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PREFACE

OF late years, in the writing of textbooks of trigonometry,

a tendency to amplification has shown itself, doubtless with

the idea that amplification means simplification. Unfortu-

nately the amplification has spent itself upon details rather

than upon principles, which latter have too often been in-

adequately treated. The result has been textbooks which

overlook the comparative maturity of the boys and girls

who study trigonometry and which cling almost with affec-

tion to the practices of the most elementary mathematics.

The present text' aims to present the trigonometry in

such a way as to make it interesting to students approach-

ing some maturity, and so as to connect the subject, not

only with the mathematics which the student has already

had, but also with the mathematics which, in many cases at

least, is to follow. A subject may be so burdened with

detailed explanations as to become monotonous and lifeless,

or, on the other hand, presented in so concise and difficult a

manner as to be repellent. The present work endeavors to

avoid both extremes. Full explanations are given of im-

portant principles, but many simple details are left to the

work of the student.

The following points in the text may be noted :

1. Positive and negative angles of any magnitude and the

trigonometric functions of such angles, defined by means of

a system of rectangular coordinates, are taken up in the

beginning of the book
;
acute angles, with their functions,

being mentioned as a special case.

2. Thus the basic trigonometric identities are got at once

for all angles.
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3. The functions of 0, 90, etc., are carefully explained

by the theory of limits.

4. The solution of right triangles and related problems
are taken up early without the use of logarithms.

5. Logarithms are then very carefully explained and fully

discussed, not so much as to their use in computation, but

rather so as to clarify their meaning.
6. Right triangles are then solved by the use of loga-

rithms, and the essentially approximate nature of all nu-

merical results is emphasized.
7. The text next returns to trigonometric identities, giv-

ing a detailed and accurate proof of the addition formulae

for sines and cosines, with less detailed but sufficient expla-

nation of other fundamental identities. The number of

identities to be memorized is reduced to a minimum.

8. The circular measure of an angle and the inverse func-

tions are then taken up, emphasis being laid upon the fact

that the latter are angles.

9. There follows the solution of triangles in general. As

each case is mentioned the theorems or formulas needed for

its solution are derived.

10. The last subject treated in the plane trigonometry is

the solution of trigonometric equations, and the fact is em-

phasized that the operations are simply the solution of

algebraic equations applied to a new class of quantities.

11. The lists of examples and problems are numerous

and carefully chosen, many of them being taken from work

in analytic geometry and calculus, though, of course, no

knowledge of either of these subjects is assumed. Some of

the problems are entirely new, being invented for this text,

and all problems are chosen with a purpose to indicate the

practical interest and value of trigonometry.

12. In the spherical trigonometry, as in the plane, the

three chief aims are brevity, clarity, and simplicity ;
a

chapter on the Earth treated as a sphere being given to

enliven an otherwise somewhat formal and lifeless subject.

13. The author has not tried to revolutionize the teaching
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of trigonometry, believing that much that has been done in

the past is good though none the less open to improvement.
Such improvement has been the aim of this work.

The author wishes to acknowledge the kindness of his

colleagues Professor H. W. Tyler, Professor F. L. Hitch-

cock, and Professor J. Lipka in reading and criticizing the

manuscript of his book, and to express his thanks to Pro-

fessor E. R. Hedrick, editor of the tables appended, for

permission to make use of them.

L. M. PASSANO.
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INTRODUCTION

TRIGONOMETRY is primarily the science concerned with

the measurement of plane and spherical triangles, that is,

with the determination of three of the parts of such tri-

angles when the numerical values of the other three parts

are given. This is done by means of the six trigono-

metric functions, denned in article 4 following. But these

functions enter so intimately into many branches of mathe-

matical and physical science not directly concerned with the

measurement of angles, that their analytical properties are

of fundamental importance. Analytical trigonometry, that

is, the proof and use of various algebraic relations among
the trigonometric functions of the same or related angles,

is therefore, in modern times, of equal importance with the

trigonometry which deals with triangular solutions.

The same functions which enable one to solve triangles

constructed in a plane suffice also for the solution of spheri-

cal triangles. But the solution of triangles of which the

sides are geodetic lines, that is, lines which are the shortest

distances between pairs of points on the surface, on a sphe-
roidal surface such as the Earth, requires the use of other

functions than those needed for the solution of plane or

spherical triangles. This spheroidal trigonometry is very

complex, and becomes necessary only in the accurate sur-

vey of very large tracts of the Earth's surface. For ordi-

nary purposes of surveying and for the solution of triangles

on the Earth's surface over small areas, plane and spherical

trigonometry are sufficient.

The study of trigonometry, as ancillary to astronomy,
dates from very early times. Among the Greeks, who,

xiii
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however, were more famous as geometers than as investi-

gators in other branches of mathematics, the names of

Hipparchus (about 150 B.C.) and of Ptolemy (who lived in

the second] century of the Christian era), both astronomers,

are prominent. Hipparchus left no mathematical writings,

but we are told by an ancient writer that he created the

science of trigonometry. Ptolemy, making use of the inves-

tigations and discoveries of Hipparchus, perfected the form

of the science. The theorems of these two astronomers are

still the basis of trigonometry.

Ptolemy calculated a table of chords, which were used in

those earliest days of the science, as we now use the sines

of angles. The radius of a circle he divided into sixty

equal parts. Each of these he divided again into sixty equal

parts, called, in the Latin translation of his- work the

Almagest,
"
partes minutae primae

"
;
and each of these in

turn into sixty, called "
partes minutae secundae "

;
whence

have come the names " minutes " and " seconds " for the

subdivisions of the angular degree. Ptolemy, however, was

not the first to calculate a table of chords, Hipparchus,

among others, having done so previously, but he invented

theorems by means of which the calculations could be more

readily made.

The Hindus, more skillful calculators than the Greeks,

acquired the knowledge of the latter and improved upon it,

notably in that they calculated tables of the half-chord, or

sine, instead of the whole chord of the angle. The Arabs

also were acquainted with the Almagest, and with the

investigations of the Hindus. It was an Arab, Al Battani

or Albategnius, who first calculated a table of what may be

called cotangents, by computing the lengths of shadows of

a vertical object cast by the sun at different altitudes.

Another Arab invented, as a separate function, the tangent,

which had previously been used only as an abbreviation of

the ratio sine to cosine. Curiously enough this invention

was afterwards forgotten until the tangent was re-invented

in England in the fourteenth century by Bradwardine, and
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in the fifteenth century by the German, Johannes Mtiller,

called Regiomontanus, who wrote the first complete Euro-

pean treatise on trigonometry.

When Napier
* invented logarithms, in 1614, they were at

once adopted in trigonometric calculations, and the first

tables of logarithmic sines and tangents were made by
Edmund Gunter, an English astronomer (1581-1626). He
it was who first used the names cosine, cotangent, and co-

secant. During the following century the science of trigo-

nometry progressed slowly, becoming more analytical in

form, until, in the hands of Euler (1707-1783), it became

essentially what it is at the present day.

With this brief introduction to the history of trigonom-

etry let us now proceed to become acquainted with that

homely, perhaps, but most serviceable handmaid to so many
of the arts and sciences,

"... being just as great, no doubt,

Useful to men, and dear to God, as they I

"

* John Napier, 1550-1617.
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PLANE TRIGONOMETRY

CHAPTER I

THE TRIGONOMETRIC FUNCTIONS OF ANY ANGLE, AND
IDENTICAL RELATIONS AMONG THEM

1. Rectangular Coordinates. Two lines, x'x and y'y, drawn

in a plane at right angles to each other, as in Fig. 1, form

a system of rectangular, Cartesian coordinates. The point

in which the lines intersect is called the origin ;
the two

lines are called the axes of coordinates. One of these,

usually the horizontal line, is called the axis of abscissae, or

the axis of x. The other is called the axis of ordinates,

or the axis of y. We shall speak of XOY, FOX', X'OY',
and Y'OX as the first, second, third, and fourth quadrants

respectively.

2. Angles of any Magnitude. There are many ways in

which a system of coordinates is used in mathematics. In

trigonometry such a system is used primarily in defining

B 1
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the trigonometric functions, but before we proceed to do so

we shall extend our ideas of angles beyond the knowledge
we obtained of them in the elementary geometry. There

an angle is denned by some such definition as the following :

the plane figure formed by two straight lines drawn from

the same point. The unit of angles is either the right angle,

or -the degree, and the largest angle usually dealt with is

equivalent to two right angles and is often called a straight

angle. In trigonometry, on the other hand, we deal with

angles of any magnitude whatever. To do so we introduce

the idea of motion, of revolution. Starting from the initial

position OX, Fig. 1, we may revolve the line about in

the direction indicated by the arrows, stopping in any
desired terminal position OPi, OP2 ,

OP3 ,
OP4 ,

etc. In this

way angles of any number of degrees whatever may be gen-

erated. Thus, if we stop in the position OF, we have an

angle of 90; in the position OX', 180; in the position

OP3,
225

;
in the position OY', 270, and so on. By mak-

ing one whole revolution we should arrive at an angle of

360
;
two and one half revolutions, 900; etc.

Not only so, but we might revolve from the initial posi-

tion OX in the opposite direction. Now oppositeness is

indicated algebraically by the use of the signs plus (+) and

minus ( ).
So that if we agree to take the positive direc-

tion of revolution counterclockwise, then clockwise will

be the negative direction and we can thus generate negative

angles of any magnitude whatever. Thus, Fig. 1, the

angle XOP3 is 225 if we have revolved in the positive

direction, but is 135 if we have revolved in the negative

direction. When an angle lies in value between and 90

it is said to be an angle in the first quadrant since its

terminal side lies in the first quadrant. An angle lying in

value between 90 and 180 is said to be in the second

quadrant; between 180 and 270, in the third quadrant;

between 270 and 360, in the fourth quadrant.
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EXAMPLES
Construct the angles

1. 300. 3. 750. 5. - 1215.

2. -210. 4. -495. 6. 420.

Add the following angles graphically :

7. 720 and 30. 10. 990 and - 60.

8. - 180 and 60. 11. - 45 and 120.

9. - 90 and - 45". 12. 135 and - 450.

If A is a positive angle in the first, second, third, or fourth quad-

rant respectively, add graphically

13. 450 and A. 15. 180 and -A.
14. - 270 and A. 16. - 540 and - A.

3. Abscissa, Ordinate, and Distance. Consider an angle,

positive or negative, of any magnitude whatever*, XOP, of

Fig. 2. From P, any point in the terminal side of this

angle, drop a perpendicular upon the axis of x. The lines

of the figure are named as follows : OM is called the

abscissa of the point P7
MP the ordinate, and OP the dis-

tance. The abscissa OM and the ordinate MP are together

called the coordinates of the point P. Note very carefully

that the abscissa is always read from to M, the ordinate

from M to P\ that is, in each case from the axis to the

* As a matter of convenience we do not consider angles numerically

greater than 360. It is obvious that the discussion applies equally well

to such angles.
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point. The distance is read from to P. Thus, for an

angle in the second or third quadrant the direction of the

abscissa is opposite to that of an angle in the first or fourth

quadrant. For an angle in the third or fourth quadrant
the direction of the ordinate is opposite to that of the

ordinate of an angle in the first or second quadrant.

Oppositeness in direction being distinguished as usual by
difference in algebraic sign we have the following con-

ventions :

Tlie abscissa measured to the right of the axis of y is

positive ; to the left, negative. The ordinate measured up-

ward from the axis of x is positive ; downward, negative.

The distance is measured from the origin outward and is

taken positive.

EXAMPLES

1. The abscissa of a point is 3, its ordinate 4
;
find the distance.

2. The distance of a point is 5, its ordinate 4
;
find the abscissa.

3. The ordinate of a point is 2, its distance 3
;
find the abscissa.

4. The ordinate of a point is 5, its abscissa 4
;

find the

distance.

5. Prove that the square of the distance of any point is equal to

the sum of the squares of the abscissa and ordinate.

6. Prove that for all points on a straight line through the origin

the ratio of the ordinate to the abscissa is constant.

4. The Trigonometric Functions Defined. Let us now

proceed to define the six trigonometric functions of an

angle; six quantities which depend upon the angle for

their values. They are the possible ratios between the

various pairs of the three lines named in Art. 3. Thus,

Fig. 2, the

sine XOP = ordinate of P= MP ^
^r^^ distance of P OP

cosine XOP = abscissa of P=,
distance of P OP

tangent XOP = ornate of P= MP
abscissa of P OM
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.'

cotangent XOP = -;;---
~
-^^ =abscissa of P
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6. Signs of the Functions. The second point to be noted

is that the signs of the functions vary according .to the

quadrant in which the angle lies. Thus, Fig. 2, for the

angle XOP in the first quadrant the abscissa, ordinate and

distance are all positive so that all the functions are

positive. For the angle XOP in the second quadrant the

ordinate and distance are positive, the abscissa negative.

Thus we have for the angle in the second quadrant

***>?-<-=.

The following table gives the signs of the functions in

the four quadrants.

QUAD. I II III IV QUAD.

sine -f- -f cosecant

cosine -f -f- secant

tangent + + cotangent

EXAMPLES

Determine the algebraic signs of

1. cos 218. 3. sin 1100. 5. sec 315.

2. tan (-460). 4. cot (- 99). 6. esc (- 210).

7. Let the student determine, as above, the signs of the trigono-

metric functions of angles in the third and fourth quadrants.
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7. Functions of Acute Angles. A special set of definitions

for the functions of acute angles, which are sometimes

useful and should be known, follows directly as a special

FIG. 4.

case of the general definitions given above. Thus, Fig. 4,

in which the angle XOP lies in a right triangle,

_ ordinate _ opposite side

distance hypotenuse

v/-ki> abscissa adjacent side
cos XOP = - = -^ >

distance hypotenuse

,

abs. adj. side

-,
ord. opp. side

,

abs. adj. side

ord. opp. side

These definitions, it must be noted, completely agree

with the more general definitions, but are applicable only

to angles less than ninety degrees, since angles greater

than ninety degrees cannot occur in right triangles.

8. Reciprocal Functions. Two questions would naturally

suggest themselves at this point: Are the trigonometric

functions of an angle related to each other in any particular
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way? and, second, if there be a definite relation between

two. given angles will the functions of those angles bear

some special relation to each other? We shall proceed to

answer the first of these questions affirmatively, but shall

leave the discussion of the second question to a later

chapter (Chap. II). Thus, if a be any angle, it follows

by the definitions of the trigonometric functions that

ordinate
sin = YT

listance

~~

tana =

ord.

abscissa 1

distance
~~

dist.
~~

sec n

abs.

ordinate _ 1 1

abscissa
~~

abs.
~~

cot a 9

ord.

or, the sine and cosecant, the cosine and secant, the tangent

and cotangent respectively of the same angle are reciprocals

of each other.

9. Tangent, Sine and Cosine. Again, by definition, and by
Art. 8,

ordinate

ordinate distance sin a

cot a =

abscissa abscissa cos a'

distance

1 cos a

tan a sin a sin a

cos a

These relations may be proved otherwise, thus, Fig. 5 :

MP
_. MP OP sin XOP

tan XOP = T^TT = T^TT = v/^p>OM OM cos XOP
~OP
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QM
OP _ cos XOP
MP~ sin XOP'
OP

9

_~ "

y

FIG. 5.

10. Sine and Cosine. Also, Fig. 5, it is obvious that

MP2 + OM2 = OP2
.

Dividing each term by OP
2

gives

OP)

Whence, by definition,

(sin XOP) 2
+(cos XOP) 2 = 1

or, as it is usually written, letting a = Z XOP,

sin2 a + cos2 a = 1.

11. Tangent and Secant. Similarly, writing the first

equation of Art. 10 in the form

and dividing each term by OM2

,
we have

(OPV_(MP\*
(OM)-(OM)
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That is (sec XOP) 2 = (tan XOPy + 1

or, sec2 a = tan2 a + 1.

In the same way we obtain the relation

csc2 a = cot2 a + 1.

12. Fundamental Relations. These relations, summarized

below, are of great importance and must be memorized.

sin a =

csc a =

tan a = ^^, cot a = ZZL=.
cos a sin a

sin2 a + cos2 a = 1.
(3)

sec2 a = 1 4- tan2
a, csc2 a = 1 4- cot2 a. (4)

13. By means of the identities of Art. 12 the value of

any one of the trigonometric functions may be expressed in

terms of each of the other five. Thus, by (3)

1
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Example 1. Given sin A =
-f ,

find the values of the

remaining functions.

ord. m-2 2^ -2
33*sin A =

dist. m 3

The distance being always positive, the minus sign nec-

essarily is taken with the ordinate. Therefore, Fig. 6,

construct an angle whose ordinate is 2 and whose dis-

FIG. 6.

tance is 3, or any multiple (m) of 2 and 3. The third

side of the right triangle is V9 4 = V5, This is

the value of the abscissa and we may write the values of

the six functions from the definitions.

,
o

sn

r,

V5
2

-7=v5

V5
sec XOP2

=
,
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Example 2. Given cot A =
-f,

find the remaining func-

tions.

cot A = abs.

ord.

m 5

m 4

5

-4'

since either the abscissa or the ordinate may be negative.
Construct an angle XOP1} Fig. 7, having an abscissa 5

and an ordinate -f 4, and an angle XOP2 having an abscissa

M,-5 x

x

+ 5

Wf

y'

FIG. 7.

4- 5 and an ordinate 4. In each case the distance is

found to be V25 + 16 = V41, and we may write

sn 4

V4l'
sin XOP2

= -
V4l'

sec

V41

5'

5

4'

V41

cos XOPo = 5
2 :=

cot

sec

o =

V41

_5
4'

VH

esc XOPl
= V41

esc XOP2
= V41

It will be seen that the ambiguity of the two sets of values

will occur in every case, no matter what function be given and

no matter whether the sign of the given function be plus or

minus.



I, 14] TRIGONOMETRIC FUNCTIONS 13

EXAMPLES

Find the values of the remaining functions, given that

1. sin a = J. 3. cot a = - 3. 5. sec a = 4.

2. cos a = - f . 4. tan a = f . 6. esc a = ^.

7. If sin x = 5, can the values of the remaining functions be

found ? Why ?

8. If sec x = |, can the values of the remaining functions be

found ? Why ?

9. If tan x = 4, can the values of the remaining functions be

found ? Why ?

" 10. Given sec a = |, find the functions of 90 a.

11. Given cot a = x, find the functions of 90 a.

Prove the following relations :

12. cos a = -
19

13. cota = 20
coscc

tana

Vsec2 a 1 i sin a cos a

14. seC tt =-ggg-g--
21..

Vcsc2 a 1 sec a
= sin a.

15. sin =- 22.
Vl + cot2 a sin2 a

16. tanft = -. 23. = cos .

cos a esc a

17. tan a = sin ff - . 24. tan a esc a = sec a.

Vl - sin2 a

18. cot a = cos a
25. cos a- sec a = .

vl cos2 a cos ot sec a

26. sec2 a csc2a = tan2 a - cot2 a.



CHAPTER II

IDENTICAL RELATIONS AMONG THE FUNCTIONS OF
RELATED ANGLES. THE VALUES OF THE FUNC-

TIONS OF CERTAIN ANGLES

15. Functions of Negative Angles. We shall now proceed
to determine the relations which exist among the functions

of two angles when those angles are related in some par-

FIG. 8.

ticular way. Let us consider first two angles one of which

is the negative of the other, Fig. 8. Let the value of the

positive angle XOP be a, and of the numerically equal

negative angle XOP ' be a. On the terminal sides of

these angles lay off the equal distances OP and OP', and

drop perpendiculars from P and P 1

upon the axis of x.

These perpendiculars will obviously cut the axis of a; in

14
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the same point, M, and the two right triangles MOP and

MOP' will be congruent. Therefore, OF'=OP, OM= OM,
and MP' = - MP. We then have

MP' - MP

Thus any function of a negative angle is equal, numeri-

cally, to the same function of an equal positive angle. The

algebraic sign is determined by the quadrant which a lies

in when a is acute.

16. Functions of 90 a. Consider next two angles,

a and 90 -
, Fig. 9. Let XOP be the angle a and XOP'

be 90 a. Lay off on the terminal sides of these angles
the equal distances OP and OP

',
and from P and P '

drop

perpendiculars PM and P'M 1

upon the axis of x. Then

obviously the right triangles MOP and M'OP' are congru-

ent, and OF = OP, M'P ' = OM, and OM ' = MP. There-

fore,

1

* By virtue of Art. 12, it is necessary to memorize only sin ( a) and
cos (a).
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Sec(90- a)
=
|j;

= |=csc,

BC (<W- )=-!;= = see a.
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the results will be equally true for any value of a whatever.

In Fig. 10 let the angle XOP be a and XOP' be 90 + .

On the terminal sides of these angles lay off the equal dis-

tances OP and OP', and from P and P' drop perpendiculars
PM and P'M'

upon the axis of x. It follows that the two

FIG. 10.

triangles MOP and M'OP f
are congruent and that OP7

= OP, M'P' = OM, OM' = - MP. Therefore,

18. Functions of 180 4- a.

be a and XOP' be 180 + a.

In Fig. 11 let the angle XOP
On the terminal sides of these
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angles lay off the equal distances OP and OP, and from
P and P drop perpendiculars PM and P'M' upon the axis

x' M

of X. Then the triangles MOP and M'OP' are congruent
and OP' = OP, M'P' = - MP, OM'= - OM. Therefore,

sin (180 + )
= =~

19. Generalization. In a similar manner may be found

analogous relations connecting the functions of an angle a

with the functions of any integral multiple of 90 plus or

minus a. Upon examining these relations we are led, by
iduction, to express them in the following general rule.

Any function of an even *
multiple of 90 plus or minus a

is the same function of the angle a.

* Zero is taken as an even number, so that the rule includes the case

of Art. 15.
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Any function of an odd multiple of 90 plus or minus a is

the co-function of the angle a.

The algebraic sign of the value is determined by the quad-

rant (counting in the positive direction) in which the terminal

side of the angle lies when a is acute.

Examples.

1. sin (720 )
= sin a, since 720 is an even multiple

of 90 and the terminal side of 720 a, when a is acute,

lies in the fourth quadrant.

2. cot (
90 )= tan a, since 90 is an odd multiple

of 90 and the terminal side of 90 a, when a is acute,

lies in the third quadrant.

3. sec (
180 + a) sec a, since 180 is an even

multiple of 90 and the terminal side of 180 -f a, a acute,

lies in the third quadrant.

4. tan 281 = tan (270 + 11)= - cot 11, or

tan 281 = tan (360
- 79)= - tan 79,

since I
,

is an
j

multiple of 90 and the terminal

side of 281 lies in the fourth quadrant.

(~z &
EXAMPLES

By means of a geometrical construction express each of the follow-

ing as a function of a, where a is an acute angle. Check your results

by the rule given above.

1. cos (270 + a}. 5. cot (270 -
a).

2. sin (180 -a). 6. sec (270 -
a).

3. esc (- 90 + a). 7. sin (- 180 -
a).

4. tan (540 + a). 8. cos(- 270 + a).

Express as a function of an acute angle

& 9. sin 324. 13. sec (-537).
10. cos (-375). 14. cot 1140.

11. tan 457. 15. tan 496.

12. esc (-801 32'). 16. cos (-480).
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20. Functions of Certain Angles. We see by the preced-

ing article that the functions of angles greater than 90,
and of negative angles, can be expressed in terms of the

functions of angles lying between and 90. It follows

that if we wish to use the trigonometric functions for com-

putation or for other purposes we need find their values

only for all positive acute angles. We shall not discuss

the methods by means of which these values are computed
in general, but shall proceed to find the values of the func-

tions of certain angles which frequently occur. We shall

then, in the following chapter, show how we may find the

values of the functions of any angle from tables with which

we are provided. We shall see, also, how the values thus

found may be used in the solution of triangles ;
that is, in

finding the unknown parts, angles or sides, of a triangle

from parts which are given.

21. Functions of 30 and 60. Let the angle XOP, Fig. 12,

be an angle of 30, and from P drop a perpendicular, PM,

aVT

FIG. 12.

upon the axis of x. Then, as we know, the angle 0PM is

a
60, and if OP have the value a, MP must be equal to -

and OM equal to
aV3

Therefore, by definition,
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tan 30 =

a

MP ~~2

OM aV3 V3

oV3
03f 2 V3

cos30 = = =
^T

oV3

V3 MP a

2

By a similar construction, or by the relations of Art. 16,

the following values may be derived :

sec 60 = 2,sin 60 = ^2, tan60=V3,
2

cot 60 =
V3

esc 60 =
vs

FIG. 13.

22. Functions of 45. Let the angle XOP, Fig. 13, be an

angle of 45, and from P drop a perpendicular, PM, upon
the axis of x. Then the angle 0PM is an angle of 45, and

if OM have the value a, MP also will be equal to a and OP
will be aV2. Therefore, by definition,
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5

aV2 V2 OP aV2

23. Functions of Other Angles Readily Found. By sim-

ilar constructions the functions of 120, 150, 135, etc., or,

in general, any integral multiple of 90 plus or minus 30,

60, or 45, may be found. They may be found more

readily, however, by using the rule given in Art. 19. Thus,

sin 120 = sin (90 + 30) = cos 30 =
. 2

or

sin 120 = sin (180
- 60)= sin 60 = .

EXAMPLES

Find the values of the functions of

1. 120. 4. 210. 7. 300.

2. 135. 5. 225. 8. 315.

3. 150. . 6. 240. 9. 330.

Prove that

10. sin 210 tan 300 = sin 120.

11. sec 315 sec 300 = sec 240 sec 225.

12. tan 210 : cos 150 = tan 150 : cos 330.

13. esc 330 sec 315 sin 225 = - sec 120.

24. Functions of Zero. Let the value of the angle XOP,
Fig. 14, be represented by a, and from P, any point in the

terminal side of the angle, drop a perpendicular, PM, upon
the axis of x. By definition,
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Now, for the sake of convenience keeping the distance

OP constant in length, let the line OP approach nearer and

nearer to the position OX. Then the angle a can be made,*

smaller than any angle that may be assigned, however

FIG. 14.

small, or, as it is otherwise expressed, a will approach the

limit zero. At the same time MP will approach zero as a

limit, and OM will approach OP as a limit.

OM
Then will

approach the limit zero and
OP

OP
will approach the limit

unity. Thus, as the angle approaches the limit zero (or,

becomes smaller than any value that may be assigned, how-

ever small) its sine approaches the limit zero (or, becomes

smaller than any value that may be assigned, however

small) and its cosine approaches the limit unity (or, differs

from unity by a number smaller than any number that may
be assigned, however small). This may be written

limit sin a = 0, limit cos a = 1.
o=0

OP
Again, by definition, esc a =

,
and as a grows smallerMP QpOP remains constant and MP grows smaller, so that

becomes continually greater. Finally, when a approaches
zero as a limit, MP becomes smaller than any number that

* And will remain.

1*5
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OP
may be assigned, however small, and - becomes greater

than any number that may be assigned, however great.

OP
This we express by saying that - approaches the limit

infinity, or increases without limit. We may then write

limit esc a = 00.
a=0

Similarly it may be shown that

limit tan a = 0, limit cot a = oo, limit sec a = 1.

These relations are often briefly expressed,

sin = 0,

cosO = l

tan = 0,

cot 0= oo,

sec = 1,

esc 0= co.
(6)

to which there is no objection if we remember that these are

merely abbreviations of the preceding statements, and that

FIG. 15.

means, not that we have no angle, but that" we are deal-

ing with an angle which becomes smaller than any value

that may be assigned, however small ; and that when this

happens the sine of the angle also becomes smaller than

any value that may be assigned, however small, the cotangent
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becomes greater than any value that may be assigned, how-

ever great, the cosine approaches the limit unity, etc.

25. Functions of 90. Let the angle XOP, Fig. 15, be

represented by a, and let OJf, MP, and OP be respectively

the abscissa, ordinate, and distance of P. Also, keeping the

distance OP constant, let the line OP approach Y as its

limiting position. Then,

a approaches the limit 90,
OM approaches the limit zero,

MP approaches the limit OP.

Therefore,

limit sin a = limit- = 1.
a=90 OP

limit cos a = limit- = 0.
a=90 OP

limit tan a = limit- =
oo,

a=90 OM
limit cot a = limit- = 0.MP

OP
limit sec a = limit - =

oo,
a=90 OM

OP
limit esc a = limit- = 1.

a=90 MP
With the same understanding as in the preceding article

these may be written

sin 90 = 1, tan 90 =
oo, sec 90 = oo,

cos 90 = 0,
' cot 90 = 0, esc 90 = 1.

26. The student should find, as in Arts. 24 and 25, the

following :

sin 180 =
0, tan 180 = 0, sec 180 = - 1,

cos 180 = - 1, cot 180 =
oo, esc 180 = oo.

sin 270 = -
1, tan 270 = oo, sec 270 = oo,

cos 270 = 0, cot 270 = 0, esc 270 = - 1.
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27. Limiting Values of the Functions. We have seen

(Art. 20) that all possible numerical values of the trig-

onometric functions are given by angles lying between

and 90. Let us now see between what limits the values of

the functions lie. From the discussion and figures of articles

24 to 26 we see that

the sine and cosine of an angle lie between 1 and + 1,

the tangent and cotangent lie between oo and -f- oo,

the secant and cosecant lie between 1 and oo or between 1

and oo.

It is well to note also, for angles in the first quadrant,
that as the angle increases the direct functions increase,

the co-functions decrease.

A very convenient and simple way to remember the range
of values and the signs of the trigonometric functions is by

FIG. 16.

means of the unit circle, a circle with unit radius, which

need not be actually drawn but merely visualized. Draw
such a circle, Fig. 16, with its center at the origin of co-

ordinates, and let XOP be any angle. Drop the perpendicu-

lar PM upon the axis of X, and draw LQ tangent to the

circle at L and meeting OP produced in Q. Then, by

definition,
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tan XOP= = = LQ, etc.
OL 1

If now the line OP be pictured as revolving from the

position OL, the sine of the angle XOP, namely MP, will

be seen to increase from zero and approach unity as the

angle approaches 90. The cosine, namely OM, decreases

from unity to zero, and the tangent (LQ) increases without

limit. Also, as the angle increases beyond 90, the direc-

tions of the lines MP and OM indicate the signs of the

sine and cosine. The other functions follow directly from

these two by virtue of the relations of Art. 12.



CHAPTER III

THE SOLUTION OF RIGHT TRIANGLES. LOGARITHMS
AND COMPUTATION BY MEANS OF LOGARITHMS

28. Solution of Right Triangles. With the definitions of

the trigonometric functions and tables giving their nu-

merical values we are now prepared to solve right tri-

angles ;
that is, to find the values of the unknown parts

from those that are known. Two parts in addition to the

right angle must be known,
and one at least of these parts

must be a side. We have then

the general rule of procedure :

Select that trigonometric func-

tion which involves the two

known parts and one unknown
FlG - 17 '

part. The value of the un-

known part can then be computed by elementary algebraic

processes.

Example 1. Given A = 32 16', a = 124, C = 90, find B,

&, and c. See Fig. 17.

Obviously B = 90 - A = 90 - 32 16' = 57 44'. Then

a =124

A-32'16' :

= 90

cot A = -,
a

A a
sin A = -,

c

or
b = a cot A.

From the tables we find

cot A = 1.5839.

a

sin A

sin A = .5338.

28
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Therefore,

6 = 124x1.5839 c= 124

.5338

= 196.4. = 232.3.

Example 2. Given a = 50, 6 = 60, C = 90, find A, B,

and c.

In this case,

A = 39 48'.

B = 90 - A = 50 12'.

To find c we may use either

sin A = - or c2 = a2
-f

sin A
50 =V2500 + 3600

.6402

= 78.1. = 78.1.

EXAMPLES

Solve the following right triangles :

1. a = 250,
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9. If a tree 74.3 feet high casts a shadow 42.6 feet long, how

many degrees above the horizon is the sun ?

10. A man walking on level ground finds, at a certain point, that

the angle of elevation of the top of a tower is 30. He walks directly

toward the tower for a distance of 300 feet and then finds the angle
of elevation of the top to be 60. What is the height of the tower ?

11. At a point, J., south of a tower the angle of elevation of the

top of the tower is 60. At another point 300 feet east of A the angle
of elevation is 30. What is the height of the tower ?

12. The angles of a right triangle are 42 and 48
;
the hypotenuse

is 200 feet. What is the length of the perpendicular from the right

angle to the hypotenuse ?

13. The height of a gable roof is 20 feet, its width 42 feet. What
is the pitch of the roof

;
that is, the angle it makes with the

horizontal ?

14. From where I stand a tree 50 feet away has an angle of eleva-

tion of 43 31'. From the same point another tree, 75 feet distant,

has an angle of elevation of 32 20'. Which tree is the taller and by
how much ?

29. Logarithms. The solution of right triangles as thus

explained is simple in theory but may become laborious in

practice because of the arithmetic computation involved.

Fortunately we have in logarithms a device for simplifying

such computation. The base of a system of logarithms is,

in general, any arbitrarily chosen number.* In practice

two systems are used : the Briggsian or common system of

which the base is 10
;
and the Napierian system of which

the base is e = 2.718 . The logarithm of a number to a

given base (a) is the exponent of the power to which the

base (a) must be raised to produce the number. Thus, if

ax = m, then x is the logarithm of ra to the base a
;
written

x = loga m.

The word power is used here in its broader sense to in-

clude fractional and negative exponents. Defining frac-

tional and negative exponents in such a way that the laws

of exponents aman = am+n
; (a

m
)
n = amn hold for nega-

tive numbers and fractions as well as for positive integers,

* Some numbers, unity, for example, cannot be so used.



Ill, 30] SOLUTION OF RIGHT TRIANGLES 31

values of x may be found to satisfy, approximately at least,

such an equation as ax = &, no matter what values a and b

may have. Thus, given any number, a, by raising it to a

suitable power, p, and extracting a suitable root, g, of the

result, we can obtain any other number, b
;
that is, -^/~a

p = b.

But this may be written a9 = b or ax =
6, where # = -^

,
the

division of p by q being carried out to any desired number

of decimal places. We then call x the logarithm of b to the

base a.

30. The Common System. For purposes of computation
the common system, base 10, is used. Let us form a table

of powers of 10 and express the relations in terms of

logarithms.

10-s = .001, or logw .001 = - 3.

10-2 = .01, Iog10 .01

10-1 =
.l, loglo .l

100 = i
9

loglo l = o.

101
=10, Iog10 10 =1.

102 = 100, Iog10 100 = 2.

103
=1000, Iog10 1000 = 3,*

etc. etc.

This table could be extended indefinitely in either direc-

tion. If we examine the table we notice that to produce a

number between 1 and 10 we must raise the base 10 to a

positive power between and 1
;
to produce a number be-

tween 10 and 100, the exponent of the base must lie between

1 and 2
;
for a number between 100 and 1000, the exponent

must lie between 2 and 3, and so on. In other words, the

logarithm of a number between 1 and 10 lies between and

1, and is, therefore, a fraction, always expressed as a deci-

mal. The logarithm of a number between 10 and 100 lies

between 1 and 2, or is 1 plus a decimal. The logarithm of

* Hereafter in this work we shall not write the base 10. Thus log 7

means Iog10 7. In general, however, except in works on trigonometry, if

no base is written, e 2.718 -"is understood.
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a number between 100 and 1000 is 2 plus a decimal. The

logarithm of a number is thus seen to consist, in general,

of two parts, an integral part and a decimal part. The

integral part is called the characteristic of the logarithm ;
the

decimal part is called the mantissa. The results of our

observations may be summarized thus :

NTTMBER BETWEEN CONTAINS

1 and 10 1 integral digit

10 and 100 2 integral digits 1

100 and 1000 3 integral digits 2

Whence we formulate the law : TJie characteristic of the

logarithm of a number is one less than the number of digits

in the integral part of the number.

On the other hand, we observe from the table of this

article that if a number contain no integral digits, that is,

if it be purely decimal, its logarithm is negative. The

characteristic in this case can be got by counting the num-

ber of zeros before the first significant figure, prefixing the

minus sign. It is usual, and better, however, except for

special purposes, not to write the characteristic of the loga-

rithm of a decimal number in the form just stated, for

reasons which will now be pointed out.

31. The Mantissa. In the common system the mantissa

of the logarithm of a number can be made to depend only

upon the sequence of digits in the number, and be inde-

pendent of the position of the decimal point. Let us

assume that we know the logarithm of 1.285 to be 0.1089.

It follows, multiplying successively by ten, that

10o.io89 = L285, or log 1.285 = 0.1089.

101 -1089 = 12.85, log 12.85 =1.1089.

102-1089 = 128.5, log 128.5 =2.1089.

103.io89 = 1285, log 1285 =3.1089.

104.io89 = 1285o, log 12850 = 4.1089.
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which verifies the law we have stated. If, however, we
divide 10-1089

successively by 10 we find

10o.io89-i = 10 -o.89ii = 1285, or log .1285 = - 0.8911.

10-i.89ii = .01285, log .01285 = - 1.8911.

10
-2.89ii = .001285, log .001285= - 2.8911.

This is the true form of the logarithm of a purely
decimal number, and for certain purposes this is the form

which must be used.*

It is obvious from the preceding discussion that the

mantissa corresponding to a given sequence of digits re-

mains the same as long as the sequence contains one or

more integral digits, but that as soon as the sequence is a

purely decimal number the mantissa changes. To obviate

this difficulty and to keep the mantissa the same for a given

sequence of digits regardless of the position of the decimal

point, we note that the number 0.8911 may be written,

without change of value, in the form 9.1089 10. We
have added 10 and subtracted 10, and have therefore left

the value unchanged. We may then say

log .1285 = - 0.8911 = 9.1089 - 10,

and if we agree to use the latter formf we see that the

mantissa of the logarithm of .1285 (that is, 1089) is the

same as the mantissa of the logarithm of the sequence 1285

when it contains integral digits. We may now write

log 1.285 =0.1089 log .1285 = 9.1089 - 10

log 12.85 = 1.1089 log .01285 = 8.1089 - 10

and make the statement: In the common system the mantissa

of a logarithm is unique for a given sequence of digits. TJie

* For example, in dividing one logarithm by another.

t This form, 9.1089 10, is perfectly convenient as long as the opera-
tions to be performed are addition and subtraction, which are the usual

operations in dealing with logarithms.
D
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characteristic is one less than the number of integral digits.

If a number be purely decimal, count the decimal point and

the zeros before the first significant figure. The result sub-

tracted from 10 minus 10 will be the characteristic.

32. Four Computation Theorems. The use of logarithms

in computation depends upon the four following theorems :

I. In any system the logarithm of a product is equal to the

sum of the logarithms of its factors.

To prove, loga mn s = Iog m -f loga n + + loga s.

Let logd m = x then ax = m

loga n = y a v = n

loga s =z a* = s.

Whence a* av a2 = ax+v+ '" +* mn s,

or, by the definition of a logarithm,

log tt
mn -. s = x + y + + z.

That is, loga mn s = Iog m + loga n + + loga s.

This theorem replaces the operation of multiplication by
the simpler operation of addition.

II. In any system the logarithm of a quotient is equal to

the logarithm of the dividend minus the logarithm of the

divisor.

To prove,
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or, by the definition of a logarithm,

That is,

log = log ra - logtt
n.

tit

This theorem replaces the operation of division by the

simpler operation of subtraction.

III. In any system the logarithm of a power of a number

is equal to the exponent of the power times the logarithm of the

number.

To prove, logamn = n Iog m.

Let loga m = x or a* = m.

Whence (a*)
n = anx = wT,

or, by the definition of a logarithm,

Iog mn = nx.

That is logfl
w" = n Iog m.

This theorem replaces the operation of. involution, or

successive multiplications, by the simpler operation of a

single multiplication.

IV. In any system the logarithm of a root of a number is

equal to the quotient of the logarithm of the number by the

index of the root.

To prove log(> V^ =^.
n

Let logd m = x or a* = m.

Whence ~\/a
x = an =

or, by the definition of a logarithm,

n
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That is loga^/m =
1^^.

n

This theorem replaces the operation of evolution, or

extraction of roots, by the simpler operation of division.

Another theorem, important in the theory of logarithms,
but of which no application is made in the study of

trigonometry is the following :

Proof : Let logt
m = x then b1 = ra

Iog6 a = y by = a.

L -L

Whence m bx (b
y
)
y = a y

loga m = *

y

By means of this theorem the logarithm of a number to

any base can be found if the logarithms of numbers to some

one base are known. Thus, assuming that logarithms to

the base 10 are known,

W 71 21 = lQg' 71 '24 - 'g' 7t24 - 1 '8627 = i 2650
loglo e logw 2.718 0.4343

As a corollary of the above theorem we have, putting

6 = m,
1

loga m =---
logm a

33. Special Properties of Logarithms. In addition to the

preceding theorems we may note the following properties

of logarithms :

1. In any system the logarithm of 1 is 0. For, by the

definition of zero exponent, a = 1 . Therefore, loga 1 = 0.

2. In any system the logarithm of the base is 1.

For a1 = a. Therefore, loga a = 1.
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3. In any system whose base is greater than 1 the

logarithm of is oo. For, a > 1, or00 = = = 0.
a00

Therefore, loga = oo. That is, the base of the system

being greater than unity, the logarithm of a number which

becomes smaller than any assigned number however small,

is negative and numerically greater than any assigned
number however great.

4. The cologarithm of a number is the logarithm of the

reciprocal of the number.

Thus, the base being 10,

colog n = log
- = log 1 log n,
n

or,

colog n = log w,

which may be written,

colog n = (10 10) log n.

Therefore, to find the cologarithm of a number to the

base 10 subtract the logarithm of the number from 10 10.

It may be noted that

log = log m - = log m + log
- = log m -f colog n.

n n n

Therefore we may, instead of subtracting the logarithm of

a number, add its cologarithm. It is found convenient to

do so in most cases.

34. The following example will illustrate the use of

logarithms in making numerical computations.

Example.

Find the value of

.0005616 x V- 424.65

(6.73)
4 x (.03194)*

We note first that, with the definition of logarithms we
have adopted, negative numbers have no logarithms. But
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the numerical result of operations of multiplication and

division is the same no matter what the combination of

algebraic signs. We therefore find the numerical value of

any expression, treating all numbers as positive, and deter-

mine the algebraic sign of the result by considering the

operations indicated. Thus, in the above example the

factors are all positive except -\/ 424.65. Therefore, the

number of which we are to extract the cube root is negative
and the final result will be negative.

log .0005616 = 6.7494 - 10

| log 424.65 = 0.3754

4 colog 6.73 = 6.6880 10

| colog .03194 = 1.2464

3)5.0592
- 10

log ^=8.3531 -10
^=.02255.

Therefore

.0005616 x\/- 424.65

(6.73)
4 x (.03194)*

NOTE. The colog 6.73 = 9.1720 10, which being mul-

tiplied by four gives 36.6880 40
; subtracting and add-

ing 30 this becomes 6.6880 10, the desired form of " a

number minus 10." Similarly to divide 5.0592 10 by
three we first add and subtract 20. Also, in finding five

sixths of the cologarithm of .03194, we first multiply by 5

and then divide by 6, in order that any error arising from

inexact division by 6 may not be increased 5-fold.

35. We may now return to the problems of Art. 28 and

solve them by the use of logarithms.

Example 1. Given ^4 = 32 16', a = 124, (7=90, find

Bj b, and c.

As before,

b = a cot A
y

c =
sin A
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Therefore

log b = log a + log cot A, log c = log a log sin A.

log a =2.0934 log a =12.0934-10

log cot A = 0.1997 log sin A = 9.7274 - 10

log b =2.2931 logc= 2.3660

b = 196.4, c = 232.3.

Example 2. Given a = 50, b = 60, C = 90.

As before,

tanA = -
,
therefore log tan ^1 = log a log b.

b

log a = 11.6990 - 10

log 6= 1.7782

log tanA= 9.9208-10
A = 39 48'.

Also

. or log c = log a log sin A.

log a = 11.6990 -10
log sin A = 9.8063 - 10

logc= 1.8927

c=78.1.

It must be emphasized that results obtained by logarith-

mic computation are approximate. The value of the loga-

rithm of a number cannot, in general, be found exactly, but

only approximately to four, five, or any desired number of

decimal places. TJie results of numerical computation by
means of logarithms are not, in any case, correct beyond the

number of decimal places in the logarithms used to make the

computation. In the same way, the values of the trigono-

metric functions being, in general, not exact but approxi-
mate to four, five, or more decimal places, the solutions of

triangles got by their use, with or without logarithms, are

approximate solutions only, to the degree of accuracy of the

tables used.
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Indeed, in all but the simplest problems in applied
mathematics the results are necessarily approximate, the

data of a problem being themselves approximate. It is use-

less to try to make results " more accurate "
by using tables

of logarithms or other functions carried to seven places

when the data are correct only to, say, three figures. In

general if data are given to three figures, three-place tables

should be used
;

if to seven figures, seven-place tables, etc.

On the other hand, no matter to how many figures the data

may be given, if we are using, say, four-place tables, the data

should be used and results found to four figures only. To

illustrate these points the following simple example will be

worked in four ways : 1. by actual multiplication ;
2. by

using four-place tables
;

3. by using five-place tables
;

4. by

using seven-place tables.

Example. Find the value of

123045 x 200368.

1. By actual multiplication the result is 24,654,280,560.

2. log 123045

123
1

= 5.0899

log 200368

200
|

4 = 5.3019

log product = 10.3918

product = 24,650,000,000

which agrees with the first result to four figures.

3. log 1230
1

45 = 5.09007

log 2003 |

68= 5.30183

log product = 10.39190

product = 24,655,000,000

which does not agree with the first result to the fifth figure.

It will be noted that there was an accumulation of errors all

in one direction. Result 3 is nearer to result 1, however,

than is result 2.
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4. log 12304| 5= 5.0900640

log 20036 8= 5.3018284

log product = 10.3918924

product = 24,654,280,000

which agrees with the first result to seven figures.

EXAMPLES
What is the value of

1. IQlog 7.218. 2. loglO
2 -6994

.

3. Given log 2 = 0.3010, log 3 = 0.4771, find log 12.

4. Prove 10lo? a+ 1 = 10 a.

5. Is log 14 = log 2. log 7? Why?

6. 18^12 = 1?? Why?
log 3. 3

Find the value of

g log .00365
9 log 77.95

log .05312*
'

log .00684*

Find the value of x in the following equations :

10. logics = 3. 12. loge x = 2.

11. Iogi x=|. 13. loge x = f.

14. log x . loge x = logio
2

.

15. a logio x b logio x = a2 62
.

16. loge x3 -
loge x2 = 5.

17. \ logio z 10 -
logio z3 = 4.

Express as the logarithm of a fraction :

18. log (x
2 -

<z2)2
_

log (x
2 -

2)
_

log (x + a).

19. Iog\/x2 + a2 -
log v/x2 + a2 + log (x

2 + a2
)^.

Solve the equations :

20. e* + e~x = 2. 21. e? e~x = 0.

22. e2^- 1 ) 2 e1
-

1 + 1 = 0. 23. e2'*- 1 ) + 2 ex
~ l + 1=0.

24. Given 10* = 400, prove that x = 2 + logio 4.

25. Solve the equation

a2e-< _ &2e-&* o. (Assume a > 6)
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Find the value of ate-"* bze~bx :

26. When x = s e_ . (a > 6)
a b

27.
a b

(>&)

Compute the values of the following :

28. loge l. 29. log, 2. 30. log, 3.

By means of logarithms compute the values of :

31. Ioge 4.

32.
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PROBLEMS

21. A road rises 348.9 feet in a horizontal distance of one half

mile. Another road rises the same height in a distance of 3019 feet

along the road. Which road is the steeper and by how much ?

22. From a ship sailing due east at the rate of 7.6 miles per hour

a headland bears due north at 10.35 A.M. At 12.46 P.M. the headland

bears 33 west of north. How far was the headland from the ship

in each position ?

23. At a distance of 502.3 feet, horizontally, from the center of a

bridge the sidewalk rises at an angle of elevation of 5. The roadway,

beginning 203.5 feet farther away from the center, has an angle of

elevation of 4 25'. If a pedestrian and a team enter the bridge at

the same moment, which will reach the center first, the man, walking

3.4 miles per hour, or the team, going 5.6 miles per hour ?

24. A flagpole 20 feet long stands on the corner of a building

143.6 feet high. Find the angle subtended by the flagpole from a

point 100 feet distant from the foot of the building in a horizontal

line.

25. If the radius of a circle is 835.4 feet, what is the length of the

chord which subtends an arc of 45 37' ?

26. In a circle whose radius is 35.37 inches is inscribed a regular

polygon of fifteen sides. Find the length of a side.

27. A tree 214.8 feet high casts a shadow 167.4 feet long. How

many degrees is the sun above the horizon ? What is the time of

day if the sun rose at six o'clock and will set at six o'clock ?

[Assume that the sun passes through the zenith.]

28. A gable roof is 23.4 feet high and 90.6 feet broad. By how
much must the height be reduced to reduce the pitch of the roof 40

per cent ?

NOTE. The pitch of a roof is the angle between the slope of the

roof and the horizontal line.

29. From the top of a cliff 378.6 feet above the sea, the angles of

depression of a boat and a buoy, in line with the observer, are found

to be 29 20' and 11 50' respectively. Is the boat or the buoy farther

from the base of the cliff ? How much farther ?

30. The point B is 1249 feet due east of the point J., and the point

C is 376 feet due east of B. The angle of elevation of B above A is

9 13'
;
of C above B, 7 23' . A railroad runs from A to C via B.

What is the increase in altitude from A to C ?
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31. If, in Example 30, the railway could, by grading, be made to

run in a straight line from A to (7, what would be the angle of eleva-

tion of the new route ?

32. How much shorter would the railway of Example 31 be than

the railway of Example 30 ?

33. Taking the earth as a sphere of radius 3956 miles, what is the

length of the radius of the Arctic Circle, latitude 66 32' N. ?

34. Taking the earth as a sphere of radius 3956 miles, what is the

latitude of a place which is 2113 miles from the earth's axis ?

35. A vessel sailing due south at a uniform rate observes at

7.15 A.M. that a lighthouse bears 70 east of south. At 8.05 A.M. the

lighthouse is 12.75 miles due east from the ship. How far from the

ship, and in what direction, will the lighthouse be at 9.30 A.M. ?

36. A ship sailing due south at a uniform rate observes, at 6 A.M.,

a lighthouse 11.25 miles away, due east. At 6.30 A.M. the lighthouse

bears 17 57' north of east. What will be the bearings of the light-

house from the ship at 9 A.M. ? How fast does the vessel sail ?

37. Taking the Earth as a sphere with diameter 7912 miles, what is

the distance of the farthest point on the Earth's surface visible from

the top of a mountain 8200 feet in height ?

38. The towns B and C lie due east from the town A, B being half-

way from A to O, which are 5 miles apart. The towns 5, (7, and D
are equally distant from each other. How far is D from A and in

what direction ?

39. A ray of light from a source, A, strikes a mirror, 102 mm.
broad, at a point two thirds of the way from the edge. The ray is

then reflected to E at a perpendicular distance 25.7 mm. from the

mirror. Eind the length of the path traveled by the ray.

40. From a window of a house, on a level with the bottom of a

spire, the angle of elevation of the top of the spire was 41. From
another window, 20.5 feet directly above the former, the like angle

was 37 31'. What was the height of the spire ?

41. Having at a certain (unknown) distance measured the angle of

elevation of a cliff, a surveyor walked 60 yards on a level toward the

cliff. The angle of elevation from this second station was the com-

plement of the former angle. The surveyor then walked 20 yards
nearer the cliff, in the same line, and found the angle of elevation

from the third station to be double the first angle. How high was

the cliff ?



CHAPTER IV

FUNDAMENTAL IDENTITIES

36. In this chapter we shall discuss some of the impor-
tant relations of analytical trigonometry. The number of

such relations is, of course, unlimited, but there are a few,
of frequent occurrence and of fundamental importance,

upon which the others depend ;
it is this fundamental group

with which we shall now deal. Let us first observe how
the need for some of the relations may arise. We have

seen (Art. 27) that as the angle increases from the sine

of the angle also increases. But does the sine increase at

the same rate as the angle, so that, for instance, if the

angle be made twice as large the sine also becomes twice

as large ? This is obviously not so, for, as we have seen,

the sine of 60 is not twice the sine of 30. What then

are the relations, if there be any such, by which we may
find the functions of twice an angle when the functions of

the angle are given ? or again, is there any relation con-

necting the functions of the sum of two angles with the

functions of the angles separately ? Such questions as

these we shall now proceed to answer.

37. The Addition Formulae. Let x and y be two acute

angles, whose sum may be an angle either in the first

quadrant or in the second. Construct, Fig. 18, the angle
XOP equal to x and add to it the angle POQ equal to y.

Then the angle XOQ is equal to x + y. From any point,

A) in the terminal side of the combined angle x 4- y draw
AB perpendicular to the. axis of x which is the initial side

of the angle x. Then OB, BA, and OA are respectively
the abscissa, ordinate, and distance of the point A and we

45
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may write any function of the angle x + y. But as we
wish to express the functions of x + y in terms of the func-

tions of x and y, we proceed to draw lines which will give

us those functions. Thus, from A draw AC perpendicular
to the terminal side of the angle x, and from C draw CD
perpendicular to the axis of x and CE perpendicular to AB.

FIG. 18.

Then since AE is perpendicular to OX and AC to OP, the

angle EAC is equal to the angle x, each of the angles being

acute. We now have

, . BA BE + EA DC.EA
w(x + y)= = -- ='

But these last two ratios are not functions of any of the

angles in the figure. To obtain a function of x or y we
must use with DC either OD or OC, and with OA either

DCOC or CA. Therefore we shall multiply and divide -

OA
by the common line OC. Similarly with EA and OA we
use CA. Thus we may write

v DC OC^EA CA
m(x+ y)= + .-

or
sin (x + y)

= sin x cos y + cos x sin y.
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In the same way

N OB OD-BD OD EC
^- --

OC_EC AC*
OC

'

OA AC
'

OA 9

47

or
cos (x -f y)= cos x cos y sin x sin y.

38. The Addition Formulae (continued). Again let x and y
be two acute angles where x may be either greater or less

FIG. 19.

than y. Construct, Fig. 19, the angle XOP equal to x and

from it subtract the angle QOP equal to y. Then the angle

XOQ is equal to x y. From A, any point in the termi-

nal side of the combined angle, draw AB perpendicular to

the axis of x which is the initial side of the angle x. Then

OB, BA, and OA are, respectively, the abscissa, ordinate

and distance of A. From A draw AC perpendicular to the

terminal side of the angle x, and from C draw CD perpen-
dicular to the axis of x and CE perpendicular to BA pro-

we** Note that in = we use AC as the positive direction of the line,AC AC
therefore AC must be positive in the ratio

^
also.
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duced. Then since AE is perpendicular to OX and AC to

OP, the angle EAC is equal to the angle x, each being
acute. We now have as in Art. 37,

. , , BA BE-AE DC AE**-=

__~
OC

'

OA AC
'

OA\
or,

sin (x y) = sin x cos y cos x sin y.

OA OA OAOA
= QD OC CM CA
~OC

'

OA CA
'

OA'
or,

cos (x y)
= cos x cos y -f sin x sin y.

39. We have thus proved the formulae

sin (x y) = sin x cos y cos x sin y, _
cos (x y) cos x cos y =F sin x sin y,

for values of x and ?/ less than 90. It now remains to be

proved that these relations are true for all values of x and

y. This may be done by a geometric construction as in the

cases given, but the following method is preferable.

40. Let x be an angle in the second quadrant and y an

angle in the third quadrant. Then we may put x = 90 + a

and y = 180 + &, where a and b are acute. We may now

write _ _
cos (x + ?/)

= cos (90 -f a + 180 + 6)

= cos (270 + a + b)

= sin (a + b). (Art. 19)

= sin a cos b + cos a sin b. (Art. 39)

But a = - 90 + x and 6 = - 180 + y.
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Therefore

cos (# + ?/)= sin (- 90+#) cos (- 180 +y)+ cos (- 90+z)
sin( 180 +y)

=
( cos x) (

cos y)+ (sin a;) (
sin y) (Art. 19)

or
cos (x + y)= cos a; cos y sin # sm y

which is the same as the relation of Art. 39.

Again, let x be an angle in the first quadrant and y an

angle in the third. We may put y = 180 4- 6, where b is

acute, and write

sin (x y)= sin (x 180 + b)

= sin (-180 + x -b)

= - sin (x
-

b) (Art. 19)

= sin a; cos b + cos x sin 6. (Art. 39)

But b = - 180 + y, and therefore,

sin (x y)= sin x cos( 180 + y) + cos x sin
(

180 +y)

sin x( cos y)+ cos x( sin y) (Art. 19)

= sin x cos y cos x sin y.

Thus it may be proved that the equations of Art. 39 are

true for all values of x and y.

The importance of these four relations, (10) of Art. 39,

can hardly be over-emphasized. From, them, together with

those given in Art. 12, may be derived all other trigono-

metric identities. The method of so doing is shown in the

following articles, and is illustrated by the following

examples :

Example 1. Prove the relation

sin (45 + a) cos (45
-

b) + cos (45 + a) sin (45
-

6)

= cos (a b).
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This is simply a case of the first formula of (10) where

x = 45 + a, y = 45 - b.

We may write

sin (45 + a) cos (45
-

6)+ cos (45 + a) sin (45
-

b)

= sin (45 + a + 45 b)= sin (90 -fa b)= cos (a b).

EXAMPLES
Prove that

1. sin 105 + cos 105 = cos 45.

2. cos (45
-

x) cos (45 + x)
- sin (45

-
x) sin (45 + x) = 0.

3. sin x cos (90
-

x)
- cos x sin (90

-
x) = - cos 2 x.

4. cos (30 - 45) - cos (30 + 45) = sin 45.

5. Given sin x = f ,
cos y = f ,

find sin (x + y).

6. Given cos x =
,
cos y = ,

find cos (x y}.

Given tan x = 2, tan y = 3, find

7. sin (x + y). 8. cos (x + y). 9. sin (x
-

y). 10. cos (x
-

y).

41. Tangent of a Sum. To derive an expression for the

tangent of the sum or difference of two angles we proceed

as follows :

cos (a; y)

_ sin x cos y cos a; sin y
""

cos x cos y T sin x sin y

sin x cos y cos # sin y

__
cos # cos y cos # cos y

""
cos a; cos y sin a; sin y
cos a; cos y cos a; cos y

or tan(*y)= ^ ^L. (ii)
1 =F tan JT tan y

In a similar manner may be proved

cot(xy)=
cotycota;
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EXAMPLES
Prove that

1 tan x

2. tan (45 + x) tan (135 + a) + 1 = 0.

3. tan (45 + x) tan (45 x) = 1.

4. Given tan a = 2, tan 6 = 4, find tan (a + 6).

5. Given sin a =
,
cos 6 = $, find tan (a 6).

6. Given sec a = 3, esc 6 = 4, find tan (a + 6).

7. Given tan a =|, tan 6 = T̂ ,
find a + 6.

8. Given sin a = f,
cos 6 = f ,

find tan (a + 6).

9. Given sin a = f,
sin b = f ,

find a + 6.

Prove the following identities.

1Q
sin (x + y) _ cot x + cot y

^

cos (x y) 1 + cot x cot y
"

11. tanx-tan(x-y) =
1 + tan x tan (x ?/)

42. Functions of the Double Angle. The equations of

Arts. 39 and 41 being true for all values of x and y, let us

assume that y = #. Substituting x for y in the functions of

the sum of two angles we obtain

sin 2 x = 2 sin x cos x (13)

cos 2 * = cos2 * sin2 x. (14)

'* tan *
.

(15)
1 tan2 x

1
.

(16)
2 cot a

43. The student should clearly understand that the equa-
tions of Art. 42 give the values of functions of twice an

angle in terms of functions of the angle, no matter what
the value or form of the angle may be. For example, the

following relations are all true, being merely the equations
of Art. 42 changed slightly in form.
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2 sin - cos - == sin a.
2 2i

cos = cos2 - sin2244
2tan(

tan (2 a
- -f)

44. Functions of the Half-angle. We may write the two

proved relations

sin2 x + cos2 x = 1 and cos 2 a = cos2 x sin2 a;

in the form x
t

.

2 x 1cos2 -
-|- sm2 - = 1.

cos2 - sin2 - = cos x.
2 2

Subtracting and adding these, we have

os jr.

(17)

2sin2 ?=l -cos*.

2 cos2 = 1 4- cos jr.

2

Dividing the last two equations one by the other we

obtain

,

2 1+cosJt
(18)

2 1 cos x

Thus we have equations which give the sine, cosine, tangent,

and cotangent of one half an angle in terms of the cosine of

that angle.
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EXAMPLES
Given sin 6 =

,
find

1. sin 26. 3. tan 26. 5. cos-.

2. cos 26. 4. sin -. 6. tan
|.2 2

Prove the following identities.

7. cos4 x sin4 x = cos 2 x.

8. (sin x + cos x)
2 = 1 + sin 2 x.

9. tanx= Sin2x
12. tan =-**_.

1 + cos2x 2 1 + cosx

10.
2 2secx l+sin2x

11. tan = -. 14.
2 sinx 2 secx

15. tan (45 + a) + tan (45
-

x) = 2 sec 2 x.

45. Sum of Sines or Cosines. By addition and subtraction

of the two equations

sin (x + y)
= sin x cos y 4- cos x sin y,

sin (x y)= sin a; cos y cos x sin y,

we obtain
sin (SB + y) 4- sin

(a; T/)
= 2 sin a; cos y,

sin
(SB + y) sin

(SB y)= 2 cos a; sin y.

If now we let x +-y = a, SB y = ft so that cc =
( + ft)

and y = ^(a ft),
we obtain from the last two identities

sin a + sin p = 2 sin (a + P) cos| (a
-

P),

sina-sinp = 2cos|(a+ P)sin|(a- p).

Proceeding in the same way with the equations

cos
(a; y)

= cos x cos y T sin x sin y,

we obtain two more equations of importance

cosa + cos p = 2cos|(a + p)cos|(a
-

p),

i i \ *

cos a - cos p = - 2 sin | (a + p) sin \ (a p).
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EXAMPLES

Express each of the following as the algebraic sum of sines or

cosines.

1. sin 6 x cos 2 x. 4. sin (x + 2 y) cos (x y).

2. cos 4 x sin 2 a; 5. sin (30 + x) sin (30 - x) .

3. cos-sin. 6. cos 3 x cos (x y) .

2 2

Prove the following identities.

7. cos (30
- x) cos (60 - x) = (2 sin 2 x + V3).

8. cos 3 x sin 2 x cos 4 x sin x = cos 2 x sin x.

9. sin x cos (x 4- y) cos x sin (x y) = cos 2 x sin y.

46. Identities and Equations. It should be borne in mind

that all of the equations of this chapter are identities, that

is, they are true no matter what values the angles may
have. We shall deal later on, in Chapter VII, with trigo-

nometric equations of condition, where we shall find that

not every value but only particular values of the angles

involved will satisfy the equations. Also, in connection

with this chapter attention should be again called to the

group of fundamental identities in Art. 12.

ILLUSTRATIVE EXAMPLES

Example 1. Prove that sec 2 x = 1 + tan x tan 2 x.

I

= -^ = * = cos's = sec* a

cos 2 x cos2 x sin2 x 1 tan2# 1 tan2
a?

_ 1 + tan2 x _ ^
2 tan2

a;

1 tan2 x 1 tan2 x

= 1 + tan x
2tana; = 1 + tan x tan 2 x.

1 tan2 x

By the above method we begin with sec 2 x and deduce

or derive the required result. Another method of pro-

cedure is as follows :
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Assume that

Then

sec 2 x = 1 + tan x tan 2 x.

= l+ H

2tan2a;

1 tan2 x

= 1 + tan2
a;

1 tan2 x

_ cos2 x 4- sin2 a;

cos2 x sin2 aj

= sec 2 #.

Therefore, the original assumption is correct.
'

Example 2. Prove that esc 2 x \ sec x esc 05.

First method.

1 1 sec x esc x
esc 2 a; =

sin 2 a; 2 sin x cos a;

Second method. Take the reciprocals of both members,

sin 2 x = 2 sin x cos x.

EXAMPLES

Without the use of tables find the following :

1. Sine and cosine of 15. 3. Tangent of 15.

2. Sine and cosine of 22 30'. 4. Tangent of 22 30'.

5. Find the value of sin 3 x in terms of sin x.

6. Find the value of cos 3 x in terms of cos x.

7. Find the value of tan 3 x in terms of tan x.

8. Find the value of tan 4 x in terms of tan x.

9. Find the value of sin 4 x in terms of functions of x.

10. Find the value of cos 4 x in terms of functions of x.

11. Given sin 4 x = a, cos 4 x = 6, find sin 8 x and cos 8 x.

12. Given tan 3 x = a, find tan 6 x.
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Prove the following identities.

13. sin (90 -f x -f y} = cos x cos y sin x sin y.

14. sin - cos - + cos - sin - = sin \ (a + 6).22 22
15. cos 6 a = 1 2 sin2 3 a.

.. sin 4 a -f sin 2 a _ 3 tan2 a

sin 4 a sin 2 a 1 3 tan2 a

17
1 _ sec2

1 + cos2 6
~

tan2 e + 2
'

18.

19. cos 5 x cos 2 x = (cos 7 x + cos 3 x).

20. sec2 x esc2 x = sec2 x + esc2 x.

21.
sin 4x

22. cos 4 x sin x = \ (sin 5 x sin 3 x) .

23
sin3x 2

24. sinx=

25. sin x =

1 -f tan2 x

2

cot x + tan x

26. tan2x=-?-
.

cot x tan x

27 8Jn(x + 2y)-8in(x-.
siny

28.
cos (2s- y)

- cos (2x + y) = 4 sin x sin y<

cosy

29.

30. tan2 - 2 esc x tan- -|- 1 = 0.

2 2

31.
1 -f tan2 x

32. tan ^ x = esc x cot x.

33. cot - = esc x + cot x.
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2 1 + sin x + cos x
'

35 '

2tan(x + 45)
=

36.
Cosx - cos3x

=:tan2x.
sin 3 x sin x

37. sin x (1 + tan x) + cos x (1 + cot x) = sec x + csc x.

38. cot x cot 2 x = csc 2 x.

og
1 + sin 2 x _ cos x + sin x

cos2x cos x sin x*

40.

_
41. Given sin x =-- =- ,

find the value of cos x.

2.V-1

42. Given r2 = a2 sin 2 0,

r2 cos + a2 cos 2 sin _ tan3 ^
a2 cos 2 cos 6 r2 sin

/i

43. Given r = a sec2 -
,

Prove
r cos + a sec2 - tan - sin 899 /}-2-2- = _ cot *.Oft o
a sec2 - tan - cos 6 r sin 6

2 2

44. Given r = a (1 cos 0),

Prove r cos -f a sin2
,

3- uin .

a sin cos 6 rsmd 2

Prove the following identities.

45.
cos3x + sm3x = 2cot2Xt
sin x cos x

46. 1 + cos 2 x cos 2 y = 2 (sin
2 x sin 2 y -f cos 2 x cos 2

y).

47<
sin2 x cos2 y- cos2 x sin2 y =^ + ^ _
cos2 x cos2 y sin 2 x sin2 y

48.
sn x cos x

49.
sin 2 + sin d
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50. (sec 20 + 1) Vsec2 0-1 = tan 2 0.

gl
cos + sin __

cos - sin _ 2 tan 2 0.

cos sin cos 6 + sin

52. tan 2 - sec sin = tan sec 2 0.

53
1 cos x + cos y cos (x + y) _ tan^a

^

1 + cos x cos y - cos (x + y) tan y
'

54. Given x = 3 cos2 sin 1 Prove that

y = 3 sin2 cos 0} 2Vx2 + y2 = 3 sin 2 0.

55. Given x = a cos r sin 0, a __ 2 sin 2

y = asin0 + rcos0, V2cos20'

r2 = 2 cos 2 0, Prove, x2 + ?/
2 = 2 sec 2 0.



CHAPTER V

THE CIRCULAR OR RADIAN MEASURE OF AN ANGLE.
INVERSE TRIGONOMETRIC FUNCTIONS

47. Circular or Radian Measure of an Angle. Any con-

venient unit may be chosen for the measurement of angles.

We have hitherto used the degree, subdivided into minutes

and seconds, as the unit,* but we shall now introduce

another unit called the radian, the unit angle in the circular

measure of angles.

The radian is an angle at the centre of a circle whose sub-

tending arc is equal to the radius of the circle.

FIG. 20.

It is obvious that the radian is a constant angle, is the

same in all circles, since the ratio of the circumference of a

circle to its radius is constant.

In Fig. 20 let the angle AOB be a radian, that is, let the

arc AB be equal to OA, the radius of the circle. Also let

the angle AOC be an angle to be measured in radians. To
measure a quantity is to find its ratio to another quantity
of the same kind chosen as the unit. Therefore,

* It may be noted that the right angle is used as a unit in the study of

geometry, partly because it is an angle easily constructed.

59
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Circular measure AOC = radians.

AOC arc AC arc AC
AOB arc AB radius OA

Therefore, to measure an angle in circular measure, or in

other words to express the angle in radians, find the ratio

of the arc subtending the angle in any circle to the radius of

the circle.

If we represent the angle, measured in radians, by x, the

length of the arc subtending the angle by s, and the radius

of the circle by r, we have the relation x = -
. This is an

algebraic equation involving three quantities. If any two

of the quantities are known the third can be found. Thus

r x

Example 1. What is the radius of a circle in which an

arc of 12 inches subtends an angle of \\ radians?

r = - = =8 inches.
x 1

Example 2. If the radius of a circle is 15 feet what

length of arc subtends an angle of two-thirds of a radian ?

s = 15 x |=10 feet.

We know that the ratio of a semicircumference to its

radius is IT = 3.1416. It follows, therefore, that the angle

which is sometimes called a straight angle, and which

is expressed as 180, may also be expressed as ?r radians.

Thus
>

TT radians = 180

1 Gft
1 radian = = 57.296, approximately.

7T

Also 180 = TT radians

1 = - radians.
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By means of these two relations we can readily reduce a

given angle from either system of measurement to the

other.

Example 1. Express the angle 7 radians * in degrees.

TT = 180. Therefore,

Example 2. Express the angle - in degrees.
o

Since TT = 180, = x 180 = 120.

Example 3. Express the angle 110 32' 30" in circular

measure. 110 32' 30" = 110f = ^|f*.

Since
180=7r, therefore,

10 _ _v__ 2653 _ jr_ 2653 = 2653 TT"

180' 24 "180 24
==

4320
"

An angle in circular measure is usually expressed as a

multiple of IT.

EXAMPLES

Express the following angles in degrees.

1. 6.5 radians. 3. -. 5. 1^.
7 6

o 2ir
/? Sir*

-g" 4. 3.8 radians. 6 -

-g-

Express the following angles in circular measure.

7. 270. 9. 25 16'. 11. 208 30'.

8. 13 24'. 10. -450. 12. -98.

13. What is the ratio of a radian to a right angle ?

*The name radian is often omitted. An angle written
w

and read
O

"
pi over three," means "

pi over three
"

radians, or about 1.05 radians.
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How many right angles are there in each of the following angles ?

14.
|.

15.
5^-.

16. 2*L. 17. 5 radians.

18. Through how many radians do the minute and hour hands of

a clock turn in 30 minutes ?

19. Through how many radians does the minute hand of a clock

turn in 35 minutes ?

20. Through how many radians does the hour hand of a clock turn

in 18 minutes ?

21. The front wheel of a cart is 2 feet in diameter, the hind wheel

3 feet. Through how many radians will the hind wheel turn while

the front wheel is turning through 600 ?

22. Through how many radians does the earth revolve about its

axis in a week ? Is the result the same in 45 north latitude as at the

equator ?

23. A wheel turns 50 revolutions per minute. Express its angular

velocity in radians per second.

24. A wheel has an angular velocity of 20 radians per second.

How many revolutions does it make per minute ?

25. Through how many miles will a point on the equator of the

earth travel as the earth turns through 1 radians ?

26. Through how many miles will a point at 45 north latitude

travel as the earth turns through one radian ?

27. The radius of a graduated quadrant is 2 feet, and the grad-
uations are 5' apart. What is the distance between successive

graduations ?

28. What must be the radius of a graduated quadrant if the dis-

tance between graduations 5' apart is to be -fa inch ?

48. Inverse Trigonometric Functions. Let us suppose that

y is the sine of the angle x. We express this briefly in

mathematical symbols as y = sin x. Suppose now that we
wish to make the inverse statement that x is the angle
whose sine is y. To express this in mathematical symbols
we write x = sin"1

y, where, it must be noted, the minus

unity is not an exponent. Having expressed our idea in

symbols we next note that x depends upon y for its value,

is a function of y, and we name the function the anti-sine or

inverse sine. Similarly a = tan"1 6 means that a is the angle
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whose tangent is 6, and we say that a is the anti-tangent of

b. In this way we have a group of six inverse trigonomet*

ric functions,

sin-1

AT,

5-1 V

sec"1 xtan-1

AT,

COS'* AT, COt^Af, CSC"1
AT.

These six quantities, it must be remembered, are angles.

49. General Value of an Angle. Identities connecting the

various inverse trigonometric functions exist and may be

derived or proved by methods analogous to those of Chapter
IV. Before taking them up, however, one important dif-

FIG. 21.

ference between the direct and the inverse trigonometric
functions must be noted.

If y = sin x, and if we give x a particular value, say 30,
then y will have one and only one value, one-half. On the

other hand, if x = sin"1

y and if we give y a particular value,

say -J-,
then x does not have one value only but an infinite

number of values, 30, 150, 390, 210 etc. This being
so it is well to get an expression that will represent all the

angles which have a given value of the sine, cosine, etc.

Let sin x = a, a being a positive number, or x =
sin~1

( a) and let a be the smallest angle* which has for

* That is, a if we use positive angles only ;
a' if negative angles also

are used. Either method may be adopted.
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its sine the value a. By Fig. 21 we see that the possible

values of x are

a, TT a, 2 TT + a, 3 TT a, 4 TT -f a, ,

TT a, 2 TT + ,
3 TT a, 4 TT + a, ,

which may be written in the general form

x siir1 a = mr +( l)
n a (21)

where n is any positive or negative integer, including zero,

and a is the least angle whose sine is a. This is called the

general value of the angle and a is called the principal value.

Since the cosecant is the reciprocal of the sine we may
. x \

x esc'
1 a = mr + (- l)

n
a.

/r\*~*\

(22)

FIG. 22.

Let cos x = a or a; = cos-1 ( a) and let be the least

angle whose cosine is a. By Fig. 22 we see that possible

values of x are
a, 2 TT a, 4 TT a, ,

or, in the general form

x = cos"1 a = 2 mr a (23)

where TI is any positive or negative integer, including zero,

and a is the least angle whose cosine is a.

Since sec x = we may write for the general value, a
cos x



V, 49] CIRCULAR MEASURE OF AN ANGLE 65

being the principal value,

x = sec'
1 a = 2 TZTT a. (24)

Let tan x = a or x = tan-1 ( a), and let a be the least

angle whose tangent is a. By Fig. 23 we see that pos-

FIG. 23.

sible values of x are

a, TT -f- K) 2?r + ,
3 TT

TT + a, 2 TT + a, 3 7T + a, ,

or, for the general value,

JT = tan" 1 a = mr + a (25)

where w is any positive or negative integer, including zero,

and a is the principal value.

Giving n and a the same meaning we may write, since

1

(26)
cot #

tana' x = cot"
1 a = rnr + a.

One need not make use of the formulae, 21-26, but may
proceed as follows : Find the two smallest angles, positive or

negative, which correspond to the given value of the func-

tion. If we call these angles a and /3 then the complete

series of angles will be given by

2 mr + a and 2 mr + p.
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Example 1. Write the general value of cos'1 .9205.

From the tables of trigonometric functions we find a =
23. Therefore

23 7T
x = cos-1 .9205 = 2 riTT 23 = 2

180

Example 2. Write the general value of sin'1 1. We
know a = 90 = - Therefore

a = sn' = ?nr -.
2i

Example 3. Prove the identity

2 sin-1 a = sin'1

(2 aVl - a2
).

Let sin"1 a = x, then sin x = a. Substituting these

values in the formula to be proved we have

2 x = sin"1

(2 sin #V1 sin2
#),

or
sin 2 x = 2 sin a;Vl sin2 x = 2 sin x cos x.

Q. E. D.

Or, we may proceed as follows :

We know sin 2 x = 2 sin x cos x, which may be written

2 x = sin"1

(2 sin x cos x).

Let sin"1 a = x, sin x = a and substitute :

2 sin-1 a == sin-1

(2 aVl a2
). Q. E. D.

Example 4. Find the principal value of tan-1

1 -f tan-1 .

We note that this is the sum of two angles each given by
the value of its tangent. We therefore write, formula (11),

tan (tan-
1 + tan'1

)
= -

Therefore, tan-i+ tan-ii = tan- 1 =
^ o 4
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EXAMPLES

Write the general values of the following angles :

1. sin-i. 3. tan-!(- 1). 5. Sec-i(--^rV 7. sin-i(- Y
V \/3/ \ 2 /

2. cos-iQ. 4. cot-1-^- 6. csc-!V2. 8. cot-i(-VS).
V3

Find the value of

9. sin (sin-
1
a). 11. tan (tan-

1
y}. 13. 2 cos (cos*

1
.523).

10. cos-1
(cos x). 12. sec-1

(sec 30). 14. cot (cot-
1
2.718).

15. sin-1
(cos 35). / 2 \

18. cos f tan- 1 1 + sec'1 ~ \

16. tan-1
(cot 40).

'

19.

17.
sin^sin-ii

+
cos-i-Ly

20. coJtan' 1 V3 + tan- 1

21. Prove that x = sec-1 v/1 + tan2 x.

22. Prove that tan-1 y = sec-1 vT+1/2.

Prove the following :

23. tan-i(V2 + 1)
- tan-1 (- V2 1) = 135.

24. tan-1 V3 - tan-1 f - \ = tan"1 (- 3 V3).

25. tan- 1 1 - tan' 1 (_ 1) = tan' 1 2.

= tan-1

- a

b

a2 - 2 62

30. sin-1 x + cos- 1 y = tan-



CHAPTER VI

THE SOLUTION OF GENERAL TRIANGLES

50. Four Cases. As in the case of right triangles the

solution of any triangle means the finding of the values of

unknown parts from the parts that are known. Of the six

parts (three angles and three sides) there must be given

three, one of which at least is a side, in order that the tri-

angle may be solved. Consider any triangle, Fig. 24.

FIG. 24.

The following cases may be enumerated :

I. Given a side and two angles; say, a, A, B.

II. Given two sides and the angle opposite one of them ;

say, a, b, A.

III. Given two sides and the included angle; say, a, b, C.

IV. Given the three sides; a, b, c.

51. The Law of Sines. Cases I and II may be solved by
means of the following theorem.

In any triangle the sides are proportional to the sines of the

opposite angles. That is, Fig. 25,

a : b : c = sin A : sin B : sin C. (27)

68
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c c

A D

FIG. 25.

Proof : In the triangle BAC draw CD perpendicular to

BA. Then

Therefore

AC BC a

DC = b sin A a sin B.

Whence

a : b = sin A : sin B.

Similarly the theorem may be proved for the other pairs

of sides and angles.

52. Case I. Given a side and two angles ; a, A, C.

To find the third angle we have

To find B and C we have

& _ sin B c___ sin C
a sin A '

a sin A '

selecting in each case that proportion, from (27), which in-

volves an unknown side, b or c, and three known parts.

From these two proportions we have

log b = log a 4- log sin B + colog sin A

log c = log a + log sin C + colog sin A
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Example. Given a = 412.7, A = 50 38', C = 69 13', find

B
* bj ' B = 180 - 119 51' = 60 9'.

log a = 2.6157 log a = 2.6157

log sin B = 9.9382 log sin C = 9.9708

colog sin A = 0.1118 colog sin A = 0.1118

log b = 2.6657 log c = 2.6983

b = 463.1 c = 499.2

53. Case II. Given two sides and the angle opposite one of

them; a, 6, A.

We have, to find B,

sin B b
t

sinJ. a

Whence, log sin B = log sin ^4 + log b + colog a.

Also, (7=180- (^ + B).

Then '=*
a sin .4

Whence log c = log a + log sin C -f- colog sin A.

Example. Given a = 31.24, b = 49, A = 32 18', find

*' ^ C'

log sin ^1 = 9.7278

log 6 = 1.6902

colog a = 8.5053

log sinB = 9.9233

B = 56 56'

But since B is found from the log sine it may have two

values
; namely, 56 56' and 180 - 56 56' = 123 4'. To

determine which value is correct or whether both are

possible we recall the theorem of geometry which states that

if the given angle is acute and the side opposite is less than

the other given side, then it may be possible to construct

two triangles from the given parts, two sides and an oppo-
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site angle. In the above example the given angle A is acute

and its opposite side a is less than 6
;
there are two solutions

and both values of B must be used. Figure 26 explains the

case graphically.

31.24

= 32M8' Bi=5656' A =32 18'

FIG. 26.

b=49 a=31.24

B2)

Consequently there are two values of (7, namely,

d = 180 - (A + B,) <72 = 180 - (A
= 90 46' = 24 38'

and two values of c, got as follows :

log a = 1.4947 log a = 1.4947

log sin d = 0.0000 log sin C2
= 9.6199

colog sin A = 0.2722 colog sinA = 0.2722

log d = 1.7669 log c2 = 1.3868

cx
= 58.46 c2 = 24.37

If the given angle be obtuse there will be only one solu-

tion. If the given angle, A, be acute and the side a be

greater than the side 6, there will be one solution only. If

A be acute and a be equal to the perpendicular from C to

ABj there will be only one solution, a right triangle. In

this case B = 90 and log sin B = 0.0000. If, A being acute,

a be less than the perpendicular from C to AB, there is no

solution. In this case log sin B will be greater than zero,

which is impossible since sin B cannot be greater than unity.

54. Case III may be solved by means of the theorem

following :

In any triangle the sum of two sides is to their difference as

the tangent of half the sum of the angles opposite the two sides

is to the tangent of half their difference.
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Proof : By Art. 51

a : b = sin A : sin B.

Whence, by composition and division,

a 4- 6 __ sin A + sin B __ sin
j- (A + jB) cos |(J. ff)

a b sin .4 sin B cos (^L + 5) sin \(A B)
or,

a + b tan ^i + )
~

55. Case III.* Given two sides and the included angle;

b,c,A.

By Art. 54 we have

C & c

tan

The sides & and c are known, and also

l(B 4- C)= |(180
- ^)= 90 -

since ^4 + 5 + C = 180.

Therefore we may write

tan i(J5
-

(7)=^^ - tan ^(S + C),

or,

log tan ^(jB-<7)=log(&-c)+ colog(&+c)+ log tan

Thus
-| (5 C) is found, and by finding the sum and dif-

ference of %(B + 0) and *(B C) the values of B and O
are known. Finally, to determine a we have, as in Case I :

a : b = sin A : sin B.

Example. Given 6 = .06239, c = .02348, A = 110 32'
;

find J5, C, a.

+ O)= 90 - J A = 90 - 55 16' = 34 44'.

& + c = .08587 6 - c = .03891.

* See also Art. 61 following.
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Whence we have

log (b -c)= 8.5900

colog(6 + c)
= 1.0661

logtanfr(JB+ C) =9.8409

log tan KJB
-

(7)= 9.4970

- 0)=1726'.

+ C)=3444'

C = 17 18'.

And as

We have B = 52 10'

Then log b = 8.7951

log sin A = 9.9715

colog sin B = 0.1025

log a = 8.8691

a = .07398

56. The Law of Cosines. Case IV may be solved by means

of the following theorem :

In a triangle the square of any side is equal to the sum of

the squares of the other two sides minus twice the product of

those sides by the cosine of their included angle.

c

That is, Fig. 27, where CD is perpendicular to AB,

a2 = b2
4- c2 2 be cos A.

We have proved the geometrical theorem

a2 = b z + c2 - 2 c AD*

But cos A =
,
or AD = b cos A.

b

* Note that in the first two triangles of Fig. 27, AD, the projection of 6,

is read left to right and is positive ;
in the third triangle from right to left

and is negative.
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Therefore, a2 = b2 + c2 - 2 6c cos A Q.E.D.

Obviously
2 be

(29)

and in the same way

2 ca 2 a&

so that the three angles may be found.

57. The objection to the formulae of Art. 56 is that they
are not adapted to logarithmic computation. To remove
this objection we proceed as follows : From (29) we have

- cos . = 1
2bc 2bc 2 be

2 be

or, by (17), Art. 44,

2 be

Let a + b + c = 2 s.

Then a - 6 + c =2(s - b), a + b - c = 2(s- c),

Whence .

x
. _ 2(s

-
6) 2(* - c)

--
(30)

oc

Similarly

ca ^ ab

These formulas may be used for logarithmic computation.
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58. Again, from (29), Art. 56, we have

c)(b + c a)

2 be

or, by (17), Art. 44,

o c-a)
26c

As before, letting a = 2s, this becomes

or

cos

Similarly

s(s a)^-v^H- (31)

cos i (7 =

59. These formulae also may be used for logarithmic

computation, but a more convenient set is obtained by
dividing the formulae of Art. 57 by those of Art. 58. We
thus obtain

//o fcWo W\

(32)
J

A comparison of these three sets of formulae (30), (31),

(32), will show that for the complete solution of a triangle

when the three sides are given, the first set (30), requires

six different logarithms, the second set seven, the third set

four. In addition to this slight advantage the tangent set,

(32), gives more accurate results than the other two when
the angles involved happen to be very small or very near

ninety degrees.
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60. Case IV. We will now solve a triangle when the

three sides are known.

Example. Given a = 10, b = 12, c = 14
;
find A, B, C.

Here 2 s = a + 6 + c = 36, so that we have

5 = 18, log s = 1.2553, colog s = 8.7447 - 10.

s - a = 8, log (s
-

a) = 0.9031, colog (s
-

a) = 9.0969 - 10.

s _ b = 6, log (s
-

b)
= 0.7782, colog (s

-
b)
= 9.2218 - 10.

s - c = 4, log (
-

c)
= 0.6021, colog (s

-
c)
= 9.3979 - 10.

log (s-b)= 0.7782 log (s
-

c)
= 0.6021

log (
s - c)

= 0.6021 log (s
-

a) = 0.9031

colog s = 8.7447 colog s = 8.7447

colog Q- a) = 9.0969 colog (s- b)
= 9.2218

2)19.2219 2)19.4717

.log tan | A = 9.6110, log tan B = 9.7359,

|-4 = 22 13', | = 28 34',

^4 = 44 26', J5=57 8',

log (- a)
= 0.9031

log (s
-

6)
= 0.7782

colog ,s= 8.7447

cologO-c)= 9.3979

219.8239

log tan i(7=9.9120,

2

C= 78 28'!

CHECK: A +B + C= 180 2'.

A common method of solving Case IV is by means of an

auxiliary quantity,

r".v^ ^
We may write

i r i ,, r \ *
\.&n

(t
A =

,
tan -5= -, tan-C =

s a s b s c



VI, 61] SOLUTION OF GENERAL TRIANGLES 77

In using this method log r is first found, whence the log-

tangents of the three half-angles are readily obtained.

61. Case III
;
Other Methods of Solution. The formulae

of Art. 56 may sometimes be used to advantage in solving

Case III.

Example (see Art. 55). Given b = .06239, c = .02348,

A = 110 32', to solve the triangle.

We have a2 = 62 + c2 2 be cos A.

Then

a2 = (.06239)
2 + (.02348)

2 -
2(.06239) (.02348) cos 110 32'.

log b = 8.7951 log c = 8.3708

2 2

log b2 = 7.5902 log c2 = 6.7416

62 = .003893 c2 = .0005516

+ c2 = .0005516 log 2 = 0.3010

-26ccos^= .001028 log b = 8.7951

a2 = .005473 log c = 8.3708

log cos A = 9.5450

log 2 be cos A = 7.0119

2 be cos A = .001028

Then log a = $ log a
2 = 8.8691 and a = .07398.

To find B and C we have the formulae of Art. 51.

The above computation can in some cases be done best

and quickest without the use of logarithms.

Another Method of Solution for Case III, preferred by

many, is as follows :

From Fig. 27 we see that

DC = b sin A, AD = b cos A,DB = c- AD.
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nc1

Then tan J3 =
,
whence B is known, and (7=180

(A + B). To find a we use a = -

sin

Applying this method to the example above we have

log b = 8.7951

log sin A = 9.9715

log 7)0=8.7666

log 7)^ = 8.6567

log tan B = 0.1099

J3=5210'

log b = 8.7951

log-cos A = 9.5450

log--4Z> = 8.3401

AD = - .02188

DB ='.02348 + .02188 = .04536.

log DC= 8.7666

C= 1718' log sin B = 9.8975

log a = 8.8691

a= .07398

NOTE. The fundamental importance of the law 'of sines and the

law of cosines should be noted. By their use, direct or indirect, any
triangle whatever may be solved.

AREAS OF TRIANGLES

62. Right Triangles.

Case I. Given the two legs a and 6, Fig. 28.

B

FIG. 28.

Representing the area of the triangle by K, it is obvious

2K=ab. (33)

Case II. Given the hypotenuse and an acute angle, c

and A.
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Then a = c sin A, b = c cos A.

Whence, by (33),

2K= c2 sin A cos ^4 = c2 sin

or 4 jRT= c2 sin 2 -4.

Case III. Given an angle and the adjacent leg, A and b.

Then a = b tan A.

Whence, by (33),

2K= W tan A.

Case IV. Given the hypotenuse and a leg, c and a.

Then 62 = c2 a2 or b = V(c + a)(c a).

Whence, by (33),

63. Oblique Triangles.

Case I. Given two sides and the included angle, a,' 6, (7.

In Fig. 29 the line ^4.D is perpendicular to BC.
It is obvious that 2 7T= a X

But

Therefore,

sin C=
,
or ZL4 = 6 sin C.

b

(34)
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Case II. Given a side and the angles, a. A, B, C.

By Art. 51,

6 _ smB ^ __ a sin B
a sin A sin A

Whence, by (34),

2K= fl2 8*n -B sin C
,ggx

sin .4

Case III. Given the three sides, a, &, c.

The formula (34), of Case I may be written, by Art. 42,

(13)' 2 K= 2 ab sin -t C . cos <7.

Substituting in this the values of sin
-J

(7 and cos \ C given
in Arts. 57 and 58, we have

2 A'= 2

or JT= Vs(s - d)(s
-

b)(s
-

c). (36)

EXAMPLES

Solve the following triangles, in each case obtaining also the area

of the triangle :

1.
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16. c = .0357, 18. b = 4621, 20. a = 6.743,

a = .0292, a = 6473, b = 3.025,

5 = 31 7'. B = 31 7'. c = 4.271.

17. a = 32.15, 19. 6 = .4312, 21. c = .01825,

6 = 67.54, c = .8901, 6 = .02893,

A = 28 26'. A - 29 55'. B = 83 30'.

PROBLEMS IN THE SOLUTION OF TRIANGLES

22. A man owns a triangular lot on the corner of two streets

which do not intersect at right angles. The frontage- on one street is

300 feet, on the other 250 feet. The back line of the lot is 350 feet

long. If he buys land to add 275 feet to the 300-foot frontage, by how

much is his lot increased in size ?

23. A man owns a triangular lot on the corner of two streets

which intersect at an angle of 62. The frontage on one street is

200 feet, on the other 150 feet. If the land is worth one dollar a

square foot and the man has $ 1200 with which to increase the size of

his lot, by how much can he lengthen the 150-foot frontage ?

24. The perimeter of a triangle is 100 feet, and the perpendicular

from the vertex C to the base AB is 30 feet. The angle A is 50.

Find the length of the base AB.

25 . What is the perpendicular height of a hill which is known to rise

72 feet for every 100 feet of length of its slope, if the angle of elevation of

the hilltop from a point 100 yards from the base of the hill is 31 ?

26. From where I stand, 50 feet from the bank of a stream, the

angles of depression of the near and far banks of the stream are

respectively 15 37' and 6 24'. How wide is the stream ? How far

am I above the level of the stream ?

27. A man 5 feet 6 inches tall, standing on a bluff 40 feet high,

measures the angles of depression of the near and far shores of a bay.

The angles are 46 52' and 5 3' respectively. How wide is the bay ?

28. A man 5 feet tall, standing on the edge of a pond, finds the

angle of elevation of the top of a tree on the other bank to be 44 26'.

The angle of depression of the reflection of the treetop is 60 47'. Find

the height of the tree.

The reflection of an object appears as far below the surface as the

object is above the surface.

29. The frontage on the beach (AB) of a quadrangular lot ABCD
cannot be measured. The sides BC, CD, and DA are found to be

236, 155 and 105 feet respectively. The angles DJ.Cand DBG are

32 20' and 29 50' respectively. Find the length of AB.
G
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30. The bases of a trapezoid are 48.25 and 94.75 feet. The angles

at^the ends of the longer base are 63 52' and 70 55'. Find^the lengths

of the other two sides.

31. Two sides of a triangle are 8.53 and 7.41. The difference

between the angles opposite these sides is 18 23'. Solve the triangle.

32. The area of a triangle is 979 square feet. The angle A is

56 22' and the side b is 44.80 feet. Solve the triangle.

33. Two sides of a parallelogram are 8005 and 5008. The included

angle is 60 53'. Find the lengths of the diagonals.

34. The diagonals of a quadrangular field ABCD intersect at O at

an angle of 78 3'. The lines AO, BO, CO, and DO are 27.5, 31.8,

58.5 and 63.2 feet respectively. What is the area of the field ?

35. Two sides of a triangle are b = 302 and c 40.8. Find the

angle A so that the triangle may have the same area as the triangle

whose sides are 62, 51 and 30. If b were 30.2 and c were 40.8 could

A be found ? Why ?

36. Two vessels start from the same point and sail, one northeast

at the rate of 6 miles per hour, and the other east. 30 south at the

rate of 8 miles per hour. How far apart will the ships be after 2| hours ?

37. A submarine in submerging drifts back 5 feet for every 20 feet

it sinks. After the submarine has sunk vertically 300 yards, at what

angle must a torpedo be shot from a cruiser one mile away to hit the

submarine, if the latter drifts away from the cruiser ?

38. A post 6 feet high casts a shadow 10 feet long. What is the

length of a flagpole that casts a shadow 60 feet long if the pole makes

an angle of 82 with the horizontal on the side away from the sun ?

39. In problem 38 find the length of the flagpole if the angle made

with the horizontal is 82 on the side towards the sun.

40. Two yachts begin a race by sailing from a point A, along the

windward leg of the course in the direction northeast until they

reach a buoy B. They then sail before the wind, east 32 south,

until they reach a point C, 5 miles east along a straight coast from A.

The first yacht sails to windward 5 miles per hour, and before the

wind 6.5 miles per hour
;
the second 5.8 miles per hour to windward

and 6 miles before the wind. Which yacht wins the race and by how

much?

41. A triangular beach lot has a frontage on the sea of 100 yards.

The boundary lines running from the beach make, on the inner side

of the lot, angles of 60 and 50 respectively with the shore line.

How must a line be drawn from the middle point of the shore line to

form two equal lots ?
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42. A point A, on the south bank of a river 1.5 miles broad and

flowing due east is to be connected by bridge and road' with a town U,

3 miles back in a straight line from

the north bank of the river. It is

found that the bridge can be built

to a point, C, on the farther bank

lying north 22 west from J., or to

D lying north 41 east from A.

The town 1} lies north 12 east from

A. If the bridge costs $ 2000 per

mile to build and the road $ 500

per mile, which route is the more w
economical and by how much ?

(See Fig.)

43. The distances of a point (7, on the far side of a river from two

pointsA and B on the near side, are to be found but can not be directly

measured. In the direction CA a distance

/ \ AD = 150 feet is measured, and in the direction

CB a distance BE = 250 feet. The distance

from A to B is 279.5 feet, and by measurement

it is found that BD = 315.8 feet, DE = 498.7

feet. How far is C from A and B ? (See Fig.)

44. The distance from ^
a point, A, on the coast to //

a lighthouse, i, is to be

B

found. A straight line is run from A along the

coast, and on the line two points, B and (7, are

taken from which the lighthouse is visible. By
measurement it is found that AB = 236.7 feet,

BC = 215.9 feet, the angle ABL = 142 37', the /
angle ACL = 76 14'. How far is the lighthouse /
from A? (See Fig.)

A

45. On the north side of a river lie two points A and B both of

which can be seen from (7, and from no other point, on the south

side of the stream. From a point D, whose dis-

tance from C is 425.3 feet, A and C are sighted.

It is found that the angle ADC = 37 15', and

the angle ACD = 42 35'. From another point

whose distance from C is 405.4 feet, and

from which B and C are visible, the angles

CEB = 53 15', and ECB = 58 5' are measured. The angle ACB is

also measured and found to be 65 11'. What is the distance from

AtoB? (See Fig.)



CHAPTER VII

THE SOLUTION OF TRIGONOMETRIC EQUATIONS

64. The trigonometric equations hitherto dealt with have

been identical equations ; equations, that is, true for any
values of the variables involved. We shall now deal with

trigonometric equations which are not identities, and shall

examine the methods by which such equations are solved.

No methods applicable to all such equations can be given,

but methods applicable to several important classes will be

discussed. In general it may be said that all such equa-
tions are algebraic in form, the one difference being that

now the unknown quantities are the trigonometric func-

tions, sine, tangent, etc., or, occasionally, the inverse func-

tions. Therefore, all methods applicable to the solution of

algebraic equations are applicable to the solution of trigo-

nometric equations. Moreover, in the case of trigonometric

equations we have the various fundamental identities,

treated in former chapters, which being true for all values

of the variables involved can be used in connection with

any equation whose solution is desired.

65. For example, given the equation

2 sin2 x cos2 x + | =

to find the value of x.

In form this is an algebraic, quadratic equation in two

unknowns, sin x and cos x. To find the values of two un-

knowns we must have two consistent and independent

equations. But we also know that cos2 x = 1 sin2 x.

Therefore, our equation may be written

84
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2 sin2 x -(1 sin2

x) = ,

3 sin2 x = |,

whence sin # = -,

and it* = sin"1
( ).

The principal values of x are, therefore,
- and the
6

general values are

or we may proceed thus :

Given 2 sin2
a* cos2 x = J.

We know sin2 # + cos2 x = 1.

Adding the two equations,

3 sin2 x = }, etc.

Example 2. Solve the equation

cos x V3 sin x + 1 = 0.

For sin x substitute Vl cos2 x.

Then

cos x V3 Vl cos2 x + 1 = 0,

cos a; + 1 = V3 Vl cos2
x,

cos2 x + 2 cos a; + 1 = 3 3 cos2
#,

2 cos2
a; -j- cos x 1 = 0,

a quadratic equation in cos x whose roots are

cos x = 1 or i.

Therefore,

a = cos-1

(- 1)= 2 WTT -h TT =(2 n -f- I)TT,

and x = cos"1

(

-
]= 2 WTT -

V2 3
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These roots, as in every case, must be tested by substitution

in the original equation. It is found that 2 n-n- - does not
3

satisfy the equation, while the other two values do. The

roots are, therefore,

x=(2n + V)7r and 2mr +-
3

Another method of solving the last equation is as follows:

Given cos x V3 sin x = 1.

Divide by 2,

But

Therefore we may write,

sincos cos x sin - sin x = -

Whence x + - = cosY- -"\= 2 mr ?-?,
3 \ 2J 3

and x = (2 n - I)TT or 2 mr + -
3

Note that the two general solutions (2 n + I)TT and

(2 n !)TT are identical since each represents any odd

multiple of TT.

66. Special Types of Equations. This last solution is an

example of the type of equation

1. a cos x + b sin x = c, c<i
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To solve equations of this type divide by Va2
-f b2.

a
cos x H---=-. sin x =

Va2 + b2 Va2
-f 62 Va2 +

a = cos a and == = sin a

since

cos2 a + sin2 a = (
a Y + f -Y = 1.

Wa2
4- 62/ Wa2 + 6V

Therefore we may write

c
cos a cos x 4- sin a sin x =

cos (ic a)=

a; a = cos"1 = 2 TITT cos"1---
,

Va2 + 62 Va2

x

and ic = 2 nTr cos"1 -
-f- a.

Va2 + 62

Another type of equation is

2. tan a0 = cot 66 or sin a9 = cos &9.

We may put

cot bB = tan (?- bO\
;

sin aO = cos (? a6\

Therefore

tan aO = tan f- b6\ cos bO = cos (- aO\

bO = 2 mr
(j
- a$\
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or * 2tt7r?

Example. Given tan 3 = cot 2 0, find 6.

Therefore, tan 3 = tan (?
- 2A

\* /

5 10

A third type of equation is

3. sin ax + sin bx + sin ex = 0, .

cos ax 4- cos bx + cos ex 0,

cos ax 4- cos bx 4- sin CAT = 0,

sin ax + sin bx 4- cos a: = 0.

To solve equations of this type, formulae (19) and (20)

are used.

Example. Solve the equation sin 5 x sin 3 x 4- sin #=0.

We may write

sin 5 x sin 3 x = 2 cos i (5 x + 3 x) sin (5 x 3
a?)

= 2 cos 4 a; sin x.

Therefore 2 cos 4 x sin x + sin a: = 0,

sin x (2 cos 4 a? 4- 1)= 0.

Whence,

sin x = or 2 cos 4 a; 4- 1 =

x = sin"1 4 a; = cos"1

( ^-)

x = sin"1 = nir 4 = cos"1

( |)= 2 nir
^

97/7T . 7T
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67. Simultaneous equations involving trigonometric func-

tions can in many cases be solved.

Example 1. Given y = 1 cos x, y = 1 + sin x, find x

and y.

We have 1 + sin x = 1 cos x
y

sin x = cos x,

tan x = 1.

o
a = tan-i

( 1)= mr -f ^,
4

and
2/=l + sina = l-cosa=l-tr

V2*

Example 2. Given r cos
( -j=a, rcos/0 -)

= a,

find r and 6. \

We have

r cos f (f
~

}
=

cos ^ }
=

r = asec f
- =

a sec riTT--^ =

When n is even, sec
[
nir ^ )

= sec^
\ 12/ 12

sec
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When n is odd:

sec fmr ~jQ
- sec f* +

JTJ)

= ~ sec
J7T

Therefore, r = a sec .

12

68. Equations Involving Inverse Trigonometric Functions

may, in general, be solved by transforming to other, equiv-
alent equations involving the direct functions. The method

of solution is illustrated by the following examples.

Example 1. Solve the equation 2 tan"1 x = cot" 1
a?.

We have cot (2 tan^1

x)
= cot (cot"

1

x)

2 cot (tan"
1

x)

That is, t

= x or 3 x2 = 1
;
whence x=

2 v3
x

Example 2. Solve the equation cos"1 x + sin"1 2 a; = 0.

We have . . . . x A
sin (cos"

1
a; + sin"1 2

a;)
= 0,

or

sin (cos"
1

#) cos (sin"
1 2 x) -\- cos (cos

J

x) sin (sin"
1 2 x)

= 0.

That is, Vl a2 Vl - 4 a2 + x 2 a? = 0.

Whence,(l-z2
)(l-4o;

2

)
= 4a4

,
5o;2 = 1, x=

V5

A second method of solving example 2 is as follows :

cos"1 x = sin"1 2 #,

sin (cos"
1

x) = sin
(

sin"1

VI - a2 = - 2 a?,

5 a;
2 = 1,
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V5

In every case the values must be checked by substitution in

the original equation.

FIG. 30.

It is often convenient, in dealing with inverse functions,

,to assume the angle whose function is given and to construct

a figure to show the values of the remaining functions.

Thus, in example 1, we wish to find cot (tan
-1

x). Let

tan"1 x = a and construct the angle a, Fig. 30, with ordinate

equal to x and abscissa equal to 1. The distance is

FIG. 31.

then Vl 4- a
2
,
and all the functions are readily found.

Thus, cot (tan"
1

#) =- Similarly, in example 2, we wish
x

to find sin (cos"
1

x) and cos (sin"
1 2 x). By figure 31 we see

assuming cos"1 x = a and sin"1 2 x = b, that sin (cos"
1

x) =
Vl x2 and cos (sin"

1 2 x)
= Vl 4 a;

2
.
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EXAMPLES

Solve the following equations :

1. sin5x sin3x+ sinx = 0.

2. cos + cos 2 6 + cos 3 = 0.

3. sin 4 x sin 2 x cos 3 x = 0.

4. 6 sin + cos = 2. 9. tan x = cos x.

5. 2 sin + cos 6 = 2.
' 10. cos 2 x = cos x.

6. sin2x = sinx. 11. sin 2 0cos20 + 2sin0 = 0.

7. cos2x = sinx. 12. sin4x 2 sin x cos 2 x = 0.

8. sin 3 6 = cos 0. 13. sin 4 6 = cos 2 0.

14. cos20 = sin20 1.

15. cos (x a) cos x sin (x a) sin x = 0.

16. sec2 x = 3 esc2 x.

17. sin cos - sin f--
0^

cos I- -
0^
= 0.

18. 27 esc cot = 8 sec tan 0.

19. 25 sin 0-12.8 esc2 = 0.

20. cos3 2 sin2 cos = 0.

Solve the following simultaneous equations for x and ?/, or r and 0.

21. i/ = l cos2x, 27. r = 3sin0 -f 2cos0,

y = 1 -f sin 2 x. r = 3 cos + 2 sin 0.

28 '
2

99 .

~~2' 2/
2 sin2x=l.

o0 on
r = esc2 - 29. y = sm x,

?/ = sin (x -f- a).

23. r= a sin 0, / . o n
o/\ / / ir\ o a

r = a sin 2 0.
<du -

24. y =
2/
= 2asinxtanx.

25. y cosx = 2 a, r2 = sin 3 0.

32.

26. r2 sin 2 = 1, r = 2 sec 0.

33. r* sin 2 = 4,

r2 = 16 sin 2 0.
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Solve the following equations :

34. sin-1 x = sin- 1 a + sin- 1 b. 37. sin-1 x = cos- 1
( x).

35. sin-ix^ sin- 1 2x = - 38. tan~ 1 2x+tan~ 1 3x=
3 4

. _j4 . _ 1 8_?r 39 t
- 1 2 -i x

L
- - _ -

. an x _ cos -

40. tan-1
(x + 1)

- cot'1
(-^} = tan' 1 2
\x- I/

41. - 1 3

42. tan-1?-! + tan- 1
* = tan-i( - 2).

x + 1 x-1

Solve the following equations, finding only the principal values of

angles :

43. cos 5 x cos 3 x + sin x = 0. 49. y = tan 2 x,

45. cos 3 x = cos x. 50. r = sin 0,

46. cotx = cosx. r = s:

47. y= 1 +cos2x,
i o .

61. sin 4 = cos 6.
y L sin 4 x.

48. r = acos0,
62 ' 3sin + cos = 2.

r = a sin 2 0.



SPHERICAL TRIGONOMETRY

CHAPTER VIII

FUNDAMENTAL RELATIONS

69. Spherical trigonometry deals with, the relations

among the sides and angles of a spherical triangle ;
that

is, of a portion of the surface of a sphere bounded by the

intersecting arcs of three great circles. It deals also with

the computation of unknown parts of such a triangle from

parts which are known, the process being called, as in plane

trigonometry, the solution of the triangle. The sides of a

spherical triangle, being arcs of circles, are expressed in

degrees, minutes, and seconds, and, as is customary, we
shall consider only those triangles in which each part (angle

or side) is less than one hundred and eighty degrees.

70. Law of Cosines. There is one theorem, the law of

cosines, which may be called the fundamental theorem of

FIG. 32.

spherical trigonometry, because by means of the theorem

any spherical triangle may be solved when three of its parts

are known. We shall proceed to prove the Law of Cosines.

Let ABC, Fig. 32, be a spherical triangle on a sphere

whose center is 0, and let the sides b and c be less than 90.

94
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Through any point, 4', on OA pass a plane perpendicular

to OA cutting the planes 04(7, GAB, and OBC, in A'C',

A'B', and B'C', respectively. Then the angle B'A'O' is the

measure of the diedral angle B-OA-C and, therefore, of

the spherical angle A. Also, by the construction, the angles

OA'B' and OA'C' are right angles. In the triangle A'B'C'

C7^2 - 2 B'A' C'A' cos A,

and in the triangle B'OC'

B'C12 = Br 2 +C rOz -2B'0' C"0cosa.

Whence

Wcf+Cfff-ZB'O > C'Ocosa

= BTA'
2 + CM72 - 2 '4' - CM' cos A,

or

2'O- C'Ocosa

= WO2 - WA'2 + (70* - C'A*
2+ 2 B'A' C'A' cosA

But B'OA' and C'OA' are right triangles, and therefore,

We then have

B'O C'Ocosa = 04' 2+ B'A' C"^' cos A,

or 04' 04' ,B'4' 0'4'

But
f) A'

cos J304 = cos c, -^p = cos 40C= cos 6,,BO CO

= sin 504 = sin c,
- = sin40C= sin b.BO CO

Hence cos a = cos 6 cos c 4- sin 6 sin c cos 4,

which is the law of cosines.
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In the above demonstration the sides b and c were taken

less than 90 in order that the construction of the right tri-

angles B'OA' and C'OA' might be possible. The resulting

theorem, however, is true in all cases. Let us assume

90 < b < 180 and 90 < c < 180. Then, Fig. 33, pro-

duce the arcs AB and AC to meet in A', thus forming a

lune. In the triangle A'BC, b' and c' are less than 90.

FIG. 34.

The law of cosines is, therefore, true for the triangle A'BC,
so that, since A' = A,

cos a = cos b' cos c' -f- sin b' sin c' cos A.

But b
1 = 180 -b and c' = 180-c.

Whence

cos a = cos (180 b) cos (180 c)

+ sin (180
-

b) sin (180 c) cos A,

or, cos a = cos b cos c -f- sin b sin c cos A. Q.E.D.

Again, let b < 90 and 90 < c < 180. Produce the arcs

BA and BC, Fig. 34, to meet in B', thus forming a lune.

Then, in the triangle AB'C, b < 90 and c
f < 90, and,

therefore,
cos a' = cos 6 cos c' + sin 6 sin c' cos CAB'.

But

a' = 180 -
a, c'= 180 -

c, and CAB' = 180 - A.

Hence

cos (180 a)

=cos b cos (180
-

c)+ sin b sin (180
-

c) cos (180
-

A),
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or, cos a= cos b cos c -f sin b sin c cos -4,

which proves the law of cosines for all cases.

We thus have the three fundamental equations, the law

of cosines :

cos a = cos b cos c+ sin b sin c cos A,

cos 6= cos c cos a -f- sin c sin a cos JB, (37)

cos c= cos a cos b -f- sin a sin & cos C,

by means of which any spherical triangle may be solved.

For example, given a = 60, b = 70, A = 65.

We have

cos 60 = cos 70 cos c + sin 70 sin c cos 65,

r>
.500 = .342 cos c + .940 sin c x .423,

.342 cos c + .398 sin c = .500,

.342 cos c + .398 sin c .500

V(.342)
2

+(.398)
2

"

V(.342)
2 + (.398)2

'

.342
,

.398 . .500__cosc + sine-
,

.651 cos c + .758 sin c = .952,

.651 = cos 49.4, .758 = sin 49.4.

Therefore,
cos (c- 49.4) = .952,

c - 49.4 = cos-1 .952 = 18.2 and c = 67.6.

Similarly the other parts may be found. The equations
are not, however, adapted to logarithmic computation, so

that for practical use, as will presently be shown, they
must be transformed in various ways.

71. Law of Cosines Applied to the Polar Triangle. The
law of cosines, being true for any triangle, is true for the

polar triangle of ABC. Therefore, denoting the six parts
n
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of the polar triangle by the same letters accented, we have

cos a' = cos b' cos c' -f- sin &' sin c' cos A'.

But

a' = 180 -A,b' = 180 - B, c' = 180 -
C, A' = 180 - a.

Whence,

cos (180 -A)= cos (180-B) cos (180- (7) -f sin (180-B)
sin (180

-
<7) cos (180

-
a),

or

cos A = cos B cos (7 sin B sin (7 cos a,

so that the truth of the three following equations is obvious :

cos A = cos B cos C +- sin B sin C cos a,

cos B = cos (7 cos .4 -h sin (7 sin A cos 6, (38)

cos (7 = cos ^4 cos B + sin ^4 sin B cos c.

72. Law of Sines. Another theorem of importance in the

solution of spherical triangles, known as the law of sines, is

as follows : In any spherical triangle the sines of the sides are

proportional to the sines of the opposite angles. That is,

sin a : sinb: sin c sin A : sin B: sin C. (39)

From equations (37) we have,

A cos a cos b cos c
COS A =

: :
.

sin b sin c

Whence

1 - cos2 A= 1 - (CQS
- cos 6 cos c)

2

sin2 b sin2 c

or,
.

2
. _ sin2 b sin2 c (cos a cos b cos c)

2

sin2 b sin2 c

_ (1 cos2
6)(1 cos2

c) (cos a cos 6 cos c)
2

sin2 b sin2 c

_ 1 cos2 6 cos2 c cos2 a + 2 cos a cos 6 cos c

sin2 & sin2 c
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Whence,

sin2 A _ 1 cos2 a cos2 6 cos2 c + 2 cos a cos 6 cos c

sin2 a sin2 a sin2 b sin2 c

or,

sin A _ VI cos2 a cos2 6 cos2 c+2 cos a cos 6 cos c

sin a sin a sin 6 sin c

where the positive sign is taken because A and a are each

less than 180. The right-hand member of this expression is

symmetric in a, 6, and c, so that if we started with cos B or

cos C instead of with cos A, the final result for the right-

hand member would be identical with that written above.

Therefore, obviously, we have

sin A _ sin B __ sin C
sin a sin b sin c

'

the law of sines which was to be proved.



CHAPTER IX

THE SOLUTION OF RIGHT SPHERICAL TRIANGLES

73. Special Formulae for Right Triangles. If we let C be

the right angle in a right spherical triangle, and put C= 90

in the third equation of (37), we have

cos c = cos a cos b. (40)

The third equation of (38) gives

= cos A cos B + sin A sin B cos c,

or, cos c = cot A cot B. (41)

The first two equations of (38) give

cos A = sin B cos a,

cos B sin A cos b.

Using the proportions of (39) when C= 90, we have

sin A _ sin j? __ 1

sin a sin 6 sin c

Whence,
sin a = sin A sin c,

(43)
sin b = sin B sin c.

From (42) by (43) we have

or, by (40)

cos A = sin B cos a = . cos a,
sine

A sin 6 cos c tan
cos A =

sm c cos b tan c

100
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Similarly,

(44)tanc

By (43), (44), and (40),
sng

sin A sin c sin a tan c
tanA = - -; = z r = -: -

7 r
cos A tan 6 sin c tan b

tanc

sin a sin a tan a

tan b cos c tan & cos a cos 6 sin b

In the same way,

(46)
sin a

74. The formulae (40) to (45) may be assembled, in a

slightly different form, as follows :

sin a n sin b
sin A = sin 5 =

sin c sin c

tan c tan c
(46)

sin b sin a

cos A = cos a sin B. cos B= cos b sin 4.

cos c = cos a cos &. cos c = cot ^4 cot B.

A device, known as Napier's Rules, was formulated by

Napier to facilitate the remembering of the above formulae.

Let us take for the Jive parts of a right triangle the sides

a and 6, and the complements of A, B, and c. These five

parts, Fig. 35, arrange themselves so that each is a middle

to two adjacent parts and a middle to two opposite parts.

NAPIER'S RULES state

I. The sine of the middle part equals the product of the

tangents of the adjacent parts.
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II. The sine of the middle part equals the product of the

cosines of the opposite parts.

co-B

co-A

By applying these rules to the various parts all the

formulae of (46) may be obtained. Thus, for example,

sin (co-^1)
= tan b tan (co-c).

That is,

sin (90
- A) = tan 6 tan (90

-
c),

or, cos A = tan b cot c = 5-
tanc

75. Rules for Solution. In a right triangle, the right

angle being always known, only two other parts need be

known to solve the triangle. To solve a right triangle by
means of the formulae (46) we have, therefore, the general

rule : Select that equation which involves the two known parts

and one unknown part.

The algebraic signs of the functions must be carefully

noted in order to determine the sign of the resulting func-

tion and thereby the angle. If the part to be found is got

from a cosine, tangent, or cotangent there is no ambiguity,

for if these functions are plus the part will have a value

less than 90. If they are minus the part will have for its

value the supplement of the angle found from the tables of

trigonometric functions.

On the other hand, if the unknown part is determined by
a sine, the sine being positive for all angles between and

180, the value may be either that got from the tables or its
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supplement. In general both solutions must be used unless

the ambiguity can be removed by the following laws :

1. If the sides adjacent to the right angle are in the same

quadrant, the hypotenuse is less than 90 ; if they are in dif-

ferent quadrants, the hypotenuse is greater than 90.

2. An angle and its opposite side are in the same quadrant.

PROOF OF LAW 1. By (40) cos c = cos a cos b.

Let a<90 and b < 90. Then cosa =
,
cos& =

,

and cos c = ( )( )
= -f . Therefore, c < 90. Again, let

a ^90, and b ^90. Then cos a = ,
cos& = =F, cose

-, and c>90.

PROOF OF LAW 2. By (45) sin b =
tan^L

Since sin b is necessarily positive, it follows that tan a

and tan A are both plus or both minus. Therefore a and A
are each less than 90 or each greater than 90.

76. The solution of right triangles is illustrated by the

following examples :

Example 1. Given A = 33 50', b = 108, find B, a, and c.

From the formulae (46) we select

tan a A tan b
tan A = -r -

,
cos A =

,
cos B = cos 6 sin A.

sin b tan c

or,

tan a = tan A sin 6, cot c = cos A cot b, cos B = sin A cos b.

+
log tan A = 9.8263 +log cos A = 9.9194

+log sin b = 9.9782 "log cot b =9.5118
+
log tan a = 9.8045 "log cot c' = 9.4312

c' = 74 54'

a = 32 31' c =105 6'



104 SPHERICAL TRIGONOMETRY [IX, 76

4
log sin A = 9.7457

-log cos b = 9.4900

-log cos B' = 9.2357

B' = 80 6'

B = 99 54'

To check the results we select a formula involving the

three parts to be found
; a, c, and B. Thus cos B = JJ?,

tanc

log cos B = log tan a -f- log cot c

9.2357 =9.8045 + 9.4312 CHECK.

Example 2. Given a = 47 30', c = 120 20', find A, B,
and 6.

We have

sin a T. tan a ', cos c
,

cos5 =
,

cos b = .

sin c tan c cos a

log sin a =9.8676 +
log tan a =0.0379 ~log cos c =9.7033

log sine =9.9361 "log tanc =0.2327 +
log cos a =9.8297

log sin A =9.9315 -log cos '=9.8052 -log cos &'=9.8736

'=50 19' &'=41 38'

A = 5840' B = 129 41' b = 138 22

CHECK. cos B = cos 6 sin A

log cos B = log cos b + log sin A
9.8052 = 9.8736 + 9.9315 = 9.8051.

NOTE. The value of A less than 90 is taken by virtue

of law 2, Art. 75.

Example 3. Given B = 105 59', b = 128 33', find A, o,

and c.

We have,

cos B = cos b sin A, tan
sn a sin c
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or

sin a = tan b cot B,, ,
--.

cos b sm jB

-log cos B =9.4399 ~log cot B= 9.4570 log sin b =9.8932

-log cos b =9.7946 -log tan b =0.0986 log sin 5=9.9828

log sin A = 9.6453 log sin a = 9.5556 log sin c = 9.9104

^1=26 14' ai=21 4' Cl =54 27'

A2
= 153 46' a2

= 158 56' c2 = 125 33'

CHECK. sin a = sinA sin c.

log sin a = log sin A -f log sin c

9.5556 = 9.6453 + 9.9104 = 9.5557.

By law 2 both sets of values must be used
;
but by law 1

the acute value cx belongs with the obtuse values of A and a,

the obtuse value c2 with the acute values of A and a. Thus

the two solutions are :

1. A = 26 14', a = 21 4', c = 125 33'.

2. .4 = 153 46', a = 158 56', c = 54 27'.

NOTE. A quadrantal spherical triangle is one which has

a side equal to a quadrant. The polar triangle of a quad-
rantal triangle is right. Therefore, to solve a quadrantal

triangle solve its polar triangle and take the supplements
of the parts thus found.

EXAMPLES

Solve the following triangles in which C = 90.

1. A = 40 13', 5. a =165 19', 9. a = 144 1',

a = 26 25'. c = 46 50'. 6 = 123 6'.

2. B = 8315', 6. 6 =40 49', 10. 4 = 69 17',

6 = 76 46' . c = 135 40'. B = 51 46'.

3. B = 110 50', 7. a = 21 18', 11. ^ = 137 18',

6 = 118 30'. 6 = 49 55'. B = 119 30'.

4. 6 = 127 36', 8. a = 78 32', 12. A = 71 46',

c = 94 52'. b = 132 25'. B = 148 3'.
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13.



CHAPTER X

THE SOLUTION OF OBLIQUE SPHERICAL TRIANGLES

77. Six Cases may be enumerated in the solution of

oblique spherical triangles.

1. Given the three sides, a, b, c.

2. Given the three angles, A, B, C.

3. Given two sides and the included angle, a, b, C.

4. Given two angles and the included side, A, B, c.

5. Given two sides and the angle opposite one of them, a,

b,A.

6. Given two angles and the side opposite one of them, A,

B, a.

We shall proceed to consider these cases in the order

named.

78. Case 1. Given the three sides. The law of cosines is

sufficient to solve this case, but the equations are not

adapted to logarithmic computation. We therefore de-

velop them as follows :

We have proved the formula

cos^l
2L =\/̂

1 -h cosA
By the law of cosines

^_ cos a cos 6 cos c

sin b sin c

107
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Whence

1 cos A _ sin b sin c + cos b cos c cos a

1 -f- cos A sin b sin c cos b cos c -f- cos a

_ cos (6 c) cos a _ cos a cos (b c)~
cos a cos (b -f c) cos (6 + c) cos a

But

cos a cos (b c)
= 2 sin | (a + b c) sin (a b -f- c),

cos(6 + c) cosa = 2 sin 1 (a + 6 + c) sin^(6 + c a).

Hence

c)sin|(a
1 + cos .4 sin ^(a + 6 + c) sin ^(b-\- c a)

Let a + 6 + c = 2s; then a + 6 c = 2 (s c),

a 6 + c = 2(s 6), and 6 + c- a = 2(s a).

Therefore, 1 cos A _ sin (s b) sin (s c)

1 + cos A sin s sin (p a)

tan^=.--. (47)

Similarly,

sin

(-*)
We may write

sin (s a) sin (s b) sin (s c)

sin (s a)
* sin s

or, putting
/sm (s a) sin (s b) sin (s c)

sins

(48)

sin (s c)
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Either set of formulae (47) or (48) may be used in the solu-

tion of Case 1. If a check is desired in the solution the law

of sines may be so used. Thus, since

sinA _ sin B _ sin C
sin a sin b sin c

'

it follows that

log sinA log sin a = log sin B log sin b

= log sin C log sin c.

It must be remembered, however, that results may check

and still be incorrect. If they do not check they are wrong ;

if they check they may be right, or may be wrong, since

errors may compensate each other. It is important to

check one's work, but far more important to learn, by care-

ful attention, to work accurately.

Example. Given a = 103, 6 = 53, c = 61, find A, B,
and C.

Using the formulae (48) we find

8 = i
(103 + 53 + 61)= 108 30',

s-a = 530', s-6 = 5530 r

,
s-c = 4730'.

log sin (s a)= 8.9816

log sin (s
-

b)
= 9.9160

log sin (s c) = 9.8676

log esc s = 0.0230

2)18.7882

log&= 9.3941

log k = 9.3941 log k = 9.3941

log sin (sa) = 8.9816 log sin (s b) = 9.9160

log tan A = 0.4125 log tan | B = 9.4781

% A = 68 51', I B = 16 44',

A = 137 42', B = 33 28',
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log k = 9.3941

log sin (s c)
= 9.8676

log tan C = 9.5265

iC=1835',
C = 37 10'.

CHECK.

log sin A = 9.8280 log sin B = 9.7415 log sin C = 9.7811

log sin a = 9.9887 log sin b = 9.9023 log sin c = 9.9418

9.8393 9.8392 9.8393

79. Case 2. Given the three angles. This case may be

solved by the same formulae that are used in Case 1, by
making use of the principle of polar triangles. Thus, using
accented letters to represent the corresponding parts of the

polar triangle, we have a' = 180 - A, b' = 180 - B, c' =
180 C. Knowing the sides a', &', c', we can find the

angles A', B', C', as in Art. 78. Then the sides of the

original triangle will be

a = 180 -A',b = 180 -
B', c = 180 - C'.

Example. Given A = 123, B = 43, C = 64, find a, 6, c.

Here a' = 180 - A = 57, b' = 137, c' = 116,

8 = K57 + 137 + 116) = 155,

s-a' = 98, s - b' = 18, s - c' = 39.

log sin (s
-

a')
= 9.9958

log sin (s
-

b')
= 9.4900

log sin (s
-

c')
= 9.7989

log esc s = 0.3741

2)19.6588

logA:= 9.8294

log k = 9.8294 log k = 9.8294

log sin (s
-

a')
= 9.9958 log sin (s

-
b')
= 9.4900

log tan \ A' = 9.8336 log tan \ E' = 0.3394

A' = 34 17', I B' = 65 24 r

,

A' = 68 34', B' = 130 48',
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log Jc = 9.8294

log sin (s
- cQ = 9.7989

log tan | (7 = 0.0305

I a = 47 i',

C'=942'.
Therefore

a = 111 26', 6 = 49 12', c = 85 58'.

CHECK.

log sin A = 9.9236 log sin B = 9.8338 log sin C= 9.9537

log sin a = 9.9689 log sin b = 9.8791 log sin c = 9.9989

9.9547 9.9547 9.9548

NOTE. Using the law of cosines as stated in (38), .Art.

71, whence
cos B cos C 4- cos A

cos a =
sin B sin (7

and proceeding as in Art. 78, the following formulae may
be got :

/ cos (S B) cos (S C)

or

cos (8 A) cos (8 B) cos (8
-

O)=

where

and similar formulse for cot ^ b and cot % c. These formu-

lae are simple and convenient, but it is unnecessary to bur-

den the memory with them.

80. Cases 3 and 4, two sides and the included angle, two

angles and the included side, are solved by means of Napier's

Analogies, which we shall proceed to derive.

From (48), Art. 78, we may write

A ^ B *

tan ^- tan ^ =
2 2 sin(s-a) sin(s-6)'
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or, since ,
2 _ sin (s

-
a) sin (s b) sin (s c)

sins

sin sin
2 2 _ sin (s

-
c)

"2"' ~^~ sins
cos cos

2 2

Whence,
sin - sin _

1 _ _2_2 _ 1 _ sin (s
-

c)

cos^cos*'
sins

2 2
or,

cos cos-- sin sin22 22 _ sins-sin(s-c)

eosfcosf

=

That is,

cos i (A + B) _ 2 cos |(2 s c) sin | c

.4 J5 sins
COS C S ~

Whence, since 2s c = a-|-6-|-c c = a + 6,

cos J (^ + B) _ 2 cos i (a 4- 6) sin i c ,.~

^|^f
=

S5T
^'

Also, from (a) above,

sin sin

-,
, _2_2 _ sm(s-c)+=

which being transformed in the same manner gives

cos i (A B) __
2 sin|(q + 6) cos j-c

"~Z 5~
:

sins
cos cos

2 2
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Dividing (ft) by (y) we have

cosiQi + B) = tan|c (49)

cos|(4-5) tan(a+&)

Again, from (48) Art. 78 we may write

tan_2 _ sin (s 6)

^~S~sin(-a)'
2

sin ^ cos
*

2 2 _ sin (s

Whence,

sin cos
2 2 sin(S

- 6)

cos sn sin (s a)

sin cos cos sin
2 2_2 2 _ sin (s b) sin (s a)

^4 . 5 sin (s a)cos sin
2 2

Using the upper signs,

sin 1 (A + B) _ 2sini (2s a 6) cos -*-

(a
-

6)

cos | sin |

=
sin (s

- tt
)

^ gin j c CQS k (& &) . /sj\

sin (s a)
Using the lower signs,

sin %(A - B) __ 2 cos |(2s
- a - 6) sin j-(a

-
6)

sin (8 -a)cos sn

2 cos | c sin ^ (a b) t
,*

sin (s a)
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Dividing (8) by (c),

sin
-, (A + B) tan c

-; = - -.
(50)

sin
g (
A B) tan

^ (a b)

Applying (49) and (50) to the polar triangles we obtain

cos i (A
1 + B') = tan 1 c'

cos ^ (A' B') tan \ (a
f + 6')

'

sin ^ (A' + #') = tan
j-

c'

sin i
(J.' 5') tan 1

(a' &')

Remembering that A' = 180 -
a, a' = 180 - A, etc.

these become

cos
I (a+ ft)

cot
^
C

cos I (a &) tan
| (A -f-

(51)

~ (^)

The formulae (49), (50), (51), and (52), called Napier's

Analogies because of their similarity to formula (28) of

the plane trigonometry, can obviously be written in other

forms by the cyclical interchange of the letters.

81. Case 3. Example. Given a = 100 30', b = 40 20',

(7=46 40', find A, B, c. Napier's analogies (51) and (52)

may be written
_. cos i (a

-
6);

sm

which will determine A and B. Then to find c we may use

either (49) or (50). The latter may be written

sm %(A B)
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We have

(a 4- b)= 70 25', \ (a
-

6)
= 30 5', C= 23 20'.

log cos (a
-

6)
= 9.9371 log sin (a

-
6)
= 9.7001

log cot \ C = 0.3652 log cot | C = 0.3652

log seel (a + 6)
= 0.4748 log esc % (a + 6)

= 0.0259

log tan 1(^1 + )= 0.7771 log tan (A-B) = 0.0912

i
(J. + B)= 80 31', (A - B)= 50 59'.

Whence A = 131 30', jB = 29 32'.

log sin %(A + B)= 9.9940

log tan i (a -6) =9.7629

log esc $(A-B)= 0.1096

log tan i c = 9.8665

|c = 3620 f

,

c = 7240'.

The signs are all plus in the above computation.

Case 4. Example. Given B = 110 40', C = 100 36', a =
76 38', find 6, c, A

Napier's analogies (49) and (50) may be written

cosiB-C tan 1 a

sin 5- 6* tan

which will determine 6 and c. To find A either (51) or

(52) may be used. The latter is

sin i (6 c)

Here | (5 + C)= 105 38', $(B - C)= 5 2',
1 a = 38 19'.

log cos i(B 0)= 9.9983 +
log sin 1(B - 0)= 8.9432

+
log tan i a = 9.8977 +log tan 1 a = 9.8977

log sec (B+C) =0.5695 +
log esc | (B + 0)= 0.0164

-log tan (& + c)
= 0.4655 +

log tan | (6
-

c)
= 8.8573

180 -
$(b + c)

= 71 6', |(6
-

c)
= 4 7'.
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Whence b =113 1', c = 104 47'.

log
+ sin i (6 + c)= 9.9759

log
+ tan

(
-

O)= 8.9449

log
+ csc i (6 -c) = 1.1440

log
+ cot i ^1 = 0.0648

i ^ == 40 44',

.4 =81 28'.

Note that the algebraic signs are not all plus, and that

the quadrant in which the angle lies is determined by the

sign in the case of the tangent, cotangent, or cosine.

82. Cases 5 and 6, two sides and an opposite angle or two

angles and an opposite side, may be solved by the law of

sines together with Napier's analogies. Thus, if a, b and A
are given, we may write

sin b sin A
sin B =

sm a

which, however, does not determine B unambiguously, since

B may be either acute or obtuse. In this case, indeed,

there may be two solutions, one solution, or none. We
know, however, that if two sides (or angles) of a spherical

triangle are unequal the angles (or sides) opposite are un-

equal, and the greater angle (or side) lies opposite the

greater side (or angle). These theorems enable us to deter-

mine which values of the angle (or side) are possible.

Thus ifb^a, then only values ofB which are
| Qrea^er \

^ian

A are possible; both values of B may be so, or only one

value. If the sine of B is greater than unity ; that is, if log

sin B is positive, no solution is possible. These same con-

siderations obviously apply to case 6 also.

Another method of removing the ambiguity of Cases 5

and 6 is as follows : Two angles are of the same species

when they are both acute or both obtuse. Also, since each

side and angle of a spherical triangle is less than 180, we
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see that $(A + B) and | (a + b) are each less than 180
;

while %(A B) and 1 c are each less than 90. It follows,

in Napier's first analogy,

cos i (A + B) _ tan^c
cos i (A - B)

~~
tan |(a + b)

'

that tan ^ c and cos ^ (A B) are both positive. Then

cos -i
(
A + B) and tan \ (a + b) must have the same algebraic

sign, and, therefore,
1 (A + B) and |(a + 6) are o/ fte same

species. Thus, when a and b are given and A or 5 is to be

found, if i(a + 6) ^ 90 m^s aZso %(A+B)^ 90
;

and

the values of A or 5 must be so chosen as to satisfy this

condition.

Having thus found B, say, (whether there be two values

or only one) we may complete the solution of the triangle

by the use of Napier's analogies.

Example 1. Given a = 46 30', b = 30 20', B = 36 40',

solve the triangle.

We have . sin a sin B
sin A =

sm b

log sin a = 9.8606

log sinB = 9.7761

log esc b = 0.2967

log sinA = 9.9334

^1 = 59 4' or 120 56' = ^'.

Here a > 6, and, therefore, must A> B. This is true of
both values of A found, so that there are two possible solu-

tions of the triangle. To find C and c we may use (52) and

(50).

cot C= sin JO + 6) tan (A-B)
2 sina-&

, c =
2 sin |(^1 -J5)
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We have

First solution Second solution

.1

(a + 6)
= 38 25,'

'

|(a + b)
= 38 25',

|(a-&)=86', K-&) =8 5',

(4 + -B)
= 47 52/ %(A' + B)= 78 48',

l(A -B)= 11 12'. i(^'
-

B)= 42 8'.

log sin |(a + 6) = 9.7934 or 9.7934

log tan $(A -B)= 9.2966 9.9565

logcsc^(a-&) =0.8519 0.8519

log cot - = 9.9419 or 0.6018

^=48 49', Y = 14 3
'>

(7 =97 38'. O' = 286'.

log sin %(A + B)= 9.8701 or 9.9916

log tan (a
-

6)
= 9.1524 9.1524

log esc%(A- B)= 0.7117 0.1734

log tan =9.7342 or 9.3174

-=28 28',
- = 11 44',

c=5656'. c' = 2338'.

The two complete solutions are, therefore,

^1=59 4', or 120 56',

C = 97 38', 28 6',

c = 5656'. 23 28'.

Example 2. Given a = 126, c = 70, A = 56, solve the

triangle.

Using the formula

sin A sin c. ^sm C
sin a
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we have log sin A = 9.9186

log sin c = 9.9730

log esc a = 0.0920

log sin C = 9.9836

C = 74 20' or 105 40'.

But since a > c, must A > C. Therefore, there is no sohtr

tion. Otherwise thus :

(a + c)
= 98, i (A + C) = 65 10' or 80 50', which are

not of the same species.

Example 3. Given A = 84, C = 19, a = 28, solve the

triangle.

Using the law of sines, sin c =
;

- -
sm^.

log sin C= 9.5126

log sin a = 9.6716

log esc ^4 = 0.0024

log sin c = 9.1866

c = 8 50' or 171 10 f

.

But since C < A, must c < a, and the second value is

impossible.

To find b use (50).

log sin (A + C)= 9.8935

log tan i (a
-

c)
= 9.2275

log esc fr(^-Q = 0.2698

log tan i 6 = 9.3908

|6 = 1349 r

,
6 = 27 38'.

To find B we may use (52), which has the advantage of

giving an unambiguous result, or the law of sines. Selecting

the latter method we have

log sin (7= 9.5126

log sin b = 9.6663

log esc c = 0.8137

log sin B = 9.9926

B = 79 27' or 100 33'.
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But since b < a, must B < A, and the second value is im-

possible. The complete solution is, therefore,

c = 8 50', b = 27 38', B = 79 27'.

83. Delambre's Analogies or Gauss's Equations.

Using the law of cosines we may write

cos a cos b cos c
COS A = : :

sin b sin c

Whence

1 - cos A = 2 sin' 1 A = (c S 6 COS c + sinfe sin c)~ cos a
sm 6 sin c

or,

9A cos(6 c) cos a_2 sini(a-h6 c)sini(a 5+c)L Sin =
; ; ; .

** *

2 sm b sin c - sin b sm c

That is,

sm^l _ /sin (s b) sin (s c)

2 ^ sin 6 sin c

_B f*
with similar formulae for sin and sin

2i

In the same manner, by adding unity to each side of the

first equation of this article, may be obtained formulae of

which the type is

cos-=Jsingsin (g -).
2 ^ sin b sin c

From these obviously follows

. A B _ sin(s-6) sin s sin (s
-

c)
Dill - OUO ; Al r

2 2 sin c ^ sm a sm b

_ sin (s b) C_ (a)

sine 2

In the same way we obtain

2 sm c



X, 83] OBLIQUE SPHERICAL TRIANGLES 121

Adding (a) and (/3),

sin 4 cos
* + cos ^ sin | = sin(.-a)+sin(.-6) cog

<72222 sine 2

Whence
sin 4- c cos 4 (a 6) (7

sin 4 M + B) = - -^ cos -^
sm^ccos^c 2'

or

cos i c 2

Similarly may be obtained

sA - = coa

sin, III
cos - c 2

cos 1(A-B) = TV* T- "/ sin ^ IV
sm i c 2

which are the analogies or equations sought. These im-

portant equations may be conveniently used in the solution

of Cases 3 and 4 of oblique triangles.

Example. Given a = 132 47', b = 59 50', C = 56 28',

solve the triangle.

We have

(a + 6)
= 96 19', i(a

-
6)
= 36 29', 1(7 = 28 14'.

log sin i (a + b)
= 9.9973, log sin (a

-
6)
= 9.7742,

log cos i
(a + 6)

= 9.0414, log cos (a
-

b)
= 9.9053,

log sin - = 9.6749, log cos - = 9.9450.
2 2

From equations II and IV,

log Jsin
i c sm$(A - B) \

= 9.7742 + 9.9450 = 9.7192,

log {
sin | c cos %(A-B)\= 9.9973 + 9.6749 = 9.6722.
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Whence
log tan $(A-B) = 0.0470,

From I and III,

log+ {
cos i c sin J (A+ JB) j

= 9.9053 + 9.9450 = 9.8503,

log- \GOS
i c cos (4 + ) }

= 9.0414 + 9.6749 = 8.7163.

Whence log- tan %(A + B) = 1.1340.

180 -%(A + B) = 85 48', | (A + 5) = 94 12'.

Therefore, .4 = 142 18', = 46 6'.

Also log sin $(A B) = 9.8718.

Therefore, log jsin
1 c sin %(A B)\ = 9.7192_log sin i(A-B)= 9.8718

log sin i c = 9.8474

|c = 4444', c = 8928'.

Possibility of Solution by Inspection of Data. Before at-

tempting the solution of a spherical triangle it may be

desirable to determine whether the triangle is possible with

the given data.

Case 1. Given the three sides. The triangle is always

possible if the sum of the sides is less than 360, and if no

one side is greater than the sum of the other two. This

follows at once from well-known geometrical theorems.

Case 2. Given the three angles. This- case can be read-

ily tested by the criteria of Case 1 applied to the polar

triangle. For example, the triangle A == 78, B = 100,
C = 160 is impossible because the sides of the polar tri-

angle, a' = 102, V = 80, c' = 20, are such that a' > 6' + c'.

Case 3, given two sides and the included angle, and Case

4, two angles and the included side, are always possible.

Cases 5 and 6 have been discussed in Art. 82.
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EXAMPLES
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40. a = 58 20', 42. A = 70 5', 44. A = 115,
6 = 138 5', B = 122, B = 60,
c = 116 3'. C = 95 4'. C = 135.

41. a = 61, 43. flf= 60, 45. a = 150,
c = 97, 6 = 120, 6 = 160,
5 = 110. c = 50. B = 10.

46. a = 112 30', 47. ^1 = 20 30',

6 = 108 40', B = 32 30',

c = 14010'. = 124 30'.



CHAPTER XI

THE EARTH AS A SPHERE

84. Distances on the Earth. As we remarked in the intro-

ductory chapter, plane trigonometry is sufficient for the

survey of small areas. For larger areas and in navigation,

except in the most refined work, the Earth is treated as a

sphere and we make use of the principles of spherical trigo-

nometry already enunciated.

The shortest distance between two points on the Earth is

the arc of a great circle joining them. If we know the

number of degrees in that arc we can compute its length by
the formula s = xr (Art. 47), where s is the length of arc,

x the angle in circular measure, and r the radius of the

sphere ;
in this case 3960 miles, the radius of the Earth.

Example. Find the length of an arc of 26 on the Earth's

surface.

26'=

Therefore,

s=^ x 3960 = 12 . ?? . 3960 = 1798 miles,
yo yo 7

It is convenient to compute and remember the number of

miles in one degree of arc for the purpose of finding lengths
of arcs.

s = -?- x 3960 = 69.1 miles, approximately.
JLoU

85. Position and direction. The position of a point on the

Earth is determined by its latitude and longitude; that is,

by the number of degrees the point lies north or south of

the equator, and the number of degrees east or west of a

125
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great circle, through the Earth's axis, chosen as a reference

line. We shall use the great circle, or meridian, through
Greenwich.

A point moving along a great circle of the Earth, unless

that circle be a meridian or the equator, is constantly

changing its direction, or course. For example, Fig. 36, at

A the compass points north along AN, and a ship at A is

FIG. 36.

sailing, say, due west. When the ship has reached B the

compass points north along BN and the ship is sailing west

30 south. On the other hand if a ship sailed constantly on

a course, say, west 30 south it would move around the

Earth in a spiral approaching continually nearer to the

South Pole.

86. Bearings. To illustrate the use of spherical trigo-

nometry in determining positions, directions, and distances

on the Earth's surface, consider, Fig. 36, a ship sailing

from C to A along the great circle CBA. The lines NC,

NB, NA y
and NG are meridians, the last being the meridian

of Greenwich. Suppose the latitude and longitude of C
are 44 40' N., 63 35' W.

;
of A, 53 24' K, 3 4' W. The

longitude of G, obviously, is 0. The positions of the points

C and A being thus known, let us find the directions (called

of A from C and of C from A, and the distance
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from C to A. From the meaning of longitude we have

34:', GNC = 6335', whence a = ANC = 60 31'.

Also, by the meaning of latitude,

= go - 53 24' = 36 36'
;
CN= 90 - 44 40' = 45 20'.

We therefore have, in the spherical triangle CNA, CN=
a = 45 20', AN= c = 36 36' and the included angle a =
60 31', which is case 3 in the solution of spherical triangles.

The data :

(a + c)
= 40 58',

i
(a
-

c)
= 4 22', | a = 30 15.5'.

log cos i (a
-

c)
= 9.9987 log sin 1 (a

-
c)
= 8.8816

log cot - = 0.2340 log cot
* = 0.2340

2 2i

log seel (a + c) =0.1220 log esc |(a + c)
= 0.1834

log tan $(A+C)= 0.3547 log tan 1 (A - C) = 9.2990

(A + C) = 66 10' i (A - C) = 11 16'.

Whence A = 77 26'. C = 54 54'.

Therefore the bearings of C from A are N. 77 26' W.
;
of

A from (7, K 54 54' E.

To find the side CA = x we have

log sin i (>1+ C) = 9.9613

log tan i (a
-

c)
= 8.8829

log esc %(A - C) = 0.7092

log tan -=9.5534

a =19 47.5', x = 39 35'.

Therefore length CA = 39.6 x 69.1 miles = 2736 miles.

If only the distance sailed is required it is simpler to use

the law of cosines. Thus, cos x = cos c cos a -f sin c sin a

cos a.
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log cos c = 9.9046 log sin c = 9.7754

log cos a = 9.8469 log sin a = 9.8520

9.7515 log cos = 9.6921

number = .5643 9.3195_.2087 number = .2087

cos x = 0.7730,

x = 39 23'

and the distance = 39.4 x 69.1 = 2723 miles.

87. The course of the ship at C would be N. 54 54' E. To

show how the ship's course changes as it sails along CA let

us find the course as the ship crosses the meridian 38 W. at

the point B, Fig. 35. In the triangle NCB we have b=CN
= 45 20', C = NCB = 54 54', N= CNB = 63 35' - 38

= 25 35'
;
that is, two angles and the included side.

i(C+ N) = 40 14.5', (C-N) = 14 39.5', b = 22 40'.

log cos (C-N) = 9.9856 log sin | (<7
- N) = 9.4033

log tan i b = 9.6208 log tan | b = 9.6208

= 0.1173 log esc $(C + N) = 0.1897

log tan (c + n) = 9.7237 log tan | (c
-

n) = 9.2138

(c + )
= 27 53.5' (c

-
n) = 9 17.5'.

Whence c = BN=37 11', n = CB = 18 36'.

The latitude of is 90 - BN = 52 49' N., and the dis-

tance sailed is

CB = 18.6 x 69.1 miles = 1285 miles.

To find the angleB = CBN we have

log sin i (c + n) = 9.6700

log tan i (C - N) = 9.4176

log esc i (c
- n) = 0.7919

log cot % B = 9.8795

\ B = 52 51', B = 105 42', and NBA = 180 - B = 74 18'.

Therefore the ship's course at J5 (the bearing ofA from

B) is N. 74 18' E.
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88. The Area of a Spherical Triangle may be found as fol-

lows : The theorem has been proved that the area of a

spherical triangle is equal to its spherical excess (the excess

of the sum of its angles over two right angles) times the

area of the tri-rectangular triangle; it being understood

that the right angle is the unit of angles. Thus, using A to

represent the area of a triangle whose angles (in degrees)

are A, B, and C
;
and noting that the tri-rectangular triangle

is one eighth of the surface of the sphere ;
we have

A + B+C-ISQ 4 irr* = (A + B + C- 180)in*

90 8 180

Example. Given A = 105, B = 80, C = 95, and taking

r = 3960 miles, the radius of the earth,

A = (105 + 80 + 95" - 180) /3960 N 2 = 5?r(3960)
2

180 9

log 5 = 0.6990

log TT = 0.4971

2 log r = 7.1954

colog 9 = 9.0458 - 10

log A = 7.4373

and A = 27,370,000 square miles.

TABLE OF LATITUDE AND LONGITUDE

Baltimore 39 17' K, 76 37' W.
Boston
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EXAMPLES

In the following problems assume that one can travel directly

along the arc of a great circle between the points named.

1. A ship sails from Baltimore to Boston. Find the course of the

ship as she leaves Baltimore, her course as she crosses the meridian of

New York, and the entire distance she sails. What are the bearings

of Baltimore from Boston, and of Boston from Baltimore ?

2. Find the course at Liverpool, the course at 55 W., and the

total distance sailed by a ship going from Liverpool to New York.

What are the bearings of these cities from each other ?

3. A ship sails from Baltimore to Rio de Janeiro. She sails first

to a point off Pernambuco in latitude 8 S., longitude 34 W., and

from there to Rio. How far does she sail, and what is her course off

Pernambuco ?

NOTB. In the Southern Hemisphere latitudes are taken as algebra-

ically negative. Use the north-polar distances of places as sides in

solving triangles.

4. In problem 3 what course will the ship be sailing after she has

gone 1000 miles ? What will be her latitude and longitude at that

point ?

5. How far is the Washington Observatory from the Greenwich

Observatory ? What are the bearings of the two observatories from

each other ?

6. A ship sails from Boston on a course East 12 South. At what

distance would she be sailing due East ? What are her latitude and

longitude at that instant ?

7. A ship sails northwest from San Francisco. What would be

the highest latitude she would reach? What would be the ship's

longitude at that instant ?

8. Find the number of square miles in the triangle whose vertices

are Baltimore, Boston, and Chicago.

9. A ship sails from Honolulu to San Francisco. Find the entire

distance sailed, and the course of the ship when she has gone halfway.

10. An aeroplane sails from Washington to Chicago along a great

circle arc one mile above the surface of the Earth. In what time is

the flight made at a rate of 75 miles per hour ?
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11. Find the number of square miles in the triangle whose vertices

are Baltimore, New York, and Chicago.

12. Find the face and edge angles of a regular triangular pyramid.

13. What is the latitude of three points on the Earth equally dis-

tant from each other and from the North pole ?

14. Each face of a triangular pyramid is a triangle whose sides are

3, 4, and 5 respectively. Find the face and edge angles of the pyramid.





ANSWERS

1. 6 = 340

c = 422

4. 6 = 478

a =154

7. 70.7ft.

12. 99.5ft.

8. 1.912

17. 100

CHAPTER III

Art. 28

2. A = 43 5

c = 54.9

5. a = 713

c = 823

8. 71.2ft. 9. 60 10'

3. ^ = 51 47'

b = .433

6. b = 96.4

c = 232

10. 260ft. 11. 212ft.

13. 43 36' 14. Heights equal.

Art. 35

9. - .874 14. c2 15. 10+* 16. e5

20. 21. 22. 1 23. Impossible.

2(loge a-loge 6)

a b
27. 29. .6931

30. 1.099 31. 1.386 32. .2312 33. 1.029 34. -.3088

35.4.408 36.238.2 37. - 358300 38. .07212 39. Impossible.

40. -312.1 41. -1747 42. 57090 43. .00003162

44. .03728 45. 100 46. 3.241 47. .001347 48. 1142

49. 2448

SOLUTIONS OF RIGHT TRIANGLES

1. a = .04691 2. a = 2316

c = .05151 b = 3402

IT = .0004988 K = 3,941,000

5. a = 578.8

c = 2491

K= 701,000

8. a = .6441

c = .6503

b = 48.04

#=1859
7. A = 63 48'

c = .4694

#=.04364 #=.02879
133

3. b = 24850

c = 36100

K= 325,400,000

6. a = .00883

b = .003607

K= .00001593

9. J. = 4324'
6 = .8966

#=.3801
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10. a = .003845 11. 6 = 5091 12. 6 = 99.43

b = .006723 c = 5268 c = 156.8

K = .00001293 K = 3,444,000 # = 6030

13. A - 79 28' 14. 6 = 63,840 15. a = .000005737

a = 842 c = 92,280 c = .00002118

K = 65,900 K = 2,128,000,000 K = .0000000000585

16. a = .0003899 17. A = 27 17' 18. a = 18.59

6 = .0006772 a = 4.252 6 = 30.51

1T = .000,000,1321 K= 17.53 JT= 283.7

19. 6 = 24,540 20. ^ = 43 45'

c = 30,010 c = 5280

# = 211 ,900,000 K- 6,970,000

21. First steeper by 54'. 22. 24.7 mi: and 29.5 mi.

23. Team by 15 seconds. 24. 3 25' 25. 648ft. 26. 14.7 in.

27. 9 hr. 28 min. A.M. or 2 hr. 32 min. P.M.

28. Reduced by 10.1 ft. 29. Buoy farther by 1133 ft.

30. Increase in altitude 251.4 ft. 31. 8 45'. 32. 1 ft. shorter.

33. 1575 mi. 34. 57 43' N. or S. 35. N: 58 15' E. 15 mi.

36. E. 62 46' N. 7.29 mi. per hour.

37. 112.5 mi. 38. E. 80 N. or S. 4.33 mi. 39. 127.9 mm.

40. 155.1ft. 41. 74.17yd.

V2
2
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18.

23.

25.
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18. J. = 4623' or 133 37' 19. # = 22 37'

C = 102 30' 15 16' C = 127 28'

c = 8730 2354 a = .5593

K= 14,600,000 3,938,000 K = .0958

20. A =134 22' 21. 4 = 57 41'

B = 18 42' C = 38 49'

C - 26 56' a = .02461

K= 4.622 K=.0002232

22. 33,695 sq. ft. 23. 15 ft. 24. 35.6 ft. 25. 428 ft.

26. Width 74.6 ft.
; height above stream, 14 ft. 27. 472 ft.

28. 17.1ft. 29. 109ft. 30. 61.93 and 58.81 ft.

31. A = 61 43' = 80 7' C = 38 10' c = 5.20

32. B = 53 26' a = 46.45 ft. c = 52.48 ft.

33. 11,320 and 7082. 34. 3997 sq. ft. 35. A = 7 5'
;
no.

36. 21.7 mi. 37. 9 17' with the surface of the water.

38. 33.5 ft. 39. 40 ft. 40. Second yacht by 1 min. 12 sec.

41. At 82 33' with shore on the side towards the 60 angle.

42. A-C-B\)j $560. 43. AC =152.1 ft. BC = 319.4 ft.

44. 441ft. 45. 336.9ft.

CHAPTER VII

1. riTT 2. WTT
|

3. 2 nir
^

4. 2 wr + cos-' 5. 2 iw 6. rnr

37 "

2 T17T + COS" 1 2 T17T

o

7. 2nT- 8. iiT+ 9.

2n?r TT riTT TT

36 28
10. 2 riTr coB-

=v 11. nv. 12. ?ITT

2nir
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13.

16.

mr . TT

~3~ 12*

14.
4

T + ^

15.

18. TIT + tan-i f

19.

21.
mr TT

2 8

4 20. 2ri7r^, riTTitan-i^
4 '

22. = 2 mr - 23. = n?r, 2 nir

2

^1 JL r = 2
'

2

2 4
25. x =

y =

= 0, *

,
n even

av/3

26. * = +

ir*=^P nodd
5

27. fl =

r =

28. x = + -

5vf
2

3
[. e= . r=0, n even

2

32.

35.

39.

47.
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31.

32.

35.
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22.
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3. Course at Pernambuco : S. 36 35' E. arrives.

Course at Pernambuco : S. 29 33' W. departs.

Distance sailed : 5141 mi.

4. Course : S. 42 32' E.

Position : 29 12' N., 64 1' W.

5. Bearings Greenwich from Washington : E. 40 41' N.

Bearings Washington from Greenwich : W. 18 33' N.

Distance : 3669 mi.

6. Distance : 11,550 mi.

Position : 43 42' S., 91 25' E.

7. Position : 66 2' N., 153 54' W.

8. 117,700 sq. mi.

9. Distance : 2398 mi.

Course : E. 29 6' N.

10. 8 hours, nearly. 11. 35,580 sq. mi.

12. Face angle, 60
; edge angle, 70 32'.

13. 1928'S.

14. Face : 36 52', 53 8', 90.

Edge : 180, 0, 0.

Printed in the United States of America.
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Freshmen, for example, the chapters on annuities, averages

and correlation, and the exposition of Mendel's Law in the

chapter on the binomial expansion. Particular attention

has been given to the illustrative examples and figures, and

to the grading of the problems in the lists. Exercises

constitute about one-fifth of the text and contain a wealth

of material.

Four place mathematical tables printed at the end of the

text have been selected and arranged for practical .use

and are adapted to the requirements of the examples and

exercises in the book.
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A First Course in Higher Algebra
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AND
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Cloth, ismo, $1.50

At this time when combination courses are receiving so

much attention, a book which introduces notions of the

calculus early should be valuable. The present volume, an

elementary text in higher algebra, is based entirely on the

theory of limits, which is treated as rigorously as an elemen-

tary text allows.

It is intended for use in required Freshman mathematics

courses, and it seems especially well adapted for this

purpose. Its most admirable features are :

1. It gives the student the ability to use the derivative

in a course in analytic geometry, enabling him to derive

equations of tangents, polars, etc., in the best possible way.

2. The sense of familiarity which the student gains

with the beginnings of the calculus makes for ease and

rapidity in that study.

3. He is equipped earlier than is customary to use

mathematics in science courses.
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