

$+: \pm$

This book was a part of the library of Brigadier-General C. H. Mitchell, Dean of the Faculty of Applied Science and Engineering, University of Toronto, 1921-1941
$\mathrm{t}:+: \pm$
?
为

C. H. Mitchell.

PLANE TRIGONOMETRY

AS FAR AS THE

SOLUTION OF TRIANGLES.

BY

J. B. CHERRIMAN, M.A.
Superintendent of Insurance for the Dominion of Canada;
LATF FELLOW OF ST, JOHN'S COLIEGE, CAMBRIDGE; AND FORMERLY PROFESSOR OF NATURAL PHIL.OSOPHY IN UNINERSITY COLLEGE, TORONTO.

FOURTH EIITION,

WITH NUMEROUS EXAMPLES, ANI FOUK-FIGURE TABLES OF LOGARITHMS OF NUMBERS AND OF THE TRIGONOMETRICAL RATIOS.

RDITED 8 F
ALFRED BAKER, M.A.
MATHEMATICAL TUTOR, UNIVERAITY COLIEGE, TORONTO.

MOKONTO:
COPP, CLARK \& CO., 9 FKONT STREET WEST. 1885

$$
\begin{aligned}
& \text { QA } \\
& 533 \\
& C 54 \\
& 1885
\end{aligned}
$$

LOGARITHMS.

1. The common logarithm of a number is the index of the power to which ten must be raised in order to produce that number ; so that in the equation

$$
10^{x}=N,
$$

x is the logarithm of the number N, and this is written

$$
x=\log N
$$

In general the logarithm of a number to a given base is the index of the power to which the base must be raised in order to be equal to the given number. So that if $a^{x}=N, x$ is said to be the logarithm of N to the base a. This relation is also thus expressed, $x=\log _{a} N$.

Thus, since $\boldsymbol{7}^{2}=49,2$ may be said to be the logarithm of 49 to base 7 , or $2=\log _{7} 49$.

Any positive number, except unity, might be taken as the base of a system of logarithms ; in practice, however, only two bases are used, the common base 10, and the Napierian base, 2.7182818..... In the following pages, unless the contrary is stated, the word logarithm means common logarithm, 10 being the base.
2. The logarithms of numbers which are integral powers of ten are immediately known; for example :

$10^{3}=1000$,	$\log 1000=3$,
$10^{2}=100$,	$\log 100=2$,
$10^{1}=10$,	$\log 10=1$,
$10^{0}=r$	$\log 1=0$,
$10^{-1}=0 \cdot 1$,	$\log 0 \cdot 1=-1$,
$10^{-2}=0 \cdot 01$,	$\log 0 \cdot 01=-2$,
$10^{-3}=0 \cdot 001$,	$\log 0 \cdot 001=-3$,

For numbers greater than ten, the logarithms will be positive integers or mixed numbers ; for numbers between 10 and 1 ,
the logarithms will be positive decimals; for numbers less than 1 , the logarithms will be negative quantities ; the logarithm of zero is negative infinity, and negative numbers have no logarithms.

Characteristic and Mantissa.
3. When the logarithm of a number is a negative quantity, it is convenient to express it so that the integral part alone is negative, the decimal part remaining always positive, and the negative sign is written over the integral part to indicate this:

$$
\begin{aligned}
& \text { Thus, } \log 0 \cdot 05=-(1 \cdot 30103) \\
& =-1-0 \cdot 30103 \\
& =-2+(1-0.30103) \\
& =-\mathbf{2}+0.69597 \\
& \text { and this is written }=\overline{2} \cdot 69897 \text {. }
\end{aligned}
$$

With this convention, the integral part of the logarithm is called the characteristic, and the decimal part the mantissa.
4. Since numbers which have $(n+1)$ figures in their integral part commence with 10^{n} and run up to 10^{n+1}, their logarithms will commence with n and run up to $(n+1)$, and the characteristic for all such numbers will therefore be n. Again, since pure decimals in which the first significant digit occurs in the $n^{\text {th }}$ place from the decimal point commence with 10^{-n} and run up to $10^{-(n-1)}$, their logarithms will commence with $-n$ and run up to $-(n-1)$, that is, will be $-n$ increased by some decimal, and the characteristic for all such will therefore be \bar{n}. Hence we have the following rule for finding the characteristic of the logarithm for any number:

Rule for finding the characteristic.

If the number be an integer or a mixed number, the characteristic is positive and is less by unity than the number of figures in the integral part; if the number be a decimal the characteristic is the number of the place of the first significant digit, counting from the decimal point, and is negative.

Thus for the following numbers

$$
12345, \quad 12 \cdot 345, \quad 1 \cdot 23, \quad 0.54, \quad 0.000543,
$$

the characteristics are respectively

$$
4, \quad 1, \quad 0, \quad \overline{1}, \overline{4} .
$$

5. The following are the rules on which are founded the Investigauses of logarithms in performing arithmetical operations :
(1) $\ldots \ldots \ldots \log (a b)=\log a+\log b$.

Let

$$
x=\log a, y=\log b
$$

so that

$$
10^{x}=a, 10^{y}=b
$$

Then,

$$
a b=10^{x} \times 10^{y}=10^{x+y}=\operatorname{com}(a b)
$$

so that

$$
x+y \text { is the logarithm of }(a b)
$$

or,

$$
\log (a b)=\log a+\log b
$$

(2)

$$
\ldots \ldots \log \frac{a}{b}=\log a-\log b
$$

Let

$$
x=\log a, y=\log b
$$

so that

$$
10^{x}=a, 10^{y}=b
$$

Then,

$$
\frac{a}{b}=\frac{10^{x}}{10^{y}}=10^{x-y}
$$

so that $x-y$ is the logarithm of $\frac{a}{b}$, or,

$$
\log \left(\frac{a}{b}\right)=\log a-\log b
$$

(3) $\ldots \ldots \ldots \log \left(a^{n}\right)=n \log a$.

Let $x=\log a$, so that $10_{1}^{x}=a$.

Then

$$
a^{n}=\left(10^{x}\right)^{n}=10^{n x}
$$

so that
$n x$ is the logarithm of a^{n},
or,

$$
\log \left(a^{n}\right)=n \log a
$$

(4) $\ldots \ldots \ldots \log \left({ }^{n} \downarrow / a\right)=\frac{1}{n} \log a$.

Let

$$
x=\log a, \text { so that } 10^{x}=a
$$

Then $\quad \sqrt[n]{ } a=a^{\frac{1}{n}}=\left(10^{x}\right)^{\frac{1}{n}}=10^{\frac{x}{n}}$,
so that

$$
\frac{x}{n} \text { is the logarithm of } n \sqrt{ } \sqrt{ } \text {, }
$$

or,

$$
\log \left({ }^{n} \sqrt{ } / a\right)=\frac{1}{n} \log a .
$$

6. Any of these operations may be combined : thus

$$
\begin{aligned}
& \log (a b c d)=\log a+\log b+\log c+\log d ; \\
& \log \left(\frac{a}{b c}\right)=\log a-\log b-\log c \\
& \log \frac{a \sqrt{ }}{c^{2} v^{2} d}=\log a+\frac{1}{2} \log b-2 \log c-\frac{1}{3} \log d
\end{aligned}
$$

The mantissa independent of the place of the decimal point in the nuniber.
7. The mantissa of the logarithm is the same for all numbers which differ only in the position of the decimal point.

Let a be a number for which the characteristic is c and the mantissa m, so that

$$
\log a=c+m
$$

The decimal point in a will be thrown n places to the right upon being multiplied by 10^{n}; and

$$
\begin{aligned}
\log \left(a \times 10^{n}\right) & =\log a+\log 10^{n}=\log a+n \\
& =(c+n)+m,
\end{aligned}
$$

which has the characteristic $(c+n)$, and the same mantissa as before. Again, the decimal point in a will be thrown n places to the left on being multiplied by 10^{-n} : and

$$
\begin{aligned}
\log \left(a \times 10^{-n}\right) & =\log a+\log 10^{-n}=\log a-n \\
& =(c-n)+m,
\end{aligned}
$$

which has the characteristic ($c-n$), and the same mantissa.
It must be observed that the mantissa always retains its positive sign, while that of the characteristic may change.
8. In the tables of logarithms of numbers, the mantissas alone are given (exact to a certain number of decimals), and the characteristics unust be supplied by the rule of $\S 4$. The number of figures in the given mantissas determines the number of figures for which the logarithm is given with suf-
ficient accuracy in these tables. Thus when six figures are given in the mantissas, the tables will be available only for numbers consisting of six figures or less, that is (disregarding the decimal point) for numbers ranging from 1 to 1000000 . The mantissas, however, are not entered for all those numbers, but only for those terminating in the hundreds; for the intermediate numbers, the mantissas must be calculated by aid of the principle that the difference between the logarithms of two numbers is proportional to the difference between the numbers, when the numbers are taken sufficiently close. Thus the difference between two consecutive mantissas in the table corresponds to a difference of 100 between the numbers, and we obtain by a simple proportion the difference of mantissa corresponding to any less difference than 100 in the numbers.

$$
\begin{aligned}
& \text { E.g. .. Required the mantissa for the logarithm of } 675347 \text {. } \\
& \text { From the tables, } \\
& \text { Number, } 675400 \text {; mantissa, } 829561 \\
& \text { "6 } \frac{675300 \text {; }}{\text { Difference, } 100 ;} \text { difference, }-\frac{829497}{64}
\end{aligned}
$$

Then, by the principle,

$$
\text { required difference for } 47=\frac{47}{100} \times 64=30.08
$$

and therefore the mantissa for 675347 is $829497+30$, or 829527 .
In many tables, the trouble of performing the multipli- Table of cation in the above is avoided by the insertion of tables of propor. proportional parts, in which are set down the products of the difference for 100 by the respective units, so that these products can at sight be taken out and added to the mantissa.

From the table, Number 675300;		Mantissa, difference,	829497
From table of p.p., for	40,		25.2
	7 ,		$4 \cdot 4$
Therefore for Number	675347,	Mantissa,	829527

According to the usual rule in decimals, in carrying out to a certain number only of places, the last figure must be increased by 1 when the first of the neglected figures is 5 or a higher digit.

To take out the logarithm of a number.
9. The following is then the rule for finding the logarithm of a number of six or less figures.

Disregarding the decimal point, look in the table for the first 3 figures of the number in the left-hand column, and for the fourth figure in the top line; at the intersection of the corresponding line and column will be found the mantissa; for the fifth figure, look in the table of proportional parts and take out the number for that column ; and for the sixth figure, also from the table of proportional parts, take out the corresponding number, removing the decimal point one place to the left. Add those two latter numbers to the mantissa previously found, and then, by consideration of the position of the decimal point in the original number, prefix the proper characteristic.*

and the characteristic is 2 ; therefore the logarithm of $327 \cdot 695$ is 2.515470 .

To take out the number corresponding to a given logarithm.
10. The reverse process of finding the number corresponding to a given logarithm is performed on the same principle. Disregarding the characteristic, look out in the tables for the mantissa next below the given mantissa. In the corresponding line and column will be found the first three and the fourth

[^0]figures of the number. Then taking the difference between the mantissa thus found and the given one, and also that between the former and the next higher in the tables (which will be the difference for 100 in the number), by a simple proportion the tens and units in the required number are found. The decimal point must then be inserted by consideration of the characteristic of the given logarithm.

Example. Find the number corresponding to the given logarithm 2.767198. The mantissa next below is 767156, and the corresponding number is 585000 . The difference between the two mantissas is 42 .

Again in the tables,

Then, by the proportion, the required difference in the number for a difference of 42 in the mantissa is

$$
100 \times \frac{42}{74}=56 \cdot 7
$$

and the number for this mantissa is 585000 ± 57, or 585057 . The characteristic in the given logarithm being $\overline{\bar{z}}$, the number required will be 0.0585057 .

As in the previous case, the trouble of performing the division in the above is avoided by the tables of proportional

Table of proportional parts. parts in which the quotients corresponding to the division are set down. Thus, having taken the difference between the given mantissa and the one next below it in the tables, look out in the corresponding table of proportional parts for the number next below this difference, and the column in which this is found gives the fifth figure : again take the difference between the previous difference and the number found in the table of proportional parts, and removing the decimal point in it one place to the right, look out again in the table of proportional parts for the number nearest to it, and the column in which this is found gives the sixth figure.

The previous example would be thus worked :
Given mantissa 767198;
Mantissa next below, 767156, corresponding number, 5850 . .
Difference
In table of p . p., diff. next below is $37 \cdot 0$, " " 5
Residual difference
This gives for the six figures, 585057 , and the number required is therefore 0.0585057 .

Use of logarithms in multiplication.

We shall now exemplify the rules for performing arithmetical operations by aid of logarithms, demonstrated in § 5 , using five-figure logarithms only.
11. To multiply numbers together.

Rule. Add the logarithms of the numbers, and take from the tables the number corresponding to this sum as a logarithm.

Ex. (1). Multiply $379 \cdot 45$ into $2 \cdot 4672$.
Number, $379 \cdot 45$; $\log , 2 \cdot 57915$
Product, $\frac{2 \cdot 4672 ; ", 0.39220}{936 \cdot 16 ; \log , 2 \cdot 97135}$
Ex. (2). Multiply 997 into 0.0325
Number, $997 ; \log , 2 \cdot 99870$
" $0.0325 ; ", \overline{2} .51188$
Product, $\overline{32 \cdot 403} ; \log , \overline{1 \cdot 51058}$
Observe that the addition is $+2+(-2)+0.9 \ldots+0.5 \ldots$
Ex. (3). Multiply 7240000 into 93201.
Number, $\quad 7240000 ; \log , 6.85974$
" 93201; ", 4.96942
Product, 674780000000 .; log, 11.82916
Here the product has 12 figures in its integral part, of which only five are determined; the remaining 7 being unknown are replaced by cyphers.

$$
\begin{aligned}
& \text { Ex. (4). Multiply } \quad 0.076905 \text { into } 0.000094397 . \\
& \text { Number, } 0.076905 ; \log , \overline{2} \cdot 88595 \\
& " \\
& \\
& \\
& \text { Product, } 0.0 .00000072596 ; \log , \overline{\overline{6}} \cdot \overline{0.86091}
\end{aligned}
$$

Here the addition is $-2-5+0.8 \ldots+0.9 \ldots$
12. To divide one number by another.

Division.
Rule. Subtract the logarithm of the divisor from that of the dividend, and take from the tables the number corresponding to this difference as a logarithm.

Ex. (1). Divide $32 \cdot 495$ by $7 \cdot 6993$.

Dividend,	$32 \cdot 495 ; \log , 1 \cdot 51182$
Divisor,	$\overline{7.6993 ;}$ " $\underline{0.88645}$
Quotient,	$\underline{4.2206} ;$
	$\log , 0.62537$

Ex. (2). Divide 2.7045 by 312.79 .
Dividend, $2.7045 ; \log , 0.43209$
Divisor, $\quad 312.79$; $\log , 2.49525$
Quotient, $0.0086465 ; \log , \overline{3} \cdot 93684$
Here the subtraction is $1 \times 43 \ldots, 0.49 \ldots,-2-1$.
Ex. (3). Divide 465.94 by 0.793.
Dividend, $465.94 ; \log , 2.66833$
$\begin{array}{ll}\text { Divisor, } & \overline{0.793 ;} ; " \overline{1} \cdot 89927 \\ \text { Quotient, } & \overline{587.57} ; \log , \underline{2.76906}\end{array}$
Here the subtraction is $2 \cdot 6 \ldots .-0.8 \ldots,-(-1) \cdot\}$
Ex. (4). Divide 0.0037095 by 0.00001605 .
Dividend, $0.0037095 ; \log , \overline{3} .56932$
Divisor, 0.00001605 ; log, $\overline{5} \cdot 20548$
Quotient, $\quad 231 \cdot 12 ; \log , \overline{2 \cdot 36384}$
Here the subtraction is $0.5 \ldots-0.2 \ldots+(-3)-(-5)$.

Use of arithmetical conplements.
13. It is convenient to convert the process of subtraction into one of addition by the use of what is called the arithmetical complement. Thus if b is to be subtracted from a, instead of subtracting b, add $10-b$, and subtract 10 from the result ; for

$$
a-b=a+(10-b)-10
$$

This quantity $(10-b)$ is called the arithmetical complement of b, and is found by subtracting the first significant digit, beginning from the right hand, from 10 , and each following digit from 9 , including, in the case of a logarithm, the characteristic with its proper sign.

For example,
$\begin{array}{cr}\text { Number, } & 239 \cdot 31 ; \log , 2 \cdot 37896 ; \text { co-log, } 7 \cdot 62104 ; \\ \text { ،" } & 0.0025177 ; \log , \overline{3} \cdot 40100 ; \text { co-log, } 12.59900 .\end{array}$

The working of the previous examples would then stand thus,

Ex. (1).
Dividend, $\quad 32.495 ; \quad \log , 1.51182$
Divisor, $\quad 7 \cdot 6993$; co-log, $9 \cdot 11355$
0.62537

Ex. (2).
Dividend, $2.7045 ; \quad \log , 0.43209$
Divisor, $\quad 312.79$; co-log, $7 \cdot 50475$
$\overline{3} \cdot 93684$
Ex. (3).
Dividend, 465.94 ; log, 2.66833
Divisor, 0.793 ; co-log, 10.10073
2.76906

Ex. (4).
Dividend, $0.0037095 ; \log , \overline{3} \cdot 56932$
Divisor, 0.00001605 ; co-log, 14.79452
14. To raise a number to any power.

Rule. Multiply the logarithm of the number by the power, and take from the tables the number corresponding to this product as a logarithm.

Ex. (1). Find the sixth power of 23.91 .
Number, $23.91 ; \log , 1 \cdot 37858$

Required power, $186840000 ; \log , 8 \cdot 2 \pi 148$
Here the power has 9 figures in its integral part, of which only 5 are determined, the remaining 4 , being unknown, are replaced by cyphers.

Ex. (2). Find $(0.032507)^{10}$.

$$
\text { Number, } 0.032507 ; \log , \overline{2} .51198
$$

Power $=0.0000000000 Q 00013177 ; \log , \overline{15} \cdot 11980$
Here the multiplication is $10(-2)+10(5 .$.$) .$
15. To extract any root of a number.

Rule.-Divide the logaritlim of the number by the root, and take from the tables the number corresponding to this quotient as a logarithm.

Ex. (1). Required the fifth root of 2.

Number, 2; log,	0.30103
5	
Required root, $1.1487 ; \log$,	0.06021

Ex. (2). Required the 8 th root of 0.79635.

Number, $0.79635 ; \log$,	$\overline{\mathrm{l}} .90110$
8	
Root, $0.97194 ; \log$,	$\overline{\mathrm{I}} .98764$

Here the characteristic being negative and not exactly divisible by the root, we add to it a sufficient number (negative) to make it exactly divisible, and therefore the same number (positive) to the mantissa. Thus

$$
-8+7 \cdot 9 \ldots, \text { which on division gives }-1+0 \cdot 9 \ldots \text { or } \overline{1} \cdot 9 \ldots
$$

Combined ojerations.
16. As before remarked, any of these operations may be combined, but when more than one arithmetical complement is used, a ten must be subtracted from the result for each complement.

Ex. (1). Find the value of $\frac{(12.345)^{5}}{670.59 \times 50.323}$.
Number, $12.345 ; \log , 1.09149$
5

	$5 \cdot 45745$		$5 \cdot 45745$
670.59 ; log,	$2 \cdot 82646$	co-log,	7-17354
50.323 ; log,	$1 \cdot 70177$	"	$8 \cdot 29823$
Required value,	8.4961	\log,	0.92922

Ex. (2). Find $\sqrt[3]{\frac{5}{6}}$.

$$
\begin{array}{rr}
\text { Number, } 5 ; & \log , 0 \cdot 69897 \\
\text { " } 6 ; & \text { co-log, } 9 \cdot 22185 \\
& 3) \overline{\overline{1}} \cdot 92082
\end{array}
$$

Required value, $0.94105 ; \log , \overline{\mathrm{I}} \cdot 97361$
The operation here is this:

$$
\begin{aligned}
\log \sqrt{2}^{\frac{5}{6}}=\frac{1}{3} \log \frac{5}{6} & =\frac{1}{3}(\log 5-\log 6) \\
& =\frac{1}{3}(\log 5+\operatorname{co-log} 6-10) .
\end{aligned}
$$

EXERCISE I.

1. What are the characteristics of the logarithms of the following numbers to base $10: 3740,33 \cdot 492,76495 \cdot 9, \cdot 34781$, $\cdot 0000053$?
2. Shew that $\log \frac{144}{35}=5 \log 2+2 \log 3-\log 7-1$.
3. Shew that $\log \frac{14040}{648}=1+\log 13-\log 2-\log 3$.
4. Shew that $\log 8+\log 25=2+\log 2$.
5. Prove $\log \sqrt[3]{\frac{351}{560}}=\log 3-\log 2+\frac{1}{3}(\log 13-\log 7-1)$.
6. Given $\log 6=a, \log 15=b$, ind $\log 8$ and $\log 9$.
$\times 7$. Find the value of $\log \frac{1}{8}$ in terms of $\log 25$.
7. Multiply $\overline{1} 3724801$ by 5 .
8. Divide $\overline{3} \cdot 0213569$ by 5 .
9. Find the value of $\overline{1} \cdot 4873051-\overline{3} \cdot 4920021$ -$\frac{1}{3}(-4721053)$.
10. From $\frac{2}{3}$ of $\bar{\Gamma} 4214036$ take $\frac{1}{3}$ of $3 \cdot 4729104$.
11. Given $\log 7 \cdot 3335=8653113, \log 7 \cdot 3336=.8653172$, find $\log \cdot 07333572$.
12. Find the logarithm of 06919583.
$\log 6.9195=8400747, \log 6.9196=8400810$.
13. Find the logarithm of $56201 \cdot 25$.
$\log \cdot 056201=\overline{2} \cdot 7497440, \log 56 \cdot 202=1 \cdot 7497518$.
14. Find the logarithm of 2965845.

$$
\log 2 \cdot 9658=\cdot 4721419, \text { dif. }=146
$$

16. Having given $\log 2$ and $\log 3$, find the logarithms of the following numbers: $18, \underline{25}, 216,1 \frac{1}{8}, 6.480, .0054, \frac{4}{6}$, $-43 \cdot 2,7 \underline{2} 0, \sqrt{1 \frac{1}{2}}, \sqrt[3]{1 \frac{1}{3}},\left(\frac{5 \frac{1}{3}}{}\right)^{-\frac{1}{2}}$.

$$
\log 2=-3010300, \log 3=\cdot 4771213
$$

17. Given $\log 2$, find $\log \cdot 00016, \log (\cdot 000016)^{\frac{7}{3}}$
eper 18. Find the logarithm of $\sqrt{ }\left(\frac{\sqrt[4]{32} \times \sqrt[3]{48}}{2 \sqrt{27}}\right)$, having given $\log 2$ and $\log 3$.
18. Given $\log 2 \cdot 6201=4183179, \log 262 \cdot 02=2 \cdot 4183344$, find the number whose logarithm is $\overline{3} \cdot 4183253$.
19. Given $\log 56248=4.7501071, \log 56249=4 \cdot 7501148$, find the number whose logarithn is 2.7501113 .
20. Given $\log 30 \cdot 413=1 \cdot 4830593$, dif. $=142$, find the number whose logarithm is $4 \cdot 4830651$.
21. Given $\log 49553=4 \cdot 6950700$, dif. $=87$, find the number whose logarithm is $\overline{3} .6950741$.
22. Given $\log 5 \cdot 6043=\cdot 7485214, \log 5 \cdot 6044=\cdot 7485291$, form the table of Proportional Parts, and employ it to find $\log 560 \cdot 4356$, and also the number corresponding to the logarithm $\overline{3} \cdot 7485282$.
23. Find the value of $V^{1 n}\left(\overline{(7 \cdot 2489)^{3} \times \sqrt[4]{2 \cdot 3456}}\right.$. $\log 72.489=1 \cdot 8602721, \log 2 \cdot 3456=\cdot 3702540, \log 185 \cdot 07$ $=2 \cdot 2673380$.
24. Find the value of $\sqrt[24]{\frac{84}{72}}$
$\log 2=\cdot 3010300, \log 3=\cdot 4771213, \log 7=8450980, \log$ $10065=4 \cdot 0027894$.
25. Find the value of $\frac{\sqrt[3]{3}}{\sqrt[4]{4} \cdot \sqrt[5]{3}}$.

Given $\log 2=3010300, \log 3=4771213, \log 7 \cdot 39148=$ -8687314.
27. Find by logarithms the value of $\frac{600 \times 03 \times 105}{\cdot 00000432}$. $\log 2=3010300, \log 7=-8450980, \log 4374999=6409780$.
28. Find by logarithms the value of $\frac{\sqrt[3]{1 \cdot 25}}{4^{3}} \times \frac{12 \cdot 8}{\sqrt{3}}$.

$$
\log 3=4771213, \log 124385=0947728
$$

29. Find by logarithms the value of $\frac{6}{\sqrt{2 \cdot 7}} \times 54 \times(5 \cdot 76)^{\frac{1}{5}}$ $\log 2=3010300, \log 3=\cdot 4771213, \log 2 \cdot 79865=\cdot 4469478$.
30. Find by logarithms the value of $\frac{.00075}{3.15} \times \frac{\sqrt{1 \cdot 8}}{r^{3} \cdot 064}$ $\log 2=3010300, \log 7=8450980, \log 7 \cdot 98595=.9023270$.

EXERCISE II.

1. Find the logarithms of the following numbers to the assigned bases :
(1). 256 to the base 2 .
(4). 343 to the base 7 .
(2). 32 to the base 4 .
(5). 64 to the base 16 .
(3). 243 to the base 27 .
(6). $\frac{81}{16}$ to the base $2 \cdot 25$.
2. What is the characteristic of 476 to base 8 ?
3. What is the characteristic of 0156 to base 3 ?
4. If $10^{x}=5^{y}$, find the ratio of x to y.
5. If $20^{x}=100$, find x.
6. Find x from the equation $12^{x}=180$, having given $\log 2=\cdot 3010300$ and $\log 3=\cdot 4771213$.
7. Solve the equations
(1). $a^{m x} b^{n x}=c$.
(3). $4^{3 x} \cdot 3^{4-x}=8^{2 x-1}$.
(2) $\frac{1}{8^{x}}=1 \cdot 25$.
(4). $\left\{\begin{array}{l}a^{x} b^{y}=c \\ x+y=d .\end{array}\right.$
8. Given $\frac{4^{x}}{2^{x+y}}=8$, and $x=3 y$, find x and y.
9. If a series of numbers are in G. P., shew that their logarithms are in A. P.
10. If x, y are the logarithms of two numbers M, N, shew that $\log \sqrt{\overline{M N}}=\frac{1}{2}(x+y)$. Hence shew that 15 is the logarithm of $31 \cdot 622 \ldots$
11. Assuming that $\log 250$ and $\log 256$ differ by $\cdot 0103$, shew that $\log 2=30103$.
12. How many figures will 2^{40} contain?
13. Find the number of cyphers between the decimal point and the first significant figure of $\frac{1}{5^{40}}$.
14. Given $1+\log x=0$, find x.
15. Given $\log x+\log \sqrt{x}=1$, find x.
16. Given $1-\log x=\log 4-\log 2$, find x.
17. Given $\log x\left(\log x^{2}-1\right)=6$, find x.
18. Given $\log 2=30103, \log 3=47712$, find the log. arithm of 12 to the base 40 .
19. Given $\log 3=47712, \log x=43429$, find the \log arithm of 3 to the base x.
20. Shew that $\log _{2} \sqrt{20}=1+\log _{4} 5$.

THE TRIGONOMETRICAL RATIOS.

The trigono- 17. It is proved by Euclid that in a right-angled triangle,

Fig. 1. when one of the other angles is given, the ratios of the sides are also given. To these ratios, six in number, distinctive names are attached, and they are called the trigonometrical ratios of the given angle. Thus in the triangle $A B C$ (fig. 1), having the angle C right, with reference to the angle A, calling the side opposite to A the perpendicular, the other side the base, that opposite to C being the hypothenuse, the ratio of perpendicular to hypothenuse is called the sine of the angle \mathbf{A}; the ratio of perpendicular to base, the tangent ; and the ratio of hypothenuse to base, the secant; or, as they are written,

$$
\begin{aligned}
& \frac{B C}{A B}=\sin A \\
& \frac{B C}{A C}=\tan A \\
& \frac{A B}{A C}=\sec A
\end{aligned}
$$

The other three ratios-namely :

$$
\frac{A C}{A B^{\prime}} \quad \frac{A C}{B C}, \quad \frac{A B}{B C^{\prime}}
$$

are evidently the sine, tangent, and secant with reference to the angle B, and this angle being the complement of A, the term "sine of the complement of A " is abbreviated into the cosine of A; and similarly the names, cotangent, cosecant are formed for the other two. These are written,

$$
\begin{aligned}
& \frac{A C}{A B}=\cos A, \\
& \frac{A C}{\overline{B C}}=\cot A, \\
& A B \\
& B C \\
& B C \\
&
\end{aligned}
$$

18. These ratios, when the angle is given, are independent Their nature of the magnitude of the triangle, and are in effect determinate positive numbers. Since the perpendicular and base are always less than the hypothenusc, it is plain that the sines and cosines are proper fractions, while the secants and cosecants are whole numbers or improper fractions, but the tangents and cotangents may lhave any positive values.
19. As the angle A increases, retaining the same hypothenuse, the perpendicular increases and the base diminishes value. continually, and therefore the sine, tangent, and secant increase, while the cosine, cotangent, and cosecant diminish, and when A approaches near to 90°, the perpendicular approaches to coincidence with the hypothenuse, while the base vanishes, and we have therefore for 90°,
$\operatorname{Sin} 90^{\circ}=1, \tan 90^{\circ}=\propto, \sec 90^{\circ}=\propto, \cos 90^{\circ}=0, \quad \begin{gathered}\text { Particulur } \\ \text { values for }\end{gathered}$ $\cot 90^{\circ}=0, \operatorname{co-sec} 90^{\circ}=1$.
Also since 0° is the complement of 90°, these values give $\cos 0^{\circ}=1, \cot 0=\propto, \operatorname{cosec} 0=\propto, \sin 0=0, \tan 0=0$, $\sec 0=1$.

20. The following intermediate values may be noticed.

Take a right-angled isosceles triangle, (fig. 2), in which the Fig. 2 perpendicular and base are each $=1$, and the hypothenuse therefore $=\sharp / 2$.

Then either angle being 45°, it is seen by inspection that $\sin 45^{\circ}=\cos 45^{\circ}=\frac{1}{\sqrt{2}} ; \quad \tan 45^{\circ}=\cot 45^{\circ}=1 ; \sec 45^{\circ}$ $=\operatorname{co}-\sec 45^{\circ}=V^{2}$.

Hence also the tangent of an angle less than 45° is less than 1, and of an angle greater than 45° is greater than 1 , while the reverse is the case for the cotangent.

Again, take an equilateral triangle, (fig. 3), each of whose sides $=2$, and from one of the vertexes drop a perpendicular. on the opposite side; this perpendicular bisects both the side and the angle, giving two right-angled triangles with the angles $30^{\circ}, 60^{\circ}$, and the length of this perpendicular is $V^{\prime} 3$. Hence by inspection
$\sin 30^{\circ}$ or $\cos 60^{\circ}=\frac{1}{2} ; \cos 30^{\circ}$ or $\sin 60^{\circ}=\frac{1^{\sqrt{3}}}{2} ;$
$\tan 30^{\circ}$ or $\cot 60^{\circ}=\frac{1}{\sqrt{3}} ; \cot 30^{\circ}$ or $\tan 60^{\circ}=1^{/ 3}$;
$\sec 30^{\circ}$ or $\operatorname{cosec} 60^{\circ}=\frac{2}{\sqrt{3}} ; \quad \operatorname{cosec} 30^{\circ}$ or $\sec 60^{\circ}=2$. nert them.
21. It is also proved by Euclid that when the ratio of two sides in a right-angled triangle is given, the angles are also given. Consequently when any one of the six trigonometrical ratios of an angle is given, the angle itself is determinate, and the other five ratios can be found. Hence there must be five independent relations connecting the six ratios of an angle. By inspection it is seen that the sine and cosecant, the tangent and cotangent, the cosine and secant are reciprocals, so that

$$
\sin A=\frac{1}{\operatorname{cosec} A}, \tan A=\frac{1}{\cot A}, \cos A=\frac{1}{\sec A}
$$

Again,

$$
\frac{\sin A}{\cos A}=\frac{B C}{A B} \div \frac{A C}{A B}=\frac{B C}{A C}=\tan A
$$

These are four of the relations; a fifth, connecting sine and cosine is given by Euclid, B. I. Prop. 47^{*}; for

$$
A B^{2}=B C^{2}+A C^{2}
$$

and therefore

$$
\begin{aligned}
1 & =\left(\frac{B C}{A B}\right)^{2} \times\left(\frac{A C}{A B}\right)^{2} \\
& =(\sin A)^{2}+(\cos A)^{2}
\end{aligned}
$$

or, as it is usually written,

$$
\sin ^{2} A+\cos ^{2} A=1
$$

Numerous other relations exist between these ratios, but they are all deducible from the five above given, which enable us by a simple algebraic process to express any one ratio in terms of any other.

[^1]$\left(\frac{R_{e}}{a n s}\right)^{2}+\left(\frac{D_{e}}{a n 3}\right)^{2}=1$

EXERCISE III.

Prove the following identities:

1. $\sin ^{2} A=1-\cos ^{2} A$.
2. $\tan ^{2} A+1=\sec ^{2} A$.
3. $\cot ^{2} A+1=\operatorname{cosec}^{2} A$.
4. $\sec ^{2} \theta=\frac{1}{1-\sin ^{2} \theta}$.
5. $\tan ^{2} A=\frac{1-\cos ^{2} A}{\cos ^{2} A}$.
6. $\cos A=\cot A \sin A$.
7. $\cot { }^{2} \theta=\frac{\cos ^{2} \theta}{1-\cos ^{2} \theta}$.
8. $\cos ^{2} \theta=\frac{1}{1+\tan ^{2} \theta}$.
9. $\sin ^{2} \theta=\frac{\tan ^{2} \theta}{1+\tan ^{2} \theta}$.
10. $\sec A=\tan A \operatorname{cosec} A$.
11. $\sec ^{2} A=\frac{\operatorname{cosec}^{2} A}{\operatorname{cosec}^{2} A-1}$.
12. $\sec A+1=\frac{1+\cos A}{\cos A}$.
13. $1+\cos A=\frac{\sin ^{2} A}{1-\cos A}$.
14. $\cos ^{2} A=\frac{\cot ^{2} A}{1+\cot ^{2} A}$
15. $(1-\sin A) \sec A=\frac{\cos A}{1+\sin A}$
16. $\sin ^{4} \theta-\cos ^{4} \theta=\sin ^{2} \theta-\cos ^{2} \theta$.

V1i. $\cot ^{2} \varphi+\tan ^{2} \varphi=\sec ^{2} \varphi \operatorname{cosec}^{2} \varphi-2$.
18. $1+\tan A=\sqrt{\sec ^{2} A+2 \tan A}$.
19. $\cot ^{2} A \cdot \sin ^{2} A+\sin ^{2} A=1$.
20. $\sec ^{2} \theta-1=\sin ^{2} \theta \cdot \sec ^{2} \theta$.
21. $\left(\cos ^{2} A-1\right)\left(\cot ^{2} A+1\right)=-1$.
22. $\frac{\tan A+\tan B}{\cot A+\cot B}=\tan A \cdot \tan B$.
23. $(\operatorname{cosec} A-\cot A)^{2}=\frac{1-\cos A}{1+\cos A}$.
24. $\cot A+\frac{\sin A}{1+\cos A}=\operatorname{cosec} A$.
25. $\cos ^{2} \theta \cos ^{2} \varphi-\sin ^{2} \theta \sin ^{2} \varphi=\cos ^{2} \theta-\sin ^{2} \varphi$.
26. $\tan ^{2} \alpha \tan ^{2} \beta-1=\frac{\sin ^{2} \alpha-\cos ^{2} \beta}{\cos ^{2} \alpha \cos ^{2} \beta}$.
27. $\sec A\left\{1+\operatorname{cosec} A\left(\cos ^{2} A-\sin ^{2} A\right)\right\}=\cot A$.
28. $\sin ^{2} A \tan ^{2} A+\cos ^{2} A \cot ^{2} A=\tan ^{2} A+\cot ^{2} A$
-1.
29. $\sin ^{2} A \tan A+\cos ^{2} A \cot A+2 \sin A \cos A=$ $\sec A \operatorname{cosec} A$.

$$
30 \cot ^{2} x-\tan ^{2} x=\left(\cos ^{2} x-\sin ^{2} x\right) \sec ^{2} x \operatorname{cosec}^{2} x
$$

EXERCISE IV.

The formulæ of $\S 21$ enable us, having given the numerical value of one of the trigonometrical ratios of an angle, to find the numerical values of the other trigonometrical ratios of the same angle. Thus, given $\sin A=\frac{1}{2}$, to find $\cot A$:

$$
\cot A=\frac{\cos A}{\sin A}=\frac{\sqrt{1-\sin ^{2} A}}{\sin A}=\frac{\sqrt{1-\frac{1}{4}}}{\frac{1}{2}}=\sqrt{3}
$$

1. Given $\sin A=\frac{3}{5}$, find $\cos A$.
2. Given $\cos A=\frac{5}{13}$, find $\sin A$.
3. Given $\tan \theta=4$, find $\sin \theta$.
4. If $\sin A=\frac{a}{b}$, find $\tan A$.
5. Given $\sin x=\frac{3}{5}$, find $\cot x$.
6. Given $\sec x=\frac{a}{b}$, find $\cot x$.
7. Given $\sec x=\sqrt{2}$, find $\operatorname{cosec} x$.
8. Given $\sin \theta+\cos \theta=\frac{7}{5}$, find $\cos \theta$.
9. Given $\operatorname{cosec} x+6 \sin x=5$, find $\sin x$.
10. If $\left(1+\tan ^{2} A\right) \cos A=2$, find $\cos A$.
11. The values of all these ratios are calculated for all Tahles of angles between 0 and 90°, and are entered in tables called ${ }^{\text {their values. }}$ natural sines, \&c.; ; but these values are not so useful as the logarithms of them which form the tables called logarithmic sines, de. Since, however, the sines and cosines are proper fractions, and so also are some of the tangents and cotangents, their logarithms will have negative characteristics, and to avoid the inconvenience of printing these, every logarithm of a trigonometrical ratio is increased by 10 before being entered in the table. To distinguish therefore the real logarithm from that given in the tables, the latter will always be writ ten with an italic capital L, and it must always be borne in mind that 10 is to be taken from each such logarithm when used instead of the real logarithm, the operation being either expressed or understood.

For instance

$$
\begin{aligned}
\sin 30^{\circ} & =\frac{1}{2}=0 \cdot 5 \\
\log \sin 30^{\circ} & =\log (0.5)=1 \cdot 69597, \\
L \sin 30^{\circ} & =9 \cdot 69597 .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\tan 45^{\circ} & =1 \\
\log \tan 45^{\circ} & =0 \\
L \tan 45^{\circ} & =10.00000
\end{aligned}
$$

23. Again, since

$$
\begin{aligned}
& \sin A \times \operatorname{cosec} A=1, \text { we have } \\
& \log \sin A+\log \operatorname{cosec} A=0 \\
& L \sin A-10+L \operatorname{cosec} A-10=0
\end{aligned}
$$

or,

$$
L \sin A+L \operatorname{cosec} A=20 .
$$

And similarly,

$$
\begin{aligned}
& L \tan A+L \cot A=20 \\
& L \cos A+L \sec A=20
\end{aligned}
$$

Also,

$$
\tan A=\frac{\sin A}{\cos A},
$$

$\log \tan A=\log \sin A-\log \cos A$, $L \tan A-10=L \sin A-10-(L \cos A-10)$,
$L \tan A=L \sin A+10-L \cos A$.
By aid of these formulas, if $L \sin A$ and $L \cos A$ be tabulated from 0 to 45°, the values of the other logarithmic functions from 0 to 90° can be formed. sines, \&e.
24. In the ordinary tables, these logarithmic sines, cosines ${ }^{*}$ sce., are given for all angles from 0° to 90° at intervals of one minute, and it will be sufficient for most purposes to take out any required angle to the nearest minute ; but if greater accuracy be needed, recourse must be had to the principle of proportional parts already explained in discussing the logarithms of numbers.

The usual arrangement is that the angles from 0 to 45° are placed at intervals of one degree at the head of the page, the minutes running down the left-hand column, while the angles from 45° to 90° are placed at the foot of the page, and the minutes rum up the right-hand column. By this arrangement the same column is used for the sine of an angle and for the cosine of its complement; and in the same way for the tangent and cotangent, and for secant and cosecant.
25. Since sines and cosines are proper fractions, the tabular logarithms of them will always be less than 10 ; and since secants and cosecants are integers or improper fractions, their tabular logarithms will always be greater than 10 . The logarithmic tangents will be less than 10 up to 45°, and after this will be greater than 10 , and the reverse will be
the case for the cotangents. The following table exhibits the changes as the angle passes from 0 to 90° :

```
sine increases from 0 to \(1 ; L \sin\) increases from \(\propto\) to 10
cosine decreases " 1 " \(0 ; L \cos\) decreases " 10 " \(-\infty\)
tangent increases " 0 " \(\alpha\); L tan increases " \(-\alpha\) " \(+\alpha\)
cotangent decreases " \(\propto\) " \(0 ; L\) cot decreases " \(+\propto\) " \(-\propto\)
secant increases " 1 " \(\alpha ; L\) sec increases " 10 " \(+\propto\)
cosecant decreases " \(\propto\) " \(1 ; L\) cosec decreases " \(+\propto\) " 10 . \(L \tan\) and \(L\) cot are each 10 at \(45^{\circ}\).
```


EXERCISE V.

1. Find the tabular logarithms of the trigonometrical ratios of 30° and 45°, having given $\log 2$, and $\log 3$.
2. Given $L \sin 22^{\circ} 26^{\prime}=9.5816177, L \sin 22^{\circ} 27^{\prime}=$ $9 \cdot 5819236$, find $L \sin 22^{\circ} 26^{\prime} 45^{\prime \prime}$.
3. Given $L \sin 38^{\circ} 24^{\circ}=9 \cdot 7931949, L \sin 38^{\circ} 25^{\prime}=$ $9 \cdot 7933543$, find $L \sin 38^{\circ} 24^{\prime} 27^{\prime \prime}$.
4. Having given $L \cos 34^{\circ} 18^{\circ}=9.9170317, L \cos 34^{\circ}$ $19^{\prime}=9 \cdot 9169455$, find $L \cos 34^{\circ} 18^{\prime} 25^{\prime \prime}$.
5. Given $L \cos 57^{\circ} 12^{\prime}=9 \cdot 7337654, L \cos 57^{\circ} 13^{\prime}=$ $9 \cdot 7335693$, find $L \cos 57^{\circ} 12^{\prime} 24^{\prime \prime}$.
6. Given $L \tan 32^{\circ} 29^{\prime}=9.8039085, L \tan 32^{\circ} 30^{\prime}=$ $9 \cdot 8041873$, find $L \tan 32^{\rho} 29^{\prime} 27^{\prime \prime}$.
7. Given $L \cot 16^{\circ} 58^{\prime}=10.5155654, L \cot 16^{\circ} 59^{\prime}=$ 10.5151130 , find $L \cot 16^{\circ} 58^{\prime} 18^{\prime \prime}$.
8. Given $L \sec 73^{\circ} 24^{\prime}=10 \cdot 544107,4, L \sec 73^{\circ} 25^{\prime}=$ 10.5445314 , find $L \sec 73^{\circ} 24^{\prime} 36^{\prime \prime}$.
9. Given $L \operatorname{cosec} 69^{\circ} 34^{\prime}=10.0282238, L \operatorname{cosec} 69^{\circ} 35^{\prime}$ $=10.0281767$, find $L \operatorname{cosec} 69^{\circ} 34^{\prime} 54^{\prime \prime}$.
10. Given $L \sin 69^{\circ} 7^{\prime}=9.9704902, L \sin 69^{\circ} 8^{\prime}=$ 9.9705383 , find the angle whose $L \sin$ is 9.9705261 .
11. Given $L \sin 16^{\circ} 19^{\prime}=9 \cdot 4486227, L \sin 16^{\circ} 20^{\prime}=$ $9 \cdot 4490540$, find the angle whose $L \sin$ is $9 \cdot 4488105$.
12. Given $L \cos 22^{\circ} 28^{\prime}=9 \cdot 9657199, L \cos 22^{\circ} 29^{\prime}=$ $9 \cdot 9656677$, find the angle whose L cos is $9 \cdot 9656913$.
13. Given $L \tan 51^{\circ} 17^{\prime}=10.0960267, L \tan 51^{\circ} 18^{\prime}=$ 10.0962856 , find the angle whose L tan is 10.0962548 .
14. Given $L \tan 30^{\circ} 21^{\prime}=9 \cdot 7035329, L \tan 30^{\circ} 22^{\prime}=$ $9 \cdot 7037486$, find A from the equation $L \tan A=9 \cdot 7036421$.
15. Given $L \cot 42^{\circ} 12^{\prime}=10 \cdot 042 \check{5} 150, L \cot 42^{\circ} 13^{\prime}=$ 10.0422611 , find the angle whose L cot is 10.0423485 .
16. Given $L \sec 47^{\circ} 30^{\prime}=10 \cdot 1703167, L \sec 47^{\circ} 31^{\prime}=$ $10 \cdot 1704546$, find the angle whose L sec is $10 \cdot 1703541$.
17. Given $L \operatorname{cosec} 15^{\circ} 21^{\prime}=10.5772220, L \operatorname{cosec} 15^{\circ} 22$ $=10.5767620$, find the angle whose L cosec is 10.5769821 .
18. Having given $L \operatorname{cosec} 34^{\circ} 31^{\prime}=10 \cdot 2466882, L$ cosec $34^{\circ} 32^{\prime}=10 \cdot 2465046$, find A from the equation $L \operatorname{cosec} A$ $=10 \cdot 2466153$.
19. Given $L \sin 28^{\circ} 10^{\prime}=9 \cdot 6739769, L \sin 28^{\circ} 11^{\prime}=$ $9 \cdot 6742128$, find $L \cos 61^{\circ} 49^{\prime} 25^{\prime \prime}$.
20. Given $L \cos 71^{\circ} 45^{\prime}=9 \cdot 4957716, L \cos 71^{\circ} 46^{\prime}=$ $9 \cdot 4953883$, find $L \sin 18^{\circ} 14^{\prime} 10^{\prime \prime}$.
21. Given $L \tan 52^{\circ} 35^{\prime}=10 \cdot 1163279, L \tan 52^{\circ} 36^{\prime}=$ $10 \cdot 1165897$, find $L \cot 37^{\circ} 24^{\prime} 50^{\prime \prime}$.
22. Given $L \cot 36^{\circ} 19^{\prime}=10 \cdot 1337003, L \cot 36^{\circ} 20^{\prime}=$ $10 \cdot 1334356$, find $L \tan 53^{\circ} 40^{\prime} 45^{\prime \prime}$.
23. Given $L \cos 42^{2} 26^{\prime}=9 \cdot 8680934$, Diff. $=1154$, find $L \sin 47^{\circ} 34^{\prime} 47^{\prime \prime}$.
24. Given $L \sin 20^{\circ} 15^{\prime}=9 \cdot 5392230, L \sin 20^{\circ} 16^{\prime}=$ $9 \cdot 5395653$, find the angle whose $L \cos$ is $9 \cdot 5394128$.
25. Given $L \cos 44^{\circ} 20^{\prime}=9 \cdot 8544799$, Diff. $=1234$, find the angle whose $L \sin$ is 9.8545671 .
26. Given $L \cot 57^{\circ} 16^{\prime}=9 \cdot 8080829, L \cot 57^{\circ} 17^{\prime}=$ $9 \cdot 8078052$, find the angle whose L tan is $9 \cdot 8080431$.
27. In the tables why do the same columns of differences answer for both sine and cosecant, tangent and cotangent, secaut and cosine?
28. In the tables for what angles will a column, which when read from the top is that for the sines of certain angles, answer for cosines when read from the bottom?
29. Shew that the sum of the tabular logarithms of the sine and cosecant of any (the same) angle is 20,-also that the same is true of the cosine and secant, and of the tangent and cotangent.
30. In increasing the true logarithm by 10 to form the tabular logarithn, by what are we multiplying the trigonometrical ratio?

SOLUTION OF RIGHT-ANGLED TRIANGLES.

26. Taking the triangle $A B C$, where C is 90°, and denot- Direct relaing the lengths of the sides opposite to each angle by the neeting the small letter corresponding, the definitions of the trigonome- trigonmetrical ratios give the following relations:

$$
\begin{aligned}
\sin A & =\frac{a}{c}, \quad \text { or, } \quad a=c \sin A \\
\tan A & =\frac{a}{b} \ldots \ldots \ldots a=b \tan A \\
\sec A & =\frac{c}{b} \ldots \ldots \ldots c=b \sec A \\
\cos A & =\frac{b}{c} \ldots \ldots \ldots b=c \cos A \\
\cot A & =\frac{b}{a} \ldots \ldots \ldots b=a \cot A \\
\operatorname{cosec} A & =\frac{c}{a} \ldots \ldots \ldots c=a \operatorname{cosec} A
\end{aligned}
$$

Fig. 4.
27. From these relations, any two of the four quantities Two parts a, b, c, A being given, the other two could be found by aid of the tables of natural sines, cosines, \&c.; and the remaining
also, the triangle would be completely determined. Such a mode of solution would however be inconvenient, as involving long processes of multiplication, and we shall proceed to discuss the different cases of the solution of right-angled triangles by means of the logarithmic tables.

Four cases of sulution.
28. Four distinct cases will arise, (1), an angle and a side; (2), an angle and the hypothenuse ; (3), the two sides ; (4), a side and the hypothenuse. In cases (1) and (2), it is indifferent which angle be given, as the other is at once known. The solution will be effected in each case by picking out from among the foregoing relations one which connects the quantity sought for with two quantities which have been given or found, and it will be noticed that in each case there will be two of these relations which would serve this pupose. If one involves a process of addition, and the other a process of subtraction, we shall always take the former.

Case 1.
A side and an angle niven.

Case 2.
The hypothennse antan angle given.

Case 3.
The two sides given.

Case (I). Given a, A; to find B, b, c.

$$
\begin{aligned}
& B=90^{\circ}-A . \quad \ldots \ldots \ldots \ldots . B \text { found. } \\
& b=a \cot A!
\end{aligned}
$$

Taking the logarithms of both sides.
$\log b=\log a+\log \cot A$
$\log b=\log a+L \cot A-10 \ldots . \ldots$ found.
$e=a \operatorname{cosec} A$
or

$$
\log c=\log a+L \operatorname{cosec} A-10 \ldots c \text { found. }
$$

Case (II). Given c, A; to find B, a, b.

$$
\begin{aligned}
& B=90^{\circ}-A . \\
& a=c \sin A \\
& \log a=\log c+L \sin A-10 \ldots . a \text { found. } \\
& b=c \cos A \\
& \log b=\log c+L \cos A-10 \ldots b \text { found. }
\end{aligned}
$$

Case (III). Given a, b; to find A, B, c.

$$
\begin{aligned}
& \tan A=\frac{a}{b^{\prime}} \\
& \log \tan A=\log a-\log b \\
& L \tan A-10=\log a+\operatorname{colog} b-10
\end{aligned}
$$

and therefore

$$
\begin{aligned}
& L \tan A=\log a+\operatorname{colog} b . \ldots \ldots . A \text { found. } . \\
& B=90^{\circ}-A . \ldots \ldots \ldots \ldots B \text { found. } \\
& c=a \operatorname{cosec} A \\
& \log c=\log a+L \operatorname{cosec} A-10 \ldots c \text { found. }
\end{aligned}
$$

In this case it is indifferent whether we determine A from the formula $\tan A=\frac{a}{b}$, or from $\cot A=\frac{b}{a}$. Also there is not among our relations one connecting c with the given quantities a, b, and although we know from Euclid that $\mathrm{c}^{2}=a^{2}+b^{2}$, this formula is not convenient for logarithmic computation, and we therefore determine c by means of A, which though not given has been already found. We might also have determined c by means of $c=b \sec A$.

Case (IV). Given a, c; to find A, B, b.

$$
\begin{aligned}
& \sin A=\frac{a}{c} \\
& \log \sin A=\log a-\log c \\
& L \sin A-10=\log a+\operatorname{colog} c-10,
\end{aligned}
$$

and therefore

$$
\begin{aligned}
& L \sin A=\log a+\operatorname{colog} c \ldots \ldots \ldots A \text { found. } \\
& B=90^{\circ}-A \ldots \ldots \ldots \ldots \text { found. } \\
& b=a \cot A \\
& \log b=\log a+L \cot A-10 \ldots . b \text { found. }
\end{aligned}
$$

In this case it is indifferent whether we determine A from the formula $\sin A=\frac{a}{c}$, or from $\operatorname{cosec} A=\frac{c}{a}$. Also, there being none of the relations which connects b directly with the given quantities a, c, it is determined by means of A which has previously been found; it might also have been found from the formula $b=c \cos A$. It is known from Euclid that $b^{2}=c^{2}-a^{2}$, and b might have thus been found directly, but the formula is not convenient for logarithms.
29. The solution of an isosceles triangle can be effected by aid of the preceding; for such a triangle can be divided by a solved. perpendicular dropped from the vertex on the base into two right-angled triangles, equal in all respects, and by solving these, the parts of the isosceles triangle also are determined.
30. Examples of right-angled triangles.

$$
\text { Case (II). Given } c=31459, A=46^{\circ} 32^{\prime} .
$$

$$
B=90^{\circ}-A
$$

$$
90^{\circ} 00^{\prime}
$$

$$
A=46 \quad 32
$$

$$
B=43^{\circ} 28^{\prime}
$$

$$
\begin{aligned}
& \log a=\log c+L \sin A-10 . \\
& c=31459 ; \log c, \quad 4 \cdot 49774 \\
& A=46^{\circ} 32 ; L \sin A, 9 \cdot 86080 \\
& \hline a=22832 ; \log a, \quad \overline{4 \cdot 35854} \\
&= \text { (a found.) } \\
& \log b=\log c+L \cos A-10 . \\
& \log c, 4 \cdot 49774 \\
& A=46^{\circ} 32^{\prime} ; L \cos A, 9 \cdot 83755 \\
& b=21642 ; \log b, \quad \overline{4 \cdot 33529}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Case (I). Given } a=129 \cdot 5, A=37^{\circ} 07^{\prime} \text {. } \\
& B=90^{\circ}-A \text {. } \\
& \begin{array}{r}
90^{\circ} 00^{\prime} \\
A=\overline{37^{\circ}} 07^{\prime} \\
B=\overline{52^{\circ} 53^{\prime}}
\end{array} \\
& \text { (} B \text { found.) }
\end{aligned}
$$

Case (III). Given $a=2 \cdot 7039, b=3 \cdot 4505$.
$L \tan A=\log a+\operatorname{colog} b$.
$a=2.7039 ; \quad \log a, 0.43199$
$b=3 \cdot 4505 ; \quad \operatorname{colog} b, 9 \cdot 46212$
$A=38^{\circ} 05^{\prime} ; L \tan A, 9.89411$
(A found.)

$$
\begin{aligned}
& B=90^{\circ}-\mathrm{A} . \\
& 90^{\circ} 00^{\prime} \\
& A=38 \quad 05^{\prime} \\
& B= \\
& B=51^{\circ} 55^{\prime}
\end{aligned}
$$

$\log c=\log \alpha+L \operatorname{cosec} A-10$.
$\log a, \quad 0.43199$
$A=38^{\circ} 05^{\prime} ; \quad L \operatorname{cosec} A, 10 \cdot 20985$
$\underline{\underline{c=4.3837} ;} \quad \log c, 0.64184$

Case (IV). Given $a=21, c=21 \cdot 981$.
$L \sin A \quad \log a+\operatorname{colog} c$.
$a=21 \quad ; \quad \log a, 1 \cdot 32222$
$c=21.981$; colog $c, 8.65795$
$A=72^{\circ} 49^{\prime} ; L \sin A, 9.98017$

$$
B=90^{\circ}-\mathrm{A} .
$$

(4 found.)

$$
\begin{aligned}
& 90^{\circ} 00^{\prime} \\
& A=\begin{array}{r}
72^{\circ} 49 \\
B= \\
\hline 17^{\circ} 11^{\prime} \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{array}{r}
\log b=\log a+L \cot A-10 \\
\log a, 1 \cdot 32222 \\
A=72^{\circ} 49^{\prime} ; \\
\hline b=6 \cdot 4940 ;
\end{array} \log b, \overline{0.81251} .9 \cdot 49029 .
$$

The use of "traverse-tables" may be briefly noted in connection with "plane sailing" and surveys. The earth's surface being considered a plane, a straight line drawn upon it is called the distance, and the acute angle between the direction in which this distance is drawn and the North or South line is called the angle of the course. A right-angled triangle being constructed of which the distance is the hypothenuse, and the base is drawn east or west, while the perpendicular is north or south, the base is called the departure, and the perpendicular the difference of latitude, these lines being the products of the distance by the sine and cosine of the angle of the course respectively. The values of the departure and difference of latitude are set down in traverse-tables for different values of the distance aud angle of course. When different distances are run consecutively at the same angle, the simple addition of the corresponding departures gives the departure for the whole distance ; and similarly for the differences of latitude. When consecutive distances are run at different angles, if the departures when eastward are reckoned positive, and when westward negative, the algebraic sum gives the resultant departure with the same convention of signs; and so for the differences of latitude, if those northwards are reckoned positive, and sonthwards negative. The resultant departure and difference of latitude give the position at the end of the distances. In this way the position of a vessel is ascertained from knowing the distances run and the corresponding angles of the course. The same method applies in running a survey on the earth's surface considered as a plane.
Sometimes the angle of the course is reckoned in points instead of degrees, each point being $11 \frac{1}{4}^{\circ}$.

EXERCISE VI.

1. $a=50, b=50, C=90^{\circ}$; solve the triangle.
2. $c=240, A=45^{\circ}, C=90^{\circ}$; solve the triangle.
3. $a=100, A=45^{\circ}, C=90^{\circ}$; solve the triangle.
4. $c=24, A=30^{\circ}, C=90^{\circ}$; solve the triangle.
5. $a=30, A=60^{\circ}, C=90^{\circ}$; solve the triangle.
6. $a=480, B=60^{\circ}, C=90^{\circ}$; solve the triangle.
7. $c=96, a=48, C=90^{\circ}$; solve the triangle.
8. $a=198, b=201 \cdot 5, C=90^{\circ}$; find A.
$\log 1 \cdot 98=\cdot 2966652, \log 2 \cdot 015=3042751, \mathrm{~L} \tan 44^{\circ} 29^{\prime}=9 \cdot 99216 \%$,
$\mathrm{L} \tan 44^{\circ} 30^{\prime}=9.9924197$.
9. $a=742 \cdot 196, c=1025, C=90$; find A.
$\log 74219=4 \cdot 8705151, \log 1 \cdot 025=\cdot 0107239, L \sin 46^{\circ} 23^{\prime}=9 \cdot 8597213$.
$\log 74220=4 \cdot 8705210$
$L \sin 46^{\circ} 24^{\prime}=9.8598416$.
10. $a=138, b=246 \cdot 5, C=90^{\circ}$; find B.
$\log 13 S=2 \cdot 1395791 . \log 246 \cdot 5=2 \cdot 3918169, L \cot 60^{\circ} 45^{\prime}=9 \cdot 7452089$, $\mathrm{L} \cot 60^{\circ} 46^{\prime}=9.7479125$.
11. $a=3, c=5, C=90^{\circ}$; find A and B.
$\log 3=\cdot 4771213, \log 5=\cdot 6989700, \mathrm{~L} \sin 36^{\circ} 52^{\prime}=9 \cdot 7781186$ $\mathrm{L} \sin 36^{\circ} 53^{\prime}=9.7782870$.
12. $a=600, c=1400, C=90^{\circ}$; find A and \dot{B}. $\log 3=\cdot 4771213, \log 7=\cdot 8450980, L \sin 25^{\circ} 22^{\prime}=9 \cdot 6318591$ $\mathrm{L} \sin 25^{\circ} 23^{\prime}=9 \cdot 6321255^{5}$.
13. $a=12, b=19, C=90^{\circ}$; find A and B.
$\log 12=1 \cdot 0791812, \log 19=1 \cdot 2757536, \mathrm{~L} \tan 32^{\circ} 16^{\prime}=$ $9 \cdot 8002769, \mathrm{~L} \tan 32^{\circ} 17^{\prime}=9 \cdot 8005567$.
14. $a=2$), $b=27, C=90^{\circ}$; find A and B.
$\log 2=3010300, \log 3=4771213, \mathrm{~L} \cot 36^{\circ} 31^{\prime}=10 \cdot 1305269$ $\mathrm{L} \cot 36^{\circ} 32^{\prime}=10 \cdot 1302628$.
15. $a=200, c=500, C=90^{\circ}$; find b. $\log 3=\cdot 4771213, \log 45825=4 \cdot 6611025$ $\log 7=\cdot S 450980, \log 45826=4 \cdot 6611120$.
16. $c=3000, A=S 0^{\circ}, C=90^{\circ}$, find a and b.
$\mathrm{L} \sin 80^{\circ}=9.9933$ § $15, \mathrm{~L} \cos 80^{\circ}=9.2396702$,
$\log 2 \cdot 9544=\cdot 4704693, \log 5 \cdot 2094=\cdot 7167877$
$\log 2 \cdot 9545=\cdot 4704840, \log 5 \cdot 2095=\cdot 7167960$.
17. $c=4000, A=70^{\circ}, C=90^{\circ}$; find a and b.
$L \cos 70^{\circ}=9 \cdot 5340517, \log 3 \cdot 7587=\cdot 5750377, \log 1 \cdot 3680=\cdot 1360861$
$L \cos 20^{\circ}=9 \cdot 9729$ sj8 \quad diff. $=115 \quad$ diff. $=317$.
18. $a=480, A=70^{\circ}, C=90^{\circ}$; find b and c.
$L \sin 70^{\circ}=9 \cdot 9729858, \log 450=2 \cdot 6812412, \log 5 \cdot 1080=\cdot 7082509$,
$L \cos 70^{\circ}=9 \cdot 5340517$.
diff. $=\$ 5$
$\log 1 \cdot 7470=2422929$.
diff. $=249$.
19. $b=3600, A=75^{\circ}, C=90^{\circ}$; find a and c.
$L \cos 75^{\circ}=9 \cdot 4129962, \log 1 \cdot 3909=1432959, \log 1 \cdot 3435=1228237$
$L \tan 75^{\circ}=10.5719475 \quad$ diff. $=312 \quad$ diff. $=323$.
20. $a=124 \cdot 6, A=64^{\circ} 20^{\prime}, C=90^{\circ}$; find b and c.
$L \sin 64^{\circ} 20^{\prime}=9 \cdot 9548534, \log 1 \cdot 246=\cdot 0955180, \log 5.9876=7772528$.
$L \tan 64^{\circ} 20^{\prime}=10 \cdot 3182604, \log 1 \cdot 3824=1406346 . \log 5.9577=7 \% \cdot 2600$.
21. $c=294, A=23^{\circ} 30^{\prime}, C=90^{\circ}$; find a and b, $\log 2 \cdot 94=\cdot 4683473$,
$L \sin 23^{\circ} 30^{\prime}=9 \cdot 6006997, \log 11 \cdot 723=1 \cdot 0690388$, diff $=370$.
$L \cos 23^{\circ} 30^{\prime}=9 \cdot 9623978, \log 26 \cdot 961=1 \cdot 4307360$, dift $=161$.
22. $c=328, a=192, C=90^{\circ}$; find A and b.
$\log 3 \cdot 28=\cdot 5158738, L \sin 35^{\circ} 49^{\prime}=9 \cdot 7672996$, diff. $=1750$, $\log 2 \cdot 6593=4247673$, diff. $=163, \log 1 \cdot 92=\cdot 2833012, L$ $\cos 35^{\circ} 49^{\prime}=9.9089639$, diff. $=912$.
23. $a=6 \cdot 23, A=64^{\circ} 20^{\prime}, C=90^{\circ}$; find b and c.
$\log 6 \cdot 23=7944880$,
$L \tan 64^{\circ} 20^{\prime}=10 \cdot 3182604, \log 299 \cdot 38=2 \cdot 4762228$, diff. $=14.5$
$L \sin 64^{\circ} 20^{\prime}=9 \cdot 9548834, \log 691 \cdot 20=2 \cdot 8396037$, diff. $=63$.
24. $a=70 \cdot 5, b=96 \cdot 5, C=90^{\circ}$; find A and c.
$\log 70 \cdot 5=1 \cdot 8481891, L \tan 36^{\circ} 9^{\prime}=9 \cdot 8636500$, diff. $=2652$.
$\log 119 \cdot 50=2 \cdot 0773679$, diff. $=363$.
$\log 96.5=1 \cdot 9845273, L \sin 36^{\circ} 9^{\prime}=9 \cdot 7707793$, diff. $=1729$
25. $b=1218, c=1282, C=90^{\circ}$; find a and B. $\log 1218=3.0556473, \log 1282=3 \cdot 1078880, L \sin 71^{\circ} 49^{\prime}=9 \cdot 9777523$. $L \sin 71^{\circ} 50^{\prime}=9.9777938$.
Tables (seven-figure) will be required for the remainder of the Exercise.
$26 . A=36^{\circ} 21^{\prime} 20^{\prime \prime}, c=74.8234, C=90^{\circ}$; find b.
26. $a=784 \cdot 325, A=60^{\circ} 34^{\prime}, C=90^{\circ}$; find b.
27. $b=29784, A=43^{\circ} 24^{\prime} 30^{\prime \prime}, C=90^{\circ}$; find c.
28. $b=200, c=249 \mathrm{C}=90^{\circ}$; find a.
29. $a=416, c=740, C=90^{\circ}$; solve the triangle.
30. $A=37^{\circ} 10^{\prime}, a=124, C=90^{\circ}$; find b and c.
31. $a=5, c=13, C=90^{\circ}$; solve the triangle.
32. $a=1100, c=1109, C=90^{\circ}$; solve the triangle.

34 . The base of an iosceles triangle is 10 , and the height 20 ; find the vertical angle.
35. The side of an isosceles triangle is 30 , and the base 10 ; find the vertical angle.
36. The side of an isoseeles triangle is_ 30 , and the height 20 ; find the vertical angle.
37. The sides of a triangle are $746 \cdot 232,746 \cdot 232$, and 400 ; find the angles.
38. From the extremity of the diameter of a circle whose radius is 20 , a chord is drawn, whose length is 12 ; what is the angle between the chord and the diameter ?
39. The sides of a rectangle are 10 and 6 ; what is the smaller angle contained by the diagonals ?
40. The hypothenuse of a right-angled triangle is 20 , and one of its angles is 32°; what is the length of the perpendicular to the hypothenuse?
41. Four lines $O A, O B, O C$, and $O D$, meeting in the point O, make each of the angles $A O B, B O C, C O D, D O E$ equal to 25°; $A B$ is at right angles with $O B, B C$ with $O C$, and $C D$ with $O D$; what is the length of $O D$, if $O A$ be 24 inches?

Area of a parallelogram=base \times perp.height. (Euc. Bk.I., 35).
Area of a triangle $=\frac{1}{2}$ base \times perp.height. (Euc. Bk.I., 41).
42. Find the area of the isosceles triangle whose side is 24 inches, and vertical angle 32°.
43. Find the area of the parallelogram whose two adjacent sides are 36 and 28 , and the included angle 64°.
44. Find the area of the regular pentagon whose side is 2.
45. The base of a triangle is $62 \frac{1}{2}$ inches ; a line 32 inches in length, drawn from the vertex to the base, makes an angle of 70° with the base; what is the area of the triangle?
46. Two sides of a triangle are 8 and 25 inches, and the included angle 56°; find its area.
47. The diagonals of a parallelogram are 16 and $12 \frac{1}{2}$ inches, and the included angle 68°; find the area of the parallelogram.
48. The diagonals of an irregular quadrilateral are 64 and $31 \frac{1}{4}$ respectively, and make with each other an angle of 42°; what is the area of the quadrilateral?
49. The two sides of a triangle are $6 \frac{2}{5}$ and $3 \frac{1}{8}$; what must be the angle between them that the area may be 6.9466 inches?
50. The area of a parrallelogram is $88 \frac{2}{3}$ square inches, and its diagonals 25 and 16 inches; what is the angle between them?

EXERCISE VII.

The angle which a line joining the eye of an observer and a distant object makes with the horizontal plane is called the angle of elevation if the object be above the observer, and the angle of depression if the object be below the observer.

1. A person wishing to ascertain the height of a tower standing on a declivity, ascends to a point 80 feet below its base, and it then subtends an angle of 30°; find the height of the tower, the inclination of the side of the hill to the horizon being 30°.
2. A person standing at a distance of 82 ft .4 in . from the base of a tower, observes that, the altitude of the tower is exactly 45°; find the height of the tower without referring to the tables, the eye of the observer being 5 ft .2 in . from the ground.
3. A person standing at the edge of a river observes that the top of a tower on the edge of the opposite side subtends an angle of 60° with a line drawn from his eye parallel to the horizon ; receding 30 ft ., he finds it to subtend an angle of 45°. Determine the breadth of the river.
4. The angles of depression of the top and bottom of a column observed from the top of a tower 108 ft . high are 30° and 60° respectively; find the height of the column.
5. The angles of depression and elevation of the top of a column observed from the top and bottom of a tower 108 ft . high, are 30° and 60° respectively. Find the height of the column.
6. A and B are two stations on a hill side ; the inclination of the hill to the horizon is 45°; the distance between A and B is 500 yards. U is the summit of another hill in the same vertical plane as A and B, on a level with A, but at B its elevation above the horizon is 30°. Find the distance from A to C.
7. A ship whieh is known to be sailing due East at 12 miles an hour, was observed to be 30° to the East of South ; $1 h .30 \mathrm{~m}$. afterwards it was seen in the South East. Find the distance of the ship when first seen.
8. At the foot of a mountain the elevation of its summit is found to be 45°. After ascending for two miles at a slope of 30° towards its summit, its elevation is found to be 60°. Deternine the height of the mountain.
9. A person at a distance af 20 yards from the nearer of two towers in the same straight line with him, and 10 yards apart, observes them to subtend the same angle. Passing the nearer tower a certain distance, he observes them again subtend the same angle, the complement of the former. Find the heights of the towers.
10. A person standing on the bank of a river observes the elevation of the top of a tree on the opposite bank to be 51°; and when he retires 30 feet from the river's edge, he observes the elevation to be 46°. Determine the breadth of the river. Given $\tan 51^{\circ}=1 \cdot 2381, \tan 46^{\circ}=1.0355$.
11. A person on a tower whose height is 90 feet, observes the angles of depression of two objects on the horizontal plane which are in the same straight line with the tower to be 60° and $34^{\circ} 10^{\prime} 40^{\prime \prime}$. Find the distance of the objects from each other.

[^2]12. Two spectators at two stations distant 200 feet from each other, observe the elevation of a kite to be $75^{\circ} 21^{\prime}$ at each station, and the angle subtended by the kite and the other station to be 60°; find the height of the kite.
$\log 2=-3010300, L \sin 75^{\circ} 21^{\prime}=9 \cdot 9856460, \log 1 \cdot 9350=$ - 2866760 .
13. A person travelling along a straight road observes the elevation $\left(10^{\circ} 12^{\prime}\right)$ of a church spire, the nearest distance of which from the road is 600 feet. At the same time he observes the angular distance (45°) of the bottom of the tower from an object in the road. Find the height of the tower.
$\log 6=\cdot 7781513, \log 2=\cdot 3010300, L \tan 10^{\circ} 12^{\prime}=9 \cdot 25$. 50997 , by $1 \cdot 5267=\cdot 1837537$, diff. $=284$.
14. At noon in Toronto (N. lat. $43^{\circ} 39^{\prime}$) on the longest day in the year a flag pole was observed to cast a shadow 30 feet long; find the height of the pole.
$\log 3=-4771213, L \tan 69^{\circ} 49^{\prime}=10.4346267, \log 8 \cdot 1611$ $=.9117480$.
15. On a day on which the north declination of the sun was known from the Almanac to be $10^{\circ} 30^{\prime}$, the shadow (north) of a stick 10 feet long was observed at noon to be 8 feet long; find the latitude of the place.
$$
\log 2=\cdot 3010300, L \tan 51^{\circ} 20^{\prime}=10 \cdot 0969100
$$

Tables (seven-figure) will be required for the remainder of this Exercise.
16. A hill whose slope makes an angle of 12° with the horizon is one mile long; find the height of the hill.
17. A person in a balloon (stationary) whose elevation is 37° drops a stone which falls 560 yards from the observer: find the height of the balloon.
18. To ascertain the distance of an object A from B, I measure a base line $B C$ of 200 feet at right angles to $A B$. and find the angle $A C B$ to be $24^{\circ} 12^{\prime} 20^{\prime \prime}$; find the distance of A from B.
19. A person standing at a distance of 100 feet from the base of a tower, finds that the altitude of the tower is 50°; what is the height of the tower, the cye of the observer being 5 ft 3 in . from the ground.
20. A person wishing to know the distance of an inaccessible object A on the opposite bank of a river, views it from a station B; he then moves over a distance of 72 ft in a direction at right angles to $A B$, to a second station C, and observes the angle $A C B$ to be 75° - Find the distance of A from C.
21. A river $A C$ the breadth of which is 200 feet, flows at the foot of a tree $C B$, which subtends an angle $B A C$ of 25° 10^{\prime} at the edge of the bank. Find the height of the tree.
22. Two persons A and B start at the same time from two points distant 400 yards. B starts at right angles to the line joining the two points at the rate of 90 yards a minute. A starts in a direction to catch B as soon as possible at the rate of 150 yards a minute. Find how long he will be before he catches him, and the direction in which he must walk.
23. A staff 1 foot long stands on the top of a tower 200 feet high. Find the angle it subtends at a place 100 feet from the foot of the tower.
24. The shadow cast at noon on the longest day of the year by a tower situated $51^{\circ} 31^{\prime} \mathrm{N}$. latitude was 124 feet ; find the height of the tower.
25. Find the height of a cloud whose elevation is $33^{\circ} 10^{\prime}$, and depression 45° when seen by reflection in a lake from a station at a height of 150 feet above the surface of the lake.

TRIGONOMETRICAL FORMULAS.

Extension of the definition of the trigonometrical ratios to the case of an angle greater than 90°.
31. It is necessary now to extend our definitions to the case of an angle greater than one, but less than two, right angles. Let $C A B$ be such an angle, and be denoted by A. Produce $C A$ through A and drop $B C^{\prime \prime}$ perpendicularly upon it. The angle $B A C^{\prime}$ is called the supplement of A, and $=180^{\circ}-A$. We now define the trigonometrical ratios of the angle A to be the corresponding ratios for the angle $B A C^{\prime}$ in the triangle $B C^{\prime} A$, with the convention that $A C^{\prime \prime}$ is to be considered a negative magnitude. Let p, b, h be the numerical values of the lengths of the perpendictlar, base, and hypothenuse in the triangle; then

Relations between the ratios of an angle and its supplement.
$\sin A=\frac{B C^{\prime}}{A B}=\frac{p}{h}=\sin B A C^{\prime}=\sin \left(180^{\circ}-A\right) ;$
$\tan A=\frac{\mathrm{BC}^{\prime}}{A C}=\frac{p}{-b}=-\frac{p}{b}=-\tan B A C^{\prime}=-\tan \left(180^{\circ}-A\right) ;$
$\sec A=\frac{A B}{A C^{\prime}}=\frac{h}{-b}=-\frac{h}{b}=-\sec B A C^{\prime}=-\sec \left(180^{\circ}-A\right) ;$
$\cos A=\frac{A C^{\prime}}{\overline{A B}}=\frac{-b}{h}=-\frac{b}{h}=-\cos B A C^{\prime}=-\cos \left(180^{\circ}-A\right) ;$
$\cot A=\frac{A C^{\prime \prime}}{B C^{\prime \prime}}=\frac{-b}{p}=-\frac{b}{p}=-\cot B A C^{\prime}=-\cot \left(180^{\circ}-A\right) ;$
$\operatorname{cosec} A=\frac{A B}{B C^{+}}=\frac{h}{p}=\operatorname{cosec} B A C^{\prime}=\operatorname{cosec}\left(180^{\circ}-A\right)$.
32. It will be seen on inspection that the ratios according to this extended definition will satisfy the same five fundamental relations as before ; and although the complement of an angle (A) which is greater than 90°, being $=90^{\circ}-A$, is a negative quantity, and ceases at present to have any signification, we shall still say that the cosine, cotangent, cosecant of such an angle are the sine, tangent, and secant of its complement, and hereafter, if necessary, give a consistent interpretation to the quantity.

The ratios for angles greater tha 40^{2} found from thinse of angles less than 90°.
33. From the above it is seen that the trigonometrical ratio of any angle is the same in numerical value as the corresponding ratio of its supplement, but bears a different sign except in the cases of sine and cosecant which bear the same sign. It is therefore unnecessiry to construct additional
tables for angles greater than 90°, as the ratios for such angles can be found from those of their supplements, which are less than 90°. Further, for such angles the tangents, secants, cosines, and cotangents being negative quantities, have no logarithms, and it is only for the sines and cosecants that the logarithms have real values, being the same as those given in the tables for the supplements of these angles.
34. We can now proceed to the discussion of triangles in general, to the angles of which, whether acute or obtuse, our definitions of the ratios will now apply.

The triangle being $A B C$, the lengths of the sides opposite to the respective angles will be denoted by the small letters corresponding. The triangle then is said to have six parts:namely, the three angles, A, B, C, and the three sides a, b, c. It is proved by Euclid that when three of these parts are given (one of them being a side), the other parts can be found There must therefore be three independent relations connecting these six quantities. One such relation is already established by Euclid, namely :

$$
A+B+C=180^{\circ} \ldots \ldots \ldots \ldots
$$

One relation
Two others we proceed to investigate.
From C drop the perpendicular $C D$ on $A B$ (fig 6$)$ or on $B A$ produced (fig. 7).

Then in the right angled-triangle $C B D$,

$$
C D=B C \sin C B D=a \sin B
$$

And in the right-angled triangle $C A D$,
$C D=A C \sin C A D=b \sin A$, in fig. 6 ,

$$
=b \sin \left(180^{\circ}-A\right)=b \sin A \text {, in fig. } 7
$$

Hence

$$
a \sin B=b \sin A
$$

Similarly, by dropping a perpendicular from A, we should obtain

$$
b \sin C=c \sin B
$$

And hence

$$
\begin{equation*}
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} \ldots \tag{2}
\end{equation*}
$$

other.

Another relation found inde pendently, but actually deducible from the above.
35. From these three relations (1), (2), all others can be deduced, but for such as we require at present, it will sometimes be easier to give proofs which do not directly depend on these.

Resuming the figures and construction of the previous proposition,

$$
\begin{aligned}
A B & =D B+A D, \text { in fig. } 6 . \\
& =B C \cos C B D+A C \cos C A D \\
& =a \cos B+b \cos A .
\end{aligned}
$$

Also,

$$
\begin{aligned}
A B & =D B-A D, \text { in fig. } 7 . \\
& =B C \cos C B D-A C \cos C A D \\
& =a \cos B-b \cos \left(180^{\circ}-A\right) \\
& =a \cos B+b \cos A .
\end{aligned}
$$

*Hence, universally,

$$
\begin{equation*}
c=a \cos B+b \cos A \tag{3}
\end{equation*}
$$

Deduction of certain general formulas.
36. Multiplying the respective terms of this equation by the equal quantities $\frac{\sin C}{c}, \frac{\sin A}{a}, \frac{\sin B}{b}$,

$$
\sin C=\sin A \cos B+\cos A \sin B
$$

but C is the supplement of $(A+B)$; therefore
$\operatorname{Sin}(A+B)$.
$\sin (A+B)=\sin A \cos B+\cos A \sin B \ldots$ (4)
37. In the preceding, instead of A write $180^{\circ}-A$; then $\sin \left\{180^{\circ}-(A-B)\right\}$ $=\sin \left(180^{\circ}-A\right) \cos B+\cos \left(180^{\circ}-A\right) \sin B$,
*In this formnla, writing it

$$
1=\frac{a}{c} \cos B+\frac{b}{c} \cos A
$$

suppose that C is a right angle. Then $\cos B=\sin A$, $\frac{a}{c}=\sin A, \frac{b}{c}=\cos A$, and, making these substitutions, it becomes

$$
1=(\sin A)^{2}+(\cos A)^{2} .
$$

This is the proof alluded to on page 17, as not depending on Enclid, Bk. I., Prop. 47, but in fact being also a proof of that proposition.
or

$$
\sin (A-B)=\sin A \cos B-\cos A \sin B \ldots(5) \quad \sin (A-B)
$$

Again, in this for A write $90^{\circ}-A$; then
$\sin \left\{90^{\circ}-(A+B)\right\}$

$$
=\sin \left(90^{\circ}-A\right) \cos B-\cos \left(90^{\circ}-A\right) \sin B
$$

or

$$
\cos (A+B)=\cos A \cos B-\sin A \sin B \ldots(6) \quad \cos (A+B)
$$

The above proof of the last three formulas restricts the angles A and B to have their sum less than 180°. The formulas, however, are universal, but it is not necessary to extend them beyond this case, as it is the only case in which their use is at present required. In the appendix a general proof will be found, applicable to angles of any magnitude.
38. In (4), and (6), putting $B=A$, we obtain

$$
\begin{aligned}
\sin 2 A & =\sin A \cos A+\cos A \sin A \\
& =2 \sin A \cos A \\
\cos 2 A & =\cos A \cos A-\sin A \sin A \\
& =\cos ^{2} A-\sin ^{2} A
\end{aligned}
$$

and therefore, (since $\cos ^{2} A+\sin _{2} A=1$),

$$
=2 \cos ^{2} A-1
$$

$$
\text { or }=1-2 \sin ^{2} A
$$

Writing $\frac{1}{2} A$ instead of A, these become
$\sin A \& \cos A$ in terms of $\sin \frac{1}{2} A$, cos $\frac{1}{2} A$.
39. Adding (4) and (5), we obtain

$$
\sin (A+B)+\sin (A-B)=2 \sin A \cos B
$$

And subtracting (5) from (4),

$$
\sin (A+B)-\sin (A-B)=2 \cos A \sin B
$$

Dividing the terms of these two equalities, we obtain

$$
\begin{aligned}
\frac{\sin (A+B)+\sin (A-B)}{\sin (A+B)-\sin (A-B)} & =\frac{2 \sin A \cos B}{2 \cos A \sin B} \\
= & \frac{\sin A}{\cos A} \div \frac{\sin B}{\cos B} \\
& =\frac{\tan A}{\tan B} .
\end{aligned}
$$

In this formula, instead of $(A+B)$ write A, and instead of $(A-B)$ write B, and therefore also instead of A write $\frac{1}{2}(A+B)$, and instead of B write $\frac{1}{2}(A-B)$, and we obtain

$$
\begin{equation*}
\frac{\sin A+\sin B}{\sin A-\sin B}=\frac{\tan \frac{1}{2}(A+B)}{\tan \frac{1}{2}(A-B)} . \tag{9}
\end{equation*}
$$

EXERCISE VIII.

(The Examples in this Exercise should be attentively studied.)
Prove the following relations:

1. $\operatorname{Cos}(A-B)=-\cos \left\{180^{\circ}-(A-B)\right\}=-\cos \left\{\left(180^{\circ}-A\right)+B\right\}=$

$$
\begin{aligned}
& -\cos \left(180^{\circ}-A\right) \cos B+\sin \left(180^{\circ}-A\right) \sin B \\
& =\cos A \cos B+\sin A \sin B .
\end{aligned}
$$

2. $\tan (A+B)=\frac{\sin (A+B)}{\cos (A+B)}=\frac{\sin A \cos B+\cos A \sin B}{\cos A \cos B-\sin A \sin B}=\frac{\tan A+\tan B}{1-\tan A \tan B}$.
3. $\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$.
4. $\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}$; or $\tan A=\frac{2 \tan \frac{1}{2} A}{1-\tan ^{2} \frac{1}{2} A}$.
5. $\cot (A+B)=\frac{\cos A \cos B-\sin A \sin B}{\sin A \cos B+\cos A \sin B}=\frac{\cot A \cot B-1}{\cot A+\cot B}$.
6. $\cot 2 A=\frac{\cot ^{2} A-1}{2 \cot A}$.
7. $\sin (A+B)=\sin A \cos B+\cos A \sin B$, $\sin (A-B)=\sin A \cos B-\cos A \sin B ;$ $\therefore \sin (A+B)+\sin (A-B)=2 \sin A \cos B$.
8. $\sin (A+B)-\sin (A-B)=2 \cos A \sin B$.
9. $\cos (A-B)+\cos (A+B)=2 \cos A \cos B$.
10. $\cos (A-B)-\cos (A+B)=2 \sin A \sin B$.
11. Since $A=\frac{1}{2}(A+B)+\frac{1}{2}(A-B)$, and $B=\frac{1}{2}(A+B)$ $-\frac{1}{2}(A-B)$;
$\therefore \sin A+\sin B=\sin \left\{\frac{1}{2}(A+B)+\frac{1}{2}(A-B)\right\}+$ $\sin \left\{\frac{1}{2}(A+B)-\frac{1}{2}(A-B)\right\}$
$=, \mathbf{E x .} 7,2 \sin \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B)$.
12. $\sin A-\sin B=2 \cos \frac{1}{2}(A+B) \sin \frac{1}{2}(A-B)$.
13. $\cos B+\cos A=2 \cos \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B)$.
14. $\cos B-\cos A=2 \sin \frac{1}{2}(A+B) \sin \frac{1}{2}(A-B)$.
15. $\frac{1-\cos A}{1+\cos A}=\frac{1-\left(1-2 \sin ^{2} \frac{1}{2} A\right)}{1+\left(2 \cos ^{2} \frac{1}{2} A-1\right)}=\tan ^{2} \frac{1}{2} A$.
16. $\sin (A+B+C)=\sin (A+B) \cos C+\cos (A+B) \sin C$, $=\sin A \cos B \cos C+\sin B \cos C \cos A$ $+\sin C \cos A \cos B-\cos A \cos B \cos C$.
17. $\cos (A+B+C)=\cos A \cos B \cos C-\cos A \sin B \sin C$ $-\cos B \sin C \sin A-\cos C \sin A \sin B$.
18. $\tan (A+B+C)=\frac{\tan A+\tan B+\tan C-\tan A \tan B \tan C}{1-\tan A \tan B-\tan B \tan C-\tan C \tan A}$.
19. $\sin 3 A=\sin (2 A+A)=\sin 2 A \cos A+\cos 2 A \sin A$,

$$
\begin{aligned}
& =2 \sin A \cos ^{2} A+\sin A-2 \sin ^{3} A \\
& =3 \sin A-4 \sin ^{3} A
\end{aligned}
$$

20. $\cos 3 A=\cos (2 A+A)=\cos 2 A \cos A-\sin 2 A \sin A$,

$$
\begin{aligned}
& =2 \cos ^{3} A-\cos A-2 \sin ^{2} A \cos A \\
& =4 \cos ^{3} A-3 \cos A
\end{aligned}
$$

21. $\tan 3 A=\tan (2 A+A)=\frac{\tan 2 A+\tan A}{1-\tan 2 A \tan A}$,

$$
\begin{aligned}
& =\frac{\frac{2 \tan A}{-\tan A}+\tan A}{2 \tan A}, \\
& 1-\frac{1-\tan ^{2} A}{} \cdot \tan A \\
& =\frac{3 \tan A-\tan ^{3} A}{1-3 \tan ^{2} A} .
\end{aligned}
$$

(Examples 19, 20, 21 may, of course, be obtained from Examples $16,17,18$, by putting $A=B=C, 1-\sin ^{2} A$ for $\cos ^{2} A$, and $1-\cos ^{2} A$ for $\sin ^{2} A$.)
22. Let $A=18^{\circ}$. Then, since $\sin 36^{\circ}=\cos \left(90^{\circ}-36^{\circ}\right)=\cos 54^{\circ}$,
$\therefore \sin 2 A=\cos 3 A$,
$2 \sin A \cos A=4 \cos ^{3} A-3 \cos A$.
Divide by $\cos A$;

$$
\therefore 4 \sin ^{2} A+2 \sin A=1
$$

$$
\text { or } \sin 18^{\circ}=\sin A=\frac{\sqrt{5}-1}{4}, \text { taking }+
$$

sign, since $\sin 18^{\circ}$ is positive.

EXERCISE IX.

Prove the following relations:

1. $\sin 15^{\circ}=\sin \left(45^{\circ}-30^{\circ}\right)=\sin 45^{\circ} \cos 30^{\circ}-\cos 45^{\circ}$ $\sin 30^{\circ}=\frac{\sqrt{3}-1}{2 \sqrt{2}}$.
2. $\cos 15^{\circ}=\frac{\sqrt{3}+1}{2 \sqrt{2}}=\sin 75^{\circ}$.
3. $\cot 15^{\circ}=\tan 75^{\circ}=2+\sqrt{3}$.
4. $\tan 15^{\circ}=\cot 75^{\circ}=2-\sqrt{3}$.
5. If $\sin \alpha=\frac{2}{3}, \sin \beta=\frac{3}{5}$, then $\sin (\alpha+\beta)=\frac{\delta+3 \sqrt{5}}{15}$, $\cos (\alpha+\beta)=\frac{4 \sqrt{5}-6}{15}$.
6. If $\sin A=\frac{3}{4}, \cos B=\frac{1}{3}$, then $\sin (A+B)=\frac{3+2 \sqrt{ } 14}{12}$, $\cos (A+B)=\frac{\sqrt{7}-6 \sqrt{2}}{12}$.
7. If $\sin A=\frac{2}{3}, \sin B=\frac{3}{5}$, then $\sin (A-B)=\frac{8-3 V 5}{15}$.
8. If $\sin \alpha=\frac{2}{3}$, then $\sin 2 \alpha=\frac{4 \sqrt{\prime} \overline{5}}{9}, \cos 2 \alpha=\frac{1}{9}$.
9. If $\sin A=\frac{5}{13}, \sin B=\frac{4}{5}$, then $\sin \left(45^{\circ}+A+B\right)=$ $79 \sqrt{ } 2^{-}$
130 .
10. Given $\sin 18^{\circ}=\frac{\sqrt{5}-1}{4}$, shew that $\cos 36^{\circ}=$ $\frac{\sqrt{5}+1}{4}, \sin 36^{\circ}=\sqrt{\frac{5-V^{\prime} 5}{8}}, \sin 72^{\circ}=\frac{\sqrt{10+2 \sqrt{5}}}{4}$.

EXERCISE X.

Establish the following:

1. $(\sin \theta+\cos \theta)^{2}=1+\sin 2 \theta$.
2. $\sin 4 A=4 \cos 2 A \cos A \sin A$.
3. $1-\frac{1}{2} \sin 2 \alpha \tan \alpha=\cos ^{2} \alpha$.
4. $\cos A \pm \sin A=\sqrt{1 \pm \sin 2 A}$.
5. $\cos A-\sin A=\sqrt{2} \sin \left(45^{\circ}-A\right)$. Sutritithe hen for $\sin (4, \cdots-A)$
6. $\sin A+\cos A=2 \sin 45^{\circ} \cos \left(45^{\circ}-A\right)$.
7. $\cos ^{4} \alpha-\sin ^{4} \alpha=\cos 2 \alpha$.
8. $\sin 4 A-\sin 2 A=\sin (3 A+A)-\sin (3 A-A)=$ $2 \cos 3 A \sin A$.
9. $\cos 2 A-\cos 4 A=2 \sin A \sin 3 A$.
10. $2 \sin 2 A \cos A=\sin 3 A+\sin A$.
11. $\cos 3 A+\cos A=2 \cos A \cos 2 A$.
12. $\cos \theta-\cos 7 \theta=2 \sin 4 \theta \sin 3 \theta$.

* 13. $\sin A+\sin 2 A=2 \sin \frac{3 A}{2} \cos \frac{A}{2}$. apfly Erampes "1 fage 42 .
$+14 \cdot \cos 3 A-\cos 6 A=2 \sin \frac{9 A}{2} \sin \frac{3 A}{2}$.

15. $\frac{\cos A-\cos 3 A}{\sin 3 A-\sin A}=\tan 2 A$.
16. $\frac{\sin 5 \theta+\sin 3 \theta}{\cos 3 \theta--\cos 5 \theta}=\cot \theta$.
17. $\frac{\sin 2 A+\sin A}{\cos 2 A+\cos A}=\tan \frac{3 A}{2}$.
18. $\frac{\sin 4 A+\sin 3 A}{\cos 4 A+\cos 3 A}=\tan \frac{7 A}{2}$.
19. $\frac{\sin 5 A-\sin 4 A}{\cos 4 A-\cos 5 A}=\cot \frac{9 A}{2}$.
20. $\frac{\sin A+\sin B}{\cos A+\cos B}=\frac{2 \sin \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B)}{2 \cos \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B)}=$ $\tan \frac{1}{2}(A+B)$.
21. $\frac{\sin A-\sin B}{\cos B-\cos A}=\cot \frac{A+B}{2}$.
22. $\frac{\sin A-\sin B}{\cos B+\cos A}=\tan \frac{A-B}{2}$.
23. $\frac{\cos A+\cos B}{\cos B-\cos A}=\frac{\cot \frac{1}{2}(A+B)}{\tan \frac{1}{2}(A-B)}$.
24. $\cot \theta+\tan \theta=2 \operatorname{cosec} 2 \theta$.
25. $\cot \theta-\tan \theta=2 \cot 2 \theta$.
26. $\operatorname{cosec} 2 \theta+\cot 2 \theta=\cot \theta$.
27. $\tan 2 \theta+\sec 2 \theta=\frac{\sin 2 \theta+1}{\cos 2 \theta}=$

$$
\frac{2 \sin \theta \cos \theta+\sin ^{2} \theta+\cos ^{2} \theta}{\cos ^{2} \theta-\sin ^{2} \theta}=\frac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta} .
$$

28. $\frac{1-2 \sin ^{2} A}{1+\sin 2 A}=\frac{1-\tan A}{1+\tan A}$.
29. $\frac{1+\sin A}{\cos A}=\frac{\left(\cos \frac{1}{2} A+\sin \frac{1}{2} A\right)^{2}}{\cos ^{2} \frac{1}{2} A-\sin ^{2} \frac{1}{2} A}=\frac{1+\tan \frac{1}{2} A}{1-\tan \frac{1}{2} A}=$ $\tan \left(45^{\circ}+\frac{1}{2} A\right)$.
30. $\frac{1-\sin A}{\cos A}=\tan \left(45^{\circ}-\frac{A}{2}\right)$.
31. Given $L \sin 31^{\circ} 23^{\prime}=9 \cdot 7166387, L \sin 31^{\circ} 24^{\prime}=$ $9 \cdot 7168458$, find $L \sin 148^{\circ} 36^{\prime} 42^{\prime \prime}$.
32. Given L cosec $25^{\circ} 34^{\prime}=10 \cdot 3649578, L \operatorname{cosec} 25^{\circ} 35^{\prime}$ $=10.3646938$, find $L \operatorname{cosec} 154^{\circ} 25^{\prime} 36^{\prime \prime}$.

EXERCISE XI.

Fstablish the following :
2. $\cos \left(30^{\circ}-\alpha\right)-\cos \left(30^{\circ}+a\right)=\sin \alpha$.
2. $\sin (\alpha+\beta) \cos \alpha-\cos (\alpha+\beta) \sin \alpha=\sin \beta$.
3. $\sin (\alpha+\beta) \sin (\alpha-\beta)=\sin ^{2} \alpha-\sin ^{2} \beta=\cos ^{2} \beta-\cos ^{2} \alpha$.
4. $\cos ^{2}(\alpha-\beta)-\sin ^{2}(\alpha+\beta)=\cos 2 \alpha \cos 2 \beta$.
5. $\cos (\alpha+\beta) \sin (\alpha-\beta)=\sin \alpha \cos \alpha-\sin \beta \cos \beta$.
6. $\sin (\alpha-\beta) \sin \gamma+\sin (\beta-\gamma) \sin \alpha+\sin (\gamma-\alpha)$ $\sin \beta=0$.
7. $\cos \beta \cos (2 \alpha+\beta)=\cos ^{2}(\alpha+\beta)-\sin ^{2} \alpha$.
8. $\frac{\sin (\alpha+\beta) \sin (\alpha-\beta)}{\cos ^{2} \alpha \cos ^{2} \beta}=\tan ^{2} \alpha-\tan ^{2} \beta$.
9. $\cos \alpha+\cos (\alpha+2 \beta)=\cos \{(\alpha+\beta)-\beta\}+$ $\cos \{(\alpha+\beta)+\beta\}=2 \cos (\alpha+\beta) \cos \beta$.
10. $\sin (\alpha+2 \beta)=\sin \alpha+2 \sin \beta \cos (\alpha+\beta)$.
11. $\sin (\alpha-2 \beta)=\sin \alpha-2 \sin \beta \cos (\alpha-\beta)$.
12. $\cos (\alpha+2 \beta)=2 \cos \beta \cos (\alpha+\beta)-\cos \alpha$.
13. $\sin (\alpha+2 \beta)=\sin \alpha-2 \sin \alpha \sin ^{2} \beta+2 \cos \alpha \sin \beta$ $\cos \beta$.
14. $\sin 8 \theta=8 \cos 4 \theta \cos 2 \theta \cos \theta \sin \theta$.
15. $\cos 4 \theta=8 \cos ^{4} \theta-8 \cos ^{2} \theta+1$.
16. $\sin 3 A-\sin A=2 \sin A \cos 2 A$.
17. $\cos 2 A+\cos 3 A=2 \cos \frac{5 A}{2} \cos \frac{A}{2}$.
18. $\cos 3 A-\cos 4 A=2 \sin \frac{7}{2}-\sin \frac{A}{2}$.
19. $\sin \frac{3 A}{2}+\sin 2 A=2 \sin \frac{7 A}{4} \cos \frac{A}{4}$.
20. $\sin 3 A-\sin \frac{A}{2}=2 \cos \frac{7 A}{4} \sin \frac{5 A}{4}$.
21. $4 \cos A \cos 2 A \cos 3 A=(\cos A+\cos 3 A) 2 \cos 3 A$.

$$
\begin{aligned}
& =2 \cos A \cos 3 A+2 \cos ^{2} 3 A . \\
& =\cos 2 A+\cos 4 A+1+\cos 6 A .
\end{aligned}
$$

22. $4 \sin A \sin 2 A \sin 3 A=\sin 2 A+\sin 4 A-\sin 6 A$.
23. $4 \cos A \cos 2 A \sin 3 A=\sin 2 A+\sin 4 A+\sin 6 A$.
24. $8 \sin A \sin 2 A \sin 3 A \sin 4 A=1-\cos 6 A-$ $\cos 8 A+\cos 10 A$.
25. $\cos A+\cos 2 A+\cos 3 A=4 \cos \frac{A}{2} \cos A \cos \frac{3 A}{2}-1$.
26. $\cos 9 A+3 \cos 7 A+3 \cos 5 A+\cos 3 A=8 \cos ^{3} A$ $\cos 6 A$.
27. $\cot ^{2} A-\tan ^{2} A=\frac{\cos ^{4} A-\sin ^{4} A}{\sin ^{2} A \cos ^{2} A}=\frac{8 \cos 2 A}{2 \sin ^{2} 2 A}=\frac{8 \cos 2 A}{1-\cos 4 A}$.
28. $\frac{\cos A-\cos 3 A}{\sin 3 A-\sin A}=\tan 2 A$.
29. $\sin 2 \alpha+\cos \alpha=\frac{2 \tan \alpha+\sec \alpha}{1+\tan ^{2} \alpha}$.
30. $\frac{\operatorname{cosec} 2 \varphi-\cot 2 \varphi}{\operatorname{cosec} 2 \varphi+\cot 2 \varphi}=\tan ^{2} \varphi$.
31. $\cos ^{6} A+\sin ^{6} A=\left(\cos ^{2} A+\sin ^{2} A\right)\left\{\left(\cos ^{2} A+\sin ^{2} A\right)^{2}\right.$ $\left.-3 \cos ^{2} A \sin ^{2} A\right\}=1-\frac{3}{4} \sin ^{2} 2 A$.
32. $\cos ^{6} A-\sin ^{6} A=\cos 2 A\left(\frac{7+\cos 4 A}{8}\right)$.
33. $\cos 6 A=\cos 3(2 A)=4 \cos ^{3} 2 A-3 \cos 2 A=$ $\cos 2 A\left(4 \cos ^{2} 2 A-3\right)=\cos 2 A\{2(\cos 4 A+1)-3\}$ $=\cos 2 A(2 \cos 4 A-1)$.
34. $\frac{\cos 3 A}{\cos A} \frac{+\sin 3 A}{-\sin A}=1+\sin 2 A$.
35. $\frac{\cos 3 A-\sin 3 A}{\cos A+\sin A}=1-2 \sin 2 A$.
36. $\frac{\tan 3 A}{\tan A}=\frac{3-\tan ^{2} A}{1-3 \tan ^{2} A}$.
37. $\frac{2 \sin 2 A-\sin 4 A}{2 \sin 2 A+\sin 4 A}+1=\sec ^{2} A$.
38. $\frac{\cos n \alpha-\cos (n+2) \alpha}{\sin (n+2) \alpha-\sin n \alpha}=\tan (n+1) \alpha$.
39. $\cos ^{2}\left(\theta+\psi^{4}\right)+\cos ^{2}(\theta-\psi)-\cos 2 \theta \cos 2 \psi=1$.
40. $\frac{\cos 3 A-2 \cos A}{\sin 3 A+2 \sin A} \tan A=\frac{2 \cos 2 A-3}{2 \cos 2 A+3}$.

If $A+B+C=180^{\circ}$, prove the following, 41-45:
41. $\tan A+\tan B+\tan C=\tan A \tan B \tan C$. Obtained from $\tan (A+B)=\tan \left(180^{\circ}-C\right)$.
42. $\cot A \cot B+\cot B \cot C+\cot C \cot A=1$.
43. $\sin A+\sin B+\sin C=4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$.
$\sin A+\sin B=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}=2 \cos \frac{C}{2} \cos \frac{A-B}{2}$.
$\sin C=2 \sin \frac{C}{2} \cos \frac{C}{2}=2 \cos \frac{C}{2} \cos \frac{A+B}{2}$.
$\therefore \sin A+\sin B+\sin C=2 \cos \frac{C}{2}\left\{\cos \frac{A-B}{2}+\cos \frac{A+B}{2}\right\}$
$=4 \cos \frac{C}{2} \cos \frac{A}{2} \cos \frac{B}{2}$.
44. $\cos A+\cos B+\cos C=1+4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$. Obtained similarly to preceding.
45. $\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}=\cot \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2}$.

By 17 of Ex. VIII, $0=\cos \left(\frac{A}{2}+\frac{B}{2}+\frac{C}{2}\right)=\cos \frac{A}{2} \cos \frac{B}{2}$ $\cos \frac{C}{2}-\ldots$.

Solve the following equations :
46. $\cos \theta+\cos 7 \theta=\cos 4 \theta$.

Here $2 \cos 3 \theta \cos 4 \theta=\cos 4 \theta ; \therefore \cos 4 \theta^{\circ}=0$, or $\cos 3 \theta=\frac{1}{2}$.

$$
\therefore \theta=22^{1^{\circ}} \text { or } 20^{\circ} \text {. }
$$

47. $\cos \theta-\cos 3 \theta=\sin 2 \theta$.
48. $\cos 4 \theta+\cos 2 \theta=\cos \theta$.
49. $\cos 2 x+\sin x=1$.
50. $\sin 5 x \cos 3 x=\sin 9 x \cos 7 x$.
51. To express the cosine of an angle of a triangle in terms of the sides.

Resuming (3),

$$
c=a \cos B+b \cos A
$$

From the analogy we see that

$$
\begin{aligned}
& a=b \cos C+c \cos B . \\
& b=c \cos A+a \cos C .
\end{aligned}
$$

If from these 3 equations we eliminate $\cos B$ and $\cos C$, the required result will be obtained. Multiplying the first by c, and the third by b, and then adding, we have

$$
\begin{aligned}
c^{2}+b^{2} & =a c \cos B+a b \cos C+2 b c \cos A \\
& =a(c \cos B+b \cos C)+2 b c \cos A \\
& =a^{2}+2 b c \cos A, \text { (from the second), }
\end{aligned}
$$

or,

$$
\begin{equation*}
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \tag{10}
\end{equation*}
$$

Analogous expressions can now be written down for $\cos B$ and $\cos C$. These expressions are not adapted to logarithnuic calculation, and we thereby proceed to modify them.

The previous expression modified for logarithmic use.
41. From (8),

$$
2 \sin ^{2} \frac{1}{2} A=1-\cos A
$$

$$
\begin{aligned}
& =1-\frac{b^{2}+c^{2}-a^{2}}{2 b c} \ldots \ldots \text { from (10) } \\
& =\frac{a^{2}-\left(b^{2}-2 b c+c^{2}\right)}{2 b c} \\
& =\frac{a^{2}-(b-c)^{2}}{2 b c} \\
& =\frac{(a+b-c)(a-b+c)}{2 b c}
\end{aligned}
$$

* Written in the form,

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

this is identical with Euclid, pp. 12, 13, B. I; for in fig. (6) $A D=$ $b \cos A$, and in fig. (7), $A D=-b \cos A$, and therefore

$$
B C^{2}=A C^{2}+A B^{2}+2 A B . A D
$$

-- or taccording as A is acute or obtuse.

Again from (8),

$$
\begin{aligned}
2 \cos ^{3} \frac{1}{2} A & =1+\cos A \\
& =1+\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& =\frac{\left(b^{2}+2 b c+c^{2}\right)-a^{2}}{2 b c} \\
& =\frac{(b+c)^{2}-a^{2}}{2 b c} \\
& =\frac{(b+c+a)(b+c-a)}{2 b c}
\end{aligned}
$$

Now putting

$$
a+b+c=2 s
$$

s the se perimeter
and therefore

$$
\begin{aligned}
& a+b-c=2(s-c) \\
& b+c-a=2(s-a) \\
& c+a-b=2(s-b)
\end{aligned}
$$

these become

$$
\left.\begin{array}{l}
\sin ^{2} \frac{1}{2} A=\frac{(s-b)(s-c)}{b c} \tag{11}\\
\cos ^{2} \frac{1}{2} A=\frac{s(s-a)}{b c}
\end{array}\right\}
$$

And dividing the former by the latter,

$$
\tan ^{2} \frac{1}{2} A=\frac{(s-b)(s-c)}{s(s-a)}
$$

or

$$
\begin{equation*}
\tan \frac{1}{2} A=\sqrt{\frac{(s-b)}{s(s-a)} \frac{(s-c)}{-a} \ldots \ldots \ldots} \tag{12}
\end{equation*}
$$

Analogous expressions may now be written down for $\tan \frac{1}{2} B$, $\tan \frac{1}{2} G$.

EXERCISE XII.

In any triangle, right-angled at C, prove

1. $a^{2}+b^{2}=a c \cos B+b c \cos A$.
2. $a(a \sin A+b \sin B+c)=2 c^{2} \sin A$.
3. $a-b=\sqrt{2} c \sin \frac{1}{2}(A-B)$.
4. $a+b=\sqrt{2} c \cos \frac{1}{2}(A-B)$.
5. $(a+c) \sin \frac{B}{2}=b \cos \left(45^{\circ}-\frac{A}{2}\right)$.
6. $\frac{1+\cot \frac{1}{2} B}{\cot \frac{1}{2} A}=\frac{2 a}{b+c-a}$.

In any triangle establish the following relations between the sides and angles:
7. $\frac{\sin A+\sin B}{\sin B}=\frac{a+b}{b}$.
8. $\frac{\sin A+\sin B}{\sin A-\sin B}=\frac{a+b}{a-b}$.
9. $\frac{\sin A-\sin B}{a-b}=\frac{\sin C}{c}$.
10. $\frac{\sin A+\sin B-\sin C}{\sin A-\sin B+\sin C}=\frac{a+b-c}{a-b+c}$.
11. $\frac{a+c-b}{4 c}=\frac{b \sin ^{2} \frac{1}{2} A}{a+b-c}$.
12. $a^{2}+b^{2}+c^{2}=2 a b \cos C+2 b c \cos A+2 c a \cos B$
13. $\cos A+\cos B=2 \frac{a+b}{c} \sin ^{2} \frac{C}{2}$.
14. $a(b \cos C-c \cos B)=b^{2}-c^{2}$.
15. $\cot A-\cot B=\frac{b^{2}-a^{2}}{a b \sin C}$.

$$
\text { (True if } \left.\frac{c}{a} \cos A-\frac{c}{b} \cos B=\frac{b^{2}-a^{2}}{a b}\right)
$$

16. $a+b+c=(a+b) \cos C+(b+c) \cos A+(c+a)$ $\cos B$.
17. $(a+b) \sin ^{2} \frac{1}{2} C+(b+c) \sin ^{2} \frac{1}{2} A+(c+a) \sin ^{2} \frac{1}{2} B$ $=\frac{1}{2}(a+b+c)$.
18. $(a+b)(1-\cos C)=c(\cos A+\cos B)$.
19. $(a+b) \sin ^{2} \frac{1}{2} C=c\left(1-\sin ^{2} \frac{1}{2} A-\sin ^{2} \frac{1}{2} B\right)$.
20. $\tan B=\frac{b \sin C}{a-b \cos C}$.
21. $\frac{c^{2}}{a \dot{b} \sin C}=\cot A+\cot B$.
22. $\frac{\sin (B-C)}{\sin A}=\frac{b^{2}-c^{2}}{a^{2}}$.
23. $a^{2} \sin 2 B+b^{2} \sin 2 A=2 a b \sin C$.
24. $\left(b^{2}-c^{2}\right) \cot A+\left(c^{2}-a^{2}\right) \cot B+\left(a^{2}-b^{2}\right) \cot C=0$.
25. $b \cos ^{2} \frac{C}{2}+c \cos ^{2} \frac{B}{2}=\frac{a+b+c}{2}$.
26. $(b-c) \cos \frac{A}{2}=a \sin \frac{B-C}{2}$
27. $\frac{\sin ^{2} \frac{B}{2}}{b}+\frac{\sin ^{2} \frac{C}{2}}{c}=\frac{s-a}{b c}$.
28. $b c \cos ^{2} \frac{A}{2}+c a \cos ^{2} \frac{B}{2}+a b \cos ^{2} \frac{C}{2}=\frac{1}{4}(a+b+c)^{2}$.
29. $1-\tan \frac{A}{2} \tan \frac{B}{2}=\frac{2 c}{a+b+c}$.
30. $\frac{\cot \frac{B}{2}+\cot \frac{C}{2}}{\cot \frac{A}{2}}=\frac{2 a}{b+c-a}$.
31. If $s(s-c)=\frac{1}{2} a b$, one angle is a right angle.
32. If $c \cos B=b \cos C$, shew that the triangle is isosceles.
33. If $a \sec B=2 c$, the triangle is isosceles.
34. If $a=b, c=2 a \sin \frac{C}{2}$.
35. If $c=2 a \sin \frac{C}{2}$ then either the triangle is isosceles, or $c^{2}=a(a-b)$.

SOLUTION OF OBLIQUE.TRIANGLES.

Solution of oblique triangles.

Two angles and a side given.

Case I.
Four cases.
42. Four distinct cases occur in the solution of oblique triangles, according to the way in which three parts out of the six which compose the triangle are selected, one at least of the given parts being a side.

These are,
(2), the three sides. (.... Prop. 8)
(3), two sides and the included angle. (.... Prop. 4)
(4), two sides and an angle not included. (. The omitted case.)
43. Case I. Given A, B, a; to find C, b, c.

To find C,

$$
C=180^{\circ}-A-B . \ldots \ldots \ldots \ldots . . C \text { found. }
$$

To find b,

$$
\frac{\sin B}{b}=\frac{\sin A}{a}
$$

or

$$
b=\frac{a \sin B}{\sin A}=a \sin B \operatorname{cosec} A
$$

and taking logarithms,

$$
\begin{aligned}
\log b & =\log a+L \sin B-10+L \operatorname{cosec} A-10 \\
& =\log a+L \sin B+L \operatorname{cosec} A-20
\end{aligned}
$$

from which there is b found.

To find c,

$$
\frac{\sin C}{c}=\frac{\sin A}{a}
$$

or

$$
c=a \sin C \operatorname{cosec} A
$$

$$
\log c=\log a+L \sin C+L \operatorname{cosec} A-20
$$

from which there is c found.

In this case it is indifferent which of the sides is given, as all three angles are at once known.

44. Case II. Given a, b, c; to find A, B, C.

Case II.
The three sides given.

$$
\tan \frac{1}{2} A=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}, \ldots \ldots \ldots \text { from }(12)
$$

and taking logarithms,

$$
\begin{aligned}
& L \tan \frac{1}{2} A-10=\frac{1}{2} \log \frac{(s-b)(s-c)}{s(s-a)} \\
= & \frac{1}{2}\{\log (s-b)+\log (s-c)-\log s-\log (s-a)\} \\
= & \frac{1}{2}\{\log (s-b)+\log (s-c)+\operatorname{colog} s+\operatorname{colog}(s-a)-20\}
\end{aligned}
$$

and therefore
$L \tan \frac{1}{2} A=\frac{1}{2}\{\log (8-b)+\log (s-c)+\operatorname{colog}(8-a)+\operatorname{colog} s\}$, from which there is $\frac{1}{2} A$ and therefore $\quad A$ found.

By the analogous formula, B can be found, and then C, which is $180^{\circ}-A-B$. It is however better in practice to find C also by its analogous formula, and the sum of the three angles amounting to 180° will serve as verification.

We might also have used either of the formulas (11), for $\sin \frac{1}{2} A$, $\cos \frac{1}{2} A$, but that for the tangent is practically preferable. If the sum of two of the quantities, a, b, c, be not greater than the third, one of the quantities $s-a, s-b, s-c$, will be negative, and its logarithm imaginary.
45. Case III. Given a, b, C; to find $A, B, c . \quad(a>b)$.

Case III.
To find A, B.
or

$$
\frac{a}{b}=\frac{\sin A}{\sin B^{\prime}}
$$

and therefore

$$
\begin{aligned}
\frac{a+b}{a-b} & =\frac{\sin A+\sin B}{\sin A-\sin B} \\
& =\frac{\tan \frac{1}{2}(A+B)}{\tan \frac{1}{2}(A-B)}, \ldots \ldots \ldots . \text { from }(9)
\end{aligned}
$$

or

$$
\tan \frac{1}{2}(A-B)=\frac{a-b}{a+b} \tan \frac{1}{2}(A+B)
$$

Now

$$
\frac{1}{2}(A+B)=\frac{1}{2}\left(180^{\circ}-C\right)=90^{\circ}-\frac{1}{2} C \text {, and is known; }
$$

also

$$
\tan \frac{1}{2}(A+B)=\cot \frac{1}{2} C,
$$

and therefore

$$
\tan \frac{1}{2}(A-B)=\frac{a-b}{a+b} \cot \frac{1}{2} C,
$$

and taking logarithms,

$$
\begin{gathered}
L \tan \frac{1}{2}(A-B)-10=\log (a-b)+\operatorname{colog}(a+b)-10 \\
+L \cot \frac{1}{2} C-10,
\end{gathered}
$$

or
$L \tan \frac{1}{2}(A-B)=\log (a-b)+\operatorname{colog}(a+b)+L \cot \frac{1}{2} C-10$, from which $\frac{1}{2}(A-B)$ is found ; also $\frac{1}{2}(A+B)$ being known, we have by addition and subtraction...... A and B found.
A having thus been found, we obtain c from the formula

$$
\begin{gathered}
\frac{\sin C}{c}=\frac{\sin A}{a} \\
c=a \sin C \operatorname{cosec} A \\
\log c=\log a+L \sin C+L \operatorname{cosec} A-20,
\end{gathered}
$$

in which formula b, B might also be used in place of a, A.
In this case c is known directly in terms of the given parts from

$$
c^{2}=a^{2}+b^{2}-2 a b \cos C,
$$

but this formula is not adapted to logarithmic calculation, and it is preferable to find c by aid of one of the angles which have been previously found.

Case IV.

Two sides and an angle not inclnded by them given. The ambiguity discussed.

Fig. 8.

$$
\text { 46. Case IV. Given } A, a, b \text {; to find } B, C, c .
$$

In this case there are sometimes two triangles which have the given parts. For let A be acute, and (fig. 8) drop the perpendicular $C D$, which is equal to $b \sin A$; then there can be drawn two lines, each $=a$, one on each side of $C D$, and if both these fall (as $C B_{1}$, $C B_{2}$) on the right of b, the two triangles $A C B_{1}, A C B_{2}$ will have the same three given parts. This requires a to be less than b and greater than $C D$; if however $a=C D$, the two triangles coincide in a right-
Fig. 9. angled triangle, and if a be less than $C D$, no triangle exists having
the given quantities for parts. Also if $a=b$, the triangle $A C B_{2}$ vanishes, and only one is left, and if a be greater than b, the line $C B_{2}$ falls to the left of b, and the triangle so formed would not have the angle A, and in this case there is only one triangle.

Again if A be obtuse (fig. 10), in order that a triangle may exist, a must be greater than b, and the other line equal to a will fall to the left of b, so that only one triangle exists.

Collecting these results, we see that, when A is acute, if $a<b \sin A$, there is no triangle ; if $a=b \sin A$, there is one only ; if $a>b \sin A$ and $<b$, there are two; if $a=$ or $>b$, there is only one; and when A is obtuse, if $a<\mathrm{or}=b$, there is no triangle; and if $a>b$, there is one only. If A be a right angle, then a must be $>b$, and the two triangles on opposite sides of b are equal in every respect, and therefore only give the same triangle in different positions.

The analytical solution which follows will of itself shew which of these varieties occurs in any particular case.

To find B;

$$
\frac{\sin B}{b}=\frac{\sin A}{a}
$$

or

$$
\sin B=\frac{b \sin A}{a}
$$

and taking logarithms

$$
L \sin B-10=\log b+c o l o g a-10+L \sin A-10
$$

whence

$$
L \sin B=\log b+\operatorname{colog} a+L \sin A-10
$$

This gives $L \sin B$, but as the $L \sin$ of an angle is the same as the $L \sin$ of the supplement of that angle, there are two angles which have this value of $L \sin$, and both must be taken. Let B_{1}, B_{2} be these two angles, the former being less than 90° and taken direct from the tables, the latter being its supplement. Let C_{1}, C_{2} be the corresponding values for C, so that

$$
\begin{aligned}
& C_{1}=180^{\circ}-A-B_{1} \\
& C_{2}=180^{\circ}-A-B_{2}
\end{aligned}
$$

If both these values are positive, two triangles exist.

Let c_{1}, c_{2} be the corresponding values of c. To find them;

$$
\begin{gathered}
\frac{\sin C_{1}}{c_{1}}=\frac{\sin A}{a} \\
c_{1}=a \sin C_{1} \operatorname{cosec} A \\
\log c_{1}=\log a+L \sin C_{1}+L \operatorname{cosec} A-20 .
\end{gathered}
$$

Similarly

$$
\log c_{2}=\log a+L \sin C_{2}+L \operatorname{cosec} A-20
$$

If the second value of C be 0 or negative, the second solution has no existence ; and if both values of C are negative, no solution exists. Also if the value of $L \sin B$ be greater than 10 , there is no solution.

Examples.
A, B, a
to find
[C.]
[b.]
[c.]
[b. (a)

47. Examples.

Case I.

$$
\begin{aligned}
& \text { Given } A=120^{\circ} 08^{\prime}, B=24^{\circ} 40^{\prime}, a=981 \cdot 23 . \\
& \qquad \begin{array}{c}
C=180^{\circ}-A-B . \\
A=\frac{120^{\circ} 08^{\prime}}{14448} \\
B=\frac{180}{35^{\circ} 12^{\prime}}
\end{array} \quad \text { (C found.) }
\end{aligned}
$$

$$
\log b=\log a+L \sin B+L \operatorname{cosec} A-20
$$

$$
a=981 \cdot 23 ; \quad \log a, 2 \cdot 99177
$$

$$
B=24^{\circ} 40^{\prime} ; \quad L \sin B, \quad 9 \cdot 62049
$$

$$
A=120^{\circ} 08^{\prime} ; L \operatorname{cosec} A, 10 \cdot 06305
$$

$$
\overline{b=473 \cdot 49} ; \quad \log b, \overline{2 \cdot 67531} \quad \text { (b found. })
$$

$$
\log c=\log a+L \sin C+L \operatorname{cosec} A-20
$$

$$
\log a, 2.99177
$$

$$
C=35^{\circ} 12^{\prime} ; \quad L \sin C, \quad 9.76075
$$

$$
L \operatorname{cosec} A, 10.06305
$$

$$
c=653.99 ; \quad \log c, \overline{2.81557} \quad \text { (c found.) }
$$

Case II.

Given $a=753 \cdot 09, b=333 \cdot 33, c=666 \cdot 66$.
$a=753.09$
$b=333 \cdot 33$
$c=666 \cdot 66$
$2 s=1753.08$
$\log \quad$ colog

$s=876.54$	2.94277	7.05723
$s-a=123.45$	2.09149	7.90850
$s-b=543.21$	2.73497	7.26503
$s-c=209.88$	2.32197	7.67803

$L \tan \frac{1}{2} A=\frac{1}{2}\{\log (s-b)+\log (s-c)+\operatorname{colog}(s-a)+\operatorname{colog} s\}$.

$$
\begin{aligned}
\log (s-b), & 2 \cdot 73497 \\
\log (s-c), & 2 \cdot 32197 \\
\operatorname{colog}(s-a), & 7.90850 \\
\operatorname{colog} s, & 7 \cdot 05723
\end{aligned}
$$

2) 20.02267
$\frac{1}{2} A=45^{\circ} 45^{\circ} ; L \tan \frac{1}{2} A, \quad 10.01133$

$$
A=91^{\circ} 30^{\prime}
$$

(A found.)
$L \tan \frac{1}{2} B=\frac{1}{2}\{\log (s-c)+\log (s-a)+\operatorname{colog}(s-b)+\operatorname{colog} s\}$.

$$
\begin{array}{rr}
\log (s-c), & 2 \cdot 32197 \\
\log (s-a), & 2 \cdot 09149 \\
\operatorname{colog}(s-b), & 7 \cdot 26503 \\
\operatorname{colog} s, & 7 \cdot 05723
\end{array}
$$

$$
\begin{aligned}
& \frac{1}{\frac{1}{2} B}=13^{\circ} 08^{\prime} ; L \tan \frac{1}{2} B, \frac{2 \lcm{18 \cdot 73572}}{9 \cdot 36786} \quad \text { (} B \text { found.) } \\
& B=26^{\circ} 16^{\prime}
\end{aligned}
$$

$L \tan \frac{1}{2} C=\frac{1}{2}\{\log (s-a)+\log (s-b)+\operatorname{colog}(s-c)+\operatorname{colog} s\}$.
$\log (s-a), \quad 2.09149$
$\log (s-b), \quad 2 \cdot 73497$
$\operatorname{colog}(s-c), \quad 7 \cdot 67803$
colog $s, \quad 7.05723$
2) 19.56172
$\frac{1}{2} C=31^{\circ} 07^{\prime} ; L \tan \frac{1}{2} C, \quad 9 \cdot 75086$
$C=62^{\circ} 14^{\prime}$.
(C found.)

Verification. Verification.

$$
\begin{aligned}
& A=91^{\circ} 30^{\prime} \\
& B=26 \\
& 16 \\
& C=62 \\
& 14 \\
& A+B+C=180^{\circ} .
\end{aligned}
$$

Case III.
a, b, C given, to find

$$
\text { Given } a=209 \cdot 88, b=333 \cdot 33, C=112^{\circ} 26^{\prime}
$$

Here, b being greater than a, we must interchange a, A with b, B in the formulas of solution.

$$
\begin{aligned}
& 90^{\circ} 00 \\
& C=122^{\circ} \quad 26^{\prime} ; \quad \frac{1}{2} C=61 \quad 13 \\
& \frac{1}{2}(B+A)=90^{\circ}-\frac{1}{2} C=28^{\circ} 47^{\prime}
\end{aligned}
$$

$[A$ and $B] \quad. L \tan \frac{1}{2}(B-A)=\log (b-a)+\operatorname{colog}(b+a)+L \cot \frac{1}{2} C-10$.
$b=333 \cdot 33$
$a=209 \cdot 88 ; \log , 2 \cdot 32197$
$b-a=123.45 ; \log , 2 \cdot 09149$
$b+a=543 \cdot 21 ; \log , 2 \cdot 73497 ;$ colog, $7 \cdot 26503$
$\log (b-a), 2.09149$
colog $(b+a), 7 \cdot 26503$
$\frac{1}{2} \boldsymbol{C}=61^{\circ} 13^{\prime} ; L \cot \frac{1}{2} C, 9.73987$
$\frac{1}{2}(B-A)=7^{\circ} \quad 07^{\prime} ; L \tan \frac{1}{2}(B-A), 9 \cdot 09639$
$\frac{1}{2}(B+A)=28 \quad 47$
$B=35^{\circ} 54^{\prime}$
$A=21^{\circ} 40^{\prime} \quad(B$ and A found.)
[e.]

$$
\begin{gathered}
\log c=\log a+L \sin C+L \operatorname{cosec} A-20 . \\
C=122^{\circ} 26^{\prime} ; L \log a, \\
\hline A \cdot 32197 \\
A=21^{\circ} 40^{\prime} ; L \operatorname{cosec} A, \\
\hline c=479 \cdot 43235 \\
\hline
\end{gathered}
$$

Case IV.

Ex. (1). Given $A=57^{\circ} 34^{\prime}, a=47 \cdot 979, b=54 \cdot 324$. $L \sin B=\log b+\operatorname{colog} a+L \sin A-10$.

A, a, b given to tind
[B.]
$b=54.321 ; \quad \log b, \quad 1.73497$
$a=47.979 ; \operatorname{colog} a, 8 \cdot 31895$
$A=57^{\circ} 34^{\prime} ; L \sin A, 9 \cdot 92635$
$\left\{\begin{array}{l}\overline{B_{1}=72^{\circ} 52^{\prime}} ; L \sin B, \overline{9 \cdot 98027} \\ B_{2}=107^{\circ} 08^{\prime} .\end{array}\right.$
(B_{1} and B_{2} found.)
$C_{1}=180-\left(A+B_{1}\right) \quad C_{2}=180-\left(A+B_{2}\right)$ $A=57^{\circ} 34^{\prime} \quad A=57^{\circ} 34^{\prime}$ $B_{1}=72 \quad 52 \quad B_{2}=107 \quad 08$
$C_{1}=180^{\circ}-\overline{130^{\circ} 26^{\prime}} \quad C_{2}=180^{\circ}-\overline{16442}$
$=49^{\circ} 34^{\prime} \quad=15^{\circ} 18^{\prime}$.
[C.]

Two solutiuns.

Hence there are two solutions.

$$
\begin{array}{ccc}
\log c_{1}=\log a+L \sin C_{1}+L \operatorname{cosec} A-20 \tag{array}\\
a=47.979 ; & \log a & 1 \cdot 68105 \\
C_{1}=49^{\circ} 34^{\prime} ; & L \sin C_{1}, & 9.88148 \\
A=57^{\circ} 34^{\prime} ; & L \operatorname{cosec} A, & 10 \cdot 07365 \\
\hline c_{1}=43 \cdot 269 . & \log c_{1}, & 1.63618 \\
\hline \underline{y}
\end{array}
$$

$\log c_{2}=\log a+L \sin C_{2}+L \operatorname{cosec} A-20$.
$\log a, \quad 1 \cdot 68105$
$C_{2}=15^{\circ} 18^{\prime} ; \quad L \sin C_{2}, \quad 9 \cdot 42139$
$L \operatorname{cosec} A, 10.07365$
$\overrightarrow{c_{2}=15 .} \quad \log c_{2}, \overline{1 \cdot 17609}$ (c_{2} found.)
Ex. 2. Given $A=49^{\circ} 41^{\prime}, a=323 \cdot 1, b=21 \cdot 808$.
A, a, b given, to find B,

$$
L \sin B=\log b+c o l o g a+L \sin A-10
$$

$$
b=21.808 ; \quad \log b, 1.33862
$$

$$
a=323 \cdot 1 \quad ; \quad \text { colog } a, 7 \cdot 49066
$$

$$
A=49^{\circ} 41^{\prime} ; L \sin A, 9 \cdot 88223
$$

$$
\left\{\begin{array}{l}
\overline{B_{2}=} 2^{\circ} 57^{\prime}
\end{array} ; L \sin B, \overline{8.71151}\right.
$$

$$
\text { (} B_{1} \text { and } B_{2} \text { found.) }
$$

[C.]

One solution

$$
\begin{array}{rr}
C_{2}=180-\left(A+B_{1}\right) & C_{2}=180-\left(A+B_{2}\right) \\
A=49^{\circ} 41^{\prime} & A=49^{\circ} 41^{\prime} \\
B_{1}=2^{\circ} 57^{\prime} & B_{2}=177^{\circ} 03^{\prime} \\
C_{1}=180^{\circ}-52^{\circ} 38^{\prime} & C_{2}=180^{\circ}-\overline{226^{\circ} 44^{\prime}} \\
=127^{\circ} 22^{\prime} & =
\end{array}
$$

[${ }^{c}$. $]$ The second solution does not exist. The value of c_{1} can be found as in the previous example.

A, a,bgiren, to find B.

$$
\text { Ex. (3). Given } A=30^{\circ}, a=18 \cdot 4, b=38 \cdot 9 .
$$

$$
L \sin B=\log b+\operatorname{colog} a+L \sin A-10
$$

$$
\begin{array}{lr}
b=38 \cdot 9 ; & \log b, 1 \cdot 58995 \\
a=18 \cdot 4 ; & \operatorname{colog} a, 8 \cdot 73518 \\
A=30^{\circ} ; & L \sin A, 9 \cdot 69897
\end{array}
$$

$L \sin B, 10.02410$
No solution.
No solution exists.
A. a.bgiven, to tind B.
c. 1

One solution
Ex. (4). Given $A=128^{\circ} 57^{\prime}, a=21700, b=19342$.
$L \sin B=\log b+c o l o g a+L \sin A-10$.

$$
\begin{aligned}
& b=19342 ; \quad \log b, 4 \cdot 28650 \\
& a=21700 ; \quad \operatorname{colog} a, 5 \cdot 66354 \\
& A=128^{\circ} 57 ; L \sin A, 9 \cdot 89081 \\
& \hline \begin{array}{l}
B_{1}=43^{\circ} 53^{\prime} ;
\end{array} \quad L \sin B, 9 \cdot 84085 \\
& B_{2}=136^{\circ} 07^{\prime} .
\end{aligned}
$$

$$
\begin{array}{rrr}
C_{1}=180=\left(A+B_{1}\right) & C_{2}=180=\left(A+B_{2}\right) \\
A=128^{\circ} & 57^{\prime} & A=128^{\circ} 57^{\prime} \\
B_{1}=43 & 53 & B_{2}=136
\end{array} 07
$$

$$
\begin{array}{rlr}
C_{1}=180^{\circ}-\overline{172^{\circ} 50^{\prime}} & C_{2}=180^{\circ}-\overline{265^{\circ} 04^{\prime}} \\
=7^{\circ} 10^{\prime} . & =
\end{array}
$$

The second solution does not exist.

A, a, b given, to tind B,

Ex: (5). Given $A=163^{\circ} 24^{\prime}, a=42, b=53.004$.
$L \sin B=\log b+\operatorname{colog} a+L \sin A-10$.
$b=53.004 ; \quad \log b, \quad 1.72431$
$a=42 \quad ; \quad \operatorname{colog} a, \quad 8.37675$
$A=163^{\circ} 24^{\prime} ; \quad L \sin A, \quad 9 \cdot 45589$
$\left\{\begin{array}{l}\overline{B_{1}=21^{\circ} 08^{\prime}} ; \quad L \sin B, \overline{9 \cdot 55695} \\ B_{2}=158^{\circ} 52^{\prime}\end{array}\right.$

$$
\begin{array}{rr}
C_{1}=180^{\circ}-\left(A+B_{1}\right) & C_{2}=180^{\circ}-\left(A+B_{2}\right) \\
A=163^{\circ} 24^{\prime} & A=163^{\circ} 24^{\prime} \\
B_{1}=21^{\circ} 08^{\prime} & B_{2}=158^{\circ} 52^{\prime} \\
C_{1}=180^{\circ}-184^{\circ} 32^{\prime} & C_{2}=180^{\circ}-\overline{322^{\circ} 16^{\prime}}
\end{array}
$$

No solution.

No solution exists.

EXERCISE XIII.

1. $\sin B=25, a=5, b=2.5$; find A.
2. $A=30^{\circ}, a=\sqrt{2}, b=2$; find B.
3. Given $\frac{b}{a}=\frac{1}{2}, C=60^{\circ}$; find the other angles.
4. $A=60^{\circ}, a=\sqrt{6}, b=2$; find B.
5. $A=135^{\circ}, a=2, b=\sqrt{2} ;$ find B.
6. $A=135^{\circ}, a=2, b=\sqrt{6}$; solve the triangle.
7. $b=20, B=82^{\circ}, C=75^{\circ}$; find a.
$\log 2=3010300, L \sin 23^{\circ}=9.5918780$,
$\log 7 \cdot 8914=\cdot 8971541, L \sin 82^{\circ}=9 \cdot 9957528$.
Diff. $=55$.
8. $a=36, B=44^{\circ}, C=104^{\circ}$; find b.
$\log 36=1.5563025, L \sin 32^{\circ}=9 \cdot 7242097$,
$\log 4.7191=6738592, L \sin 44^{\circ}=9.8417713$.
Diff. $=92$.
9. $b=564 \cdot 8, A=40^{\circ} 32^{\prime} 16^{\prime \prime}, B=104^{\circ} 41^{\prime} 32^{\prime \prime}$; find a. $\log 5 \cdot 648=7518947, L \sin 40^{\circ} 32^{\prime}=9 \cdot 8128401$, $\log 3 \cdot 7950=\cdot 5792118, \quad$ Diff, for $1^{\prime}=1477$,

Diff. $=114 \quad L \sin 75^{\circ} 18^{\prime}=9.9855467$, Diff. for $1^{\prime}=331$.
10. $a=\sqrt{56,} b=1, c=7$; find A.
$\log 2=\cdot 3010300, L \cos 57^{\circ} 41^{\prime}=9 \cdot 7280275$,
$\log 7=\cdot 8450980, L \cos 57^{\circ} 42^{\prime}=9 \cdot 7278277$.
11. Given $a=18, b=20, c=22$; find A.
$\log 2={ }^{\circ} 3010300, L \tan 25^{\circ} 14^{\prime}=9.6732745$, $\log 3=\cdot 4771213, \quad$ Diff. for $1^{\prime}=3275$.
12. Given $a=4, b=5, c=6$; find B.
$\log 2=3010300, L \cos 27^{\circ} 53^{\prime}=9 \cdot 9464040$,
$\log 5=\cdot 6989700, L \cos 27^{\circ} 54^{\prime}=9 \cdot 9463371$.
13. $a=1900, b=100, C=60^{\circ}$; find A and B.
$\log 3=\cdot 4771213, L \tan 57^{\circ} 19^{\prime}=10 \cdot 1927506$,
$L \tan 57^{\circ} 20^{\prime}=10 \cdot 1930286$.
14. $a=18, b=2, C=55^{\circ}$; find A and B.
$L \tan 56^{\circ} 56^{\prime}=10 \cdot 1863769, \quad \log 2=3010300$,
Diff. for $1^{\prime}=2763$. $L \cot 27^{\circ} 30^{\prime}=10 \cdot 2835233$.
15. $a=9, b=7, C=64^{\circ} 12^{\prime}$; find A and B.

$$
\log 2=\cdot 3010300, \quad L \tan 11^{\circ} 16^{\prime}=9 \cdot 2993216
$$

$L \cot 32^{\circ} 6^{\prime}=10 \cdot 2025255$, Diff. for $1^{\prime}=6588$.
16. $b=159.0643, B=62^{\circ} 6^{\prime} 51^{\prime \prime}, C=53^{\circ} 27^{\prime} 20^{\prime \prime}$; find a.
$\log 159.06=2.2015610, \quad L \sin 64^{\circ} 25^{\prime}=9.9551864$, $\log 159 \cdot 07=2 \cdot 2015883, \quad L \sin 64^{\circ} 26^{\prime}=9 \cdot 9552469$, $\log 162 \cdot 33=2 \cdot 2103988, \quad L \sin 62^{\circ} \quad 6^{\prime}=9.9463371$, $\log 162 \cdot 34=2 \cdot 2104255, \quad L \sin 62^{\circ} \quad 7^{\prime}=9 \cdot 9464040$.
17. Given $a=222, b=318, c=406$; find A.
$\log 4 \cdot 73=6748611, \quad \log 2 \cdot 51=\cdot 3996737$,
$\log 4.06=6085260, \quad L \cos 16^{\circ} 28^{\prime}=9.9818117$,
$\log 3 \cdot 18=5024271, \quad L \cos 16^{\circ} 29^{\prime}=9 \cdot 9817744$.
18. $a=85 \cdot 63, b=78 \cdot 21, C=48^{\circ} 24^{\prime}$; solve the triangle.
$\log 16384=4 \cdot 2144199, \quad L \cot 24^{\circ} 12^{\prime}=10 \cdot 3473497$, $\log 742=2 \cdot 8704039, \quad L \tan 5^{\circ} 45^{\prime}=9 \cdot 0030066$, Diff. for $1^{\prime}=12655$.
$\log 67502=4 \cdot 8293166, \quad L_{s} \sin 24^{\circ} 12^{\prime}=9 \cdot 6127023$, $\log 67501=4 \cdot 8293102, \quad L \cos 5^{\circ} 45^{\prime} 15^{\prime \prime}=9 \cdot 9978062$.
19. $a=212 \cdot 5, b=836 \cdot 4, A=14^{\circ} 24^{\prime} 25^{7}$; find B.
$\log 212 \cdot 5=2 \cdot 3273589, L \sin 14^{\circ} 24^{\prime}=9 \cdot 3956581$, $\log 836 \cdot 4=2 \cdot 9224140, \quad$ Diff. for $1^{\prime}=4918$, $L \sin 78^{\circ} 19^{\prime}=9 \cdot 9909077$, Diff. for $1^{\prime}=261$.
20. $a=23, B=18^{\circ}, C=23^{\circ} 42^{\prime} 43^{\prime \prime}$; find b.
$\log 23=1 \cdot 3617278, \quad L \sin 18^{\circ}=9 \cdot 4899824$, $\log 10.681=1.0286119, L \sin 41^{\circ} 42^{\prime}=9.8229721$, Diff. $=407, \quad$ Diff. for $1^{\prime}=1417$.
21. Given $a=25, b=26, c=27$; find the angles.

$$
\log 35=1.5440680, \quad L \tan 28^{\circ} 7^{\prime} 30^{\prime \prime}=9.7279568,
$$

$$
\log 3=-4771213, \quad L \tan 28^{\circ} 7^{\prime} 40^{\prime \prime}=9 \cdot 7280074
$$ $L \tan 31^{\circ} 56^{\prime} 50^{\prime \prime}=9 \cdot 7948986$, $L \tan 31^{\circ} 57^{\prime}=9 \cdot 7949455$,

22. $a=1 \cdot 5, b=13 \cdot 5, C=65^{\circ}$; find A and B.
$\log 2=3010300, \quad L \tan 51^{\circ} 28^{\prime}=10 \cdot 0988763$,
$L \cot 32^{\circ} 30^{\prime}=10.1958127, L \tan 51^{\circ} 29^{\prime}=10.0991355$,
23. $a=445, b=565, A=44^{\circ} 29^{\prime} 53^{\prime \prime}$; find B.
24. $A=78^{\circ}, B=54^{\circ}, a=274$; find b and c.

$$
\log 274=2 \cdot 43775, \quad L \sin 48^{\circ}=9 \cdot 87107
$$

$$
\log 226 \cdot 63=2 \cdot 35531, \quad L \sin 54^{\circ}=9 \cdot 90796
$$

$$
\log 208 \cdot 17=2 \cdot 31842, \quad L \sin 78^{\circ}=9 \cdot 99040
$$

25. Given $a=330, b=310, c=144$; find the angles.
$\log 392=2.59329, \quad \log 82=1.91381$, $\log 62=1 \cdot 79239, \quad \log 330=2 \cdot 51851,$. $\log 310=2 \cdot 49136, \quad L \cos 42^{\circ} 27^{\prime}=9 \cdot 86798$, $\log 144=2 \cdot 15836, \quad L \cos 34^{\circ} 40^{\prime}=9 \cdot 91512$.

$$
\begin{aligned}
& \log 445=2.6483600, \quad L \sin 44^{\circ} 29^{\prime}=9.8455332, \\
& \log 565=2.7520484, \quad \text { Diff. for } 1^{\prime}=1286 \text {, } \\
& L \sin 62^{\circ} 51^{\prime}=9 \cdot 9492997, \\
& \text { Diff. for } 1^{\prime}=64 \mathrm{~S} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 26. } a=30, b=20, C=78^{\circ} ; \text { find } c . \\
& \log 2=\quad 30103, L \tan 13^{\circ} 52^{\prime}=9 \cdot 39245, \\
& L \cot 39^{\circ}=10 \cdot 09163, L \tan 13^{\circ} 53^{\prime}=9 \cdot 39299 . \\
& L \sin 39^{\circ}=9.79887, L \cos 13^{\circ} 53^{\prime}=9 \cdot 98712, \\
& \log 3.2412=\quad 51070, L \cos 13^{\circ} 52^{\prime}=9.98715 .
\end{aligned}
$$

27. $a=13, b=37, A=18^{\circ} 55^{\prime} 29^{\prime \prime}$; find B. $\log 13=1 \cdot 1139434, L \sin 18^{\circ} 55^{\prime}=9 \cdot 5108031$, $\log 37=1 \cdot 5682017, \quad$ Diff. for $l^{\prime}=3685$, $L \sin 67^{\circ} 22^{\prime}=9.9651953$, Diff. for $1^{\prime}=527$.
28. $b=149, A=69^{\circ} 59^{\prime} 2^{\prime \prime}, C=70^{\circ} 42^{\prime} 30^{\prime \prime}$; find a.
$\log 149=21731863, \quad L \sin 39^{\circ} 18^{\prime}=9.8016649$, $\log 22099=4 \cdot 3443726, \quad L \sin 39^{\circ} 19^{\prime}=9 \cdot 8018192$,
$\log 221=2 \cdot 3443923, \quad L \sin 69^{\circ} 59^{\prime}=99729398$, $L \sin 70^{\circ}=9.9729858$.
29. If $a=22, b=23, c=25$; find B.

$$
\begin{aligned}
& \log 2=3010300, \quad L \sin 29^{\circ} 5^{\prime}=9 \cdot 6867088 \\
& \log 11=1 \cdot 0413927, \quad \text { Diff. for } 1^{\prime}=2271 .
\end{aligned}
$$

$$
\log 13=1 \cdot 1139434
$$

30. $a=75, b=85, C=75^{\circ}$; find A and B.
$\log 160=2 \cdot 20412, \quad L \tan 52^{\circ} 30^{\circ}=10 \cdot 11502$, $L \tan 4^{\circ} 40^{\prime}=8.9109$.
31. $a=2820 \cdot 9385, b=1430 \cdot 8485, A=14^{\circ} 59^{\prime} 49^{\prime \prime}$; find B.
$\log 2 \cdot 8209=\cdot 4503877, \quad L \sin 14^{\circ} 59^{\prime}=9 \cdot 4125245$,
$\log 2 \cdot 8210=4504031, \quad L \sin 15^{\circ}=9 \cdot 4129962$, $\log 1 \cdot 4308=\cdot 1555789, \quad L \sin \quad 7^{\circ} 32^{\prime}=9 \cdot 1176125$, $\log 1 \cdot 4309=\cdot 1556093, \quad L \sin \quad 7^{\circ} 33^{\prime}=9 \cdot 1185667$.
32. $c=100, A=50^{\circ}, B=70^{\circ}$; find a and b.

$$
\log 2=3010300, \quad L \sin 50^{\circ}=9 \cdot 8842540
$$

$$
\log 3=4771213, \quad L \sin 70^{\circ}=9.9729858
$$

$\log 8.8455=9467224, \quad \log 10850=4.0354297$,
Diff. $=49, \quad$ Diff. $=401$.
33. $a=230, b=240, c=12$; find B.

$$
\begin{aligned}
\log 11 & =1 \cdot 0413927, & L \tan 72^{\circ} 48^{\prime}=10.5092668 \\
\log 229 & =2 \cdot 3598355, & \text { Diff. for } 1^{\prime}=4474 . \\
\log 241 & =2 \cdot 3820170, &
\end{aligned}
$$

34. $a: b=7: 3, C=6^{\circ} 37^{\prime} 24^{\prime \prime}$; find the other angles.

$$
\log 2=\cdot 3010300, \quad L \tan 8^{\circ} 13^{\prime}=9 \cdot 1595646
$$

$L \tan 3^{\circ} 18^{\prime} 42^{\prime \prime}=8 \cdot 7624080, \quad L \tan 8^{\circ} 14^{\prime}=9 \cdot 1604569$.
35. $a=21 \cdot 217, b=12 \cdot 543, A=29^{\circ} 51^{\prime}$; find B and C.
$\log 2 \cdot 1217=\cdot 3266840, \quad L \sin 17^{\circ} 6^{\prime} 40^{\prime \prime}=9 \cdot 4686806$,
$\log 1 \cdot 2543=\cdot 0984014, \quad L \sin 17^{\circ} 6^{\prime} 50^{\prime \prime}=9 \cdot 4687490$, $L \sin 29^{\circ} 51^{\prime}=9.6969947$.
36. The ratio of two sides of a triangle is $9: 7$, and the included angle is $47^{\circ} 25^{\prime}$; find the other angles.

$$
\log 2=3010300, \quad L \tan 15^{\circ} 53^{\prime}=9 \cdot 4541479
$$

$L \tan 66^{\circ} 17^{\prime} 30^{\prime \prime}=10 \cdot 3573942, \quad$ Diff. for $1^{\prime}=4797$.
37. $a=462, b=220 \cdot 5, A=124^{\circ} 34^{\prime}$; find B and C.

$$
\begin{array}{ll}
\log 2 \cdot 205=\cdot 3434086, & L \sin 55^{\circ} 26^{\prime}=9 \cdot 9156460 \\
\log 4 \cdot 62=\cdot 6646420, & L \sin 23^{\circ} 8^{\prime}=9 \cdot 5942513 \\
L \sin 23^{\circ} 9^{\prime}=9 \cdot 5945469
\end{array}
$$

38. $a=95 \cdot 372, b=74 \cdot 896, C=59^{\circ}$; find A, B and c.

$$
\begin{array}{ll}
\log 2 \cdot 0476=31125, & L \cot 29^{\circ} 30^{\prime}=10 \cdot 24736 \\
\log 1.70268=23113, & L \tan 12^{\circ}=9 \cdot 32748, \\
\log 9.5372=.97942, & L \sin 59^{\circ}=9 \cdot 93307, \\
\log 8 \cdot 5718=.93307, & L \sin 72^{\circ} 30^{\prime}=9.97942 .
\end{array}
$$

39. $A=41^{\circ} 10^{\prime}, a=145 \cdot 3, b=178^{\circ} \cdot$; find B and C. $L \sin 41^{\circ} 10^{\prime}=9.8183919, \quad L \sin 53^{\prime} 52^{\prime}=9.9072216$, $\log 1453=3 \cdot 1622656, \quad L \sin 53^{\circ} 53^{\prime}=9 \cdot 9073138$, $\log 1783=3 \cdot 2511513$.

$$
\begin{aligned}
& \text { 40. } a-1=4013 \cdot 166, a+b=7906 \cdot 72, C=36^{\circ} ; \text { find } A \text { and } B . \\
& \log 4 \cdot 0131=6034800, \quad L \cot 18^{\prime}=10 \cdot 4882240, \\
& \log 4 \cdot 0132=6034908, \quad L \tan 57^{\prime} 22^{\prime}=10 \cdot 1935848, \\
& \log 7 \cdot 9067=\cdot 8979953, \quad L \tan 57^{\prime} 23^{\prime}=10 \cdot 1938630 . \\
& \log 7 \cdot 9068=\cdot 8980008,
\end{aligned}
$$

EXERCISE XIV.

Six or seven figure tables will be required for the following Exercise.

1. $a=31, b=24, c=11$; find A.
2. $A=23^{\circ} 42^{\prime} 43^{\prime \prime}, B=18^{\circ}, a=207$; find b.
3. The sides of a triangle are $32,40,66$; find the greatest angle.
4. $a=1 \cdot 125, b=\cdot 875, C=64^{\circ} 12^{\prime}$; find A and B.
5. $a=70, b=35, C=36^{\circ} 52^{\prime} 12^{\prime \prime}$; find A and B.
6. $a=14000, b=15906 \cdot 43, A=45^{\circ}$; find the other angles.
7. $c=3727 \cdot 593, A=50^{\circ}, B=57^{\circ} 53^{\prime} 9^{\prime \prime}$; find a.
8. The sides of a triangle are as $4,5,6$; find the largest angle.
9. $b=1 \cdot 125, c=875, A=54^{\circ}$; find B and C.
10. $b=16 \cdot 25, c=13.75, A=63^{\circ}$; find B and C.
11. $b=1, c=3.02943, B=19^{\circ}$; find C.
12. $c=100, A=45^{\circ}, B=10^{\circ}$; find a.
13. The sides of a triangle are $4,5,6$; find the smallest :angle.
14. $b=21, c=9, A=6^{\circ} 37^{\prime} 24^{\prime \prime}$; find B and C.
15. $11 b=14 c, A=60^{\circ}$; find B and C.
16. $a=100, c=125, C=45^{\circ}$; solve the triangle.
17. $a=500, B=45^{\circ}, C=10^{\circ}$; find b.
18. $a: b=21: 11, C=34^{\circ} 42^{\prime} 30^{\prime \prime}$; find A and B.
19. The angles of a triangle are in A.P., and the greatest side is to the least as 5 to 4 ; find the angles.
20. One angle of a triangle is 60°, and the ratio of the side opposite to it to the difference of the sides containing it, is $9 \sqrt{3}: 2$; find the other angles.

Note.-It will be well also to work the two foregoing Exercises and Exercise VI., using the tables at the end of the book, in which case seconds will be omitted and digits to right in values of the sides, when such values contain more than four digits. The results so obtained will be found sufficiently close to the answers given.

EXERCISE XV.

In this Exercise the tables at the end of the book have been used.

1. $a=74 \cdot 5, B=69^{\circ} 59^{\prime}, C=70^{\circ} 43^{\prime}$; find b and c.
2. $a=4730, b=4016, A=71^{\circ} 4^{\prime}$; find B.
3. $a=420, B=76^{\circ} 42^{\prime}, C=52^{\circ} 29^{\prime}$; find c.
4. $a=759, b=1130, A=40^{\circ} 32^{\prime}$; find B.
5. $a=\cdot 1063, b=-4182, A=14^{\circ} 24^{\prime}$; find B.
6. $a=44 \cdot 28, b=14 \cdot 76, C=100^{\circ} 30^{\prime}$; find A and B.
7. $a=22 \frac{1}{4}, b=28 \frac{1}{4}, A=44^{\circ} 30^{\prime}$; find B.
8. $a=872 \cdot 5, b=632 \cdot 7, C=80^{\circ}$; find A and B.
9. $a=26, b=74, A=18^{\circ} 55^{\prime} ;$ find B.
10. Two angles of a triangle are 76° and 54°, and the side opposite the latter 80.9 ; find the other sides.
11. The sides of a triangle are $112,88,76$; find the angles.
12. Two sides of a triangle are 1.732 and $1 \cdot 414$, and the included angle 75^{3}; find the remaining angles.
13. Tiro angles of a triangle are 65° and 85°, and the interjacent side is 12.5 ; find the other sides.
14. The sides of a triangle are $2376,1782,1188$; find the angles.
15. Two sides of a triangle are 908 and 640 , and the included angle 62°; find the other side.
16. The sides of a triangle are $189 \cdot 5,188 \cdot 5,123 \cdot 6$; find the angles.
17. Two sides of a triangle are 77.99 and $83 \cdot 39$, and the included angle is $72^{\circ} 15^{\prime}$; find the other angles.
18. The sides of a triangle are $102,168,128$; find the angles.
19. Of three towns, the first is 165 miles from the second, the second 155 miles from the third, and the third 72 miles from the first; find the difference in the bearing of the second and third from the first.
20. The angles of a triangle are in $A . P$., the greatest being twice the smallest, and the greatest side is 984.8 ; find the other sides.

EXERCISE XVI.
 heights and distances.

1. Describe the observations and calculations necessary to determine the breadth of a river from stations on one of its banks.
2. A tree 51 feet high has a mark at the height of 25 feet from the ground; find at what distance the two parts subtend equal angles to an eye at the height of 5 feet from the ground.
3. A pole is fixed on the top of a hill, and the angles of elevation of the top and bottom of the pole are 60° and 45°; shew that the hill is $\frac{1}{2}(\sqrt{3}+1)$ times as high as the pole.
4. The angular elevation of an object at a place A due south of it is 30°; at a place B due west of A, and at a distance a from it, the elevation is 18°. Shew that the height of the object is $\frac{a}{\sqrt{(2 \cdot / 5}+2)}$.
5. An object 6 feet high, placed at the top of a tower, subtends an angle whose tangent is 015 at a place whose horizontal distance from the base of the tower is 100 feet; shew that the height of the tower is 170.23 feet nearly.
6. A person stationed on a promontory first observes a ship at a point due north of him ; in a quarter of an hour it bears due east ; and after another quarter of an hour is seen to the south-east of him. Find the course the ship was steering, and shew that it was nearest to the observer 12 minutes after he first saw her.

Ans.-An angle whose tangent is $\frac{1}{2}$, to east of south.
7. A person wishing to know the height of an inaccessible object, measures equal distances $A B, B C$ in a horizontal straight line, and observes the angles of elevation at A, B, C to be $30^{\circ}, 45^{\circ}$ and 60° respectively. Shew that the ineight of the object is $A B \sqrt{\frac{3}{2}}$, and its distance from $A B C$ is $A B \frac{1}{\sqrt{2}}$.
8. The elevation of two clouds to a person in the same line with them is α. When vertically below the lower one, the elevation of the other is 2α. Shew that the heights of the clouds are as $2 \cos ^{2} \alpha: 1$.
9. The elevation of a tower on a horizontal plane is observed ; on advancing a feet nearer its elevation is found to bo the complement of the former ; on again advancing its elevation is found to be double of its first elevation ; shew that the last station is $\frac{a}{2}$ feet from the foot of the tower.
10. A person on the top of a mountain observes the depression (45°) of an object on the plane below him : he then turns through an angle of 30°, and observes the depression of another object on the same plane to be 30°. On descending the mountain he finds the distance between the objects is d. Shew that the height of the mountain is also d.
11. At noon a column in the E.S.E. cast on the ground a shadow the extremity of which was in the direction N.E.; the angle of elevation of the column being a, and the distance of the extremity of the shadow from the column c, shew that the length of the column is $c \tan a \sqrt{2-\sqrt{2}}$.
12. The elevation of a tower standing on a horizontal plane is observed; a feet nearer it is found to be $45^{\circ} ; b$ feet nearer still it is the complement of what it was at the first station. Shew that the height of the tower is $\frac{a b}{a-b}$ feet.
13. From the summits of two rocks A, B at sea, the dips, a, β, of the horizon are observed, and it is remarked that the summit of B is in a horizontal line through the summit of A; shew that the rocks subtend at the rarth's centre an angle whose cosine is sec $\alpha \cos \beta$.
(The dip of the horizon is the angle a line drawn to touch the earth makes with the horizontal plane).
14. A person wishing to determine the length of an inaccessible wall places himself due south of one end and due west of the other, at such distances that the angles the wall subtends at the two positions are each equal to a. If a be the distance between the two positions, the length, of the wall is $a \tan \alpha$.
15. A ship, the summit of whose top mast is 90 feet from the water, is sailing towards an observer at the rate of 10 miles an hour, and takes 1 hour 12 minutes to reach him from the time of its first appearance. Shew that the earth's radius is 4224 miles, the tangent from the mast head to the earth's surface being considered equal to the arc beneath it.
16. A person walking along a straight road observes that the greatest angle that two objects make with each other is α; from the point where this happens he walks a yards, and the objects there appear in the same straight line making an angle β with the road. The distance between the objects is

$$
\frac{2 a \sin \alpha \sin \beta}{\cos \alpha+\cos \beta}
$$

17. A balloon considered as a vertical object of given height floats at a constant height above the earth, and subtends angles α, β at a place when the elevations of its lowest point are A and B respectively; prove

$$
\tan (A+\alpha) \cot A=\tan (B+\beta) \cot B .
$$

18. $A B$ is a tower at the foot of a hill of inclination θ; C, D are two stations directly up the hill from B such that $B C=C D ; A C D=\alpha, A D C=\beta$. Shew that

$$
\cot \theta=\frac{\sin \alpha \sin \beta}{2 \cos \alpha \sin \beta+\cos \beta \sin \alpha}
$$

19. From the top of a tower the depressions α, β of two objects in the same horizontal plane with the foot of the tower are observed, and also the angle ω which they subtend ; the distance a between them is known. The height of the tower is

$$
\sqrt{\frac{a \sin \alpha \sin \beta}{\left(\sin ^{2} \alpha+\sin ^{2} \beta-2 \sin \alpha \sin \beta \cos \omega\right)}} .
$$

20. At each of three stations in the same horizontal plane, and at given distances a, b, c from each other, the elevation of a tower is observed to be α; shew that the height of the tower is, if $a+b+c=2 s$,

$$
\frac{a b c \tan a}{\sqrt{s(s-a)(s-b)(s-c)}} \cdot
$$

21. The angles of elevation A, B, C, of a balloon were taken at the same time by three observers placed respectively at the ends and middle point of a base a measured on the earth's surface. Shew that height of balloon is

$$
\frac{a}{l^{\prime} 2\left(\cot ^{2} A+\cot ^{2} C-2 \cot ^{2} B\right)}
$$

22. To ascertain the height of a mountain, a base of a feet was measured, and at either extremity of this base were taken the angles α, β, formed by the summit and the other extremity ; also at the extremity at which the latter was taken the elevation of the mountain was γ; shew that its height is $\frac{a \sin \alpha \sin \gamma}{\sin (\alpha+\beta)}$.
23. A column on a pedestal 20 feet high subtends an angle of 45° to a person on the ground ; on approaching 20 feet it again subtends an angle of 45°. The height of the column is 100 feet.
24. In the ambiguous case where a, b and A are given to determine the triangle, if $c^{\prime}, c^{\prime \prime}$ be the two values found for the third side of the triangle, prove that

$$
c^{\prime 2}-2 c^{\prime} c^{\prime \prime} \cos 2 A+c^{\prime \prime 2}=4 a^{2} \cos ^{2} A .
$$

25. In the case where the solution of the triangle is ambiguous, if k, k^{\prime} be the areas of the two triangles which satisfy the given conditions, prove

$$
\frac{k^{2}+k^{\prime 2}-2 k k^{\prime} \cos 2 A}{\left(k+k^{\prime}\right)^{2}}=\frac{a^{2}}{b^{2}},
$$

A, a and b being given.

EXPRESSIONS FOR THE AREA OF A TRIANGLE.

t're area of a triangle.
48. It is proved by Euclid (B.I., prop). 41) that the area of a triangle is half that of a rectangle having the same base and height. Now the number of square units in the area of a rectangle is equal to the product of the numbers of linear units in the base and height respectively, which is briefly expressed by saying that the area of a rectangle is the product of the base and height. Hence the area of a triangle is half the product of its base and height.

Fiz. 6, 7 .
In fig. 6,7 , area of triangle $A B C$

$$
\begin{aligned}
& =\frac{1}{2} A B . \quad C D \\
& =\frac{1}{2} c b \sin A \\
& =\frac{1}{2} b c \sin A .
\end{aligned}
$$

Again

$$
\begin{aligned}
\sin A & =2 \sin \frac{1}{2} A \cos \frac{1}{2} A \\
& =2 \sqrt{\frac{(s-b)}{b c} \frac{(s-c)}{c} \sqrt{\frac{s(s-a)}{b c}} \ldots \text { from (11) }} \\
& =\frac{2}{b c} \sqrt{ }\{8(s-a)(s-b)(s-c)\} .
\end{aligned}
$$

Therefore the area

$$
=\sqrt{ }\{s(s-a)(s-b)(s-c)\} .
$$

EXERCISE XVII.

1. The sides of a triangle are $3,5,7$; find its area.

2 . The sides of a triangle are $5,6,7$; find its area.
3. Find the area of a triangle whose sides are 60,70 and 110 .
4. Find the area of a triangular field whose sides are 471, 406 and 635.
5. If p, q, r be the perpendiculars drawn from each of the angles of a triangle to the opposite sides, shew that the area is equal to

$$
\frac{1}{2} \sqrt[3]{p q r \cdot a b c}
$$

6. Shew that the area of a triangle is equal to

$$
s(s-a) \tan \frac{A}{2}
$$

7. Shew that the area of a triangle is equal to

$$
\frac{2 a b c}{a+b+c} \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}
$$

8. If $2 s=a+b+c$, prove that the area of the triangle is equal to

$$
8^{2} \tan \frac{1}{2} A \tan \frac{1}{2} B \tan \frac{1}{2} C
$$

9. The sides a, b, c of a triangle are in A, P., shew that the area

$$
=\frac{b}{4} \sqrt{3(3 b-2 a)(2 a-b)} .
$$

10. The sides of a triangle are in $A . P$., and the area is four-fifths the area of an equilateral triangle having the same perimeter ; shew that the sides are as $7,10,13$.
11. If the three sides of a triangle be $a+b, b+c, c+a$, and $2 s=a+b+c$, shew that the area is equal to

$$
\sqrt{2 \delta a b c} .
$$

12. If the three sides of a triangle be $\sqrt{a+b}, \sqrt{b+c}$, $\sqrt{c+a}$, shew that its area is equal to

$$
\frac{1}{2} \sqrt{a b+b c+c a}
$$

13. If p, q, r be the reciprocals of the perpendiculars drawn from each of the angles of a triangle to the opposite sides, shew that the area of the triangle is equal to

$$
\frac{1}{\sqrt{(p+q+r)(q+r-p)(p+r-q)(p+q-r)}}
$$

14. Prove that the area of a triangle is equal to

$$
\frac{a^{2}-l_{2}}{2} \cdot \frac{\sin A \sin B}{\sin (A-B)}
$$

15. Prove that the area of a triangle is equal to

$$
\frac{1}{4} v^{2} \overline{2 a^{2} b^{2} c^{2}(\sin 2 A+\sin 2 B+\sin 2 C)}
$$

16. Shew that the area of a triangle is equal to

$$
\frac{2 s^{2} \sin A \sin B \sin C}{(\sin A+\sin B+\sin C)^{2}}
$$

17. Shew that the area of a triangle is equal to

$$
\frac{a^{2}+l^{2}+c^{2}}{4\left(\cot A+\cot B+\cot C^{\prime}\right)}
$$

18. Shew that the radius of the circle described about a triangle is equal to

$$
\frac{a}{2 \sin A}=\frac{a b c}{4 \times \text { area of triangle }}
$$

19. Prove that the area of the circle insoribed in a triangle is equal to

$$
\frac{2 \times \text { area }}{a+b+c}
$$

20. Shew that the radius of the circle described to touch the side $B C$, and the sides $A B, A C$ produced (called an escribed circle) is equal to

$$
\frac{\text { area }}{s-a}
$$

EXAMINATION PAPERS

OF THE

UNIVERSITY OF TORONTO.

SENIOR MATRICULATION, 1874.

1. Define the logarithm of a number to base 10 , and deduce the properties which make logarithms of value in facilitating arithmetical operations.
2. Find the following:
$L \operatorname{cosec} 85^{\circ} 10^{\prime} 33^{\prime \prime} ; L \tan \tan ^{-1} \frac{362}{201}$;

$$
\log \sqrt[3]{\frac{39 \cdot 008 \times 100 \cdot 48}{2010}}
$$

3. Find the numbers and trigonometrical ratios corresponding to the following logarithms: $\overline{1} \cdot 9045 ; 4.591 ; 9.51$ $7220(\sin) ; 9.998460(\cos)$.
4. Perform the following operations by logarithms :

$$
\sqrt{\frac{39 \times 201}{362 \times 200}} ; 100 \cdot 1 \times \frac{\cos 85^{\circ} 25^{\prime}}{\cos 4^{\circ} 50^{\prime}}
$$

5. Define the trigonometrical ratios and co-ratios of ans angle less than 90°.

Express all the trigonometrical ratios in terms of the cosine.
6. Find $\sin (A+B)$ and $\cos (A-B)$.

What are the ralues of $\sin 105^{\circ}, \tan 75^{\circ}, \cos 15^{\circ}$?
7. Express $\sin A$ and $\cos A(1)$ in terms of $\frac{A}{2},(2)$ of $\cos 2 A$.
8. Prove that in any triangle

$$
\begin{gathered}
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} ; \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} ; \\
\sin \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{b c} ; \sin A=\frac{2}{b c} \sqrt{c}\{s(s-a)(s-b)(s-c)\}}
\end{gathered}
$$

9. Obtain the logarithmic formulæ of solution in the fo!lowing cases :
Having given (1) a, A, B;
(2) a, b, C;
(3) a, b, c.
10. Having given

$$
\begin{aligned}
& a=240, b=362, c=200, \text { find } A \text { to seconds; } \\
& a=100 \cdot 1, A=85^{\circ} 10^{\prime}, B=90^{\circ} 15^{\prime}, \text { find } b \text { and } c \text { to } \\
& \text { three decimal places. }
\end{aligned}
$$

11. The perimeter of an equilateral triangle being 10 , find its height and the radius of the circumscribed circle.
12. C and D are two points lying directly south of A and B respectively, and such that $A B$ subtends equal angles at each ; having given the distances $A C, B D$, and the area of $A B C D$, determine the distance $A B$ and its bearing.

No.	Log.	Diff.	Angle.	Log.	Diff.
362	558709		$\sin 19^{\circ} 12^{\prime}$	$9 \cdot 517020$	362
3900	591065	111	$\cos 15^{\prime}$	$9 \cdot 999996$	
2010	303196	216	$\sin 85^{\circ} 10^{\prime}$	9.998453	11
1001	000434	432	$\sin 4^{\circ} 35^{\prime}$	8.902596	
6027	904553	54			
2000	301030	217			
1004	001734	432			

SENIOR MATRICULATION, 1875.

1. Write down the characteristics of the logarithms of $235,2 \cdot 368, \cdot 806, \cdot 00025$.
2. State the numerical limits between which the numbers lie whose logarithms have characteristics 5 and $\overline{2}$.
3. State the rules for finding the logarithms of products, quotients, powers, and roots.

Find the logarithm of $\sqrt[10]{\cdot 67234} \times(3.8826)^{10}$.
4. Given $\log 2=\cdot 30103$, find $\log \cdot 00025$.

Calculate the values of

$$
\frac{v^{\sqrt[3]{67 \cdot 234}}}{38 \cdot 826} \text {, and } \sqrt{\frac{672 \cdot 34 \times 388 \cdot 26}{412 \cdot 67 \times 462 \cdot 75}}
$$

5. Explain how the size of an angle is expressed in Trigonometry.

Find the complement of $66^{\circ} 41^{\prime} 4^{\prime \prime}$ and the supplement of $100^{\circ} 5^{\prime} 25^{\prime \prime}$.
6. Define the Trigonometrical ratios of an angle less than two right angles.

Find the \sin , \cos, and \tan of 30° and 60°.
7. In a triangle $(A>B)$ prove

$$
\begin{gathered}
\sin (A+B)=\sin A \cos B+\cos A \sin B \\
\tan \frac{1}{2}(A-B)=\frac{a-b}{a+b} \cot \frac{1}{2} C
\end{gathered}
$$

8. Prove the formulas

$$
\begin{gathered}
\tan ^{2} \frac{1}{2} x=\frac{1-\cos x}{1+\cos x} \\
\tan \frac{1}{2} x=\frac{1+\sin x-\cos x}{1+\sin x+\cos x} .
\end{gathered}
$$

9. (1) Given $c=672 \cdot 34, A=35^{\circ} 16^{\prime} 25^{\prime \prime}, C=30^{\circ}$, solve the triangle.
(2) Given $A=50^{\circ} 38^{\prime} 52^{\prime \prime}, B=60^{\circ} 7^{\prime} 25^{\prime \prime}, a=412 \cdot 67$, solve the triangle.
10. If $s=$ the semi-perimeter of the triangle $A B C$, prove that the radii of the inscribed and circumscribed circles; are respectively.
```
s tan \frac{1}{2}A\operatorname{tan}\frac{1}{2}B\operatorname{tan}\frac{1}{2}C,\frac{1}{4}s\operatorname{sec}\frac{1}{2}A\operatorname{sec}\frac{1}{2}B\operatorname{sec}\frac{1}{2}C.
```

No.	Log.	Angle	Log.
10473	02006	$\sin 35^{\circ} 16^{\prime} 25^{\prime \prime}$	9.76154
11691	06788	$\cos 35^{\circ} 16^{\prime} 25^{\prime \prime}$	$9 \cdot 91190$
38826	58913	$\operatorname{cosec} 50^{\circ} 38^{\prime} 52^{\prime \prime}$	10.1116
41267	61560	$\sin 60^{\circ} 7^{\prime} 25^{\prime \prime}$	$9 \cdot 93807$
46275	66535	$\sin 69^{\circ} 13^{\prime} 43^{\prime \prime}$	$9 \cdot 97081$
49899	69809		
54890	73949		
67234	82759		

FIRST YEAR, 1876.

1. State and prove the rule for finding the characteristic of the logarithms of whole numbers.

Given $\log \cdot 25=-60206$, find how many digits there will be in the integral part of $(2 \cdot 5)^{20}$.
2. Prove $\log a^{2}=x \log a, \log \frac{a}{b}=\log a-\log b$.

Evaluate the following by using logarithms:

$$
\sqrt[4]{ } 80 \times v^{3} 2 \cdot 7, \sqrt[5]{-5} \times 18^{-\frac{1}{6}}
$$

Find the tabular logarithms of $\sin 45^{\circ}, \tan 60^{\circ}, \cos 30^{\circ}$.
3. Shew that the logarithms of the trigonometrical ratios need not be entered for angles greater than 45°; take $\sin A$, $\tan A$ as examples, where A has any value from 0° to 180°.

If $\sec 120^{\circ}=\frac{a}{40}$, can a be found by logarithms?
Adapt $\sin A-\tan \frac{1}{2} A$ to logarithmic computation.
4. Prove the following relations:

$$
\begin{aligned}
& \sin ^{2} A=1-\cos ^{2} A \\
& \tan ^{2} A=\sec ^{2} A-1 . \\
& \operatorname{cosec} A-\sin A=\cos A \cot A \\
& \sqrt{\frac{1+\sin A}{1-\sin A}}=\sec A+\tan A .
\end{aligned}
$$

5. A person standing on one bank of a river observes that an object on the opposite bank has an angle of elevation of 45°, and going back 150 feet, the corresponding angle is 30°. Find the breadth of the river.
6. A vertical stick whose height is 10 feet throws on a horizontal plane a shadow $7 \cdot 74$ feet long. Find the sun's altitude.

Indicate how the problem would be solved if the shadow fell on a plane through the foot of the stick inclined at an angle θ to the horizon, the line of intersection of the plane and horizon being perpendicular to the plane through the sun and stick.
7. Prove $\cos (A+B)=\cos A \cos B-\sin A \sin B$,

$$
\begin{aligned}
& 2 \sin ^{2} \frac{1}{2} A=1-\cos A, \\
&(\cos A-\sin A)^{2}=\cos 2 A \tan \left(45^{\circ}-A\right), \\
& \cos \theta+\cos 3 \theta \\
& \sin \theta+\sin 3 \theta=\frac{1-\tan ^{2} \theta}{2 \tan \theta} .
\end{aligned}
$$

8. In any triangle establish the following:

$$
\begin{gathered}
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}, \\
\cos \frac{1}{2} C=\sqrt{\frac{s(s-c)}{a b}}, \\
2 \times \text { area }=b c \sin A=\frac{c^{2}}{\cot A+\cot B}
\end{gathered}
$$

9. In a triangle
$B=123^{\circ} 40^{\prime}, b=100, c=60$, find A and C.
$A=112^{\circ} 40^{\prime}, b=213 \cdot 4, c=213 \cdot 4$, solve the triangle.
$a=200, b=77 \cdot 4, C=41^{\circ} 50^{\prime}$, find the area.
10. If $(\sin \theta+\cos \theta)=3 \sin \theta+\sin 2 \theta$, find θ in degrees, \&c.

If $1+\sin \theta=2 \cos \frac{1}{2} \theta\left(\cos \frac{1}{2} \theta-\sin \frac{1}{2} \theta\right)$, find θ in degrees, \&cc.
11. In any triangle shew that

$$
2(1-\sin C)>(\cos A-\sin B)^{2} .
$$

No.	Log.	Angle.	Log.
20000	30103	$\tan 52^{\circ} 15^{\prime}$	$10 \cdot 11110$
30000	47712	$\tan 52^{\circ} 16^{\prime}$	$10 \cdot 1136$
41645	61956	$\sin 56^{\circ} 20^{\prime}$	$9 \cdot 92027$
77400	88874	$\sin 29^{\circ} 57^{\prime} 30^{\prime \prime}$	$9 \cdot 69842$
21340	32919	$\sin 41^{\circ} 50^{\prime}$	$6 \cdot 82410$
17761	24946	$\sin 19^{\circ} 28^{\prime}$	$9 \cdot 52278$
51623	71284	$\sin 19^{\circ} 29^{\prime}$	$9 \cdot 52314$
		$\tan 26^{\circ} 33^{\prime}$	$9 \cdot 6988$
		$\tan 26^{\circ} 34^{\prime}$	$9 \cdot 69900$

FIRST YEAR, 1877.

1. Define the trigonometrical ratios of an angle, and write down the five relations connecting the six trigonometrical functions,- sine, cosine, tangent, cotangent, secant, and cosecant.
2. Explain the nature and use of logarithms, and find the common logarithms of $2 \frac{1}{2}, 2 \frac{1}{4}$, and $\sqrt[7]{ }(-0162)^{3}$.
3. Perform the following operation by logarithms :

$$
\frac{1 \cdot 28}{1 \cdot 25} \times \frac{(216)^{\frac{5}{3}}}{\cdot 81} \times \frac{5}{\sqrt[4]{1 \cdot 2}}
$$

4. Prove the following :

$$
\begin{gathered}
\frac{\sin A+\sin B}{\sin A-\sin B}=\frac{\tan \frac{1}{2}(A+B)}{\tan \frac{1}{2}(A-B)} \\
\cot \frac{A}{2}=\cot A+\operatorname{cosec} A \\
\frac{\sin A+\sin 3 A+\sin 5 A}{\cos A+\cos 3 A+\cos 5 A}=\tan 3 A, \\
\cos A=\frac{\cot \frac{A}{2}-\tan \frac{A}{2}}{\cot \frac{A}{2}+\tan \frac{A}{2}}
\end{gathered}
$$

5. Find the values of $\sin 2 A$ and $\cos 2 A$ in terms of the simple angle A.

If $\sin 2 A=\cos 3 A$, find A; also its sine and cosine.
6. In any triangle, $c^{2}=a^{2}+b^{2}-2 a b \cos C$.

From this single equation prove that any two sides of a triangle are together greater than the third.
7. In any triangle prove the following relations:

$$
\begin{gathered}
\tan \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}, \text { Area }=\sqrt{s(s-a)(s-b)(s-c)} \\
c=b \cos A \pm \sqrt{a^{2}-b^{2} \sin ^{2} A}
\end{gathered}
$$

8. The sides of a triangle are $20,21,29$, find the area, and the angle opposite the greatest side.
9. If in any triangle $\frac{a+c}{b+c}=\frac{b}{a-c}$, then will $A=120^{\circ}$.
10. In determining an angle by its tangent, when the angle is near 90°, how would you proceed?

Shew also how to find the sine of a very small angle accurately from the tables.
11. A person undertakes to measure the distance between two points, A and B, and proceeds 50 yards to C in a straight line towards B; and then meets an impassable barrier, and as he has no instrument for measuring angles, he measures off a line in an unknown direction $C D=60$ yards, and then measures $A D 90$ yards, and $B D 90$ yards; find $A B$.

In the same question, if the person has neither instruments for measuring angles, nor any trigonometrical tables, find $A B$.

No.	Log.	Angle.	Log.
20000	30103	$\tan 54^{\circ} 44^{\prime}$	$10 \cdot 15048$
30000	47712	$\tan 54^{\circ} 45^{\prime}$	1015075
46961	67174	$\sin 70^{\circ} 31^{\prime}$	9.97439
		$\sin 70^{\circ} 32^{\prime}$	9.97444
		$\sin 38^{\circ} 56^{\prime}$	9.79825
		$\sin 38^{\circ} 57^{\prime}$	9.79840

JUNIOR MATRICULATION, 1877.

1. Define the logarithm of a number to a given base.

Prove $\log m n=\log m+\log n$.

$$
\log _{a} N \log _{x} a=\log _{b} N \log _{x} b
$$

2. What are the advantages of employing 10 as a base?

Shew how to find the characteristic of a number, part of which is integral.
3. The mantissæ of the logarithms of all numbers which diffor only in the position of the decimal point, are the same.

What is the object of always making the mantissæ positive?
4. Given $\log 32953=4 \cdot 5178950, \log 3 \cdot 2954=\cdot 5179081$, find $\log \cdot 003295345$.

Find this also by forming and employing a Table of Proportional Parts. By this table determine the number corresponding to the logarithm $3 \cdot 5179025$.

Find by logarithms the value of

$$
\sqrt{\cdot 0128} \times(12)^{-4} \times \frac{.0279}{1.24} \times 12.5
$$

5. Prove
$\cos (A-B)=\cos A \cos B+\sin A \sin B$.
$\cos B-\cos A=2 \sin \frac{1}{2}(A+B) \sin \frac{1}{2}(A-B)$.
$\cos ^{2} A-\cos ^{2} 3 A=\sin 4 A \sin 2 A$.
6. In any triangle shew that

$$
\begin{aligned}
& a=b \cos C+c \cos B \\
& \cos \frac{A}{2}=\sqrt{\frac{s(s-a)}{b c}} \\
& \tan \frac{1}{2}(A-B)=\frac{a-b}{a+b} \cot \frac{C}{2} \\
& \frac{\sin A-\sin B}{\sin (A-B)}=\frac{c}{a+b}
\end{aligned}
$$

7. $a=300, b=400, c=500$; solve the triangle.
$a=7, b=5, c=4$; solve the triangle.
$a=450, b=250, C=12^{\circ} 36^{\prime}$; find A and B.
8. If an angle, the opposite side, and the sum of the other two sides of a triangle be given, shew how to solve the triangle.
9. If the sides of a triangle be in A. P., the tangents of half the angles are in $H . P$.
10. Three circles, two of which are equal, touch one another, and a fourth, lying between, touches them. Shew that the radius of this circle is

$$
\frac{r\left(r^{\prime}+r\right) \sin ^{2} \frac{1}{4} \theta}{r^{\prime} \cos ^{2} \frac{1}{4} \theta-r \sin ^{2} \frac{1}{4} \theta},
$$

where θ is the angle between lines drawn from the centres of the equal circles to the centre of the other, and r^{\prime} is the radius of each of the equal circles, and r that of the other.

No.	Log.	Angle.	Log.
20000	3010300	$\cos 53^{\circ} \quad 7^{\prime}$	$9 \cdot 7782870$
30000	4771213	$\cos 53^{\circ} 8^{\prime}$	$9 \cdot 7781186$
49353	6933116	$\sin 50^{\circ} 46^{\prime}$	9.8890644
70000	8450980	$\sin 50^{\circ} 47^{\prime}$	9.8891675
		$\sin 22^{\circ} 12^{\prime}$	9.5773088
		$\sin 22^{\circ} 13^{\prime}$	9.5776183
		$\tan 6^{\circ} 18^{\prime}$	$9 \cdot 0429731$
		$\tan 68^{\circ} 52^{\prime}$	$10 \cdot 4128096$
		$\tan 68^{\circ} 53^{\prime}$	$10 \cdot 4131853$

FIRST YEAR, 1878.

1. Define the trigonometrical ratios of an angle ; and shew which of them may have any magnitude whatever, positive or negative, and which of them never can have a value between +1 and -1 .

Shew that the versed sine of an angle is equal to twice the square of the sine of half the angle.
2. Prove the formula chord $A=2 \sin \frac{1}{2} A$, and hence shew that the chord of an angle will be positive while the angle increases from 0° to 360°, and negative while it increases from 360° to 720°.
3. Deduce formulas for expressing the sines and cosines of the sum and difference of two angles in terms of the sines and cosines of the angles themselves.

Find $\sin \theta$ in terms of $\sin 2 \theta$ and $\cos 2 \theta$.
Prove that 2 vers $\left(\frac{1}{2} A\right)=\left(\sin A-\sin \frac{1}{2} A\right)^{2}+\left(\cos A-\cos \frac{1}{2} A\right)^{2}$.
4. Define the logarithm of a number to any given base, and shew how to deduce the common logarithm of a number from the Napierian logarithm.

Prove that $\log _{a} m=\log _{a} b . \log _{b} c . \log _{c} d \ldots . . \log _{i} m$.
5. Shew how to find the area of a triangle when (1) the sides are given, (2) when two sides and an angle opposite to one of them are given.

If a, b, are the perpendiculars from two angles of an equilateral triangle upon a straight line drawn through the other angle, then the area of the triangle will be

$$
\frac{a^{2}-a b+b^{2}}{\sqrt{3}}
$$

6. In any triangle prove the relation

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C},
$$

and hence deduce $\sin ^{2} C^{*}=\sin ^{2} A+\sin ^{2} B$, when C is a right angle.

Also deduce the same equations from formulas referred to in question 3.
7. Solve the following triangles:
(1) $a=2 \cdot 469, b=6 \cdot 9024, c=9.0642$.
(2) $a=26 \cdot 91, b=69 \cdot 09, C=146^{\circ} 30^{\prime}$.
8. Explain the difference between the proper and the tabular logarithms of the trigonometrical functions, and the reason for it.

If A be any angle shew that
$L \sec A+L \sec \frac{1}{2} A+L \operatorname{cosec} \frac{1}{2} A=20 \cdot 60206+L \operatorname{cosec} 2 A$.
9. Solve the equation $\left(\frac{1}{8}\right)^{x}(125)^{1-\frac{x}{2}}=\left(\frac{1}{4}\right)^{3 x+2}\left(\frac{1}{5}\right)^{x}$.

Find the logarithm of $\frac{12 \times \cdot 92178 \div 3.072}{125(\cdot 8436 \times \cdot 067488)} \times 4 \frac{1}{2}$.
10. Prove the formulas
(1) $\cos (A+B) \cos (A-B)=\cos ^{2} B-\sin ^{2} A$.
(2) $\frac{\sin A+\sin B}{\sin A-\sin B}=\frac{\tan \frac{1}{2}(A+B)}{\tan \frac{1}{2}(A-B)}$.
(3) $\sin 2 A+\sin 2 B+\sin 2 C=4 \cos A \cos B \cos C$, when $A+B+C=90^{\circ}$.
(4) $\sin A+\sin 2 A=\sin 3 A+4 \sin \frac{A}{2} \sin \frac{2 A}{2} \sin \frac{3}{2}-$
(5) $\frac{\cos A+\sin C-\sin B}{\cos B+\sin C-\sin A}=\frac{1+\tan \frac{A}{2}}{1+\tan \frac{B}{2}}$,

$$
\text { when } A+B+C=90^{\circ}
$$

11. If a, b, c are the sides of a triangle, and A, B, C the angles opposite them respectively, and $s=\frac{1}{2}(a+b+c)$, and $S=$ the area; prove the following formulas
(a) $S=\frac{1}{2} b c \sin A=\sqrt{s(s-a)(s-b)(s-c)}$

$$
\begin{aligned}
& =\frac{a b c}{8} \cos \frac{1}{2} A \cos \frac{1}{2} B \cos \frac{1}{2} C \\
& =\frac{1}{4} \sqrt{\left(a^{2}+b^{2}+c^{2}\right)^{2}-2\left(a^{4}+b^{4}+c^{4}\right)}
\end{aligned}
$$

(b) $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$.
(c) $c=(a+b) \frac{\sin \frac{1}{2} C}{\cos \psi}$, when $\tan \psi=\frac{a-b}{a+b} \cot \frac{1}{2} C$.
(d) $\tan \left(\frac{A}{2}+B\right)=\frac{c+b}{c-b} \tan \frac{A}{2}$.
12. Shew how to find the radii of the inscribed and escribed circles of a triangle in terms of its sides and angles.

If R be the radius of the circumscribing circle, prove that the product of the perpendiculars from the angles upon the opposite sides

$$
=\frac{a^{2} b^{2} c^{2}}{8 R^{3}}
$$

No.	Log.	Angle.	Log.
23154	36463	$4^{\circ} 19 \frac{1}{}^{\prime}$	8.87859
67488	82923	$12^{\circ} 25 \frac{1}{2}^{\prime}$.	$9 \cdot 34319$
1536	18639	$7^{\circ} 32^{\prime}$.	$9 \cdot 12141$
92178	96461	$73^{\circ} 15^{\prime}$.	$10 \cdot 52143$
20000	30103		
96000	98227		
42180	62511		

JUNIOR MATRICULATION, 1878.

1. If θ be the circular measure of an angle between 0° and 90°, shew that $\sin \theta>0-\frac{1}{4} \theta^{3}$.

Shew approximately what the dip of the horizon is for every mile of distance.
2. Shew that $\sin 18^{\circ}=\frac{1}{4}(\sqrt{ } 5-1)$, and hence shew how to find the sines and cosines of all angles being multiples of 9° from 0° to 90°.
3. If A and B are any angles, prove
(1) $\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$.
(2) $\sec A+\tan A=\tan \left(45^{\circ}+\frac{1}{2} A\right)$.
(3) $\tan \frac{A}{2}=\frac{\operatorname{vers} A}{\sin A}$.

If $x=\cos A \cot A, y=\sin A \tan A$, eliminate A.
4. In every triangle prove the truth of the following formulas :
(1) Area $=\frac{1}{2} a b \sin C=\sqrt{s(s-a)(s-b)(s-c)}$.
(2) $c=a \cos B+b \cos A$.
(3) $\sin \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{b c}}$.
(4) $\frac{\tan B}{\tan C}=\frac{a^{2}+b^{2}-c^{2}}{a^{2}+c^{2}-b^{2}}$.
5. Define the terms logarithm, characteristic and mantissa.

How are the logarithms of numbers less than unity to be found from the tables, and how are they represented?

Given $\log 4 \cdot 9353=\cdot 6933116$, find the logs of $\cdot 49353$ and of ($\cdot 049353)^{\frac{3}{3}}$.
6. Having ascertained the logarithm of four digits of a number from the tables, shew how to proceed to find the logarithm of the whole number.

Given $\log 2=\cdot 30103, \log 3=\cdot 4771213, \log 7=845098$, find the logarithms of $28^{\frac{1}{2}}, 63^{\frac{1}{3}}, 98^{\frac{1}{4}}$ and $126^{\frac{1}{3}}$.
7. If a, b, c are the lengths of three straight lines drawn from a point making equal angles with one another, and straight lines be drawn respectively joining the extremities of a, b, c, the area of the whole triangle thus formed will be $\frac{\sqrt{ } 3}{4}(b c+c a+a b)$.
8. Shew how to solve a triangle when two sides and the included angle are given.

Ex. $a=765 \cdot 432, b=1006 \cdot 62, C=70^{\circ}$.
9. Find the radius of the circumscribed circle of a triangle in terms of its sides and angles.

If the centres of the escribed circles of a triangle be joined forming another triangle, shew that the circle circumscribing this latter triangle is four times the size of the circle circumscribing the first triangle.
10. A person at the top of a light-house descries a vessel just on the horizon; shew that he can ascertain the distance of the vessel approximately by taking the square root of one and a-half times the height of the light-house in feet, and calling the result miles.

No.	Log.	Angle.	Log.
1772052	2484765	$\sin 70^{\circ}$	$9 \cdot 9729858$
241188	3823555	$\sin 66^{\circ}$	$9 \cdot 9607302$
100662	0028656	$\tan 35^{\circ}$	$9 \cdot 8452268$
103543	0151212	$\tan 11^{\circ}$	$9 \cdot 2886522$
		$\tan 22^{\circ}$	$9 \cdot 6064096$

FIRST YEAR, 1879.

1. Define the logarithm of a number. Shew how the logarithm of a number to base e may be converted to the corresponding logarithm to base 10 .
2. Prove the rule for finding the characteristics of logarithms. Why are the mantissas only inserted in the tables?
3. Prove $\log \frac{a b}{c}=\log a+\log b-\log c$.

$$
\log ^{n} \sqrt{a}=\frac{1}{n} \log a
$$

4. Having given mantissa $\log 173300=238799$

$$
\text { " } \quad 173400=239049
$$

construct a table of proportional parts for intermediate numbers. Find $\log 173 \cdot 344$; and write down the number whose \log is $\overline{2} \cdot 238854$.
5. Given $\log 2=0.301030, \log 3=0.477121$,
find the value of $\frac{3^{-6} \times \sqrt[3]{4}}{21 \cdot 6}$.
Find the tabular logarithms of $\cos 30^{\circ}$, sec 45° and $\tan 120^{\circ}$.
6. Prove the formulas
(1) $\tan A=\frac{\sin A}{\cos A}$. (2) $\cos A=\sqrt{1-\sin ^{2} A}$.
(3) $\sin (A+B)=\sin A \cos B+\cos A \sin B$.
(4) $\sin n A=2 \cos A \sin (n-1) A-\sin (n-2) A$.
7. In any triangle prove the following:
(1) $\sin \frac{1}{2} A=\sqrt{\frac{(s-b)(s-c)}{b c}}$.
(2) $\tan \frac{A-B}{2}=\frac{a-b}{a+b} \cot \frac{C}{2}$.
(3) $\sin \frac{A-B}{2} \sin \frac{C}{2}+\sin \frac{B-C}{2} \sin \frac{A}{2}+$

$$
\sin \frac{C-A}{2} \sin \frac{B}{2}=0
$$

(4) $\tan A+\tan B+\tan C=\tan A \tan B \tan C$.
8. In a triangle
(1) $A=53^{\circ} 7^{\prime} 48^{\prime \prime}, B=75^{\circ}, a=1056$, find b and C.
(2) $a=48, b=30$, and perpendicular from C upon opposite side $=24$. Find A, B, C, and c.
9. Obtain expressions for the area of a triangle.

Ex. $a=70, b=80, c=90$; find area.
If l, m, n be the bisectors of the opposite sides of a triangle, and $2 \sigma=l+m+n$, shew that

$$
\text { Area }=\frac{4}{3} \sqrt{\sigma(\sigma-l)(\sigma-m)(\sigma-n)}
$$

10. The altitude of a mountain from A is 30°, from $B 36^{\circ}$, and from $C 45^{\circ} . A, B$, and C are in the same straight line, and $A B=B C=1000$ yards. Find the height of the mountain.

No.	Log.	Angle.	Log.
30243	480629	$\sin 75^{\circ}$	$9 \cdot 984944$
18944	277478	$\cot 36^{\circ}$	$10 \cdot 138739$
30773	488168	$\sin 53^{\circ} 7^{\prime} 48^{\prime \prime}$	$9 \cdot 903090$
10560	023664		
12750	105518		

JUNIOR MATRICULATION, 1879.

1. Explain the terms characteristic and mantissa, and state the rule for writing down the characteristic of the logarithm of any number.

Write down the characteristic of $\cdot 5, \cdot 0007$ and $60050 \cdot 3$.
What would be the characteristics of these numbers to base 100 , and also to base $\frac{1}{10}$?
2. Find the logarithms of $\sqrt[5]{\cdot 007}$ and $(\cdot 5)^{-3}$.

Find the index of the power to which 7 must be raised to produce 300 .
3. Having given

$$
L \cot 57^{\circ} 30^{\prime}=9 \cdot 804187
$$

Difference $=279$,
find $L \cot 57^{\circ} 30^{\prime} 15^{\prime \prime}$, and find the angle, the \log of whose tangent is 9.804251 .
4. Find the values of $\sin 30^{\circ}, \cos 30^{\circ}$, and $\sec 45^{\circ}$.

Write down the tabular logarithms of these ratios.
5. Prove the formulas,
(1) $\sin A=\sin \left(180^{\circ}-A\right)=\cos \left(90^{\circ}-A\right)$.
(2) $\cos (A-B)=\cos A \cos B+\sin A \sin B$.
(3) $\sin 2 A=2 \sin A \cos A$.

The angle $B A C$ is bisected by $A D . B C$ and $B D$ are perpendicular to $A C$ and $A D$. Prove that

$$
\begin{gathered}
B A \cdot B C=2 B D \cdot A D, \\
\text { and } B A \cdot A C=A D^{2}-B D^{2} .
\end{gathered}
$$

6. Shew that
(1) $\sin 18^{\circ} \sin 54^{\circ}=\frac{1}{4}$.
(2) $16 \cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ}=1$.
7. In any triangle, prove the formulas
(1) $c=a \cos B+b \cos A$ 。
(2) $\tan \frac{1}{2} A=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$.

In the triangle $A B C, B D$ is drawn at right angles to $A B$ meeting $A C$ in D. Find $B D$ in terms of the sides of the triangle.
8. Solve the equations
(1) $\sin ^{2} \theta+\sin ^{2} 2 \theta=1$.
(2) $\left\{\begin{array}{l}\sin ^{2}(\theta+\psi)-\sin ^{2}(\theta-\psi)=\frac{\sqrt{3}}{2} \\ \operatorname{cosec} 2 \theta+\cos 2 \psi=\frac{2}{\sqrt{3}} .\end{array}\right.$
9. Solve the triangles
(1) $A=21^{\circ} 10^{\prime}, C=90^{\circ}, a=314 \cdot 16$.
(2) $A=74^{\circ} 53^{\prime}, B=37^{\circ} 55^{\prime}, c=300$.
10. Find the area of the circle inscribed in the triangle whose sides are 50,68 and 78 .

$$
(\pi=3.1416)
$$

No.	Mantissa.	Angle.	Logarithm.
20000	30103	$\tan 21^{\circ} 10^{\prime}$	$9 \cdot 65205$
30000	47712	$\sin 74^{\circ} 53^{\prime}$	$9 \cdot 98470$
70000	84510	$\sin 37^{\circ} 55^{\prime}$	$9 \cdot 78858$
31416	49715	$\sin 67^{\circ} 12^{\prime}$	$9 \cdot 96467$
92323	96531		

ANSWERS.

I. (Page 12).

1. $3,1,4,-1,-6$. 2. $=\log \frac{2^{5} \times 3^{2}}{7 \times 10}=$. 4. $=\log 100 \times 2=$.
2. $\log 8=\frac{3}{2}(a-b+1), \log 9=a+b-1$. 7. $\frac{3}{2} \log 25-3$.
3. $\overline{4} \cdot 8624005$. 9. $\overline{1} \cdot 4042714$. 10. $1 \cdot 8379346$. 11. $\overline{2} \cdot 4566323$.
4. $\overline{2} \cdot 8653155$. 13. $\overline{2} \cdot 8400799$. 14. $4 \cdot 7497460$. 15. $6 \cdot 4721485$.
5. $1 \cdot 2552725,1.3979400,2.3344539, \cdot 0511526, .8115752$, $\overline{3} \cdot 7323939, \overline{1} \cdot 6478174,1 \cdot 6354839,2 \cdot 8573326, \cdot 0880456, \cdot 0263938$, $1 \cdot 6365006$. $\quad 17 . \overline{4} \cdot 20412, \overline{1} \cdot 4671244 . \quad 18 . \overline{1} \cdot 9599947$.
6. $\cdot 002620145.20 .562 \cdot 4855.21 .30413 \cdot 41$. 22. $\cdot 004955347$.
7. $2 \cdot 7485257, \cdot 005604388 . \quad 24.18507$. $25.1 \cdot 0065$.
8. 739148. 27. $437499 \cdot 9$
1. - 124385.
1. $27 \cdot 9865$.
2. 798595.

II. (Page 14).

1. $8, \frac{5}{2}, \frac{5}{3}, 3, \frac{3}{2}, 2$ 2. 2. 3. $\overline{4}$. 4. 69897. 5. 1.537 .
2. 2.089. 7. (1) $\frac{\log c}{m \log a+n \log b}$. (2) $\frac{3 \log 2-1}{3 \log 2}$.
(3) $\frac{4 \log 3+3 \log 2}{\log 3}$ (4) $\frac{\log c-d \log b}{\log a-\log b}, \quad \frac{\log c-d \log a}{\log b-\log a}$.
3. $\frac{9}{2}, \frac{3}{2} . \quad$ 10. $1 \cdot 5=\frac{1}{2}(2+1)=\log (100 \times 10)^{\frac{1}{2}}=\log 31 \cdot 62 \ldots$
4. $\cdot 0103=\log \frac{256}{250}=\log \frac{2^{10}}{1000}, \&$ c. 12. 13. 13. 27. 14. 1 . 15. $10^{\frac{2}{3}}$. 16. 5. 17. 100 or. $\sqrt{\cdot 001}$. 18. $\cdot 67362$. 19. If y be reqd., $\log x^{y}=3$, or $y=\frac{\log 3}{\log x}=1 \cdot 09862$. 20 . True if
$\log _{2}(20)^{\frac{1}{2}}=\log _{2} 2+\frac{1}{2} \log _{2} 5=\log _{2} \cdot(4 \times 5)^{\frac{1}{2}}$.
III. (Page 19).

Examples such as this exercise contains may easily be worked by expressing the trigonometrical ratios in terms of a single one ; the identities being thus reduced to ordinary algebraic identities, may be verified as such. It will frequently be found convenient to express the ratios in terms of sine and cosine, simplify, and substitute the relation between sine and cosine. Thus Ex. 17,

$$
\begin{aligned}
& \cot ^{2} \phi+\tan ^{2} \phi=\sec ^{2} \phi \operatorname{cosec}^{2} \phi-2, \\
& \text { if } \quad \frac{\cos ^{2} \phi}{\sin ^{2} \phi}+\frac{\sin ^{2} \phi}{\cos ^{2} \phi}=\frac{1}{\cos ^{2} \phi \sin ^{2} \phi}-2, \\
& \text { if } \cos ^{4} \phi+\sin ^{4} \phi=1-2 \cos ^{2} \phi \sin ^{2} \phi, \\
& \text { if }\left(\cos ^{2} \phi+\sin ^{2} \phi\right)^{2}=1 .
\end{aligned}
$$

IV. (Page 20).
$\begin{array}{llll}\text { 1. } \frac{4}{5} . & \text { 2. } \frac{12}{13} & \text { 3. } \frac{4}{\sqrt{17}^{17}} \text {. } \quad \text { 4. } \frac{a}{\sqrt{b^{2}-a^{2}}} & \text { 5. } \frac{4}{3}\end{array}$
6. $\frac{b}{\sqrt{a^{2}-b^{2}}}$. 7. $\sqrt{2 .} \quad$ 8. Becomes $\sqrt{1-\cos ^{2} \theta}=\frac{7}{5}-$ $\cos \theta$, an ordinary quadratic ; and $\cos \theta=\frac{4}{5}$ or $\frac{3}{5}$. $\quad 9$. $\frac{1}{2}$ or $\frac{1}{3}$. 10. $\frac{1}{2}$.

> V. (Page 23).

1. $\log 2=-3010300, \log 3=\cdot 4771213$. For $30^{\circ} .9 \cdot 6989700$, $9.9375306,9.7614394,10 \cdot 2385606,10.0624694,10 \cdot 3010300$; for $45^{\circ}, 9 \cdot 8494850,9 \cdot 8494850,10,10,10 \cdot 1505150,10 \cdot 1505150$.
2. $L \sin 22^{\circ} 27^{\prime}=9.5819236$
$L \sin 22^{\circ} 26^{\prime}=9 \cdot 5816177$
Diff. for $60^{\prime \prime}=3059, \therefore$ diff. for $45^{\prime \prime}=\frac{45}{60}$ of $3059=2294$;
$\therefore L \sin 22^{\circ} 26^{\prime} 45^{\prime \prime}=9.5816177+0002294=9.5818471$.
Or thus,-Diff. for $15^{\prime \prime}=765 ; \therefore L \sin 22^{\circ} 26^{\prime} 45^{\prime \prime}=9.5819236$
$-0000765=9.5818471$.
It will be noted that the sine, tangent and secant increase as the angle (if less than 90°) increases; hence the difference must be added or subtracted according as we have found the difference between the required Log. and the Log. of the less angle, or between the required Log. and the Log. of the greater angle. In the case of cosine, cotangent and cosecant, the ratio decreases as the angle increases; hence the difference must be subtracted or added according as we have found the difference between the required Log. and the Log. of the less angle, or between the required Log. and the Log. of the greater angle.
3. $9 \cdot 7932666$.
4. $9 \cdot 9169962$.
5. 97336870 .
6. $9 \cdot 8040340$.
7. $10 \cdot 515+297$. 8. $10 \cdot 5443618$. 9. $10 \cdot 0281814$. 10. $69^{\circ} 7^{\prime} 45^{\prime \prime}$ or $110^{\circ} 52^{\prime} 15^{\prime \prime}$ (See § 31). 11. $16^{\circ} 19^{\prime} 26^{\prime \prime}$ or $163^{\circ} 40^{\prime} 34^{\prime \prime}$. 12. $22^{\circ} 28^{\prime} 33^{\prime \prime}$. $\quad 13.51^{\circ} 17^{\prime} 53^{\prime \prime}$. $\quad 14.30^{\circ} 21^{\prime} 30 \cdot 3^{\prime \prime}$. 15. $42^{\circ} 12^{\prime} 39^{\prime \prime}$. 16. $47^{\circ} 30^{\prime} 16^{\prime \prime}$. 17. $15^{\circ} 21^{\prime} 31^{\prime \prime}$ or $164^{\circ} 38^{\prime} 29^{\prime \prime}$. 18. $34^{\circ} 31^{\prime} 23 \cdot 8^{\prime \prime}$ or $145^{\circ} 28^{\prime} 362^{\prime \prime}$. 19. $\cos 61^{\circ} 49^{\prime} 25^{\prime \prime}=$ $\sin 28^{\circ} 10^{\prime} 35^{\prime \prime}, 9 \cdot 6741145$. 20. $9 \cdot 4954522 . \quad 21.10 \cdot 1163715$. $\begin{array}{lll}\text { 22. } 10 \cdot 1336341 . ~ & \text { 23. } 9 \cdot 8681838 . & 24 . \\ 69^{\circ} & 44^{\prime} 27^{\prime \prime} \text {. }\end{array}$ 25. $45^{\circ} 40^{\prime} 42^{\prime \prime}$ or $134^{\circ} 19^{\prime} 18^{\prime \prime}$. 26. $32^{\circ} 43^{\prime} 51^{\prime \prime}$. 27. $\sin x=$ $\frac{1}{\operatorname{cosec} x} ; \therefore L \sin x=-L \operatorname{cosec} x, L \sin y=-L \operatorname{cosec} y ;$ $\therefore L \sin x-L \sin y=-(L \operatorname{cosec} x-L \operatorname{cosec} y)$ 28. When one angle is the complement of the other. $\quad 29 . \sin \dot{A}=$ $\frac{1}{\operatorname{cosec} A} ; \therefore L \sin A-10=-(L \operatorname{cosec} A-10) ; \therefore L \sin A+$ $L \operatorname{cosec} A=20$. 30. By 10^{10}, for $\log 10^{10} \sin A=10+\log$ $\sin A=L \sin A$.

VI. (Page 30).

1. $c=70 \%, A=B=45^{\circ}$. 2. $a=b=169 \cdot 68, B=45^{\circ}$. 3. $b=100, c=141 \cdot 4, B=45^{\circ}$. 4. $a=12, b=20 \cdot 784, B=60^{\circ}$. ธ. $b=17 \cdot 32, c=34 \cdot 64, B=30^{\circ}$. $6 . \quad b=831 \cdot 36, c=960, A=30^{\circ}$. 7. $b=83 \cdot 136, A=30^{\circ}, B=60^{\circ}$. 8. $44^{\circ} 29^{\prime} 53^{\prime \prime}$. 9. $46^{\circ} 23^{\prime} 37^{\prime \prime}$. 10. $60^{\circ} 45^{\prime} 30^{\prime \prime}$. 11. $A=36^{\circ} 52^{\prime} 12^{\prime \prime}, B=53^{\circ} 7^{\prime} 48^{\prime \prime}$. 12. $A=25^{\circ} 22^{\prime} 37^{\prime \prime}, B=64^{\circ} 37^{\prime} 23^{\prime \prime}$. 13. $A=32^{\circ} 16^{\prime} 32^{\circ}, B=57^{\circ} 43^{\prime}-$ $28^{\prime \prime}$. 14. $A=36^{\circ} 31^{\prime} 44^{\prime \prime}, B=53^{\circ} 28^{\prime} 16^{\prime \prime}$. 15. $458 \cdot 25$ \%. 16. $a=2954 \cdot 42, b=520 \cdot 945$. 17. $a=3758 \cdot 77, b=1368 \cdot 08$.
2. $b=174 \cdot 706, c=510 \cdot 805$.
3. $a=13435 \cdot 4, c=13909 \cdot 3$.
4. $b=59 \cdot 8767, c=138 \cdot 24$. 21. $a=117 \cdot 232, b=269 \cdot 616$.
5. $A=35^{\circ} 49^{\prime} 44^{\prime \prime}, b=265 \cdot 932$. 23. $b=2 \cdot 99383, c=6.91201$.
6. $A=36^{\circ} 9^{\prime} 3^{7}, c=119$ 509. 25. $a=\sqrt{(1282)^{2}-(1218)^{2}}=$ $\sqrt{64 \times 2500}=400, B=71^{\circ} 49^{\prime} 10^{\prime \prime}$. 26. $60 \cdot 2593 . \quad 27.442 .546$. 28. $40997^{\circ} 9$. 29. 148.327 . $\quad 30 . ~ b=612, A=34^{\circ} 12^{\prime} 20^{\prime \prime}, B=$ $55^{\circ} 47^{\prime} 40^{\prime \prime} .31 . ~ b=163 \cdot 5614, c=205 \cdot 2519$. $32 . b=12, A=$ $22^{\circ} 37^{\prime} 11^{\prime \prime}, B=67^{\circ} 22^{\prime} 49^{\prime \prime}$. 33. $b=141, A=82^{\circ} 41^{\prime} 44^{\prime \prime}, B=$ $7^{\circ} 18^{\prime} 16^{\prime \prime}$. $34.28^{\circ} 4^{\prime} 20^{\prime}$. Divide triangle into two rightangled triangles. $35.19^{\circ} 11^{\prime} 18^{\prime \prime}$. 36. $96^{\circ} 22^{\prime} 42^{\prime \prime}$. 37 . Triangle is isosceles, and may be divided into right-angled triangles. $31^{\circ} 5^{\prime} 32^{\prime \prime}, 74^{\circ} 27^{\prime} 14^{\prime \prime}, 74^{\circ} 27^{\prime} 14^{\prime \prime}$. $38.72^{\circ} 32^{\prime} 33^{\prime \prime}$. 39. $61^{\circ} 55^{\prime} 39^{\prime \prime}$. 40. 8.988. $41 \quad 17 \cdot 867 ; \mathrm{OD}=24\left(\cos 25^{\circ}\right)^{3}$. 42. $152 \cdot 62$. 43. 905.98 ; $36 \sin 64^{\circ}=$ altitude. 44. 6.882 . 45. $939 \cdot 7$ in. 46. $82.904 \mathrm{in} . ; 8 \sin .56^{\circ}=$ altitude. 47. By Geometry we may shew that its area is equal to that of a triangle whose sides are the diagonals and included angle same as theirs, $92 \cdot 72 \mathrm{in} .48$. $669 \cdot 13$ in. $49,44^{\circ}$ or 136°. 50. $26^{\circ} 19^{\prime}$.

VII. (Page 34).

1. 80 ft .2 .87 ft .6 in . $3.40 \cdot 98 \mathrm{ft}$. 4. 72 ft .5 .81 ft . 6. $258+$ yds. $\quad 7.49 \cdot 2 \mathrm{mls}$. $\quad 8.2 .732 \mathrm{mls}$. $9.4 \sqrt{5}, 6 \sqrt{5}$. 10. 153.3 ft .
2. $80 \cdot 58 \mathrm{ft}$.
3. $193 \cdot 50 \mathrm{ft}$. $13.152 \cdot 674 \mathrm{ft}$.
4. $81 \cdot 611 \mathrm{ft}$. $15.49^{\circ} 10^{\prime}$. 16. 1097.77 ft . 17. $421 \cdot 99 \mathrm{jds}$. 18. 89.9069 ft . 19. $124 \cdot 4 \mathrm{ft}$. 20. $278 \cdot 18 \mathrm{ft}$. 21.93 .97 ft . 22. 3 min. 20 seconds, $36^{\circ} 52^{\prime} 12^{\prime \prime}$. 23. 7^{\prime} nearly. 24. $233 \cdot 2 \mathrm{ft}$. 25. $715 \cdot 93 \mathrm{ft}$.

X. (Page 44).

4. If A lie between 0° and $135^{\circ} \cos A+\sin A=+\sqrt{1+\sin 2} A$; between 0° and $45^{\circ}, \cos A-\sin A=+\sqrt{1-\sin 2 A}$; between 45° and $135^{\circ}, \cos A-\sin A=-\sqrt{1-\sin 2} \bar{A} ;$ between 135° and $180^{\circ}, \cos A \pm \sin A=-\sqrt{1 \pm \sin 2 A}$. 5. $\sqrt{2} \sin \left(45^{\circ}-A\right)$
$=\sqrt{2}\left(\frac{1}{\sqrt{2}} \cos A-\frac{1}{\sqrt{2}} \sin A\right)=\ldots \quad$ 个. $=\left(\cos ^{2} \alpha+\sin ^{2} a\right)$ $\left(\cos ^{2} \alpha-\sin ^{2} \alpha\right)=\ldots \quad 13 .=\sin \left(\frac{3}{2} A-\frac{1}{2} A\right)+\sin \left(\frac{3}{2} A+\right.$ $\left.\frac{1}{2} A\right)=\ldots \quad 15 .=\frac{\cos (2 A-A)-\cos (2 A+A)}{\sin (2 A+A)-\sin (2 A-A)}=\ldots$
5. $=\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta}=\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\sin \theta \cos \theta}=\ldots$
$26 . \quad=\frac{1+\cos 2 \theta}{\sin 2 \theta}=\frac{2 \cos ^{2} \theta}{2 \sin \theta \cos \theta}=\ldots$
6. $=\frac{\cos ^{2} A-\sin ^{2} A}{(\cos A+\sin A)^{2}}=\ldots$
7. $9 \cdot 7167008$.
8. $10 \cdot 3648522$.

XI. (Page 46).

47. 0° or 30°. 48. 20° or 90°. 49. 0° or 30°. 50. Equation equivalent to $\sin 8 x+\sin 2 x=\sin 16 x+\sin 2 x$; thence $x=0$ or $7 \frac{1}{2}^{\circ}$.

XII. (Page 51).

3. $\frac{a}{c}-\frac{b}{c}=\sin A-\sin B=2 \cos \frac{1}{2}(A+B) \sin \frac{1}{2}(A-B)=\ldots$ 5. $\left(\frac{a}{c}+1\right) \sin \frac{B}{2}=(\cos B+1) \sin \frac{B}{2}=2 \cos ^{2} \frac{B}{2} \sin \frac{B}{2}=$ $\sin B \cos \frac{B}{2}=\frac{b}{c} \cos \left(45^{\circ}-\frac{A}{2}\right)$.
4. $\frac{2 a}{b+c-a}=$ $\frac{2 \sin A}{\sin B+1-\sin A}=\frac{2 \sin A}{\cos A+1-\sin A}=\frac{4 \sin \frac{1}{2} A \cos \frac{1}{2} A}{2 \cos ^{2} \frac{1}{2} A-2 \sin \frac{1}{2} A \cos \frac{1}{2} A}$ $=\frac{2 \cot \frac{1}{2} A}{\cot \frac{1}{2} A-1}=\& c . \quad$ 11. $\sin ^{2} \frac{1}{2} \cdot A=\frac{1}{2}(1-\cos A) . \quad 13$. $2(a+b) \sin ^{2} \frac{1}{2} C=a+b-(a+b) \cos C=b \cos C+c \cos B+a$ $\cos C+c \cos A-(a+b) \cos C=\& c$. 20. True if $\frac{\sin B}{\cos B}=$
$\sin B \sin \mathrm{C}$
$\overline{\sin A-\sin B \cos C}$
$+a \cos B \cdot \frac{b}{\sin B}$.
5. True if $c \cdot \frac{c}{\sin C}=b \cos A \cdot \frac{a}{\sin A}$

$$
\text { a sill } ?, \quad a \quad \sin A
$$

$$
\frac{2 \cos \frac{1}{2}(B+C) \sin \frac{1}{2}(B-C)}{2 \cos \frac{1}{2}(B+C) \sin \frac{1}{2}(B+C)}=\& c . \quad \text { 31. Reduces to } a^{2}+b^{2}
$$

$$
=c^{2} \text {. 32. For then perp. bisects base. 35. Condtn. reduces }
$$ to $\left(c^{2}-a^{2}+a b\right)(a-b)=0$.

XIII. (Page 63).

1. 30° or 150°. 2. 45° or 135°. 3. $A=90^{\circ}, B=30^{\circ}$. 4. 45°. 5. 30°. 6. No solution. 7. $7 \cdot 89142$. 8. $47 \cdot 1915$. 9. $379 \cdot 5003$. 10. $115^{\circ} 22^{\prime} 36^{\prime \prime}$.
2. $50^{\circ} 28^{\prime} 44^{\prime \prime}$.
3. $55^{\circ} 46^{\prime} 16^{\prime \prime}$.
4. $A=117^{\circ} 19^{\prime} 11^{\prime \prime}, B=2^{\circ} 40^{\prime} 49^{\prime \prime}$. 14. $A=119^{\circ} 26^{\prime} 51 \cdot 3^{\prime \prime}$, $B=5^{\circ} 33^{\prime} 8 \cdot 7^{\prime \prime} . \quad$ 15. $A=69^{\circ} 10^{\prime} 10^{\prime \prime}, B=46^{\circ} 37^{\prime} 50^{\prime \prime}$. 16. $162 \cdot 3358$. 17. $32^{\circ} 57^{\prime} 8^{\prime \prime} . \quad$ 18. $A=71^{\circ} 33^{\prime} 15^{\prime \prime}, B=$ $60^{\circ} 2^{\prime} 45^{\prime \prime}, c=67.502$; for latter part use $\frac{c}{a+b}=\frac{\sin \frac{1}{2} C}{\cos \frac{1}{2}(A-B)}$. 19. $78^{\circ} 19^{\prime} 24^{\prime \prime}$ or $101^{\prime \prime} 40^{\prime} 36^{\prime \prime}$. 20. 10.6816. 21. $A=56^{\circ} 15^{\prime} 4^{\prime \prime}$, $B=59^{\circ} 51^{\prime} 10^{\prime \prime}, C=63^{\circ} 53^{\prime} 46^{\prime \prime}$. \quad 22. $A=6^{\circ} 1^{\prime} 53 \cdot 9^{\prime \prime}, B=$ $108^{\circ} 58^{\prime} 61^{\prime \prime}$. 23. $62^{\circ} 51^{\prime} 33^{\prime \prime}$ or $117^{\circ} 8^{\prime} 27^{\prime \prime} . \quad 24 . \quad b=226 \cdot 63$, $c=208 \cdot 17 . \quad 25 . A=84^{\circ} 54^{\prime}, B=69^{\circ} 20^{\prime}, C=25^{\circ} 46^{\prime}$. 26.32 .412 ; in latter part use formulain ans. to 18. 27. $62^{\circ} 22^{\prime} 50$, or $117^{\circ} 37^{\prime} 10^{\prime \prime}$. \quad 28. 220.999 . 29. $58^{\circ} 10^{\prime} 44^{\prime \prime}$. 30. $A=$ $47^{\circ} 50^{\prime}, B=57^{\circ} 10^{\prime} . \quad 31.7^{\circ} 32^{\prime} 31^{\prime \prime} . \quad 32 . \quad a=88 \cdot 4552, b=$ 108.506. 33. $145^{\circ} 37^{\prime} 30^{\prime \prime}$. 34. $A=168^{\circ} 27^{\prime} 25^{\circ} 4^{\prime \prime}, B=4^{\circ} 55^{\prime} 10 \cdot 6^{\prime \prime}$. 35. $B=17^{\circ} 6^{\prime} 45^{\prime \prime}, C=133^{\circ} 2^{\prime} 15^{\prime \prime}$. 36. $82^{\circ} 10^{\prime} 49^{\prime \prime}, 50^{\circ} 24^{\prime} 11^{\prime \prime}$. 37. $B=23^{\circ} 8^{\prime} 33^{\prime \prime} C=32^{\circ} 17^{\prime} 27^{\prime \prime}$. 38. $A=72^{\circ} 30^{\prime}, B=$ $48^{\circ} 30^{\prime}, c=85^{\circ} 718$. 39. $B=53^{\circ} 52^{\prime} 36^{\prime \prime}$, or $126^{\circ} 7^{\prime} 24^{\prime \prime} ; C=$ $84^{\circ} 57^{\prime} 24$, or $12^{\circ} 42^{\prime} 36^{\prime \prime}$. 40. $A=129^{\circ} 22^{\prime} 28^{\prime \prime}, B=14^{\circ} 37^{\prime} 32^{\prime \prime}$.
XIV. (Page 68).
5. 120°. 2. 159.0643 . 3. $132^{\circ} 34^{\prime} 34^{\prime \prime}$. 4. $69^{\circ} 10^{\prime} 10^{\prime \prime}$, $46^{\circ} 37^{\prime} 50^{\prime \prime}$. 5. $116^{\circ} 33^{\prime} 54^{\prime \prime}, 26^{\circ} 33^{\prime} 54^{\prime \prime}$. 6. $B=53^{\circ} 27^{\prime} 20^{\prime \prime}$ or $126^{\circ} 32^{\prime} 40^{\prime \prime}, C=81^{\circ} 32^{\prime} 40^{\prime \prime}$ or $8^{\prime} 27^{\prime} 20^{\prime \prime}$. 7. $3652 \cdot 28$. 8. $82^{\circ} 49^{\prime} 10^{\prime \prime} . \quad$ 9. $76^{\circ} 47^{\prime} 2^{\prime \prime}, 49^{\circ} 12^{\prime} 58^{\prime \prime}$. 10. $66^{\circ} 14^{\prime} 38^{\prime \prime}$, $50^{\circ} 45^{\prime} 22^{\prime \prime}$. 11. $80^{\circ} 30^{\circ}$ or $99^{\circ} 30^{\prime}$. 12. 86.3218 . 13. $41^{\circ} 24^{\prime} 34^{\prime \prime}$.
6. $168^{\circ} 27^{\prime} 25^{\prime \prime}, 4^{\circ} 55^{\prime} 11^{\prime \prime}$. 15. $71^{\circ} 44^{\prime} 30^{\prime \prime}, 48^{\circ} 15^{\prime} 30^{\prime \prime}$.
7. $A=34^{\circ} 27^{\prime}, B=100^{\circ} 33^{\prime}, b=173 \cdot 7883$. 17. $431 \cdot 609$.
8. $117^{\circ} 38^{\prime} 45^{\prime \prime}, 27^{\circ} 38^{\prime} 45^{\prime \prime}$. 19. $70^{\circ} 53^{\prime} 36^{\prime \prime}, 60^{\circ}, 49^{\circ} 6^{\prime} 24^{\prime \prime}$.
9. $66^{\circ} 22^{\prime} 45^{\prime \prime}, 53^{\circ} 37^{\prime} 15^{\prime \prime}$.

XV. (Page 69).

1. $110 \cdot 5,111$. 2. $53^{\circ} 25^{\prime}$. 3. $429 \cdot 6$. 4. $75^{\circ} 23^{\prime}$ or $104^{\circ} 37^{\prime}$ 5. $78^{\circ} 7^{\prime}$ or $101^{\circ} 53^{\prime}$. 6. $62^{\circ} 20^{\prime}, 17^{\circ} 10^{\prime}$. 7. $62^{\circ} 51^{\prime}$ or $117^{\circ} 9^{\prime}$. 8. $60^{\circ} 45^{\prime}, 39^{\circ} 15^{\prime} . \quad 9.67^{\circ} 19^{\prime}$ or $112^{\circ} 41^{\prime}$. 10. $97,76.6$. 11. $85^{\circ} 50^{\prime}, 51^{\circ} 36^{\prime}, 42^{\circ} 34^{\prime}$. $12.60^{\circ}, 45^{\circ}$. 13. $22 \cdot 66,24 \cdot 9$. 14. $104^{\circ} 30^{\prime}, 46^{\circ} 34^{\prime}, 28^{\circ} 56^{\prime}$. 15. $829 \cdot 6$. 16. $71^{\circ} 22^{\prime}$, $70^{\circ} 30^{\prime}, 38^{\circ} 8^{\prime}$. 17. $56^{\circ} 30^{\prime}, 51^{\circ} 16$. 18. $37^{\circ} 20^{\prime}, 93^{\circ} 10^{\prime}, 49^{\circ} 30^{\prime}$. 19. $69^{\circ} 20^{\prime}$. 20. $642 \cdot 9,866$.
XVII. (Page 75).
$\begin{array}{llll}\text { 1. } 6 \cdot 496 & \text { 2. } 14 \cdot 69 & \text { 3. } 1897 & \text { 4. } 95523 \cdot 5 \text {, or } 95520\end{array}$
if four-figure tables be used. 6. For $\tan \frac{1}{2} A=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$.
2. $\sqrt{s(s-a)(s-b)(s-c)}=\frac{1}{4} \sqrt{\left(a^{2}+b^{2}+c^{2}\right)^{2}-2\left(a^{4}+b^{4}+c^{4}\right)}$, which use. 13. For p, q, r, substitute $\frac{a}{2 \text { area }}, \frac{b}{2 \text { area }} \frac{c}{2 \text { area }}$. 14. Readily obtained by using 22 of Ex. XIL. 15. $\sin 2 A+$ $\sin 2 B+\sin 2 C=4 \sin A \sin B \sin C$, - obtained in same way as 43 of Ex. XI. 16. $\sin A+\sin B+\sin C=4 \cos \frac{A}{2}$ $\cos \frac{B}{2} \cos \frac{C}{2},-43$ of Ex. XI. 17. For $\cot A, \& \mathrm{dc}$, substitute $\frac{b c \cos A}{2 \text { area }}$, \&c., and employ 12 of Ex. XII. 18. Let $A B C$ be the triangle, and O the centre of the circle; then $B O C$ at centre $=2 A ; \therefore \sin A=\frac{\frac{1}{2} a}{\text { radius }}$. 19. If O be centre of circle, area $A B C=O A B+O B C+O C A=\frac{1}{2} r c+\frac{1}{2} r a+\frac{1}{2} r b$ 20. If O be centre of escribed circle touching $B C$, area $A B C$ $=O A B+O A C-O B C=\frac{1}{2} r c+\frac{1}{2} r b-\frac{1}{2} r a=r(s-a)$.

EXAMINATION PAPERS.

Senior Matriculation: 1874

1. §§1,5. 2. $10.001541 ; 10255513 ; \tan ^{-1} \frac{382}{201}$ means the angle whose tangent is $\frac{362}{2010}$, so that $\tan \tan ^{-1} \frac{362}{201}=\frac{362}{201}$; -096679. 3. $80279 ; 39006^{\circ} ; \sin 19^{\circ} 12^{\prime} 33^{\prime \prime} ; \cos 4^{\circ} 49^{2} 22^{\prime \prime}$. 4. $\operatorname{Sin} 19^{\circ} 12^{\prime} 39^{\prime} ; 8.0274$. 5. §17. $\sin A=\sqrt{1-\cos ^{2} A} ; \tan A$ $=\frac{\sqrt{1-\cos ^{2} A}}{\cos A} ; \& \mathrm{c}$.
2. § 36 and Ex. VIII. $\sin 105^{\circ}=$ $\sin \left(45^{\circ}+60^{\circ}\right)=\frac{1+\sqrt{3}}{2 \sqrt{2}} ; 3 ; \frac{1+\sqrt{3}}{2 \sqrt{2}} \cdot$ 7. §38. 8. (1)§34. (2). § $40 . \quad$ (3). § $41 . \quad$ (4). § $48 . \quad$ 9. (1). § $43 . \quad$ (2). § 45. (3). § 44.
3. (1). $38^{\circ} 25^{\prime} 18^{\prime \prime}$
(2). $100 \cdot 456, \cdot 802$.
4. $\frac{5}{\sqrt{3}}$, $\frac{10}{3 \sqrt{3}}$. 12. A circle may be described about $A B D C$. Knowing the area and $A C, B D$, we may find the perp. distance bet. $A C$, $B D$. We may then proceed in dif. ways, e.g., $A B^{2}=$ (perp. $)^{2}+$ $\left\{\frac{1}{2}(B D \sim A C)\right\}^{2}$; then find $B C$, and thence angle $C A B$.

Senior Matriculation: 1875.

$\frac{2 \sin ^{2} \frac{1}{2} x+2 \sin \frac{1}{2} x \cos \frac{1}{2} x}{2 \cos ^{2} \frac{1}{2} x+2 \sin \frac{1}{2} x \cos \frac{1}{2} x}=\& c . \quad$ 9. (1). $a=388 \cdot 26, b=$ $548 \cdot 90, B=54^{\circ} 43^{\prime} 35^{\prime \prime} . \quad$ (2). $b=462 \cdot 75, c=498 \cdot 99, C=$ $69^{\circ} 13^{\prime} 43^{\prime \prime}$. 10. (1). $r=\frac{\text { area }}{s}$ and $\tan \frac{1}{2} A \tan \frac{1}{2} B \tan \frac{1}{2} C=$ $\frac{1}{s^{2}} \sqrt{s \overline{s-a} \overline{s-b} \overline{s-c}}=\frac{\text { area }}{s^{2}} \cdot$ (2). $R=\frac{a b c}{4 \times \operatorname{area}}$, and $\sec \frac{1}{2} A$ $\sec \frac{1}{2} B \sec \frac{1}{s} C=\frac{a b c}{s \sqrt{s(s-a)(s-b)(s-c)}}=\frac{a b c}{s \times \text { area }}$.

First Year: $18 \% 6$.

1. § 4. 8. 2. § 5. $4 \cdot 1645,-774$. $9 \cdot 84949,10 \cdot 23856$, 9.93753 . 3. Thus $L \sin 120^{\circ}=L \sin 60^{\circ}=L \cos 30^{\circ} . a$ must of course be negative ; we may however neglect the sign, find numerical value of a, and prefix -. $=2 \sin \frac{1}{2} A \cos \frac{1}{2} A$ $\frac{\sin \frac{1}{2} A}{\cos \frac{1}{2} A}=\tan \frac{1}{2} A\left(2 \cos ^{2} \frac{1}{2} A-1\right)=\tan \frac{1}{2} A \cos A$.
$\sqrt{\frac{1+\sin A}{1-\sin A}}=\sqrt{\frac{(1+\sin A)^{2}}{1-\sin ^{2} A}}=\frac{1+\sin A}{\cos A}=$ \&c. \quad 万. $\tan 30^{\circ}$ $=\frac{x}{x+150} ; \therefore x=\frac{150}{\sqrt{3}-1}$ 6. $52^{\circ} 15^{\prime} 37^{\prime \prime}$. Produce stick (if necessary) to meet horizontal plane through end of shadow; and data are evidentlysufficient to determine parts of trianglessofound. 7. (3). $\cos 2 A \tan \left(45^{\circ}-A\right)=\left(\cos ^{2} A-\sin ^{2} A\right) \frac{1-\tan A}{1+\tan A}$ $=\& c$. (4). $\frac{\cos (2 \theta-\theta)+\cos (2 \theta+\theta)}{\sin ()+\sin ()}=\tan 2 \theta=\& c$.
2. (4). True if $b \sin A=\frac{c}{\cot A+\cot B}=\frac{c \sin A \sin B}{\sin (A+B)}$, if b $=\frac{c \sin B}{\sin C} . \quad$ 9. (1). $A=26^{\circ} 22^{\prime} 30^{\prime \prime}, C=29^{\circ} 57^{\prime} 30^{\prime \prime}$. (2) Tri. angle isosceles $a=35 \check{5}^{\circ} 22, B=C=33^{\circ} 40^{\prime}$, (3). 516.23 . 10. (1). $1=3 \sin \theta ; \theta=19^{\circ} 28^{\prime} 17^{\prime \prime}$. (2). Eq. reduces to $1+$ $\sin \theta=\cos \theta+1-\sin \theta$, or $\tan \theta=\frac{1}{2} ; \quad \therefore \theta=26^{\circ} 33^{\prime \prime} 54^{\prime}$. 11. True if $2-2 \sin A \cos B-2 \cos A \sin B>\cos ^{2} A+\sin ^{2} B$ $-2 \cos A \sin B$, if $2-2 \sin A \cos B>1-\sin ^{2} A+1-$ $\cos ^{2} B$, if $\left(\sin A-\cos ^{2} B\right)^{2}>0$.

First ${ }^{-}$Year: 187%.

1. $8 \% 17,21$.
2. $\log 2 \frac{1}{2}=\log \frac{10}{2^{2}}=39794 ; 35218$; $\overline{1} \cdot 23265$, last no. $=\left(\frac{2 \times 3^{4}}{10^{4}}\right)^{\frac{3}{7}}$.
3. 46961 ; only logs of 2 and 3 are used until last operation.
4. (1) In left-hand side of identity, for A put its equivalent $\frac{1}{2} \overline{A+B}+\frac{1}{2} \overline{A-B}$, and for
$B, \frac{1}{2} \overline{A+B}-\frac{1}{2} \overline{A-B}$. (2). $\cot A+\operatorname{cosec} A=\frac{\cos A+1}{\sin A}=$ $\frac{2 \cos ^{2} \frac{1}{2} A}{2 \sin \frac{1}{2} A \cos \frac{1}{2} A}=$. (3). $\sin A=\sin (3 A-2 A) ; \sin 5 A$ $=\sin (3 A+2 A), \& c . ; \quad \therefore$ left-hand side of identity $=$ $\frac{\sin 3 A+2 \sin 3 A \cos 2 A}{\cos 3 A+2 \cos 3 A \cos 2 A}=\ldots \quad$ (4). Right-hand side $=$ $\frac{\cos ^{2} \frac{A}{2}-\sin ^{2} \frac{A}{2}}{\cos ^{2} \frac{A}{2}+\sin ^{2} \frac{A}{2}}=\cos A$.
5. 838. $\cos 3 A=4 \cos ^{3} A-$
$3 \cos A=2 \sin A \cos A ; \therefore \cos A=0$, or $A=\frac{\pi}{2}$ or any odd multiple of $\frac{\pi}{2}$; also $4 \cos ^{2} A-3=2 \sin A ; \therefore \sin A=$ $\frac{ \pm \sqrt{5}-1}{4}$, or $\sin \left\{n \pi+(-1)^{n} A\right\}=\frac{ \pm \sqrt{5}-1}{4}$, giving other values of A, n being any integer. $\quad \cos A= \pm \sqrt{\frac{5 \pm \sqrt{5}}{8}}$. 6. \% 40. (2). $\therefore c^{2}<a^{2}+b^{2}+2 a b ; c<a+b$. 7. \% 41, \% 48 . (3). $a^{2} \sin ^{2} B=b^{2} \sin ^{2} A$; $\therefore a^{2} \cos ^{2} B=a^{2}-b^{2} \sin ^{2} A$; \therefore c $=b \cos A+a \cos B=b \cos A \pm \sqrt{a^{2}-b^{2} \sin ^{2} A}$. 8. $\tan \frac{1}{2}$ (angle opp. gst. side) $=1 ; \therefore$ triangle is right-angled, area $=210$, angle req ${ }^{\text {d }} .=90^{\circ}$. 9. $\therefore a^{2}=b^{2}+c^{2}+b c$; but $a^{2}=b^{2}+c^{2}$ $-2 b c \cos A ; \therefore \cos A=-\frac{1}{2}$, or $A=120^{\circ}$. 10. See Chambers' Tables,-"Explanation of the Tables," If angle be near 90°, the method is same as in case of small angle ; thus $\tan a=\frac{1}{\tan \left(90^{\circ}-a\right)}$. The rules may readily be proved by one acquainted with Euler's Series for \sin and cos. Thus if a be the small angle expressed in circular measure, $\sin a=a-$ $\frac{a^{3}}{\underline{13}} ; \frac{1}{\sec ^{\frac{3}{3}} \alpha}=1-\frac{a^{2}}{\underline{13}} ; \therefore \sin a=\frac{a}{\sec ^{\frac{1}{3}} a}$, or $L \sin a=\log a^{\prime \prime}+$ $\log \frac{\pi}{648000}+10-\frac{1}{3}(L \sec a-10)$, if $a^{\prime \prime}$ be the number of seconds in α; and $\therefore a=\frac{\pi}{180 \times 6 \overline{0} \times 60} \times a^{\prime \prime} . \quad$ 11. $A C D=$ $109^{\circ} 28^{\prime} 18^{\prime \prime}, A=38^{\circ} 56^{\prime} 52^{\prime \prime}=B ; \quad \therefore B D C=70^{\circ} 31^{\prime} 26^{\prime \prime}=B C D$; $\therefore B C=90$, and $A B=140$. (2). Let $D N$ be the perp. from D on $A B$. Then from Euclid, B. II., 12, $C N=20, \therefore D N=$ $40 \sqrt{2} ; \quad \therefore B N=70$, and $A B=140$.

Junior Matriculation: 187\%.

1. § 1. § 5. From definition $a^{\log _{a} N}=N, x^{\log _{z} a}=a ; \quad \therefore$ $\log N \log a \quad \log _{b} N \log a$
$x^{a} \quad{ }^{x}=N$; similarly $x^{b} \quad{ }^{x}=N$; \therefore \&c. 2. Mantissas same for same sequence of figures and characteristic determined by inspection. §4. 3. 87. By making mantissas always positive, same sequence of figures always has same mantissa. 4. $\overline{3} \cdot 5179009$. 3295.357. 0049353 . 5. Ex. VIII. Ex. VIII. $=(\cos A+\cos 3 A)(\cos A-\cos 3 A)=2 \cos 2 A$ $\cos A \times 2 \sin 2 A \sin A=\sin 4 A \sin 2 A$. 6. §35. §41. § 45. $\frac{c}{a+b}=\frac{\sin C}{\sin A+\sin B}=\frac{\sin (A+B)}{\sin A+\sin B}$; substitute and reduce. 7. (1.) Triangle is right-angled, $-B=53^{\circ} 7^{\prime} 48^{\prime \prime}$, $A=36^{\circ} 52^{\prime} 12^{\prime \prime} . \quad$ (2). $A=101^{\circ} 32^{\prime} 14^{\prime \prime}, B=44^{\circ} 24^{\prime} 56^{\prime \prime}, C=$ $34^{\circ} 2^{\prime} 50^{\prime \prime}$. (3). $A=152^{\circ} 34^{\prime} 24^{\prime \prime}, B=14^{\circ} 49^{\prime} 36^{\prime \prime}$. 8. $\frac{c}{a+b}$ $=\frac{\sin C}{\sin A+\sin B}=\frac{\cos \frac{1}{2}(A+B)}{\cos \frac{1}{2}(A-B)}=\frac{\sin \frac{1}{2} C}{\cos \frac{1}{2}(A-B)}$, from which if $a+b, c, C$ be given, $A-B$ may be found, and thence A and $B . \quad 9 \quad a-b=b-c ; \therefore \sin A-\sin B=\sin B-\sin C$; $\therefore \sin \frac{1}{2} C \sin \frac{1}{2}(A-B)=\sin \frac{1}{2} A \sin \frac{1}{2}(B-C) ; \therefore \tan \frac{1}{2} C$ $\left(\tan \frac{1}{2} A-\tan \frac{1}{3} B\right)=\tan \frac{1}{2} A\left(\tan \frac{1}{2} B-\tan \frac{1}{2} C\right) ; \& c$. 10. If x be this radius, $\left(r^{\prime}+x\right)^{2}=\left(r+r^{\prime}\right)^{2}+(r+x)^{2}-2\left(r+r^{\prime}\right)$ $(r+x) \cos \frac{1}{2} \theta ; \therefore x=\frac{r\left(r+r^{\prime}\right)\left(1-\cos \frac{1}{2} \theta\right)}{r^{\prime}\left(1+\cos \frac{1}{2} \theta\right)-r\left(1-\cos \frac{1}{2} \theta\right)}=\& \mathrm{cc}$.

First Year: 1878.

1. tan and cot may have any value; sec and cosec cannot lie bet. 1 and -1. versin $A=1-\cos A=2 \sin ^{2} \frac{1}{2} A$. 2. Radius is unity. 3. $\S 36$. (2). $2 \sin \theta= \pm \sqrt{1+\sin 2 \theta} \mp \sqrt{1-\sin 2 \theta}$, $\sin \theta= \pm \sqrt{\frac{1}{2}(1-\cos 2 \theta)}$. (3). True if $2\left(1-\cos \frac{1}{2} A\right)=$ $2-2\left(\cos A \cos \frac{1}{2} A+\sin A \sin \frac{1}{2} A\right)$, if \&c. 4. From $\log _{10} N$ $=\log _{e} N \div \log _{e} 10$, where e is the base of the Napierian system. Let $b=a^{x}, c=b^{y}, \ldots m=l^{z} ; \therefore m=a^{x y \ldots z}, \log _{a} m$ $=x y \ldots z=\& c \quad$ 5. (1). §48. (2). Area $=\frac{1}{2} c \sin B$ $\left(c \cos B \pm \sqrt{\left.b^{2}-c^{2} \sin ^{2} B\right)}\right.$. If x be side and θ its inclination to the line, $\frac{a}{\sin \theta}=x=\frac{b}{\sin (120-\theta)} ; \therefore \frac{a \sqrt{3}}{2 b-a}=\tan \theta=$ $\frac{a}{\sqrt{x^{2}-a^{2}}}$; whence x is found and thence area. 6. (2). $a^{2}+$
$b^{2}=c^{2}$. (3). $\sin C=1 ; \therefore \sin ^{2} C=\sin C=\sin (A+B)=$ $\sin A \cos B+\cos A \sin B=\sin ^{2} A+\sin ^{2} B$. 7. (1). $A=$ $8^{\circ} 39^{\prime}, B=24^{\circ} 51^{\prime}, C=146^{\circ} 30^{\prime}$. (2). $A=9^{\circ} 13^{\prime}, B=24^{\circ} 17^{\prime}$. 8. § 22 . Equivalent to shewing that $\sec A \sec \frac{1}{2} A \operatorname{cosec} \frac{1}{2} A$ $=4 \operatorname{cosec} 2 A$. 9. $x=\frac{6+2 \log 2}{1-7 \log 2}$. \quad (2). 35730 . 10. (1). $=\cos ^{2} A \cos ^{2} B-\sin ^{2} A \sin ^{2} B=\& c$
(2). § 39.
(3). See Ex. XI., 43. (4). $\sin A+\sin 2 A-\sin 3 A=2 \sin \frac{3}{2} A \cos \frac{1}{2} A$ $-\sin 3 A=2 \sin \frac{3}{2} A\left(\cos \frac{1}{2} A-\cos \frac{3}{2} A\right)=\& \mathrm{Ec}$.
(5). $=$

$$
\begin{aligned}
& \frac{\cos A(1+\cos B)-\sin B(1+\sin A)}{\cos B(1+\cos A)-\sin A(1+\sin B)} \\
& =\frac{1+\cos B}{\cos B}-\tan B \cdot \frac{1+\sin A}{\cos A} \\
& \frac{1+\cos A}{\cos A}-\tan A \cdot \frac{1+\sin B}{\cos B}
\end{aligned}
$$

which is at once convertible into an expression involving only $\tan \frac{1}{2} A, \tan \frac{1}{2} B$. 11. (a). (3). For $\cos \frac{1}{2} A \cos \frac{1}{2} B \cos \frac{1}{2} C=$ $\frac{s}{a b c} \sqrt{s(s-a)(s-b)(s,-c)}$. (4). In (2) for s put $\frac{1}{\frac{1}{2}}(a+b+c)$.
(b). § 40.
(c). $\mathrm{By} \S 45, \frac{1}{\frac{1}{2}}(A-B)=\varphi$; and $\frac{c}{a+b}=$ $\frac{\sin C}{\sin A+\sin B}=\frac{2 \sin \frac{1}{2} C \cos \frac{1}{2} C}{2 \sin \frac{1}{2}(A+B) \cos \frac{1}{2}(A-B)}=\& \mathrm{c}$. (d). By $\S 45, \frac{c+b}{c-b} \tan \frac{A}{2}=\cot \frac{1}{2}(C-B)$, and $\tan \left(\frac{A}{2}+B\right)=$ $\cot \frac{1}{2}(C-B)$, if $\cos \left(\frac{1}{2} A+B+\frac{1}{2} C-\frac{1}{2} B\right)=0$. 12. Radius of inscribed circle $=\frac{S}{s}$; radii of escribed circles $=\frac{S}{s-a}, \quad \& c$. ; radius of circumscribed circle $=\frac{a}{2 \sin A}=\frac{a b c}{4 S}$. Product of perpendiculars $=\frac{8 S^{3}}{a b c}=\frac{8}{a b c} \times \frac{a^{3} b^{3} c^{3}}{64 R^{3}}=$.

Junior Matriculation: 1878.

1. (1). See Todhunter's Trigonometry. (2). $\frac{1}{8000 \pi}$ of 360°. The dip of the Horizon is the angle a horizontal line makes with the line drawn from the observer's eye tangent to the earth's surface.
(2). Find $\sin 9^{\circ}, \cos 9^{\circ}$, and then such formulas may be used as $\sin \left(A+9^{\circ}\right)+$ $\sin \left(A-9^{\circ}\right)=2 \sin A \cos 9^{\circ}$, giving $\sin \left(A+9^{\circ}\right)$, since ratios of other angles in formula would be already known.
2. (1). See Ex. VIII.
(2). $\sec A+\tan A=\frac{1+\sin A}{\cos A}=$
$\frac{\cos \frac{1}{\frac{1}{2}} A+\sin \frac{1}{\frac{1}{2} A}}{\cos \frac{1}{2} A-\sin \frac{1}{2} A}=\&$ c. \quad (3). $\frac{\text { vers } A}{\sin A}=\frac{1-\cos A}{\sin A}=$ $\frac{2 \sin ^{2} \cdot \frac{1}{2} A}{2 \sin \frac{1}{3} A \cos \frac{1}{8} A}=\& c$. (4). $x \sin A+y \cos A=1, \frac{y}{x}=\tan$ $\tan ^{3} A ; \therefore x x^{3}{ }_{x}^{y}+y=\sqrt{1+\left(\frac{y}{x}\right)^{\frac{2}{3}}}$. 4. (1). §48. (2). §35. (3). §41. (4). Obtained from formula of $\S 40$. 5. (1). $₹ \xi 1,3$, (2): \& 3. (3). $\overline{1} \cdot 6933116, \overline{1} \cdot 5644372$. 6. (1). 子 8. (2). 7235790. $\cdot 5997802, \cdot 4978065, \cdot 4200741$. 7. Area $=\frac{1}{1} a b \sin 120^{\circ}+\cdots$ $=\& c$. 8. \% 45. $A=44^{\circ}, B=66^{\circ}, c=1035 \cdot 43$. 9. $R=$ $\frac{a}{2 \sin A}$. The radius of the circle may be shewn to be $\left(\frac{b \cos \frac{1}{2} C}{\cos \frac{1}{2} B}+c \frac{\cos \frac{1}{2} B}{\cos \frac{1}{2} C}\right) \div 2 \cos \frac{1}{2} A$, and this may be shewn equal to $\frac{a}{\sin A}$. 10. Let A be top, B bottom of lighthouse ; 0 centre of earth ; $A C$ a tangent to earth's surface. Then $A E^{2}$ $=A B(2 B O+A B)=\frac{h}{5280}\left(8000+\frac{h}{5280}\right)=\frac{8000}{5280} h$, nearly, $-\frac{3}{2} h$ nearly ; or $A E=\sqrt{\frac{2}{3} h}$ miles.

First Year: 1879.

1. \&1. $\log _{10} N=\log _{e} N \div \log _{e} 10$. 2. \% 4. 3. \&5. 4. Diff. for 1 is 25 , for 2 is 50 , $\mathbb{d c} . \quad 2 \cdot 239159$; $0173322 . \quad 5$. $\cdot 00030243,9.937531,10 \cdot 150515 ; \tan 120^{\circ}$ is negative, and \therefore has no \log. 6. (1), (2). \& 21. (3). 836. (4). $\sin n A+\sin (n-2) A$ $=\sin (n-\overline{1 A}+A)+\sin (n-1 A-A)=2 \sin (n-1) A \cos A$. 7. (1), ${ }^{2} 41$. (2). \% 45. (3). Expand and cancel. (4). Ex. XI., 41. 8. (1). $b=1275, C=51^{\circ} 52^{\prime} 12^{\prime \prime}$. (2) $A=52^{\circ} 7^{\prime} 48^{\prime \prime}, B=30, C=$ $96^{\circ} 52^{\prime} 12^{\prime \prime}, c=18+24 \sqrt{3 .}$ 9. z $48 . \quad$ Area $=1200 \sqrt{5}$. $b^{2}+c^{2}=2 l^{2}+\frac{1}{2} a^{2} \& c . ; \therefore a^{2}+b^{2}+c^{2}=\frac{4}{3}\left(l^{2}+m^{2}+\right.$ n^{2}). Also $2 l^{2}+\frac{8}{2} a^{2}=a^{2}+b^{2}+c^{2}=2 m^{2}+\frac{3}{2} b^{2}=2 n^{2}$ $+\frac{3}{2} c^{2}$. Thence we may prove $a^{4}+b^{4}+c^{4}=\frac{18}{9}\left(l^{4}+m^{4}+\right.$ n^{4}). Area $=\frac{1}{4} \sqrt{\left(a^{2}+b^{2}+c^{2}\right)^{2}-2\left(a^{4}+b^{4}+c^{4}\right)}=\frac{4}{3} \cdot \frac{1}{4}$
 of mountain, and x represent height $x^{2}+3 x^{2}=2 B D^{2}+2$ $(1000)^{2} ; \therefore \cot ^{2} 36^{\circ}-2-\left(\frac{1000}{x}\right)^{2}$. Now numerical value of $\cot ^{2} 36^{\circ}$ may be found from given table, and is 1.8944 . Thence $x=3077 \cdot 3$ yards.

Junior Matriculation: 1879.

1. (1). § § $3,4$.
(2). $\overline{1}, \overline{4}, 4$.
(3). $\overline{1}, \overline{2}, 2 ; 0,3, \overline{5}$.
2. $\overline{1} \cdot 56902,90309 . \quad 2 \cdot 9311+$.
3. $9 \cdot 804117,32^{\circ} 30^{\prime} 14^{\prime \prime}$.
4. $\frac{1}{2}, \frac{\sqrt{3}}{2}, \sqrt{2 .} \quad 9.69897,9.93753,10 \cdot 15052$.
5. (1). §§ 31,
6. (2). See Ex. VIII. (3). § 38. (4). True if $\sin A=2 \sin \frac{1}{2} A$ $\cos \frac{1}{2} A$. True if $B A \cdot A C=A B^{2}-2 B D^{2}$, if $\cos A=$ $1-2 \sin ^{2} \frac{1}{2} A$. 6. (1). $\sin 72^{\circ}=2 \sin 36^{\circ} \cos 36^{\circ}=4 \sin 18^{\circ}$ $\cos 18^{\circ} \sin 54^{\circ}$, and $\sin 72^{\circ}=\cos 18^{\circ}, \therefore$ \&c. (2). $\sin 20^{\circ}=$ $\sin 160^{\circ}=2 \sin 80^{\circ} \cos 80^{\circ}=\ldots=8 \sin 20^{\circ} \cos 20^{\circ} \cos 40^{\circ}$ $\cos 80^{\circ}$, and $\cos 60^{\circ}=\frac{1}{2}$. 7. (1). §35. (2). §41. (3). $B D=$ $c \tan A=2 c \frac{\tan \frac{1}{2} A}{1-\tan ^{2} \frac{1}{2} A}=$ \&c. \quad 8. (1). $\sin ^{2} \theta=\cos ^{2} 2 \theta$, $1-\cos 2 \theta=2 \cos ^{2} 2 \theta$, \&c., $\theta=90^{\circ}$ or 30°. (2). First equation reduces to $\sin 2 \theta \sin 2 \psi=\frac{\sqrt{3}}{2} ; \therefore$ from second $\frac{2}{\sqrt{3}} \sin 2 \psi$ $+\sqrt{1-\sin ^{2} 2 \psi}=\frac{2}{\sqrt{3}} . \quad \theta=30^{\circ}, \psi=45^{\circ} ;$ also $\sin 2 \psi=1$, $\sin 2 \theta=\frac{7}{2} \sqrt{ } 3$, impos. $\quad 9 .(1) . b=700, B=68^{\circ} 50^{\circ}$ (2). $C=67^{\circ} 12^{\prime}, a=314 \cdot 16, b=200 . \quad$ 10. Radius $=$ $\frac{\text { area of triangle }}{s} ; \therefore$ area of circle $=\frac{(s-a)(s-b)(s-c)}{s} \times$ $3 \cdot 1416=923 \cdot 23$.

APPENDIX.

$$
\operatorname{SIN}(A+B), \& \mathrm{c}
$$

1. To find the value of $\sin (A+B)$ and $\cos (A+B)$.

Let $B A C$ (Fig. 11) represent the angle A, and $C A D$ the angle Fig. 11. B; then $B A D$ represents $A+B$.

From any point P in $A D$ draw $P M, P Q$ perpendicular to $A B, A C$ respectively. From Q draw $Q R$ perpendicular to $P M$, and $Q N$ perpendicular to $A B$.

Then $\angle Q P R=90^{\circ}-P Q R=R Q A=Q A N=A$.
Now $\sin (A+B)=\sin P A M=\frac{P M}{A P}$

$$
\begin{aligned}
& =\frac{Q N+P R}{A P} \\
& =\frac{Q N}{\cdot} \cdot \frac{\dot{A} \bar{P}}{}+\frac{P R}{\cdot} \cdot \frac{\dot{A} \bar{P}}{} \\
& =\frac{Q N}{A \bar{Q}} \cdot \frac{A Q}{A P}+\frac{P R}{P Q} \cdot \frac{P Q}{A P} \\
& =\sin A \cos B+\cos A \sin B
\end{aligned}
$$

Also $\cos (A+B)=\cos P A M=\frac{A M}{A \bar{P}}$

$$
\begin{aligned}
& =\frac{A N-Q R}{A P} \\
& =\frac{A N}{\cdot} \cdot \frac{\dot{A P}}{A P}-\frac{Q R}{\cdot} \cdot \frac{\dot{A P}}{} \\
& =\frac{A N}{A Q} \cdot \frac{A Q}{A} \frac{Q}{P}-\frac{Q R}{P Q} \cdot \frac{P Q}{A P} \\
& =\cos A \cos B-\sin A \sin B .
\end{aligned}
$$

2. To find the value of $\sin (A-B)$ and $\cos (A-B)$.

Let $B A C$ (Fig. 12) represent the angle A, and $C A D$ the angle Fig. 12. B; then $B A D$ represents $A-B$.

From any point P in $A D$ draw $P M, P Q$, perpendicular to $A B, A C$ respectively. From Q draw $Q R$ perpendicular to $M P$ produced, and $Q N$ perpendicular to $A B$.

Then $\angle Q P R=90^{\circ}-P Q R=C Q R=C A B=A$.

Now $\sin (A-B)=\sin P A M=\frac{P M}{A P}$

$$
\begin{aligned}
& =\frac{Q N-P R}{A P} \\
& =\frac{Q N}{\cdot} \cdot \frac{\dot{A P}}{}-\frac{P R}{\cdot} \cdot \frac{\dot{A P}}{} \\
& =\frac{Q N}{A Q} \cdot \frac{A Q}{A P}-\frac{P R}{P Q} \cdot \frac{P Q}{A P} \\
& =\sin A \cos B-\cos A \sin B .
\end{aligned}
$$

Also $\cos (A-B)=\cos P A M=\frac{A M}{A P}$

$$
\begin{aligned}
& =\frac{A N+Q R}{A P} \\
& =-\frac{A N}{C} \cdot \frac{\dot{A P}}{}+\frac{Q R}{P} \cdot \frac{\cdot}{A P} \\
& =\frac{A N}{A Q} \cdot \frac{A Q}{A P}+\frac{Q R}{P Q} \cdot \frac{P Q}{A P} \\
& =\cos A \cos B+\sin A \sin B .
\end{aligned}
$$

3. In Article 1 we have taken A and B each less than a right angle, and in Article 2 their sum is less than a right angle. The same results, however, are obtained whatever be the magnitudes of A and B.

Fig. 13.
Thus let A and B (Fig. 13) have the magnitudes indicated by the figure, the lettering and construction being the same as in the preceding Article.

$$
\begin{aligned}
& \text { Then } \angle Q P R=90^{\circ}-P Q R=R Q A=Q A N=180^{\circ}-A \text {. } \\
& \text { And } \cos (A-B)=\cos P A B=-\frac{A M}{A P} \\
& =-\frac{A N-Q R}{A P} \\
& =-\frac{A N}{-} \cdot \frac{\dot{A P}}{}+\frac{Q R}{\cdot} \cdot \frac{\dot{A P}}{A P} \\
& =-\frac{A N}{A} \bar{Q} \cdot \frac{A Q}{A \bar{P}}+\frac{Q R}{P Q} \cdot \frac{P Q}{A \bar{P}} \\
& =-\left(\cos 180^{\circ}-A\right) \cos B \\
& +\sin \left(180^{\circ}-A\right) \sin B \\
& =\cos A \cos B+\sin A \sin B .
\end{aligned}
$$

And similarly in any other case.
We may accordingly assume these formulas to hold whatever be the magnitudes of A and B.

LINE-DEFINITIONS OF THE TRIGONOMETRICAL RATIOS.
4. The following definitions of the Trigonometrical Ratios, formerly given by most English writers, but now falling into disuse, are still sometimes referred to.

Fig. 14.
Take any arc $A B$ (Fig. 14), subtending at the centre the angle $A C B$, and draw $B P, A T$ at right angles to $A C$. Let $A T$ meet $C B$ produced in T. Draw $O T^{\prime}, B P^{\prime}$ at right angles to $O C$.

Then $B P$ is called the sine of the angle $A C B$ to radius $C B$, $A T$ is called the tangent, and $C T$ the secant. Also $B P^{\prime}$ (or $C P$), $O T^{*}$ and $C I^{\nu}$, being corresponding lines for the angle $B C O$, which is the complement of $A C B$, are called respectively the cosine, cotangent and cosecant of $A C B . \quad A P$ is called the versed sine of A.

If we take the arc $A b$, greater than one quadrant and less than two, then $b p$ is called the sine, $C p$ the cosine, At the tangent, $O t^{\prime}$ the cotangent, $C t$ the secant, $C t^{\prime}$ the cosecant, and $A p$ the versed sine.

The radius is the whole sine, or sine of 90°.
5. If the radius of the circle be the unit of length, or, as it is expressed, to radius unity, it will be seen that the above definitions exactly coincide with those already given in Article 17. For then each line in the figure will have for its nnmerical value the number of times it contains the radius, that is, the ratio it bears to the radius. Hence to radius unity, the values of the $\operatorname{ratios} \frac{B P}{C B}, \frac{C P}{C B}, \& c .$, i.e., of the sine, cosine, \&c., will be the same as the numerical values of the lines $B P, C P, \& c$. ; in other words, the numerical values of the trigonometrical ratios from the definitions given of them in Article 17, will be precisely the same as the numerical values obtained from the line-definitions given above.
6. The line-definitions explain the origin of the names sine, tangent, \&c.

The name sine, from sinus, bosom, is given to $B P$ as being (half) the string of the arcus, or bow of which $B A$ is half, which is brought up to the breast of the archer in discharging it. The tangent $A T$ is the touching line. The secant $T C$ is the cutting line. The cosine, cotangent and cosecant are so called as being the sine, tangent and secant of the complement.

FORMULAS, \&c.

7. $\log 10=1, \log 1=0, \log 0=-\propto$.
$\log (a b)=\log a+\log b$.
$\log \frac{a}{b}=\log a-\log b$.
$\log a^{n}=n \log a$.
$\log ^{n} \sqrt{ } a=\frac{1}{n} \log a$.
Any trigonometrical ratio of an angle is the co-ratio of the complement.
$\sin A=\frac{1}{\operatorname{cosec} A}, \tan A=\frac{1}{\cot A}, \cos A=\frac{1}{\sec A}, \tan A=\frac{\sin A}{\cos A}$,

$$
\sin ^{2} A+\cos ^{2} A=1
$$

$\sin 30^{\circ}=\frac{1}{2}, \cos 30^{\circ}=\frac{\sqrt{ } 3}{2}, \quad \tan 45^{\circ}=1$.
As the angle changes from 0 to 90°.

```
sin increases from .. 0 to 1;L}\operatorname{sin}\mathrm{ increases from }\propto\propto\mathrm{ to 10
tan..............0..\propto; L tan .......... - \propto..+\infty
sec............... 1..\propto; L sec ........... 10..+\infty
cos decreases ...... 1.. 0; L cos decreases.... 10.. - 
cot ............\propto.. 0; L cot ...........+\propto..-\infty
cosec ...........\propto.. 1; L cosec .......... +\propto.. }1
```

$L \tan 45^{\circ}=10=L \cot 45^{\circ}$.

In a right-angled triangle, C the right angle,
$a=c \sin A ; a=b \tan A ; b=c \cos A ; b=a \cot A ; c=b \sec A ;$ $c=a \operatorname{cosec} A$.
$\sin A=\sin \left(180^{\circ}-A\right), \quad \operatorname{cosec} A=\operatorname{cosec}\left(180^{\circ}-A\right) ;$
$L \sin A=L \sin \left(180^{\circ}-A\right), \quad L \operatorname{cosec} A=L \operatorname{cosec}\left(180^{\circ}-A\right) ;$
$\cos A=-\cos \left(180^{\circ}-A\right), \quad \sec A=-\sec \left(180^{\circ}-A\right) ;$
$\tan A=-\tan \left(180^{\circ}-A\right), \quad \cot A=-\cot \left(180^{\circ}-A\right) ;$
General formulas,

$$
\begin{align*}
& \sin (A+B)=\sin A \cos B+\cos A \sin B \ldots \tag{4}\\
& \sin (A-B)=\sin A \cos B-\cos A \sin B \ldots \tag{5}\\
& \cos (A+B)=\cos A \cos B-\sin A \sin B \ldots \tag{6}\\
& \cos (A-B)=\cos A \cos B+\sin A \sin B . \\
& \sin A \quad \tag{7}\\
&=2 \sin \frac{1}{2} A \cos \frac{1}{2} A \ldots \ldots \ldots \ldots \tag{8}\\
& \cos A=2 \cos { }^{2} \frac{1}{2} A-1-1-2 \sin ^{2} \frac{1}{3} A \tag{9}\\
& \frac{\sin A+\sin B}{\sin A-\sin B}=\frac{\tan \frac{1}{2}(A+B)}{\tan \frac{1}{2}(A-B)} \ldots \ldots \ldots
\end{align*}
$$

In any triangle $A B C$,

$$
\begin{align*}
& A+B+C=180^{\circ} \tag{1}\\
& \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c} \tag{2}\\
& c=a \cos B+b \cos A \tag{3}\\
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \tag{10}\\
& \left.\begin{array}{l}
\sin \frac{1}{8} A=\sqrt{\frac{(s-b) s-c)}{b c}} \\
\cos \frac{1}{2} A=\sqrt{\frac{s(s-a)}{b c}}
\end{array}\right\} \tag{11}\\
& \tan \frac{1}{2} A=\sqrt{\frac{(s-b) s-c)}{s(s-a)}} \tag{12}\\
& \tan \frac{1}{2}(A-B)=\frac{a-b}{a+b} \cot \frac{1}{2} C \text {. } \\
& \text { Area of triangle }=\frac{1}{2}(\text { base } \times \text { height }) \\
& =\frac{1}{2} b c \sin A \\
& =\sqrt{ }\{s(s-a)(s-b) s-c)\} .
\end{align*}
$$

8. Circumference of a circle of radius $r=2 \pi r$.

Area
................... $=\pi r^{2}$.
π is an incommensurable quantity of which an approximate value is $\frac{22}{7}$; and a still more approximate, $3 \cdot 14159$.

Length of arc in a circle (radius r) which subtends an angle of A degrees at the centre $=\frac{A}{180} \pi r$.

Angle subtended at the centre of a circle (radius r) by an arc of length $l=\frac{180^{\circ}}{\pi} \times \frac{l}{r}$.

Length of arc in a circle (radius r) subtending at the centre an angle of $1^{\circ}=\frac{\pi}{180} r=(\cdot 01745) \times r$.

Angle subtended at the centre of a circle by an arc whose length is equal to the radius $=\frac{180^{\circ}}{\pi}=57^{\circ} \cdot 29578$.
$\operatorname{Sin} 1^{\prime}=0.000291=\tan 1^{\prime}$.
$\operatorname{Sin} 1^{\prime \prime}=0.000004848=\tan 1^{\prime \prime}$.
Surface of a sphere (radius r) $=4 \pi r^{2}$.
Volume $=\frac{4}{3} \pi r^{3}$.
Volume of a pyramid or cone $=\frac{1}{3}$ (base \times height $)$.

TABLES OF LOGARITHMS.

9. In the following four-figure tables of logarithms of numbers, the first two figures of the number whose logarithm is sought will be found in the column marked N, and the third in the column at the top ; and opposite the first two figures and under the third will be found the mantissa corresponding to the first three figures. The proportional parts are given in the columns to the right ; the part corresponding to the fourth figure will be found here beneath the fourth figure and opposite the first two figures.

Thus to find logarithm of $83 \cdot 47$.
Mantissa corresponding to $834=9212$
Proportional Part for $7 \ldots \ldots=4$
$\therefore \log 83 \cdot 47=1.9216$
To find the number corresponding to the logarithm 2.7648 .
7648
7642 is mantissa corresponding to 581
6 is proportional part for 8 ;
$\therefore 2.7648$ is logarithm of $581 \cdot 8$.
The tables will obtain numbers correct to four figures only. If, however, in any number a fifth figure be given, we may obtain approximate results by neglecting the fifth figure or increasing the fourth by unity, according as such fifth figure be less or not less than 5 .
10. In the tables of the logarithms of the trigonometrical ratios, the angles are given at intervals of 10^{\prime} between 0° and 20° and between 70° and 90°, and at intervals of 1° between 20° and 70°. The reason for this arrangement is that when the tables give angles between 20° and 70° at intervals of 1°, we can interpolate as accurately for the minutes of any angle as when the tables give angles between 0° and 20°, and 70° and 90° at intervals of 10 minutes. In interpolating we must be careful to notice whether the number given in the column of differences be a difference for 10 minutes or for 60 minutes.

113

Thus to find $L \sin 33^{\circ} 25^{\prime}$.
$L \sin 33^{\circ}=9.7361$
48
Diff. for $60^{\circ}=115$;
$\therefore \ldots .{ }^{25}=\frac{25}{85}$ of $115=48$.
$\therefore L \sin 33^{\circ} 25^{\prime}=9.7409$.
To find $L \cot 79^{\circ} 35^{\prime}$.
$L \cot 79^{\circ} 30^{\circ}=9 \cdot 2680$
36
Diff. for $10^{\prime}=71$;
$\therefore . . .$. . $5^{\prime}=\frac{5}{10}$ of $71=36$.
$\therefore L \cot 79^{\circ} 35^{\prime}=9 \cdot 2644$.
The Tables will obtain angles correct to minutes only. If, however, seconds be given in the case of any angles we may obtain approximate results by neglecting the seconds, or considering them equal to 1 minute, according as their number is less or not less than 30 .

LOGARITHMS OF NUMBERS.

N	\bigcirc	1	2	3	4	5	6	7	8		123	3, 456	789
10	0000	0043	0086	0125	0170	0212	0253	0294	0334	037	4812	172125	29
11	0414	$\overline{0453}$	0492	0531	0569	0607	0645	06S2	$\overline{0719}$	0755	4811	151923	303034
12	0792	082S	0864	0899	0934	0969	1004	1038	1072	11063	3710	141721	242831
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	3610	131619	232629
14	1461	1492	$\overline{1523}$	1553	$\overline{1584}$	1614	1644	1673	1703	17	369	121518	$\overline{2427}$
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	20143	36	111417	202225
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	22793	358	111316	182124
17	2304	2330	2355	2380	2405	2430	2455	2480	250.1	25.92	25	101215	172022
18	2553	2577	2601	2625	2648	2672	2695	$\underline{718}$	2742	2765		91214	161921
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	29892	-	91113	161820
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	32012	24	81113	151719
21	3	3243	3263	3284	$\overline{3304}$	3324	3345	3365	85	3404	24	81012	141618
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	359	4	81012	141517
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	,	791	131517
24	35	$\overline{3520}$	383	38	3×74	3 S	$\overline{3909}$	3927	3945	3962		7911	121416
25	397	3997	4014	4031	4048	4065	4082	4099	4116	4133	235	7910	121415
26	415	4166	4183	4200	4216	4232	4249	4265	4281	4298	-	7810	111315
27	4314	4330	4346	4362	437	4393	4409	4425	444	44	3	6 8 9	111314
28	4472	4487	45	45	4533	-	4564	4579	459	46	3	$6 \begin{array}{llll}6 & 8 & 9\end{array}$	111214
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	47	3	$6 \quad 79$	101213
30	4771	4786	4800	4814	4829	4843	4855	4871	4856	4900	-	$\begin{array}{llll}6 & 7 & 9\end{array}$	101113
31	4914	$\overline{492 S}$	4942	4955	49	4983	4997	5011	50	503s	134	67	101112
32	5051	50	5079	5092	5105	5119	5132	5145	51	5102		57	91112
33	518	5198	5211	5224	5237	5250		527				56	91012
34	5315	5328	$\overline{5340}$	$\overline{5353}$	$\overline{5366}$	$\overline{5378}$	5391	5403	541	$\overline{5428}$		5	91011
35	544	5453	5465	5478	5490	5502	5514	5527	5539	5551		56	91011
36	55	557	25s7	5590	5611	5623	5635	5647	5658	5670		56	81011
37	$\overline{5682}$	$\overline{5694}$	$\overline{5705}$	$\overline{5717}$	$\overline{5729}$	$\overline{5740}$	5752	5763	577	5786		5	8910
38	5798	5809	5821	5832	5843	5855	5866	5877	5858	5599	2	5	8910
39	5911	5922	5933	59	5955	5966	5977	5988	5999	-			8910
40	6021	6031	6042	60	60	60	6085	6096	6107	61171		456	910
41	6128	6138	$\overline{6149}$	6160	$\overline{6170}$	6180	$\overline{6191}$	6201	6212	622		456	
42	62	6243	62	6263	6274	6234	6294	6304	6314	6325	2	5	78
43	63	63	63	6365	6375	6385	-	6405	6415			456	7
44	6435	6441	6454	6464	$\overline{6474}$	$\overline{6484}$	6493	$\overline{6503}$	$\overline{6513}$	6522			
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	2	45	$\begin{array}{lll}7 & 8 & 9\end{array}$
46	6628	6637	6646	6656	6665	6375		6693	6-0	-	,	+	77
47	6721	$67 \overline{30}$	$\overline{6739}$	6:49	6758	6767	6776	6785	$\overline{6794}$	6503			67
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893	2	44	67
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	69811	2	\pm	-
50	69	6998	7007	7016	7024	7033	7042	7050	7059	7067	2	3	78
51	7076	7084	$\overline{7093}$	7101	7110	7118	7126	7135	714	152	12	5	678
52	7160	7168	7177	7185	7193	7202	7210	7218	-	235	12	$3{ }^{3} 45$	677
53	7243	7251	725	7267							122	345	5667

LOGARITHMS OF NUMBERS. -(Continued.)

N	\bigcirc	1	2	3	4	5	6	7	8	91	123	${ }^{1} 456$		78
54	732	73	73	7348	73	7364	7372							
55	7404	41		7427	74	7443	7	9						
56	7482	7490	7497	7505	7513	7520	7598	7536	7543	7551		245		5
57	7559	7566	7574	75s	7589	759	7604	761	76	7627	122	345		5
58	7634	76		65			7679	768	769			344		5
59	7709	7716	77	73	7738	74	775	776	776			344		
60	778	778	779	780	7810	7818	7825	7832	7839	78461	11	34		5
61	7853	7860	78	787	788	789	180	7903	,910	7917		344		
62	7924	7931	793	794	795	959		973	98	79871	1	3 314		5
63	7993	8000	8007	S014	8021	8028	80	8041	8048	80551	1	334		55
64	8062	$\overline{8069}$	807	8082	8089	8096	8102	$\overline{8109}$	811	8122	112	3		556
	812	136	14	149	15	3162	816	176	818	81891	112	33		556
66	819	8202	8209	8215	8222	8228	823	8241	824	8254	112	334		5
67	S261	8267	8274	280	8287	8293	8299	8306	8312	8319	112	34		5
68	8325	8331	8338	8344	8351	8357		8370	837			3		4
69	8388	8395	340	8407	8414	342	8426	8432	843	34451		234		4
70	8451	8457	846	84,0	8476	8482	8488	8494	850	85061	112	234		4
71	8513	8519	52	8531	853	8543	8549	855	856	8567	11	234		
72	8573	8579	858	8591	859	86		8615	862	86271	112	4		45
73	8633	8639	864	8651	8657	8663	86	8675	86	8686	112	234		45
74	8692	8698	8704	8710	8716	8722	8727	$\overline{8733}$	873	8745		234		45
	8751	87	8762	8768	877	779	87	779			112	2		45
76	3808	8814	8820	8825	8831	8837	8842	8848	88	88591	112	233		45
77	8865	8871	8876	8882	3887	8893	88	8904	891			233		4
78	8921	5927	8932	938	8943	8949	89	3960	990		112	23		4
79	8976	8982	898	8993	899	004	90	015	90.2			-		4
So	9031	9036	9042	9047	9053	905	906	9069	9074	9079	112	2		4
81	9085	9090	9096	9101	9106	911	9117	122	912					
S2	9138	9143	9149	915	15.	16	17	17	9180		112	$2{ }_{2}{ }^{2} 3$		4
83	9191	9196	9201	9206	9212	9217	9222	9227	9232		112	233		4
84	9243	9248	9253	9258	9263	9269	9274	9279	9284					
	9294	9299	304	309	315	321	仡	9330	933	9340	112			
86	9345	9350	9355	9360	9365	370	9375	9380	9385	9390	112	233		4
87	9395	9400	105	9410	9415	9420	9425	9430	9435	9440	0	2		-
	9445	45	455	9460	9465	9469	9474	9479	9484	94890	0	223		
89	9494	9499	9504	500	9513	518	9523	528	9533			3		3 4
90	9542	9547	9552	9557	9562	9566	9571	576	958	9586	01	223		3
91	9590	959	9600	605	9609	9614	9619	9624	962	9633	01	223		3
92	963	964			9657	9661		9671	9675	6800	0	223		
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	97270	0	$2{ }_{2} 2$		4
94	9731	9736	974	9745	975	975	97	9763	9768	9773	0			
95	9777	782	86	791	79	9800	9805	9809	981	98180	0	22		4
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	98630	011	223		4
	9568	9872	9877	9881		98	9894	9899	9903	9908	-	223		
98	9912	9917	9921	9926	9930	9934	9939	9943	948	9952	0	2	3	
99	9956		9965	9969	997					99960	01	22	${ }_{3}$	-

LOGARITHMS OF TRIGONOMETRICAL RATIOS.

ANGLES AT INTERVALS OF 10 .

	Sine.	$\underset{\text { FOR } 10^{\prime}}{\text { DifF }} \mid$	Tang.	$\begin{gathered} \text { CoM. } \\ \text { DIFF } \\ \text { FOR } 10^{\prime} . \end{gathered}$	Cotang.	Cosinge.	$\begin{gathered} \text { DIFF. } \\ \text { FOR } 10^{\prime} . \end{gathered}$	
$0^{\circ} 0^{\prime}$	In. Neg.		In. Neg.		Infinite.	$10 \cdot 0000$	0	$90^{\circ} 0^{\prime}$
10^{\prime}	$7 \cdot 4637$	3011	$7 \cdot 4637$	3011	12.5363	$10 \cdot 0000$	0	50^{\prime}
20^{\prime}	$7 \cdot 7648$	1760	$7 \cdot 7648$	1761	$12 \cdot 2352$	$10 \cdot 0000$	0	40^{\prime}
30^{\prime}	$7 \cdot 9408$	1250	$7 \cdot 9409$	1249	12.0591	10.0000	0	30^{\prime}
40^{\prime}	$8 \cdot 0658$	969	8.0658	969	11.9342	10.0000	0	20^{\prime}
50^{\prime}	S.1627	792	$8 \cdot 1627$	792	11.8373	10.0000	0	$89^{\circ} 10^{\prime}$
$1^{\circ} 0^{\prime}$	$8 \cdot 2419$	669	$8 \cdot 2419$	670	11.7581	9.9999	0	$89^{\circ} 0^{\prime}$
10^{\prime}	$8 \cdot 3088$	580	$8 \cdot 3089$	580	11.6911	$9 \cdot 9999$	0	50^{\prime}
20^{\prime}	$8 \cdot 3668$	511	$8 \cdot 3669$	512	$11 \cdot 6331$	9.9999	0	40°
30^{\prime}	$8 \cdot 4179$	458	$8 \cdot 4181$	457	11.5819	$9 \cdot 9999$	0	30^{\prime}
40^{\prime}	$8 \cdot 4637$	413	$8 \cdot 4638$	415	$11 \cdot 5362$	9-9998	1	20^{\prime}
50^{\prime}	$8 \cdot 5050$	378	$8 \cdot 5053$	378	$11 \cdot 4947$	9.9998	0	S5 ${ }^{\circ} 10^{\prime}$
$2^{\circ} 0^{\prime}$	$8 \cdot 5428$	348	$8 \cdot 5431$	348	11.4569	$9 \cdot 9997$	1	$88^{\circ} 0^{\prime}$
10^{\prime}	$8 \cdot 5776$	321	$8 \cdot 5779$	322	11.4221	$9 \cdot 9997$	0	50^{\prime}
20^{\prime}	$8 \cdot 6097$	300	$8 \cdot 6101$	300	11.3899	$9 \cdot 9996$	1	40^{\prime}
30^{\prime}	$8 \cdot 6397$	280	$8 \cdot 6401$	281	11-3599	9•9996	0	30^{\prime}
40^{\prime}	$8 \cdot 6677$	263	$8 \cdot 6682$	263	11.3318	$9 \cdot 9995$	1	20^{\prime}
50^{\prime}	$8 \cdot 6940$	248	$8 \cdot 6945$	249	$11 \cdot 3055$	$9 \cdot 9995$	0	$87^{\circ} 10^{\prime}$
$3^{\circ} 0^{\prime}$	8.7188	235	$8 \cdot 7194$	235	$11 \cdot 2806$	$9 \cdot 9994$	1	$87^{\circ} 0^{\prime}$
10^{\prime}	$8 \cdot 7423$	222	$8 \cdot 7429$	223	$11 \cdot 2571$	9-9993	1	50^{\prime}
20^{\prime}	8.7645	212	8•7652	213	$11 \cdot 2348$	$9 \cdot 9993$	0	40^{\prime}
30^{\prime}	$8 \cdot 7857$	202	8.7865	202	$11 \cdot 2135$	$9 \cdot 9992$	1	30^{\prime}
40^{\prime}	8-8059	192	$8 \cdot 8067$	194	$11 \cdot 1933$	$9 \cdot 9991$	1	20^{\prime}
50°	$8 \cdot 8251$	185	$8 \cdot 8261$	185	$11 \cdot 1739$	$9 \cdot 9990$	1	$86^{\circ} 10^{\prime}$
$4^{\circ} 0^{\prime}$	8.8436	177	$8 \cdot 8446$	178	$11 \cdot 1554$	$9 \cdot 9989$	1	$86^{\circ} 0^{\prime}$
10^{\prime}	$8 \cdot 8613$	170	$8 \cdot 8624$	171	$11 \cdot 1376$	$9 \cdot 9989$	0	50^{\prime}
20^{\prime}	$8 \cdot 8783$	163	$8 \cdot 8795$	165	$11 \cdot 1205$	9.9988	1	40^{\prime}
30^{\prime}	$8 \cdot 8946$	158	$8 \cdot 8960$	158	$11 \cdot 1040$	$9 \cdot 9987$	1	30^{\prime}
40^{\prime}	$8 \cdot 9104$	152	$8 \cdot 9118$	154	11.0882	9.9986	1	20^{\prime}
50^{\prime}	8.9256	147	8.9272	148	11.0728	$9 \cdot 9985$	1	$85^{\circ} 10^{\prime}$
$5^{\circ} \quad 0^{\prime}$	$8 \cdot 9403$	142	$8 \cdot 9420$	143	$11 \cdot 0580$	9.9983	2	$85^{\circ} 0^{\prime}$
10^{\prime}	$8 \cdot 9545$	137	$8 \cdot 9563$	138	$11 \cdot 0437$	$9 \cdot 9982$	1	50^{\prime}
20^{\prime}	$8 \cdot 9682$	134	$8 \cdot 9701$	135	11.0299	9.9981	1	40^{\prime}
30^{\prime}	8.9816	129	$8 \cdot 9836$	130	11.0164	9.9980	1	30^{\prime}
40^{\prime}	$8 \cdot 9945$	125	$8 \cdot 9966$	127	11.0034	$9 \cdot 9979$	1	20^{\prime}
50^{\prime}	$9 \cdot 0070$	122	$9 \cdot 0093$	123	10.9907	$9 \cdot 9977$	2	$84^{\circ} 10$
	Cosine.	$\|$Diff. FOR 10,	Cotang.	Com. DIFF. for 10°	Tang.	Sine.	$\underbrace{\substack{\text { D }}}_{\text {Dirfr }}$	

ANGLES AT INTERVALS OF $10^{\prime}-$ (Continued.)

	Sine.	$\begin{aligned} & \text { Diff. } \\ & \text { FOR } 10^{\prime} \text {. } \end{aligned}$	tang.	$\left\|\begin{array}{c} \text { Com. } \\ \text { DIFF } \\ \text { FOR } 10 \end{array}\right\|$	Cotang.	Cosine.	$\begin{gathered} \text { DIPr. } \\ \text { FOR } 10^{\prime} . \end{gathered}$	
$6^{\circ} \quad 0^{\prime}$	9.0192	119	90216	120	10.9784	$9 \cdot 9976$	1	$84^{\circ} 0^{\prime}$
10^{\prime}	$9 \cdot 0311$	115	$9 \cdot 0336$	117	$10 \cdot 9664$	$9 \cdot 9975$	1	50^{\prime}
20^{\prime}	$9 \cdot 0426$	113	$9 \cdot 0453$	114	$10 \cdot 9547$	$9 \cdot 9973$	2	40^{\prime}
30^{\prime}	$9 \cdot 0539$	109	$9 \cdot 0567$	111	$10 \cdot 9433$	$9 \cdot 9972$	1	30^{\prime}
40^{\prime}	$9 \cdot 0648$	107	$9 \cdot 0678$	108	10.9322	$9 \cdot 9971$	1	20^{\prime}
50^{\prime}	$9 \cdot 0755$	104	$9 \cdot 0786$	105	$10 \cdot 9214$	$9 \cdot 9969$	2	$83^{\circ} 10^{\prime}$
$7^{\circ} 0^{\prime}$	9.0859	102	9.0891	104	10.9109	$9 \cdot 9968$	1	$83^{\circ} 0^{\prime}$
10^{\prime}	$9 \cdot 0961$	99	$9 \cdot 0995$	101	$10 \cdot 9005$	$9 \cdot 9966$	2	50^{\prime}
20^{\prime}	$9 \cdot 1060$	97	9•1096	98	$10 \cdot 8904$	9•9964	2	40^{\prime}
30^{\prime}	$9 \cdot 1157$	95	9•1194	97	$10 \cdot 8806$	9•9963	1	30^{\prime}
40°	$9 \cdot 1252$	93	9•1291	94	$10 \cdot 8709$	$9 \cdot 9961$	2	20^{\prime}
50^{\prime}	$9 \cdot 1345$	91	$9 \cdot 1385$	93	$10 \cdot 8615$	9.9959	2	$82^{\circ} 10^{\prime}$
$8^{\circ} 0^{\prime}$	$9 \cdot 1436$	89	9•1478	91	$10 \cdot 8522$	9.9958	1	$82^{\circ} 0^{\prime}$
10^{\prime}	$9 \cdot 1525$	87	$9 \cdot 1569$	89	$10 \cdot 8431$	9.9956	2	50^{\prime}
20^{\prime}	$9 \cdot 1612$	85	9.1658	87	$10 \cdot 8342$	$9 \cdot 9954$	2	40^{\prime}
30^{\prime}	$9 \cdot 1697$	84	$9 \cdot 1745$	86	$10 \cdot 8255$	$9 \cdot 9952$	2	30^{\prime}
40^{\prime}	9•1781	82	$9 \cdot 1831$	84	$10 \cdot 8169$	$9 \cdot 9950$	2	20^{\prime}
50^{\prime}	$9 \cdot 1863$	80	$9 \cdot 1915$	82	$10 \cdot 8085$	9.9948	2	$81^{\circ} 10^{\prime}$
$9^{\circ} 0^{\prime}$	9•1943	79	9•1997	81	$10 \cdot 8003$	$9 \cdot 9946$	2	$81^{\circ} 0^{\prime}$
10^{\prime}	9-2022	75	9.2078	80	$10 \cdot 7922$	9.9944	2	50^{\prime}
20^{\prime}	$9 \cdot 2100$	76	$6 \cdot 2158$	78	10.7842	$9 \cdot 9942$	2	40^{\prime}
30^{\prime}	$9 \cdot 2176$	75	9'2236	77	10.7764	$9 \cdot 9940$	2	30^{\prime}
40^{\prime}	$9 \cdot 2251$	73	$9 \cdot 2313$	76	$10 \cdot 7687$	9.9938	2	20^{\prime}
50^{\prime}	9-2324	73	9-2389	74	10.7611	9.9936	2	$80^{\circ} 10^{\prime}$
$10^{\circ} \quad 0^{\prime}$	$9 \cdot 2397$	71	$9 \cdot 2463$	73	10.7537	$9 \cdot 9934$	2	$80^{\circ} \quad 0$
10^{\prime}	9-2468	70	$9 \cdot 2536$	73	10.7464	$9 \cdot 9931$	3	50^{\prime}
20^{\prime}	9.2538	68	9-2609	71	10.7391	$9 \cdot 9929$	2	40^{\prime}
30^{\prime}	$9 \cdot 2606$	68	$9 \cdot 2680$	70	10.7.320	$9 \cdot 9927$	2	30^{\prime}
40^{\prime}	9-2674	66	9-2750	69	10.7250	9.9924	3	20^{\prime}
50^{\prime}	9-2740	66	$9 \cdot 2819$	68	$10 \cdot 7181$	9.9922	2	$79^{\circ} 10^{\prime}$
$11^{\circ} 0^{\prime}$	9.2806	64	9.2887	66	$10 \cdot 7113$	9.9919	3	$79^{\circ} 0^{\prime}$
10^{\prime}	$9 \cdot 2870$	64	$9 \cdot 2953$	67	10.7047	$9 \cdot 9917$	2	50^{\prime}
20^{\prime}	9-2934	63	$9 \cdot 3020$	65	$10 \cdot 6980$	$9 \cdot 9914$	3	40^{\prime}
30^{\prime}	9-2997	61	$9 \cdot 3085$	64	$10 \cdot 6915$	$9 \cdot 9912$	2	30^{\prime}
40^{\prime}	$9 \cdot 3058$	61	$9 \cdot 3149$	63	10.6851	$9 \cdot 9909$	3	20^{\prime}
50^{\prime}	$9 \cdot 3119$	60	$9 \cdot 3212$	63	$10 \cdot 6788$	$9 \cdot 9907$	2	$78^{\circ} 10^{\prime}$
$12^{\circ} 0^{\prime}$	9-3179	59	$9 \cdot 3275$	61	$10 \cdot 6725$	9•9904	3	$78^{\circ} 0^{\prime}$
10^{\prime}	9-3238	58	$9 \cdot 3336$	61	$10 \cdot 6664$	$9 \cdot 9!01$	3	50^{\prime}
20^{\prime}	9-3296	57	9'3397	61	$10 \cdot 6603$	$9 \cdot 9899$	2	40^{\prime}
30^{\prime}	$9 \cdot 3353$	57	$9 \cdot 3458$	59	$10 \cdot 6542$	$9 \cdot 9896$	3	30^{\prime}
40^{\prime}	9-3410	56	9,3517	59	$10 \cdot 6483$	$9 \cdot 9893$	3	20^{\prime}
50^{\prime}	9•3466	55	$9 \cdot 3576$	58	$10 \cdot 6424$	$9 \cdot 9890$	3	$77^{\circ} 10^{\prime}$
	Cobine.	(DifF.	Cotana.		Tang.	Sine.	Dipf.	

ANGLES AT INTERVALS OF $10^{\prime}-$ (Continued.)

	Sine.	$\underset{\text { PIOR } 10^{\prime}}{\text { Diff. }}$	Tang.	$\begin{gathered} \text { Con. } \\ \text { DIFF. } \\ \text { FOR } 10^{\prime} . \end{gathered}$	Cotang.	Cosine.		
$13^{\circ} 0^{\prime}$	9.3521	54	$9 \cdot 3634$	57	10.6366	9.9857	3	$77^{\circ} 0^{\prime}$
10^{\prime}	$9 \cdot 3575$	54	$9 \cdot 3691$	57	$10 \cdot 6309$	$9 \cdot 9884$	3	50^{\prime}
20^{\prime}	$9 \cdot 3629$	53	9.3748	56	10.6252	9.9881	3	40^{\prime}
30^{\prime}	9•3682	52	9.3804	55	10.6196	9.9878	3	30^{\prime}
40^{\prime}	$9 \cdot 3734$	52	$9 \cdot 3859$	55	10.6141	8.9575	3	20^{\prime}
50^{\prime}	9.3786	51	9.3914	54	$10 \cdot 6086$	9.9872	3	$76^{\circ} 10^{\prime}$
$14^{\circ} 0^{\prime}$	9.3837	50	9.3968	53	10.6032	9.9869	3	$76^{\circ} \quad 0^{\prime}$
10^{\prime}	$9 \cdot 3857$	50	9•4021	53	10.5979	9.9866	3	50^{\prime}
29^{\prime}	9.3937	49	$9 \cdot 4074$	53	10.5926	9.9863	3	40^{\prime}
30°	$9 \cdot 3956$	49	$9 \cdot 4127$	51	10.5873	9.9859	4	30^{\prime}
40^{\prime}	$9 \cdot 4035$	48	9.4178	52	10.5822	9.9856	3	20^{\prime}
50^{\prime}	9-4083	47	9.4230	51	10.5770	9.9853	3	$75^{\circ} 10^{\prime}$
$15^{\circ} 0^{\prime}$	$9 \cdot 4130$	47	9-4281	50	$10 \cdot 5719$	9.9849	4	$75^{\circ} 0^{\prime}$
10^{\prime}	$9 \cdot 4177$	46	$9 \cdot 4331$	50	10.5669	$9 \cdot 98 \pm 6$	3	- 50
20°	9-4223	46	$9 \cdot 4381$	49	$10 \cdot 5619$	9.9843	3	40^{\prime}
30^{\prime}	9-4269	45	$9 \cdot 4430$	49	$10 \cdot 5570$	9.9839	4	30^{\prime}
40^{\prime}	$9 \cdot 4314$	45	$9 \cdot 4779$	48	$10 \cdot 5521$	$9 \cdot 9836$	3	20^{\prime}
50^{\prime}	9-4359	44	$9 \cdot 4527$	48	$10 \cdot 5473$	9.9832	4	$74^{\circ} 10^{\prime}$
$16^{\circ} 0^{\prime}$	$9 \cdot 4403$	44	$9 \cdot 4575$	47	$10 \cdot 5425$	9.9828	4	$74^{\circ} 0^{\prime}$
10^{\prime}	$9 \cdot 4447$	44	$9 \cdot 4622$	47	10.5378	9.9825	3	50^{\prime}
20^{\prime}	$9 \cdot 4491$	42	$9 \cdot 4669$	47	10.5331	9.9821	4	40^{\prime}
30^{\prime}	$9 \cdot 4533$	43	$9 \cdot 4716$	46	10-5284	9.9817	4	30^{\prime}
40^{\prime}	$9 \cdot 4576$	42	$9 \cdot 4762$	46	10.523S	$9 \cdot 9814$	3	${ }^{2} 0^{\prime}$
50^{\prime}	$9 \cdot 4618$	41	9.4808	45	10.5192	$9 \cdot 9810$		$73^{\circ} 10^{\prime}$
$17^{\circ} 0^{\prime}$	9•4659	41	9.4853	45	10.5147	9.9806	4	$73^{\circ} 0$
10^{\prime}	$9 \cdot 4700$	41	$9 \cdot 4898$	45	$10 \cdot 5102$	9.9802	+	50^{\prime}
20^{\prime}	$9 \cdot 4741$	40	$9 \cdot 4943$	44	$10 \cdot 5057$	9.9798	4	40^{\prime}
30^{\prime}	$9 \cdot 4781$	40	$9 \cdot 4987$	44	$10 \cdot 5013$	9.9794	4	30^{\prime}
40^{\prime}	$9 \cdot 4821$	40	$9 \cdot 5031$	44	$10 \cdot 4969$	9.9790	4	20^{\prime}
50^{\prime}	$9 \cdot 4861$	39	9.5075	43	$10 \cdot 4925$	9.9786	+	$72^{\circ} 10^{\prime}$
$18^{\circ} 0^{\prime}$	$9 \cdot 4900$	39	9.5118	43	$10 \cdot 4882$	9.9782	4	$72^{\circ} 0^{\prime}$
10^{\prime}	$9 \cdot 4939$	38	$9 \cdot 5161$	42	$10 \cdot 4839$	9.9778	4	50^{\prime}
20^{\prime}	$9 \cdot 4977$	38	9•5203	42	$10 \cdot 4797$	9.9774	4	40^{\prime}
30^{\prime}	$9 \cdot 5015$	37	$9 \cdot 5245$	42	110.4755	9.9770	4	30^{\prime}
40^{\prime}	9.5052	38	9.5287	42	10.4713	$9 \cdot 9765$	5	20^{\prime}
50^{\prime}	9.5090	36	9•5329	41	10.4671	9.9761	4	$71^{\circ} 10^{\prime}$
$19^{\circ} 0^{\prime}$	9•5126	37	9.5370	41	$10 \cdot 4630$	9.9757	4	$71^{\circ} 0^{\prime}$
10^{\prime}	9.5163	36	$9 \cdot 5411$	40	$10 \cdot 4589$	9.9752	5	50'
20^{\prime}	9-5199	36	9•5451	40	$10 \cdot 4549$	$9 \cdot 9748$	4	40^{\prime}
30^{\prime}	9-5235	35	$9 \cdot 5491$	40	$10 \cdot 4509$	9.9743	5	30^{\prime}
40^{\prime}	9-5270	36	9•5ั531	40	$10 \cdot 4469$	9.9739	4	20^{\prime}
50^{\prime}	9•5306	35	9•5゙571	40	$10 \cdot 4429$	9.9734	5	$70^{\circ} 10^{\prime}$
$20^{\circ} 0^{\prime}$	$9 \cdot 5341$	34	$9 \cdot 5611$	39	$10 \cdot 4389$	9.9730	4	$70^{\circ} 0^{\prime}$
	Cosine.	$\underset{\text { FOR } 10^{\prime}}{\text { Dify }}$	Cotano.		tang.	Sine.	$\underset{\text { Diff. }}{\substack{\text { Dig } \\ \text { For } \\ \text { 1 }}}$	

ANGLES AT INTERVALS OF 1°.

	Sine.	$\begin{gathered} \text { DIFF. } \\ \text { FOR } 1^{\circ} . \end{gathered}$	Taso.	CIFR. FOR 1°	Cotang.	Cosine.	$\begin{gathered} \text { DIFF. } \\ \text { FOR } \mathbf{1}^{\circ} . \end{gathered}$	
20°	9.5341	202	9•5611	231	10.4389	9-9730	27	70°
21°	9.554.3	193	9-5542	222	$10 \cdot 4158$	9.9702	28	69°
22°	9.5736	183	$9 \cdot 6064$	215	10.3936	9.9672	30	68°
23°	$9 \cdot 5919$	174	$9 \cdot 6279$	207	10:3721	9.9640	32	60^{-7}
24°	9•6093	166	$9 \cdot 6486$	201	10:3514	9-9607	33	66^{3}
25°	9•6259	159	$9 \cdot 6687$	195	10:3313	9.9573	34	65°
26°	9-6418	152	9-6852	190	$10 \cdot 3118$	9.9537	36	64
27°	$9 \cdot 6570$	146	$9 \cdot 7072$	185	10.292S	9.9499	35	63°
28°	$9 \cdot 6716$	140	$9 \cdot 7257$	181	10:274.3	9-9459	40	62°
29°	9-6S56	134	9•743S	176	$10 \cdot 2$ 2t 2	9-9418	41	61°
30°	9-6990	128	$9 \cdot 7614$	174	10:23S6	9-9375*	43	60°
31°	9.7118	124	9•778S	170	10:2212	9.9331	44	59°
32°	9.7242	119	9-7958	167	$10 \cdot 2042$	$9 \cdot 9284$	47	58°
33°	9•7361	115	$9 \cdot 8125$	165	10.1875	9•9236	48	57°
34°	$9 \cdot 7476$	110	$9 \cdot 8290$	162	$10 \cdot 1710$	9.9186	50	$56{ }^{\circ}$
35°	9•75S6	106	$9 \cdot 5452$	161	$10 \cdot 1548$	$9 \cdot 9134$	52	55^{3}
36°	9•7692	103	9-8613	158	10.1387	9.9080	54	54°
37°	9•779.5	98	9-8771	157	10-1229	9-9023	57	53°
38°	9.7893	96	9-8928	156	10.1072	$9 \cdot 8965$	58	52°
39°	9•7959	92	$9 \cdot 9084$	154	$10 \cdot 0916$	$9 \cdot 8905$	60	51°
40°	9.5081	88	9-9238	154	10.0762	9.8843	62	50°
41°	9-8169	S6	$9 \cdot 9392$	152	10.0608	9.8778	65	$49{ }^{\circ}$
42°	$9 \cdot 5255$	S3	$9 \cdot 9544$	153	$10 \cdot 0456$	9.8711	67	45°
43°	9.8338	80	9-9697	151	10.0303	$9 \cdot 8641$	70	47°
44°	$9 \cdot 8418$	77	$9 \cdot 9848$	152	$10 \cdot 0152$	$9 \cdot 8569$	72	46°
45^{-}	$9 \cdot 8495$	74	10.0000	152	10.0000	9-8495	74	45°
	Costse.	$\underset{\text { Diff. }}{\substack{\text { Dig } \\ \text { FOR } \\ \hline}}$	Cutang.	$\begin{gathered} \text { Com. } \\ \text { DIFF } \\ \text { FUR } 10 . \end{gathered}$	Tavt.	Sine.	$\underset{\text { DIFF }}{\text { FOR } 1^{\circ}}$.	

* L. $\sin 60=9.9375306$

```
GA Cherrimen, John Bradford 533 C54 1885
Physical \&
Applied Sci.
```


PLEASE DO NOT REMOVE
 CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

[^0]: * There are numerous tables of logarithms published. Four-figure logarithms of numbers are given on a single card (with anti-logarithms on the reverse face) published by Laytons, London, for three figures given directly, and for the fourth by table of proportional parts. For five-figure logarithms the Nautical and Astronomical Tables by Gregory, Woolhouse and Hann, (Co. of Stationers, London) are admirably arranged; four figures are given and the fifth is interpolated for. For six-figure logarithus, Law's Tables (Copp, Clark \& Co., Tomnto) require the fifth and sixth figures to be interpolated for. The tables by Bremiker (Berlin) give for five figures direct, and require only the sixth figure to be found from the proportioual parts. Of seven-figure tables, those in most commou use are Chambers' (Edinburgh) Mathematical Tables; five figures being given and the sixth and seventh interpolated for.

 For general purposes the five-figure tables by Gregory mentioned above, are recommended.

[^1]: * Avother proof, not depending on this proposition, will be subsequently given.

[^2]: $\log 3=4771213, \mathrm{~L} \tan 55^{\circ} 49^{\prime}=10 \cdot 1680189$, diff. $=2718 ; \log 1 \cdot 3254$ $=1223521$.

