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THE POLES OF A EIGHT LINE WITH RESPECT
TO A CURVE OF ORDER n.

The short article,
"
Allgemeine Eigenschaften der Algebra-

ischen Curven," published by Steiner in Crelle's Journal, vol.

XLVII, pp. 1-6, has been the starting point for many investiga-

tions in the theory of polar curves and envelopes. His theorems,

stated without proof, are given with reference to the general

curve of order n . Salmon in "
Higher Plane Curves,''

^

gives

a r^sum^ of Steiner's theorems with reference to the general

curve, and a more specific discussion of the cubic. He uses a

method partly analytic and partly geometric. The most com-

plete treatment of the subject of poles and polars is that of

Cremona in his " Introduction to the Study of Plane Curves,"

published in 1865. He bases the theory entirely upon the

properties of loci of harmonic means
;
and his purpose, stated

in the preface, is to give a satisfactory geometrical proof of the

theorems enunciated by Steiner and other writers on the subject.

These three, Salmon, Cremona, and Steiner, have considered the

question of poles and polars from the standpoint of the general

curve of order n
,
and with important articles by Clebsch and

others, to which references will be made later, constitute the

chief sources for the general theory of polar curves.

By no one of these writers has a detailed study been made of

the poles of a right line, or the (n
—

1)^ intersections of the first

polar curves of points in a right line, with respect to a curve of

order n . Steiner in general considers such points as the envelope
of first polar curves of points on a given locus. In case the

directrix is a right line, the envelope, by his formula, reduces to

order zero. Cremona studies them from the standpoint of base

points of a pencil of curves of order n — 1
,
while both Salmon

and Cremona call them specifically "poles'' of the line, and

give some limitations to their position in the case of cubics.

iPp. 357-368.
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4 THE POLES OP A RIGHT LINE

It is proposed in this paper to investigate, by analysis as far

as possible, the character and position of the pbles of a right

line L = $x -{- 7^y -}- ^z = in the different relations it may have

with respect to a base curve Z7= 0, whose equation is homo-

geneous and of order n, and certain curves derived from U,

The cases for any of these loci of singularities of higher order

than a triple point formed by three ordinary branches, or a cusp
with an ordinary branch passing through it, will not be consid-

ered except in discussing the relation of tangents to first polar

curves at certain points of higher order of multiplicity.

§1.

The Pencil of Curves of Which the Poles are Base

X Points.

The system of first polar curves with respect to Z7= is of

the form xU^ -\- ylJ^ -\- zU^^ ,
where

(a; , i/ , ») is kny point in

the plane. Taking the polars of all points in a line determined

by two fixed points, the system reduces to a pencil of curves

projectively related to points on that line, and their (n — 1)^ in-

tersections are the poles of the line. These curves determine

on the line an involution of degree n — 1
,
and the 2(n

—
2)

double points of this involution are the points where curves of

the pencil touch the line.^ Any curve of the pencil is com-

pletely determined when one point in addition to the {n
— ly

base points is known. If this point is taken infinitely near a

base point it determines there the tangent to a single curve of

the pencil, and the pencil of curves and the pencil of tangents
are projectively related and have a (1 , 1) correspondence with

each other and with the points of the line. When two of the

polars touch, the two pencils of tangents belonging to the two

coinciding base points reduce to a common tangent to all the

curves except the one which has there a double point ;
if a base

point is a multiple point of order r for all curves of the pencil

and these have r common tangents at the point, one curve of the

1
Clebsch, Crdle, vol. LVIII, p. 280.



WITH RESPECrr TO A CURVE OF ORDER n. 5

pencil has the base point for a multiple point of order r + 1
;

and in general all the properties which hold for a pencil of

curves will be true for these.
^

The coordinates of the poles of ^a; + ^y^/ + C^ = ,
or the base

points of the pencil of first polars of the points in the line, are

given by the intersections of

§2.

The Kelated Curves.

Closely connected with the theory of polar curves are the

Hessian and the Steinerian of the base curve, and through them

the Cayleyan. In general, that is when U is non-singular, they
are of orders 3(7i

—
2) , 3(n

—
2)^, and 3(n

—
2) (5yi

— 1 1) respec-

tively, and the Hessian has no double points.^ The Steinerian

and the Cayleyan have a (1 , 1) correspondence with the Hes-

sian. In addition to their ordinary definitions it will be con-

venient to characterize the Hessian as the locus of coincident, or

double, poles of a line, and the Steinerian as the envelope of

line polars of points on the Hessian.^ The corresponding points

on the two curves are in the same relation as those which Pro-

fessor Cayley calls "
conjugate poles

"
for the cubic,'' and the

Cayleyan is the envelope of lines joining conjugate poles. There

is also another locus upon which lie all the inflexions of first

polar curves for the pencil belonging to X = 0, and which has

the base points of the pencil for triple points. The equation
and certain important characteristics of this curve will be de-

veloped later.

The equations of the Hessian and the Steinerian are deduced

from the condition that any polar may have a double point.

^
Cremona, Introdiwtion, § 10.

2
Salmon, Higher Plane Curves, p. 363.

3
Cremona, § 20, No. 118a.

* Memoir on Chirves of the Third Order, Collected Papers, vol. II, p. 382.



6 THE POLES OF A RIGHT LINE

Let Fj
=

iTj ZJj + 3/1 ZJg + 2j ZJg
= be the polar of the point

(jCj, 2/j, 2j)
on i = . If this has a double point at (x, y' , z)y

we have the identical relations

J* F,
=

(a,a; + a^ + v) (A* + /^^^ + ^i') .

«x ^ii2 + yi c^;22 + «i ^m = «A + «A »

«1 ^(23 + Vl ^223 + «1 ^^ = «2^3 +'^Ay .

«1 f^l'33 + Vl ^233 + ^1 ^333
=

2«3^3 •

0,

Eliminate the a's
, ^'s ,

and x^, y^, z^, and the Hessian is ob-

tained

= 0,

V'n



WITH EESPECT TO A CURVE OF ORDER n. 7

z^ . The corresponding points (x' , y\ z') are cusps on the Stein-

erian, and are 12(ri
— 2){n — 3) in number.^

The first polars V^ and V^ of two points which determine a line

will in general have no common intersections which lie on either

X, TJ, or the curves just mentioned; and poles which do not

lie on i, TJ
y
or the Hessian may be conveniently termed

" free
"

poles.^ Poles which lie on the Steinerian and the Cay-

leyan are included among the free poles, since poles on these loci

need not satisfy conditions of the particular kind which govern
the others. Any pole of a line will be a triple point of the

general inflexion locus, which is not fixed as are the Hessian,

Steinerian, and Cayleyan, by the base curve, but varies with the

line. The number of free poles will be diminished and their

characteristics will be changed as the line is defined by special

relations to U and the Steinerian, or as singularities are intro-

duced into the base curve. In no case, however, can the num-

ber of fi'ee poles, depending only on the base curve, be less than

n—\ while C/" is a proper curve with none of the complex singu-

larities
; for at the multiple point of highest order, n •— 1

,
the

first polars have (n
—

2)^ intersections, and these, with n — 2

additional common points if all the branches are cuspidal, leave

n — \ free poles.

§3.

Poles when U has no Double Points or Other

Singularities.

Under this hypothesis the Hessian has no singularity.

I. A line which has only ordinary intersections with TJ and

the Steinerian can have only free poles, as is evident from the

conditions which exist when a pole lies upon either of these loci.

^
Clebsch, Z7e5er Qwrvm, vierter Ordnung, CreUe, Vol. LIX, p. 130. Cf. also,

Steiner's article in Crdle, Vol. XLVII, pp. 1-6, andHenrici's, Proc. Lon. Math.

Soc., Vol. II, p. 112.
2 Salmon in his discussion of the cubic omits from the number of poles those

which occur at a double point or cusp ;
but it seems better to include these in

the total number, since they come under the definition, and have all the charac-

teristics of poles.



8 THE POLES OF A RIGHT LINE

(a) If a pole lies on L it must be either a point of tangency of

the line with 11, or a double point on U.
j

Let (x'y y'f z), a pole of the line, satisfy the equation i = 0.

The coordinates of any point in i = satisfy the relation
^

(1) xU[+yU',+zU', = 0,
I

including those of the pole itself, so that

hence {x\ y\ z) is on the curve Z7. For (1) to hold for every

point in L the line must be tangent to CT at {x' , y , z) ,
ov else

U[j U'^y U'^ must vanish identically and (x, y', z')
is /a double

point on U, Thus L must have two points in common with U
at (Xy y' y z)y whlch may be consecutive or coincident, the two

conditions having the same value here.^

(6)
If a pole lies on C/" by a similar method it can be shown

to be a point of tangency of L with the curve, or else a double

point on the curve.

(c) If a pole lies on the Hessian L is tangent to the Stein-

erian at the corresponding point.

Let {x y y'y z) be a pole of the line and a point in the Hes-

sian. It is then a double point on a first polar curve, for ex-

ample, the first polar F^ of
(x^^ , y^ , z^) which is an intersection

of L and the Stei nian. Now

V, = x,U,-hy,U,-\-z^U,= 0;

and since it has a double point at
(a?', 3/', 2')

^^U[, + y,U'^ + z,U',,= 0, 1

1 The two conditions are equivalent algebraically and geometrically here,

though it may happen, as in the case when the line passes through a double

point on the Steinerian, that they are only equivalent algebraically. Cf. Jon-

quiSres, Sur les problemes de contact des courbes cdgebriques, Orelle, Vol. LXVI,
p. 291.



WITH KESPECT TO A CURVE OF ORDER n. 9

If
(a?2 , ^2 J ^2)

^^ ^ second point on L
, any other point on the

line has coordinates (x^ + Xx^, y^ + Xy^, z^^-\- Xz^ ;
and examining

the tangent at
(ic', y', z) to the first polar of any point {x, 3/, z) ,

we have

xU[,-hy U[, + ^ U[, = A(a^^ C7;^ + y^ U[, + ^^^ ^^{3) >

^U[, + y U',, + zU'^^^ X(x^ U[^ + y^ ^22 + h ^23) >

a;C7;3 + y i7;3 + zU',,
=

^O'c^^Ia + 2/2^^3 + ^2^;3) ;

hence the tangents to all first polars of the pencil at {x' , y' , z')

coincide with

+ 4^, c^;, + y, t^;3 + 2, zz;,]
= .

A pole on the Hessian is therefore in general composed of two

coincident poles.
^ Such a pole corresponds also to a double

point on the polar envelope of a curve, but for a directrix of the

first degree the envelope consists simply of the {n— Vf poles

of the line and is of order zero. The consecutive curve to V^
will have common tangents with it and therefore a double point

at {x\ y' , 2').
The consecutive point on L is on the Steinerian

and the line is tangent to the Steinerian at the point {x^ , y^ , z^
which corresponds to {x' , y\ z) ? It might seem as in a pre-

ceding case that a line through a double point on the Steinerian

would satisfy the same condition, but it will be shown later that

a pole on the Hessian will result only in a special case. The

above analysis is in agreement with Cremona's theorems ^
: If two

curves of a pencil touch the point of tangency counts for two

double points and to it corresponds the point where the line

touches the Steinerian.

At any pole, as has been stated, the tangents to first polars

form a pencil of lines, and when two curves of the pencil touch

it is geometrically evident that the two pencils belonging to the

1 These may be called poles of order 2.

* The tangents to the Steinerian are thus line polars of points on the Hessian.

^Introduction, §14, No. 88a, and § 19, No. 112a.



10 THE POLES OF A RIGHT LINE

two coincident poles reduce to a single line, the common tangent.

The condition for coincident poles is that the "pole^ lie on the Hes-

sian, and it is interesting to see that the analytic condition for

the reduction of the pencil is the same. Using a method sim-

ilar to that used by Clebsch,^ L may be defined by two points,

{x^, 2/j, zjand {x^, y,^, z^, such that the tangents to their respec-

tive polars at the pole {x' , y\ z) cut L in those points. For let

the line through (x^, Vi*^^ ''^^^ {^' y y\ 2')
be «ic + i^y -|- j'z

=
;

then

^' + ?y' + p' - 0,

«^i + /5yi + r^i
=

;

and if this line coincides with the tangent to the polar of

(^u 2/u ^1)
at {x\ y, z')

^1 ^12 + Vl ^22 + \ ^23= ^?^

^1^13 + 2/l^23 + ^1^33 = ^r;

hence eliminating x^ , y^ and
z^ ,

= 0.

There are then two lines (a, ^ ,-f) through (a;', y , z) which

contain points whose first polars touch them at (x' , y\ z). It

is also evident that there are
2(7i

—
2) points in any line where

first polars of points in the line may touch it.

X = may then be defined by the pair of points (x^j y^j z J
and

(rTg, y^, z^) in the two lines through (x' , y' , z) whose re-

spective polars touch the lines there
;
and the condition that the

lines coincide is

^n
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12 THE POLES OF A RIGHT LINE

of the point, and it is numbered among the free poles. The

same is true for the Cayleyan.
II. It follows immediately from I that when L has points of

tangeucy with TJ and the Steinerian the number of free poles is

diminished.

If L has only ordinary points of contact with TJ each point of

tangency is a pole and lies on both the loci. The case of asymp-
totic tangents is a special case which gives a pole at infinity.

The maximum number of such poles which may lie on U is

[n/2] , leaving {2n
—

1) (?i
—

2)/2 possible free poles when n is

even, and (n — 1) (2n
—

3)/2 when n is odd.

If L is tangent to U at an inflexion, it is tangent to the Stein-

erian as well, and has a pole on the Hessian, the point of inflex-

ion ;
for all first polars of its points touch the line at the point of

inflexion. Such a pole is of order 2 and is on the three loci, L ,

Uy and the Hessian. The number of double poles which may
arise from inflexional tangency cannot be greater than [n/3] .

If L is tangent to the Steinerian, but not an inflexional tan-

gent to U, there is again a pole on the Hessian at the corre-

sponding point and necessarily a double pole. The maximum
number of double poles is [3(?i

—
2)72] .

Combinations of simple and inflexional tangency with C/^give

corresponding combinations of single and double poles. A line

which has more than one simple point of tangency with the

Steinerian ^
also presents no difficulty in classifying the poles

fixed by the given conditions. Combinations of tangency, how-

ever, between U and the Steinerian, depend upon the number of

conditions L can satisfy with respect to these curves. If a

method could be devised for finding the maximum number of

times a line may be tangent to these curves simultaneously, the

maximum number and character of the poles defined by these

conditions would follow immediately. But the investigation for

a special and simple case is rendered practically impossible on

account of the difficulty of obtaining the Steinerian in a suitable

form.

1
Cremona, Introduction, g 20, No. 119. If a line is a double tangent to the

Steinerian all first polars touch at the two corresponding points on the Hes-
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§4.

The Inflexion Locus.

The position of inflexions on polar curves does not in any-

way limit the number of free poles of a line, but a consideration

of the inflexions serves to define somewhat the character of the

poles, and before turning to the case where TJ has double points

or other singularities it will be convenient to discuss the gen-
eral inflexion locus, and the inflexion cubic for any point in the

plane and in particular for any pole of the line L .

Referring to §2, if the polar V^ of
(ic^, y^, z^) has an inflex-

ion at (ic', y' y
z

)j
the six equations involving C/j^^, TJ^^^y etc.,

must exist, and also

J2 F,
=

( «,a;' + «^
' + a^: ) ( ^,x + /9^ + /93. )

= .

Eliminating the a's and /3's, the point (a;^, y^y 2^) must satisfy

the two conditions

% f^^n 4- 2/1 '^\vi+ zi 'U\xz ^\ 'U'xvi. 4- Vx ^^22 + ^\ ^^23 H C^^is + Vx t^^23 + % ^^^'33

a^i 'U\xi.+ Vx t^'i22 + zi ^^'123 ^ U\^^+ Vx U\22+ 2i U'^^ »i ?7^23 + Vx U'm -h h U\^^

xx u\ii+ Vi u^^z+ zi U'^as ^1 u\2s 4- yi u^22z + 2i ^''233 a^i u\^s+ yi t/'''233 + h U'333

hence there are three points whose first polars satisfy the given

condition. Clebsch deduces from this the theorem :

" There are

always three different poles whose polars have an inflexion at a

given point '';^ but an examination of the conditions under which

the determinant cubic is derived, as well as a study of special

cases, shows that, strictly speaking, an inflexion will not always
result. The locus evidently includes all points whose first

polars have three consecutive or coincident points at
( Xy y'y z'

)

in the same straight line. It will however be convenient to

adopt a broader meaning of the term "
inflexion,'^ as it is used

by Clebsch and other writers, to include all the cases which fol-

1
Orelle, Vol. LIX, p. 127.

=



14 THE POLES OF A EIGHT LINE

low, and should be so understood throughout this section. The

lines thus related to first polar curves may be inflexional tan-

gents in the ordinary sense, tangents at a double point, any line

through a triple point, or a straight line through the point which

forms part of a degenerate polar. One point will always have

corresponding to it a real line fulfilling the given conditions,

while the other two lines may be conjugate imaginaries.

The locus of all inflexions of polar curves of points on L is ob-

tained by eliminating (x^ , y^ , z^ from

and the determinant cubic above. The resulting equation is of

degree 6 (n
—

2) and has the base points of the pencil for triple

points. It is evident that points on this locus which are double

points on polar curves are also on the Hessian, so that the two

curves are closely connected.

When the point (x^ , y^ , z^ whose polar has an inflexion at

(a;', y' , 2') describes the line X, there is a third condition for it

to satisfy, and in general the three loci will have no common in-

tersection, or one. But at an ordinary pole of the line

L^^x^-\- riy^ -h a^z^
= X{x^U[ + y^U'^ + z^L'^)

= 0,

and any line has, corresponding to each pole, a set of three points

whose first polars have an inflexion at the pole. These are the

intersections of the line with the cubic determinant belonging to

that pole, and the sets of three are {n
—

Xf in number. It fol-

lows from this property of the poles- that they are triple points

of the inflexion locus of the line.

As a special case a tangent to Z7= contains three points

whose first polars have an inflexion at the point of tangency.

The term " inflexion cubic " for any point will be used to des-

ignate the determinant cubic when the coordinates of the point

have been substituted in U^^^ , U^^^ ,
etc. These curves, the in-

flexion cubic and the inflexion locus, are both derived from U,
but they are evidently not dependent upon U alone, as are the
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Hessian, Steinerian and Cayleyan, since the former varies for

every point in the plane and the latter with every line. It is

necessary to examine the inflexion cubic corresponding to a double

point or cusp on the base curve.

If CT'has a double point by a suitable choice of axes and co-

ordinates its equation may be written in the form

+ (a'x^ -f b'x^y + c'xy + d'a^y + eyy-"" + . • . =
,

where (0,0, 1) is the double point with tangents aj = and

y = 0. Thence we obtain

ZZui
= Qaz"^^ + (24a'x + Wy)z'^^ + • • •

,

U^,^
= 2hz^-^ + {Wx + 4c»"-^ + . . .

,

^7ii3= (6acc + 263/K-^ + . . .

,

U^^ = 2c2j"-s + (4c'aj + 6d'2/)2^"-<^ + • • •

,

^123
= %{^ - ^y-' + (ri

-
3) (26a; + 2cy)z^-^ + • . •

,

U^ = (n
-

3) (2caj + 6dy)z--^ + • • •

,

^133= (7i^2)(n~3Ky2^"-* + ...,

^7^3,= (n
~

2) (n
-

S)a^xz--^ + • • •

,

Z7222
= 6c?2:«-3 + (Qd'x + 24e'3/K-^ + • • •

,

C/;33= a^(n-2)(n-3)(n~4)iC2/2;"-s + ....

Evaluating these expressions for (0 , , 1) and substituting in the

determinant, the locus of« points whose first polars have an in-

flexion at (0, 0, 1) is

6ax 4- 2by 2bx-i-2Gy-\-aQ{n—2)z a^{n
—

2)y

2bx-\-2cy-\-aQ{n—2)z 2cx -\- My aj^n
—

2)x

S(^
—

2)2/ %{n — 2)x

or

S{aci^ + d'f)
—

{bv?y + cxy^)
—

aj^n
—

2)xyz = .

= 0,
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Thus the inflexion cubic has a double point at (0 , , 1) with the

tangents of U, x = and
3/
= .

For a cusp U takes the form

a^a^z""-^ + («a^ + bxi'y + oxf + df)z''-^ + . . . = .

The quantities U^^^ , U-^j^^ ? ^^^'f ^^^ ^^® same as before except
the following :

^113
=

2a^(7i
- 2>^ + (n

-
3) {6ax + 2by)z'^ + • • •

,

U,^ = (n
-

3) (26a^ + 2c2/>"-* + • • •

,

£^333
=

a^(n
-

2) (n
-

3) (n
-

4)x'z^-' + . . .

;

and the inflexion cubic is

Qax + 2by + 2ao(^
-

2)^ 26a; + 2cy 2a^{n
—

2)x

or

2bx + 2c2/ 2cx + 6(^y

2ao(n —2)x

a;2(c£c + Sdy) = ;

= 0,

so that the cubic reduces to three straight lines, two of which

coincide with the cuspidal tangent.

If the point (x'j y , z) ,
whose inflexion cubic is considered, is

a double point of U
, every line in the plane intersects the cubic

in three points which satisfy xU^ + yU^ -\- zU^ = -,
or at a

double point of U three poles of any pencil have an inflexion.

If the line pass through a double point of U
, since, as we have

seen, the inflexion cubic has there a double point, two of the

three intersections are represented by the double point. The

tangents to the first polar of the double point meet it in three

points which are coincident, though not on the same branch.

They thus satisfy the algebraic conditions and count for two of

the tangents required. Corresponding to the third intersection

is an inflexional tangent, strictly speaking, or else a line form-
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ing part of a degenerate polar.
^ If the line is tangent to C/' at

the double point its three intersections with the inflexion cubic

coincide. Two of these as before are at the double point and

have the same effect, while the third, which is consecutive to

the double point, gives the line itself as inflexional tangent to

the polar of a point in it and at the point itself.

Passing to the case where (x, y' , z) is a cusp on U, any line

which does not go through the cusp meets the inflexion cubic in

two coincident points on the cuspidal tangent, and in a third

point on the other right line which makes up the cubic. The
oint in the cuspidal tangent is one whose first polar has a dou ble

point at (x\ y' , z) ,
and the tangents at this double point count for

two of the required lines. The third point is the one whose first

polar has the cuspidal tangent for inflexion tangent. An ordi-

nary line through the cusp has there three intersections with the

inflexion cubic. The cuspidal tangent counted twice corresponds
to two of the intersections as cuspidal tangent to their first polar

curves, and as inflexional tangent corresponds to the third.

Finally, the cuspidal tangent has three intersections with the in-

flexion cubic at the cusp, two represented by the cuspidal tan-

gent as before, and the third giving the line itself as inflexion

tangent to the polar of one of its points at that point.

An examination of the quartic

U=: x^y^ + yh^ + ^7? -f- \xy^
—

lyzx^
—

^zxf" =

will serve to illustrate these different cases. No simpler example
is possible, for this is the lowest order of curve for which the

Hessian and the Steinerian are distinct, and all but one of the

poles which could be fixed by means of cusps and double points
are at the vertices of the triangle of reference. The cuspidal

tangents are 2^ — ic =
, 3/
— 2 =

;
and those at the double point

are x + 2y = ,
and 2a3 -h 2/

= . Differentiating

^ This third intersection agrees with Cremona's statement, Introduction, § 10,

No. 47, that one curve of a pencil will have an inflexion at a double pole,

though he approaches the question from an entirely different standpoint and
does not consider whether or not the point is a true inflexion.
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U^ = l3?y 4- 22/^2 4- \x^
- Izt? -

4a;2/2! ,

U^ = 21/^2 + 2a^z + ^xyz
—

^yx"
—

2xy^ ;

U^^
=

22/^ + 2^2 - Ayz, £7-2,
= 2ar^ + 2^2 - 4a;2

,

CTj^
= Axy 4- f2^ —• 42;ic — 4y2, U^ = 41/2 + 52a; — Ix^ — Axy,

U,,= 4xz + 6yz-4xy - 2f, ^^3= V -h ^^ + ^xy;

^111= ^222= ^- ='333

Forming the partial derivatives of the third order and evaluating

for the points (0, 0, 1), (1, 0, 0), etc.,

f^n2= 42/— 42

^113= 43— 4y
U,22 = 4x— 4z

J7i23
= 5z— 4x-

Z7,23
= 4z— 4a;

f^233
= 4y + 5a;

Z7i83
= 4a;+ 5y

(0,0,1)
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(A) has at (0 , , 1) a double point with tangents x -\- 2y =
and 2x -^ y = 0; and at the two cusps the inflexion cubics re-

duce to the cuspidal tangent counted twice and a third straight

line through the cusp, according to the general theory.

I. When the line has a pole at a point not on the curve.

Example 1. The point (1, 1, 1) has the inflexion cubic

m
or
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which reduces to

4(x' -\-f)-\- S{x'y + xf) + 6S{yz' + xz')

- 2S(yh + xh)
-

4.0xyz
- 54»» = .

The intersections of the line with the cubic (E) are

a;=l,l, cd; y=l,l, oo; 2;=!, 1,1;

and the line is tangent to the cubic at (1 ,
1

, 1) ,
while the third

intersection is at infinity. The polar of (1 ,
1

, 1) is

z{Syz + Sxz — 2xy) = ,

a degenerate cubic which is to be counted twice on account of

the condition of tangency.
II. Every line has a single pole at the double point. (See

§5,1.)

Example 3. The line 176aj+ 14% + 15^;== has intersec-

tions with (A) at (6,
-

9, 19), (45,
-

60, 68), and (- 35, 20,

212), with corresponding polars

dQx'z - 56x^y - 26xy^ + 2Qyh + lOlxyz - Zyz^
-

^-xz''
=

,

A.^zf
-

46ici/2
^

266x''y + 256A
-f 400xyz - 60xz^ - ^fyz^

=
,

4cdiyh — 494:xy^
—

20yz^
—

^f-yz^

+ 1120xyz - 384a;2^ + 384aj22j = .

Changing to Cartesian coordinates, and making, for each curve,
the tangent at the origin the 3^-axis, these equations reduce to

33(12^2
_ iQ^^ ^ 26a; + 278^ - 21) + 40f = ,

x(42y — 4xy— ISy' + 4x —
^^^-) + Idy^ = ,

x(66bf - S52y - 10) + 39713/* = .

This shows that there exist three real points in the Jine 176ic

+ 1492/4- 15^;= whose first polars have an inflexion in the

strict sense of the word at the pole of the line (0 , , 1) .
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Example 4. The line x — 2y = passes through the double

point and its intersections with (J.) are

'K = 0,0,^f; 2/
= 0,0,5«j; ^=1,1,1.

The double point counted twice has corresponding to it the tan-

gents to its first polar at (0 , , 1) ; and the polar of (10 ,
5

, 31) is

42
{y^z

-
xy^) + 52 {xh

-
x^y) + ^bxyz + Zbyz^ + %6 rf = o .

This equation transformed as before gives

X (65
- ^xy - 34?/ + 8ic + 1402/")

~ Z^2f = 0,

which shows an inflexion at (0, 0, 1).

Example 5 . The line 2=0 bears no special relation to the in-

flexion cubic for (0, 0, 1), but has a pole at that point, and by

choosing suitable coordinates any line may be taken for s = .

We may then find the points whose first polars have an inflexion

at (0, 0, 1) by the following general method.

Let cc — % = be the equation of the line joining (0 , 0, 1)

to an intersection of (A) with i =
;
then the tangent to the

first polar of the point is cc -f % =
(see § 5, I) ,

and h may
be so determined that a; + % = is tangent at an inflexion.

The polar of (^ ,
1

, 0) is

-f- I jcz^ — 2sic^ — Axyz = ;

and the tangent to T^^ at (0 , , 1) is

x(U+5)-i-y{5k+ 4) = 0.

This must meet F^ in three points at (0, 0, 1). Substituting

/5Z;-f4\ ,, .

^ ^ "" ^
V 4F+5 j^

^^^ ^^^^^"^^ ^ "= ^^

^^1 4;^+ 5 J

^ r 10k' -h isk -{- s
,

/5^ + 4\n ^
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The coefficient of y vanishes identically since the line is tangent

hy hypothesis. For three values of y to be equal to zero the

coefficient of
3/^

must vanish, and

()^+l)(8y^2+ll^+8) = 0,

which gives one real and two imaginary values for h . When
A; = — 1 the polar of (

— 1
,
1

, 0) is

{x — y) (z^ + 4xy — 4xz — 4yz) = ,

another degenerate polar; while the two remaining points in

2=0 whose first polars have an inflexion at (0, 0, 1) are im-

aginary.^

III. Every line has a double pole at the cusp (see § 5).

Example 6. Intersecting {B) by the line a; = 0, we obtain

(0, 1, 1) twice, and (0, 2, 1).
The tangent to the polar of

(0, 1
, 1) is indeterminate, and this point corresponds to the polar

which has a double point at the pole. The polar of (0, 2, 1) is

2x^y
—

^xy"^
— Sxyz — 2xh + 4yz^ + 2yh + bxz^ — 0,

and its tangent at (1 , 0, 0) is
2/
— sj = 0, the cuspidal tangent.

Transforming so that y — z — 0, becomes 2 = we have

<2 ~ 72/ + 52; - 10y2 + 42/2^) + 62/^
=

;

and 2/
—

2J = is therefore tangent at an inflexion.

Cases where the line passes through a cusp or coincides with

the tangent there, and other special positions of the line may
readily be examined by similar methods.

1
Writing the polar conic

2a;2 4-2%2— y2(5^ + 4)— 2x(4^ + 5)+4a;y(yfc+ l)=:0,

dividing by the tangent

x(4^+ 5) +2/(5^+ 4)^0,

and equating the coefl&cients in the remainder to zero, leads to the same values

of k.
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§5.

Poles when the Base Curve has Double Points

AND Cusps.

A double point on Z7is a pole for every line in the plane and

presents several peculiar characteristics. It is a double point

on its own first polar curve, and therefore corresponds to itself

as a point on the Hessian and the Steinerian. It is a double

point on the Hessian ^ which represents always two of the points

which can be double points for the pencil of curves belonging
to a line through it, and is therefore a double point on the

Steinerian. This is a particular case of the following theorem

proved by Henrici ^

by a very elegant analysis :
" A point

whose first polar has a cusp is a cusp on the Steinefian, and one

whose first polar has two double points is a double point on the

Steinerian." ^ The tangents to the Hessian at the double point

are the same ^
as those of U, and also are tangents to the Stein-

erian, since they are line polars of the corresponding point on

the Hessian.

This pole lies on Uy the Hessian and the Steinerian simulta-

neously, irrespective of any condition introduced by the position

of the line itself, and it is in general a single pole, contrary to

the usual character of a pole on the Hessian
;
but the Hessian

includes all points which are simply double points on U as well

as those where all first polars touch. A cusp is a double pole

for all lines in the plane since all first polars touch there. Thus

there is a lower limit for the number of single and double poles

found on U, for any line in the plane, depending upon the num-

ber of double points and cusps which U has. One of these

single poles may change into a double pole, and a double pole

into one of higher order, for certain lines in the plane
—

namely,
lines through the singular points and tangents at those points.

This lowest number is increased by the points of tangency of the

*
Salmon, Higher Plane Curves^ p. 60,

2Proc. L&nd. Math. Soc, Vol. II, p. 112.

^Cf. Cremona, Introductwn, § 20, No. 120. If a first polar has two double

points p and j/, the pole o is a double point on the Steinerian and the tangents
at are line polars of p and p''.
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line with U, Any pole which is common to i, C/, and the

Hessian may be either a double point or an inflexion : if it is on

the Steinerian as well it must be a double point.

I. When L does not pass through the double point the pole is

single, and the tangent to the first polar of a point in L is the

harmonic conjugate, with respect to the tangents of U at the

double point, to the line joining the point whose polar is taken

to the double point.^

£7" may be written

a, rcyz""-^ + (aa^ + h7?y + cxy^ -f dif)z'^^ -j-
. . . =

Let L be the line 2J = for simplicity. Then any point {x^ , 3/1 , 0)

on L has for polar

The tangent to Fj at (0 , , 1) is xy^ + yx^
=

;
and the line

through (cCj, y^, 0) and (0, 0, 1) is xy^
—

yx^
= Oy the harmonic

conjugate of the tangent.

In particular the point where the line intersects one of the

tangents at the double point has a polar which touches the other

tangent at the double point.

II. When L passes through the double point it is evident that

the harmonic conjugates reduce to a single line conjugate to X
which is the common tangent to all first polars, and there are

two coincident poles. This is one of the special cases referred

to in §3 (c), for X passes through a double point on the Stein-

erian and has a pole on the Hessian. The two points compos-

ing the double pole must be regarded as lying on the conjugate

to X, while L simply intersects the polars at the double point,

having two points in common only with the polar of the double

point, which has a double point at the pole. It should be noted

that we have here another condition for a double pole.

III. If L is tangent to C/" at a double point, it is tangent to

all first polars of its points, and to the Hessian and the Stein-

erian, and has three consecutive points in common with U, the

1 Cf. Cremona's theorem, Introduction, ? 13, No. 74, based on his geometrical

proof.
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Hessian, and the Steinerian. The three intersections with the

Hessian count for three double points of the pencil, and the

double pole lies on the line itself.

IV. When the double point is a cusp, the two tangents coin-

cide and become the common tangent to U and to all first polars.

This is also a condition for a double pole. The point where any
line intersects the cuspidal tangent is the one whose first polar

has a double point, counting for two double points of the pen-
cil as in the ordinary case where polar curves have a common

tangent.

Y. Any line through the cusp has three points in common
with the Hessian, since a cusp on U is a triple point on the

Hessian ^

consisting of a cusp with a simple branch through it.

This pole then counts for three double points of the pencil and

the polar of the cusp itself has a cusp there.^ Any line

through the cusp has at least two poles on the cuspidal tangent
at the point of tangency, but this double pole as in a former case

cannot be regarded as lying on the line. The pencil at a cusp
diifers from a pencil at an ordinary point, when the line passes

through it, only in having a cusp at the pole instead of a

double point. The cusp on U should be a cusp on the Steinerian

by Henrici's theorem already quoted in this section,
^ but this

is a special case since the cuspidal tangent forms a part of the

Steinerian.

VI. If L is tangent to CT" at a cusp, every point in it is one

whose first polar curve has a double point at the cusp.^ All

first polars have four intersections at the cusp, making a pole of

order 4. The pairs of tangents to the polars, or their polar

conies, form a quadratic involution with the vertex at the cusp
in which one of the two double elements is the cuspidal tangent
itself.

1
Salmon, Higher Plane Curves, p. 61.

' Cf. Cremona, § 14, 88b : If a base point of a pencil is a cusp for one it

counts for three double points.

'Also compare Cremona, Introduction, ^ 20, No. 121 : If a first polar have
a cusp p, the pole is a cusp on the Steinerian and has the line polar of p for

cuspidal tangent.
*
Cremona, Introduction^ §14, 88d.
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Let

^1 = ^1^1 + 2/1^2 + ^1^3=0,'^

^2=^2^1 + ^2^2+^2^3=0,

be the first polars of any two points on the cuspidal tangent.

The pairs of tangents at the cusp (x', y' , z) are given by

+ yi TJ'm+ h U^^,^\ + 22/2 {x, U\^+ y, U\,,+ z, U\^-\ + 2zx [x^ U\,,

+ 2/1 U\,s+ h U^^l + 2xy [x, U\n+ Vx U'n,+ ^i U\,,-\ = ,

and a similar expression C^ . Any other point on the cuspidal

tangent is
(a?j + Xx^, y^ + ^y^y z^ -\- Xz^),

and the tangents to its first

polar are given by C^ + W^^O. Two curves of the system
will have a cusp corresponding to the double elements of the

involution. These are given by the values of X which make

Cj + ^Cg a perfect square ; and, since one of the pairs is the cus-

pidal tangent and therefore real, the involution is hyperbolic or

non-overlapping.^

§6.

Intersections of Higher Order with the Steinerian.

The character of the poles conditioned by the line having

ordinary contact with the Steinerian has already been discussed

in §3, and it was shown that parallel theorems for the Hessian

cannot be deduced. The condition of passing through a double

point dn the Steinerian is not equivalent to the condition of tan-

gency, but a line may pass through a double point on the Steiner-

ian and have no pole at the corresponding point on the Hessian.

A line through a double point on U however, since it is a dou-

ble point on both these loci, has a pole on each, the double point
itself. This is a special case depending on the relation of the

line to the base curve.

When the line has three intersections with the Steinerian at

any point the following distinctions arise :

I. The three points may be consecutive on the same branch

and the line is tangent at a point of inflexion.

^
Scott, Analytical Oeomdry^ p. 162.
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Regarding this as the limiting position of two points of tan-

gency with the Steinerian which unite to form an inflexion, the

corresponding points on the Hessian unite, while the common

tangents to the polar curves move to coincidence in the same

way that the points of tangency on the Steinerian do, giving
three consecutive points in the same straight line for all polars.^

The common tangent is an ordinary tangent to the Hessian, since

only two points have moved to coincidence ;
and the line has

here a pole of order 3
,
which counts for three double points of

the pencil.

II. Two points may be consecutive and the third in another

branch, so that the line is tangent to the Steinerian at a double

point.

The condition of tangency gives a pole on the Hessian of order

2 . The polar of the point has three double points, two of which

coincide at the pole as in the ordinary case but still count for

two.

III. If the Steinerian admits a triple point, the three inter-

sections may be on three different branches.

Corresponding to a triple point with three simple branches is

a polar curve with three double points, but no condition is

necessarily imposed on any pole. A line tangent to the Stein-

erian at the triple point meets it in four points there, and from

the condition of tangency the corresponding point on the Hessian

is a pole of order 2
,
at which the double point counts for two.

A triple point on the Steinerian formed by a simple branch

through a cusp, has a polar with two double points and a cusp.

No pole is defined for a line passing through the point by this

condition. If, however, the line is tangent to the simple branch

at the double point, the corresponding point on the Hessian is a

pole of order 2 . The polar of the triple point has a double

point at the pole, counting for two, and a cusp elsewhere. If

the line is a cuspidal tangent, the cusp is at the pole and counts

for three double points ;
the double point elsewhere counts for a

single double point of the pencil.

Any multiple point which the Steinerian may have with dis-

* Cf. Cremona, Introduction, § 20, No. 119.
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tinct or coincident tangents to the several branches will give

analogous results.
'

•

§7.

The Base Curve with Triple Points and Multiple

Points of Higher Orders.

The first polars of any two points in the plane pass through a

triple point on TJ twice, and the four intersections compose a

pole of order 4 for any line in the plane. The polar of the

triple point has there a triple point with the tangents of IJ for

its three tangents. A pencil of first polars has ordinarily

3(n
—

2)^ curves which may have a double point, and these cor-

respond to the intersections of the line with the Steinerian
;
but

in the case considered the first polar of every point in the plane
has a double point at the triple point of TJ, Thus the ordinary
Steinerian is indeterminate when the base curve has a triple

point, but there is only a finite number of points whose second

polars have a double point, and the locus for these can be found,
at least theoretically. Adopting the notation suggested by
Salmon,^ this locus is the second-Steinerian of order 6(71

—
3)^;

and the corresponding second-Hessian is the locus of such double

points, among which are the triple points of Z7, and is of order

12(n
—

3) . In general the i^-Steinerian and ??-Hessian are of

orders Zd-{n — i^—\f and Z&\n — ?? — 1) respectively.

It has been shown that the inflexion cubic for a cusp is com-

posed of the cuspidal tangent taken twice and another line

through the cusp ;
and it, as well as the Steinerian, is therefore

degenerate when U has a cusp. If U has a triple point, the in-

flexion cubic for that point is indeterminate, as may readily be

proved by evaluating the determinant for such a point. It is

evident that the Steinerian is connected with the inflexion cubic

for any point as the Hessian is with the inflexion locus for

any line.

At a multiple point of order h, first polar curves will have a

multiple point of order ^ — 1 in general, but the polar of the

'
Higher Piane Curves, p. 365.
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multiple point itself will have precisely the same multiple point

that U has. The number of poles at the point may be increased,

as we have seen, by the position of the line or by coincidence of

tangents.

There are certain harmonic relations which govern the tangents

to first polar curves at a multiple point of U in consequence of

the harmonic properties of poles and polars, and we shall con-

clude this paper with an outline of these relations.

A, Triple Points,

I. CT'has an ordinary triple point at (0,0,1) and is of the

form

a^fcy(x
—

y)z'^^ + (ax^ + boc^y -f cx^f + dxi^ -f- ey*)a"-* + • • •= .

(a) L does not pass through the triple point.

The polar of any point {x^ , 3/^ ,
2JJ in X is

X, \_a^{2x
-

y)z--' +..-]+ 2/1 [%^{^
- 2^^-' + • • •

]

+ 3Ja,(n
-

3)a32/(aJ
- yK"' +•••] = ^

>

with tangents at (0, 0, 1) given by

^i3/(2aJ
-

y) + yA^- 22/)
= .

There are two double rays in this quadratic involution and there-

fore two polar curves have a cusp at the triple point. The two

factors of the first term are y and the harmonic conjugate of y
with respect to the other two tangents ;

and the second term is

the corresponding expression for x . This relation of tangents is

similar to the case for a double point.

(6) L passes through the triple point, or L= x -~ky=0.
In this case the tangents are contained in

ky(2x--y) + x{x-2y) = 0,

and are the same for all curves of the pencil, except for (0 , , 1)

which has the tangents of U? This again is an extension of the

1 Cf. Cremona, Introduction, § 10, No. 48 : If ^ and A' are tangent to all

curves of a pencil at a, a curve may be found which has a for a triple point.

If A and A^ coincide all curves have a cusp.
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case for a double point, where all polar curves touch the har-

monic conjugate of the line with respect to the two tangents of

Uat the double point.

(c) L is tangent to U at the triple point.

Let Lhe x — y = y
and the tangents are x^ — y^ =0, Thus

all polars have two common tangents, the line itself and its

harmonic conjugate with respect to the other two.
*

II. U has a cuspidal branch at (0 , , 1),
or its lowest term is

a^x^yz"*-^ . The tangents to first polars are given by

x(2x^y + y^x)
= .

(a) A line not passing through the triple point will have for

the pairs of tangents to its first polar curves the cuspidal tan-

gent with a pencil of lines through the triple point. One polar
of the pencil with have a cusp there.

(6) A line i = a? — % = through the triple point has tan-

gents given by x{2ky -f ic)
=

,
and they are the same *

for the

polars of all its points. The polar of the triple point has a

triple point and only this one polar of the pencil has a cusp.

(c)
L is tangent at the triple point.

Let L = x—
f
the cuspidal tangent, and the tangents to

first polars are given by cc^ =
;
and all first polars of the

pencil have a cusp at the triple point.

On the other hand if i = y = ,
the tangents are xy = ,

and only the polar of the triple point has a cusp.

B. Quadruple Points.

I. U has a quadruple point with four ordinary branches

through it, or

Z7= xy {x
—

y)(x-{- hy) 2"-^ + {a:i(^ + • •

•)
s""^ + . . . = .

The polar of {x^, y^, z^ has tangents at (0, 0, 1) given by

X, [Zx'y + 2 (^
-

1) xy"-
-

hi^-]

+ y,\^ +2{k^ l)xy'^Skxy'] = 0,

and the four double elements of the involution are the tangents



WITH RESPECT TO A CURVE OF ORDER 71. 31

to first polars which have a cuspidal branch at (0, 0, 1).
As in

the preceding cases the line x — ¥y = has the same tangents
for all polars except that of the quadruple point. If the line is

the tangent ic — y = 0, we have

{x
-

y)[f +2{h+l)xy^ ky^ = 0,

which may be written

{x
-

y) \x (a; -f 2^ + \y) ^xy+y{2x + ley)]
=

;

where x -\- 2k -^ ly is the harmonic conjugate ofx — y with re-

spect to y and x -\- ky, and 2x -f ky is the harmonic conjugate
of X — y with respect to x and x + ky. This may be written

in other forms,

{x
-

y) [x {x + 2k+ ly)

—
x{x + ky) + {x-Jrky){x + yj]

= 0, etc.,

showing other combinations of harmonic conjugates.

II. One of the branches is cuspidal, and C/^may be written

x\x — y){x + kyy-^^ -\
= . The polar curve has tangents

given by

x^ \\x^ + 3(7^^\Yy- 2kxy^ + y^ [{k
- 1^- 2k ^xy]

= .

For any line x — k'y = the cuspidal tangent is a common

tangent to all first polars as before. For the tangent x — y
— O

we obtain

a; [(3 + ^
)a;'
-

(5ifc -l)xy - 2kf] = ;

and for the cuspidal tangent, ic =
,

x\k{x
—

2/)
—

(a; + %)] = 0,

giving combinations of harmonic conjugates.

III. Two of the branches are cuspidal and U has for its

lowest term x^yh'^~'^ . The tangents for any polar are

^y{^iy + Vi^)
=

,

and any polar has a triple point with two fixed tangents, while
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the third belongs to a pencil through the point. If L = x — ky
=

,
the tangents are all the same

;
while for one of the tangents

to C7', aj = ,
we have ar^y

= .

C. Quintuple Points,

I. The five branches are simple, and U has for its lowest term

xy(x
—

y){x-{- ky) {x + ly)z'^^. The tangents to first polars are

given by

jCj [4ar'y + 3(Z + ^ - l^y^ -2{k + l-^ kl)xf -%*]
+ Vil^* -{2(l-\-k^ lyy ^2.{k-\-l- kiyf - 4%^] = ,

and the six double elements of the involution are the cuspidal

tangents to first polars at the multiple point. For L^x — k'y
== the tangents are the same for all first polars. The tangents
to first polars of the pencil belonging to a; —-

3/
= are

{x
—

y) \xy{l + ^ + 2a; + 2kl + l-[- ky)

+ (a; 4- y) (aJ + %) i?^ + ly)]
= 0,

where the first term in the bracket is composed of the product
of two tangents, x and y ,

and the harmonic conjugate of a; —
3/

with respect to aj + % and x -\- ly ;
and the second term is the

product of X -{- ky and x + ly, and the harmonic conjugate of

X — y with respect to x and y . By this selection the result is

more simple on account of the symmetry of the pairs of tangents.

Arranging the pairs in difierent order a third term appears ;
for

instance

(x
-

y)[x{x + ly) (a? + 2^ -f ly)

+ y{x + ky) {x + ly) + lxy{x + %)] = .

Combinations of cuspidal branches give results corresponding
to those obtained for lower orders of multiplicity, and these

methods may be extended to higher orders where the branches

are simple and cuspidal. The equations involving the tangents
will allow various combinations of harmonic conjugates, and it

is to be observed that the forms can be made more symmetric
when the multiple point on U is of odd order.
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