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ABSTRACT 

The first reports on Deinonychus antirrhopus Ostrom tentatively identified a 

solitary, incomplete bone from the Yale Quarry near Bridger, Montana, as a 

right pubis. Subsequent examination and comparison with remains of other 

taxa have established that bone to be a right coracoid of surprisingly large 

size. The element is redescribed here with a corrected reconstruction of the 

pectoral girdle and a revised interpretation of the relevant pectoral 

musculature and functions. The unusually large size of the coracoid is 

believed to be related to enlarged pectoral muscles that were important in 

some predatory activities. 
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INTRODUCTION 

During the course of my original analysis of the Deinonychus remains 

recovered from the Yale Quarry near Bridger, Montana (Ostrom, 1969a,b), 

one incomplete element was described which I was unable to identify with 

certainty. Its general configuration was that of a coracoid, but upon 

comparison with the scapulocoracoids of other theropods, that identification 

was discarded because the bone in question was two to three times larger than 

expected for the known scapulae of Deinonychus. Nor did this bone compare 

well with the coracoid (or any other element) of Tenontosaurus, the only 

other taxon recovered from the Yale Deinonychus Quarry. Finally, with some 

reservations, I identified this bone as a pubis, chiefly because it was found in 

close association with a right ischium (see fig. 65A, Ostrom, 1969b) in the 

Yale Quarry. 

Peter Whybrow, now at the British Museum (Natural History), while in the 

process of constructing a free-mount of Deinonychus (now being completed 

by P.Chatrath), concluded that my tentative identification could not be 

correct. Further comparisons with additional theropod material and 

re-examination of the scapulae of Deinonychus (AMNH 3015) have 

established to my satisfaction that this element actually is a right coracoid, 

although of unusual shape and extraordinary size. 

In addition to the obvious need to correct the previous error, it also seems 

worthwhile to re-examine the morphology and function of the pectoral arch 

and forelimb in the light of this new information. 

ABBREVIATIONS 

Institution names have been abbreviated as follows: 

AMNH_ American Museum of Natural History, New York City 

BS Bayerische Staatssammlung, Munich 

GIMAS Geological Institute, Academy of Sciences of the Mongolian People’s 

Republic, Ulan Bator 

YPM Yale Peabody Museum of Natural History 

DESCRIPTION 

Preserved with the left scapula (AMNH 3015) of Deinonychus is the glenoid 

portion of the coracoid. Although imperfectly preserved, this fragment 
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FIG. 1. Right scapulocoracoid of Deinonychus antirrhopus as reconstructed from 

separate elements. The scapula (AMNH 3015) is from the American Museum Quarry (see 

Ostrom, 1969b, fig. 1A); the coracoid (YPM 5236) was recovered from the Yale Quarry 

(Ostrom, 1969b, fig. 1B). Although the coracoid seems disproportionately large, the two 
bones appear to have come from equivalent-sized individuals, judging from the respective 

dimensions of elements in common from both sites, (see tables 7-11, Ostrom, 1969b). 
Abbreviations: ac = acromial (deltoid) process; bt = biceps tubercle; cf = supracoracoid 

foramen; g/ = glenoid. The scapula and coracoid are illustrated in the same plane, hence 

the coracoid is viewed in anterolateral aspect, rather than lateral. 

corresponds closely in size and morphology with the corresponding region of 

the present bone (YPM 5236) and confirms the present identification. 

The coracoid is roughly triangular in outline (the upper part adjacent to the 

scapular suture is missing), moderately convexo-concave (externally- 

internally), and bears a very prominent anterolateral projection immediately 

anterior to the glenoid rim. Walker (1972) has termed a similar coracoid 

prominence in Sphenosuchus (traditionally classified as a thecodont, but 

currently considered a crocodilomorph by Walker) the ‘biceps tubercle.” 

Osmolska etal (1972) noted a comparable feature in the theropod 

Gallimimus and labeled it the ‘“‘coracoid tuber.”’ The supracoracoid foramen is 

situated immediately dorsoanteriorly to this coracoid prominence, at the 

bottom of a broad depression. Its passage through the coracoid from within is 

clearly in a forward direction. 
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The glenoid moiety and the adjacent region that articulated with the 

scapula are the most robust portions. The preserved part of the scapular 

articulation is nearly circular in outline and is strongly digitate. A stout 

column, nearly circular in section, extends ventroanteriorly from the 

glenoid-scapular region to the coracoid tuber (or biceps tubercle), then veers 

ventrally along the posterior margin with diminishing robustness, and finally 

disappearing in a caudally-directed hook-like flange at the lower coracoid 

extremity. The posterior margin between the glenoid rim and the ventral 

“hook” is the most robust of all free coracoid margins. The inferior margin is 

moderately thick but is not expanded, and the upper anterior margin is 

thin-edged throughout. Presumably, this latter edge thickened near its 

junction with the scapula, because the left scapula (AMNH 3015) bears a 

thick acromial or deltoid border. 

Internally, a sharp concavity occurs at the site of the coracoid tuber 

(beneath it), delineated above and below by bony struts or thickenings 

extending forward. Anteriorly, this concavity apparently was floored by 

extremely thin bone (now lost) or perhaps was fenestrated. 

As illustrated in Figure 2, the coracoid of Deinonychus, compared with 

that of various other theropods, is much longer (relative to scapular length) 

and much deeper (dorsoventrally). Its anteroposterior dimension is 107 mm 

(approximately 60% of scapular length), compared with a vertical dimension 

that exceeded 100 mm. In addition, the coracoid tuber or biceps tubercle is 

much more prominently developed than in any other theropod of which I am 

aware. I have not had the opportunity to check a wide variety of theropod 

coracoids, but it appears that a correlation may exist between tuber 

prominence and relative forelimb length. Gorgosaurus, Albertosaurus and 

Tyrannosaurus (with reduced forelimbs) have little or no tuber development, 

whereas Allosaurus, Struthiomimus and Gallimimus all have distinct coracoid 

tubers. Deinonychus, with what seem to be the longest (relatively) forelimbs 

among presently known theropods, is characterized by the most prominent 

coracoid tubercle. 

It is especially interesting that this correlation extends even to 

Archaeopteryx, a structurally similar, obligate biped. The theropod-like 

forelimbs (and pectoral arch) of Archaeopteryx are relatively longer than 

those of any known theropod, and correspondingly, the biceps tubercle is the 

most prominent of all. Furthermore, this tubercle in Archaeopteryx is 

situated at almost exactly the same position as in Deinonychus—just anterior 

to the glenoid rim and immediately ventral to the supracoracoid foramen. In 

my opinion, there can be little doubt that these are homologous structures, 

but for a more thorough treatment of the evolutionary relationships between 

Archaeopteryx and theropods see Ostrom 1973, 1974. 

Inasmuch as the sternum is rarely preserved in theropod specimens, we do 

not know the exact position and orientation of the scapulocoracoid. Most 

articulated skeletons, however, indicate that the scapular blade ascended up 

and backward at an angle of between 20 and 40° to the axis of the dorsal 

vertebrae. For example, see the skeletons of Struthiomimus altus, AMNH 
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= Y Gorgosaurus 

Allosaurus 
aa 

Gallimimus 

Deinonychus 

FIG. 2. Comparison of representative theropod scapulocoracoids to illustrate the 
relatively large size of the coracoid of Deinonychus. All scapulae are oriented 
horizontally and drawn to unit length for convenient comparison. The horizontal lines 
indicate respective scales; each line equals 5 cm. Taxa included represent the major 
theropod categories; Deinodontidae (Gorgosaurus), Megalosauridae (Allosaurus), 
Ornithomimidae (Gallimimus) and Dromaeosauridae (Deinonychus). All scapulae and 
coracoids are illustrated in a single plane; the anteromedial curvature of the coracoids is 
eliminated for uniform comparison. 

5339 (pl. XXIV; Osborn, 1917); Compsognathus longipes, BS ASI563 (pl. III; 
Wagner, 1861); Coelophysis longicollis, AMNH 7223 (pl. 28: Colbert, 1961); 
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Velocirapter mongoliensis, GIMAS (pl. II, 2; Kielan-Jaworowska and 

Barsbold, 1972). In that position, the coracoid of Deinonychus would have 

been situated entirely anterior (and slightly medial) to the glenoid, with the 

supracoracoid foramen immediately in front of the glenoid and the coracoid 

tuber in front and slightly below that socket. 

The reasons for the shape and unusual size of the coracoid in Deinonychus 

can only be guessed at, but there can be little doubt that they were related to 

forelimb function and the biomechanics of the shoulder joint. Reconstruction 

of the coracoid musculature provides some clues. 

CORACOID MUSCULATURE 

It is difficult to know which modern species is the best model for 

reconstruction of the pectoral and forelimb musculature in a theropod. Since 

Deinonychus is classified as reptilian, one is tempted to rely on a generalized 

modern reptile, such as Sphenodon or a lizard. But as obligate quadrupeds, in 

which the forelimb orientation and function as well as the scapulocoracoid 

position and morphology are very different, such analogues are of doubtful 

value. On the other hand, the scapula and humerus of Deinonychus (and 

those of many other theropods) are distinctly bird-like, even though the 

coracoid is not. Flight specializations seemingly disqualify all birds as suitable 

models, but birds—like theropods—are obligate bipeds. Hence the modern 

bird analogue may not be as inappropriate as it first appears. 

If we accept the traditional conclusion that Archaeopteryx was a true bird 

(whether or not we accept it as the direct ancestor of modern birds), then we 

may assume that the pectoral anatomy of modern carinates evolved from a 

stage comparable to that of Archaeopteryx. Elsewhere (Ostrom, 1973; 1974; 

MSS), I have shown that the osteology of Archaeopteryx is fundamentally 

that of a small theropod. This is especially true of the forelimb and pectoral 

arch, including the coracoid! The coracoid of Deinonychus, for example, is 

far more similar to that of Archaeopteryx than it is to the coracoid of any 

living reptile. Parallelism and convergence notwithstanding, these pronounced 

skeletal similarities suggest (but do not establish) that the pectoral muscular 

patterns of Archaeopteryx and some theropods were also broadly similar. 

In both living reptiles (Sphenodon, lizards and crocodilians) and birds the 

number of muscles that arise from the coracoid is few. The most important of 

those muscles are the M. coracobrachialis (often bipartite), M. supracora- 

coideus, M. subcoracoideus, M. biceps and M. sternocoracoideus. There are 

others, but these are the major muscles. With the exception of the 

sternocoracoideus, all insert on the forelimb and all but the biceps insert on 

the humerus. (In birds, the biceps has a second origin on the proximal medial 

crest of the humerus.) The principal function of the coracoid musculature is 
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to move the forelimb. Thus, the location of each muscle origin relative to the 

glenoid is of primary importance. 

The significance of this last point is dramatically illustrated by discarding 

(for the moment) the conventional orientation (living position) of the 

scapulocoracoid and adopting instead a standard orientation of the glenoid, as 

in Figure 3. In that figure, all scapulocoracoids are oriented with the glenoid 

long-axis in a horizontal position. Despite the great morphological differences 

among the four species figured, there is surprising uniformity as regards the 

location of coracoid muscle origins with respect to the glenoid. In all four 

model species, the M. coracobrachialis pulls the humerus toward the coracoid 

(as we would expect). In a lizard (also Sphenodon and crocodilians) that 

movement is downward and slightly backward. In birds, however, it may be 

forward and slightly upward, or down and backward depending upon which 

portion of the coracobrachialis is contracting. In all four groups, the biceps is 

a primary fore-arm flexor, and the coracoid origin of such flexors obviously 

must lie on the “‘flexion’”’ side of the glenoid (i.e., the origin must be situated 

between the glenoid and the insertion point on the adducting antebrachium). 

The close correspondence of the origin areas of the coracobrachialis (and 

supracoracoideus) and the biceps, as shown in Figure 3, assures that the plane 

of fore-arm flexion (by the biceps) coincides with the planes of humeral 

adduction produced by these other coracoid muscles. Thus, fore-arm flexion 

in a lizard adducts the distal limb segments ventromedially, whereas the avian 

fore-arm is flexed anteromedially. 

From these living models, it is evident that the main function of those 

muscles that originate on the coracoid is adduction of the humerus and 

adductive flexion of the fore-arm at the elbow. The direction of humeral 

adduction and fore-arm flexion is determined by the orientation of the 

scapulocoracoid and the location of the muscular origins with respect to the 

glenoid. These observations are so elementary that they hardly need mention 

here. 
However, regardless of what particular anatomical terms happen to be 

applied to the muscles that arose from the theropod coracoid, and regardless 

of whether they are considered homologous with those of modern reptiles or 

birds, it is certain that the same actions and movements must have occurred. 

Accepting the scapulocoracoid orientation that is indicated by the several 

theropod specimens cited above, the coracoid musculature of Deinonychus 

must have produced powerful anteromedial adduction of the humerus, 

coupled with strong anteromedial flexion of the fore-arms and hands. 

Humeral adduction presumably was accomplished by relatively large 

““coracobrachialis” and ‘‘supracoracoideus” muscles that originated on the 

large anterior expansion of the coracoid. Anteromedial flexion of the 

antebrachium was accomplished by a powerful “biceps” that probably arose 

by tendonous attachment on the prominent coracoid tuber (biceps tubercle). 

This latter feature is ideally situated for that function, anterior and medial to 

the glenoid, and corresponds closely in position and form to the biceps 

tubercle of Archaeopteryx (Walker, 1972). 
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APPENDICULAR EVIDENCE 

The humerus of Deinonychus has been described previously (Ostrom, 1969b) 

and does not require detailed description here. Some review is appropriate, 

however, as regards the preceding interpretation of the coracoid and its 

musculature. 

As noted in the above report, good evidence exists (the large deltopectoral 

crest) in the known humeri of Deinonychus that indicates powerful forward 

adduction of the forelimbs by large pectoralis and coracobrachialis muscles. 

The opposite, recovery movement by the M. deltoideus apparently was not so 

powerful, judging from the low profile (Fig. 1) of the incomplete acromial 

process of the scapula. While the large deltopectoral crest does indicate a large 

pectoralis muscle with considerable leverage, there are no distinct scars 

preserved on that structure or on adjacent surfaces to show the relative sizes 

of the pectoralis vs. the coracobrachialis. It is presumed, however, on the 

basis of the coracobrachialis insertion site in both modern birds and reptiles, 

that this muscle inserted proximally along the base of the deltopectoral crest 

on the medial (ventral) humeral surface adjacent to the insertion of the M. 

pectoralis. Its action, like that of the pectoralis, was anteromedial adduction 

of the humerus. 

A small but distinct tubercle (marked by the uppermost line labeled “‘PE”’ 

FIG. 3, opposite page. The scapulocoracoids (in lateral view) of three modern reptiles 

and a bird (common crow) showing the attachment areas of three major muscles that 
originate on the coracoid. Since these muscles function exclusively to move the humerus 

or flex the antebrachium, their positions relative to the glenoid are the critical 
mechanical features. For that reason, the scapulocoracoids are illustrated here with the 
glenoids oriented in standard position (i.e., the long axis of each glenoid is horizontal, 

regardless of its natural position in life). The living position of each example is indicated 

by the arrow at the left, which points anteriorly and indicates the horizontal. At the 

bottom is the scapulocoracoid of Deinonychus showing the probable areas of origin 

proposed here for the coracoid musculature. The clusters of arrows at the right indicate 

the direction from the glenoid (indicated by the solid spot) to the center of origin of the 

several coracoid muscles (usually, but not always the same as the direction of muscle 

pull). In the quadrupedal examples, the coracoid muscle-origin locations are basically 
similar. In birds, the locations of muscle origins are different, but the directions of 
muscle pull are surprisingly similar to that of the quadrupedal examples. The 
supracoracoideus (of birds) pulls the humerus up and forward (dashed arrow), by 

virtue of its passage upward from the humerus through the foramen triosseum and 
then downward to its origin on the ventral extremity of the coracoid. The 

coracobrachialis anterior, with its origin adjacent to that of the biceps on the enlarged 
avian biceps tubercle, functions like the coracobrachialis (unmodified) of the quadrupeds 

(i.e., adducting the humerus in nearly the same plane as antebrachial flexion by the 
biceps), whereas the coracobrachialis posterior appears to be a remnant of the primitive 

muscle that retained the primitive origin site adjacent to the sternal border of the 

coracoid. The latter now functions to adduct the humerus posteroventrally (folding the 

wing). Abbreviations: Bi= M. biceps; Cb= M._ coracobrachialis; Cbh-a= M. 

coracobrachialis anterior; Ch-p = M. coracobrachialis posterior; Sc = M. supracora- 
coideus. The horizontal lines beneath each scapulocoracoid equal 1.0 cm, all coracoids 

being drawn to unit length for easy comparison. 
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