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PREFACE TO SEVENTH EDITION

IN the first six editions of this work,
considerable space was given to the results

of experiments on . model retaining-walls
and rotating retaining-boards. As this

part of the subject has been fully discussed

by the writer in a paper entitled
"
Exper-

iments on Retaining-waUs and Pressures

on Tunnels,"* it was thought best to omit

a detailed discussion of the experiments
in this edition, particularly as an adequate

interpretation requires the consideration

of the theory of earth pressure when the

earth is supposed endowed with both fric-

tion and cohesion. More important still,

the omission gives space for a more ade-

quate treatment of the designing of walls

of various types.

The present work is divided into an

Introduction, where the direction of the

* Transactions Am. Soc. C.E., Vol. LXXII (1911).

8O0300
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earth thrust receives careful attention, and

four chapters, pertaining to reservoir walls

and the theory of retaining-walls, developed
both by the graphical and analytical

methods and leading up, after a short

discussion of experiments, to the practical

designing of retaining walls.

The design of five different types of

retaining-walls is given in detail not only
for a horizontal earth surface but likewise

for the earth surface at the angle of repose.

The tables, giving ratio of base to height,

for the most familiar types of walls, should

prove especially valuable to constructors.

In the brief discussion of dams, the

occasion is taken to develop certain well-

known elementary principles that are com-

mon to retaining-walls as well as dams.

In subsequent chapters of this work a good
deal of new matter is given for the first

time; notably in the analytical theory of

the retaining-wall, and in the graphical

discussion of
" the limiting plane

"
in

Chapter II. The theory of the retaining-

wall has been deduced, with the one

assumption of a plane surface of rupture,

from well-known mechanical laws; Cou-



lomb's "
wedge of maximum thrust

"

being incidentally proved in the course of

the demonstration, but not assumed as a

first principle.

Appendices I, II and III on Masonry
Dams, have been added, leading to the

computation of the "
Stresses in a Masonry

Dam " on any plane not too near the base.

The results, especially when taken in con-

nection with the experiments on rubber

dams made in England by Messrs. Wilson

and Gore, are thought to be of the highest

importance.
The limits of this book preclude the

consideration of the stresses due to tem-

perature changes and "
uplift

" due to

water pressure, subjects which are now

engaging the serious attention of engineers.

WM. CAIN.

CHAPEL HILL, N. C., May 5, 1914.
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PRACTICAL DESIGNING

OF

RETAINING-WALLS.

INTRODUCTION.

1. THE retaining or revetment wall is

generally a wall of masonry, intended to

support the pressure of a mass of earth or

other material possessing some frietional

stability. In certain cases, however, as in

dock-walls, the backing or filling as the

material behind the wall is called is liable

to become in part or wholly saturated with

water, so that the subject of water-pressure

has to be considered to complete the inves-

tigation. In cases where the filling is de-

posited behind the wall after it is built, the

full pressure due to the pulverulent fresh

earth or other backing is experienced ; and

the wall is designed to meet such pressure,

with a certain factor of safety, as near as \t



can be ascertained. In time the earth

becomes more or less consolidated by the

settling due to gravity, vibrations, and rains,

from the compressibility of the material,

which thus brings into action those cohesive

and chemical affinities which manufacture

solid clays out of loosely aggregated mate-

rials, and often causes the bank eventually

even to shrink away from the wall intended

to support it, when, of course, there will be

no pressure exerted against the wall.

2. Where a wall is built to support the

face of a cutting, the pressure may be

nothing at first, but it would be very unwise

to make the wall much thinner than in the

preceding case
;
for it is a well-known fact

of observation, that incessant rains often

saturate the ground of open cuttings to

such an extent as to bring down masses of

earth, whose surface of rupture is curved,

being more or less vertical at the top and

approaching a cycloid somewhat in section ;

the surface of sliding being so lubricated

by the water that the pressure exerted hori-

zontally by this sliding mass is even greater

than for dry pulverulent materials. It is,



in fact, on this account, as well as from the

force exerted by water in freezing, and from

the disturbing influences caused by the

passage of heavy trains, wagons, etc., which

set up vibrations that lower the co-efficient

of friction of the earth, and besides add

considerably by their weight to the thrust

of tie backing, that a factor of safety

against overturning and sliding of the wall

is introduced, which factor in practice gen-

erally varies between two and three when

the actual lateral pressure of the earth is

considered.

3. It is stated that retain ing-walls in

Canada require a greater thickness at the

top to resist the action of frost than farther

south where the frost does not penetrate the

ground to so great a depth. Again, if the

strata in a cutting dip towards the wall,

with thin beds of clay, etc., interposed that

may act as lubricants when wet, the press-

ure against the wall may become enormous
;

or if fresh earth-filling is deposited upon an

inclined surface of rock, or other impervious
material that may become slippery when the

water penetrates and accumulates at its sur-



face, the pressure may become much greater

than that due to dry materials. It is found,

too, that certain clays swell when exposed
to the air with great force ; others, again,

remain unchanged. In all such exceptional

cases the engineer must use his best judg-
ment after a careful study of the material

he has to deal with. The theory and

methods used in this book will not deal

with such exceptional cases, but simply with

dry or moist earth- filling supported by good

masonry upon a firm foundation
;
and it is

believed the theory deduced will be of mate-

rial assistance to any one who may have to

deal with even very exceptional conditions,

or, as in the case of military engineers, with

the design of revetment-walls partly as a

means of defence.

4. When a retaining-wall fails, it is not

generally from not having sufficient section

for dry backing properly laid (in layers

horizontal or inclined downwards from the

wall), but because the earth has been dumped
in any fashion against the wall, and no
4

'weep holes" have been provided to let

off the water that is sure in time of rains to



saturate the bank. If to this is added bad

masonry, and a yielding foundation, or one

liable to be washed out, the final destruc-

tion of the wall can be pretty confidently

counted on.

5. The following little table of weights

and angles of repose of various materials

used in construction may prove of assistance,

but in any actual case the engineer should

determine them by actual experiment :

We may assume generally, as safe values

for brickwork, 110 pounds per cubic foot ;



and for walls, one-half ashlar and one-half

rubble backing, of granite 142 pounds, and

of sandstone 120 pounds per cubic foot,

though the last two values are generally

exceeded. For ordinary earth or sand filling

the angle of repose can be taken at one and

one-half base to one rise, or a slope of

3342' with weights per cubic foot varying
from 100 to 130.

It is always advisable, where practicable,

to put a layer of shingle next the wall, and

to consolidate the layers of the filling by

punning or other means, so as to reduce the

natural slope as much as possible.

With a well-built wall, designed after

methods to be given ; having a good foun-

dation-course, larger than the body of the

wall, to better distribute the pressure, and

resist sliding, and backed as described ; with

weeping holes near the bottom at intervals,

there should be no fear of failure under

ordinary conditions.

6. It would take us too far to enter into

the history of the theory of the retaining-

wall. On this point see an interesting article

by Professor A. J. DuBois in the " Journal



of the Franklin Institute
"

for December,

1879, on
" A New Theory of the Retaining-

Wall." In this work^three methods will be

developed : the first, a graphical method that

will make clear the foundations on which all

the theory rests; the second, a purely ana-

lytical method, and the third, a graphical

solution founded on it. Only the two graph-

ical methods are available where the earth

surface is not plane.

7. In case a wall moves forward, how-

ever little, or there is settling of the earth

behind it, the earth generally rubs against

the back of the wall, thus developing fric-

tion. There are, however, certain inclina-

tions of the back of the wall that will be

specially examined in articles 28-31, for

which the earth sooner breaks along some

interior plane, in its mass, than along the

wall, so that a certain wedge of earth will

move with the wall as it overturns or

tends to move. For all other cases, which

include nearly all the cases in practice,

there will be rubbing of the earth against

the wall, so that the earth-thrust against



8

the wall must be assumed to make, with

the normal to the wall, an angle equal to the

co- efficient of friction of earth on wall,

unless this is greater than for earth on earth,

in which case any slight motion of the wall

forward will carry with it a thin layer of

earth, so that the rubbing surfaces are those

of earth on earth.

8. These suppositions are found to agree
with experiments. The old theory that

assumed the earth- thrust as normal to the

back of the wall, or, as in Kankine's theory,

always parallel to the top slope, does not so

agree, and, in fact, often gives, for walls

at the limit of stability, the computed thrust

as double that actually experienced. The
true theory, therefore, includes all the fric-

tion at the back of the wall that is capable
of being exerted. This friction, combined

with the normal component of the thrust,

gives the resultant earth-thrust inclined

below the normal to the back of the wall at

the angle of friction to this normal. 1

1 In Annales des Fonts et Chaussees for April, 1887,

M. Siegler has given the results of some simple experiments

proving the existence of a vertical component of the earth-



9. Rankine's assumption that the direc-

tion of the earth-thrust is always parallel to

the top slope applies only to the case of an

imaginary incompressible earth, homogene-
ous, made up of little grains, possessing
the resistance to sliding over each other

called friction, but without cohesion
;
of in-

definite extent, the top surface being plane ;

the earth resting on an incompressible foun-

dation, or one uniformly compressible, and

thrust against the movable side of a box filled with sand, by
actually measuring the increased friction at the bottom of

the movable board, held in place, caused by this vertical com-

ponent. The box was one foot square at the base ; and for

successive heights of sand of one-third, two-thirds, and one

foot, the vertical components of the thrust for earth level at

top were 0.66 pound, 1.76 pounds, and 3.97 pounds, respec-

tively. Similarly for a box, 0.5 x 0.8 feet, filled with sand,

but having a movable bottom supported firmly on iron blocks,

the force necessary to move the blocks under the sides and
under the bottom was measured; and from this the relative

weights of sand supported by the bottom and sides of the

box was found to be as one to one, nearly, for a height of

sand of 0.6 foot, and about two to one for a height of 1.18

foot, the total weights ascertained by the friction apparatus
also checking out with the actual to within five per cent.

Other experimenters have actually weighed the amounts held

up by the sides and bottom, respectively. See Engineering
News for May 15 and 29, 1886, also the issue for March 3,

1883, on "A Study of the Movement of Sand;" also see

article 60 following.
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being subjected to no external force but its

own weight.

For such a material, the only pressure
which any portion of a plane parallel to the

top slope of greatest declivity can have to

sustain is the weight of material directly

above it ; so that the pressure on the plane
is everywhere uniform and vertical. If we
now suppose a parallelopipedical particle,

whose upper and lower surfaces are planes

parallel to the top slope, and bounded on

the other four sides by vertical planes, we
see that the pressures on the upper and

lower surfaces are vertical, and their differ-

ence is equal, opposite to, and balanced by
the weight of the particle. It follows that

the pressures on the opposite vertical faces

of the particle must balance each other

independently, which can only happen when

they act parallel to the top surface, in which

case only are they directly opposed. The

pressures, therefore, on the two vertical

faces parallel to the line of greatest declivity

will be horizontal
; and on the other two

faces, parallel to the line of greatest de-

clivity. This is Rankine's reasoning, and
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it is sound for the material and conditions

assumed. It is likewise applicable to a

material of the same kind, only compressible *

provided we suppose it deposited, as snow

falls, everywhere to the same depth, on an

absolutely incompressible, or a uniformly

compressible, plane foundation, parallel to

the ultimate top slope of the earth ; for then

the compression is uniform throughout the

mass, and does not affect the reasoning.

But if we suppose, as usually happens, that

the foundation is not uniform in compressi-

bility, then the earth will tend to sink where

it is most yielding. This sinking is resisted

to a certain extent by the friction resulting

from the thrust of the earth surrounding the

falling mass, so that much of its weight is

transmitted to the sides, as actually happens
in the case of fresh earth deposited over

drains, culverts, or tunnel linings which

settle appreciably. In the case of a tunnel

driven through old ground, most if not all

the weight of the mass above it is trans-

mitted to the sides ;
at least, at first, before

the timbering or masonry is got in. Again,
if the mass of earth is of variable depth,
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even on a firm foundation, the mass of

greatest depth will sink most, thus trans-

mitting some of its weight to the sides, so

that throughout the entire mass the press-

ure is nowhere the same at the same depth
as assumed. The vertical pressure over a

drain or small culvert crossing an ordinary
road embankment is less, too, for another

reason, where the embankment is highest.

The earth-thrust on a vertical plane, parallel

to the line of road, is horizontal for a sym-
metrical section when the plane bisects that

section. On combining this thrust with the

weight of the material on either side, we
see that the resultant load on the culvert is

removed farther from the centre than if

there was no horizontal thrust. It is on

account of this tendency to equalize press-

ure by aid of the friction resulting from the

earth-thrust, that sand, when it can be con-

fined, is one of the best foundations, whether

in mass or in the form of sand piles.

10. In the case of earth deposited behind

a retaining-wall on a good foundation, the

settling of the earth will generally be greater
than that of the wall, so that the earth rubs
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against the wall, giving generally the direc-

tion of the thrust no longer inclined, even

approximately parallel to the top slope

(except when the latter is at the angle of

repose), but making with the normal to the

back of the wall an angle downwards equal

to the angle of friction. If the wall should

settle more than the filling, the thrust would

at first have a tendency to be raised above

the normal. But if such a thrust, when

combined with the weight of the wall, passes

outside of the centre of the base of the

wall, the top of the wall will move over

slightly, the earth will get a grip on the wall

in the other direction
;
so that it is plainly

impossible for the wall (for usual batters at

least) to overturn or slide on its base, with-

out this full friction, acting downwards at

the back of the wall, being exerted. Hence

the theory which supposes it is safe
;
for

although it is possible that the earth may
make the effort at times to exert the full

thrust given by Rankine's formula, yet this

effort is suppressed instanter by the external

force now introduced by the wall friction,

which force was expressly excluded from
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the Rankine theory. The exceptions to

this rule will be noted in article 31.

11. Weyranch's objections to taking the

thrust inclined at the angle <f>'
of friction

to the normal are easily met. He says,
Take a tunnel-arch ; and if we suppose the

pressure, as we go up from either side, to

make always the angle <' with the normal,
we shall have at the crown two differently

directed pressures : similarly for a horizon-

tal wall with level-topped earth resting on

it. If there is no relative motion, or ten-

dency to motion, the thrust in the latter

case is of course vertical, and in the former

is probably vertical at the crown and in-

clined elsewhere ; but if the arch or wall

moves, and there is rubbing of the earth

on the masonry, there is necessarily friction

exerted
; so that the thrust at any point can

have but one direction, making the angle </>'

with the normal.

12. Mr. Benjamin Baker, in his paper
before the Institution of Civil Engineers,
on the " Actual Lateral Pressure of Earth-

work "
(republished by Van Nostrand as

" Science Series," No. 56), tested an old
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theory (where the earth-thrust was assumed

to act normal to the wall) by the results

of experiments, and found the theoretical

pressure often double the actual. In the

discussion which followed, not a single

engineer so much as alluded to a truer

theory which assumes the true direction of

the earth-thrust, and has been known and

used, just across the channel, since the

time of Poncelet.

The writer tested this theory by many of

the experiments recorded by Baker and

some others, and found it to agree, within

certain limits, remarkably well (see "Van
Nostrand's Magazine

"
for February, 1882).

These results have been carefully revised,

and new experiments included, in the table

given farther on, from which the reader

can form a fair estimate of the theory as a

working theory within certain limits that

will be indicated.

The reader is referred, however, to Mr.

Baker's essay, not only for experiences
under ordinary conditions, but for those

exceptional cases which seem to defy all

mathematical analysis. In fact, the engi-
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neer almost invariably lias to assume che

weights of earth and masonry, and angie

of repose of the earth. Where there is

water, the conditions one day may be very

different from what they are the next,

especially if the foundation is bad, as often

happens ;
in which case the wall will move

over simply on account of the compres-

sibility of the foundation, so that it has

perhaps nothing like the estimated stability.

For all such cases an allowance must be

made over the results given for a firm

foundation, etc., as to which no rule can

be given.

As water often saturates the filling, and

perhaps gets under the wall, we must con-

sider, in certain cases, water-pressure in

connection with the thrust of the backing.

Therefore, a short chapter on reservoir-

walls, or dams, follows, in which many of

the principles that must likewise apply to

retaining-walls proper are given.



CHAPTER I.

RESERVOIR-WALLS.

13. THE design of reservoir-walls is a

subject that has received the attention of

many engineers and mathematicians
;
but

they are by no means agreed, except in a

general way, upon the precise profile that

is best to satisfy, as uniformly as possible,

the requirements of strength and stability.

We shall very briefly, and by the shortest

means, point out the main principles of

design of a dam that resists overturning

or sliding by its weight alone, and is called

a gravity dam, in contradistinction to one

built on a curve that requires the aid of

arch action to render it stable.

Let Fig. 1 represent a slice of the dam

contained between two vertical parallel

planes one foot apart, and perpendicular to

the faces.

When the dam is large, a roadway is
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generally built on top, so that the faces ks

and gi are vertical or nearly so for some

distance down ; after which the profile is

designed to meet certain requirements, to be

given presently. Let us suppose that the

.rr.TTTrrrrrrrrnft

dam has been properly designed down to

the horizontal joint df/, and that the weight

of the portion above df equals Wv regard-

ing the weight of a cubic foot of masonry
as 1, and that its resultant cuts the joint

df at the point o.
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To design the part fabd below df by a

rapid though tentative method, we must

first assume the slopes db and fa corre-

sponding to the depth dc; then compute the

areas of the triangles bed and afe, and of

the rectangle feed. The distances of the

centres of gravity of these areas (which

represent volumes) from the point b are re-

spectively 6c, be + ^ae, and be -j- \ce. On

multiplying each area by its correspond-

ing arm from #, adding the products
to W^bo -f- do), and dividing by the sum
of W

l (which equals the area of gMf)
and the portion added fabd, we find the

horizontal distance bm from b to where the

resultant of the weight above joint ab cuts

this joint. Its amount W is equal to the

sum of the areas
(
TF

3 + abdf), and we
have only to combine W acting along the

vertical through w, with the horizontal

thrust H .rf the water acting on the face

ksdb, to uud the resultant R on the joint,

and the po*jt n where it cuts that joint.

There is a vertical pressure of the water

on the part sdb; but, as it adds to the

stability, it is generally neglected, particu-
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larly as the inner face is generally nearly
vertical.

14. The horizontal pressure of the water

H for the height 7i, by -known laws of

mechanics, is equal to the area h x 1 mul-

tiplied by the depth of its centre of gravity

- below the surface of the water, and by

the weight of a cubic foot of water w>
where a cubic foot of masonry is taken as

the unit. This pressure acts horizontally

at ^h above the joint afr, so that its moment
about the point n where the resultant R

h h h sw rp,
cuts the base db is h .

-
- w ~ TT- lMzoo

moment of W about the same point is

W X mn. As these two moments must be

equal, we find the distance between the

resultant pressures on joint ab for reservoir

empty a'nd reservoir full,

_ h*w
=

GTf'

The above is substantially one of the methods

adopted by Consulting Engineer A. Fteley in the

design of the proposed Quaker Bridge Dam. See

bis interesting report, and that of B. S. Church,
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chief engineer, with many diagrams of existing
dams of large proportions, in "

Engineering News
"

for 1888, Jan. 7, 14, Feb. 4, 11; also the discus-

sions by the editor in the numbers for Feb. 4 and

25, and March 3.

15. There are three well-known condi-

tions, that must hold at any joint if the

profiles Ja and ~di> have been designed

correctly :

1st, The points m and n where the re-

sultants for reservoir empty or full cut the

base ab must lie within the middle third of

the joint or base ab.

2d, The unit pressures of the masonry at

the points a or b must not exceed a certain

safe limit.

3d, No sliding must occur at any point.

16. The last condition is evident, and

requires that H < Wf where / is the co-

efficient of friction of masonry on masonry,
the adhesion of the mortar being neglected.

If
(f>

is the angle of repose of masonry on

masonry, / = tan <, and we must always

have,
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that is, the resultant R must never make
with the normal to the joint an angle

greater than the angle of friction. In fact,

in practice, we should employ some factor

of safety as 2 or 3, so that 2H or 311 should

always be less than Wf. This third con-

dition is of supreme importance at the

foundation joints of dock-walls, which fail

(wnen they fail at all) by sliding from

the insufficient friction afforded by the wet

foundation. For ordinary retaining-walls,

too, the foundation should, when practi-

cable, be inclined, so that R shall make a

small angle with the normal to the base.

In all cases, deep foundations are to be

preferred, as the earth in front of the wall

resists the tendency to slide appreciably.

17. We shall now proceed to give a

reason for the first condition above, and

likewise deduce a formula to ascertain the

unit stresses at the points a and b.

If we decompose the resultant R at the

point w, distant u = an from a (Fig. 1),

into its two components H and TP, the

former is resisted by the friction of the

joint, and will be neglected in computing
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the stresses at a and fr, though it doubtless

affects them in some unknown manner.

The remaining force W, acting vertically

at w, must necessarily cause greater press-

ure at the nearest edge than elsewhere on

the joint, at least when the angle at a is not

too acute, and the dam is a monolithic

structure. For large dams built of stones

in cement, it is likely that there will be

greater pressure at the middle of the base

than in a monolithic structure where the

resistance to shearing or sliding along ver-

tical planes is much greater than in a wall

made up of many blocks, particularly if

they are laid dry. But it is probably best,

until experiment can speak more decisively

on the point, to assume the pressure great-

est at the toe nearest the resultant, and as

given by the following theory :

Call I = length of joint ab

u = an = distance from R to near-

est toe
;

then if we suppose applied at the centre of

the joint two vertical opposed forces, each

equal to IF, it does not affect equilibrium.

We can now suppose the force W acting
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downwards at the centre to be the resultant

W
of a uniformly distributed stress p 1

=
,

shown by the little arrows just below joint

ab; and that the remaining forces TF, one

at the centre and one at n, acting in oppo-

site directions, and constituting a couple,

whose moment is W (^l u), cause a uni-

formly increasing stress, as in ordinary

flexure (shown by the little arrows below

the first), whose intensity at a or b is by
known laws,

The total stress p at the nearest toe a is

therefore the sum of pl
and j?2 ,

and is com-

pressive.

The stress at b is of course p l p^ where

this is not minus indicating tension, unless

the joint can stand the tension required.

If we call u' the distance from n to the

farthest toe, i.e. u' = n&, we have the mo-
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ment of the two weights W=W(u' $) .

On substituting this value for W(^l u) in

the value for p2 above, we find for the unit

stress at b the identical equation (1) above,

provided we replace u by u'
;
so that the

equation is general, and applies to either

toe, if we only substitute for u the distance

of the resultant from that toe. The stress

is distributed, as shown by the lower set of

arrows in Fig. 1, where there is only com-

pression on the joint as should always
obtain. The stress is thus uniformly in-

creasing from the right to the left. If the

limit of elasticity is nowhere exceeded, it

follows that a plane joint before strain will

remain a plane joint after strain, as must

undoubtedly be the rule for single rectangu-
lar blocks.

Referring to equation (1), we see that if

we replace u by u' = fZ, that the stress at b

is zero, from which point it increases uni-

formly to a, where its intensity, for u =
JJ,

W
is p = 2, or twice the mean. For greater

i

values of u' than fZ, the stress at 6 becomes

tensile, which is not desirable
; hence the
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reason for condition 1 above, that the re-

sultant should lie within the middle third

of the joint.

If the joint cannot resist tension at all,

and R strikes outside the middle third, the

joint will bear compression only over a

length 3., and the maximum intensity at

W
a is now 2. This is evident, if we treat

3u

3u = I' as the length of joint, and substi-

tute this value for I in formula (1). There

is now no pressure at the distance 3u = I'

from the left toe by the previous reasoning

for the original joint /, and to the right of

that point the joint will open, or tend to

open. It is evident for full security that

the resultant should strike within the mid-

dle third some distance to allow for con-

tingencies.

18. Having computed the unit pressures

at the nearest toes for reservoir full or

empty, condition 2 requires that these

pressures do not exceed certain limits : in

case they do, the lower profiles have to be re-

vised, and the computation above repeated,

until all the conditions are satisfied.
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In the proposed design for Quaker Bridge

"Dam, maximum pressures per square foot at the

toes, at the base, were limited to 30,828 Ibs. at

the back, and 33,206 Ibs. at the face; these

pressures diminishing gradually to one-half to

within about 100 feet from the top, the total

height of dam from the foundation being 265

feet
;
the argument being that the lower parts

could stand more pressure than the upper parts

shortly after construction, on account of the

cement there attaining a greater strength. Be-

sides, for this unprecedented height of dam, to keep
the lower pressures within more usual limits "it

would be necessary to spread the lower parts in

an impracticable manner, and to incline the slopes

to an extent incompatible with strength."
It is evident that by this method of design

there is no fixed rule by which any two computers
could arrive at the same profile, having given the

upper part empirically, sufficient in section to

carry a roadway, and to resist the additional

stresses due to the shock of waves and ice, at a

time, too, when the mortar is not fully set.

Such a rule is most easily introduced by

requiring a certain factor of safety against over-

turning, and, moreover, that the factor of safety

against sliding along any plane shall not fall below

a certain amount. It is suggested, however, that

the factors of safety should increase from the

foundation upwards, to make the section equally

strong everywhere against overturning, when
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allowance is made for the effects of wind and wave

action, floating bodies, the expansive force of

ice, or perhaps the malicious use of dynamite.
If this is admitted, it would add one more con-

dition (4) to the three previously stated, and

would secure greater uniformity in design. See

Appendix.
As to the unit pressure test (condition 2), it

must be observed, that we know little or nothing
as to what limit to impose; for not only is the

stress all dead load (which would allow of higher

unit stresses), but the unit resistance of masonry
in great bulk is undoubtedly much greater than

in small masses (not to speak of tests on small

^specimens as a criterion), since the shearing off

'which follows, or is an incident to, crushing can

hardly occur in the interior of a large mass of

masonry.

19. We shall find in the end, that, for

different forms of retaining-walls to sustain

earth, that a factor of safety of about 2.5

against overturning is highly desirable, and

that it will generally satisfy the middle third

limit. In such walls this factor must be

introduced to provide against an actual

increase of the earth-thrust, due to water,

freezing, accidental loads, and above all

to the tremors caused by passing trains or
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vehicles (if these are not considered sepa-

rately), which it is well-known have caused,

by increased weight, and the increased

pressure due to lowering the natural slope,

a gradual leaning and destruction of walls

of considerable stability for usual loads.

In a very high dam this is different :

the pressure rarely changes but little, ex-

cept on the upper portions ; so that, if such

conditions were to hold indefinitely, the

limiting unit stresses should control the

lower profile more than a factor of safety

against overturning. But, as pointed out

by the editor of "
Engineering News "

(in

the issues above referred to), a dam oq

which the fate of a city may ultimately

depend should be designed, as far as pos-

sible, to resist earthquakes also. For that

contingency, there is a reason for the factor

of safety against overturning and sliding

being as great as possible throughout ;
and

by putting the gravity dam in the arch

form, convex up stream, the resistance to

earthquake and other shocks is enormously
increased.

20. We have now given the general prin-
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ciples that should guide in the design of

dams, which likewise apply in the design
6f retaining-walls proper, where, however,

the height is rarely sufficient to call for

much, if any, change of profile, and the

maximum pressures are usually far within

safe limits when a proper factor of safety

against overturning or sliding has been

introduced, which satisfies likewise the con

dition that the resultant shall cut the base

within the middle third. We of course

have, as stated before, the direction of the

earth-thrust inclined below the normal to

the wall at the angle of friction ; otherwise,

the methods above are applicable when the

value of that earth-thrust has been deter-

mined. For dock or river walls, saturated

with water, The buoyant and lubricating
effect of the water must be considered.

If we suppose the filling of gravel, the

water surrounding each stone allows free-

dom of motion
; but the weight of the solid

stones of the filling must now be taken less

than when in air, by the weight of an equal

volume of water, or at the rate of 62.4

Ibs. per cubic foot (or say 64 for salt



31

water), and the earth-thrust then found

for the angle of repose of stone lubricated

with water. Thus, if the weight of the

solid stone be 150.4 Ibs. per cubic foot,

and the voids are thirty per cent, the weight

of solid stone in water is 88 Ibs. per cubic

foot, and that of the filling 88 x .70 =
61.6 Ibs. in water, although it was 105 in

air.

If the wall is founded on a porous

stratum, the weight of the masonry is sim-

ilarly reduced by 62.4 Ibs. per cubic foot,

or say one-half ordinarily ;
but if the

foundation is rock or good clay, "there is

no more reason why the water should get

under the wall than it should creep through

any stratum of a well-constructed masonry
or puddle-dam," as Mr. Baker has ob-

served.

If the water cannot get in behind the

wall, the water in front only assists the

stability.

It has been previously observed that

sliding is principally to be guarded against
in dock-walls and others similarly situated,

which can only be done by a sufficient
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weight of masonry irrespective of its shape,

unless the foundation is inclined, which

even in the case of piling has been effected

Fig. 2

by driving the piles obliquely, of course

as nearly at right angles to the resultant

pressure as is practicable.

Fig. 2 represents a wall with a curved

batter, in brickwork with radiating courses,
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that might be used for a quay or river-wall,

or a sea-wall, as ships ean come closer to

the brink than in the case of a straight

batter ; besides, for sea-walls it resists the

action of the waves better. The centre of

gravity can be found by dividing the cross

section up into approximate rectilinear

figures, and proceeding as in finding the

position of W in Fig. 1. Its position is

a little farther back than for a straight

batter, which adds to its stability. But it

is difficult to construct, the joints at the

back are often thicker than is advisable,

iuA-;. there is probably no ultimate economy
ir its use.
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CHAPTER II.

THEORY OF RETAINING-WALLS.

Graphical Method.

21. IN the theory of earth-pressure that

follows, we shall consider the earth as a

homogeneous, compressible mass, made up
of particles possessing the resistance to

sliding over each other called friction, but

without cohesion. This is a much simpler
definition than the one that Rankine's

theory calls for (see Art. 9), and is more
true to nature; the only approximation, in

fact, consisting in neglecting cohesion, if

we consider a homogeneous earth like drj
sand.

Let Fig. 3 represent a vertical section of

a retaining-wall ABCD, backed by earth,

whose length perpendicular to the plane of

the paper is unity.
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Assumption. We assume that the earth

behind the wall, whether the top surface is

a plane or not, has a tendency to slide

along some plane surface of rupture as

Al, A2, . . . .

. 3

No proof is given of this assumption, so

that it can only be tested by experiment ;

but for the present we shall adopt it.

In connection with the hypothesis of a,

plane surface of rupture,, we shall use only
one principle of mechanics relative to the
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stability of a granular mass, first stated

by Rankine as follows :

It is necessary to the stabiliij of a

granular mass, that the direction of the

pressure between the portions into lohich it

is divided by any plane should not, at any

point, make ivith the normal to that plane

an angle exceeding the angle of repose.

This principle will alone enable us to

ascertain the earth-thrust against any plane

without resorting to a special principle,

like Coulomb's "
wedge of maximum

thrust," which last, however, will be in-

cidentally demonstrated as a consequence,

of the above law.

22. In Fig. 3, let us consider the

triangular prisms CMO, CAl, . . . , as

regards sliding down their bases A0 t

Al,... .

If AF is the natural slope of the earth,

the tendency of the prism CAP to slide

along AF is exactly balanced by friction,

as is well known. But if we consider

other possible planes of rupture, lying

above AF, as ylO, Al, . . .
,
we see, unless

the wall offers a resistance, that sliding
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along some one of these planes must

occur: so that, the earth exerts an active

thrust against the wall, which must be

resisted by it ; otherwise, overturning or

sliding would ensue.

In case the wall is subjected to a thrust

from left to right, as /rom earth, water,

etc., acting on BD, and this thrust is

sufficient to more than counterbalance the

active thrust of the earth to the right of

the wall, it will bring in the passive

resistance of the earth to sliding up some

plane as A'2, and the surface of rupture

will now resist motion upwards, in place of

downwards as hitherto.

In the first case, of active thrust, where

the prism is just on the point of moving
down the plane, we know by mechanics

that the resultant pressure on the plane

of rupture makes an angle < cf friction of

earth on earth with the normal to that

plane and directed belotv the normal
; in

the second case, of passive thrust, the

direction of the pressure lies above or

nearer the horizontal than the normal, and

makes the angle < with the latter.
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23. In the first case, w.here the wall

receives only the active thrust of the prism
of maximum thrust, let us call G (Fig. 3)

the weight in pounds of this prism ;
S the

resultant pressure on the surface of rupture,

making an angle (f>
with the normal to that

plane below the normal ;
and E the resultant

earth-pressure on the wall, which (except

for cases to be noted in Art. 31) makes an

angle cf>'
of friction of earth on wall with

the normal to the wall below the normal,

unless (' >
(/>,

in which case a thin layer

of earth will go with the wall, in case of

relative motion, and this layer rubbing

against the remaining earth will only cause

the friction of earth on earth, and E will

only be directed at an angle $ below the

normal ; supposing always that the tendency
to relative motion corresponds to the earth

moving down along the back of the wall

AC, as in settling from its compressibility,

or as in case of an incipient rotation of the

wall forward, from a greater pressure on

the outer toe or a slight unequal compres-

sion of the foundation.

It remains to find the position of the true
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plane of rupture. As preliminary to this,

we note from Fig. 3 an expeditious way of

finding the direction of S on any trial plane
of rupture, as A\. Thus calling w the angle
that Al makes with the vertical Al, the

straight line making an angle (< -f- w )

with any horizontal, as DCI, below that

horizontal, is parallel to S, since any line

inclined at an angle w below the horizontal

is perpendicular to Al, and S is inclined at

an angle < below that normal. In laying
off the equal angles, it is convenient to use

a common radius, AH, to describe the arcs

having A and I respectively as centres, and

to take chord distances of the arcs < and to,

and lay them off on the arc with / as a

centre, as shown. For any other trial

plane, as A2, we have simply to lay off the

corresponding value of w below the angle (f>

as before.

24. We shall now refer to Fig. 4, to

illustrate the general method to follow to

find the earth-thrust E in pounds. Here

the wall, one foot long perpendicular to the

plane of the paper, is shown in section

BACD, the earth sloping at an angle from
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some point on the top of the wall to the

point marked 2, where it is horizontal.

This is called a surcharged \vall, the earth
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lying above the horizontal
, plane of the top

of the wall being called the surcharge.

Extend the line AC of the inner face to

0, where it intersects the top slope of the

earth ; the possible prisms of rupture are

then .101, .i02, .403, . . .
,
and we shall

now proceed to reduce these areas to equiv-

alent triangles having the same base A2.

Draw the parallels 00', IT', 33', . . .
, to

line A'2 to intersection with a perpendicular

to A"2, passing through the point 2. Then
the triangle .402 is equivalent to the triangle

.40'2, and Al2 to A\ f

'2, so that triangle

AO'l' is equivalent to .401. Similarly .426

is equivalent to triangle A'2 6'A, having the

same base, A'2, and vertices in a line parallel

to this base, giving the same altitude. Thus

the area .4026.4 is replaced by AQ'6'A
;
and

the weight of the corresponding prism, if we

call e the weight per cubic foot of earth,

is \A2 x 0'6' X e. Similarly the weight of

.4024 is A2 x 0'4' X e
; so that if we use

O'l', 0'2, 0'3', . . . , to represent the weights
of the successive prisms .401, ^402, ^403>

. . .
, on the force diagram given below,,

we have simply to multiply the value of J,
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given by construction, by %e,A'2 to find its

true value in pounds.
We next lay off the successive values of

(< + w), as in Fig. 3. Thus, with any
convenient radius, as .40, we describe an

arc, ogdf, and call the intersections with

-41, A'2, . . .
,
ar a

2 ,
a
3 ,

. . .
, respectively.

Next, through point g on the arc in the

vertical through A, draw vertical and hori-

zontal lines, and describe an arc, bssv . . .

with the same radius
;
then draw gs, making

the angle < below the horizontal gb (by

making chord bs = chord fd) , and lay off

with dividers, chords ss^ ss
2 ,

S6'
3 ,

. . .
,

equal to chords gar ga^ ga^ ... It is

evident now that lines gsr gs2 , gs3 ,
. . .

,

make the angles < with the normals to the

successive planes ^41,^42,^.3, . . .
,
and thus

give the direction of the >S's corresponding
to those planes.

We now lay off with dividers on the

vertical line gA the distances ggr gg^ . . .

equal respectively to OT, 0'2, 0'3', . . .
,

and draw through the points gv g.2 , gs ,

parallels to the direction of E (drawn as

before explained) to intersection with the
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lines
f/Sj,, </s.2 , gsa , . . .

,
which intersections

call cr c
2 , c

3 , . . .
, respectively.

25. It follows that the lines g^ g<.2 ,

3
c
3 , . . . , represent the thrusts E due to

the successive prisms of rupture .401, ./102,

. . .
,
and we shall now prove that the

greatest of these lines, which is found to

be 0^, represents the actual active thrust

upon any stable wall. 1 This follows from

the simple fact, that if we regard any
other thrust than the maximum as the true

one, on combining this lesser thrust, taken

as acting to the right, with the weight of

the wedge of rupture corresponding to the

maximum thrust, we necessarily find that

the resultant falls below the position first

assumed
;
so that it makes an angle with the

normal to the corresponding plane of rupture

greater than the angle of repose, which, by
the principle of Art. 21, is inconsistent with

stability. Thus, in Fig. 4, if we choose

tc assert that any trial thrust, as ^2
c
2 ,

less

than the maximum 4
c
4 ,

is the true one, on

1 This method of laying off the trial thrusts, so that the

maximum could readily be obtained, was first given by
I'rofessor Eddy, in New Constructions in Graphical Statics*
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shortening the lengths </3
c
3 , #4

c
4 , . . . ,

representing superior thrusts, to the com-

mon length <T/^, and drawing through the

new positions of c
3 ,

c
4 , . . .

, straight lines

to g, which thus represent the resultant

thrusts on the planes ^43, ^14, . . . , we see

that the new directions fall below the first

assumed positions, and therefore make

angles with the normals to the planes

greater than (, which is absolutely incon-

sistent with equilibrium. It follows that

any thrust less than the maximum, as

determined by the construction above, is

impossible ;
and that this maximum thrust

thus found is the actual active thrust exerted

against the wall. In this consists what is

known as Coulomb's "
wedge of maximum

thrust," which is here established by aid of

the single mechanical principle enunciated

in Art. 21.

The prism of rupture in this case is

^4024^4, the plane AA being the surface of

rupture.

To find the resultant thrusts on all the

other assumed planes, we combine the actual

thrust found with the weight of earth lying



45

above the plane. Thus, extending g^
. . . to a common length #4

c
4 ,

or to the

vertical tangent to the dotted curve, the lines

drawn from g through the corresponding
intersections with this vertical will represent

the thrusts on the planes ^41, ^42, . . .
,

which are thus inclined nearer the horizontal

than the old trial values, and thus make less

angles than c with the normals to their

corresponding planes ;
so that the conditions

of stability are all satisfied, and, if the wall

gives, sliding will only occur down the plane

of rupture A\.

In the analytical method followed by

Weyranch, E is assumed to be constant,

and to equal the actual thrust on the wall ;

and the real surface of rupture is taken to

be that plane for which the angle that S

(Fig. 3) makes with the normal is the

greatest (<) consistent with equilibrium,

which is in agreement with what we have

just proved
Winkler adopts the same method, in

preference to the Coulomb method. In

fact, he asserts that u no author, from

Coulomb down, has given any direct satis-
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factory proof of Coulomb's principle." It

is hoped that the above demonstration

will prove complete and satisfactory. The

method evidently gives the least thrust, for

the assumed direction of E, that will keep

the mass from sliding down the surface of

rupture.

The earth can resist a much greater

pressure from the wall side, since a con-

tinuously increasing pressure from the left

causes all the resultants on planes Al, A'2,

... to approach the normals, then to pass

them, and finally to lie above them, with

the sole condition that none of them must

make angles greater than $ with their

corresponding normals (see Art. 34).

26. To find the thrust E in pounds, we

multiply g4
c
4

to scale by ^A2.e. Finally,

if we know the position of E, we combine

it with the weight of the wall in pounds,

acting along the vertical through its centre

of gravity, to get the resultant on the base.

If the upper surface of the earth is level,

or with a uniform slope from the point

(Fig. 4), then the sections of the prisms of

rupture for various heights of the wall, or
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for any values of AQ, are similar triangles,

so that the thrusts E, which vary directly

with the weight of the corresponding prisms,

will also vary directly as the areas of these

triangles, or as the squares of the homologous
lines .40, or as the squares of the height of

point from the base AB. It follows, as

in the case of water-pressure, that for these

cases the resultant E of the earth-thrust

acting along the face AQ is found at a

point |AO along AO from the base AB.
For the surcharged wall it is possibly

higher ;
in fact, Scheffler takes it in con-

structing his tables, for all cases, at T%AQ
along AO. But experiment indicates either

that the thrust is overestimated for sur-

charged walls, or that it acts not higher
than at one-third the height of above the

base
;
so that it will prove safe in practice

to take the latter limit if we use the

theoretical thrust. As to the latter, it is

evident that cohesion (which we have

neglected) has a greater area to act upon

along the surface of rupture for any kind

of surcharged wall, than for earth either

level or sloping down from the top of the
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wall
;
so that we should expect the thrust to

be somewhat overestimated when we neglect
cohesion altogether, since the resistance to

sliding down any plane due to it is directly

as the area of the surface of separation.

27. In case the earth is level with the

top of the wall, the construction of Fig. 4

again applies, only the line 0'6' now coincides

with the horizontal through (7, and the

reduction of areas to equivalent triangles

is omitted, since now all the triangles have

the same altitude, equal to the height of the

wall.

If, however, the earth slopes uniformly
from the top of the wall, at a less angle
than the angle of repose, we can assume

any point as 2, on this slope, and effect the

construction of Fig. 4 as before ; or, better,

we can divide this slope into a number of

parts at 1, 2, . . .
,
and treat 01, 02, . . .

,

successively as the bases and the perpen-

dicular from A upon 02, produced as the

common altitude; so that, using 01, 02,

. . .
, as representing the weights of the

corresponding prisms on the load line gg,

we have finally to multiply the value of </c,



49

corresponding to the greatest thrust, by

\e, multiplied by this perpendicular, to get

the maximum thrust E in pounds.
In case the surface of the earth slopes

indefinitely at the angle of repose, the

graphical method fails to find the surface

of rupture, which analysis shows, in this

case, to approach indefinitely to the plane

of natural slope passing through the point

A, though practically it may be shown that

planes of rupture slightly above the latter

will give almost identically the same earth-

thrust, so that they can safely be used. In

fact, it is well to state here, that, for earth-

level at top, the surface of rupture, as

observed in experiments with every kind of

backing, agrees very well with theory ; but,

as the surcharge grows higher, the actual

surface of rupture lies nearer the vertical

than the theoretical, and the thrust is

correspondingly less, particularly for walls

leaning backwards at top, which, for a high

surcharge, actually receive much less thrust

than the nmple theory after Coulomb's

hypothesis, neglecting cohesion, calls for;

ind it is not surprising that it is so. But
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we shall defer the comparison of numerical

results till later.

28. Case where E does not make the angle

< or <' with the normal to the wall.

In Fig. 5, let AC represent the inner face

of the wall, backed by earth sloping upwards

from. C in the direction C 10. There

are certain positions for the wall AC lying

to the left of the vertical Ag,for ivhich the

true thrust on it is found by ascertaining

the thrust on the vertical plane AO, extending

Jrom the foot of the tuall A to where it

intersects the top slope C 10, having

assumed the direction of the thrust on AO,

after Rankine, as parallel to the top slope,

and combining this thrust, acting at ^AO
above A, with the weight of the mass of

earth, AOC, lying betiveen AO and AC,

acting along the vertical through its centre

of gravity. The thrust on AO is thus

combined with the weight of AOC, at a

point on AC, one-third of its length going

from A to C.

This direction of the thrust on AO par-

allel to the top slope is in agreement with

Rankine's principle for the case of an
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unlimited mass of earth of the same depth

everywhere, on an uniformly compressible

foundation (Art. 9), and doubtless agrees

very nearly with the direction and amount

of the earth-thrust in ordinary cases, except

near comparatively rigid retaining-walls, or

other bodies, where the direction is generally

changed, as previously pointed out.
"

Let

us ascertain the limiting position of AC,
below which the true thrust must be ascer-

tained in the manner just stated. To do

this, we first assume the thrust on AO as

acting parallel to the top slope, and find

its intensity corresponding by previous

methods
;
and afterwards prove, for positions

of AC below the limit, to be found by

construction, that no thrust on AO having
a less inclination to the vertical is consistent

with equilibrium.

The construction necessary to find the

thrust on AO, from the earth on the right,

is similar to that given for Fig. 4, except
that the top slope is now uniform, and will

only be briefly indicated. Thus, divide the

top slope 10, to the right of Ag< into a

number of parts, made equal for convenience,
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and draw through the points of division lines

from A produced on to meet the arc described

wiihAg as a radius at the points ar 2 , . . .

Then with g as a centre, and gA as a radius,

describe a semicircle as shown ;
also draw

cjb horizontal, and lay off arc bs equal to <,

the angle of repose, and from s lay off arcs

ssv ss.2 ,
. . .

, equal to gav ga2 , and draw

the lines gsv gs^ . . .
,
from g through

the extremities of these arcs to represent the

directions of the resultants on the successive

planes of rupture, which are thus inclined

below the normals to those planes at the

angle cf> respectively. Next, on the vertical

#3., lay off ggr gg.2 ,
. . . , equal to the bases

01, 02, of the supposed prisms of rupture

lying to the right of Ag, and through their

extremities draw g^V, g.22',
. . .

, parallel

to top slope to intersection 1', 2', . . .
,

with the directions of the resultants first

found. The greatest of these lines cc
x

,
to

scale, represents the actual thrust OD ^40
;

and we have only to multiply it by \ep,

where p is the perpendicular let fall from

A on the top slope 010 produced, to scale,

to get the pressure in pounds, if desired.
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Now, if the direction of the pressure on the

Wall AC cannot be taken as usual, inclined

below the normal to AC, at an angle <,

it is (Art. 7) because, in case of motion,

the earth does not rub against the wall

sufficiently to develop the required friction,

whence it must follow that the earth breaks

along some plane as .44, Ao, . . .
, to the

left of Ag, where the thrust is inclined at

the angle < to its normal
;
so that this plane

is a veritable plane of rupture, and its

position can be found as usual on assuming
the direction of the thrust on AQ as parallel

to the top slope.

In case such a plane exists between .40

and AC, the earth below it, if the wall

moves, will go with the wall ; further, it is

evident that the thrust against the vertical

plane AO, due to the wedge of rupture on

the left, must exactly equal the thrust first

found corresponding to the wedge of rupture
on the right, otherwise equilibrium will be

impossible.

To ascertain the position of this plane of

rupture on the left, that we shall hereafter

call the limiting plane, most accurately, it
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is weK to magnify the lines representing the

forces as much as the limits of the drawing
will admit of. We have consequently
divided the top surface, 06', into a number of

equal parts, of which the first eight are only
one-fourth the length of the corresponding

parts to the right of ^40. By laying off the

loads gg^ gg2 , . . . , however, to a scale

four times as large as just used, we have

the lengths gg^ gg.2 ,
. . .

, exactly four

times the lengths 01, 02, . . .
, along the

surface to the left of 0, so that the old

lettering applies again.

We now produce the lines A\, .42, . . .
,

to intersection nv n
2 ,

. . .
, with the arc gn

(it is obvious that the top slope, 0(7, should

best be drawn, in the first instance, through

g, for accurately fixing the positions of nv n2 ,

. . .) ; then lay off, below the horizontal,

the angle clgm = <
;
and from m, the inter-

section of gm with the semicircle cL46, lay

off the arcs mmv mw.2 ,
. . .

, equal to

gnv gn2 ,
. . . : so that the lines gm r gm2 ,

o . .
,
all make angles equal to < with the

normals to the corresponding planes Al,

A2,...
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Next, on drawing through gv gv . . . ,

lines parallel to the assumed direction of

the thrust on AO, to intersection with the

corresponding lines gmv gm^ . . .
, the

greatest of the intercepts (<75 5 nearly)

represents, to the scale of loads, the thrust

on the plane ^40
;
and this length should

exactly equal four times the length cc
7

representing the thrust from the right, as

we find to be the case. The plane of

rupture to the left of the vertical through
A thus coincides nearly with ^45, which is

marked "limit" on the drawing. [On a

larger drawing, for
c/>
= 33 42' and the top

sloping at 25, the limiting plane was found

to make an angle of 15 to 16 (see a more

accurate determination in Art. 41) to the

left of the vertical Ag, and to lie slightly

below ,45, as this drawing would indicate.]

If we lay off along the lines parallel to

top slope, through gv g^ . . .
,
the true

thrusts, gjv g.2
t
2 , . . .

, gjv . . .
,

the

directions of gtr gt^ . . .
, gtn , . . .

, of

the true thrusts on the planes A\, ^12,

. . .
, ^47, . . .

,
all necessarily lie above

the first assumed directions
;
so thaf

, the
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actual thrusts on all planes other than Ao

(which we shall regard as the plane of

rupture, for convenience), lying above or

below ylo, make less angles with the

normals to those planes than the angle of

friction, just as we found in Art. 25.

The conditions of stability of Art. 21 are

thus satisfied in the present case
;
but it is

evident that this is no longer so if we lower

the direction of the thrust on ^fo, which

lessens the horizontal component of the

thrust from the right, since intersections

like 6', 7', in the right diagram move towards

the vertical Ag, though the reverse obtains

for the diagram to the left, which of itself

indicates some absurdity. If, now we

combine the new thrust on AQ from ?-he

right (which has a less horizontal compo-
nent than before) with the wedges of earth

lying to the left of AS, it is readily seen

that the directions of some of the resultants,

as gt^ . . . , will fall below their first

positions, and will thus make greater angles
with the normals to their planes than the

laws of stability will admit of ; so that any

lowering of the first assumed position,
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parallel to the top slope, of the thrust on

./40, is impossible.

We thus reduce to an absurdity every

other case but the one assumed, which is

therefore true
;

so that the proposition

enunciated at the beginning of this article

is demonstrated.

We see, therefore, that we cannot, as

before, assume the direction of the thrust

on the wall, AU, as having the direction

gmc , making the angle (/>
with the normal

to AJC) and find the wedge of maximum
thrust corresponding ;

but that its true

direction, gtc ,
is found by combining the

thrust found on AO, acting parallel to top

slope, with the weight of the wedge of

earth, QAC, between the wall and the

vertical plane AO ; otherwise, if the left

diagram is constructed, we find its direction

and amount in a similar manner to that

used in finding the direction, etc., of gL,

. . .
, by laying off on gA (produced if

necessary) (K7 X 4
;

from the end of this

line we draw a parallel to the top slope (K)

to intersection tc , with the vertical through
t
&

. The line gtc to the last scale used mui-
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tiplied by %ep (where p is the perpendiculai

from A on 0(7 to the scale used in laying off

06y

) gives the thrust E against the wall in

pounds. It is laid off in position by drawing
a line parallel to gte through a point on AU,

%AC above -4, as previously enunciated.

29
(<f>' <</>). In case this construction

gives a thrust on the wall which makes a

greater angle with its normal than the

co-efficient of friction, <' of wall on earth,

(f)

f

being less than <, then it is correct to

assume the direction of E as making this

angle <' with the normal, and proceed as in

Fig. 4 to find the thrust. In the preceding

'article, no trial-thrust on the vertical plane

A\J was assumed to lie nearer the horizontal

than the top slope, as there was no reason

for considering such exceptions to the usual

direction in a mass of unlimited extent.

Now, however, the wall requires the thrust

on AO to lie nearer the horizontal than 0(?

does, in which case the horizontal component
will be increased (since intersections like

7', 8', move away from the vertical J#),
and the thrusts on all planes Al, A2, . . .

,

lying to the left of Ag, will be raised above
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their previous positions, gt l9 gt^ . . .
;
so

that the thrusts on all the planes now
make less angles than with the normals

to those planes, so that the conditions

for stability of "the granular mass "
are

assured.

30. The "limiting plane," corresponding
to the plane of rupture on the left, can be

found by a different construction from that

given above. Thus, having found the line

cc
7

representing the maximum thrust from

the earth to the right of -40, multiply by 4,

say, and combine with the successive wedges
of earth lying to the left of ^40, on magni-

fying the lines OT, 02, . . .
,
in the same

proportion, thus giving the lines gtv gt^
. . .

,
for the direction of the thrusts on

the planes A1,A2, . . .
;
these all lie above

the directions gmr #m2 ,
. . .

, making the.

angles (f>
with the normals to the planes,

except for the limiting plane, where gt& and

gmb nearly coincide, as they should exactly
if A5 was the limiting plane. The lowest

relative position of gt with respect to gm is,

of course, the one selected. It is evident,

though, that the construction for the wedge
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of greatest thrust to the left of Jig gives
a more accurate evaluation of the thrust

than the one to the right ;
so that we can

preferably use the left construction not

only for getting the limiting plane, but for

finding the thrust on any wall lying below

the limiting plane.

It is evident, from what precedes, that

the double construction of Art. 28 applies

only when the thrust on AQ is parallel to

the top slope ; for the moment it is lowered,

there results several planes of rupture to

the left of ^40, which is impossible. Even
if we attempt the left construction, we have

seen besides that the resulting thrust on ^40

is greater than by the construction on the

right.

In case the face of the wall, AC, lies

above the "limiting plane," as found

before, we evaluate the thrust on it, as in

Fig. 4, by assuming its direction to make
an angle with the normal equal to

</>
or to

<f>
when

</>'
<

(f). Thus, if the inner face of

the wall had the position y!2, to the left of

-40, the direction of the thrust on it would

now be gm^ in place of gt^ as before, and
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the conditions of stability of the granular
mass will be found to be everywhere verified

as in Fig. 4 (see Art. 25).

31. Summary. For all cases of top

slope, when the inner face of the wall is

battered, we first find the limiting plane by
the construction of Art. 28

;
then when the

inner face of the wall makes a less angle
with the vertical than the limiting plane does

(as is nearly always the case in practice,

unless the surface of the earth slopes at or

near the angle of repose, in which case the

limiting plane is at or very near the vertical),

we assume the direction of the thrust on it

as making the angle < or <' (for <' < <) with

the normal, and proceed as in Art. 23, et

seq. ; but, if the face of the wall lies below

the limiting plane, we proceed as in Art. 28,

or if
<f>

f

f>
we .may have to proceed as in

Art. 29, to find the true thrust.

If the wall leans backward, there is no

need to find the limiting plane, as the usual

construction applies.

For earth level at top, the limiting plane
is inclined to the left of the vertical equally
with the plane of rupture to the right ; as



62

the top slope increases, it approaches the

vertical, and coincides with it for the surface

sloping at the angle of repose.

Remark. It is found from the con-

struction to the right of Ag, in Fig. 5, for

planes of rupture lying 7 to 14 above

the one corresponding to the greatest thrust,

that the thrust is less only by from 6 to 16

per cent, though it more rapidly diminishes

as the assumed plane of rupture nears the

vertical. It must not be inferred, then,

particularly for steep surface slopes, that

a considerable divergence between the

theoretical and actual surfaces of rupture

will invalidate the theory, if the object is

simply to get the thrust within a few per

cent of the truth, particularly as the theory

neglects cohesion. In fact, for a surface

slope equal to the angle of repose, the plane

of rupture is parallel to the surface
;
but a

plane lying much nearer the vertical will

give nearly the same thrust.

32, In this connection, it may be well to describe

an experiment made by Lieut.-Col. Aude in 1848,

and repeated subsequently by Gen. Ardant, M.

Curie, and M. Gobin, on a peculiar retaining-wall
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made of a triangular block or frame, in which

the inner face was inclined to the horizontal at the

angle of repose of the sand backing, when, of

course, by the usual assumption as to E making
an angle of <p with the normal to the wall, the

direction of E would be vertical, and there should

be no horizontal thrust! This seemed, to the

French experimenters, to offer a puzzling objection

to theory; but the solution is clearly as indicated

in Art. 28 (see Art. 67, Exps. 9 and 10). Scheffler

indicated the correct solution as far back as 1857,

but gave the wrong reason for it; viz., that the

horizontal thrust was thereby greater.

The writer, in " Van Nostrand's Magazine
" for

February, 1882 (p. 99), pointed out that any other

solution than that indicated in Art. 28 was

inconsistent with the stability of a granular mass,

and the computations upon that basis agreed very

closely with the experiments. Later M. Boussinesq

has developed the theory of the limiting plane in

connection with the attempt to complete the

Rankine theory, by considering the influence of

the wall on the pressures even to a finite distance

from it. According to Flamant, he defines two

limits to the thrust, and considers the most probable

value the smaller of these limits augmented by

& of their difference. From an examination

of the numerical values computed by Flamant

("Annales des Fonts et Chausses," April, 1885),

the results do not differ greatly from those given

by the simple theory alone used in this work.
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33. The disturbing influence of the wall it-

changing the normal character of the stresses can

be illustrated as follows: If the thrust on the

vertical plane Aft (Fig. 5) acts parallel to the

surface 10, it meets the plane of rupture at

one-third of its length above A, through which

point the weight of the prism of rupture acts

also; so that the resultant on this plane acts at

this point, which corresponds to a pressure on
the plane of rupture uniformly increasing from the

surface downwards. If, however, the wall causes

the thrust on AQ to make as [ angle with
i greater )

the horizontal, the resultant on the corresponding

plane of rupture on the right acts <
' W

[ the
( above )

point situated at one-third of the length of the

plane above A, so that the pressures on it are no

longer uniformly increasing. This abnormal state,

doubtless, does not extend far into the mass before

the usual direction of the thrust in a large mass of

earth is attained
;
but the fact throws doubt upon

the assumption of a plane surface of rupture for

all cases where the direction of the thrust on the

vertical plane does not act parallel to the upper
surface.

It appears reasonable to suppose, if the line

through the centres of pressure on all sections

of a retaining-wall passes through their centres

of gravity, that no rotation of the wall occurs;

further, if it was possible for the masonry and
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earth or rock backing to settle together the same

amount, the backing, say, having been carefully

deposited in horizontal layers, then, even fora

level-topped bank, the maximum thrust, as given

by Rankine's formula, will be exerted, and there

will be no friction at the back of the wall to change
the usual direction of the earth-thrust in a large

bank. If the wall has not the stability, or the

settling is not as assumed, the top will move over,

friction at the back of the wall is exerted, and the

horizontal thrust becomes smaller than before,

corresponding to a different prism of thrust, as

we ascertain by the construction of Fig. 4, for

the two cases of E horizontal and E inclined

downwards. The excess of the horizontal thrust

in one case over that in the other must necessarily

be resisted by the ground-surface, on which the

filling rests by friction, which it is generally

capable of doing. If not, then the Rankine

thrust will be exerted. Similarly, if we consider

any road embankment, whose sides slope at the

angle of repose, the horizontal thrust on some

longitudinal plane in the interior must be finally

resisted by the ground to one side under the

embankment. If, however, the weight of earth

above, multiplied by the co-efficient of friction of

earth on ground-surface, is less than the horizontal

thrust, the earth must slide, and the slope become

flatter, until equilibrium obtains from a less

horizontal thrust. Scheffler computes for an

embankment of triangular section where
<j>

= 45,
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and the angle of friction on the ground-surface is

only 5, that the slope of the embankment would

change to 32 15'. For the ground-friction angle
7 7' 20" there would be exact equilibrium; so

that, generally, there need be no fear from spreading
of embankments due to this cause, as the amount
of friction required is very small.

34. We have now given methods for

finding the thrust against a retaining-wall,

which simply resists this active thrust of the

earth, for the usual cases of a surcharged
wall and earth-level at the top, to which

may be added the case of earth sloping
downwards from the top of the wall to the

rear, for which the construction is evident.

It now remains to find the passive resistance

of the earth to sliding up some inclined plane
due to an active thrust of the wall from left

to right (Fig. 4), caused by water, earth,

or any other agency acting against the wall

on the left. Now (Art. 22) we lay off the

angle bgs (Fig. 4) above bg, and then, from

the new position of s, lay off arcs ssr ss
2 ,

. . .
,
below s equal to gav ga2 , . . . , as

before, giving the direction of gsr gs.2 , . . .
,

inclined at anle above the normal to the
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corresponding planes ^41, ^42, . . . The
construction then proceeds as before, only
it is now the least of the resistances, </c, that

represents the passive resistance of the

earth to sliding up the plane of rupture

corresponding ;
for any increase over this

causes the thrust on some planes to make

greater angles than
(f)

with the normals, as

is easily shown. Let us call N the com-

ponent normal to AC of the resistance and

suppose a slight movement of the wall hori-

zontally to the right; then since the earth

moves upwards along the plane of rupture

and the plane AC, the friction of the earth

along AC, N tan
</>,

acts upwards and the

resistance of the wall downwards.

The thrust E is now inclined at the angle

(f>
above the normal to AC and nob below s,s

formerly. The active thrust is of course the

only one exerted, unless the wall tends to slide,

so that the consideration of the passive resist-

ance is of small practical value. In case of a

heavy structure resting on a foundation, we

can replace the total weight by that of earth,

and estimate the active thrust exerted pgainst
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a vertical plane just below the foundation,

for the full weight of the supposed earth,

by the method to be given in the next

article. The earth to one side of this

vertical plane can be conceived to exert a

passive thrust, which may be estimated as

explained, and should exceed the active

thrust for a stable foundation. This

method, though, of estimating the stability

of a foundation, while doubtless on the

safe side, is otherwise illusory, as any one

who has seen a heavy locomotive move at

great speed along a narrow embankment

must admit. The mass, by its friction,

rapidly and safely transmits and distributes

the weight over the ground, without exerting

any horizontal thrust at the side slopes,

which are perfectly stable.

35. Underground Pressures. To find

the unit pressure at a depth x below the

surface of a large mass of earth, level at

top, of indefinite extent, and resting upon
a uniformly compressible foundation, every

where at the same depth (see Art. 9), we

proceed as follows : Let Fig. 6 represent a

slice of the earth contained between two
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vertical planes one unit apart, and bounded

on one side by the horizontal plane (K7, at

a depth x below the surface, on the left

by the vertical plane ^10, whose depth is

Ax, and below by the plane AC
;

the

planes AQ, 0(7, and AC being supposed

perpendicular to the plane of the paper.

Let the length -40 = Ait1

,
and the length

OU = w.Ax. The plane AC will be con-
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sidered to take successively the positions

.41, A2, . . .
;

so that if we divide

AO = Ao? into ten equal parts, as shown,
and lay off similar equal parts along (H7,

as AC varies in position, n will take the

successive values 0.1, 0.2, . . . Calling

e the weight per cubic foot of earth, the

weight of the prism of earth resting verti-

cally over (X7 is represented generally by
e.x.n. Asc, which, being directly proportional

to n, we can lay off on the vertical OA the

lengths 01, 02, . . .
,
to represent the suc-

cessive values of w, or the vertical loads

sustained by the horizontal bases 01, 02,

. . .
,
of the successive prisms considered.

When the length Aa? is very small, we can

neglect the weight of the small prism of

thrust, .40(7, in comparison with the weight
of the vertical prism above it, without

appreciable error, and ultimately find the

position of the plane AC, which gives the

true thrust against Ati, by previous methods.

Thus, draw the quadrants shown with A
and as centres, and AO as a radius ;

note

the intersections av a
2 ,

. . .
, of the lines

,41, A2, . . .
, with the arc OD

; next,
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construct angle Cos =
<f>

the angle of

repose of the earth, and arcs ss
l
= p

ss^
= 0.

2 ,
. . .

;
so that each of the lines

Osr Os
2 ,

. . .
,
next drawn, make the angle

(f)
with the normals to the corresponding

planes Al, A2, . . .
,
and thus represent

the direction of the resistances offered by
these planes in turn regarded as planes of

rupture. On drawing horizontals through

the points of division 1, 2, . . .
, on AO to

intersection 1", 2", . . . , with the cor-

responding directions Osv Os
2 , . . .

, we

note, that, if the thrust on .40 is taken as

horizontal (Art. 9), the lines 11", 22",

. . . , represent the horizontal thrusts

caused by the weights resting on the suc-

cessive prisms .401, .402, . . .
, treated as

successive wedges of rupture. The greatest

of these 7T
77

represents the actual thrust on

AO ; for if we assert that any other, as 4I77

,

represents the actual thrust, to get the

corresponding thrusts on all the planes .41,

.42, . . .
,

in direction and amount, we

must lay off a length equal to W along

each of the horizontals 11", 22", . . . ,

produced if necessary, and through the
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extremities draw lines to 0, which thus

represent in amount and direction the

thrusts on the corresponding planes. But

since 1477
is less than 7T7

,
this construction

will give a thrust on the plane ^47, lying

below the position 07", and thus making a

greater angle than c with its normal, which

is inconsistent with the laws of stability of

a granular mass. Hence, any other thrust

than the maximum, as given by the above

construction, is impossible.

The length of 77^ to scale is 0.52, which

we must now multiply by ex&x to get the

total horizontal thrust on the plane JU in

pounds. On dividing this thrust (0.52

ex&x} by the area pressed = 1 X A#, we

get the unit pressure on a vertical plane

at a depth x below the surface equal to

0.52e.x, which is called "the intensity of

pressure," at a depth x. As we neglected

the weight of the prism AO C. we must

conceive A# to diminish indefinitely, so that

the error tends indefinitely towards zero,

and the approximate intensity of pressure

on JI) = A# approaches indefinitely that

at the point 0.
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By analysis we shall show hereafter that

the plane of rupture, Al in this case, bisects

the angle between the natural slope and the

vertical.

In this case we have taken = 18 26', and the

resulting intensity (0.52ex) is found to be exactly

that given by the usual formula, ex tan2

(45
- Y

The intensity at any point of a vertical plane thus

varies directly with x. The total amount on a

vertical plane of depth x from the surface is then

rCx2

Cxdx = (where C = 0.52e in the present
z

case), and its resultant is at a depth z equal to the

limit of the sum of the moments of the pressures

(Cxdx) on the elementary areas dx x 1, taken about

the top surface, divided by the total pressure, or

, =f * + f =
f.

Also,
~ = e

f X 0.52x = ^ X line represent-
Z Z i

ing thrust, if old construction is used. These

are precisely the conclusions derived from previous
constructions.

In case the* top surface is sloping, a

similar construction applies, only ~QC must

now be drawn parallel to the top slope, and

the pressure on OA must be assumed to act
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parallel to this direction. The construction

is similar to that given for Fig. 5 (on

neglecting the weight of the wedge of

thrust as above), either to the right or left

of the vertical Ag, only as the weight of

the prisms vertically above 01, 02,

(Fig. 5) is now represented by ex

cos i (where i is the inclination of the top

slope to the horizontalVwe must multiply

the length of the line ~cc' (Fig. 5) to scale,

by ex cos i, to get the intensity of the

pressure at the depth x, since the lengths n

alone were laid off to represent the loads

99*i 99% - -
i
as

'

lu Fig. 6, and the resulting

thrust cc' must now be magnified ex A# cos

i times to get the thrust in pounds on the

plane A# X 1. As A# approaches zero

indefinitely, the approximate intensity

ex AX cos i '-- cc
,
on the area &x X 1, ap-

A3?

proaches that at the depth x (ex cos i. cc')

as near as we please. It must be observed

that ZO in Fig. 5 must be taken equal to

unity in this construction, and the same

scale used in laying off the distances along

the top slope 10.
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36. If the earth to the right of AO, in

Fig. 6, does not experience the similar

active thrust of earth to the left of J.O, but

only the passive resistance of a tunnel

lining, etc., of an underground structure,

the conditions are changed if this lining

gives in consequence of its elasticity ;
for

the wedge of thrust, J.OC, cannot move
to the left without developing friction along
the surface 0(7, therefore the pressure on

this surface must no longer be taken as.

vertical, but as inclined at a direction

1C', making an angle < with the vertical

(Fig. 6). The load on any supposed wedge

of_ thrust, as .A04, is now represented by
04', the thrust on H) by ^Vand the

pressure on the plane A4 by 04". The

greatest of the lines, I'l", 2'2", . . .
,
now

represents the true thrust, and it is readily
found to be 4 /4 // = .33 to scale

j
so that the

intensity of the thrust on a square foot at

the depth x is now 0.33e.r, or one-third the

intensity on the horizontal plane 0(7. Mr.

Baker ("Science Series,'
7 No. 56) found

for a heading, driven for the Campden-Hill

Tunnel, at a depth of 44 feet from the



76

surface, the angle of repose of the over-

lying clay, sand, and ballast, heavily

charged with water, being only 18 26' as

.assumed above, that the relative deflec-

tions of the timbering in the roof and sides

indicated that the vertical and horizontal

intensities of pressure were in the ratio of

3.5 to 1, which is very near what we
obtain by the last construction. The first

construction indicates a ratio of only 2

iol.

In most cases, a portion of the weight of

"the earth abovo the tunnel is transferred

"to the sides (Art. 9), though here it was

thought that "the full weight of the

ground took effect upon the settings."

We have now carefully examined the

conditions of interior equilibrium of a mass
of earth, and ascertained the thrusts ex-

erted, whether in the interior or against a

retaining-wall j
and we see that the graphi-

cal method is capable of handling, with

qual ease, any case that ordinarily pre-
sents itself. The results, of course, agree
with the analytical method, founded on the

same hypotheses j
but as it is often more
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convenient to calculate the thrust, even
when a graphical method is afterwards

used for testing the stability of the wall,
we shall now proceed to deduce formulas

for evaluating it.
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CHAPTER III.

THEORY OF RETAINING-WALLS.

Analytical Method.

37. As in the preceding chapter, we
shall assume a plane surface of rapture,

and regard the mass as subject only to the

laws of gravity and friction al stability

stated in Art. 21.

In Fig. 7, let AFPQEC represent a

cross-section of the earth-filling, taken at

right angles to the inner face of the wall

A.F. We shall consider the conditions of

equilibrium of a prism of this earth con-

tained between two parallel planes, per-

pendicular to the inner face of the wall,,

and one unit apart, regarding the wall

AF as resisting the tendency of the earth

to slide down some plane, as AC, passing

through its inner toe.

Call G the weight of the prism of earth



79

in pounds, directed vertically j

E, the earth-thrust against the wall AFT

directed at an angle <f>

f of friction of earth

on wall when <f>' < <, or of </> when <J>' > ^

below the normal to the inner face of the

wall (Art. 7); and $ the reaction of the

plane AC, inclined at an angle < (the angle
of repose of earth) below the correspond-

ing normal, since the prism is supposed to

be on the point of moving down the plane
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A C. These three forces are in equilibrium

when E and S act towards and G acts

downwards.

Call the angle that AC makes with the

horizontal y, and the angle FAC, ft. On

drawing the parallelogram of forces as

shown, we have, since E and 6r are pro-

portional to the sines of the opposite

angles in the triangle ONL,

E _ sin ONL
~G

~~
sin NLO

It is easily seen from the figure that ONL

y t, and that NLO = < -f- ft + <'
;

hence the above general relation becomes,

a
~

sin (< + ' + ft)

Now, if we conceive the plane A C, always

passing through the point A, to vary its

position, that value of E, corresponding to

the greatest value obtained by the con-

struction above, is the thrust actually ex-

erted against the wall
; for, if A C is the

plane of rupture corresponding to this

greatest trial thrust, any less value of the



81

resistance of the wall E will cause 8 to

make an angle greater than < with the

normal to AC, which (Art. 21) is inconsist-

ent with the law of stability of a granular
mass (also see Art. 25) : hence the least

thrust consistent with equilibrium corre-

sponds to the greatest value of E thus ob-

tained
5
and this is the actual active thrust

exerted against the wall, when the wall

simply resists the tendency to overturning
or sliding on its base, caused by the ten-

dency of the prism of rupture to descend.

If there is a thrust exerted on the wall to-

wards the earth, from any external force'

acting on the left of the wall
j
from left to

right 5 then, if this be supposed to increase

gradually, the actire thrust of the earth on

the right is first overcome
j then, as the ex-

ternal force increases, the directions of S,

on all planes as AC
y approach the normals

to those planes, pass them, and finally the

full passive resistance of some prism of earth

to sliding upwards along its base is brought
into play. The greatest force E, as regards

sliding up the base of some prism, which

can be exerted is that corresponding to the
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supposing the position of the plane A C
to vary, for S lying above the normal to

AC at an angle < for each plane ;
for if we

suppose A C to represent the corresponding

plane of rupture, if the external force,

equal to E, and acting from left to right, is

increased, it necessarily causes the direc-

tion of S to make a greater angle than <

with the corresponding normal, which is

inconsistent with equilibrium (Art. 21).

In this chapter we shall only consider

the passive resistance of the wall to over-

turning or sliding caused by the active

thrust of the earth tending to descend,
which is all that is required in estimating
the stability of retaining-walls.

38. We shall now express the value of

G for the earth-profile shown in Fig. 8

taken to represent the general case, and

proceed to find the maximum value of E,
for different trial-planes, which represents
the actual thrust exerted against a stable

wall. We shall suppose the true plane of

rupture to intersect the part EY of the

profile ;
the line EY is then produced to
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B, so that the area of the triangle ABC
is equal to that of the polygon AFPQRC,
which can be effected by ordinary geomet-
rical means. The point B therefore does

not change, as we suppose the position of

C to vary between E and Y.

. s

Let us drop the perpendicular AT from.

A upon B Y, and designating by e the

weight per cubic foot of earth, we have

a = &.AT.BC.
For future convenience we have desig-

nated, in Fig. 8, the angle that A C makes
with the vertical &?, and the angle that the

inner face of the wall AF makes with the
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vertical a; so that the angle /3 of (1) is

now replaced by (co -f- ')
if the wall leans

forward, or by (GO a) if the wall leans

backwards.

In Fig. 8, let us draw the line CT, mak-

ing the angle ACI =
(<j> -f- <J>' -f /j)

=
(<-]- <// + oo -f~ ')

to intersection J
7
with

the line of natural slope AD through A.

If the wall leans backwards,

ACI (< + <' -f <
<*).

Since the angle (y cp]
=: CAT, we can

replace the ratio of the sines in (1) by that

of the sides opposite in the triangle A CI,

or of CI to AI; so that, substituting the

above value of G, we can write (1) in the

following form :

E= be.AT.BC. . . . (2).AI

On drawing SO parallel to CI to inter-

section with AD, we have, from this

relation and the similar triangles, BOD
and CID.
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which substituted in (2) gives,

E = .

OLID
_ (3

V QD2 I AI

The terms in the
( )

remain constant as

we vary the position of A C. For brevity,

call J./= x, AD a, AO = b ; then we
can write the variable term,

OLID _ (x l) (a-x}_ a ,

^
ab

x
AI x x

which is a maximum for x ^/ab^ as we
find by placing its first derivative equal to

zero. This value of x substituted in the

variable term gives,

so that the actual thrust E on the wall can

be written,

K-l...-
\ OD* / a

Now, drawing the perpendiculars BN and
CI1 from B and C upon AD, we observe

that since the angle A CH = co -j- < (A C
makes the angle GO with a vertical at C,



86

and CH makes the angle < with this same

vertical, since the sides are respectively per-

pendicular to those of the angle DAJ~<$>\
and the whole angle A C!=(GJ +<}>+<}> '+a'),

it follows that .the angle HCI= NBO
(cf>' -\- a) as marked, if the wall leans for-

wards; otherwise HCI=NBO=(<j>'a) y

since .ACT is then equal to (Go-\-<t>+<t>' a),

as previously observed.

To reduce (4) to a simpler form, we
remark that AT.BD represents double the

area of the triangle ABD, and can be re-

placed by AD.BN = AD.BO cos OBN ;

which gives

ATBD.BO = acos OBNl--):
oif \OD) '

= ie. cos OBN (-

(a y)2 . . . (5).

Now, from similar triangles, BOD, CID,
TtO C*T

we have =
, which, substituted in

the above expression, we have, noting that

(a 4/ab) = (a x) ZZ), the very sim-

ple formula,
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E= \e. cos (<' + a) CI- . . . (6).

It is to be remarked, that, if the wall leans

backwards, cos (<' -}- a) is to be replaced
in this formula by cos (<' ex) ; further, if

we lay off IL = 1C on the line IA
f
and

draw a line from L to C, the thrust E is

exactly represented by the area of the

triangle ICL multiplied by e, the weight

per cubic foot of the earth.

39. This simple conclusion has been

previously reached, in an entirely different

manner, by Weyrauch (see "Van Nostrand's

Magazine" for April, 1880, p. 270), who
states that Rebhahn in 1871 found a similar

result, assuming, however, that <f>'
= 0. or

<f>' (f> (for the special cases of earth-level

at top, or sloping at the angle of repose, I

infer).

Recurring now to the fact, that for the

true plane of rupture we found

x= AI =

and that angle NBO =(<'-far) or ($' a),

according as the wall leans forwards or

backwards, we have the following simple
construction to find the plane of rupture
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and earth-thrust E, as given by Weyrauch
in 1878, for a uniform slope and wall lean-

ing forward.

Having found the point B on the pro-

longation of the line RY, which it is thought
will be intersected by the plane of rupture,

so that area ABE rr area AFPQR, we
next draw J50, making the angle NBO
with the normal to the line of natural slope

AD, equal to
(<j>' -f- a) or (</>' a), accord-

ing as the inner face of the wall lies to the

left or to the right of the vertical through
A (replace <'by < whenever <'><) j

then

erect a perpendicular at to AD to inter-

section M, with the semicircle described

upon AD as a diameter, and lay off AI =
chord AM, since AI y'A O.AD > next,

draw 1C parallel to OB to intersection C

with the top slope, whence A C will be the

plane of rupture if the point C falls upon
JtY as assumed

j
otherwise another plane,

as YZ, will have to be assumed as con-

taining the point (7,
and the construction

effected as before.

Having found C in this manner, E can

be computed from (1), since Cr= b A T.BC
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is now known : or by measuring CI to

scale, E can be found directly from (6)

This graphical construction is more

rapid and accurate in working than the

methods of the preceding chapter, and is

superior to Poncelet's construction, in

taking less space to effect.

In surcharged walls, the point B will

generally lie to the right of A F. Thus, in

Fig. 4 the upper line 26 is extended to the

left
;
from a line is then drawn parallel

to A2 to intersection 0' with the line 26

extended. The point 0' thus found corre-

sponds to the point B of Fig. 8.

40. The construction is true whether the

earth-surface slopes upwards or down-

wards from the top of the wall.

In the latter case, if the surface, say BD,
falls upon the line BO, the construction

fails
;
but a formula given farther on gives

the value of E.

If the surface BD falls below BO, it is

easily seen, on drawing a figure, that all the

previous equations hold, and we reach the

same conclusion as before, AJ= ^/AD.A j

only as AO now is larger than AD, the
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semicircle must be described upon A as

a diameter, and the perpendicular to the

point M erected at D ; or AJean be calcu-

lated if preferred. If the points 0, J,

and D are near together, it will be best to

compute BC from BC BD.--, since

the terms in the right member can be

measured to scale.

4i. Position of the Limiting Plane. In

Fig. 9
;
let BD represent the earth-surface,

uniformly sloping at the angle i to the

horizontal, of an unlimited mass of earth

(Art. 9), in which the pressure on a verti-

cal plane, AB, can be taken as parallel to

the surface BD. Let AD represent the

line of natural slope ;
it is required to find

the position of the plane of rupture A C,

corresponding to the thrust E, acting

above the horizontal at the angle i,
and of

course balancing the opposed thrust of

the earth to the left of AB.
On referring to Fig. 7, it is seen that

equation (1) holds on replacing the de-

nominator of the right member by sin

i)- Therefore, in Fig. 8, the angle



91

ACI must now be laid off equal to

(fi+<f> ),
whence the line CI falls below

CH, and BO below BN, both being in-

clined to these normals at the same angle ;

^-j-=i-fO=ti
With this exception, the above demon-

stration holds throughout, and we reach

the following construction to find the point
C. From B draw BO, making the angle i

below the normal BNio AD, or preferably

making the angle (<f> i) with the vertical

AB, to intersection with AD. From
draw OM perpendicular to AD to intersec-

tion Mj with the semicircle described upon
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AD as a diameter
; lay off AI along AD,

equal to chord AM, and from I draw a

parallel to BO to intersection C with the

top slope BD. The plane A Cis the plane

of rupture, or the limiting plane of Art. 28,

which see.

If the inner face of the wall lies below

AC, then (Art. 28) the thrust=ie. cos i. C/2

on AB is computed, and, regarded as

acting parallel to BD, from left to right,

is combined with the weight of the earth

and wall to the right of AB to find the

true resultant on the base of the wall.

If the wall lies between AB and A C, the

constructions of Arts. 37 and 38 are used.

To be as accurate as possible in these, as

in all constructions, true straight edges on

both ruler and triangle are imperative.

Lay off all angles, including right angles,

by aid of a beam compass to a large

radius, say ten inches, using a table of

chords (except for the right an^le) and an

accurate linear scale. With all care, the

angles BAG thus found can scarcely be

counted on to nearer than ten minutes,

which, however, is sufficiently accurate.
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In the table below will be found, for

various inclinations i,
the values of the

angle BAG that the limiting plane makes

with the vertical
;
also the co-efficient K

(see Art. 42), or the thrust on AB^e
cos i 6T2

,
when AB and e are both taken

as unity,made out for earthwhich naturally

takes a slope of one and a half to one, or

whose angle of repose is 33 42'.

The value of K agrees fairly well with

calculation, the last figure not differing

more than one or two, at the outside, from

the results of Art. 47.

From the construction we see that as i ap-

proaches </> indefinitely, BA C tends to zero

andE approaches the limit \e cos <j>.
AB2

,
as

given by analysis. The increase of thrust

is very rapid from *=30 to t=^= 33 42'.
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42. Uniform Top Slope; Formula for

Earth-thrust. When the upper surface of

the earth slopes uniformly at the angle i to

the horizontal, it is easy to deduce from

what precedes a general formula for the

thrust exerted by it. Fig. 10 represents a

Fig. 10

retaining-wall leaning towards the earth.

We shall first deduce a formula for this

case, when it will be observed, as we pro-

ceed, that the same formula holds, when
the wall leans forward/on simply changing
a to

( a).

In this case, we note from Fig. 10 the

following values for the angles.
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NBO = V a,

ABO= < + <',

AOB 90 (<' a),

ADB =
<j> i,

Finally, designate by Z the length .AJ? from

the inner toe to where the inner face of the

wall intersects the top slope, and by h its

corresponding vertical projection.

From formula (5) we deduce, remem-

bering that OD = (al),

E = e. BO*
~

a
.

s OBN. . . (7).

La b J

We can now write the
[ ]

as follows :

It
a Vab __ 1 \a 1

a-b

Placew =

Na

P. to find its value in .terms
N

of the functions of known angles, we have

from the triangles AOB and ABD by the

law of sines,
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AO __ sin (<f> + $') AB _ sin (<f> i)

AB cos (V a)' AD
~

cos (or + i)'

On multiplying these two equations to-

gether, and extracting the square root, we

find,

_ ,J
/

sn (<> + <) sn (0-
~
\A> \ cos (^-a) cos

'

Again, from the triangle BOA, we have,

cos
(<f>

f

a)

Substituting these values in (7), and putting
cos OBN= cos (<' a) for this case, and

we have finally,

n + 1 / 2 cos (<' <ar)

Or, since h= / cos <*
7
we likewise have,

^)\
2 ^2

no)
al 2 cos <

x a
'

cos al 2 cos (<^
x

a)

If we term the co-efficient of eh2 in (10),

j
we can write this formula,

E = Keh2
. . . (11)
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in which, for walls leaning backwards, as in

Fig. 10,

cos a) 2 cos (<' a)

where n has the value given in (8).

For ivalls leaning forwards, we easily

note the changes in the angles used, and

can verify that formula (11) obtains; but

now,

K /
cos

(<ft ^)\
2 1

V(M-f-l) cos a) 2 cos (<' -f- a)
'

and,

_ (sin (<f> -J- <') sin (< i)

N cos (<' + a') cos (a i)

which we obtain from the old values by
simply changing a to ( a].

Ifc is to be observed, for all cases, when
<' > (j>

that we must replace <f>' in all the

formulas by <.

These formulas are identical with those of

Bresse ("Cours de Mecanique Appliqu6e,"
Vol. I. 3d ed

)
and Weyrauch, for the

case of the wall leaning forward, the only
cases examined by them. Bresse uses the
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Poncelet method for the general case,

which leads to Poncelet's celebrated con-

struction. The routes pursued by these

authors is different from that given above,
the method of Weyrauch, in particular,

being much more complicated 5 still, all

three methods lead to precisely the same

formula, so that it must be considered as

established beyond question.

Weyrauch, too, in subsequent reductions,
follows Rankine as to the direction of the

earth-thrust against the wall, whereas

Bresse takes it as above. The'case of the
lt

limiting plane
n
is not considered by either.

43. The case where the top surface slopes

downwards to the rear is very rarely met

with in practice. The previous formula

apply though directly on simply changing i

to ( i), since it is seen that angle ADB
- (<{>+i) and angle ABD = 90 -j- (ai),

A . AB .
i , sin (<t>-\-i]

and the ratio is now equal to
{.AD cos(tf i)

44. Earth Level at Top; Back of Watt

Vertical. For the earth level at top, back

of wall vertical, and <' = < as usually

taken, the formula (11) takes a very simple
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form. Here we have <* 0, <f>'- <, ^=0,
whence.

-j sin 2d> sin d>*

cos

and

-

For <' 0, which corresponds to a per-

fectly smooth watt, or otherwise may refer

to the direction of the pressure on a ver-

tical plane in a mass of earth of indefinite

extent, level on top (Art. 9), we have,

when a and i=0
,
n = sin < and,

17, 1 sin < eh^

1 -j- sin < 2

). ... (16).
9 / 9

The equality of the two co-efficients o

in (16) is easily verified from the known

formula,
1 cos a?

tan2
J (x)

=
cos x

by putting (90 <) for x in both members.

Referring to Fig. 7, and regarding AF
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vertical, the top surface horizontal, and

<j>'
=

0, we note that G=~. h2 tan ft and

pE - h2 tan ft tan (y ft), in which y =

90 ft. Now, this result must agree with

the right member of (16), which is only

possible when ft = / 45 f- \ or 2/3 =

<! ft) 5
whence it follows that for ft'^0,

a 0, i= 0, as assumed, the plane of rup-

ture bisects the angle between the vertical and
the line of natural slope.

45. Earth sloping at the Angle of Repose.

For this case we shall assume a= and

ft'= < in addition to i =
<f>,

whence n=0
and,

E=^.df. . . (17),
ft

as found in a different manner in Art. 41.

This simple formula can likewise be de-

duced directly from equation (1) of Art.

37, referring to Fig. 7,

E- sin (y <ft) __ cos (ft -f ft)~~
sin (ft -hft' + ^)~sin (2 ft + /ft)'
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On substituting the value of G, which is

easily found for this case to be,

__1_ _etf__ sin ft cos <fr
eh*

~
cot p tan 4> T ~cos (ft -f </>)

~2~'

we find for the trial thrust

-p _ sin ft cos < e/i
a

"
sin (2 < + />) ~2

cos < eft
2

sin 2 < cot /? -j- cos 2<f> 2

Now, by the reasoning of Art. 37, the

true thrust is the greatest value the above

expression can have, as fi varies, and its

greatest value corresponds to /?=90 <
j

for then cot ft is least, andE greatest, since

cot ft is in the denominator. On substi-

tuting this value a simple reduction gives

E = J cos < . eh2 as found above in (17).

Since we have just found, for this case,

that ft
= 90

<j>,
it follows that the surface

of rupture coincides wiih the natural slope.

The value of E from equation (1) in this

case assumes the form X oo, since G
becomes infinite for an indefinitely sloping
surface

j
but on reducing to the form above
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we easily see the limit that E approaches

indefinitely, which is its true value. The
construction of Art. 39 fails for this case,

but the one of Art. 41 leads directly to (17).

46. Pressure of Fluids. The general
formula (9) above is true, no matter how
small the angle of repose <f> becomes, and

must approach indefinitely the expression
for the pressure of liquids, as <j> and </>'

tend towards zero
j
so that at the limit,

for 4>
= <' = i = 0, we have the normal

thrust of a liquid whose weight per cubic

foot is e,

E | eft cos a = 1 eh2 sec a . . . (18),

a well-known formula. By Art. 44 we see

that for < =
0, 2/? = 90, or the plane of

rupture approaches an inclination of 45

as < approaches zero indefinitely .

47. Mankinds Formulafor the Earth-thrust

on a Vertical Plane, in an Indefinite Mass,

sloping uniformly. In Art. 9 we have

stated the conditions that such a mass

must satisfy in order that the pressure on

a vertical plane, whose intersection with

the top slope is a horizontal line, may be

parallel to the line of greatest declivity.
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Also in Art. 28 we have seen, that, when
the wall face lies below the limiting plane,

this direction of the thrust is the true one

on a vertical plane, passing through the

inner toe of the wall.

We have a= 0,
<' = i. and I = h, which

gives in formula (9),

\~*f-T/ 2 cos i

where,

sin (<f> -f i) sin
(<

_ V sin 2
<f> cos2

i cos2
<f> sin2 i

cos i

_ V cos2
i cos2

<f>

cos i

Whence,

p _ cos2
<j> cos i eh2

(cos i + Vcos2
i cos2

<)
2

'

"~2~*

Now, since we can write,

cos2
< = (cos i + Vcos2

1 cos2
<^>)

X (cos i Vcos2
i cos2

<)

the above value becomes, on striking out
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the common factor, (cos HVcos2
i cos2

cos

which is Rankine's well-known formula
for earth pressure.

Now since Rankine's formula was framed
without the use of any assumption, as that

of a plane of rupture, and is accepted as

correct for the case in question, it follows,

that, when the pressure is assumed to be

parallel to the surface, the assumption that

the surface of rupture is a plane will give
correct results, and can be safely used in

the graphical method which is absolutely

dependent on it.

It will be observed that formulae (16)

and (17) can be deduced directly from (19)

by making i = and i = < respectively.
Rankine has given a simple graphical con-

struction of the last fraction in (19) in his
"
Civil Engineering/

7 which saves labor in

computing.
48. Unit Pressures on a Vertical Plane

at Depth x below a uniformly Sloping Sur-

face, the Direction of the Pressure being
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taken Parallel to the Line of Greatest De-

clivity. As in Art. 35 we shall consider a

wedge of thrust of infinitesimal dimen-

sions, of which the left face AB (Fig. 10)

is vertical, and the upper surface paral-

lel to the top slope. The weight of

the vertical prism that rests upon any

trial base as BC is, e . BC . cos i . x . =
AT . BC . exIAB (Fig. 8); so that neglecting

the weight of the infinitely small wedge
ABC we get the value of E from equa-
tion (1) of Art. 37 by simply replacing G
by this value. Equation (2) of Art. 38 is

thus replaced by

F-^L AT BC
CI- AB .AT. BCTr

which is exactly that given in Art. 38 mul-

tiplied by the constant 2x1AB. All the

subsequent reductions, therefore, hold if we

simply put h=AB in the final equations,

and multiply the result by 2x/AB. Hence

divide (19) by AB = h and change the

coefficient eh/ 2 to ex, to find the intensity

of the pressure, E + AB, at a depth x;

and on integrating this expression, mul-

tiplied by dx, between the limits o and h,
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we are at once conducted to (19), which
is thus .proved true by the method of

integration of the effects of earth particles,

which is independent of the assumption of

a plane surface of "upture ^xcending to

the surface.

Precisely the scum, conclusions hold for a

vertical tvall, or one leaningforwards, ivlien E
is assumed to maJce the angle <' or

<f> with the

normal to the wall, since G is simply replaced
as before by the weight of the vertical

prism for a uniform top slope, and ultimately
we replace h2

by 2x in the general formula

(11) to get the intensity of pressure in the

direction given, at the depth x from the

surface, so that on integrating as before we
deduce (11) without the necessity of con-

sidering the surface of rupture as extend-

ing to the surface. The graphical method,

using this hypothesis, should again give

good results. It is possible though, in this

case, that the influence of the wall friction

may have some effect in deflecting the

weights of the vertical prisms from a ver-

tical line
; for, when it is so transmitted, the

usual direction of the pressure is parallel
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to the surface (Art. 9). For walls leaning

backwards the prisms do not rest vertically

over the bases of the prisms of thrust, and

the theory would seem to be inapplicable ;

so that the formulae for this case, (8) and

(9), have to rest upon the unproved hypo-
thesis of a plane surface of rupture extend-

ing to the surface, and may depart consid-

erably from the truth. We conclude, that,

except for the cases for which -Rankine's

formula is applicable, the plane surface of

rupture is still an unproved hypothesis.

49. PointofApplication of the Thrust; Uni-

form Slope. We have the normal compo-
nent of the thrust on a wall, by (9) whether

the wall inclines forward or backward or

is vertical, expressed by the relation,

E1
= (9) X cos # =

cP,

c being constant whence the thrust on

the area dl X 1 is nearly

dEi = 2cm,

and the distance from where the inner

face of the wall interesects the top slope
to the centre of pressure is equal to

the limit of the sum of the elementary
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pressures multiplied by tlieir arms, divided

by the total pressure, or,

f*J I

hence the centre of pressure on the wall is

1/4 vertically above the base.

50. Surcharge uniformly distributed. If

the filling of height li has a horizontal

surface upon which a uniform load of any
kind rests, replace its weight by that of

an equivalent quantity of earth, giving the

total load the same, and call the height of

the reduced load h'. The total pressure on

the vertical wall of height his now by (11),

E = Ke ((h + h')
2 h 1

-}
= Keh (h -f 2k 1

),

whence,

dE = Ke.2 (h -f h') dh ;

and the distance of the centre of pressure
from the top of the wall downwards is,

2 fJ o
'*')

hdh

h (h + 2h') 3\

or from the base of the wall upwards,
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Ji-
h2

-f

37* + 07*
1 +

ll + 27/7 a

It is more than probable that the theory
for this case will prove illusory in practice,

and will give a large excess of pressure ;

so that, most frequently, such surcharged
loads are ordinarily allowed for by a large
factor of safety, particularly where the

earth is bound by cross-ties, stringers, etc.,

or the surcharge is not free to move later-

ally as well as vertically.

Surcharge

. !O(a).

In the case of sea walls, the backing is

saturated with water at high tide, up to a

certain level BF, fig. 10 (a), so that it is

well to ignore the friction at the back of
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the wall on BC and for additional safety
it will be neglected on the portion AB.

Call the weight of the backing per cubic

foot above BF, e1 and the angle of repose

<#>!. The corresponding quantities for the

saturated backing below J?jF will be desig-

nated by 62 and <o. The value of <o

should be found by experiment and 2

computed as explained at p. 31. If the

water, at high tide, is at the same height
on the front and back faces of the wall,

the water pressures on those faces will

balance and need not be considered.

Let AJ5 #! and E^Dearth thrust

Ji2 and 2= earth thrust on BC.

By Art. 44 (16), K -J.
Tan2 45-_

therefore if
~h'e^ W= surcharge or load in

pounds per square foot, on AD ; by the

analysis just given,

EI = Kejii (hi + 2ft
1

)
= tan2 /45 ^\

\^ + *iWl and ^ acts above B, a

distance,
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Next, assuming that the load on the hori-

zontal plane BF is uniform and Wo Ibs.

pr. sq. ft. and calling the height of this

load reduced to the specific gravity of the

earth below BF, 7?o,

Hence as before,

E, = tan*
(45

-
*).

and EI acts above
(7,

a distance,

d + ^ V*2

\
r

/^2+2V 3

If no surcharge is considered, the formu-

las apply on making,

TF=o h'=o .

*

. TPo=

In either case having found JJX and E^ in

magnitude and position, the position of

the resultant E\ -f- E^ can be found by
taking moments about C.

The above formulas will be found to

reduce to those given by Mr. D. C. Serber,

in Engineering News, Aug. 23, 1906. It
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is stated there, that the Department of

Docks of New York City specify a sur-

charge of 1,000 Ibs. pr. sq. ft., acting as a

vertical load.

51. Moments of the Thrust about the Inner

Toe of the WaW. Let us decompose the

thrust E against the wall into two compo-

nents, E\ and Ez, respectively normal to

and acting along the inner face of the wall.

If E makes the angle <f>' with the normal

to the wall, we have, from E = Keh2
,

Ei = E cos <' = K cos <}>'.eh
2 -

or putting, K\ = K cos <j>'

we have, EI = K\ eh2

also, E% E sin <f>'
= EI tan <'.

It is understood in these formulae, that,

when <f>' > <, we must replace <f>' by <f>.

If the inner face of the wall makes an

angle a with the vertical, we have the

thrust acting at a distance cl = ch sec a
from the inner toe of the wall, where c =
^ by theory for a uniform slope ;

there-

fore, the moment M of the thrust about the

inner toe of the wall is EI cl
}
since the mo-
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ment of E^ is zero
j
or putting for abbre-

viation,

m = c K\ sec a

we have,

M E\ ch sec a = c K\ sec a . eh* meh*.

In subsequent investigations it is well to

recall that h represents the vertical height

from the inner toe of the wall to where the

line of the inner face pierces the top surface

of the earth backing, and that e represents

the weight per cubic foot of earth.



CHAPTER IV

EXPERIMENTAL METHODS. COMPARISON WITH
THEORY. THE PRACTICAL DESIGNING

OF RETAINING WALLS

52. Many experiments have been re-

corded pertaining both to retaining-walls

proper and to rotating retaining-boards.

Where the backing is of dry sand, possess-

ing little or no cohesion, the results, for

the retaining-walls proper, agree fairly

well with the theory advanced in this

book, which includes all the wall friction

that can be exerted, especially where the

walls were several feet in height; but they
do not agree with the Rankine theory, in

which the direction of the pressure on a

vertical plane is always assumed parallel

to the earth surface.

53. The results for some of the exper-
iments on model walls at the limit of stabil-

ity are given in the adjoining table.
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The walls were all vertical walls of rectangular
cross-section, except the last two, which were
peculiar wooden triangular frames whose inner
faces made angles 27 30' and^55 respectively
with th<; vertical.

In No. 6, the face coincided with the
"
limiting

plane
"

(Arts. 28 and 41) and in No. 7 was below
it. in either case, the thrust was first found on the
vertical plane through the foot of the inner face
and this was combined with the weight of the
earth over the face and the weight of the frame to

find the resultant on the base (see Art. 32).
Wall No. 1 was of pitch-pine blocks, backed by

macadam screenings, the level surface of which
was 3 inches below the top of the wall. Wall
No. 5, of brick in Portland cement, was a sur-

charged one; the level upper surface of the sur-

charge being 4.26 ft. above the top of the wall, the

surcharge extending entirely over the top of the

wall at 45 to the horizontal. In the other walls,

the earth surface was level with the top of the wall.

Wall No. 2 was of bricks laid in wet sand; No. 3,

of wood, and No. 4 was of wood coated on the

back with sand.

54. Elaborate experiments on rotating

retaining-boards, backed by sand, have

been made by Leygue (" Annales des

Fonts et Chausse'es," Nov., 1885), Darwin
and others, which, in the earlier editions

of this work, were given in detail. They
are omitted here, since they have been
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discussed by the writer very fully in an

article entitled
"
Experiments on Retain-

ing-walls and Pressures on Tunnels."*

The conclusion was drawn that the results

can be harmonized with theory by includ-

ing the influence of cohesion. The dis-

cussion involved a complete theory, mainly

graphical, of earth pressure, where the

earth is supposed endowed with both

friction and cohesion.

As regards the experiments of Leygue
on rotating-boards, it was found that,

assuming an adhesion or cohesion, of only
about 1 Ib. per sq.ft., for the dry sand

used, the experiments were in harmony
with theory; but that the results differ

essentially from the usual theory where

cohesion is neglected. The discrepancies

were proved to be due entirely to the

small size of the models used and it is

suggested that in future, walls of 6 feet

and upwards in height be experimented

on, where the influence of a cohesion of

only 1 Ib. per sq.ft. is very small and can

be neglected in the analysis.

* Transactions Am. Soc. C.E., Vol. LXXII,
p. 403 (1911).
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55. Center of Pressure. Leygue, in the

experiments on retaining-boards, found the

moment of the earth thrust about the toe

and also determined the surface of rupture.

Using the corresponding wedge of rupture,

the writer computed the thrust and its

normal component. On dividing the mo-
ment given by the latter, the quotient

gives the distance of the center of pressure

of the earth thrust from the base. It

was found to lie, as an average for all the

experiments, at 0.34 height of the board in

contact with the filling for dry sand and

0.405 height for millet seed. For sand,

the values varied, for a vertical wall from

0.319 per earth surface horizontal to 0.346

for the surface sloping at the angle of

repose. For boards leaning towards the

earth, when tan a (Fig. 10, p. 94) was

+i the variation was from 0.296 to 0.337;

for tan = + from 0.325 to 0.375. For

boards leaning from the earth, tan a = f ,

the variation was from 0.352 to 0.363.

These results are approximate, for al-

though the exact prisms of rupture were

used, the chord of necessity replaced the

true curved line of rupture in the construe-
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tion of Fig. 3, p. 35, and cohesion was neg-

lected. The effect of cohesion is to lower

the center of pressure; so that doubtless

for sand absolutely devoid of cohesion, the

atios should be larger. However, from

lack of more complete observations on

large models, the theoretical value will

be used in the computations below.

56. The center of pressure for a sur-

charged wall of the type shown by Fig. 4,

p. 40, only with the back vertical and the

each surface extending from C, the top

of the inner face, at the angle of repose,

<=3341', to the level surface 2-6, has

been found by the writer * for various

ratios of ti to /?, where h= height of wall,

h' = height of surcharge above the top of

wall and c= vertical distance from foot

* Trans. Am. Soc. C.E., Vol. LXXII, p. 410.
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of wall to the center of pressure, divided

by the height of the wall.

In finding the values of c, h' was taken

as 10 feet and the earth thrusts on walls of

heights, 1, 2, 3, . . .,20 ft., were found by
the construction of Fig. 8 (see pp. 88-89).

By subtraction, the earth thrust on each

foot of wall was obtained, and by taking
moments about convenient points, the

centers of pressure for heights of wall

varying from 5 to 20 feet were easily

obtained and c computed, as given in the

table.

57. From a discussion of all the exper-

iments, the conclusion was drawn that the

sliding-wedge theory, involving wall fric-

tion, is a practical one for the design of

walls backed by granular materials and

subjected to a static load. Often, however,
in practical design, vibration due to a

moving load has to be allowed for; also

the effect of heavy rains. Both these

influences tend generally to lower the

coefficient of friction and add to the weight
of the filling. To allow for these in-

fluences, in designing, the normal com-

ponent Ei of the earth thrust will alone be
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multiplied by a factor of safety (7, the fric-

tion Ei tan <f)', exerted downwards along the

back of the wall, remaining unchanged.
This allows very materially for a decrease

in </>' due to rains and vibration, as well as

for an increase in the thrust. A factor of

safety (7=3.5 is suggested for walls 6 ft.

high, decreasing to 3 for walls 10 ft. and up-

wards. For walls 50 ft. high and upwards,
or for lower walls with a high surcharge, this

factor may possibly be still further de-

creased, since before the embankment is

finished, the cohesive and chemical actions

in the earth have doubtless consolidated it to

such an extent that the actual thrust is

much less than the computed one when
cohesion is neglected.

In any case, the true thrust E (not

multiplied by any factor) when combined

with the weight of the wall, must give
a resultant that will pierce the base within

its middle third, since it is desirable that

pressure should be exerted over the whole

base. If this does not obtain for a certain

type of wall, the base should be made
wider.

If heavy loads, as railway trains, pass
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over the surface of the filling, near a re-

taining-wall, the weight of the load should

be replaced by an equal weight of earth

and the earth thrust determined as in

Art. 50 or by aid of the construction of

Fig. 8, p. 83, or that of Fig. 4, p. 40.

With an earth foundation, a footing of

masonry, projecting beyond the wall, should

be built of such width that the true re-

sultant on the base should pass near its

center. This should totally prevent the

increased leaning with time sometimes

observed. Lastly, to ensure against slid-

ing, the base should be inclined.

58. General Formula for Stability of

Retaining-walls against Overturning. Let

Fig. 11 represent a wall ABCD, whose

length perpendicular to the plane of the

paper is unity and whose exterior and

interior faces and diagonal AC, make

angles with the vertical equal to ft, a and

w respectively. Let W denote the weight

of the wall and g the horizontal distance

from its line of action to the outer toe A
;

also call <7 the factor by which it is necessary

to multiply the normal thrust Kieh 2
,

leaving the friction fKieh* at the back
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of the wall constant, in order that the

resultant on the base may pass through

the outer toe. Here /=tan </>' (when

Fig. 11.

<'> 4>, replace <' by </>) and the quantities

h, t, e, w, i, <f> and </>' have the meanings

given in Art. 52.

Taking moments around A, we have,

Wg+fK 1eh*tcosa =

<rKieh*(ch sec a+t sin ).

We find also, t =A(tan co -tan a) ;
and since
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the moment Wg is equal to the sum of

the moments of the triangular prism ADI
and the rectangular prism IDCE, minus

the moment of the triangular prism BCE,
all of the same density w, we readily

find it to equal,

2 h*
tan /3' h tan 0-f (tan

2 w-tan 2
/3)

- o -

/i
2 1 1
tan a. h(tan w- tan a) \w;Z 6 J

or,

wA 3

-(3 tan 2w 3 tan w tan -|-tan
2a tan 2

0).
6

On substituting the values for t and Wg
and resolving with respect to tan o>, we

find,

tan 2 w-f

r i
tan w 2Ki(f cos a -<r sin a) tan =

e
2Ki [<TC sec a+tan a(f cos a <r sin <r)J

ic

--(tan 2 -tan 2
/3).

o
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This formula equally applies when the

inner face of the wall leans away from the

earth, or B falls to the right of E,

on simply replacing sin a and tan a by
(sin a) and (tan ) throughout. As

this formula is independent of h, it is true

for all values of h. When h is given, tan

to is found from the formula, whence,
t =h (tan w tana).

59. Since J/A=(tan co-tan a), if we
take h=l, the value of t=AB correspond-

ing, represents the ralio of the thickness

of the base to h for any height of wall.

Hence, for simplicity in the following

applications to the various types 1, 2, 3,

4, 5, Fig. 12, the thicknesses at top and

bottom and the volume will be computed

for h = l. The natural slope will be taken

at 3 base to 2 rise or 0=33 41' and it
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will be assumed that </>'=</>, (whence

/=tan <'=f), c= and <r=3, which refers

to walls 10 feet high and upwards.
The tables given below are computed

for two ratios of specific weight of earth

to wall: e/w =| and e/w =
, corresponding,

perhaps, to concrete and good brick walls

respectively.

60. Type I. Vertical Rectangular Wall.
\

a =0, 0=0, J=tan co.

The general formula of Art. 58, reduces to

P+^KJt =-2#!.
w w

When i=0, from p. 99, we have, since

Ki=K cos </>' =K cos 0*

* The computation of K, for some of the types,

by formulas, being very long, the graphical method
of Art. 39 can be substituted for it. Thus in Fig.

8, let e =1 and lay off h = vertical projection of

AF =1 foot (say to a scale 10 inches to 1 foot)

and draw from B, now coinciding with F
, a hori-

zontal line to represent the earth surface; then

exactly as indicated on p. 88, locate the points

O, I, C, H. The thrust E = Keh* =K = \CI.CH.: Ki
**K cos

</>.
When i=tf>, AD GO

,
AI ~ oo and



127

cos 2 <b

0.109.!=-
2 (l+V2sin0)

.'. for e/w=l, t =0.334,

e/u?=$, t = 0.363.

When i = 0, page 100, A': = cos 2
(f> =0.346.

Whence, for e/w=%, t =0.541; e/w =, t =

0.583.

61. Type 2. Vertical Back. Front face

battered at 2 inches to the foot.

=0, tan =
j-, 0=9 28'. The formula

reduces to,

-2Ki+-t&n* 0.
10 3

AC=AD; hence the point 7 can be taken any-
where on AD. With i =0 and C located as before

.-. as above, Ki = \CI.CH cos 0.

In type 5, the earth pressure on the wall was
taken as making the angle with its normal.

The assumption was only intended for usual

batters of leaning walls, say a<10, for which
it is practically correct. For large values of a,

the assumption is not to be made, the error increas-

ing with the angle a.



128

For i = 0, as above, Ki =0.109.

.'. e/w=\, *
2 +0.097Z =0.144+0.0093,

/. t =0.346.

e/w =i *
2 +0.116* =0.174+0.0093,

.'. t= 0.374.

For t=0, /d =0.346, Art. 60.

/. e/w=l t =0.548; e/w=$, t =0.589.

62. T?/pe 3. 5o^ /aces battered 2 inches

to the Foot. On replacing sin a by ( sin a),

tan a by (-tana) in the general formula,
and noting that here, tan 2 =tan 2

/3,

tan 2 w+-2 Jft: 1 (/ cos a+ o- sin )+tan a\

e rtan o> =2/^i a| sec tan a(/cos

+ 0- sin a) .

Formulas (13) and (14) p. 97, give, for
= 0' =33 41', i =0, a =9 28'; n =0.8434,

#,=0.143.
For e/w=l, tan 2

w+0.387, tan co =0.157.

.-. tan co =0.247.-. t =tan co+tan a =0.414.
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For e/w-i t
tan 2

co-f0.430, tan co =0.189.

/. tan w =0.270.'. t= 0.437.

63. Type 3 continued. Let i = 0. In

this case, the "
limiting plane

"
of Art.

28 concides with the vertical AO of Fig.

5, p. 50. Since the inner face of the wall

AB, Fig. 5, lies below it, the thrust on

AO = T=%e cos </>, AO
2

(acting parallel to

BO) must now be combined with the

weight of the earth ABO to find the re-

sultant on AB. Taking, as before, the

vertical height h of AB =1, we find

AO =1.111 and for e=l, !T =0.513. On

combining graphically, this thrust on AO,
making the angle < with the horizontal

with the weight of ABO(e =
1), we find the

resultant thrust on AB = 0.570 and that

it makes an angle 32 03' with the normal

to AB. We have to substitute in the

general formula / = tan 32 03' =0.626;
also the normal component of the thrust

= 0.570 X cos 32 03' =0.483. As this

corresponds to the assumed height of

AB=h=l and e = l, it is the value of K\.

Whence substituting Ki =0.483, / =0.626*

* Formulas have been derived by the writer for
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in the formula of Art. 62, we have,

for e/w=l, tan 2 co+0.881 tan co =0.535.
.'. tan =0.414, t =0.580.

Fore/w=-, tan 2 + 1.0024 tan co =0.642.

.-. tan co =0.439. /. t =0.606.

64. Type 4. Front Face Vertical, Inner
Face Battered 2 Inches to the Foot. The
moment formula differs from that of Art.

62 only in the addition of the term

( | tan 2
a) to the right member. Hence,

Ki and / for any value of i, but the worlj is too long
to be given here. The results for t =</> will be
stated.
From the formula,

[-( -i)]
*>-

-tan 45 + -a tan*

compute e. In this instance, e =48 34'. The
thrust on the wall AB makes with the normal
to the wall, the angle,

7 =90 -(e +) =90 -58 02' =31 58';

whence / -tan 31 58' =0.624.

The value of K\ is now given by the formula,

_cos 7cos (0 a) tan a
2 cos (<f> +e) cos a'

which for 7 =31 58'; e =48 34', <j> =33 41',

a =928', reduces toKt =0.483, as found graphically.
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we at once derive, when i=0:K l =0.143

(Art. 62), for e/w =
f, tan 2 co+0.387 taa =

0.148.

/. tan co =0.237 /. =tan co+tan a =0.403;
for e/w =, tan 2 co+0.430 tan co =0.180.

.-. tan co =0.260 /. =0.260+0.167=0.427.
When i=<f>, as in Art. 63, K^ =0.483,

/= 0.626, and the moment formula just

quoted reduces to:

e/w=l, tan 2 co+0.881 tan co =0.526; v

/. tan co =0.408, t =tan co+tan a. =0.574/

e/w = f,tan
2

co+ 1.024 tan co =0.633.

.-. tan co =0.434, #=0.601.

65. Type 5. Leaning Wall. Front Face

Battered 2 Inches to the Foot, Rear Face

Parallel to the Front Face. The formulas

of p. 96 are now applicable for computing
K! =K cos 0. For <=</>' =33 41', i=0,
=9 28', we derive n =0.7544, K, =0.081.

Putting a =/3 =9 28', the moment formula

is
,

tan 2

\e 1
2Ki(/cos a <rsin a) -tana tan co

e

W
[<r 1

21^ sec a-ftan a (/ cos a or sin a) .

w Lo
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Taking as before, a =3, / = f, a = 9 28' =/3,

when e/w=l, tan 2
co -0.149 tan co =0.112.

/. tan co =0.416. .-. =tan <a -tan <* =0.249.

For e/w=%, tan 2
co -0.144 tan co =0.135.

/. tan co =0.446. /. =0.446 -0.167 =0.279.

Assuming i = <, the formulas of p. 96, give,

2 COS 2
aCOS(<p a)

whence HTi= 0.250.

/. e/w=f, tan 2 w -0.112 tan w =0.347;
/. tan co =0.648. .-. = 0.481;

e/iy =|, tan 2
co -0.101 tan co =0.416.

/. tan co =0.697, ^ = 0.530.

66. As a check on the computations,
the values of Ki, for all the cases discussed,
were likewise found by the graphical con-

struction of Fig. 8, p. 83. Then, Fig. 11,

the resultant of the components SKieh 2

and fKieh 2
,
for h = l, was combined with

the weight W of the wall, acting through
its center of gravity, to find the resultant

on the base. In every instance, it passed

nearly or exactly through the outer toe.

The next step was, assuming o- = 1
,

to combine Kieh* and fKieh 2
(h = l), Fig.

11, to find the true resultant on J5C,
which was then combined with W to find
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the true center of pressure on the base

AB of the wall. Call a the distance from

this center of pressure to the center of

the base AB; then the ratio a/t, was

computed and inserted in the following

table, which contains the results of the

above computations. When a/Z<0.167,
the true center of pressure on the base is

within the middle third limit, so that the

whole base is in compression; when a/t =

0.167 there is no stress at the inner toe,

and when a/t> 0.167,;part of the base only

is in bearing. The ratio a/t will be counted

positive or negative according as the

resultant on the base meets it to the left

or to the right of its center.

It will be observed, for cases one and

three of type 4, that a/t> 0.167. In the

first case, increase t from 0.403 to 0.417;

in the second case, from 0.427 to 0.432.

These values are inserted in the table in

parentheses. The resultant on the base,

in each case, will then cut the base \t

from the outer toe.*

' * If the resultant on the base of the wall for

the actual thrust (v =1) is to pass \ base from

the outer toe, then for the leaning wall shown
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67. In the last column of the table,

is given the angle that the true resultant

on the base makes with the normal to the

base. This should not exceed the angle

<' of friction of masonry on earth or sliding

will occur. The factor of safety against
tan $'

sliding will be at least.
- - and if pos-
tan0

sible this factor should not exceed two.

The average angles of friction of masonry on

dry clay, dry earth and firm sand or gravel,

are 27, 30, 35 respectively, but on wet

clay, 11 to 18 has been given. Hence

it is not always possible, for reasonable

thicknesses of wall, to ensure a factor of

safety of 2 against sliding. In such cases,

the base should be inclined, so that the re-

sultant on it, should make an angle with

in Fig. 11, the moment formula, deduced in a

similar manner to that of Art. 58, is as follows:

tan2 w-f | 4Ki(f cos a -sin a) -ftan /3 tan u

= 2Ki[3c sec a +2 tan a (/ cos a -sin a)]

+tan (tan a+tan 0).

The formula is adapted to the case where the inner

face of the wall leans away from the earth, by

replacing sin a by (sin a) and tan a by (tan a).
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its normal, much less than the probable

angle of friction. In the tabular thick-

nesses, no foundation slab was assumed,

though one is always desirable and it

should be constructed with the toe pro-

jecting beyond the front face of the wall

sufficiently to allow the resultant on the

base to pass as near its center as is prac-

ticable and thus distribute the pressure

on the base more uniformly.

For an actual wall, the unit pressure on

the base (the
"

soil pressure ") should be

computed by (1), Art. 15 and if too large,

the foundation slab must be widened, so

as not to subject the soil to a greater

pressure than is accepted as safe.

If a value of t is desired, for a value of

e/w intermediate between f and -f,it can be

found with substantial accuracy, by ordi-

nary interpolation from the tabular values,

assuming a linear variation.

68. On referring to the column of

volumes (or areas of cross-sections for

a length of wall unity) it will be observed

that for level-topped earth, the types
are economical in the order,

3, 5, 2, 4, 1.
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Types 3 and 5 are nearly equal in

volume, but the pressure on the base is

better distributed in number 5.

When the earth surface slopes at the

angle of repose, the volumes increase in

the order 3, 2, 4, 5, 1.

The value of t is the width of the wall at

the base, t
f

,
the width at top, both for

h=l. They likewise represent the ratios

t/h, t'/h for any height of wall h. Thus

for h=W ft., type 2, i=0, e/w =f, width

at base = 3.46 ft., width at top = 1.80 ft.

69. Walls with projections at intervals,

on the exterior or interior, are known as

buttressed or counter-forted walls respectively.

Fig. 13 shows a good form of buttressed

BUTTRESS.

wall, with the face in the form of arches,

convex from the earth side. In designing



139.

such walls, moments are taken about

the outer toes of the buttresses. The

great objection to counterforted walls in

masonry not reinforced, is that the coun-

terforts are apt to break away from the

face wall; so that they have not found

favor in America, in spite of the large

economy shown. When reinforced con-

crete is used, they present a very effective

type of wall.
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APPENDIX I.

DESIGN FOB A VERY HIGH MASONRY
DAM.

ENGINEEKS are by no means agreed upon the

proper profile to give high-masonry dams ; although
the three conditions, that there shall be no tension

at any horizontal joint, safe unit stresses every-

where, and no possible sliding along any planejoint,
seem to be generally accepted as essential to a good

design.

The writer suggests one more condition, that

the factors of safety against overturning about any

joint on the outer face shall increase gradually as

we proceed upwards from the base, to allow for the

proportionately greater influence, on the higher

joints, of the effects of wind and wave action, ice,

floating bodies, dynamite, or other accidental

forces. The exact amount of increase must be

largely a matter of judgment; but, if the principle
is accepted, it can only resul' in making stromger
dams.
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The accompanying sketch, cf a dam 258 feet

high to the surface of water (see also ' '

Engineering
News" for June 23, 1888) satisfies the four condi-

258

tions named, and will be briefly described. The
dam is of the same total height (265 feet) and

volume (nearly) as the proposed Quaker-Bridge

dam, and, for ease of comparison, is designed, as
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was that dam, for masonry weighing 2| times as

much as water. The dam is 24 feet wide at top,
38 feet wide, 50 feet below the surface of water (7
feet below the top), and 196.1 feet wide at the

base. The up-stream face is vertical for the first

57 feet from the top, and then batters at the rate

of 30 feet in 200 to the base. The outer face slopes

uniformly from the top to 50 feet below the water

surface, and then slopes uniformly to the base.

The curves of pressure, for reservoir full or

empty (the lines connecting the centres of pressure
on the different horizontol joints are here styled

the curves of pressure), are found as hitherto ex-

plained, and are seen to lie well within the middle

third of the base, so that the horizontal joints under

the static pressure are only subjected to compres-
sion throughout their whole extent. Further, it

was found by construction, that if a horizontal

force be assumed as acting at the surface of water,

of such intensity (29,375 pounds) as to cause the

total resultant, on the joint 50 feet below the water

level, to cut the joint one-third of its width from

the outer face
;
then if this same force, acting at

the surface of water, is combined in turn with each

of the other resultants on the lower horizontal

joints, the new centres of pressure will still lie well

within the middle third for the lower joints. To
secure uniformity of results for all the joints, the

width at the 50 feet level should be increased,

although it is now much greater than ordinarily



constructed. If, however, the effects of earthquake
vibrations are to be guarded against, we cannot re-

place them by the action of a single force acting at

the surface, so that the increased width of the

upper joints must be largely a matter of judgment.
l

The numbers to the right of the figure, in the

form of a fraction, give for the corresponding

joints, for the upper numbers, the factor against

overturning, or the factor by which it is necessary

to multiply the static horizontal thrust of the water

to cause the total resultant to pass through the

outer edge of the joint considered; and for the

lower numbers, the ratio of the weight of masonry
above a joint to the static thrust of water against

it
;
which is, in a certain sense, a factor of safety

against sliding on a horizontal joint. These factors

are seen to increase from the base upwards, so that

the suggested fourth condition is satisfied.

i It is stated in Engineering News for June 30, 1888, on
the authority of Mr. Thomas C. Reefer, President Ameri-
can Society of Civil Engineers, that "an ice bridge of

about 90 feet span, between *wo fixed abutments, ex-

panded so from a rise of temperature, as to rise 3 feet in

the centre." If we regard the arch thus formed as free

to turn atthe abutments and at the crown, we easily find

for ice one foot thick, the horizontal thrust H exerted at

the abutments, from the equation, 3H= ^ x ^, to be

in pounds per square foot H= 21,094 pounds. Much
higher pressures may possibly be expeiienced sometimes

near the top of high dams in northern latitudes, and it

seems only proper to include such contingencies in their

design.
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The unit stresses, in pounds per square foot, at

the outar edgas of tha joints for reservoir full, and

at the inner edges for reservoir empty, are given
in columns 4 and 5 of the following table, being

computed from the formula

The numbers of columns 2 and 3 for one foot in

length of the wall are expressed in weights of cubic

feet of water, and must be multiplied by 62.5 to

reduce to pounds.
The unit pressures, although necessarily high,

are still permissible. By spreading the lower part

of the dam still more, these unit stresses would be

theoretically diminished, though it is likely that in

reality the pressures ab the positions of the old toes

would not be very materially altered
;
but the

masonry being surrounded with other masonry

could, most probably, stand a higher pressure.



The unit pressures p given in columns 4 and 5

are not the maximum normal pressures at the

faces. In Appendix III (e), it is proved that the

maximum normal stress at a face acts parallel to

that face on a plane at right angles to it and that

its intensity is given by the formula, f=psec 2
<f

where < is the angle the face makes with the

vertical. In this example, where <=3123' for

the outer face and 8 32' for the inner face, the

FIG. 15.

values of / at the outer and inner faces are found

by multiplying the numbers given in columns 4

and 5 by 1.37 and 1.02 respectively.

The first derivation of the important formula,

/=psec 2
<, has been credited to Levy by Dr.

Unwin, 1 who likewise states that in several old

dams which have lasted for centuries, the values

of p, ranged from 11 to 14 tons per square foot,

giving the maximum compressive stresses / from

15 to 20 tons per square foot (234 to 311 Ibs. per

square inch).

1 Minutes of Proceedings, Inst. C. E., Vol. CLXXII.
Part II, p. 134.
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The so-called factors against overturning are not

true ones, for a computation shows that if the

water pressure down lo the joints 50, 100, and 150

feet below the surface should become 2, 1|, 1^
times the original, respectively, that tension would

just begin to be exerted at the inner face. This

would happen for lower joints for thrusts about 1

to 11 times the original. If, from any cause, as

accidental forces at the top, earthquakes, etc.
,
the

thrusts should be increased over these amounts,

causing tension at the inner edges beyond the

capacity of the mortar to withstand, (he joints

would crack and open, water would get in, dimin-

ishing the weight of the masonry materially, the

centres of pressure would move outwards, and the

unit pressures at the outer toes would very much

increase, leading perhaps ultimately to the destruc-

tion of the dam through sliding, overturning, or

crushing at the down-stream face.

We shall now consider the capacity of resistance

of the dam to sliding along any oblique joint as

AK. x Let AB represent, in magnitude and direc-

tion, the resultant of the water pressure and weight
of masonry on the horizontal joint AH, and let the

vertical AD represent the weight of the triangular

mass AHK, all for one foot in length of the wall.

Draw DN j_ AK and BN
\\
AK to intersection N;

1 See Annales des Fonts et Chausse'es for May, 1887.



tlien DN = component of BD normal to plane

AK, and DN X tan <f> ( where tan = co- efficient

of friction of masonry on masonry) is the total

friction that can be exerted by the plane AK. If

we lay off angle NDE = <t> (taken as 35 here) to

intersection E with the parallel component BN,
we have DN tan <t> = EN, so that BE must be

resisted by cohesion
;
and the unit-shearing stress

7? W
along the plane AK = _ . If, now, we produce

AIL
KE on to intersection C, with AB produced, we

BC
have the unit shear represented by ,

which is a
AL/

maximum, for various planes passing through A,
when C is farthest removed from B.

On effecting this construction, then, for a series

of planes passing through A, we quickly find the

plane which will have to supply the maximum in-

tensity of shear, or the plane of rupture, to lie near

AK (there is very little difference for a series of

planes lying near each other) ;
and the shear per

square foot required to resist sliding, in addition to

the frictional resistance, to be about twenty-seven

hundred and fifty pounds. To offer the greatest

resistance to sliding, there should be no regular

courses, and the stones should break joint verti-

cally as well as horizontally, or the courses near the

outer face should be curved so as to be approxi-

mately normal to that face. For a retaining-wall

of dry rubble, carelessly laid, we see that there is

every probability of failure by sliding along some

inclined plane. Here the stones must be carefully
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interlocked to prevent sliding. For the reservoir-

wall, where the best cement is used, and the joints

are broken, there should be no fear of sliding when
sufficient thickness is given to avoid tension. In

the Habra dam, a hundred and sixteen feet high,
this was not done

;
and the dam broke along a

plane, passing through the outer toe nearly, and

making the angle of friction <f> of masonry on

masonry with the horizontal.

It is well to note, tco, that friction alone will not

prevent sliding along planes inclined not far from

the horizontal as well as those below, so that a

proper resistance to shear must be provided for in

every dam. Possibly the weak point of many dams
is in this very particular.

The capacity of the dam in question to resist

rotation about the toe of an inclined base may next

be tried, and it will be found to be stable
;
for the

weight of masonry, as well as its arm," increases to

counterbalance the increase of arm of the water-

thrust. The dam thus satisfies all the conditions

of stability ; and, although some of its dimensions

may be changed with advantage perhaps, it yet
suffices very well to point out the principles of

design.

See Engineering News for January 12, 1893 and

May 9, 1907 for effects of expansion of ice.



APPENDIX II.

STRESSES IN MASONRY DAMS. 1

THE object of this investigation is to deter-

mine the amounts and distribution of the stresses

in a masonry dam, at points not too near the

foundations, having assumed the usual
" law of

the trapezoid," that vertical unit pressures on
horizontal planes vary uniformly from face to

face.

Experiment indicates that such vertical stresses

increase pretty regularly in going from the inner

to the outer face, for reservoir full, until we near

the down-stream or outer face, where the stress

gradually changes to a decreasing one, which

decrease continues to the end of the horizontal

rection. The law of the trapezoid is thus only

approximately true over part of the section, but,
as it gives an excess pressure where it attains a

maximum, it errs on the safe side.

1 What follows in Appendices II and III was first

given by the author in Trans. Am. Soc. C.E., Vol.

LXIV, p. 208.
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The profile of the dam selected is of the trian-

gular type, with some additions at the top, but the

method, used in determining the stresses is general

and will apply to any type of profile. The final

equations will give, at any (interior or exterior)

point of the horizontal section considered, the

vertical unit stress on the horizontal section, the

normal stress on a vertical plane, and the unit

shear on either horizontal or vertical planes.

From these stresses, the maximum and minimum
normal stresses, and the planes on which they act,

can be determined, and ultimately, if desired, the

stress on any assumed plane can be ascertained.

The solution presented is approximate, which is

justifiable, in view of the approximation involved

in "the law of the trapezoid" used. The results,

however, are practically correct, as will be evident

from the checks applied, resulting from the exact

theory given in Appendix III. The theory used,

being simple, should be easily followed.

Let Fig. 16 represent a slice of the dam con-

tained between two vertical parallel planes, 1 ft.

apart and perpendicular to the faces. The batter

of OB is !!?-*!?; that of OE being _
4_ - .

200 1 200 1

The batter of the inner face was found by trial,

so that the centers of pressure on horizontal

sections, for reservoir empty, should nowhere pass

more than a fraction of a foot outside the middle

third of the section. The simple type of profile

shown was adopted for ease of computation.
For convenience in subsequent computations,

the breadths, b = EB, of horizontal sections, corre-
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spending to various depths, h, below the surface

of the water in the reservoir, are given, all dimen-

sions being in feet:

/i = 199.0,

^==199.5,
h = 200.0,

h = 200.5,

h = 201.0,

6 = 133.330;
6 = 133.665;
6 = 134.000;

6 = 134.335;

6 = 134.670.

Take the weight of 1 cu. ft. of masonry equal
to 1; then the weight of masonry above any

,
= a

section is equal to the corresponding area in

Fig. 16 above that section. The area of the por-
tion above EOB is readily found to be 712, and

its moment about the vertical, AO, is 11,603, the

unit of length being the foot. In Fig. 16, D is
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where the vertical through the center of gravity
of the dam above the joint, EB, cuts that joint,

and C is the center of pressure on that joint when
the water pressure on EO is combined with the

weight of masonry, W ,
above EB.

As h varies, suppose each horizontal joint, in

turn, marked similarly to the joint at 7i = 200, with

the letters E, A, D, C, B; then, for any joint, on

taking moments of the triangles, AOB, AOE, and

the area above OB about A, we find

(AB*-EA 2)+ 11,603

AD

Assuming that the masonry weighs 2^ times the

water per cubic unit, then the weight of a cubic

2
foot of water is . It would entail but little extra

5

trouble here, where the inner face has a uniform

batter throughout, to include the vertical conv

ponent of the water pressure on the face, EO;
but it will be neglected, as usual.

The horizontal water pressure for the height, h,

is thus, _ X __ = _h 2
,
and its moment about C is525

Lh*X--h= Lh*.
5 3 15

Taking moments of W and water pressure about

C, we have at once,

15 W
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From the last two formulas, we derive the

following results:

h W AD DC
199 13978.335 40.49141 37.58483

200 14112.000 40.70316 37.79289

201 14246.335 40.91488 33.00089

A seven-place logarithmic table was used

throughout, the aim in the computations being
to get the seventh significant figure correct within

one or two units. The necessity for this accuracy
will be seen later.

The distances EC and CB are now readily
derived.

ForA = 199, #C=82.05624, C5 = 51.27376;

A=200, EC = 82.49605, CB = 51.50395;
h = 201, EC= 82.93577, CB= 51.73423.

On any plane, EB, the vertical unit pressure

b 2

4b
at E=pi=

b 2

where b=EB, and W is the weight of masonry
above the plane. This follows from the assumed
"law of the trapezoid."
From these formulas we derive:

At h = 199, pi
= 177.45483, p2 =32.22542

;

h = 200, pi
= 178.3855, p2 =32.24139;

h =201, pi
= 179.3160, p2 =32.25798.



Call p the vertical unit stress at a distance, x'
'

,

from E; then

p\~pi ,r
,

b

and the total stress on the base, x'
',

is

(i)

To find the unit shear on vertical or horizontal

planes,
1 consider a slice of the dam, bounded by

1 The writer desires here to acknowledge his indebted-

ness to a recent paper on "Stresses in Masonry Dams,"
by Ernest Prescot Hill, M. Inst. C.E., published in

Minutes of Proceedings, Inst. C.E., Vol. CLXXII,
p. 134. Mr. Hill considers the case of a dam with a

vertical inner face. By the aid of the calculus, he

effects an exact solution, which leads to general formulas

for shear and normal pressures on vertical planes.

The principles at the base of his method, though
somewhat disguised by the calculus notation, are essen-

tially the simo as those used by the author.

Mr. Hill ascribes to Professor W. C. Unwin the sugges-

tion, "that the shearing stress at any point may be

found by considering the difference between the total

net vertical reactions [between that point and either

face] along two horizontal planes at unit distance

apart," and states that Prof. Unwin "has applied

the principle to a triangular dam by the use of alge-

braical methods."

Dr. Unwin states (Proc. Inst. C.E., Vol. CLXXII,
Part II, p. 161) that he ascertained after his papers
were written, that by a different method, Levy had

previously arrived at the same conclusions.
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horizontal planes at ft = 199 and A =200, the water

face and a vertical plane, at a distance, x, from the

inner face (Fig. 17), in equilibrium under the water

pressure acting horizontally on its left face and
the forces exerted by the other parts of the dam
on the slice. These forces consist of the uniformly

increasing stress, P'
,
on top, acting down; the

uniformly increasing stress, P, on the bottom,

acting up; a shear acting on the vertical plane

P'

FIG. I/.

at the right, of average intensity qi per square

foot, the weight of the body (x 0.01), besides the

horizontal forces to be given later. The vertical

component of the water pressure is here neglected,

as usual. The origin for x is taken, here and in

all subsequent work, at the level, ft =200, at the

inner face.

For equilibrium, the sum of the vertical com-

ponents must be zero.

Therefore,

5l
= (x-0.01)4-P'-P. ... (2)
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To find P', substitute in Equation (1), x' x

-0.02, pt =32.22542, pi -pi = 145.22941, k =

133.330, giving P' =32.20364* + 0.5446238**-

0.6442906. For P, *'=*, p2 = 32.24139, y>i-p2
=

146.1441, and 6 = 134; therefore,

P = 32.24139* +0.5453138* 2
.

Substituting in Equation (2), we derive the

average unit shear,

g,
= _ 0.6542906- 0.96225* - 0.000690D* 2

. . (3)

This value of q\ is strictly correct w en x^_
0.02

It is slightly in error when 0<*<0.02.

t=200

x +0.01 X 1

X + 0.02

FIG. 18.

A similar investigation holds to obtain the

average unit shear, 92 (Fig. 18), on a vertical plane,

at a distance, *, from E, extending from the

level, ft = 200, to the level, h=20l.

We have, for equilibrium,

P". (4)
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We find P" by substituting in Equation (1),

z' = (z+0.02), pz =32.25798, pi-p2 = 147.05S02,

and 6 = 134.67. P"=32.27982o: + 0.5459941x2 +
0.6453780. Substituting this, and the value pre-

viously found for P, in Equation (4), we derive,

q2 = -0.6353780 +0.96157:c-0.0006803z 2
. (5)

This is strictly correct only when x>_0.

The mean, ^(51+92), of these average sheare will

be assumed as approximately equal to the inten-

sity of shear at the point, G(x = EG), at the level,

h = 200. Call q this intensity of shear on a ver-

tical plane at G] therefore,

q= -0.6448343 +0.96191* -0.0006856*'. (6)

Checks. By Appendix HI (6) and (d), the exact

value of q, at either face, =/> tan
<f>,

where p =
vertical unit normal stress at the face and ^ is

the angle the face makes with the vertical. Thus,
at the inner face,g= -32.24139X0.02 = -0.6448278,
whereas Equation (6) gives for x = 0, q=
0.6448343.

At the outer face, the exact value is, 178.3855

X0.65 = 115.9506, whereas Equation (6) gives, for

a; = 134, q = 115.9405.

A still more searching test can be devised. It

is a well-known principle that the intensity of

shear at a point, on vertical or horizontal planes,
is the same [Appendix III (a)]. Therefore, regard-
ing Equation (6) as giving the horizontal unit
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shear, at the level, h = 200, where b = 134 ft.
;

the

total shear, from face to face, on this level, is

/*:

I

Jx

:r=134

This should equal the total water pressure down

to the same level, -=- (200)
2 = 8000. Formula (6)o

thus gives practically exact results.

In order to find the normal unit stress on a

vertical plane, we shall assume that q\, given by

Equation (3), equals the intensity of shear on a

vertical or horizontal plane at the point, x, at

h = 199.5; and that qz, given by Equation (5),

gives the shear intensity at x at h =200.5. This

evidently supposes that the shear intensity in-

vreases uniformly, vertically, from h = 199 to

fc = 201.

Consider a portion of the dam, Fig. 19, bounded

by the water face; the plane, FM, at the level,

h = 199.5, on which the total shear is Q', the plane

EN, at the level 200-5, on which the total shear

is Q, and the vertical plane, MN, 1 sq. ft. in area,

on which the average normal stress is p''. The

water pressure on EF will be supposed to be

exerted horizontally. It is equal to 80 units.

Assuming, as stated, that 91
= intensity of hori-

zontal shear at M, and 92
= the corresponding

intensity at N, we have, taking the origin as

before at O,

rx rx
'= I qidx; Q= I qi dx;

Jo.oi J-o.oi
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or,

Q'= 0.006494794 -0.6542906z + 0.481 125*2

-0.00023z;

Q = _ 0.00640186- 0.6353780x + .480785*'
x8

- 0.0006803 o".o

Checks. The total water pressure for h = 199.5

is -^(199.5)
2 = 7960.05 and for h = 200.5, -^-(200.5)2o o

= 8040.05. The first should equal Q', for x =
133.665, or 7959.22; the second should equal Q,

Q'

FIG. 19.

for x = 134.335, or 8041.12. The slight differences

tend to give confidence in the results.

For equilibrium, the sum of the horizontal forces

acting on EFMN, Fig. 19, must be zero; therefore,

p'=80+Q'-0, .... (7)

p'
= 80.01 -0.0189* + 0.00034*2_o.00000323x.

This average stress will now be assumed to be the

intensity of the horizontal unit stress on vertical

planes at h=200.
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It will now be perceived why a seven-place table

was necessary in the computations, the coefficients

of x 2 and x 3 having only two or three significant

figures in the final result. If the planes originally

had been taken 0.1 ft. apart vertically, a ten-place

table would have been required.
Checks. The value of p'',

for x = 0, p' =80.012896,
is the same as that given by Appendix III (d),

80+0.6448X0.02. When z = 134, the formula

gives p' = 75.81, whereas the exact theory, Appen-
dix III (6), gives p'=m2p = (0.65)2 XI 78.39 = 75.37.

The difference is 0.44 at the outer face. For any
other point, it might be assumed to vary with x,

so that it could be corrected by substracting

44
-^-rx=0.0033x from the value of p' above. For
JL54

ease of computation, the formula will be written,

7/ = 80.01 -0.02z + 0.00034x2
-0.0000l|-. (g)

The first coefficient of x 3 cannot be counted on to

the last two figures, hence we are permitted to

change 323 to 333 in that coefficient. When
z= 134, Equation (8) gives p'

= 75.41, nearly the

exact value.

The three formulas for p, q, and p', at the

level ^ = 200, are thus as follows:

p =32.24 + 1.09063z;;

q= -0.64+ 0.962* -0.000686Z2
;

p'
= 80.01 - 0.02z +0.00034*2 _ o.OOOOl .
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Since the weight per cubic foot of masonry was
assumed as two and one-half times that of water,
we must multiply the stresses given in Table I

by ~n (62.5) = 156.25, to reduce to pounds per square

foot; or by 1.085, to reduce to pounds per square
inch.

TABLE I.

In Table 1 the stresses are those experienced at

the level, h = 200.

p = vertical unit stress on a horizontal plane;

q
= shearing unit stress on horizontal or ver-

tical planes;

p'= horizontal unit stress on vertical planes;
Max. /=maximum normal stress acting on a plane

inclined to the horizontal at the angle,

S, given on the last line;
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Min. /=minimum normal stress acting on a plane

perpendicular to the last.

From max. / and min. /, with 6, the ellipse of

stress can be drawn, and the stress in any direc-

tion, with the plane on which it acts, can be

ascertained.

It will be observed that there is no tension

exerted anywhere, and that the maximum com-

pression is 253.71, or 275 Ibs. per square inch,

which is exerted at the outer face, parallel to that

face, upon a plane at right angles to the face.

In Appendix III (e), the important formula, for

the maximum normal intensity at the outer face,

acting parallel to that face,

is proved. In this 'instance, p = 178.39, tan <
=

0.65, therefore = 33 01', whence /=253. 71.

This' stress is unaccompanied with any conju-

gate stress, perpendicular to the face. In the

interior of the dam, where conjugate stresses

prevail, the masonry is perhaps better able to

withstand a certain compressive stress than at the

face. The distribution of stresses, at the level,

h = 200, is shown in Fig. 20, on the supposition

that the base of the dam is a little below that

level. The connection with the foundation mate-

rially modifies this distribution; but Fig. 20 shows

the distribution for sections, say, from 10 to 20 ft.

above the base, up to the level h = 100, fairly well,

on the basis of the trapezoid law. As has been
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mentioned before, this law gives a pressure greater

than the actual at the outer face.

Since the batter of the inner face is very small,

the results of Table I should agree approximately,

except near the inner face, with those found by
Mr. Hill in the paper referred to in the foot note.

FIG. 20.

Substituting numerical values, Mr. Hill's formulas,
for h =200, reduce to

q
= 0.9426x- 0.0005768x2,

p'=80 0.0001289x2 0.0000009615x 3
;

giving:
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On comparnig these formulas with those of the

writer, it will be observed that the absolute term
in the value of q and a consequent term of the

first degree in x, in the value of p'',
are lacking

in Mr. Hill's formulas. This results from taking
the inner face as vertical. Although the coeffi-

cients also differ, it is seen that the numerical

values are very nearly the same.

In Fig. 21 are shown, on a drawing of the dam,
to scale, the lines of the centers of pressure for

reservoir full and empty.
To the right, and under the word "factors,"

are certain numbers, written in the form of frac-

tions. For any joint, the upper number gives
the factor against overturning, or the number by
which it is necessary to multiply the water pressure
down to the joint, to cause the total resultant to

pass through the outer edge of the joint con-

sidered. The lower numbers give the ratio of the

weight of masonry above a joint to the water

pressure corresponding.
It is believed that these "factors" should in-

crease from the base upward, to allow somewhat
for earthquakes, expansion of ice in freezing, etc.,

since the effects of such accidental forces is pro-

portionately greater on the upper joints.

Stresses due to water infiltration are not included
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here; neither are stresses due to temperature

changes.
The unit stresses, /, in pounds per square inch,

acting parallel to the adjacent face, are as follows,

FIG. 21.

and refer to the outer edges of the joints, for

reservoir full, and to the inner edges for reservoir

empty :

h f at Outer Edge, at Inner Edge.
50 85 58

100 136 133

150 204 180

200 275 228
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The stresses, /, are normal pressures on planes

perpendicular to the respective faces, and are the

greatest stresses that can be experienced in the

dam. In fact, they are greater than the true

stresses, since the trapezoid law is not exact,

particularly near the base, as before remarked.

It would then seem that the dam, thus far, is safe,

since the maximum unit stress is less than con-

crete, even, is subjected to daily, in good practice.

For an actual construction, the outer face should

be curved, from near h = 50 to the top, as shown

by the curved dotted line in Fig. 21.

The subject of the stresses in masonry dams

has caused a great deal of discussion among
British engineers in the last two or three years.

The subject was reopened by Mr. L. W. Atcherly

and Professor Karl Pearson, 1 who gave the results

of certain experiments which seemed to indicate

considerable tension across vertical planes near the

outer toe. The late Sir Benjamin Baker, Hon.

M. Am. Soc. C. E., also published
2 the results of

experiments on a model dam of stiff jelly, and

very recently, the "Experimental Investigations"

of Sir J. W. Ottley and Mr. A. W. Brightmore
3 on

elastic dams of "plasticine" (a kind of modeling

clay) and the experiments of Messrs. J. S. Wilson

and W. Gore 4 on "India Rubber Models" have

been presented.

VMinutes of Proceedings, Inst. C. E., Vol. CLXII, p.

456.
2 Ibid., Vol. CLXII, p. 123.

3
Ibid., Vol. CLXXII, p. 89.

< Ibid., Vol. CLXXII, p. 107.
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It is not the object of this paper to discuss these

later experiments; but it may be remarked that

they show very plainly that no tension exists near

the outer toe, but that tension does exist at

the inner toe, where the dam is joined to the

foundation, and it has become a. serious matter

how to deal with it. The influence of the founda-

tion in modifying the distribution of the stresses

at the base of the dam was found to be very great,

causing the shear there to be more uniform than

higher up, where the parabolic law, nearly as given

by the formulas above, was found to hold. Also,

above some undertermined plane, a small distance

above the base, the usual "law of the trapezoid"
was found to be approximately correct, leading to

stresses on the safe side at the outer toe. This

law leads to stresses at the outer toe of the base

considerably in excess of the true ones.

It was found, from the rubber models particu-

larly, as theory indicates, that the greatest normal
'

pressures are exerted at the down-stream face,

for reservoir full, and they act in a direction

parallel to that face.
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APPENDIX III.

RELATIONS BETWEEN STRESSED AT ANY
POINT OF A DAM.

(a) Consider a cube of masonry, Fig. 22, the

edge of which has the length, a, bounded by ver-

tical and horizontal

planes and subjected to

normal and shearing

forces, caused by the

action of the other parts
of the dam. Since a

will be supposed to di-

minish indefinitely, the

weight of the cube,
which is proportional to

a 3
,

is an infinitesimal of

the third order, and can

be neglected in comparison with the normal forces,

which vary as a 2 and are thus of the second order.

Similarly, the average unit stresses exerted on

the faces can be treated from the first as the unit

stresses at any point, A, of tho cube. As a

diminishes indefinitely, the oppositely directed
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normal forces approach equality and balance

independently; hence the couples formed by the

shears on opposite faces must likewise approach

equality; the one being right-handed, the other

left-handed; therefore qaXa = q'aXa, or q=q';

hence, the intensities of shear at a point on two

planes at right angles are equal. The relative

directions of the shears on two planes at right

angles are determined, as above, from the con-

sideration that one resulting couple must be right-

handed and the other left-handed. This applies

also to Figs. 23 to 26.

FIG. 23.

(b) In Fig. 23, ABC is the right section of a

prism at the outer face, with lateral faces one unit

in length, perpendicular to the plane of the paper.
Let AB be vertical; tan

<j>
= m, a constant;

p= normal intensity on a horizontal plane at

C;

p'
= normal intensity on a vertical plane at C;

g = shear intensity on horizontal or vertical

planes at C.
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The weight of the prism is %ab.

Balancing vertical as well as horizontal com-

ponents, we have, when a=AB and b =AC are

very small,

pb = qa + %ab, nearly;

p'a = qb.

Dividing the first equation by 6, the second by
a, the limit, as a and 6 approach zero, gives exactly,

p = q cot
<f>, therefore q = mp;

p'=qtan<j>, therefore p'
=m 2

p, pp' = q~.

These equations give the relations between p,

q, and p' at the outer face. The same relations

hold at the inner face, for reservoir empty, on

replacing $ by 0', the angle the inner face makes
with the vertical.

For the remaining cases, the final limits will be
written at once, since the complete process of

deriving them is evident from the above. In fact,

the weight of the prism, %ob, being of the second

order, can be neglected in comparison, with

qa, etc.

2
(c) For reservoir full, calling iv= h, the inten-

o

sity of water pressure, horizontally or vertically,
at C, we have at the inner face, putting tan $' =n,
Fig. 24,

therefore p= q + w;
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(d) If the vertical component of the water

pressure is neglected, these equations reduce to

therefore

(e) Since the shear on the outer face is zerc,

therefore, by (a), the shear on a plane, AD, Fig. 25,

perpendicular to the outer face, is also zero, or

the stress on AD is normal.

Call / the intensity of such a stress at C. The
total pressure on AZ)=/X AD=fb cos

<f>,
and its

vertical component is fb cos 2
<j>, therefore balancing

the vertical components,

pb =*fb

therefore
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This is a most important formula for finding
the maximum normal intensity at the outer fact-.

It applies equally to the inner face for reservoir

empty, on changing $ to <', the angle the inner

face makes with the vertical. For either face, p
is the vertical normal unit stress at the face con-

sidered.

(/) Principal Normal Stresses at Any Point in

the Dam and the Planes on which they Act. In the

prism, ABC, Fig, 26, let AB be one of the planes

FIG. 26.

on which the stress is normal. Let / be its inten-

sity. The stress on the plane, AB, of unit length

perpendicular to the plane of the paper, is thus

fc\ its vertical component is /c cos =/&, and its

horizontal component is fc sin B -=/a, 8 being the

angle that AB makes with the horizontal

Place the sum of the vertical forces acting on

ABC equal to zero; also place the sum of hori-

zontal forces equal to zero.
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fb= pb + qa, therefore / p = q tan 0,

fa = qb + p'a, therefore / p'
= q cot 8 ,

The difference of the last two equations gives

1 tan 2 e

The angles, (differing by 90), computed from

this equation, give the directions of the planes,

AB, on which the stress is entirely normal.

From an equation above, we likewise have

f-P
tan 8 = -.

2

This gives directly the plane on which a given

/ acts.

To deduce a formula for /, take the product of

two equations above:

V (p +p') 2 ~4(pp
f -

This equation gives the two values of / corre-

sponding to the two planes mentioned; com-
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pressive when / is positive, tensile when negative

There can be no tension when pp' ">_ q
z

.

A better form for computation is,
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