95 722	95 727	95 732	95 737	95 742	95 746	95 751	95 756
907	95 761	95 766	95 770	95 775	95 780	95 78 <u>5</u>	95 789	95 794	95 799	95 804
908	95 809	95 813	95 818	95 823	95 828	95 83 <u>2</u>	95 837	95 842	95 847	95 852
909	95 856	95 861	95 866	95 871	95 875	95 880	95 885	95 890	95 89 <u>5</u>	95 899
910	95 904	95 909	95 914	95 918	95 923	95 928	95 933	95 938	95 942	95 947
911	95 952	95 957	95 961	95 966	95 971	95 976	95 980	95 985	95 990	95 99 <u>5</u>
912	95 999	96 004	96 009	96 014	96 019	96 023	96 028	96 033	96 038	96 042
913	96 047	96 052	96 057	96 061	96 066	96 071	96 076	96 080	96 085	96 090
914	96 09 <u>5</u>	96 099	96 104	96 109	96 114	96 118	96 123	96 128	96 133	96 137
915	96 142	96 147	96 152	96 156	96 161	96 166	96 171	96 175	96 180	96 18 <u>5</u>
916	96 190	96 194	96 199	96 204	96 209	96 213	96 218	96 223	96 227	96 23 <u>2</u>
917	96 237	96 242	96 246	96 251	96 256	96 261	96 265	96 270	96 27 <u>5</u>	96 280
918	96 284	96 289	96 294	96 298	96 303	96 308	96 313	96 317	96 322	96 327
919	96 332	96 336	96 341	96 346	96 350	96 355	96 360	96 36 <u>5</u>	96 369	96 374
920	96 379	96 384	96 388	96 393	96 398	96 402	96 407	96 412	96 417	96 421
921	96 426	96 431	96 435	96 440	96 445	96 450	96 454	96 459	96 464	96 468
922	96 473	96 478	96 483	96 487	96 492	96 497	96 501	96 506	96 511	96 515
923	96 520	96 52 <u>5</u>	96 530	96 534	96 539	96 544	96 548	96 553	96 558	96 562
924	96 567	96 572	96 577	96 581	96 586	96 591	96 595	96 600	96 60 <u>5</u>	96 609
925	96 614	96 619	96 624	96 628	96 633	96 638	96 642	96 647	96 652	96 656
926	96 661	96 666	96 670	96 675	96 680	96 68 <u>5</u>	96 689	96 694	96 699	96 703
927	96 708	96 713	96 717	96 722	96 727	96 731	96 736	96 741	96 745	96 750
928	96 75 <u>5</u>	96 759	96 764	96 769	96 774	96 778	96 783	96 788	96 792	96 797
929	96 802	96 806	96 811	96 816	96 820	96 82 <u>5</u>	96 830	96 834	96 839	96 844
930	96 848	96 853	96 858	96 862	96 867	96 872	96 876	96 881	96 886	96 890
931	96 89 <u>5</u>	96 900	96 904	96 909	96 914	96 918	96 923	96 928	96 932	96 937
932	96 942	96 946	96 951	96 956	96 960	96 96 <u>5</u>	96 970	96 974	96 979	96 984
933	96 988	96 993	96 997	97 002	97 007	97 011	97 016	97 021	97 025	97 030
934	97 03 <u>5</u>	97 039	97 044	97 049	97 053	97 058	97 063	97 067	97 0 72	97 077
935	97 081	97 086	97 090	97 095	97 100	97 104	97 109	97 114	97 118	97 123
936	97 128	97 132	97 137	97 142	97 146	97 151	97 155	97 160	97 16 <u>5</u>	97 169
937	97 174	97 179	97 183	97 188	97 192	97 197	97 202	97 206	97 211	97 216
938	97 220	97 22 <u>5</u>	97 230	97 234	97 239	97 243	97 248	97 253	97 257	97 262
939	97 267	97 271	97 276	97 280	97 285	97 290	97 294	97 299	97 304	97 308
940 941 942 943 944	97 405	97 317 97 364 97 410 97 456 97 502		97 327 97 373 97 419 97 46 <u>5</u> 97 511		97 474		97 345 97 391 97 437 97 483 97 529		
945	97 543	97 548	97 552	97 695	97 562	97 566	97 571	97 575	97 580	97 58 <u>5</u>
946	97 589	97 594	97 598		97 607	97 612	97 617	97 621	97 626	97 630
947	97 63 <u>5</u>	97 640	97 644		97 653	97 658	97 663	97 667	97 672	97 676
948	97 681	97 685	97 690		97 699	97 704	97 708	97 713	97 717	97 722
949	97 727	97 731	97 736		97 74 <u>5</u>	97 749	97 754	97 759	97 763	97 768
No.	0	1	2	3	4	5	6	7	8	9

No.	0	1	2	3	4	5	6	7	8	9
950	97 772	97 777	97 782	97 786	97 791	97 795	97 800	97 804	97 809	97 813
951	97 818	97 823	97 827	97 832	97 836	97 841	97 845	97 850	97 855	97 859
952	97 864	97 868	97 873	97 877	97 882	97 886	97 891	97 896	97 900	97 90 <u>5</u>
953	97 909	97 914	97 918	97 923	97 928	97 932	97 937	97 941	97 946	97 950
954	97 95 <u>5</u>	97 959	97 964	97 968	97 973	97 978	97 982	97 987	97 991	97 996
955	98 000	98 00 <u>5</u>	98 009	98 014	98 019	98 023	98 028	98 032	98 037	98 041
956	98 046	98 050	98 05 <u>5</u>	98 059	98 064	98 068	98 073	98 078	98 082	98 087
957	98 091	98 096	98 100	98 10 <u>5</u>	98 109	98 114	98 118	98 123	98 127	98 132
958	98 137	98 141	98 146	98 150	98 15 <u>5</u>	98 159	98 164	98 168	98 173	98 177
959	98 182	98 186	98 191	98 195	98 200	98 204	98 209	98 214	98 218	98 223
960	98 227	98 232	98 236	98 241	98 245	98 2 <u>5</u> 0	98 254	98 259	98 263	98 268
961	98 272	98 277	98 281	98 286	98 290	98 2 <u>95</u>	98 299	98 304	98 308	98 313
962	98 318	98 322	98 327	98 331	98 336	98 340	98 34 <u>5</u>	98 349	98 354	98 358
963	98 363	98 367	98 372	98 376	98 381	98 385	98 390	98 394	98 399	98 403
964	98 408	98 412	98 417	98 421	98 426	98 430	98 43 <u>5</u>	98 439	98 444	98 448
965	98 453	98 457	98 462	98 466	98 471	98 475	98 480	98 484	98 489	98 493
966	98 498	98 502	98 507	98 511	98 516	98 520	98 52 <u>5</u>	98 529	98 534	98 538
967	98 543	98 547	98 552	98 556	98 561	98 565	98 57 <u>0</u>	98 574	98 579	98 583
968	98 588	98 592	98 597	98 601	98 605	98 610	98 614	98 619	98 623	98 628
969	98 632	98 637	98 641	98 646	98 650	98 65 <u>5</u>	98 659	98 664	98 668	98 673
970	98 677	98 682	98 686	98 691	98 695	98 700	98 704	98 709	98 713	98 717
971	98 722	98 726	98 731	98 735	98 740	98 744	98 749	98 753	98 758	98 762
972	98 767	98 771	98 776	98 780	98 784	98 789	98 793	98 798	98 802	98 807
973	98 811	98 816	98 820	98 82 <u>5</u>	98 829	98 834	98 838	98 843	98 847	98 851
974	98 856	98 860	98 86 <u>5</u>	98 869	98 874	98 878	98 883	98 887	98 892	98 896
975	98 900	98 90 <u>5</u>	98 909	98 914	98 918	98 923	98 927	98 932	98 936	98 941
976	98 94 <u>5</u>	98 949	98 954	98 958	98 963	98 967	98 972	98 976	98 981	98 985
977	98 989	98 994	98 998	99 003	99 007	99 012	99 016	99 021	99 025	99 029
978	99 034	99 038	99 043	99 047	99 052	99 056	99 061	99 06 <u>5</u>	99 069	99 074
979	99 078	99 083	99 087	99 092	99 096	99 100	99 10 <u>5</u>	99 109	99 114	99 118
980	99 123	99 127	99 131	99 136	99 140	99 14 <u>5</u>	99 149	99 154	99 158	99 162
981	99 167	99 171	99 176	99 180	99 18 <u>5</u>	99 189	99 193	99 198	99 202	99 207
982	99 211	99 216	99 220	99 224	99 229	99 233	99 238	99 242	99 247	99 251
983	99 255	99 260	99 264	99 269	99 273	99 277	99 282	99 286	99 291	99 295
984	99 300	99 304	99 308	99 313	99 317	99 322	99 326	99 330	99 33 <u>5</u>	99 339
985	99 344	99 348	99 352	99 357	99 361	99 366	99 370	99 374	99 379	99 383
986	99 388	99 392	99 396	99 401	99 405	99 410	99 414	99 419	99 423	99 427
987	99 432	99 436	99 441	99 445	99 449	99 454	99 458	99 463	99 467	99 471
988	99 476	99 480	99 484	99 489	99 493	99 498	99 502	99 506	99 511	99 515
989	99 520	99 524	99 528	99 533	99 537	99 542	99 546	99 550	99 55 <u>5</u>	99 559
990	99 564	99 568	99 572	99 577	99 581	99 585	99 590	99 594	99 599	99 603
991	99 607	99 612	99 616	99 621	99 62 <u>5</u>	99 629	99 634	99 638	99 642	99 647
992	99 651	99 656	99 660	99 664	99 66 <u>9</u>	99 673	99 677	99 682	99 686	99 691
993	99 69 <u>5</u>	99 699	99 704	99 708	99 712	99 717	99 721	99 726	99 730	99 734
994	99 739	99 743	99 747	99 752	99 756	99 760	99 76 <u>5</u>	99 769	99 774	99 778
995	99 782	99 787	99 791	99 795	99 800	99 804	99 808	99 813	99 817	99 822
996	99 826	99 830	99 83 <u>5</u>	99 839	99 843	99 848	99 852	99 856	99 861	99 865
997	99 870	99 874	99 878	99 883	99 887	99 891	99 896	99 900	99 904	99 909
998	99 913	99 917	99 922	99 926	99 930	99 93 <u>5</u>	99 939	99 944	99 948	99 952
999	99 957	99 961	99 965	99 970	99 974	99 978	99 983	99 987	99 991	99 996
1000	00 000			00 013	00 017	00 022			00 035	00 039
No.	0	1	2	3	4	5	6	7	8	9

TABLE II-USEFUL CONSTANTS AND THEIR LOGARITHMS

TABLE II—USE	FUL CONSTA	NIS AND THEIR	LOGARITHMS
			Log
Circumference of the			2. 55 630 250
Circumference of the			4. 33 445 375
Circumference of the			6. 11 260 500
If the radius $= 1$, the			0.40.514.005
i)	5 358 979 323 846 264 3		0. 49 714 987
ALSO	Log	$\pi^2 = 9.86960440$	0. 99 429 97 <u>5</u>
$2\pi = 6.28318531$ $4\pi = 12.56637061$	0. 79 817 987 1. 09 920 986	$\frac{1}{\pi^2} = 0.10132118$	9.00570025 - 10
$\frac{\pi}{2} = 1.57079633$	0. 19 611 988	$\sqrt{\pi} = 1.77245385$	0. 24 857 494
$\frac{\pi}{3} = 1.04719755$	0.02002862	$\frac{1}{\sqrt{\pi}} = 0.56418958$	9.75 142 506 — 10
$\frac{4\pi}{3} = 4.18879020$	0. 62 208 S61	$\sqrt{\frac{3}{\pi}} = 0.97720502$	9.98998569 - 10
$\frac{\pi}{4} = 0.78539816$	9.89508988 — 10		
$\frac{\pi}{6} = 0.52359878$	9.71899862 — 10	$\sqrt{\frac{4}{\pi}} = 1.12837917$	0.05 245 506
$\frac{1}{\pi} = 0.31830989$	9. 50 285 013 — 10	$\sqrt[3]{\pi} = 1.46459189$	0. 16 571 662
$\frac{1}{2\pi} = 0.15915494$	9. 20 182 013 — 10	$\frac{1}{\sqrt[3]{\pi}} = 0.68278406$	9.83428338 — 10
$\frac{3}{\pi} = 0.95492966$	9.97997138 — 10	$\sqrt[3]{\pi^2} = 2.14502940$	0. 33 143 32 <u>5</u>
$\frac{\pi}{4} = 1.27323954$	0.10491012	$\sqrt[3]{\frac{3}{4\pi}} = 0.62035049$	9. 79 263 713 — 10
	9. 37 791 139 — 10	$\sqrt[3]{\frac{\pi}{6}} = 0.80599598$	9.90633287 - 10
Angle θ , whose arc is	equal to the radius r ,	is	
in degrees, $\theta^{\circ} =$	$\frac{180}{\pi} = 57.29577951$	•	1.75812263
in minutes, $\theta' = \frac{1}{2}$	$\frac{0800}{\pi} = 3437.74677$	'	3. 53 627 388
in seconds, $\theta'' = \frac{6}{3}$	$\frac{48000}{\pi} = 206264.806'$	′	5. 31 442 513
Angle 2 θ , whose arc i	s equal to twice the ra	idius, 2 r, is	
in degrees, $2 \theta^{\circ} =$	$\frac{360}{\pi}$ = 114.5915	5 903°	2. 05 915 263
in minutes, $2\theta' =$	$\frac{21600}{\pi} = 6875.493$	354'	3.83 730 388
in seconds, $2 \theta'' = 0$	$\frac{1296000}{\pi} = 412529.6$	12"	5. 61 545 513
If the radius $r = 1$, th			
for 1 degree =	$=\frac{1}{\theta^{\circ}}=\frac{\pi}{180}=0$	0.01745329	8. 24 187 737 — 10
for 1 minute =	1 _	0.00029089	6. 46 372 612 — 10
for 1 second =	$=\frac{1}{\theta''}=\frac{\pi}{648000}=6$	0.00000485	4.68 557 487 - 10
for ½ degree =	$=\frac{1}{2\theta^\circ}=\frac{\pi}{360}=0$	0.00872665	7.94084737 — 10
for ½ minute =	$=\frac{1}{2\theta'} = \frac{\pi}{21600} = 0$	0.00014544	6. 16 269 612 — 10
for $\frac{1}{2}$ second =	$=\frac{1}{2\theta''}=\frac{\pi}{1296000}=0$	0.00000242	4. 38 454 487 — 10
Sin 1", when the radio	r = 1, is = 0	0.00000485	4.68557487 - 10

TABLE III

LOGARITHMS

OF THE

TRIGONOMETRIC FUNCTIONS

From 0° 0' to 0° 3', and from 89° 57' to 90°, for every second From 0° to 2°, and from 88° to 90°, for every ten seconds From 1° to 89°, for every minute

Note. — The characteristic of every logarithm in the following table is too large by 10. Therefore, -10 should be written after every logarithm.

L sin and L tan				·)	Ls	in and L t	an	
<i>"</i> .	\mathbf{O}^{j}	1′	2′	"	"	O'	1′	2′	"
0 1 2 3 4	4.68 557 4.98 660 5.16 270 5.28 763	6.46 373 6.47 090 6.47 797 6.48 492 6.49 175	6.76 476 6.76 836 6.77 193 6.77 548 6.77 900	60 59 58 57 56	30 31 32 33 34	6.16 270 6.17 694 6.19 072 6.20 409 6.21 705	6.63 982 6.64 462 6.64 936 6.65 406 6.65 870	6.86 167 6.86 455 6.86 7+2 6.87 027 6.87 310	30 29 28 27 26
5	5.38 454	6.49 849	6.78 248	55	35	6.22 964	6.66 330	6.87 591	25
6	5.46 373	6.50 512	6.78 59 <u>5</u>	54	36	6.24 188	6.66 78 <u>5</u>	6.87 870	24
7	5.53 067	6.51 16 <u>5</u>	6.78 938	53	37	6.25 378	6.67 23 <u>5</u>	6.88 147	23
8	5.58 866	6.51 808	6.79 278	52	38	6.26 536	6.67 680	6.88 423	22
9	5.63 982	6.52 442	6.79 616	51	39	6.27 664	6.68 121	6.88 697	21
10	5.68 557	6.53 067	6.79 952	50	40	6.28 763	6.68 557	6.88 969	20
11	5.72 697	6 53 683	6.80 28 <u>5</u>	49	41	6.29 836	6.68 990	6.89 240	19
12	5.76 476	6.54 291	6.80 61 <u>5</u>	48	42	6.30 882	6.69 418	6.89 509	18
13	5.79 952	6.54 890	6.80 943	47	43	6.31 904	6.69 841	6.89 776	17
14	5.83 170	6.55 481	6.81 268	46	44	6.32 903	6.70 261	6.90 042	16
15	5.86 167	6.56 064	6.81 591	45	45	6.33 879	6.70 676	6.90 306	15
16	5.88 969	6.56 639	6.81 911	44	46	6.34 833	6.71 088	6.90 568	14
17	5.91 602	6.57 207	6.82 230	43	47	6.35 767	6.71 496	6.90 829	13
18	5.94 085	6.57 767	6.82 545	42	48	6.36 682	6.71 900	6.91 088	12
19	5.96 433	6.58 320	6.82 859	41	49	6.37 577	6.72 300	6.91 346	11
20	5.98 660	6.58 866	6.83 170	40	50	6.38 454	6.72 697	6.91 602	10
21	6.00 779	6.59 406	6.83 479	39	51	6.39 315	6.73 090	6.91 857	9
22	6.02 800	6.59 939	6.83 786	38	52	6.40 158	6.73 479	6.92 110	8
23	6.04 730	6.60 465	6.84 091	37	53	6.40 985	6.73 865	6.92 362	7
24	6.06 579	6.60 985	6.84 394	36	54	6.41 797	6.74 248	6.92 612	6
25	6.08 351	6.61 499	6.84 694	35	55	6.42 594	6.74 627	6.92 861	5
26	6.10 05 <u>5</u>	6.62 007	6.84 993	34	56	6.43 376	6.75 003	6.93 109	4
27	6.11 69 1	6.62 509	6.85 289	33	57	6.44 14 <u>5</u>	6.75 376	6.93 35 <u>5</u>	3
28	6.13 273	6.63 006	6.85 584	32	58	6.44 900	6.75 746	6.93 599	2
29	6.14 797	6.63 496	6.85 876	31	59	6.45 643	6.76 112	6.93 843	1
30	6.16 270 59 ′	6.63 982 58 ′	6.86 167 57'	30	60	6.46 373 59 ′	6.76 476 58 ′	6.94 08 <u>5</u> 57 ′	<u>"</u>

1 11	L sin	L tan	L cos	//	,	/	"	L sin	L tan	L cos	11 1
0 0	F 60 F 57	5.68 557	10.00 000 10.00 000	0 50	60	10	0 10	7.46 373 7.47 090	7.46 373 7.47 091	10.00 000	050
10 20	5.98 660	5.98 660	10.00 000	40			20	7.47 797	7.47 797	10.00 000	50 40
30 40			10.00 000	30 20			30 40	7.48 491 7.49 175	7.48 492 7.49 175	10.00 000	30 20
50	6.38454	6.38 454	10.00 000	10			50	7.49 849	7.49 849	10.00 000	10
1 0 10		6.46 373 6.53 067	10.00 000	50	59	11	0 10	7.50 512 7.51 165	7.50 512 7.51 165	10.00 000 10.00 000	0 49
20	6.58 866	6.58 866	10.00000	40			20	7.51 808	7.51 809	10.00 000	40
30 40		6.63 982 6.68 557	10.00 000	30 20			30 40	7.52 442 7.53 067	7.52 443 7.53 067	10.00 000	30 20
50	6.72 697	6.72 697	10.00 000	10			50	7.53 683	7.53 683	10.00 000	10
2 0 10		6.76 476 6.79 952	10.00 000	50	58	12	0 10	7.54 291 7.54 890	7.54 291 7.54 890	10.00 000	0 48
20	6.83 170	6.83170	10.00000	40			20	7.55 481	7.55 481	10.00 000	40
30 40	6.86 167	6.88 969	10.00 000	30 20			30 40	7.56 064 7.56 639		10.00 000	30 20
50			10.00 000	10			50			10.00 000	10
3 0	6.94 08 <u>5</u> 6.96 433	6.94 08 <u>5</u> 6.96 433	10.00 000	50	57	13	0 10	7.57 767 7.58 320	7.57 767 7.58 320	10.00 000	0 4 7 50
20	6.98 660	6.98661	10.00 000	40 30			20	7.58866	7.58 867	10.00 000	40
30 40		7.00 779 7.02 800	10.00 000 10.00 000	20			30 40	7.59 406 7.59 939		10.00 000	30 20
50		7.04 730	10.00 000	10	-0	4.4	50	7.60 465		10.00 000	10
4 0	7.06 579	7.06 579 7.08 352	10.00 000 10.00 000	50	56	14	0 10	7.60 985 7.61 499		10.00 000	0 46
20 30	7.10 05 <u>5</u> 7.11 694	7.10 05 <u>5</u> 7.11 694	10.00 000 10.00 000	40 30			20 30	7.62 007 7.62 509		10:00 000	40 30
40	7.13 273	7.13 273	10.00000	20			40	7.63 006	7.63 006	10.00 000	20
50	7.14 797	7.14 797 7.16 270	10.00 000	10	ادد	4 ==	50	7.63 496 7.63 982	7.63 497	10.00 000	10
5 0	7.16 270		10.00 000 10.00 000	50	55	15	0 10	7.64 461		10.00 000 10.00 000	0 45 50
20 30		7.19 073 7.20 409	10.00 000	40 30			20 30	7.64 936 7.65 406	7.64 937 7.65 406	10.00 000	40 30
40	7.21 705	7.21 705	10.00000	20			40	7.65 870	7.65871	10.00 000	20
50 6 0	7.22 964		10.00 000	10	54	16	50	7.66 330 7.66 784	7.66 330 7.66 785	10.00 000	10 0 44
10	7.25 378	7.25 378	10.00000	50	O'X	10	10	7.67 23 <u>5</u>	$7.67\ 23\overline{\underline{5}}$	10.00 000	50
20 30		7.26 536 7.27 664	10,00 000	40 30			20 30	7.67 680 7.68 121	7.67 680 7.68 121	10.00 000	40 30
40	7.28 763	7.28 764	10.00 000	20 10			40	7.68 557 7.68 989	7.68 558 7.68 990	9.99 999 9.99 999	20
7 0	7.29 836 7.30 882		10.00 000		53	17	50	7.69 417	7.69418	9.99 999	10 0 43
10	7.31 904	7.31 904	10.00000	50	00	•	10	7.69841	7.69 842	9.99999	50
20 30	7.32 903 7.33 879		10.00 000 10.00 000	40 30			20 30	7.70 261 7.70 676	7.70 261 7.70 677	9.99 999 9.99 999	30
40	7.34 833 7.35 767	7.34 833	10.00 000 10.00 000	20 10			40 50	7.71 088 7.71 496	7.71 088	9.99 999	20
8 0		7.36 682	10.00 000		52	18	0	7.71 900	7.71 490	9.99 999	10 0 42
10	7.37 577	7.37577	10.00 000	50	~~		10	7.72300	7.72301	9.99 999	50
20 30		$7.3931\overline{5}$	10.00 000 10.00 000	40 30			20 30	7.72 697 7.73 090		9.99 999 9.99 999	40 30
40 50			10.00 000 10.00 000	20 10		•	40 50	7.73 479 7.73 865		9.99 999 9.99 999	20 10
9 0		7.41 797			51	19	0	7.74 248		9.99 999	-041
10 20			10.00 000 10.00 000	50 40			10 20	7.74 627 7.75 003		9.99 999 9.99 999	50 40
30	7.44 14 <u>5</u>	7.44 145	10.00 000	30			30	7.75 376	7.75 377	9.99 999	30
40 50			10.00 000 10.00 000	20 10			40 50	7.75 745 7.76 112		9.99 999 9.99 999	20 10
10 0			10.00 000		50	20	0	7.76 475		9.99 999	0 40
1 11	L cos	L cot	L sin	"	1	,	"	L cos	L cot	L sin	// /

1 11	T gin	L tan	L cos			,		L sin	T ton	T	
20 0	L sin 7.76 475		9.99 999	0	$\frac{\prime}{40}$	$\overline{\overline{30}}$	<u>"</u>	7.94 084	L tan 7.94 086	L cos 9.99 998	$\frac{^{\prime\prime}}{030}$
10	7.76 836	7.76 837	9.99 999	50		00	10	7.94 32 <u>5</u>	7.94 326	9.99 998	50
20 30	7.77 193 7.77 548	7.77 194 7.77 549		40 30			20 30	7.94 564 7.94 802		9.99 998 9.99 998	30
40	7.77 899	7.77 900	9.99 999	20			40	7.95 039	7.95 040	9.99 998	20
50	7.78 248	7.78 249 7.78 595		10	90		50	7.95 274	7.95 276	9.99 998	10
21 0	7.78 594 7.78 938	7.78 938	9.99 999	50	39	31	10	7.95 508 7.95 741	7.95 510 7.95 743	9.99 998 9.99 998	0 29
20		7.79 279		40			20	7.95 973		9.99 998	40
30 40	7.79 616 7.79 952	7.79 617 7.79 952	9.99 999 9.99 999	30 20			30 40	7.96 203 7.96 432		9.99 998 9.99 998	30 20
50	7.80 284	7.80 285	9.99 999	10			50	7.96 660	7.96 662	9.99 998	10
22 0	7.80 61 <u>5</u> 7.80 942		9.99 999 9.99 999	50	38	32	0 10	7.96 887 7.97 113		9.99 998 9.99 998	0 28
10 20		7.81 269		40			20	7.97 337		9.99 998	40
30		7.81 591		30			30	7.97 560		9.99 998	30
40 50	7.81 911	7.81 912 7.82 230		20			40 50	7.97 782 7.98 003	7.98 005	9.99 998 9.99 998	20
23 0	7.82 545	7.82 546	9.99 999	1	37	33	0	7.98 223	7.98 225		027
10	7.82 859 7.83 170	7.82 860 7.83 171		50 40			10 20	7.98 442 7.98 660	7.98 444	9.99 998 9.99 998	50 40
20 30	7.83 479	7.83 480	9.99 999	30			30	7.98 876	7.98 878	9.99 998	30
40 50		7.83 787 7.84 092	9.99 999 9.99 999	20 10			40 50	7.99 092 7.99 306		9.99 998 9.99 998	20 10
24 0		.7.84 394			36	34	0	7.99 520		9.99 998	026
10	7.84 694	7.84 695	9.99 999	50	90) T	10	7.99 732	7.99 734	9.99 998	50
20 30	7.84 992 7.85 289	7.84 993 7.85 290	9.99 999	40 30		1	20 30	7.99 943 8.00 154		9.99 998 9.99 998	30
40	7.85 583	7.85 584	9.99 999	20			40	8.00 363	8.00 365	9.99 998	20
50		7.85 877	9.99 999	10	~~		50	8.00 571		9.99 998	10
$\left \begin{array}{cc} 25 & 0 \\ 10 \end{array}\right $		7.86 167 7.86 456	9.99 999 9.99 999	50	35	35	10	8.00 779 8.00 985	8.00 781	9.99 998 9.99 998	0 25
20	7.86 741	7.86 743	9.99 999	40			20	8.01 190	8.01 193	9.99 998	40
30	7.87 026 7.87 309	7.87 027 7 87 310	9.99 999 9.99 999	30 20			30 40	8.01 39 <u>5</u> 8.01 598	8.01 397 8.01 600	9.99 998 9.99 998	30 20
50		7.87 591		10			50	8.01 801	8.01 803		10
26 0	7.87 870		9.99 999		34	36	0	8.02 002	8.02 004 8.02 205	9.99 998 9.99 998	0 24 50
10 20	7.88 147 7.88 423	7.88 148 7.88 424	9.99 999 9.99 999	50 40			10 20	8.02 402	8.02 40 <u>5</u>	9.99 998	40
30	7.88 697	7.88 698	9.99 999	30			30	8.02 601 8.02 799	8.02 604	9.99 998 9.99 998	30 20
40 50	7.88 969 7.89 240	7.88 970 7.89 241	9.99 999 9.99 999	20 10			40 50	8.02 996		9.99 998	10
27 0	7.89 509	7.89 510		0	33	37	0	8.03 192		9.99 997	023
10 20	7.89 776 7.90 041	7.89 777 7.90 043	9.99 999 9.99 999	50 40		1	10 20	8.03 387 8.03 581		9.99 997 9.99 997	50
30	7.90 305	7.90 307	9.99 999	30		1	30	8 03 775	8.03 777	9.99 997	30
40 50		7.90 569 7.90 830		20 10			40 50	8.03 967 8.04 159	8.03 970 8.04 162	9.99 997 9.99 997	20
28 0		7.91 089		1	32	$ _{38}$	0		8.04 353		022
10	7.91 346	7.91 347	9.99 999	50			10	8 04 540	8.04 543	9.99 997	50
20 30		7.91 603 7.91 858	9.99 999 9.99 999	40 30		-	20 30		8.04 732 8.04 921		40 30
40	7.92 110	7.92 111	9.99 998	20			40	8.05 105	8.05 108	9.99 997	20
50		7.92 363		10	01	90	50		8.05 29 <u>5</u> 8.05 481		10 0 2 1
29 -0 10		7.92 613 7.92 862		50	31	39	$\begin{vmatrix} 0 \\ 10 \end{vmatrix}$	8.05 663	8.05 666	9.99 997	50
20	7.93 108	7.93 110	9.99 998	40			20	8.05 848	8.05 851 8.06 034	9.99 997	40 30
30 40	7.93 599	7.93 356 7.93 601	9.99 998	30 20			30 40		8.06 034		20
50	7.93 842	7.93 844	9.99 998	10			50	8.06 396	8.06 399	9.99 997	10
30 0		7.94 086		l	30		0		8.06 581		020
1 11	L cos	L cot	L sin	"	′		"	L cos	L cot	L sin	// /

				1	_							_
1 //	L sin	L tan	L cos	"	20	7	"	L sin	L tan	L cos	"	10
40 0 10		8.06 581 8.06 761		50	20	50	0 10		8.16 273 8.16 417	9.99 995 9.99 995	50	10
20 30	8.06 938 8.07 117	8.06 941 8.07 120		40 30			20 30	8.16 557		9.99 995 9.99 995	40 30	
40	8.07 295	8.07 298		20			40	8.16 700 8.16 843	8.16 848	9.99 995	20	
50	8.07 473	8.07 476		10			50	8.16 986		9.99 995	10	
41 0		8.07 653 8.07 829		0 50	19	51	10	8.17 128 8.17 270	8.17 133	9.99 995 9.99 995	50	9
20	8.08 002	8.08005	9.99 997	40			20	8.17 411	8.17 416	9.99 995	40	
30 40		8.08 180 8.08 354		30 20			30 40		8.17 557 8.17 697	9.99 995 9.99 995	30 20	
50		8.08 527		10			50		8.17 837	9.99 995	10	
42 0		8.08 700			18	52	0		8.17 976	9.99 995	0	8
10 20		8.08 872 8.09 043		50			10 20		8.18 115 8.18 254	9.96 99 <u>5</u> 9.99 995	50	
30	8.09 210	8.09 214	9.99 997	30			30	8.18 387	8.18 392		30	
40 50		8.09 384 8.09 553		20 10			40 50		8.18 530 8.18 667	9 99 99 <u>5</u> 9.99 995	20 10	
43 0	_	8.09 722			17	53	0		8.18 804	9.99 995	0	7
10 20		8.09 890 8.10 057		50 40			10 20		8.18 940 8.19 076	9.99 995	50 40	
30		8.10 224		30			30		8.19 211	9.99 995	30	-
40 50		8.10 390		20			40	8.19 341	8.19 347	9.99995	20 10	
44 0	8.10 552	8.10 555 8.10 720		10	16	54	50		8.19 4S1 8.19 616	9.99 99 <u>5</u> 9 99 995	0	6
10	8.10 881	8.10 884		50	10	07	10		8.19 749	9.99 995	50	
20 30	8.11 044 8 11 207	8.11 048 8.11 211	9.99 996	40 30			20 30			9.99 99 <u>5</u> 9-99 995	40 30	
40		8.11 373		20			40	8.20 143	8.20 149	9.99 995	20	
50	8.11 531	8.11 535		10			50		8.20 281		10	
$ 45 \ 0 \ 10$	8.11 693	8.11 696 8.11 857		50	15	55	0 10		8.20 413 8.20 544		50	5
20	8.12 013	8.12 017	9.99 996	40			20	8.20 669	8 20 675	9.99 994	40	
30 40	8.12 172 8.12 331	8.12 176 8 12 335	9.99 996	30 20			30 40		8.20 806 8.20 936		30 20	
50			9.99 996	10			50		8.21 066		10	
46 0		8.12 651			14	56	0		8.21 195		0	4
10 20		8.12 808 8.12 965	9.99 996 9.99 996	50 40			10 20		8.21 324 8.21 453		50	
30	8.13 117		9.99 996	30			30		8.21 581		30	
40 50	8.13 272 8.13 427	8.13 276 8.13 431		20 10			40 50		8.21 709 8.21 837		20 10	
47 0	8.13 581	8.13 585	9.99 996		13	57	0	8.21 958	8.21 964	9.99 994	0	3
10 20		8.13 739 8.13 892		50	b		10 20	8.22 08 <u>5</u> 8.22 211	8.22 091 8.22 217	9.99 994 9.99 994	50 40	
30	8.14 041	8.14 045	9.99 996	30			30	8 22 337	8.22 343	9.99 994	30	
40 50		8.14 197 8.14 348		20 10			40 50	8 22 463 8 22 588	8.22 469 8.22 595		20	
48 0		8.14 500		1	12	58	0		8.22 720		0	2
10	8.14 646	8.14 650	9.99 996	50			10	8.22 838	8.22 844	9.99 994	50	
20 30		8.14 800 8.14 950		40 30			20 30	8.23 962	8.23 092	9.99 994 9.99 994	30	
40	8.15 094	8.15 099	9.99 996	20			40	8.23 210	8.23 216	9.99 994	20	
50 49 0		8.15 247 8.15 395		10	11	59	50		8.23 339 8.23 462	9.99 994 9.99 994	10	
10	8.15 538	8.15 543	9.99 996	50	11	09	10	8.23 578	8.23 58 <u>5</u>	9.99 994	50	
20		8.15 690 8.15 836		40 30			20 30		8.23 707	9.99 994 9.99 99 3	40 30	
30 40	8.15 978	8.15 982	9.99 995	20			40	8.23 944	-8.23 950	9.99 993	20	
50	8.16 123	8.16 128	9.99 995	10	4 ~	0.5	50			9.99 993	10	_
$\frac{50 \ 0}{1111}$		8.16 273			$\frac{10}{\prime}$	$\frac{60}{7}$			8.24 192 L. cot		0	<u>'</u>
/ //	L cos	L cot	L sin	"		<u> </u>	"	L cos	L cot	L sin	//	′

1 11	L sin	L tan	L cos	"	,	,	//	L sin	L tan	L cos	// /
0 0	8.24 186	8.24 192	9.99 993	0	60	10	0	8.30 879	8.30 888	9.99 991	050
10 20		8.24 313 8.24 433	9.99 993 9.99 993	50 40			10 20		8.30 992 8.31 095		50
30	8 24 546	8.24 553	9.99 993	30			30	8.31 188	8.31 198	9.99 991	30
40 50		8.24 672 8.24 791		20 10			40 50		8.31 300 8.31 403		20
1 0		8.24 910			59	11	0		8.31 505		049
10 20		8.25 029 8.25 147		50 40			10 20	8.31 597	8.31 606 8.31 708		50 40
30	8.25 258	8.25 265	9.99 993	30			30	8.31 800	8.31 809	9.99 991	30
40 50	• 8.25 375 8 25 493	8.25 382 8.25 500		20			40 50		8.31 911 8.32 012		20
2 0		8.25 616			58	12	0		8.32 112		048
10		8.25 733 8.25 849		50 40			10 20		8.32 213		50 40
20 30		8.25 965		30			30		8.32 313 8.32 413		30
40 50		8.26 081 8.26 196		20 10			40 50		8.32 513 8.32 612		20
3 0		8.26 312			57	13	0		8.32 711		047
10	8.26 419	$8\ 26\ 426$	9.99 993	50			10	8.32 801	8.32 811	9.99 990	50
20 30		8.26 541 8.26 655		40			20 30		8.32 909 8.33 008		40 30
40		8.26 769		20			40 50		8.33 106 8.33 205		20
50 4 0	_	8.26 882 8.26 996		10	56	14	0		8.33 302		046
10	8.27 101	8.27 109	9.99 992	50	00	1.1	10	8.33 390	8.33 400	9.99 990	50
20 30		8.27 221 8.27 334		40 30			20 30		8.33 498 8.33 595	9.99 990	30
40	8.27 438	8.27446	9.99 992	20			40	8.33 682	8.33 692	9.99 990	20
50 5 0	_	8.27 558 8.27 669		10	55	15	50		8.33 789 8.33 886		$\begin{bmatrix} 10 \\ 0 45 \end{bmatrix}$
10	8.27 773	8.27 780	9.99 992	50	oo	10	10	8.33 972	8.33 982	9.99 990	50
20 30		8.27 891 8.28 002	9.99 992 9.99 992	40 30			20 30		8.34 078 8.34 174	9.99 990	30
40	8.28 10+	8 28 112	9.99 992	20			40	8.34 260	8.34 270	9.99 989	20
50		8.28 223		10	~ A	10	50		8.34 366 8.34 461		$\begin{bmatrix} 10 \\ 0 44 \end{bmatrix}$
6 0		8.28 332 8.28 442		50	54	16	0 10		8.34 556		50
20 30		8.28 551		40 30			20 30		8.34 651 8.34 746	9.99 989	40 30
40		8.28 660 8.28 769		20			40	8.34 830	8.34 840	9.99 989	20
50		8.28 877		10	w 0		50		8.34 93 <u>5</u>	9.99 989	10
7 0 10		8.28 986 8.29 094		50	53	17	10		8.35 029 8.35 123	9.99 989 9.99 989	0 4.3 50
20	8.29 093	8.29 201	9.99 992	40			20	8.35 206	8.35 217	9.99 989 9.99 989	40 30
30 40		8.29 309 8.29 416		30 20			30 40		8.35 310 8.35 403	9.99 989	20
50-		8.29 523		10		4.5	50		8.35 497		10
8 0 10		8.29 629 8.29 736		50	52	18	0 10		8.35 590 8.35 682		0 42 50
20	8.29 833	8.29 842	9.99 991	40			20	8.35 764	8.35 775	9.99 989	40
30 40		8.29 947 8.30 053		30 20			30 40	8.35 948	8.35 867 8.35 959	9.99 989	30 20
-50	8.30 1 <u>5</u> 0	8.30 158	9.99 991	10			50	8.36 040	8.36 051	9.99 989	10
9 0 10	8.30 255	8.30 263 8.30 368	9.99 991	50	51	19	0 10	8.36 131	8.36 143 8.36 235	9.99 989 9.99 988	0 41 50
20	8.30 464	8.30 473	9.99 991	40			20	8.36 314	8.36 326	9.99 988	40
30 40		8.30 577 8.30 681		30 20			30 40		8.36 417 8.36 508	9.99 988 9.99 988	30 20
50		8.30 78 <u>5</u>		10			50	8.36 587	8.36 599	9.99 988	10
10 0		8.30 888		0	<u>50</u>	20	0		8.36 689		040
/ //	L cos	L cot	L sin	"	′	/	"	L cos	L cot	L sin	// /

0.4						<u>. </u>					
1 11	L sin	L tan	L cos	11	,	1	"	L sin	L tan	L cos	11 1
20 0 10 20 30 40 50	8.36 768 8.36 858 8.36 948 8.37 038	8.36 689 8.36 780 8.36 870 8.36 960 8.37 050 8.37 140	9.99 988 9.99 988 9.99 988 9.99 988	0 50 40 30 20 10	40	30	0 10 20 30 40 50	8.41 872 8.41 952 8.42 032 8.42 112	8.41 807 8.41 887 8.41 967 8.42 048 8.42 127 8.42 207	9.99 985 9.99 985 9.99 98 <u>5</u> 9.99 98 <u>5</u>	0 30 50 40 30 20 10
21 0 10 20 30 40 50	8.37 306 8.37 395 8.37 484 8.37 573	8.37 229 8.37 318 8.37 408 8.37 497 8.37 585 8.37 674	9.99 988 9.99 988 9.99 988 9.99 988	0 50 40 30 20 10	39	31	0 10 20 30 40 50	8.42 351 8.42 430 8.42 510 8.42 589	8.42 287 8.42 366 8.42 446 8.42 52 <u>5</u> 8.42 406 8.42 683	9.99 98 <u>5</u> 9.99 98 <u>5</u> 9.99 98 <u>5</u> 9.99 98 <u>5</u> .	0 29 50 40 30 20 10
22 0 10 20 30 40 50	8.37 838 8.37 926 8.38 014 8.38 101	8.37 762 8.37 850 8.37 938 8.38 026 8.38 114 8.38 202	9.99 988 9.99 988 9.99 987 9.99 987	0 50 40 30 20 10	38	32	0 10 20 30 40 50	8.42 82 <u>5</u> 8.42 903 8.42 982 8.43 060	8.42 762 8.42 840 8.42 919 8.42 997 8.43 075 8.43 154	9.96 984 9.99 984 9.99 984 9.99 984	0 28 50 40 30 20 10
23 0 10 20 30 40 50	8.38 363 8.38 450 8.38 537 8.38 624	8.38 289 8.38 376 8.38 463 8.38 550 8 38 636 8.38 723	9.99 987 9.99 987 9.99 987 9.99 987	0 50 40 30 20 10	37	33	0 10 20 30 40 50	8.43 293 8.43 371 8.43 448 8.43 526	8.43 232 8.43 309 8.43 387 8.43 464 8.43 542 8.43 619	9.99 984 9.99 984 9.99 984 9.99 984	0 27 50 40 30 20 10
24 0 10 20 30 40 50	8.38 882 8.38 968 8.39 054 8.39 139	8.38 809 8.38 895 8.38 981 8.39 067 8.39 153 8.39 238	9.99 987 9.99 987 9.99 987 9.99 987	0 50 40 30 20 10	36	34	0 10 20 30 40 50	8.43 757 8.43 834 8.43 910 8.43 987	8.43 696 8.43 773 8.43 850 8.43 927 8.44 003 8.44 080	9.99 984 9.99 984 9.99 984 9.99 984	0 26 50 40 30 20 10
25 0 10 20 30 40 50	8.39 395 8.39 480 8.39 565 8.39 649	8.39 323 8.39 408 8.39 493 8.39 587 8.39 663 8.39 747	9.99 987 9.99 987 9.99 987 9.99 987	0 50 40 30 20 10	35	35	0 10 20 30 40 50	8.44 216 8.44 292 8.44 367 8.44 443	8.44 156 8.44 232 8.44 308 8.44 384 8.44 460 8.44 536	9.99 983 9.99 983 9.99 983 9.99 983	0 25 50 40 30 20 10
26 0 10 20 30 40 50	8.39 902 8.39 986 8.40 070 8.40 153	8.39 832 8.39 916 8.40 000 8.40 083 8.40 167 8.40 251	9.99 986 9.99 986 9.99 986 9.99 986	50 40 30 20 10	34		0 10 20 30 40 50	8.44 669 8.44 745 8.44 820 8.44 89 <u>5</u>	8.44 611 8.44 686 8.44 762 8.44 837 8.44 912 8.44 987	9.99 983 9.99 983 9.99 983 9.99 983	0 24 50 40 30 20 10
27 0 10 20 30 40 50	8.40 403 8.40 486 8.40 569 8.40 651	8.40 334 8.40 417 8.40 <u>5</u> 00 8.40 583 8.40 665 8.40 748	9.99 986 9.99 986 9.99 986 9.99 986	0 50 40 30 20 10	33	37	0 10 20 30 40 50	8.45 119 8.45 193 8.45 267 8.45 341	8.45 359	9.99 983 9.99 983 9.99 983	0 23 50 40 30 20 10
28 0 10 20 30 40 50	8.40 898 8.40 980 8.41 062 8 41 144 8.41 225	8.40 830 8.40 913 8.40 99 <u>5</u> 8.41 077 8.41 158 8.41 240	9.99 986 9.99 986 9.99 986 9.99 986 9.99 986	0 50 40 30 20 10	32	38	0 10 20 30 40 50	8.45 563 8.45 637 8.45 710 8.45 784	8.45 507 8.45 581 8.45 65 <u>5</u> 8.45 728 8.45 802 8.45 87 <u>5</u>	9.99 982 9.99 982 9.99 982 9.99 982	0 22 50 40 30 20 10
29 0 10 20 30 40 50	8.41 388 8.41 469 8.41 550 8.41 631 8.41 711	8.41 321 8.41 403 8.41 484 8.41 565 8.41 646 8.41 726	9.99 985 9.99 985 9.99 985 9.99 985 9.99 985	50 40 30 20 10	31	39	0 10 20 30 40 50	8.46 003 8.46 076 8.46 149 8.46 222 8.46 294	8.45 948 8.46 021 8.46 094 8.46 167 8.46 240 8.46 312	9.99 982 9.99 982 9.99 982 9.99 982 9.99 982	0 21 50 40 30 20 10
30 0		8.41 807		-	30	$\frac{40}{}$	0		8.46 385		020
/ //	L cos	L cot	L sin	"	/		"	L cos	L cot	L sin	" '

1					_							
1:11	\mathbf{L} sin	L tan	L cos	_//			//	L sin	L tan	L cos	"	1
40 0		8.46 385			20	50	0		8.50 527			10
10 20		8.46 457 8.46 529		50 40			10 20		8.50 593 8.50 658		50	
30	8.46 583	8.46 602		30			30		8.50 724		30	
40	8.46 65 <u>5</u>		9.99 981	20			40		8.50 789		20	
50	8.46 727	8.46 745	9.99 981	10			50	8.50 832	8.50 85 <u>5</u>	9.99 977	10	
41 0	8.46 799	8.46 817	9.99 981	0	19	51	0	8.50 897	8.50 920	9.99 977	0	9
10		8.46 889		50			10			9.99 977	50	
20 30		8.46 960 8.47 032		30			20		8.51 050 8.51 015		40	
40		8.47 103		20		ĺ	30 40		8.51 180		30 20	
50		8.47 174		10			50		8.51 245		10	
42 0	8.47 226	8.47 245	9.99 981	0	18	52	0	8.51 287	8.51 310	9.99 977	0	8
10		8.47 316		50			10		8.51 374		50	
20		8.47 387		40		ŀ	20		8.51 439		40	
30 40		8.47 458 8.47 528		30 20			30		8 51 503		30	
50		8.47 599		10			40 50		8.51 568 8.51 632		20 10	
43 0		8.47 669			17	53	0		8.51 696		0	7
10		8.47 740		50		ال	10		8.51 760		50	
20		8.47 810		40			20		8.51 824		40	
30		8.47 880		30			30		8.51 888		30	
40 50		8.47 9 <u>5</u> 0 8.48 020		20			40 50		8.51 952 8.52 015	9.99 976	20 10	
				1	10	- 4				9.99 976		
$ 44 \ _{10}^{0} $		8.48 090 8.48 159		50	10	54	0 10		8.52 079 8.52 143		50	6
20		8.48 228		40			20		8.52 206		40	
30		8.48 298		30			30		8.52 269		30	
40		8.48 367		20			40		8.52 332		20	
50		8.48 436		10			50		8.52 396		10	
$ 45 _{0}$		8.48 505			15	55	0		8.52 459		0	-5
$\begin{vmatrix} 10 \\ 20 \end{vmatrix}$		8.48 574 8.48 643		50 40			10 20		8.52 522 8.52 584		50	
30		8.48 711		30			30		8.52 647		30	
40		8.48 780		20			40		8.52 710		20	
50		8.48 849		10			50		8.52 772		10	
46 0		8.48 917			14	56	0		8.52 835		0	4
10 20		8.48 985 8.49 053		50			10 20		8.52 897 8.52 960		50	
30		8.49 121		30			30		8.53 022		30	
40		8.49 189		20			40		8.53 084		20	
50	8.49 236	8.49 257	9.99 979	10		l	50	8.53 121	8.53 146	9.99 97 <u>5</u>	10	
47 0		8.49 325			13	57	0		8.53 208		0	3
10		8.49 393		50			10		8.53 270		50	
20 30		8.49 460 8.49 528		40 30			20 30		8.53 332 8.53 393		40 30	
40		8.49 595		20			40		8.53 455	9.99 97 <u>3</u> 9.99 975	20	
50		8.49 662		10			50		8.53 516		10	
48 0		8.49 729		0	12	58	0	8.53 552	8.53 578	9.99 974	0	2
10		8.49 796		50			10		8.53 639		50	
20		8.49 863		40			20		8.53 700		40	
30 40		8.49 930 8.49 997		30 20			30 40		8.53 762 8.53 823		30 20	
50		8.50 063		10			50		8.53 884		10	1
49 0		8 50 130			11	59	0		8.53 945		0	1
10		8.50 196		50			10		8.54 005		50	-
20	8.50 241	8.50:263	9.99 978	40			20		8.54 066		40	
30		8.50 329		30			30		8.54 127		30	
40 50		8.50 39 <u>5</u> 8.50 46 <u>1</u>		20			40 50		8.54 187 8.54 248		$\begin{vmatrix} 20 \\ 10 \end{vmatrix}$	ĺ
50 0		8.50 527		1	10	60	0		8.54 308		0	0
1 "	L cos	L cot	L sin	"	7	50	"	L cos	L cot	L sin	"	7
	LI CUS	T (0)	TI SIII		_′		′′	11 000	1 600	TI SIII	"	′

36

,	8 L sin	8Ltan	11L cot	9 L cos	,
0	.24 186	.24 192	.75 808	.99 993	60
1	.24 903	.24 910	.75 090	.99 993	59
$\begin{vmatrix} 2\\3 \end{vmatrix}$.25 609 .26 304	.25 616	.74 384 .73 688	.99 993	58
4	.26 988	.26 996	.73 004	.99 992	56
5	.27 661	.27 669	.72 331	.99 992	55
6	.28 324	.28 332	.71 668	.99 992	54
7	.28 977	.28 986	.71 014	.99 992	53
8 9	.29 621 .30 255	.29 629	.70 371 .69 737	.99 992 .99 991	52 51
10	.30 879	.30 888	.69 112	.99 991	50
11	.31 495	.31 505	.68 495	.99 991	49
12	.32 103	.32 112	.67 888	.99 990	48
13	.32 702 .33 292	.32 711 .33 302	.67 289 .66 698	.99 990 .99 990	47 46
15	.33 875	.33 886	.66 114	.99 990	45
16	.34 450	.34 461	.65 539	.99 989	44
17	.35 018	.35 029	.6+971	.99 989	43
18	.35 578	.35 590	.64 410	.99 989	42
19	.36 131	.36 143	.63 857	.99 989	41
20 21	.36 678 .37 217	.36 689	.63 311	.99 988	40 39
22	.37 750	.37 762	.62 238	.99 988	38
23	.38 276	.38 289	.61 711	.99 987	37
24	.38 796	.38 809	.61 191	.99 987	36
25	.39 310	.39 323	.60 677	.99 987	35
26	.39 818	.39 832 .40 334	.60 168 .59 666	.99 986 .99 986	34
28	.40 816	.40 830	.59 170	.99 986	32
29	.41 307	.41 321	.58 679	.99 985	31
30	.41 792	.41807	.58 193	.99 985	30
31	.42 272	.42 287	.57 713 .57 238	.99 98 <u>5</u> .99 984	29
32	.42 746	.43 232	.56 768	.99 984	28 27
34	.43 680	.43 696	.56304	.99 984	26
35	.44 139	.44 156	.55 844	.99 983	25
36	.44 594	.44 611	.55 389	.99 983	24
37	.45 044 .45 489	.45 061 .45 507	.54 939 .54 493	.99 983	23
39	.45 930	.45 948	.54 052	,99 982	21
40	.46 366	.46 385	.53 615	.99 982	20
41	.46 799	.46817	.53 183	.99 981	19
42	.47 226	.47 245 .47 669	.52 75 <u>5</u> .52 331	.99 981 .99 981	18
43	.47 6 <u>5</u> 0 .48 069	.48 089	.51 911	.99 980	17 16
45	.48 485	.48 505	.51 495	.99 980	15
46	.48 896	.48917	.51 083	.99 979	14
47	.49 304	.49 325	.50 675	.99 979	13
48 49	.49 708 .50 108	.49 729 .50 130	.50 271 .49 870	.99 979	12
50	.50 504	.50 527	.49 473	.99 978	10
51	.50 897	.50920	.49 080	.99 977	9
52	.51 287	.51 310	.48 690	.99 977	8 7
53 54	.51 673 .52 055	.51 696 .52 079	.48 304	.99 977	6
55	.52 434	.52459	.47 5+1	.99 976	5
56	.52 810	.52835	.47 165	.99 975	4
57	.53 183	.53 208	.46 792	.99 975	3
58 59	.53 552	.53 578 .53 94 <u>5</u>	.46 422 .46 055	.99 974	5 4 3 2 1
60	.54 282	.54 308	.45 692	.99 974	0
/	8L cos		11L tan		7
L					

,	8 L sin	8 L tan	11 L cot	9 L cos	1,
0	.54 282	.54 308	.45 692	.99 974	60
1	.54 642	.54 669	.45 331	.99 973	59
3	.54 999 .55 354	.55 027 .55 382	.44 973	.99 973	58 57
4	.55 705	.55 734	.44 266	.99 972	56
5	.56 054	.56 083	.43 917	.99 971	55
6	.56 400	.56 429	.43 571	.99 971	54
8	.56 743 .57 084	.56 773 .57 114	.43 227	.99 970	53
9	.57 421	.57 452	.42 548	.99 969	52 51
10	.57 757	.57 788	.42 212	.99 969	50
11	.58 089	.58 121	.41 879	.99 968	49
12	.58 419 .58 747	.58 451 .58 779	.41 549	.99 968	48
14	.59 072	.59 105	.40 895	.99 967	46
15	.59 39 <u>5</u>	.59 428	.40 572	.99 967	45
16	.59 715	.59 749	.40 251	.99 966	44
17	.60 033	.60 068 .60 384	.39 932 .39 616	.99 966	43
19	.60 662	.60 698	.39 302	.99 964	41
20	.60 973	.61 009	.38 991	.99 964	40
21	.61 282	.61 319	.38 681	.99 963	39
22 23	.61 589 .61 894	.61 626 .61 931	.38 374	.99 963	38
2+	.62 196	.62 234	.37 766	.99 962	37 36
25	.62 497	.62 535	.37 465	.99 961	35
26	.62 79 <u>5</u>	.62 834	.37 166	.99 961	34
27 28	.63 091 .63 385	.63 131 .63 426	.36 869 .36 574	.99 960	33
29	.63 678	.63 718	.36 282	.99 959	32 31
30	.63 968	.64 009	.35 991	.99959	30
31	.64 256	.64 298	.35 702	.99 958	29
32	.64 543 .64 827	.64 585 .64 870	.35 41 <u>5</u> .35 130	.99 958	28
34	.65 110	.65 154	.34 846	.99 956	27 26
35	.65 391	.65 435	.34 565	.99 956	25
36	.65 670	.65 715	.31 285	.99 955	24
37	.65 947	.65 993 .66 269	.34 007 .33 731	.99 95 <u>5</u>	23
38	.66 497	.66 543	.33 457	.99 954	22 21
40	.66 769	.66 816	.33 184	.99 953	20
41	.67 039	.67 087	.32 913	.99 952	19
42	.67 308 .67 575	.67 356 .67 624	.32 644	.99 952	18
44	.67 841	.67 890	.32 110	.99 951	16
45	.68 104	.68 154	.31 846	.99 950	15
46	.68 367	.68 417	.31 583	.99 949	14
47	.68 627 .68 886	.68 678 .68 938	.31 322 .31 062	.99 949	13
49	.69 144	.69 196	.30 804	.99 948	11
50	.69 400	.69 453	.30 547	.99 947	10
51	.69 654	.69 708	.30 292	.99 946	9
52 53	.69 907 .70 159	.69 962 .70 214	.30 038 .29 786	.99 946	8 7
54	.70 409	.70 46 <u>5</u>	.29 535	.99 944	6
55	.70 658	.70714	.29 286	.99 944	5 4
56	.70 90 <u>5</u> .71 151	.70 962 .71 208	.29 038 .28 792	.99 943	4
57 58		.71 453	.28 547	.99 942	3 2
59	.71 638	.71 697	.28 303	.99 941	1
60	.71 880	. 71 940	.28 060	.99 940	0
1	8L cos	8L cot	11 L tan	9 L sin	/
			P o		

<u>/</u>	8 L sin		11 L cot	9 L cos	4
$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$.71 880 .72 120	.71 940 .72 181	.28 060 .27 819	.99 940 .99 940	60 59
2	.72 359	.72 420	.27 580	.99 939	58
3	.72 597	.72 659	.27 341	.99 938	57
4	.72834	.72 896	.27 104	.99 938	56
5	.73 069	.73 132 .73 366	.26 868 .26 634	.99 937	55 54
6 7	.7 3 303 .7 3 535	.73 600	.26 400	.99 936	53
8	.73 767	.73 832	.26 168	.99 935	52
9	.73 997	.74 063	.25 937	.99 934	51
10	.74 226	.74 292	.25 708	.99 934	50
11 12	.74 454 .74 680	.74 521 .74 748	.25 479 .25 252	.99 933 .99 932	49 48
13	.74 906	.74 974	.25 026	.99 932	47
14	.75 130	.75 199	.24 801	.99 931	46
15	.75 353	.75 423	.24 577	.99 930	45
16	.75 57 <u>5</u>	.75 645	.24 355	.99 929	44
17	.75 795 .76 015	.75 867 .76 087	.24 133 .23 913	.99 929 .99 928	43 42
19	.76 234	.76 306	.23 694	.99 927	41
20	.76 451	.76 52 <u>5</u>	.23 475	.99 926	40
21	.76 667	.76742	.23 258	.99 926	39
22	.76 883	.76 958	.23 042	.99 925	38
23	.77 097 .77 310	.77 173 .77 387	.22 827	.99 924	37 36
25	.77 522	.77 600	.22 400	.99 923	35
26	.77 733	.77 811	.22 189	.99 922	34
27	.77 943	.78022	.21 978	.99 921	33
28 29	.78 152 .78 360	.78 232 .78 441	.21 768 .21 559	.99 920 .99 920	32
30	.78 568	.78 649	.21 359	.99 920	30
31	.78 774	.78 855	.21 14 <u>5</u>	.99 918	29
32	.78 979	.79 061	.20 939.	.99 917	28
33	.79 183	.79 266	.20 734	.99 917	27
34	.79386	.79 470	.20 530	.99 916	26
35	.79 588 .79 789	.79 673 .79 875	.20 327	.99 913	24
37	.79 990	.80 076	.19924	.99 913	23
38	.80 189	.80 277	.19723	.99 913	22
39	.80388	.80 476	.19 524	.99912	21
40 41	.80 585 .80 782	.80 674 .80 872	.19 326 .19 128	.99 911	20 19
42	.80 978	.81 068	.18 932	.99 909	18
43	.81 173	.81 264	.18 736	.99 909	17
44	.81 367	.81 459	.18 541	.99 908	16
45	.81 560	.81 653	.18 347	.99 907	15
46 47	.81 752 .81 944	.81 846 .82 038	.18 154 .17 962	.99 906 .99 905	14
48	.82 134	.82 230	.17 770	.99 904	12
49	.82324	.82 420	.17 580	.99 904	11
50	.82 513	.82 610	.17 390	.99 903	10
51 52	.82 701 .82 888	.82 799 .82 987	.17 201 .17 013	.99 902 .99 901	8
53	.83 075	.83 17 <u>5</u>	.16 825	.99 900	8 7 6
54	.83 261	.83 361	.16 639	.99 899	
5.5	.83 446	.83 547	.16 453	.99 898	5 4 3 2 1
56	.83 630	.83 732 .83 916	.16 268 .16 084	.99 898	3
58	.83 996	.84 100	.15 900	.99896	2
59	.84 177	.84 282	.15 718	.99 89 <u>5</u>	
60	.84358	.84 464	.15 536	.99 894	0
1	8 L cos	8L cot	11 L tan	9 L sin	′

,	8 L sin	8 L tan	11 L cot	9 L cos	,
0	.84 358	.84 464	.15 536	.99894	60
1 2	.84 539 .84 718	.84 646 .84 826	.15 354 .15 174	.99 893 .99 892	59 58
3	.84 897	.85 006	.14 994	.99 891	57
4	.85 075	.85 18 <u>5</u>	.14 815	. 99 891	56
5	.85 252	.85 363	.14 637	.99 890	55
6	.85 429 .85 605	.85 540 .85 717	.14 460 .14 283	.99 889 .99 888	54 53
8	.85 780	.85 893	.14 107	.99 887	52
9	.85 95 <u>5</u>	.86 069	.13 931	.99 886	51
10	.86 128	.86 243	.13 757 .13 583	.99 885	50
11 12	.86 301 .86 474	.86 417 .86 591	.13 409	.99 884 .99 883	49 48
13	.86 645	.86 763	.13 237	.99 \$82	47
14	.86816	.86 935	.13 06 <u>5</u>	.99881	46
15	.86 987 .87 156	.87 106 .87 277	.12 S94 .12 723	.99 880	45 44
16 17	.87 325	.87 447	.12 553	.99 879	43
18	.87 494	.87616	.12 384	.99878	42
19	.87 661	.87 78 <u>5</u>	.12 215	.99 877	41
20 21	.87 829 .87 995	.87 953 .88 120	.12 047 .11 880	.99 876 .99 87 <u>5</u>	40 39
22	.88 161	.88 287	.11713	.99874	38
23	.88 326	.88 453	.11 547	.99873	37
2+	.88 490	.88618	.11 382	.99872	36
25 26	.88 654 .88 817	.88 783 .88 948	.11 217	.99 871 .99 870	35 34
27	.88 980	.89 111	.10889	.99 869	33
28	.89 142	·89 274	.10 726	.99 868	32
29	.89 304	.89 437	.10 563	.99 867	31
30 31	.89 464 .89 625	.89 598 .89 760	.10 402 .10 240	.99 866 .99 865	30 29
32	.89 784	.89 920	.10 080	.99 864	28
33	.89 943	.90 080	.09 920	.99 863	27
34	.90 102	.90 240	.09 760	.99 862	26
35 36	.90 260	.90 399 .90 557	.09 601	.99 861	25 24
37	.90 574	.90 71 <u>5</u>	.09 285	.99859	23
38	.90 730	.90 872	.09 128	.99 858 .99 857	22 21
39 40	.90 885	.91 029 .91 18 <u>5</u>	.08 815	.99856	20
41	.91 195	.91 340	.08 660	.99 85 <u>5</u>	19
42	.91 349	.91 495	.08 505	.99854	18
43 44	.91 502 .91 655	.91 6 <u>5</u> 0 .91 803	.08 350	.99 853	17 16
45	.91 807	.91 957	.08 043	.99851	15
46	.91 959	.92 110	.07 890	.99850	14
47	.92 110	.92 262	.07 738	.99 848	13
48 49	.92 261 .92 411	.92 414 .92 565	.07 586 .07 435	.99 847 .99 846	12
50	.92 561	.92716	.07 284	.99 845	10
51	.92 710	.92 866	.07 134	.99844	9
52 53	.92 859	.93 016 .93 16 <u>5</u>	.06 984	.99 843 .99 842	8 7
53 54	.93 007	.93 313	.06 835 .06 687	.99 841	6
55	.93 301	.93 462	.06 538	.99840	5 4
56	.93 448	.93 609	.06 391	.99839	4
57 58	.93 594	.93 756 .93 903	.06 244	.99 838	3 2
59	.93 740 .93 88 <u>5</u>	.93 903	.05 951	.99 836	1
60	.94 030	.94 195	.05 805	.99834	0
,	8 L cos	8 L cot	11 L tan	$9 L \sin$,

38

,	8L sin	8L tan	11 L cot	9 L cos	,
0	.94 030	.94 195	.05 805	.99 834	60
1	.94 174	.94 340	$.0566\overline{0}$.99 833	59
2	.94 317	.94 485	.05 515	.99 832	58
3 4	.94 461	.94 630	.05 370 .05 227	.99831	57
1	.94 603	.94 773			56
5 6	.94 746	.94 917	.05 083	.99 829 .99 828	55 54
7	.94 887 .95 029	.95 202	.04 798	.99 827	53
8	.95 170	.95 344	.04 656	.99 825	52
9	.95 310	.95 486	.04 514	.99 824	51
10	.95 450	.95 627	.04 373	.99 823	50
11	.95 589	.95 767	.04 233	.99 822	49
12	.95 728	.95 908	.04 092	.99 821	48
13	.95 867 .96 005	.96 047 .96 187	.03 953	.99 820	47
15	.96 143	.96 325	.03 675	.99 817	
16	.96 280	.96 464	.03 536	.99816	45
17	.96 417	.96 602	.03 398	.99 815	43
18	.96 553	.96739	.03 261	.99814	42
19	.96 689	.96877	.03 123	.99813	41
20	.96825	.97 013	.02 987	.99812	40
21	.96 960	.97 150	.02 850	.99 810	39
22 23	.97 095 .97 229	.97 285 .97 421	$.0271\underline{5}$ $.02579$.99 809 .99 808	38
24	.97 363	.97 556	.02 444	.99 807	36
25	.97 496	.97 691	.02 309	.99 806	35
26	.97 629	.97 825	.02 175	.99 804	34
27	.97 762	.97 959	.02041	.99803	33
28	.97 894	.98 092	.01 908	.99 802	32
29	.98 026	.98 225	.01 775	.99 801	31
30 31	.98 157 .98 288	.98 358 .98 490	.01 642 .01 510	.99 800 .99 798	30
32	.98 419	.98 622	.01 378	.99 797	29 28
33	.98 549	.98 753	.01 247	.99 796	27
34	.98 679	.98 884	.01 116	.99 79 <u>5</u>	26
35	.98 808	.99 015	.00 985	.99 793	25
36	.98 937	.99 145	.00 855	.99 792	24
37	.99 066 .99 194	.99 275	.00 725	.99 791 .99 790	23 22
39	.99322	.99 534	.00 466	.99 788	21
40	.99 450	.99 662	.00 338	.99 787	20
41	.99 577	.99 791	.00 209	.99 786	19
42	.99 701	.99919	.00 081	.99 78 <u>5</u>	18
43	.99 830	.00 046	.99 954	.99 783	17
45	.99 956	.00 174	.99 826	.99 782	16
45	.00 082	.00 301	.99 699 .99 573	.99 781 .99 780	15
47	.00 332	.00 553	.99 447	.99 778	13
48	.00456	.00 679	.99 321	.99 777	12
49	.00 581	.00 80 <u>5</u>	.99 195	.99 776	11
50	.00 704	.00 930	.99 070	.99 775	10
51 52	.00 828	.01055	.98 945	.99 773	9
53	.01 074	.01 179	.98 821 .98 697	.99 772 .99 771	8 7
54	.01 196	.01 427	.98 573	.99 769	6
55	.01 318	.01 550	.98 450	.99768	
56	.01 440	.01 673	.98 327	.99 767	4
57	.01 561	.01 796	.98 204	.99 765	3
58	.01 682	.01918	.98 082	.99 764	5 4 3 2 1
	.01 803	.02 040	.97 960	.99 763	1 1
$\left \frac{60}{\prime}\right $.01 923 9 L cos	.02 162	.97 838	.99 761	0
L <u>′</u> _	OT COS	an cot	10 L tan	JLSIN	/

,	9 L \sin	9 L tan	10 L cot	9 L cos	1
0	.01 923	.02 162	.97 838	.99 761	60
$\frac{1}{2}$.02 043	.02 283	.97 717	.99 760 .99 759	59
3	.02 283	.02 525	.97 475	.99 757	57
4	.02 402	.02 645	.97 35 <u>5</u>	.99 756	56
5	.02 520	.02 766	.97 234	.99 755	55
6	.02 639	.02 885 .03 005	.97 11 <u>5</u> .96 995	.99 753	54 53
8	.02 874	.03 124	.96876	.99 751	52
9	.02 992	.03 242	.96 758	.99 749	51
10 11	.03 109 .03 226	.03 361	.96 639 .96 521	.99 748	50
12	.03 342	.03 597	.96 403	.99 745	48
13	.03 458	.03 714	.96 286	.99 744	47
14	.03 574	.03 832	.96 168	.99742	46
15 16	.03 690	.03 948	.96 052 .95 93 <u>5</u>	.99 741	45
17	.03 920	.04 181	.95 819	.99 738	43
18	.04 034	.04 297	.95 703	.99 737	42
19 20	.04 149	.04 413	.95 587	.99 736	41 40
21	.04 376	.04 643	.95 357	.99 733	39
22	.04490	.04 758	.95 242	.99 731	38
23 24	.04 603	.04 873	.95 127 .95 013	.99 730 .99 728	37 36
25	.04 828	.05 101	.94 899	.99 727	35
26	.04 940	.05 214	.94 786	.99 726	34
27	.05 052	.05 328	.94 672	.99 724	33
28 29	.05 275	.05 441	.94 559 .94 447	.99 723	32 31
30	.05.386	.05 666	.94 334	.99 720	30
31	.05 497	.05 778	.94 222	.99718	29
32	.05 607 .05 717	.05 890	.94 110 .93 998	.99 717 .99 716	28 27
34	.05 827	.06 113	.93 887	.99714	26
35	.05 937	.06 224	.93 776	.99 713	25
36 37	.06 046	.0633 <u>5</u>	.93 665 .93 55 <u>5</u>	.99 711 .99 710	24 23
38	.06 264	.06 556	.93 444	.99 708	22
39	.06372	.06 666	.93 334	.99 707	21
40	.06481	.06 775	.93 225	.99 705	20
41 42	.06 589 .06 696	.06 885	.93 115 .93 006	.99 704	19 18
43	.06804	.07 103	.92897	.99 701	17
44	.06911	.07 211	.92 789	.99 699	16
45 46	.07 018 .07 124	.07 320 .07 428	.92 680 .92 572	.99 698 .99 696	15 14
47	.07 231	.07 536	.92 464	.99 69 <u>5</u>	13
48	.07 337	.07 643	.92 357	.99 693	12
49 50	.07 442	.07 751	.92 249	.99 692	11 10
51	.07 653	.07 964	.92 036	.99 689	9
52	.07 758	.08 071	.91 929	.99 687	8
53 54	.07 863	.08 177	.91 823 .91 717	.99 686	7 6
55	.08 072	.08389	.91611	.99 683	5
56	.08 176	.08 495	.91 505	.99681	4
57 58	.08 280	.08 600 .08 705	.91 400 .91 29 <u>5</u>	.99 680 .99 678	3 2 1
59	.08 486	.08 810	.91 190	.99 677	Ĩ
60	.08 589	.08 914	.91 086	.99 675	0
1.	9 L cos	9 L cot	10 L tan	9 L sin	1

84° 83°

,	9 L sin	9 L tan	10 L cot	9 L cos	,
0	.08 589	.08914	.91 086	.99 675	60
1	.08 692	.09019	.90 981	.99 674	59
3	.08 79 <u>5</u> .08 897	.09 123	.90 877	.99 672	58 57
4	.08 999	.09 330	.90 670	.99 669	56
5	.09 101	.09 434	.90 566	.99 667	55
6 7	.09 202	.09 537	.90 463	.99 666	54
8	.09 405	.09742	.90 258	.99 663	52
9	.09 506	.09 84 <u>5</u>	.90 155	.99 661	51
10 11	.09 606	.09 947 .10 049	.90 053 .89 951	.99 659	50
12	.09 807	.10 150	.89 850	.99 656	48
13	.09 907	.10 252	.89 748 .89 647	.99 655	47
15	.10 006	.10 353	.89 546	.99 653 .99 651	46
16	.10 205	.10 555	.89 445	.99 650	44
17	.10 304	.10 656	.89 344	.99 648	43
18 19	.10 402	.10 756 .10 856	.89 244 .89 144	.99 647 .99 64 <u>5</u>	42
20	.10 599	.10 956	.89 044	.99 643	40
21	.10 697	.11056	.88 944	.99642	39
22 23	.10 795	.11 155	.88 84 <u>5</u> .88 746	.99 640	38
24	.10 990	.11 353	.88 647	.99 637	36
25	.11 087	.11 452	.88 548	.99 635	35
26	·.11 184 .11 281	.11 551 .11 649	.88 449 .88 351	.99 633	34
27 28	.11 377	.11 747	.88 253	.99 630	32
29	.11 474	.11 845	.88 15 <u>5</u>	. 99 629	31
30	.11 570	.11 943	.88 057	.99627	30
31 32	.11 666 .11 761	.12 040 .12 138	.87 960 .87 862	.99 625	29
33	.11857	.12 23 <u>5</u>	.87 765	.99 622	27
34	.11 952	.12 332	.87 668 .87 572	.99 620	26
35	.12 047 .12 142	.12 428 .12 52 <u>5</u>	.87 475	.99617	25
37	.12 236	.12 621	.87 379	.99615	23
38	.12 331	.12717 .12813	.87 283 .87 187	.99 613 .99 612	22 21
40	.12 519	.12 909	.87 091	.99610	20
41	.12612	.13 004	.86 996	.99 608	19
42	.12 706 .12 799	.13 099 .13 194	.86 901 .86 806	.99 607	18 17
44	.12 892	.13 289	.86 711	$.9960\overline{3}$	16
45	.12 985	.13 384	.86616	.99 601	15
46	.13 078	.13 478 .13 573	.86 522 .86 427	.99 600	14
48	.13 263	.13 667	.86 333	.99 596	12
49	.13 355	.13 761	.86 239	.99 59 <u>5</u>	11
50 51	.13 447	.13 854 .13 948	.86 146 .86 052	.99 593 .99 591	10
52	.13 630	.14 041	.85 959	.99 589	8
53	.13 722	.14 134	.85 866	.99 588	7
54	.13 813	.14 227	.85 773 .85 680	.99 586 .99 584	5
56	.13 994	.14412	.85 588	.99 582	4
57	.14 085	.14 504	.85 496	.99 581	3
58 59	.14 175 .14 266	.14 597 .14 688	.85 403 .85 312	.99 579 .99 577	8 7 6 5 4 3 2 1
60	.14 356	.14 780	.85 220	.99 575	0
,			10 L tan		1

,	9 L sin	9 L tan	10 L cot	9 L cos	,
0	.14 356	.14 780	.85 220	.99 575	60
$\frac{1}{2}$.14 445	.14 872 .14 963	.85 128	.99 574	59 58
3	.14 53 <u>5</u> .14 624	.15 054	.85 037 .84 946	.99 572	57
4	.14 714	.15 145	.84 85 <u>5</u>	.99 568	56
5	.14803	.15 236	.84 764	.99 566	55
6 7	.14 891	.15 327	.84 673	.99 565	54 53
8	.14 980 .15 069	.15 417 .15 508	.84 583 .84 492	.99 563 .99 561	52
9	.15 157	.15 598	.84 402	.99 559	51
10	.15 245	.15 688	.84 312	.99 557	50
11 12	.15 333 .15 421	.15 777 .15 867	.84 223 .84 133	.99 556 .99 554	49
13	.15 508	.15 956	.84 044	.99 552	47
14	.15 596	.16 046	.83 954	.99 550	46
15	.15 683	.16 135	.83 865	.99 548	45
16 17	.15 770 .15 857	.16 224 .16 312	.83 776 .83 688	.99 546	44 43
18	.15 944	.16 401	.83 599	.99 543	42
19	.16 030	.16 489	.83 511	.99 541	41
20	.16116	.16 577	.83 423	.99 539	40
21 22	.16 203 .16 289	.16 665 .16 753	.83 33 <u>5</u> .83 247	.99 537 .99 535	39 38
23	.16374	.16841	.83 159	.99 533	37
24	.16460	.16 928	.83 072	.99 532	36
25 26	.16 545	.17 016 .17 103	.82 984 .82 897	.99 530 .99 528	35
27	.16 631	.17 103	.82 810	.99 528	33
28	.16801	.17 277	.82 723	.99 524	32
29	.16 886	.17 363	.82 637	.99 522	31
30 31	.16970 .1705 <u>5</u>	.17 4 <u>5</u> 0 .17 5 <u>3</u> 6	.82 550 .82 464	.99 520 .99 518	30
32	.17 139	.17 622	.82 378	.99 517	28
33	.17 223	.17 708	.82 292	.99 515	27
34	.17 307	.17 794	.82 206	.99 513	26
35 36	.17 391 .17 474	.17 880 .17 965	.82 120 .82 035	.99 511	25 24
37	.17 558	.18 051	.81 949	.99 507	23
38 39	.17 641	.18 136	.81 864	.99 505	22
40	.17 724	.18 221	.81 779 .81 694	.99 503 .99 501	$\begin{vmatrix} 21 \\ 20 \end{vmatrix}$
4)	.17890	.18 391	.81 609	.99 499	19
42	.17 973	.18 475	.81 52 <u>5</u>	.99 497	18
43	.18 055 .18 137	.18 560 .18 644	.81 440 .81 356	.99 495 .99 494	17 16
45	.18 220	.18728	.81 272	.99 492	15
46	.18302	.18812	.81188	.99 490	14
47	.18 383	.18896	.81 104	.99 488	13
48 49	.18465 .18547	.18 979 .19 063	.81 021 .80 937	.99 486 .99 484	12
50	.18 628	.19 146	.80 854	.99 482	10
51	.18 709	.19 229	.80 771	.99 480	9
52 53	.18 790 .18 871	.19 312 .19 395	.80 688 .80 60 <u>5</u>	.99 478 .99 476	8
54	.18952	.19478	.80 522	.99 474	6
55	.19 033	.19 561	.80 439	.99472	5
56	.19 113	.19643	.80 357	.99 470	4
57 58	.19 193 .19 273	.19 725 .19 807	.80 27 <u>5</u> .80 193	.99 468 .99 466	3 2
59	.19 353	.19889	.80 111	.99 464	i
60	.19 433	.19971	.80 029	.99 462	0
/	9 L cos	9 L cot	10 L tan	9 L sin	/

-					1 - 1
0	9 L sin .19 433	9 L tan .19 971	.80 029	.99 462	$\frac{\prime}{60}$
	.19 513	.20 053	.79947	.99 460	59
2	.19 592	.20 13+	.79 866 .79 784	.99 458	58
3 4	.19751	.20 216 .20 297	.79 703	.99 454	56
5	.19830	.20 378	.79 622	.99 452	55
6	.19 909	.20 459	.79 541	.99 4 50	54
8	.19 988 .20 067	.20 540	.79 460 .79 379	.99 448	53 52
9	.20 145	.20 701	.79 299	.99444	51
10	.20 223	.20 782	.79 218	.99442	50
11	.20 302	.20 862	.79 138 .79 058	.99 440	49
12	.20 458	.20 942	.78 978	.99 436	47
14	.20 535	.21 102	.78 898	.99 434	46
15	.20 613	.21 182	.78818	.99 432	45
16 17	.20 691 .20 768	.21 261 .21 341	.78 739 .78 659	.99 429 .99 427	44 43
18	.20 845	.21 +20	.78 580	.99 425	42
19	.20922	.21 499	.78 501	.99 423	41
20 21	.20 999 .21 076	.21 578 .21 657	.78 1 22 .78 3 43	.99 421 .99 419	40
22	.21 153	.21 736	.78 264	.99419	39
23	.21 229	.21 814	.78 186	.9941 <u>5</u>	37
24	.21 306	.21 893	.78 107	.99 413	36
25 26	.21 382 .21 458	.21 971 .22 049	.78 029 .77 951	.99 411	35
27	.21 534	.22 127	.77 873	.99 407	33
28	.21 610	.22 205	.77 795	.99 404	32
29	.21 685	.22 283	.77 717	.99 402	31
30 31	.21 761 .21 836	.22 438	.77 639 .77 562	.99 400 .99 398	30 29
32	.21 912	.22 516	.77 484	.99 3.96	28
33	.21 987	.22 593 .22 670	.77 407 .77 330	.99 39 4	27 26
35	.22 137	.22 747	.77 253	.99 390	25
36	.22 211	.22 824	.77176	.99388	24
37	.22 286	.22 901	.77 099	.99 385	23
38	.22 361	.22 977	.77 023 .76 946	.99 383 .99 381	22 21
40	.22 509	.23 130	.76 870	.99379	20
41	.22 583	.23 206	.76 794	.99377	19
42	.22 657 .22 731	.23 283 .23 359	.76 717 .76 641	.99 37 <u>5</u> .99 372	18
44	.22 805	.23 435	.76 565	.99370	16
45	.22 878	.23 510	.76 490	.99368	15
46	.22 952	.23 586	.76 414	.99366	14
47	.23 025 .23 098	.23 661 .23 737	.76 339 .76 263	.99 364 .99 362	13
49	.23 171	.23 812	.76 188	.99359	11
50		.23 887		.99357	10
51 52	.23 317	.23 962 .2 1 037	.76 038 .75 963	.99 355	9 8
53	.23 462	.24 112	.75 888	.99351	7
54	.23 53 <u>5</u>	.24 186	.75 814	. 99 348	6
55	.23 607	.24 261	.75 739	.99 346	5 4
56	.23 679 .23 752	.24 335 .24 410	.75 66 <u>5</u> .75 590	.99 344	3
58	.23 823	.24 484	.75 516	.99 340	3 2 1
59	.23 895	.24 558	.75 442	.99 337	1
60	.23 967	.24 632	.75 368	.99 335	0
/	9 L cos	ar cot	10 L tan	9 L sin	/

′	9 L sin		10 L cot	9 L cos	1
0	.23 967	.24 632	.75 368	.99 335	60
1 2	.24 039 .24 110	.24 706 .24 779	.75 294 .75 221	.99 333	59 58
3	.24 181	.24 853	.75 147	.99 328	57
4	.24 253	.24 926	.75 074	.99 326	56
5	.24 324	.25 000	.75 000	.99 324	55
6 7	.24 39 <u>5</u> .2 1 466	.25 073 .25 146	.74 927 .74 854	.99 322	54 53
8	.24 536	.25 219	.74 781	.99 317	52
9	.24 607	.25 292	.74 708	.9931 <u>5</u>	51
10 11	.24 677 .24 748	.25 36 <u>5</u> .25 437	.74 635 .74 563	.99 313	50
12	.24 818	.25 510	.74 490	.99310	48
13	.24 888	.25 582	.74418	.99 306	47
14	.24 958	.25 655	.74 345	.99 304	46
15 16	.25 028 .25 098	.25 727 .25 799	.74 273 .74 201	.99 301	45 44
17	.25 168	.25 871	.74 129	.99 297	43
18	.25 237	.25 943	.74 057	.99 294	.42
19 20	.25 307	.26 015	.73 985 .73 914	.99 292	41 40
21	.25 445	.26 158	.73 842	.99 288	39
22	.25 514	.26 229	.73771	.99 285	38
23 24	.25 583 .25 652	.26 301	.73 699 .73 628	.99 283	37
25	.25 721	.26 443	.73 557	.99 278	35
26	.25 790	.26 514	.73 486	.99 276	34
27	.25 858	.26 585	.73 415	.99 274	33
28 29	.25 927 .25 995	.26 655	.73 34 <u>5</u> .73 274	.99 271	32 31
30	.26 063	.26 797	.73 203	.99 267	30
31	.26 131	.26 867	.73 133	.99 264	29
32	.26 199 .26 267	.26 937	.73 063 .72 992	.99 262 .99 260	28
34	.26 335	.27 078	.72 922	.99 257	27 26
35	.26 403	.27 148	.72852	.99 255	25
36	.26470	.27 218	.72 782	.99 252	24
37 38	.26 538	.27 288 .27 357	.72 712 .72 643	.99 250 .99 248	23 22
39	.26672	.27 427	.72 573	.99 245	21
40	.26 739	.27 496	.72 504	.99 243	20
41 42	.26 806 .26 873	.27 566 .27 635	.72 434 .72 36 <u>5</u>	.99 241 .99 238	19
43	.26 940	.27 704	.72 296	.99 236	17
44	.27 007	.27 773	.72 227	.99 233	16
45	.27 073	.27 842	.72 158	.99 231	15
46 47	.27 140 .27 206	.27 911 .27 980	.72 089 .72 020	.99 229	14
48	.27273	.28 049	.71951	.99 224	12
49	.27 339	.28 117	.71 883	.99 221	11
50 51	.27 40 <u>5</u> .27 471	.28 186	.71 814 .71 746	.99 219	10
52	.27 537	.28 323	.71 677	.99 214	9 8 7
53	.27 602	.28 391	.71 609	.99 212	7
54	.27 668	.28 459	.71 541	.99 209	6
55 56	.27 734 .27 799	.28 527 .28 59 <u>5</u>	.71 473 .71 405	.99 207	5 4 3 2
57	.27 864	.28,662	.71338	.99 202	3
58	.27 930	.28 730 .28 798	.71 270	.99 200	2
59 60	.27 99 <u>5</u> .28 060	.28 865	.71 202 .71 13 <u>5</u>	.99 197	0
7			./1 133 10 L tan		-
	J 2 003			2 2 BAII	

,	9 L sin	9 L tan	10 L cot	9 L cos	,
0	.28 060	.28 865	.71 13 <u>5</u>	.99 195	60
$\begin{vmatrix} 1\\2 \end{vmatrix}$.28 12 <u>5</u> .28 190	.28 933	.71 067 .71 000	.99 192	59 58
3	.28 254	.29 067	.70 933	.99 187	57
4	.28 319	.29 134	.70 866	.99 18 <u>5</u>	56
5	.28 384	.29 201	.70 799	.99 182	55
6	.28 448 .28 512	.29 268 .29 335	.70 732 .70 665	.99 180 .99 177	54
8	.28 577	.29 402	.70 598	.99 177	52
9	.28 641	.29 468	.70 532	.99 172	51
10	.28 705	.29 535	.70 465	.99 170	50
11 12	.28 769 .28 833	.29 601 .29 668	.70 399 .70 332	.99 167 .99 165	49 48
13	.28 896	.29 734	.70 266	.99 162	47
. 14	.28 960	.29 800	.70 200	.99 160	46
15	.29 024	.29 866	.70 134	.99 157	45
16	.29 087 .29 150	.29 932	.70 068	.99 155	44
17	.29 130	.29 998 .30 064	.70 002 .69 936	.99 152 .99 150	43 42
19	.29 277	.30 130	.69 870	.99 147	41
20	.29 340	.30 195	.69 80 <u>5</u>	.99 14 <u>5</u>	40
21	.29 403	.30 261	.69 739	.99 142	39
22 23	.29 466 .29 529	.30 326	.69 674 .69 609	.99 140 .99 137	38 37
24	.29 591	.30 457	.69 543	.99 135	36
25	.29 654	.30 522	.69478	.99 132	35
26	.29 716	.30 587	.69 413	.99 130	34
27 28	.29 779 .29 841	.30 652 .30 717	.69 348 .69 283	.99 127 .99 124	33
29	.29 903	.30 782	.69 218	.99 122	31
30	.29 966	.30 846	.69 154	.99 119	30
31	.30 028	.30 911	.69 089	.99 117	29
32	.30 090	.30 975 .31 040	.69 02 <u>5</u>	.99 114	28 27
34	.30 213	.31 104	.68 896	.99 109	26
35	.30 275	.31 168	.68 832	.99 106	25
36	.30 336	.31 233	.68 767	.99 104	24
37	.30 398	.31 297 .31 361	.68 703 .68 639	.99 101	23
39	.30 521	.31 425	.68 575	.99 096	21
40	.30 582	.31 489	.68 511	.99 093	20
41	.30 643	.31 552	.68448	.99 091	19
42	.30 704	.31 616 .31 679	.68 384 .68 321	.99 088	18 17
44	.30 826	.31 743	.68 257	.99 083	16
45	.30887	.31 806	.68 194	.99 080	15
46	.30 947	.31870	.68 130	.99 078	14
47 48	.31 008 .31 068	.31 933 .31 996	.68 067 .68 004	.99 075	13
49	.31 129	.32 059	.67 941	.99 070	11
50	.31 189	.32 122	.67878	.99 067	10
51	.31 250	.32 185	.67 81 <u>5</u>	.99064	9
52 53	.31 310 .31 370	.32 248 .32 311	.67 752 .67 689	.99 062	8 7
54	.31 430	.32 373	.67 627	.99 056	6
55	.31 490	.32 436	.67 564	.99 054	5
56	.31 549	.32 498	.67 502	.99 051	4
57 58	.31 609	.32 561 .32 623	.67 439 .67 377	.99 048 .99 046	3 2 1
59	.31 728	.32 685	.67 31 <u>5</u>	.99 043	ī
60	.31 788	.32 747	.67 253	.99 040	0
/	9 L cos	$9 \mathbf{L} \cot$	10 L tan	9 L sin	1
-					

,	9 L sin	9 L tan	10 L cot	9 L cos	_′_
0	.31 788	.32 747	.67 253	.99 040	60
1	.31 847	.32810	.67 190	.99 038	59 58
3	.31 907	.32 872	.67 128 .67 067	.99 035	57
4	.31 966 .32 025	.32 933 .32 995	.67 00 <u>5</u>	.99 032	56
5	.32 084	.33 057	.66 943	.99 027	55
6	.32 143	.33 119	.66 881	.99 021	5+
7	.32 202	.33 180	.66 820	.99 022	53
8	.32 261	.33 242	.66 758	.99019	51
10	.32 319	.33 303	.66 697	.99 016	50
11	.32 378 .32 437	.33 36 <u>5</u> .33 426	.66 635 .66 574	.99 013	49
12	.32 495	.33 487	.66 513	.99 008	48
13	.32 553	.33 548	.66 452	.99 005	47 46
14	.32 612	.33 609	.66 391	.99 002	45
15 16	.32 670 .32 728	.33 670	.66 330	.99 000	44
17	.32 786	.33 731 .33 792	.66 269 .66 208	.98 997 .98 994	43
18	.32 844	.33 853	.66 147	.98 991	42
19	.32 902	.33 913	.66 087	.98 989	41
20	.32 960	.33 974	. 66 026	.98 986	40 39
21	.33 018	.34 034	.65 966	.98 983	38
22 23	.33 075 .33 133	.34 09 <u>5</u> .34 155	.65 905	.98 980 .98 978	37
24	.33 190	.34 215	.65 785	.98 975	36
25	.33 248	.34 276	.65 724	.98 972	35
26	.33 305	.34 336	.65 664	.98 969	34
27	.33 362	.34 396	.65 604	.98 967	32
28 29	.33 420 .33 477	.34 456 .34 516	.65 544 .65 484	.98 964 .98 961	31
30	.33 534	.34 576	.65 424	.98 958	30
31	.33 591	.34 635	.65 365	.98 955	- 29
32	.33 647	.34 69 <u>5</u>	.65 305	.98 953	28 27
33	.33 704	.34 755	.65 245	.98 950	26
34 35	.33 761 .33 818	.34 814 .34 874	.65 186	.98 947	25
36	.33 874	.34 933	.65 126 .65 067	.98 944 .98 941	24
37	.33 931	.34 992	.65 008	.98 938	23
38	.33 987	.35 051	.64 949	.98 936	22
39	.34 043	.35 111	.64 889	.98 933	20
40	.34 100 .34 156	.35 170 .35 229	.64 830 .64 771	.98 930 .98 927	19
42	.34 212	.35 288	.64 712	.98 924	18
43	.3+268	.35 347	.64 653	.98 921	17
44	.34 324	.35 405	.64 59 <u>5</u>	.98 919	16
45	.34 380	.35 464	.64 536	.98 916	15
46 47	.34 436 .34 491	.35 523 .35 581	.64 477 .64 419	.98 913 .98 910	14
48	.34 547	.35 640	.64 360	.98 907	12
49	.34 602	.35 698	.64 302	.98 904	11
50	.34 658	.35 757	.64 243	.98 901	10
51	.34 713	.35 815	.64 185	.98 898	9
52 53	.34 769 .34 824	.35 873 .35 931	.64 127 .64 069	.98 896	8 7
54	.34 879	.35 989	.64 011	.98 890	6
55	.34 934	.36 047	.63 953	.98887	
56	.34 989	.36 105	.63 89 <u>5</u>	.98 884	5 4
57	.35 044	.36 163	.63 837 .63 779	.98 881	3
58 59	.35 099 .35 154	.36 221 .36 279	.63 779	.98 878 .98 875	3 2 1
60	.35 209	.36 336	.63 664	.98 872	o
7	9 L cos		10 L tan		7

			10 L cot		7
0	.35 209 .35 263	.36336 .36394	.63 664	.98 872	60 59
2	.35 318	.36 452	.63 548	.98 867	58
3	.35 373	.36 509	.63 491	.98 864	57
4	.35 427	.36 566	.63 434	.98 861	56
5	.35 481	.36 624	.63 376	.98 858	55
6	.35 536 .35 590	.36 681 .36 738	.63 319 .63 262	.98 85 <u>5</u>	5 1 53
8	.35 644	.36 795	.63 205	.98849	52
9	.35 698	.36852	.63 14 8	.98846	51
10	.35 752	.36 909	.63 091	.98843	50
11	.35 806 .35 860	.36 966	.63 034	.98 840	49
12	.35 914	.37 023 .37 080	.62 920	.98 837	48 47
14	.35 968	.37 137	.62 863	.98 831	46
15	.36 022	.37 193	.62 807	.98 828	45
16	.36 075	.37 2 <u>5</u> 0	.62 750	.98 825	44
17	.36 129	.37 306	.62 694	.98 822	43
18	.36 182 .36 236	.37 363 .37 419	.62 637 .62 581	.98 819 .98 816	42
20	.36 289	.37 476	.62 524	.98813	40
21	.36342	.37 532	.62 468	.98 810	39
22	.36 395	.37 588	.62412	.98 807	38
23	.36 449	.37 614	.62 356	.98 804	37
24	.36 502	.37 700	.62 300	.98 801	36
25 26	.36 555	.37 756 .37 812	.62 244 .62 188	.98 795	35
27	.36 660	.37 868	.62 132	.98 792	33
28	.36 713	.37 924	.62 076	.98 789	32
29	.36 766	.37 980	.62 020	.98 786	31
30 31	.36 819 .36 871	.38 035 .38 091	.61 96 <u>5</u>	.98 783 .98 780	30 29
32	.36 924	.38 147	.61 853	.98 777	28
33	.36 976	.38 202	.61 798	.98 774	27
34	.37 028	.38 257	.61 743	.98 771	26
35	.37 081 .37 133	.38 313 .38 368	.61 687 .61 632	.98 768 .98 765	25 24
37	.37 185	.38 423	.61 577	.98 762	23
38	.37 237	.38 479	.61 521	.98 759	22
39	.37 289	.38 534	.61 466	.98 756	21
40	.37 341	.38 589	.61 411	.98 753	20
41 42	.37 393	.38 644 .38 699	.61 356 .61 301	.98 7 <u>5</u> 0 .98 7 4 6	19 18
43	.37 497	.38 754	.61 246	.98 743	17
44	.37 549	.38 808	. 61 192	.98 740	16
45	.37600	.38 863	.61 137	.98737	15
46	.37 652,	.38 918	.61 082	.98 734	14
47	.37 703 .37 75 <u>5</u>	.38 972 .39 027	.61 028 .60 973	.98 731 .98 728	13
49	.37 806	.39 082	.60918	.98 725	11
50	.37 858	.39 136	.60 864	.98722	10
51	.37 909	.39 190	.60810	.98719	9
52	.37 960 .38 011	.39 24 <u>5</u> .39 299	.60 755 .60 701	.98 715 .98 712	8 7
54	.38 062	.39 353	.60 647	.98 709	8 7 6
55	.38 113	.39 407	.60 593	.98 706	5
56	.38 164	.39 461	.60 539	.98703	4
57	.38 215 .38 266	.39 515 .39 569	.60 485	.98 700	3
59	.38 266	.39 623	.60 431 .60 377	.98 697 .98 694	5 4 3 2 1
60	.38 368	.39 677	.60 323	.98 690	o
1	9 L cos		10 L tan		1
	1				

,	9 L sin	OT ton	10 L cot	OT age	,
<u>'</u>	.38368	.39677	.60 323	.98 690	60
1	.38418	.39 731	.60 269	.98 687	59
2 3	.38 469 .38 519	.39 78 <u>5</u> .39 838	.60 215 .60 162	.98 684	58 57
4	.38 570	.39 892	.60 108	.98 678	56
5	.38 620	.39 945	.60 05 <u>5</u>	.98 67 <u>5</u>	55
6	.38 670 .38 721	.39 999 .40 052	.60 001	.98 668	54
8	.38 771	.40 106	.59 894	.98 665	52
9	.38 821	.40 159	.59841	.98 662	51
10 11	.38 871 .38 921	.40 212 .40 266	.59 788 .59 734	.98 659	50
12	.38 971	.40319	.59 681	.98 652	48
13	.39 021	.40 372	.59 628	.98 649	47
14 15	.39 071	.40 42 <u>5</u>	.59 575 .59 522	.98 646	46
16	.39 170	.40 531	.59 469	.98 640	44
17	.39 220	.40 584	.59416	.98 636	43
18 19	.39 270 .39 319	.40 636 .40 689	.59 364 .59 311	.98 633	42 41
20	.39 369	.40 742	.59 258	.98 627	40
21	.39418	.40 795	.59 205	.98 623	39
22 23	.39 467 .39 517	.40 847	.59 153 .59 100	.98 620 .98 617	38
24	.39 566	.40 952	.59 048	.98 614	36
25	.39615	.41 005	.58 995	.98 610	35
26 27	.39.664	.41 057 .41 109	.58 943 .58 891	.98 607	34
28	.39 762	.41 161	.58839	.98 601	32
29	.39811	.41 214	.58 786	.98 597	31
30 31	.39 860 .39 909	.41 266 .41 318	.58 734 .58 682	.98 594	30 29
32	.39 958	.41370	.58 630	.98 588	28
33 34	.40 006 .40 05 <u>5</u>	.41 422	.58 578 .58 526	.98 584	27 26
35	.40 103	.41 526	.58474	.98 578	25
36	.40 152	.41 578	.58422	.98 574	24
37 38	.40 200 .40 249	.41 629 .41 681	.58 371	.98 571	23
39	.40 297	.41 733	.58 267	.98 56 <u>5</u>	21
40	.40346	.41784	.58 216	.98 561	20
41 42	.40 394	.41 836 .41 887	.58 164	.98 558 .98 555	19 18
43	.40 490	.41 939	.58 061	$.9855\bar{1}$	17
44	.40 538	.41 990	.58 010	.98 548	16
45 46	.40 586	.42 041	.57 959 .57 907	.98 54 <u>5</u> .98 54 <u>1</u>	15 14
47	.40 682	.42 144	.57856	.98 538	13
48 49	.40 730 .40 778	.42 195 .42 246	.57 80 <u>5</u> .57 754	.98 53 <u>5</u> .98 53 <u>1</u>	12 11
50	.40 825		.57 703	.98 528	10
51	.40 873	.42348	.57 652	.98 525	9
52 53	.40 921 .40 968	.42 399 .42 450	.57 601 .57 5 <u>5</u> 0	.98 521 .98 518	8
54	.41 016	.42 501	.57 499	.98 515	9 8 7 6
55	.41 063	.42 552	.57 448	.98 511	5
56 57	.41 111 .41 158	.42 603 .42 653	.57 397 .57 347	.98 508 .98 50 <u>5</u>	4
58	.41 205	.42 704	.57 296	.98 501	5 4 3 2 1
59	.41 252	.42 755	.57 245	.98498	
60	.41 300	.42 805	.57 19 <u>5</u>	.98 494	0
′	9 L cos	a T cot	10 L tan	STRIN	

ſ.	OT	0.7.1	40.7	0.7	
0	.41 300	9 L tan .42 805	10 L cot .57 195	9 L cos .98 494	00
1	.41 347	.42 856	.57 144	.98 491	60 59
2	.41 394	.42 906	.57 094	.98 488	58
3 4	.41 441	.42 957 .43 007	.57 043 .56 993	.98 484	57
5	.41 535	.43 057	.56 943	.98477	56 55
6	.41 582	.43 108	.56 892	.98474	54
7	.41 628	.43 158	.56 842	.98471	53
8	.41 675	.43 208	.56 792	.98 467	52
10	.41 722	.43 258 .43 308	.56 742	.98 464	51
11	.41815	.43 358	.56642	.98 457	50
12	.41 861	.43 408	.56 592	.98 453	48
13	.41 908	.43 458	.56 542	.98 450	47
14	.41 954	.43 508	.56 492	.98 447	46
15 16	.42 001	.43 558 .43 607	.56 442	.98 443 .98 440	45
17	.42 093	.43 657	.56 343	.98 436	43
18	.42 140	.43 707	.56 293	.98 433	42
19	.42 186	.43 756	.56 244	.98 429	41
20 21	.42 232	.43 806 .43 855	.56 194 .56 145	.98 426 .98 422	40
22	.42 278 .42 324	.43 905	.56 095	.98 419	39
23	.42 370	.43 954	.56 046	.98 415	37
24	.42 416	.44 004	.55 996	.98 412	36
25	.42 461	.44 053	.55 947	.98 409	35
26 27	.42 507 .42 553	.44 102 .44 151	.55 898 .55 849	.98 405 .98 402	34 33
28	.42 599	.44 201	.55 799	.98 398	32
29	.42 644	.44 2 <u>5</u> 0	.55 750	.98 39 <u>5</u>	31
30	.42 690	.41 299	.55 701	.98 391	30
31	.42 735	.44 348	.55 652	.98 388	29
32 33	.42 781 .42 826	.44 397	.55 603 .55 554	.98 384 .98 381	28
34	.42 872	.44 49 <u>5</u>	.55 505	.98 377	26
35	.42.917	.44 544	.55 456	.98 373	25
36	.42 962	.44 592	.55 408	.98 370	24
37 38	.43 008 .43 053	.44 641 .44 690	.55 359	.98 366 .98 363	23 22
39	.43 098	.44 738	.55 262	.98 359	21
40	.43 143	.44 787	.55 213	.98 356	20
41	.43 188	.44 836	.55 164	.98 352	19
42 43	.43 233 .43 278	.44 884 .44 933	.55 116 .55 067	.98 349	18 17
44	.43 323	.44 981	.55 019	.98 342	16
45	.43 367	.45 029	.54 971	.98338	15
46	.43 412	.45 078	.54 922	.98 334	14
47 48	.43 457	.45 126 .45 174	.54 874 .54 826	.98 331 .98 327	13 12
48	.43 502 .43 546	.45 174	.54 778	.98 324	11
50	.43 591	.45 271	.54 729	.98320	10
51	.43 635	.45 319	.54 681	.98 317	9
52	.43 680	.45 367	.54 633	.98 313	8
53 54	.43 724	.45 415	.54 585 .54 537	.98 309	8 7 6
55	.43 813	.45 511	.54 489	.98 302	
56	.43 857	.45 559	.54 441	.98 299	4
57	.43 901	.45 606	.54 394	.98 295	3
58 59	.43 946	.45 654 .45 702	.54 346 .54 298	.98 291 .98 288	5 4 3 2 1
60	.44 034	.45 750	.54 250	.98 284	0
7	9 L cos		10 L tan		7
<u></u>	J 1 005	- 2000			

,	9 L sin	9 L tan	10 L cot	9 L cos	,
0	.44 034	.45 750	.54 250	.98 284	60
$\begin{vmatrix} 1\\2 \end{vmatrix}$.44 078 .44 122	.45 797 .45 845	.54 203 .54 155	.98 281 .98 277	59 58
3 4	.44 166	.45 892	.54 108	.98 273	57
5	.44 210	.45 940 .45 987	.54 060	.98 270 .98 266	56
6	.44 297	.46 035	.53 965	.98 262	54
8	.44 341	.46 082 .46 130	.53 918 .53 870	.98 259 .98 255	53 52
9	.44 428	.46 177	.53 823	.98 251	51
10	.44 472	.46 224	.53 776	.98248	50
12	.44 516 .44 559	.46271 .46319	.53 729 .53 681	.98 244	49
13 14	.44 602	.46 366	.53 634	.98 237	47
15	.44 646	.46 413 .46 460	.53 587 .53 540	.98 233	46
16	.44 733	.46 507	.53 493	.98 226	44
17 18	.44 776 .44 819	.46 554 .46 601	.53 446 .53 399	.98 222 .98 218	43 42
19	.44 862	.46 648	.53 352	.98 215	41
20 21	.44 905	.46 694	.53 306	.98 211	40 39
22	.44 948 .44 992	.46 741 .46 788	.53 259 .53 212	.98 207 .98 204	38
23 24	.45 03 <u>5</u> .45 077	.46 83 <u>5</u>	.53 165	.98 200	37 36
25	.45 120	.46 881 .46 928	.53 119	.98 196 .98 192	35
26	.45 163	.46 97 <u>5</u>	.53 025	.98 189	34
27	.45 206 .45 249	.47 021 .47 068	.52 979 .52 932	.98 18 <u>5</u> .98 181	33
29	.45 292	.47 114	.52 886	.98 177	31
30 31	.45 334 .45 377	.47 160	.52 840	.98174	30 29
32	.45 419	.47 207 .47 253	.52 793 .52 747	.98 170 .98 166	28
33	.45 462 .45 504	.47 299 .47 346	.52 701 .52 654	.98 162 .98 159	27 26
35	.45 547	.47 392	.52 608	.98 155	25
36 37	.45 589	.47 438	.52 562	.98 151	24
38	.45 632 .45 674	.47 484 .47 530	.52 516 .52 470	.98 147 .98 144	23 22
39	.45 716	.47 576	.52 424	.98 140	21
40 41	.45 758 .45 801	.47 622 .47 668	.52 378 .52 332	.98 136 .98 132	20 19
42	.45 843	.47 714	.52 286	.98 129	18
43	.45 88 <u>5</u> .45 927	.47 760 .47 806	.52 240 .52 194	.98 12 <u>5</u> .98 121	17 16
45	.45 969	.47 852	.52 148	.98 117	15
46	.46 011	.47 897 .47 943	.52 103 .52 057	.98 113 .98 110	14
48	.46 09 <u>5</u>	.47 989	.52011	.98 106	12
49	.46 136	.48 035	.51 965	.98 102	11
50 51	.46 178 .46 220	.48 080 .48 126	.51 920 .51 874	.98 098 .98 094	10 9
52	.46 262	.48 171	.51829	.98 090	8 7
53	.46 303 .46 34 <u>5</u>	.48 217 .48 262	.51 783 .51 738	.98 087 .98 083	6
55	.46386	.48 307	.51 693	.98 079	5 4
56	.46 428 .46 469	.48 353 .48 398	.51 647 .51 602	.98 075 .98 071	3
58	.46 511	.48443	.51 557	.98 067	2
59	.46 552 .46 594	.48 489	.51 511 .51 466	.98 063	0
60	9 L cos		.51 400 10 L tan		1
<u></u>	3 2 000	- 2000			

		1.			
/	9 L sin	9 L tan	10 L cot	$9 \mathbf{L} \cos$	
0	.46 594 .46 635	.48 534 .48 579	.51 466 .51 421	.98 060 .98 056	60 59
$\begin{vmatrix} 1\\2 \end{vmatrix}$.46 676	.48 624	.51 376	.98 052	58
3	.46717	.48 669	.51 331	.98 048	57
4	.46 758	.48 714	.51 286	.98044	56
5 6	.46 800 .46 841	.48 759 .48 804	.51 241 .51 196	.98 040 .98 036	55 54
7	.46 882	.48 849	.51 151	.98 032	53
8 9	.46 923	.48 894	.51 106 .51 061	.98 029	52 51
10	.47 005	.48 984	.51 016	.98 021	50
11	.47 045	.49 029	.50 971	.98 017	49
12	.47 086	.49 073	.50 927	.98 013	48
13	.47 127 .47 168	.49 118 .49 163	.50 882 .50 837	.98 009 .98 005	47
15	.47 209	.49 207	.50 793	.98 001	45
16	.47 249	.49 252	.50 748	.97 997	44
17 18	.47 290 .47 330	.49 296 .49 341	.50 704 .50 659	.97 993 .97 989	43 42
19	.47 371	.49385	.50 615	.97 986	41
20	.47 411	.49 430	.50 570	.97 982	40
21 22	.47 452 .47 492	.49 474 .49 519	.50 526 .50 481	.97 978 .97 974	39 38
23	.47 533	.49 563	.50 437	.97 970	37
24	.47 573	.49607	.50 393	.97 966	36
25	.47 613	.49 652 .49 696	.50 348	.97 962 .97 958	35
26 27	.47 654	.49 740	.50 304	.97 954	34
28	.47 734	.49 784	.50 216	.97 950	32
29	.47 774	.49828	.50 172	.97 946	31
30 31	.47 814	.49872	.50 128 .50 08 1	.97 942 .97 938	30 29
32	.47 894	.49 960	.50 040	.97 934	28
33	.47 934	.50 004	.49 996	.97 930 .97 926	27
34	.47 974	.50 048 .50 092	.49 952	.97 920	26
36	.48 054	.50 136	.49864	.97 918	24
37	.48 094	.50 180	.49 820	.97 914	23
38	.48 133 .48 173	.50 223 .50 267	.49 777 .49 733	.97 910 .97 906	22
40	.48 213	.50 311	.49 689	.97 902	20
41	.48 252	.50 35 <u>5</u>	.49645	.97 898	19
42	.48 292	.50 398 .50 442	.49 602 .49 558	.97 894	18 17
44	.48 371	.50 485	.49 51 <u>5</u>	.97886	16
45	.48.411	.50 529	.49471	.97882	15
46 47	.48 450	.50 572 .50 616	.49 428 .49 384	.97 878 .97 874	14 13
48	.48 529	.50 659	.49341	.97870	12
49	.48 568	.50 703	.49 297	.97 866	11
50 51	.48 607 .48 647	.50 746 .50 789	.49 254 .49 211	.97 861 .97 857	10
52	.48 686	.50 833	.49 167	.97 853	9 8 7
53	.48 725	.50 876	.49 124	.97 849	7
54 55	.48 764	.50 919	.49 081 .49 038	.97 845	6
56	.48842	.51 005	.48 995	.97 837	5 4
57	.48881	.51048	.48952	.97 833	3
58 59	.48 920 .48 959	.51 092 .51 13 <u>5</u>	.48 908 .48 865	.97 829 .97 825	2
60	.48 998	.51 178	.48 822	.97 821	o
/			10 L tan		,
<u> </u>					

,			10 L cot		/
0	.48 998	.51 178	.48 822	.97 821	60
1 2	.49 037 .49 076	.51 221 .51 264	.48 779 .48 736	.97 817 .97 812	59 58
3	.49 115	.51 306	.48 694	.97 808	57
4	.49 153	.51 349	.48 651	.97 804	56
5	.49 192	.51 392	.48 608	.97 800	55
6 7	.49 231 .49 269	.51 43 <u>5</u> .51 478	.48 565 .48 522	.97 796 .97 792	54 53
Ś	.49 308	.51 520	.48 480	.97 788	52
9	.49 347	.51 563	.48 437	.97 784	51
10 11	.49 385	.51 606 .51 648	.48 394	.97 779 .97 775	50
12	.49 462	.51 691	.48 309	.97 771	48
13	.49 500	.51 734	.48 266	.97 767	47
14	.49 539	.51 776	.48 224	.97 763	46
15 16	.49 577 .49 615	.51 S19 .51 S61	.48 181	.97 759 .97 754	45 44
17	.49 654	.51 903	.48 097	.97 750	43
18	.49 692	.51 946	.48 05+	.97 746	42
19	.49 730	.51 988	.48 012	.97 742	41
20 21	.49 768 .49 806	.52 031 .52 073	.47 969 .47 927	.97 738 .97 734	40 39
22	.49 844	.52 115	.47 88 <u>5</u>	.97 729	38
23	.49882	.52 157	.47843	.97 725	37
24	.49 920	.52 200	.47 800	.97 721	36
25 26	.49 958 .49 996	.52 242 .52 284	.47 758 .47 716	.97 717 .97 713	35
27	.50 034	.52 326	.47 674	.97 708	33
28	.50 072	.52 368	.47 632	.97 704	32
29	.50 110	.52 410	.47 590	.97 700	31
30 31	.50 148 .50 185,	.52 452 .52 494	.47 548 .47 506	.97 696 .97 691	30 29
32	.50 223	.52 536	.47 464	.97 687	28
33	.50 261	.52 578	.47 422	.97 683	27
34	.50 298	.52 620 .52 661	.47 380 .47 339	.97 679 .97 674	26
36	.50 374	.52 703	.47 297	.97 670	24
37	.50411	.52 745	.47 25 <u>5</u>	.97 666	23
38 39	.50 449	.52 787 .52 829	.47 213 .47 171	.97 662 .97 657	22 21
40	.50 523	.52 870	.47 130	.97 653	20
41	.50 561	.52912	.47 088	.97 649	19
42	.50 598	.52 953	.47 047	.97 645	18
43 44	.50 635	.52 995 .53 037	.47 00 <u>5</u> .46 963	.97 540 .97 636	17 16
45	.50 710	.53 078	.46 922	.97 632	15
46	.50 747	.53 120	.46 880	.97 628	14
47	.50 784	.53 161	.46 839	.97 623	13
48 49	.50 821 .50 858	.53 202 .53·244	.46 798 .46 756	.97 619 .97 61 <u>5</u>	12
50	.50 896	.53 285		.97 610	10
51	.50 933	.53 327	.46 673	.97 606	
52	.50 970	.53 368	.46 632	.97 602	9 8 7
53 54	.51 007 .51 043	.53 409 .53 450	.46 591 .46 550	.97 597 .97 593	6
55	.51 080	.53 492	.46 508	.97 589	6 5 4 3 2
56	.51 117	.53 533	.46467	.97 584	4
57 58	.51 154 .51 191	.53-574	.46 426	.97 580 .97 576	3
59	.51 227	.53 656	.46344	.97 571	1
60	.51 264	.53 697	.46 303	.97 567	0
,	9 L cos	9 L cot	10 L tan	9 L sin	,

		16			
1	$9 L \sin$	9 L tan	10 L cot	$9 \mathbf{L} \cos$	1
1 2	.51 264	.53 697.	.46 303	.97 567	60
	.51 301	.53 738	.46 262	.97 563	59
	.51 338	.53 779	.46 221	.97 558	58
3 4 5	.51 374	.53 820	.46 180	.97 554	57
	.51 411	.53 861	.46 139	.97 5 <u>5</u> 0	56
	.51 447	.53 902	.46 098	.97 545	55
6	.51 484	.53 943	.46 057	.97 541	54
7	.51 520	.53 984	.46 016	.97 536	53
8	.51 557	.54 025	.45 975	.97 532	52
9	.51 593	.54 065	.45 93 <u>5</u>	.97 528	51
10 11 12 13 14	.51 629 .51 666 .51 702 .51 738 .51 774	.54 106 .54 147 .54 187 .54 228 .54 269	.45 894 .45 853 .45 813 .45 772 .45 731	.97 523 .97 519 .97 515 .97 510 .97 506	49 48 47 46
15	.51 811	.54 309	.45 691	97 501	45
16	.51 847	.54 3 <u>5</u> 0	.45 650	97 497	44
17	.51 883	.54 390	.45 610	97 492	43
18	.51 919	.54 431	.45 569	97 488	42
19	.51 955	.54 471	.45 529	97 484	41
20 21 22 23 24	.51 991 .52 027 .52 063 .52 099 .52 135	.54 512 .54 552 .54 593 .54 633 .54 673	.45 488 .45 448 .45 407 .45 367 .45 327	.97 479 .97 475 .97 470 .97 466 .97 461	39 38 37 36
25	.52 171	.54 714	.45 286	.97 457	35
26	.52 207	.54 754	.45 246	.97 453	34
27	.52 242	.54 794	.45 206	.97 448	33
28	.52 278	.54 83 <u>5</u>	.45 165	.97 444	32
29	.52 314	.54 87 <u>5</u>	.45 125	.97 439	31
30	.52 3 <u>5</u> 0	.54 91 <u>5</u>	.45 085	.97 43 <u>5</u>	30
31	.52 385	.54 955	.45 04 <u>5</u>	.97 430	29
32	.52 421	.54 995	.45 00 <u>5</u>	.97 426	28
33	.52 456	.55 035	.44 96 <u>5</u>	.97 421	27
34	.52 492	.55 075	.44 92 <u>5</u>	.97 417	26
35 36 37 38 39	.52 527 .52 563 .52 598 .52 634 .52 669	.55 115 .55 155 .55 195 .55 235 .55 275	.44 88 <u>5</u> .44 80 <u>5</u> .44 76 <u>5</u> .44 72 <u>5</u>	.97 412 .97 408 .97 403 .97 399 .97 394	25 24 23 22 21
40 41 42 43 44	.52 70 <u>5</u> .52 740 .52 775 .52 811 .52 846	.55 31 <u>5</u> .55 35 <u>5</u> .55 39 <u>5</u> .55 434 .55 474	.44 685 .44 645 .44 605 .44 566 .44 526	.97 390 .97 385 .97 381 .97 376 .97 372	19 18 17 16
45	.52 881	.55 514	.44 486	.97 367	15
46	.52 916	.55 554	.44 446	.97 363	14
47	.52 951	.55 593	.44 407	.97 358	13
48	.52 986	.55 633	.44 367	.97 353	12
49	.53 021	.55 673	.44 327	.97 349	11
50	.53 056	.55 712	.44 288	.97 344	10
51	.53 092	.55 752	.44 248	.97 340	9
52	.53 126	.55 791	.44 209	.97 335	8
53	.53 161	.55 831	.44 169	.97 331	7
54	.53 196	.55 870	.44 130	.97 326	6
55	.53 231	.55 910	.44 090	.97 322	5
56	.53 266	.55 949	.44 051	.97 317	4
57	.53 301	.55 989	.44 011	.97 312	3
58	.53 336	.56 028	.43 972	.97 308	2
59	.53 370	.56 067	.43 933	.97 303	1
60	.53 405	.56 107 9 L cot	.43 893	.97 299	0 /

,	9 L sin	9 L tan	10 L cot	9 L cos	,
0	.53 405	.56 107	.43 893	.97 299	60
$\begin{bmatrix} 1\\2 \end{bmatrix}$.53 440 .53 475	.56 146	.43 854	.97 294 .97 289	59 58
3	.53 509	.56 224	.43 776	.97 285	57
4	.53 544	.56 264	.43 736	.97 280	56
5	.53 578	.56 303	.43 697	.97 276	55
6	.53 613 .53 6 1 7	.56342 .56381	.43 658	.97 271 .97 266	54 53
8	.53 682	.56 420	.43 580	.97 262	52
9	.53 716	.56 459	.43 541	•97 257	51
10	.53 751	.56 498	.43 502	.97 252	50
11 12	.53 785 .53 819	.56 537 .56 576	.43 463	.97 248 .97 243	49 48
13	.53 854	.56 615	.43 385	.97 238	47
14	.53 888	.56 654	.43 346	.97 234	46
15	.53 922	.56 693	.43 307	.97.229	45 44
16 17	.53 957 .53 991	.56 732 .56 771	.43 268 .43 229	.97 224 .97 220	43
18	.54 025	.56810	.43 190	.97 215	42
19	.54 059	.56 849	.43 151	.97 210	41
20	.54 093	.56 887	.43 113	.97 206 .97 201	40 39
21 22	.54 127 .54 161	.56 926 .56 96 <u>5</u>	.43 074	.97 201	38
23	.54 195	.57 004	.42 996	.97 192	37
24	.5+229	.57 042	.42 958	.97 187	36
25 26	.54 263 .54 297	.57 081 .57 120	.42 919	.97 182 .97 178	35
27	.54 331	.57 158	.42 842	.97 173	33
28	.54 36 <u>5</u>	.57 197	.42803	.97 168	32
29	.54 399	.57 235	.42 765	.97 163	31
30 31	.54 433 .54 466	.57 274 .57 312	.42 726 .42 688	.97 159 .97 154	30 29
32	.54 500	.57 351	.42 649	.97 149	28
33	.54 534	.57 389	.42 611	.97 145	27
34	.54 567	.57 428 .57 466	.42 572	.97 140	26
35 36	.54 601 .54 635	.57 504	.42 496	.97 133	24
37	.54 668	.57 543	.42 457	.97 126	23
38	.54 702 .54 735	.57 581 .57 619	.42 4 19 .42 3 8 1	.97 121 .97 116	22 21
39 40	.54 769	.57 658	.42 342	.97 111	20
41	.54 S02	.57 696	.42 304	.97 107	19
42	.54 836	.57 734	.42 266	.97 102	18
43	.54 S69 .54 903	.57 772 .57 810	.42 228 .42 190	.97 097 .97 092	17 16
45	.54 936	.57 849	.42 151	.97 087	15
46	.54 969	.57 887	.42 113	.97083	14
47	.55 003 .55 036	.57 92 <u>5</u>	.42 075	.97 078 .97 073	13
48	.55 036		.42 037 .41 999	.97 073	12
50	.55 102	.58 039	.41 961	.97 063	10
51	.55 136	.58 077	.41 923	.97 059	9
52 53	.55 169	.58 11 <u>5</u> .58 153	.41 885 .41 847	.97 054	8 7
54	.55 235	.58 191	.41 809	.97 044	6
55	.55 268	.58 229	.41 771	.97 039	5
56	.55 301	.58 267	.41 733	.97 035 .97 030	4
57 58	.55 334	.58 304 .58 342	.41 696 .41 658	.97 030	3.
59	.55 400		.41 620	.97 020	ī
60	.55 433	.58 418	.41 582	.97 015	0
′	9 L cos	9 L cot	10 L tan	9 L sin	1

(~			
/	9 L sin		10 L cot	$9 L \cos$,
0	.55 433	.58 418	.41 582	.97 015	60
$\begin{vmatrix} 1\\2 \end{vmatrix}$.55 466	.58 455 .58 493	.41 54 <u>5</u> .41 507	.97 010 .97 005	59 58
3	.55 532	.58 531	.41 469	.97001	57
4	.55 564	.58 569	.41 431	.96 996	56
5	.55 597	.58 606	.41 394	.96 991	55
6	.55 630 .55 663	.58 644 .58 681	.41 356 .41 319	.96 986 .96 981	54 53
8	.55 695	.58 719	.41 281	.96 976	52
9	.55 728	.58 757	.41 243	.96 971	51
10	.55 761	.58 794	.41 206	.96 966	50
11 12	.55 793 .55 826	.58 832 .58 869	.41 168 .41 131	.96 962 .96 957	49
13	.55 858	.58 907	.41 093	.96 952	47
14	.55 891	.58 944	.41 056	.96947	46
15	.55,923	.58 981	.41 019	.96 942	45
16 17	.55 956 .55 988	.59 019 .59 056	.40 981	.96 937 .96 932	44 43
18	.56 021	.59 094	.40 906	.96 927	42
19	.56 053	.59 131	.40 869	.96 922	41
20	.56 085	.59 168	.40 832	.96 917	40
21 22	.56 118 .56 150	.59 205 .59 243	.40 79 <u>5</u> .40 757	.96 912	39
23	.56 182	.59 280	.40 720	.96 903	37
24	.56 21 <u>5</u>	.59317	.40683	.96 898	36
25	.56 247	.59354	.40646	.96893	35
26 27	.56 279 .56 311	.59 391 .59 429	.40 609 .40 571	.96 SSS .96 SS3	34
28	.56 343	.59466	.40 534	.96 878	32
29	.56 375	.59 503	.40 497	.96 873	31
30	.56 408	.59 540	.40 460	.96868	30
31 32	.56 440 .56 472	.59 577 .59 614	.40 423	.96 863 .96 858	29 28
33	.56 504	.59651	.40349	.96 853	27
34	.56 536	. 59 688	.40312	.96848	26
35	.56 568	.59 725	.40 275	.96 843	25
36	.56 599 .56 631	.59 762 .59 799	.40 238 .40 201	.96 838 .96 833	24 23
38	.56 663	.59835	.40 165	.96 828	22
39	.56 695	. 59872	.40 12 \bar{8}	.96823	21
40	.56 727	.59 909	.40 091	.96818	20
41 42	.56 759 .56 790	.59 946 .59 983	.40 054	.96 813	19 18
43	.56 822	.60 019	.39 981	.96 803	17
44	.56854	.60 056	.39 944	.96 798	16
45	.56886	.60 093	.39 907	.96 793	15
46	.56 917 .56 949	.60 130 .60 166	.39 870 .39 834	.96 788 .96 783	14 13
48	.56 980	.60 203	.39 797	.96 778	12
49	.57 012	.60240	.39 760	.96 772	11
50			.39 724		10
51 52	.57 075 .57 107	.60 313	.39 687 .39 651	.96 762 .96 757	8
53	.57 138	.60 386	.39614	.96 752	7
54	.57 169	.60 422	.39 578	.96 747	. 6
55	.57 201	.60 459	.39 541	.96 742	.5
56	.57 232 .57 264	.60 495	.39 50 <u>5</u> .39 468	.96 737	4
57	.57 295	.60 532 .60 568	.39468	.96 732 .96 727	3 2
59	.57 326	.60 60 <u>5</u>	.39 395	.96 722	ī
60	.57 358	.60 641	.39359	.96 717	0
1	9 L cos	9 L cot	10 L tan	9 L sin	1

/	9 L sin		10 L cot		/
0	.57 358	.60 641 .60 677	.39 359	.96 717 .96 711	60 59
2	.57 420	.60 714	.39 286	.96 706	58
3	.57 451	.60 750	.39 250	.96 701	57
4	.57 482	.60 786	.39 214	.96 696	56
5	.57 514 .57 54 <u>5</u>	.60 823 .60 859	.39 177	.96 691	55 54
7	.57 576	.60 895	.39 105	.96 681	53
8	.57 607	.60 931	.39 069	.96 676	52
9	.57 638 .57 669	.60 967	.39 033	.96 670	51
10 11	.57 700	.61 004 .61 040	.38 996 .38 960	.96 665 .96 660	50
12	.57 731	.61 076	.38 924	.96 655	48
13	.57 762	.61 112	.38 888	.96 650	47
14	.57 793 .57 824	.61 148 .61 184	.38 852	.96 64 <u>5</u>	46
16	.57 855	.61 220	.38 780	.96 634	44
17	.57 885	. 61 256	.38 744	.96 629	43
18	.57 916 .57 947	.61 292 .61 328	.38 708 .38 672	.96 624	42
20	.57 978	.61 364	.38 636	.96619	40
21	.58 008	.61 400	.38 600	.96 608	39
22	.58 039	.61 436	.38 564	.96 603	38
23 24	.58 070 .58 101	.61 472 .61 508	.38 528 .38 492	.96 598 .96 593	37 36
25	.58 131	.61 544	.38 456	.96 588	35
26	.58 162	.61 579	.38 421	.96 582	34
27 28	.58 192	.61 615 .61 651	.38 385	.96 577 .96 572	33
29	.58 253	.61 687	.38 313	.96 567	31
.30	.58 284	.61 722	.38 278	.96 562	30
31	.58 314	.61 758	.38 242	.96 556	29
32	.58 34 <u>5</u> .58 375	.61 794	.38 206 .38 170	.96 551	28 27
34	.58 406	.61 865	.38 135	.96 541	26
35	.58 436	.61 901	.38 099	.96 535	25
36 37	.58 46 7 .58 49 7	.61 936 .61 972	.38 064 .38 028	.96 530 .96 52 <u>5</u>	24 23
38	.58 527	.62 008	.37 992	.96 520	22
39	.58 557	.62 043	.37 957	.96 514	21
40	.58 588	.62 079	.37 921	.96 509	20
41 42	.58 618 .58 648	.62 114 .62 150	.37 886 .37 850	.96 504 .96 498	19 18
43	.58 678	.62 185	.37 81 <u>5</u>	.96 493	17
44	.58 709	.62 221	.37 779	.96 488	16
45	.58 739 .58 769	.62 256 .62 292	.37 744 .37 708	.96483	15 14
47	.58 799	.62 327	.37 673	.96472	13
48	.58 829	.62 362	.37 638	.96467	12
49	.58 859	.62 398	.37 602	.96461	11
50 51	.58 889 .58 919	.62 433 .62 468	.37 567 .37 532	.96 456 .96 451	10
52	.58 949	.62 504	.37 496	.96 445	9 8 7
53	.58 979	.62 539 .62 574	.37 461 .37 426	.96 440	7 6
55	.59 039	.62 609	.37 391	.96429	.5
56	.59 069	.62 64 <u>5</u>	.37 355	.96 424	5 4 3 2
57	.59 098	.62 680	.37 320	.96419	3
58 59	.59 128 .59 158	.62 71 <u>5</u> .62 750	.37 285 .37 2 <u>5</u> 0	.96413	1
60	.59 188	.62 785	.37 215	.96 403	0
7	9 L cos		10 L tan		,

,	9 L sin	9 L tan	10 L cot	9 L cos	,
0	.59 188	.62 785	.37215	.96 403	60
$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$.59 218	.62 820 .62 855	.37 180 .37 145	.96 397 .96 392	59 58
3	.59 277	.62 890	.37 110	.96387	57
4	.59307	.62 926	.37 074	.96 381	56
5 6	.59 336	.62 961 .62 996	.37 039 .37 004	.96376 .96370	55 54
7	.59 396	.63 031	.36 969	.96 36 <u>5</u>	53
8 9	.59 425	.63 066 .63 101	.36 934	.96 360	52 51
10	.59484	.63 135	.36 865	.96349	50
11	.59514	.63 170	. 36 830	.96 343	49
12	.59 543	.63 205 .63 240	.36 79 <u>5</u> .36 760	.96 338 .96 333	48 47
14	.59 602	.63 275	.36 725	.96 327	46
15	.59 632	.63 310	.36 690	.96322	45
16 17	.59 661	.63 34 <u>5</u>	.36 655	.96316	44 43
18	.59 720	.63 414	.36 586	.96 305	42
19	.59 749	.63 449	.36 551	.96 300	41
20 21	.59 778	.63 484	.36 516 .36 481	.96 294 .96 289	40 39
22	.59837	.63 553	.36 447	.96 284	38
23	.59 866	.63 588	.36 412	.96 278 .96 273	37 36
25	.59 924	.63 657	.36343	.96 267	35
26	.59 954	.63692	.36 308	.96 262	34
27 28	.59 983 .60 012	.63 726 .63 761	.36 274 .36 239	.96 256 .96 251	33 32
29	.60 041	.63 796	.36 204	.96 245	31
30	.60 070	.63 830	.36 170	.96 240	30
31 32	.60 099 .60 128	.63 86 <u>5</u>	.36 135 .36 101	.96 234 .96 229	29 28
33	.60 157	.63 934	.36 066	.96 223	27
34	.60 186	.63 968	.36 032	.96218	26
35	.60 21 <u>5</u>	.64 003 .64 037	.35 997 .35 963	.96 212 .96 207	25 24
37	.60 273	.64 072	.35 928	.96 201	23
38	.60 302 .60 331	.64 106 .64 140	.35 894 .35 860	.96 196 .96 190	22 21
40	.60 359	.64 175	.35 825	.96 185	20
41	.60 388	.64 209	.35 791	.96 179	19
42 43	.60 417 .60 446	.64 243 .64 278	.35 757 .35 722	.96 174 .96 168	18 17
44	.60 474	.64 312	.35 688	.96 162	16
45	.60 503	.64 346 .64 381	.35 654 .35 619	.96 157	15
46	.60 532 .60 561	.64 415	.35 585	.96 151 .96 146	14 13
48	.60 589	.64 449	.35 551	.96 140	12
49	.60 618	.64 483	.35 517	.96 13 <u>5</u> .96 129	11 10
50 51	.60 675	.64 552	.35 448	.96 123	9
52	.60 704	. 64 586	.35 414 .35 380	.96 118	8 7
53	.60 732 .60 761	.64 620 .64 654	.35 346	.96 112 .96 107	6
55	.60 789	.64 688	.35 312	.96 101	5
56	.60 818 .60 846	.64 722 .64 756	.35 278 .35 244	.96 095 .96 090	4
57 58	.6087 <u>5</u>	.64 790	.35 210	.96 084	3 2 1
59	.60 903	.64 824	.35 176	.96 079	- 11
60	.60 931	.64 858	.35 142	.96 073	0
\	ar cos	arcor.	10 L tan	O L SIN	′.

,	9 L sin	9 L tan	10 L cot	9 L cos	,
0	.60 931	.64 858	.35 142	.96 073	60
$\begin{vmatrix} 1\\2 \end{vmatrix}$.60 960	.64 892 .64 926	.35 108 .35 074	.96 067	59
3	.61 016	.64 960	.35 040	.96 062 .96 056	58
4	.61 04 <u>5</u>	. 64 994	.35 006	.96 050	56
5	.61 073	.65 028	.34 972	.96 045	55
6	.61 101 .61 129	.65 062 .65 096	.34 938 .34 904	.96 039	54 53
8	.61 158	.65 130	.34 870	.96 028	52
9	.61 186	.65 164	.34 836	.96 022	51
10 11	.61 214 .61 242	.65 197 .65 231	.34 803 .34 769	.96 017 .96 011	50
12	.61 270	.65 265	.34 735	.96 005	48
13	.61 298	.65 299	.34 701	.96 000	47
14	.61 326	.65:333	.34 667	.95 994	46
15 16	.61 382	.65 366 .65 400	.34 634 .34 600	.95 988 .95 982	45
17	.61411	.65 434	.34 566	.95 977	43
18	.61 438 .61 466	.65 467 .65 501	.34 533 .34 499	.95 971	42
20	.61 494	.65 535	.34 465	.95 960	40
21	.61 522	. 65 568	.34 432	.95 954	39
22	.61 550	.65 602	.34 398	.95 948	38
23 24	.61 578 .61 606	.65 636 .65 669	.34 364	.95 942 .95 937	37
25	.61 634	.65 703	.34 297	.95 931	35
26	.61 662	.65 736	.34 264	.95 925	34
27 28	.61 689 .61 717	.65 770 .65 803	.34 230 .34 197	.95 920 .95 914	33
29	.61 74 <u>5</u>	.65 837	.34 163	.95 908	31
30	.61 773	.65 870	.34 130	.95 902	30
31 32	.61 800 .61 828	.65 904 .65 937	.34 096 .34 063	.95 897 .95 891	29 28
33	.61 856	.65 971	.34 029	.95 885	27
34	.61 883	.66 004	.33 996	.95 879	26
35 36	.61 911 .61 939	.66 038 .66 071	.33 962 .33 929	.95 873 .95 868	25 24
37	.61 966	.66 104	.33 896	.95 862	23
38	.61 994	.66 138	.33 862	.95 856	22
39 40	.62 021	.66 171 .66 204	.33 829	.95 850	21 20
41	.62 076	.66 238	.33 762	.95 839	19
42	.62 104	.66 271	.33 729	.95 833	18
43	.62 131 .62 159	.66 304 .66 337	.33 696 .33 663	.95 827 .95 821	17 16
45	.62 186	.66 371	.33 629	.95 815	15
46	.62 214	.66 404	.33 596	.95 810	14
47 48	.62 241 .62 268	.66 437 .66 470	.33 563 .33 530	.95 804 .95 798	13 12
49	.62 296	.66 503	.33 497	.95 792	11
50	.62 323	.66 537	.33 463	.95 786	10
51 52	.62 350 .62 377	.66 570 .66 603	.33 430	.95 780 .95 77 <u>5</u>	9 8
53	.62 40 <u>5</u>	.66 636	.33 364	.95 769	7
54	.62 432	.66 669	.33 331	.95 763	6
55	.62 459 .62 486	.66 702 .66 735	.33 298 .33 26 <u>5</u>	.95 757 .95 751	5 4
56 57	.62 513	.66 768	.33 232	.95 745	3
58	.62 541	.66 801	.33 199	.95 739	3 2
59	.62 568 .62 59 <u>5</u>	.66 834	.33 166	.95 733 .95 728	0
60	_		.55 155 10 L tan		-
	O L COS	J 11 000	van	~ = 01H	

,	9 L sin	9 L tan	10 L cot	9 L cos	,
0	.62 595	.66 867	.33 133	.95 728	60
1	.62 622	.66 900	.33 100	.95 722	59
$\begin{vmatrix} 2\\3 \end{vmatrix}$.62 649	.66 933 .66 966	.33 067 .33 034	.95 716 .95 710	58 57
4	.62 703	.66 999	.33 001	.95 704	56
5	.62 730	.67 032	.32 968	.95 698	55
6	.62 757	.67 065	.32 935	.95 692	54
7 8	.62 784 .62 811	.67 098 .67 131	.32 902 .32 869	.95 686 .95 680	53
9	.62 838	.67 163	.32 837	.95 674	51
10	.62 86 <u>5</u>	.67 196	.32 804	.95 668	50
11	.62 892	.67 229	.32 771	.95 663	49
12 13	.62 918	.67 262 .67 295	.32 738 .32 705	.95 657 .95 651	48 47
14	.62 972	.67 327	.32 673	.95 645	46
15	.62999	.67 360	.32 640	.95 639	45
16	.63 026	.67 393	.32 607 .32 574	.95 633	44
17 18	.63 052	.67 426 .67 458	.32 542	.95 627 .95 621	+3 42
19	.63 106	.67 491	.32 509	.95 61 <u>5</u>	41
20	.63 133	.67 524	.32 476	.95 609	40
21 22	.63 159 .63 186	.67 556 .67 589	.32 444 .32 411	.95 603 .95 597	39
23	.63 213	.67 622	.32 378	.95 591	38
24	.63 239	.67 654	.32 346	.95 58 <u>5</u>	36
25	.63 266	.67 687	.32 313	.95 579	35
26	.63 292	.67 719 .67 752	.32 281 .32 248	.95 573	34
28	.63 345	.67 785	.32 215	.95 561	32
29	.63 372	.67 817	.32 183	.95 55 <u>5</u>	31
30	.63 398	.67 850	.32 150	.95 549	30
31 32	.63 42 <u>5</u> .63 45 <u>1</u>	.67 882 .67 915	.32 118 .32 085	.95 543 .95 537	29 28
33	.63 478	.67 947	.32 053	.95 531	27
3+	.63 504	.67 980	.32 020	.95 52 <u>5</u>	26
35 36	.63 531 .63 557	.68 012 .68 044	.31 988 .31 956	.95 519 .95 513	25
37	.63 583	.68 077	.31 923	.95 507	23
38	.63 610	.68 109	.31891	.95 500	22
39	.63 636	.68 142	.31 858	.95 494	21
40 41	.63 662 .63 689	.68 174 .68 206	.31 826 .31 794	.95 488 .95 482	20 19
42	.63 715	.68 239	.31 761	.95 476	18
43	.63 741	.68 271	.31 729	.95 470	17
44	.63 767 .63 794	.68 303 .68 336	.31 697	.95 464	16
46	.63 \$20	.68 368	.31 632	.95 458	15 14
47	.63 846	.68 400	.31 600	.95 446	13
48 49	.63 872 .63 898	.68 432 .68 465	.31 568 .31 535	.95 440 .95 434	12
50	.63 924	.68 497	.31 503	.95 427	11 10
51	.63 950	.68 529	.31 471	.95 421	9
52	.63 976	.68 561	.31 439	.95 415	8
53 54	.64 002 .64 028	.68 593 .68 626	.31 407	.95 409 .95 403	7
55	.64 054	.68 658	.31 342	.95 397	
56	.64 080	.68 690	.31 310	.95 391	5
57	.64 106	.68 722	.31 278	.95 384	3
58 59	.64 132 .64 158	.68 754 .68 786	.31 246 .31 214	.95 378 .95 372	2
60	.64 184	.68 818	.31 182	.95 366	o
7	9 L cos		10 L tan		$\frac{1}{2}$

	1				
/	9 L sin		10 L cot		/
0	.64 184	.68 818 .68 850	.31 182 .31 1 <u>5</u> 0	.95 366	60 59
2	.64 236	.68 882	.31 118	.95 354	58
3	.64 262	.68 914	.31 086	.95 348	57
4	.64 288	.68 946	.31 054	.95 341	56
5 6	.64 313 .64 339	.68 978 .69 010	.31 022 .30 990	.95 335 .95 329	55 54
7	.64 365	.69 0+2	.30 958	.95 323	53
8	.64 391	.69 074	.30 926	.95 317	52
9	.64 417	.69 106	.30 894	.95 310	51
10 11	.64 442 .64 468	.69 138 .69 170	.30 862 .30 830	.95 304 .95 298	50
12	.64 494	.69 202	.30 798	.95 292	48
13	.64 519	.69 234	.30 766	.95 286	47
14	.64 54 <u>5</u>	.69 266	.30 734	.95 279	46
15 16	.64 571 .64 596	.69 298 .69 329	.30 702 .30 671	.95 273 .95 267	45
17	.64 622	.69 361	.30 639	.95 261	43
18	.64 647	.69 393.	.30 607	.95 254	42
19	.64 673	.69 42 <u>5</u>	.30 575	.95 248	41
20 21	.64 698 .64 724	.69 457 .69 488	.30 543 .30 512	.95 242 .95 236	40 39
22	.64 749	.69 520	.30480	.95 229	38
23	.64 775	.69 552	.30 448	.95 223	37
24	.64 800	.69 584	.30 416	.95 217	36
25 26	.64 826 .64 851	.69 615 .69 647	.3038 <u>5</u>	.95 211	35
27	.64 877	.69 679	.30321	.95 198	33
28	.64 902	·69 710	.30 290	.95 192	32
29	.64 927	.69 742	.30 258	.95 185	31
30 31	.64 953	.69 774 .69 805	.30 226 .30 195	.95 179 .95 173	30 29
32	.65 003	.69837	$.3016\bar{3}$.95 167	28
33	.65 029	.69 868	.30 132	.95 160	27
34	.65 054	.69 900	.30 100	.95 154	26
35	.65 079	.69 932 .69 963	.30 068 .30 037	.95 148	25
37	.65 130	.69 995	.30 005	.95 135	23
38	.65 155	.70 026	.29 974	.95 129	22
39	.65 180	.70 058	.29 942	.95 122	21
40	.65 205 .65 230	.70 089 .70 121	.29 911 .29 879	.95 116 .95 110	20
42	.65 255	.70 152	.29 848	.95 103	18
43	.65 281	.70184	.29816	.95 097	17
44 45	.65 306 .65 331	.70 215 .70 247	.29 78 <u>5</u> .29 753	.95 090 .95 084	16
46	.65 356	.70 247	.29 722	.95 078	14
47	.65 381	.70309	.29 691	.95 071	13
48	.65 406 .65 431	.70 341	.29 659 .29 628	.95 06 <u>5</u> .95 059	12
49 50	.65 456	.70 372 .70 404	.29 596	.95 052	11 10
51	.65 481	.70435	.29 565	.95 046	9
52	.65 506	.70466	.29 534	.95 039	8
53 54	.65 531 .65 556	.70 498 .70 529	.29 502 .29 471	.95 033 .95 027	7 6
ł	.65 580	.70 560	.29471	.95 027	
55 56	.65 605	.70 592	.29 440	.95 020	5
57	.65 630	.70 623	.29 377	.95 007	3
58	.65 655	.70 654	.29 346	.95 001	2
59 60	.65 680 .65 70 <u>5</u>	.70 685 .70 717	.29 31 <u>5</u> .29 283	.94 99 <u>5</u> .94 988	0
7	9 L cos	9L cot		9 L sin	7
	O LI CUS	OHOU.	- Ju vall	O TI SIII	

/	9 L sin		10 L cot		/
0	.65 705	.70 717	.29 283	.94 988	60
$\begin{vmatrix} 1\\2 \end{vmatrix}$.65 729	.70 748 .70 779	.29 252 .29 221	.94 982 .94 975	59 58
3	.65 779	.70 810	.29 190	.94 969	57
4	.65 804	.70 841	.29 159	.91962	56
5	.65 828	.70 873	.29 127	.94 956	55
6	.65 853	.70 904	.29 096	.94 949	54
7	.65 878	.70 93 <u>5</u>	.29 065	.94943	53
8	.65 902	.70 966	.29 034	.94 936	52
9	.65 927	.70 997	.29 003	.94 930	51
10 11	.65 952 .65 976	.71 028 .71 059	.28 972 .28 941	.94 923	50
12	.66 001	.71 039	.28 910	.94 917	48
13	.66 025	.71 121	.28 879	.94 904	47
14	.66 050	.71 153	.28 847	.94898	46
15	.66 075	.71 184	.28816	.94 891	45
16	.66 099	.71 21 <u>5</u>	.28 785	.9488 <u>5</u>	44
17	.66 124	.71 246	.28 754	.94 878	43
18	.66 148 .66 173	.71 277 .71 308	.28 723	.94 871	42
20	.66 197	.71 339	.28 661	.94 858	40
21	.66 221	.71 370	.28 630	.94 852	39
22	.66 246	.71 401	.28 599	.94 845	38
23	.66 270	.71 431	.28 569	.94839	37
24	.66 29 <u>5</u>	.71 462	.28 538	.94832	36
25	.66319	.71 493	.28 507	.94826	35
26	.66 343	.71 524	.28 476	.94 819	34
27	.66 368 .66 392	.71 555 .71 586	.28 44 <u>5</u> .28 414	.94 813 .94 806	33
29	.66 416	.71 617	.28 383	.94 799	31
30	.66 441	.71 648	.28 352	.94 793	30
31	.66 465	.71 679	.28 321	.94 786	29
32	.66 489	.71 709	.28 291	.94 780	28
33	.66 513	.71 740	.28 260	.94 773	27
3+	.66 537	.71 771	.28 229	.94,767	26
35	.66 562	.71 802	.28 198	.94 760	25 24
36	.66 586 .66 610	.71 833 .71 863	.28 167 .28 137	.94 753	23
38	.66 634	.71 894	.28 106	.94 740	22
39	.66 658	.71 925	.28 075	.94 734	21
40	.66 682	.71 955	.28 045	.94 727	20
41	.66 706	.71 986	.28014	.94 720	19
42	.66 731	.72 017	.27 983	.94 714	18
43	.66 75 <u>5</u>	.72 048 .72 078	.27 952 .27 922	.94 707 .94 700	17 16
45	.66 803	.72 109	.27 891	.94 694	15
46	.66 827	.72 140	.27 860	.94 687	14
47	.66 851	.72170	.27 830	.94 680	13
48	.66 87 <u>5</u>	.72 201	.27 799	.94 674	12
49	.66 899	.72 231	.27 769	.94 667	. 11
50	.66 922	.72 262	.27 738	.94 660	10
51 52	.66 946 .66 970	.72 293 .72 323	.27 707 .27 677	.94 654 .94 647	8
53	.66 994	.72 354	.27 646	.94 640	7
54	.67 018	.72 384	.27 616	.94 634	6
55	.67 042	.72415	.27 585	.94 627	5 4
56	.67 066	.72445	.27 555	.94 620	4
57	.67 090	.72 476	.27 524	.94 614	3
58 59	.67 113 .67 137	.72 506 .72 537	.27 494	.94 607 .94 600	2
	.67 161	.72 567	.27 433	.94 593	o
60			.27 +33 10 L tan		7
/	O L COS	O T COL	TO P MI	O L SILL	

i	9 L sin	9 L tan	10 L cot	9 L cos	,
0	.67 161	.72 567	.27 433	.94 593	60
$\frac{1}{2}$.67 18 <u>5</u> .67 208	.72 598 .72 628	.27 402 .27 372	.94 587 .94 580	59
3	.67 232	.72 659	.27 342	.94 573	58 57
4	.67 256	.72 689	.27 311	.94 567	56
5	.67 280	.72 720	.27 280	.94 560	55
6	.67 303	.72 750	.27 250	.94 553	54
8	.67 327	.72 780 .72 811	.27 220 .27 189	.94 546 .94 540	53 52
9	.67 350 .67 374	.72 841	.27 159	.94 533	51
10	.67 398	.72 872	.27 128	.94 526	50
11	.67 421	.72 902	.27 098	.94 519	49
12	.67 445	.72 932	.27 068	.94 513	48
13 14	.67 468 .67 492	.72 963 .72 993	.27 037	.94 506 .94 499	47
15	.67 515	.73 023	.26 977	.94 492	45
16	.67 539	.73 054	.26 946	.94485	44
17	.67 562	.73 084	.26 916	.94 479	43
18	.67 586	.73 114	.26 886	.94472	42
19 20	.67 609 .67 633	.73 144	.26 856	.94 465 .94 458	41 40
21	.67 656	.73 17 <u>5</u> .73 205	.26 795	.94 451	39
22	.67 680	.73 235	.26 765	.94 445	38
23	.67 703	.73 265	.26 735	.94 438	37
24	.67 726	.73 295	.26 70 <u>5</u>	.94 431	36
25 26	.67 7 <u>5</u> 0 .67 773	.73 326 .73 356	.26 674	.94 424	35
27	.67 796	.73 386	.26614	.94 410	33
28	.67 820	.73 416	.26 584	.94 404	32
29	.67 843	.73 446	.26 554	.94 397	31
30	.67 866 .67 890	.73 476	.26 524	.94 390	30 29
31 32	.67 913	.73 507 .73 537	.26 463	.94 383 .94 376	28
33	.67 936	.73 567	.26 433	.94 369	27
34	:.67 959	.73 597	.26 403	.94 362	26
35	.67 982	.73 627	.26 373	.94 355	25
36 37	.68 006	.73 657 .73 687	.26 343	.94 349	24 23
38	.68 052	.73 717	.26 283	.94 335	22
39	.68 075	.73 747	.26 253	.94 328	21
40	.68 098	.73 777	.26 223	.94 321	20
41 42	.68 121 .68 144	.73 807 .73 837	.26 193 .26 163	.94 314 .94 307	19 18
43	.68 167	.73 867	.26 133	.94 300	17
44	.68 190	.73 897	.26 103	.94 293	16
45	.68 213	.73 927	.26 073	.94 286	15
46 47	.68 237 .68 260	.73 957 .73 987	.26 043	.94 279 .94 273	14
48	.68 283	.74 017	.25 983	.94 266	12
49	.68 305	.74 047	.25 953	.94 259	11
50	.68 328	.74077	.25 923	.94 252	10
51	.68 351	.74 107	.25 893	.94 245	9
52 53	.68 374	.74 137 .74 166	.25 863	.94 238 .94 231	8 7
54	.68 420	.74 196	.25 804	.94 224	6
55	.68 443	.74 226	.25 774	.94 217	5
56	.68 466	.74 256	.25 744	.94 210	4
57 58	.68 489 .68 512	.74 286 .74 316	.25 714	.94 203 .94 196	3 2
59	.68 534	.74 345	.25 65 5	.94 189	ĩ
60	.68 557	.74 375	.25 62 <u>5</u>	.94 182	0
,	$9 \mathbf{L} \cos$	9 L cot	10 L tan	9 L sin	1

	O.T. :	07.1	10 T	0.7	
<u>'</u>	.68 557	9 L tan .74 375	.25 625	.94 182	60
$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$.68 580	.74 405	.25 595	.94 175	59
2	.68 603	.74 43 <u>5</u>	.25 565	.94 168	58
3	.68 625	.74 465	.25 535	.94 161	57
4	.68 648	.74 494	.25 506	.94 154	56
5	.68 671 .68 694	.74 524 .74 554	.25 476 .25 446	.94 147 .94 140	55 54
7	.68716	.74 583	.25 417	.94 133	53
8	.68 739	.74613	.25 387	.94 126	52
9	.68 762	.74 643	.25 357	.94 119	51
10	.68 784	.74 673	.25 327	.94 112	50
11 12	.68 807 .68 829	.74 702 .74 732	.25 298 .25 268	.94 10 <u>5</u> .94 098	49
13	.68 852	.74 762	.25 238	.9+090	47
14	.68 87 <u>5</u>	.74 791	.25 209	.94 083	46
15	.68897	. 74 821	.25 179	.94 076	45
16	.68 920	.74 851	.25 149	.94 069	44
17 18	.68 942 .68 965	.74 880 .74 910	.25 120 .25 090	.94 062 .94 055	43 42
19	$.6898\overline{7}$.74 939	.25 061	.94 048	41
20	.69 010	.74 969	.25 031	.94 041	40
21	.69 032	.74 998	.25 002	.94 034	39
22 23	.69 05 <u>5</u> .69 077	.75 028 .75 058	.24 972 .24 942	.94 027 .94 020	38
24	.69 100	.75 087	.24 913	.94 012	36
25	.69 122	.75 117	.24 883	.94 005	35
26	.69 144	.75 146	.24 854	.93 998	34
27	.69 167	.75 176	.24 824	.93 991	33
28	.69 189 .69 212	.75 205 .75 23 <u>5</u>	.24 79 <u>5</u> .24 765	.93 984	32
30	.69 234	.75 264	.24 736	.93 970	30
31	.69 256	.75 294	.24 706	.93 963	29
32	.69 279	.75 323	.24 677	.93 955	28
33	.69 301 .69 323	.75 353 .75 382	.24 647 .24 618	.93 948	27 26
35	.69 345	.75 411	.24 589	.93 934	25
36	.69 368	.75 441	.24 559	.93 927	24
37	.69 390	.75 470	.24 530	.93 920	23
38	.69 412 .69 434	.75 500 .75 529	.24 500 .24 471	.93 912	22 21
40	.69456	.75 558	.24 442	.93 898	20
41	.69 +79	.75 588	.24 412	.93 891	19
42	.69 501	.75 617	.24 383	.93 884	18
43	.69 523	.75 647	.24 353 .24 324	.93 876	17
	.69 545	.75 676	.24 295	.93 869	16
45 46	.69 589	.75 705 .75 73 <u>5</u>	.24 29 <u>5</u>	.93 862 .93 85 <u>5</u>	15
47	.69611	.75 764	.24 236	.93 847	13
48	.69 633	.75 793	.24 207	.93 840	12
49	.69 655	.75 822	.24 178	.93 833	11
50 51	.69 677 .69 699	.75 852 .75 881	.24 148 .24 119	.93 826 .93 819	10
52	.69 721	.75 910	.24 090	.93 811	9 8 7
53	.69 743	.75 939	.24 061	.93 804	7
54	.69 765	.75 969	.24 031	.93 797	6
55 56	.69 787 .69 809	.75 998 .76 027	.24 002 .23 973	.93 789 .93 782	5 4 3 2 1
57	.69831	.76 056	.23 913	.93 775	3
58	.69853	.76 086	.23 914	.93 768	2
59	.69 875	.76 11 <u>5</u>	.23 885	.93 760	1 11
60	.69 897	.76 144	.23 856	.93 753	0
/	9 L cos	9 L cot	10 L tan	9 L sin	/

		-			
/	9 L \sin		10 L cot	9 L cos	/
0	.69 897 .69 919	.76 144	.23 856	.93 753	60
$\frac{1}{2}$.69 941	.76 173 .76 202	.23 827 .23 798	.93 746 .93 738	59 58
3	.69 963	.76 231	.23 769	.93 731	57
4	. 69 984	.76 261	.23 739	.93 724	56
5	.70 006	.76 290 .76 319	.23 710 .23 681	.93 717	55 54
7	.70 028 .70 0 <u>5</u> 0	.76348	.23 652	.93 709	53
8	.70072	.76377	.23 623	.93 695	52
9	.70 093	.76 406	.23 594	.93 687	51
10 11	.70 115 .70 137	.76 435 .76 464	.23 56 <u>5</u> .23 536	.93 680 .93 673	50
12	.70 157	.76 493	.23 507	.93 665	48
13	.70 180	. 76 522	.23 478	.93 658	47
14	.70 202	.76 551	.23 449	.93 650	46
15 16	.70 224 .70 245	.76 580 .76 609	.23 420 .23 391	.93 643 .93 636	45 44
17	.70 267	.76 639	.23 361	.93 628	43
18	.70 288	. 76 668	.23 332	.93 621	42
19	.70 310	.76 697	.23 303	.93 614	41
20 21	.70 332 .70 353	.76 725 .76 754	.23 27 <u>5</u> .23 246	.93 606	40 39
22	.70 37 <u>5</u>	.76 783	.23 217	.93 591	38
23	.70 396	.76812	.23 188	.93 584	37
24	.70 418 .70 439	.76 841	.23 159	.93 577	36
25 26	.70 439	.76 870 .76 899	.23 130 .23 101	.93 569 .93 562	35
27	.70482	.76 928	.23 072	.93 554	33
28	.70 504 .70 525	.76 957	.23 043	.93 547	32
29 30	.70 547	.76 986 .77 015	.23 014	.93 539	31 30
31	.70 568	.77 013	.22 956	.93 525	29
32	.70 590	.77 073	.22 927	.93 517	28
33 34	.70 611 .70 633	.77 101 .77 130	.22 899 .22 870	.93 510	27 26
35	.70 654	.77 159	.22 841	.93 495	25
36	.70 675	.77 188	.22812	.93 487	24
37	.70 697 .70 718	.77 217 .77 246	.22 783	.93 480	23
38	.70 739	.77 274	.22 754 .22 726	.93 472 .93 46 <u>5</u>	22 21
40	.70 761	.77 303	.22 697	.93 457	20
41	.70 782	.77 332 .77 361	.22 668	.93 4 <u>5</u> 0	19
42	.70 803 .70 824	.77 361 .77 390	.22 639 .22 610	.93 442	18 17
44	.70846	.77 418	.22 582	.93 427	16
45	.70 867	.77 447	.22 553	.93 420	15
46	.70 888	.77 476	.22 524	.93 412	14
47	.70 909 .70 931	.77 50 <u>5</u> .77 533	.22 495 .22 467	.93 40 <u>5</u> .93 397	13 12
49	.70 952	.77 562	.22 438	.93 390	11
50	.70 973	.77 591	.22 409	.93 382	10
51 52	.70 994	.77 619 .77 648	.22 381 .22 352	.93 37 <u>5</u> .93 367	9 8
53	.71 036	.77 677	.22 323	.93 360	7
54	.71 058	.77 706	.22 294	.93 352	6
55	.71 079 .71 100	.77 734 .77 763	.22 266 .22 237	.93 344	5 4 3 2
56	.71 100	.77 791	.22 237	.93 337	3
58	.71 142	.77 820	.22 180	.93 322	2
59	.71 163	.77849	.22 151	.93 314	1
60	.71 184	.77 877	.22 123	.93 307	0
/	9 L cos	a r cot	10 L tan	9 L SIN	/

	07 :	07.4	40 T	0.7	
0	.71 184	.77877	10 L cot .22 123	.93 307	$\frac{\prime}{60}$
ľ	.71 205	.77 906	.22 094	.93 299	59
2	.71 226	.77 935	.22 065	.93 291	58
3 4	.71 247 .71 268	.77 963 .77 992	.22 037	.93 284	57 56
5	.71 289	.78 020	.21 980	.93 269	55
6	.71 310	.78 049	.21 951	.93 261	54
7	.71 331	.78 077	.21 923	.93 253	53
8 9	.71 352	.78 106	.21 894 .21 865	.93 246 .93 238	52
10	.71 373	.78 13 <u>5</u>	.21 837	.93 230	50
11	.71 414	.78 192	.21 808	.93 223	49
12	.71 435	.78 220	.21 780	.93 215	48
13	.71 456	.78 249	.21 751	.93 207	47
14	.71 477	.78 277	.21 723 .21 694	.93 200	46
16	.71 519	.78 306 .78 334	.21 666	.93 192	44
17	.71 539	.78 363	.21 637	.93 177	43
18	.71 560	.78 391	.21 609	.93 169	42
19	.71 581	.78419	.21 581	.93 161	41
20 21	.71 602 .71 622	.78 448 .78 476	.21 552 .21 524	.93 154 .93 146	40 39
22	.71 643	.78 505	.21 495	.93 138	38
23	.71 664	.78 533	.21 467	.93 131	37
24	.71 68 <u>5</u>	.78 562	.21 438	.93 123	36
25 26	.71 705 .71 726	.78 590 .78 618	.21 410 .21 382	.93 115 .93 108	35 34
27	.71 747	.78 647	.21 352	.93 100	33
28	.71 767	.78 675	.21 325	.93 092	32
29	.71 788	.78 704	.21 296	.93 084	31
30	.71 809	.78 732	.21 268	.93 077	30
31 32	.71 829 .71 850	.78 760 .78 789	.21 240 .21 211	.93 069 .93 061	29 28
33	.71 870	.78 817	.21 183	.93 053	27
34	.71 891	.78 845	.21 15 <u>5</u>	.93 046	26
35	.71 911	.78 874	.21 126	.93 038	25
36 37	.71 932 .71 952	.78 902 .78 930	.21 098 .21 070	.93 030 .93 022	24
38	.71 973	.78 959	.21 041	.93 014	22
39	.71 994	.78 987	.21 013	.93 007	21
40	.72 014	.79 015	.20 985	.92 999	20
41	.72 034	.79 043 .79 072	.20 957 .20 928	.92 991 .92 983	19
42	.72 05 <u>5</u> .72 075	.79 100	.20 928	.92 933	17
44	.72 096	.79 128	.20 872	.92 968	16
45	.72 116	.79 156	.20 844	.92 960	15
46	.72 137	.79 185	.20815	.92 952	14
47 48	.72 157 .72 177	.79 213 .79 241	.20 787 .20 759	.92 944 .92 936	13
49	.72 198	.79 269	.20 731	.92 929	11
50	.72 218	.79 297	.20 703	.92 921	10
51	.72 238	.79326	.20 674	.92 913	9
52 53	.72 259 .72 279	.79 354 .79 382	.20 646 .20 618	.92 905 .92 897	8 7
54	.72 299	.79 410	.20 590	.92 889	6
55	.72 320	.79 438	.20 562	.92 881	5
56	.72 340	.79 466	.20 534	.92874	4
57	.72 360 .72 381	.79 49 <u>5</u> .79 523	.20 505 .20 477	.92 866 .92 858	3 2
58 59	.72 401	.79 523	.20477	.92 850	1
60	.72 421	.79 579	.20 421	.92 842	0
/	.1		10 L tan		,
I	L				

,	9 L sin	9 L tan	10 L cot	9 L cos	,
0	.72 421 .72 441	.79 579 .79 607	.20 421 .20 393	.92 842 .92 834	60 59
2	.72 461	.79 635	.20 365	.92 826	58
3	.72 482 .72 502	.79 663 .79 691	.20 337	.92 818 .92 810	57 56
5	.72 522	.79 719	.20 281	.92 803	55
6	.72542	.79 747	.20 253	.92 79 <u>5</u>	54
7 8	.72 562 .72 582	.79 776 .79 804	.20 224 .20 196	.92 787 .92 779	53 52
9	.72 602	.79832	.20 168	.92 771	51
10	.72 622		.20 140	.92 763	50
11 12	.72 643 .72 663	.79 888 .79 916	.20 112	.92 75 <u>5</u> .92 747	49
13	.72 683	.79 944	.20 056	.92 739	47
14 15	.72 703 .72 723	.79 972 .80 000	.20 028	.92 731 .92 723	46
16	.72 743	.80 028	.19 972	.92 715	44
17 18	.72 763 .72 783	.80 056 .80 084	.19 944 .19 916	.92 707 .92 699	43 42
19	.72 803	.80 112	.19 888	.92 699	41
20	.72 823	.80 140	.19860	.92 683	40
21 22	.72 843 .72 863	.80 168 .80 195	.19832 .1980 <u>5</u>	.92 675 .92 667	39
23	.72 883	.80 223	.19777	.92 659	37
24 25	.72 902 .72 922	.80 251	.19 749	.92 651	36
26	.72 942	.80 279 .80 307	.19 721	.92 643 .92 635	34
27 28	.72 962	.80 335	.19 665	.92 627	33
29	.72 982 .73 002	.80 363 .80 391	.19 637	.92 619 .92 611	32
30	.73 022	.80 419	.19 581	.92 603	30
31 32	.73 041 .73 061	.80 447 .80 474	.19 553 .19 526	.92 59 <u>5</u> .92 587	29 28
33	.73 081	.80 502	.19498	.92 579	27
34 35	.73 101	.80 530	.19470	.92 571	26
36	.73 121 .73 140	.80 558 .80 586	.19442	.92 563 .92 555	25 24
37	.73 160	.80 614	.19 386	.92 546	23
38 39	.73 180 .73 200	.80 642 .80 669	.19 358	.92 538 .92 530	22 21
40	.73 219	.80 697	.19303	.92 522	20
41 42	.73 239 .73 259	.80 72 <u>5</u> .80 753	.19 275 .19 247	.92 514 .92 506	19 18
43	.73 278	.80 781	.19 219	.92 498	17
44	.73 298	.80 808	.19 192	.92 490	16
45 46	.73 318 .73 337	.80 836 .80 864	.19 164 .19 136	.92 482	15 14
47	.73 357	.80 892	.19 108	.92 465	13
48 49	.73 377 .73 396	.80 919 .80 947	.19 081 .19 053	.92 457	12 11
50	.73 416	.80 975	.19 025	.92 441	10
51 52	.73 435 .73 45 <u>5</u>	.\$1 003 .\$1 030	.18 997 .18 970	.92 433 .92 425	9 8
53	.73 474	.81 058	.18 942	.92416	8 7
54	.73 494	.81 086	.18914	.92 408	6
55 56	.73 513 .73 533	.81 113 .81 141	.18 887 .18 859	.92 400 .92 392	5 4
57	.73 552	.81 169	.18831	.92384	3
58 59	.73 572 .73 591	.81 196 .81 224	.18 804 .18 776	.92 376	5 4 3 2 1
60	.73 611	.81 252	.18 748	.92 359	0
,	9 L cos	9 L cot	10 L tan	9 L sin	'

	O.T. mirr	OT ton	10 T act	9 L cos	
$\frac{}{}$.73 611	9 L tan .81 252	10 L cot .18 748	.92 359	60
1	.73 630	.81 279	.18721	.92 351	59
2	.73 650	.81 307	.18 693	.92 343	58
3 4	.73 669	.81 33 <u>5</u> .81 362	.18 665 .18 638	.92 33 <u>5</u> .92 326	57 56
5	.73 708	.81 390	.18610	.92318	55
6	.73 727	.81418	.18 582	.92 310	54
7	.73 747	.81 445	.18555	.92 302	53
8 9	.73 766 .73 785	.81 473 .81 500	.18 527 .18 500	.92 293 .92 285	52
10	.73 805	.81 528	.18472	.92 277	50
11	.73 824	.81 556	.18 444	.92 269	49
12	.73 S43 .73 S63	.81 583 .81 611	.18 417 .18 389	.92 260 .92 252	48
14	.73 882	.81 638	.18 362	.92 244	47 46
15	.73 901	.81 666	.18 334	.92 235	45
16	.73 921	.81 693	.18 307	.92 227	44
17	.73 940 .73 959	.81 721 .81 748	.18 279 .18 252	.92 219 .92 211	43
19	.73 978	.81 776	.18 224	.92 202	41
20	.73 997	.81803	.18 197	.92 194	40
21	.74 017	.81 831	.18 169	.92 186 .92 177	39
22 23	.74 036 .74 055	.81 858 .81 886	.18 142	.92 177	38 37
24	.74 074	.81913	.18 087	.92 161	36
25	.74 093	.81 941	.18 059	.92 152	35
26 27	.74 113 .74 132	.81 968 .81 996	.18 032	.92 144	34
28	.74 151	.82 023	.17 977	.92 127	32
29	.74 170	.82 051	.17 949	.92 119	31
30	.74 189 .74 208	.82 078 .82 106	.17 922 .17 894	.92 111	30
31 32	.74 227	.82 133	.17 867	.92 102 .92 094	29 28
33	.74 246	.82 161	.17839	.92 086	27
34	.74 265	.82 188	.17 812	.92 077	26
35	.74 284 .74 303	.82 215 .82 243	.17 78 <u>5</u> .17 757	.92 069 .92 060	25 24
37	.74 322	.82270	.17730	.92 052	23
38	.74 341 .74 360	.82 298 .82 325	.17 702	.92 044	22
40	.74 379	.82 352	.17 67 <u>5</u>	.92 035	$ \frac{21}{20} $
41	.7+398	.82 380	.17 620	.92 018	19
42	.74 417	.82 407	.17 593	.92 010	18
43	.74 436 .74 45 <u>5</u>	.82 43 <u>5</u> .82 462	.17 565 .17 538	.92 002 .91 993	17 16
45	.74 474	.82 489	.17 511	.91 985	15
46	.74 493	.82 517	.17 483	.91 976	14
47	.74 512 .74 531	.82 544 .82 571	.17 456	.91 968 .91 959	13
49	.74 549	.82 599	.17 401	.91 959	12 11
50	.74 568	.82 626	.17374	.91 942	10
51	.74 587	.82 653	.17 347	.91 934	9
52	.74 606 .74 62 <u>5</u>	.82 681 .82 708	.17 319 .17 292	.91 925 .91 917	8 7
54	.74 644	.82 735	.17 265	.91 908	6
55	.74 662	.82 762	.17 238	.91 900	5
56	.74 681 .74 700	.82 790 .82 817	.17 210 .17 183	.91 891 .91 883	4
58	.74 719	.82 844	.17 156	.91 874	5 4 3 2 1
59	.74 737	.82 871	.17 129	.91 866	
60	.74 756	.82 899	.17 101	.91 857	0
′	9 L cos	arcot	10 L tan	9 L sin	

O 9 L sin 9 L tan 10 L cot 9 L cos / O 7.4 756 82 899 1.7 101 .91 857 60 1 7.4 756 8.2 899 1.7 101 .91 840 58 3 7.4 812 8.2 980 1.7 020 .91 832 57 4 7.4 831 8.3 008 1.6 992 .91 823 56 5 7.4 887 8.3 062 1.6 938 .91 806 54 6 7.4 887 8.3 089 1.6 911 .91 798 53 8 7.4 906 .83 117 1.6 883 .91 806 54 7 7.4 943 .83 171 1.6 839 .91 781 50 10 7.4 943 .83 171 1.6 829 .91 772 49 11 7.4 961 .83 188 1.6 802 .91 735 48 12 7.7 4980 .83 225 1.6 735 .91 755 48 13 7.75 073 .83 381 1.6 609 .91 738 46						
1	/	!	9 L tan	10 L cot	9 L cos	
2		.74 756				
3 .74 812 .82 980 .17 020 .91 832 57 4 .74 831 .83 008 .16 992 .91 823 56 5 .74 850 .83 035 .16 965 .91 815 55 6 .74 868 .83 062 .16 938 .91 806 54 7 .74 986 .83 117 .16 883 .91 789 52 9 .74 924 .83 117 .16 883 .91 789 52 9 .74 943 .83 171 .16 886 .91 781 51 10 .74 943 .83 171 .16 886 .91 781 51 11 .74 961 .83 198 .16 802 .91 763 49 12 .74 943 .83 173 .16 802 .91 752 49 12 .74 961 .83 198 .16 802 .91 752 49 14 .75 01 .83 252 .16 775 .91 752 48 15 .75 036 .83 307 .16 693 .91 712 43 16 .75 073 .83 383 .16 612 .91 703 42		74 775	.82 926	17 074		
4 .74 831 .83 008 .16 992 .91 823 56 5 .74 850 .83 035 .16 965 .91 815 55 6 .74 868 .83 062 .16 938 .91 806 54 7 .74 868 .83 062 .16 911 .91 798 53 8 .74 906 .83 117 .16 883 .91 789 52 9 .74 924 .83 144 .16 856 .91 781 51 10 .74 943 .83 171 .16 829 .91 772 49 11 .74 960 .83 252 .16 775 .91 753 49 12 .74 980 .83 252 .16 748 .91 746 47 14 .75 017 .83 280 .16 720 .91 738 46 15 .75 036 .83 307 .16 693 .91 720 44 17 .75 073 .83 381 .16 639 .91 720 44 16 .75 073 .83 381 .16 639 .91 720 4			.82 980	.17 020		
6	4					56
7 .74 887 .83 089 .16 911 .91 798 53 8 .74 906 .83 117 .16 883 .91 789 52 9 .74 924 .83 144 .16 856 .91 781 51 10 .74 943 .83 171 .16 829 .91 763 49 12 .74 980 .83 252 .16 775 .91 755 48 13 .74 999 .83 252 .16 778 .91 746 47 14 .75 017 .83 280 .16 720 .91 738 46 15 .75 036 .83 307 .16 693 .91 729 45 16 .75 054 .83 334 .16 666 .91 720 44 17 .75 073 .83 381 .16 612 .91 703 42 18 .75 091 .83 388 .16 612 .91 703 42 20 .75 110 .83 442 .16 585 .91 695 41 20 .75 128 .83 497 .16 503 .91 660 37 21 .75 201 .83 581 .16 422 .91 634 <	5			.16965		
8 .74 906 .83 117 .16 883 .91 789 52 9 .74 924 .83 144 .16 856 .91 781 51 10 .74 943 .83 171 .16 829 .91 772 49 11 .74 961 .83 198 .16 802 .91 775 49 12 .74 980 .83 225 .16 775 .91 736 47 14 .75 017 .83 280 .16 720 .91 738 46 15 .75 036 .83 307 .16 639 .91 729 45 16 .75 073 .83 381 .16 639 .91 722 45 17 .75 073 .83 381 .16 639 .91 712 43 18 .75 091 .83 388 .16 612 .91 703 42 19 .75 110 .83 415 .16 535 .91 695 41 20 .75 128 .83 442 .16 558 .91 669 38 21 .75 165 .83 477 .16 530 .91 669 38 22 .75 165 .83 653 .16 341 .91 617				.16 938		
9 .74 924 .83 144 .16 856 .91 781 51 10 .74 943 .83 171 .16 829 .91 772 49 11 .74 961 .83 198 .16 802 .91 763 49 12 .74 980 .83 225 .16 775 .91 755 48 13 .74 999 .83 252 .16 748 .91 746 47 14 .75 017 .83 280 .16 720 .91 738 46 15 .75 036 .83 307 .16 693 .91 729 45 16 .75 073 .83 381 .16 666 .91 720 44 17 .75 073 .83 381 .16 639 .91 720 42 18 .75 091 .83 388 .16 612 .91 703 42 20 .75 128 .83 442 .16 558 .91 695 41 20 .75 128 .83 477 .16 530 .91 677 39 21 .75 147 .83 470 .16 530 .91 660 37 22 .75 148 .83 524 .16 476 .91 660						
11 .74 961 .83 198 .16 802 .91 763 49 12 .74 980 .83 225 .16 775 .91 755 48 13 .74 999 .83 252 .16 775 .91 755 48 14 .75 017 .83 280 .16 720 .91 738 46 15 .75 036 .83 307 .16 693 .91 729 45 16 .75 054 .83 334 .16 666 .91 720 44 17 .75 073 .83 361 .16 639 .91 712 43 18 .75 091 .83 888 .16 612 .91 703 42 19 .75 110 .83 415 .16 585 .91 695 41 20 .75 128 .83 442 .16 580 .91 669 38 21 .75 147 .83 470 .16 530 .91 660 37 22 .75 165 .83 497 .16 476 .91 660 37 24 .75 202 .83 578 .16 422 .91 643 34 27 .75 258 .83 632 .16 349 .91 625						
11 .74 961 .83 198 .16 802 .91 763 49 12 .74 980 .83 225 .16 775 .91 755 48 13 .74 999 .83 252 .16 748 .91 746 47 14 .75 017 .83 280 .16 720 .91 738 46 15 .75 036 .83 307 .16 693 .91 729 45 16 .75 074 .83 381 .16 666 .91 720 44 17 .75 073 .83 381 .16 666 .91 720 44 17 .75 073 .83 381 .16 666 .91 720 44 18 .75 091 .83 388 .16 612 .91 703 42 19 .75 110 .83 415 .16 585 .91 695 41 20 .75 128 .83 472 .16 530 .91 677 39 21 .75 147 .83 470 .16 530 .91 667 39 23 .75 184 .83 524 .16 476 .91 660 38 23 .75 184 .83 585 .16 345 .91 631	10	.74943	.83 171	.16829	.91772	50
13 .74 999 .83 252 .16 748 .91 746 47 14 .75 017 .83 280 .16 720 .91 738 46 15 .75 036 .83 307 .16 639 .91 729 45 16 .75 073 .83 381 .16 666 .91 720 44 17 .75 073 .83 388 .16 612 .91 703 42 19 .75 110 .83 415 .16 535 .91 695 41 20 .75 128 .83 442 .16 530 .91 669 39 21 .75 147 .83 470 .16 530 .91 669 39 22 .75 165 .83 497 .16 530 .91 669 39 23 .75 184 .83 524 .16 476 .91 660 37 24 .75 202 .83 578 .16 422 .91 643 35 25 .75 239 .83 605 .16 385 .91 625 33 26 .75 239 .83 653 .16 364 .91 625 33 27 .75 258 .83 659 .16 314 .91 617					.91 763	
14 .75 017 .83 280 .16 720 .91 738 46 15 .75 036 .83 307 .16 693 .91 729 45 16 .75 054 .83 334 .16 666 .91 720 44 17 .75 073 .83 381 .16 639 .91 712 43 18 .75 091 .83 388 .16 612 .91 703 42 19 .75 110 .83 415 .16 585 .91 695 41 20 .75 128 .83 442 .16 558 .91 695 41 20 .75 185 .83 477 .16 530 .91 660 37 21 .75 165 .83 497 .16 503 .91 660 37 22 .75 165 .83 497 .16 449 .91 651 36 24 .75 239 .83 605 .16 395 .91 634 34 25 .75 258 .83 632 .16 341 .91 603 31 30 .75 313 .83 713 .16 287 .91 599 30 31 .75 331 .83 740 .16 260 .91 591				.16775	.91 755	
15 .75 036 .83 307 .16 693 .91 729 45 16 .75 054 .83 334 .16 666 .91 720 44 17 .75 073 .83 381 .16 669 .91 712 43 18 .75 091 .83 388 .16 612 .91 703 42 19 .75 110 .83 415 .16 585 .91 695 41 20 .75 128 .83 442 .16 530 .91 669 38 21 .75 147 .83 470 .16 530 .91 669 38 23 .75 184 .83 524 .16 476 .91 669 37 24 .75 202 .83 551 .16 449 .91 651 36 25 .75 221 .83 578 .16 422 .91 643 34 27 .75 239 .83 605 .16 395 .91 634 34 27 .75 258 .83 632 .16 341 .91 605 33 30 .75 313 .83 713 .16 287 .91 599 30 31 .75 350 .83 768 .16 232 .91 591	1					
16 .75 054 .83 33+ .16 666 .91 720 44 17 .75 073 .83 361 .16 639 .91 712 43 18 .75 091 .83 388 .16 612 .91 703 42 19 .75 110 .83 415 .16 585 .91 695 41 20 .75 128 .83 442 .16 580 .91 669 38 21 .75 165 .83 497 .16 530 .91 669 38 23 .75 184 .83 524 .16 476 .91 669 37 24 .75 202 .83 551 .16 4479 .91 651 36 25 .75 221 .83 578 .16 422 .91 643 34 26 .75 239 .83 605 .16 395 .91 634 34 27 .75 258 .83 632 .16 341 .91 617 32 28 .75 276 .83 689 .16 341 .91 617 32 30 .75 313 .83 713 .16 287 .91 599 30 31 .75 350 .83 768 .16 232 .91 591		1				1 1
18 .75 091 .83 388 .16 612 .91 703 42 19 .75 110 .83 415 .16 585 .91 695 41 20 .75 128 .83 442 .16 558 .91 695 40 21 .75 147 .83 470 .16 530 .91 669 38 23 .75 184 .83 524 .16 476 .91 660 37 24 .75 202 .83 551 .16 449 .91 651 36 25 .75 221 .83 578 .16 422 .91 634 34 26 .75 239 .83 605 .16 368 .91 625 33 28 .75 276 .83 659 .16 341 .91 617 32 29 .75 294 .83 686 .16 314 .91 608 31 30 .75 313 .83 713 .16 287 .91 593 30 31 .75 350 .83 768 .16 232 .91 582 28 33 .75 350 .83 785 .16 205 .91 573 27 34 .75 368 .83 795 .16 205 .91 573		.75 054		.16666		44
19 .75 110 .83 415 .16 585 .91 695 41 20 .75 128 .83 442 .16 558 .91 686 40 21 .75 147 .83 470 .16 530 .91 669 38 22 .75 165 .83 497 .16 503 .91 669 37 24 .75 202 .83 551 .16 449 .91 661 37 24 .75 202 .83 551 .16 449 .91 631 36 25 .75 221 .83 565 .16 395 .91 643 34 26 .75 239 .83 605 .16 395 .91 634 34 27 .75 258 .83 632 .16 341 .91 607 32 28 .75 276 .83 659 .16 314 .91 608 31 30 .75 313 .83 713 .16 280 .91 592 29 31 .75 331 .83 778 .16 205 .91 573 27 34 .75 368 .83 795 .16 205 .91 573				.16 639		
20 .75 128 .83 442 .16 558 .91 686 40 21 .75 147 .83 470 .16 530 .91 677 39 22 .75 165 .83 497 .16 530 .91 669 38 23 .75 184 .83 524 .16 476 .91 669 37 24 .75 202 .83 578 .16 449 .91 651 36 25 .75 221 .83 678 .16 422 .91 643 34 26 .75 239 .83 605 .16 395 .91 634 34 27 .75 258 .83 632 .16 341 .91 613 32 28 .75 276 .83 689 .16 341 .91 608 32 29 .75 294 .83 686 .16 314 .91 608 32 30 .75 313 .83 713 .16 287 .91 599 30 31 .75 368 .83 795 .16 205 .91 573 27 34 .75 368 .83 282 .16 178 .91 566						
21 .75 147 .83 470 .16 530 .91 677 39 22 .75 165 .83 497 .16 503 .91 669 38 23 .75 184 .83 524 .16 476 .91 660 36 24 .75 202 .83 551 .16 449 .91 651 36 25 .75 239 .83 605 .16 395 .91 634 34 26 .75 239 .83 605 .16 395 .91 634 34 27 .75 258 .83 659 .16 314 .91 608 31 28 .75 276 .83 686 .16 314 .91 608 31 30 .75 313 .83 740 .16 260 .91 591 29 31 .75 331 .83 740 .16 260 .91 591 29 32 .75 350 .83 788 .16 235 .91 582 28 33 .75 368 .83 795 .16 205 .91 573 27 34 .75 386 .83 822 .16 178 .91 556 26 35 .75 405 .83 849 .16 151 .91 547				_		i i
22 .75 165 .83 497 .16 503 .91 669 38 23 .75 184 .83 524 .16 476 .91 660 37 24 .75 202 .83 551 .16 449 .91 651 36 25 .75 221 .83 578 .16 422 .91 643 34 26 .75 239 .83 605 .16 395 .91 634 34 27 .75 258 .83 659 .16 341 .91 617 32 28 .75 276 .83 686 .16 314 .91 617 32 29 .75 294 .83 686 .16 314 .91 608 31 30 .75 313 .83 710 .16 260 .91 591 30 31 .75 330 .83 768 .16 232 .91 582 28 33 .75 368 .83 795 .16 205 .91 573 27 34 .75 386 .83 822 .16 178 .91 565 26 35 .75 405 .83 876 .16 124 .91 547				.16 530		
24 .75 202 .83 551 .16 449 .91 651 36 25 .75 221 .83 578 .16 422 .91 643 35 26 .75 239 .83 605 .16 395 .91 634 34 27 .75 258 .83 659 .16 341 .91 617 32 28 .75 276 .83 659 .16 314 .91 608 31 30 .75 313 .83 713 .16 287 .91 599 30 31 .75 331 .83 740 .16 260 .91 591 29 32 .75 350 .83 768 .16 232 .91 592 29 32 .75 350 .83 768 .16 232 .91 582 26 33 .75 368 .83 795 .16 205 .91 573 27 34 .75 366 .83 822 .16 178 .91 565 26 35 .75 423 .83 876 .16 124 .91 547 24 37 .75 441 .83 903 .16 070 .91 530	22	.75 165	.83 497	.16 503	.91 669	38
25 .75 221 .83 578 .16 422 .91 643 35 26 .75 239 .83 605 .16 395 .91 634 34 27 .75 258 .83 632 .16 368 .91 625 33 28 .75 276 .83 659 .16 314 .91 608 31 29 .75 294 .83 686 .16 314 .91 608 31 30 .75 313 .83 713 .16 287 .91 599 29 32 .75 350 .83 768 .16 232 .91 582 28 33 .75 368 .83 795 .16 205 .91 573 27 34 .75 366 .83 822 .16 178 .91 556 26 35 .75 405 .83 849 .16 151 .91 556 25 36 .75 423 .83 876 .16 124 .91 547 24 37 .75 441 .83 903 .16 070 .91 530 22 38 .75 478 .83 394 .16 019 .91 521 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
26 .75 239 .83 605 .16 395 .91 634 34 27 .75 258 .83 632 .16 368 .91 625 33 28 .75 276 .83 659 .16 341 .91 608 31 29 .75 294 .83 686 .16 314 .91 608 31 30 .75 313 .83 740 .16 260 .91 591 29 32 .75 350 .83 768 .16 232 .91 582 28 33 .75 368 .83 795 .16 205 .91 573 27 34 .75 386 .83 822 .16 178 .91 556 26 35 .75 405 .83 849 .16 151 .91 556 26 36 .75 423 .83 876 .16 124 .91 547 24 37 .75 441 .83 903 .16 070 .91 530 22 38 .75 478 .83 987 .16 104 .91 521 20 40 .75 466 .83 984 .16 016 .91 512 20 40 .75 478 .83 987 .16 016 .91 512						
27 .75 258 .83 632 .16 368 .91 625 33 28 .75 276 .83 659 .16 341 .91 617 32 29 .75 294 .83 686 .16 314 .91 617 32 30 .75 313 .83 713 .16 287 .91 599 30 31 .75 331 .83 740 .16 260 .91 591 29 32 .75 350 .83 768 .16 232 .91 582 28 33 .75 368 .83 872 .16 178 .91 565 26 35 .75 405 .83 876 .16 124 .91 547 27 36 .75 405 .83 876 .16 124 .91 547 23 37 .75 441 .83 903 .16 070 .91 538 23 38 .75 496 .83 987 .16 043 .91 521 21 40 .75 496 .83 984 .16 016 .91 521 21 40 .75 496 .83 987 .16 043 .91 521						34
28 .75 276 .83 659 .16 341 .91 617 32 29 .75 294 .83 686 .16 314 .91 608 31 30 .75 313 .83 713 .16 280 .91 599 29 31 .75 351 .83 740 .16 260 .91 591 29 32 .75 350 .83 768 .16 232 .91 582 28 33 .75 368 .83 795 .16 205 .91 573 27 34 .75 386 .83 822 .16 178 .91 565 26 35 .75 405 .83 849 .16 151 .91 556 25 36 .75 423 .83 876 .16 124 .91 547 24 37 .75 441 .83 903 .16 070 .91 538 23 38 .75 478 .83 957 .16 043 .91 521 21 40 .75 496 .83 984 .16 016 .91 512 20 41 .75 514 .84 015 .15 962 .91 495 18 42 .75 533 .84 038 .15 962 .91 495						
30 .75 313 .83 713 .16 287 .91 599 30 31 .75 331 .83 740 .16 260 .91 591 29 32 .75 350 .83 768 .16 232 .91 582 28 33 .75 368 .83 795 .16 205 .91 573 27 34 .75 368 .83 822 .16 178 .91 565 26 35 .75 405 .83 849 .16 151 .91 556 25 36 .75 423 .83 876 .16 124 .91 547 24 37 .75 441 .83 903 .16 070 .91 530 22 38 .75 478 .83 984 .16 016 .91 521 21 40 .75 496 .83 984 .16 016 .91 512 20 41 .75 514 .84 011 .15 989 .91 504 14 42 .75 533 .84 038 .15 962 .91 495 18 43 .75 557 .84 191 .15 989 .91 504				.16341		
31						
32		75 313			.91 599	
33		.75 350	.83 768		.91 582	
35 .75 405 .83 849 .16 151 .91 556 25 36 .75 423 .83 876 .16 124 .91 547 24 37 .75 441 .83 903 .16 097 .91 538 23 38 .75 459 .83 930 .16 070 .91 530 22 39 .75 478 .83 957 .16 043 .91 521 21 40 .75 496 .83 984 .16 016 .91 512 20 41 .75 514 .84 011 .15 989 .91 504 19 42 .75 533 .84 038 .15 962 .91 495 18 43 .75 551 .84 065 .15 935 .91 486 17 45 .75 569 .84 065 .15 935 .91 486 17 45 .75 567 .84 119 .15 881 .91 460 14 47 .75 624 .84 173 .15 831 .91 460 14 47 .75 660 .84 280 .15 700 .91 442 12 49 .75 678 .84 281 .15 740 .91 425		.75 368	.83 79 <u>5</u>	.16 205	.91 573	27
36 .75 423 .83 876 .16 124 .91 547 24 37 .75 441 .83 903 .16 097 .91 538 23 38 .75 478 .83 930 .16 070 .91 530 22 39 .75 478 .83 957 .16 043 .91 521 21 40 .75 496 .83 984 .16 016 .91 512 20 41 .75 514 .84 011 .15 989 .91 504 19 42 .75 533 .84 038 .15 962 .91 495 18 43 .75 557 .84 005 .15 935 .91 495 18 44 .75 569 .84 092 .15 908 .91 477 16 45 .75 699 .84 193 .15 881 .91 469 15 46 .75 605 .84 146 .15 854 .91 460 14 47 .75 624 .84 173 .15 827 .91 451 13 48 .75 642 .84 200 .15 800 .91 442 12 49 .75 660 .84 280 .15 720 .91 416						
37 .75 441 .83 903 .16 097 .91 538 23 38 .75 459 .83 930 .16 070 .91 530 22 39 .75 478 .83 987 .16 043 .91 521 21 40 .75 496 .83 984 .16 016 .91 512 20 41 .75 514 .84 011 .15 989 .91 504 19 42 .75 533 .84 038 .15 962 .91 495 18 43 .75 551 .84 065 .15 935 .91 486 17 45 .75 569 .84 092 .15 908 .91 477 16 45 .75 665 .84 146 .15 854 .91 460 14 47 .75 624 .84 173 .15 827 .91 451 13 48 .75 642 .84 200 .15 800 .91 442 12 49 .75 660 .84 227 .15 773 .91 433 11 50 .75 678 .84 254 .15 740 .91 425 10 51 .75 696 .84 280 .15 720 .91 416		75 405				
38 .75 459 .83 930 .16 070 .91 530 22 39 .75 478 .83 957 .16 043 .91 521 21 40 .75 496 .83 984 .16 016 .91 512 20 41 .75 514 .84 011 .15 989 .91 504 18 42 .75 533 .84 038 .15 962 .91 495 18 43 .75 551 .84 065 .15 935 .91 486 17 44 .75 569 .84 092 .15 908 .91 477 16 45 .75 567 .84 119 .15 881 .91 469 15 46 .75 605 .84 146 .15 884 .91 469 15 47 .75 624 .84 173 .15 827 .91 451 14 47 .75 624 .84 200 .15 800 .91 442 12 49 .75 660 .84 227 .15 773 .91 433 11 50 .75 678 .84 254 .15 746 .91 425 10 51 .75 696 .84 280 .15 720 .91 416						
40		.75 459	.83 930	.16070	.91 530	22
41						
42 .75 533 .84 038 .15 962 .91 495 18 43 .75 551 .84 065 .15 935 .91 486 17 44 .75 569 .84 092 .15 908 .91 477 16 45 .75 569 .84 192 .15 881 .91 469 14 46 .75 605 .84 146 .15 854 .91 460 14 47 .75 624 .84 173 .15 827 .91 451 13 48 .75 642 .84 200 .15 800 .91 442 12 49 .75 660 .84 227 .15 773 .91 433 11 50 .75 678 .84 280 .15 720 .91 416 9 51 .75 696 .84 280 .15 720 .91 416 9 52 .75 714 .84 307 .15 693 .91 407 8 53 .75 751 .84 361 .15 639 .91 389 6 54 .75 751 .84 415 .15 539 .91 381 5 56 .75 787 .84 415 .15 585 .91 363 <td< td=""><td></td><td>.75 496</td><td></td><td>.16016</td><td></td><td></td></td<>		.75 496		.16016		
43 .75 551 .84 065 .15 935 .91 486 17 44 .75 569 .84 092 .15 908 .91 477 16 45 .75 569 .84 1092 .15 908 .91 469 15 46 .75 605 .84 146 .15 854 .91 460 14 47 .75 624 .84 173 .15 827 .91 451 13 48 .75 642 .84 200 .15 800 .91 442 12 49 .75 660 .84 227 .15 773 .91 433 11 50 .75 678 .84 284 .15 746 .91 425 10 51 .75 696 .84 280 .15 746 .91 425 10 52 .75 714 .84 307 .15 639 .91 407 8 53 .75 733 .84 334 .15 666 .91 398 7 54 .75 751 .84 361 .15 639 .91 381 5 55 .75 769 .84 388 .15 612 .91 381 5 56 .75 787 .84 415 .15 585 .91 372 <				.15 962		
45		.75 551	.84 06 <u>5</u>	.15 935	.91 486	17
46 .75 605 .84 146 .15 854 .91 460 14 47 .75 624 .84 173 .15 827 .91 451 13 48 .75 642 .84 207 .15 803 .91 442 12 49 .75 660 .84 227 .15 773 .91 433 11 50 .75 678 .84 254 .15 746 .91 425 10 51 .75 696 .84 280 .15 720 .91 416 8 52 .75 714 .84 307 .15 693 .91 407 8 53 .75 733 .84 334 .15 666 .91 398 7 54 .75 751 .84 361 .15 639 .91 389 6 55 .75 769 .84 388 .15 612 .91 381 5 56 .75 787 .84 415 .15 585 .91 372 4 57 .75 805 .84 442 .15 558 .91 363 3 58 .75 823 .84 469 .15 504 .91 345 1 60 .75 859 .84 523 .15 477 .91 336 0<						- 1
47 .75 624 .84 173 .15 827 .91 451 13 48 .75 642 .84 200 .15 800 .91 442 12 49 .75 660 .84 227 .15 773 .91 433 11 50 .75 678 .84 254 .15 746 .91 425 10 51 .75 696 .84 280 .15 720 .91 416 8 52 .75 714 .84 307 .15 693 .91 407 8 53 .75 733 .84 334 .15 666 .91 398 7 54 .75 751 .84 361 .15 639 .91 389 6 55 .75 769 .84 388 .15 612 .91 381 5 56 .75 787 .84 415 .15 585 .91 372 4 57 .75 805 .84 442 .15 558 .91 363 3 58 .75 782 .84 449 .15 504 .91 345 1 60 .75 859 .84 523 .15 477 .91 336 0		.75 587		.15 881		
48 .75 642 .84 200 .15 800 .91 442 12 49 .75 660 .84 227 .15 773 .91 433 11 50 .75 678 .84 284 .15 746 .91 425 10 51 .75 696 .84 280 .15 720 .91 416 9 52 .75 714 .84 307 .15 693 .91 407 8 53 .75 733 .84 334 .15 666 .91 398 7 54 .75 751 .84 361 .15 639 .91 389 6 55 .75 769 .84 388 .15 612 .91 381 5 56 .75 787 .84 415 .15 585 .91 372 4 57 .75 805 .84 442 .15 558 .91 363 3 58 .75 823 .84 469 .15 531 .91 345 1 60 .75 859 .84 523 .15 477 .91 336 0						
49 .75 660 .84 227 .15 773 .91 433 11 50 .75 678 .84 254 .15 746 .91 425 10 51 .75 696 .84 280 .15 720 .91 416 9 52 .75 714 .84 307 .15 693 .91 407 8 53 .75 733 .84 334 .15 666 .91 398 7 54 .75 751 .84 361 .15 639 .91 389 6 55 .75 769 .84 388 .15 612 .91 381 5 56 .75 787 .84 415 .15 585 .91 372 4 57 .75 805 .84 442 .15 558 .91 363 3 58 .75 823 .84 469 .15 531 .91 354 2 59 .75 841 .84 496 .15 504 .91 345 1 60 .75 859 .84 523 .15 477 .91 336 0		.75 642				
51 .75 696 .84 280 .15 720 .91 416 8 52 .75 714 .84 307 .15 693 .91 407 8 53 .75 733 .84 334 .15 666 .91 398 7 54 .75 751 .84 361 .15 639 .91 389 6 55 .75 769 .84 388 .15 612 .91 381 5 66 .75 787 .84 415 .15 585 .91 372 4 57 .75 805 .84 442 .15 558 .91 363 3 58 .75 823 .84 469 .15 531 .91 354 2 59 .75 841 .84 496 .15 504 .91 345 1 60 .75 859 .84 523 .15 477 .91 336 0						11
52	50	.75 678	.84 254	.15 746	.91 425	
54 .75 751 .84 361 .15 639 .91 389 6 55 .75 769 .84 388 .15 612 .91 381 5 56 .75 787 .84 415 .15 585 .91 372 4 57 .75 805 .84 442 .15 558 .91 363 3 58 .75 823 .84 469 .15 531 .91 354 2 59 .75 841 .84 496 .15 504 .91 345 1 60 .75 859 .84 523 .15 477 .91 336 0		75 714		15 693		8
54 .75 751 .84 361 .15 639 .91 389 6 55 .75 769 .84 388 .15 612 .91 381 5 56 .75 787 .84 415 .15 585 .91 372 4 57 .75 805 .84 442 .15 558 .91 363 3 58 .75 823 .84 469 .15 531 .91 354 2 59 .75 841 .84 496 .15 504 .91 345 1 60 .75 859 .84 523 .15 477 .91 336 0				.15 666		7
57		.75 751	.84 361	.15 639		6
57	55	.75 769		.15 612		5
59 .75 841 .84 496 .15 504 .91 345 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			.84 415			4
59 .75 841 .84 496 .15 504 .91 345 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			.84 469	.15 531		2
						1
9Lcos 9Lcot 10Ltan 9Lsin /	60	.75 859				0
	′	9 L cos	9 L cot 1	lOL tan	9 L sin	1

O .75 859 .84 523 .15 477 .91 328 60 1 .75 877 .84 550 .15 450 .91 328 59 2 .75 895 .84 576 .15 424 .91 319 58 3 .75 913 .84 630 .15 370 .91 301 56 5 .75 949 .84 657 .15 343 .91 292 55 6 .75 967 .84 684 .15 316 .91 283 54 7 .75 985 .84 711 .15 289 .91 274 8 8 .76 003 .84 738 .15 262 .91 266 52 9 .76 021 .84 764 .15 236 .91 257 51 10 .76 039 .84 791 .15 209 .91 248 50 11 .76 057 .84 818 .15 155 .91 230 49 12 .76 057 .84 818 .15 155 .91 230 45 13 .76 057 .84 845 .15 155 .91 230 45 <th>,</th> <th>9 L sin</th> <th>9 L tan</th> <th>10 L cot</th> <th>9 L cos</th> <th></th>	,	9 L sin	9 L tan	10 L cot	9 L cos	
1	<u> </u>					60
3	1	.75 877		.15 450		59
4 .75 931 .84 630 .15 370 .91 301 56 5 .75 949 .84 657 .15 343 .91 292 55 6 .75 967 .84 684 .15 316 .91 283 54 7 .75 985 .84 711 .15 289 .91 266 52 9 .76 003 .84 764 .15 236 .91 257 51 10 .76 039 .84 791 .15 209 .91 248 50 11 .76 075 .84 818 .15 155 .91 239 49 12 .76 075 .84 818 .15 155 .91 239 49 12 .76 075 .84 815 .15 155 .91 239 49 13 .76 075 .84 815 .15 155 .91 239 49 14 .76 111 .84 895 .15 075 .91 203 45 15 .76 129 .84 925 .15 075 .91 203 45 16 .76 144 .84 952 .15 075 .91 203						
5 .75 949 .84 657 .15 343 .91 292 55 6 .75 947 .84 684 .15 316 .91 283 54 7 .75 985 .84 711 .15 289 .91 274 53 8 .76 003 .84 738 .15 262 .91 266 52 9 .76 021 .84 764 .15 236 .91 257 51 10 .76 039 .84 791 .15 209 .91 248 50 11 .76 057 .84 818 .15 182 .91 239 49 12 .76 075 .84 845 .15 155 .91 230 48 13 .76 093 .84 872 .15 128 .91 221 47 14 .76 111 .84 899 .15 101 .91 212 46 15 .76 129 .84 925 .15 075 .91 203 45 16 .76 146 .84 952 .15 048 .91 194 17 .76 164 .84 979 .15 021 .91 185 43 18 .76 182 .85 006 .14 994 .91 176 41 19 .76 200 .85 033 .14 967 .91 167 41 19 .76 236 .85 086 .14 914 .91 149 39 22 .76 236 .85 086 .14 914 .91 149 39 22 .76 233 .85 113 .14 887 .91 141 38 23 .76 271 .85 140 .14 860 .91 132 37 47 .76 342 .85 247 .14 780 .91 105 34 27 .76 342 .85 247 .14 780 .91 105 32 29 .76 378 .85 300 .14 700 .91 078 31 .76 413 .85 380 .14 600 .91 080 32 .76 431 .85 380 .14 600 .91 080 32 .76 431 .85 380 .14 600 .91 080 32 .76 431 .85 380 .14 600 .91 080 32 .76 431 .85 380 .14 600 .91 080 32 .76 431 .85 380 .14 600 .91 080 32 .76 431 .85 380 .14 600 .91 080 32 .76 431 .85 380 .14 600 .91 080 32 .76 431 .85 380 .14 600 .91 080 32 .76 431 .85 380 .14 600 .91 080 32 .76 431 .85 380 .14 600 .91 080 32 .76 431 .85 380 .14 600 .91 080 32 .76 431 .85 380 .14 600 .91 080 32 .76 431 .85 380 .14 600 .91 080 32 .76 431 .85 380 .14 600 .91 080 32 .76 431 .85 380 .14 600 .91 080 32 .76 431 .85 380 .14 600 .91 080 32 .76 431 .85 380 .14 600 .91 080 32 .76 431 .85 380 .14 600 .90 986 22 .76 660 .85 727 .14 273 .90 931 .15 400 .76 572 .85 594 .14 406 .90 9978 41 .76 695 .85 780 .14 200 .90 915 13 48 .76 612 .85 807 .14 133 .90 996 19 42 .76 600 .85 727 .14 273 .90 933 .15 46 .76 675 .85 887 .14 133 .90 996 11 47 .76 695 .85 780 .14 200 .90 915 .17 44 .76 642 .85 700 .14 300 .90 942 .14 .76 695 .85 780 .14 200 .90 915 .17 47 .76 695 .85 780 .14 200 .90 915 .17 44 .76 695 .85 780 .14 200 .90 915 .17 44 .76 695 .85 780 .14 200 .90 915 .17 44 .76 695 .85 780 .14 200 .90 986 .11 47 .76 695 .85 897 .14 100 .90 880 .11 400 .90 880 .11 40						
6	11	ĺ				()
8 .76 003 .8+ 738 .15 262 .91 266 52 9 .76 021 .8+ 764 .15 236 .91 257 51 10 .76 039 .8+ 791 .15 209 .91 248 50 11 .76 057 .8+ 818 .15 182 .91 239 49 12 .76 075 .8+ 872 .15 155 .91 230 48 13 .76 093 .8+ 872 .15 155 .91 230 48 13 .76 093 .8+ 872 .15 155 .91 230 48 14 .76 111 .8+ 899 .15 101 .91 212 46 15 .76 129 .8+ 925 .15 075 .91 201 45 16 .76 146 .8+ 979 .15 041 .91 185 43 18 .76 128 .85 006 .1+ 994 .91 176 42 20 .76 218 .85 086 .1+ 914 .91 149 .38 21 .76 236 .85 086 .1+ 914 .91 149 .38 23 .76 271 .85 140 .14 860 .91 132	6	.75 967		.15 316	.91 283	
76 76 76 76 76 76 76 76				.15 289		
10						
11						
13	11	.76 057	.84 818	.15 182	.91 239	49
14 .76 111 .84 899 .15 101 .91 212 .46 15				.15 155		
15				.15 123		
16	15					
18 .76 182 .85 006 .14 994 .91 176 42 19 .76 200 .85 033 .14 967 .91 167 41 20 .76 218 .85 085 .14 941 .91 189 39 21 .76 236 .85 086 .14 914 .91 149 38 21 .76 237 .85 113 .14 887 .91 141 38 23 .76 271 .85 140 .14 860 .91 132 37 24 .76 289 .85 166 .14 834 .91 123 36 25 .76 307 .85 193 .14 807 .91 105 34 26 .76 324 .85 220 .14 780 .91 105 34 27 .76 342 .85 247 .14 733 .91 096 33 28 .76 360 .85 273 .14 700 .91 078 31 30 .76 395 .85 327 .14 673 .91 069 30 31 .76 413 .85 380 .14 620 .91 075 29 32 .76 484 .85 407 .14 593 .91 042				.15 048		1 1
19				14 004		
21				.14 967		
21		.76 218		.14 941		
23				.14914		
24 .76 289 .85 166 .14 834 .91 123 36 25 .76 307 .85 193 .14 807 .91 114 35 26 .76 324 .85 220 .14 783 .91 105 34 27 .76 342 .85 247 .14 753 .91 095 32 28 .76 360 .85 273 .14 727 .91 087 32 29 .76 378 .85 300 .14 700 .91 078 31 30 .76 395 .85 327 .14 673 .91 069 29 31 .76 413 .85 380 .14 620 .91 061 29 32 .76 431 .85 380 .14 620 .91 051 28 33 .76 448 .85 407 .14 533 .91 042 27 34 .76 466 .85 431 .14 566 .91 033 26 35 .76 484 .85 407 .14 513 .91 042 27 34 .76 559 .85 587 .14 436 .90 096						
26 .76 324 .85 220 .14 780 .91 105 34 27 .76 342 .85 247 .14 753 .91 096 33 28 .76 360 .85 273 .14 727 .91 087 31 29 .76 378 .85 300 .14 700 .91 078 31 30 .76 395 .85 327 .14 673 .91 060 29 31 .76 431 .85 380 .14 620 .91 051 28 33 .76 448 .85 407 .14 593 .91 042 27 34 .76 466 .85 431 .14 566 .91 033 26 35 .76 484 .85 460 .14 540 .91 023 26 36 .76 501 .85 487 .14 513 .91 014 24 37 .76 519 .85 540 .14 486 .91 005 23 38 .76 571 .85 567 .14 433 .90 996 22 49 .76 572 .85 594 .14 466 .90 978						
27 .76 342 .85 247 .14 753 .91 096 33 28 .76 360 .85 273 .14 727 .91 087 32 29 .76 378 .85 300 .14 700 .91 078 31 30 .76 395 .85 327 .14 673 .91 069 29 31 .76 413 .85 380 .14 620 .91 051 28 33 .76 448 .85 407 .14 593 .91 042 27 34 .76 466 .85 434 .14 566 .91 033 26 35 .76 484 .85 460 .14 540 .91 023 23 36 .76 501 .85 487 .14 513 .91 014 24 37 .76 519 .85 540 .14 486 .91 005 23 38 .76 537 .85 567 .14 433 .90 996 22 39 .76 554 .85 671 .14 380 .90 997 20 40 .76 572 .85 647 .14 353 .90 960 18 43 .76 625 .85 674 .14 330 .90 9915						
28		76 324				
29 .76 378 .85 300 .14 700 .91 078 31 30 .76 395 .85 327 .14 673 .91 069 29 31 .76 413 .85 380 .14 620 .91 061 29 32 .76 443 .85 390 .14 620 .91 051 28 33 .76 448 .85 407 .14 593 .91 042 27 34 .76 466 .85 431 .14 566 .91 033 26 35 .76 484 .85 460 .14 540 .91 023 25 36 .76 551 .85 487 .14 513 .91 014 24 37 .76 519 .85 514 .14 460 .90 996 22 39 .76 559 .85 540 .14 406 .90 996 22 39 .76 572 .85 594 .14 406 .90 9978 20 40 .76 572 .85 547 .14 333 .90 996 19 42 .76 607 .85 647 .14 336 .90 951				.14 727		
31 .76 413 .85 354 .14 646 .91 060 29 32 .76 431 .85 380 .14 620 .91 051 28 33 .76 448 .85 407 .14 593 .91 042 27 34 .76 466 .85 437 .14 510 .91 023 25 35 .76 501 .85 487 .14 513 .91 014 24 37 .76 519 .85 514 .14 460 .90 905 23 38 .76 537 .85 567 .14 433 .90 987 20 40 .76 572 .85 594 .14 406 .90 996 22 39 .76 554 .85 667 .14 380 .90 969 12 40 .76 572 .85 594 .14 406 .90 978 20 41 .76 690 .85 620 .14 380 .90 969 18 43 .76 625 .85 674 .14 326 .90 951 17 44 .76 642 .85 700 .14 273 .90 933 15 45 .76 660 .85 727 .14 273 .90 9915	1 1		.85 300			
32 .76431 .85380 .14620 .91051 28 33 .76448 .85407 .14593 .91042 27 34 .76466 .85431 .14566 .91033 26 35 .76484 .85460 .14540 .91023 23 36 .76501 .85487 .14513 .91014 24 37 .76519 .85514 .14460 .90996 22 38 .76577 .85540 .14406 .90998 21 40 .76572 .85594 .14406 .90978 20 41 .76590 .85620 .14380 .90969 18 43 .76625 .85674 .14380 .90969 18 43 .76625 .85674 .14300 .90942 16 45 .76660 .85727 .14273 .90931 15 46 .76677 .85754 .1426 .90924 14 47 .76695 .85807 .14139 .9096 12 49 <						
33 .76 448 .85 407 .14 593 .91 042 27 34 .76 466 .85 434 .14 566 .91 033 26 35 .76 484 .85 460 .14 540 .91 023 25 36 .76 501 .85 487 .14 513 .91 014 24 37 .76 519 .85 514 .14 486 .91 005 23 38 .76 537 .85 540 .14 400 .90 996 22 39 .76 554 .85 567 .14 433 .90 987 21 40 .76 572 .85 594 .14 406 .90 978 20 41 .76 590 .85 620 .14 380 .90 969 19 42 .76 607 .85 647 .14 336 .90 969 19 43 .76 625 .85 647 .14 330 .90 995 11 44 .76 642 .85 700 .14 300 .90 991 16 45 .76 660 .85 727 .14 273 .90 933 15 46 .76 677 .85 780 .14 220 .90 915						
35	33		.85 407		.91 042	
36 .76501 .85487 .14513 .91014 24 37 .76519 .85514 .14486 .91005 23 38 .76537 .85540 .14460 .90996 22 39 .76554 .85567 .14433 .90987 20 40 .76572 .85594 .14406 .90978 20 41 .76590 .85647 .14380 .90969 19 42 .76607 .85647 .14326 .90951 17 44 .76642 .85700 .14300 .90942 16 45 .76660 .85727 .14273 .90933 15 46 .76677 .85754 .14246 .90924 14 47 .76695 .85780 .14220 .90915 13 48 .76712 .85807 .14193 .90861 11 50 .76747 .85860 .14140 .90871 10 51 .7665 .85887 .14113 .90878 8 52 <	1 1					- 11
37 .76 519 .85 514 .14 486 .91 005 23 38 .76 537 .85 540 .14 460 .90 996 22 39 .76 554 .85 567 .14 433 .90 987 21 40 .76 572 .85 594 .14 406 .90 978 20 41 .76 590 .85 620 .14 380 .90 969 19 42 .76 607 .85 647 .14 353 .90 960 18 43 .76 625 .85 674 .14 326 .90 951 17 44 .76 642 .85 700 .14 300 .90 942 16 45 .76 660 .85 727 .14 273 .90 933 15 46 .76 677 .85 750 .14 220 .90 915 13 48 .76 712 .85 807 .14 193 .90 906 12 49 .76 730 .85 837 .14 113 .90 878 10 50 .76 747 .85 800 .14 140 .90 878						
38 .76 537 .85 540 .14 460 .90 996 22 39 .76 554 .85 567 .14 433 .90 987 21 40 .76 5572 .85 567 .14 433 .90 989 19 41 .76 590 .85 620 .14 380 .90 969 19 42 .76 607 .85 647 .14 353 .90 960 18 43 .76 625 .85 674 .14 326 .90 951 17 44 .76 642 .85 700 .14 300 .90 942 16 45 .76 660 .85 727 .14 273 .90 933 15 46 .76 677 .85 780 .14 220 .90 915 13 48 .76 712 .85 807 .14 193 .90 906 12 49 .76 730 .85 887 .14 113 .90 886 11 50 .76 747 .85 860 .14 140 .90 887 10 51 .76 765 .85 887 .14 113 .90 878 9 52 .76 7782 .85 991 .14 060 .90 869						
40 .76 572 .85 594 .14 406 .90 978 20 41 .76 590 .85 620 .14 380 .90 969 19 42 .76 697 .85 647 .14 353 .90 960 18 43 .76 625 .85 674 .14 326 .90 951 17 44 .76 642 .85 700 .14 300 .90 942 16 45 .76 660 .85 727 .14 273 .90 9933 15 46 .76 677 .85 754 .14 246 .90 924 14 47 .76 695 .85 780 .14 220 .90 915 13 48 .76 712 .85 807 .14 193 .90 906 12 49 .76 730 .85 887 .14 113 .90 887 10 50 .76 747 .85 860 .14 140 .90 878 10 51 .76 55 .85 887 .14 113 .90 878 8 52 .76 782 .85 913 .14 087 .90 869 8 53 .76 800 .85 940 .14 033 .90 851						
41 .76 590 .85 620 .14 380 .90 969 19 42 .76 607 .85 647 .14 353 .90 960 18 43 .76 625 .85 647 .14 326 .90 951 17 44 .76 642 .85 700 .14 300 .90 942 16 45 .76 660 .85 727 .14 273 .90 933 15 46 .76 677 .85 754 .14 246 .90 924 14 47 .76 695 .85 780 .14 220 .90 915 13 48 .76 712 .85 807 .14 193 .90 906 12 49 .76 730 .85 834 .14 166 .90 896 11 50 .76 747 .85 860 .14 140 .90 878 10 51 .76 755 .85 887 .14 113 .90 878 10 52 .76 782 .85 913 .14 087 .90 869 8 53 .76 800 .85 940 .14 060 .90 860 7 54 .76 817 .85 967 .14 033 .90 832						
42 .76 607 .85 647 .14 353 .90 960 18 43 .76 625 .85 674 .14 326 .90 951 17 44 .76 625 .85 700 .14 300 .90 942 16 45 .76 660 .85 727 .14 273 .90 933 15 46 .76 677 .85 754 .14 246 .90 924 14 47 .76 695 .85 780 .14 220 .90 915 13 48 .76 712 .85 807 .14 193 .90 906 12 49 .76 730 .85 881 .14 166 .90 896 11 50 .76 747 .85 860 .14 140 .90 878 10 51 .76 755 .85 887 .14 113 .90 878 9 52 .76 782 .85 913 .14 087 .90 869 8 53 .76 800 .85 940 .14 060 .90 860 7 54 .76 817 .85 967 .14 033 .90 851 6 55 .76 835 .85 993 .14 007 .90 842 <t< th=""><td></td><td></td><td></td><td>.14 406</td><td></td><td></td></t<>				.14 406		
44 .76 642 .85 700 .14 300 .90 942 16 45 .76 660 .85 727 .14 273 .90 933 15 46 .76 677 .85 754 .14 246 .90 924 14 47 .76 695 .85 780 .14 220 .90 915 13 48 .76 712 .85 807 .14 193 .90 906 12 49 .76 730 .85 834 .14 166 .90 896 11 50 .76 747 .85 860 .14 140 .90 887 10 51 .76 765 .85 887 .14 113 .90 878 9 52 .76 782 .85 913 .14 087 .90 869 8 53 .76 800 .85 940 .14 060 .90 860 7 54 .76 817 .85 967 .14 033 .90 851 6 55 .76 835 .85 993 .14 007 .90 842 5 56 .76 852 .86 020 .13 980 .90 823 4 57 .76 870 .86 046 .13 954 .90 823 <t< th=""><td></td><td></td><td>.85 647</td><td>.14 353</td><td></td><td></td></t<>			.85 647	.14 353		
45						
46 .76 677 .85 754 .14 246 .90 924 14 47 .76 695 .85 780 .14 220 .90 915 13 48 .76 712 .85 807 .14 193 .90 906 12 49 .76 730 .85 834 .14 166 .90 896 11 50 .76 747 .85 860 .14 140 .90 887 9 51 .76 765 .85 887 .14 113 .90 878 9 52 .76 782 .85 913 .14 087 .90 869 8 53 .76 800 .85 940 .14 060 .90 860 7 54 .76 817 .85 967 .14 033 .90 851 6 55 .76 835 .85 993 .14 007 .90 842 5 56 .76 852 .86 020 .13 980 .90 832 5 57 .76 870 .86 046 .13 954 .90 823 3 58 .76 904 .86 100 .13 900 .90 805 1 60 .76 922 .86 126 .13 874 .90 796 0 </th <td></td> <td></td> <td></td> <td></td> <td></td> <td>- 1</td>						- 1
47 .76 695 .85 780 .14 220 .90 915 13 48 .76 712 .85 807 .14 193 .90 906 12 49 .76 730 .85 831 .14 166 .90 896 11 50 .76 747 .85 860 .14 140 .90 887 10 51 .76 755 .85 887 .14 113 .90 869 8 52 .76 82 .85 913 .14 087 .90 869 8 53 .76 800 .85 940 .14 060 .90 860 7 54 .76 817 .85 967 .14 033 .90 851 6 55 .76 835 .85 993 .14 007 .90 842 5 56 .76 852 .86 020 .13 980 .90 832 4 57 .76 870 .86 046 .13 954 .90 823 3 58 .76 876 .86 073 .13 927 .90 814 2 59 .76 904 .86 100 .13 900 .90 805 1 60 .76 922 .86 126 .13 874 .90 796 0 <td></td> <td></td> <td></td> <td>.14 246</td> <td></td> <td></td>				.14 246		
49 .76730 .85 834 .14 166 .90 896 11 50 .76747 .85 860 .14 140 .90 887 10 51 .76765 .85 887 .14 113 .90 878 9 52 .76782 .85 913 .14 087 .90 869 8 53 .76 800 .85 940 .14 060 .90 860 7 54 .76 817 .85 967 .14 033 .90 851 6 55 .76 835 .85 993 .14 007 .90 842 5 56 .76 852 .86 020 .13 980 .90 832 4 57 .76 870 .86 046 .13 954 .90 823 3 58 .76 887 .86 073 .13 927 .90 814 2 59 .76 904 .86 100 .13 900 .90 805 1 60 .76 922 .86 126 .13 874 .90 796 0	47	.76 69 <u>5</u>	.85 780	.14 220		13
50 .76 747 .85 860 .14 140 .90 887 10 51 .76 765 .85 887 .14 113 .90 878 9 52 .76 782 .85 913 .14 087 .90 869 8 53 .76 800 .85 940 .14 060 .90 860 7 54 .76 817 .85 940 .14 033 .90 851 6 55 .76 835 .85 993 .14 007 .90 842 5 56 .76 852 .86 020 .13 980 .90 832 4 57 .76 870 .86 046 .13 954 .90 823 3 58 .76 887 .86 073 .13 927 .90 814 2 59 .76 904 .86 103 .13 900 .90 805 1 60 .76 922 .86 126 .13 874 .90 796 0						
51 .76 765 .85 887 .14 113 .90 878 9 52 .76 782 .85 913 .14 087 .90 869 8 53 .76 800 .85 940 .14 060 .90 860 7 54 .76 817 .85 967 .14 033 .90 851 6 55 .76 835 .85 993 .14 007 .90 842 5 56 .76 852 .86 020 .13 980 .90 832 4 57 .76 870 .86 046 .13 954 .90 823 3 58 .76 887 .86 073 .13 927 .90 814 2 59 .76 904 .86 103 .13 900 .90 805 1 60 .76 922 .86 126 .13 874 .90 796 0	1 1					
52 .76 782 .85 913 .14 087 .90 869 8 53 .76 800 .85 940 .14 060 .90 860 7 54 .76 817 .85 967 .14 033 .90 851 6 55 .76 835 .85 993 .14 007 .90 842 5 56 .76 852 .86 020 .13 980 .90 832 4 57 .76 870 .86 046 .13 954 .90 823 3 58 .76 887 .86 073 .13 927 .90 814 2 59 .76 904 .86 103 .13 900 .90 805 1 60 .76 922 .86 126 .13 874 .90 796 0	51	.76 76 <u>5</u>	.85 887	.14 113	.90878	9
54 .76 817 .85 967 .14 033 .90 851 6 55 .76 835 .85 993 .14 007 .90 842 5 56 .76 852 .86 020 .13 980 .90 832 4 57 .76 870 .86 046 .13 954 .90 823 3 58 .76 887 .86 073 .13 927 .90 814 2 59 .76 904 .86 100 .13 900 .90 805 1 60 .76 922 .86 126 .13 874 .90 796 0		.76 782				8
55 .76 835 .85 993 .14 007 .90 842 5 56 .76 852 .86 020 .13 980 .90 832 4 57 .76 870 .86 046 .13 954 .90 823 3 58 .76 887 .86 073 .13 927 .90 814 2 59 .76 904 .86 100 .13 900 .90 805 1 60 .76 922 .86 126 .13 874 .90 796 0						6
59 .76 904 .86 100 .13 900 .90 805 1 60 .76 922 .86 126 .13 874 .90 796 0	1	.76835				
59 .76 904 .86 100 .13 900 .90 805 1 60 .76 922 .86 126 .13 874 .90 796 0	56	.76852	.86 020	.13 980	.90 832	4
59 .76 904 .86 100 .13 900 .90 805 1 60 .76 922 .86 126 .13 874 .90 796 0		76 887				3
60 .76 922 .86 126 .13 874 .90 796 0						ĭ
A T. cog Q L. cot 10 I ton Q L. cin	60	.76 922	.86 126	.13874	.90 796	0
, Species and in in an arisin ,	1	$9 L \cos$	9 L cot	10 L tan	$9 L \sin$	'

,	9 L sin	9 L tan	10 L cot	9 L cos	,
0	.76 922	.86 126	.13 874	.90 796	60
1.	.76 939 .76 957	.86 153 .86 179	.13 847 .13 821	.90 787 .90 777	59 58
3	.76 974	.86 206	.13 794	.90 768	57
4	.76 991	.86 232	.13 768	.90 759	56
5	.77 009	.86 259	.13 741	.90 750	55
6	.77 026 .77 043	.86 285 .86 312	.13 71 <u>5</u> .13 688	.90 741 .90 731	54 53
8	.77 043	.86 338	.13 662	.90 722	52
9	.77 078	.86,365	.13 63 <u>5</u>	.90 713	51
10	.77 095	.86 392	.13 608	.90 704	50
11 12	.77 112 .77 130	.86 418 .86 445	.13 582 .13 555	.90 694 .90 685	49
13	.77 147	.86 471	.13 529	.90 676	47
14	.77 164	.86 498	.13 502	.90 667	46
15	.77 181	.86 524	.13 476	.90 657	45
16 17	.77 199 .77 216	.86 551 .86 577	.13 449 .13 423	.90 648	44
18	.77 233	.86 603	.13 397	.90 630	42
19	.77 250	.86 630	.13 370	.90 620	41
20	.77 268	.86 656	.13 344	.90 611	40
21 22	.77 28 <u>5</u> .77 302	.86 683 .86 709	.13 317 .13 291	.90 602 .90 592	39 38
23	.77319	.86 736	.13 264	.90 583	37
24	.77 336	.86762	.13 238	.90 574	36
25	.77 353	.86 789	.13 211	.90 565	35
26	.77 370 .77 387	.86 815 .86 842	.13 18 <u>5</u> .13 158	.90 555 .90 546	34
28	.77 405	.86 868	.13 132	.90 537	32
29	.77 422	.86 894	.13 106	.90 527	31
30	.77 439	.86 921	.13 079	.90 518	30
31 32	.77 456 .77 473	.86 947 .86 974	.13 053 .13 026	.90 509	29 28
33	.77 490	.87 000	.13 000	.90 490	27
34	.77 507	.87 027	.12-973	.90 480	26
35	.77 524	.87 053 .87 079	.12 947 .12 921	.90 471	25
36	.77 541 .77 558	.87 106	.12 894	.90 452	24 23
38	.77 575	.87 132	.12868	.90 443	22
39	.77 592	.87 158	.12842	.90 434	21
40 41	.77 609 .77 626	.87 18 <u>5</u> .87 211	.12 815 .12 789	.90 424	20
42	.77 643	.87 238	.12 762	.90 405	18
43	.77 660	.87 264	.12 736	.90 396	17
44	.77 677	.87 290	.12 710	.90 386	16
45	.77 694 .77 711	.87 317 .87 343	.12 683	.90 377	15 14
47	.77 728	.87 369	.12631	.90 358	13
48	.77 744	.87 396	.12 604	.90 349	12
49	.77 761 .77 778	.87 422 .87 448	.12 578	.90 339	11 10
50	.77 795		.12 525	.90 320	9
52	.77 812	.87 501	.12 499	.90 311	8
53	.77 829	.87 527 .87 554	.12 473	.90 301	7 6
54	.77 846 .77 862	.87 580	.12 420	.90 292	
56	.77 879	.87 606	.12 394	.90 273	4
57	.77 896	.87 633	.12 367	.90 263	3
58 59	.77 913 .77 930	.87 659 .87 685	.12 341 .12 31 <u>5</u>	.90 254	5 4 3 2 1
60	.77 946	.87 711	.12 289	.90 235	0
7			10 L tan	_	
	J = 005				

,	9 L sin	9 L tan	10 L cot	9 L cos	,
0	.77 946	.87 711	.12 289	.90 235	60
1	.77 963	.87 738	.12 262	.90 225	59
2 3	.77 980 .77 997	.87 764 .87 790	.12 236	.90 216	58 57
4	.78013	.87 817	.12 183	.90 197	56
5	.78 030	.87 843	.12157	.90 187	55
6	.78 047	.87 869	.12 131	.90 178	54
8	.78 063 .78 080	.87 895 .87 922	$.1210\underline{5}$ $.12078$.90 168 .90 159	53
9	.78 097	.87 948	.12 052	.90 149	51
10	.78 113	.87 974	.12 026	.90 139	50
11	.78 130	.88 000	.12 000	.90 130	49
12	.78 147 .78 163	.88 027 .88 053	.11 973	.90 120 .90 111	48 47
14	.78 180	.88 079	.11 921	.90 101	46
15	.78197	.88 105	.11895	.90 091	45
16	.78 213	.88 131	.11 869	.90 082	44 43
17 18	.78 230 .78 246	.88 158 .88 184	.11 S42 .11 S16	.90 072	42
19	.78 263	.88 210	.11 790	.90 053	41
20	.78280	.88 236	.11764	.90 043	40
21 22	.78 296 .78 313	.88 262 .88 289	.11 738	.90 034	39 38
23	.78 329	.88 315	.11 685	.90 014	37
24	.78346	.88 341	.11659	.90 00 <u>5</u>	36
25	.78 362	.88 367	.11 633	.89 995	35
26 27	.78 379 .78 395	.88 393 .88 420	.11 607	.89 985 .89 976	34
28	.78 412	.88 446	.11 554	.89 966	32
29	.78 428	.88472	.11 528	.89 956	31
30	.78 445	.88 498	.11 502	.89 947	30
31 32	.78 461 .78 478	.88 524 .88 550	.11 476 .11 4 <u>5</u> 0	.89 937 .89 927	29 28
33	.78 494	.88 577	.11 423	.89918	27
34	.78 510	.88 603	.11 397	.89 908	26
35	.78 527 .78 543	.88 629 .88 655	.11 371	.89 898 .89 888	25 2 1
37	.78 560	.88 681	.11319	.89879	23
38	.78 576	.88707	.11 293	.89 869	22
39	.78 592	.88 733	.11 267	.89859	21
40 41	.78 609 .78 625	.88 759 .88 786	.11 241	.89 849 .89 840	20 19
42	.78 642	.88812	.11 188	.89830	18
43	.78 658	.88 838	.11 162	.89 820	17
44	.78 674	.88 864 .88 890	.11 136	.89810 .89801	16 15
46	.78 691 .78 707	.88 916	.11 084	.89 791	14
47	.78 723	.88942	.11058	.89781	13
48	.78 739 .78 756	.88 968 .88 994	.11 032 .11 006	.89 771 .89 761	12 11
50	.78 772	.89 020	.10 980	.89 752	10
51	.78 788	.89 046	.10 954	.89 742	9
52	.78 80 <u>5</u>	.89 073	.10927	.89 732	8 7
53	.78 821 .78 837	.89 099 .89 125	.10 901 .10 875	.89 722 .89 712	6
55	.78853	.89 151	.10 849	.89 702	5
56	.78 869	.89 177	.10823	.88 693	4
57	.78 886	.89 203	.10797	.89 683	3
58 59	.78 902 .78 918	.89 229 .89 255	.10 771 .10 745	.89 673 .89 663	2
60	.78 934	.89 281	.10719	.89 653	o
,	9 L cos		10 L tan		,
L					

,	$9 L \sin$	9 L tan	10 L cot	9 L cos	1
0	.78 934	.89 281	.10719	.89653	60
$\frac{1}{2}$.78 950 .78 967	.89 307 .89 333	.10 693	.89 643 .89 633	59 58
3	.78 983	.89359	.10 641	.89 624	57
4	.78 999	.89 385	.1061 <u>5</u>	.89614	56
5	.79 015	.89411	.10 589	.89 604	55
6	.79 031 .79 047	.89 437 .89 463	.10 563	.89 594 .89 584	54 53
8	.79 063	.89 489	.10 511	.89 574	52
9	.79 079	.89 515	.10 485	.89 564	51
10 11	.79 095 .79 111	.89 541 .89 567	.10 459	.89 554 .89 544	50
12	.79 128	.89 593	.10 433	.89 534	49
13	.79 144	.89619	.10 381	.89 524	47
14	.79 160	.89645	.10355	.89 514	46
15 16	.79 176 .79 192	.89 671 .89 697	.10 329	.89 504 .89 495	45
17	.79 208	.89 723	.10 277	.89 485	43
18	.79 224	.89 749	.10 251	.89 475	42
19	.79 240	.89 775	.10 225	.89 465	41
20 21	.79 256 .79 272	.89 801 .89 827	.10 199 .10 173	.89 45 <u>5</u> .89 445	40 39
22	.79 288	.89853	.10 147	.89 435	38
23 24	.79 304	.89 879 .89 905	.10 121	.89 42 <u>5</u> .89 415	37 36
25	.79319	.89 931	.10 095	.89 405	35
26	.79351	.89 957	.10 043	.89 395	34
27	.79 367	.89 983	.10017	.89 385	33
28 29	.79 383 .79 399	.90 009 .90 035	.09 991	.89 37 <u>5</u> .89 364	32 31
30	.79415	.90 061	.09 939	.89354	30
31	.79 431	.90 086	.09 914	.89 344	29
32	.79 447	.90 112	.09888	.89 334	28
34	.79 463 .79 478	.90 138 .90 164	.09 862	.89 324 .89 314	27 26
35	.79494	.90 190	.09 810	.89 304	25
36	.79510	.90 216	.09 784	.89 294	24
37 38	.79 526 .79 542	.90 242 .90 268	.09 758	.89 284 .89 274	23 22
39	.79 558	.90 294	.09 706	.89 264	21
40	.79 573	.90 320	.09 680	.89 254	20
41 42	.79 589 .79 60 <u>5</u>	.90 346	.09 654	.89 244 .89 233	19
43	.79603	.90 371 .90 397	.09 629	.89 223	17
44	.79 636	.90423	.09 577	.89 213	16
45	.79 652	.90 449	.09 551	.89 203	15
46 47	.79 668 .79 684	.90 47 <u>5</u> .90 501	.09 525	.89 193 .89 183	14
48	.79 699	.90 527	.09473	.89 173	12
49	.79715	.90 553	.09447	.89 162	11
50 51	.79 731	.90 578	.09 422	.89 152 .89 142	10 9
52	.79 746 .79 762	.90 604	.09 396	.89 142	8
53	.79778	.90 656	.09 344	.89 122	7
54	.79 793	.90 682	.09318	.89 112	6
55 56	.79 809 .79 82 <u>5</u>	.90 708 .90 734	.09 292	.89 101 .89 091	5 4
57	.79840	.90 759	.09 241	.89 081	3
58	.79856	.90 785	.09 21 <u>5</u>	.89 071	2
59	.79872	.90811	.09 189	.89 060	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$
60	.79887 9 L cos	.90837 9 L cot	.09 103 10 L tan	.89 050 9 L sin	-
	o L cos	O L COC	TOLIMI	2 T SITT	

,	9 L sin	9 L tan	10 L cot	9 L cos	,
0	.79887	.90 837	.09 163	.89 050	60
1	.79 903	.90 863	.09 137	.89 040	59
2	.79918	.90 889	.09 111	.89 030	58
3 4	.79 934 .79 950	.90 914	.09 086	.89 020 .89 009	57 56
5	.79 965	.90 966	.09 034	.88 999	55
6	.79 981	.90 992	.09 008	.88 989	54
7	.79 996	.91018	.08982	.88 978	53
8	.80 012	.91 043	.08 957	.88 968	52
9	.80 027	.91 069	.08 931	.88 958	51
10	.80 043	.91 121	.08 90 <u>5</u>	.88 937	50
12	.80 074	.91 147	.08 853	.88 927	48
13	.80 089	.91 172	.08 828	.88 917	47
14	.80 105	.91 198	.08 802	.88 906	46
15	.80 120	.91 224 .91 250	.08 776 .08 750	.88 896	45 44
16	.80 136 .80 151	.91 230	.08 724	.88 886 .88 875	43
18	.80 166	.91 301	.08 699	.88 865	42
19	.80182	.91 327	.08 673	.88 85 <u>5</u>	41
20	.80 197	.91 353	.08 647	.88 844	40
21	.80 213	.91 379	.08 621	.88 834	39
22 23	.80 228 .80 244	.91 404 .91 430	.08 596	.88 824	38 37
24	.80 259	.91 456	.08 544	.88 803	36
25	.80 274	.91 482	.08 518	.88 793	35
26	.80 290	.91 507	.08 493	.88 782	34
27 28	.80 305 .80 320	.91 533	.08 467	.88 772	33
29	.80 336	.91 559 .91 585	.08 415	.88 761 .88 751	32 31
30	.80 351	.91 610	.08 390	.88 741	30
31	.80 366	.91 636	.08 364	.88 730	29
32	.80 382	.91 662	.08 338	.88 720	28
33	.80 397 .80 412	.91 688 .91 713	.08 312	.88 709 .88 699	27 26
35	.80 428	.91 739	.08 261	.88 688	25
36	.80 443	.91 765	.08 235	.88 678	24
37	.80 458	.91 791	.08 209	.88 668	23
38	.80 473	.91816	.08 184	.88 657	22
39	.80 489	.91 842	.08 158	.88 647	21
40	.80 504 .80 519	.91 868 .91 893	.08 132	.88 636 .88 626	20 19
42	.80 534	.91 919	.08 081	.88 615	18
43	.80 5 <u>5</u> 0	.91 94 <u>5</u>	.08 055	.88 60 <u>5</u>	17
44	.80 56 <u>5</u>	.91 971	.08 029	.88 594	16
45	.80 580	.91 996	.08 004	.88 584	15
46	.80 595 .80 610	.92 022 .92 048	.07 978 .07 952	.88 573 .88 563	14 13
48	.80 625	.92 073	.07 927	.88 552	12
49	.80 641	.92 099	.07 901	.88 542	11
50	.80 656	.92 125	.07 875	.88 531	10
51	.80 671	.92 150 .92 176	.07 8 <u>5</u> 0 .07 824	.88 521 .88 510	9
52 53	.80 686 .80 701	.92 176	.07 798	.88 499	8 7
54	.80 716	.92 227	.07 773	.88 489	6
55	.80 731	.92 253	.07 747	.88 478	5 4
56	.80746	.92 279	.07 721	.88 468	4
57	.80 762 .80 777	.92 304	.07 696 .07 670	.88 457 .88 447	3 2
59	.80 777	.92 356	.07 644	.88 436	1
60	.80 807	.92 381	.07 619	.88 425	$ \mathbf{o} $
1			10 L tan		,

,	9 L sin	9 L tan	10 L cot	9 L cos	,
0	.80807	.92381	.07 619	.88 425	60
1	.80 822	.92 407	.07 593	.88 415	59
3	.80 837 .80 852	.92 433 .92 458	.07 567 .07 542	.88 404	58 57
4	.80 867	.92 484	.07 516	.88 383	56
5	.80882	.92 510	.07 490	.88372	55
6	.80897	.92 535	.07 465	.S8 362	54
7	.80 912	.92 561	.07 439	.88 351	53
8	.80 927 .80 942	.92 587 .92 612	.07 413 .07 388	.88 340	52 51
10	.80 957	.92 638	.07 362	.88 319	50
li	.80 972	.92 663	.07 337	.88 308	49
12	.80 987	.92 689	.07 311	.88 298	48
13 14	.81 002	.92 71 <u>5</u> .92 740	.07 285	.88 287	47
15	.81 017 .81 032	.92 766	.07 260	.88 276 .88 266	46
16	.81 047	.92 792	.07 208	.88 255	44
17	.81 061	.92 817	.07 183	.88 244	43
18	.81 076	.92 843	.07 157	.88 234	42
19	.81 091	.92 868	.07 132	.88 223	41
20 21	.81 106 .81 121	.92 894 .92 920	.07 106 .07 080	.88 212 .88 201	40 39
22	.81 136	.92 945	.07 055	.88 191	38
23	.81 151	.92 971	.07 029	.88 180	37
24	.81 166	.92 996	.07 004	.88 169	36
25 26	.81 180 .81 195	.93 022 .93 048	.06 978	.88 158 .88 148	35 34
27	.81 210	.93 073	.06 927	.88 137	33
28	.81 225	.93 099	.06 901	.88 126	32
29	.81 240	.93 124	.06876	.88 115	31
30	.81 254 .81 269	.93 1 <u>5</u> 0 .93 1 <u>7</u> 5	.06 850	.88 105	30 29
31 32	.81 284	.93 201	.06 82 <u>5</u>	.88 094 .88 083	28
33	.81 299	.93 227	.06 773	.88 072	27
34	.81 314	.93 252	.06 748	.88 061	26
35	.81 328	.93 278	.06 722	.88 051	25
36	.81 343 .81 358	.93 303 .93 329	.06 697 .06 671	.88 040 .88 029	24 23
38	.81 372	.93 354	.06646	.88018	22
39	.81 387	.93 380	.06 620	.88 007	21
40	.81 402	.93 406	.06 594	.87 996	20
41 42	.81 417 .81 431	.93 431 .93 457	.06 569 .06 543	.87 985 .87 97 <u>5</u>	19 18
43	.81 446	.93 482	.06 518	.87 964	17
44	.81 461	.93 508	.06 492	.87 953	16
45	.81 475	.93 533	.06 467	.87 942	15
46	.81 490 .81 50 <u>5</u>	.93 559 .93 584	.06 441	.87 931 .87 920	14
48	.81 519	.93 610	.06390	.87 909	12
49	.81 534	.93 636	.06 364	.87 898	11
50	.81 549	.93 661	.06 339	.87 887	10
51 52	.81 563	.93 687 .93 712		.87 877	9
53	.81 578 .81 592	.93 738	.06 288 .06 262	.87 866 .87 855	8 7
54	.81 607	.93 763	.06 237	.87 844	6
55	.81 622	.93 789	.06 211	.87 833	5
56	.81 636	.93 814	.06186	.87 822	4
57	.81 651 .81 665	.93 840 .93 865	.06 160 .06 135	.87 811 .87 800	3 2
59	.81 680	.93 891	.06 109	.87 789	ī
60	.81 694	.93 916	.06 084	.87 778	0
′	9 L cos	9 L cot	10 L tan	9 L sin	′

56		4	1°		
/	9 L sin	9 L tan	10 L cot	9 L cos	,
1 2 3 4	.81 694 .81 709 .81 723 .81 738 .81 752	.93 916 .93 942 .93 967 .93 993 .94 018	.06 084 .06 058 .06 033 .06 007 .05 982	.87 778 .87 767 .87 756 .87 745 .87 734	59 58 57 56
5	.81 767	.94 044	.05 956	.87 723	55
6	.81 781	.94 069	.05 931	.87 712	54
*7	.81 796	.94 09 <u>5</u>	.05 905	.87 701	53
8	.81 810	.94 120	.05 880	.87 690	52
9	.81 825	.94 146	.05 854	.87 679	51
10	.81 839	.94 171	.05 829	.87 668	50 49 48 47 46
11	.81 854	.94 197	.05 803	.87 657	
12	.81 868	.94 222	.05 778	.87 646	
13	.81 882	.94 248	.05 752	.87 63 <u>5</u>	
14	.81 897	.94 273	.05 727	.87 62 <u>4</u>	
15	.81 911	.94 299	.05 701	.87 613	45
16	.81 926	.94 324	.05 676	.87 601	44
17	.81 940	.94 350	.05 650	.87 590	43
18	.81 95 <u>5</u>	.94 375	.05 62 <u>5</u>	.87 579	42
19	.81 969	.94 401	.05 599	.87 568	41
20 21 22 23 24	.81 983 .81 998 .82 012 .82 026 .82 041	.94 426 .94 452 .94 477 .94 503 .94 528	.05 574 .05 548 .05 523 .05 497 .05 472	.87 557 .87 546 .87 53 <u>5</u> .87 524 .87 513	39 38 37 36
25	.82 05 <u>5</u>	.94 554	.05 446	.87 501	35
26	.82 069	.94 579	.05 421	.87 490	34
27	.82 084	.94 604	.05 396	.87 479	33
28	.82 098	.94 630	.05 370	.87 468	32
29	.82 112	.94 655	.05 345	.87 457	31
31 32 33 34	.82 126 .82 141 .82 15 <u>5</u> .82 169 .82 184	.94 681 .94 706 .94 732 .94 757 .94 783	.05 319 .05 294 .05 268 .05 243 .05 217	.87 446 .87 434 .87 423 .87 412 .87 401	29 28 27 26
35	.82 198	.94 808	.05 192	.87 390	25
36	.82 212	.94 834	.05 166	.87 378	24
37	.82 226	.94 859	.05 141	.87 367	23
38	.82 240	.94 884	.05 116	.87 356	22
39	.82 25 <u>5</u>	.94 910	.05 090	.87 34 <u>5</u>	21
41 42 43 44	.82 269 .82 283 .82 297 .82 311 .82 326	.94 935 .94 961 .94 986 .95 012 .95 037	.05 06 <u>5</u> .05 039 .05 014 .04 988 .04 963	.87 334 .87 322 .87 311 .87 300 .87 288	19 18 17 16
45	.82 340	.95 062	.04 938	.87 277	15
46	.82 354	.95 088	.04 912	.87 266	14
47	.82 368	.95 113	.04 887	.87 25 <u>5</u>	13
48	.82 382	.95 139	.04 861	.87 243	12
49	.82 396	.95 164	.04 836	.87 232	11
50	.82 410	.95 190	.04 810	.87 221	10
51	.82 424	.95 215	.04 78 <u>5</u>	.87 209	9
52	.82 439	.95 240	.04 760	.87 198	8
53	.82 453	.95 266	.04 734	.87 187	7
54	.82 467	.95 291	.04 709	.87 175	6
55	.82 481	.95 317	.04 683	.87 164	5
56	.82 495	.95 342	.04 658	.87 153	4
57	.82 509	.95 368	.04 632	.87 141	3
58	.82 523	.95 393	.04 607	.87 130	2
59	.82 537	.95 418	.04 582	.87 119	1
60	.82 551 9 L cos	.95 444 9 L cot	.04 556 10 L tan	.87 107 9 L sin	0 /

,	9 L sin	9 L tan	10 L cot	9 L cos	,
0	.82 551	.95 444	.04 556	.87 107	60
$\frac{1}{2}$.82 565 .82 579	.95 469 .95 495	.04 531	.87 096 .87 085	59 58
3	.82 593	.95 520	.04 480	.87 073	57
4	.82 607	.95 545	.04 45 <u>5</u>	.87 062	56
· 6	.82 621 .82 635	.95 571 .95 596	.04 429	.87 050 .87 039	55 54
7	.82 649	.95 622	.04 378	.87 039	53
8	.82 663	.95 647	.04 353	.87 016	52
9	.82 677	.95 672	.04 328	.87 00 <u>5</u>	51 50
10 11	.82 691 .82 705	.95 698 .95 723	.04 302	.86 993 .86 982	49
12	.82 719	.95 748	.04 252	.86 970	48
13 14	.82 733 .82 747	.95 774 .95 799	.04 226	.86 959 .86 947	47
15	.82 761	.95 825	.04 175	.86 936	45
16	.82 77 <u>5</u>	.95 850	.04 150	.86 924	44
17 18	.82 788 .82 802	.95 875 .95 901	.04 125	.86 913	43
19	.82 816	.95 926	.04 074	.86 890	41
20	.82830	.95 952	.04 048	.86879	40
21 22	.82 844 .82 858	.95 977 .96 002	.04 023	.86 867 .86 855	39
23	.82 872	.96 028	.03 972	.86 844	37
24	.82 885	.96 053	.03 947	.86 832	36
25 26	.82 899 .82 913	.96 078 .96 104	.03 922 .03 896	.86 821 .86 809	35
27	.82 927	.96 129	.03 871	.86 798	33
28	.82941	.96 155	.03 845	.86 786	32
29 30	.82 95 <u>5</u> .82 968	.96 180 .96 205	.03 820	.86 77 <u>5</u>	31 30
31	.82 982	.96 231	.03 769	.86 752	29
32	.82 996	.96 256	.03 744	.86 740	28
33 34	.83 010 .83 023	.96 281 .96 307	.03 719	.86 728 .86 717	27 26
35	.83 037	.96332	.03 668	.86 705	25
36	.83 051 .83 065	.96 357 .96 383	.03 643	.86 694 .86 682	24 23
37 38	.83 003	.96 408	.03 592	.86 670	22
39	.83 092	.96 433	.03 567	.86 659	21
40	.83 106 .83 120	.96 459 .96 484	.03 541	.86 647 .86 635	20 19
41	.83 133	.96510	.03 490	.86 624	18
43	.83 147	.96 535	.03 465	.86612	17
44	.83 161 .83 174	.96 560 .96 586	.03 440	.86 600 .86 589	16
46	.83 188	.96 611	.03 389	.S6 577	14
47	.83 202	.96 636	.03 364	.86 565	13
48 49	.83 215 .83 229	.96 662 .96 687	.03 338	.86 554 .86 542	12
50	.83 242	.96712	.03 288	.86 530	10
51	.83 256	.96 738	.03 262	.86 518	9
52 53	.83 270 .83 283	.96 763 .96 788	.03 237	.86 507	8
54	.83 297	.96 814	.03 186	.86 483	6
- 55	.83 310	.96839	.03 161	.86 472	5 4
56 57	.83 324 .83 338	.96 864	.03 136 .03 110	.86 460 .86 448	3
58	.83 351	.96 915	.03 085	.86436	2
59	.83 365	.96 940	.03 060	.86 42 <u>5</u>	1
60	.83 378	.96 966	.03 034 10 L tan	.86413	<u>'</u>
1	9 L cos	ar cot	10 L tan	JLSIII	/

	07 :	071	40.7		
0	9 L sin .83 378	9 L tan .96 966	.03 034	9 L cos .86 413	$\frac{\prime}{60}$
Ĭ	.83 392	.96 991	.03 009	.86 401	59
$\begin{vmatrix} 2\\3 \end{vmatrix}$.83 405 .83 419	.97 016	.02 984	.86 389	58
4	.83.432	.97 042 .97 067	.02 933	.86 377 .86 366	57 56
5	.83 446	.97 092	.02 908	.86354	55
6	.83 459	.97 118	.02 882	.86 342	54
7 8	.83 473 .83 486	.97 143 .97 168	.02 857 .02 832	.86 330 .86 318	53
9	.83 <u>5</u> 00	.97 193	.02 807	.86 306	51
10	.83 513 .83 527	.97 219 .97 244	.02 781 .02 756	.86 29 <u>5</u> .86 283	50
12	.83 540	.97 269	.02 730	.86 771	49 48
13	.83 554	.97 295	.02 705	.86 259	47
14	.83 567	.97 320 .97 345	.02 680	.86 247 .86 235	46
16	.83 594	.97 373	.02 629	.86 223	44
17	.83 608	.97 396	.02 604	.86 211	43
18 19	.83 621	.97 421 .97 447	.02 579	.86 200 .86 188	42
20	.83 648	.97 472	.02 528	.86 176	40
21	.83 661	.97 497	.02 503	.86 164	39
22 23	.83 674	.97 523 .97 548	.02 477	.86 152 .86 140	38
24	.83 701	.97 573	.02 427	.86 128	36
25	.83 715	.97 598	.02 402	.86116	35
26	.83 728 .83 741	.97 624	.02 376	.86 104 .86 092	34
28	.83 75 <u>5</u>	.97 674	.02 326	.86080	32
29 30	.83 768 .83 781	.97 700	.02 300	.86 068	31
31	.83 795	.97 72 <u>5</u> .97 750	.02 273	.86 056 .86 014	30 29
32	.83 808	.97 776	.02 224	.86 032	28
33	.83 821 .83 834	.97 801 .97 826	.02 199	.86 020 .86 008	27 26
35	.83 848	.97 851	.02 149	.85 996	25
36	.83 861 .83 874	.97 877	.02 123	.85 984	24
37 38	.83 887	.97 902	.02 098	.85 972 .85 960	23 22
39	.83 901	.97 953	.02 047	.85 948	21
40	.83 914 .83 927	.97 978 .98 003	.02 022	.85 936	20
41 42	.83 940	.98 029	.01 997	.85 924 .85 912	19 18
43	.88 954	.98 054	.01 946	.85 900	17
44	.83 967 .83 980	.98 079	.01 921	.85 888	16
45	.83 993	.98 130	.01 870	.85 876 .85 864	15 14
47	.84 006	.98 155	.01 845	.85 851	13
48	.84 020 .84 033	.98 180	.01 820	.85 839 .85 827	12
50	.84 046	.98 231	.01 769	.85 815	10
51	.84 059	.98 256	.01 744	.85 803	9
52 53	.84 072 .84 085	.98 281 .98 307	.01 719 .01 693	.85 791 .85 779	8 7
54	.84 098	.98 332	.01668	.85 766	6
55	.84 112	.98357	.01 643	.85 754	5
56	.84 12 <u>5</u> .84 138	.98 383	.01 617	.85 742 .85 730	4 3
58	.84 151	.98 433	.01 567	.85 718	2
59 60	.84 164 .84 177	.98 458	.01 542	.85 706 .85 693	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$
7	9 L cos		.01 516 10 L tan		-/
الـــــــا	2 2 00B		vuii	~ as DIM	

,	9 L sin	9 L tan	10 L cot	9 L cos	,
0	.84 177	.98 484	.01 516	.85 693	60
1	.84 190	.98 509	.01 491	.85 681	59
3	.84 203 .84 216	.98 534 .98 560	.01 466	.85 669 .85 657	58
4	.84 229	.98 585	.01 415	.85 645	56
5	.84 242	.98610	.01 390	.85 632	55
6	.84 255	.98 635	.01 365	.85 620	54
-7	.84 269	.98 661	.01 339	.85 608	53
8 9	.84 282 .84 295	.98 686 .98 711	.01 314	.85 596 .85 583	52
10	.84 308	.98 737	.01 263		51
11	.84 321	.98 762	.01 203	.85 571 .85 559	50
12	.84 334	.98 787	.01 213	.85 547	48
13	.84 347	.98 812	.01 188	.85 534	47
14	.84 360	.98838	.01 162	.85 522	46
15	.84 373	.98 863	.01 137	.85 510	45
16 17	.84 385 .84 398	.98 888 .98 913	.01 112	.85 497 .85 485	44 43
18	.84 411	.98 939	.01 061	.85 473	42
19	.84 424	.98 964	.01 036	.85 460	41
20	.84 437	.98989	.01 011	.85 448	40
21	.84 450	.99 015	.00 985	.85 436	39
22	.84 463 .84 476	.99 040	.00 960	.85 423	38
23 24	.84 489	.99 065 .99 090	.00 935	.85 411 .85 399	37 36
25	.84 502	.99 116	.00 884	.85 386	35
26	.84 515	.99 141	.00 859	.85 374	34
27	.84 528	.99 166	.00 834	.85 361	33
28	.84 540	.99 191	.00 809	.85 349	32
29	.84 553	.99 217	.00 783	.85 337	31
30 31	.84 566 .84 579	.99 242	.00 758	.85 324 .85 312	30
32	.84 592	.99 293	.00 707	.85 299	28
33	.84 60 <u>5</u>	.99318	.00 682	.85 287	27
34	.84 618	.99 343	.00 657	.85 274	26
35	.84 630	.99 368	.00 632	.85 262	25
36 37	.84 643 .84 656	.99 394	.00 606	.85 2 <u>5</u> 0 .85 237	24 23
38	.84 669	.99 444	.00 556	.85 225	22
39	.84 682	.99 469	.00 531	.85 212	21
40	.84 694	.99 49 <u>5</u>	.00 505	.85 200	20
41	.84 707	.99 520	.00 480	.85 187	19
42	.84 720 .84 733	.99 545 .99 570	.00 455	.85 17 <u>5</u> .85 16 <u>2</u>	18 17
44	.84 745	.99 596	.00 404	.85 1 <u>5</u> 0	16
45	.84 758	.99 621	.00 379	.85 137	15
46	.84 771	.99 646	.00 354	.85 12 <u>5</u>	14
47	.84 784	.99 672	.00 328	.85 112	13
48 49	.84 796 .84 809	.99 697	.00 303	.85 100 .85 087	12 11
50	.84 822	.99 747	.00 253	.85 074	10
51	.84 835	.99 773	.00 227	.85 062	9
52	.84 847	.99 798	.00 202	.85 049	8
53	.84 860	.99 823	.00 177	.85 037	7
54	.84 873	.99 848	.00 152	.85 024	6
55	.84 885 .84 898	.99 874	.00 126	.85 012 .84 999	5 4
56 57	.84 911	.99 924	.00 076	.84 986	3
58	.84 923	.99 949	.00 051	.84 974	2
59	.84 936	<u>.99 975</u>	.00 025	.84 961	1
60	.84 949	.00 000	.00 000	.84 949	0
1	9 L cos	10 L cot	10 L tan	9 L sin	/

		0	0		
,	sin	tan	cot	cos	,
0	.00 000	.00 000	∞	1.0000	60
1	.00 029	.00 029	3437.7	1.0000	59
2 3	.00 058	.00 058	1718.9 1145.9	1.0000	58
4	.00 116	.00 116	859.44	1.0000	56
5	.00 145	.00 145	687.55	1.0000	55
6	.00 175	.00 175	572.96	1.0000	54
7	.00 204	.00 204	491.11	1.0000	53
8 9	.00 233	.00 233	429.72 381.97	1.0000	52 51
10	.00 291	.00 291	343.77	1.0000	50
îi	.00 320	.00 320	312.52	.99 999	49
12	.00 349	.00 349	286.48	.99 999	48
13	.00 378	.00 378	264.44	.99 999	47
14 15	.00 407	.00 407	245.55 229.18	.99 999	46
16	.00 436	.00 436	214.86	.99 999	45 44
17	.00 495	.00 495	202.22	.99 999	43
18	.00 524	.00 524	190.98	.99 999	42
19	.00 553	.00 553	180.93	.99 998	41
20 21	.00 582	.00 582	171.89	.99 998 .99 998	40
21 22	.00 611	.00 611	163.70 156.26	.99 998	39 38
23	.00 669	.00 669	149.47	.99 998	37
24	.00 698	.00 698	143.24	.99 998	36
25	.00 727	.00 727	137.51	.99 997	35
26	.00 756	.00 756	132.22	.99 997	34
27 28	.00 785	.00 785 .00 815	127.32 122.77	.99 997	33
29	.00 844	.00 815	118.54	.99 996	31
30	.00 873	.00 873	114.59	.99 996	30
31	.00 902	.00 902	110.89	.99 996	29
32	.00 931	.00 931	107.43 104.17	.99 996	28 27
34	.00 989	.00 989	101.11	.99 995	26
35	.01 018	.01 018	98.218	.99 995	25
36	.01 047	.01 047	95.489	.99 99 <u>5</u>	24
37 38	.01 076	.01 076	92.908	.99 994	23
39	.01 103	.01 105	90.463 SS.144	.99 994	22 21
40	.01 164	.01 164	85.940	.99 993	20
41	.01 193	.01 193	83.844	.99 993	19
42	.01 222	.01 222	81.847	.99 993	18
43	.01 251	.01 251 .01 280	79.943	.99 992	17
45	.01 280	.01 200	78.126 76.390	.99 992	16 15
46	.01 338	.01 338	74.729	.99 991	13
47	.01 367	.01 367	73.139	.99 991	13
48	.01 396	.01 396	71.615	.99 990	12
49	.01 425	.01 425	70.153	.99 990	11
50	.01 454	.01 45 <u>5</u>	68.750 67.402	.99 989	10
52	.01 513	.01 513	66.105	.99 989	8
53	.01 542	.01 542	64.858	.99 988	7
54	.01 571	.01 571	63.657	.99 988	7 6 5 4 3 2 1
55 56	.01 600 .01 629	.01 600 .01 629	62.499 61.383	.99 987 .99 987	5
57	.01 629	.01 629	60.306	.99 987	3
58	.01 687	.01 687	59.266	.99 986	2
59	.01 716	.01 716	58.261	.99 985	
60	.01 745	.01 746	57.290	.99 98 <u>5</u>	0
1	cos	cot	tan	sin	1
		89			

	1°				
,	sin	tan	cot	cos	,
0	.01 745	.01 746	57.290	.99 985	60
$\begin{bmatrix} 1\\2 \end{bmatrix}$.01 774	.01 77 <u>5</u> .01 804	56.351 55.442	.99 984	59 58
3	.01 832	.01 833	54.561	.99 983	57
4	.01 862	.01 862	53.709	.99 983	56
5	.01 S91 .01 920	.01 891 .01 920	52.882 52.081	.99 982 .99 982	55 54
7	.01 949	.01 949	51.303	.99 981	53
8 9	.01 978 .02 007	.01 978	50.549 49.816	.99 980 .99 980	52 51
10	.02 036	.02 036	49.104	.99 979	50
$\begin{vmatrix} 11 \\ 12 \end{vmatrix}$.02 065	.02 066	48.412 47.740	.99 979 .99 978	49 48
13	.02 123	.02 124	47.085	.99 977	47
14	.02 152	.02 153	46.449	.99 977	46
15 16	.02 181 .02 211	.02 182 .02 211	45.829 45.226	.99 976 .99 976	45 44
17	.02 240	.02 240	44.639	.99 975	43
18 19	.02 269 .02 298	.02 269 .02 298	44.066 43.508	.99 974	42
20	.02 327	.02 328	42.964	.99 973	40
21	.02 356	.02 357	42.433	.99 972	39
22	.02 385	.02 386 .02 415	41.916 41.411	.99 972 .99 971	38
24	.02 443	.02 444	40.917	.99 970	36
25 26	.02 472 .02 501	.02 473 .02 502	40.436 39.965	.99 969	35 34
27	.02 530	.02 531	39.506	.99 968	33
28	.02 560	.02 560	39.057	.99 967	32
29 30	.02 589	.02 589	38.618 38.188	.99 966	31 30
31	.02 647	.02 648	37.769	.99 965	29
32	.02 676	.02 677	37.358 36.956	.99 964	28 27
34	.02 734	.02 735	36.563	.99 963	26
35	.02 763	.02 764	36.178	.99 962	25
36	.02 792 .02 821	.02 793 .02 822	35.801 35.431	.99 961	24 23
38	.02 850	.02 851	35.070	.99 959	22
39 40	.02 879	.02 881	34.715 34.368	.99 959	21 20
41	.02 938	.02 939	31.027	.99 957	19
42 43	.02 967	.02 968	33.694	.99 956	18
44	.02 996	.02 997 .03 026	33.366 33.045	.99 955	17
45	.03 054	.03 055	32.730	.99 953	15
46 47	.03 083	.03 084	32.421 32.118	.99 952	14
48	.03 141	.03 143	31.821	.99 951	12
49	.03 170	.03 172	31.528	.99 950	11
50 51	.03 199 .03 228	.03 201	31.242 30.960	.99 949	10
52	.03 257	.03 259	30.683	.99 947	9 8 7
53 54	.03 286	.03 288 .03 317	30.412 30.14 <u>5</u>	.99 946	6
55	.03 345	.03 346	29.882	.99 944	5
56	.03 374	.03 376	29.624	.99 943	4
57 58	.03 403	.03 405	29.371 29.122	.99 942 .99 941	5 4 3 2 1
59	.03 461	.03 463	28.877	.99 940	
60	.03 490	.03 492	28.636	.99 939	0
/	cos	cot	tan o°	sin	1
		8	5		

		2	٥		
/_	sin	tan	cot	cos	1
0	.03 490	.03 492 .03 521	28.636 28.399	.99 939	60 59
2	.03 548	.03 550	28.166	.99 937	58
3	.03 577	.03 579	27.937	.99 936	57
4	.03 606	.03 609	27.712	.99 935	56
5 6	.03 635	.03 638	27.490 27.271	.99 934	55
7	.03 693	.03 696	27.057	.99 932	53
8 9	.03 723	.03 725 .03 754	26.845	.99 931	52
10	.03 732	.03 754	26.637 26.432	.99 930	51 50
11	.03 810	.03 \$12	26.230	.99 927	49
12	.03 839	.03 842	26.031	.99 926	48
13	.03 868	.03 871	25.83 <u>5</u> 25.642	.99 925	47 46
15	.03 926	.03 929	25.452	.99 923	45
16	.03 955	.03 958	25.264	.99 922	44
17	.03 984	.03 987	25.080 24.898	.99 921	43
19	.04 042	.04 046	24.719	.99 918	41
20	.04 071	.04 075	24.542	.99 917	40
21 22	.04 100	.04 104	24.368 24.196	.99 916 .99 915	39
23	.04 159	.04 162	24.026	.99 913	37
24	.04 188	.04 191	23.859	.99 912	36
25	.04 217	.04 220	23.695	.99 911	35
26 27	.04 246	.04 250	23.532 23.372	.99 910	34
28	.04 304	.04 308	23.214	.99 907	32
29	.04 333	.04 337	23.058	.99 906	31
30 31	.04 362	.04 366	22.904 22.752	.99 90 <u>5</u> .99 904	30
32	.04 420	.04 424	22.602	.99 902	28
33	.01 449	.04 454	22.454	.99 901	27
34 35	.04 478	.04 483	22.308 22.164	.99 900 .99 898	26
36	.04 536	.04 541	22.022	.99 897	24
37	.04 565	.04 570	21.881	.99 896	23
38	.04 594	.04 599 .04 628	21.743 21.606	.99 894	22 21
40	.04 653	.04 658	21.470	.99 892	20
41	.04 682	.04 687	21.337	.99 890	19
42	.04 711	.04 716	21.205 21.075	.99 889 .99 888	18 17
44	.04 769	.04 774	20.946	.99 886	16
45	.04 798	.04 803	20.819	.99 885	15
46	.04 827 .04 856	.04 833	20.693	.99 883 .99 882	14 13
48	.04 885	.04 891	20.446	.99 881	12
49	.04 914	.04 920	20.325	.99 879	11
50 51	.04 943 .04 972	.04 949	20.206 20.087	.99 878 .99 876	10
52	.05 001	.05 007	19.970	.99 87 <u>5</u>	9 8 7 6
53	.05 030	.05 037	19.855	.99 873	7
54	.05 059	.05 066	19.740	.99 872	6
55	.05 088 .05 117	.05 09 <u>5</u> .05 124	19.627 19.516	.99 870 .99 869	5 4
57	.05 146	.05 153	19.405	.99 867	3
58	.05 175 .05 20 <u>5</u>	.05 182 .05 212	19.296 19.188	.99 866 .99 864	5 4 3 2 1
60	.05 203	.05 241	19.133	.99 863	0
7	cos	cot	tan	sin	-
		87		-	

		3°		
,	sin tar		cos	,
0	.05 234 .05 2 .05 263 .05 2			60
2	.05 292 .05 2	99 18.871		59 58
3 4	.05 321 .05 3 .05 350 .05 3			57
5	.05 350 .05 3			56
6	.05 408 .05 4	16 18.464	.99 854	54
8	.05 437 .05 4 .05 466 .05 4			53 52
9		03 18.171		51
10	.05 524 .05 5			50
11 12		62 17.980 91 17.886	.99 846	49
13	.05 611 .05 6	20 17.793	.99 842	47
14	.05 640 .05 6			46
15 16		78 17.611 08 17.521	.99 839 .99 838	45
17	.05 727 .05 7	37 17.431	.99 836	43
18 19		66 17.343 95 17.256	.99 834	42
20	.05 814 .05 8			40
21 22	.05 844 .05 8 .05 873 .05 8			39
23	.05 902 .05 9		.99 827	38
24	.05 931 .05 9		.99 824	36
25 26	.05 960 .05 9 .05 989 .05 9		.99 822 .99 821	35
27	.06 018 .06 0	29 16.587	.99 819	33
28 29	.06 047 .06 0 .06 076 .06 0		.99 817 .99 815	32
30	.06 105 .06 1			30
31	.06 134 .06 1	45 16.272	.99 812	29
32	.06 163 .06 1 .06 192 .06 2		.99 810 .99 808	28 27
34	.06 221 .06 2		.99 806	26
35	.06 250 .06 2		.99 804	25
36	.06 279 .06 2 .06 308 .06 3		.99 803 .99 801	24 23
38	.06 337 .06 3	50 15.748	.99 799	22
39 40	.06 366 .06 3		.99 797 .99 795	$\begin{vmatrix} 21 \\ 20 \end{vmatrix}$
41	.06 424 .06 4		.99 793	19
42.	.06 453 .06 4 .06 482 .06 4		.99 792 .99 790	18 17
44	.06 511 .06 5		.99 788	16
45	.06 540 .06 5		.99 786	15
46 47	.06 569 .06 5 .06 598 .06 6		.99 784 .99 782	14
48	.06 627 .06 6	12 15.056	.99 780	12
49 50	.06 656 .06 6		.99 778 .99 776	11
51	.06 714 .06 7		.99 774	10
52	.06 743 .06 7		.99 772	8 7
53 54	.06 773 .06 73 .06 802 .06 8		.99 770 .99 768	6
55	.06 831 .06 8	17 14.606	.99 766	5
56 57	.06 860 .06 83		.99 764 .99 762	4
58	.06 918 .06 93	$3\bar{4}$ 14.421	.99 760	3 2 1
59	.06 947 .06 96		.99 758	1 1
60	.06 976 .06 99		.99 756	0
′	cos cot	tan 86 °	sin	′
		00		

00				NAII	IIAI
		4	0		
,	sin	tan	cot	cos	,
0	.06 976	.06 993	14.301	.99 756	60
1	.07 005	.07 022 .07 051	14.241	.99 754 .99 752	59 58
3	.07 034	.07 081	14.182 14.124	.99 750	57
4	.07 092	.07 110	14.065	.99 748	56
5	.07 121	.07 139	14.008	.99 746	55
6 7	.07 1 <u>5</u> 0 .07 179	.07 168 .07 197	13.951 13.894	.99 744	54 53
8	.07 208	.07 227	13.838	.99 740	52
9	.07 237	.07 256	13.782	.99 738	51
10	.07 266	.07 285	13.727 13.672	.99 736 .99 734	50
11 12	.07 29 <u>5</u> .07 32 4	.07 314	13.617	.99 731	48
13	.07 353	.07 373	13.563	.99 729	47
14	.07 382	.07 402	13.510	.99 727	46
15 16	.07 411	.07 431	13.457 13.404	.99 725 .99 723	45
17	.07 469	.07 490	13.352	.99 721	43
18	.07 498	.07 519	13.300	.99 719	42
19 20	.07 527	.07 548	13.248	.99 716	41 40
21	.07 585	.07 607	13.197 13.146	.99 714	39
22	.07 614	.07 636	13.096	.99 710	38
23	.07 643	.07 665	13.046	.99 708	37
24 25	.07 672	.07 69 <u>5</u>	12.996 12.947	.99 705 .99 703	35
26	.07 730	.07 753	12.898	.99 701	34
27	.07 759	.07 782	12.850	.99 699	33
28 29	.07 788 .07 817	.07 812	12 801 12.754	.99 696 .99 694	32
30	.07 846	.07 870	12.706	.99 692	30
31	.07 87 <u>5</u>	.07 899	12.659	.99 689	29
32	.07 904 .07 933	.07 929	12.612 12.566	.99 687 .99 685	28 27
34	.07 962	.07 987	12.520	.99 683	26
35	.07 991	.08 017	12.474	.99 680	25
36	.08 020	.08 046	12.429	.99 678	24
37 38	.08 049 .08 078	.08 075	12.384 12.339	.99 676 .99 673	23
39	.08 107	.08 134	12.295	.99 671	21
40	.08 136	.08 163	12.251	.99 668	20
41 42	.08 16 <u>5</u> .08 19 4	.08 192 .08 221	12.207 12.163	.99 666 .99 664	19 18
43	.08 223	.08 251	12.120	.99 661	17
44	.08 252	.08 280	12.077	.99 659	16
45 46	.08 281 .08 310	.08 309	12.03 <u>5</u> 11.992	.99 657 .99 654	15 14
47	.08 339	.08 368	11.950	.99 652	13
48	.08 368	.08 397	11.909	.99 649	12
49			11.867	.99 647	11
50 51	.08 426 .08 455	.08 456	11.826 11.785	.99 644 .99 642	10
52	.08 484	.08 514	11.74 <u>5</u>	.99 639	9 8
53 54	.08 513	.08 544	11.70 <u>5</u> 11.664	.99 637	7 6
55	.08 542	.08 573	11.625	.99 63 <u>5</u>	5
56	.08 600	.08 632	$11.58\overline{5}$.99 630	4
57	.08 629	.08 661	11.546	.99 627	3
58 59	.08 658 .08 687	.08 690 .08 720	11.507 11.468	.99 62 <u>5</u> .99 622	5 4 3 2 1
60	.08 716	.08 749	11.430	.99 619	o
1	cos	cot	tan	sin	,
		88			

		5	0		
	sin	tan	cot	cos	,
0	.08 716 .08 745	.08 749 .08 778	11.430 11.392	.99 619	60 59
2	.08 774	.08 807	11.354	.99 614	58
3	.08 803	.08 837	11.316 11.279	.99 612	57 56
5	.08 860	.08 895	11.242	.99 607	55
6	.08 889	.08 925	11.205	.99 604	54
8	.08 918	.08 954	11.168 11.132	.99 602 .99 599	53
9	.08 976	.09 013	11.095	.99 596	51
10	.09 005	.09 042	11.059	.99 594	50
11 12	.09 034	.09 071	11.024 10.988	.99 591 .99 588	49 48
13	.09 092	.09 130	10.953	.99 586	47
14	.09 121	.09 159	10.918	.99 583	46
15 16	.09 150	.09 189	10.883 10.848	.99 578	45 44
17	.09 208	.09247	10.814	.99 575	43
18 19	.09 237 .09 266	.09 277 .09 306	10.780 10.746	.99 572 .99 570	42
20	.09 295	.09 335	10.712	.99 567	40
21	.09 324	.09 365	10.678	.99 564	39
22 23	.09 353 .09 382	.09 394	10.64 <u>5</u> 10.612	.99 562 .99 559	38
24	.09 411	.09 453	10.579	.99 556	36
25	.09 440	.09 482	10.546	.99 553	35
26 27	.09 498	.09 511	10.514	.99 551 .99 548	34
28	.09 527	.09 570	10.449	.99 545	32
29 30	.09 556 .09 585	.09 600	10.417 10.385	.99 542	31 30
31	.09 614	.09 658	10.354	.99 537	29
32	.09 642 .09 671	.09 688	10.322	.99 534 .99 531	28
34	.09 700	.09 746	10.291 10.260	.99 528	27 26
35	.09 729	.09 776	10.229	.99 526	25
36	.09 758 .09 787	.09 805	10.199 10.168	.99 523 .99 520	24 23
38	.09 816	.09 864	10.138	.99 517	22
39	.09 845	.09 893	10.108	.99 514	21
40	.09 874	.09 923	10.078 10.048	.99 511 .99 508	20 19
42	.09 932	.09 981	10.019	.99 506	18
43	.09 961	.10 011	9.9893 9.9601	.99 503 .99 <u>5</u> 00	17 16
45	.10 019	.10 069	9.9310	.99 497	15
46	.10 048	.10 099	9.9021	.99 494	14
47	.10 077 .10 106	.10 128 .10 158	9.8734 9.8448	.99 491 .99 488	13 12
49	.10 13 <u>5</u>	.10 187	9.8164	.99 485	11
50	.10 164 .10 192	.10 216 .10 246	9.7882 9.7601	.99 482	10
51 52	.10 192	.10 246	9.7001	.99 479	8
53	.10 250	$.10\ 30\underline{5}$	9.7044	.99 473	7
54	.10 279	.10 334	9.6768 9.6493	.99 470	5
56	.10 337	.10 393	9.6220	.99 464	4
57	.10 366	.10 422	9.5949	.99 461	3
58 59	.10 395	.10 452 .10 481	9.5679 9.5411	.99 458 .99 455	9 8 7 6 5 4 3 2
60	.10 453	.10 510	9.5144	.99 452	0
1	cos	cot	tan	sin	1
		84	l °		

		6	э		
,	sin	tan	cot	cos	,
0	.10 453	.10 510	9.5144	.99 452	60
$\begin{vmatrix} 1\\2 \end{vmatrix}$.10 482	.10 540 .10 569	9.4878 9.4614	.99 449	59 58
3	.10 540	.10 599	9.4352	.99 443	57
4	.10 569	.10 628	9.4090	.99 440	56
5 6	.10 597 .10 626	.10 657 .10 687	9.3831 9.3572	.99 437	55 54
7	.10 655	.10716	9.3315	.99 431	53
8 9	.10 684	.10 746 .10 775	9.3060 9.2806	.99 428	52
10	.10 713	.10 773	9.2553	.99 421	50
11	.10 771	.10 834	9.2302	.99 418	49
12	.10 800 .10 829	.10 863 .10 893	9.2052 9.1803	.99 415	48 47
14	.10 858	.10 922	9.1555	.99 409	46
15	.10 887	.10 952	9.1309	.99 406	45
16 17	.10 916	.10 981 .11 011	9.106 <u>5</u> 9.0821	.99 402	44 43
18	$.1097\bar{3}$.11 040	9.0579	.99 396	42
19	.11 002	.11 070	9.0338	.99 393	41
20 21	.11 031	.11 099 .11 128	9.0098 8.9860	.99 390 .99 386	40 39
22	.11 089	.11 158	8.9623	.99 383	38
23	.11 118	.11 187	8.9387 8.9152	.99 380 .99 377	37
25	.11 176	.11 246	8.8919	.99 374	35
26	.11 205	.11 276	8.8686	.99 370	34
27 28	.11 234	.11 305	8.8455 8.8225	.99 367 .99 364	33
29	.11 291	.11 364	8.7996	.99 360	31
30	.11 320	.11 394	8.7769	.99 357	30
31 32	.11 349	.11 423 .11 452	8.7542 8.7317	.99 354 .99 351	29 28
33	.11 407	.11 482	8.7093	.99 347	27
34	.11 436	.11 511	8.6870	.99 344	26
35 36	.11 465	.11 541 .11 570	8.6648 8.6427	.99 341 .99 337	25 24
37	.11 523	.11 600	8.6208	.99 334	23
38	.11 552	.11 629 .11 659	8.5989 8.5772	.99 331 .99 327	22
40	.11 609	.11 688	8.5555	.99 324	20
41	.11 638	.11 718	8.5340	.99 320	19
42 43	.11 667 .11 696	.11 747	8.5126 8.4913	.99 317 .99 314	18 17
44	.11 725	.11 806	8.4701	.99 310	16
45	.11 754	.11 836	8.4490	.99 307	15
46	.11 783	.11 865 .11 89 <u>5</u>	8.4280 8.4071	.99 303	14 13
48	.11 8+0	$.1192\overline{4}$	8.3863	.99 297	12
49	.11 869	.11-954	8.3656	.99 293	11
50 51	.11 898 .11 927	.11 983 .12 013	8.34 <u>5</u> 0 8.324 <u>5</u>	.99 290 .99 286	10 9
52	.11 956	.12 042	8.3041	.99 283	8
53 54	.11 98 <u>5</u> .12 01 4	.12 072 .12 101	8.2838 8.2636	.99 279 .99 276	$\begin{bmatrix} 7 \\ 6 \end{bmatrix}$
55	.12 043	.12 131	8.2434	.99 272	5
56	.12 071	.12 160	8.2234	.99 269	4
57	.12 100 .12 129	.12 190 .12 219	8.2035 8.1837	.99 265 .99 262	8 7 6 5 4 3 2
59	.12 158	.12 249	8.1640	.99 258	
60	.12 187	.12 278	8.1443	.99 25 <u>5</u>	0
1	cos	cot	tan	sin	'
		83	5		

	7°					
,	sin	tan	cot	cos	,	
0	.12 187 .12 216	.12 278 .12 308	8.1443 8.1248	.99 25 <u>5</u> .99 251	60 59	
2	.12 245	.12 338	8.1054	.99 248	58	
3 4	.12 27+	.12 367	8.0860	.99 244	57	
5	.12 302	.12 397	S.0667 S.0476	.99 240 .99 237	56	
6	.12 360	.12 456	8 028 <u>5</u>	.99 233	54	
8	.12 389 .12 418	.12 485 .12 51 <u>5</u>	8.009 <u>5</u> 7.9906	.99 230 .99 226	53 52	
9	.12 447	.12 544	7.9718	.99 222	51	
10	.12 476	.12 574	7.9530	.99 219	50	
11 12	.12 50‡	.12 603 .12 633	7.934 1 7.9158	.99 215 .99 211	49 48	
13	.12 562	.12 662	7.8973	.99 208	47	
14	.12 591	.12 692 .12 722	7.8789 7.8606	.99 204	46	
16	.12 649	.12 751	7.8424	.99 197	44	
17	.12 678	.12 781	7.8243	.99 193	43	
18 19	.12 706 .12 735	.12 810 .12 840	7.8062 7.7882	.99 189 .99 186	42	
20	.12 764	.12 869	7.7704	.99 182	40	
21 22	.12 793 .12 822	.12 899 .12 929	7.7525 7.7348	.99 178 .99 175	39 38	
23	.12 851	.12 958	7.7171	$.9917\overline{1}$	37	
24	.12 880	.12 988	7.6996	.99 167	36	
25 26	.12 908 .12 937	.13 017 .13 047	7.6821 7.6647	.99 163 .99 160	35 34	
27	.12 966	.13 076	7.6473	.99 156	33	
28 29	.12 99 <u>5</u> .13 024	.13 106	7.6301	.99 152	32	
30	.13 024	.13 136 .13 165	7.6129 7.5958	.99 148 .99 144	31 30	
31	.13 081	.13 19 <u>5</u>	7.5787	.99 141	29	
32	.13 110 .13 139	.13 224 .13 254	7.5618 7.5449	.99 137 .99 133	28 27	
34	.13 168	.13 284	7.5281	.99 133	26	
35	.13 197	.13 313	7.5113	.99 125	25	
36	.13 226 .13 254	.13 343	7.4947 7.4781	.99 122 .99 118	24 23	
38	.13 283	.13 402	7.4615	.99 114	22	
39	.13 312	.13 432	7.4451	.99 110	21	
40 41	.13 370	.13 461	7.4287 7.4124	.99 106 .99 102	20	
42	.13 399	.13 521	7.3962	.99 098	18	
43	.13 427 .13 456	.13 550 .13 580	7.3800 7.3639	.99 094 .99 091	17 16	
45	.13 485	.13 609	7.3479	.99 087	15	
46 47	.13 514 .13 543	.13 639 .13 669	7.3319 7.3160	.99 083	14	
48	.13 572	.13 698	7.3002	.99 075	12	
49	.13 600	.13 728	7.2844	.99 071	11	
50 51	.13 629 .13 658	.13 758 .13 787	7.2687 7.2531	.99 067 .99 063	10	
52	.13 687	.13 817	7.2375	.99 059	9 8 7	
53	.13 716	.13 846 .13 876	7.2220 7.2066	.99 05 <u>5</u> .99 05 <u>1</u>	7	
55	.13 774	.13 906	7.1912	.99 031	5	
56	.13 802	.13 935	7.1759	.99 043	5 4	
57 58	.13 831 .13 860	.13 965	7.1607 7.1455	.99 039 .99 035	3 2	
59	.13 889	.14 024	7.1304	.99 031	1	
60	.13 917	.14 054	7.1154	.99 027	0	
1	cos	cot	tan	sin	1	
82°						

1 .13 946 .14 084 7.1004 .99 023 2 13 975 .14 113 7.0855 .99 019 3 .14 004 .14 143 7.0706 .99 015 4 .14 033 .14 173 7.0558 .99 011 5 .14 061 .14 202 7.0410 .99 006 6 .14 090 .14 232 7.0264 .99 002 7 .14 119 .14 262 7.0117 .98 998 8 .14 148 .14 291 6.9972 .98 994 9 .14 177 .14 321 6.9927 .98 996 11 .14 205 .14 351 6.9682 .98 986 11 .14 234 .14 381 6.9538 .98 982 12 .14 263 .14 410 6.9395 .98 978 13 .14 292 .14 440 6.9252 .98 973 14 .14 320 .14 470 6.9110 .98 969 15 .14 349 .14 499 6.8969 .98 965 16 .14 378 .14 529 6.8828 .98 961 17 .14 407 .14 559 6.8687 .98 957 18 .14 436 .14 588 6.8548 .98 953 19 .14 464 .14 618 6.8408 .98 948 20 .14 493 .14 648 6.8269 .98 944	60 59 58
1 .13 946 .14 084 7.1004 .99 023 2 .13 975 .14 113 7.0855 .99 019 3 .14 004 .14 143 7.0706 .99 015 4 .14 033 .14 173 7.0558 .99 011 5 .14 061 .14 202 7.0410 .99 006 6 .14 090 .14 232 7.0264 .99 002 7 .14 119 .14 262 7.0117 .98 998 8 .14 148 .14 291 6.9972 .98 994 9 .14 177 .14 321 6.9827 .98 990 10 .14 205 .14 351 6.9682 .98 986 11 .14 234 .14 381 6.9538 .98 982 12 .14 263 .14 410 6.9395 .98 978 13 .14 292 .14 440 6.9252 .98 973 14 .14 320 .14 470 6.9110 .98 969 15 .14 349 .14 499 6.8969 .98 965 16 .14 378 .14 529 6.8828 .98 961 17 .14 407 .14 559 6.8687 .98 957 18 .14 436 .14 588 6.8548 .98 953 19 .14 493 .14 648 6.8269 .98 944	59
2	
3 .14 004 .14 143 7.0706 .99 015 4 .14 033 .14 173 7.0558 .99 011 5 .14 061 .14 202 7.0410 .99 006 6 .14 090 .14 232 7.0264 .99 002 7 .14 119 .14 262 7.0117 .98 998 8 .14 148 .14 291 6.9972 .98 994 9 .14 177 .14 321 6.9827 .98 990 10 .14 205 .14 351 6.9682 .98 986 11 .14 234 .14 381 6.9538 .98 982 12 .14 263 .14 410 6.9395 .98 978 13 .14 292 .14 440 6.9252 .98 973 14 .14 320 .14 470 6.9110 .98 969 15 .14 349 .14 499 6.8969 .98 965 16 .14 378 .14 529 6.8828 .98 961 17 .14 407 .14 559 6.8687 .98 957 18 .14 436 .14 588 6.8548 .98 953 19 .14 464 .14 618 6.8408 .98 948 20 .14 493 .14 648 6.8269 .98 944	
5	57
6	56
7	55 54
8	53
10	52
11	51 50
13 .14 292 .14 440 6.9252 .98 973 14 .14 320 .14 470 6.9110 .98 969 15 .14 349 .14 499 6.8969 .98 965 16 .14 378 .14 529 6.8828 .98 961 17 .14 407 .14 559 6.8687 .98 957 18 .14 436 .14 588 6.8548 .98 953 19 .14 464 .14 618 6.8408 .98 948 20 .14 493 .14 648 6.8269 .98 944	49
14	48
15	47 46
17 .14 407 .14 559 6.8687 .98 957 18 .14 436 .14 588 6.8548 .98 953 19 .14 464 .14 618 6.8408 .98 948 20 .14 493 .14 648 6.8269 .98 944	45
18	44
19 .14 464 .14 618 6.8408 .98 948 20 .14 493 .14 648 6.8269 .98 944	43 42
	41
	40
21	39
23 .14 580 .14 737 6.7856 .98 931	37
24 .14 608 .14 767 6.7720 .98 927	36 35
25 .14 637 .14 796 6.7584 .98 923 26 .14 666 .14 826 6.7448 .98 919	34
27 .14 695 .14 856 6.7313 .98 914	33
28 .14 723 .14 886 6.7179 .98 910 29 .14 752 .14 915 6.7045 .98 906	32 31
1	30
31 .14 810 .14 975 6.6779 .98 897	29
32	28 27
34 .14 896 .15 064 6.6383 .98 884	26
35 .14 925 .15 094 6.6252 .98 880	25
36 .14 954 .15 124 6.6122 .98 876 37 .14 982 .15 153 6.5992 .98 871	2 1 23
38 .15 011 .15 183 6.5863 .98 867	22
39 .15 040 .15 213 6.5734 .98 863 40 .15 069 .15 243 6.5606 .98 858	$egin{array}{c} 21 \ 20 \end{array}$
41 .15 097 .15 272 6.5478 .98 854	19
42 .15 126 .15 302 6.5350 .98 849	18
43 .15 15 <u>5</u> .15 332 6.5223 .98 84 <u>5</u> 44 .15 184 .15 362 6.5097 .98 841	17 16
45 .15 212 .15 391 6.4971 .98 836	15
46 .15 241 .15 421 6.4846 .98 832	14
47 .15 270 .15 451 6.4721 .98 827 48 .15 299 .15 481 6.4596 .98 823	13 12
49 .15 327 .15 511 6.4472 .98 818	11
	10
51 .15 385 .15 570 6.4225 .98 809 52 .15 414 .15 600 6.4103 .98 80 <u>5</u>	9
53 .15 442 .15 630 6.3980 .98 800	7
54 .15 471 .15 660 6.3859 .98 796 55 .15 500 .15 689 6.3737 .98 791	6
56 .15 529 .15 719 6.3617 .98 787	5
57 .15 557 .15 749 6.3496 .98 782	3
58 .15 586 .15 779 6.3376 .98 778 59 .15 61 <u>5</u> .15 809 6.3257 .98 773	2
60 .15 643 .15 838 6.3138 .98 769	0
/ cos cot tan sin	,
81°	

		. 9	0			
/	sin	tan	cot	cos	,	
0	.15 6 1 3 .15 672	.15 838 .15 868	6.3138 6.3019	.98 769 .98 764	60 59	
3	.15 701 .15 730	.15 898 .15 928	6.2901 6.2783	.98 760 .98 755	58 57	
5	.15 758	.15 958 .15 988	6.2666 6.2549	.98 751 .98 746	56	
6	.15 816	.16017	6.2432	.98 741	54	
8	.15 84 <u>5</u> .15 873	.16 047 .16 077	6.2316 6.2200	.98 737 .98 732	53 52	
9 10	.15 902	.16 107 .16 137	6.2085 6.1970	.98 728 .98 723	51 50	
11 12	.15 959	.16 167 .16 196	6.1856 6.1742	.98 718	49	
13	.15 988 .16 017	.16 226	6.1628	.98 714	48 47	
14	.16 046	.16 256 .16 286	6.1515 6.1402	.98 704	46	
16	.16 103	.16316	6.1290	.98 69 <u>5</u> .98 690	44	
17	.16 132 .16 160	.16 346 .16 376	6.1178 6.1066	.98 686	43 42	
19 20	.16 189 .16 218	.16 405 .16 435	6.0955 6.0844	.98 681	41 40	
21 22	.16 246	.16 465	6.0734 6.0624	.98 671 .98 667	39 38	
23	.16 30+	.16 525	6.0514	.98 662	37	
24 25	.16 333	.16 55 <u>5</u>	6.0405 6.0296	.98 657	36	
26	.16 390	.16 615	6.0188	.98 648	34	
27 28	.16 419 .16 447	.16 64 <u>5</u> .16 674	6.0080 5.9972	.98 638	33 32	
29 30	.16 476 .16 505	.16 704 .16 734	5.986 <u>5</u> 5.9758	.98 633	$\begin{vmatrix} 31 \\ 30 \end{vmatrix}$	
31 32	.16 533	.16 764	5.9651 5.9545	.98 624 .98 619	29 28	
33	.16 562 .16 591	.16 824	5.9439	.98 614	27	
34	.16 620 .16 648	.16 854 .16 884	5.9333 5.9228	.98 609	26 25	
36 37	.16 677 .16 706	.16 914	5.9124 5.9019	.98 600 .98 595	24 23	
38	.16 734	.16974	5.8915	.98 590	22	
39 40	.16 763 .16 792	.17 004	5.8811 5.8708	.98 585 .98 580	21 20	
41 42	16 820 .16 849	.17 063 .17 093	5.8605 5.8502	.98 575 .98 570	19 18	
43	.16 878	.17 123	5.8400	.98 565	17	
44	.16 906 .16 93 <u>5</u>	.17 153 .17 183	5.8298 5.8197	.98 561 .98 556	16	
46 47	.16 96 4 .16 992	.17 213 .17 243	5.8095 5.7994	.98 551 .98 546	14	
48	.17 021	.17 273	5.7894 5.77 9 4	.98 541	12	
49 50	.17 0 <u>5</u> 0 .17 078	.17 303 .17 333	5.7694	.98 536 .98 531	$\begin{vmatrix} 11 \\ 10 \end{vmatrix}$	
51 52	.17 107 .17 136	.17 363 .17 393	5.7594 5.7495	.98 526 .98 521	8	
53	.17 164	.17 423	5.7396	.98 516	7 6	
54	.17 193 .17 222	.17 453 .17 483	5.7297 5.7199	.98 511	5 4	
56 57	.17 250 .17 279	.17 513 .17 543	5.7101 5.7004	.98 501 .98 496	4 3	
58	.17 308	.17 573	5.6906	.98 491	2	
59 60	.17 336 .17 36 <u>5</u>	.17 603 .17 633	5.6809 5.6713	.98 486 .98 481	0	
,	cos	cot	tan	sin	7	
	80°					

		10)°		
,	sin	tan	cot	cos	,
0	.17 36 <u>5</u>	.17 633	5.6713	.98 481	60
$\begin{vmatrix} 1\\2 \end{vmatrix}$.17 393 .17 422	.17 663 .17 693	5.6617 5.6521	.98 476 .98 471	59 58
3	.17 451	.17723	5.642 <u>5</u>	.98 466	57
4	.17 479	.17 753 .17 783	5.6329 5.6234	.98 461	56 55
5 6	.17 508 .17 537	.17 /813	5.6140	.98 450	54
7	.17 565	.17 843	5.6045	.98 445	53
8 9	.17 594 .17 623	.17 873 .17 903	5.5951 5.5857	.98 440 .98 435	52 51
10	.17 651	.17 933	5.5764	.98 430	50
11 12	.17 680 .17 708	.17 963 .17 993	5.5671 5.5578	.98 42 <u>5</u> .98 420	49 48
13	.17 737	.18 023	5.5485	.98 414	47
14	.17 766	.18 053	5.5393	.98 409	46
15 16	.17 794 .17 823	.18 083 .18 113	5.5301 5.5209	.98 404 .98 399	45 44
17	.17852	.18 143	5.5118	.98 394	43
18 19	.17 880	.18 173 .18 203	5.5026 5.4936	.98 389 .98 383	42 41
20	.17 937	.18 233	5.4845	.98 378	40
21	.17 966	.18 263	5.475 <u>5</u>	.98 373	39
22 23	.17 99 <u>5</u> .18 023	.18 293 .18 323	5.466 <u>5</u> 5.4575	.98 368 .98 362	38
24	.18 052	.18 353	5.4486	.98 357	36
25	.18 081	.18 384	5.4397	.98 352	35
26 27	.18 109 .18 138	.18 414	5.4308 5.4219	.98 347 .98 341	34
28	.18 166	.18 474	5.4131	.98 336	32
29 30	.18 19 <u>5</u>	.18 504	5.4043 5.3955	.98 331 .98 325	$\begin{vmatrix} 31 \\ 30 \end{vmatrix}$
31	.18 252	.18 564	5.3868	.98 320	29
32	.18 281 .18 309	.18 594 .18 624	5.3781 5.3694	.98 31 <u>5</u> .98 310	28 27
33	.18 338	.18 654	5.3607	.98 304	26
35	.18 367	.18 684	5.3521	.98 299	25
36	.18 395 .18 424	.18 714 .18 74 <u>5</u>	5.343 <u>5</u> 5.3349	.98 294 .98 288	24 23
38	.18 452	.18 77 <u>5</u>	5.3263	.98 283	22
39	.18 481	.18 805	5.3178	.98 277	21
40	.18 509. .18 538	.18 83 <u>5</u> .18 865	5.3093 5.3008	.98 272 .98 267	20
42	.18 567	.18 895	5.2924	.98 261	18
43	.18 595 .18 624	.18 925 .18 955	5.2839 5.2755	.98 256 .98 250	17
45	.18 652	.18 986	5.2672	.98 245	15
46	.18 681 .13 710	.19 016 .19 046	5.2588 5.2505	.98 240 .98 234	14 13
47 48	.18 738	.19 076	5.2422	.98 229	12
49	.18 767	.19 106	5.2339	.98 223	11
50 51	.18 795 .18 824	.19 136 .19 166	5.2257 5.2174	.98 218 .98 212	10
52	.18 852	.19 197	5.2092	.98 207	9 8 7
53 54	.18 881	.19 227 .19 257	5.2011 5.1929	.98 201 .98 196	7 6
55	.18 938	.19 287	5.1848	.98 190	
56	.18 967	.19 317	5.1767	.98 18 <u>5</u>	5 4 3 2 1
57 58	.18 995 .19 024	.19 347 .19 378	5.1686 5.1606	.98 179 .98 174	2
59	.19 052	.19 408	5.1526	.98 168	
60	.19 081	.19 438	5.1446	.98 163	0
/	cos	cot	tan	sin	
I		79	<i>y</i>		

		12	2°		
/	sin	tan	cot	cos	,
0	.20 791 .20 820	.21 256 .21 286	4.7046 4.6979	.97 81 <u>5</u> .97 809	60 59
2	.20 848	.21 316	4.6912	.97 803	58
3 4	.20 877 .20 905	.21 347 .21 377	4.6845 4.6779	.97 797 .97 791	57
5	.20 933	.21 408	4.6712	.97 784	55
6 7	.20 962 .20 990	.21 438 .21 469	4.6646 4.6580	.97 778 .97 772	54
8	.21 019	.21 499	4.6514	.97 766	52
9 10	.21 047	.21 529 .21 560	4.6448 4.6382	.97 760 .97 754	51 50
11	.21 104	.21 590	4.6317	.97 748	49
12	.21 132 .21 161	.21 621 .21 651	4.6252 4.6187	.97 742 .97 735	48 47
14	.21 189	.21 682	4.6122	.97 729	46
15	.21 218 .21 246	.21 712 .21 743	4.6057 4.5993	.97 723 .97 717	45 44
17	.21 27 <u>5</u>	.21 773	4.5928	.97 711	43
18 19	.21 303 .21 331	.21 804 .21 834	4.5864 4.5800	.97 70 <u>5</u> .97 698	42 41
20	.21 360	.21 864	4.5736	.97 692	40
21 22	.21 388	.21 89 <u>5</u> .21 925	4. 5673 4. 5609	.97 686 .97 680	39 38
23	.21 445	.21 956	4.5546	.97 673	37
24 25	.21 474	.21 986 .22 017	4.5483 4.5420	.97 667 .97 661	36
26	.21 530	.22 047	4.5357	.97 65 <u>5</u>	34
27 28	.21 559 .21 587	.22 078 .22 108	4.5294 4.5232	.97 648 .97 642	33 32
29	.21 616	.22 139	4.5169	.97 636	31
30 31	.21 644	.22 169 .22 200	4.5107 4.5045	.97 630 .97 623	30 29
32	.21 701	.22 231	4.4983	.97 617	28
33	.21 729 .21 758	.22 261 .22 292	4.4922 4.4860	.97 611 .97 604	27 - 26
35	.21 786	.22 322	4.4799	.97 598	25
36	.21 814	.22 353 .22 383	4.4737 4.4676	.97 592 .97 585	24 23
38 39	.21 871 .21 899	.22 414	4.4615	.97 579	22
40	.21 928	.22 475	4.455 <u>5</u> 4.4494	.97 573 .97 566	$\begin{vmatrix} 21 \\ 20 \end{vmatrix}$
41	.21 956	$.22\ 50\overline{5}$	4.4434	.97 560	19
42 43	.21 98 <u>5</u> .22 013	.22 536 .22 567	4.4373 4.4313	.97 553 .97 547	18 17
44	.22 0+1	.22 597	4.4253	.97 541	16
45 46	.22 070 .22 098	.22 628 .22 658	4.4194 4.4134	.97 534 .97 528	15 14
47	.22 126 .22 155	.22 689 .22 719	4.407 <u>5</u> 4.401 <u>5</u>	.97 521 .97 515	13 12
49	.22 183	.22 750	4.3956	$.97\ 50\overline{8}$	11
50	.22 212 .22 240	.22 781	4.3897 4.3838	.97 502 .97 496	10
51 52	.22 268	.22 811 .22 842	4.3779	.97 489	9
53 54	.22 297 .22 325	.22 872 .22 903	4.3721 4.3662	.97 483 .97 476	7
55	.22 353	.22 934	4.3604	.97 470	5
56	.22 382 .22 410	.22 964 .22 995	4.3546 4.3488	.97 463 .97 457	4
58	.22 438	$.23\ 02\overline{6}$	4.3430	.97 450	5 4 3 2 1
59 60	.22 467	.23 056 .23 087	4.3372 4.331 <u>5</u>	.97 444	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$
7	COS	cot	tan	sin	-
		77			

	13°	
,	sin tan cot cos	,
0 1 2 3 4	.22 495 .23 087 4.3315 .97 437 .22 523 .23 117 4.3257 .97 430 .22 552 .23 148 4.3200 .97 424 .22 580 .23 179 4.3143 .97 417 .22 608 .23 209 4.3086 .97 411	59 58 57 56
5 6 7 8 9	.22 637 .23 240 4.3029 .97 404 .22 665 .23 271 4.2972 .97 398 .22 693 .23 301 4.2916 .97 391 .22 722 .23 332 4.2859 .97 384 .22 750 .23 363 4.2803 .97 378	55 54 53 52 51
10 11 12 13 14 15	.22 778 .23 393 4.2747 .97 371 .22 807 .23 424 4.2691 .97 365 .22 835 .23 455 4.2635 .97 358 .22 863 .23 485 4.2580 .97 351 .22 892 .23 516 4.2524 .97 345 .22 920 .23 547 4.2468 .97 338	50 49 48 47 46 45
16 17 18 19	.22 948 .23 578 4.2413 .97 331 .22 977 .23 608 4.2358 .97 325 .23 005 .23 639 4.2303 .97 318 .23 033 .23 670 4.2248 .97 311	44 43 42 41
20 21 22 23 24	.23 062 .23 700 4.2193 .97 304 .23 090 .23 731 4.2139 .97 298 .23 118 .23 762 4.2084 .97 291 .23 146 .23 793 4.2030 .97 284 .23 175 .23 823 4.1976 .97 278	39 38 37 36
25 26 27 28 29	.23 203 .23 854 4.1922 .97 271 .23 231 .23 885 4.1868 .97 264 .23 260 .23 916 4.1814 .97 257 .23 288 .23 946 4.1760 .97 251 .23 316 .23 977 4.1706 .97 244	35 34 33 32 31
30 31 32 33 34	.23 345 .24 008 4.1653 .97 237 .23 373 .24 039 4.1660 .97 230 .23 401 .24 069 4.1547 .97 223 .23 429 .24 100 4.1493 .97 217 .23 458 .24 131 4.1441 .97 210	29 28 27 26
35 36 37 38 39	.23 486 .24 162 4.1388 .97 203 .23 514 .24 193 4.1335 .97 196 .23 542 .24 223 4.1282 .97 189 .23 571 .24 254 4.1230 .97 182 .23 599 .24 285 4.1178 .97 176	25 24 23 22 21
40 41 42 43 44	.23 627 .24 316 4.1126 .97 169 .23 656 .24 347 4.1074 .97 162 .23 684 .24 377 4.1022 .97 155 .23 712 .24 408 4.0970 .97 148 .23 740 .24 439 4.0918 .97 141	19 18 17 16
45 46 47 48 49	.23 769 .24 470 4.0867 .97 134 .23 797 .24 501 4.0815 .97 127 .23 825 .24 532 4.0764 .97 120 .23 853 .24 562 4.0713 .97 113 .23 882 .24 593 4.0662 .97 106	15 14 13 12 11
50 51 52 53 54	.23 910 .24 624 4.0611 .97 100 .23 938 .24 655 4.0560 .97 093 .23 966 .24 686 4.0509 .97 086 .23 995 .24 717 4.0459 .97 079 .24 023 .24 747 4.0408 .97 072	10 9 8 7 6
55 56 57 58 59	.24 051 .24 778 4.0358 .97 065 .24 079 .24 809 4.0308 .97 058 .24 108 .24 840 4.0257 .97 051 .24 136 .24 871 4.0207 .97 044 .24 164 .24 902 4.0158 .97 037	5 4 3 2 1
60	.24 192 .24 933 4.0108 .97 030 cos cot tan sin	0
	76°	

		14	l °		
1	sin	tan	cot	cos	,
0	.24 192	.24 933	4.0108	.97 030	60
$\begin{vmatrix} 1\\2 \end{vmatrix}$.24 220 .24 249	.24 964 .24 995	4.0058 4.0009	.97 023 .97 015	59 58
3	.24 277	.25 026	3.9959	.97 008	57
4	.24 305	.25 056	3.9910	.97 001	56
5	.24 333	.25 087	3.9861	.96 994	55
6	.24 362 .24 390	.25 118 .25 149	3.9812 3.9763	.96 987 .96 980	54
8	.24 418	.25 180	3.9714	.96 973	52
9	.24 446	.25 211	3.9665	.96 966	51
10 11	.24 474 .24 503	.25 242 .25 273	3.9617 3.9568	.96 959 .96 952	50
12	.24 531	.25 304	3 9520	.96 945	48
13	.24 559	.25 335	3.9471	.96 937	47
14	.24 587	.25.366	3.9423	.96 930	46
15	.24 615	.25 397 .25 428	3.9375 3.9327	.96 923 .96 916	45 44
17.	.24 672	.25 459	3.9279	.96 909	43
18	.24 700	.25 490	3.9232	.96 902	42
19 20	.24 728 .24 756	.25 521	3.9184 3.9136	.96 894 .96 887	41 40
21	.24 784	.25 552 .25 583	3.9089	.96 880	39
22	.24 813	.25 614	3.9042	.96 873	38
23 24	.24 841 .24 869	.25 64 <u>5</u> .25 676	3.899 <u>5</u> 3.8947	.96 866 .96 858	37
25	.24 897	.25 707	3.8900	.96 851	35
26	.24 925	.25 738	3.8854	.96 844	34
27	.24 954	.25 769	3.8807	.96 837	33
28 29	.24 982 .25 010	.25 800 .25 831	3.8760 3.8714	.96 829	32
30	.25 038	.25 862	3.8667	.96 815	30
31	.25 066	.25 893	3.8621	.96 807	29
32	.25 094	.25 924	3.8575	.96 800	28
33	.25 122 .25 151	.25 95 <u>5</u> .25 986	3.8528 3.8482	.96 793 .96 786	27 26
35	.25 179	.26 017	3.8436	.96 778	25
36	.25 207	.26 048	3.8391	.96 771	24
37 38	.25 235 .25 263	.26 079 .26 110	3.834 <u>5</u> 3.8299	.96 764 .96 756	23
39	.25 291	.26 141	3.8254	.96 749	21
40	.25 320	.26 172	3.8208	.96 742	20
41	.25 348	.26 203	3.8163	.96 734	19
42	.25 376 .25 404	.26 23 <u>5</u> .26 266	3.8118 3.8073	.96 727 .96 719	18 17
44	.25 432	.26 297	3.8028	.96 712	16
45	.25 460	.26 328	3.7983	.96 70 <u>5</u>	15
46 47	.25 488 .25 516	.26 359 .26 390	3.7938 3.7893	.96 697 .96 690	14 13
48	.25 545	.26 421	3.7848	.96 682	12
49	.25 573	.26 452	3.7804	.96 67 <u>5</u>	11
50	.25 601	.26 483	3.7760	.96 667	10
51 52	.25 629 .25 657	.26 51 <u>5</u> .26 546	3.7715 3.7671	.96 660 .96 653	8
53	.25 685	.26 577	3.7627	.96 645	7
54	.25 713	.26 608	3.7583	.96 638	9 8 7 6 5 4 3 2 1
55 56	.25 741 .25 769	.26 639 .26 670	3.7539 3.7495	.96 630 .96 623	5
57	.25 798	.26 701	3.7451	.96 615	3
58	.25 826	.26 733	3.7408	.96 608	2
59	.25 854	.26 764	3.7364 3.7321	.96 600 .96 593	0
60	.25 882	.26 79 <u>5</u>	3.7321 tan	.96 393 sin	-
/	cos	cot	5°	DIII	'
L		7:	<u> </u>		

	15°	
	sin tan cot cos	/
1 2 3 4 5 6 7 8	.25 882 .26 795 3.7321 .96 593 .25 910 .26 826 3.7277 .96 585 .25 938 .26 857 3.7234 .96 578 .25 966 .26 888 3.7191 .96 570 .25 994 .26 920 3.7148 .96 562 .26 022 .26 951 3.7105 .96 555 .26 050 .26 982 3.7062 .96 547 .26 079 .27 013 3.7019 .96 540 .26 107 .27 044 3.6976 .96 532	59 58 57 56 55 54 53 52
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	.26 135 .27 076 3.6933 .96 524 .26 163 .27 107 3.6891 .96 517 .26 191 .27 138 3.6848 .96 509 .26 219 .27 169 3.6806 .96 502 .26 247 .27 201 3.6764 .96 494 .26 275 .27 232 3.6722 .96 486 .26 303 .27 263 3.6638 .96 479 .26 331 .27 294 3.6638 .96 479 .26 331 .27 294 3.6638 .96 479 .26 331 .27 327 3.6554 .96 463 .26 387 .27 357 3.6554 .96 456 .26 415 .27 388 3.6512 .96 448 .26 443 .27 419 3.6470 .96 440 .26 471 .27 451 3.6429 .96 433 .26 500 .27 482 3.6387 .96 425 .26 528 .27 513 3.6346 .96 417 .26 556 .27 545 3.6305 .96 410 .26 584 .27 576 3.6264 .96 402	51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35
26 27 28 29 30 31 32 33 34 35 36 37 38	.26 612 .27 607 3.6222 .96 394 .26 640 .27 638 3.6181 .96 386 .26 668 .27 670 3.6140 .96 379 .26 696 .27 701 3.6100 .96 371 .26 724 .27 732 3.6059 .96 363 .26 752 .27 764 3.6018 .96 355 .26 780 .27 795 3.5978 .96 347 .26 808 .27 826 3.5937 .96 340 .26 836 .27 858 3.5897 .96 332 .26 864 .27 889 3.5856 .96 324 .26 892 .27 921 3.5816 .96 316 .26 920 .27 952 3.5776 .96 308 .26 948 .27 983 3.5736 .96 301	34 33 32 31 30 29 28 27 26 25 24 23 22
39 40 41 42 43 44 45 46 47 48 49 51 52 53 54 55 56 57 58	226 976 .28 015 3.5696 .96 293 .27 004 .28 046 3.5656 .96 285 .27 032 .28 077 3.5616 .96 277 .27 060 .28 109 3.5576 .96 260 .27 088 .28 140 3.5536 .96 261 .27 116 .28 172 3.5497 .96 253 .27 144 .28 203 3.5457 .96 246 .27 172 .28 234 3.5418 .96 238 .27 200 .28 266 3.5379 .96 230 .27 228 .28 297 3.5339 .96 222 .27 256 .28 329 3.5300 .96 214 .27 284 .28 360 3.5261 .96 206 .27 312 .28 391 3.5222 .96 198 .27 340 .28 423 3.5183 .96 190 .27 368 .28 454 3.5144 .96 182 .27 396 .28 486 3.5105 .96 174 .27 424 .28 517 3.5067 .96 166 .27 452 .28 549 3.5028 .96 158 .27 480 .28 580 3.4989 .96 150 .27 508 .28 612 3.4951 .96 142	21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1
59 60 '	.27 536 .28 643 3.4912 .96 134 .27 564 .28 675 3.4874 .96 126 cos cot tan sin	1 0 '

		-	C 0		
	ain	10			
0	sin .27 564	tan .28 675	cot 3.4874	cos .96 126	60
1	.27 592	.28 706	3.4836	.96 118	59
2 3	.27 620 .27 648	.28 738 .28 769	3.4798 3.4760	.96 110 .96 102	58
4	.27 676	.28 801	3.4722	.96 094	56
5	.27 704	.28 832	3.4684	.96 086	55
6 7	.27 731 .27 759	.28 864 .28 895	3.4646 3.4608	.96 078 .96 970	54 53
8	.27 787	.28 927	3.4570	.96 062	52
9	.27 815	.28 958	3.4533	.96 954	51
10 11	.27 843 .27 871	.28 990 .29 021	3.4495 3.4458	.96 046 .96 037	50
12	.27 899	.29 053	3.4420	.96 029	48
13	.27 927	.29 084 .29 116	3.4383	.96 021	47
15	.27 95 <u>5</u>	.29 110	3.4346 3.4308	.96 013	46
16	.28 011	.29 179	3.4271	.95 997	44
17 18	.28 039 .28 067	.29 210 .29 242	3.4234 3.4197	.95 989	43
19	.28 095	.29 274	3.4160	.95 981 .95 972	42
20	.28 123	.29 305	3.4124	.95 964	40
21 22	.28 150 .28 178	.29 337 .29 368	3.4087 3.4050	.95 956	39
23	.28 206	.29 400	3.4014	.95 948 .95 940	38
24	.28 234	.29 432	3.3977	.95 931	36
25 26	.28 262 .28 290	.29 463	3.3941	.95 923	35
27	.28 290	.29 +9 <u>5</u> .29 526	3.3904 3.3868	.95 91 <u>5</u> .95 907	34
28	.28 346	.29 558	3.3832	.95 898	32
29 30	.28 374	.29 590	3.3796	.95 890	31
31	.28 402 .28 429	.29 621 .29 653	3.3759 3.3723	.95 882 .95 874	30 29
32	.28 457	.29 685	3.3687	.95 865	28
33	.28 485 .28 513	.29 716 .29 748	3.3652 3.3616	.95 857 .95 849	27 26
35	.28 541	.29 780	3.3580	.95 841	25
36	.28 569	.29 811	3.3544	.95 832	2+
37 38	.28 597	.29 843 .29 87 <u>5</u>	3.3509 3.3473	.95 824 .95 816	23
39	$.2865\bar{2}$.29 906	3.3438	.95 807	21
40	.28 680	.29 938	3.3402	.95 799	20
41 42	.28 708 .28 736	.29 970 .30 001	3.3367 3.3332	.95 791 .95 782	19 18
43	.28 76+	.30 033	3.3297	.95 774	17
44 45	.28 792	.30 06 <u>5</u>	3.3261 3.3226	.95 766 .95 757	16
46	.28 847	.30 128	3.3191	.95 749	15 14
47	.28 875	.30 160	3.3156	.95 740	13
48 49	.28 903 .28 931	.30 192 .30 224	3.3122 3.3087	.95 732 .95 724	12
50	.28 959	.30 255	3.3052	.95 715	10
51	.28 987	.30 287	3.3017	.95 707	9
52 53	.29 01 <u>5</u> .29 042	.30 319 .30 351	3.2983 3.2948	.95 698 .95 690	8 7
54	.29 070	.30 382	3.2914	.95 681	6
55	.29 098	.30 414	3.2879	.95 673	5
56	.29 126 .29 154	.30 446 .30 478	3.2845 3.2811	.95 664 .95 656	3
58	. 29 182	.30 509	3.2777	.95 647	5 4 3 2 1
59 60	.29 209	.30 541	3.2743 3.2709	.95 639 .95 630	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$
/	.29 231 COS	.30 373	3.2709 tan	.95 630 sin	
	COS	73		om	'
		/3			

		1	7°		
,	sin	tan	cot	cos	,
0	.29 237	.30 573	3.2709	.95 630	60
$\begin{vmatrix} 1\\2 \end{vmatrix}$.29 26 <u>5</u> .29 293	.30 60 <u>5</u> .30 637	3.267 <u>5</u> 3.2641	.95 622 .95 613	59 58
3 4	.29 321	.30 669 .30 700	3.2607 3.2573	.95 60 <u>5</u> .95 596	57
5	.29 376	.30 732	3.2539	.95 588	56
6	.29 404	.30 764	3.2506	.95 579	54
7 8	.29 432 .29 460	.30 796 .30 828	3.2472 3.2438	.95 571 .95 562	53 52
9	.29 487	.30 860	3.240 <u>5</u>	.95 554	51
10	.29 515 .29 543	.30 891 .30 923	3.2371 3.2338	.95 545 .95 536	50
12	.29 571	.30 955	3.230 <u>5</u>	.95 528	48
13 14	.29 599 .29 626	.30 987 .31 019	3.2272 3.2238	.95 519	47 46
15	.29 654	.31 051	3.2205	.95 502	45
16	.29 682 .29 710	.31 083	3.2172	.95 493	44
17 18	.29 737	.31 11 <u>5</u> .31 1 4 7	3.2139 3.2106	.95 48 <u>5</u> .95 476	43
19	.29 765	.31 178	3.2073	.95 467	41
20 21	.29 793 .29 821	.31 210 .31 242	3.2041 3.2008	.95 459	40 39
22	.29 849	.31 274	3.1975	.95 441	38
23 24	.29 876 .29 904	.31 306 .31 338	3.1943 3.1910	.95 433 .95 424	37 36
25	.29 932	.31 370	3.1878	.95 415	35
26 27	.29 960 .29 987	.31 402 .31 434	3.1845 3.1813	.95 407 .95 398	34
28	.30 015	.31 466	3.1780	.95 389	32
29 30	.30 043 .30 071	.31 498	3.1748	.95 380	31
31	.30 098	.31 530 .31 562	3.1716 3.1684	.95 372 .95 363	3 0 29
32	.30 126 .30 154	.31 594 .31 626	3.1652	.95 354	28
34	.30 182	.31 658	3.1620 3.1588	.95 345 .95 337	27 26
35	.30 209	.31 690	3.1556	.95 328	25
36	.30 237 .30 26 <u>5</u>	.31 722 .31 754	3.1524 3.1492	.95 319 .95 310	24 23
38	.30 292	.31 786	3.1460	.95 301	22
39 40	.30 320	.31 818 .31 8 <u>5</u> 0	3.1429 3.1397	.95 293 .95 284	21 20
41	.30 376	.31 882	3.1366	.95 27 <u>5</u>	19
42	.30 403 .30 431	.31 914 .31 946	3.1334 3.1303	.95 266 .95 257	18
44	.30 459	. 31 978	3.1271	.95 248	16
45 46	.30 486 .30 514	.32 010 .32 042	3.1240 3.1209	.95 240 .95 231	15
47	.30 542	.32 074	3.1178	.95 222	13
48	.30 570 .30 597	.32 106 .32 139	3.1146 3.1115	.95 213 .95 204	12 11
50	:30 625	.32 171	3.1084	.95 195	10
51 52	.30 653	.32 203 .32 23 <u>5</u>	3.1053 3.1022	.95 186 .95 177	9 8
53	.30 708	.32 267	3.0991	.95 168	7
54	.30 736	.32 299	3.0961	.95 159	6
55 56	.30 763 .30 791	.32 331 .32 363	3.0930 3.0899	.95 150 .95 142	5
57 58	.30 819	.32 396 .32 428	3.0868	.95 133	3
59	.30 846 .30 874	.32 428	3.0838 3.0807	.95 124 .95 11 <u>5</u>	2
60	.30 902	.32 492	3.0777	.95 106	0
1	cos	cot	tan	sin	'
		72	20		

		18	3°				
,	sin	tan	cot	cos	1		
0	.30 902	.32 492	3.0777	.95 106	60		
$\frac{1}{2}$.30 929	.32 524 .32 556	3.0746 3.0716	.95 097 .95 088	59		
3	.30 985	.32 588	3.0686	.95 079	57		
4	.31 012	.32 621	3.0655	.95 070	56		
5 6	.31 040	.32 653 .32 685	3.0625 3.0595	.95 061 .95 052	55 54		
7	.31 095	.32 717	3.056 <u>5</u>	.95 043	53		
8	.31 123	.32 749	3.0535	.95 033	52		
9 10	.31 151	.32 782 .32 814	3.050 <u>5</u> 3.047 <u>5</u>	.95 024 .95 015	51 50		
11	.31 206	.32 846	3.0445	.95 006	49		
12	.31 233	.32 878	3.0415	.94 997 .94 988	48		
13	.31 261	.32 911 .32 943	3.0385 3.0356	.94 979	47		
15	.31 316	.32 975	3.0326	.94 970	45		
16	.31 344	.33 007 .33 040	3.0296	.94 961	44		
17	.31 372	.33 072	3.0267 3.0237	.94 952 .94 943	43		
19	.31 427	.33 104	3.0208	.94 933	41		
20	.31 454	.33 136	3.0178	.94 924	40		
21 22	.31 482 .31 510	.33 169 .33 201	3.0149 3.0120	.94 915 .94 906	39		
23	.31 537	.33 233	3.0090	.94 897	37		
21	.31 565	.33 266	3.0061	.94 888	36		
25 26	.31 593 .31 620	.33 298 .33 330	3.0032 3.0003	.94 878 .94 869	35 34		
27	.31 648	.33 363	2.9974	.94 860	33		
28	.31 675 t .31 703	.33 39 <u>5</u> .33 427	2.994 <u>5</u> 2.9916	.94 851 .94 842	32 31		
30	1.31 730	.33 460	2.9887	.94 832	30		
31	.31 758	.33 492	2.9858	.94 823	29		
32	.31 786 .31 813	.33 524 .33 557	2.9829 2.9800	.94 814 .94 805	28 27		
34	.31 841	.33 589	2.9772	.94 795	26		
35	.31 868	.33 621	2.9743	.94 786	25		
36	.31 896 .31 923	.33 654 .33 686	2.9714 2.9686	.94 777 .94 768	24		
38	.31 951	.33 718	2.9657	.94 758	22		
39	.31 979	.33 751	2.9629	.94 749	21		
40 41	.32 006 .32 034	.33 783 .33 816	2.9600 2.9572	.94 740 .94 730	20 19		
42	.32 061	.33 848	2.9544	.94 721	18		
43	.32 089 .32 116	.33 881 .33 913	2.9515 2.9487	.94 712 .94 702	17 16		
45	.32 110	.33 945	2.9459	.94 693	15		
46	.32 171	.33 978	2.9431	.94 684	14		
47	.32 199 .32 227	.34 010 .34 043	2.9403 2.937 <u>5</u>	.94 674 .94 66 <u>5</u>	13 12		
49	.32 254	.34 075	2.9317	.94 656	11		
50	.32 282	.34 108 .34 140	2.9319	.94 646	10		
51 52	.32 309 .32 337	.34 140	2.9291 2.9263	.94 637 .94 627	9		
53	.32 364	.34 205	2.9235	.94 618	711		
54	.32 392		2.9208	.94 609	6		
55 56	.32 419 .32 447	.34 270 .34 303	2.9180 2.9152	.94 599 .94 590	5		
57	.32 474	.34 335	2 . 912 <u>5</u>	.94 580	3		
58 59	.32 502 .32 529	.34 368 .34 400	2.9097 2.9070	.94 571 .94 561	3 2 1		
60	.32 529	.34 433	2.9012	.94 552	0		
7	cos	cot	tan	sin	-		
		73					
-							

		19	3 °		
,	sin	tan	cot	cos	,
0	.32 557	.34 433	2.9042	.94 552	60
$\begin{vmatrix} 1\\2 \end{vmatrix}$.32 584	.34 465 .34 498	2.901 <u>5</u> 2.8987	.94 542 .94 533	59 58
3	.32 639	.34 530	2.8960	.94 523	57
4	.32 667	.34 563	2.8933	.94 514	56
5	.32 694 .32 722	.34 596 .34 628	2.8905 2.8878	.94 504 .94 495	55 54
7	.32 749	.34 661	2.8851	.94 485	53
8 9	.32 777	.34 693 .34 726	2.8824 2.8797	.94 476 .94 466	52 51
10	.32 832	.34 758	2.8770	.94 457	50
11	.32 859	.34 791	2.8743	.94 447	49
12	.32 887 .32 914	.34 824 .34 856	2.8716 2.8689	.94 438 .94 428	48
14	.32 942	. 34 889	2.8662	.94 418	46
15 16	.32 969	.34 922 .34 954	2.8636 2.8609	.94 409 .94 399	45 44
17	.33 024	.34 987	2.8582	.94 390	43
18	.33 051	.35 020	2.8556	.94 380	42
19 20	.33 106	.35 052 .35 08 <u>5</u>	2.8529 2.8502	.94 370 .94 361	41 40
21	.33 134	.35 118	2.8476	.94 351	39
22 23	.33 161 .33 189	.35 150 .35 183	2.8449 2.8423	.94 342 .94 332	38
24	.33 216	.35 216	2.8397	.94 322	36
25	.33 244	.35 248	2.8370	.94 313	35
26 27	.33 271 .33 298	.35 281 .35 314	2.8344 2.8318	.94 303 .94 293	34 33
28	.33 326	.35 346	2.8291	.94 284	32
29 30	.33 353	.35 379 .35 412	2.8265 2.8239	.94 274 .94 264	31 30
31	.33 408	.35 412	2.8213	.94 254	29
32	.33 436 .33 463	.35 477	2.8187	.94 245	28
33 34	.33 463	.35 510 .35 543	2.8161 2.8135	.94 23 <u>5</u> .94 225	27 26
35	.33 518	.35 576	2.8109	.94 215	25
36 37	.33 545 .33 573	.35 608 .35 641	2.8083 2.8057	.94 206 .94 196	24 23
38	.33 600	.35 674	2.8032	.94 186	22
39	.33 627	.35 707	2.8006	.94 176	21
40	.33 65 <u>5</u> .33 682	.35 740 .35 772	2.7980 2.7955	.94 167 .94 157	20 19
42	.33 710	.35 805	2.7929	.94 147	18
43 44	.33 737 .33 764	.35 838 .35 871	2.7903 2.7878	.94 137 .94 127	17 16
45	.33 792	.35 904	2.7852	.94 118	15
46 47	.33 819 .33 846	.35 937 .35 969	2.7827	.94 108 .94 098	14
48	.33 874	.36 002	2.7801 2.7776	.94 088	13 12
49	.33 901	.36 035	2.7751	.94 078	11
50 51	.33 929 .33 956	.36 068 .36 101	2.7725 2.7700	.94 068 .94 058	10 9
52	.33 983	.36 134	2.7675	.94 049	8
53 54	.34 011 .34 038	.36 167 .36 199	2.76 <u>5</u> 0 2.76 <u>25</u>	.94 039 .94 029	7 6
55	.34 065	.36 232	2.7600	.94 019	5
56	.34 093	.36 265	2.7575	.94 009	4
57 58	.34 120 .34 147	.36 298 .36 331	$2.75\overline{50}$ $2.75\overline{25}$.93 999 .93 989	3 2
59	.34 17 <u>5</u>	.36 364	2.7500	.93 979	1
60	.34 202	.36 397	2.747 <u>5</u>	.93 969	0
′	cos	cot	tan	sin	/
		70)°		

		20	o°				
,	sin	tan	cot	cos	,		
0	.34 202	.36 397	2.7475	.93 969	60		
$-\frac{1}{2}$.34 229 .34 257	.36 430 .36 463	2.7450 2.7425	.93 959	59 58		
3	.34 284	.36 496	2.7400	.93 939	57		
4	.34 311	. 36 529	2.7376	.93 929	56		
5	.34 339	.36 562	2.7351	.93 919	55		
6	.34 366 .34 393	.36 59 <u>5</u> .36 628	2.7326 2.7302	.93 909 .93 899	54 53		
8	.34 421	.36 661	2.7277	.93 889	52		
9	.34 448	.36 694	2.7253	.93 879	51		
10 11	.34 475 .34 503	.36 727 .36 760	2.7228 2.7204	.93 869 .93 859	50		
12	.34 530	.36 793	2.7179	.93 849	48		
13	.34 557	.36 826	2.7155	.93 839	47		
14	.34 584 .34 612	.36 859 .36 892	2.7130 2.7106	.93 829	46		
16	.34 639	.36 925	2.7082	.93 809	44		
17	.34 666	.36 958	2.7058	.93 799	43		
18 19	.34 694 .34 721	.36 991 .37 024	2.7034 2.7009	.93 789 .93 779	42		
20	.34 748	.37 057	2.6985	.93 769	40		
21	.34.775	.37 090	2.6961	.93 759	39		
22	.34 803 .34 830	.37 123 .37 157	2.6937 2.6913	.93 748 .93 738	38		
23 24	.34 857	.37 190	2.6889	.93 728	36		
25	.34 884	.37 223	2.6865	.93 718	35		
26	.34 912	.37 256	2.6841	.93 708	34		
27 28	.34 939 .34 966	.37 289 .37 322	2.6818 2.6794	.93 698 .93 688	33		
29	.34 993	.37 355	2.6770	.93 677	31		
30	.35 021	.37 388	2.6746	.93 667	30		
31 32	.35 048 .35 075	.37 422 .37 455	2.6723 2.6699	.93 657 .93 647	29 28		
33	.35 102	.37 488	2.6675	.93 637	27		
34	.35 130	.37 521	2.6652	.93 626	26		
35	.35 157 .35 184	.37 554 .37 588	2.6628 2.6605	.93 616 .93 606	25		
37	.35 211	.37 621	2.6581	.93 596	23		
38	.35 239	.37 654	2.6558	.93 585	22		
39 40	.35 266 .35 293	.37 687 .37 720	2.6534	.93 575 .93 565	$\begin{vmatrix} 21 \\ 20 \end{vmatrix}$		
41	.35 320	.37 754	2.6488	.93 55 <u>5</u>	19		
42	.35 347	.37 787	2.6464	.93 544	18		
43	.35 37 <u>5</u> .35 402	.37 820 .37 853	2.6441 2.6418	.93 534 .93 524	17 16		
45	.35 429	.37 887	2.6395	.93 514	15		
46	.35 456	.37 920	$2.637\bar{1}$.93 503	14		
47 48	.35 484 .35 511	.37 953 .37 986	2.6348 2.6325	.93 493 .93 483	13		
49	.35 538	.38 020	2.6302	.93 472	11		
50	.35 565	.38 053	2.6279	:93 462	10		
51 52	.35 592 .35 619	.38 086 .38 120	2.6256 2.6233	.93 452 .93 441	8		
53	.35 647	.38 153	2.6210	.93 431	7		
54	.35 674	.38 186	2.6187	.93 420	6		
55 56	.35 701 .35 728	.38 220 .38 253	2.616 <u>5</u> 2.6142	.93 410 .93 400	5 4 3 2 1		
57	.35 755	.38 286	2.6119	.93 389	3		
58	.35 782	.38 320	2.6096	.93 379	2		
59	.35 810	.38 353 .38 386	2.6074 2.6051	.93 368 .93 358	0		
60	.35 837 cos	.38 380	tan	93 336 sin •	-		
'	CUS			SIII .			
	- 69°						

	21°				
′		cos	,		
0 1 2 3 4	35 864 .38 420 2.6028 .9. .35 891 .38 453 2.6006 .9. .35 918 .38 487 2.5983 .9.	3 358 3 348 3 337 3 327 3 316	59 58 57 56		
5 6 7 8 9	.35 973 .38 553 2.5938 .9 .36 000 .38 587 2.5916 .9 .36 027 .38 620 2.5893 .9 .36 054 .38 654 2.5871 .9	3 306 3 295 3 28 <u>5</u> 3 274 3 264	55 54 53 52 51		
10 11 12 13 14 15	.36 108 .38 721 2.5826 .9. .36 135 .38 754 2.5804 .9. .36 162 .38 787 2.5782 .9. .36 190 .38 821 2.5759 .9. .36 217 .38 854 2.5737 .9.		50 49 48 47 46 45		
16 17 18 19 20	.36 271 .38 921 2.5693 .9. .36 298 .38 95 <u>5</u> 2.5671 .9. .36 325 .38 988 2.5649 .9.	3 190 3 180 3 169 3 159	44 43 42 41 40		
21 22 23 24 25	.36 406 .39 089 2.5583 .9. .36 434 .39 122 2.5561 .9. .36 461 .39 156 2.5539 .9. .36 488 .39 190 2.5517 .9.	3 137 3 127 3 116	39 38 37 36 35		
26 27 28 29 30	36 542 39 257 2.5473 9. 36 569 39 290 2.5452 9. 36 596 39 324 2.5430 9. 36 623 39 357 2.5408 9.	3 084 3 074 3 063 3 052 3 042	34 33 32 31 30		
31 32 33 34 35	36 677 39 425 2.5365 9. 36 704 39 458 2.5343 9. 36 731 39 492 2.5322 9. 36 758 39 526 2.5300 9.	3 031 3 020 3 010 2 999 2 988	29 28 27 26 25		
36 37 38 39 40	36 812 39 593 2.5257 99 36 839 39 626 2.5236 99 36 867 39 660 2.5214 99 36 894 39 694 2.5193 99	2 978 2 978 2 967 2 956 2 945 2 93 <u>5</u>	24 23 22 21 20		
41 42 43 44 45	36 948 39 761 2.5150 99 36 975 39 795 2.5129 99 37 002 39 829 2.5108 99 37 029 39 862 2.5086 99	2 933 2 924 2 913 2 902 2 892 2 881	19 18 17 16 15		
46 47 48 49 50	37 083 .39 930 2.5044 .92 37 110 .39 963 2.5023 .92 37 137 .39 997 2.5002 .92 37 164 .40 031 .2.4981 .92	2 870 2 859 2 849 2 838 2 827	13 14 13 12 11 10		
51 52 53 54 55	.37 218 .40 098 2.4939 .92 .37 24 <u>5</u> .40 132 2.4918 .92	2 816 2 805 2 794 2 784	9 8 7 6		
56 57 58 59 60	37 353 .40 267 2.4834 .92 37 380 .40 301 2.4813 .92 37 407 .40 335 2.4792 .92 37 434 .40 369 2.4772 .92	2 762 2 762 2 751 2 740 2 729 2 718	5 4 3 2 1 0		
7	cos cot tan	sin	1		
	68°				

	1				1 1
		2			
0	sin .37 461	tan .40 403	cot 2,4751	cos .92 718	(0)
	.37 488	.40 436	2.4730	.92 713	60 59
2	.37 515	.40 470	2.4709	.92 697	58
3 4	.37 542	.40 504 .40 538	2.4689 2.4668	.92 686 .92 675	57
5	.37 595	.40 572	2.4648	.92 664	55
6	.37 622	.40 606	2.4627	.92 653	54
8	.37 649 .37 676	.40 640 .40 674	2.4606 2.4586	.92 642 .92 631	53 52
9	.37 703	.40 707	2.4566	.92 620	51
10	.37 730	.40 741	2.4545	.92 609	50
11 12	.37 757 .37 784	.40 775 .40 809	2.452 <u>5</u> 2.4504	.92 598 .92 587	49
13	.37 811	.40 843	2.4304	.92 576	47
14	.37 838	.40 877	2.4464	.92 565	46
15 16	.37 865	.40 911	2.4443	.92 554	45
17	.37 892 .37 919	.40 945 .40 979	2.4423 2.4403	.92 543 .92 532	43
18	.37 946	.41 013	2.4383	.92 521	42
19 20	.37 973	.41 047	2.4362	.92 510	41
21	.37 999 .38 026	.41 081 .41 11 <u>5</u>	2.4342 2.4322	.92 499 .92 488	40 39
22	.38 053	.41 149	2.4302	.92 477	38
23 24	.38 080 .38 107	.41 183 .41 217	2.4282 2.4262	.92 466 .92 45 <u>5</u>	37
25	.38 134	.41 251	2.4242	.92 43 <u>3</u>	35
26	.38 161	.41 285	2.4222	.92 432	34
27 28	.38 188 .38 215	.41 319 .41 353	2.4202 2.4182	.92 421 .92 410	33
29	.38 241	.41 353	2.4162	.92 410	31
30	.38 268	.41 421	2.4142	.92 388	30
31 32	.38 295 .38 322	.41 455	2.4122 2.4102	.92 377 .92 366	29 28
33	.38 349	.41 524	2.4083	.92 355	27
34	.38 376	.41 558	2.4063	.92 343	26
35 36	.38 403 .38 430	.41 592 .41 626	2.4043 2.4023	.92 332 .92 321	25 24
37	.38 456	.41 660	2.4004	.92 310	23
38	.38 483	.41 694	2.3984	.92 299	22 21
40	.38 510	.41 728 .41 763	2.3964 2.3945	.92 287 .92 276	20
41	.38 564	.41 797	2.3925	.92 265	19
42 43	.38 591	.41 831	2.3906	.92 254 .92 243	18 17
44	.38 617 .38 644	.41 865 .41 899	2.3886 2.3867	.92 243	16
45	.38 671	.41 933	2.3847	.92 220	15
46	.38 698 .38 72 <u>5</u>	.41 968 .42 002	2.3828 2.3808	.92 209 .92 198	14 13
48	.38 72 <u>5</u> .38 752	.42 002	2.3789	.92 198	12
49	.38 778	.42 070	2.3770	.92 175	11
50	.38 805 .38 832	.42 105	2.3750 2.3731	.92 164	10
52	.38 859	.42 139 .42 173	2.3731	.92 152 .92 141	9 8
53	.38 886	.42 207	2.3693	.92 130	7
54 55	.38 912	.42 242 .42 276	2.3673 2.3654	.92 119 .92 107	6
56	.38 966	.42 310	2.363 <u>5</u>	.92 096	4
57	.38 993	.42 34 <u>5</u>	$2.361\overline{6}$.92 085	3
58	.39 020 .39 046	.42 379 .42 413	2.3597 2.3578	.92 073 .92 062	5 4 3 2 1
60	.39 073	.42 447	2.3559	.92 050	0
,	cos	cot	tan	sin	/
		67	,°		

	23°					
/	sin	tan	cot	cos	,	
0		42 447 42 482	2.3559 2.3539	.92 050 .92 039	60 59	
2	.39 127 .	42 516	2.3520	.92 028	58	
3 4		42 551 42 58 <u>5</u>	2.3501 2.3483	.92 016 .92 005	57 56	
5	.39 207 .	42 619	2.3464	.91 994	55	
-6 7		42 654 42 688	2.344 <u>5</u> 2.3426	.91 982	54	
8	.39 287 .	12 722	2.3420	.91 971 .91 959	53 52	
9		12 757	2.3388	.91 948	51	
10 11		42 7 91 42 826	2.3369 2.3351	.91 936 .91 925	50	
12		12 860	2.3332	.91 914	48	
13		12 894 12 929	2.3313 2.3294	.91 902 .91 891	47 46	
15		12 963	2.3276	.91 879	45	
16 17		12 998 13 032	2.3257 2.3238	.91 868 .91 856	44 43	
18	.39 55 <u>5</u> .4	13 067	2.3220	.91 84 <u>5</u>	42	
19 20		13 101 13 136	2.3201 2.3183	.91 833 .91 822	41 40	
21	.39 635 .4	f3 136 f3 170	2.3164	.91 822	39	
22 23		13 20 <u>5</u> 13 239	2.3146	.91 799	38	
24		13 239	2.3127 2.3109	.91 787 · .91 775	37	
25		3 3 3 3 3 3	2.3090	.91 764	35	
26 27		13 343 13 378	2.3072 2.3053	.91 752 .91 741	34	
28	.39 822 .4	13 412	2.3035	.91 729	32	
29 30		13 447 13 481	2.3017 2.2998	.91 718 .91 706	31 30	
31	.39 902 .4	13 516	2.2980	.91 694	29	
32 33		13 550 13 585	2.2962 2.2944	.91 683 .91 671	28 27	
34		3 620	2.2925	.91 660	26	
35 36		13 654 13 689	2.2907 2.2889	.91 648 .91 636	25 24	
37	.40 062 .4	13 724	2.2871	.91 625	23	
38		13 758 13 793	2.2853 2.2835	.91 613 .91 601	$\frac{22}{21}$	
40	_	13 828	2.2817	.91 590	20	
41		3 862	2.2799	.91 578	19	
42 43		13 897 13 932	2.2781 2.2763	.91 566 .91 555	18 17	
44		3 966	2.274 <u>5</u>	.91 543	16	
45 46		4 001	2.2727 2.2709	.91 531 .91 519	15 14	
47	.40 328 .4	4 071	2.2691	.91 508	13	
48 49		4 105 4 140	2.2673 2.2655	.91 496 .91 484	12 11	
50	.40 408 .4	4 17 <u>5</u>	2.2637	.91 472	10	
51 52		4 210 4 2 11	2.2620 2.2602	.91 461 .91 449	91 8	
53	.40 488 .4	4 279	2.2584	.91 437	7	
54 55		4 314	2.2566 2.2549	.91 425	9 8 7 6 5 4 3 2	
56	.40 567 .4	4 384	2.2531	.91 402	4	
57 58		4 418	2.2513 2.2496	.91 390 .91 378	3	
59				.91 366	1	
60	,			.91 355	0	
′	cos	cot	tan	sin	1	
		66				

		24	1º				
,	sin	tan	cot	cos	,		
O	.40 674	.44 523	2.2460	.91 355	60		
$\begin{vmatrix} 1\\2 \end{vmatrix}$.40 700 .40 727	.44 558 .44 593	2.2443 2.2425	.91 343 .91 331	59 58		
3	.40 753	.44 627	2.2408	.91 319	57		
4	.40 780	.44 662	2.2390	.91 307	56		
5	.40 806 .40 833	.44 697 .44 732	2.2373 2.2355	.91 295 .91 283	55 54		
7	.40 860	.44 767	2.2338	.91 272	53		
8 9	.40 886 .40 913	.44 802 .44 837	2.2320 2.2303	.91 260 .91 248	52		
10	.40 939	.44 872	2.2286	.91 236	50		
11	.40 966	.44 907	2.2268	.91 224	49		
12 13	.40 992 .41 019	.44 942 .44 977	2.2251 2.2231	.91 212 .91 200	48 47		
14	.41 045	.45 012	2.2216	.91 188	46		
15	.41 072	.45 047	2.2199	.91 176	45		
16 17	.41 098 .41 125	.45 082 .45 117	2.2182 2.2165	.91 164 .91 152	44		
18	.41 151	.45 152	$2.214\bar{8}$.91 140	42		
19	.41 178	.45 187	2.2130	.91 128	41		
20 21	.41 204 .41 231	.45 222 .45 257	2.2113 2.2096	.91 116 .91 104	40 39		
22	.41 257	.45 292	2.2079	.91 092	38		
23 24	.41 284 .41 310	.45 327 .45 362	2.2062 2.2045	.91 080 .91 068	37		
25	.41 337	.45 397	2.2028	.91 056	35		
26	.41 363	.45 432	2.2011	.91 044	34		
27 28	.41 390 .41 416	.45 467 .45 502	2.1994 2.1977	.91 032 .91 020	33		
29	.41 443	.45 538	2.1960	.91 008	31		
30	.41 469	.45 573	2.1943	.90 996	30		
31 32	.41 496 .41 522	.45 608 .45 643	2.1926 2.1909	.90 984	29 28		
33	.41 549	.45 678	2.1892	.90 960	27		
34	.41 575 .41 602	.45 713 .45 748	2.1876 2.1859	.90 948	26		
36	.41 628	.45 784	2.1842	.90 936	24		
37	.41 655	.45 819	2.1825	.90 911	23		
38	.41 681 .41 707	.45 854 .45 889	2.1808 2.1792	.90 899 .90 887	22 21		
40	.41 734	.45 924	2.1775	.90 875	20		
41	.41 760 .41 787	.45 960 .45 995	2.1758 2.1742	.90 863 .90 851	19		
43	.41 813	.46 030	2.1725	.90 839	18 17		
44	.41 840	.46 065	2.1708	.90 826	16		
45	.41 866 .41 892	.46 101 .46 136	2.1692 2.1675	.90 814	15		
47	.41 919	.46 171	2.1659	.90 790	13		
48 49	.41 945 .41 972	.46 206 .46 242	2.1642 2.1625	.90 778 .90 766	12 11		
50	.41 972	.46 277	2.1609	.90 753	10		
51	.42 024	.46 312	2.1592	.90 741			
52 53	.42 051 .42 077	.46 348 .46 383	2.1576 2.1560	.90 729 .90 717	8		
54	.42 104	.46 418	2.1543	.90 704	6		
55	.42 130	.46 454	2.1527	.90 692	9 8 7 6 5 4 3 2		
56	.42 156 .42 183	.46 489 .46 52 <u>5</u>	2.1510 2.1494	.90 680 .90 668	3		
58	.42 209	.46 560	2.1478	.90 655	2		
59	.42 235	.46 595	2.1461 2.1445	.90 643			
60	.42 262 cos	.46 631 cot	2.1445 tan	.90 631 sin	0		
	505	6		DAIL			
	03						

		25	5°			
/	sin	tan	cot	cos	,	
1 2	.42 262	.46 631	2.1445	.90 631	60	
	.42 288	.46 666	2.1429	.90 618	59	
	.42 31 <u>5</u>	.46 702	2.1413	.90 606	58	
3 4	.42 341	.46 737 .46 772	2.1396 2.1380	.90 594° .90 582	57 56	
5	.42 394	.46 808	2.1364	.90 569	55	
6	.42 420	.46 843	2.1348	.90 557	54	
7	.42 446	.46 879	2.1332	.90 545	53	
89	.42 473	.46 914 .46 950	2.1315 2.1299	.90 532 .90 520	52 51	
10	.42 525	.46 985	2.1283	.90 507	50	
11	.42 552	.47 021	2.1267	.90 495	49	
12	.42 578	.47 056	2.1251	.90 483	48	
13	.42 604	.47 092	2.1235	.90 470°	47	
14	.42 631	.47 128	2.1219	.90 458	46	
15	.42 657	.47 163	2.1203	.90 446	45	
16	.42 683	.47 199	2.1187	.90 433	44	
17	.42 709	.47 234	2.1171	.90 421	43	
18	.42 736	.47 270	2.1155	.90 408	42	
19	.42 762	.47 305	2.1139	.90 396	41	
20	.42 788	.47 341	2.1123	.90 383	40	
21	.42 81 <u>5</u>	.47 377	2.1107	.90 371	39	
22	.42 841	.47 412	2.1092	.90 358	38	
23	.42 867	.47 448	2.1076	.90 346	37	
21	.42 894	.47 483	2.1060	.90 334	36	
25	.42 920	.47 519	2.1044	.90 321	35	
26	.42 946	.47 55 <u>5</u>	2.1028	.90 309	34	
27	.42 972	.47 590	2.1013	.90 296	33	
28	.42 999	.47 626	2.0997	.90 284	32	
29	.43 02 <u>5</u>	.47 662	2.0981	.90 271	31	
30	.43 051	.47 698	2.0965	.90 259	30	
31	.43 077	.47 733	2.09 <u>5</u> 0	.90 246	29	
32	.43 104	.47 769	2.0934	.90 233	28	
33	.43 130	.47 80 <u>5</u> .47 840	2.0918	.90 221	27	
34	.43 156		2.0903	.90 208	26	
35	.43 182	.47 876	2.0887	.90 196	25	
36	.43 209	.47 912	2.0872	.90 183	24	
37	.43 235	.47 948	2.0856	.90 171	23	
38 39	.43 261 .43 287	.47 984 .48 019	2.0830 2.0840 2.082 <u>5</u>	.90 171 .90 158 .90 146	22 21	
40	.43 313	.48 055	2.0809	.90 133	20	
41		.48 091	2.0794	.90 120	19	
42	.43 366	.48 127	2.0778	.90 108	18	
43	.43 392	.48 163	2.0763	.90 095	17	
44	.43 418	.48 198	2.0748	.90 082	16	
45	.43 44 <u>5</u>	.48 234 .48 270	2.0732	.90 070	15	
46	.43 47 <u>1</u>		2.0717	.90 057	14	
47	.43 497	.48 306	2.0701	.90 045	13	
48	.43 523	.48 342	2.0686	.90 032	12	
49	.43 549	.48 378	2.0671	.90 019	11	
50	.43 575	.48 414	2.0655	.90 007	10	
51	.43 602	.48 4 <u>5</u> 0	2.0640	.89 994		
52	.43 628	.48 486	2.062 <u>5</u>	.89 981	8	
53	.43 654	.48 521	2.0609	.89 968	7	
54	.43 680	.48 557	2.0594	.89 956	6	
55	.43 706	.48 593	2.0579	.89 943		
56	.43 733	.48 629	2.0564	.89 930		
57 58 59	.43 759 .43 78 <u>5</u> .43 811	.48 665 .48 701 .48 737	2.0549 2.0533 2.0518	.89 918 .89 905 .89 892	5 4 3 2 1	
60	.43 837	.48 773	2.0503	.89 879	0	
′	cos	cot	tan	sin	1	
	64°					

	26°						
,	sin	tan	cot	cos	,		
0	.43 837	.48 773	2.0503	.89 879	60		
$\begin{vmatrix} 1\\2 \end{vmatrix}$.43 863	.48 S09	2.0488 2.0473	.89 867 .89 854	59		
3	.43 916	.48 881	2.0458	.89 841	57		
4	.43 942	.48 917	2.0443	.89 828	56		
5	.43 968	.48 953 .48 989	2.0428 2.0413	.89 816 .89 803	55 54		
7	.44 020	.49 026	2.0398	.89 790	53		
8 9	.44 046	.49 062 .49 098	2.0383 2.0368	.89 777 .89 764	52		
10	.44 098	.49 134	2.0353	.89 752	50		
11	.44 124	.49 170	2.0338	.89 739	49		
12	.44 151	.49 206 .49 242	2.0323 2.0308	.89 726 .89 713	48		
14	.44 203	.49 278	2.0293	.89 700	46		
15	.44 229	.49 315	2.0278	.89 687	45		
16 17	.44 25 <u>5</u> .44 28 <u>I</u>	.49 351 .49 387	2.0263 2.0248	.89 67 1	44 43		
18	.44 307	.49 423	2.0233	.89 649	42		
19	.44 333	.49 459	2.0219	.89 636 .89 623	41		
20 21	.44 359 .44 385	.49 493	2.0204 2.0189	.89 610	40 39		
22	.44 411	.49 568	2.0174	.89 597	38		
23 24	.44 437	.49 604 .49 640	2.0160 2.0145	.89 584 .89 571	37		
25	.44 490	.49 677	2.0130	.89 558	35		
26	.44 516	.49 713	2.0115	.89 545	34		
27 28	.44 542 .44 568	.49 749 .49 786	2.0101 2.0086	.89 532 .89 519	33		
29	.44 594	. 49 822	2.0072	.89 506	31		
30 31	.44 620 .44 646	.49 858 .49 894	2.0057 2.0042	.89 493 .89 480	30		
32	.44 672	.49 931	2.0028	.89 467	28		
33	.44 698	.49 967	2.0013	.89 45+	27		
34 35	.44 724 .44 750	.50 004	1.9999 1.9984	.89 441 .89 428	26 25		
36	.44 776	.50 076	1.9970	.89 415	24		
37 38	.44 802 .44 828	.50 113 .50 149	1.9955 1.9941	.89 402 .89 389	23 22		
39	.44 854	.50 185	1.9926	.89 376	21		
40	.44 880	.50 222	1.9912	.89 363	20		
41 42	.44 906 .44 932	.50 258 .50 29 <u>5</u>	1.9897 1.9883	.89 350 .89 337	19 18		
43	.44 958	.50 331	1.9868	.89 324	17		
44	.44 984	.50 368	1.9854	.89 311	16		
45	.45 010 .45 036	.50 404 .50 441	1.9840 1.9825	.89 298 .89 285	15 14		
47	.45 062	.50 477	1.9811	.89 272	13		
48	.45 088 .45 114	.50 514 .50 550	1.9797 1.9782	.89 259 .89 245	12 11		
50	.45 140	.50 587	1.9768	.89 232	10		
51	.45 166	.50 623	1.975+	.89 219	9		
52 53	.45 192 .45 218	.50 660 .50 696	1.9740 1.9725	.89 206 .89 193	9 8 7		
54	.45 243	.50 733	1.9711	.89 180	6		
55	.45 269 .45 295	.50 769 .50 806	1.9697 1.9683	.89 167 .89 153	5 4 3 2		
56	.45 321	.50 843	1.9669	.89 140	3		
58	.45 347	.50 879	1.9654	.89 127 .89 114	2		
59 60	.45 373 .45 399	.50 916 .50 953	1.9640 1.9626	.89 114	0		
7	cos	cot	tan	sin	$ \tilde{j} $		
	63° *						
					لسسا		

	27°					
,	sin	tan	cot	cos	,	
0	.45 399	.50 953	1.9626	.89 101	60	
$\frac{1}{2}$.45 42 <u>5</u> .45 45 <u>1</u>	.50 989 .51 026	1.9612 1.9598	.89 087 .89 074	59	
3	.45 477	.51 063	1.9584	.89 061	57	
4	.45 503	.51 099	1.9570	.89 048	56	
5	.45 529 .45 554	.51 136 .51 173	1.9556 1.9542	.89 03 <u>5</u> .89 021	55 54	
7	.45 580	.51 209	1.9528	.89 008	53	
8 9	.45 606 .45 632	.51 246 .51 283	1.9514 1.9500	.88 99 <u>5</u> .88 981	52 51	
10	.45 658	.51 319	1.9486	.88 968	50	
11 12	.45 684 .45 710	.51 356 .51 393	1.9472 1.9458	.88 95 <u>5</u> .88 942	49	
13	.45 736	.51 430	1.9444	.88 928	47	
14	.45 762	.51 467	1.9430	.88 915	46	
15 16	.45 787 .45 813	.51 503 .51 540	1.9416 1.9402	.88 902 .88 888	45	
17	.45 839	.51 577	1.9388	.88 875	43	
18 19	.45 86 <u>5</u> .45 891	.51 614 .51 651	1.937 <u>5</u> 1.9361	.88 862 .88 848	42	
20	.45 917	.51 688	1.9347	.88 835	40	
21 22	.45 942 .45 968	.51 724 .51 761	1.9333 1.9319	.88 822 .88 808	39	
23	.45 994	.51 798	1.9306	.88 79 <u>5</u>	37	
24 25	.46 020 .46 046	.51 835 .51 872	1.9292	.88 782 .88 768	36	
26	.46 072	.51 909	1.9278 1.9265	.88 755	35 34	
27	.46 097	.51 946	1.9251	.88 741	33	
28 29	.46 123 .46 149	.51 983 .52 020	1.9237 1.9223	.88 728 .88 71 <u>5</u>	32	
30	.46 175	.52 057	1.9210	.88 701	30	
31 32	.46 201 .46 226	.52 094 .52 131	1.9196 1.9183	.88 688 .88 674	29	
33	.46 252	.52 168	1.9169	.88 661	27	
34	.46 278	.52 20 <u>5</u> .52 242	1.9155 1.9142	.88 647 .88 634	26 25	
36	.46 330	.52 279	1.9142	.88 620	24	
37 38	.46 355 .46 381	.52 316 .52 353	1.911 <u>5</u> 1.9101	.88 607 .88 593	23 22	
39	.46 407	.52 390	1.9088	.88 580	21	
40	.46 433	.52 427	1.9074	.88 566	20	
41 42	.46 458 .46 484	.52 464 .52 501	1.9061 1.9047	.88 553 .88 539	19	
43	.46 510	.52 538	1.9034	.88 526	17	
44 45	.46 536 .46 561	.52 575 .52 613	1.9020 1.9007	.88 512 .88 499	16	
46	.46 587	.52 6 <u>5</u> 0	1.8993	.88 485	14	
47 48	.46 613 .46 639	.52 687 .52 724	1.8980 1.8967	.88 472 .88 458	13	
49	.46 664	.52 761	1.8953	.88 44 <u>5</u>	11	
50 51	.46 690 .46 716	.52 798 .52 836	1.8940 1.8927	.88 431 .88 417	10	
52	.46 742	.52 873	1.8913	.88 404	9	
53	.46 767	.52 910 .52 947	1.8900	.88 390	7	
54 55	.46 793	.52 985	1.8887 1.8873	.88 377 .88 363	5	
56	.46 844	.53 022	1.8860	.88 349	4	
57 58	.46 870 .46 896	.53 059 .53 096	1.8847 1.8834	.88 336 .88 322	3 2	
59	.46 921	.53 134	1.8820	.88 308	1	
60	.46 947	.53 171		.88 29 <u>5</u>	0	
′	cos	cot	tan °	sin	′	
-	62°					

		28	3°		
,	sin	tan	cot	cos	,
0	.46 947	.53 171	1.8807	.88 295	60
$\begin{vmatrix} 1\\2 \end{vmatrix}$.46 973 .46 999	.53 208 .53 246	1.8794 1.8781	.88 281 .88 267	59
3	.47 024	.53 283	1.8768	.88 254	57
4 5	.47 0 <u>5</u> 0 .47 0 <u>7</u> 6	.53 320 .53 358	1.875 <u>5</u> 1.8741	.88 240 .88 226	56
6	.47 101	.53 395	1.8728	.88 213	54
7	.47 127 .47 153	.53 432 .53 470	1.8715 1.8702	.88 199 .88 185	53 52
8 9	.47 133	.53 507	1.8689	.88 172	51
10	.47 204	.53 545	1.8676	.S8 158	50
$\begin{vmatrix} 11\\12 \end{vmatrix}$.47 229 .47 255	.53 582 .53 620	1.8663 1.8650	.88 144 .88 130	49 48
13	.47 281	.53 657	$1.86\overline{37}$.88 117	47
14	.47 306	.53 694	1.8624	.88 103	46
15 16	.47 332 .47 358	.53 732 .53 769	1.8611 1.8598	.88 089 .88 075	45 44
17	.47 383	.53 807	1.8585	.88 062	43
18 19	.47 409 .47 434	.53 844 .53 882	1.8572 1.8559	.88 048 .88 034	42
20	.47 460	.53 920	1.8546	.88 020	40
21 22	.47 486 .47 511	.53 957 .53 995	1.8533 1.8520	.88 006 .87 993	39 38
23	.47 537	.54 032	1.8507	.87 979	37
24	.47 562	.54 070	1.8495	.87 96 <u>5</u>	36
25 26	.47 588 .47 614	.54 107 .54 145	1.8482 1.8469	.87 951 .87 937	35
27	. 47 639	.54 183	1.8456	.87 923	33
28 29	.47 66 <u>5</u>	.54 220 .54 258	1.8443 1.8430	.87 909 .87 896	32
30	.47 716	.54 296	1.8418	.87 882	30
31	.47 741 .47 767	.54 333 .54 371	1.8405	.87 868	29 28
32	.47 793	.54 409	1.8392 1.8379	.87 854 .87 840	27
34	.47 818	.54 446	1.8367	.87 826	26
35	.47 844 .47 869	.54 484 .54 522	1.8354 1.8341	.87 812 .87 798	25 2 1
37	.47 89 <u>5</u>	.54 560	1.8329	.87 784	23
38	.47 920 .47 946	.54 597 .54 635	1.8316 1.8303	.87 770 .87 756	22
40	.47 971	.54 673	1.8291	.87 743	20
41	.47 997	.54 711	1.8278	.87 729	19
42 43	.48 022	.54 748 .54 786	1.8265 1.8253	.87 71 <u>5</u> .87 701	18 17
44	.48 073	.54 824	1.8240	.87 687	16
45 46	.48 099 .48 124	.54 862 .54 900	1.8228 1.8215	.87 673 .87 659	15 14
47	.48 150	.54 938	1.8202	.87 64 <u>5</u>	13
48 49	.48 175 .48 201	.54 975 .55 013	1.8190 1.8177	.87 63Ī .87 617	12 11
50	.48 226	.55 051	1.8165	.87 603	10
51	.48 252	.55 089	1.8152	.87 589	
52 53	.48 277 .48 303	.55 127 .55 165	1.8140 1.8127	.87 57 <u>5</u> .87 56 <u>1</u>	9 8 7
54	.48 328	.55 203	$1.811\underline{5}$.87 546	6
55 56	.48 354 .48 379	.55 241 .55 279	1.8103 1.8090	.87 532 .87 518	5
57	.48 40 <u>5</u>	.55 317	1.8078	.87 504	3
58 59	.48 430 .48 456	.55 35 <u>5</u> .55 393	1.8065 1.8053	.87 490 .87 476	5 4 3 2 1
60	.48 481	.55 431	1.8033	.87 462	0
1	cos	cot	tan	sin	1
		63	L°		

		29)°						
/	sin	tan	cot	cos	,				
$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$.48 481 .48 506	.55 431 .55 469	1.8040 1.8028	.87 462 .87 448	60 59				
2	.48 532	.55 507	1.8016	.87 434	58				
3	.48 557 .48 583	.55 545 .55 583	1.8003 1.7991	.87 420 .87 406	57 56				
5	.48 608	.55 621	1.7979	.87 391	55				
6	.48 634	.55 659 .55 697	1.7966 1.7954	.87 377 .87 363	54 53				
8	.48 684	.55 736	1.7942	.87 349	52				
9	.48 710	.55 774	1.7930	.87 335	51				
10 11	.48 735 .48 761	.55 812 .55 850	1.7917 1.7905	.87 321 .87 306	50				
12	.48 786 .48 811	.55 888 .55 926	1.7893 1.7881	.87 292 .87 278	48 47				
14	.48 837	.55 964	1.7868	.87 264	46				
15	.48 862	.56 003	1.7856	.87 250	45				
16 17	.48 888 .48 913	.56 041 .56 079	1.7844 1.7832	.87 235 .87 221	44				
18	.48 938	.56 117	1.7820	.87 207	42				
19 20	.48 964 .48 989	.56 156 .56 194	1.7808 1.7796	.87 193 .87 178	41 40				
21	.49 014	.56 232	1.7783	.87 164	39				
22 23	.49 040 .49 065	.56 270 .56 309	1.7771 1.7759	.87 1 <u>5</u> 0 .87 1 <u>3</u> 6	38				
24	.49 090	.56 347	1.7747	.87 121	36				
25 26	.49 116 .49 141	.56 385 .56 424	1.7735 1.7723	.87 107 .87 093	35 34				
27	.49 166	.56 462	1.7711	.87 079	33				
28 29	.49.192 .49.217	.56 501 .56 539	1.7699 1.7687	.87 064 .87 0 <u>5</u> 0	32.				
30	.49 242	.56 577	1.7675	.87 036	30				
31 32	.49 268 .49 293	.56 616 .56 654	1.7663 1.7651	.87 021 .87 007	29 28				
33	.49 318	.56 693	1.7639	.86 993	27				
34	.49 344	.56 731	1.7627	.86 978	26				
35	.49 369 .49 394	.56 769 .56 808	1.7615 1.7603	.86 964 .86 949	25 24				
37 38	.49 419 .49 445	.56 846 .56 88 <u>5</u>	1.7591 1.7579	.86 935 .86 921	23 22				
39	.49 470	.56 923	1.7567	.86 906	21				
40	.49 495	.56 962	1.7556	.86 892	20				
41	.49 521 .49 546	.57 000 .57 039	1.7544 1.7532	.86 878 .86 863	19 18				
43 44	.49 571	.57 078	1.7520	.86 849	17				
45	.49 596 .49 622	.57 116 .57 15 <u>5</u>	1.7508 1.7496	.86 834 .86 820	16 15				
46	.49 647	.57 193	1.7485	.86 805	14				
47	.49 672 .49 697	.57 232 .57 271	1.7473 1.7461	.86 791 .86 777	13 12				
49	.49 723	.57 309	1.7449	.86 762	11				
50 51	.49 748 .49 773	.57 348 .57 386	1.7437 1.7426	.86 748 .86 733	10				
52	.49 798	.57 425	1.7414	.86 719	8				
53	.49 824 .49 849	.57 464 .57 503	1.7402 1.7391	.86 704 .86 690	7				
55	.49 874	.57 541	1.7379	.86 675	7 6 5 4 3 2				
56 57	.49 899 .49 924	.57 580 .57 619	1.7367 1.7355	.86 661 .86 646	4 3				
58	.49 950	.57 657	1.7344	.86 632	2				
59 60	.49 97 <u>5</u> .50 000	.57 696 .57 735	1.7332 1.7321	.86 617 .86 603	1 0				
/	.50 000	.57 755 cot	tan	sin	-/				

	\			NAT			
	30°						
1	sin	tan	cot	cos	/		
0		.57 735	1.7321	.86 603	60		
$\frac{1}{2}$.57 774 .57 813	1.7309 1.7297	.86 588 .86 573	59 58		
3	.50 076	.57 851	1.7286	.86 559	57		
5		.57 890	1.7274	.86 544	56		
6	.50 126 .50 151	.57 929 .57 968	1.7262 1.7251	.86 530 .86 515	55 54		
7	.50 176	.58 007	1.7239	.86 501	53		
8 9		.58 046 .58 085	1.7228 1.7216	.86 486 .86 471	52 51		
10		.58 124	1.7205	.86 457	50		
11		.58 162	1.7193	.86 442	49		
12 13		.58 201 .58 240	1.7182 1.7170	.86 427 .86 413	48		
14	.50 352	.58 279	1.7159	.86 398	46		
15	.50 377	.58 318	1.7147	.86 384	45		
16 17		.58 357 .58 396	1.7136 1.7124	.86 369 .86 354	44 43		
18	.50 453	.58 435	1.7113	.86 340	42		
19		.58 474	1.7102	.86 325	41		
20 21		.58 513 .58 552	1.7090 1.7079	.86 310 .86 295	40 39		
22	.50 553	58 591	1.7067	.86 281	38		
23 24		.58 631 .58 670	1.7056 1.704 <u>5</u>	.86 266 .86 251	37 36		
25		.58 709	1.7033	.86 237	35		
26	.50 654 .	58 748	1.7022	.86 222	34		
27 28		.58 787 .58 826	1.7011 1.6999	.86 207 .86 192	33		
29		.58 865	1.6988	.86 178	31		
30		.58 90 <u>5</u>	1.6977	.86 163	30		
31 32		.58 944 .58 983	1.6965 1.6954	.86 148 .86 133	29 28		
33	.50 829 .	59 022	1.6943	.86 119	27		
34		.59 061 .59 101	1.6932	.86 104 .86 089	26		
36		59 101	1.6920 1.6909	.86 074	25 24		
37	.50 929 .	59 179	1.6898	.86 059	23		
38		.59 218 .59 258	1.6887 1.6875	.86 04 <u>5</u> .86 030	22 21		
40		59 297	1.6864	.86 015	20		
41 42		59 336 59 376	1.6853	.86 000	19		
43		59 376 59 415	1.6842 1.6831	.85 985 .85 970	18 17		
44	.51 104 .	59 454	1.6820	.85 956	16		
45 46		59 494 59 533	1.6808 1.6797	.85 941 .85 926	15 14		
47	.51 179 .	59 573	1.6786	.85 911	13		
48 49		59 612 59 651	1.6775	.85 896 .85 881	12		
50		59 691	1.6764 1.6753	.85 866	11 10		
51	.51 279 .	59 730	1.6742	.85 851	9		
52 53	.51 304 . .51 329 .	59 770 59 809	1.6731 1.6720	.85 836 .85 821	8		
54		59 849	1.6709	.85 806	6		
55		59 888	1.6698	.85 792	5 4		
56 57		59 928 59 967	1.6687 1.6676	.85 777 .85 762	4		
58	.51 454 .	60 007	1.666 <u>5</u>	.85 747	3 2 1		
59		60 046	1.6654	.85 732	11		
60	.51 504 .	60 086 cot	1.6643 tan	.85 717 sin	_0		
$\parallel ' \parallel$	59°						
		<u> </u>					

Sin tan cot cos 7		31°						
1	,	sin			cos	,		
2								
3								
5	3	.51 579	.60 20 <u>5</u>	1.6610	.85 672	57		
6		1	_					
S								
9								
11								
12								
13								
15	13	.51 828	.60 602	1.6501	.85 521	47		
16	1	I .				1 1		
18	16	.51 902	.60 721	1.6469	.85 476	44		
19								
21						1		
22 .52 051 .60 960 1.6404 .85 385 38 23 .52 076 .61 000 1.6393 .85 370 37 24 .52 101 .61 040 1.6383 .85 355 36 25 .52 126 .61 080 1.6372 .85 340 35 26 .52 151 .61 120 1.6361 .85 325 34 27 .52 175 .61 160 1.6351 .85 310 33 32 .52 200 .61 200 1.6340 .85 294 32 29 .52 225 .61 280 1.6319 .85 264 30 .52 250 .61 280 1.6319 .85 264 30 .52 250 .61 280 1.6319 .85 264 31 .52 275 .61 320 1.6308 .85 249 29 32 .52 299 .61 360 1.6297 .85 234 28 33 .52 324 .61 400 1.6287 .85 203 26 33 .52 324 .61 400 1.6287 .85 203 26 35 .52 374 .61 480 1.6265 .85 188 25 .52 374 .61 480 1.6265 .85 188 25 .52 374 .61 480 1.6265 .85 188 25 .52 374 .61 480 1.6265 .85 183 .52 443 .61 601 1.6234 .85 142 .22 .39 .52 473 .61 641 1.6223 .85 127 .21 .40 .52 498 .61 681 1.6212 .85 112 .20 .41 .52 522 .61 721 1.6202 .85 096 .19 .44 .52 597 .61 842 1.6170 .85 081 .85 .64 .52 671 .61 882 1.6160 .85 035 .15 .45 .52 671 .61 962 1.6139 .85 081 .15 .52 671 .61 962 .61 39 .85 095 .12 .47 .52 671 .61 962 .61 39 .85 095 .13 .85 066 .60 003 .61 28 .49 89 .12 .47 .52 671 .61 962 .61 39 .85 095 .13 .85 066 .60 003 .61 28 .49 89 .13 .52 579 .62 044 .61 18 .84 989 .15 .52 770 .62 124 .6097 .84 913 .52 844 .62 455 .6066 .84 897 .52 894 .62 406 .6045 .84 895 .52 894 .62 406 .6045 .84 895 .52 918 .62 366 .60045 .84 895 .52 918 .62 366 .60045 .84 895 .52 918 .62 366 .60045 .84 895 .52 918 .62 366 .60045 .84 895 .52 918 .62 366 .60045 .84 895 .52 918								
23								
25	23		.61 000			37		
26	1							
28	26	.52 151	.61 120	1.6361	.85 32 <u>5</u>	34		
29								
31								
32								
34					.85 234			
35								
36								
38								
40								
41	l i					1		
42 .57 547 .61 761 1.6191 .85 081 18 43 .52 572 .61 801 1.6181 .85 066 17 44 .52 597 .61 842 1.6170 .85 051 16 45 .52 621 .61 882 1.6160 .85 035 15 46 .52 646 .61 922 1.6149 .85 020 14 47 .52 671 .61 962 1.6139 .85 005 13 48 .52 696 .62 003 1.6128 .84 989 12 49 .52 720 .62 043 1.6118 .84 974 11 50 .52 745 .62 083 1.6107 .84 959 10 52 770 .62 124 1.6097 .84 943 52 .52 794 .62 164 1.6097 .84 943 85		.52 498						
44	42	.57 547	.61 761	1.6191	.85 081	18		
45								
47		.52 621	.61 882		.85 035	15		
48								
50 .52 745 .62 083 1.6107 .84 959 10 51 .52 770 .62 124 1.6097 .84 943 9 52 .52 794 .62 164 1.6087 .84 928 8 53 .52 819 .62 204 1.6076 .84 913 7 54 .52 844 .62 245 1.6066 .84 897 6 55 .52 869 .62 285 1.6055 .84 882 5 56 .52 893 .62 325 1.6045 .84 866 4 57 .52 918 .62 366 1.6034 .84 851 3 58 .52 943 .62 406 1.6024 .84 836 2 59 .52 967 .62 446 1.6014 .84 820 1 60 .52 992 .62 487 1.6003 .84 805 0 7 cos cot tan sin /	48	.52 696	.62 003	1.6128	.84 989	12		
51						1		
52	51	.52 770	.62 124	1.6097	.84 943			
54	52	52 79+				8		
55						6		
60 .52 992 .62 487 1.6003 .84 805 0 /			.62 285			5		
60 .52 992 .62 487 1.6003 .84 805 0 /						3		
60 .52 992 .62 487 1.6003 .84 805 0 /	58	.52 943	.62 406	1.6024	.84 836	2		
/ cos cot tan sin /	1					1 1		
1					_	7		

		32	2°				
,	sin	tan	cot	cos	,		
0	.52 992	.62 487	1.6003	.84 80 <u>5</u>	60		
$\begin{vmatrix} 1\\2 \end{vmatrix}$.53 017	.62 527 .62 568	1.5993 1.5983	.84 789 .84 774	59		
3	.53 066	.62 608	1.5972	.84 759	57		
4	.53 091	.62 649	1.5962	.84 743	56		
5	.53 115 .53 140	.62 689 .62 730	1.5952 1.5941	.84 728 .84 712	55 54		
7	.53 164	.62 770	1.5931	.84 697	53		
8 9	.53 189 .53 214	.62 811 .62 852	1.5921 1.5911	.84 681 .84 666	52 51		
10	.53 238	.62 892	1.5900	.84 650	50		
11	.53 263	.62 933	1.5890	.84 63 <u>5</u>	49		
12 13	.53 288 .53 312	.62 973 .63 014	1.5880 1.5869	.84 619 .84 604	48		
14	.53 337	.63 05 <u>5</u>	1.5859	.84 588	46		
15 16	.53 361 .53 386	.63 095 .63 136	1.5849 1.5839	.84 573 .84 557	45		
17	.53 411	.63 177	1.5829	.84 542	43		
18	.53 435	.63 217	1.5818	.84 526	42		
19 20	·53 460 .53 484	.63 258 .63 299	1.5808 1.5798	.84 511 .84 495	41 40		
21	.53 509	.63 340	1.5788	.84 480	39		
22 23	.53 534 .53 558	.63 380 .63 421	1.5778 1.5768	.84 464 .84 448	38		
24	.53 583	.63 462	1.5757	.84 433	36		
25	.53 607	.63 503	1.5747	.84 417	35		
26 27	.53 632 .53 656	.63 544	1.5737 1.5727	.84 402 .84 386	34		
28	. 53 681	.63 625	1.5717	.84 370	32		
29	.53 705	.63 666	1.5707	.84 35 <u>5</u>	31		
30 31	.53 730 .53 754	.63 707 .63 748	1.5697 1.5687	.84 339 .84 324	30		
32	.53 779	.63789	1.5677	.84 308	28		
33	.53 804 .53 828	.63 830 .63 871	1.5667 1.5657	.84 292 .84 277	27 26		
35	.53 853	.63 912	1,5647	.84 261	25		
36	.53 877 .53 902	.63 953 .63 994	1.5637 1.5627	.84 245 .84 230	24 23		
38	.53 902	.64 03 <u>5</u>	1.5617	.84 214	22		
39	.53 951	.64 076	1.5607	.84 198	21		
40 41	.53 975 .54 000	.64 117 .64 158	1.5597 1.5587	.84 182 .84 167	20		
42	.54 024	.64 199	1.5577	.84 151	18		
43	.54 049 .54 073	.64 240 .64 281	1.5567 1.5557	.84 135 .84 120	17 16		
45	.54 097	.64 322	1.5547	.84 104	15		
46	.54 122	.64 363	1.5537	.84 088	14		
47	.54 146 .54 171	.64 404 .64 446	1.5527 1.5517	.84 072 .84 057	13		
49	.54 195	.64 487	1.5507	.84 041	11		
50 51	.54 220 .54 244	.64 528 .64 569	1.5497 1.5487	.84 025 .84 009	10		
52	.54 269	.64 610	1.5477	.83 994	9 8 7		
53	.54 293 .54 317	.64 652 .64 693	1.5468 1.5458	.83 978	7		
55	.54 342	.64 734	1.5448	.83 962 .83 946	6 5 4 3 2 1		
56	.54 366	.64 775	1.5438	.83 930	4		
57	.54 391 .54 415	.64 817 .64 858	1.5428 1.5418	.83 91 <u>5</u> .83 899	3		
59	.54 440	.64 899	1.5408	.83 883			
60	.54 464	.64 941	1.5399	.83 867	0		
/ cos cot tan sin							
57°							

		33	33°					
,	sin	tan	cot	cos	,			
0	.54 464 .54 488	.64 941 .64 982	1.5399	.83 867 .83 851	60			
1 2	.54 513	.65 024	1.5389 1.5379	.83 835	59 58			
3	.54 537	.65 065	1.5369	.83 819	57			
5	.54 561	.65 106 .65 148	1.5359 1.5350	.83 S04 .83 788	56 55			
6	.54 610	.65 189	1.5340	.83 772	54			
7	.54 635	.65 231	1.5330	.83 756	53			
8 9	.54 659 .54 683	.65 272 .65 314	1.5320 1.5311	.83 740 .83 724	52 51			
10	.54 708	.65 355	1.5301	.83 708	50			
11 12	.54 732 .54 756	.65 397 .65 438	1.5291 1.5282	.83 692 .83 676	49			
13	.54 781	.65 480	1.5272	.83 660	47			
14	.54 805	.65 521	1.5262	.83 64 <u>5</u>	46			
15 16	.54 829 .54 854	.65 563 .65 604	1.5253 1.5243	.83 629 .83 613	45 44			
17	.54 878	.65 646	1.5233	.83 597	43			
18 19	.54 902 .54 927	.65 688 .65 729	1.5224 1.5214	.83 581 .83 56 <u>5</u>	42			
20	.54 951	.65 771	1.5204	.83 549	40			
21	.54 975	.65 813	1.5195	.83 533	39			
22 23	.54 999 .55 024	.65 854 .65 896	1.5185 1.5175	.83 517 .83 501	38			
24	.55 048	. 65 938	1.5166	.83 48 <u>5</u>	36			
25 26	.55 072 .55 097	.65 980 .66 021	1.5156 1.5147	.83 469 .83 453	35 34			
27	.55 121	.66 063	1.5137	.83 437	33			
28	.55.145	.66 105	1.5127	.83 421	32			
29 30	.55 169	.66 147 .66 189	1.5118 1.5108	.83 40 <u>5</u>	31 30			
31	.55 218	.66 230	1.5099	.83 373	29			
32	.55 242 .55 266	.66 272 .66 314	1.5089 1.5080	.83 356 .83 340	28 27			
34	.55 291	.66 356	1.5070	.83 324	26			
35	.55 315	.66 398	1.5061	.83 308	25			
36	.55 339 .55 363	.66 440 .66 482	1.5051 1.5042	.83 292 .83 276	24 23			
38	.55 388	.66 524	1.5032	.83 260	22			
39 40	.55 412	.66 566 .66 608	1.5023 1.5013	.83 244	21 20			
41	.55 460	.66 6 <u>5</u> 0	1.5004	.83 212	19			
42	.55 484 .55 509	.66 692 .66 734	1.4994 1.4985	.83 195 .83 179	18 17			
44	.55 533	.66 776	1.4975	.83 163	16			
45	.55 557	.66 818	1.4966	.83 147	15			
46	.55 581 .55 605	.66 860 .66 902	1.4957 1.4947	.83 131 .83 11 <u>5</u>	14 13			
48	.55 630	.66 944	1.4938	.83 098	12			
49 50	.55 654	.66 986 .67 028	1.4928 1.4919	.83 082 .83 066	11 10			
51	.55 702	.67 071	1.4910	.83 0 <u>5</u> 0				
52	.55 726	.67 113 .67 155	1.4900 1.4891	.83 034	9 8 7			
54	.55 750 .55 77 <u>5</u>	.67 15 <u>5</u> .67 197	1.4882	.83 017 .83 001	6			
55	.55 799	.67 239	1.4872	.82 985	5			
56 57	.55 823 .55 847	.67 282 .67 324	1.4863 1.4854	.82 969 .82 953	4			
58	.55 871	.67 366	1.4844	.82 936	5 4 3 2 1			
59	.55 895	.67 409	1.4835	.82 920	$\begin{array}{c c} 1 \\ 0 \end{array}$			
60	.55 919 cos	.67 451 cot	1.4826 tan	.82 904 sin				
	cos			отп				
	56°							

	1				
		34			
0	sin	tan .67 451	1 4926	COS	(0)
ľ	.55 919 .55 9 1 3	.67 493	1.4826 1.4816	.82 904 .82 887	60 59
2	.55 968	.67 536	1.4807	.82 871	58
3 4	.55 992 .56 016	.67 578 .67 620	1.4798	.82 85 <u>5</u> .82 839	57
5	.56 040	.67 663	1.4788 1.4779	.82 822	56
6	.56 064	.67 705	1.4770	.82 806	54
7	.56 088	.67 748	1.4761	.82 790	53
8 9	.56 112	.67 790 .67 832	1.4751 1.4742	.82 773 .82 757	52 51
10	.56 160	.67 875	1.4733	.82 741	50
11	.56 184	.67 917	1.4724	.82 724	49
12	.56 208 .56 232	.67 960 .68 002	1.471 <u>5</u> 1.4705	.82 708 .82 692	48 47
14	.56 256	.68 045	1.4696	.82 675	46
15	.56 280	.68 088	1.4687	.S2 659	45
16 17	.56 30 <u>5</u> .56 329	.68 130 .68 173	1.4678 1.4669	.82 643 .82 626	44 43
18	.56 353	.68 215	1.4659	.82 610	42
19	.56 377	.68 258	1.4650	.82 593	41
20	.56 401	.68 301	1.4641	.82 577	40
21 22	.56 42 <u>5</u> .56 449	.68 343 .68 386	1.4632 1.4623	.82 561 .82 544	39 38
23	.56 473	.68 429	1.4614	.82 528	37
24	.56 497	.68 471	1.460 <u>5</u>	.82 511	36
25 26	.56 521 .56 545	.68 514 .68 557	1.4596 1.4586	.82 49 <u>5</u> .82 478	35 34
27	.56 569	.68 600	1.4577	.82 462	33
28	.56 593	.68 642	1.4568	.82 446	32
29 30	.56 617	.68 685	1.4559 1.4550	.82 429	31
31	.56 641 .56 665	.68 728 .68 771	1.4541	.82 413 .82 396	30
32	. 56 689	.68 814	1.4532	.82 380	28
33	.56 713 .56 736	.68 857 .68 900	1.4523 1.4514	.82 363 .82 347	27 26
35	.56 760	.68 942	1.4505	.82 330	25
36	.56 784	.68 985	1.4496	.82 314	24
37	.56 808	.69 028	1.4487	.82 297	23
39	.56 832 .56 856	.69 071 .69 114	1.4478 1.4469	.82 281 .82 264	22 21
40	.56 880	.69 157	1.4460	.82 248	20
41	.56 904	.69 200	1.4451	.82 231	19
42	.56 928 .56 952	.69 243 .69 286	1.4442 1.4433	.82 214 .82 198	18 17
44	.56 976	.69 329	1.4424	.82 181	16
45	.57 000	.69 372	1.4415	.82 165	15
46	.57 024 .57 047	.69 416 .69 459	1.4406 1.4397	.82 148 .82 132	14 13
48	.57 071	.69 502	1.4388	.82 11 <u>5</u>	12
49	.57 095	.69 54 <u>5</u>	1.4379	.82 098	11
50 51	.57 119 .57 143	.69 588 .69 631	1.4370 1.4361	.82 082 .82 065	10
52	.57 143	.69 675	1.4352	.82 048	9 8 7
53	.57 191	. 69 718	1.4344	.82 032	7
54	.57 21 <u>5</u>	.69 761	1.4335	.82 015	6
55 56	.57 238	.69 804	1.4326 1.4317	.81 999 .81 982	3
57	.57 286	. 69 891	1.4308	.81 965	3
58 59	.57 310 .57 334	.69 934 .69 977	1.4299 1.4290	.81 949 .81 932	5 4 3 2 1
60	.57 358	.70 021	1.4281	.81 932	0
7	cos	cot	tan	sin	
		55			

Sin		1	3	5°		
Solution	,	sin			cos	,
2	1 -	.57 358	.70 021	1.4281	.81 915	
3						59
5	3	.57 429	.70 151	1.425 <u>5</u>	.81 865	57
6	1					1 1
7						
9	7	.57 524	.70 325	1.4220	.81 798	
10						
11	1				_	1 1
13	11	.57 619	.70 499	1.4185	.81 731	49
14			70 586			
16						46
17						
18						
20	18	.57 786	.70 804	1.4124	.81 614	42
21	!	1				1
22 .57 881 .70 979 1.4089 .81 546 38 23 .57 904 .71 023 1.4080 .81 530 37 24 .57 928 .71 066 1.4071 .81 513 36 25 .57 952 .71 110 1.4063 .81 496 35 26 .57 976 .71 154 1.4054 .81 479 34 27 .57 999 .71 198 1.4045 .81 462 33 28 .58 023 .71 242 1.4037 .81 445 32 29 .58 047 .71 285 1.4028 .81 428 31 30 .58 070 .71 329 1.4019 .81 412 30 31 .58 094 .71 373 1.4011 .81 395 29 32 .58 118 .71 417 1.4002 .81 378 28 33 .58 141 .71 461 1.3994 .81 361 27 34 .58 165 .71 505 1.3985 .81 344 26 35 .58 212 .71 593 1.3968 .81 310 24 37 .58 236 .71 637 1.3959 .81 293 23 38 .58 260 .71 681 1.3951 .81 276 22 39 .58 236 .71 681 1.3951 .81 259 21 40 .58 307 .71 769 1.3934 .81 242 20 41 .58 330 .71 813 1.3925 .81 225 19 42 .58 354 .71 857 1.3916 .81 208 18 43 .58 378 .71 901 1.3908 .81 191 17 44 .58 401 .71 946 1.3899 .81 174 16 45 .58 449 .72 034 1.3882 .81 140 14 47 .58 472 .72 078 1.3874 .81 123 13 48 .58 496 .72 122 1.3865 .81 106 14 47 .58 472 .72 078 1.3874 .81 123 13 48 .58 496 .72 122 1.3865 .81 106 14 47 .58 472 .72 078 1.3874 .81 123 13 48 .58 496 .72 122 1.3865 .81 106 14 47 .58 472 .72 078 1.3874 .81 123 13 48 .58 496 .72 121 1.3848 .81 072 51 .58 567 .72 255 1.3840 .81 055 52 .58 590 .72 299 1.3831 .81 038 8 53 .58 614 .72 432 1.3806 .80 987 55 .58 684 .72 477 1.3798 .80 970 4 55 .58 684 .72 477 1.3798 .80 970 4 55 .58 755 .72 610 1.3772 .80 919 1 60 .58 779 .72 654 1.3764 .80 902 0 0 0 0 0 0 0 0 0			.70 935			
24 .57 928			.70 979	1.4089	.81 546	38
25						
26	25	.57 952	.71 110	1.4063		
28			.71 154			
29			.71 198			
31		i i	.71 285	1.4028	.81 428	1 1
32 .58 118						
33	32	.58 118	.71 417	1.4002		
35			.71 461			
36	1					1 1
38	36	.58 212	.71 593	1.3968	.81 310	24
39						
41						1 11
42 .58 354 .71 857 1.3916 .81 208 43						
43			.71 813			
45	43	.58 378	.71 901	1.3908	.81 191	17
46						1 11
48	46		.72 034		.81 140	
49						
50 .58 543 .72 211 1.3848 .81 072 10 51 .58 567 .72 255 1.3840 .81 055 9 52 .58 590 .72 299 1.3831 .81 038 8 53 .58 614 .72 344 1.3823 .81 021 7 54 .58 637 .72 388 1.3814 .81 004 6 55 .58 661 .72 432 1.3806 .80 987 5 56 .58 684 .72 477 1.3798 .80 970 4 57 .58 708 .72 521 1.3781 .80 936 2 58 .58 731 .72 565 1.3781 .80 936 2 59 .58 755 .72 610 1.3772 .80 919 1 60 .58 779 .72 654 1.3764 .80 902 0 7 cos cot tan sin /						
60 .58 779 .72 654 1.3764 .80 902 O COS COT tan Sin /				1.3848		10
60 .58 779 .72 654 1.3764 .80 902 O COS COT tan Sin /						9
60 .58 779 .72 654 1.3764 .80 902 O COS COT tan Sin /	53	.58 614	.72 344	1.3823	.81 021	7
60 .58 779 .72 654 1.3764 .80 902 O COS COT tan Sin /	1 1					6
60 .58 779 .72 654 1.3764 .80 902 O COS COT tan Sin /	56		.72 477			5
60 .58 779 .72 654 1.3764 .80 902 O COS COT tan Sin /	57	.58 708	.72 521	1.3789	.80 953	3
60 .58 779 .72 654 1.3764 .80 902 O COS COT tan Sin /		.58 731 .58 755				2 1
	1					
54°	,	cos	cot		sin	/
		·	54	°		

ſ	36°						
l	,	sin	tan	cot	cos	/	
l	0	.58 779 .58 802	.72 654 .72 699	1.3764 1.3755	.80 902 .80 885	60 59	
l	2	.58 826	.72 743	1.3747	$.8086\overline{7}$	58	
	3	.58 849 .58 873	.72 788 .72 832	1.3739 1.3730	.80 850 .80 833	57	
l	5	.58 896	.72 877	1.3730	.80 816	55	
l	6	.58 920	.72921	1.3713	.80 799	54	
l	7 8	.58 943	.72 966 .73 010	1.3705 1.3697	.80 782 .80 76 <u>5</u>	53 52	
l	9	.58 990	.73 055	1.3688	.80 748	51	
l	10 11	.59 014 .59 037	.73 100 .73 144	1.3680 1.3672	.80 730 .80 713	50	
l	12	.59 061	.73 189	1.3663	.80 696	48	
l	13 14	.59 084 .59 108	.73 234 .73 278	1.365 <u>5</u> 1.3647	.80 679 .80 662	47 46	
l	15	.59 131	.73.273	1.3638	.80 644	45	
l	16	.59 154	.73 368	1.3630	.80 627	44	
ı	17	.59 178	.73 413 .73 457	1.3622 1.3613	.80 610 .80 593	43	
	19	.59 225	.73 502	1.3605	.80 576	41	
l	20	.59 248 .59 272	.73 547 .73 592	1.3597	.80 558 .80 541	40 39	
l	21 22	.59 272	.73 637	1.3588 1.3580	.80 521	38	
ı	23	.59 318	.73 681	1.3572	.80 507 .80 489	37	
ı	2 1 25	.59 342	.73 726 .73 771	1.3564 1.3555	.80 472	35	
l	26	.59 389	.73 816	1.3547	.80 455	34	
١	27 28	.59 412 .59 436	.73 861 .73 906	1.3539 1.3531	.80 438 .80 420	33	
l	29	.59 459	.73 951	1.3522	.80 403	31	
١	30	.59 482	.73 996	1.3514	.80 386	30	
l	31	.59 506 .59 529	.74 041 .74 086	1.3506 1.3498	.80 368 .80 351	29	
l	33	.59 552	.74 131	1.3490	.80 334	27	
ı	34	.59 576	.74 176 .74 221	1.3481 1.3473	.80 316	26	
l	36	.59 622	.74 267	1.3465	.80 282	24	
l	37	.59 646 .59 669	.74 312 .74 357	1.3457 1.3449	.80 264 .80 247	23	
	39	.59 693	.74 402	1.3440	.80 230	21	
	40	.59 716	.74 447	1.3432	.80 212	20	
l	41 42	.59 739 .59 763	.74 492 .74 538	1.3424 1.3416	.80 19 <u>5</u> .80 178	19	
l	43	.59 786	.74 583	1.3408	.80 160	17	
l	44 45	.59 809 .59 832	.74 628 .74 674	1.3400 1.3392	.80 143 .80 125	16	
l	46	.59 856	.74719	1.3384	.80 108	14	
١	47 48	.59 879 .59 902	.74 764 .74 810	1.3375 1.3367	.80 091 .80 073	13	
١	49	.59 926	.74 85 <u>5</u>	1.3359	.80 056	11	
١	50	.59 949	.74 900	1.3351	.80 038	10	
	51 52	.59 972 .59 995	.74 946 .74 991	1.3343 1.333 <u>5</u>	.80 021 .80 003	8	
	53	.60 019	.75 037	1.3327	. 79 986	7	
	54	.60 042	.75 082 .75 128	1.3319 1.3311	.79 968 .79 951	6 5	
١	56	.60 089	.75 173	1.3303	.79 934	5 4 3 2	
	57 58	.60 112	.75 219 .75 264	1.329 <u>5</u> 1.3287	.79 916 .79 899	3 2	
	59	.60 158	.75 310	1.3278	. 79 881	1	
	60	.60 182	.75 355	1.3270	.79 864	0	
	/	cos	cot	tan	sin	1	
l			53	5			

		37	, 0				
	\sin	tan	cot	cos	_/		
0 1 2 3	.60 182 .60 20 <u>5</u> .60 228 .60 251	.75 355 .75 401 .75 447 .75 492	1.3270 1.3262 1.3254 1.3246	.79 864 .79 846 .79 829 .79 811	59 58 57		
4 5 6	.60 274 .60 298 .60 321	.75 538 .75 584 .75 629	1.3238 1.3230 1.3222	.79 793 .79 776 .79 758	.56 55 54		
7 8 9	.60 344 .60 367 .60 390	.75 675 .75 721 .75 767	1.3214 1.3206 1.3198	.79 741 .79 723 .79 706	53 52 51		
10 11 12 13 14	.60 414 .60 437 .60 460 .60 483 .60 506	.75 812 .75 858 .75 904 .75 9 <u>5</u> 0 .75 996	1.3190 1.3182 1.3175 1.3167 1.3159	.79 688 .79 671 .79 653 .79 635 .79 618	49 48 47 46		
15 16 17 18 19	.60 529 .60 553 .60 576 .60 599 .60 622	.76 042 .76 088 .76 134 .76 180 .76 226	1.3151 1.3143 1.3135 1.3127 1.3119	.79 600 .79 583 .79 56 <u>5</u> .79 54 7 .79 530	45 44 43 42 41		
20 21 22 23 24	.60 645 .60 668 .60 691 .60 714 .60 738	.76 272 .76 318 .76 364 .76 410 .76 456	1.3111 1.3103 1.3095 1.3087 1.3079	.79 512 .79 494 .79 477 .79 459 .79 441	39 38 37 36		
25 26 27 28	.60 761 .60 784 .60 807 .60 830	.76 502 .76 548 .76 594 .76 640	1.3072 1.3064 1.3056 1.3048 1.3040	.79 424 .79 406 .79 388 .79 371	35 34 33 32		
30 31 32 33	.60 876 .60 899 .60 922 .60 945	.76 686 .76 733 .76 779 .76 825 .76 871	1.3032 1.3024 1.3017 1.3009	.79 353 .79 335 .79 318 .79 300 .79 282	31 30 29 28 27		
34 35 36 37 38	.60 968 .60 991 .61 01 <u>5</u> .61 038 .61 061	.76 918 .76 964 .77 010 .77 057 .77 103	1.3001 1.2993 1.2985 1.2977 1.2970	.79 264 .79 247 .79 229 .79 211 .79 193	26 25 24 23 22		
39 40 41 42	.61 084 .61 107 .61 130 .61 153	.77 149 .77 196 .77 242 .77 289	1.2962 1.2954 1.2946 1.2938	.79 176 .79 158 .79 140 .79 122	21 20 19 18		
43 44 45 46	.61 176 .61 199 .61 222 .61 245	.77 335 .77 382 .77 428 .77 475	1.2931 1.2923 1.2915 1.2907	.79 10 <u>5</u> .79 087 .79 069 .79 051	17 16 15 14		
47 - 48 49	.61 268 .61 291 .61 314	.77 521 .77 568 .77 61 <u>5</u>	1.2900 1.2892 1.2884	.79 033 .79 016 .78 998	13 12 11		
50 51 52 53	.61 337 .61 360 .61 383 .61 406	.77 661 .77 708 .77 754 .77 801	1.2876 1.2869 1.2861 1.2853	.78 980 .78 962 .78 944 .78 926	10 9 8. 7		
54 55 56 57	.61 429 .61 451 .61 474 .61 497	.77 848 .77 89 <u>5</u> .77 941 .77 988	1.2846 1.2838 1.2830 1.2822	.78 908 .78 891 .78 873 .78 855	6 5 4 3		
58 59 60	.61 520 .61 543 .61 566	.78 03 <u>5</u> .78 08 <u>2</u> .78 129	1.2815 1.2807 1.2799	.78 837 .78 819 .78 801	3 2 1 0		
7	cos	cot	tan	sin	1		
	52 °						

		38	3°		
1	sin	tan	cot	cos	
0	.61 566 .61 589	.78 129 .78 175	1.2799 1.2792	.78 801 .78 783	60 59
$\begin{vmatrix} 1\\2 \end{vmatrix}$.61 612	.78 222	1.2784	.78 765	58
3	.61 63 <u>5</u>	.78 269	1.2776	.78 747	57
4	.61 658	.78 316	1.2769	.78 729	56
5 6	.61 681 .61 704	.78 363 .78 410	1.2761 1.2753	.78 711 .78 694	55 54
7	.61 726	.78 457	1.2746	.78 676	53
8	.61 749	.78 504	1.2738 1.2731	.78 658 .78 640	52 51
9 10	61 772	.78 551 .78 598	1.2723	.78 622	50
11	.61 818	.78 645	1.2715	.78 604	49
12	.61 841	.78 692	1.2708	.78 586	48
13	.61 864 .61 887	.78 739 .78 786	1.2700 1.2693	.78 568 .78 5 <u>5</u> 0	47 46
15	.61 909	.78 834	1.2685	.78 532	45
16	.61 932	.78 881	1.2677	.78 514	44
17 18	.61 955 .61 978	.78 928 .78 975	1.2670 1.2662	.78 496 .78 478	43
19	.62 001	.79 022	1.265 <u>5</u>	.78 460	41
20	.62 024	.79 070	1.2647	.78 442	40
21 22	.62 046 .62 069	.79 117 .79 164	1.2640 1.2632	.78 424 .78 405	39
23	.62 092	.79 212	1.2624	.78 387	37
24	.62 115	.79 259	1.2617	.78 369	36
25 26	.62 138 .62 160	.79 306 .79 354	1.2609 1.2602	.78 351 .78 333	35
27	.62 183	.79 401	1.2594	.78 315	33
28	.62 206	.79 449 .79 496	1.2587	.78 297	32
29 30	.62 229 .62 251	.79 544	1.2579 1.2572	.78 279 .78 261	31 30
31	.62 274	.79 591	1.2564	.78 243	29
32	.62 297 .62 320	.79 639 .79 686	1.2557 1.2549	.78 22 <u>5</u> .78 206	28 27
34	.62 342	.79 734	1.2542	.78 188	26
35	.62 365	.79 781	1.2534	.78 170	25
36	.62 388 .62 411	.79 829 .79 877	1.2527 1.2519	.78 152 .78 134	24
38	.62 433	.79 924	1.2512	.78 116	22
39	. 62 456	.79 972	1.2504	.78 098	21
40 41	.62 479 .62 502	.80 020 .80 067	1.2497 1.2489	.78 079 .78 061	20 19
42	.62 524	.80 115	1.2482	.78 043	18
43	.62 547	.80 163	1.2475	.78 02 <u>5</u>	17
44 45	.62 570 .62 592	.80 211 .80 258	1.2467 1.2460	.78 007 .77 988	16 15
46	.62 615	.80 306	1.2452	.77 970	14
47	.62 638	.80 354	1.2445	.77 952	13
48	.62 660 .62 683	.80 402 .80 4 <u>5</u> 0	1.2437 1.2430	.77 934 .77 916	12 11
50	.62 706	.80 498	1.2423	.77 897	10
51	.62 728	.80 546	1.2415	.77 879	9
52 53	.62 751 .62 774	.80 594 .80 642	1.2408 1.2401	.77 861 .77 843	7
54	.62 796	.80 690	1.2393	.77 824	6
55	.62 819	.80 738	1.2386	.77 806	5
56	.62 842 .62 864	.80 786 .80 834	1.2378 1.2371	.77 788 .77 769	3
58	.62 887	.80 882	1.2364	.77 751	9 8 7 6 5 4 3 2
59	.62 909	.80 930	1.2356	.77 733	
60	.62 932	.80 978	1.2349	.77 71 <u>5</u> sin	0
′	cos	cot 51	tan '	RIII	
		J.	L .		

	3 9°	
,	sin tan cot cos	_/
1 2 3 4	.62 932 .80 978 1.2349 .77 715 .62 955 .81 027 1.2342 .77 696 .62 977 .81 075 1.2334 .77 678 .63 000 .81 123 1.2327 .77 660 .63 022 .81 171 1.2320 .77 641	59 58 57 56
5 6 7 8 9	.63 045 .81 220 1.2312 .77 623 .63 068 .81 268 1.2305 .77 605 .63 090 .81 316 1.2298 .77 568 .63 113 .81 364 1.2290 .77 568 .63 135 .81 413 1.2283 .77 550	55 54 53 52 51
10 11 12 13 14	.63 158 .81 461 1.2276 .77 531 .63 180 .81 510 1.2268 .77 513 .63 203 .81 558 1.2261 .77 494 .63 225 .81 606 1.2254 .77 476 .63 248 .81 655 1.2247 .77 458	50 49 48 47 46
15 16 17 18 19 20	.63 271 .81 703 1.2239 .77 439 .63 293 .81 752 1.2232 .77 421 .63 316 .81 800 1.2225 .77 402 .63 388 .81 849 1.2218 .77 384 .63 361 .81 898 1.2210 .77 366 .63 383 .81 946 1.2203 .77 347	45 44 43 42 41 40
21 22 23 24 25	.63 406 .81 995 1.2196 .77 329 .63 428 .82 044 1.2189 .77 310 .63 451 .82 092 1.2181 .77 292 .63 473 .82 141 1.2174 .77 273 .63 496 .82 190 1.2167 .77 255	39 38 37 36 35
26 27 28 29 30 31	.63 518 .82 238 1.2160 .77 236 .63 540 .82 287 1.2153 .77 218 .63 563 .82 336 1.2145 .77 199 .63 585 .82 385 1.2138 .77 181 .63 608 .82 434 1.2131 .77 162 .63 630 .82 483 1.2124 .77 144	34 33 32 31 30 29
32 33 34 35 36	.63 653 .82 531 1.2117 .77 125 .63 675 .82 580 1.2109 .77 107 .63 698 .82 629 1.2102 .77 088 .63 720 .82 678 1.2095 .77 070 .63 742 .82 727 1.2088 .77 051	28 27 26 25 24
37 38 39 40 41 42	.63 765 .82 776 1.2081 .77 033 .63 787 .82 825 1.2074 .77 014 .63 810 .82 874 1.2066 .76 996 .63 832 .82 923 1.2059 .76 977 .63 854 .82 972 1.2052 .76 959 .63 877 .83 022 1.2045 .76 940	23 22 21 20 19 18
43 44 45 46 47	.63 899 .83 071 1.2038 .76 921 .63 922 .83 120 1.2031 .76 903 .63 944 .83 169 1.2024 .76 886 .63 966 .83 218 1.2017 .76 866 .63 989 .83 268 1.2009 .76 847	17 16 15 14 13
48 49 50 51 52 53	.64 011 .83 317 1.2002 .76 828 .64 033 .83 366 1.1995 .76 810 .64 056 .83 415 1.1988 .76 791 .64 078 .83 465 1.1981 .76 772 .64 100 .83 514 1.1974 .76 754	12 11 10 9 8
55 56 57 58	.64 123 .83 564 1.1967 .76 735 .64 145 .83 613 1.1960 .76 717 .64 167 .83 662 1.1953 .76 698 .64 190 .83 712 1.1946 .76 679 .64 212 .83 761 1.1939 .76 661 .64 234 .83 811 1.1932 .76 642	9 8 7 6 5 4 3 2 1
59 60 /	.64 256 .83 860 1.1925 .76 623 .64 279 .83 910 1.1918 .76 604 cos cot tan sin 50°	0

		40)°		
/	sin	tan	cot	cos	,
0	.64 279	.83 910	1.1918 1.1910	.76 604 .76 586	60
$\begin{vmatrix} 1\\2 \end{vmatrix}$.64 301 .64 323	.83 960 .84 009	1.1910	.76 567	59 58
3	.64 346	.84 059	1.1896	.76 548	57
5	.64 368 .64 390	.84 10S .84 158	1.1889 1.1882	.76 530 .76 511	56
6	.64 412	.81 208	1.1875	.76 492	54
7 8	.64 43 <u>5</u> .64 457	.84 258 .84 307	1.1868 1.1861	.76 473 .76 45 <u>5</u>	53 52
9	.64 479	.81 357	1.1854	.76 436	51
10	.64 501	.84 407	1.1847	.76 417	50
11 12	.64 524 .64 546	.84 457 .84 507	1.1840 1.1833	.76 398 .76 380	49
13	.64 568	.81 556	1.1826	.76 361	47
14	.64 590	.81 606	1.1819	.76 342	46
15 16	.64 612	.84 656 .84 706	1.1812 1.1806	.76 323 .76 304	45
17	.64 657	.84 756	1.1799	.76 286	43
18 19	.64 679 .64 701	.84 806 .84 856	1.1792 1.178 <u>5</u>	.76 267 .76 248	42
20	.64 723	.81.906	1.1778	.76 229	40
21	.64 746	.84 956	1.1771	.76 210	39
22 23	.64 768 .64 790	.85 006 .85 057	1.1764 1.1757	.76 192 .76 173	38
24	.64 812	.85 107	1.17 <u>5</u> 0	.76 154	36
25	.64 834	.85 157	1.1743	.76 135	35
26	.64 856 .64 878	.85 207 .85 257	1.1736 1.1729	.76 116 .76 097	34
28	.64 901	.85 308	1.1722	.76 078	32
30 30	.64 923 .64 945	.85 358 .85 408	1.1715 1.1708	.76 059 .76 041	31 30
31	.64 967	.85 458	1.1703	.76 022	29
32	.64 989 .65 011	.85 509 .85 559	1.169 <u>5</u> 1.1688	.76 003 .75 984	28
34	.65 033	.85 559 .85 609	1.1681	.75 96 <u>5</u>	26
35	.65 055	.85 660	1.1674	.75 946	25
36	.65 077 .65 100	.85 710 .85 761	1.1667 1.1660	.75 927 .75 908	24
38	.65 122	.85 811	1.1653	.75 889	22
39	.65 144	.85 862	1.1647	.75 870	21
40 41	.65 166 .65 188	.85 912 .85 963	1.1640 1.1633	.75 851 .75 832	20
42	.65 210	.86 014	1.1626	.75 813	18
43	.65 232 .65 254	.86 064 .86 11 <u>5</u>	1.1619 1.1612	.75 794 .75 775	17
45	.65 276	.86 166	1.1606	.75 756	15
46 47	.65 298 .65 320	.86 216 ·86 267	1.1599 1.1592	.75 738 .75 719	14
48	.65 342	.86 318	1.1592	.75 700	12
49	.65 364	.86 368	1.1578	.75 680	11
50 51	.65 386 .65 408	.86 419 .86 470	1.1571 1.1565	.75 661 .75 642	10
52	·65 430	.86 521	$1.155\bar{8}$.75 623	9 8
53 54	.65 452 .65 474	.86 572 .86 623	1.1551 1.1544	.75 604 .75 585	7
55	.65 496	.86 674	1.1538	.75 566	
56	.65 518	.86 72 <u>5</u>	1.1531	.75 547	5 4
57 58	.65 540 .65 562	.86 776 .86 827	1.1524 1.1517	.75 528 .75 509	3 2
59	.65 584	.86 878	1.1510	.75 490	1
60	.65 606	.86 929	1.1504	.75 471	0
/	cos	cot	tan	sin	'
		49)		

		4	0		
/	sin	tan	cot	cos	,
0 1 2 3 4 5 6	.65 606 .65 628 .65 650 .65 672 .65 694	.86 929 .86 980 .87 031 .87 082 .87 133 .87 184	1.1504 1.1497 1.1490 1.1483 1.1477 1.1470	.75 471 .75 452 .75 433 .75 414 .75 39 <u>5</u> .75 375	59 58 57 56 55
7 8 9 10 11 12 13	.65 738 .65 759 .65 781 .65 803 .65 825 .65 847 .65 869	.87 236 .87 287 .87 338 .87 389 .87 441 .87 492 .87 543 .87 595	1.1463 1.1456 1.1450 1.1443 1.1436 1.1430 1.1423 1.1416	.75 356 .75 337 .75 318 .75 299 .75 280 .75 261 .75 241 .75 222	54 53 52 51 50 49 48 47
14 15 16 17 18 19 20	.65 913 .65 935 .65 956 .65 978 .66 000 .66 022	.87 646 .87 698 .87 749 .87 801 .87 852 .87 904 .87 955	1.1410 1.1403 1.1396 1.1389 1.1383 1.1376 1.1369	.75 203 .75 184 .75 165 .75 146 .75 126 .75 107 .75 088	46 45 44 43 42 41 40
21 22 23 24 25 26	.66 066 .66 088 .66 109 .66 131 .66 153 .66 175	.88 007 .88 059 .88 110 .88 162 .88 214 .88 265	1.1363 1.1356 1.1349 1.1343 1.1336 1.1329	.75 069 .75 050 .75 030 .75 011 .74 992 .74 973	39 38 37 36 35 34
27 28 29 30 31 32 33	.66 197 .66 218 .66 240 .66 262 .66 284 .66 306 .66 327	.88 317 .88 369 .88 421 .88 473 .88 524 .88 576 .88 628	1.1323 1.1316 1.1310 1.1303 1.1296 1.1290 1.1283	.74 953 .74 934 .74 91 <u>5</u> .74 896 .74 876 .74 857 .74 838	33 32 31 30 29 28 27
34 35 36 37 38 39 40	.66 349 .66 371 .66 393 .66 414 .66 436 .66 458	.88 680 .88 732 .88 784 .88 836 .88 888 .88 940 .88 992	1.1276 1.1270 1.1263 1.1257 1.1250 1.1243 1.1237	.74 818 .74 799 .74 780 .74 760 .74 741 .74 722 .74 703	26 25 24 23 22 21 20
41 42 43 44 45 46	.66 501 .66 523 .66 54 <u>5</u> .66 566 .66 588	.89 04 <u>5</u> .89 097 .89 149 .89 201 .89 253 .89 306	1.1230 1.1224 1.1217 1.1211 1.1204 1.1197	.74 683 .74 664 .74 644 .74 625 .74 606 .74 586	19 18 17 16 15 14
47 48 49 50 51 52 53	.66 632 .66 653 .66 67 <u>5</u> .66 697 .66 718 .66 740	.89 358 .89 410 .89 463 .89 515 .89 567 .89 620 .89 672	1.1191 1.1184 1.1178 1.1171 1.116 <u>5</u> 1.1158 1.1152	.74 567 .74 548 .74 528 .74 509 .74 489 .74 470 .74 451	13 12 11 10 9 8 7
54 55 56 57 58 59	.66 783 .66 80 <u>5</u> .66 827 .66 848 .66 870 .66 891	.89 72 <u>5</u> .89 777 .89 830 .89 883 .89 935 .89 988	1.1145 1.1139 1.1132 1.1126 1.1119 1.1113	.74 431 .74 412 .74 392 .74 373 .74 353 .74 334	6 5 4 3 2 1
60	.66 913 cos	.90 040 cot 48	1.1106 tan 3°	.74 314 sin	<u>'</u>

	,	UITAI
	42°	
/	sin tan cot cos	,
0	.66 913 .90 040 1.1106 .74 314	60
$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$.66 935 .90 093 1.1100 .74 295 .66 956 .90 146 1.1093 .74 276	59
3	.66 978 .90 199 1.1087 .74 256	57
4	.66 999 .90 251 1.1080 .74 237	56
5	.67 021 .90 304 1.1074 .74 217	55
6 7	.67 043 .90 357 1.1067 .74 198 .67 064 .90 410 1.1061 .74 178	54 53
8	67 086 .90 463 1.1054 .74 159	52
9	.67 107 .90 516 1.1048 .74 139	51
10	.67 129 .90 569 1.1041 .74 120	50
11 12	.67 151 .90 621 1.1035 .74 100 .67 172 .90 674 1.1028 .74 080	49
13	67 194 .90 727 1.1023 .74 061	47
14	.67 215 .90 781 1.1016 .74 041	46
15	.67 237 .90 834 1.1009 .74 022	45
16 17	.67 258 .90 887 1.1003 .74 002 .67 280 .90 940 1.0996 .73 983	44 43
18	.67 301 .90 993 1.0990 .73 963	42
19	.67 323 .91 046 1.0983 .73 944	41
20	.67 344 .91 099 1.0977 .73 924	40
$\begin{vmatrix} 21 \\ 22 \end{vmatrix}$.67 366 .91 153 1.0971 .73 904	39
23	.67 409 .91 259 1.0904 .73 865	37
24	.67 430 .91 313 1.0951 .73 846	36
25	.67 452 .91 366 1.0945 .73 826	35
26.	.67 473 .91 419 1.0939 .73 806 .67 495 .91 473 1.0932 .73 787	34
27 28	.67 49 <u>5</u> .91 473 1.0932 .73 787 .67 516 .91 526 1.0926 .73 767	33
29	.67 538 .91 580 1.0919 .73 747	31
30	.67 559 .91 633 1.0913 .73 728	30
31 32	.67 580 .91 687 1.0907 .73 708 .67 602 .91 740 1.0900 .73 688	29
33	.67 623 .91 794 1.0894 .73 669	27
34	.67 645 .91 847 1.0888 .73 649	26
35	.67 666 .91 901 1.0881 .73 629	25
36	.67 688 .91 955 1.0875 .73 610 .67 709 .92 008 1.0869 .73 590	24 23
38	.67 730 .92 062 1.0862 .73 570	22
39	.67 752 .92 116 1.0856 :73 551	21
40	.67 773 .92 170 1.0850 .73 531	20
41 42	.67 79 <u>5</u> .92 224 1.08 1 3 .73 511 .67 816 .92 277 1.0837 .73 491	19
43	.67 837 .92 331 1.0831 .73 472	17
44	.67 859 .92 385 1.0824 .73 452	,16
45	.67 880 .92 439 1.0818 .73 432 .67 901 .92 493 1.0812 .73 413	15
46 47	.67 901 .92 493 1.0812 .73 413 .67 923 .92 547 1.0805 .73 393	14
48	.67 944 .92 601 1.0799 .73 373	12
49	.67 965 .92 655 1.0793 .73 353	11
50 51	.67 987 .92 709 1.0786 .73 333 .68 008 .92 763 1.0780 .73 314	10 9
52	.68 029 .92 817 1.0774 .73 294	8
53	.68 051 .92 872 1.0768 .73 274	7
54	.68 072 .92 926 1.0761 .73 254	6
55	.68 093 .92 980 1.0755 .73 234 .68 115 .93 034 1.0749 .73 215	5 4
57	.68 136 .93 088 1.0742 .73 19 <u>5</u>	3 2
58	.68 157 .93 143 1.0736 .73 175	2
59	.68 179 .93 197 1.0730 .73 155	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$
60	.68 200 .93 252 1.0724 .73 135 cos cot tan sin	
'	cos cot tan sin 47°	'
	1/	

	43°				
,	sin tan cot	cos	,		
0	.68 200 .93 252 1.0724 .73 .68 221 .93 306 1.0717 .73	3 135	60		
$\begin{vmatrix} 1\\2 \end{vmatrix}$.68 242 .93 360 1.0711 .73	3 096	59 58		
3	.68 264 .93 415 1.0705 .73	3 076	57		
5	I .	3 056 3 036	56		
6		8 016	55 54		
7	.68 349 .93 633 1.0680 .72	2 996	53		
8 9		2 976 2 957	52 51		
10		2 937	50		
11	.68 434 .93 852 1.0655 .72	2917	49		
12		2 897 2 877	48 47		
14	.68 497 .94 016 1.0637 .72	2857	46		
15 16	.68 518 .94 071 1.0630 .72 .68 539 .94 125 1.0624 .72	2 837 2 817	45		
17	.68 561 .94 180 1.0618 .72		44 43		
18	.68 582 .94 235 1.0612 .72		42		
19 20	.68 603 .94 290 1.0606 .72 .68 624 .94 345 1.0599 .72	2 757 2 737	41 40		
21	.68 645 .94 400 1.0593 .72	717	39		
22 23		2 697 2 677	38		
21		657	37 36		
25	.68 730 .94 620 1.0569 .72	637	35		
26 27		2 617 2 597	34		
28		577	32		
29		2 557	31		
30 31	.68 835 .94 896 1.0538 .72 .68 857 .94 952 1.0532 .72	2 537	30		
32	.68 878 .95 007 1.0526 .72	497	28		
33	.6 <u>8 89</u> 9 .95 062 1.0519 .72 .68 920 .95 118 1.0513 .72	2 477 2 457	27 26		
35	.68 941 .95 173 1.0507 .72	437	25		
36	.68 962 .95 229 1.0501 .72	417	24		
37		397	23 22		
39	.69 025 .95 395 1.0483 .72	357	21		
40 41	.69 046 .95 451 1.0477 .72 .69 067 .95 506 1.0470 .72	337	20		
42	.69 088 .95 562 1.0464 .72	297	18		
43 44	.69 109 .95 618 1.0458 .72 .69 130 .95 673 1.0452 .72	277	17 16		
45		236	15		
46	.69 172 .95 785 1.0440 .72	216	14		
47 48		196 176	13 12		
49	.69 235 .95 952 1.0422 .72	156	11		
50		136	10		
51 52		116	8		
53	.69 319 .96 176 1.0398 .72	075	8		
54 55		035	6		
56	.69 382 .96 344 1.0379 .72	015	5		
57 58	.69 403 .96 400 1.0373 .71	99 <u>5</u> 974	3 2		
59		954	1		
60		934	0		
1		in	'		
	46 °		1		

		44	ł°		
,	sin	tan	cot	cos	,
0	.69 466	.96 569	1.0355 1.0349	.71 934 .71 914	60
$\begin{vmatrix} 1\\2 \end{vmatrix}$.69 487 .69 508	.96 625 .96 681	1.0349	.71 914	59 58
3	.69 529	.96 738 .96 794	1.0337	.71 873 .71 853	57
5	.69 549 .69 570	.96 850	1.0325	.71 833	56
6	.69 591	.96 907	1.0319	.71 813	54
8	.69 612 .69 633	.96 963 .97 020	1.0313	.71 792 .71 772	53
9	.69 654	.97 076	1.0301	.71 752	51
10	.69 675	.97 133	1.0295	.71 732	50
11 12	.69 696 .69 717	.97 189 .97 246	1.0289 1.0283	.71 711 .71 691	49
13	.69 737	.97 302	1.0277	.71 671	47
14	.69 758 .69 779	.97 359 .97 416	1.0271	.71 650 .71 630	46 45
16	.69 800	.97 472	1.0259	.71 610	44
17 18	.69 821 .69 842	.97 529 .97 586	1.0253 1.0247	.71 590 .71 569	43
19	.69 862	.97 643	1.0247	.71 549	41
20	.69 883	.97 700	1.0235	.71 529	40
21 22	.69 904 .69 925	.97 756 .97 813	1.0230 1.0224	.71.508 .71.488	39
23	.69 946	.97 870	1.0218	.71 468	37
24 25	.69 966 .69 987	.97 927 .97 984	1.0212	.71 447 .71 427	36
26	.70 008	.98 041	1.0200	.71 407	34
27	.70 029 .70 049	.98 098	1.0194	.71 386	33
28 29	.70 079	.98 155 .98 213	1.0188 1.0182	.71 366 .71 345	32
30	.70 091	.98 270	1.0176	.71 325	30
31 32	.70 112 .70 132	.98 327 .98 384	1.0170	.71 30 <u>5</u> .71 284	29
33	.70 153	.98 441	1.0158	.71 264	27
34	.70 174 .70 195	.98 499	1.0152	.71 243	26
36	.70 195	.98 556 .98 613	1.0147	.71 223 .71 203	25 24
37	.70 236	.98 671	1.0135	.71 182	23
38 39	.70 257 .70 277	.98 728 .98 786	1.0129	.71 162 .71 141	22 21
40	.70 298	.98 843	1.0117	.71 121	20
41 42	.70 319 .70 339	.98 901 .98 958	1.0111	.71 100 .71 080	19 18
43	.70 360	.99 016	1.0099	.71 059	17
44	.70 381	.99 073	1.0094	.71 039	16
45 46	.70 401 .70 422	.99 131 .99 189	1.0088	.71 019 .70 998	15 14
47	.70 443	.99 247	1.0076	.70 978	13
48	.70 463 .70 484	.99 304	1.0070	.70 957 .70 937	12 11
50	.70 505	.99 420	1.0058	.70 916	10
51 52	.70 525 .70 546	.99 478 .99 536	1.0052 1.0047	.70 896 .70 875	9
53-	.70 567	.99 594	1.0041	.70 85 <u>5</u>	9 8 7 6
54	.70 587	.99 652	1.0035	.70 834	6
55 56	.70 608 .70 628	.99 710 .99 768	1.0029 1.0023	.70 813 .70 793	5 4
57	.70 649	.99 826	1.0017	.70 772	3 2
58 59	.70 670 .70 690	.99 884	1.0012	.70 752 .70 731	$\begin{vmatrix} 2\\1 \end{vmatrix}$
60	.70 711	1.0000	1.0000	.70 711	0
1	cos	cot	tan	sin	11
		45	5°		

Page 15.3 & 14 11 147 84 8 144 Se. 18 Page 25 Even; Page 34 sin cos 11, 30, 64, 13, 15, 17, 19, 21, 23 Pose 34 Derive the values in the table 11 35 quen 11 4 7 Ext. 61,66,67 11 49 Ext. 5,6 74.79 Revii "82 work all Exs. 11 84 11 " 92-96, on 1.96 -99 Even iv. 102 24.8, 10,12,14 104 11 18, 16, 14, 12 168 June 1, 2 3, 4 5,6 118 011 155 134 139 aus. cal 148 tan == P. 154 Desire formal as LIST Francisco. Lin 5 X, Lay 5 X :

14 DAY USE RETURN TO DESK FROM WHICH BORROWED

LOAN DEPT.

This book is due on the last date stamped below, or on the date to which renewed.

Renewed books are subject to immediate recall.

PECO LD		_
SEP 22 1960		-
24Jan'65-UP	rich.	_
REC'D LD JAN 25'65-4 PM		
JAN 25 63 21		3
LD 21A-50m-4,'60 (A9562s10)476B	General Library University of California Berkeley	
N.Y 23 1042	30ct'60r.U	
	LD 21-100m-7,'40(6	936s)

104 24 7-15 132000 Keating o 918256 QA531 THE UNIVERSITY OF CALIFORNIA LIBRARY

