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PEEFACE 

DURING  recent  years  the  use  of  squared  paper  in  the  solution  of 

various  problems,  for  the  representation  of  the  results  of  experiments 

and  for  the  deduction  of  formula  to  express  those  results  has  developed 

very  rapidly,  and  is  now  taught  to  a  greater  or  less  extent  to  the  great 

majority  of  students.  At  the  same  time,  it  has  become  more  and 
more  recognized  that  while  the  student,  and  especially  the  student 

of  Engineering,  needs  a  good  knowledge  of  various  branches  of 

Mathematics,  and,  above  all,  the  ability  to  make  use  of  his  knowledge 
in  the  solution  of  practical  problems,  it  is  not  necessary  to  burden 

him  with  a  large  amount  of  purely  academic  Mathematics,  of  the  kind 

which  has  been  aptly  called  "  Mental  Gymnastics."  Thus,  while  it  is 
necessary  that  he  should  be  able  to  recognize  the  nature  of  the  curve 

represented  by  a  given  equation,  or  to  find  the  equation  corresponding 

to  a  given  curve,  and  should  be  perfectly  familiar  with  the  chief 
characteristics  of  those  curves  which  he  is  constantly  meeting  in 

practice,  it  is,  as  a  rule,  undesirable  that  he  should  spend  a  con- 

siderable amount  of  time  in  making  a  complete  study  of  Co-ordinate 
Geometry  from  the  purely  mathematical  standpoint.  This  book  is 

an  attempt  to  present  the  methods  of  curve  plotting  in  an  orderly 

sequence,  and  at  the  same  time  to  give  the  student  that  knowledge  of 

the  properties  of  the  chief  families  of  curves  which  is  essential  for  him. 

The  author's  experience  as  a  teacher  has  shown  him  that  by  far  the 
best  method  of  introducing  the  Calculus  to  the  student  who  requires 

it  as  a  tool  in  his  mental  workshop  is  from  the  graphical  standpoint, 

following  upon  some  such  treatment  of  curves  as  is  given  here.  He 

has,  therefore,  added  chapters  upon  Differentiation  and  Integration, 

which  he  hopes  may  prove  of  use  by  giving  to  the  student  a  general 

idea  of  the  principles  involved,  and  especially  of  their  real  meaning, 
before  he  proceeds  to  a  somewhat  fuller  treatment  of  the  subject. 

The  diagrams  in  the  book  are  in  every  case  reduced  from  the 

original  full-size  drawings  from  which  the  measurements  quoted  in 
the  text  were  taken ;  but  it  is  essential  that  the  student,  when  working 

through  the  book,  should  plot  every  curve  for  himself,  and  check  all 
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the  measurements  of  slope,  etc.,  from  his  own  drawings.  In  the 

reproductions  the  one-tenth  inch  squares  have  been  omitted  for  clear- 
ness, and  the  squares  shown  are  in  all  cases  those  of  one  inch  side  on 

the  original  drawing. 
The  method  of  measuring  the  slope  of  a  curve  by  actually  drawing 

the  tangent  is  sometimes  objected  to  on  the  ground  of  inaccuracy  ;  but 

the  author's  experience  shows  that  by  good  and  careful  workmanship 
it  is  possible  to  rely  on  the  results  so  obtained  to  a  degree  of  accuracy 

which  is  sufficient  for  all  practical  purposes. 

The  author  wishes  to  express  his  gratitude  to  Prof.  J.  Goodman 

for  much  valuable  help  and  advice  in  the  preparation  and  publication 

of  the  book ;  and  also  to  Messrs.  G.  E.  Edson  and  G.  Calverley,  for 

assistance  in  the  preparation  of  the  drawings,  and  in  other  ways. 

R.  HOWARD  DUNCAN. 

THE  UNIVERSITY  OF  LEEDS, 

January  1910. 
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CHAPTER    I 

INTRODUCTORY 

Co-ordinates. — If  we  wish  to  fix  the  position  of  a  certain  point  on  a 
sheet  of  paper  or,  say,  in  a  field,  the  simplest  method  is  to  measure  its 
perpendicular  distances  from  two  adjacent  sides  of  the  sheet  of  paper 
or  field.  The  same  idea  lies  at  the  root  of  the  use  of  squared  paper,  the 
position  of  points  being  fixed  by  their  perpendicular  distances  from 
two  fixed  lines  at  right  angles  to  each  other  drawn  upon  the  sheet  of 
paper.  These  lines  are  called  the  axes,  and  the  perpendicular  distances 
of  a  point  from  these  axes  are  called  its  co-ordinates.  In  general  work 
it  is  usual  to  represent  the  co-ordinates  by  the  letters  x  and  y.  The 
co-ordinate  x  is  then  understood  to  be  measured  horizontally  from  the 

vertical  axis,  which  is  known  as  the  "  axis  of  Y,"  and  the  co-ordinate 
y  is  measured  vertically  from  the  horizontal  axis,  which  is  known  as  the 

"axis  of  X."  Thus,  according  to  the  usual  convention,  the  axis  of  X 
and  the  x  co-ordinate  are  both  hori- 

zontal, while  the  axis  of  Y  and  the 

y  co-ordinate  are  both  vertical.  The  B(-2£,) 
student  should,  however,  not  con- 

fine himself  to  the  use  of  the  letters 

x  and  y  to  represent  the  co-ordinates, 
as  in  many  cases  it  is  more  con- 

venient to  use  letters  which  suggest 
the  quantities  represented;  thus, 
in  plotting  a  curve  to  represent  the  X 
relative  variation  of  the  pressure 
and  the  volume  in  an  expanding 
fluid,  it  is  much  more  convenient.to 
use  the  letters  p  and  v  to  represent 
these  quantities  respectively.  If 
the  co-ordinates  of  a  point  be  x  and 
y  respectively,  the  point  is  repre-  y 
sented  by  the  symbol  (x,  y}.     Thus,  Fig.  1. 
ia   Fig.   1    the   point   A,   which   is 
distant  2  units  from  the  axis  of  Y  and   3  from  the  axis  of  X,  ia 
written  (2,  3). 

1  B 

y-z 
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The  Use  of  Signs.— A  point  may  be  either  to  the  right  or  to  the 

left  of  the  axis  of  Y,  and  either  above  or  below  the  axis  of  X.  It 

becomes  necessary,  therefore,  to  adopt  some  convention  in  order  t
o 

distinguish  the  direction  in  which  the  co-ordinate  is  to  be  measured.
 

In  order  to  do  this  we  make  use  of  the  signs  -f  and  - ,  as  shown  in 

the  following  table. 
Co-ordinate  of  x 

measured  to  the  right  of  OY  is  + 

Co-ordinate  of  y 

measured  above  OX  is 
below      ,, 

Thus,  referring  to  Fig.  1,  the  point  B  is  represented  by  (-  2,  3),  the 

2-QUADRANT 

X- 

"QUADRANT 

X- 

l»rQUAORANT 

X   + 

x+ 
y 

Fig.  2. 

point  C  by  (-2,  -3),  and  the  point  D 

by  (2,  —3).  The  two  axes  divide  the 
sheet  into  four  quadrants,  which  are 

numbered  consecutively  the  first,  second, 

third,  and  fourth  quadrants.  The  quad- 

rant in  which  a  point  falls  can  be  deter- 
mined at  once  from  the  signs  of  its 

co-ordinates  (see  Fig.  2). 

Constants  and  Variables.—  All  quan- 

tities may  be  divided  into  two  classes, 
constants  and  variables.  A  constant 

quantity  is  one  which  maintains  a 

certain  fixed  value.  A  variable  is  a  quantity  whose  value  changes. 

Variables  may  themselves  be  subdivided  into  two  other  classes, 

independent  and  dependent  variables.  An  independent  variable  is  one 

to  which  any  suitable  value  may  be  assigned  at  will.  A  dependent 

variable  is  one  which  depends  for  its  value  upon  the  value  assigned  to 

some  independent  variable,  and  which  varies  with  the  latter  according 

to  some  fixed  law.  Thus,  for  example,  sin  A  is  a  variable  quantity 

which  depends  for  its  value  upon  that  of  the  independent  variable  A, 

and  is  therefore  termed  a  dependent  variable*  It  should  be  noted, 

however,  that  of  two  variables  connected  with  each  other  in  this  way, 

either  may  be  taken  as  the  independent  variable,  the  other  then  being 

dependent  upon  it.  Thus,  the  relation  x  =  sin  A  may  be  written  in 

the  form  A  =  sin"1^,  x  in  this  latter  case  being  taken  as  the  inde- 
pendent variable,  upon  whose  value  A  is  dependent. 

Function  of  a  Variable.  —  If  a  variable  y  depends  for  its  value 

upon  another  variable  x,  so  that  when  the  value  of  x  is  known  that 

of  y  is  also  known,  and  such  that  any  change  in  x  produces  a  corre- 

sponding change  in  y,  then  y  is  said  to  be  a  "function  "  of  x,  and  x  is 
sometimes  spoken  of  as  the  "  argument  "  of  y.  For  example,  (1)  any 
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algebraic  expression  containing  a;  is  a  function  of  x ;  (2)  the  trigono- 
metrical ratios  are  functions  of  the  angle  ;  (3)  the  weight  of  a  sphere 

of  known  material  is  a  function  of  its  radius.  It  is  sometimes  con- 
venient to  have  a  symbol  to  represent  any  function  of  x.  This  is  then 

written  in  one  of  the  forms  f(x)  ;  F(x)  ;  <£(z),  or  $(x). 
Graphical  Representation  of  a  Function.— The  variation  of  a 

function  relatively  to  its  independent  variable  may  be  represented 
usefully  by  a  curve,  obtained  by  assigning  a  series  of  convenient  values 
to  the  independent  variable  and  calculating  the  corresponding  values 
of  the  function.  Each  pair  of  values  of  the  independent  and  its 
function  are  then  taken  as  the  co-ordinates  of  a  point,  and  a  smooth 
curve  drawn  through  the  points  so  obtained.  It  will  be  found  that 
a  regular  variation  is  always  represented  by  a  regular  curve,  and 
that  similar  functions  are  always  represented  by  curves  of  the  same 
nature.  A  set  of  curves  of  the  same  general  form,  and  therefore 

representing  similar  functions,  are  said  to  belong  to  the  same  "  family." 
It  is  the  object  of  this  book  to  show  the  form  of  curve  which  represents 
a  given  function,  and  conversely  to  show  how  a  function  may  be 
determined  from  its  representative  curve  or  "  graph." 



CURVE   PLOTTING  FROM  GIVEN   DATA   AND  FROM  AN 

EQUATION 

THE  simplest  use  of  squared  paper  is  in  the  mere  grap
hical  representa- 

tion of  natural  observations  or  the  results  of  experiments, 

is  more  or  less  familiar  with  the  curves  published  in  the  da
ily  pape! 

showin^  the  rise  and  fall  of  the  barometer,  and  with 
 the  statistical 

diagrams  published  in  the  magazines.     The  student  sh
ould  be  abl 

plot  such  curves  quickly  and  accurately,  and  should  be  a
ble  to  read  a 

curve  with  perfect  ease,  that  is,  to  be  able  to  tell  at  a  glanc
e  the  sor 

of  relation  existing  between  the  co-ordinates  plotted. 

It  cannot  be  too  strongly  insisted  upon  that  good  results  can  on
ly 

be  attained  by  careful  and  accurate  work  in  this,  as  in  all  g
raphical 

methods.  Neatness  of  execution  is  the  first  essential  toward
s  success- 

ful work. 

Choice  of  Scales.— The  accuracy  of  the  result  is  of  course
  limit* 

by  the  scales  to  which  the  curves  are  plotted,  the  larger  the  
scale  the 

greater  the  degree  of  accuracy  attainable.     But  this  statement
  is  only 

true  to  a  certain  extent.     If  the  scales  are  taken  so  large  tha
t  the 

points  of  observation  are  widely  separated  from  each  other,
  it  becomes 

difficult  to  determine  the  form  of  the  curve  connecting  them 
;  and, 

further,  if  the  scales  are  so  large  that  they  can  be  read  to  a
  greater 

decree  of  accuracy  than  that  to  which  the  figures  plotted  we
re  deter- 

mined any  experimental  errors  are  magnified  and  appear  to  be  more
 

important  than  they  really  are.     In  this  way  a  set  of  f
igures  which 

really  approximate  to  "  the  straight  line  law  "  may  appear,  i
f  pic 

to  too  large  a  scale,  to  give  only  a  curve  of  bewildering 
 irregularity. 

In  choosing  the  scales  to  which  to  plot  any  given  set  of  fi
gures,  thes 

two  considerations  should  be  borne  in  mind  :  (1)  that  the 
 scales  shoul 

be  large  enough  to  give  the  required  degree  of  accuracy,
  and  ( 

they  should  not  be  so  large  as  to  separate  the  point
s  of  observatioi 

inconveniently  great  distances,  or  to  represent  a  d
egree  of  accuracy 

greater  than  that  of  the  original  figures.     For  the  s
ake  of  greate] 

freedom  in  choosing  the  scales,  the  paper  should  be  purc
hased,  not 

small  sheets  of  uniform  size,  but  in  large  sheets  or  rolls,  wh
ich  can  b 

cut  to  the  required  shape  and  size.     It  is  perhaps  necessar
y  to  poi 4 
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out  that  the  paper  must  be  ruled  in  inches  and  tenths  of  an  inch,  not 
in  eighths  or  twelfths  of  an  inch,  as  some  makers  supply  it.  With 
paper  so  ruled,  it  is  possible  by  good  workmanship  to  plot  fairly 
accurately  to  the  ̂   part  of  an  inch.  This  dimension,  then,  should 
be  taken  as  commensurate  with  the  degree  of  accuracy  of  the 
experimental  figures.  Thus,  if  the  figures  to  be  plotted  are  accurate 

to  within  O'l,  say,  O'l  should  be  represented  on  the  paper  by  not  less 
than  O'Ol  or  greater  than  O'l  inch.  This  will  ensure  the  curve  being 
of  as  great  accuracy  as  the  figures  from  which  it  is  obtained,  without 
the  scales  being  so  great  as  to  unduly  emphasize  experimental  errors. 

The  convenience  of  the  scales  is  another  point  to  which  attention 
should  be  paid.  Thus,  no  practical  man  would  choose  such  a  scale  as 
3  units  to  the  inch,  or  1  unit  to  3  inches,  this  obviously  leading  to 
difficulty  in  plotting  a  curve,  or  in  reading  it  when  plotted.  The  best 
scales  to  use  are  |,  1,  or  2  inches  to  represent  1  unit  or  any  integral 

power  of  10  or  of  0*1  units.  Other  scales  which  are  fairly  convenient 
but  not  so  simple  to  use  as  the  former,  are  ̂   inch  or  4  inches  to  1,  10, 
etc.,  units. 

The  scales  should  be  clearly  marked  upon  the  axes.  It  is  unde- 
sirable to  mark  the  figures  opposite  each  point  of  observation  as  is 

sometimes  done,  but  each  inch  should  have  its  scale  value  written 

opposite  to  it.  Excepting  under  special  conditions — as,  for  example, 
when  all  the  figures  are  far  distant  from  zero  as  compared  with  their 

differences  between  each  other — the  scales  should  both  begin  at  zero 

at  the  intersection  of  the  axes  or  "  origin." 
Points  of  Observation. — All  the  points  of  observation,  that  is  those 

points  representing  the  figures  obtained  by  experiment  or  otherwise  deter- 
mined for  the  purpose  of  plotting  the  curve,  should  be  clearly  marked. 

By  far  the  best  mark  to  use  for  this  purpose  is  a  simple  cross  formed  ̂  
of  a  vertical  and  a  horizontal  line,  thus  +,  so  showing  clearly  the 
horizontal  and  vertical  co-ordinates.  The  X  cross  should  never  be 
used,  as  it  detracts  from  the  neatness  and  therefore  from  the  accuracy 
of  the  work.  When  two  or  more  curves  are  to  be  plotted  on  the  same 
sheet,  they  should  be  drawn  in  different  colours,  each  set  of  points  of 
observation  being,  of  course,  of  the  same  colour  as  the  curve  to  which 

they  belong.  It  is  sometimes  useful  also  to  write  out  the  correspond- 
ing sets  of  figures  in  the  same  colours  as  the  curves  which  represent 

them.  Where  it  is  impossible  to  make  use  of  various  colours — as,  for 
example,  when  copies  of  the  curves  are  to  be  made  by  a  printing  out 

process — the  curves  should  be  distinguished  by  varying  types  of  lines  : 
thick  and  thin  plain  lines,  dotted  lines,  and  so  forth.  In  this  case  it 
will  be  necessary  to  use  different  marks  for  the  points  of  observation 

belonging  to  each  curve,  such  as  ®  and  ̂ . 
A  Typical  Curve. — We  will  now  proceed  to  plot  a  curve  from  data 

experimentally  determined,  and  will  take  as  our  example  the  variation 
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in  the  volume  of  1  Ib.  of  dry  saturated  steam  as  its  pressure  varies 
from  that  of  the  atmosphere  to  80  Ibs.  per  square  inch  absolute. 
The  figures  are  given  in  the  table. 

Pressure 
14-7 

20 
30 

40 50 60 

70 

80 Ibs.  per  sq.  in. 

Volume 
26-4 19-7 

13-5 10-3 

8-4 

7-0 

6-1 
5-4 

cubic  feet. 

Here  the  pressure  is  given  to  (H  Ib.  per  square  inch,  and  the  figures 
given  are  separated  in  most  cases  by  10  Ibs.  per  square  inch.  We 
therefore  choose  as  our  scale  of  pressures  1  inch  to  10  Ibs.  per  square 

inch.  The  volumes  are  also  given  to  O'l  cubic  foot ;  but  successive 
figures  are  nearer  together  than  in  the  pressure  scale,  it  will  therefore 
be  convenient  to  take  a  somewhat  larger  scale,  say  1  inch  to  5  cubic 
feet.  Then,  plotting  each  pair  of  figures  in  succession,  as  previously 
described,  we  obtain  the  curve  shown  in  Fig.  3.  In  this,  as  in  other 
diagrams  in  the  book,  the  Y^-inch  lines  have  been  omitted  for  the  sake 
of  clearness. 

V's 

10 

10 

30 4-0  SO 

P 

Fig.  3. 
60 

70 
80  Ibs  per 

sq.  incfi 

From  the  shape  of  the  curve  we  see  at  once  that  the  rate  of 
variation  of  the  volume  relatively  to  the  pressure  is  not  uniform,  but 
is  greater  at  low  pressures,  that  is  to  say,  that  at  low  pressures  a  given 
change  in  the  pressure  causes  a  greater  change  of  volume  than  is 
produced  by  the  same  pressure  change  at  a  higher  pressure.  The 
observation  of  such  points  as  this  is  what  has  been  referred  to  as 

"  reading  the  curve." 
Interpolation. — We  can  use  such  a  curve  as  this  to  determine  the 

volume  at  any  other  pressure,  or  vice  versa,  within  the  range  of  the 
curve.  For  example,  suppose  it  is  desired  to  determine  the  volume  at 
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a  pressure  of  25  Ibs.  per  square  inch,  then,  marking  the  point  at  which 
the  curve  cuts  the  horizontal  line  drawn  through  25  Ibs.  per  square 
inch  on  the  pressure  scale  and  projecting  down  vertically  on  to  the 

volume  scale,  we  find  that  the  corresponding  volume  is  16-0  cubic  feet. 
Conversely,  if  we  wish  to  know  at  what  pressure  the  volume  of  1  Ib. 

of  steam  is  9*5  cubic  feet,  proceeding  similarly,  we  find  that  it  is 
43'4  Ibs.  per  square  inch.  These  points  are  marked  on  the  curve  by 
the  symbol  ®.  This  process  of  determining  intermediate  values 

from  the  curve  is  known  as  "  Interpolation,"  and  is  always  legitimate 
when  the  curve  is  regular,  the  values  so  found  being  just  as  accurate 
as  the  drawing  of  the  curve  will  allow. 

Extrapolation. — The  method  of  obtaining  extra  values  from  the 
curve  described  in  the  last  paragraph,  may  in  some  cases  be  extended 
to  determine  values  lying  outside  the  range  covered  by  the  original 

data.  It  is  then  known  as  "  Extrapolation."  The  method  of  extrapola- 
tion must,  however,  be  used  with  extreme  caution.  In  those  cases 

where  the  curve  is  of  such  a  nature  that  it  can  easily  be  produced  with 
accuracy  (the  only  curve  which  can  really  be  so  produced  being  the 
straight  line),  and  where  it  is  known  that  there  is  no  change  in  the 
law  connecting  the  variables  outside  the  original  range,  the  method 
may  be  safely  used.  In  all  other  cases  it  is  obviously  unsound.  To 
illustrate  this,  in  the  case  where  the  original  law  gives  us  a  straight 
line,  thereby  fulfilling  the  first  condition,  we  will  take  the  case  of  a 
tension  test  of  a  bar  of  steel,  plotting  the  load  (horizontal)  with  the 
resulting  extension  (vertical)  up  to  the  elastic  limit.  The  figures  from 
such  a  test  are  given  below. 

Load      .... 0 1 2 3 4 5 6 

Extension  .     .     . 0          0-0009 

0-0018 0-0027 0-0037 
0-0046 0-0055 

Load      .... 7 8 9 
10 

11 12 

tons. 

Extension  .     .     . 0-0064 0-0074 
0-0083 0-0092 

0-0101 0-0110 

inches. 

This  curve  is  plotted  in  Fig.  4,  the  scales  taken  being  1  inch  to 

1  ton,  and  1  inch  to  O'OOl  inch  respectively.  Allowing  for  experi- 
mental errors,  the  points  lie  on  a  straight  line,  and  the  mean  straight 

line  has  been  drawn  through  them.  Now,  if  we  attempt  to  extra- 
polate in  order  to  determine  the  extension  for  a  load  of,  say,  15  tons, 

we  should  obtain  a  value  of  0*01375  inch,  as  shown  by  the  dotted 
produced  line  and  the  point  marked  ®.  But  the  experimental  figures 
for  loads  greater  than  1 2  tons  are 

Load    .... 
13 

14 
15 

16 
tons. 

Extension     .     . 0-0230 
0-18 

0-23 0-30 

inches. 
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These  figures  show  that  the  curve  has  not  continued  in  a  straight 
line,  but  has  curved  rapidly  upwards  as  indicated  in  the  figure,  and 
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Fig.  4. 

that  instead  of  the  extrapolated  value  of  0'01375  inch,  the  true 
extension  for  15  tons  is  0'23  inch,  the  extrapolated  value  being 
therefore  entirely  wrong  and  altogether  misleading. 

Graphical  Representation  of  an  Equation. — Any  equation  in- 
volving two  unknowns,  x  and  y,  has  an  infinite  number  of  solutions, 

that  is,  pairs  of  values  of  x  and  y  which  satisfy  it.  These  pairs  of 
values  when  plotted,  however,  all  lie  upon  a  curve,  which  is  the 
graphical  representation  or  graph  of  the  equation.  If  it  is  required 
to  draw  a  curve  which  represents  a  given  equation,  it  is  necessary  to 
find  by  calculation  a  number  of  these  pairs  of  values  within  the 
required  range,  and,  using  them  as  the  co-ordinates  of  a  series  of 
points,  plot  them  and  draw  a  smooth  curve  through  them.  Thus, 
supposing  that  it  is  required  to  draw  the  graph  of  the  equation 

y  =  x*  -  5x*  4-  20 
between  the  values  x  =  0  and  x  =  5,  we  must  assign  a  series  of  values 
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to  x  which  lie  between  the  stated  values  (in  this  case  taking  values  of  x 

differing  successively  by  0'5)  and  calculate  the  corresponding  values  of  y. 
It  is  best  to  arrange  the  work  in  tabular  form,  thus — 

X       0 0-5 1-0 
1-5 2-0 

2-5 3-0 3-5 
4-0 

4-5 

5-0 

a»    0 
0-12 1-0 8-4 8-0 

15-6 27-0 42-9 64-0 
91-3 

125-0 x'    0 
0-25 

1-0 
2-25 

4-0 

6-25 

9-0 12-25 

16-0 

20-25 

25-0 5z*     .... 0 1-3 5-0 

11-3 20-0 31-3 45-0 
61-3 80-0 

101-3 125-0 y  =  x»-5zj  +  20 20-0 18-9 16-0 12-1 

8-0 4-3 2-0 1-6 
4-0 

10-0 20-0 Then,  since  x  varies  between  0  and  5,  a  convenient  scale  for  the 

X-axis  will  be  1   inch  to  1.     y  varies  between  1  and  20,  and  it  is 

\ 
V 

0  I  2  3  4-  5  X 

Fig.  5. 

necessary  to  be  able  to  represent  0*1.  A  convenient  scale  for  the 
Y-axis  will  therefore  be  1  inch  to  5.  Then,  plotting  x  and  y  in  the 
usual  way,  we  obtain  the  curve  shown  in  Fig.  5.  Sometimes,  having 
obtained  a  series  of  points  such  as  the  above,  it  is  desirable,  at  certain 
critical  points  in  the  curve,  to  obtain  some  extra  points  at  closer 
intervals,  and  sometimes,  also,  it  is  useful  to  obtain  some  points  con- 

versely, that  is,  by  assuming  values  for  y  and  calculating  the  corre- 
sponding values  of  x. 



CHAPTER  III 

THE  SIMPLE   EQUATION   OF   THE   FIRST   DEGREE — THE 
STRAIGHT   LINE 

The  General  Equation  of  the  First  Degree  and  its  Graphical  Re- 
presentative.— Any  simple  equation  of  the  first  degree  in  x  and  y 

may  be  reduced  to  the  form 

y  =  ax  +  b 

where  a  and  b  are  constants.  As  has  been  stated  in  Chapter  I.,  all 
equations  of  the  same  general  form  have  curves  of  the  same  nature  as 

their  graphical  representatives.  It  is  required  to  find  the  type  of 
curve  which  represents  the  above  equation.  In  order  to  do  this  we 

will  take  a  particular  case  of  the  equation  and  plot  its  graph.  Let  the 
equation  be 

y  =  2-5x  +  3 

Then,  arranging  the  calculations  in  tabular  form  as  before,  we  obtain 

the  following  series  of  values  for  x  and  y  : — 

a;    .... 

-3 

-2 -1 

0 

+1 

2 3 

2-5*    .    .     . -7-5 -5-0 -2-5 
0 

+2-5 

5-0 
7-5 

y  =  2-5z  +  3 
-4-5 -2-0 

+0-5 

3-0 5-5 8-0 

10-5 
Plotting  these  figures,  we  obtain  the  straight  line  shown  by  the  thick 
continuous  line  in  Fig.  6. 

Again,  consider  the  equation, 

y  =  -  $x  +  2-8 
We  obtain  the  values  for  x  and  y  given  below 

X        .      .      .      . 

-3 

-2 

-1 

0 

+1 

2 3 

-3x     .     .     . 

+9 
+6 +3 

0 

-3 

-6 
-9 

y  =  -3z  +  28 
11-8 

8-8 5-8 2-8 
-0-2 

-3-2 
-6-2 

which  plotted  give  us  again  a  straight  line  represented  in  the  same 
figure  by  the  thinner  line. 

10 
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From  these  and  other  examples,  which  the  student  should  plot  for 
himself,  it  will  be  seen  that  every  equation  of  the  first  degree  in  x 

and  y  is  represented  by  a  straight  line.*  From  this  fact  the  relation 

Fig.  6. 

between  x  and  y  given  by  the  equation  y  =  ax  +  &>  is  known  as  the 
straight-line  law. 

Graphical  Interpretation  of  the  Constants. — It  remains  to  deter- 
mine the  meaning  of  the  constants  a  and  6.  To  do  this,  we  shall  take 

a  series  of  equations  having  the  same  value  for  a,  but  different  values 

*  Rigid  proofs  of  this  and  other  similar  statements  may  be  found  in  books  on 
Co-ordinate  Geometry,  but  lie  outside  the  province  of  the  present  work. 



12 PRACTICAL  CURVE  TRACING 

for  6,  and  another  series  having  different  values  for  a  but  the  same 
value  for  b,  and  examine  the  resulting  lines. 

First,  consider  the  equations 

(1)2,  =  2*, 
(3)  #=2* +  12, 

(2)  y  =  2*  +  5, 

(4)  y=2x-5, 
in  all  of  which  the  value  of  a  is  2,  but  the  values  of  6  are  respec- 

tively 0,  5,  12,  and  —5.  Knowing  that  such  equations  give  us 
straight  lines,  it  would,  of  course,  be  sufficient  to  find  two  pairs  of 

values  of  x  and  y  from  each  equation  in  order  to  fix  the  correspond- 
ing line  ;  but  in  order  to  further  illustrate  the  truth  of  this  statement, 

we  will  determine  several  points  on  each  line. 

X       

-10 

-5 

0 

+5 

10 
15 

2x    

-20 
-10 

o +  10 20 
30 

Thick  continuous. 

2z  +  5    .     .     . 

-15 

-5 

+5 

15 25 

35 
Thin  continuous. 

2x  +  12  .     .     . 

-8 

+2 

U 22 
32 

47 

Dotted. 

2x-5    .     .     . 

-25 -15 

-5 

+5 

15 25 Dot  and  dash. 

These  lines  are  plotted  in  Fig.  7,  the  type  of  line  used  for  each 
being  given  at  the  end  of  the  corresponding  row  of  figures  above.  It 
is  seen  at  once  that  all  these  lines  are  parallel,  that  is,  that  they  have 
the  same  slope.  The  usual  way  of  measuring  the  slope  of  a  line  is  by 
the  ratio  of  the  vertical  rise  to  the  corresponding  horizontal  increase, 
that  is,  by  the  ratio  of  the  change  in  y  to  the  corresponding  change  in 
x.  Then,  taking  any  two  points,  P  and  Q,  on  one  of  the  lines,  and 

PR 
completing  the  right-angled  triangle  PQR,  the  slope  =  7^0-     IQ  the 

vtf-tv 

figure  P  and  Q  have  been  taken  on  the  line  y  =  2x  —  5, 

then  PR  =  20  -  5  =  15,  QR  =  12-5  -  5  =  7'5 
15 

and  the  slope  =  •=-?  =  2,  which  it  should  be  noted  is  the  value  for  a  in 
i  "0 

the  equation  of  the  line.     The  student  should  find  the  slope  of  each 
line  in  the  same  way. 

Again,  consider  the  series  of  equations 

(1)  y  =  x  +  5, 
(3)  y  =  3x  +  5, 

(2)  y  =  2x  +  5, 
(4)  y  =  -  2x  +  5, 

in  all  of  which  the  value  of  b  is  5,  but  in  which  the  values  for  a  are 

respectively  1,  2,  3,  and  —2.  We  calculate  a  number  of  points  on 
each. 
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40 

35 

# 

10 

•4-      !6 

•:& 

- 

-20 

-25 

-as 

Fig.  7. 

X  .      .      .      . 

-15 
-10 

-5 

0 

+5 

10 15 

x  +  B   .    . 

-10 

-5 

0 
+5 

10 15 20 Thick  continuous. 

2x    .    .    . 

-20 
-10 

0 

+10 

20 
30 

2x  +  5.    . 

-15 

-5 

+5 
15 25 35 Thin  continuous. 

3x    .    .    . 

-30 
-15 

0 

+15 

30 
45 

3*  +  5      . 

-25 
-10 

+5 
20 

35 
50 Dotted. 

-2x     .    . 
+20 +10 

0 

-10 -20 
-30 

-2z  +  5  • 25 15 5 

-5 
-15 

-25 

Dot  and  dash. 

These  are  plotted  in  Fig.  8.     It  is  seen  again  that  the  whole  series 
have  a  common  property,  namely,  that  they  all  intersect  the  axis  of  Y 
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at  the  same  point.     Further,  this  point  is  at  a  distance  5  from  the 
origin.     The  distance  intersected  upon  the  axis  of  Y  between  a  given 

40 

\ z 
\ 

20 

-10 

\ 

15  X 

\ 
\ 

-10 

-10 

-IS 

-20 

\ 

-30 

-35 

-40 

-45 

Y 

Fig.  8. 

curve  and  the  origin  is  called  "  The  intercept  upon  the  axis  of  Y  " 
of  that  curve.  In  this  case,  then,  the  intercept  of  all  the  lines  upon 
the  axis  of  Y  is  equal  to  5,  which  is  the  value  for  6  in  their  equations. 
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Refer  agaiu  to  Fig.  7.  It  is  seen  that  the  intercept  on  the  axis  of  Y 

for  the  line  y  =  2x  is  0,  that  for  the  line  y  =  2x  -f-  12  is  12,  for 
y  =  2x  —  5  it  is  —5.  Hence  we  draw  the  conclusion  that  6  is  equal  to 
the  intercept  on  the  axis  of  Y.  This  conclusion  may  be  easily  verified  by 

putting  x  =  0  in  the  equation  y  =  ax  -f  b,  when  we  obtain  the  value 
y  =  b.  But  when  x  =  0  the  line  cuts  the  axis  of  Y.  Hence  6  is  the 
intercept  on  that  axis. 

Looking  again  at  Fig.  8,  we  see  that  all  the  lines  are  of  different 

slope.  Drawing  a  right-angled  triangle  for  each  line,  and  measuring 
the  slope  by  it,  we  find  that  the  slope  of  the  line  y  =  x  +  5  is  1 ,  that 

of  y  =  2x  +  5  is  2,  that  of  y  =  3x  +  5  is  3.  The  line  y  =  -  2<c  +  5 
slopes  in  the  opposite  direction  to  the  others,  y  getting  less  as  x  gets 
greater.  This  gives  us  negative  slope,  and  measuring  it  we  find  it  to  be 

—  2.  It  is  evident  from  this,  then,  that  a  gives  us  the  slope  of  the  line. 
Summing  up  our  conclusions,  then,  we  have  shown  that 

(1)  Every  equation  of   the  form  y  =  ax  +  b  is  represented   by  a 
straight  line. 

(2)  All  lines  having  the  same  value  for  a  are  parallel. 

(3)  All  lines  having  the  same  value  for  6  have  the  same  intercept 
on  the  axis  of  Y. 

(4)  a  is  equal  to  the  slope  of  the  line. 

(5)  b  is  equal  to  the  intercept  of  the  line  on  the  axis  of  Y. 

We  can  verify  these  conclusions  by  looking  at  the  matter  in  another 
y 

way.     Consider  the  equation  y  =  ax,  or  -  =  a.     This  means  that  the 

ratio  of  y  to  x  is  constant  and  is  equal  to  a  ;  and  therefore  it  is  evident 

that  the  equation  will  be  represented  by  a  straight  line  passing  through 
the  origin,  and  such  that  the  ratio  of  its  vertical  rise  to  its  horizontal 
increment  is  equal  to  a,  that  is,  that  the  slope  of  the  line  is  a.  Now,  if 

we  introduce  a  term  6,  so  that  the  equation  becomes  y  =  ax  +  b,  we 

have  increased  every  value  of-  y  by  the  same  amount  6,  or  in  other 
words,  we  have  moved  the  line  bodily  through  a  vertical  distance  equal 

to  6.  But  the  line  y  =  ax  passed  through  the  origin,  therefore  the  line 

y  =  ax  -f  b  will  intersect  the  axis  of  Y  at  a  height  b. 

Lines  of  No  Slope  and  of  Infinite  Slope. — Putting  a  =  0  in  the 
general  equation,  we  derive  the  equation  y  =  b.  In  this  case,  y  is 

constant  and  equal  to  b  for  all  values  of  x — that  is,  the  equation  is 
represented  by  a  straight  line  parallel  to  the  axis  of  X,  and  distant  b 
from  it. 

Putting  a  =  oo  ,  we  obtain  the  equation — 

y  =  oo  x  +  6, 
y        b 

or  x  =  ̂    =  0-0=0 
00  00 

unless  6  is  also  infinite,  when  the  equation  becomes  x  =  c,  giving  a  line 
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y-b 

parallel  to  the  axis  of  Y,  and  distant  c  from  it.  These  lines  are  shown 
in  Fig.  9. 

From  the  above  it  follows 

that  the  equations  of  the  axes 
X  and  Y  are  respectively,  y  =  0 
and  x  =  0. 

To  Draw  the  Line  directly 

from  its  Equation. — We  are 
now  in  a  position  to  draw  a 
straight  line  at  once  from  its 
equation  without  actually  plot- 

ting a  series  of  points  upon  it. 
It  is  known  that  the  equation 

y  =  ax  +  b  gives  us  a  straight 
line  whose  slope  is  a,  and  whose 
intercept  on  the  axis  of  Y  is  6. 
To  draw  the  line,  then,  measure 

Y  first  a  distance  b  along  the  axis 
Fig.  9.  of   Y,   and  through  this  point 

draw  a  line  whose  slope  is  a. 
To  take  a  concrete  example,  draw  the  line  whose  equation  is 

y  =  3x  —  2.  In  Fig.  10,  P  is  the  point  on  the  axis  of  Y  for 
which  y  =  —  2.  Then,  draw  PR  parallel  to  the  axis  of  X  making 
PR  =  1,  from  R  draw  RQ  parallel  to  the  axis  of  Y  making  RQ  =  3, 
and  join  PQ,  which  is  the  line  required.  Of  course,  PR  and  RQ  must 
be  measured  on  the  respective  scales  of  x  and  y,  and  it  is  better 
to  draw  RQ  vertically  until  it  cuts  the  horizontal  line  through 
3x1  —  2  =  1,  than  to  actually  measure  its  length  equal  to  3.  If  the 
scales  are  small  it  is  more  accurate  to  make  PR  =  10,  or  any  other 
convenient  number,  and  correspondingly  to  make  RQ  =  a  x  10. 

The  Equation  of  a  given  Straight  Line. — It  is  now  possible  for  us 
to  determine  the  equation  corresponding  to  any  given  straight  line.  In 
Fig.  11  we  have  the  straight  line  PQ,  and  it  is  required  to  find  its 
equation.  It  is  known  that  this  will  be  of  the  form  y  =  ax  +  6,  where 
a  is  the  slope  of  the  line,  and  6  the  intercept  upon  the  axis  of  Y. 
Produce  the  line  until  it  cuts  the  axis  of  Y  at  the  point  R.  The  y 

co-ordinate  of  R  is  2*3,  therefore  b  =  2*3.  Draw  RM  parallel  to  the 
axis  of  X,  and  PM  perpendicular  to  it.  Then 

PM      5-6  -  2-3      3-3 

and  the  required  equation  is  y  =  0'733a;  +  2-3. 
In  some  cases  this  method  is  inconvenient,  as,  for  example,  when 

the  line  does  not  cut  the  axis  of  Y  within  the  limits  of  the  sheet  of 

paper.  Such  a  line  is  shown  in  Fig.  12.  Here  a  different  method 
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must  be  adopted.    Take  any  two  points  on  the  line,  such  as  A  =  (5,  20) 
and  B  =  (12,  3),  and  substitute   their   co-ordinates   in  the  general 

3    X 

-3 

-4 

Fig.  10. 

equation  of   the  straight   line,  thus  obtaining   the  two  simultaneous 
equations  in  a  and  b — 

20  =  5a  +  6 
3  =  12a  +  6 

Subtracting,  17  =  —  7  a 

or 

17 

a='--7r  =  -2-43 
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X 

X 

Fig.  11. 

\ 

\A 

\ 

\B 

0123*56789  10          II 

Pig.  12. 

Substituting  this  value  for  a  in  the  first  equation — 

20  =5*  (-  2-43)  +  6 
=  -  12-15  +  6 

or  b  =  32-15 
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Then  the  required  equation  is 
32-15 

The  Mean  Straight  Line.  —  The  line  whose  equation  is  to  be 
determined  is  usually  obtained  as  the  result  of  a  series  of  experiments. 
The  points  so  obtained  only  very  rarely  lie  quite  accurately  in  a  dead 
straight  line,  owing  to  errors  of  observation.  It  is  then  necessary  to 
draw  a  straight  line  which  lies  as  evenly  as  possible  amongst  the  points 

and  approximates  as  closely  as  possible  to  them.  This  is  known  as  "  The 
Mean  Straight  Line."  The  best  method  of  drawing  it  is  by  means  of  a 
stretched  piece  of  thread  which  can  be  moved  about  amongst  the  points 
until  the  best  position  is  obtained,  the  sum  of  the  distances  of  the 

Ibs 

Fig.  13. 

points  from  the  line  on  either  side  being  about  the  same.  The  ends  of 
the  threads  are  then  marked,  and  subsequently  joined  by  a  straight 
line.  The  edge  of  a  transparent  set-square  or  straight-edge  may  be 
used  instead  of  the  thread,  but  on  the  whole  the  former  is  the  more 
satisfactory  method. 

We  will  conclude  with  an  example  : — In  a  test  of  a  Weston  pulley 
block,  it  was  found  that  an  effort  E  Ibs.  was  required  to  lift  a  load  of 
L  Ibs.  Find  the  equation  connecting  L  and  E. 

L  .  . 0 14 28 
42 56 

70 
84 98 112  Ibs. 

E  .  . 7-5 
8-25 9-0 

9-5 
10-0 

10-75 

11-5 12-0 

12-75  Ibs. 
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Taking  the  axis  of  L  horizontal  and  that  of  E  vertical,  we  obtain  on 
plotting  the  points  shown  in  Fig.  13.  These  points,  it  is  seen,  do  not 
lie  absolutely  on  a  straight  line,  but  do  so  approximately.  The  mean 
straight  line  is  then  drawn  among  them  by  means  of  a  stretched  string 
as  already  described.  It  is  required  to  find  the  equation  of  this  line, 
which  will  be  of  the  form 

E  =  aL  +  6 

The  intercept  on  the  axis  of  E  is  7*52,  therefore  b  =  7 '52.  The  E 
co-ordinate  of  the  point  for  which  L  is  100  is  12-20.  Then,  drawing 
the  vertical  and  horizontal  line  through  these  two  points,  we  obtain 
the  slope  of  the  line,  that  is, 

12-20  -  7-52      4-68 

a  = 

=  0-0468 
100  -  0          100 

Therefore  the  relation  between  L  and  E  is  given  by  the  equation 

E  =  0-0468  L  +  7-52 
or  L  =  21-35  E  -  160  5 



CHAPTER  IV 

y  —  axn  +  bx  +  C. — THE   PARABOLIC  FAMILY 

THE  general  equation  y  =  axn  -{-  l>x  -\-  c  represents  an  important  family 
of  curves.  In  order  to  find  the  graphical  meaning  of  each  of  the  four 

constants  a,  I,  c,  and  n,  we  will  consider  each  of  them  in  turn,  and  by 

suitably  varying  them  determine  the  effect  such  variation  in  each  has 

upon  the  shape  of  the  curve. 

The  Meaning  of  n. — The  fundamental  curves,  of  which  those  given 
by  the  full  equation  above  are  variations,  are  given  by  the  simpler 

general  equation  y  =  x",  which  we  will  first  examine  fully.  In  this 
case  we  have  put  a  =  1,  and  6  =  c  =  0,  and  by  varying  n  we  shall  be 
enabled  to  arrive  at  its  graphical  meaning. 

If  n  =  1  the  equation  becomes  y  =  x,  which,  as  has  been  shown  in 
the  previous  chapter,  represents  a  straight  line  of  unit  slope  through 
the  origin. 

n  =  2  or  y  =  x2. — A  preliminary  examination  of  this  equation  will 
give  us  some  information  as  to  the  nature  of  the  curve  before  the 

latter  is  actually  plotted.  The  equation  may  be  written  in  the  form 

x  =  ±  */y.  From  this  it  is  evident  that  if  y  is  negative  there  can  be 
no  real  values  of  x,  since  the  square  root  of  a  negative  quantity  is 
imaginary.  Hence,  the  curve  lies  wholly  above  the  axis  of  X.  Again, 

for  every  value  of  y  there  will  be  two  numerically  equal  values  of  a;, 
one  positive  and  the  other  negative  ;  that  is  to  say,  for  each  value  of  y 

there  will  be  two  points  on  the  curve  equidistant  from  the  axis  of  Y— 
one  on  the  right  and  the  other  on  the  left.  Hence,  the  axis  of  Y 

bisects  every  horizontal  chord  of  the  curve,  or  the  curve  is  symmetrical 

about  the  axis  of  Y.  Proceeding  to  plot  the  curve  the  following  set  of 

figures  is  obtained  : — 

X.      . o!±o-5 
±1-0 ±1-5 ±2-0 4-0 ±2-5 ±3-0 

±3-5 ±4-0 

±4-5  ±5-0 

±5-5 ±6-0 ±6-5 

±7 

y=x* 
0(0-25 

1-0 
2-25 6-25 

9-0 12-25 

16'0 

20-25  25-0 30-25 

36-0 

42-25 

49-0 These,  when  plotted,  give  us  the  curve  shown  in  Fig.  14  by  the  heavy 
continuous  line.  It  should  be  noted  that  the  curve  has  the  two 

characteristics  formerly  determined,  namely,  that  it  lies  wholly  above 
the  axis  of  X,  and  is  symmetrical  about  the  axis  of  Y.  It  consists  of 21 
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one  infinite  branch  opening  out  in  width  as  y  increases.     This  curve  is 
known  as  the  Parabola. 

«  =  3  or  y  =  x3. — Since  x  and  x3  are  always  of  the  same  sign,  it 
follows  that,  x  and  y  being  of  the  same  sign,  the  curve  lie*  wholly  in  the 

first  and  third  quadrants.  Further,  since  (  —  a;)3  is  numerically  equal  to 
(+a;)3,  the  portion  of  the  curve  in  the  third  quadrant  must  be  of  the 
same  shape  as  that  in  the  first  quadrant,  so  that  the  reflection  of  one 

portion  in  a  mirror  placed  along  the  axis  of  X  would  be  symmetrical 
about  the  axis  of  Y  with  the  other  portion.  Two  curves,  or  portions 

of  curves,  with  this  relationship,  may  be  said  to  be  "  invertly 

symmetrical "  with  each  other.  Hence,  this  curve  is  invertly  symmetrical 
about  the  axis  of  Y.  A  series  of  values  of  x  and  y  satisfying  this 

equation  are  given  : — 

x  .     .    I    —3-6    —  3'0    —2'6 —  2'0 

-1-6 -1-0 -0-5 
0 

+  0-5      I'O 
1-5 2-0      2-5     3-0         3'5 

y  =  X*      -42-9   -2"'0   -15-6 
-8'0 -3'4 -1-0 

-0'12 

0 

+  0-12   1-0 
3'4 

8-0     15-6   27-0       42-9 

This  curve  is  shown  in  Fig.  14  by  the  thinner  continuous  line.  As  has 

been  already  shown,  it  lies  wholly  in  the  first  and  third  quadrants,  and 
is  invertly  symmetrical  about  the  axis  of  Y.  This  curve  is  known  as 
the  Cubic  Parabola. 

n  =  4  or  y  =  #*. — Since  »  is  even,  the  same  lines  of  argument  will 

apply  to  this  curve  as  were  used  in  examining  the  curve  y  =  a;2 ;  that 
is,  the  curve  will  lie  wholly  above  the  axis  of  X  and  be  symmetrical 
about  the  axis  of  Y. 

X      0 

±0-5 ±1-0 ±1-5 ±1-8 ±2-0 
±2-3 

±2-5 ±2-6 

y  =  x4   .     .     . 
0 

0-06 
1-0 

5-1 

10-5 
16-0 

28-2 
39-0 

45-5 This  curve  is  shown  in  Fig.  14  by  the  dotted  line. 

n  =  5  or  y  =  a;5.— n  being  odd,  this  curve  will  lie  wholly  in  the  first 
and  third  quadrants,  and  be  invertly  symmetrical  about  the  axis  of  Y. 

E      .      .      . -2-1 -2-0     -1-8 -1-6    -1-4 —  1-0 
-0-5   j    0    |-f0'5   1  1-0    1-4 1-6 1-8 

2-0     2-1 

y  =  xs     . -41-0 -32-0   -18-9 -10-6    -6-4 
-1-0 

-0-03      0     +0-03    TO     5-4 

10-5 
18-9 

32-0  41-0 

This  curve  is  shown  in  Fig.  14  by  the  dot-and-dash  line. 

Comparison  of  the  Curves. — From  an  examination  of  these  curves 
the   characteristics   of  the   family   may   now    be   obtained,   and    the 

graphical  meaning  of  n  determined.     Note  the  following  points  : — 
(1)  The  curves  fall  into  two  classes  : 

(a)  Those  for  which  n  is  even,  which  lie  wholly  in  the  first 
and  second  quadrants,  that  is  above  the  axis  of  X,  and 
are  symmetrical  about  the  axis  of  Y.  We  shall  refer 

to  these  as  the  "  even  curves." 
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(6)  Those  for  which  n  is  odd,  which  lie  wholly  in  the  first  and 
third  quadrants,  and  are  invertly  symmetrical  about 
the  axis  of  Y,  having  a  point  of  inflection  at  the  origin. 

We  shall  refer  to  these  as  the  "  odd  curves." 

\ 

x  - ff 

^   X 

Fig.  14. 

(2)  All  the  curves  pass  through  two  common  points,  namely,  the 
origin  and  the  point  (1,  1).     All  the  even  curves  also  pass  through  the 

point  (  —  1,  1)  and  all  the  odd  curves  through  the  point  (—1,  —1). 
(3)  The  curves  cut  out  one  another  at  all  these  points,  excepting 

at  the  origin,  where  they  are  tangential  to  each  other. 
(4)  All  the  curves  cut  the  axis  of  Y  at  right  angles. 
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(5)  Any  horizontal  line  for  which  y  is  greater  than  1  intersects 
the  curves  in  the  order  of  their  indices,  a  curve  of  greater  index  being 
nearer  to  the  axis  of  Y  than  one  of  lesser  index. 

(6)  Any  horizontal   line  for  which  y  is  positive  and  less  than  1 
intersects  the  curves  in  the  order  of  their  indices,  a  curve  of  smaller 
index  being  nearer  to  the  axis  of  Y  than  one  of  greater  index. 

(7)  Hence,  of  any  two  curves  that  of  greater  index  lies  within 
that  of  smaller  index  above  the  common  point  (1,  1),  but  outside  it 
between  that  point  and  the  origin  ;  or  the  curve  of  greater  index  is  of 
greater  slope  above  the  point  (1,1),  but  changes  its  slope  more  rapidly 
below  that  point,  so  forming  a  blunter  apex  than  that  of  smaller  index. 

The  relative  positions  and  forms  of  the  curves  between  the  origin 

and  the  point  (1,  1)  are  shown  more  clearly  in  Fig.  15,  which  gives 
this  portion  of  the  curves  on  a  larger  scale. 

From  the  above  conclusions  it  is  obvious  that  the  constant  n 

determines  the  form  of  the  curve,  or  is  the  "form  constant." 
n  an  Improper  Fraction. — It  will  only  be  necessary  to  examine 

this  case  for  positive  values  of  x.  Taking  as  an  example  the  equation 

y  =  x2"5,  we  obtain  the  corresponding  values  of  x  and  y  given  in  the 
table  below : — 

x    6 0-5 1-0       1-5 
2-0 

2-5 
3-0 

3-5 

4-0 

y  =  *rf      .     . 0 
0-18 

1-0       2-76 

5-66 9-86 

15-60 

23-0 32-0 This  curve  is  plotted  in  Fig.  16,  being  represented  by  the  continuous 

line.     The  curves  y  =  x1  and  y  =  x3  have  also  been  drawn  on  this 
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figure  for  purposes  of  comparison,  being  represented  by  broken  lines. 

It  is  seen  that  the  curve  is  of  precisely  the  same  type  as  those  already 

L  I 

ff  ' 

*  I 

I  2  3  4-          X 

Fig.  16. 

discussed,  and  lies  between  the  two  nearest  whole  number  curves, 

y  =  x1  and  y  =  x3. 
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n  a  Positive  Number  less  than  1. — If  n  is  less  than  1,  let  it  be 

equal  to  — ,  where  m  is  a  number  greater  than  1.     Then  the  equation 

_i 

y  =  xn  becomes  y  =  xm  or  x  =  ym.  This  is  of  the  same  form  as 

y  =  xm,  with  the  variables  x  and  y  interchanged  with  each  other.  We 
should,  then,  expect  such  an  equation  to  give  us  a  parabolic  curve, 
having  its  axis  of  symmetry  in  the  direction  of  the  axis  of  X  instead 
of  in  that  of  the  axis  of  Y.  As  an  illustration  of  this,  we  will  plot 

the  curve  y  =  jc5  or  x  =  y2  (see  Fig.  17). 

X     .... 0 123 4 5 6 

y  =  a;*    .    . 0 ±1-00  1   ±1-41      ±1-73 ±2-00 ±2-24 
±2-45 

IS 

OS 

-25 

Fig.  17. 

n  a  Negative  Number. — If  n  is  negative,  let  it  be  equal  to  —  ///, 

where  m  is  positive.   Then  the  equation?/  =  a;"  may  be  written  y  =  x~m 

or  y  =  —  or  yxm  =  1.     This  equation  gives  us  the  general  equation  of x 

another  family  of  curves,  which  will  be  considered  in  the  next  chapter. 

The  Constant  «. — Keeping  the  values  of  6  and  c  zero,  we  will 

now  introduce  the  constant  a,  so  obtaining  the  equation  y  =  axn.     It 
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is  evident  that  the  result  of  this  in  any  curve  will  be  to  increase  each 
value  of  y,  a  times,  without  otherwise  altering  the  form  of  the  curve. 
The  same  result  precisely  could  be  obtained  by  re-plotting  the  curve 

y  =  *",  retaining  the  same  scale  for  x  as  before,  but  increasing  the 
scale  of  y,  a  times.  To  further  illustrate  the  effect  of  this  constant, 

Fig.  18  shows  the  curves  given  by  the  equations  y  =  x*  (thick  line), 
y  —  i^  (thinner  line),  and  y  =  2x*  (dotted  line). 

X.      ... 0 
±1 ±2 

±3 

±4 
X*    .   .   . 0 1-0 4-0 9-0 

16-0 ix«   .    .    . 0 0-5 2-0 4-5 
8-0 

2x2   .    .    . 0 2-0 8-0 

18-0 
82-0 

X  -«• 

\ 

30 

$ V 

X 

The  Constant  c.—  Omitting  for  the  present  the  term  contain- 
ing x,  we  will  now  introduce  a  constant  term,  c,  thus  obtaining  a 

general  equation  of  the  form  y  =  axn  +  c.  If  now  we  put  x  =  0,  we 
have  y  =  c,  that  is  the  curve  cuts  the  axis  of  Y,  not  at  the  origin  as 
hitherto,  but  at  a  distance  from  the  origin  equal  to  the  constant  c.  In 
other  words,  c  is  the  intercept  on  the  axis  of  Y.  Further,  it  is  obvious 
that  for  any  given  value  of  x  the  value  of  y  is  increased  by  a  constant 

amount,  c,  over  that  given  by  the  equation  y  =  axn.  That  is,  the  curve 
is  of  the  same  form  as  y  =  axn,  but  is  raised  bodily  through  a  vertical 
distance,  c.  In  Fig.  19  are  plotted  three  cubic  parabolas,  or  rather  one 
cubic  parabola  in  three  positions,  given  respectively  by  the  equations 

y  =  x3  (thick  continuous  line)  ;  y~=  x3  -f-  10  (thinner  continuous  line) ; 
and  y  =  x3  —  15  (dotted  line).  The  figures  for  plotting  these  curves 
are  given  below. 
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X       .       .       . 

-30 
-2-5 -2-0 -1-5 

-1-0 
-0-5 

0 

+  0-5 

1-0 

1-5 
2-0  1      25      3-0 

z3    .    .     . -27-0 -15-6 -8-0 -3-4 -1-0 -o-i 0 

+0-1 

1-0 
3-4 

8-0       15-6    27-0 

3?  +10       . -17-0 
-5-6 

+  2-0 
6-6 9-0 

99 

10-0 10-1 
11-0 

13-4 

18-0       25-6    37-0 

ar'-lS     . -42-0 
-30  6 

-23-0 -18-4 -16-0 -15-1 
-15-0 -14-9 -14-0 -11-6 -7-0     +0'6    12-0 

LA'. Z 

Fig.  19. 

From  the  diagram  it  is  seen  that  if  any  vertical  line  be  drawn 

cutting  the  three  curves,  the  length  of  the  line  intercepted  between 
the  first  two  is  equal  to  10,  and  that  between  the  first  and  the  last 

is  equal  to  15,  showing  that  the  curves  are  identical  in  form,  but 

that  the  second  (c  =  10)  has  been  raised  a  distance  10  above  the 

first,  and  the  third  (c  =  —  15)  has  been  lowered  to  a  distance  15  below 
the  first  (c  =  0). 

The  Constant  b  when  n  =  2.  —  In  determining  the  effect  upon 
the  curve  of  introducing  a  term  bx  into  the  equation,  so  obtaining  the 

general  form  y  =  ax"  -\-bx-\-c,  we  will  first  examine  the  case  when 
n  =  2.  Consider  the  equation  — 

y  =  x2  -f This  can  be  reduced  to  the  form 

+  i2
 

If,  now  we  write  X  for  (a;  +  ty  we  obtain  the  equation  of  a  simple 

parabola  y  =  X2  referred  to  axes  y  =  0  and  X  =  0,  that  is,  x  +  k  =  0 
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or  x  =  —  k.  That  is,  the  curve  represented  by  this  equation  will  be 

identical  in  form  with  the  curve  y  =  ar2,  but  moved  horizontally  until 
its  axis  of  symmetry  coincides  with  the  line  x  =  —  k  ;  that  is  to  say, 
moved  through  a  horizontal  distance,  k,  to  the  left.  But  in  this  equation 

2k  is  equal  to  b  in  the  general  equation,  or  k  =  -  ,     Again,  c  in  the 2i 

b2
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relation  between  b  and  c  holds  good  in  any  equation  of  the  form 

y  =  ar  +  bx  -f-  c>  the  effect  is  merely  to  move  the  curve  y=x2  horizontally 

to  the  left  a  distance  equal  to  ~  •     As  an  example  of  this,  the  curve 

y  =  x2  -f-  605  +  9  is  plotted  in  Fig.  20,  being  represented  by  the 
thicker  continuous  line.  The  fundamental  curve,  y  =  a;2,  is  represented 
in  the  same  figure  by  the  dotted  line  for  purposes  of  comparison.  The 

calculations  for  plotting  the  curve  y  =  a?  +  6«  +•  9,  that  is,  y  =  (a;+3)2, 
are  tabulated  below. 

a;  .... 

-8 
__1 

-6 
-5 

-4 

-3 

   o 

-1 

0 

+1 

2 

sc  +  8     .    . 

-5 
-4 

-3 -2 
-1 

0 

+1 

2 3 4 5 

V=  (s  +  3)* 
25 16 9 4 1 0 1 4 9 

16 

25 

Fig.  20. 
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Notice  that  the  form  of  this  curve  is  identical  with  that  of  y  =  a?, 
but  that  it  is  moved  horizontally  to  the  left  a  distance  equal  to  3, 
that  is  i&.  The  student  should  test  this  by  transferring  the  curve 

y  =  x2  to  tracing  paper,  and  then  applying  his  tracing  to  the  curve 
y  =  a?  +  Gx  -j-9,  to  see  that  the  two  are  really  identical  in  form.  It 
should  be  noted,  also,  that  this  curve  differs  from  all  those  previously 
plotted  in  that  it  does  not  cut  the  axis  of  Y  at  right  angles. 

In  considering  the  above  the  constant  a  has  been  taken  as  unity. 
We  have  already  seen,  however,  that  this  constant  affects  only  the 
scale  to  which  the  curve  is  plotted.  If  a  is  not  unity,  we  must  first 
divide  the  right-hand  side  of  the  equation  throughout  by  a.  Then  if  iii 

the  equation  y  =  ax2  +  bx  +  c,  that  is,  y  =  a  (  x2  -f-  -x  -\-  -  ),  we  have \  Cb  d  J 

the   relation  -  =(-    ,  the  result  is  to  move  the  curve  a  horizontal 

distance  „—  to  the  left. 2a 

If  b  is  negative,  the  result  will,  of  course,  be  that  the  curve  is 
shifted  to  the  right  instead  of  to  the  left. 

"We  now  proceed  to  the  consideration  of  the  case  in  which  the  right- 
hand  side  of  the  equation  is  not  a  perfect  square.  For  the  sake  of 
simplicity  we  will  again  assume  that  the  value  of  a  is  unity;  this 
constant,  as  we  have  seen,  only  affecting  the  scale  to  which  the  curve 

/&Y 

is  plotted.    
Then,  let  c  =  (  «  )  4-  d,  so  that  the  equation  

y  =  a?  -\-  bx  +  c 
becomes 

6\2 

+d 

(6
\2
 

x  -f  ~  )    rais
ed 

/&\2 

vertica
lly   

throug
h   

a   distanc
e,    

d,    that   is,    c  —  (n)  •      Hence,
   

any 

equation  of  the  form  y  =  a?  -f  bx  +  c  gives  a  parabola  identical  in 

form  with  the  parabola  y  =  x2,  moved  horizontally  a  distance  ~  to  the 2 

/6\2 

left,  and  raised  verticall
y  

through 
 
a  height  c  —  (  ̂   )  ,  the  intercept

  
upon 

the  axis  of  Y  being,  of  course,  equal  to  c.  As  an  illustration  of  this, 

the  curve  y  =  a?  -f  Qx  +  14,  represented  by  the  thinner  continuous 
line,  has  been  added  to  Fig.  20. 

x      

-8 
-7 

-6 

—  5 -4 

-8 —2 
_1 

0 

+1 

2 

y  =  x*  +  &C  +  14) 
=  (a;  +  8)»  +  5  J 

30 
21 14 9 6 5 6 9 14 21 30 
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Finally,  putting  this  into  a  perfectly  general  form  by  reintroducing 
constant  a,  we  have  that  the  equation 

y  =  aa?  +  bx  -f-  c  =  a  (x2  +  -x  +  -  ) 

presents  a  curve  of  precisely  the  same  form  as  the  parabola  y  =  ax2, 

it  moved  horizontally  through  a  distance  ~-  to  the  left,  and  raised 
Zci 

tically  through  a  distance  o|-  —(9")  \=  — j   •     The  factor  a 
in  the  last  expression  is  introduced  because  all  vertical  dimensions  are 

multiplied  by  the  vertical  scale-constant  a. 
The  Constant  b  in  other  Cases. — The  effect  of  adding  a  term 

bx  to  the  general  equation  y  =  axn  +  c,  when  n  is  not  equal  to  2,  is  by 
no  means  so  simple  as  in  the  case  just  considered.  It  will  be  sufficient 
for  the  purpose  of  this  book,  however,  to  indicate  the  effect  it  has  in 
general.  In  the  case  of  the  cubic  parabola,  for  example,  the  effect  is  quite 
different  from  that  upon  the  ordinary  parabola.  It  produces  no  movement 
of  the  parabola  as  a  whole,  but  increases  the  slope  at  every  point  by  a 
constant  amount,  &.  The  cubic  parabola  is  always  invertly  symmetrical 
about  the  axis  of  Y  unless  its  equation  contains  a  term  involving  the 
second  or  some  fractional  power  of  x.  This  can  be  seen  from  the  fact 

that  x3  and  x  are  always  necessarily  of  the  same  sign.  Hence,  x3  •+-  bx  is 
always  numerically  equal  to  (  —  a;)3  +  &(  —  »).  If,  then,  c  be  zero, 
equal  and  opposite  values  of  x  always  produce  equal  and  opposite 
values  of  y,  that  is,  the  curve  always  has  invert  symmetry  relatively 
to  the  axis  of  Y.  The  effect  of  adding  a  constant  term  c  is,  as  has 
been  already  shown,  merely  to  raise  the  curve  vertically  through  a 
distance  equal  to  c,  which  does  not  affect  the  symmetry  relatively  to 

the  axis  of  Y.  In  Fig.  21  the  curves  y  —  x3  (continuous  line)  and 
y  =  x3  -f  5x  (broken  line)  are  plotted  to  illustrate  this  point,  the 
co-ordinates  of  the  points  of  observation  being  tabulated  below. 

X         

-4 
—3 

—  2 

_1 

o +1 2 3 4 

a*      

—  64 
—  27 

—  8 _1 

o 
+1 

8 

27 

64 5x    

-20 —15 
—  10 

—  5 

o 4-5 

10 

15 

20 

a?  +  60;    .     .     . 

-84 
-42 

-18 

-6 

0 

+6 

18 
42 

84 

Notice  that  the  latter  curve  does  not  cut  the  axis  of  Y  at  right 
angles. 

If  a  and  b  are  of  opposite  sign,  the  form  of  the  cubic  parabola  in 
the  neighbourhood  of  the  origin  is  materially  altered.  If  a  is  positive 

the  slope  of  the  primary  curve  y  =  ax3  to  the  right  of  the  origin  is 
positive  also,  becoming  less  as  x  approaches  0  ;  if  b  is  negative,  the 
curve,  as  has  been  pointed  out,  has  its  slope  diminished  by  an  amount 
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numerically  equal  to  6.     Hence  for  some  distance  to  the  right  of  the 

origin  the  slope  of  the  curve  y  =  ay?  —  bx  will  become  negative,  and 

x-* 
-30 

ftl 

*    X 

Fig.  21. 

the  curve  is  depressed  below  the  axis  of  X  for  a  distance  given  by  the 

relation  ay?  =  bx,  or  x  =  \/  -•  Similarly,  immediately  to  the  left  of 

the  origin  the  slope  becomes  negative,  and  is  raised  above  the  axis  of 
X  for  the  same  distance.  Thus,  we  get  a  curve  containing  a  maximum 

(at  A)  and  a  minimum  (at  B),  and  a  point  of  inflexion  (C).  This  is 

shown  in  the  curve  plotted  in  Fig.  22,  whose  equation  is  y  =  Xs  —  4x. 
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The  reasons  for  the  above  statements  will  be  seen  more  clearly  in 

the  chapter  dealing  more  particularly  with  the  slope  of  curves  in 
general  (see  p.  106). 

When  n  =  4  the  introduction  of  the  bx  term  has  a  still  different 

effect.  Let  the  student  plot  for  himself  the  curves  y  =  x4  and,  say, 
y  =  a;4  -f-  Wx.  He  will  see  (1)  that  the  apex  is  moved  both  laterally 
and  vertically,  (2)  that  the  curve  is  not  symmetrical  about  the  axis  of 

-2 

SO 

20 

-I        0 

-20 

-30 

3     X* 

Fig.  22. 

Y,  and  (3)  that  the  curve  is  not  symmetrical  about  any  vertical  line, 
but  appears  to  be  tilted. 

The  really  salient  point  to  be  observed  in  all  these  cases  is  that  which 
is  common  to  all,  namely,  that  when  b  is  zero  the  curve  cuts  the  axis  of  T 
at  right  angles,  but  when  b  is  not  zero  the  curve  does  not  cut  the  axis  of  Y 

at  right  angles.  In  the  chapter  on  "  The  Slope  of  Curves  "  it  will  be 
shown,  in  fact,  that  the  slope  of  the  curve  as  it  cuts  the  axis  of  Y — that 

is,  when  x  =  0 — is  equal  to  b.  The  curves,  however,  still  retain  the 
general  shape  typical  of  the  parabolic  family. 

Other  Terms  in  the  General  Equation. — It  would  not  be  complete 
to  leave  this  subject  without  pointing  out  that  when  n  is  greater  than 

2,  a  term  containing  a2  may  be  introduced  into  the  equation  without 
affecting  the  parabolic  character  of  the  curve  ;  when  x  is  greater  than 

D 



34 PRACTICAL  CURVE  TRACING 

3,  a  term  in  x3,  and  so  forth.     Thus,  the  complete  general  equation  
of 

the  parabolic  family  of  curves  is — 

y  =  axn  +  ex"-1  +fxn-2  .  .  .   +  &»  +  c 

We  need  not,  however,  discuss  the  meaning  of  such  additional  
terms 

in  detail. 

The  Equation  of  a  Given  Parabola.— The  only  curve  
whose 

can  be  exactly  tested  directly  is  the  straight  line.     In  order
  to  find 

the  equation  of  a  parabola,  then,  it  is  necessary  first  to  o
btain  from  it 

a  straight  line  which  bears  some  close  relationship  to  it.     We  can
  d 

this  very  simply  by  reducing  the  parabola  to  its  logar
ithmic  analogue. 

Consider  first  the  simple  parabolic  curve  given  by  the  equat
ion— 

y  =  axn Take  logarith
ms  throughou

t,  then — 

log  y  —  n  .  log  x  +  log  a 

This  is  now  a  simple  equation  of  the  first  degree  in  log  x  and  log 
 y,  and 

therefore  represents  a  straight  line  connecting  thes
e   two  variables. 

In  other  words,  if  log  x  and  log  y  be  plotted,  the  
result  will 

straight  line  whose  slope  is  n,  and  whose  intercept  on  the  
axis  of  log  5 

is  log  a.     Hence,  n  and  a  can  be  directly  determined  
from  this  line,  sc 

fixing  the  equation  of  the  original  curve.     An  example
  will,  perhaps, 

make  the  method  clearer.     The  values  of  x  and  y,  given  
in  the 

two  lines  of  the  table  below,  are  connected  by  an  equatio
n  of  the  forn 

«  =  ax\     (In  the  case  of  the  curve  itself  being  give
n,  these  valu. 

would  be  obtained  by  direct  measurement  from  it.)     In
  the  third  and 

fourth  lines  of  the  table  the  values  of  log  x  and  log  y  for  each
  pair  c 

values  of  x  and  y  are  given,  as  taken  directly  from  a 
 table  of  logarithms. 

X    .      .      •      ' 0 1 2 3 4 5 6 7 8 9 

y   .     .     .     . 0 2-1 7-1 
14-3 23-7 

35-3 48-2 63-4 
80-4 

98-8 

Log  x     .     . 
— o-ooo 0-301 

0-477 0-602 
0-699 0-778 0-846 0-903 0-954 

Log  y     .     . 
— 0-322 0-852 1-156 

1-375 1-548 
1-683 

1-802 

1-906 1-999 

In  Fig.  23,  log  x  and  log  y  are  plotted  as  co-or
dinates,  and  it  is  seen 

that  a  straight  line  results.     Then- 

log  a  =  the  intercept  on  the  axis  of  Y  =  0-3
22 

/.  a  =  2-1 PM      1-55  -  0-5  _  VPS 
Also  n  =  the  slope  of  the  line  =  -j^j  =  0-7  _  0-1  ==  0'6 

=  1-75 RM 

/.  y  =  2-1  «"« 
Here  it  was  known  that  the  equation  of  the  curve  was  of 

 the  form 

y  =  axn.     If  this  is  not  known,  the  curve  itself  must  first  b
e  plotted, 
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when  if  it  appears  (1)  to  be  of  the  general  parabolic  form,  (2)  to  pass 
through  the  origin,  and  (3)  to  cut  the  axis  of  Y  at  right  angles,  it  is 
probable  that  an  equation  of  this  form  may  be 
found  to  fit  it  with  a  fair  degree  of  accuracy. 

The  Use  of  Logarithmic  Squared  Paper.— 
The  trouble  of  actually  looking  out  the  logarithms 
of  x  and  y  from  the  tables  may  be  obviated  by 
the  use  of  logarithmically  ruled  paper.     In  this, 
instead   of   the  rulings  being  at  equal  intervals 
of  inches  and  tenths  of  an  inch  as  in  ordinary 
squared  paper,  the  paper  is  divided  up  in  both 
directions  in  the  proportion  of  the  logarithms  of 

the  numbers  from  1  to  10,  the  rulings  being  there- 
fore of  exactly  the  same  nature  as  those  on  an 

ordinary  slide   rule.     Each  sheet  of   paper  only 
contains  a  range  of  values  of  x  and  y  equivalent 
to   one    characteristic   in   their   logarithms.      If 
more  than  this  is  desired,  however,  two  or  more 
sheets  of   paper  must   be  joined   together,  care 
being  taken   that    the    join    is    made    accurately.      Of    course,   on 
this  paper  no  choice  of  scales  is  possible;  the  length  of  each  sheet 
representing  either  from  1  to  10,  or  from  10  to  100,  and  so  on. 

In  Fig.  24  the  set  of  values  of  x  and  y  given  in  the  last  para- 
graph have  been  plotted  on  logarithmic  paper,  two  sheets  being 

necessary  in  the  direction  of  Y,  as  the  values  range  from  2'1  to 
98'8,  that  is,  over  a  range  involving  two  characteristics  for  the 
logarithms.  The  slope  is  measured  by  dividing  the  increase  in  log  y 
by  the  corresponding  increase  in  log  x,  as  was  seen  in  the  last 
paragraph.  Hence,  on  this  paper  we  must  measure  the  vertical  and 

•  horizontal  sides  of  the  slope  triangle,  not  on  the  scales  to  which  the 
line  is  plotted,  but  on  any  scale  of  equal  parts  (the  same  in  both 
directions).  That  is,  PM  and  QM  are  both  measured,  say,  in  inches. 
Then  we  have — 
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PM      10-32 

QM=="5:90" 

=  1-75. 

a  is  the  value  of  y  when  x  =  1,  and  is  therefore  the  intercept  on  the 

axis  of  Y  on  logarithmic  paper,  in  this  case  2'1  as  before,  being  read 
directly  from  the  scale  of  Y. 

It  is  sometimes  not  necessary  to  use  two  sheets  of  paper,  even 
though  the  numbers  do  vary  through  a  range  represented  by  two 
characteristics  in  their  logarithms.  If  we  divide  all  the  values  of 
either  x  or  y  by  any,  the  same,  constant,  the  logarithmic  line,  when 
plotted,  will  be  of  the  same  slope  as  before,  but  will  be  moved  bodily 
parallel  to  itself  through  a  distance  to  the  left  or  down  equal  to  the 
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logarithm  of  the  dividing  constant.     That  is  to  say,  the  value  of  n  is 
unaltered,  although  that  of  a  is.    This  follows  at  once  from  the  fact  that 
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the  value  of  each  logarithm  being  therefore  diminished  by  the  constant 
quantity  log  d.  In  the  values  of  x  and  y  given  below,  those  of  x  come 
within  the  range  of  one  logarithmic  characteristic,  but  those  of  y  range 
over  two.  Upon  dividing  the  values  of  y  by  2,  however,  they  all  fall 
within  the  range  of  one  characteristic.  Plotting  x  and  \y  on  the 
logarithmic  paper,  we  get  the  straight  line  shown  in  Fig.  25.  For 
purposes  of  comparison,  part  of  the  line  obtained  by  plotting  x  and  y 
is  also  shown  by  a  thicker  line.  It  is  seen  that  the  two  are  parallel, 
that  is,  of  the  same  slope,  but  that  one  is  lower  than  the  other. 

E  .      .      . 0 1-0 1-5 2-0 
2-5 3-0 

3-5 
4-0 

!/.     .     . 0 

0 

2-10 8-86 5-93 
8-80 

10-90 13-75 16-80 

\V     •     • 
1-05 

1-93 
2-97 4-15 5-45 

6-88 
8-40 

Then,  measuring  the  slope, 

PM      7-04 
=  15 

~  QM  -  4-70 

To  obtain  a  we  must  multiply  the  intercept  on  the  axis  of  Y  by  our 
vertical  divisor — namely,  2 — since  all  vertical  dimensions  were  reduced 
in  that  ratio. 

Instead    of    using    logarithmic    paper    the   co-ordinates   may   be 



38 PRACTICAL  CURVE  TRACING 

measured  by  a  pair  of  dividers  from  the  scale  of  an  ordinary  slide  rule  ; 
but  this  method  is  more  cumbersome  and  tedious  than  that  of  using  a 

table  of  logarithms  and  ordinary  squared  paper. 

To  Find  an  Equation  of  the  Type  y  =  axn  +  c. — If  the  curve  does 
not  pass  through  the  origin,  but  still  cuts  the  axis  of  Y  at  right  angles, 
we  have  seen  that  its  equation  is  of  the  above  form,  containing  a 
constant  term,  c,  but  no  term  of  the  first  degree  in  x.  The  value  of 

this  constant  c  is  equal  to  the  intercept  of  the  curve  on  the  axis  of  Y. 

This  constant  can  therefore  be  determined  at  once  by  inspection. 
Then,  subtracting  the  value  of  p  from  each  value  of  y,  we  shall  reduce 
the  equation  to  the  simpler  type  already  discussed. 

For  let 
Then 

y  -  c  =  yl 

yl=  y  -  c  =  axn 

Z. 

A 

Fig.  26. 

It  will  be  sufficient  to  add  an  example  of  this  case.  The  values  of 

x  and  y,  given  below,  are  plotted  to  give  the  curve  shown  in  Fig.  26. 
This  is  of  general  parabolic  form,  and  appears  to  cut  the  axis  of  Y  at 

right  angles  (hence  there  will  be  no  term  of  the  first  degree  in  x  in  the 

equation).  It,  however,  does  not  pass  through  the  origin,  but  makes  a^n 
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intercept  on  the  axis  of  Y  equal  to  2'71  (=  c).  Hence  y,  =  y  —  2 '71. 
Tn  the  third  line  of  the  table  the  values  of  yu  obtained  by  subtracting 

2 '71  from  each  value  of  y,  are  entered. 

X  . o 1 2 3 4 5 6 7 g 

V  . 
2-71 3-32 4-21 5-25 6-40 7-65 

8-96 

10-36 11-81 

Vi  =  y-c    .   . o-o 
0-61 1-50 

2-54 3-69 
4-94 

6-26 7-66 9-10 

The  values  of  x  and  yl  are  then  plotted  on  logarithmic  paper,  or 
their  logarithms  found  and  plotted  on  squared  paper.  The  former 

method  has  been  adopted  here,  and  the  straight  line  (Fig.  27)  results. 
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a  =  the  intercept  on  the  axis  of 

PM      6-10 = 

=  0'61 
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Hence  the  complete  equation  of  the  curve  is 

y  =  O'Gla;1'3  +  2'71 

To  Find  an  Equation  of  the  Type  y  =  ax"  +  bx  +  c.— We  now 
come  to  the  case  in  which  the  curve,  whose  equation  it  is  required  to 

find,  does  not  cut  the  axis  of  Y  at  right  angles.  We  have  seen  that 

this  means  that  a  term  of  the  first  degree  in  x  occurs  in  the  equation. 

In  the  general  equation  of  such  a  curve,  as  given  above,  put 

and 
Then 

The  second  of  these  equations  gives  us  a  straight  line  of  slope  6  and 
making  an  intercept  on  the  axis  of  Y  equal  to  that  of  the  original 

curve,  namely  <*.  This  straight  line  is,  in  fact,  the  tangent  to  the  curve 



THE   PARABOLIC  FAMILY  41 

it  its  point  of  intersection  with  the  axis  of  Y.     This  will  be  seen  more 

Nearly  in  Chapter  IX.       The  first  equation  gives  us  the  equation  of 
parabolic  curve  referred  to  this  tangent  as  the  axis  of  X.     In  Fig.  28 

JQ  have  an  example  of  a  curve   of   this  type,  the  actual  graphical 
leanings  of  yl  and  y2  being  shown  for  the  point  P.     Fig.  29  shows  the 

jrresponding  curve  yl  =  axn  reduced  to  the  ordinary  axis  of  X,  that 
3,  the  vertical  heights,  yu  of  the  original  curve  above  the  tangent 

=  bx  -}-  c,  have  been  re-plotted  with  the  corresponding  values  of  x, 
ibove  the  ordinary  axis  of  X,  giving  a  simple  parabolic  curve.  We 
jive,  then,  a  method  by  which  the  four  constants  a,  b,  c,  and  n  can  be 

letermined.      Having  plotted  the  curve,  the  tangent  at  the  point 

eo 

4-0 

20 

rhere  it  intersects  the  axis  of  Y  must  be  drawn  by  eye.  If  the  curve 

carefully  drawn  by  a  clear,  smooth,  fine  line  it  is  not  a  difficult 
latter  to  do  this  with  a  fair  amount  of  accuracy.     Two  methods  may 

recommended.     Perhaps  the  most  reliable  is  to  use  the  edge  of  a 

transparent  set-square,  and  first  adjust  it  as  nearly  as  possible  as  a 
ingent  to  the  curve  at  a  point  a  little  distant,  say  about  an  inch, 

com  the  axis  of  Y.  Then  the  set-square  is  gradually  brought  down 
the  point  of  intersection,  rolling  it,  as  it  were,  on  the  curve,  and 

iltimately  marking  its  position  when  touching  the  curve  at  the  axis  of 
If  this  be  done  several  times  and  a  fair  average  taken  among  the 

3sults,  a  close  approximation  ip  the  true  tangent  will  be  obtained. 
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The  other  method  is  to  use  a  stretched  thread,  either  in  the  same  way 

as  the  straight-edge,  or,  holding  one  end  at  the  point  where  it  is 
required  to  draw  the  tangent,  to  oscillate  the  other  backwards  and  for- 

wards until  the  true  tangent  position  is  obtained.  Having  obtained 
this  tangent,  the  value  of  b  (its  slope)  may  be  at  once  determined. 
The  value  of  c  is  of  course  the  intercept  of  the  curve  on  the  axis  of  Y 

It  is  sometimes  advisable  to  plot  the  portion  of  the  curve  in  the  neigh- 
bourhood of  the  axis  of  Y  to  a  larger  scale,  in  order  to  draw  the  tan- 

gent more  accurately.  Its  slope  may  then  be  measured  on  this  enlarged 
diagram,  and  a  line  of  the  same  slope  drawn  as  a  tangent  to  the  original 
curve.  The  values  of  y1  must  next  be  obtained,  either  by  reading  off 
directly  from  the  curve  its  vertical  distance  above  the  tangent  for  each 

value  of  x,  or  by  calculating  the  different  values  of  bx  +  c  and  sub- 
tracting them  from  the  corresponding  values  of  y.  Then,  plotting  y^ 

and  x  on  logarithmic  paper  or  obtaining  their  logarithms  and  plotting 

them  on  ordinary  paper,  the  values  of  a  and  n  may  be  determined  as 
already  explained. 

In  the  example  worked  out  below,  several  extra  pairs  of  co-ordinates 
for  small  values  of  x  are  given  in  order  to  define  the  form  of  the  curve 

near  to  the  axis  of  Y  more  exactly,  so  enabling  the  student  to  draw 

the  tangent  with  a  greater  degree  of  accuracy.  The  curve  connecting 
the  values  of  x  and  y  given  is  plotted  in  Fig.  28,  and  the  portion  near 
the  axis  of  Y  is  shown  on  the  same  figure  by  the  dotted  curve,  the  scales 

for  this  portion  being  figured  above  the  axis  of  X  and  to  the  right  of 
the  axis  of  Y  respectively. 

The  value  of  c  is  seen  to  be  3 '7  and  we  have 
J7.Q  Q-'Z  A*1 

6  =  the  slope  of  the  tangent  =   -I.A  _  ̂    =  TTA  =  4'1. 

Hence  the  equation  for  the  tangent  is — 

y,  =  t-lx  +  3-7 

In  the  fourth  line  of  the  table  the  values  of  y.2  for  each  value  of  x  are 

given,  those  of  4'1#  being  entered  in  the  third  line.  Then  in  the  fifth 
line  are  given  the  corresponding  values  of  ylf  obtained  by  subtracting 

the  values  of  y.2  given  in  the  fourth  line  from  those  of  y  in  the  second. 

Fig  29  shows  the  value  of  yl  plotted  with  x  giving  the  simple  parabolic 
curve 

yi  =  axn In  practice,  however,  it  is  not  necessary  to  plot  this  curve.  As  the 

values  of  y,  range  over  three  logarithmic  characteristics,  we  will  not 

use  logarithmic  paper  in  this  example.  The  values  of  log  x  and  log  yl 
are  therefore  found  and  entered  in  the  table. 
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4-LC  +  8-7 

••y-v*- 
x     .    . 

Vi    •    • 

o-o 0-2 0-4 
0-6 0-8     1-0 

2-0 8-0 
4-0 6-0    !    6-0 

3-70 4-65 5-91 7-48 
9-4211-7 

28-6 55-0 

91-6 
188-5 

195-3 
o-o — — — 

—     4-1 
8-2 

12-3 
16-4 20-5 24-6 3-7 — — — —     7-8 

11-9 16-0 20-1 

24-2 

28-8 0 — - — 
8-9 

16-7 
39-0 71-5 114-8 167-0 

— — — —    o-ooo 
0-301 

0-477    0-602 

0-699 0-778 

— — — 0-591     1-222 

1-591 1-854 
2-059 

2-223 

x  and  log  yl  are  plotted  in  Fig.  30,  giving  the  straight  line  shown, 

fhen,  as  before — 

log  a  =  0-591 
/.  a  =  3-9 

and  n  =  slope  = PM  _  2-059  -  0-591  _  1-468 
RM  "  0-699  -  0-000  ~  (H599 =  2-1 

2-0 

15 

>0 

[ence  the  complete  equation  of       2S 

original  curve  is  LogY 

y  =  3-9s21  +  4-l«  +  3-7 

Parabolic  Approximation  to 

any  Curve. — The  general  equa- 
tion of  any  parabolic  curve  as 

given  on  p.  34  may  be  written 

in  a  slightly  different  form 

thus — 

y  =  a  +  bx  +  cxi  +  dx3  -f  ex*  +  .  .  . 
If  we  have  any  number,  say  k, 

points,  one  of  which  (0,  a)  is  on 
the  axis  of  Y,  a  curve  of  this 

type  may  be  drawn  through 

them,  whose  equation  will  in- 
volve k  constants  (a,  b,  c,  etc.), 

that  is,  its  right-hand  side  will 
consist  of  an  ascending  series  in 

x,  whose  highest  term  is  of  the 

(k  —  l)th  degree,  for  we  can 
substitute  the  co-ordinates  of 

each  of  our  given  points  in  the 

general  equation  above,  so  ob- 
taining k  simultaneous  equations 

in  the  constants  a,  b,  c,  etc. 

Solving  these,  we  then  determine  those  values  of  the  constants  which 

will  give  us  an  equation  for  a  parabolic  curve  passing  through  the  k  given 

OS 

Fig.  30. 

10 
LogX 
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points.  This  enables  us  to  obtain  an  approximate  equation  to  any  desired 
degree  of  accuracy  for  any  given  continuous  curve  ;  for  we  can  choose 

any  suitable  number  of  points  upon  the  curve — the  greater  the  number 
taken  the  greater  being  the  accuracy  of  the  approximation — and  find 
an  equation  of  the  above  type  for  the  parabolic  curve  passing  through 
them.  In  choosing  the  points  it  is  well  to  take  them  at  fairly  even 
distances  along  the  curve,  but  at  places  where  the  curvature  is 
changing  rapidly,  to  take  one  or  two  extra  points,  and  also  to  take  any 
points  which  may  seem  to  be  critical,  such  as  maxima  and  minima. 
Usually  in  practice  we  only  desire  an  approximate  equation  to  repre- 

sent a  small  portion  of  a  curve,  in  which  case  only  three  or  four  terms 
of  the  equation  need  be  found,  that  is,  only  three  or  four  points  need 
be  taken.  For  a  greater  number  the  algebraic  solution  of  the  result- 

ing equations  becomes  long  and  tedious.  The  student  should  draw  for 
himself  any  curve  at  random,  and  then  proceed  to  find  first  the  nearest 
cubic  equation  to  fit  it,  then  the  nearest  quartic,  and  so  on,  noticing 
that  as  the  number  of  points  taken  be  increased  the  curve  actually 
represented  by  the  equation  found  (which  should  itself  be  plotted  for 

more  points)  becomes  more  and  more  near  to  the  original  curve — unless 
the  latter  happens  to  be  a  true  parabolic  curve  of,  say,  the  nth  degree, 
when  terms  higher  than  the  nth  should  vanish. 

Position  of  the  Vertex  of  a  Parabola. — We  have  seen  that  the 

ordinary  parabola  y  =  ax2  +  c  is  symmetrical  about  the  axis  of  Y, 
having  its  vertex  at  a  height  c  above  the  origin.  The  axis  of  the 
parabola  then  coincides  with  the  axis  of  Y.  Upon  introducing  a  term 
bx  into  the  equation,  however,  this  axis  of  symmetry  is  shifted  a 

distance  „-  to  the  left,  remaining  vertical.     The  vertex,  of  course,  is 

always  on  this  axis  of  symmetry.  We  sometimes  wish  to  find  the 
horizontal  position  of  the  vertex  without  actually  plotting  the  curve, 
as  in  the  case  considered  in  the  next  paragraph.  As  stated  above, 

we  see  at  once  that  the  x  co-ordinate  of  the  vertex  is  —  „- ,  or  we  may 

proceed  independently  in  the  manner  now  to  be  described.  Since  the 
parabola  is  symmetrical  about  the  axis,  any  horizontal  chord  is 
necessarily  bisected  by  the  axis.  Hence  if  we  take  any  horizontal 

line  (rj  =  a  constant)  which  cuts  the  curve,*  and  determine  the  x 
co-ordinates  of  the  two  points  of  intersection,  the  x  co-ordinate  of  the 

*  Any  straight  line  cuts  a  curve  of  the  nth  degree  in  n  points,  real,  coincident, 
or  imaginary,  since  any  equation  of  the  nth  degree  has  n  roots.  When  we 
ordinarily  speak  of  a  line  cutting  a  curve,  we  mean  that  these  points  are  real. 
For  a  tangent  two  or  more  are  coincident,  that  is,  the  corresponding  roots  of  the 
equation  are  equal.  If  an  even  number  are  coincident  we  have  an  ordinary 
tangent,  if  an  odd  number,  a  tangent  which  crosses  the  curve,  as  at  a  point  of 
inflexion. 
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ix  will  be  their  mean.  For  instance,  suppose  we  wish  to  find  the 

position  of  the  vertex  of  the  parabola  y  =  3z2  -f  2x  -f  4.  First,  we 
will  find  its  points  of  intersection  with  the  horizontal  straight  line 
y  =  10,  say. 

Then  for  these  points  we  have  — 

+  4  =  10 
-  6  =  0 

-2  ±  y/4  +  72 _ -2  ± 

-2  ±  8-72 
6  6 

6-72      -10-72 
=  ~«-or   a   =  M2  or -1-79 D  U 

Then  the  x  co-ordinate  of  the  vertex  will  be  the  mean  of  these, 
that  is — 

1-12  -  1-79      -0-67 

Note  that  this  is  the  same  result  as  we  should  have  obtained  by 
simple  substitution  in  the  ex- 

pression, —  — .     For — 

2a 
we 

-  0-33) 

•Fxs- 
And  for  the  y  co-ordinate 
have — 

y  =  3^  +  2*  +  4 

=  3(-0-33)24 

+  4 
=  0-33  -  0-66  +  4 
=  3-67 

This  is  illustrated  graphi- 
cally in  Fig.  31. 

Application  to  Bending  Mo- 
ment Diagrams. — The  curve 

of  bending  moment  for  any  beam  which  is  loaded  with  a  uniformly  dis- 
tributed load  or  loads  is  either  a  single  parabola  or  a  series  of  arcs  of  para- 

bolas for  those  portions  of  the  beam  under  these  loads,  the  axes  of  such 
parabolas  being  vertical.  The  maximum  bending  moment  is  therefore 

represented  by  the  vertex  of  one  of  the  parabolas  if  the  vertex  occurs 
in  that  portion  of  the  curve  making  up  the  bending  moment  diagram. 
This  gives  us  a  method  for  determining  the  maximum  bending  moment, 
which  is  sometimes  useful  as  an  alternative  to  the  usual  method  of 
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finding  first  the  position  of  zero  shearing  force.  As  an  illustration  of 

this  method  we  will  work  out  the  following  example : — 
A  bridge,  weighing  1  ton  per  foot  run,  is  100  feet  long  and  carries 

a  uniformly  distributed  load  of  1|  tons  per  foot  run  for  a  distance 

of  80  feet  from  the  left-hand  abutment.  Find  the  position  and 
magnitude  of  the  maximum  bending  moment. 

First,  to  find  the  supporting  forces,  RA  and  RB. 

Take  moments  about  A  (see  Fig.  32).     Then — 

100  RB  =  100  x  50  +  120  X  40 

or  RB  =  50  +  48  =  98  tons 

and  RA  =  220  -  98  =  122  tons 

Next,  to  find  the  equations  of  bending  moments. 
Let  MK  =  the  bending  moment  at  any  point  K,  distant  x  feet  from 

A.  Then— 

MK  =  122s  -  2-5x  X  | 
=  -l-25a;2  +  122  a;   (1) 

This  is  the  equation  of  a  parabola  whose  axis  is  vertical,  and  which 

opens  downwards  (since  a  is  negative),  though  for  convenience  it  is 
usual  to  invert  the  diagram  as  in  Fig.  32. 

This  equation  gives  us  the  curve  of  bending  moment  only  up  to 
the  end  of  the  load  of  1|  tons  per  foot  run.  Beyond  that  point  we 

have — 

MK  =  122a;  -  120(»  -  40)  -  x  X  \ 

=  l22x  -  I20x  +  4800  -  0-ox- 
=  _  o-5a;2  +  2x  +  4800   (2) 

This  equation  is  that  of  a  parabola  similar  to  that  given  in  equation 
(1).  The  vertex  of  one  or  other  of  these  parabolas  will  be  the  point 
of  maximum  bending  moment,  whichever  falls  upon  the  curve  of 
bending  moment.  We  proceed  to  find  the  position  of  both.  In  this 
case  we  will  take  the  line  of  no  bending  moment,  that  is  MK  =  0  as 
our  horizontal  line.  Then  for  the  intersection  of  this  line  with  the 
first  curve  we  have — 

-l-25ar  +  122a;  =  0 
122 

i.e.  x  =  0  or  x  =  ̂ ^  =  97'7 

Then  the  vertex  of  this  parabola  is  determined  by 

97-7 x  =  -g-  =  48-8  feet  to  the  right  of  A 

Or,  adopting  the  other  method,  we  have  — 
b  122 

35  =  ~  2a=  ~  2(—  1-25^  =  ̂'®  ̂ee^'  as  Before. 
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?or  the  second  parabola  we  have — 

47 

=  0 

a3  _  4x  -  9600  =  0 

(a;  -  I00)(a  +  96)  =  0 
x  =  100  or  x  =  -  96 

tien  the  vertex  of  this  parabola  is  determined  by 

100- x  =   g- 

r,  by  the  simpler  method, 

100  -  96 
x  =  --  s  --  =  2  feet  to  the  right  of  A 

6  -4 =-=  ---   =2  feet 

IfeTons  perfoot  ---  •>- 
mQQQQQQQQOOOO 

80  feet   •-   >! 

BENDING.  MOMENT  DIAGRAM. 

Fig.  32. 

these  two  vertices  the  first  falls  within  the  length  of  the  beam 
governed  by  its  own  parabola,  and  is  therefore  the  one  required,  that 

is,  the  maximum  bending  moment  is  at  a  distance  48*8  feet  to  the 
right  of  the  left-hand  abutment. 

Then  the  maximum  bending  moment 

=  -1-25^+  I22o? 

=  -l-25(48-8)2  +  122  x  48-8 
_  -2970  +  5950 

=  2980  ton-feet 

In  the  diagram  the  two  parabolas  have  been  continued  by  dotted 
lines  over  the  portion  of  the  beam  not  governed  by  them.  It  is 

possible  that  neither  vertex  may  actually  fall  upon  the  bending 
moment  curve,  in  which  case  the  intersection  of  the  two  parabolas 

will  be  the  point  of  maximum  bending  moment. 



CHAPTER  V 

yxn  =  a. — THE    HYPERBOLIC   FAMILY 

IT  was  stated  in  the  last  chapter  that  when  the  constant  n  in  the 

equation  y  =  ax"  was  negative,  the  equation,  which  could  then  be 
written  in  the  form  yx"  =  a  (n  then  being  positive),  gave  rise  to 
another  family  of  curves.  It  is  this  family  which  we  are  about  to 
consider  in  the  present  chapter. 

Fundamental  Curve  yx  =  a. — If  we  put  n  equal  to  1  in  the  equation 

yxn  =  a,  we  deduce  the  simpler  equation  yx  =  a,  which  we  will  now 
proceed  to  consider.  If  a  is  positive,  x  and  y  must  obviously  be  of  the 
same  sign — that  is,  they  must  either  be  both  positive  or  both  negative. 
Hence  the  curve  will  lie  wholly  in  the  first  and  third  quadrants.  If  a 
is  negative,  x  and  y  must  always  be  of  opposite  sign,  or  the  curve  must 
lie  wholly  in  the  second  and  fourth  quadrants.  Again,  if  either  x  or  y 
were  zero,  the  other  co-ordinate  must  be  infinity,  hence  the  curve 
never  touches  either  axis  within  a  finite  distance  of  the  origin.  We 
have,  then,  a  curve  which  lies  wholly  within  two  alternate  quadrants 
and  which  never  touches  either  axis ;  hence  the  curve  consists  of  two 
distinct  and  separate  branches,  one  in  each  of  the  two  quadrants. 
Moreover,  the  equation  is  symmetrical  with  respect  to  x  and  y,  that 
is,  these  symbols  occur  in  it  in  precisely  the  same  way  ;  therefore  any 
pair  of  values  of  x  and  y  may  be  interchanged,  the  truth  of  the  equation 
still  being  satisfied.  Hence  the  curve  will  be  symmetrical  about  the 
line  x  =  y,  that  is,  about  a  straight  line  of  unit  slope  passing  through 
the  origin.  It  will  also  be  symmetrical  about  a  line  at  right  angles  to 
this  namely,  y  =  —  x.  Further,  for  any  real  value  of  x,  however 
small  or  however  great,  there  corresponds  a  real  value  of  y,  namely 

-,  and  vice  versa.     Hence,  both  branches  of  the  curve  will  extend  to x 

infinity,  both  in  the  direction  of  X  and  in  that  of  Y.  The  curve 
consists,  therefore,  of  two  equal  and  similar  infinite  branches,  in 
alternate  quadrants,  symmetrical  about  the  lines  of  unit  slope  passing 
through  the  origin. 

We  will  now  proceed  to  plot  such  a  curve,  taking  any  suitable 
value  for  a,  say  100,  the  equation  then  being — 

yx  =  100. 48 
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1!) 
For  the  first  quadrant  branch  wo  have  the  following  values  for  the 
ardinates  of  a  series  of  points  on  the  curve  : — 

2-0 2-5 3-3 5-0 
10 20 

80 

40 60 

50 40 
80 20 in 

•".-II 

Q.Q AO 
z'O 

X-5 

20 

-50 

Y 

50X 

Fig.  33. 

For  the  branch  in  the  third  quadrant  the  same  values  of  x  and  y 

satisfy  the  equation,  with  their  signs  changed.  Upon  plotting  these 
points,  we  obtain  the  curve  shown  in  Fig.  33.  This  is  known  as  the 
Rectangular  Hyperbola. 

Asymptotes. — If  we  proceed  to  take  larger  values  of  x  than  x  =  50 
in  the  above  equation,  the  corresponding  values  of  y  become  smaller 
and  smaller.  Similarly,  if  the  values  of  y  are  increased,  those  of  x 

become  continuously  smaller.  Hence,  the  curve  continues  to  get  closer 
and  closer  to  the  axes  of  X  and  Y,  but,  as  has  been  already  stated,  it 
never  touches  them  within  a  finite  distance.  Straight  lines  which 

bear  this  relation  to  a  curve,  that  is,  which  continually  approach 
nearer  and  nearef  to  it,  but  never  touch  it,  are  called  asymptotes  to  the 
curve,  and  the  curve  is  said  to  be  asymptotic  to  the  straight  lines.  If 

either  co-ordinate  be  put  equal  to  zero  in  the  equation,  the  correspond- 
ing value  of  the  other  is  seen  to  be  infinity.  Hence,  the  asymptote 

does  touch  the  curve  at  infinity,,  and  may  in  fact  be  regarded  as  the 
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tangent  to  the  curve  at  infinity.  In  the  curve  we  have  just  considered 
the  two  asymptotes  are  at  right  angles,  being  the  axes  of  X  and  Y, 

hence  the  name  "  rectangular  "  hyperbolas.  Other  hyperbolas  may  be 
drawn  whose  asymptotes  are  not  at  right  angles,  but  they  are  of  small 
practical  importance  from  our  present  standpoint.  The  other  curves 
to  be  considered  in  this  chapter  are  not  true  hyperbolas,  but  bear  the 
same  sort  of  relation  to  the  rectangular  hyperbola  which  the  cubic 

parabola  does  to  the  true  parabola — that  is,  their  equations  are  of  the 
same  general  type,  and  the  curves  of  the  same  general  form — and  are, 
therefore,  said  to  belong  to  the  hyperbolic  family,  or  to  be  hyperbolic 
curves. 

Isothermal  Expansion  of  a  Gas. — If  a  gas  expands  or  contracts  at 
constant  temperature,  its  volume  («)  varies  inversely  as  its  pressure 

(p),  or  pv  =  a  constant  (Boyle's  Law).  This  expansion  at  constant 
temperature  is  known  as  isothermal  expansion,  and  the  curve  connect- 

ing the  pressure  and  the  volume  is  obviously  of  the  type  we  have  just 
considered,  that  is,  it  is  a  rectangular  hyperbola.  From  this  fact, 

isothermal  expansion  is  sometimes  called  "  hyperbolic  "  expansion. 
Expansion  of  a  Gas  under  other  Conditions. — The  curves  of 

expansion  of  gases  under  other  conditions  than  that  of  constant 
temperature  are  found  to  be  such  that  the  relationship  between  the 
pressure  and  the  volume  of  gas,  which  they  indicate,  can  be  very 
closely  represented  by  equations  of  the  type 

pvn  =  a  constant, 

that  is,  by  the  general  equation  which  is  being  considered  in  this 
chapter.  Since  the  expansion  curves  furnish  by  far  the  most  im- 

portant and  numerous  examples  of  this  family,  we  will  substitute  the 

letter  p  for  y  and  the  letter  v  for  x  as  our  co-ordinate  symbols,  p  of 
course  being  plotted  vertically  and  v  horizontally. 

The  Meaning  of  the  Constant  n. — It  is  only  necessary  to  study  in 
detail  the  positive  branch  of  the  curves,  as  negative  values  of  p  and  v 
do  not  occur  in  practice.  Following  our  usual  method,  we  will  assign 
certain  values  to  the  constant  n  and  proceed  to  plot  the  corresponding 
curves.  For  the  sake  of  convenience,  however,  we  will  not  keep  the 
values  of  the  constant  a  (which  it  will  be  seen  later  is  merely  a  scale 
factor)  the  same  for  all  the  curves,  but  will  so  vary  it  as  to  make  all 
the  curves  pass  through  one  point.  Taking  for  our  fundamental 
isothermal  curve  the  value  of  a  to  be  100  as  before,  we  will  choose  the 
values  of  this  constant  for  the  other  curves,  so  that  they  all  pass 
through  the  point  p  =  20,  v  =  5.  The  values  of  p  and  v  for  the  curve 
pv  =  100  will  be  the  same  as  those  given  in  the  table  on  p.  49.  This 
curve  is  represented  in  Fig.  34  by  the  thick  continuous  line. 

Next,  let  n  =  2.     Then  we  have — 

a  =  pvn  =  pv*  =  20  x  52  =  20  x  25  =  500 



THE   HYPERBOLIC   FAMILY  51 

since  the  point  (5,  20)  is  to  lie  on  the  curve.     Then  for  the  equation of  the  second  curve  we  have — 

jw2  =  500 800 

Calculating  the  values  of  p  and  v  from  this  equation,  we  have— 

500 

w*   ' 

3 4 5 
10 

20 30 
40 

50 

9 16 
25 

100 400 900 1600 2500 

56-0 
310 

20-0 

50 

1-25 

056 031 

0-20 

curve  is  represented  in  Fig.  34  by  the  thinner  continuous  line. 
NQ  will  take  one  other  curve  for  a  value  of  n  greater  than  1, 

imely — 

pol  5  =  o 

20 

y  60 
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Then  a  =X'5  =  20  x  51'5  =  20  x  11-2  =  224 
or  we  have  for  the  equation  for  the  third  curve — 

pvl~°  =  224 224 

or  P=^ 

from  which  we  obtain   the  corresponding  values  of  p  and  v  given 
below. 

V     .      .      .      . 3 4 5 
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This  curve  is  represented  in  Fig.  34  by  the  dotted  line. 

Finally,  we  will  take  the  value  of  n  to  be  0-5.     Then — 

a  =  pv™  =  20  x  </5  =  20  x  2'24  =  44-8 

Then  the  equation  for  this  curve  is — 
0'5    —  -      A  A    O 

44-8 

P  =  ̂ r 

44-8 
i.e.  p  =  — r v  v 

and  our  values  p  and  v  are  as  given  below. 

V     .      .       . 1 2 3 4 5 10 20 30 40 50 

v^r  •  • 1-00 1-414 1-732 
2-00 2-24 

3-16 
4-47 5-48 6-32 

7-07 

_44-8 V     7= vt> 
44-8 31-8 25-9 22-4 20-0 

14-2 10-3 

8-2 

7-1 
6-3 

This  curve  is  not  represented  in  Fig.  34. 

Whatever  the  value  of  n  may  be  in  the  general  equation  pv"  =  a, 
the  value  p  =  0  gives  v  =  oo  ,  and  the  value  v  =  0  gives  p  =  oo  .  Hence 
all  these  curves  are  asymptotic  to  the  axes  of  X  and  Y.  But  while 
this  is  so  for  all  the  curves,  it  is  obvious  that  it  is  only  for  the  value 
n  =  1  that  the  curve  is  symmetrical  about  the  line  p  =  v.  That  is  to 
say,  that  the  only  member  of  the  family  which  has  the  line  p  =  v  as  an 
axis  of  symmetry  is  the  fundamental  rectangular  hyperbola,  or  isothermal 
curve.  Further,  it  is  evident  that  any  member  of  the  family  intersects 
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every  other  member  at  one  point,  but  at  one  point  only.  For  consider 

any  two  curves,  pv"  =  a  and  pvm  =  b.  For  any  points  of  intersection 
the  same  values  of  p  and  v  will  satisfy  both  equations.  By  division  we 
ive  for  these  common  points — 

m-n/b 

i.e.  v  =  W  - 
V   « 

m~"/b 

low  it  is,  of  course,  
possible  

for  ̂ /  -  to  have  
two  values,  

but  in  that 
case  one  will  be  positive  and  the  other  negative.  One  will  therefore 
refer  to  the  first  quadrant  branches  of  the  curves,  and  the  other  to  the 

third  quadrant  branches.  That  is  to  say,  that  for  the  branches  of  the 

curves  lying  within  the  first  quadrant,  which  is  the  only  case  we  are 
considering,  there  is  only  one  pair  of  values  of  p  and  v  common  to  the 

two  curves  —  that  is,  they  intersect  at  one  point  only.  Further,  since 
the  condition  of  the  curves  having  branches  in  the  first  quadrant  is 

that  a   and   b   are   both   positive,*  -  is   positive  also,  and   therefore 

-  has  always  one  real  positive  value  —  that  is,  that  any  curve  of 

the  family  intersects  every  other  curve  in  one  point. 
We  are  now  in  a  position  to  see  the  effect  of  the  value  of  n  in  the 

form  of  the  curve.  Referring  to  Fig.  33,  we  see  that  the  curve  of 

greater  n  is  lower  than  a  curve  of  lesser  n  below  their  point  of  inter- 
section. Perhaps  the  best  way  of  expressing  the  relationship  between 

the  various  curves,  however,  is  to  express  it  in  the  form  that  at  the 

point  of  intersection  of  any  two  curves  of  the  type  pv"  =  a,  that  of  greater 
n  has  a  greater  (negative)  slope  than  that  of  lesser  n. 

The  Constant  a.  —  We  can  write  the  equation  pv"  =  a  in  the  form 

p  =    „.     If,  therefore,  we  change  the  value  of  a,  we  change  the  value 

of  j>  corresponding  to  any  given  value  of  v  in  the  same  ratio  ;  or  a,  as  in 
the  case  of  the  parabolic  curves,  is  merely  a  scale  constant.  It  should 

be  noted  also  that  if  a  is  positive,  the  values  of  p  and  v  are  always  of 
the  same  sign,  that  is,  that  the  curve  lies  wholly  in  the  first  and  third 

quadrants  ;  while  if  a  is  negative,  the  curve  lies  in  the  second  and 
fourth  quadrants,  p  and  v  being  then  of  opposite  sign. 

To  find  the  Equation  of  a  given  Hyperbolic  Curve.  —  In  order  to  do 
this  we  proceed  exactly  as  in  the  case  of  the  parabolic  curves,  plotting 

*  See  next  paragraph. 
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the  logarithms  of  p  and  v  (or  plotting  p  and  v  on  logarithmic  paper), 
and  so  obtaining  a  straight  line.     Thus  if 

pv"  =  a 

)g  a •  n .  log  v  +  log  a 

This  is  the  equation  of 
a  straight  line  of  slope 

equal  to  —n.  It  should 
be  particularly  noticed 
that  the  straight  line 
obtained  is  of  negative 

slope,  but  the  value  of  n 

is  positive,  being  numeri- 
cally equal  to  the  slope 

of  the  logarithmic  straight 
line,  but  of  opposite  sign 
to  it. 

It  should  be  noticed 
that  the  scales  to  which 

p  and  v  are  measured 
affect  the  value  of  the 

constant  a  only,  and  do 

not  change  that  of  n. 

Hence  it  is  quite  suffi- 
cient to  read  off  the 

values  of  p  and  v  from 
an  indicator  diagram  in 
actual  inches,  or  any 
other  convenient  units, 

without  converting  the  readings  into  the  respective  actual  values  in 
pressure  and  volume  units. 

EXAMPLE. — The  following  values  of  p  and  v  were  measured  on  the  com- 
pression curve  of  a  gas-engine  indicator  diagram.  It  is  required  to  find  the 

value  of  n  for  the  compression  process. 
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39-7 In  this  case,  since  the  values  of  p  and  v  both  fall  within  the  range  represented 
by  one  logarithmic  characteristic,  they  may  be  conveniently  plotted  directly 
on  logarithmic  paper.  This  has  been  done  in  Fig.  35,  so  obtaining  the 
straight  line  shown. 

Then  n  =  —slope  =  — 



CHAPTER   VI 

y  =  a  .  e**. — THE    EXPONENTIAL    FAMILY 

y  =  Cl  .  log/>#. — THE    LOGARITHMIC    FAMILY 

HITHERTO,  in  all  the  equations  with  which  we  have  been  concerned,  x, 

the  independent  variable,  has  appeared  raised  to  some  constant  power 
or  powers.  We  now  pass  on  to  consider  the  type  of  equation  in  which 
x  appears  as  the  exponent  or  index  of  the  power  to  which  some  constant 

quantity  is  raised,  the  corresponding  curves  being  hence  called  the 

exponential  curves.  The  general  equation  of  the  family  is  given  by 

y  =  a  .  ebx 
t 

where  a  and  6  are  constants,  and  e  the  base  of  the  Napierian  system 

of  logarithms.  To  this  equation  might  be  added  a  constant  term,  c, 
the  effect  of  which,  of  course,  would  be,  as  in  previous  cases,  to  raise 

the  curve  vertically  through  a  distance  c.  This  equation  may  be 
written  in  another  form,  viz. — 

log«  y  =  log« a  +  bx 
or  bx  =  logey  -  log,  a 

x  =  I  lo&  !' 

Another  series  of  curves  known  as  the  logarithmic  family  are 
derived  from  the  general  equation 

y  =  a  .  loga  bx. 

This  last  equation,  however,  is  of  identically  the  same  form  as  the 

former,  with  the  variables  x  and  y  interchanged.  Hence  it  is  obvious 
that  the  logarithmic  curves  are  of  the  same  form  as  the  exponential 
curves,  with  the  axes  interchanged. 

The  Constant  a. — Considering  now  the  general  equation  y  =  a .  ef", 

if  we  put  x  =  0,  ebx  is  equal  to  unity,  whatever  finite  value  may  be 
assigned  to  b.  Hence,  when  x  =  0,  y  =  a,  or  a  is  the  intercept  of  the 
curve  on  the  axis  of  Y.  Again,  for  any  other  value  of  x,  y  varies 
directly  as  a.  Hence  a  is  again  a  vertical  scale  constant,  affecting  the 
scale  to  which  y  is  plotted,  but  in  no  other  way  altering  the  form  of 
the  curve. 

55 
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The  Constant  6. — For  any  given  value  of  x,  ebx  becomes  greater  as 
I  becomes  greater.  Hence,  the  greater  the  value  assigned  to  b,  the 

steeper  is  the  curve.  That  is,  the  greater  the  value  of  b,  the  nearer  is 
the  curve  to  the  axis  of  Y  at  any  given  height  above  the  axis  of  X. 

Again,  if  b  is  positive,  ebx  is  greater  than  unity  for  all  positive  values 
of  x,  but  is  less  than  unity  for  all  negative  values  of  x,  and  is  always 
positive.  Hence  the  curve  lies  wholly  above  the  axis  of  X,  that  is,  in 

the  first  and  second  quadrants.  (If  a  were  negative,  the  curve  would 

lie  wholly  below  the  axis  of  x.)  Again,  putting  y  =  0,  we  have  ebx  =  0, 
or  x  =  —  oo  .  That  is,  the  curve  is  asymptotic  to  the  negative  direction 
of  the  axis  of  X.  Hence  we  see  that  the  curve  consists  of  a  single 

branch,  asymptotic  to  the  negative  direction  of  the  axis  of  X,  rising 

steadily,  until  when  x  =  0,  y  =  a,  and  thence  continuing  to  rise  evenly 
until  when  x  =  oo ,  y  =  oo  also. 

Next,  consider  the  equation  when  b  is  negative.  The  most  con- 
venient method  of  doing  this  will  be  to  compare  the  two  curves 

y  =  a  .  e6li  and  y  =  a  .  e~bx*.  For  the  same  value  of  y  in  each  case  we 
have 

a  .  ebli  =  a  .  e~bx* 
where  x1  and  x2  are  the  horizontal  co-ordinates  of  the  respective  points 
on  the  two  curves  for  which  y  has  the  same  value. 

Then  bxl  =  —  bx2 
or  xl  =?  —  x.2 

That  is,  that  at  any  given  height  above  the  axis  of  X,  the  curves  are 
at  the  same  distance  from  the  axis  of  Y,  but  at  opposite  sides  thereof. 

In  other  words,  the  curves  are  symmetrical  with  each  other  about  the 

axis  of  Y.  That  is  to  say,  that  they  are  identical  in  form,  but  the  one 
is  completely  reversed  with  respect  to  the  other.  Hence  the  curve 

y  =  ae'bz  will  be  asymptotic  to  the  positive  direction  of  the  axis  of  X, 
and  will  then  steadily  rise  as  x  diminishes,  intersecting  the  axis  of  Y 

when  y  =  a,  and  giving  a  value  y  =  oo  when  x  =  —  GO  . 
It  is  sometimes  convenient  to  write  the  equation  in  a  somewhat 

different  form.  We  may  put  eb  equal  to  f3,  where  /  and  g  are  any 
constants.  Then  the  equation 

y  =  a  .  ebx 
beco

mes 
 

y  =  a  .  f'JX  . 
We  are  now  in  a  position  to  plot  a  few  examples  of  curves  belonging 

to  this  family.  We  will  assume  that  a  =  I  in  each  case.  Remembering 

that  loge  10  =  2-303,  that  is,  that  e2303  =  10,  we  will  for  convenience 

take  the  values  of  b  to  be  successively  2-303,  4*606,  and  -2-303,  thus 
obtaining  the  equations — 

y  =  e2303*     or  y  =  10* 

y  =  e4eotx  or  y  =  102*         i.e.  y  =  100' 

and  y  =  e-230a*         or  y  =  10~*        i.e.  y  = 
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The  easiest  way  of  obtaining  our  series  of  points  on  the  curves  is  to 
assume  values  for  y,  and  then  determine  the  corresponding  values  of  x 
for  the  three  curves 

spectively.     The  figures  so  obtained  are  tabulated  below. 

0-2         0-4 06 
0-8 1-0 3-0 
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6-0 
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-0-301 -0-477 -0-602 -0699 -0-778 

hese  curves  are  plotted  in  Fig.  36,  being  represented  respectively  by 

continuous  line,  a  dotted  line,  and  a  dot-and-dash  line.    It  is  readily 

08)(-07    -0«    -0-5    -0-*   -0-3    -0-2    HM        0        01       02      03      0-4     OS      06 

Fig.  36. 

sn  that  these  curves  are  of  the  character  already  described,  and  that 
ic  two  curves 

y  =  e230ai  and  y  =  e'2303* 

*  For  purposes  of  plotting,  the  logarithms  must  be  obtained  wholly  of  one 
sign,  not  with  a  negative  characteristic  and  a  positive  mantissa,  as  is  usual  for 

purposes  of  calculation.  Thus — 

log  0-2  =  1-301  =  -1-000  +  0-301  =  -0-G99 
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are  identical  in  form,  but  reversed  in  position.     Since  the  last  curve, 
that  in  which  6  is  negative,  is  of  considerable  importance,  as  will  be 

seen  in  the  next  chapter,  the 

positive  portion  has  been  re- 
plotted  to  a  larger  scale  of  y 
in  Fig.  3  6  A. 

The  Curves  as  a  Table  of 

Powers.  —  It  is  readily  seen 
that  a  series  of  curves  of  this 

type  furnishes  a  graphical 
table  of  powers  and  roots  of 
numbers.  For  example,  if,  in 
Fig.  36,  a  vertical  straight 
line  PQR  be  drawn,  intersect- 

ing the  curve  y  =  102*  at  the 
point  P,  the  curve  y  =  10*  at 
Q,  and  the  axis  of  X  at  B, 
then 
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Fig.  36A. 
or  QR  = 

Similarly,  the  curves  y  =  10* 
and  y  =  10~*  give  a  table  of  reciprocals.     If  the  line  QR  intersects 
the  curve  y  =  10~*  in  S,  then 

1 

SR  = 
Hence  also 

If  a  fourth  curve,  y  =  103*,  were  drawn,  intersecting  the  line  PR  in  T, 
then  we  should  have  — 

TR  =  QR3  =  PR*        or  PR  =  TR* 

A  small  portion  of  this  curve  is  indicated  in  the  figure. 

To  find  the  Equation  for  a  Given  Curve.  —  As  in  the  case  of  the 
parabolic  and  hyperbolic  families,  the  curve  must  be  reduced  to  an 
equivalent  straight  line  before  the  values  of  the  constants  a  and  b  can 
be  determined.  The  logarithmic  form  of  the  equation 

y  =  ae?" 
is  log  y  =  log  a  +  bx  log  e 

=  log  a  -f  0-434&X. 

Hence,  if  the  values  of  x  be  plotted  with  those  of  log  y,  a  straight 
line  will  result.  It  must  be  carefully  noted  that  the  logarithms  of  y 

only  are  taken.  Then  the  slope  of  this  line  is  0'434&,  and  the 
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itercept  on  the  axis  of  log  Y  is  log  a.     If  the  equation  is  required 
the  form 

y  =  a  .  1O* 
len  the  slope  of  the  line  is  g. 

The  figures  given  below  lie  on  a  curve  of  this  form,  as  is  seen  in 

j.  37,  where  they  are  plotted.     The  values  of  log  y  are  found  as 
itered  in  the  third  line  of  the  table. 
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Fig.  37.  Fig.  38. 

Fig.  38  shows  the  straight  line  obtained  by  plotting  x  with  log  y. 

Then,  log  a  =  the  intercept  on  the  axis  of  log  Y  =  0-114 
Therefore,         a  =  1*3 

Also,  if  we  wish  to  obtain  the  equation  in  the  form 

y  =  a  .  10^ 
Then, 

0-451 
...    r          0-715  -  0-264 g  =  the  slope  of  the  line  =      .      ^ — 
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Therefore  the  equation  is — 

y  =  1-3  X 

or  y  =  1-3  x  (e2-303)1'5* 

=  l-3e346* 
"  The  Use  of  Semi-Logarithmic  Paper. — In  finding  the  equations  of 

curves  belonging  to  the  parabolic  and  hyperbolic  families,  in  which 
the  logarithms  of  both  the  co-ordinates  had  to  be  plotted  with  each 
other,  we  saw  that  the  labour  could  be  minimized  by  using  paper 

already  ruled  logarithmically  in  both  directions.  Similarly,  in  the 

present  case,  we  may  minimize  the  labour  by  using  paper  ruled  in 
the  direction  of  X  into  equal  parts,  and  logarithmically  in  the 
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direction  of  Y  only.  This  is  known  as  "Semi-Logarithmic"  paper. 
Since  the  X  scale  is  one  of  equal  parts,  the  values  of  x  may  be  plotted 

to  any  convenient  scale  on  it,  as  when  using  ordinary  squared  paper, 
but  the  values  of  y  must  be  plotted  to  the  scale  printed  on  the  paper, 

or  multiples  of  it,  by  powers  of  10,  as  in  the  case  of  logarithmic 
paper.  The  values  of  x  and  y  for  the  curve  given  in  the  last 

paragraph  are  plotted  on  semi-logarithmic  paper  in  Fig.  39.  It  is 
seen  that  a  straight  line  results,  and  the  value  of  a  is  found  at  once 

by  the  intercept  on  the  axis  of  Y,  being  equal  to  1 -3  as  before.  The 
measurement  of  the  slope  offers  some  slight  degree  of  difficulty.  If 
the  scale  of  X  is  chosen  such  that  the  scales  of  x  and  of  log  y  are 
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equal — that  is,  if  the  length  of  one  sheet  of  the  paper  (which  is  square) 
in  the  X  direction  is  taken  equal  to  unity  (i.e.  to  log  10) — the  slope 
may  be  measured,  as  in  the  case  of  logarithmic  paper,  by  measuring  the 
vertical  and  horizontal  distances  to  any,  the  same,  scale  of  equal  parts, 
[f,  however,  any  other  scale  is  taken  for  a;,  the  slope  obtained  by 
leasuring  the  vertical  and  horizontal  dimensions  to  the  same  scale 

equal  parts  must  be  divided  by  the  scale  value  of  the  length  of  one 
sheet  of  paper.  Thus,  in  Fig.  39,  the  scale  value  of  the  X  axis  on 

sne  sheet  is  0'5.  Therefore  measuring  PM  and  QM  to  any  scale  of 
jual  parts  we  have — 

PM  4-80 

~  RM  x  0-5  ~  6-41  x  0-5  ~ 

fhich  gives  the  same  equation  for  the  curve  as  was  derived  by  the 
other  method  in  the  last  paragraph. 

The  Logarithmic  Curves. — At  the  beginning  of  the  chapter  we 
sferred  to  the  logarithmic  family  of  curves,  given  by  the  general 
luation 

y  =  a  .  log  bx, 

id  showed  that  they  were  of  precisely  the  same  nature  as  the 
cponential  curves,  with  the  axes  interchanged  ;  that  is,  the  curves 

be  asymptotic  to  the  negative  direction  of  the  axis  of  Y,  and  will 
ise  steadily  as  x  increases,  being  contained  wholly  in  the  fourth  and 

rst  quadrants  (a  being  positive),  intersecting  the  axis  of  X  at  the 

nnt   x  =  f ,  y  =  0,  whatever  the  value  of  a.     This  may  be  seen  by 

jutting  y  =  0  in  the  equation  above,  when  we  have — 

a  .  log  bx  =  0 

log  bx  =  0 
6*=  1 

1 

X=b 

is  an  example  of  this  family  we  will  plot  the  curve 

y  =  3  Iog10  2x 

?he  necessary  points  are  calculated  in  the  table  below,  and  the  curve 
plotted  in  Fig.  40. 

0-2 0-4 05 06 08 1-0 
20 

30 4-0 50 

2x     .     .     . 0-4 0-8 1-0 1-2 
1-6 2-0 

4-0 

6-0 

8-0 

10-0 

Log  2z  .     . 
-0-398 -0-097 o-ooo 

+0-079 

0-204 0-301 0-602 0-778 
0-908 1-000 

y  =  3  log  2z 
-1-19 

-0-29 o-oo 

+0-24 
061 090 

1-91 

233 

2-71 

300 

To  find  the  equation  of  a  .curve  of  this  type  it  is  obvious  that  y 
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must  be  plotted  with  log  x,  or  x  and  y  must  be  plotted   on    semi- 
logarithmic  paper,  the  logarithmic  axis  being  horizontal.     A  straight 

Fig.  40. 

line  will  then  result,  whose  slope  is  a,  and  whose  intercept  on  the  axis 
of  Y  is  equal  to  a .  log  6.  This  is  seen  by  writing  the  equation  in the  form 

y  =  a .  log  x  +  a  .  log  6. 



CHAPTER  VII 

THE   SINE  CURVE 

IE  simple  fundamental  Sine  Curve,  given  by  the  equation 

y  =  sin  x 
familiar  to  all  students  of  elementary  trigonometry  and  mechanics, 

ice  the  trigonometrical  functions  of  (360°  +  0)  are  in  all  respects 
lentical  with  those  of  0,  the  curve,  in  common  with  all  trigonometrical 
irves,  repeats   itself    exactly   while   the   angle   varies   through   the 

jounts  represented  by  successive  complete  revolutions  of  the  gene- 
iting  line.     A  curve  of  this  type  which  exactly  repeats  itself  during 

iccessive  equal  intervals,  or  cycles,  is  termed  a  " cyclic  curve"     In 

i'ig.  41  is  plotted  one  cycle  of  the  simple  sine  curve  whose  equation  is 
given  above,  x  being  measured,  for  simplicity,  in  degrees.     The  figures 
for  plotting  this  curve  are  given  below,  being  obtained  directly  from 
the  tables. 

X  .      .      . 0 

20° 

403 

60° 80° 

90° 

100°          120° 

140° 
160° 

y  =  sin  z o-ooo 0-342 
0-643 0-866 0-985 1-000 

0-985        0-866 

0-643 
0-342 

»  .    .    . 

180° 
200° 

220° 

240° 

260° 

2703 

280°         300° 

320° 

340° 

360° 

y  =  sin  x 
o-ooo -0-342 -0-643 -0-866 -0-985 -i-ooo 

-0-985     -0-866 

-0-643 -0-342 o-ooo 

-10 

Y 

/ 
\ 

\ 

\ 

\ 

\ 

Fig.  41. 

The  Graphical  Representation  of  a  Vibration.—  The  simplest  form 

of  a  vibratory  motion  is  that  known  as  a  "simple  harmonic  motion." 63 
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This  may  be  defined  as  the  motion  of  a  particle  Q  along  the  diameter 
AB  of  a  circle,  such  that  Q  always  coincides  with  the  projection  upon 
AB  of  another  particle,  P  (which  may  be  real  or  imaginary),  which 

moves  with  uniform  angular  motion  round 
the  circumference  of  the  circle  whose 
diameter  is  AB.  (See  Fig.  42.) 

After  any  given  time,  t,  from  zero 
position,  which  we  will  assume  to  be 
when  P  and  Q  both  coincide  with  B,  let 
the  angle  BOP  be  equal  to  0.  Then, 
since  P  is  assumed  to  be  moving  with 
uniform  angular  velocity,  0  =  k .  t ,  where 
Jc  is  some  constant.  Let  the  correspond- 

ing displacement  of  Q  from  its  mid- 
position,  O,  be  *,  and  the  radius  of  the  circle,  that  is  the  greatest 
displacement  of  Q  from  its  mid-position,  be  r.  This  maximum  dis- 

placement from  mid-position,  r,  is  known  as  the  amplitude  of  the 
vibration.  Then 

m 

-  =  cos  0  =  cos  Jet 
r 

or  s  =  r .  cos  Jet  =  r .  sin  (90°  —  kfy 

Hence,  if  the  displacement  of  Q  from  its  mid-position,  s,  be  plotted 
with  t,  the  time  from  some  fixed  position  of  Q,  usually  taken  as  either 
the  extreme  end  or  as  the  middle  of  the  swing,  the  resulting  curve  will 
be  a  sine  curve.  That  is,  the  sine  curve  represents  a  simple  vibration. 
It  is  from  this  standpoint  in  particular  that  we  shall  regard  it. 

The  General  Equation  of  the  Sine  Curves. — The  equation  obtained 
above  to  represent  a  vibration  is  not  in  the  simple  form  y  =  sin  x,  but 

involves  three  constants,  represented  in  that  case  by  r,  90°,  and  —  k. 
Introducing  three  constants  to  represent  these,  we  obtain  the  general 
equation  of  the  family  of  sine  curves  in  the  form 

y  =  a  .  sin  (bx  -f-  c). 

The  graphical  meaning  of  these  three  constants,  a,  b,  and  c,  must  now 
be  deduced.  At  present,  for  the  sake  of  simplicity,  we  shall  assume 
that  x  is  measured  in  degrees. 

The  Constant  a. — In  order  to  determine  the  meaning  of  the 
constant  a,  we  will  assign  to  the  constants  b  and  c  the  values  1  and  0 
respectively,  so  obtaining  the  equation 

y  =  a .  sin  x. 

Now,  as  in  former  cases,  this  constant  might  be  called  simply  a  vertical 
scale  constant,  but  in  this  case  it  will  be  well  to  examine  this  state- 

ment rather  more  fully.  The  greatest  possible  value  of  sin  x  is  unity. 
Hence  the  greatest  possible  value  of  y  is  a.  That  is,  in  the  case  of  a 
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bration,  a  is  the   greatest  displacement   from  mid-position,  or  the 
latitude.     Hence  we  may  call  a  the  amplitude  constant.    We  will  now 

to   plot  the  curves  represented  by  equations  for  which  the 
of  a  are  respectively  1  and  2,  that  is,  the  two  curves  given  by 

e  equations 

y  =  sin  x 
y  =  2  sin  x 

resented   in   Fig.    43   by   the   continuous   and   the   broken    lines 
ipectively.     Since 

sin  x  =  sin  (180°  -  »)  =  -sin  (180°  +  «)  =  -sin  (360°  -  x) 
will  be  only  necessary  to  tabulate  the  values  of  sin  x  for  values  of  x 

tween  0  and  90°,  as  the  values  then  repeat  themselves  numerically 
shown  in  the  table  of  values  of  sin  x  on  p.  63. 
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Fig.  43. 

It  is  seen  that  a  is  the  greatest  distance  of  the  curve  above  or  below 

the  axis  of  X,  or  the  amplitude  of  the  vibration,  as  already  stated. 

The  Constant  b. — Proceeding  now  to  investigate  the  meaning  of 
the  constant  ft,  we  will  assume  the  amplitude  a  to  be  unity,  and  the 
constant  c  zero.  Then  we  obtain  the  equation 

y  =  sin  bx 
This  curve  will  trace  out  one  complete  cycle  while  bx  changes  through 

an  amount  corresponding  to  one  revolution,  or  360°.    Hence,  the  cycle 
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length  of  the  curve — that  is,  the  change  in  the  value  of  x  during  which 

the  curve  makes  one  complete  cycle — is  r  of  the  cycle  length  of  the 

fundamental  curve,  y  =  sin  x.  Another  method  of  expressing  this  is 
to  say  that  the  curve  makes  b  complete  cycles,  while  x  changes  by  an 

amount  corresponding  to  one  revolution,  360°,  or  2?r  radians.  Ex- 
pressing this  in  terms  of  a  vibration,  we  should  state  that  the  period 

(or  in  the  case  of  a  wave  motion,  the  wave  lengtJi)  of  the  vibration 

is  yth  that  of  the  primary  or  fundamental  vibration  y  =  sin  x,  or  that, 

calling  the  frequency  of  the  fundamental  vibration  unity,  the  frequency 

of  the  vibration  given  by  y  =  sin  bx  is  equal  to  the  value  of  the 
constant  6.  The  frequency  of  a  vibration  is  defined  to  be  the  number 
of  complete  swings  (to  and  fro)  made  in  any  fixed  interval  of  time. 
Usually  this  fixed  interval  of  time  is  taken  to  be  one  second  or  one 

minute,  but  here  we  have  assumed  it  to  be  the  period  of  one  complete 

cycle  of  the  fundamental  vibration.  (This  would  be  equal  to  2?r 
seconds,  the  second  being  taken  as  the  unit  of  time,  since  the  time 

units  must  be  supposed  to  be  angles  expressed  in  radians  for  the 

purpose  of  determining  the  values  of  sin  x.)  Or  we  might  state  the 
point  in  a  slightly  different  way  by  saying  that  b  was  the  number  of 

complete  vibrations  of  the  curve  y  =  sin  bx  in  any  given  time  to  the 
number  of  complete  vibrations  of  the  curve  y  =  sin  x  in  the  same 
time. 

To  illustrate  this  frequency  of  the  vibrations  we  will  plot  the  two 
curves 

y  =  sin  x 
and  y  =  sin  2x 

represented  respectively  by  the  continuous  line  and  the  broken  line  in 

Fig.  44.  The  necessary  series  of  values  of  x  and  y  for  the  two  curves 

are  calculated  in  the  table  below  for  a  range  of  x  corresponding  to  one 
complete  cycle  of  the  fundamental  curve. 

as. 
yi  =  sin  x. 

2x. 
y*  =  sin  2z. 

X. 

yi  =  sin  x. 

2z. 

3/2  =  sin  2z. 

0 o-ooo 0 
o-ooo 

180° 

o-ooo 

360° 

o-ooo 

20° 

0342 

40° 

0-643 

200° 

-0-342 

400° 

+0-643 

40° 

0-643 

80° 

0-985 

220° 

-0-643 

440° 

0-985 

45° 

— 

90° 

1-000 

225° 

— 

450° 

1-000 

60° 

0-866 

120° 

0866 

240° 

-0-866 

480° 

0866 

80° 

0-985 

160° 

0-342 

260° 

-0-985 

520° 

0-342 

90° 

1-000 

180° 

o-ooo 

270° 

-1000 

540° 

0000 

100° 

0-985 

200° 

-0-342 

280° 

-0-985 

560° 

-0342 

120° 

0-866 

240° 

-0-866 

300° 

-0-866 

600° 

-0-866 

135° 

— 

270° 

-1-000 

315° 

— 

630° 

-1-000 

140° 

0-643 

280° 

-0-985 

320° 

-0-643 

640° 

-0-985 

160° 

0-342 

320° 

-0-643 

340° 

-0>-342 

680° 

-0-643 

360° 

o-ooo 

720° 

0000 
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Here  we  see  that  the  curve  y  =  sin  2x  makes  two  complete  cycles, 
while  the  fundamental  curve  y  =  sin  x  makes  one,  that  is,  that  the 
frequency  of  the  former  is  2,  that  of  the  latter  being  unity ;  also,  the 

cycle-length,  180°,  of  the  former  curve  is  exactly  one-half  that  of 
the  latter,  360°. 
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Fig.  44. 

The  Constant  c. — We  now  pass  to  the  consideration  of  the 
constant  c.  Assign  to  each  of  the  constants  a  and  &  the  value  unity. 

Then  the  equation  becomes — 
y  =  sin  (x  -{-  c) 

The  simplest  way  of  examining  this  equation  to  determine  the  effect 
of  the  constant  c  will  be  to  proceed  directly  to  plot  three  curves 

having  c  respectively  equal  to  0,  +30°,  and  —45°,  that  is,  whose 
equations  are — 

y  =  sin  x 
y  =  sin  (a?  +  30°) 

and  y  =  sin  (a;  —  45°) 
The  necessary  figures  are  tabulated  on  p.  68. 
These  curves  are  plotted  in  Fig.  45,  being  represented  respectively 

by  the  thick  continuous  line,  the  thinner  continuous  line,  and  the 
broken  line. 

We  see  at  once  that  the  curves  are  identical  in  form,  amplitude, 

and  frequency.  They  are,  however,  moved  horizontally  relatively  to 

each  other.  If  any  horizontal  line,  ABC,  is  drawn  cutting  the  corre- 

sponding portions  of  the  curves  in  A  (on  y  =  sin  (a;  +  30°)),  B  (on 
y  =  sin  a),  and  C  (on  y  =  sin  (x  —  45°)),  it  will  be  seen  that  the  distance 
AB  is  equal  to  30°,  and  the  distance  BC  is  equal  to  45°.  Hence  c 
gives  the  relative  horizontal  displacement  of  the  curve  with  respect  to 
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z. Sinz. 

1+30°. 

Sin 

(»  +  30°). 
z  -  45°. 

Sin 

(X  -  45°). 

X. 

Sin  z. 

z+30Q. 

Sin 

(z  +  30°). 
Z-45°. 

Sin 

(*-45°). 

0 o-oo 

30° 

0-50 

-45° 

-0-71 

180° 

000 

210° 

-0-50 

135° 

071 

20° 

0-34 

50° 

077 
-25° 

-0-42 

200° 

-034 

230° 

-0-77 

155° 

0-42 

40° 

0-64 

70° 

0-94 

-5° 

-0-09 

220°  -0-64 

250° 

-0-94 

175° 

0-09 

45° 

— — — 0 000 
225s      — 

— — 

180° 

o-oo 

60° 

0-87 

90° 

1-00 

+15° 

+0-26 240°  -0-87 270°  i  -1-00 

195° 

-0-26 

80° 

0-98 

110° 

0-94 

35° 

0-57 

260     -0-98 

290° 

-0-94 

215° 

-0-57 

90°  i  100 
— — — — 

270° 

-100 

— — — — 

100-  :  0-98 

130° 

0-77 

55° 

0-82 

280? 

-0-98 

310° 

-0-77 

235° 

-0-82 

120°  0-87 

150° 

0-50 

75° 

0-97 

300C 

-0-87 

330° 

-0-50 

255°   -0-97 

135° 
— — — 

90° 

1-00 

315° 

— — — 270°    -1-00 

140° 

0-64 

170° 

017 

95° 

0-99 

320° 

-064 

350° 

-0-17 

275°  ,  -0-99 

150° 
— 

180° 

o-oo 
— — 

330° 
360° 

o-oo 

—  ]     — 
160°  0  34 

190° 

-017 

115° 

0-91 

340°  -034 

370° 

+0-17 

295°   -0-91 

360° 

o-oo 

390° 

0-50 

315° 

-0-71 

the  fundamental  curve  y  =  sin  x.     It  should  be  noticed  that  when  c  is 

positive,  the  displacement  is  to  the  left,  and  when  c  is  negative,  the 

Fig.  45. 

displacement  is  to  the  right.  This  corresponds  to  a  difference  of  "  phase  " 
between  two  or  more  vibrations.  Hence  c  is  equal  to  the  phase 

difference.  The  meaning  of  this  phase  difference  may  be  readily  seen 
by  reference  to  the  conception  of  a  simple  harmonic  motion  as  being 
derived  from  the  projection  upon  a  diameter  of  a  particle  which  is 

itself  moving  uniformly  in  a  circle.  Let  there  be  two  particles,  P  and 
R,  moving  uniformly  round  the  circumference  of  a  circle  (Fig.  46), 

their  projections  Q  and  S  on  the  diameter  then  moving  with  simple 
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Fig.  46. 

larmonic  motion  along  the  diameter.  Then  the  phase  difference 

between  the  vibrations  of  Q  and  S  is  represented  by  the  angle  FOR. 
[f  P  and  R  are  moving  in  the  direction  of  the  arrow,  so  that  R  is 

ihead  of  P,  the  phase  of  S  will  be  in  advance  of  that  of  Q.  Now,  in 

Fig.  45,  the  thin  line  corresponds  to  a  positive  value  for  c,  the  phase 
constant.  Does  this  represent  a  phase  in 
advance  of  the  fundamental  vibration,  or 

ehind  it  ?  In  Fig.  46,  S  is  in  advance 

of  Q,  because  it  passes  any  given  point  in 

its  line  of  motion  before  Q.  In  Fig.  45, 

the  displacement  is  represented  verti- 
cally, and  it  is  seen  that  the  curve 

y  =  sin  (a;  -f  30°)  reaches  any  given  point 
its  swing — for  example,  the  point  of 

ixiinurn  displacement — earlier  than  the 
mdamental  curve  y  =  sin  x  reaches  the 
ime  point.      That  is,  the  former  curve 

spresents  a  vibration  whose  phase  is  in  advance  of  the  latter,  although 

the  curve  seems  apparently  to  be  lagging  behind.  Hence  a  positive 
ralue  of  c  gives  a  positive  phase  difference ;  that  is,  of  two  curves,  that 
for  which  c  is  greater  represents  a  vibration  in  advance  of  that  for 
which  c  is  less. 

It  should  be  noted  that  strictly  we  can  only  speak  of  a  phase  differ- 
ence between  two  vibrations  of  the  same  frequency.  Otherwise  the 

phase  difference  will  be  constantly  changing.  For,  referring  again  to 

?ig.  46,  if  P  and  R  are  not  moving  with  the  same  angular  velocity,  in 

which  case  Q  and  S  will  not  have  the  same  frequency,  the  angle  POR, 
which  measures  the  phase  difference,  varies  continuously.  In  this  case 

re  can  only  speak  of  the  phase  difference  at  a  given  instant,  and  c 
measures  its  initial  value,  that  is  when  x  =  0. 

Hence  we  see,  in  conclusion,  that  the  three  fundamental  properties 

a  vibration — namely,  the  amplitude,  frequency,  and  phase — are 
represented  exactly  by  the  three  constants  a,  b,  and  c,  respectively,  in 
the  general  equation  of  the  sine  curve 

y  =  a  .  sin  (bx  +  c) 

To  determine  the  Equation  for  a  Given  Sine  Curve. — Any  sine 
curve  being  plotted,  the  constants  a,  b,  and  c  in  the  general  equation 
may  be  determined  by  inspection.  The  amplitude  of  the  curve  is  the 

ixirnum  displacement  from  mid-position,  i.e.  is  one-half  the  distance 
etween  the  extreme  ends  of  the  swing.  Hence,  assuming  that  the 

lean  line,  or  line  of  no  displacement,  which  we  have  hitherto  assumed 
to  be  the  axis  of  X,  is  not  given,  its  position  must  first  be  determined. 

(If  this  line  were  not  the  axis  of  X,  the  equation  would  be  increased 

by  a  constant  term,  d,  as  is  'easily  seen  from  the  effect  of  such  a 
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constant  term  in  the  equations  of  the  other  families  of  curves  already 
considered.  The  general  equation  would  then  be  of  the  form 

y  =  a  .  sin  (bx  +  c)  -f-  d 
Draw  two  lines,  AB  and  CD,  touching  the  curve  at  the  points  of 
extreme  displacement.  Then  the  amplitude  is  equal  to  half  the  distance 
between  them,  i.e.  the  distance  between  either  of  the  lines  AB  or  CD 

and  the  mean  line  EF.  For  the  curve  shown  in  Fig.  47,  AB  is  the 

horizontal  line  for  which  y  =  7 '2,  and  CD  is  the  line  y  =  —  3 '4.  Hence 
the  amplitude — 

7-2 -(-3-4)      10-6 
a=-    -g-     -=-^-  =  5-3 

and  d  the  height  of  the  mean  line,  or  line  of  no  displacement,  above 

the  axis  of  X  is  (7'2  -  5-3)  =  1-9. 
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Fig.  47. 

Next  to  determine  the  frequency  constant,  b.  It  has  been  shown 

that  b  expresses  the  number  of  complete  swings  in  one  cycle-length  of 
the  fundamental  sine  curve  y  =  sin  x,  b  being  unity  if  one  complete 

swing  corresponds  to  a  change  in  the  value  of  x  of  360°,  or  of  2ir,  that 
is,  if  the  time  of  one  complete  vibration  is  2?r  seconds.*  Now,  the 

length  of  one  complete  swing  of  the  curve  in  Fig.  47  is  equal  to  2*6. 
Therefore  we  have  — 

.       27r      6-28 

*  We  have  hitherto  spoken  of  x  as  being  measured  in  degrees,  for  the  sake  of 
simplicity,  c  being  therefore  measured  in  degrees  also.  But  in  dealing  with  vibra- 

tions the  natural  unit  of  angular  measurement,  the  radian,  must  be  taken,  and 
therefore  both  x  and  c  must  be  measured  in  radians. 
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Lastly,  c  expresses  the  phase  of  the  curve,  that  is  the  angle  the 

generating  point  has  moved  through  from  the  dead  centre  position 

rhen  x  =  0.     Putting  x  =  0  in  the  equation  y  =  a  ,  sin  (bx  -f  c)  4-  </, 
we  have — 

y  —  d  =  a ,  sin  c 

y-d 
sin  c  = a 

For  the  curve  in  Fig.  47,  when  x  =  0,  y  =  5-9, 

len 5-9  -  1-9      4-0 r>-:5 
=        =  °'755 

Therefore  c  =  49°  =  0-854  radians 

Hence  the  complete  equation  of  the  curve  is — 

y  =  5-3  sin  (2-41<c  +  0-854)  -f  1-9 

Compound  Sine  Curves. — Two  or  more  simple  harmonic  motions 
may  be  simultaneously  given  to  the  same  particle.  If  these  are  not  in 
the  same  straight  line,  a  great  variety  of  curves  may  be  traced  out 
by  the  particle  under  their  combined  influence.  These  are  drawn 

lechanically  by  the  various  forms  of  harmonigraph,  but  are  of  small 
practical  importance.  The  simplest  case  is  that  in  which  a  particle  is 
given  two  simple  harmonic  motions  of  the  same  amplitude  and  frequency 

in  directions  at  right  angles  to  each  other,  differing  in  phase  by  a 

right  angle,  that  is,  one  is  at  its  point  of  maximum  displacement  when 

the  other  is  in  mid-position.  It  is  readily  seen  that  the  resulting 
motion  of  the  particle  will  be  circular,  of  radius  equal  to  the  common 

amplitude,  making  one  revolution  during  the  time  taken  for  each  com- 
plete swing  of  either  simple  vibration.  Such  motions,  however,  do  not 

partake  of  the  cyclic  nature,  and  are  not  really  vibrations.  We  con- 
fine ourselves,  therefore,  to  the  case  in  which  the  superimposed  simple 

harmonic  motions  take  place  in  the  same  straight  line,  giving  rise  to  a 
cyclic  vibration  of  a  more  complicated  character.  Since  each  simple 

vibration  may  be  represented  by  a  sine  curve,  the  sum  of  the  separate 

simple  motions  will  be  represented  by  the  sum  of  the  corresponding 

sine  curves,  giving  as  the  general  equation 

y  =  a  .  sin  (bx  +  c)  +  / .  sin  (gx  +  A)  +   •  •  • 

curves  derived  from  this  equation  are  known  as  "  compound  sine 

curves."  We  will  proceed  to  plot  an  example  of  the  series,  namely, 
the  curve 

y  =  sin  (2x  +  30°)  +  2  sin  3x 
This  is  composed  of  two  simple  sine  curves,  one  of  which  is  of  double 

the  amplitude  and  1^  times  the  frequency  of  the  other,  the  initial 

difference  of  phase  being  30°.  These  two  constituent  curves  will,  of 
course,  be  represented  by  the  equations 

y,  =  sin  (2*  +  30°) 
y2  ='2  sin  3x 
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While  the  first  of  these  is  tracing  out  two  complete  cycles,  the  second 
traces  out  three,  and  at  the  end  of  this  period  each  will  be  in  identi- 

cally the  same  state  as  it  was  at  the  beginning.  That  is,  after  two 
cycles  of  the  first  curve  and  three  of  the  second,  the  compound  curve 

will  have  completed  one  cycle.  To  put  this  in  another  form,  the  cycle- 

Q£/~i° length  of  the  first  will  be  — ^—  =  180°,  and  that  of  the  second  will  be 
q/J  AO 

 w 

—5—  =  120°.     It  is  obvious  that  the  cycle-length  of  the   compound 

curve  will  be  the  least  common  multiple  of  the  cycle-lengths  of  its 
constituents,  that  is  360°.  Hence  it  will  be  sufficient  to  obtain  the 
values  of  x  and  y  while  x  varies  from  0  to  360°,  and  since  each  quarter- 
cycle  of  the  second  constituent  occupies  only  30°  we  must  take  the 
values  of  x  at  intervals  of  not  less  than  10°.  The  figures  so  obtained 
are  tabulated  below.  Angles  greater  than  360°  are  tabulated  as  the 
equivalent  angle  for  ease  in  working.  Thus  2  x  220°  is  tabulated 
as  360°  +  80°. 

x°. 
»**. (2z  +  30)°. 2/l  =  sin(2a;  +  30). 

3x°. Sin  3x°. 
3/2  =  2  sin  3x. 

y  =  Vi  +  yz- 

0 0 30 0-500 
0 

o-ooo o-ooo 
0-50 

10 
20 50 0-766 30 

0-500 1-000 

1-77 

20 40 
70 

0-940 
60 

0-866 1-732 
267 

30 60 90 1-000 90 
1-000 2-000 

3-00 

40 80 110 0940 120 
0-866 1-732 

2-67 

50 100 130 0-766 150 
0-500 1-000 

1-77 

60 120 150 0-500 180 

o-ooo o-ooo 0-50 

70 140 170 0-174 210 

-0-500 -1-000 
-0-83 

80 160 190 
-0-174 

240 

-0-866 -1-732 

-1-91 

90 180 210 
-0-500 

270 

-1-000 -2-000 

-250 

100 200 230 
-0-766 

300 

-0-866 -1-732 
-2-50 

110 220 250 
-0-940 

330 

-0-500 -1-000 
-1-94 

120 240 270 
-1-000 

360 

o-ooo o-ooo 
-100 

130 260 290 
-0-940 

360  +  30 
+0-500 +1-000 

+0-06 140 280 310 
-0-766 60 

0-866 1-732 
0-97 

150 300 330 
-0-500 90 rooo 

2-000 
1-50 

160 320 350 

-0-174 
120 

0-866 1-732 

156 170 340 360  +  10 +0-174 
150 

0-500 1-000 
1-17 

180 360 30 
0-500 
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o-ooo 

0000 

0-50 
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70 
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1-000 
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0-940 300 

-0-866 -1-732 

-0-79 
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0-766 

330 

-0-500 -1-000 
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o-ooo o-ooo 

+0-50 
250 140 170 

0-174 
720  +  30 
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-0-174 60 

0-866 1-732 
1-56 

270 180 210 -0-500 

90 1-000 2-000 
1-50 
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-0-766 120 

0-866 
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-0-940 150 

0-500 1-000 
0-06 

300 240 270 
-1-000 180 
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-0-940 210 

-0-500 -1-000 

-1-94 
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330 300 330 
-0-500 270 
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-1-91 
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This  curve  is  plotted  in  Fig.  48,  represented  by  the  continuous 
The  two  constituent  curves  are  also  shown  by  the  two  broken 

lines.  Of  course  the  vertical  co-ordinate  of  the  compound  curve  for 
any  given  value  of  x  is  equal  to  the  algebraic  sum  of  the  vertical  co- 

ordinates of  the  constituent  curves  for  the  same  value  of  x.  The 
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curve  is  plotted  over  a  range  of  values  of  x  equal  to  720°,  that  is,  equal 
to  two  cycle-lengths  of  the  compound  curve.  It  is  seen  at  once  that 
the  curve  is  a  cyclic  oscillatory  curve,  but  it  is  of  a  much  more  compli- 

cated character  than  the  simple  sine  curve.  In  one  cycle  it  has  three 

maxima,  one  for  which  y  is  equal  to  3*0,  and  the  other  two  for  which 

y  is  equal  to  about  1'58,  and  three  minima,  for  two  of  which  y  is  equal 
to  about  —  2*55,  and  for  the  third  y  is  equal  to  —  I/O.  There  are 
three  complete  swings  during  each  cycle,  but  in  only  one  of  them  does 

the  vibrating  particle  reach  its  extreme  displacement,  and  then  only 

on  one  side  of  the  zero  position.  The  wave-length  of  each  of  the  three 
inner  swings  measured  on  the  axis  of  X  is  different  from  each  of  the 

others;  thus  AB  =  134°,  BC  =  104°,  and  CD  =  122°.  An  infinite 
variety  of  these  curves  may  be  formed  by  taking  various  values  for 

the  relative  amplitudes,  frequencies,  and  phases,  and  by  introducing 
three  or  more  constituent  curves ;  but  this  example  will  suffice  for  our 

present  purpose.  In  the  examples  on  p.  130  the  student  will  find 
various  other  cases,  all  of  which  he  should  plot  for  himself.  These 

curves  are  of  special  importance  in  electrical  work,  there  representing 

the  variation  in  voltage  of  two-  and  three-phase  alternating  currents. 
The  determination  of  the  equation  of  a  compound  sine  curve 

involves  its  analysis  into  its  constituent  or  component  simple  sine 

curves.  This  may  be  done  by  Fourier's  analysis,  but  as  this  method 
involves  a  considerable  knowledge  of  "  higher  "  mathematics,  it  lies 
outside  the  scope  of  this  book. 

The  Damped  Sine  Curve. — A  most  interesting  curve  is  obtained  by 
combining  a  simple  sine  curve  with  an  exponential  curve,  for  which 
the  coefficient  of  x  is  negative.  Its  general  equation  is  given  by 

y  =  a  .  e~bx  .  sin  (ex  +  d) 

This  is  known  as  the  "  Damped  Sine  Curve."  We  will  proceed  to 
plot  such  a  curve  at  once.  Since  x  appears  not  only  as  the  angle 
whose  sine  is  to  be  determined,  but  also  in  the  exponent  of  e,  it  must, 

of  course,  be  expressed  in  natural  units,  that  is,  in  radians.  In  order 
to  lessen  our  calculations  we  will  assign  to  the  constant  a  the  value 

unity,  and  to  d  the  value  zero.  Then,  putting  6  =  i  and  c  =  3,  we 
obtain  the  equation — 

y  =  e~*x  .  sin  Bx 

'ITT 

The   
cycle-length  

of   the  
fundamental   

sine  
curve  

y  =  sin  
3x  is  -«-, 

hence  by  plotting  the  curve  over  a  range  of  values  of  x  equal  to  2ir 

we  shall  obtain  three  cycle-lengths  of  the  fundamental  curve,  which 
will  be  sufficient  for  our  purpose.  The  necessary  figures  for  plotting 
the  curve  are  obtained  in  the  table  below.  The  column  headed 

"equivalent  angle  "  is  introduced  for  convenience  in  using  the  table 
of  sines,  giving  the  angle  in  the  previous  column  reduced  to  the 
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)rresponding  first  revolution  angle,  and  showing  the  corresponding 
igle  in  the  first  quadrant.     The  values  of  e  are  most  easily  obtained 

1US  - 

=      x  0-434  =  0-145* 9 

lese  values  are  tabulated  in  the  second  column,  their  antilogarithms 

-that  is,  the  values  of  e3  —  in  the  third,  then  the  values  of  e~*  are 
reciprocals  of  these. 

X. Logio«3 
=  0-  145Z. 

«3 

u=r5 
3z  radians. 

3z  X  57-3 degrees. Equivalent angle. 
«  =  sin  3x. 

y  =  u  x  o. 

oT o-ooo 1-000 1-000 
o-o 0 0000 0000 

02 0-029 1-069 0936 0-6 
34 34 

0566 0529 
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1-2 69 69 0934 0817 
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1-8 103 

180-77 
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360-  16 
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— 0000 0000 
2-2 0-318 2-080 0-481 

e>  e> 6'6 378 18 +0309 
+0149 

2-4 0-348 2-228 0-449 
7-2 
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53 0799 0359 

26 0-376 2-377 0-421 
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180-  23 0391 

0-144 
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9-42  (3») 540 180 0000 

o-ooo 

3-2 0-462 2-904 0-344 9-6 551 180  +  11 
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38 0-550 3-548 0-282 
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+0-008 
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13-2 
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4-6 

0-666 4-634 0-216 
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4-8 0-695 4-955 0-203 
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0087 
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929 180  +  29 
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6-437 

0155 
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-0891 -0-138 
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17-4 
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360-15 
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360 0000 0000 

The  curve  is  plotted  in  Fig.  49,  the  broken  lines  showing  the  two 

curves  y  =  e~*x  and  y  =  —  e~^x.  The  following  points  are  at  once 
noticeable : — 

(1)  The  amplitude  of  the  curve  constantly  diminishes,  the  curve 

always  being  contained  between  the  two  curves  y  =  ±  e    ̂,  and  being 
tangential  to  them  near  its  maximum  and  minimum  points. 
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(2)  The  frequency  of  the  curve  is  constant,  that  is,  the  length  of 

each  "  cycle  "  is  the  same  as  that  of  every  other  "  cycle." 
(3)  In  any  portion  of  the  curve,  that  is  between  any  two  consecu- 
tive points  for  which  y  =  0,  the  earlier  portion  before  the  maximum  or 

minimum  point  is  steeper  than  the  latter  portion  after  that  point. 
(4)  The  curve  will  never  coincide  with  the  axis  of  X,  for  the  two 

curves  y  =  ±  e~*x  are  asymptotic  to  that  axis,  and  the  curve  oscillates between  them. 

Hence  we  have  an  infinite  oscillatory  curve  whose  frequency 
remains  constant,  but  whose  amplitude  constantly  diminishes.  This 
curve  represents  a  vibration  which  is  gradually  dying  out,  or  being 

"  damped,"  hence  the  name  "  Damped  Sine  Curve."  In  such  a 

Fig.  49. 

vibration — for  example,  that  of  a  pendulum  which  is  not  receiving  fresh 
impulses  and  whose  support  is  not  perfectly  frictionless — the  time  of 
the  successive  vibrations  is  the  same,  but  the  amplitude,  or  length  of 
swing,  gradually  diminishes  until  the  oscillation  becomes  imperceptibly 
small. 

The  equation  of  a  damped  sine  curve  may  be  readily  obtained,  for 
its  frequency  is  known,  its  initial  phase  is  known,  and  its  amplitude 
constant,  a,  may  be  easily  obtained.  Its  frequency  is  known,  for  the 

"  cycle  "-length  may  be  measured  directly.  Its  initial  phase  is 
known,  for  when  x  =  0,  e"**  =  1,  and  therefore  the  phase  constant, 

d  =  sin"1  -.    The  amplitude  constant  may  be  approximately  determined 

by  drawing  a  smooth  curve  touching  the  damped  sine  curve  near  its 
maximum  points  and  producing  it  to  the  axis  of  Y,  when  its  intercept 
on  that  axis  is  equal  to  a. 



CHAPTER    VIII 

THE    GRAPHICAL  SOLUTION  OF   EQUATIONS 

IE  graphical  representation  of  functions  gives  us  a  ready  method  of 

jiving  any  equation,  even  such  as  cannot  be  solved  by  the  ordinary 

lethods  of  algebra  and  trigonometry.  There  are  two  ways  of  applying 
method,  which  will  be  most  clearly  shown  by  their  application  to 
solution  of  simple  equations. 

First   Method. — Let   the  equation  whose  solution  is  required   be 
luced  to  the  form 

ax  +  6  =  0 

icn,  if  the  corresponding  equation 

y  =  ax  -f-  b 
plotted,  a  straight  line  results.     The  value  of  x  for  which  y  =  0  in 

the  second  equation  will,  of  course,  give  the  solution  of  the  first.   That 

is,  the  solution  of  the  equation  ax  +  6  =  0  is  the  x  co-ordinate  of  the 

point  at  which  the  straight  line  y  =  ax  +  &  cuts  the  axis  of  X. 
As  an  example,  consider  the  equation 

3'la;  -  4-5  =  2'72  -  l'5x 

This  reduces  to 

4-6z  -  7-22  =  0 

Then  put  y  =  4'6o;  -  7'22 

This  represents  the  straight  line  shown 
in  Fig.  50,  whose  intercept  upon  the  axis 

of  Y  is  —7*22,  and  whose  slope  is  4'6. 
This  cuts  the  axis  of  X  at  the  point  for 

which  x  =  1*57,  which  is  therefore  the 
required  solution  of  the  equation,  as  is 

easily  verified  by  the  ordinary  algebraic 
method. 

Second   Method. — The  second  method 

of  applying  the  method  of  curve  plotting 

-2 

Fig.  50. 

to  the  solution  of  equations  is  most  readily  illustrated  by  using  it  to 
obtain  the  solution  of  a  pair  of  simultaneous  simple  equations.  Let 
the  equations  be 

y  =  ax  4-  & 
and  y  =  ex  -\-  d 

11 
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The  values  of  x  and  y  which  satisfy  both  these  equations  constitute  the 
solution  required.  Each  of  the  equations  when  plotted  will  give  a 
straight  line.  Then  the  only  pair  of  values  of  x  and  y  which  satisfy 
both  equations  will  be  the  co-ordinates  of  the  point  of  intersection  of 
these  two  lines.  That  is,  the  solution  of  the  equations  is  given  by  the 
values  of  the  co-ordinates  of  their  common  point. 

Consider,  for  example,  the  two  equations 

y  =  3x  -  2 
and  y  =  2x  +  3. 

The  first  of  these  is  of  slope  3,  and  makes  an  intercept  on  the  axis  of 

Y  equal  to  —  2 ;  the  second  is  of  slope  2,  and  has  an  intercept  3. 
These  two  lines  are  plotted  in  Fig.  51.  They  intersect  at  the  point  for 

which  x  =  5  and  y  =  13, 
which  therefore  gives  the 
solution  required. 

Of  course  no  one  would 

use  the  graphical  method 
for  the  solution  of  a  simple 

equation,  but  the  method 
is  most  clearly  understood 

by  reference  to  the  straight- 
line  case. 

In  order  to  be  able  to 

read  off  the  co-ordinates  of 

the  point  of  intersection  as 
accurately  as  possible,  the 
scales  should  be  chosen  so 
that  the  lines  cut  one 

another  at  an  angle  as 
nearly  approximating  to  a 
right  angle  as  possible. 
Obviously,  if  the  angle 
between  the  lines  is  very 

acute  the  exact  point  of  intersection  is  difficult  to  define.  A  little 
practice  enables  the  scales  to  be  chosen  almost  instinctively,  but  if 
the  angle  between  the  lines  is  found,  upon  plotting,  to  be  very  acute, 
the  curves  should  be  replotted  to  a  more  suitable  scale.  By  enlarging 
the  scales  and  replotting  the  portion  of  the  curves  near  to  their  point 
of  intersection,  the  result  may  be  obtained  to  any  desired  degree  of 
accuracy,  as  will  be  seen  in  the  further  examples  given  below. 

General   Statement  of  the   Methods. — We  may  now  proceed  to 
state  in  general  terms  the  two  methods. 

1.  Arrange  the  equation  in  the  form 

*    =  0 

^4 

7*
 

Fig.  51. 
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Form  a  second  equation  by  equating  the  left-hand  side  of  this  to  y,  so 
Dtaining 

y-A?) 

5lot  this  second  equation,  then  the  x  co-ordinates  of  its  points  of  inter- 
ction  with  the  axis  of  X  give  the  required  roots  of  the  first  equation. 
2.  The  alternative  method,  corresponding  to  the  solution  of  the 

lultaneous  equations  given  above,  is  very  often  more  convenient  than 
>  first  method.     It  may  be  described  thus — 
Arrange  the  equation  which  is  to  be  solved  in  the  form 

loosing  such  a  distribution  of  the  terms  over  the  two  sides  of  the 
juation  as  may  make  the  necessary  calculations  of  the  co-ordinates 
jr  plotting  as  simple  as  possible. 

Equate  each  of  these  functions  x  in  turn  to  y,  so  obtaining  a  pair 
simultaneous  equations  represented  by 

y  =  /(*) 
id  y  =  F(«) 

lot  these  two  curves  separately  on  the  same  sheet  of  paper.  Then  the 

co-ordinates  of  their  points  of  intersection  give  the  required  roots  of 
}  original  equation. 

Whichever  method  be  adopted,  the  curves  should  be  plotted  on  a 

fairly  small  scale  at  first,  in  order  to  determine  the  points  of  inter- 
section approximately,  and  then  the  portions  of  the  curves  near  these 

points  should  be  plotted  on  a  large  scale  in  order  to  find  the  actual 
values  of  the  roots,  as  described  above.  If  still  greater  accuracy  be 
required,  they  may  be  still  further  enlarged,  as  may  be  required. 

Examples. — A  few  examples  should  suffice  to  make  the  methods 
perfectly  clear. 

EXAMPLE  1. — It  is  required  to  solve  the  equation — 
a3  +  4  =  3x 

We  will  solve  this  equation  by  each  method  in  turn,  in  order  to  show 

more  clearly  the  difference  of  procedure  between  them. 

Method  1. — By  transposition  of  the  terms  we  obtain 

X3  _  3a;  _|_  4  _  0 

Then  it  is  necessary  to  plot  the  equation 

y  =  x3  —  So;  -f-  4 
To  obtain  the  points  for  plotting  we  have  the  following  table  : — 

x    

-4 
-3 -2 -1 

0 

+  1 

2 3 4 

aj*       

-64 
-27 

—8 
-1 

0 

+1 

8 

27 

64 -3s     .... 
+12 

+9 
+6 +3 

0 

-3 

-6 
-9 

-12 

y  =  x3  -  3z  +  4 

-48 -14 

+2 

6 4 2 6 22 66 
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We  see  from  this  table  that  one  point  of  intersection  with  the  axis  of 
X  will  be  between  x  =  —  3  and  x  =  —  2,  since  the  value  of  y  changes 
sign  between  these  two  values  of  x.  But  we  know  that  for  a  cubic 
equation  there  will  be  three  roots,  all  of  which  may  be  real,  or  two  of 
which  may  be  imaginary.  Are  there  other  two  points  of  intersection 
of  this  curve  with  the  axis  of  X  ?  From  our  knowledge  of  the  form  of 
a  cubic  parabola  we  know  that  there  will  certainly  be  no  such  points 
outside  the  range  which  we  have  calculated.  But  we  notice  that  there 
is  a  downward  tendency  of  the  curve,  followed  by  an  upward  return 
between  the  values  of  x,  x  =  —  1  and  x  =  +  2.  There  may  be,  then, 
a  small  portion  of  this  curve  dropping  below  the  axis  of  X  again ;  but 

X  -* 

z 

Fig.  52. 

judging  from  the  general  run  of  the  figures,  it  appears  to  be  improbable. 
We  may  now  plot  the  curve,  as  shown  in  Fig.  52.  From  this  we  see 
clearly  that  there  is  only  one  real  root  of  the  equation,  which  lies 
between  -2-3  and  -2-1. 

We  may  notice  in  passing  that  this  result  throws  considerable  light 
on  a  point  which  frequently  causes  difficulty  to  the  student  of  algebra, 

that  is,  the  meaning  of  "  imaginary  roots "  of  an  equation.  If  we 
imagine  the  minimum  point  of  the  curve  A  to  become  lower  until  it 
is  below  the  axis  of  X,  say  as  shown  by  the  dotted  curve  (this,  of 
course,  would  involve  an  alteration  in  the  equation),  it  is  obvious  that 
the  curve  would  then  intersect  the  axis  of  X  in  two  other  points,  thus 
giving  in  all  three  real  roots  to  the  equation.  If  the  curve  were 
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gential  to  the  axis  of  X,  these  two  points  would  coincide,  that  is, 
e  two  roots  would  be  equal  ;  while  in  the  actual  position  of  the  curve 
just  fails  to  cut  the  axis  of  X,  and  these  two  roots  are  therefore 

inary.     It  is  readily  seen,  moreover,  that  in  order  to  make  these 

o  roots  real,  the  constant  term  of  the  equation  must  be  less,  that  is, 
the  curve  as  a  whole  must  be  lowered.     The  greatest  value  of  this 

irin,  in  order  that  the  roots  may  be  real,  would  be  4  —  1'8  =  2*2, 
,t  is,  the  equation  of  the  curve  would  be 

y  =  y?  -  3x  +  2-2 
the  equation  whose  roots  would  be  found  would  have  been 

ar1  -  3x  -f  2-2  =  0 
which  case  the  roots  would  be  equal,  while  if  this  term  were  still 

smaller  the  roots  would  be  unequal,  that  is,  there  would  be  three  real 
roots  in  all. 

Returning  now  to  our  one  real  root,  we  must  plot  the  portion  of 

the  curve  lying  between  x  =  —2-3  and  x  =  —  2'1  on  a  larger  scale,  in 
order  to  find  the  roots  accurately. 

2'30 2-28 
2'26 2-24 2'22 2'20 

2'18 

206 

2-14 
2*12 

2'10 

tf    -12-18 —  11-88 —  11-54 —  11-23 —  10-95 -10-66 —  10-38 —  10*09 

—9-80 -9-54 
9*26 

-3x   .... 
+  6-90 +  6-84 +  6-78 +  6-72 +  6-66 +  6-60 

+  6-54 
+  6-48 +  6-42 

+  6-36 +630 y  =  zJ-3z  +  4 
-1-28 -L-04 -0-76 -0-51 

-0-29 -0-06 

+  0-16 

0-39 0-62 
0-83 

1-04 

Y 
12 

1-0 

08 

06 

04 

02 

0 

-02 

/ 

) / _  .ji A 
/ [/ 

2  32  -2 30    -2 28   -2 26    -2 a*   -i 22    -2 2tt/-2 
18     -2 

16     -2 14    -2 
12     -i 

10  -2« 

X 

/ 
f 

/ 
/ ' 

-o* 

-06 

-06 

-10 
. 

/ 

7 

> / 

/ 

/ 

-1  ? 

/ 
r Y 

-14- 

Fig.  53. 
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We  see  from  these  values  of  the  co-ordinates  that  the  required  root 

is  between  —  2'20  and  —  2-18.  It  is,  however,  necessary  to  plot  a 
few  points  on  each  side  of  these  values  in  order  to  guide  us  as  to  the 

shape  of  the  curve.  This  portion  of  the  curve  is  plotted  on  a  large 

scale  in  Fig.  53,  giving  us  as  our  required  root  the  value  x  =  —  2-195. 
If  greater  accuracy  were  required,  the  method  could  be  extended  by 
plotting  on  a  still  larger  scale  the  part  of  the  curve  lying  between 

x  =  —2-194  and  —2-196,  but  this  is  very  rarely  necessary. 

X-4- 

-3 

70 

60 
50 

30 20 

9--'
 

-20 

-30 

-so 

-60 

-70 

Y 

Pig.  54. 

Method  2. — To  solve  the  same  equation  by  the  second  method  we 
will  arrange  it  in  the  form 

a?  =  3x  -  4 

Then  forming  the  two  simultaneous  equations  we  obtain 

y  =  a? and  y  =  3x  —  4 
The  first  of  these  is  the  equation  of  the  simple  cubic  parabola,  the 

figures  for   plotting  which  will  be  found  on   p.  22,  and  the  second 
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represents  a  straight  line  making  an  intercept  equal  to  —  4  on  the 
axis  of  Y  and  of  slope  3.  These  two  are  plotted  in  Fig.  54,  whence  it 
is  seen  as  before  that  their  only  real  point  of  intersection,  that  is  the 

only  real  root  of  the  original  equation,  lies  between  x  =  —  2'1  and 
x=  —  2 '3.  In  order  to  obtain  the  required  root  more  exactly,  this 
portion  of  both  curves  must  be  replotted  on  a  larger  scale,  as  shown  in 

Fig.  55.  The  values  for  x3  will  be  found  in  the  second  line  of  the 
table  on  p.  81,  from  which  the  portion  of  the  cubic  parabola  is 

-230   -228  -226   -224    -222    -2-20    -218    -216     -214    -2  12     210 
X 

7 
»20 

Y 

-9-40 

-960 

-980 

-1000 

-1020 

? 

-1040 

H060 
-1080 

-11-00 
-1120 

-11-40 

-II-60 

-11-80 

-1200 

-1220 

Y 

if 

/ 
/ 

/ 
/ 
{ 

i 
/ 

,„( / 

~~' 
'~~ 

^ 

.-•" 

") 

I 

r'~
 

j / 
/ 

/ 

c 

1 f 

/ 
/ i 
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Fig.  55. 

plotted ;  while  in  order  to  draw  the  straight  line  we  must  obtain  two 

points  upon  it,  say  when  x  =  —2-1  and  when  x  =  —  2'3  respectively ; 
then  for  these  two  points  we  have 

y  -  3X  -  4  =  -6-3  -  4  =  -10-3 

and  y  =  3a?-4=  -6-9  -  4=  -10-9 

respectively.  By  comparison  of  these  extreme  values  of  y  for  the 

straight  line  with  those  of  or5  we  .see  that  it  is  only  necessary  to  plot 

the  cubic  parabola  between  x  =  —  2'24  and  x  =  —2-16.  Then  the 
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point  of  intersection  of  the  two  curves  is  seen  to  be  when  x  =  —2-195, 
which  is  the  required  root  as  before. 

EXAMPLE  2. — Taking  one  more  example  of  a  rather  more  compli- 
cated nature,  we  will  solve  the  equation — 

3x*  -  20  Iog10a;  -  7  "077  =  0 
The  second  method  will  be  the  most  convenient  in  this  case,  plot- 

Fig.  56. 

ting  a  parabola  and  a  logarithmic  curve.     The  equation  is  arranged  in 
the  form 

3s2  -  7-077  =  20  Iog10a; 

Then  the  equations  of  the  two  curves  to  be  plotted  will  be 

y,  =  Sx2  -  7-077 
and  yz  =  20  log^ 

Since  the  logarithmic  curve  given  by  the  second  equation  lies  wholly 
on  the  positive  side  of  the  axis  of  Y,  it  is  only  necessary  to  determine 

points  on  both  curves  for  which  x  is  positive.  For  the  first  small-scale 

approximation,  we  will  increase  x  by  successive  increments  of  0'5, 
obtaining  the  values  of  the  co-ordinates  for  the  two  curves  given  in 
the  table  below. 
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r.    . o-o 0-5 
1-0 

1-5 
2-0 2-5 8-0 8-5 

o-oo 0-25 
1-00 

2-25 
4-00 6-26 9-00 

12-25 

o-oo 0-75 3-00 
6-75 

12-00 18-75 
27  -ix) 86-75 

-7-077 
-6-327 -4-077 -0-327 

+4-923 

11-673 19-923 
—  — 0-4771 

tan 
0-5441 

yt  —  ox1  —  7  (J77 

Log.o*      •    • 
   _ 

—  oo 
-0-3010 o-oooo 

+0-1761     0-3010 

0-3979 

/,  =  20  logIO* 

—  00 -6-020 o-ooo 
+3-522       6-020 

7-958 
9-542 

10-882 

\ 

o»        <o        i«.        <p        in     '*'<*•        ft        en        —       * 
<6cb<i9U>(6<0<00  L- 

>o 

X 

From  this  table,  comparing  the  values  of  yl  with  those  of  ya  it  is 
seen  that  there  will  be  two  points  of  intersection  of  the  curves  when 
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they  are  plotted,  that  is,  there  will  be  two  values  of  x  which  will  satisfy 
the  original  equation.  These  two  values  of  x  will  be  respectively 

between  0  and  0-5,  and  between  2-0  and  2-5.  Upon  plotting  the  two 
curves,  as  in  Fig.  56,  these  values  of  x  are  obtained  with  a  greater 

degree  of  accuracy,  as  the  points  of  intersection  are  found  to  lie 

respectively  between  x  =  0'4  and  x  =  0'5,  and  between  x  =  2-1  and 
x  =  2*2.  It  becomes  necessary,  then,  to  replot  the  two  portions  of  the 
curves  lying  between  these  values  of  a;  on  a  larger  scale.  The  necessary 
figures  are  tabulated  below. 

z  .    .    . 0-40 
0-42 0-44 

0-46 

0-48         0-50 

2-10 
2-12 

2-14 2-16 
2-18 

2-20 

z'     .    . 0-1600 0-1764 0-1936 0-2116 
0-2304 0-2500 4-4100 

4-4941 4-5796 4-6656 
4-7524 

4-8400 

3z»    .    . 0-480 0-629 0-581 
0-635 0-691 0-750 

13-230 
13-4«3 

13-739 13-997 
14-257 

14-520 

Vl  =  3z* -7-077 
-6-597 -6-548 

-6-496 -6-442 -6-386 -6-327 

+  6-153 

6-406 6-662 
6-920 

7-180 

14-443 

Logic* -0-3979 -0-3768 -0-3565 -0-3372 -0-3188 
-0-3010 

+  0-3222 

0-3263 0-3304 
0-3345 

0-3385 0-3424 

y2=20 
loglO* 

-7-958 -7-536 
-7-130 -6-744 -6-376 -6-020 

+  6-444 

6-526 6-608 6-690 6-770 6-848 

Upon  plotting  these  values,  as  in  the  two  portions  of  Fig.  57,  the 
values  of  x  at  the  points  of  intersection,  that  is  the  roots  of  the 

original  equation,  may  be  read  off  to  three  places  of  decimals,  and  are 
found  to  be  respectively 

x  =  0-479     and    x  =  2-134. 



CHAPTER  IX 

THE   SLOPE   OF   A  CURVE  —  DIFFERENTIATION 

WE  must  now  proceed  to  study  the  questions  involved  in  the  considera- 
tion of  the  measurement  and  meaning  of  the  slope  of  a  curve.  In 

Chapter  III  it  was  shown  that  the  slope  of  a  straight  line  was 

measured  by  the  tangent  of  the  angle  it  made  with  the  positive  direc- 
tion of  the  axis  of  X.  That  is,  referring  to  Fig.  58,  the  slope  of  the 

PM 
line  PQ  is  equal  to  tan  6,  that  is  to       f.     If  the  co-ordinates  of  P  be 

(a?!,  y^  and  those  of  Q  be  ( 

PM  =  /— y2),  then 
and 

QM  =  x^— 

or,  the  slope  of  the  line  =  —    — . 

It  is  convenient  to  express  a  change  in  the  value  of  x  by  the 

symbol  Sx,  and  the  correspond- 
ing change  in  y  by  8y,  so  that  Y 

Sx  =  a?!  —  x2   and  8y  =  yl  —  y%. 
Then  we  have  the  slope  of  the 

It  must  be  very  carefully 
borne  in  mind  that  the  symbol 

$x  does  not  mean  some  quantity 

represented  by  8  multiplied  by 
x.  The  symbol  is  one  complete 

entity,  and  simply  represents, 

as  stated  above,  a  change,  usu- 
ally a  small  change,  in  the  value 

of  x. 

Measurement  of  the  Slope Fig.  58. 

of  a  Curve. — The  slope  of  a  straight  line  is  constant,  that  of  a  curve 

is  constantly  changing  as  the  curve  is  traced  out.  It  becomes  neces- 

sary, then,  to  see  how  the  slope  of  a  curve  at  any  given  point  may 

be  determined.  If  two  points,  P  and  Q,  be  taken  near  together  upon 

a  curve  (Fig.  59),  the  slope  of -the  chord  or  straight  line  joining  them 87 
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will  obviously  give  a  measure  of  the  average  slope  of  the  curve  between 
these  two  points.     Hence 

the  average  slope  of  the  arc  PQ  = 

Now  imagine  the  point  Q  gradually  to   travel   along   the  curve 

towards  P.     The  ratio  ̂   will  change  as  it  does  so,  and  the  arc  PQ 

becoming  smaller,  the  average  slope  of  the  arc  will  become  more  and 

more   nearly   equal   to  the  actual   slope  at   the  point  P.     The  two 

increments  oy  and  8x  themselves  become  smaller,  but  their  ratio  sr 

may  change  very  little,  and  may  become  greater,  as  it  obviously  does 
in  the  case  of  the  curve 

in  Fig.  59.  Now  imagine 

Q  to  coincide  with  P. 
Then  the  chord  PQ  (pro- 

duced) becomes  the  tan- 
gent to  the  curve  at  the 

point  P.  But  its  slope 
still  measures  the  average 

slope  of  the  arc  PQ,  which 
is  now  the  actual  slope  of 

the  curve  at  the  point  P, 

the  arc  PQ  having  become 
infinitely  small.  Hence, 

the  slope  of  a  curve  at  any 

      point  is  measured  by  the 

slope  of  the  tangent  drawn 
to  the  curve  at  that  point. 
Now,  in  this  limiting  case, 

when  P  and  Q  are  co- 
incident, 8y  and  8x  have 

Sx  --    —  M 

Fig.  59. both    become    infinitely 

small.      But  the  ratio  /-  measures  the  slope  of   the  line  PQ,  hence 

the  limiting  value  of  the  ratio  ̂ -  when  8y  and  8x  have  themselves 

become  infinitely  small  has  a  real  finite  value,  namely,  the  slope  of  the 
tangent  to  the  curve  at  the  point  P.     This  limiting  value  of  the  ratio 

-  when  8x  (and  therefore  8y  also)  is  infinitely  small  is  written  ̂  

and  is  called  the  "  Differential  Coefficient  of  y  relatively  to  x."     Note, 
that  just  as  8x  is  one  complete  symbol  representing  a  change  in  x  and 

cannot  be  split  up  into  separate  parts,  so  the  symbol  ̂   is  also  one 
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jmplete  symbol  representing  one  definite  thing,  namely,  the  limiting 

ralue  of  the  ratio  x— ,  or  the  differential  coefficient  of  y  relatively  to  x, 

id  must  not  be  thought  of  as  the  quotient  of  two  separate  quantities, 

and  dx.     The  process  of  evaluating  the  quantity  -,    is  known  as 

differentiating  "  y  relatively  to  x. 
Physical  Meaning  of  the  Slope  of  a  Curve. — In  either  of  the 

shown  in  Figs.  58  and  59,  the  quantity  8y,  that  is  PM,  measures 
le  change  in  y  while  x  is  changing  by  an  amount  &c,  that  is  QM. 

[ence  the  ratio  -^  gives  the  ratio  of  the  change  in  y  to  that  in  x,  or 

measures  the  average  rate  of  change  of  y  relatively  to  x.  But 

e  quantity  -,-  is  only  a  limiting  value  of  the  ratio  -Jr-.  Hence, ly 

-  measures  

the  
rate  

of  
change  

of  
y  relatively  

to  x.     
That  

is  to  
say,  

the 
lope  of  a  curve  at  any  point,  measured  by  the  value  of  the  differential dy 

efficient  of  y  relatively  to  x,  A  measures  the  rate  of  change  of  y 

slatively  to  x. 

A  mechanical  example  will  perhaps  serve  to  make  this  clear.  The 

relocity  of  a  particle  is  defined  to  be  its  time-rate  of  change  of  position, 
and  is  measured  by  dividing  the  distance  covered  by  the  time  taken  to 
cover  it,  that  is 

where  v  =  the  velocity,  s  =  the  displacement  from  some  fixed  point, 
and  t  =  the  time  elapsed  from  some  given  instant.  If  the  velocity  be 
not  uniform,  this  measures  the  average  velocity  during  the  interval  of 
time  8t.  The  velocity  at  a  given  instant  is  the  limiting  value  of  this 
average  velocity  when  the  interval  of  time  8t  becomes  infinitely  small. 

Hence,  we  have  that  the  velocity  at  any  given  instant — ds 

Let  the  curve  in  Fig.  60  represent  the  relation  between  the  distance 
covered,  s  feet,  in  t  seconds  from  rest.  Then  the  velocity  at  any  given 

instant  may  be  determined  by  drawing  a  tangent  to  the  curve  at  the 

corresponding  point  and  measuring  its  slope.  For  example,  the 
velocity  after  5  seconds  is  found  by  drawing  a  tangent  at  the  point  P 

(for  which  t  =  5).  The  slope  of  this  tangent  is  given  by — 

RM      6-05  -  4-25 8lope=oM=    -ro~ 
or  the  velocity  after  5  seconds  is  1'80  feet  per  second.  For  the  case 
represented  by  the  curve  in  Fig.  60,  the  velocity  has  been  found  at  the 
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end  of  every  second,  and  the  results  are  tabulated  below,  the  table 
also,  for  convenience,  showing  the  distances  travelled  up  to  the  end  of 
each  second. 

t  .   . 0 1 2 3 JL 5 6 7 

-  • 

seconds. 

s  .    . o-o 
2-55 3-50 3-75 

4-05 5-15 

7-5 11-8 

feet. 

ds 
~dt 

5-20 1-20 0-58 o-oo 0-60 
1-80 3-00 

4-80 

feet  per  second 

The  velocities  so  found  are  plotted  in  Fig.  61  with  the  times  at 

which  they  occur,  so  obtaining  a  velocity-time  curve. 
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Successive  Differentiation. — The  slope  of  this  curve  (Fig.  61) 
measures  the  rate  of  change  of  velocity,  that  is,  the  acceleration,  /. 
Hence  we  have — 

dv 

But 

Hence 

rhich  is  usually  written  as 

ds 

f= 

dt 
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This  is,  of  course,  one  complete  symbol,  and  represents  that  s  is  to  be 

differentiated  twice  with  respect  to  t,  and  is  called  the  "  second  differen- 
d?s 

tial  coefficient  of  s  relatively  to  t."     The  value  of  -^,  that  is,  of  the 

acceleration,  is  found  at  the  end  of  each  second  by  drawing  the  tangent 

to  the  velocity -time  curve  and  measuring  its  slope  as  before,  the  results 
being  given  in  the  table  below. 

t  .  . 0 1 2 3 4 5 6 7 seconds. 

,  d?s J~  dP 
-6-40 -1-00 -0-50 o-oo 

+1-66 

0-90 
1-48 2-80 

feet  per  second 

per  second. 
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From  these  values  the  acceleration-time  curve  shown  in  Fig.  62  is 
plotted.  The  slope  of  this  would  measure  the  rate  of  change  of 
acceleration  and  would  be  expressed  by  the  third  differential  coefficient 

of  s  relatively  to  t,  which  would  be  written  -5^. 

Methods  of  Differentiation. — We  have  seen  above  how  to  proceed 

graphically  to  find  the  value  of  -T-  for  any  given  function  of  x,  which 

we  have  called  y  ;  that  is,  by  plotting  the  curve  connecting  x  and  y, 

drawing  the  tangent  to  the  curve  at  the  required  point,  and  measuring 

its  slope.  This  process  may  be  called  "  Graphical  Differentiation." 
If,  however,  y  is  a  regular  function  of  x,  another  method  is  available. 

If  the  form  of  /(#),  or  y,  is  known  in  terms  of  x,  the  general  form  of 
fill 

•T-  may  be  determined,  and  its  value  ascertained  for  any  given  value  of 

x  by  substitution  of  that  value  in  the  general  expression.  We  proceed 

to  deduce,  by  the  graphical  process,  the  form  of  -j-  for  a  few  simple 

forms  of  the  function  y.  Rigid  proofs  of  these  results  will  be  found  in 

any  elementary  book  on  the  Differential  Calculus. 

Differentiation  of  xn. — (1)  When  n  =  1,  we  have  y  =  «,  which  is 
the  equation  of  a  straight  line  of  unit  slope.  Hence 

dy 

dx 

=  1 

dx which  may  be  written 

(2)  When  n  =  2,  we  have  y  =  x2,  which  is  the  equation  of  a 
parabola.  This  parabola  is  plotted  in  Fig.  63  from  the  values  of  x 
and  y  on  p.  21.  Tangents  are  drawn  to  the  curve  at  various  points, 

and  their  slopes,  that  is  the  values  of  -5-  at  those  points,  determined, 

the  results  being  tabulated  below. 

X        

-4: 

-3 -2 
-1 

0 

+1 

2 8 4 

dy 

-s -6 
-4 -2 

0 

+2 

4 6 8 

dx  ' 

Upon  plotting  ~  with  x  we  obtain  a  straight  line,  whose  equation 

is  readily  seen  to  be 

dx 

(3)  When  n  =  3,  we  havey  =  x3,  which  is  the  equation  of  t
he  cubic 

continuous  line   from  the  values  of  x  and parabola  plotted  in  Fig.  64  (continuous  line) 
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y  on  p.  22.     Proceeding  in  the  same  manner  as  in  the  last  case,  we 

obtain  the  following  values  of  T-  : — 

x      

-3 
-2 

—  1 

o 

+  1 

2 3 

dy 

dx' 

27 12 
g 0 Q 12 

27 

Upon  plotting  these  values  with  x  we  obtain  the  curve  shown  in 
the  same  figure  by  the  broken  line,  which  appears  to  be  a  parabola. 

Fig.  63. 

The  equation  of  this  parabola  may  be  determined  by  plotting  log  x 

with  log  (-r-\  This  is,  in  this  case,  however,  scarcely  necessary,  as 

obviously  for  any  value  of  x, 

¥=™ 

dx 
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28 

24- 

20 

X    -3 

0  / 

-4- 
-12 

-16 

-20 

-24 

-28 

-32 

-36 

-4-0 

Y 

Fig.  64. 

The  student  should  proceed  in  this  way  for  the  further  cases  when 

n  is  equal  to  4,  5,  etc.,  in  each  case  plotting  the  curve  y  =  x*t  drawing 



96  PRACTICAL  CURVE  TRACING 

tangents  at  several  points  upon  it,   measuring  their  slope,   and  re- 

plotting  the  values  of  -JT  so  obtained  with  those  of  x.     In  each  case  a 

parabolic  curve  will  result,  whose  equation  must  then  be  obtained  by 

plotting  logarithmically.     He  will  find  that  when — 

y  =  x, 
dx 

y  = 

dy 

dx 

=5x*,  etc. 
dx 

From  these  the  general  result  may  be  deduced  as 

dy 

when  
y  =  x", 
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When  n  is  negative,  the  curves  obtained  by  plotting  are,  of  course, 
pperbolic  instead  of  parabolic.  The  student  should  test  whether  the 
ae  result  holds  good  in  this  case,  proceeding  in  the  same  manner. 

Differentiation  of  e*.— In  Fig.  65  the  curve  y  =  e*  is  plotted  from 
ae  figures  below. 

X  .       .       .       . o-o 1-0 1-5 
2-0 

2-5       8-0 

e*.    .    .    . 
1-00 2-72 4-48 

7-85 
12-2      20-0 

Tangents  are  drawn  to  it,  and  their  slopes  measured.     It  is  found 

that  the  slope  of  the  curve  at  any  point  is  exactly  equal  to  the  value 

of  y  at  that  point.     That  is,  if  the  values  of  -^  be  plotted  with  the 

corresponding  values  of  x,  the  resultant  curve  is  identical  with  the 

original  curve  y  =  e*.     Hence, 

dy 

7    =  y  =  (? 
dx      * Differentiation  of  Log,  x. — Proceeding  as  in  the  former  cases,  the 

curve  y  =  loge  x  is  plotted  (Fig.  66).     The  values  of  x  and  y  for  this 

Y|—
 

2-0 

1-5 

10 

05 

2 
5       20       2 S       303 S       40      45        30       55       60    X 

0-5 

10 

Y   
Fig.  66. 

curve  are  given  below.     The  slopes  of  the  tangents  at  various  points 

are  measured,  the  results  being  given  in  the  third  line  below. 

x    
1-0 2-0 3-0 

4-0 

5-0 

y  =  loge  x  -  2-303  log,0  x 

o-ooo 0-694 
1-100 1-388 

1-610 

di, 
1-00 0-50 0-38 

0-25 0-20 

dx    ' 
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dy 

On  plotting  these  values  of  -r-  with  those  of  x,  the  curve  repre- 

sented in  Fig.  66  by  the  broken  line  results.  This  appears  to 
belong  to  the  hyperbolic  family.  To  test  this,  the  values  are  plotted 
on  logarithmic  paper  in  Fig.  67,  when  it  is  seen  that  this  is  so, 
for  a  straight  line  results.  The  slope  of  this  line  is  found  on 
measurement  to  be  unity,  and  is  negative.  Hence  the  equation  of 
the  curve  is 

or 
dy=\_ 

dx      x 

Differentiation  of  Sin  x  and  Cos  x. — When  differentiating  trigono- 

10- 

Y9 

8 

7 

6 

\ 

X 
\ 

2  3  4-  56789     10 

Fig.  67. 

metrical  functions  the  angle  must  always  be  understood  to  be  measured 
in  natural  units,  that  is,  in  radians.  Proceeding  to  plot  the  function 
y  =  sin  x,  we  obtain  the  curve  shown  by  a  continuous  line  in  Fig.  68, 
the  necessary  figures  for  plotting  it  being  given  below.  For  con- 

venience in  finding  the  values  of  sin  a;,  the  points  have  been  taken  at 

intervals  of  £  =  0'523,  that  is,  30°. 
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x  radians    .     .     . 
0-00 0-52 

1-05 
1-57 2-09 2-62 

Equivalent  angle  £ 
in  degrees         J 

0 
30 

60 90 180-60 180-80 

y  =  sin  x   .    .     . 
o-oo 0-50 

0-87 
1-00 0-87 

0-60 

x  radians    .     .     . 3-14 
3-66 

4-29 
4-71 5-23 5-75 

6-28 

Equivalent  angle  > 
in  degrees          J 

180 180  +  30 180  +  60 
270 

360-60 360-30 
360 

y  =  sin  x    .     .     , 
o-oo -0-50 

-0-87 -1-00 
-0-87 -0-60 

o-oo 

r 

!•* 
1-2 

10 

Ci 

06 

04 

0-2 

00 

c-z 

M 

0-6 
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Fig.  68. 

Tangents   are    drawn   to   the   curve   as   usual,   and   their   slopes 
measured.     The  results  obtained  are  tabulated  below. 

X o-oo 0-53 1-05 1-57 2-09 2-62 3-14 3-66 

4-29 
4-71 5-23 

6-75 

6M 

dy 

dx    
'     '     ' 

TOO 0-87 0-50 
o-oo -0-50 -0-87 -1-00 -0-87 -0-50 

-o-oo 

+  0-60 +  0-87 

100 

These  values  of  -p  being  plotted  with  those  of  x  give  the  curve 

shown  in  the  same  figure  by  the  dotted  line,  which  is  obviously  another 



100 PRACTICAL  CURVE   TRACING 

sine  curve  of  the  same  frequency  and  amplitude  as  the  first  one,  but 

differing  from  it  in  phase  by  90°  or  ~-     Its  equation  is  therefore 
dy         .    (        TT\ 
-j^  =  sin  I  x  +  o  /  =  cos  x 
dx  \     r2/ 

Similarly,  if  this  curve  be  graphically  differentiated,  another  sine 

curve  will  result,  whose  phase  will  be  90°  ahead  of  this  one.     That  is 
d(cos  x)        .     . 
-^-j    =  sin  (x  -\-  IT)  =  —  sin  x 

The  student  should,  of  course,  actually  work  through  this  in  order 
to  test  the  truth  of  the  statement. 

Differentiation  of  a  ./(a).— It 
has  been  seen  already  that  the 

only  effect  of  introducing  a  con- 
stant a  into  any  equation  of  the 

form  y  =f(x),  so  obtaining  the 

equation  y  =  a  .  f(x),  is  to  in- 
crease, as  it  were,  the  vertical 

scale  to  which  the  original  curve 

was  plotted  a  times.  Hence  the 

slope  at  any  point  will  also  be 
increased  a  times,  or 

d(ay)  dy 

dx  '  dx 
Differentiation  of  a  Sum.— If 

two  curves  AB  and  CD  (Fig.  69) 
be    combined    by    adding    their 
ordinates,  so  obtaining  the  curve 

Fig  69-  EF,  the  slope  of  the  latter  curve 
at  any  given  distance  from  the 

axis  of  Y  (that  is,  for  a  certain  value  of  a;)  will  be  the  sum  of  the  slopes 
of  the  two  former  curves  at  the  corresponding  points.  For  consider 
the  chords  of  the  curves  ab,  cd,  and  ef.  We  have 

fn  =  dn  +  bn 
and  em  =  cm  -f  am 

Therefore  fn  —  em  =  dn  -f-  bn  —  cm  —  am 
=  (dn  —  cm)  -f-  (bn  —  am) 

And  therefore — 

But 

fn  —  em mn 

fn  —  em mn 
dn  —  cm 

mn 

bn  —  am 
mn 

dn  —  cm      bn  —  am 
mn 

measures  the  slope  of  ef 

»,  »          cd 
ab 
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Therefore  the  slope  of  ef  is  the  sum  of  the  slopes  of  cd  and  ab. 
Lence,  also,  for  the  limiting  values  of  the  chords  when  e  becomes 

^incident  with/,  c  with  d,  and  a  with  Z>,  the  slope  of  the  curve  EF  at 

'  is  equal  to  the  sum  of  the  slopes  of  CD  at  dt  and  AB  at  6.  Thus  we 
ee  that  the  differential  coefficient  of  a  sum  is  equal  to  the  sum  of  the 
ferential  coefficients  of  the  terms ;  or,  if 

ien 

y  =  u  +  v  —  w 

dy  _du      dv      dw 

EXAMPLES.  —  (1)  Differentiate  the  expression  3*4  '  —  4«2'6 

-4a;26 _  . 
~iT~   —  OX   —  j  -    —  1!   X dx  ax 

= doe 

=  3  x  4-1  x  a:4'1-1  -  4  x  2*5  x  a2"6'1 
=  12-3  x3"1  -  10x1'6 

(2)  A  body  moves  so  that  its  distance,  s  feet,  from  a  fixed  point,  t  seconds 
fter  it  was  at  that  point,  is  given  by  «  =  3  sin  t.     (Notice  that  this  is  a 
iple  harmonic  motion  of  amplitude  3  feet,  frequency  1,  and  of  the  same 

lase  as  the  fundamental.)     Find  its  velocity  and  acceleration  after  0*2 
ond. 
We  have 

ds      _  <Z(s5n  t)      o 
v  =  jj  =  3  -i-,,—  =  3  cos  t at  at 

v  =  3  cos  (0-2) 

=  3  cos  (0-2  x  57-73)° 
=  3  cos  li.o-46 
=  3  x  0-980  =  2-64  feet  per  sec. 

When  t  =  0-2 

jr.* =  —  3  sin  t 

=  -3sinll°-46 
=  -3  x  0-198  =  —  0'594  feet  per  sec.  per  sec. 

Some  interesting  points  may  be  noticed  which  incidentally  follow 
rom  this  latter  example.    In  the  first  place,  if  either  the  displacement, 

velocity,  or   acceleration   of   a   body   moving   with   simple   harmonic 
motion  be  plotted  as  a  function  of  the  time,  a  sine  curve  results.     In 
the  second  place,  we  have  that 

s  =  3  sin  t 

and  /  =  -  3  sin  t, 

that  is,  the  acceleration  is  here  numerically  equal  to  the  displacement, 

but  of  opposite  sign.  This  is  not  necessarily  the  case,  but  it  is  true 

that  the  acceleration  varies  directly  as  the  displacement  from  mid- 
position. 

Maxima  and  Minima.—  If  y,  a  function  of  x,  increases  as  *  increases 
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up  to  a  certain  value,  and  then  begins  to  decrease,  that  value  is  said 
to  be  a  maximum  value  of  the  function,  and,  similarly,  if  it  decreases  as 
x  increases  down  to  a  certain  value,  and  then  begins  to  increase,  that 
value  is  said  to  be  a  minimum  value.  Thus,  in  Fig.  70,  the  values  of  y 
at  A,  B,  and  C  are  maximum  values,  and  those  at  D,  E,  and  F  are 
minimum  values.  It  should  be  noticed  that  the  maximum  values  are 

Fig.  70A. 

not  necessarily  the  greatest,  nor  the  minimum  values  the  least  possible 
values  of  y.  In  the  figure,  for  example,  the  minimum  value  of  y  at  E 
is  greater  than  the  maximum  value  at  A.  Again,  in  the  cubic 
parabola  in  Fig.  22,  on  p.  33,  there  is  a  maximum  value  at  A  and  a 
minimum  at  B,  but  the  curve  rises  to  infinity  in  the  first  quadrant, 
and  falls  to  minus  infinity  in  the  third,  without  any  further  maximum 
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minimum  points,  so  that  the  maximum  and  minimum  values  at  A 

id  B  respectively  are  by  no  means  the  greatest  and  least  values 
sible.  Obviously,  at  the  point  up  to  which  y  has  been  increasing 

id  at  which  it  begins  to  decrease,  the  tangent  to  the  curve  is 

jrizontal,  for  the  slope,  that  is  nfc  changes  its  sign  at  that  point  from 

to  — ,  and  therefore  is  equal  to  zero  at  the  maximum.     Similarly, 

dy 

10  tangent  
is  horizontal  

or  -r-  =  0  at  a  minimum.     

This  
is  illustrated Fig.  70,  in  which  the  tangents  at  the  maximum  and  minimum  poim 

drawn.  Hence,  -^-  =  0  for  any  value  of  x  which  makes  y  a  maxi- 

mum or  a  minimum.  It  does  not,  however,  follow  that  the  converse 

statement  is  true,  that  is,  that  every  value  of  x  which  causes  -p 

to  vanish  necessarily  corresponds  to  a  maximum  or  minimum  value 

of  y.  At  the  point  G,  for  example,  in  Fig.  70,  the  tangent  is  hori- 

zontal, that  is  -p  =  0,  yet  G  is  neither  a  maximum  nor  a  minimum 

point.  The  value  of  y  has  increased  up  to  G,  ceases  to  increase 

further,  and  then  begins  to  increase  again,  instead  of  to  decrease  as 
it  would  do  were  G  a  maximum.  This  is  known  as  a  point  of  inflexion 

at  which  the  tangent  is  horizontal,  or  a  horizontal  point  of  inflexion. 

A  point  of  inflexion  in  general  may  be  defined  as  a  point  at  which  the 
curve  changes  its  curvature  from  being  convex  towards  one  side  to 
being  concave  towards  that  side.  The  tangent  at  a  point  of  inflexion 

will  obviously  pass  from  one  side  of  the  curve  to  the  other.  In  Fig.  70 
there  are  points  of  inflexion  at  each  of  the  points  marked  I,  at  one  or 
two  of  which  tangents  have  been  drawn.  The  curve  is  steepest  at  the 

points  of  inflexion,  unless,  as  at  G,  the  slope  is  zero,  in  other  words, 
the  slope  of  the  curve  is  a  maximum  or  a  minimum  at  a  point  of 

inflexion.  These  points  may  be  seen  more  clearly  by  drawing  the 

corresponding  curve  of  -p ,  as  in  Fig.  70A.  From  this  it  is  seen  that 

when  y  is  a  maximum  or  minimum,  -y-  is  zero,  while  when  the  curve 

of  y  is  passing  through  a  point  of  inflexion  the  value  of  -j-  is  either  a 

maximum  or  a  minimum,  that  is,  the  slope  of  the  ̂   curve,  measured 

bv  ̂1,  is  zero.     When  there  is  a  horizontal  point  of  inflexion  (G  in J   dx2 

Fig.  70),  the  tangent   at   the  corresponding  maximum  or  minimum •j  i]  if 

on  the  -^  curve   coincides  with   the   axis  of   X.      Hence,   when  -y- dx 
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is  zero,  the  value  of  y  is  either  a  maximum  or  a  minimum,  or  the 

curve  of  y  is  passing  through  a  horizontal  point  of  inflexion.  If  -5-3 

is  zero,  the  curve  of  y  is  passing  through  a  point  of  inflexion.  Hence,  if 
•J  79 

-j-  vanishes  for  any  given  value  of  x  but  j-4  does  not  vanish,  the  corrt ax  J  e  de- 

sponding value  of  y  is  either  a  maximum  or  a  minimum,  but  if  both 

d'2u 
and  3—5  vanish,  then  the   value  of  w  is  neither  a  maximum  nor dor 

minimum,  but  the  curve  is  passing  through  a  horizontal  point  of 
inflexion.  This  method  of  reasoning  might  be  extended  further,  for  if 

on  the  curve  of  -p  there  was  a  horizontal  point  of  inflexion,  at  which 
ff  ji 

the  tangent  was  the  axis  of  X,   that  is  when  -5-  =  0,  as   at  K   in 

Fig.  70A,  the  value  of  -p  would  be  neither  a  maximum  nor  a  minimum, 

that  is,  this  would  not  correspond  to  a  point  of  inflexion  on  the  curve 
of  y,  but  to  a  maximum  or  minimum.  We  may  express  our  results  in 
general  in  the  following  form,  a  rigid  proof  of  which  will  be  found  ii 

any  book  on  the  differential  calculus  : — 

If,  for  any  value  of  x  the   successive  differential   coefficients  j-» 
(L    If     (ij   ?/ 

T3i  Ti  etc.,  are  all  equal  to  zero,  the  first  differential  coefficient  whic 
dor  aar' 

does  not  vanish  being  TTT,,  then  if  n  is  even,  the  value  of  y  is  either  a 

maximum  or  a  minimum,  while  if  n  is  odd  the  value  of  y  is  neither  a 
maximum  nor  a  minimum,  but  corresponds  to  a  horizontal  point  of 
inflexion  on  the  curve  of  y. 

It  should  be  noticed  that  between  every  two  consecutive  maxima, 
there  is  always  one  minimum,  and  between  every  two  consecutive 
minima  there  is  always  one  maximum,  or  the  maximum  and  minimum 
points  on  a  curve  occur  alternately.  Further,  between  any  maximum 
and  the  next  minimum,  or  vice  versa,  there  is  at  least  one  point  of 
inflexion. 

It  remains  now  to  determine  a  method  of  deciding  whether  any 

dt/ 

value  of  x  which   causes  V-   to  vanish,  but  which  does   not   cause ax 

/7- 

•j-^  to  vanish,  corresponds  to  a  maximum  or  to  a  minimum  value  of  y. 

At  any  maximum  point  the  value  of  y,  after  increasing,  begins  to 

decrease,  that  is,  the  slope  of  the  curve,  or  ̂   changes  from  positive 
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dy  d?y 
to  negative.      Hence  -;-  is  diminishing,  or  -T-J  is  negative.     Similarly, 

for  any  minimum  value  of  y,  -^-2  is  positive.     Hence,  we  may  sum  up 

our  conclusions  thus  : — 
7  72 

When  V-  =  0  and  -3  is  — ,  then  w  is  a  maximum, 
dx  dx* 

When  j-  =  0  and  -j—  is  -f ,  then  w  is  a  minimum, 
dx  dx2 

When  -^  =  0  and  -^  =  0,  then  y  is  neither   a   maximum  nor  a 
dx  dx-  d3 

minimum,  unless  -,,  is  also  equal  to  0. 

An  extension  of  this  argument  to  the  general  case  given  above  will 

low  that  the  same  result  applies  there  also.     That  is,  that  if  j—n 

the  first  differential  coefficient  which  does  not  vanish,  n  being  even, 

dny  . 

len  y  is  a  maximum  
or  a  minimum  

according  
as  -r-^  is  negative  

or 

Dsitive.      In  most   practical   cases,  however,  the   conditions   of   the 

roblem  will  make  it  obvious  whether  any  value  of  y,  corresponding  to 

=  0,  is  a  maximum  or  a  minimum. 

EXAMPLES  ON  MAXIMA  AND  MINIMA. — (1)  Find  the  values  of  x  which 
give  maximum  and  minimum  values  of  the  expression — 

x3  +  »2  -  Sx  +  15 
Put  v 

Then  =  3*2  +  2*  -  8 ate 

Then,  for  a  maximum  or  minimum  value  of  y, 

3«2  +  2*  -  8  =  0 
or  (3*  -  4)  («  +  2)  =  0 
i.e.  x  =  §  or  —  2 
To  see  which  of  these  values  of  *  gives  a  maximum  value  of  y,  and  which  a 

minimum,  we  have,  differentiating  again  — 

Then  when  x  =  %, 

which,  being  positive,  gives  y  a  minimum  value. 
Again,  when  x  =  —  2, 

f|=  -12  +  2=  -10 

da:2 

which,  being  negative,  gives  y  a  maximum. 
Hence,  y  is  a  maximum  when  *  =  —  2,  and  a  minimum  when  x 
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(2)  The strength  of  a  beam  of  rectangular  section  varies  directly  as  the 
breadth  and  the  square  of  the  depth.  Find 
the  dimensions  of  the  strongest  rectangular 
beam  which  can  be  cut  from  a  cylindrical 
log  of  wood  1  foot  in  diameter. 

Here  let  Z  =  the  strength  modulus 
then  Z  =  JcbW 

where  b  is  the  breadth,  and  h  the  depth  of 
the  section. 

But  we  have    62  +  h2  =  144  (see  Fig.  71) 
or  h2  =  144  -  62 

Hence,  Z  =  £6(144  -  62) 
=  144fc&  -  Tcb3 

Fig.  71. then 

or 

i.e. 
and 

Equating  to  zero  for  a  maximum, 

=  0    ' 
144 

b  = 
h  = 

=  48 

=  6'94  inches 

-  48 

=  9-80  inches. 
t 

The  above  is  the  only  possible  value  of  b  which  causes  —  to  vanish,  hence 
do 

there  is  no  doubt  that  this  is  the  solution  required  to  give  the  strongest 
possible  beam,  as  the  least  value  of  the  strength  would  be  zero,  when  either 
b  or  h  was  made  equal  to  zero. 

Applications  of  the  Method  of  Differentiation  to  Previous  Work.— 
Some  points  in  previous  chapters  may  be  shown  very  clearly  by  the 
method  of  differentiation.  A  few  of  these  cases  are  further  considered 
below. 

In  the  comparison  of  the  different  curves  represented  by  the  general 

equation  y  =  xn,  it  was  stated  that  a  curve  of  greater  index  is  steeper 
than  one  of  less  index  for  values  of  x  greater  than  unity,  that  is  above 
the  common  point  (1,1)  (see  p.  24).  Differentiating  y  relatively  to  x, 
we  have 

^  =  **<•
-> 

ax 

Now,  if  a;  is  greater  than  1,  a;"'1  is  greater  the  greater  the  value  of 

n,  hence  -p,  or  the  slope  of  the  curve  is  also  greater,  for  a  value  of  x 

greater  than  1,  for  the  greater  value  of  «. 
Again,  on  p.  32  it  was  shown  that  in  the  cubic  parabola 

given  by 
y  =  rtar'  +  bx  +  c 
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there  were  both  a  maximum  and  a  minimum  point  if  a  and  6  were  of 
opposite  sign,  but  neither  a  maximum  nor  a  minimum  if  they  were  of 
the  same  sign.  Here 

^  =  Sax2  +  b dx 

uating  this  to  zero  for  any  maximum  or  minimum  points, 

+  6  =  0 b 

ence,  x  can  only  have  real  values  to  satisfy  this  equation  when  a 
and  6  are  of  opposite  sign,  that  is,  there  can  only  be  maximum  and 

minimum  points  on  the  curve  if  a  and  b  are  of  opposite  sign.  Further, 
there  will  be  maximum  or  minimum  values  of  y  for  each  of  these  two 
values  of  x,  for 

d*y      R 

-n  =  Sax 

dx* 

and  this  expression  cannot  be  zero  unless  either  a  or  a;  be  zero,  that 

dv         d'^'U is,  the  same  value  of  x  does  not  cause  both  -^-  and  T-^  to  vanish.     If  a 

and  b  are  of  opposite  sign,  then  there  are  two  values  of  x  which  give 
maximum  or  minimum  values  of  y,  and  since  maxima  and  minima 

always  occur  alternately,  there  must  be  one  of  each,  the  maximum 
occurring  when  x  has  the  negative  sign,  and  the  minimum  when  x  is 

positive. 
The  method  of  determining  an  equation  of  the  type 

y  =  ax*  +  bx  —  c 

(p.  40)  may  be  shown  to  be  correct  by  this  method.  It  will  be 

remembered  that  a  tangent  is  drawn  to  the  curve  at  its  point  of 

intersection  with"  the  axis  of  Y,  and  it  was  stated  that  the  slope  of  this 
tangent  would  be  equal  to  6,  that  is,  the  slope  of  the  curve  itself  at 
this  point  is  equal  to  b. 

dy 

For  
the  

slope  
of  the  

curve  
=  j-  =  nax"'1  

+  o 

dy 

then,  
when  

x  =  0,
 
 

-y-  
=  b 

Again,  in  the  hyperbolic  family,  it  was  stated  on  p.  53  that  in  the 
curves  represented  by  the  equation 

pv"  =  a 
that  of  greater  n  is  steeper  than  that  of  lesser  n  at  their  point  of 
intersection. 
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Here  p  =  av~" 

therefore  -/-  =  a(  —  n)  (w"""1) 

a  =  pvn 

=  —npvn- 

But 

therefore 

But  at  the  point  of  intersection  both  p  and  v  have  the  same  value 
for  both  curves,  therefore  the  slope  is  negative  and  varies  directly 
the  value  of  w. 



CHAPTER   X 

THE  AREA  OF  A  CURVE— INTEGRATION 

Measurement  of  the  Area  of  a  Curve. — The  area  of  a  curve  which 
does  not  itself  form  a  closed  figure,  is  usually  understood  as  the  area 

of  the  figure  bounded  by  the  curve,  the  axis  of  X,  and  two  ordinates  or 

straight  lines  parallel  to  the  axis  of  Y.  The  area  of  such  a  figure  may 

be  obtained  approximately  by  the  "  method  of  mean  ordinates."  By 
this  method  the  figure  is  divided  up  into  any  convenient  number  of 

vertical  strips  of  equal  width,  and  the  mid-ordinate  of  each  strip 

drawn.  Then,  considering  each  strip  as  being  approximately  a  rect- 
angle, its  area  is  the  length  of  the  mid-ordinate  multiplied  by  the 

width  of  the  strip,  and  the  area  of  the  whole  figure  is  equal  to  the  sum 

of  the  areas  of  the  several  strips,  that  is,  to  the  sum  of  the  products 

obtained  by  multiplying  the  length  of  each  mid-ordinate  by  the  width 
of  one  strip,  or  to  the  product 
of  the  mean  of  the  mid-ordinates 

and  the  whole  length  of  the 

figure.  Thus,  in  Fig.  72,  let  the 

width  of  each  strip  be  repre- 
sented by  $x,  and  the  heights 

of  the  mid-ordinates  be  respec- 
tively ylt  y2,  y3,  etc.,  the  area  of 

the  portion  of  the  curve  which 

is  required  being  that  lying  Fi  72. 
between  the  values  of  x  equal 

to  Xt  and  X2  respectively.     The  area  of,  say,  the  third  strip  is  given 

y^ 

y.. 

•H 

y* 

the  area  of  the  whole  figure  =  yl  .8x  -}- ya.Bx  +  y3.  8x  +  .  .  . 

Using  the  ordinary  notation  to  express  a  sum  of  several  terms  of  the 

same  general  form,  this  becomes 

area  of  the  figure  =  2j*y  •  &» 

This  last  symbol  is  understood  to  mean  "  the  sum  of  all  terms  of  the 

form  y .  Sx  lying  between  the  values  of  x  equal  to  Xj  and  X^  i.e.  for 

which  y  is  equal  to^Xj)  and/CXs)  respectively,  where  y  =/(*)•"  It 
is,  of  course,  evaluated  by  determining  the  value  of  each  term  and 109 
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adding  the  results  together  by  the  ordinary  process  of  arithmetical 
addition. 

Now,  it  is  evident  that  this  approximate  method  of  determining  the 

area  of  the  curve  may  be  made  more  nearly  true  by  using  a  larger 

number  of  strips,  the  width  of  each  strip  being  then,  of  course,  pro- 
portionally smaller.  The  larger  the  number  of  strips  taken,  and  the 

narrower  they  become,  the  more  close  does  the  approximation  become 
to  the  true  area  of  the  curve.  It  is  not  possible,  however,  to  obtain 

the  mathematically  exact  area  of  the  curve  by  any  finite  number  of 

strips,  however  great.  If,  however,  we  imagine  the  number  of  the 

strips  to  become  infinitely  great,  and  the  width  of  each,  therefore, 
infinitely  small,  the  method  would  then  give  us  the  true  area  of  the 

curve  with  mathematical  exactitude.  We  will  now  represent  the 

infinitely  small  width  of  one  strip  by  the  symbol  dx,  keeping  the  symbol 
8a/  to  mean,  as  in  the  last  chapter,  a  small  finite  difference  in  x.  For 

the  sign  of  summation  2,  which  is  used  in  the  case  of  finite  quantities, 

we  will  now  substitute  the  sign  /,  which  is  used  in  exactly  the  same 

way  as  the  former  when  the  terms  to  be  added  together  are  infinitely 
small.  Then  we  have /•x2 

the  area  of  the  figure  =  /     y  .  dx. 
J  Xi 

fX2 

This  symbol,  I     y  .  dx,  means  simply  the  sum  of  an  infinite  number  of 
J  xi 

infinitely  small  terms  of  the  form  y  .  dx,  lying  between  the  values  of  x 

equal  to  Xj  and  X2,  i.e.  for  which  y  =  /(Xj)  and  /(X2)  respectively. 

fX2 
The  result  of  this  summation,  represented  by  I     y .  dx,  is  termed  the J  Xi 

"  integral  of  y  relatively  to  x  between  the  limits  x  =  Xt  and  x  =  X2." 
Since  this  represents  the  sum  of  an  infinite  number  of  infinitely  small 
things,  it  is  obvious  that  it  cannot  be  evaluated  by  the  ordinary 
methods  of  arithmetic.  The  process  of  evaluating  this  sum,  that  is  of 

/
X
2
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. 
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be  quite  clearly  grasped  that  integration  is  simply  and  solely  a  special 

method  of  addition,  applicable  to  a  special  case,  namely,  when  the 
quantities  to  be  added  together  are  individually  infinitely  small  and 
when  the  number  of  them  is  infinitely  great. 

Integration  the  Reverse  of  Differentiation. — Let  the  curve  in 
Fig.  73  represent  the  variation  in  the  velocity  of  a  body  relatively  to 

the  time  which  has  elapsed  from  its  starting-point.  Then  the  area  of 

/Ta 

this  curve  from  t  =  0  to  t  =  T2  will  be  measured  by  I     v .  dt.      What 

J  o 

is  the  physical  meaning  of  the  area  of  this  curve  ?  The  mean  height 

of  the  curve  v  would  represent  the  mean  velocity  of  the  body  during 
this  interval  of  time.  Now,  from  the  very  conception  of  mean  height, 
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the  area  =  v  .  T2  ;  but  the  product  of  the  mean  velocity  of  a  body  and 
the  interval  of  time  over  which  the  mean  velocity  is  measured  is  equal 

§*~  the  distance  covered  by  the  body  in  that  interval,  for 

*  =  v.t 

Hence,  we  have  that  the  area  of  the  curve,  that  is,  I   2» .  dt,  measures 
the  distance  covered,  or 

8  =  [T2v  .  dt 

But  in  the  last  chapter  we  saw  that 

_ds
 

This  example  illustrates  the  truth  of  the  fundamental  fact  that  if 
dii 

z  =  -f~  then  y  =  Jz  .  dx 

or  that  integration  is  the  reverse  of  differentiation. 

Method  of  Integration. — The  above  statement  provides  us  with 
the  basis  of  the  method  of  integration.  It  may  be  said  at 
once  that  there  is  no  direct 

method  of  integration,  the  only 
method  being,  in  effect,  to  guess 
the  result,  and  then  test  the 

truth  of  the  guess  by  diffe- 
rentiating back  again  into  the 

original  form.  This,  however, 

need  form  no  real  difficulty,  for 
an  exactly  similar  statement 

might  be  made  with  perfect  truth 

about  the  arithmetical  process  of 

division,  thus  :  There  is  no  direct  method  of  division,  the  only  method 
being  to  guess  the  result  and  then  test  the  truth  of  the  guess  by 

multiplying  back  again  into  the  original  quantity.  A  moment's  thought 
upon  the  ordinary  method  of  division  will  show  the  truth  of  this 

statement.  But  in  the  case  of  division  experience  comes  to  our  aid, 

for  having  tested  the  truth  of  the  statement  that,  say,  6  —  3  =  2,  by 
doing  the  reverse  multiplication,  3  X  2  =  6,  a  few  times,  experience 

subsequently  tells  us  that  6-4-3  =  2  with  such  certainty  that  there  is 
in  future  no  further  need  to  test  it  in  the  same  way.  Just  in  the  same 

manner  in  the  case  of  integration,  we  may  once  for  all  reverse  the 
process  of  differentiation  in  the  case  of  a  few  simple  functions,  so 

obtaining  a  series  of  "  standard  forms  of  integration "  which  may 
subsequently  be  utilized  at  all  times.  We  will  proceed  to  deduce 
a  few  of  these  standard  forms. 

Fig.  73. 
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Integration  of  x". — If  we  differentiate  xm,  we  have — 

-j  -  =  m  .  x dx 

Hence,  from  the  statement  above  (p.  Ill) 

xm  =  fm  .  xm~l .  dx 

=  m  .  fxm~l .  dx since  m  is  a  constant.     Hence 

xm 

fxm
~l 

 
,d
x=
~ 

J  m 

Now,  put  m  —  1  =  n,  so  that  m  =  n  -f  1,  then 

fx".dx=   ̂ -1 J  n  -f-  1 

Integration  of  e1. — Since 

do* 

-j-  =  «* da; 

therefore  also  /e* .  da;  =  e* 

Integration   of  -. — In   this   case,    if   we   attempt    to   apply   the 

standard  form  for  the  integration  of  xn,  given  above,  we  have 

x° 

.d
x=
Q 
 

=  co 

Upon  substitution  of  the  required  limits  in  the  manner  shown  here- 
after, this  becomes  co  —  oo  ,  which  is  indeterminate.  We  have,  how- 

ever, an  alternative  method,  for 

d(\oge  x)  _  1 
dx  x 

and  therefore  l-.dx  =  loge  x 

j  x Integration  of  Sin  x  and  Cos  x. — We  have — 
d(sin  a;) 
—3    =  cos  x dx 

and  therefore  /cos  x  .  dx  =  sin  x 
d(coa  x) 

Again,  — -J- —  =  —  sin  x 

and  therefore  /sin  x  .  dx  =  —  cos  x 

Integration  of  a  Constant. — Since d(ax) 

5         =  a dx 

therefore  also  fa  .dx  =  ax 

Integration  of  a  Sum.— Since  the  differential  coefficient  of  the 
sum  of  several  functions  is  equal  to  the  sum  of  their  several  differential 
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coefficients,  so  also  the  integral  of  the  sum  of  several  functions  must 

be  equal  to  the  sum  of  their  several  integrals.     Thus,  if 

y  =  u  +  v  —  w 
then  /#  .  dx  =  fu .  dx  +  /c  .  dx  —  fw  .  dx 

Definite  Integration. — The  above  standard  forms  give  simply  the 
form  of  the  general  integral  corresponding  to  a  given  function,  or  the 

"indefinite  integral,"  as  it  is  called.  Referring  again  to  Fig.  72, 
the  indefinite  integral  gives  the  general  equation  of  the  curve  which 

would  be  obtained  by  plotting  the  areas  of  the  given  curve  up  to 
various  ordinates  with  the  corresponding  values  of  x.  If  the  value 

X,  were  substituted  for  x  in  this  expression,  the  result  would  express 
the  area  of  the  curve  between  the  axis  of  Y  and  the  vertical  straight 

line  x  =  Xv  Similarly,  if  X2  were  substituted  for  x,  the  result  would 

give  the  area  of  the  curve  between  the  axis  of  Y  and  the  vertical 
straight  line  x  =  X«.  The  area  of  the  curve  between  the  vertical 

straight  lines  x  =  Xx  and  x  =  Xo  would  obviously  be  given  by  the 
difference  between  the  two  results  thus  obtained.  But  this  area  would 

rx, 

y- 

Jx, 
be  that  given  by  the  definite  integral  I      y  .dx.     Hence  to  convert  an 

J  X, 
indefinite  integral  into  the  corresponding  definite  integral  between  the 

limits  Xt  and  X.,,  these  limits  must  in  turn  be  substituted  in  the  in- 
definite integral,  and  the  results  so  obtained  subtracted  from  each 

other.  That  is,  expressing  the  method  symbolically,  if 

then  Jxy.dx-F(X2)-F(X1) 

EXAMPLES  ON  INTEGRATION. — (1)  Evaluate  the  expression — 

/•* 
I  (x2  —  2x  +  Jx) .  dx 
J  2 

Here  the  general,  or  indefinite  integral — 

J(x2  -  2x  +  Jx)  .  dx  =  Jx2  .  dx  -  2  fx  .  dx  +  Jx* .  dx 

3?          2x2
  rr =  3~~2~+I 

---      2  +  -X? 

Then,  substituting  the  limiting  values  of  x,  namely  2  and  5,  we  have — 

f  V  -  2*  +  V^)  •  dx  =  If  -  52  +  |  x  (5)?}  -  (|3  -  2«  +  |  x  (2)1} 
J  t 

=  41-67  -  25-00  +  7-46  -  2'67  +  4-00  -  1'89 
=  23-57 

which  is  the  required  result. 
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(2)  Prove  that  the  area  of  a  parabola  is  two-thirds  of  that  of  the  circiun- 
scribing  rectangle. 

Consider  the  parabola  given  by  the  equation  y  =  x*  (Fig.  74).  When 
x  =  L,  let  y  —  H,  so  that  H  =  N'L. 

Imagine  that  the  figure  is 
divided  up  into  a  number  of  strips 
each  of  width  Sx,  one  of  which  is 
shown  in  the  figure,  the  mean 
height  of  any  one  being  repre- 

sented by  y.  Then 

the  area  of  the  figure  =  ̂   y  .  Sx 

or,  in  the  limit  when  the  number 
of  strips  becomes  infinitely  large, 

But 

Therefore 

y  = 

which  proves  the  required  statement.     Note,  that  after  integration  the 
general  form  of  the  indefinite  integral  is 
written  between  square  brackets,  and  the 
limits  written  outside  the  bracket  to  the 

right. 
(3)  Find  an  expression  for  the  Second 

Moment,  or  "  Moment  of  Inertia  "  (I),  of  a 
triangle  about  its  base. 

Fig.  75.  Let  the  length  of  the  base  of  the  triangle 
be  B,  and  its  vertical  height  be  H  (Fig.  75). 

Consider  the  shaded  strip  of  thickness  Sh  and  length  b,  drawn  parallel 
to  the  base.     Its  area  is  equal  to  6  .  Sh. 

But 
H-fc 

=  =         or  b  = 

B(H  - 

H 

Then  the  area  of  the  strip  =     ̂   „ — ' .  Sh. H 

The  moment  of  inertia  of  this  strip  about  the  base  is  its  area  multiplied 
by  the  square  of  its  distance  from  the  base. 

i.lrlp  = .Sh.h* 
But  the  moment  of  inertia  of  the  whole  triangle  is  equal  to  the  sum 
of  the  moments  of  inertia  of  all  the  strips  of  which  it  is  supposed  to 
be  formed. 

Then i=s"B(H  -*>•*.» o  ±1 
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Then,  in  the  limit,  when  Sft,  the  thickness  of  the  strip,  becomes  infinitely  small, 
this  expression  becomes — 

T  _  /•"  B(H  -  ft)  .  h* ~Jo  * 
dh 

rH          B  rH 
=  Bl  W.dh-  gl   ft3.dft 

[ft3!"    B 

LsJo  " BH3 
BH3  _  BH3 3  4 

BH3 (4)  The  rate  of  flow  of  water  through  an  orifice  in  the  bottom  of  a  tank, 
Q  cubic  feet  per  second,  is  given  by  the  expression — 

Q  =  K .  a .  */2gh 
where  a  is  the  area  of  the  orifice  in  square  feet ; 

ft  is  the  head  of  water  above  the  orifice  at 

any  instant ; 
£  is  a  coefficient  of  discharge. 

Find  the  time  required  to  lower  the  level  of 

water  in  a  vertical  sided  tank,  of  area  10  square      *    * 
feet,  from  8  feet  to  3  feet,  through  an  orifice  in 
the  bottom  of  the  tank,  whose  area  is  01  of  a 

square  foot,  K  being  0'62. 
Let  the  level  of  the  water  be  lowered  by  an 

amount  Sft  feet  in  tit  seconds  (Fig.  76).     Then  a 
volume  of  water  equal  to  108ft  cubic  feet  flows  away  in 
of  the  surface  being  10  square  feet,  or  the  rate  of  flow, 

10.  Sft 

Fig.  75. 

seconds,  the  area 

But 
Q  =  K  .  a  .  J2gh  =  0'62  x  01  x 

=  0-062  x  8-02  x  ft* 

=    - 
Equating  these  two  expressions  for  Q,  we  have  — 

0.497ft*  = 

=  20-15ft~i.8ft 
Then  the  total  time  to  lower  the  level  of  the  water  is  given  by 

T  =  28*  =  2015  2V*.  8ft 3 
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CTpon  proceeding  to  the  limit  when  the  quantity  8ft  becomes  infinitely  small, 
we  have — 

T  =  20-15 

=  20-15 

=  20-15  x  2(V8  - 
=  40-3  x  (2-828  -  1-732) 
=  40-3  x  1-096 
=  44'2  seconds. 
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1560 

1493 

1528 
1563 

1496 

1531 1567 

1500 

1535 
1570 

1503 
1538 

1574 

1507 
1542 

1578 

1510 
1545 
1581 

Oil 
Oil 
Oil 

122 
1      2     2 
122 

233 
233 

333 

20 1585 1589 1592 1596 1600 1603 1607 

1611 1614 1618 Oil 
122 

333 •21 •22 
•23 1622 

1660 
169S 

1626 
1U63 

1702 

1629 
1667 

1706 

1633 

1671 
1710 

1637 
1675 

1714 

1641 1679 

1718 

1644 1683 
1722 

1648 1687 

1726 

1652 
1690 

1730 

1656 

1694 

1734 

Oil 
Oil 

0  1  1 

222 

222 
333 

333 

333 
334 •24 •25 •26 1738 

1778 
1820 

1742 
1782 

1824 

1746 

1786 
1828 

1750 
1791 
lJ-32 

1754 
1795 
1837 

1758 1799 

1841 

1762 
1803 

1845 

1766 
1807 

1849 

1770 
1811 
1854 

1774 1816 

185« 

Oil 
Oil 
Oil 

222 

223 223 
334 
334 
334 •27 

•28 •29 
1862 

1905 
1950 

1366 

1910 

1954 

1871 

1914 
1959 

1875 

1919 
1963 

1879 

1923 

1968 

1884 
1928 

1972 

1888 
1932 1977 

1892 1936 

1982 

1897 

1941 
1986 

1901 1945 
1991 

0  1  1 
Oil 
Oil 

223 
223 
223 

334 
3      4      4 

344 •30 
1995 2000 2004 

2009 2014 2018 2023 2028 2032 
2037 0  1  1 223 

344 •31 •32 •33 2042 •2089 

2138 

2046 
2094 
2143 

2051 
2099 

3148 

2056 
2104 

2153 

2061 2109 
2158 

2065 
2113 

2163 

2070 

2118 
2168 

2075 
2123 

2173 

2080 

2128 
2178 

2084 2133 

2183 

Oil 
Oil 
Oil 

233 

223 
233 

344 

344 
344 •34 •35 •36 2188 

2239 

2291 

2193 

2244 
2296 

2198 
2249 

2301 

2203 

2254 
2307 

2208 

2259 2312 

2213 
2265 

2317 

2218 2270 
2323 

2223 
2275 
2328 

2228 
2280 
2333 

2234 
2386 
2339 

113 
112 
112 

333 
333 

333 

4            5 
4             5 
4            5 •37 

•38 

39 

2344 
2399 

2455 

2350 
2404 
2460 

2355 
2410 
2466 

2360 

2415 

•2472 
2366 
2421 2477 

2371 2427 

2483 

2377 

2432 
2489 

2382 2438 

2495 

2388 
2443 
2500 

2393 2449 

2506 

112 
112 

112 

233 

233 
233 

4             6 
4             5 
455 •40 

2512 2518 2523 2529 2535 
2541 

2547 
2553 3559 

3564 

112 
234 

455 •41 
•42 •43 2570 

2630 
2692 

2576 
263C 
2698 

2582 

2642 

2704 

2588 2649 

2710 

2594 
2Co5 

2716 

2600 

2661 
2723 

2606 2667 

2729 

3612 2673 

2735 

2618 
2679 

2742 

2624 
2685 
2748 

112 
112 

112 

334 
334 

334 

455 
466 
466 

•44 •45 •46 2754 
2818 
2884 

2761 
2825 
2891 

2767 

2831 
2897 

2773 
••>38 

2904 

2780 

2844 

2911 

2786 

2X51 
2917 

2793 

2358 

2924 

2799 

2864 

2931 

2805 
2871 
2938 

2812 

2877 

2944 

112 
112 
1  1  2 

334 
334 
334 

466 
666 

556 •47 •48 

49 

295 
3020 

3090 

2958 
3027 
3097 

2965 
3034 
3105 

2972 
304 

3112 

2979 

3048 3119 

2935 

3055 
3126 

2992 
3062 
3133 

2999 

3069 

3141 

3006 

3076 
3148 

3013 

3083 
3155 

113 
112 
112 

334 
344 

344 

5      5      G 
666 
566 



TABLES  1  j  i 

TABLE  OF  FOUK-FIGUKE  ANTILOGARITHMS— continued 

0 1 2 3 4 5 6 7 8 9 1  2  3 466 789 

50 3162 3170 3177 3184 3192 3199 3206 
3214 

3221 3228 

•51 •52 •53 
3236 

3311 

3388 

3243 
3319 

3396 

3251 

3327 
3404 

3258 :i:i3 

3412 

3266 

3342 
3420 

3273 
3350 

3428 

3281 3357 

3436 

3289 

3365 
3443 

3296 3373 

3461 

3304 
3381 
3459 

2     1 
2     2 
2     2 

346 

346 

346 

667 

6     6     7 667 

64 
55 •56 

3467 
3548 
363 

3475 
3556 

3639 

3483 
3565 
3648 

3491 
:!.~.73 

3656 

3499 

3581 
3664 

3508 3589 

3673 

3516 
3597 

3681 

3524 
3606 
3690 

3533 

3614 
3698 

3540 3622 

3707 

2     3 
2     3 
3     3 345 

677 

•57 •58 •59 
3715 
3802 

389.) 

3724 
3811 
3899 

3733 
3819 

3908 

3741 
3828 
3917 

3750 
3837 

3926 

3758 
3846 
3936 

3767 

3855 

3945 

3776 

3864 

3954 

3784 3873 

3963 

3793 
3M8J 

3972 

123 
123 

123 

345 

4    4     S 
466 

6     7     « 
678 

III 

•60 3981 3990 3999 4009 4018 4027 4036 4046 4055 4064 123 456 
678 

•61 •62 •63 

4074 
4109 

4266 

4083 
4178 
4276 

4093 
4188 

4285 

4102 
4198 

4295 

4111 4207 

4305 

4121 
4217 
4315 

4130 
42*7 

4325 

4140 
4236 

4335 

4150 

4246 
4345 

4159 
4256 

4355 

1     2     3 
1     3     3 
1     2     3 

456 
466 
466 

7     8 
7     8 

7     8 

•64 •65 •66 

4365 
4467 

4571 

4375 
4477 

4581 

438r> 
4487 
4592 

4395 
4498 
4603 

4406 

4508 
4613 

4416 
4519 

4624 

4426 
4529 

4634 

4436 
4539 

4645 

4446 
4550 

4656 

4457 

4560 
4667 

1     2     3 
1     2     3 
1     2     3 

6     6 
6     6 
6     6 

7     8 

7       K 7     9    10 
•67 •68 •69 

4677 
4786 

4898 

4688 

4797 
49o9 

4699 
4808 

4920 

4710 
4819 

4932 

4721 
4831 
4943 

4732 
4842 
4955 

4742 
4853 

4966 

4753 

4864 

4977 

4764 4875 
4989 

4775 
4887 

5000 

1     2     3 
1     2     3 
123 

6     7 

6     7 

8      9    10 
8      9    10 

70 5012 5023 5035 5047 5058 5070 5082 
5093 5105 6117 

1     3     4 667 8     9    11 

•71 •72 •73 

5129 

5248 
537U 

5140 
5260 

5383 

5152 
5272 
5395 

5164 
5284 

5408 

5176 
5297 

5420 

5188 5309 

S433 

6200 

5321 
6445 

5212 6333 
6458 

6224 
6346 6470 

5236 

5358 

5483 

I     2     4 
134 

1     3     4 

667 
667 

668 

8  10    11 

10    11 
10    11 

•74 
75 76 

5495 
5623 

5754 

5508 
5K36 

5768 

5521 
5649 

5781 

5534 

56B2 
5794 

5546 
5675 

6808 

55C9 

5689 
5821 

5572 

5702 
5834 

5585 

5715 
6848 

5598 

5728 
5861 

5610 

5741 
5876 

1     3     4 
1     3     4 
134 

668 

678 
578 

10    I-J 

10    1] 
11    13 

•77 •78 •79 

5888 
6026 
6166 

5902 
6039 

6180 

r,9:t; 
6053 

6191 

5929 
6067 

6209 

5943 
6081 

6223 

5957 
6095 

6237 

5970 
6109 
6252 

6984 

6124 
6266 

5998 
6138 

6281 

6012 
6152 
6295 

1     3     4 
1     3     4 

578 
678 

10    11    12 
10    11    13 
10    11     13 

10    13    13 •80 6310 6324 6339 6353 
6368 6383 6397 6412 6427 

6443 
134 6    7     9 

81 •82 

83 

6457 

6607 

uiul 

6471 
6622 

6776 

6486 
6637 

6792 

6501 

6653 
6808 

6516 

6668 6823 

6531 

6683 
6839 

6546 6699 

6855 

6561 

6714 

(871 

6577 

6730 
6887 

6592 

6745 
OJ02 

235 
235 
236 

689 
689 

689 

11    13    14 
11    13    14 
11    13    14 

•84 •85 
86 

6918 
7079 

7244 

6934 
7o96 

7261 

6950 
7112 
7278 

6966 
7129 

7295 

6982 

7145 

7311 

t:sy« 

7161 

7328 

7015 

7178 
7345 

7031 

7194 
7362 

7047 
7211 
7379 

7063 

7228 7396 

235 
236 

236 

6     8  10 

7     8   10 
7     8  10 

11    13    16 
12    13    16 

12    13    15 

•87 •88 •89 

7413 
7586 
7762 

7430 

7603 
7780 

7447 
7621 
7793 

7464 
7638 
7816 

7482 

7656 
7834 

7499 

7674 
7852 

7516 
7691 
7870 

7534 
7709 
7869 

7651 
7727 
7907 

7563 

7745 

7925 

236 
245 
246 

7     9  10 
7     9  11 

7    9  11 

12    14    16 
12    14    16 
13    14    16 

•90 7943 7962 7980 7998 8017 8035 
8054 

8072 
8091 8110 

13    15    17 

91 •92 
93 

8128 

8318 

8511 

8147 
8337 
8531 

8166 

8356 

8551 

8185 

8375 
8570 

8204 

8395 
8590 

8222 
8414 
8610 

8241 
8433 

8630 

8260 8453 

8650 

8279 
8472 

8670 

8299 

8492 

Si.ao 

246 
246 
246 

8     9   11 
8  10  12 

8  10  12 

13    16    IT 
14    15    17 
14    16    !• 

•94 •95 •96 

8710 

8913 
9120 

8730 

8933 

9141 

8750 

8954 
9162 

8770 

8974 
9183 

8790 

8995 

9204 

8810 

9016 
9226 

8831 MM 

9^47 

8861 

9057 
9268 

8872 
9078 
9290 

8892 

.'  '.-'J 
9311 

246 
246 
246 

8  10  11 
10  11 11    13 

14    16    18 
15    17    19 

15    17    It 

•97 
98 99 

9333 
9550 
9772 

9354 
9572 
9795 

9376 

9f,94 
9417 

9397 
9616 

9840 

9419 
9)138 
9863 

9441 

9661 9886 

9462 

96*3 9908 

9484 
9705 
9931 

9606 

9727 

MM 
9528 
!«::.u 

9977 

247 
347 
267 

11    13 11   13 
11    14 

15    IT    M 

16   18   30 
16   U   tt 



122 PRACTICAL  CURVE  TRACING 

TABLE   OF   SINES 

0' 

5' 
10' 

15' 

20'
 

25' 

30' 35' 
40' 

45' 
50' 

55' 

1 2 3 4 

0° 

0000 0015 0029  i  0044 0058 0073 
0087 0102 0116 0131 0145 0160 3 6 9 12 

1 0175 0189 0204  0218  0233 0247 
0262 

0276 
0291 0305 0320  0334 3 6 9 12 

2 0349 0364 0378  0393  '0407 0422 0436 0451 
0465 0480 0494;  0509 3 6 9 12 

3 0523 0538 0552  0567  0581 0596 0610 0625 0640 0654 0669  0683 3 6 9 

12 
4 0698 0712 0727 0741 0756 0770 0785 0799 0814 0828 0843 0857 8 6 9 12 

5 0872 0886 0901 0915 0929 0944 0958 0973 0987 
1002 1016  1031 3 6 9 12 

6 1045 1060 1074 1089 1103 1118 1132 1146 1161 1175 
1190  1204 3 6 9 12 

7 1219 1233 1248 1262 1276 1291 1305 1320 1334 1349 1363  1377 3 6 9 

12 
8 1392 1406 1421 1435 1449 1464 1478 

1492 
1507 1521 1536 1550 3 6 9 

12 
9 1564 1579 1593 1607 1622 1636 1650 1665 1679 1693 1708 

1722 
3 6 9 12 

10 1736 1751 1765 1779 1794 1808 1822 
1837 1851 1865 1880 1893 3 6 9 

12 
11 1908 1922 1937 1951 1965 1979 1994 2008 

2022 
2036 2051 2063 3 6 9 11 

12 2079 2093 2108  2122  !  2136  2150 2164 2179 2193 
2207 

2221  2235 3 6 
9  11 13 2250 2264 2278  2292  2306  2320  2334  2349 2363 2377 

2391  2405 3 6 S  11 
14 2419 2433 2447 2462 2476 2490 2504 2518 2532 2546 2560  2574 3 6 

3  11 

15 2588 2602 2616 2630 2644 2658 2672 2686 2700 2714 2728  2742 3 6 8  11 
16 2756 2770 2784  2798 2812 2826  2840  2854 

2868 
2882  2896  2910 3 6 8  11 

17 2924 2938 2952  2965  ;  2979 2993  3007  3021 3035 3049  3062  3076 3 6 8  11 
18 3090 3104 3118 3132 3145 3159 3173 3187 3201 3214 3228  3242 3 6 8  11 
19 3256 3269 3283 3297 3311 3324 3338 3351 3365 3379 3393  3406 3 5 8 11 

20 3420 3434 3448 3461 3475 3488 3502 3516 3529 3543 3557  3570 3 5 S 11 
21 3584 3597  3611 3624 3638 3651 3665  3679 

3692 3706 3719  3732 3 5 8 11 
22 3746 3760  3773  3786  \  3800  3813 3827  !  3840 3854 

3867 3881  3894 3 5 8 11 
23 3907 3921 3934 3947 3961 3974 3987  4001 4014 4027 4041  4054 3 5 8 11 
24 4067 4081 4094 4107 4120 4134 

4147 4160 4173 4187 4200 4213 3 5 8 11 

25 4226 4239 4253 4266 4279 4292 4305 4318 4331 4344 
4357 

4370 3 5 8 11 
26 4384 4397 4410 4423 4436  4449 4462  4475 4488 

4501 4514 
4527 

8 5 8  10 
27 4540 4553 4566  4579  4592  •  4605 4617  '4630 4643 4656 

4669  ;  4681 3 5 S  10 

28 4695 4708 4720:4733  4746  |  4759 4772  4784 
4797 4810 

4823  '  4835 
3 5 

8  10 

29 4848 4861 4874 4886 4899 4912 4924  4937 4950 
4962 

4975 4987 
3 5 8  10 

30 5000 5013 5025 5038 5050 5063  5075  5088 5100 5113 5125  5138 3 5 

slio 

31 
5150  !  5163  '5175  5188  '  5200  5213  5225  5237 5250^5262  5275  5287 2 5 

7  10 

32 5299  i  5312;  5324 5336  5348  5361  5373  5385 5398  5410  5422  5434 

•2 

5 7  10 

33 5446 5459 5471 5483  5495  5507 5519  5531 5544 5556 
5568  5580 

•2 

5 
7  10 

34 5592 5604 5616 5628 5640 5652 5664 5676 5688 5700 
5712  5724 2 5 7 10 

35 5736 5748 5760 5771 5783 5795 5807  5819 5831 5842 
5854  5866 2 5 7 9 

36 5878:5890  5901 5913  5925  5937  5948  5960 5971  5983  5995  6007 2 5 7 9 
37 6018  6030  6041 6053  606516076  6088  6099 6111  6122 6134 

6145 
2 5 7 9 

38 
6157  6168  6180  '6191  6202  6214  6225  6237 

6248 6259 
6271 6282 2 5 7 9 

39 6293  6305  6316 6327 6338  6350 6361  6372 6383 6394 6406 
6417 

2 4 7 9 

40 6428  6439  6450  6461 6472  6483  6494  6506 6517 6528 6539 6550 2 4 7 9 
41 6561  6572  6583  6593  6604  6615  6626  6637 6648 6659 6670 6681 2 4 7 9 
42 6691  6702  6713 6724  6734  6745  6756  6767 

6777  :  6788  '  6799  6809 
2 4 6 9 

43 6820  6831  6841 6852  6862  6873  6884  6894 6905  6915  6926  6936 2 4 G 9 
44 6947 6957 6967 6978 6988 6999 

7009  j  7019 7030 7040 7050 
7061 

2 4 6 8 



TABLES 123 

TABLE   OF   SINES— continued 
0*
 

5' 
Iff 

15' 

20' 
25' 

30' 
35' 

40' 
45' 

W 

55' 

1 23 

45° 
7071 7081 7092 7102 7112 7122 7133 7143 7153 7163 7173 7188 1 

46 

46 7193 7203 7214 7224 7234 7244  7254  7264 7274 7284 7294 7304 1 4  6 
47 7314 7323 7333 7343 7353 7363  7373  7383 7392  7402 7412 7422 

•2 

4  6 
48 7431 7441 7451 7461 7470  7480  7490  7499 7509 7518 

7528 7538 1 4  6 
49 7547 7557 7566 7576 7585 7595 7604 7613 7623 7632 7642 7651 1 

4  6 

50 7660 7670 7679 7688 7698 
7707  7716 

7725 7735 7744 7753 7762 1 
4  6 51 7771 7781 7790  7799 7808 

7817i  7726 
7735 7744 7753 

7862  7871 a 4  o 
52 7880 7789 7898  7907 7916 7925  7934  7942 7951 7960 7969  7978 

•2 

4  5 

53 7986 7995 8004  8013 8021 8030  8039!  8047 8056 8064 
8073 

8081 1 3  5 
54 8090 8099 8107 8116 8124 8133 

8141  8150 8158 8166 8175  8183 a 
8  5 

55 8192 8200 8208  8216 8225 8233  8241  1  8249 8258 8266 8274 
8282 

•i 

3  5 
56 8290 8299 8307  8315 8323  8331  8339  8347 8355  8363 8371  8379 

•2 

3  5 57 8387 8395 8403  8410 8418  18426  8434  8442 8450  8457  8465  8473 

•2 

3  5 
58 8480 8488 8496  8504 8511 8519  8526  8534 8542  8549  8557 8564 

•2 

3  5 59 8572 8579 8587 8594 8601 8609  8616  8624 8631 8638 8646 
8653 

1 
3  4 

60 8660 8668 8675 8682 8689 
8696  8704 8711 8718 8725 8732  8739 1 

3  4 61 8746 8753 8760 8767 
8774  8781  8788  j  8795 

8802  8809 
8816  8823 1 

3  4 62 8829 8836 8843  '8850 8857  8863  8870;  8877 8884 8890 8897  8903 1 3  4 
63 8910 8917 8923  8930 8936  8943  8949  8956 

8962  8969 
8975  8982 1 

3  4 64 8988 8994 9001 9007 
9013  j  9020 

9026  9032 9038 9045 9051 
9057 1 

3  4 65 9063 9069 9075 9081 9088  9094 9100  9106 
9112 9118 9124 9130 1 

66 9135 9141 9147  9153 9159  9165  9171  9176 9182  9188 9194  9199 1 
2  3 67 9205 9210 9216  9222 9228!  9233 92391  9244 9250  9255 9261 9266 1 
2  3 68 9272 9277 9283  9288 9293  9299 9304  9309 9315  9320 

9325 9831 
1 

•2  3 

69 9336 9341 9346 9351 9356 9362 
9367 9372 9377 

9382 
9387 9392 

1 

2  3 70 9397 9402 9407 9412 9417 9422 9426 9431 9436 9441 9446 9450 
1 2  3 

71 9455 9460 9465  9469 9474  9479  9483 9488 9492 9497 
9502 9506 1 

2  3 

72 9511 9515 9520  9524 9528  9533  9537 9542 9546  9550  \  9555  9559 
1 

•2  3 

73 9563 9567 9571  9576 9580  9584  9588 9592 9596  9600 9605  9609 1 
2  2 

74 9613 9617 9621 9625 9628  9632  9636 9640 9644 9648 9652 9655 1 

75 9659 9663 9667 9670 9674  9678  9681 9685 9689 9692 9696  9699 
1 

1  -2 

76 9703 9706 9710  9713 9717  9720  9724  9727 9730 9734 9737  9740 1 

1  -2 

77 9744 9747 9750  9753 9757  9760  9763  9766 9769  9772 9775 9778 
1 1  2 

78 9781 9784 9787  9790 9793  9796  9799  9802 9805 9808  9811 
9818 1 

1  2 

79 9816 9819 
9822  '9825 

9827 9830 9833 9835 
9838 9840 9843 9846 

1 

1  -2 

80 9848 9851 9853  9856 9858  9860  9863 9865 9868 9870  9872  9875 0 
1  1 81 9877 9879 9881  9884 9886  9888 9890  9892 9894  9897  9899  9901 0 1  1 

82 9903 9905 9907  9909 9911  i  9913 9914  9916 9918  9920  9922  9924 0 1  1 
83 9925 9927 9929  9931 9932  9934 9936 9937 9939 9941 QMS 

'.-•.<  1  1 

0 1  1 
84 9945 9947 9948  9950 9951  9953 9954 9955 

9957 
9958 9959 9961 0 1  1 

85 9962 9963 9964  9966 9967  9968 9969 9970 9971 
9978 

9974 9975 
0 

86 9976 9977 9978  9979 9980  9980  9981 
08BS 9983 

<  J<1^  1 

nwv 9985 0888 

11 

0  1 87 9986 9987 9988  9988 9989  9990  9990  9991 9992 9992 0080 0000 o 0  0 
88 9994 9994 9995  9995 9996  9996  9997 9997 8081 

OQ9G 
»  J<  1'  !-* 

«f«F«fO 
0000 0 
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STANDARD   FOEMS 

9 

dy 

dx 

fy  .  dx 

xn n  .  xn~l
 

x"+l 

n  +  1 

ez 

e* 

e1 

a* 

a*  .  loge  a 

a* 

loge  « 

loge  a; 
1 

x 

10ga  iC 

1  log*  « 1 
X loge  a; 

sin  x cos  a; 
—  COS  X 

cos  x 
—  sin  # 

sin  a; 

tan  x 
sec2  a; loge  (sec  *) 

cot  x —  cosec2  x 
loge  (sin  x) 

sec  x sec  a;  .  tan  x 

cosec  x —  cosec  a;  .  cot  x 



EXAMPLES 

CHAPTER  I 

1.  Plot  the  following  points:— (5,  3);   (-3,  4);   (2,    -6);   (0"5,  2'3)- 
(-4-7,  -3-6);  (3-5,  -27);  (4'2,  5'9);  (0,  -2'8);  (-7-1,  5'3);  (-3-2,  -3'2); (51,  0). 

2.  Two  points,  A  (5'7,  2'3)  and  B  (-2'5,  -4'8),  are  joined  by  a  straight 
line.     Find  the  co-ordinates  of  the  middle  point  of  this  line. 

3.  Plot  the  three  points,  A  (-5'2,  4'3),  B  (6'2,  0),  and  C  (0'4,  4'5),  and 
from  A  draw  a  straight  line  perpendicular  to  BC,  and  meeting  it  at  D.   Find 
the  co-ordinates  of  the  point  D. 

4.  With  the  point  (5, 3)  as  centre,  and  radius  equal  to  7,  describe  a  circle. 
What  are  the  co-ordinates  of  the  points  at  which  this  circle  intersects  the 
axes  of  X  and  of  Y  ? 

5.  The  two  variables  x  and  y  are  connected  by  the  equation 

*2  +  3xy  -  5t/2  =  0 

Express  this  relationship  in  the  form 

y  =./(*)       , 

CHAPTER  II 

1.  In  an  experiment  on  a  three-sheave  pulley-block,  an  effort,  E  Ibs.,  was 
found  to  be  necessary  to  lift  a  load  of  L  Ibs.  Plot  the  curve  connecting  L 
and  E,  and  find  by  interpolation  the  efforts  necessary  to  lift  loads  of  150  and 
350  Ibs.  respectively. 

L.  . 0 56 
112 

214 
319 424 536 Ibs. 

E.  . 8 21 
36 61 

86 116 140 Ibs. 

2.  A  tension  test  of  a  specimen  of  brass  gave  the  extensions  shown  in  the 
table  below  for  the  corresponding  loads.  Plot  the  curve  connecting  load  and 
extension,  and  deduce  the  probable  extensions  for  loads  of  1500  and  2500  Ibs. 
respectively. 

Load    .... 0 950 1200 1500 1800 2100 2400 2670     Ibs. 

Extension     .     . o-oo 0-03 0-17 0-42 0-82 
1-39 2-19 

8-18  j  ins. 

3.  The  strength  of  struts  of  the  same  section  and  material  depends  upon 
their  length.     A  series  of  struts  were  tested  and  gave  the  following  results. 

125 
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Plot  a  curve  showing  the  relation  between  the  length  of  a  strut  and  its 
strength,  and  find  by  interpolation  the  probable  strength  of  similar  struts 
18  and  43  feet  long  respectively. 

Length  in  feet  .         10 15 
20 

25     i     30 35 

40 

45 

50 

Strength  in  tons        100 
44-5 25-0 

16-0  1  11-1 
8-2 6-3 

4-9 4-0 

4.  The  population  of  the  United  Kingdom  at  each  census  for  the  last 

eighty  years  is  given  in  the  table  below.  Plot  a  curve  showing  the  variation 

of  the  population,  and  from  it  obtain  the  probable  population  in  the  years 
1847  and  1883. 

Year     .... 1821 1831 1841 1851 1861 1871 1881 1891 1901 

Population    in  > 
millions         $ 20-89 24-03 26-71 27-37 28-93 31-48 34-48 

37-73 41-46 

5.  Plot  the  curves  y  =  3a;2  —  4  and  y  =  2x  +  1,  and  find  their  points  of 
intersection. 

Plot  the  following  curves  : — 

6.  y  =  31  >/«.  7.  y2  +  2xy  -  3x2  =  0. 
8.  y  =  (2-S)3*.                                          9.  a;2  +  y*  =  16. 

CHAPTER    III 

Plot  the  values  of  x  and  y  given  in  the  tables  below,  and  measure  the 
slopes  of  the  resulting  lines  and  their  intercepts  upon  the  axis  of  Y. 

1. 

2. 

3. 

4. 

Draw,  without  actual  plotting,  the  straight  lines  given  by  the  equations- 

5.  y  =  3x  +  7.  6.  y  =  18  -  I2x. 
7.  y  =  0-12*  -  314.  8.  2x  +  3y  -  5  =  0. 
9.  x  =  0-75|/  +  2-16.  10.  x  -  2y  =  3. 

X       .      . 0 2 468 

10 

y    •   • 
0 

4-2 8-4          12-6         16-8 

21-0 
X       .       . 3 5 

17 

9 11 

y    •   • 0-2 0-8 1-4 
2-0 2-6 

X       .      . 10 
20 

30 
40 50 

y    •   • 
400 650 

900 
1150 1400 

X       .      . 0-5 1-0 
1-5 2-0 

2-5 

y   •   - 

5-25 4-50 3-75 3-00 
2-25 
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11.  The  figures  in  Example  1  in  Chapter  II  are  connected  by  a  law  of 
the  form 

L  =  aE  +  b 

Find  this  law. 

12.  H  is  the  total  heat  of  evaporation  of  steam  at  a  temperature  t°  P. 
Plot  the  values  of  H  and  t  given  below,  and  from  your  curve  deduce  an 
expression  for  H  in  terms  of  t. 

t  .  . 102 153 202 250 
299 

350 
401 

°F. 

H  .  . 1113 1129 1143 1158 
1178 1189 1204 

B.T.U. 

13.  The  elastic  extensions,  e",  of  a  specimen  of  mild  steel  corresponding 
to  loads  of  W  tons  are  given  in  the  table  below.  Determine  the  relationship 
between  the  load  and  the  extension  it  causes,  and  hence  calculate  the  probable 
extension  for  a  load  of  9'3  tons. 

Load,  L  tons  .     .    «t            0 1 2 3                4 5 

Extension,  e"  .     .     . 
0-0009 0-0020 0-0029 

0-0039       0-0050 oooeo 

Load,  L  tons  .     .     . 6 7 8 9 
10 

11 

Extension,  e"  .     .     . 
0-0069 0-0081 0-0090 0-0100 0-0111 0-0121 

14.  The  weight  of  steam  used  per  minute  by  a  certain  engine  when  tested 
under  varying  load  is  given  in  the  table  below.  Plot  a  curve  connecting  the 

steam  consumption  and  the  indicated  horse-power,  and  find  an  equation 
expressing  the  relationship  between  these  two  quantities. 

I.H.P.      .     .     . 
17-2 15-0 13-3 11-9 

8-5 5-1 
2-2 

Weight  of  steaml 
per  minute       / 10-93 10-00 

9-00 8-33 
6-57 5-03 

3-20 

Ibs. 

Also  plot  the  curve  connecting  the  consumption  per  I.H.P.  hour  with 
the  power,  and  deduce  its  equation. 

CHAPTER  IV 

1.  Plot  the  following  quartic  parabolas : — 

(a)  y  =  2x4.  (6)  y  =  2x*  +  100. 
(c)  y  =  2x4  +  50x  +  100.  (d)  y  =  2at  +  20x8  +  50x  +  100. 

Plot  the  parabolic  curves  given  by  the  following  equations  : — 

2.  y  =  -2-Lc3.  3.  y  =  O'Olx6  -  300. 

4  y  =  *°-3. 
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X   ... 0 1 2 3 4 5 

y  •  •  • 0 3-40    11-83 24-51 
41-05 

61-55 

X   ... 0 
1-00 1-25 

1-50 1-75 
2-00 

y  .  .  . 0 121 267 
499 860 1360 

Find  the  equations  of  the  parabolic  curves  obtained  by  plotting  the 
following  sets  of  values  of  x  and  y :  — 

5. 

ft 

7. 

8. 

9. 

10. 

x     .    .    . 0 

2-00 6-50 

I     12-94 
21-08 30-82 

y 0 

1-00 2-00 3-00 4-00 
5-00 

x     ... 0 1 2 3 4                5 

y    .    .    .    ;     3-10 

2-60 
0-85 

1-91 

6-02          11-60 

a;     ...            0 2 4                6 8 10 

y    •   •    . 
24-3 34-7 

62-1            91-6 

134-3 184-4 x    .    . 0-0     j    0-3 0-6          1-0          2-0 3-0 
4-0 

5-0 
y  -  • 8-30      11-58 15-22      20-50      35-44 52-50 71-45 92-21 

11.  Determine,  without  plotting,  the  co-ordinates  of  the  vertex  of  the 
parabola 

y  =  2x-  —  4#  —6 
12.  A  beam  100  feet  long  rests  on  two  supports  60  feet  apart,  placed 

symmetrically.     The   central  span  carries  a  uniformly  distributed  load  of 

2  tons  per  foot  run,  the  left-hand  outer  span  a  uniformly  distributed  load  of 
1^  tons  per  foot  run,  and  the  right-hand  outer  span  one  of  1  ton  per  foot  run. 
Determine  the  position  and  magnitude  of  the  maximum  bending  moment  on 
the  middle  span. 

CHAPTER  V 

1.  A  gas  expands  from  a  pressure  of  150  Ibs.  per  square  inch,  absolute, 
to  atmospheric  pressure,  according  to  the  law 

jppi-si  _  a  constant 

Plot  the  curve  of  expansion,  the  initial  volume  being  1  cubic  foot. 
2.  The  values  of  the  pressure  and  volume  during  the  expansion  stroke  of 

the  gas-engine,  the  curve  of  compression  for  which  is  given  on  p.  54,  are 
given  in  the  table  below.     Plot  the  two  strokes  as  completely  as  the  figures 
allow,  and  determine  the  value  of  n  during  the  expansion. 

V   . 
10 

10-4 10-6 10-8 

11 12 13 14 16   18  20  23 

p  • 45-2 123-2 157-7 
181-7 188-2 166-2 146-2 129-7 

105-7  87-2,74-2  58-7 
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3.  In  an  air-compressor  trial  the  following  values  of  the  pressure  and 
volume  during  the  compression  process  were  obtained  from  the  indicator 
card.  Determine  the  value  of  n  in  the  equation  PV"  =  constant,  for  the 
process,  using  logarithmically  squared  paper. 

p  . 
68-8 59-2 48-6 

39-2 88-2 26-8 22-0 18-0 

Ibs.  per  sq.  inch. 

V.    . 0-62 0-71 
0-87 1-05 1-22 1-51 1-81 2-22 

4.  Obtain  an  indicator  diagram  from  any  engine,  the  clearance  for  which 
is  known  to  you,  and,  making  your  own  measurements  of  pressure  and 
volume,  determine  the  laws  for  the  compression  and  expansion  curves 
thereon. 

CHAPTER  VI 

1.  Construct  a  diagram  from  which  may  be  read  off  at  once  the  5th,  4th, 
f  th,  and  the  |th  powers  of  any  number  between  1  and  20. 

2.  In  an  experiment  to  determine  the  coefficient  of  friction,  n,  for  a  belt 
passing  round  a  pulley,  a  load  W  Ibs.  was  hung  from  one  end  of  the  belt,  and 
a  pull  P  Ibs.  applied  to  the  other  end  in  order  to  raise  W.     It  is  known  that 

the  quantities  are  connected  by  a  law  of  the  form  P  =  We'JO  where  a  is  the 
angle  of  contact  between  the  belt  and  pulley  measured  in  radians.    The 
following  values  of  P  corresponding  to  various  angles  of  contact  were 
obtained.     Determine  the  value  of  the  coefficient  of  friction.    What  was  the 

amount  of  the  load  W,  which  was  kept  constant  throughout  ? 

a  degrees  .  .  . 90 120 150 180 i  210 

i 
240 

270 300 
330 

Plbs    5-62   6-93 
8-52 

10-50 12/90 
i 15-96 19-68 24-24 

29-94 

3.  The  change  of  entropy  ($>)  in  raising  1  Ib.  of  water  from  32°  F.  to  a 
temperature  t°  F.  is  given  in  the  table  below.  Plot  the  curve  connecting  the 
entropy  with  the  temperature,  and  deduce  a  formula  for  determining  the 
entropy  from  the  absolute  temperature,  which  will  be  of  the  form 

<;>  =  a  loge  T  —  b 

(The  absolute  temperature  T  =  t°  F.  -f  461).     You  may  use  either  squared 
paper  or  semi-logarithmic  paper  in  your  solution  of  this  question. 

^  T^ 102 153 
213  j      228         250         281 

312 

:5H 

381 
rf>    .      . 0-136 0-221 

0-313  i  0-334  |  0-368  j  0-411 

0*452 
0-491 0-542 

CHAPTER  VII 

1.  A  particle  moves  round  the  circumference  of  a  circle  3  feet  in  diameter 
with  uniform  angular  velocity,  making  one  complete  revolution  every  2 
seconds.  Find  the  position  of  its  projection  upon  a  diameter  of  the  circle 

0-1,  0-2,  0'3,  0-4,  and  0'5  seconds  respectively  after  the  particle  was  at  the  end 
of  that  diameter. 
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Plot  the  curves : — 

2.  y  =  2  sin  (3x  -  30°). 
3.  y  =  1-5  cos  (0-5*  +  0'7). 
4.  y  =  2  sin  x .  cos  x. 
5.  The  following  values  of  x  and  y  lie  on  a  curve  of  the  form 

y  =  a .  sin  (foe  +  c) 

x  degrees    0 
6-66 10 

20 

30 
36-66 

40 50 60 

y  .  .  . 
0-657 0-700 0-689 0-536 0-239 o-ooo -0-121 

-0-450 
-0-657 

x  degrees 66-66 
70 

80 90 96-66 100  1  110 120 

2/  .  .  . 
-0-700 -0-689 -0-536 -0-239 o-ooo 

+0-121 

0-450 0-657 

Plot  the  curve  and  find  the  values  of  the  constants  a,  b,  and  c.  Plot  a 

second  sine  curve  of  double  the  amplitude  and  one-third  the  frequency  of 
that  given,  and  differing  from  it  in  phase  by  50  degrees. 

6.  In  the  mechanism  shown  in  Fig.  77,  the  horizontal  rod  is  constrained 
to  move  horizontally  between  guides,  and  derives  its  motion  from  the  crank 
OP,  the  pin  P  of  which  slides  in  the  vertical  slot  carried  by  the  rod.  If  OP 

Fig.  77. 

(From  Goodman's  "  Mechanics  applied  to  Engineering."') 

is  6  inches  long  and  makes  one  revolution  every  two  seconds,  moving 
uniformly,  write  down  an  equation  expressing  the  displacement,  s,  of  any 
point  in  the  rod  from  its  midposition,  t  seconds  after  P  is  vertically  above  0. 
Also  plot  the  curve  showing  the  same  relationship. 

Plot  each  of  the  compound  sine  curves  given  below  over  one  complete 
cycle. 

7.  y  =  sin  x  +  sin  (3x  -  25)°. 
8.  y  =  2  sin  0'5x  +  cos  x. 
9.  y  =  3-5  sin  (0-2*  +  45)°  -2-1  sin  (0-4a?  +  60)°. 

10.  y  =  1'9  sin  (x  -0'2)  +  2'5  sin  (4z  +  1-57). 
11.  y  =  sin  x  +  cos  x. 
12.  y  =  2  sin  4-x  .  cos  x. 
13.  A  compound  sine  curve  is  made  up  of  two  components,  A  and  B. 

A  is  of  amplitude  1*2  and  frequency  1*5,  B  is  of  amplitude  1'8  and  frequency 
4'5,  the  initial  difference  of  phase  between  them  being  90°.     Write  down  the 
equation  of  the  compound  curve,  and  plot  it  for  one  complete  cycle. 

14.  Plot  the  damped  sine  curve  given  by  the  equation 

y  =  2e-02*  sin  5x 

over  four  complete  "  vibration-lengths." 
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CHAPTER  VIII 

Solve  the  following  equations  graphically  : — 

1.  3-lx  -  4-2  =  2x  +  0-76. 

2.  4x  -  3y  =  6x  -  2y  +  41  =  7'8. 
3.  3x2  -  2x  -  6'7  =  0. 

/2-lx2  -  43x  +  y  -  5-6  =  0 

3x  +  1y  =  3'8. 
5.  Sx3  -  2-lx  +  7-3  =  0. 

6.  (21)*  +  6-8x  =  (3-S)*2  -  41. 

7.  3x*  -  20  logw  x  -  7-077  =  0. 
8.  a1'8  -  sin  2x  -  2  =  0. 

9.  Vx^  —  x  =  Vx*  —  35*8 
10.  0-Sx2'1  +  4x  -  12  =  0. 

11.  Lsinx=  Vx  +  7-95. 

12.  log.  x  = 

CHAPTER  IX 

1.  The  distance  s  feet  covered  in  t  seconds  by  a  certain  body  is  given  in 
the  table  below.  Plot  the  space-time  curve,  and  from  it  obtain  the  velocity 
at  the  end  of  each  second.  Now  plot  the  velocity-time  curve,  and  from  it 
obtain  the  acceleration-time  curve. 

t  .    .   . 0 1 2 3 4 5 seconds. 

8  .      .      . o-oo 2-37 6-48 
10-56 12-32 13-04 

feet. 

Differentiate  the  following-  functions  of  x  : — 

2.  x3'1. 

5.  0-7 

8.  2-7e*. 
11.  Iog2  x. 

14.  3-lx0-72  +  2'5x3-'. 
17.  sin  x  —  2  cos  x. 

3.  2x°'5. 6.-L. 

x2- 

9.  (3-72)*. 
12.  sin  (x  -  0-3). 
15.  2-52  Vx  -  3-1  %x. 
18.  2  tan  x  -  3  log,*. 

4.  7'3xs'«. 

7.-1. 

X 
10.  logwx. 

13.  3  cos  (x  +  2-5). 
16.  <?  -  yf. 

Evaluate  the  following  expressions  : — 

oS^>
- 

21. 

23.  -n>(sin  x  —  cos  x). 

ax- 

20. 

22.      . 

24.  A  particle  moves  in  a  straight  line  so  that  its  distance,  «  feet,  from 
its  starting-point  after  t  seconds  from  rest  is  given  by  the  equation 

8  =  2*3  -  0'4<2 
Find  its  velocity  after  1,  2,  and  3  seconds  respectively. 

25.  Draw  the  part  of  the  curve  y  =  2  sin  4x  between  x  =  0174  radians 
and  x  =  0"261  radians. 

Measure  the  slope  at  three  points  and  compare  with  the  values  of  , 

26.  The  temperature  of  saturated    steam    depends    upon    its  absolute 
pressure  according  to  the  equation 

t  =  117-9p0222 
Find  the  rate  of  change  of  the  temperature  relatively  to  the  pressure,  »t 
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atmospheric  pressure,  and  at  pressures  of  100  and  200  Ibs.  per  square  inch 
above  the  atmosphere. 

Find  the  maximum  and  minimum  values  of  the  following  expressions : — 

27.  3X2  -  2x  +  4.  28.  2x*  -  3x  +  2. 
29.  5x*  -  IBx2  -  8.  30.  x1-5  -  3'2x  +  7. 
31.  3  +  s  -  2s*.  32.  h  -  h3  +  2h2. 

33.  A  rectangular  tank  with  a  square  base  is  to  be  constructed  to  hold 
10,000  gallons  of  water.     Find  the  lengths  of  its  sides  in  order  that  its 
weight  may  be  as  small  as  possible. 

34.  Find  the  least  area  of  sheet  metal  which  can  be  used  to  construct  a 
cylindrical  vessel  to  hold  20,000,000  cubic  feet  of  gas,  one  end  being  open. 

35.  The  Post  Office  regulations  state  that  the  combined  length  and  girth 
of  a  parcel  must  not  exceed  6  feet.    Find  the  greatest  volume  of  a  cylindrical 
parcel  which  may  be  sent  by  post. 

36.  Find  the  velocity  and  acceleration  of  the  projection  of  the  particle  in 
Question  1,  Chapter  VII.,  at  each  instant  named  therein. 

CHAPTER  X 

Obtain  expressions  for  the  following  indefinite  integrals  :  — 

1.  /x3  .  dx.  2.  Jdx.  3.  /fc*  .  dh.  4.  /S*4  .  dt. 

5.  /c-i-*  .  dv.  6.    /  -  .  dy.  7.  /2  sin  B  .  do. 

8.  /(»2  -  3x  +  2)  .  dx.  9.  /Q>3  -  2p  +  j>-')  .  dp. 
Evaluate  the  following  definite  integrals  :  — 
10   r°  r2  P 

/  x2  .  dx.  11.      6*2-5  .  dt.  12.   /  (2a*  -  S*2)  .  dx. 
J  2  JO  .'  1 

f4'5     -1  /"R  * 

13.   /     h   *  .  dh.  14.       (2R/i*  -  /iT)  .  dh. J  1-5  .'  ii 

,c     P^dT  p- 
15.   I     -Tp.  16.   I J  TOO  -»•  J  Y! 

=;.  17.   1*2  cos0.de. v  Jo 

18.  Find  an  expression  for  the  second  moment  or  "  moment  of  inertia  " 
of  a  rectangle  about  an  axis  through  its  centre  parallel  to  one  of  its  sides. 

19.  Find  the  area  of  the  figure  bounded  by  the  cubic  parabola  y  =  x3,  the 
axis  of  X,  and  the  vertical  straight  lines  x  =  2  and  x  —  5. 

20.  Find  the  work  done  (which  is  measured  by  the  area  of  the  curve) 
during  the  isothermal  expansion  of  1  cubic  foot  of  air  from  a  pressure  of 
5000  Ibs.  per  square  foot  to  atmospheric  pressure. 

21.  Find  the  value  of  the  second  polar  moment  (polar  moment  of  inertia) 
of  a  circle,  5  feet  in  diameter,  about  an  axis  drawn  through  its  centre,  at 
right  angles  to  the  plane  of  the  circle. 

22.  A  vessel  in  the  form  of  half  a  cylinder,  with  its  axis  vertical,  is  12  feet 
long  and  4  feet  in  diameter,  and  is  full  of  water.     Find  the  time  taken  to 

reduce  the  depth  of  water  in  it  to  1  foot,  through  a  sharp-edged  circular 

orifice  in  the  bottom,  3  inches  in  diameter.     Coefficient  of  discharge  =  0'62. 

23.  A  quantity  of  steam  expands  so  as  to  satisfy  the  law^y1'13  =  8000. 
Find  the  average  value  of  the  pressure  p  as  the  steam  expands  from  a  volume 
v  =  4  cubic  feet  to  v  =  10  cubic  feet. 
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ANSWERS 

I.  2.  (1-6,  -T25).  3.  (-4-23,6-51).   4.  (-1-84,0);  (11-28,0);  (0,  -  1  " 
(0,  7-88).     5.  y  =  0'84o;  or  y  =  -  0'24a;. 

II.  1.  44-8  Ibs.;  93-5  Ibs.    2.  0'42"  ;  2'57".    3.  30'9;  5'4  tonH.    4.  J7  j 
35-1  millions.     5.  (1-67,4-33);  (-1,  -1). 

III.  1.  2-1;  0.  2.0-3;  -0-7.  3.  25,150.  4.  -1-5;  6.  11.  L  =  4-U4E-30. 
12.  H  =  1082  +  0-305*.    13.  e  =  O'OOIOL  ;  0-0093".    14.  W  =  0'51  P  +  J  _'  I 

,  132-6 w  =  30'6  -\  —  =g—  . 

IV.  5.  y  =  3-4Z1'8.     6.  y  =  121ar>-A.     7.  x  =  2i/>-7.     8.  y  =  Ow-'1  -  31. 
9.  y  =  3-2X1'7  +  24-3.     10.  y  =  2-2x»'7  +  lOz  -I-  8'3.    11.  (1,  -8).    12 
feet  from  the  left-hand  support  ;  650  ton  feet. 

V.  2.  1-544.    3.  1-06. 

VI.  2.  ̂   =  0-4  ;  W  =  3  Ibs.    3.  <t>  =  log,  T  -  6'21. 
VII.  1.  1-43  ;  1-21  ;  0-885  ;  0'465  ;  0  feet  from  the  centre. 

5.  y  =  0-7  sin  (3x  +  70°)  ;  y  =  T4  sin  (x  +  20°).    6.  «  =  6  sin  (314<). 
13.  y  =  1-2  sin  I'ox  +  1'8  sin  (4'5o;  ±  90°) 

or  y  =  1-2  sin  (I'So;  ±  90°)  +  1-8  sin  4-5*. 
VIII.  1.  4-51.    2.x  =  -0-45  ;  y  =  -  3'2.    3.  1'26  ;  -0'59.    4.  j-  =  ::  88 

or  -0-56;  y  =  -3'07  or  274.     5.   -1'516.     6.  T507.     7.  2-134.    8.  1  -M  V 
9.  12-53.     10.  2-288.     11.  2'73  or  0'0114.     12.  4'295. 

IX.  2.  3-lx2'1.    3.  x-°'5.    4.  40-8x4'0.    5.  0'48x"4.    6.   -  "''.  .     7.   -  \ 

.i-1'1 

0-4A4  1  -4-4 

8.   2-7e-.      9.    1-315  x  (3'72V.       10.  11.  -  -  .      12.   cos  ̂   -  ••;;  . x  x 

13.   -  3  cos  (z  +  2-5).       14.   2-240T0*2*  +  !)'2o.<  -a-'.       15.    l-26a;"* Q 

16.  e'  -  e(x)<-1.      17.   cos  x  +  2  sin  x.     18.  2  sec2x  -  -  -     19.    18a  .     20. 

21.  24*  -  34-2.  22.  840^.  23.  cos  «  -  siu  .,:  24.  -rii  ;  L'^'4  ; 

51'6  feet  per  second.  26.  0'658  ;  0'407  degrees  per  Ib.  per.  sq.  inch.  27. 
Min.  3-67.  28.  Max.  3'413  ;  min.  0'587.  29.  Two  max.  each  - 
min.  -8.  30.  Max.  4085.  31.  Max.  3125.  32.  Max.0'618;  min.  -  M>4. 

33.  14-8  x  14-8  x  7'4  feet.  34.  323,000  sq.  feet.  35.  2'55  cub.  feet.  36. 
Velocity:  1'46  ;  277;  3'80;  4'48;  4-  71  feet  per  second.  Acceleration:  14"!  : 
11-91  ;  8'65  ;  4-55  ;  0  feet  per  second  per  second. 

X.     1.  ~.    2.  cr.    3.  §**.    4.  **.    5.    -  -v          .   6.  6  LOK',  'J.   7-  -2cos«. 4  o  '       * 

10.38-9.    11.19-3.    12.  70-S.     13. 

"'.    17.2.   18.  ™'.    19.   I 

20.  4370  foot  Ibs.     21.  61'2  feet4  units.    22.  4  mins.  13  sees.    23.  950. 
1-78.   14.  J*R>.    15.  0-761.    16.  "f^^"'.    17.2.   18.  ™'.    19.   IIM 
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Acceleration,  91 
Amplitude,  64 

„         constant,  65 
Approximate  equation  for  any  curve,  43 
Area  of  curve,  109 
Areas  by  integration,  114 
Argument  of  function,  2 
Asymptotes,  49 
Axes,  1 

„    equations  of,  16 

B 

Bending  moment  diagram,  45 

Boyle's  Law,  50 

Compound  sine  curve,  71 
Constant,  2 

Co-ordinates,  1 
„  signs  of,  2 

Cubic  parabola,  22 
Cycle  length,  66 
Cyclic  curve,  63 

Damped  sine  curve,  74 
Definite  integral,  113 
Dependent  variable,  2 
Differential  coefficient,  88 
,,  „         second,  92 
„  „         table  of,  124 

Differentiation,  89 

,,  applications  of,  106 
„  graphical,  93 

Differentiation,  methods  of,  93 

„  successive,  91 
„  of  a  sum,  100 

,,o./(x),  100 

„  of,  96 

„  „  Log  x,  97 

,,  „  sin  x,  98 
„  ,,  cos  x,  98 

^-,  meaning  of,  88 ax 

E 

Equations,  graphical  solution  of  Chap. 
VHI.,  77 

Equations  of  axes,  16 
Equation  of    exponential  curve,   how 

determined,  58 

Equation    of    hyperbola,    how    deter- 
mined, 54 

Equation    of    parabola,    how    deter- 
mined, 34 

Equation  of    sine    curve,  how  deter- 
mined, 69 

Equation  of  straight  line,  how  deter- 
mined, 16 

Expansion  of  gases,  50 

Exponential  curves,  Chap.  VI.,  55 

„  ,.       as  table  of  powers, 
58 

Extrapolation,  7 

F 

Families  of  curves,  3 
Flow  of  water  from  tank,  115 

Frequency  of  vibration,  66 
Function,  2 

/(x) ;  F(x),  meaning  of,  3 
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Graph,  3 
„       of  equation,  8 

Graphical  solution  of  equations,  Chap. 
VIIL,  77 

Hyperbola,  Chap.  V.,  48 
„          rectangular,  49 

Hyperbolic  expansion,  50 

Imaginary  roots,  80 
Indefinite  integral,  113 
Independent  variable,  2 
Inertia,  moment  of,  114 
Inflexion,  point  of,  103 
Integral,  110 
Integration,  110 

„          definite,  113 
examples  on,  113 

„          method  of,  111 
„  standard  forms  of,  111,  112 

„  ,,          ,,  table  of, 
124 

,,  of  a  constant,  112 

,,          ,,  a  sum,  112 
Intercept,  14 

„         constant  (straight  line),  15 
Interpolation,  6 
Invert  symmetry,  22 
Isothermal  expansion,  50 

Law,  straight  line,  11 
Logarithmic  analogue  of  parabola,  34 

,,  „  hyperbola,  54 

,,  ,,  exponential 
curve,  58 

Logarithmic  curve,  61 

„          paper,  35 

Maxima  and  minima,  101 

„  „        criterion  for,  104 
Mean  straight  line,  19 

Methods  of  differentiation,  93 

„  integration,  111 
Moment  of  inertia,  114 

N 

n  (hyperbola),  53 
n  (parabola),  24 

Origin,  5 

Parabola,  Chap.  IV.,  21 

„        area  of,  114 
Parabolic  approximation  to  any  curve,  43 

„        Law,  determination  of,  34-43 
„        vertex,  44 

Period  of  vibration,  66 
Phase  difference,  68 
Physical  meaning  of  slope,  89 

Point,  co-ordinates  of,  1 
,,      of  inflexion,  103 
,,      symbol  for,  1 

Powers,  graphical  determination  of,  58 

Q 

Quadrants,  2 
Quartic  parabola,  22 

B 

Rate  of  change,  89 

Rectangular  hyperbola,  49 
Roots,  imaginary,  80 

S 

Scale  constant,  27 

Scales,  choice  of,  4 
Second  differential  coefficient,  92 

„      moment,  114 
Semi-logarithmic  paper,  60 
Signs  of  co-ordinates,  2 
Simple  equation,  Chap.  III.,  10 

„      harmonic  motion,  63 

„  „  „      velocity  and 
acceleration  in,  101 
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Sine  curves,  Chap.  VII.,  63 
,,         ,,      amplitude  of,  64 
„         „      compound,  71 
„         „      damped,  74 
„          ,,      frequency  of,  66 
„         „      phase  of,  68 

Slope  constant,  straight  line,  15 
,,      physical  meaning,  89 
,,      of  curve,  87 

„       ,,  straight  line,  12 
Solution  of  equations,  Chap.  VIII.,  77 
Standard  forms  of  integration,  111 
,,  ,,  ,,          table  of, 

124 

Straight  line,  Chap.  III.,  10 
„  „    mean,  19 
„  ,,    Law,  11 
„  ,,        ,,     determination    of, 

16,  19 
Successive  differentiation,  91 
Symmetry  of  curve,  21 

,,         invert,  22 

Time  to  empty  tank,  115 

Unreal  roots  of  equation,  80 

V 

Variables,  2 
Velocity,  89 

Vertex  of  parabola,  44 
Vibration  represented  by  sine  curve,  64 

w 
Wave  length,  66 

GREEK  LETTERS. 

a  (alpha),  129 
«  (delta),  Chaps.  IX.  and  X. 
0  (theta),  64 

M  (mu),  129 
5  (sigma),  a  sign  of  summation,  109 

<f>  (phi),  3,  129 

i),  3 

THE   END 
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