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PREFACE

This book results from the author's experience in teaching

the subject of Least Squares and the Adjustment of Observations

to classes of civil engineering students at Cornell University.

As the time allotted to this work became more and more limited,

the available textbooks became less adaptable to the scope of

the course. To meet this condition, a series of chapters entitled
" Notes on the Adjustment of Observations

" was prepared and

used as a text. With these notes as a basis, this book has been

written.

It is designed particularly for use in short courses of instruction

and In' engineers and scientists in connection with their private

practice. It will not replace the more elaborate treatises on the

subject but the author hopes that it will introduce the student

directly to the simpler methods of solving the ordinary problems

in adjustment.
The plan of the work is essentially practical. After a general

introduction devoted to a consideration of the character and

occm-n^nce of errors, the adjustment of direct, indirect, and

conditioned observations is taken up in detail and illustrated

by numerical applications to triangulation, leveling, astronomy,
and the derivation of emi:)irical formulas. Not until after this

practical treatment of the determination of the best values of

th(; unknown quantities is the precision of observations discussed,

togeth(M- witii the ('omputatif)n of the mean s(|uare and pi-oba])le

errors of the observations and results. Finally, the ])rinciples

of i)ro])ability and the analytical derivation of tlie Law of Error

are given in a]i})en(lices.

The utility of this arrangement should be o])vious. By far

the greater number of a]i]iHcations of Least Scjuares do not

require a consideration of the ])recision of thc^ i-esults nor a

kiunvknlge of the nunm sciuai'c or jiro])a])l(^ (>rrors. ^Moreover,

vii



viii PREFACE

the subject of the precision is usually the most troublesome part

of the work for the student or the beginner to understand.

Therefore, the practical methods of adjustment are explained

directly and fully, without regard to the probable errors or to

the theoretical derivation of the Law of Error. A special effoi't

has been made to explain the procedure in each case as com-

pleteh' as necessary for the beginner as well as the practitioner,

even at the risk of criticism for undue length. The usual

difficulties experienced by students seem to justify this effort.

In Appendix D there is given an outline of a short course of

instruction suitable for civil engineers. This plan was carried

out successfulh' by the author in sixteen lessons. While it is

not at all desirable to restrict the work so severely, if no more

time can be given to it the course is still very much worth while.

The author is indebted to many excellent works and has

endeavored to make specific acknowledgments throughout the

book wherever due. In the preparation of the original notes

and their application to class instruction, his thanks are due

to his former colleagues, Professors P. H. Underwood and L. A.

Lawrence, for their assistance and suggestions.

0. ^I. Lelaxd.

Minneapolis, Minn.

Sept:7nb('r, 1921.
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PRACTICAL LEAST SQUARES

CHAPTER I

INTRODUCTION

1. Discrepancies among Observations. Measurements made

in the field, office, or laboratory directly depend upon readings of

scales, circles, micrometers, clocks, watches, etc. The readings

may be made to the nearest division, or graduation, or the space

between two adjacent graduations may be subdivided by estima-

tion, thus carrying the observation to a greater degree of refine-

ment.^ When successive settings or pointings of the measuring

apparatus are made, upon the same object, the corresponding

readings may be the same as the first if the graduations be coarse

and the nearest one, only, recorded. But if the divisions be very

fine and the readings made with the aid of a magnifier, or reading-

glass, and by estimation, there may be considerable variation

among them, especially in the last figure which is estimated.

For example, consider the following measurements of a line

made with a steel tape in a drizzling rain, using spring-balance,

hand-level, and plumb-bobs, the tape l)cing graduated to hun-

dredtlis.

899.754 ft. 899. 7():^ ft.

.7()1 .7r)()

.760 .7.')9

.7.")8 .7r)9

.7()2 .7(iO

If the readings had been made to the nearest hundrcxlth. all after

' It is oustomary to estimate to tenths, although an exiiericnccd observer

will sometimes record to five one-hundredths when the reading seems to lie

between two adjacent tenths, greater than the one and less than the other.
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the first would have been ahke and 899.76 ft.; if to the tenth only,

each reading would have been 899.8 ft., indicating that the care in

handling the apparatus would justify the use of a more precise

method of making the readings, or that some of the precautions

were unnecessary.^ Thus it will be seen that the observations

may be so rough or coarse as to show no variation whatever.

Their very agreement, in such a case, might be misleading, as

indicating a false precision.

Realizing the occurrence of these small discrepancies among

observations, when made with care, the observer makes a number

of readings, instead of a single one, and by some method of adjust-

ment adopts a certain value for the observed quantity as a result

of his series of observations. If they were made with equal care

and under the same conditions, he may consider them to be of

equal weight and that none is entitled to preference over the others,

in which case it will be reasonable to adopt the simple mean or

average of the set as the best value obtainable from these observa-

tions. In fact, this adoption of the mean is axiomatic.

2. It will be evident that absolute correctness in the observed

quantity is unobtainable as a result of the observations them-

selves. In the above example, it would be impossible to de-

termine the length of a line down to a millionth of a foot (the

sixth place of decimals), using this method of making the meas-

ures. Certainly, then, correctness to an infinite number of places

is beyond hope. Moreover, it is impossible to ascertain the

correct value of the next figure beyond the limit of our observa-

tions. Whatever value may be adopted as a result of adjust-

ment, it should be regarded as but an approximation to the true

one, that is, as the best available value within our knowledge.

The discrepancies among the observations of a (luantity, then,

show that these observations are not quite correct, that the

work is not perfect, in other words, but is attended by errors of

observation. The differences between the readings are not the

errors themselves but serve to indicate thc^ existence of errors.

Addiiif^ a zero after the last observed fisure, making the reading, in this

example, 899.80 instead of 899.8, is a habit of some beginners which should be

studiously avoided.
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If it were possible to ascertain the correct value of the observed

quantity the true error of each observation would be easily found

as the difference between the observation and the correct value. ^

But just as it is never possible to know the correct value, so the

true errors must be regarded as ideal and indeterminate.

3. Necessity for Adjustment. By making several observations

upon a quantity, in succession, two objects are attained, namely,

greater precision in the resulting mean than in a single observation,

and the check upon the work afforded by the agreement of the

various readings among themselves, within the limits of the small

discrepancies above described. The several observations having

been made, however, for the purpose of securing a better value of

the observed quantity than any one of the separate readings would

be Hkely to be, that is, a value presumably closer to the true or

correct value, it is necessary to arrive at, and adopt, some one

value of the quantity, for use in any computations which may
involve it, such use being the probable reason for making the

observations in the first place. This necessity arises from the fact

that if different values of the same quantity be used in the com-

putation, the results will fail to check.

Similarly, if two or more related quantities, resulting from

observations, be used in computations without having been

adjusted so as to satisfy the relation between them, the results

will be inconsistent and checks upon the computation will be sac-

rificed. For example, suppose the three horizontal angles of a

triangle have been measured in the field and their sum, as usual,

fails to equal the theoretical amount, namely, 180 plus the

spherical excess of the triangle. In order that the triangle may
be computed and the sides checked, the three angles must be

adjusted l)y the application of small corrections so as to satisfy

the theoretical sum. Also, if a scries of benchmarks be connected

' It is well to adopt the rule of su])tracting the incorrect or observed

ciuantity from the correct or adjusted one. algebraically, taking account of

the signs. The resulting dilference, with its sign, is then the correction to be

added algebraically to the observed (piantity to obtain the adjusted one.

Strictly, the error lias the opposite sign to the correction, but the latter is more
con\-enient in most cases, and the use of a fi.xed rule tends to avoid mistakes.

An old expression of this rule is, Suhtrnct llie fahc from the true.
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by lines of levels, some of which are check-lines forming with the

others complete circuits, it is necessary to adjust the differences

of elevation so that all of the circuits will close exactly, in order

that the difference of elevation between any two benchmarks will

be constant when computed through two or more series of lines,

that is, by two or more different routes.

Obviously, any computation could be carried out and checked

even though the original data were assumed and far from the

truth, provided they were not inconsistent. But it is not suf-

ficient that the data be consistent; they must be as near the truth

as our knowledge permits if the results are to be of the greatest

value. Observations are made for the purpose of securing infor-

mation with precision, and the results serve as a basis for accurate

computations. Therefore, it is important to so combine the obser-

vations as to give due consideration to each one and to obtain for

each quantity the best value which the given observations can

yield, that is, the value which they indicate to be nearest the

truth. However, the time and labor involved should not be

unreasonable or excessive in view of the objects to be secured.

The process of combining the various observations so as to

obtain the best values of the quantities concerned is called the

adjustment of the observations. The results are referred to as the

adopted, adjusted, or corrected values. The small quantities to be

added algebraically to the observations to obtain these adjusted

values arc known as the corrections.

4. Errors of Observation. Every observation made in the

process of measurement is likely to be in error from various causes,

that is, the actual reading is not the quantity really sought

is not what it would be if conditions were ideal and perfection

attainable. Some of these causes are beyond tlie control of the

observer while others depend entirely upon his skill and i)erson-

ality. For example, the altitude of a star is measured with a

surveyor's transit. The star appears higher- than it really is,

owing to atmospheric refraction. The instrument is never in

perfect adjustment, so that wluni the star is seen on the hori-

zontal thread the vertical circle does not show the corre(;t altitude

of the line of sight. Moreover, the obsorvcM- liiius(4f may have tlie
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habit of noting the time when a star crosses a thread a fraction of a

second too late. Then he, or his recorder, may make a mistake

of a whole minute in taking the time from his watch. And finally,

he reads the vertical circle vernier to the nearest half-minute, per-

haps, with a possible error, therefore, of one-fourth of a minute.

It is customary to include the effects of all influences such as

those illustrated in the above example in the term, errors, and to

classify them as Systematic or Constant Errors, Mistakes or

Blunders, and Accidental Errors of Observation.

5. Systematic or Constant Errors occur in accordance with

fixed laws or are constant during a set of observations made under

unvarying conditions. Their effects are eliminated from observa-

tions, as far as our knowledge permits, in two ways: first, by
the application of corrections computed from the known laws of

the occurrence of the errors; and second, by making the observa-

tions according to a prearranged plan so that the conditions will

be reversed during half of the set, changing the signs of the cor-

responding systematic errors; these therefore neutralize those of

the other half-set when the observations of the whole set are com-

bined.^ Systematic errors are divided into three classes, namely,

Theoretical, Instrumental, and Personal Errors.

6. Theoretical Errors conform to certain laws from which

their effect upon observations made under given conditions may
be computed and corresponding corrections applied, as soon as

these laws are known. Refraction and aberration of light, expan-

sion of metals with rise of temperature, and dip of the horizon are

examples. The form of a law is usually determined theoretically

but its constants may result from observations. Theoretical errors

arc not errors in the sense of being accidents or inaccuracies, but

' This arrangement of a program for observing, so as to eliminate syste-

matic errors, is exceedingly important. Observers and computers should

always l)e on the lookout for new and unforeseen sources of these errors, as

the observations may not reveal them, and the results, apparently good, may
be erroneous to a suri)rising degree. The experience of the observer is inval-

uable in his study of the conditions under which his observing is done, with

this end in view. As our know'ledge of the sources of error increases, so does

our ability to bring the results of observations closer to the truth. (See Wright
and llayford: Adjustment of Observations, Art. 201.)
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rather are the effects of certain influences which operate to prevent
the observer's seeing or reading directly the quantity which he seeks

in his observations. They are included in the classification and

study of errors merely as a matter of convenience and as a result

of custom.

7. Instrumental Errors may be defined as imperfections in

the construction or adjustment of instruments, or the effects of

those imperfections upon observations made with the instruments.

Among these may be mentioned the graduation errors of scales

and circles, eccentricity of circles, inequality of pivots, collima-

tion error, and error of runs in a micrometer microscope. They

may be determined by measurement and the corresponding correc-

tions applied to the observations, or the observing plan may be

such as to eliminate their effects.

8. Personal Errors are generally referred to as Personal

Equation. They depend upon the habits of the observer and

his physical condition. They result, frequently, from the habit of

always setting the thread of a telescope slightly to one side of the

object sighted, or of always noting the time or giving a signal too

early or always too late. No one can hope to be free from such a

tendency, and some of the best observers the world has ever known

have had unusually large personal equations. Good, steady

observers in normal physical condition will have nearly constant

personal equations, whether large or small, and this steadiness

of habit is more important than that the error be small in amount.

If the observations be differential in character, the personal equa-

tion of the observer may have no effect, if it he constant and if all

the readings V)c made by him. This, for example, would be the

case in leveling, if the rod-target were alwa\'s placed too high oi'

always too low and by the same amount. Similarly, it may not

affect the measurement of angles in tiiaiigulation. But if dif-

ferent observers be involved, the results may be affected by the

sum or difference of their personal equations.

The effect of this error may be eliminated, in some cases, by an

exchange of observers, as in telegraphic longitude determinations;

or, its amount may be det(U'min(Hl by special experiments or

apparatus, for each observer, then assumed to be constant and
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applied as a correction to his subsequent observations of the same

kind when made under the same conditions, especially as regards

his personal comfort and health. However, the personal equation

of an observer must not be assumed as constant for any great

length of time, and there is always danger in assuming it constant

at all. It is safer to determine it at different times and to inter-

polate for its value between these results. Depending upon

personal peculiarities, it follows no law and is often the most

troublesome source of error to which observations are subject.

Fortunately, it is small in amount in most cases.

9. Mistakes or Blunders are irregular in their occurrence,

obeying no law, and are relative^ large in size. They result from

haste and carelessness, frequently, on the part of the observer,

during temporary lapses, perhaps, from his customary vigilance.

He may call out to his recorder one number while reading and

thinking another; he may read the wrong division of a circle or

scale; or he may read a clock wrong by a whole minute while he is

estimating tenths of a second. He may turn the wrong tangent-

screw while I'epoating angles, the rod-clamp may slip during level-

ing, or the wrong object may be sighted in triangulation or azimuth

work. The remedy lies in uninterrupted care on the part of the

observer to avoid these blunders, and watchfulness by the recorder

to detect them in any inconsistencies among the readings. Herein

lies one of th(^ chief virtues of a good recorder.

10. Accidental Errors of Observation, or simply Accidental

Errors, is a name given to a specific class of errors in connection

with the adjustment of observations by the Method of Least

Squares. They arc purely errors of observation and have no rela-

tion to systematic errors or the large mistakes already described.

They are small, for the most part, and their presence is indicated

by the discrepancies among a series of readings upon a fixed object

which have been made with the utmost care and precision, with an

instrument which can be read to a greater degi'ce of refinement

than the pointings can be made by the observer. These errors

are never known exactly because the true or correct value of the

quantity ol^served is never known, as has been explained in a

previous article. Thus it is staffed that they are indicated bv
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the discrepancies, not that they are the discrepancies them-

selves.

11. For example, suppose readings are made by a skillful

observer using a micrometer microscope, upon a graduation line or

scratch of a standard meter bar, the whole being enclosed in a

vault of constant temperature so that conditions are steady.

Further, suppose the observer to be able to set the parallel threads

so as to be equidistant from the scratch within 10 microns ^ and

that the micrometer reads directly to five microns and by esti-

mation to one half-micron, that is to 0.0005 millimeter. The

readings, then, might run as follows, the unit being one division

of the micrometer head (equal to 0.005 mm.) :

d d

46.4 45.9

45.6 45.3

46.0 46.1

46.1 45.8

45.9 45.8

46.6 45.2

46.7 46.1

45.4 46.8

46.5 45.1

45.9 46.3

By assumption, the conditions are very favorable for precise work

and the observer is skillful and is using great care in making the

readings; nevertheless, there are discrepancies and the readings

have a total range of 1.7 divisions. These are the discrepancies

which indicate the presence of accidental errors of observation.

They are so small as to be beyond the control of the observer, as he

is assumed to make each separate pointing as carefully as he can.

It may be noted, also, that most of the discrepancy is due to the

errors of pointing, that is, setting the threads on the mark, as

the estimation of tenths of a division of the head would seldom

be in error by a whole tenth.

12. In other examples, the discrepancies might be made up of

accidental errors of several different kinds, such as pointing the

^ A micron is one, one-tliovisaiulth of a milliinctor or one onc-Diillionth of

a meter. It is the unit used in verj' precise measurements of length by
means of micrometer microscopes.
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telescope upon a signal, setting the threads of the microscope

upon a division of the circle, and reading the micrometer head.

Other sources of errors which may have the nature of accidental

errors are the unsteadiness of the atmosphere and that of instru-

ment supports, and rapid changes of temperature. However, the

foregoing example of simple, direct readings is a clear illustration

of the occurrence of accidental errors without complication. If

the micrometer head had been graduated directly into one thou-

sand parts instead of one hundred, to be read with a magnifier,

the error of estimation in reading it would have disappeared and

the discrepancies might have been ascribed entirely to the acci-

dental errors of setting the threads upon the division on the

circle, the simplest kind of a case.

13. Accidental Errors, only, Considered in Adjustments. It

has been shown that the effects of systematic errors arc eliminated

by corrections or by the observing program, as far as they arc

known to exist; and that the mistakes, or blunders, are avoided

by the exercise of care and vigilance, as much as possible. Of all

the kinds of errors, then, there remain the accidental ones, still

affecting the observations, and it is to minimize the effects of

these errors that adjustments are made. In all that follows in

this work, therefore, only this special class, the accidental errors,

will be considered, except as others may be specifically mentioned.

14. Assumption of the Arithmetic Mean.^ When eacli obser-

vation or reading has been made with the same care and under the

same conditions as all the others of a set made upon a certain

quantity, so that all arc of (Hjual value, or weight, there is no

reason for preferring any one to any other; the mean, or average,

of them all must be regarded, then, as th(> best value of the observed

(}uantity which can l)e ol)tained from the given set of observations.

The soundness of this i)rin('iple is so cn'idfMit that it is adopted as

the fundamental assumi)tioii in <levelo])ing the theory of the

adjustment of observations. The mean should b(^ regarded, not

as the true value of the ()])S(M-ve(I (juantity. but rather as the

^ I'ho word >nr<in. in tliis work, is uiiil(>rsloo(l to rcfiM' to the arithnulic

mean, or average, in every case. Tlie
(ji
auK Irn- nH\aii is the sijuare root of

the ])ro(hirt of two ([uantities.
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nearest approximation to it that the given observations will yield,

and subject to improvement if other or better observations should

become available.

15. Residuals (v). The difference between an observed value

of a quantity and the adopted one is known as the residual of that

observation. It should be taken in the sense, adopted minus

observed, for consistency in sign. If the adopted value, the mean,

for example, be the nearest approximation to the truth, then the

residuals obtained with that value would be the nearest approxi-

mations to the actual or true errors of the observations, to the

extent of our knowledge. The occurrence and behavior of the

residuals, then, will be our best indication as to the occurrence of

the true errors. In fact, we may reasonably assume that the

errors and the residuals conform to the same laws. In the inves-

tigation of such laws, therefore, it may be convenient, some-

times, to use the terms somewhat indiscriminately, to use the

word error when residual is intended.

16. Regularity in the Occurrence of Accidental Errors. At

first thought, it may seem strange that there should beany
method at all in the occurrence of errors which are so small and so

evidently the result of accident or inaccuracy. However, it has

been found from a large number of investigations of observations

of almost ever}" conceivable sort, that these errors occur not only

with regularity but in conformity to a definite law, of which the

general form is the same for all kinds of observations. This law

of the occurrence of errors, or Law of Error, as it is called, is

expressed in the form of an equation which has been completely

derived, and tested, later, in a multitude of cases, with entire

satisfaction. In accordance with this law of error, the Method of

Least Squares has been devised and demonstrated for the adjust-

ment of observations.

17. Curve of Error. As an example, let us consider a large set

of direct observations, say 500 of them, such as the readings of

the micrometer microscope in the example of Art. 11, page 8.

By taking the mean of the entire series and subtracting from it

3ach separate reading, the rcsichials are obtained. Counting the

residuals of each size and sign, we find that there are 36 of +0.1,
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35 of -0.1, 33 of +0.2, 34 of -0.2, etc., the sum of all the numbers

being, of course, 500. These results are plotted as rectangular

coordinates, the magnitude of the error on the horizontal axis,

plus on the right and minus on the left of the origin, and the

corresponding number of errors of that size on the vertical axis,

upward. Thus one point is plotted for each size of error, and for

each sign. A smooth curve is then drawn so as to follow the

points as closely as possible, with the result shown in Fig. 1 :

Nuniler

of Errors

1 1 y^
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3. Very large errors seldom occur; they are likely to

belong in the class of mistakes rather than that of accidental

errors.

It should be remembered that the number of observations in a set

is assumed to be large. The smaller the set, the less closely will

the residuals conform to the ideal conditions, such as that of the

first of these assumptions, but even in a small set they will approx-

imate to their ideal occurrence. Obviously, the larger the number
of observations, the more closely should the mean approach the

true value of the quantity observed, in so far as the accidental

errors are concerned.

19. Law of Error. The general equation of the error curve, or

curve of probability, may be derived ^ from the assumptions of the

last article together with the principle of the mean (Art. 14, page 9).

The curve is seen to be continuous, and it is of special importance

to note that the number of errors, or the probability of an error,

is a function of the size of the error. The algebraic principles of

probability, also, are involved in the derivation. The resulting

Law of Probability of Error may be stated thus :

' Vtt

in which p is the probability of an error A in a set of observations

for which }% is a computed constant; e is th(> base of natural

logarithms; and r = 3.1416+. The constant h lias the value

. in which e is a constant for each separate set of observations,-

and serves to change the general equation into a specific oik^ for

the particular set of ol)scrvations under consideration.

20. Tests of the Law of Error. The law may he tested by

applying it to many diffcM-ont kinds of observations so as to ascer-

tain whether the I'csiduals occur in conformity with it. Con-

versely, if the law be accepted as applicable to all observations,

1 This derivation may be found in Appendix C.
- will be defined farther on as the mean square error of a single observa-

tion. Its \-alue, for a jiiA^cMi set of observations, depends upon their precision,

and i- determined from the resichials.
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the quality of a given set could be tested by the same method.

In general, then, it is a process of comparing theoretical results

with observed ones, or theory with practice. The method consists

of the comparison of the number of residuals, in the given series,

which lie between certain limits, with the number of errors which

ought to lie between those limits according to the Law of Error.

For example, e having been computed for the given observations,

the probability of an error between 0.00 and 0.30, say, is deter-

mined by integration and substitution in the equation (1).^

(It will always be less than unity, from the principles of prob-

ability.) Multiplying the total number of observations in the set

by this probability gives the number of errors which ought to lie

between the assumed limits according to the law. The residuals

which actually lie between those limits may then be counted

and their number compared with that obtained from the formula.

Crandall gives an example of a small set of 18 observations of

an angle, with the following results, e being 1.66".
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.-,/.

it follows that the probability of the simultaneous occurrence of the

errors Ai, A2, A3, . . . A, will be

Vtt

that is

P:=[ _ ) g-'i2(Al2
+ A22+ ... +An2)

rg-v

But since these errors are to be the most probable ones, P must

have its maximum value. As h, t. n, and e are constant in a given

problem, and the exponent of e is always negative, the expression

will be a maximum when the exponent of e is a maximum, alge-

braically, that is, when the sum

Ai2+A2^+A3^+ . . . +^/ is a minimum (3)

Thus, the most probable value of the observed quantity, or the

best value, in other words, obtainable from the given set of obser-

vations, will be the one for which the sum of the squares of the

errors, or of the residuals, likewise, is a minimum. This is called

the Principle of Least Squares and the method which is based

upon it, for the adjustment of observations, is known as the

Method of Least Squares. It was first published by Legendre, in

1806, although used by Gauss as early as 1794. ^ In the general

case, involving the determination of several quantities, and obser-

vations of unequal weight, it provides that the most probable

values of the unknown quantities will be those for which the sum

of the weighted squares of the residuals is a minimum. This

form will be discussed later (Art. 34).

22. Number of Observations. In the development of the

]\Iethod of Least S(}uares, it is assumed that the number of obser-

vations is large. The assumptions as to the occurrence of errors

approach the truth more closely as the number of the errors

increases. However, if the method be applied to small sets of

^ See Appendix A,
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observations, although the results may be farther from the correct

values, still they may be regarded as the best ones obtainable

from the given observations, which is sufficient warrant for the

use of the method under such unfavorable conditions. It is

unreasonable to generalize too greatly from a very small set of

residuals, as to the precision of a result, but it is still permissible

to take the mean of even two observations, if they be the only

available data.

Regarding the number of observations, it must be remembered

that no adjustment is possible unless there are more observations

than unknown quantities. If the number be less, the unknowns

cannot be determined without additional information or assump-

tion. If the number be equal to that of the unknowns, there is

only one solution, namely, the rigid, algebraic one by means of

simultaneous equations.

23. Two Uses of Least Squares. The ^Method of Least Squares

is essentially a practical subject, being devoted to the solution of

numerical problems. Its applications may be divided into two

classes: first, the determination of the best values of the unknown

quantities obtainable from given observations, that is, the adjust-

ment of observations; and second, the investigation of the

precision of the observations and the results, and the influence of

errors upon them. Those two uses of the method are quite inde-

pendent; most problems require adjustment, but the precision

may not be investigated at all unless the results are to be compared

with those of other observations. In this treatment of the sub-

ject, therefore, immediate attention will be given to the adjust-

ment of the various kinds of oliscrvations, but the determination

of the precision of the results will be postpoiunl to a later chapter.
^

24. Classification of Problems. In the following chapters,

the typical problems are such as the engineer frequently encounters

in field work. A certain method of solution is adopted for each

type. The adjustment of the three great classes of observations

is taken up in th(^ usual order, namely:

1 Chapter VIII.
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Direct Observations of One Quantity,

Indirect Observations, of a Function of the Unknown Quan-

tities, and

Observations of Conditioned Quantities.

Following these, the investigation of precision and the propagation

of error will be explained. It is important that the student become

familiar with the characteristics of these classes of problems and

with the method of solution of each type. The special problem

of the derivation of empirical formulas and constants will be

treated in a separate chapter.^

' Chapter VII.



CHAPTER II

DIRECT OBSERVATIONS OF ONE QUANTITY

25. Direct Observations: Readings. In their simplest form,

direct observations consist of single readings made upon various

kinds of apparatus used in measurements, such as scales, circles,

micrometers, and timepieces. The example in Art. 11, of microm-

eter readings upon a fixed scale, is typical of this class. The

conditions under which the readings are made are assumed to be

constant or to vary according to a known law so that the discrep-

ancies among the readings maj" be reduced to the accidental errors

of pointing or setting the instrument and of reading.

Usually, however, the conditions are more complex and involve

several sources of error. In the example just cited, the tempera-

ture may vary, causing the position of the division line on the

scale to change. Then if the temperature be read from a mer-

curial thermometer simultaneously with the micrometer readings,

two corresponding sets of direct readings are obtained. Also,

when the altitude of a star is observed for time and azimuth,

each pointing on the star may be attended by readings of the

watch and the horizontal and vertical circles, so that three

simultaneous sets of direct readings result.

26. Observations Resulting from a Combination of

Readings. It fr(!(}uently happens, on the otlu^r hand, that

the so-called observed (juantity is the result of two or more

separate readings of the sanu^ kind. I'or cxanipk^, in tli(>

measurement of angles ])y ivpctition, a singl(> observation is

obtained by subti'acting the initial reading from the final one

and dividing tlu> difference by th(> nunibcM' of I'epelitions, in

the case of the direct uK^asure of tlu^ angl(> its(>lf and also, of

the n'V(M'S(Ml measure of its (>xplenieiit, the ni(>an of the two

17
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results being taken.^ In the measurement of a base line, each

observed length is the sum of several tape-lengths; the elemental

observations consisting of placing the rear scratch on the tape in

contact with a scratch on a marking-plate and of making a mark

on a plate opposite the scratch at the forward end of the tape.

Similarly, the observed difference of elevation between two

benchmarks consists of the algebraic sum of a series of fore- and

back-sight readings of the rod. It is customary, in all such

cases, to consider the result of a single complete measurement to

be the observed quantity, even though it consist of a combination

of separate readings. In its general sense, therefore, the term,

direct observation, may be taken to mean a single measurement

of the quantitj- desired.

27. The Mean. The adjustment of direct observations of a

single quantity consists in taking their mean as the best, or most

probable, value obtainable from the given observations, as ex-

plained in Art. 1-i. That this is in accordance with the principle

of least squares, ma}- be shown as follows :

Let JMi, 3/2 . . . j\In represent a series of observed values;

Xq, the best value of the observed quantity; and vi, vo, . . .
I'n,

the corresponding residuals, n being the number of observations.

Then, for each observation there results an observation equation,

thus: ^ ^f _
Xq M 1 I'l

.Tf) Mo = V2

(4)

.ro 3/)j = I'n

Squaring both members of each equation and adding the resulting

equations, we ()l)tain,-

(.ro--Vi)^'+ (.ro-3/2)-+ . . . +(xo-Mn)- =
[r-] (5)

1 A simpler method is to subtrart from the reading on the right-liand

object the mean of the two readings on the left-hand object (first and last

readings) and divide the difference by the mimber of repetitions. 'J'he result

is the same.

-The square l)rackets, [ ],
indicate^ the suiu of all such terms as arc in-

cluded by them. Thus, [r-] represents the sum of the sf]uares of all the /''s,

that is, rr+ rj-+ ':-+ +''- The symbol, ^, may be used to indicate

summation in the same manner.
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According to the principle of least squares, the sum of the squares

of the residuals, that is, [y^], is to be a minimum. Therefore, we
differentiate the left-hand member and place the first derivative

equal to zero; whence, after dividing by two, we have:

{xo-M{)+ {xo-M2)+ . . . +(a:o-Mn)=0 (6)

nxo-{Mx+M2+ . . . +ilf)=0,

[M]and Xo=- (7)

That is, the best value of the observed quantity the one for

which the sum of the squares of the residuals is a minimum, is the

mean.

28. Computation of the Mean. Owing to the close agreement
of the observations of which the mean is to be taken, it is possible,

often, to abridge the numerical work by the assumption of an

approximate value of the mean. Suppose the mean of the follow-

ing 16 quantities to be desired
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Also, by inspection, it will be seen that the next to the last

figure in the mean will probably be 6. Thus we may take 60 as

an approximate value of the last two places, calling 54, for exam-

ple, 6, and 71, +11. Then, adding mentally the figures in the

last place with 60 as a basis, we obtain the sum, +65, and the

mean, +4, so that the full mean is 1463.49760+4 in the last

place, or 1463.49764. This process may be simplified still more

by combining a 5 and a 7 in the next to the last place, as their

mean is 6, without modifying their last figures. Thus in the above

example, 59 and 71 would be added directly as 10 instead of 1

and +11.1

29. Control or Check of the Mean. Substituting equations

(4) in (6) of Art. 27,

Vi+V2-\-V3+ . . . -\-Vn = or, [v]
=

(8)

That is, the sum of the residuals should be zero, or the sum of the

positive residuals should be equal to that of the negative ones.

This check is very important and should l^e used whenever prac-

ticable. It will be satisfied rigidly unless there is a remainder

when the sum of the observations is divided bj' their number to

obtain the mean. In this case, the check fails by just the amount

of the remainder but with the opposite sign, so that the mean is

verified, nevertheless. In the example in the preceding article,

the sum of the residuals is 1, and the remainder in taking the

mean is +1, so that the mean was correctly computed.

30. Weighted Observations. Thus far, wc have considered

only observations of equal fjuality or precision. In the general

case, however, one ()l)servation of a series may ])e better than

another, for some reason, and cntitk^l to have a greater influence

upon the result. WIkmi all of the (observations of a set are not of

the same quality or worth, tliey are called weighted observations,

or arc said to ho of une((ual weight.

31. Definition of Weight (w). By the weight of an observation

is meant its relative value among the others of a set. It is

' The l)e<j;iniicr will do well to learn to add mentally ])y combinations of

two or three fi^un\s at once, partitailarly those whose sum is 10, as 6 and 4,

7 and 3, or o, 2, and .'!, even though ancjther figure intervenes.
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expressed as a number, and being strictly relative, may be mul-

tiplied by any factor so long as all the others in the set are mul-

tiplied by the same quantity. Thus, the weights may be integral

or fractional. If one observation has a weight of 3 and another

a weight of unity, the first may be considered as the mean of

three observations of the same size, each of which has the weight

unity. The weights could be stated as 6 and 2, as 1 and \, or as

0.153 and 0.051, as well as 3 and 1.

32. Sources of Weights. Either the observer or the com-

puter may assign the weights to the observations and it is largely a

matter of judgment. If the observer assigns them, during the

observing, he has the right to do it by estimation or arbitrarily.

For instance, in the measurement of angles in triangulation, the

atmosphere may be so unsteady during one observation that he

will give to that particular result a weight of one-half that of the

others. Or he may note in his record the fact that the atmosphere

was very unsteady at that time, and leave to the computer, in the

office or at headquarters, the dutj^ of assigning a low weight to

that observation, when making the adjustment. Of course, the

computer might give it a weight of 0.8 instead of 0.5, and thus

change the result somewhat. Or, an arbitrary rule might be

agreed upon so that both would assign the same weight under the

same circumstances. Similarly, two benchmarks may be con-

nected by two lines of levels giving discordant results. If one

run were made during a high wind or with a careless rodman, it

might be given a lower weight than the other.

In the second place, weights may be assigned upon the number of

observations, as a basis. If one measurement of an angle be made

with three repetitions and another with six, the second may be

given twice the weight of the first.

Finally,' the assignment of weights may ])e governed by //^cor//.

In the determination of time by transits of stars across the meridian,

the motion of a star near the ecjuator will be more rapid than that

of one of greater declination, and the rapidly moving one can be

observed more accurately than the other. Th(n-efore, a system

1 For the determination of weights from mean square errors, see Art. I.'i6,

Chapter \'1II, Combination of Computed (Quantities.
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of weights has been devised which depends upon the declinations

of the stars.

33. The Weighted Mean, The best value of the observed

quantity which is obtainable from a given series of weighted obser-

vations is known as the Weighted Mean. To determine it, each

observation is multiplied by its weight and the sum of these

products is divided by the sum of the weights. The analogy of

this process to the determination of the simple mean will be

evident from an example.

Let it be required to adjust the following set of four weighted

observations of an angle, the weights, w, being determined from

the number of repetitions and the notes as to weather conditions:

M

73 18' 42,16"

41.96

41.70

42.23

Use 42.00 as

Approx. value

+0 . 72

11
+0.07

Mean, 42 07

11

2.16 or +.16
2.16

2.16

1.96

1.96

1.70

1.70

2 . 23

2.23

2.23

2.23

22.72

+ .16

+ .16

-.04
-.04
-.30
-.30

+ .23

+ .23

+ .23

+ .23

+ .72

+v

11

11

37

37

16

16

16

16

wM

+ .48

-.08

-.60

+ .92

-\-LCV

22

74

27

64

96 91 + .72 9(i 91

By writing each observation a number of times equal to its

weight, and by using 42.00" as an assumed or approximate value

of the mean, the third column is obtained. According to the

definition in Art. 31, this reduces all the quantities in these

columns to the same, unit weight, and their number is the

sum of the weights. Therefore, their mean is the best value,

and by the methods of Art. 28, this is 42.07", with residuals

shown in the columns headed +-r and v. The mean is checked

by its remainder, 5, against the sum of the residuals, +-5.

It is evident that instead of writing the first observation three

times in the third and fourth columns, it will be easier to multiply
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it by three and write the product, and similarly with the other

observations and their weights; the sums would be unchanged.

Likewise, the residuals may be multiplied by the weights of the

corresponding observations and the products noted instead of

writing all the separate residuals. Thus, the last three columns

are obtained, giving the same results as the preceding ones. The

following rule, therefore, is given for the adjustment of direct

observations of unequal weight, whether the weights be integral

or fractional: Multiply each observation by its weight and divide

the sum of the products by the sum of the weights, to obtain the

weighted mean; and multiply each residual by the weight of the

corresponding observation, adding the products algebraically to

obtain the sum of the weighted residuals.

34. Principle of Least Squares for Weighted Observations.

Let Ml, M2, Ms, . . . Mn represent a set of n observations having

the respective weights, wi, w-z, W3, . . Wn, and let xq be the best

value of the observed quantity, with vi, V2, V3, . . . Vn as the

corresponding residuals.^ Considering each observation of weight

w to be the mean of w equal observations of weight unity, the

residual of each of these latter observations would be the same

as that of the original one, but there would be w of them. As

stated in Art. 21, for the best value of the observed c^uantity, in

the case of equal weights, the sum of the squares of the residuals

will be a minimum. Therefore, to express this minimum for

weighted observations, each residual must be written a number of

times, w, equal to the weight of its observation. Thus,

{vr-\-vr'-\-vr-[- . . . iow\ terms) + (y2^+ ?-'2^+?^2^+ . . iowo terms)

+ . . . +(/'-+ r-+r2+ ... to Wn terms) is to be a minimum;
that is,

u'V'r+ wiv-r-i' ^-WnV,? must be a minimum (9)

or the sum of the weight od squares of the re-^idiials must hQ a min-

imum. Su])stituting for each v in (9) its value, Xo M, with the

corrc^sponding subscripts,

IV \{xi) M \)~ -\- ic-zixo M-lY+ -^Wn(x() Mn)'~ IS to be a mininunn.

1 Reference to the numerical cxauii)le of the preceding article will be of

assistance in following these steps.
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Differentiating this expression and placing the first derivative

equal to zero, for the minimum, we have, after canceling the fac-

tor 2:

WiiXo-Mi)-\-W2{Xo-M2)+ . . .WniXo-Mn)=0 (10)

Combining terms,

- {wiMi-\-W2M2-\-W3M3-{- . . . -\-WnMn)=0
and

[w]

that is, the best value of the observed quantity, for which the sum of

the weighted squares of the residuals is a minimum, is the weighted

mean, obtained by multiplying each observation by its weight

and dividing the sum of the products by the sum of the weights.

35. Control or Check of the Weighted Mean. If in (10),

above, v be substituted for xq M, we have

WiVi+W2V2-\-lV3V3-h . . . -^-WnVn^O (12)

or, the sum of the weighted residuals should equal zero. As was the

case, however, in the control of the simple mean, the actual sum of

the weighted residuals should equal the remainder obtained with

the weighted mean but with the opposite sign. This is illustrated

in the example of Art. 33.

36. Weighted Mean of Two Quantities. The solution of this

special case is particularly convenient and instructive. With

the usual notation, let Mi and Mo be the two given quantities,

whose weights are u'l and u'2 respectively, and let .tq be their

weighted mean. Then from (11),

lV\Mi-\-lV2-^I'2 .,s
.To- (13)

lC\-+-tV2

Adding and subtracting W2M1 from the numerator,

ir\M\ -\-iV2^!^2^u'2M] 2C2Mi

iri-^iC2

^ Ml (t/-i +K-2) i-W2(M2 - .1/1)

"l+W'2

= Mi-h-^^{M2-Mi) (14)
Wi-{-W2

To
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Also, owing to the symmetry of (13), the subscripts may be inter-

changed, and therefore,

xo = M2-{-
^'

{M1-M2)
Wi-\-W2

Thus, the weighted mean may be found by correcting one of the

quantities by an amount equal to the difference between the two

quantities multiplied by the weight of the other and divided by
the sum of the weights. Obviously, the mean lies between the

two quantities, so the sign of the correction will be evident. The

weighted mean divides the interval between the two quantities

in the inverse ratio of the weights of the adjacent quantities.

For example, the weighted mean of

6.784 Wt. 7

and 6.743 Wt. 2 is 6.784-|x41 = 6.784-9 = 6.775

the unit, for the correction, being conveniently taken in the last

decimal place. Similarly, the correction to the second quantity

would be +1^X41, with the same result.



CHAPTER III

INDIRECT OBSERVATIONS, OF A FUNCTION OF THE
UNKNOWN QUANTITIES

37. Indirect Observations are those in which the observed

quantity is related to the desired unknown quantities through a

known formula or function. The observed quantity is expressed

as an explicit function of the unknowns, which are usually two

or more in number, and is, therefore, the observed value of the

function. It may be that the unknowns cannot be separated so

as to be observed directly, and that they can only be determined

in combination. They are assumed to be mutually independent;

each may vary without causing a corresponding variation in the

others. Moreover, the number of observations must be greater

than that of the unknown quantities, as stated in Art. 22.

38. The General Function may be algebraic, logarithmic,

exponential, or trigonometric, and simple or complicated. How-

ever, it is always possible to reduce such a general function to the

linear form, that is, to the first degree, either by taking the loga-

rithm of each member or by developing the function by Taylor's

Theorem and neglecting the squares, products, and higher powers

of the small increments involved.^ Furthermore, the great ma-

jority of problems are concerned with the simplest form of func-

tion, namely, the algebraic one of the first degree. Therefore,

we shall here consider only this linear form.

39. The Linear Function between the unknowns, x, y, ?, etc.,

will have the following general form,

ax+ by+ cz-\- . . .+k (15)

in which a, h, c, etc., are known numerical coefficients or factors

and /.' is the constani t(M'in. As usual, the signs n^prosent algebraic

addition and the (quantities may be positive or n(^gative.

40. Observation Equations are the algebraic statements of

the separate; obscn'vations. Thus, if Mi, M-2, . . Mn be the

i.See Arts. 119 121.

26



INDIRECT OBSERVATIONS 27

observed values of the function, with the respective weights,

wi, Wo, . . . Wn, the observation equations would be,

aix-\-hiy-{- . . . -\-ki = Mi Wt. wi

a2X+622/+ . . . -{-k2 = M2 W2

(16)

anX+bny+ . . . +A- = jT/ Wn

Their number is the same as that of the observations, and each

subscript indicates its equation and observation.

If X, Y, Z, etc., be the best or most probable values of x, y, z,

etc., to be obtained from the given observations, the substitution

of these values in the above equations (16) would show a residual,

V, for each equation, inasmuch as the observations are subject to

error and no set of values of the unknowns would be likely to

satisfy exactly any one of the observation equations. The ideal

form of these equations, therefore, would be,

aiZ+6iF+ciZ+ . . . +ki = Mi-^vi \Yt. wi

a2X+ b2Y-\-C2Z-\- . . . -\-k2 = M2+ V2 W2

(17)

Transposing the M of each ec^uation, and I'epresenting the differ-

ence, k M, of the two constant (juantities by the constant term,

/, we have for the observation ecjuations,

aiX+6i}^+ciZ+ . . . +/i = ri Wt. wi

a2X+ 62r+C2Z+ . . . +/2 = r2 W2

(18)

anX+ bn-Y-^-CnZ-]- . . . -\-In^Vn U'

which are somotimes called Residual lu/uaiions.

41. Adjustment of Indirect Observations of Unequal Weight.

For th(^ l)est values of the unknown (|uaiilities, the sum of the

weighted scjuares of the rc-siduals is to be a iniiiinuuu. That is,

n:irr-\-W2V2~-\-u':',r:r-{- +ii'nr,r must he a iniiiimuin (9)

Sinc(> .r, y, z, etc., ai'c iiidepeiideiit of ouv another, it follows that

\\\v first (l(M'ivative of the above expression with respect to each of
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them must separately equal zero, for the minimum. Differen-

tiating (9), therefore, and canceling the factor, 2, from each

equation, we have:

-"l , "^2
I

. avn f.WlVi--\-W2V2-z+ . . . -hWnVn-r;^
=

dX dX dX

avi av2 . . dvn ^

dY dY dY

(19)

There will be one equation for each of the unknown quantities.

The differential coefficients in the first of these equations are the

coefficients of X in the successive equations (18), those in the

second are the coefficients of Y, etc. Substituting the value of

the v^s from (18), in the equations (19), then, we obtain

wiai{aiX+hiY+ . . . -\-h)+W2a2(a2X+b2Y-\- . . . +^2)

+ . . . +w)a(aX+6F+ . . . +U =
(20)

w;jbi(aiX+6iF+ . . . -\-h) +W2h2{a2X -{-boY+ . . . +^2)

+ . . . -\-Wnhn{anX-\-bnY-i- . . .+^=0

Whence carrying out the products indicated, and adding the similar

terms,

[iva^]X-{-[wab]Y+[wac]Z+ . . . -\-[wal] =0

[wba]X-h[wh'^]y-\-[wbc]Z+ . . . -\-[wbl] =0 (21)

[wca]X-i-[wcb]Y-i-[wc^]Z-\- . . . +[wd] =0

These are called the Normal Equations, as they are the same

in numljcr as the imknown quantities, and, therefore, may l)e

solved simultaneously to determine the latter. It will be seen

in the equations (20) that the first normal eciuation is formed by

nuiltipl\'ing the left-hand member of each observation equation

by its weight and the coeffici(Mit of A' in that ecjuation, and adding

all the resulting products. Likewise, the second normal equation

is formed by multiplying each observation equation by its weight

and the coefficient of F, and adding the products, and so on through
th(> series of unknown (}uantities.
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The adjustment, then, consists in forming from the given

observation equations a set of normal equations, the same in num-

ber as the unknown quantities, the solution of which as simul-

taneous equations will give the best values of those quantities.

42. Observations of Equal Weight. This is a special case of

the foregoing, in which each weight may be replaced by unity so

that the tf's disappear from the normal equations (21), resulting,

therefore, in the following simpler form:

[a2]X+[a&]F+ [ac]Z+ . . . +M] =

[hajXMb'^W-hlbcjZ-h . . . +[bl] = (22)

[ca]X-\-[cb]Y+[c']Z+ . . . +[c/] =0

For purposes of illustration, it will be convenient to use these

equations (22) rather than the longer ones in which the weights

arc included.

43. Control or Check in the Formation of the Normal Equa-

tions. Referring to equations (18), let the sum of the numerical

coefficients and the constant term in each equation be represented

by s; thus, . , . , ,

,

a2+ 62+ C2+ . . . -\-l2
= S2 (23)

On-\-hn+ Cn-\- . +? = S

To form the first normal (xjuation, as shown in Art. 41, the terms

in the left-hand member of each of these equations are multiplied

by its weight and its first t(>rni or coefficient, namely, wioy, etc.,

and the resulting products ar(^ added, as in (21). P(>rfoi-niing

this operation at the same tim(> on the right-hand members above,

in (23), we have, using tlu^ first eciuation, only, as an illustration:

W'iar'+ii'ifli6i-f?/'iaici+ . . . +U!ii/i = (<"ii.s'i (24)

or, after addition,

[(/vr]+ [(ra/;]+ [v/c]4- . . +[?m/] = [(ra.s^] (25)

Thus, tlu> second inetiibcr of lliis ((jualioii should ('(pial tlie sum
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of the numerical coefRcients and the constant term of the first

normal equation, which affords a check upon the numerical work

of computing these quantities and forming the normal equations.

This second member of (25) is therefore called the sum-term.

For the other normal equations, respectively, it has the form

[wbs], [wcs], etc. This check is very important and should always

be applied, except, perhaps, in the very shortest problems. Hav-

ing formed the sum, s, for each of the observation equations, it is

treated the same as the other quantities, a, b, c, etc., and w^hen a

normal equation is written, its sum-term should equal the alge-

braic sum of its other numerical quantities. It must be noted,

however, that the check may not hold exactly, in the last decimal

place, owing to discarded remainders, but this discrepancy will not

usually exceed one unit in that place.

44. S3nnmetry of the Normal Equations. Inspection of the

literal forms of the normal equations, in (21) and (22), reveals a

sj^mmetry which is useful as an aid to the memory, and which will

lessen the labor of computation both in forming the equations and

in their solution, as will be shown farther on. This symmetry
exists among the coefficients of the unknown quantities with refer-

ence to the diagonal line passing downward to the right. On this

diagonal will be found those terms which involve the squares of the

quantities, a, b, c, etc., as ^

[waa], [wbb], [voce], etc., or more simply,

without weights, [d^], \b^, [c~], etc. These terms being squares,

are always positive. Then the coefficients in any vertical cohnnn

occur in the same order as those in the corresponding horizontal

row. Thus, in the third coliunn and row the order is [ac], [be],

[cc], [dc], etc., c being the third of the original coefficients, and the

other factors having the original order, a, b, c, d, etc.

45. Formation of the Normal Equations. Aids. The com-

putation of the; necessary s(}uures and pixxlucts foi- the coeffi-

cients in tlie normal ecjuations is facilitated by the use of special

methods as well as tables and niectianical (Un'ices. Tlie choice

of the method or device will be governed, in general, by the size of

the numbers involved and the refinement of the computations.

' The Kcjuarcs of
, h, c, etc., arc oftcMi written ;is na, bb, cc, etc., to illustrate

this syTiiinetry as well as to avoid the us(> of exponents.
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The tables used contain the logarithms, the squares, or the

products of numbers. Five-place logarithms are suitable in most

work, and four places are often sufficient. Hussey's five-place

tables are recommended as very convenient. Barlow's tables of

squares, cubes, roots and reciprocals of numbers up to 9,999 are

well known and satisfactory. Of the tables of products, Crelle's

Rechentafeln, giving the complete products of numbers of three

figures each, that is, up to 999 by 999, is probably the most useful,

although Zimmermann's and Peters' may more readily be used to

obtain products of larger numbers, as they give directly products

of numbers of four figures by those of two figures. In computing
the coefficients for normal equations by means of tables, the loga-

rithmic method is slowest, the use of squares is better, and the

tables of products are usually most satisfactory. In the absence of

these last, however, tables of squares may be used in either of two

ways for the computation of products, namely, by one of the fol-

lowing formulas:

a6 = i[(a+6)2-a2-62] (26)

and
a6 = i[(a+6)2-(a-6)2] (27)

The former requires but one new opening of the tables, as a^ and

b~ are separatel}' necessary' as coefficients.

The mechanical aids to computation consist of slide-rules and

computing machines. The ordinary 10-in. slide-rule is sufficient

for reading products to three significant figures. The Thatcher

slide-rule, however, reads directh' to four or sometimes five

figures and is excellent for solving normal equations as well as

forming them. Computing machines are of two types, for addi-

tion and foi- multiplication. We are concerned primarily with the

latter, although tlu> fornuM- may be used indirectly for multipli-

cation. Of the multiplying macliinos therc^ are two forms; the

Brunsviga type, in whicii one turn of the ci'ank multi])]ies !)y one

unit so that to multiply by 4.'), four turns would hv ixniuii'ed in

one position and three in tiie nexl : and th(^ Millioiuii' machine, in

which one tui'u of the crank nniltiplics by a whole digit, so that but

twt) turns would ])e recjuired to multiply by ()."). one for each digit.

If very lai'gc nunibcM's are to be inuhiphcd oi' (Hx'idcd, a computing
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machine is almost indispensable, but for ordinary work the tables

of products and the slide-rule are convenient and sufficient, espe-

cially since large numbers are avoided as much as possible.

46. The computation of the coefficients in the normal equations

is carried out conveniently in the form of a table in which each

quantity involved is shown, with its proper sign, first the given

ones and then the computed ones. Then it is highly important
that the multiplication of several quantities by the same factor

be performed in succession, as this plan in particular is adapted

to the use of slide-rules, multiplication tables, and computing
machines. Thus, for each observation equation, the factor, wa,

would be multiplied into a, h, c, . . . I, and s, in succession, and

the products entered in the proper columns of the table, so

that the sums of the columns would be the coefficients, [iwaa],

[wab], [wac], . . . [was], of the first normal equation. Next,

the factor, wb, would be multiplied into the same quantities,

beginning with 6, however, as the wab products are included in

the preceding series, and the column totals would be coefficients

for the second normal equation, and so on. As each normal

equation is completed, its coefficients should be tested with the

sum-term to assure the computer that the check is satisfied.

This would be indicated by a definite check-mark after the sum-

term if it checked exactly, or by the cancellation of its last figure

with the correct one written above so as to equal the sum of the

quantities in the equation.

In the simplest cases, when there are but few observations and

two unknown quantities, and when the coefficients are small

integers, it may not be worth while to carry out the tabulation for

the formation of the normal equations, but it is generally safer

to do so, cspeciall}' when the computer is subject to interruption

in his work. It is well, also, to write the algebraic signs for a

complete equation before forming and writing the numbers, always

writing all positive as well as negative signs.

47. Example of the Direct Formation of Normal Equations.

As an illustration of the preceding articles, the normal equations

will be formed directly from the following set of oljscrvation equa-

ti(Mis. For simplicity, the woiglits will be assunietl equal.
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As there are no discarded remainders, the checks are exactly

satisfied.

(The solution of these equations by the methods of algebra

gives

Z- +11.52 and F= -0.25

as the best values of X and Y obtainable from the four given

observations.)

48. Use of Assumed Approximate Values of the Unknowns.

The constant term of the observation equations is sometimes large

as compared with the other numerical quantities, and to save labor

in the formation of the normal equations, recourse may be had

to a scheme similar to that used in Arts. 28 and 33 in the com-

putation of the mean, namely, the use of assumed, approximate

values of the unknowns, by which device the constant terms will

be reduced considerably in size. For each unknown in the obser-

vations, there is substituted its approximate value plus a small

correction, as,

X = Xo-\-x

Y=Yo-\-y, etc. (30)

where Xo and Yq represent the approximate values and x and y,

the small corrections. The approximate values may be obtained

by a trial solution of the necessary number of the observation

equations, namely, as many as there are unknown quantities.

Thus, in the example of the preceding articles, a solution of the

third and fourth of the observation equations results in

Z=+11.9 and F=-0.29

whence we may assume the approximate values,

A'o=+12.0 and 70= -0.3

Substituting for X and Y, therefore, in equations (28), the quan-

^^^^^"^ A = x+12.0 and F = /y- 0.3

we obtain for the first equation,

+ 6(a;+12.())+40(?/-0.3) -58.8 = (31)
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and for the entire set of observation equations, after simplifica-

tion,

+ 6a:+40t/+ 1.2 =

-t-4a:+ 327/+0.1=0 (32)

-5a:-56?/+0.1 =

-3X-282/ =0

The constant terms have thus been diminished to very small

quantities and without the expenditure of much labor, so that the

formation of the normal equations will be considerably easier,

but in so far only, be it noted, as the terms involving I are con-

cerned. It is obvious that this scheme leaves the coefficients of

the unknowns entirely unaltered, the only changes being in the

constant terms.

49. Adoption of New Unknowns to Equalize Coefficients.

When the coefficients of any unknown in the observation equa-

tions are consistently large, they may be reduced in size by an

artifice similar to that of the preceding article, that is, by sub-

stituting for the unknown a new one obtained by multiplying the

former by a certain factor.

In the equations (32), for example, the coefficients of y are

much larger than those of x and would be easier to handle if they

were cUvided l^y, say, 20. Therefore, assume

y'
= 20y or y =^ (33)

SuV).stituting this value of y in the given equations, and writing

the coefficients in columns for simphcity, we have.

(34)

X

+6
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which are much simpler than the original equations (28), both as

regards the formation of the normals and their solution. The

normal equations are

X y'

+86 +36.6 +7.1 = (35)

+36.6 +16.36 +2.28

and their solution results in

a;=-0.48 and?/=+0.94 (36)

whence,

2/
=-^= +0.047^20

Therefore,

X=+12.0+x= +12.0-0.48= +11.52
and (37)

F=- 0.3+2/=- 0.3+0.05=- 0.25

The advantages of reducing the size of the coefficients and con-

stants before forming and solving the normal equations, is less in

such a short problem as the one just solved than in the ones which

contain more unknown quantities and larger series of observa-

tions. It is generally advisable, however, even in the shorter

problems, to diminish the coefficients and constants to a size

which will be convenient for computation, and to equalize them to

some extent, at least, by using whole numbers for the approximate

values and the factors.

50. Example: Time by Star Transits. Let us consider, as

an example of indirect observations, the determination of time

by observed transits of stars on the mcri(Uan, using an astronomical

transit instrument. The times when each star is seen to cross

the successive threads are rocoixlcd by the observer, himself,

as he carries the lieats of the chronometer in his mind. The

mean of these times is taken as the time when the star crossed

the line of sight of the instrument. It is then corrected for diurnal

aberration, the rate of the chronometer, and the inclination of

the horizontal axis of the instrumcMit as detei'mined from the

readings of the stricHng level. The resulting time, d'
,
is subtracted

from the right ascension, a, of the star (which is the correct sidereal

time when the star crosses the incriiUdu) and the difference,
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ad', according to the usual notation, is therefore made up of

the chronometer correction, Ad, which is the quantity really desired

from the observations, and the corrections for azimuth, Aa, and

collimation, Cc, according to the formula,

Aa-\-Cc+Ae-{a-d') = (38)

in which A and C are the known azimuth and collimation factors,

and a, c, and Ad are respectively the azimuth and collimation con-

stants and the chronometer correction, which are the three un-

knowns of the problem and which, therefore, will be represented

by X, y, and z. Each star thus furnishes an observation equation

of the form,
Ax+ Cy-{-z-ia-d')^0 Wt. w (39)

the weight being determined from the star's declination, as stated

in Art. 32. The given data for the nine stars observed are:

,1
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or, arranged in tabular form,

X
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tions may result from computations or from theoretical assump-

tions. Inasmuch, however, as the present method of adjustment

depends upon the assumptions as to the occurrence of error,

stated in Art. 18, the use of the method for the adjustment of

quantities other than those resulting from observations may be

justified only by the absence of a better scheme.

However, any other method is likely to be more laborious

than this one, if it takes into account all the given data. For

example, suppose the simplest case of three given equations involv-

ing two unknowns. If ignorant of the adjustment by means of

Least Squares, but desirous of utilizing all of the given equations

because there is no way of telling which one could be discarded

with least effect, the computer might reasonably select all possible

combinations of the three equations, two at a time, namely, three,

and solve each of the three pairs independently by algebraic

methods, thus obtaining three different values for each of the

unknowns, of which he would probably take the mean as the best

value within his knowledge. Certainly, the formation and

solution of two normal equations would be much easier than

such a process.



CHAPTER IV

SOLUTION OF NORMAL EQUATIONS

62. Methods of Elimination. As simple, simultaneous equa-

tions of the first degree, the normal equations may be solved by

any of the ordinary algebraic methods of elimination; by addition

or subtraction, by substitution, or by comparison. In fact, these

methods are satisfactory when there are but two equations to be

solved. But in larger sets, of three or more, it is possible to

shorten the numerical work by taking advantage of the peculiar

symmetry which all normal equations possess, as was pointed out

in Art. 44. It is much easier to solve a set of normal equations

than a set of ordinary, simultaneous equations of the same number

which do not have this symmetry.

53. The Gauss Method of Substitution has been for a century

the basis of the special methods for the solution of normal equa-

tions. Its notation is convenient, and in its general, literal form

it is given in nearly every work on Least Squares. However, it

has been modified and improved in various ways, particularly by
Mr. M. H. Doolittle, formerly a computer in the U. S. Coast

and Geodetic Survey, and, in the effort to confine ourselves to a

single method which shall be the most generally useful one for our

purposes, we shall omit the detailed explanation of the Gauss

process.

54. Requirements of a Good Method. It is important that

the method to be adopted be as universally useful as possible, in

both short and long problems, although modifications may ])e

convenient to adapt it to special or peculiar cases. The various

steps in the elimination should be identical, so that the work may
be performed mechanically, to a great extent, thereby avoiding

mistakes. The method should be as short as possible so as to

avoid unnecessary work. And finally, checks should be available

40
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at frequent intervals throughout the computation in order that

errors may be discovered and corrected without a great deal of

recomputation. All of these qualities should be borne in mind

and utilized as far as possible in every solution. It is believed

that the Abridged Method explained below fulfills these require-

ments and that it will be readily understood.^

55. Algebraic Elimination by Addition. Let us undertake

the solution of a simple set of normal equations in order that the

steps we shall take in the process may be clearly understood. The

method of elimination by addition will be used, although arranged

in a certain form to illustrate the shorter method which is to follow.

The given normal equations, with coefficients arranged in col-

umns, are:

(45)

For purposes of explanation, the equations are numbered at the

left, but for a reason which will appear later, the first is given the

Roman numeral (I). First, we eliminate x between the first and

second equations, by multiplying the first by such a quantity or

factor, as will make its first term equal to that of the second equa-

tion with the opposite sign, and then adding the two. This

factor will be the quotient of the first term of the second equation

with its sign changed, by the first term of the first equation, that is,

+2 6. Thus, indicating on the right the steps tak(ni, we write down

equation (2) and under it ihv first e(}uation multijilied by +2 G:

(40)

Published by M. II. Doolittle in (\ A: G. Survey Uejjort, 1S78, Ai)p, 8.
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This equation, resulting from the elimination of the first unknown

is called a First Derived Equation, and is given the Roman numeral

(II) as marking the completion of a whole step in the process.

Next, X is eliminated in the same way between the first and

third equations, by multiplying the first by such a factor as will

make its first term equal to that of the third equation with its

sign changed, and adding the two equations. As before, the

factor will be the quotient of the latter first term with the reversed

sign by the former one, or 3/6. Writing (3) first,

(3)
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giving the value of z directly, as 2= +3.0/ 2.4= 1.25. Substi-

tuting this value in (II) gives

y=
+3.02+2.3 -3.75+2.3 -1.45

+2.3 +2.3
= -0.63

+2.3

Then, from (I),

+2y-?>z-2 -1.26+3.75-2 +0.49

(49)

x =
+6 +6 +6

+0.08

Some properties of this method of solution will now be con-

sidered.

56. Symmetry among the Derived Equations. The First

Derived Equations resulting from the elimination of the first

unknown, x, between the first normal equation and each of the

others in succession, will be one less, in number, than the unknowns;

therefore, in the above example they are two, namely.
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are the two 2's and the two +3's, while the +6 is the same in

both cases.

Likewise, the Second Derived Equations, resulting from the

elimination of 7j
from the first derived equations, are symmetrical

among themselves, and so on with successive sets of derived

equations in the solution of a large number of normal equations

by this method of elimination.

57. Omission of Redundant Terms, (a) In each first derived

equation, x has been eliminated; that is, it has the coefficient zero.

Therefore, it is unnecessary to write the coefficients in the x-col-

umn at all during the elimination of x, as in (46) and (47), as we

know that they will add up to zero if the work is correct, and any-

way, there will be other and better checks on the correctness of

the work. Similarly, the y-column may be omitted during the

elimination of y, as in (48), and so on. However, the sum of the

remaining terms in each equation will not now equal zero, except

in the derived equations, where the omitted coefficients are always

zero. This will deprive us of the equation-checks except in the

derived equations, but these will still be sufficiently close together

to control the computation.

(6) By transposing all the terms of each equation into one

member, as was done in the above example, we maj^ omit the

symbols,
"

="0," from each equation. As just stated, however,

these must be understood, in the cases of the derived equations,

as if written.

(c) Even the original normal equations may be simplified by

the omission of all the terms lying below the diagonal, these

being symmetrical to the ones above the diagonal. Thus, in the

normal equations, (4.5),



SOLUTION OF NORMAL EQUATIONS 45

tions, then, the omitted portion of each row must be replaced

by the symmetrical quantities in the corresponding column.

For example, the second equation is begun in the second

column and read downward to the diagonal and then hori-

zontally to the right along its own row, retaining, however, the

original order of the unknowns, as 2x-\-Sy 4:Z 3 = 0. Simi-

larly, the third equation is begun in the third column, read down-

ward to the diagonal and continued along the third row as usual:

-\-3x 4:y-{-3z-{- 1.0
= 0. The simplified form of the equations,

then, would be:
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58. The Series of Derived Equations. Upon inspection of

(46) and (54)^ it will be seen that (II) is derived from (2) and (I),

and that (III) is derived from (3), (I), and (II). If there were a

fourth unknown and four normals, the derived equation (IV)

would be derived from the fourth normal equation and (I), (II),

and (III), and so on. Here, then, lies the reason for giving to the

first normal equation the Roman numeral (I); it is associated

with the derived equations in each step of the elimination. There-

fore, in writing a list of the derived equations, this equation is

written first, and is referred to as one of them. Such a list, in

order, has the property that each equation is complete and begins

with the second unknown of the preceding one, so that the series

is used for determining the successive unknowns in their reverse

order when the elimination has been completed, by substitution

back through them.

59. Control or Check in the Solution of the Normal Equations.

The check on the formation of the normal equations, explained

in Arts. 4.3 and 47, may be continued through the process of elimina-

tion so as to test the correctness of the computation at frequent

intervals. If the sum-term of each of the normal equations be

subjected to the same operations as its other terms, the resulting

modified sum-term will be equal to the sum of the corresponding

series of other terms. Aloreover, this relation will persist when

several equations have ))een added or sul^tracted, the sum of all

the sum-terms being ecjual to the sum of all the other terms.

Thus, the sum-terms which were used to check the formation of

the normal equations ma}' be used during their solution to test

the correctness of an ecjuation at any stage of the work. As was

pointed out in (a) of the last article, however, the omission of

redundant terms leaves the derived efjuations as the only com-

plet(> ones in the elimination. Therefore, this sum-check being

applicable to each derived equation as it is formed, should be

taken advantage of in every case.

8inc(! the check applies only to complete e(}uations, the coeffi-

cients of the normal equations must be i-ead down and to the right

as shown in the last article, when the simplified form is used.
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In the above example, then, the complete statement of the normal

equations in the simpler form, with their check-terms, is:

(55)

60. Elimination by the Abridged Method. This set of equa-

tions will now be solved in accordance with the devices explained

in the preceding articles for al)ridging the various operations as

much as possible. A comparison of this solution with the direct,

algebraic one given in Art. 55, will illustrate the different steps

and the saving of labor.
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spending ones in (2); add (2) and (4) to obtain (II). Next, write

(3); follow its left-hand column up to (I) and find +3; change

its sign and divide by the first term of (I), giving 3/6; multiply

this factor into the terms of (I), beginning with the left-hand col-

umn of (3), writing the products in their proper columns in line

(5), under (3). Again, follow the same left-hand column of (3)

up to (II) and find 3.0; change its sign and divide by the first

term of (II), giving +3.0/2.3; multiply this factor into the terms

of (II), beginning with the left-hand column of (3), writing the

results in line (6), below (5), and in their proper columns; add (3),

(5), and (6), to obtain (III), as the second and last step in the

elimination. If there were four normal equations, the fourth

would now be written, beginning with the fourth colunm; under

it would be written the products of the terms of (I), beginning

with the fourth, by a factor consisting of the fourth term of (I)

with its sign changed, divided by its first term; under this line

would be written the products of the terms of (II), beginning with

the third, by a factor consisting of this third term with changed

sign, divided by the first term of (II) ;
and finally, under this line

would be written the products of the terms of (III), beginning with

the second, by a factor consisting of this second term with its sign

changed, divided by the first term of (III) ;
whence the sum of the

four lines thus obtained would be (IV). This procedure could be

continued through any number of equations.

61. The mechanical character of this scheme of elimination

is apparent from the foregoing explanation. Each of the main

steps accomplishes the elimination of one unknown more than the

preceding step did, and results in the next derived equation. Each

step consists of the sum of its normal equation and as many others

as there are derived equations already formed, including (I);

so that the successive steps embrace the sums of two, three, four,

five, or more lines, up to the number of unknowns involved in the

problem. For each step, th(> numerators of the factors, with

opposite signs, are found in one column, namely, the one con-

taining the first term of the normal equation as written, that is,

the one corresponding to that equation, as third column for third
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equation, etc.; the denominators are the first terms of the corre-

sponding derived equations.

62. Notes and Suggestions. The arrangement of the work

in columns is essential to mechanical efficiency and
" Data Sheets

"

are convenient for this purpose. Ruled horizontal lines including

each derived equation make it prominent for quick reference.

By writing the algebraic signs of each line of products before

writing the numbers themselves, errors in sign may be avoided

to a great extent. In each line, all the signs will be the same as

those of the corresponding derived equation, or all opposite to

them. It will be noted that the ^7-5^ term in each of these lines of

products is always negative owing to changing the sign in the

numerator of each factor; this, also, affords a check on the signs.

Unavoidable discrepancies in the last figure of the check-term, due

to remainders, should be removed by arbitrarily correcting the

check-term before proceeding with the next step in the elimina-

tion; this is best done by drawing a line through the erroneous

figure and writing the correct one just above it. If the check is

exactly satisfied, it should be as carefully noted with a check-mark

in order to avoid uncertainty.

63. Values of the Unknowns. The process of elimination hav-

ing been completed and the derived equations checked as formed,

it remains to determine the last unknown from the last equation and

to substitute back in the preceding derived equations in reverse

order, to obtain the other unknowns; x being finally determined

from (I). If there ])e many equations, this process may be facil-

itatcnl by tal)ulating the products instead of indicating the work

as in (tO). A table is ])egun for each imknown by writing first,

with changcMl sign, the constant term of the derivcnl e(|uation from

which that unknown is to b(> obtained. Below this ar(> placed in

succ(>ssion tlu^ ])ro(lucts of the unknowns, as coniput(Ml, by their

respective co(>ffi('ients, with signs changed, in that ecjuation.

The sum of these (juantitic^s (Hvided ])y the fii'st coefficient in the

ecjuation gives the value of that unknown. The advantage lies

in the fact that each unknown, as conipuUMl, is niultiphed into

all of its coefiicicnit.s in tlie pr(M'e(Ung deiived (Hjuations, in sue-
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cession, rather than separately as needed for each case; thus, a

shde-rule, a multipHcation table, or a machine can be used with

profit. Applying this arrangement to the problem in Art. 60,

we have:
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SO that it is very important to keep them as small as practicable.

The discrepancies due to neglected remainders during the elimina-

tion will seldom amount to more than one or two in the last place

and these will be revealed by the checks. Similar ones will

occur in the values of the unknowns, resulting in their failure to

check exactly when substituted in the original normal equations.

However, as the final values of the unknowns must be regarded

as but approximations to the correct values, which, of course, are

unattainable, it cannot be objectionable to alter the last figure

of an unknown arbitrarily, to make it check or to make it con-

sistent with the others, and this is sometimes necessary. There-

fore, it is unwise to carry the whole computation one or two places

farther merely to secure an exact check in a certain place without

forcing it.

As a general rule, it is well to carry the observations two

places beyond the last one which is regarded as known with cer-

tainty. For example, each reading will have its last figure the

result of estimation, to some extent, the preceding one being cer-

tain; then the mean of several readings would be carried one place

farther. This should determine the degree of refinement to which

the normal equations and the elimination should be carried,

the coefficients of the observation equations being modified as

shown in Arts. 48 and 49 so as to be consistent in size. The

unknowns may then be carried out one place farther, the last

figure to be retained or rounded-off to the preceding one as pre-

ferred. However, this is largely a matter of judgment derived

from experience. The beginn(>r is too apt to carry his work

farther than is justified by the precision of the observations.

He may ho guided l)y the rule to carry the computations one

place fartluM- than the given data; this is anipl(\

66. Mechanical Aids in the Solution. Wv have seiMi in Art. 45

how the formation of the normal ecjuations may l)e facilitated by
the us(^ of tal)k"s and nu'clianical (Un'ices. In \he solution of the

ecjuations, these articles are oxen moi'(> useful, perhaps, especially

the sli(l(>-rules. as th(\v admit of multiplying a series of mnnbers

by tlK> (juotient of two other numlxM-s at one st^tting of the rule.

The Thatcher, in jxirticular, is very coii\cni(Mit , and is good for
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four significant figures, but the ordinary 10-in. rule is sufficient

when but three figures are used and is commonly at hand. The

computing machines, while necessary for large numbers are less

advantageous for small ones, but they have the great advantage

over the slide-rules of causing little or no straining of the eyes.



CHAPTER V

OBSERVATIONS OF DEPENDENT QUANTITIES:
CONDITIONED OBSERVATIONS

67. Dependent Quantities. In the preceding chapters, the

quantities observed or determined from the observations have been

independent, that is, any one or more might vary without causing a

corresponding change in the others. Thus, in the determination

of time by star transits in Art. 50, the constants of the transit

instrument cannot be affected by any change in the chronometer

correction. Now, however, we shall consider a different class of

quantities, and one which is of particular importance to engineers,

inasmuch as it includes their most complex, but at the same time,

most useful, problems in the adjustment of observations. In

this second division of the subject, the observed quantities are not

independent of one another, but are inter-related by certain

theoretical requirements, called Conditions, which their adjusted

or adopted values must rigidly satisfy. The adjustment, then,

consists in determining the best set of values for the observed quan-
tities which shall exactly satisfy the prescribed conditions.

For example, if the three angles of a plane triangle be measured

with a protractor, they must be so adjusted that the sum will be

exactly 180. Or, if the three angles of a triangle in the field be

measured with a transit or theodolite, they must be adjusted by
the application of a small correction to each, so that the sum of

the adjusted values will be 180 plus the spherical excess.^ Also,

^ The earth is api)rc)ximately si)heroidal but the figures in triangulation

are considered as spherical for convenience in eonii)Utation. The observed

horizontal angles, then, are those of .spherical triangles, since the plumb-lines

at the different stations are converg(>nt and the horizontal planes of the

angles are neither coincident nor par;dlel. Yvry small triangles, however,

may be considered plane, as the spherical excess is but 1" in a triangle con-

taining 75 square miles.

o3
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the horizontal angles completing the horizon at a station must be

adjusted so that the sum will be 360; and the differences of ele-

vation in a closed circuit of levels must be adjusted so that their

algebraic sum will be zero, when proceeding continuously around

the figure, that is, clockwise or counterclockwise.

68. The observations to be adjusted will have been made

independently, as a rule, as in the case of a circuit of levels made

up of several differences of elevation between successive bench-

marks, each difference of elevation being determined independently

of the others. However, so-called
"
observations," entering into

an adjustment, may never have been actually observed but may
be the results of computation or of a previous adjustment of actual

observations. For example, an angle of a triangle may have been

determined by the addition or subtraction of two or more observed

angles, or from a local adjustment of the angles at that station. ^

Also, as stated in Art. 26, each observation may be the result of

several elemental observations or readings; in fact, this is usually

the case with dependent quantities. Generally, too, these obser-

vations are direct ones. In any event, however, the}' will be

adjusted as direct observations of dependent quantities, as this is

the most convenient and practical method.

69. The weights, in the general case, will be unequal, of course.

They are obtained as indicated in Art. 32, from the number of

observations, from theory, or bj' estimation. They ma}' be

determined from the nature of the observed quantities, inde-

pendently of the observations themselves, although subject to

modification in every case when the circumstances are unusual.

The basis of weights in observations of angles is usually the

number of observations; in leveling, the lengths of the lines, the

number of instrument stations, etc., may indicate the weights.

70. Conditions. The nature of the conditions which are to be

satisfied by the adjusted values of the observed quantities will

depend upon the character of the problem. The only limitations

1 It will be seen later on that it is often convenient to make two or more

small, partial adjustments instead of a single large one, so that it freqviently

happens that the given data to be adjusted are the results of a previous adjust-

ment.
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upon them are: (1) that their number must be less than that of the

observations, as otherwise a sufficient number of them could be

solved as simultaneous equations so as to determine the unknowns

directly, without an adjustment; and (2) that they must be

independent of one another, that is, no condition may be included

twice in the same series. Furthermore, the correctness of the

conditions is not essential to the adjustment, itself, as this can be

carried out so as to force the unknowns to satisfy almost any arbi-

trary or unreasonable condition; but a correct adjustment requires

that the conditions be correctly stated. If an error be made in

the statement of a condition, and the proper method of adjust-

ment be used, the unknowns would satisfy the erroneous condi-

tion, and the error might not be discovered until, as a final check,

the adjusted values were tested by substitution in the original

conditions. Therefore, it is well to exercise great care in the

statement of each condition, and to be sure that all of the neces-

sary conditions, but no others, be included in an adjustment.

71. Number of Conditions. It is evident, in general, that a

certain numljcr of observations would be necessary for the deter-

mination of a certain number of quantities, if the observations

were strictly correct, ideal. If extra observations are made,

beyond this necessar}' number, each of these would furnish a check

upon the work, that is, a condition to be satisfied. The rule, then,

could be stated that the number of independent conditions of a

certain kind, involved in a given series of observations, would be

equal to the number of extra observations of the corresponding kind,

that is, the excess over the necessary number of ideal, correct

observations.

Let Fig. 2 represent a system of levels connecting the bench-

marks, ^l, B, C, D, E, and F, the numbers in parentheses repre-

senting the Hues over which the differences of ek'vation are

observed. If the observations were absolutely correct, the dif-

ferences of elevation would be completely determined by the lines,

(1), (2), (8), (4), and (5). Then if (G) were addcxl, it would fur-

nish one chcM'k. and the condition that the whok^ outer circuit

should close to zero, if the signs of the separate lines were so

changed, if necessary, as to indicate running continuously around



56 PRACTICAL LEAST SQUARES

the figure. By adding tlie line (7), between C and F, another

check is obtained, with the corresponding condition that the

circuit A-B-C-F should close, or that the remainder of the figure,

namely, C-D-E-F, should close. Having taken the closure of

the whole figure as the first condition, onlv one of the two smaller

Fig. 2. System of Levels

circuits may be used as an independent condition, since the other

small circuit would then necessarily close, being the difference of

the other two circuits. Thus, as stated in the above rule, each

extra observation gives one independent condition. It is obvious

that any five lines connecting the six benchmarks could be con-

FiG. 'A. Horizontal Anglos at a Station

sidercd as the original, ne('(>ssaty obscM'vatioiis, and that cnty two

of the three circuits could l)e used for tlu^ two conditions.

As aiiotluM' example, let Fig. 3 r('i)rcsent a series of horizontal

angk^s around a station, coTniccting thc> {\yc signals, L-M XOF,
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each angle observed being indicated by a number in parentheses

and a corresponding arc. Four angles would be sufficient to

connect the five signals, so that there are three extra observations

and, therefore, three independent conditions. If (1), (2), (5),

and (6), be regarded as the necessary angles, (j) would give the

condition that (l) + (2) + (3) (6) should equal zero; (4) would

complete the horizon with the requirement that (4) + (5) + (6)

should equal 360; and (7) would close the horizon, likewise, with

(6) (1). Different combinations could be used, as well, for the

three conditions, such as (l) + (4) + (o) (7)
=

0, etc., and these

would be independent if each of the three extra observations were

used in one, and only one, condition. It is easily seen that the

Number of conditions =

(Number of angles observed) (Number of signals) + 1.

72. Statement of Conditions. Although the conditions, as

functions of the observed quantities, might be very complex in

form, involving the higher powers, etc., still in the problems with

which the engineer is usually concerned, they are of the linear

form or easily reducible to th it form. Therefore, we shall con-

fine our attention to these simpler conditions and consider them

all as in the linear form.

The conditions express the relations which must be rigidly

satisfied l)y the final, adjusted values of the observed quantities.

Let these l)cst, adopted values be represented by T^, V2, V.i, . . T';

the corresponding observations, hy Mi, Mo, Mi, . . . Mn', and the

small corrections to be added to the observations to obtain the

adjusted vahu^s by, v\, v-j, v-.i,
. . v, in which /; is the number of

observations, which is also, in this case, the numl)er of ol)sorved

ciuantiti(^s. Then ]'\= Mi-\-v\, r2 = -l/2+ i'2, etc. The original

conditions will be stated in the following Condition Equations:

aiVi+02rL'+r/3r.s+ . . . +r/T' + r/(,
= ()

hiVi + h;V->^h,,V-,+ . . . +/;r,+ / =
(56)

ClVl^C2V-2^C,.Vy,^ . . . +rT'+ro =

ill which th(> a's, //s, c':<. etc., ai'c known conslaiils. 'I'hcix^ will l)e
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as man}" of these equations, of course, as there are independent

conditions in the problem, and as many F's as observed quantities.

As the observed values approximate closely to the V's in all

observations which are carefully made, they will nearly satisfy

the conditions (56). Therefore, substituting M's for V's in (56)

will result in a small quantity, q, instead of zero, as the value of

each condition function, thus:

01.1/1+02^1/2+033/3+ . . . +o-l/+ao = 5i

6111/1+ 62.1/2+ 633/3+ . . . +63/+6o =
92 (57)

Ciil/i+ C23/2+ C33/3+ . . . + cj/+ Co = qs

q being the amount by which the observations fail to satisf}' a

condition equation, that is, it is the closure error of each condition

equation.

Xow substitute for V, in the equations (56), the value M-\-v,

and we have,

oiVi+a2r2+ . . . +ar+ (01.1/1+023/2+ - +o.1/+0()) =

6iri + 6,r2+ . . . +6r + (6i-1/i + 623/2+ . . . +6J/ + 6o)=0 (58)

Cii'i+ C2r2+ . +cr,.+ (cii1/i + C23/2+ . . . +c,l/ + Co) =0

in which the parenthetical expressions are the values of q in (57).

Therefore, the equations (58) take the form,

Oiri+02r2+ . . . +or+ryi =

6iri + 62r2+ . . . +6r + ry_.
= (59)

C\Vl+C-2V-2+ . . . +Cr.r + f/;s
=

These arc the Reduced Condition Equations. They state the

rocjuired relation Ix'tween the corrections to the oljservations and

the closure errors of the ()i-i<2;inal conditions. These corrections

are the unknowns which are to be obtained as a result of Ihe adjust-

ment. The reduced conditions thus involve much smaller quan-

tities than the original ones, (56), and are more convenient to

handle.
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Comparing the two sets of equations, (56) and (59), we note

that they are ahke in form but differ only in the substitution of

the small y's for the V's and the q's for the constant terms, oo,

bo, Co, etc. It is usually convenient, therefore, to write the con-

ditions in the reduced form in the first place, especially as the

constants, ao, bo, Co, etc., are zero in most of our problems. How-

ever, if the original equations be omitted, the sign of q should be

determined wdth great care. It should be the same as the error

of closure of that condition and opposite to that of the correc-

tions, in general. For example, if the sum of the angles closing

the horizon at a station be greater than 360, q would be positive,

since the corrections to the angles, generally, would be negative

so as to reduce their sum to 360. For the beginner, nevertheless,

it is safer to write the original conditions first, so as to avoid this

difficulty with the signs. It should be noted that if an adjust-

ment were carried out completely with the signs of all the q's

incorrect, it would result in a set of corrections having the wrong

signs throughout, which could be changed without altering the

adjustment computation in the least.

73. Adjustment by the Method of Correlates. The final,

adjusted values of the observed quantities must exactly satisfy

the prescribed condition-; of the problem, and must be, moreover,

the best, or most prol)a})lc, values, according to the Theory of

Least Squares, which will so satisfy them. Therefore, the sum

of the weighted scjuares of the corrections, which have the nature

of residuals, must be a minimum, as in Art. 34. That is,

[u'v~]
= Wivr-}-V2i'2~^ii':iV:r^ . . . -i-WnVn'^^ii minimum (9)

which nuist be satisfied simultaneously with the conditions (59).

Multiplying th(^ condition eciuations of (50) in succession by
the factors, -2A, -2/i, -2r, (>tc., respectively,

-2ai.l/'|-2a_..l/'_>-2a:i.lr:i- . . .

- 2^'.l/'-27ul =

-~2biIh'i-2h-2Br2-2h,,Bv:i- . . . -2hBr-~'2q:B = () (60)

-2ciCv,-2c-2Cv2-2c:,Cv:,- . . . ~2cJ-r-2q:,C ^0
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Adding these equations to (9) and collecting the coefficients

of the separate v's, we have the requirement that

wiVi2-2vi(aiA-\-b,B-\-ciC+ . . . ) +

-\-W2V2^-2v2ia2A+b2B-\-C2C+ . . . ) +

+WsVs^-2vs(a:iA-^bsB^C'sC+ . . . )+ (61)

+ +
-\-WnVn^-2Vn(anA-\-bnB+CC+ . . . )

2 {qiA-\-q2B-{-q'sC-\- . . . )=a minimum

For the minimum, the derivative of this expression with respect to

each of the v's must be placed equal to zero. Therefore,

2wiVi-2iaiA-\-hiB+ciC^ . . .)=0

2w2V2-2{a2A-^b2B-\rC2C-\- . . . )
=

(62)

whence,

2wVn~2ia^+bB+ cC-\- . . . )=0

vi={aiA+biB-\-ciC+ . . .)
Wi

(63)

r-~(aA+67?+cC+ .

Substituting these values of the r's in the eoncUtion equations (59),

and combining the coefficients of .4, B, C, etc., we obtain the

Normal Equations:

(64)
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the adjustment of indirect observations. The diagonal coefficients,

down to the right, are sums of squares and, therefore, always posi-

tive, and the other coefficients are symmetrical about this diagonal.

However, the weights, w, occur here in the denominators of the

coefficients, instead of in their numerators as in the previous case,

and the constant terms, q, are the original closing errors of the

condition equations, in order. The number of the normal equa-

tions will always be the same as that of the conditions, so the

number of the g's will be the same.

The factors, A, B, C, etc., are obviously the same in number

as the conditions, and they correspond to the various condition

equations, in order. They are called Correlates or Correlatives,

and are the unknowns of the normal equations, from which they

are obtained by a solution according to the methods of the last

chapter.

Substituting the values of the correlates, resulting from the

solution of the normal equations, in the equations (63), we obtain

the desired corrections, vi, vo, Vz, etc., which, applied to the cor-

responding observations. Mi, AI2, M3, etc., give the best values,

Vi, V2, F.3, etc., of the observed quantities.

Thus, the process of adjustment may be stated in the rule:

Write the condition equations involving the unknown corrections

to the obscn'vations, and from them an equal number of normal

equations, the solution of which gives the values of the correlates,

from which the desired corrections to the observations are com-

puted to obtain the ])est values of the observed quantities. The

conditions (59) are fii'st written, then the normal equations (64)

are formed and solved, and lastly, the substitution of the cor-

relates in (63) gives the desired corrections.

74. Observations of Equal Weight. By placing the weights

equal to unity, in ccjuations (63) and (64), we have the simpler

forms:

Vi=a\A-j-hiB^ci('-\- . . .

r., = a^A +?>./^+ c,r'+ . . . (65)

r = nnA^h,Ji^CnC+ . . .
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and the normal equations,

[aa]A-\-[ab]B-{-[ac]C+ . . . +gi-0

[ab]A-\-[bb]B+[bc]C+ ... +92 = (66)

[ac]A + [bc]B-\-[cc]C+ . . . +93 =

Here the coefficients are the same and occur in the same order as

those of the equations (22) in Art. 42, but the constant terms are

simpler as they may be taken directly from the conditions with-

out additional computation or combination.

75. Controls or Checks upon the Computation. The forma-

tion of the normal equations from the conditions is conveniently

checked by means of sum-terms similar to those explained in Art.

43 for indirect observations. In this case, however, the sum-

check does not include the constant terms, q, which are not formed

in the same manner as the coefficients. Therefore, the check-

equations have the form:

1+&1+Cl+ . ,

which, multiplied bv
,
becomes:

Wi

ttiOi ai6i aiCi

'l Wi li'i

Adding all such ecjuations, wc have,

+
acf
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And finally, the resulting values of the observed quantities may
be substituted in the original conditions as a test of the correct-

ness of the entire adjustment. This is the ultimate test of the

work and should never be neglected. Beginners, in particular,

should make use of all available checks.

76. Tabular Forms for Computations. By arranging the given

data and the condition equations in the form of a table, the forma-

tion of the normal equations and the subsequent computation

of the unknown corrections will be greatly facilitated. As the

weights occur in the denominators of the coefficients, it is con-

venient to use their reciprocals throughout the computation.

The following form is recommended:

Form for Condition Equations

(v)
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The computation of i\w corrections, also, may be tabulated

conveniently, as follows :

Computation of the Corrections
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over it, or rather, the direction of stating it, as it may have been

run in either direction or both directions, but can be stated

with only one sign which must correspond to a certain direction,

plus or minus, according as the final benchmark is higher or lower

than the initial one. Lines like that between C and G, which are

parts of no complete circuit, do not enter into the adjustment in

any way. The observed differences of elevation are as follows:

(1) +2.18 (3) -3.47 (5) +4.70 (7) -6.86

(2) +5.06 (4) +1.32 (6) -9.82 (8) +3.46

Let the weights of the lines (7) and (8) be 2 each, and those of the

others, unity, or, for simplicity in the use of reciprocals, let the

former be unity and the others, one-half, giving 1 and 2 for the

reciprocals.

Fi<;. 4. System of Levels

As shown in Art. 71, each complete circuit furnishes the con-

dition that the sum of its adjusted differences of elevation shall

ec^ual zero when given the proper signs as if run continuously around

the circuit, clockwise or counter-clockwise. Also, the number of

independent conditions is the same as the number of extra observa-

tions above those necessaiy to connect the given benchmarks.

These neces.sary lines may be drawn, one at a time, starting at one

benchmai'k, as long as a new Ijenchmark is added for each line

drawn. Then each line adikxl t(j th(> figure, between two bench-

marks ali'eady sliown, gives one independent condition which

should always be written so as to inclwle that line. When the

complete figui'c has be(>n re})ro(luced on paper, in this manner,

omitting no hues, all of th(^ necessary, independent conditions for



66 PRACTICAL LEAST SQUARES

the adjustment will be indicated. Their number may be verified

by the rule that it is the same as the number of extra observations.

Also from the above construction,

Number of conditions = (Number of lines)

(Number of bench-marks)+ 1.

Assuming the lines (1), (2), (3), (4), and (5) to be those neces-

sary to connect all of the benchmarks, we write a condition for

each of the remaining lines, namely, (6), (7), and (8). It is

essential, of course, that all of the lines which form circuits should

appear in the conditions. Thus we obtain the original conditions,

+ Fi- 72+ ^3+ 74- F5-Fo =

+ Fi-F2+ F7-7o = (72)

+ F5-F4-F8 =

The minus signs result from changing the directions of the arrows

so as to be continuous around each circuit. It is not necessary

that all the circuits be traversed in the same direction, however,

in a given problem. Substituting for each F its observed value,

we find the closure errors of these three circuits to be, respectively,

+ 0.09, +0.08, and -0.08. Therefore, the following table may
be formed directly, the coefficients being unity:

Condition Equations

(')
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equation. Thus, there are six aa's, each being +1, three ab's, each

being +1, and two ac's, each of which is 1. Where no coeffi-

cient appears in the condition equation for a certain v, that coeffi-

cient is regarded as zero. Each aa/w will be 2X(-}-l) = +2, as

also, will be each ab/w. As there is no column in which both h

and c occur, the products, he, are zero. When all the coefficients

in any condition equation are unity, the sum of the squares, each

divided by its weight, is equal to the sum of the reciprocals of the

weights; thus, [66/w]
= 2+2+2+ 1 = +7. Likewise, the product

terms may be written by inspection, but the signs must be care-

fully considered; thus, [ac/w]= 2 2= 4, etc. The sum-

terms are treated in the same way as the coefficients, to test

the correctness of the computations.

Normal Equations

(74)

It must be remembered that the sum includes all the coefficients

of an equation, whether written or not, so that, when the abridged

form is used, as above, the coefficients must be read down and to

the right as explained in Art. 57 (c).

Preparatory to solving the normal equations, the constants are

added to their respective sum-terms to form the check-terms for

use throughout the solution, in order that the operations performed

upon the constants may be included in the checks. In their form

for solution, therefore, these e(iuations are:

X()i{MAL Equations

(75)

A
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These equations will now be solved by the Abridged Method as

explained in Art. 60, the separate operations being indicated.

(I)

(2)

(3)

(2)

(4)

(ID

(3)

(5)

(6)

(HI)
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lates to four places, instead of three. But these are satisfactory

when the corrections are desired to hundredths, only.

Upon testing the corrections by substituting them in the condi-

tion equations (73), it is found that the third condition fails by

+0.01. This discrepancy must be removed by arbitrarily altering

one or more of the corrections involved in it, as it is due to neglected

remainders. At the same time, the other two conditions, which

check exactly, must not be disturbed. Therefore, it is desirable

to find a correction which is used in the third condition only.

Such a one is vs which is seen to be too large by 0.004, and which,

moreover, belongs to one of the o]:)servations of greater weight so

that it would be expected to have a smaller correction. There is

reason, therefore, for reducing this correction by the necessary

0.01 in order to satisfy the condition. The change is made as

indicated so that the original figure remains. If there were no

single correction which could be modified without affecting other

conditions, it might be necessary to alter two or three corrections

in order to satisfy all the conditions by a given set of corrections.

The final test of the correctness of the adjustment consists in

substituting the adjusted values of the differences of elevation in

the original conditions, (72), or in the other conditions which were

not used because not independent of these. It is well to restate

the conditions, using the corrected differences of elevation, in

order to secure a check on the condition equations. Referring

to the diagram, Fig. 4, therefore, and appljdng to each observa-

tion the corresponding correction, we have:

Final Tests of the Adjusted Values

Circuit A-B~C-F: +2. 16-5. 08-0. 88+9, 80 = 0. OOv^

Circuit C-D-T^: -3.44-3.44+ 0.88 =0.()0\/ (79)

Civmit D-EF: +1.29-4.73+3.44 =O.O0V

These comprise all the elemental circuits, so that any coml)inati()ns

of these would also be satisfied.

78. Arrangement of Equations. Tlie larger the coefficients
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of the normal equations, the greater will be the labor of solution,

generally speaking, so it is important, as was shown in the case of

indirect observations, to make them as small as practicable. The

methods of Arts. 48 and 49 do not apply directly to conditioned

observations, but it is possible to select the conditions and arrange

the condition equations in such a manner as to save some labor in

the solution of the normal equations.

Inspection of the equations (73) and (74) shows that the shorter

conditions, that is, those which involve fewer observations, will

produce smaller coefficients for the normal equations. Therefore,

it is important to select the shorter conditions, as far as practicable.

In the above example, for instance, the three small circuits might

have been used to advantage, although, in so short a problem the

advantage is less evident than in longer ones.

It is apparent, also, that by arranging the condition equations

in a certain order, with the shorter ones first, the larger coefficients

will occur later in the normal equations, instead of earlier, which is

an advantage especially in the abridged method of solution.

Then, too, it is possible to place those equations first which have

no terms in common, so that the product-terms, [ah/w], [ac/w],

etc., in the first normal equation, may be zero in some cases.

Each of such zero coefficients gives a zero elimination-factor which

saves writing a whole line in the elimination. In some problems

this is very important. In the above example, if the second and

third equations had been written as the first and second, respect-

ively, [ab/vi\ would have been zero, thus saving the second step

in the elimination, since the second normal equation would have

had no A-term and so would have been, itself, the first derived

equation, number (II). Sometimes, it is possible to save several

steps in the elimination in this manner.

79. Example : Local Adjustment of Angles by the Method of

Correlates. In triangulation, the, methods of measuring the

angles at a station may result in several extra angles being observed.

As shown in the latter part of Art. 71, each of these extra

observations yields one independent condition. To illustrate

the method of adjusting the angles so as to satisfy all these condi-
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tions, we shall consider the case shown in that article, Fig. 3,

assuming the weights to be equal.

p L

Fig. 3. Horizontal Angles at a Station

Observed Angles

Mi= 85 14' 24.5" M5= 50 23' 26.7"

M2= 83 45 32.0 71^6 = 210 35 17.5 (80)

Ms^ 41 35 24.0 ilf7-234 39 08.2

ilf4= 99 01 14.1

Adopting (1), (2), (5), and (6), as the necessary angles, the conditions

may be written,

Condition Equations

yi + F2+T^3-T>, =0

T^4+ r5+ Fc-360 = (81)

-T'i + Fg+ F7-3()0-0

from which, by substituting for each V its value, M-{-v, we have.

Reduced Coxditiox Equatiox.s

(82)
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Normal Equations

73

A
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and the corrections, from (63), are

vi=^{ai/wi)A; V2 = (a2/w2)A; etc. (88)

The case of special interest, however, is that in which the

coefficients of the condition equation are unity; thus,

Vi-\-V2+V3-\- . . . -\-Vn+q = (89)

The normal equation, then, becomes,

[l/w]A+q^O (90)

so that

A = -q/[l/w] (91)

The corrections, with this value of A, are, therefore,

yi
=

-^rTT-i' ^2=-gY "; etc. (92)
[1/w] [1/w]

Thus the corrections are proportional to the reciprocals of

the weights, and each correction is equal to the total closure cor-

rection divided by the algebraic sum of the reciprocals of the

weights and multiplied by the reciprocal of the corresponding

weight.

For example, suppose we have a single circuit of levels which

add to +0.24 instead of zero, and that the weights of the nine

lines are 2, 3, 1, 2, 3, 1, 1, 3, and 1. The least common multiple

of the weights is 6, and they may be written, 2/6, 3/6; 1/6, 2/'6,

3/6, 1/6, 1/6, 3/6, and 1/6, respectively, so that their reciprocals

are the following integers, in order, 3, 2, 6, 3, 2, 6, 6, 2, and 6,

whose sum is 36. The corrections, therefore, are obtained by

multiplying each of these reciprocals into the constant, 0.24/36,

resulting thus:

-0.020, -0.013, -0.040, -0.020, -0013,

-0.040, -0.040, -0.013, -0.040

Testing these corrections in (89), their sum is 0.239 instead of

0.24, so that it is ncK'cssary to add 0.001 to ()n(> of th(>m, prefer-

ably changing 0.013 to 0.014, in order to rigidly satisfy the

prescribed condition.

Th(^ important point is that 1h(^ corrections may be written
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by inspection, in such cases, from the fact that they are propor-

tional to the reciprocals of the weights and that their sum must be

equal to q. If any of the v's in the condition equation be nega-

tive, the signs of the corresponding corrections are changed. Thus,

if the condition equation were

ViV2+ V3 V4-\-V5 Vq-\-V7-'i-V8-^Vq+0.24: =

the corrections would be numerically the same as above, but the

signs of the second, fourth, and sixth would be plus instead of

minus. In testing the corrections in the condition equation, then,

these three would be multiplied by 1, so that the condition

would be satisfied as before.

This method of distributing the error of closure is somewhat

similar to that used in the special case of weighted mean of two

quantities, given in Art. 36.

81. Adjustment by the Method of Indirect Observations.

It is possible to adjust conditioned observations as if the quanti-

ties observed were independent, that is, by the method used in

Chap. Ill for indirect observations. Although this process is

generally longer and less satisfactory than the solution by the

method of correlates, it will be explained, briefly, in order that it

may be used when the circumstances are favorable, and that the

subject may be better understood.

In Art. 71 it was shown that a certain number of observations

would be necessary, in a given problem, for the determination of

the unknown quantities, on the assumption that those observa-

tions were correct, and that the remaining, extra, observations

would furnish one condition each, to be satisfied by the adjusted

quantities. Let those ol)servations which are selected as the

necessary ones be stated simply as observation equations, namely,

Vi=Mi; F2 = 3/2; V:i = M:i; etc. (93)

Tlien each condition, selected so as to involve ])ut one new (juan-

tity, may be expressed in terms of tlie other quantities only, so

that the total num])er of unknowns will not exceed those first,

necessary ones. From the entire set of these observation equa-

tions, the normal equations ai'e foi-nunl, as many as there are
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necessary (i.e., independent) unknowns, and their solution gives

the adjusted values of the quantities.

For example, in the local adjustment of angles at a station, in

Art. 79, and Fig. 3, the three conditions could be replaced by obser-

vation equations, as follows :

Conditions Observation Equations

F1+ F2+ F3-F6 =0 -F1-F2 + F6 =^Ms

F4+ F5+ Fo-360 = -F5-Fg+360 = M4 (94)

- Vi + T^G+ V7 - 360 - + Fi - Fe +360 = M7

The entire seven observation equations, therefore, are,

+ Fi -M,

+ F2 -M2

-Vi -V2 +Vo -Ms

-F5 -Fg -M4 +360 =0 W4 (95)

+ F5 -Ms

+ Fg -Mg

+ Fi -Fg -Mj +360

in which there are but the four unknowns, namely, the angles,

(1), (2), (5), and (6), and each M represents an observed value or

constant term. These equations correspond to (16). Forming
and solving the four normal equations ])y the methods of Chap.

Ill, the })est values of the angles are determined directly.

82. Example: Local Adjustment of Angles as Independent

Quantities. The solution of th(^ above example will be con-

tinued, to illustrate the method, Init with ecjual weights, for sim-

plicity. Let the observed angles be the same as those used in

Art. 79, as the compai'ison of the two methods will be useful.

These angles are given in (SO). Sul)stituting their values in (95),

and also for each T', the corresponding M^v, so as to reduce the

constant terms, which is ecjuivalent to assuming foi- thes(> T'"s

the corresponding M's as approximate values, as in Art. 48, we

have the simplified observation cfjuations:

=
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;'i
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rections or the adjusted angles. The corrections must satisfy

the normal equations, of course, as in any other adjustment, but

there is no check upon the observation equations (96) . The checks

afforded by the conditions, in the method of correlates, are for-

feited in the method of indirect observations, being used for the

determination of some of the unknowns, as F3, V^, and V7 in

the above problem. This is an evident disadvantage of the

latter method, inasmuch as the final check is very desirable and

important. The sum-checks controlling the formation and solu-

tion of the normal equations are present in both methods.

In the method of correlates, the number of normal equations is

equal to the number of conditions, which must be less than that of

the unknown quantities or observations. In the method of indi-

rect observations on the other hand, the number of normal

equations is that of the necessary, independent unknowns, and

therefore may be greater or less than in the former method. Usually,

however, the number of conditions is small as compared with the

number of independent unknowns, so that the method of correlates

is likely to be the shorter, although the determination of the cor-

rections from the correlates is a step which is not required in the

other method where the unknowns are obtained directly from the

solution of the normal equations, or at most, by a single addition

or multiplication. If the number of conditions happens to be

nearly as great as that of the independent unknowns, as in the

above example, the disadvantages of the method of indirect obser-

vations are less, and the simplicity of the normal equations, result-

ing from the considerable number of zeros in the observation

ec^uations, may give this method the advantage, even, although

this is seldom likely to be the case. ]\Ioreover, th(> alisencc of

the final check in the conditions is a serious defect, and gives to

the method of coiTolates the preference.

84. Adjustments not Rigid. The final, adjusted vahies of

the unknown quantities cannot be regarded as the correct ones, of

course, but are api)roxiiuations to th(un. As difTcrent nu^thods

may be used in the adjustment, and as diff(M'ent s(>ts of conditions

may ])e used in the same method, it is obvious that small dis-

crepancies ar(^ likely to exist Ix^tween the final values ol)lained
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from different adjustments of the same data. Each of these sets

of results may satisfy all of the conditions as required and may
constitute an adjustment which is entirely satisfactory. Usually,

the discrepancies will be so small as to be negligible as com-

pared with the accidental errors of the observations.



CHAPTER VI

ADJUSTMENT OF TRIANGULATION

85. Triangulation. A system or network of triangulation

consists of a series of stations connected by lines in such a manner

as to form triangles having their vertices at the stations. The

length of one line, called the base-line, being determined by direct

measurement, usually with a tape, and the horizontal angles

between the lines at each station being measured with a transit

or theodolite, the lengths of all the lines become known by com-

putation from the base-line and the angles through successive

triangles. The differences of elevation between the stations are

obtained from observed vertical angles which determine the

elevations of the stations above sea-level when one of them has

been connected to sea-level by a line of precise, or geodetic, leveling.

The position of the system on the earth's surface is fixed by astro-

nomical observations for the latitude of one station, the longitude

of one station, and the azimuth of one line. The size of the system,

or net, depends, therefore, upon the length of the base; its shape,

or form, depends upon the horizontal angles; its position, upon the

astronomical obsc^rvations; and its elevations, upon the vei'tical

angles and the initial elevation. If the triangulation be based

u})on, or connected to, two stations of another system which

has been com{)lete]y determined and adopted in size, position, and

elevation, the line joining the; two stations may be used as the base-

line for the new work, and the azimuth and the latitude, longitude,

and elevation of one of the; stations will determine the position and

initial elevation of the new n(>t. However, if the new triangulation

be compk^te in itself in regard to one or more of these elements,

and in addition })e connected to previously adjusted and adopted

W(jrk, this connection affords checks upon the coi'responding

so
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elements, and therefore, from one to five conditions must be satis-

fied if all of the work is to be made consistent as to length, latitude,

longitude, azimuth, and elevation. The shape of the net, and

the differences of elevation, therefore, must be adjusted so as to

fulfill these requirements. Moreover, the horizontal angles must

be adjusted to conform to certain geometrical and trigonometrical

conditions which depend upon the arrangement of the lines and

stations and the angles observed.

The vertical angles are independent of the horizontal ones and

are adjusted by themselves in any case. The adjustment of a

system so as to close upon fixed, or adopted, work with regard to

any of the five elements of length, latitude, longitude, azimuth,

and elevation will be discussed farther on.^ There remains,

then, the adjustment of a system which is complete in itself.

In this, the length of the base and the initial latitude, longitude,

azimuth, and elevation are determined separately and inde-

pendently of the horizontal angles in the net, and so do not enter

into the adjustment as long as there is but one of each of these

elements. The adjustment of the horizontal angles, there-

fore, will now be considered.

86. Nature of the Conditions. The horizontal angles in

triangulation are subject to two classes of geometrical con-

ditions, namely, those which involve the angles at one station

only, and those which define relations between the angles at

two or more stations. The former are called local conditions

and the latter figure conditions, giving rise to local and figure

adjustments.

The local conditions express the nniuirement that the adjusted

values of the observed angles at a station shall satisfy the indi-

cated horizon-closures and algebraic sums.

The figure conditions aw of two kinds, known as angle equa-
tions and side eciuations. An angle e(}uation re(}uires that the

sum of the angles of a ti'iangle oi' polygon shall b(^ equal to the

nunibcM" of right angles pi'esci'ibcHl by <i'(M)inetry foi- a plane figure

plus \\\v sphcM'ieal excess. A sidi^ eciualion i'(>(iuires that if the

1 Art. IOC), ct s(Mi.
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length of a line in the figure be computed from another line through

two different series of triangles, that is, by two different routes,

the two results must be equal.

Since all of these conditions must be satisfied simultaneously,

they would enter into a single adjustment, ordinarily. As will be

explained later, however, it may be convenient to perform the local

adjustment separately, prior to the figure adjustment, the latter

being so arranged as not to disturb the former.

87. Local Adjustment. In modern field practice, simplicity is

sought for the sake of economy. Accordingly, observations are

arranged, as far as practicable, so as to lessen the office work

necessary for their reduction, but without a sacrifice of precision.

The angles at a station, therefore, are observed in such a manner

as to avoid combinations which introduce checks and conditions

requiring extensive local adjustment. It is customary to measure

one angle for each of the signals less one, and then a single

one to close the horizon, thus securing one check which involves

all of the observed angles. The local adjustment is thereby

reduced to one simple condition, with equal weights, also, in most

cases, so that it amounts to a mere distribution of the error of

closure, as explained in Art. 80. If extra observations have

been made, however, so that two or more conditions are to be

satisfied, the general method of adjustment must be used. This

has been demonstrated in Arts. 79 and 82, in the last chapter, in

which the number of the conditions was shown to be equal to the

number of extra observations. Thus, if S stations be observed,

S~l angles would be sufficient to connect th(nn, and if .V angles

be measured between them, the number of extra observations, and

therefore, the number of local conditions may be expressed in the

formula.

Number of Local Conditions at a Station^A" aS+ 1 (101)

88. Figure Adjustment. Notation. In order to distinguish

between stations occupied and unoccupied, and lines obsei-ved

in both directions or in one; direction only, lines shown in diagrams

of triangulation will be; broken at the (nuls fi'om which they are
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not observed, full lines indicating observation at both ends.

Stations which are sighted upon but not occupied with the instru-

ment will be recognized from the fact that all the lines at those

stations will be broken. Thus, in Fig. 5, the station Pan was

Ohrt

Bon

Arm

Dake

Dart

Fig. 5. Unobserved Lines and Unoccupied Station

not occupied, as no full lines radiate from it. Dake was occupied

and Pan and Bart were observed from it, but Ohrt was not observed

from it, although Dake was observed from Ohrt. The other

stations were occupied completely as shown by the lines being

unbroken at those ends.

89. Classification of Figures. Although the figures in tri-

angulation may be very complicated and the adjustment very

laborious, Ihe work in such a case loses its economic advantages of

covering a great area or distance at the minimum of cost con-

sistent with the accuracy desircxl. In th(^ best practice, there-

fore, simple figures are used, and special attention is given to

measuring each angl(> with the ref}uisite degree of precision.

These simple figures may hv. classified as triangles, quadrilaterals,

and central-point figures. A triangle consists of tlu'ee stations

connected by three lines. A cjuadrilateral has four stations con-

nected by six lines. A central-point figure is a jwlygon with a

station at each vertex and another station in the interior from which

lines radiate to tlie vertices; th(^ polygon usually has not more than

six sides. The lines in these figures may l)e full or partly broken,

as above. Fig. 5 represents a central-point figure. A typical

quadrilateral witli diagonals is shown in Fig. 6, while Fig. 7 is
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the simplest form of a central-point figure, which may be con-

sidered, also, as a quadrilateral. In Fig. 8 is shown a combina-

tion of a central-point figure with a polygon having diagonals;

Fig. 6. Quadrilateral

this is seen to increase the intricacy of the system, which would

have been a simple central-point figure had the diagonals KM
and MO been omitted.^

Fk;. 7. Central Point Fij^iire C^ntral Point Figure with

p]xtra Diagonals

90. Angle Equations. The triangle is the unit figure in tri-

angulation. For each t]'iangl( or other polygon of wliich all the

angles have been observed, an angle ('(juation may ])e written

expressing the conchtion that the sum of the adjusted angles shall

1 In the diagrams represent ing triangulation, it is assvnncd that there is

no station at the intersection of diagonals of a figure luiless there is an angle

at that i)oint in one of them. If, in llie r(>mote (as(\ a station happcMied to

fail at this intersection, tlu^ diagram \voul(.l l)e slightly distorted so as to indi-

cate the fact without finest ion.
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be the theoretical amount, namely, a certain number of right angles

plus the spherical excess, e, of the figure.^ Thus, referring to Fig.

6, in which the separate angles are numbered clockwise at each

station, and representing their adjusted values by F's, as usual,

the four triangles yield the following angle equations,

Triangle (a) ABC, Fi+ F2+ F3+ F6-(180+ea) =0
"

{h) DAB, F2+F3+ F4+77-(180+e,) =
(102)

''

(c) DBC, Fi+ F5+ F6+F8-(180+6c)=0
''

{(1) DAC, F4+F5+ F7+ F8-(180+e.)=0

in which a, b, c, and d refer to the separate triangles as shown in

the figure. Since the spherical excess depends directly upon the

area of a figure,^ the excess for the entire quadrilateral should be

equal to the sum of the two excesses for the pair of triangles

formed by each diagonal. Therefore,

ea+ed=e6+ec (103)

which affords a check upon their computation. By inspection,

then, we find that from any three of the above angle equations it is

possible to derive the fourth by addition and subtraction. Also,

from the whole quadrilateral, we may write the condition,

F, + F2+F3+ F4+T;5+ T'G+F7+ Fs-(360+e.+ 6.)
=

(104)

and this eciuation is seen to Ijc the sum of the first and the fourth of

(101). Therefore, any thi'ce of the four triangl(>s may l)e sel(K'ted

from which to write the three independent conditions or angle

e(}uations. In other words, if two triangles foi'med by a single

diagonal satisfy thcnr ('oiiditions, the (>iitii-e figure nnist satisfy

its condition (KW); then if a third triangle condition, also. l)e

satisfied, the fourth one is sui'c to be, since the foui-th triangle is

e(iual to the whole figure minus the third one.

If w(> adopt the first three of tli(> e<|uations (102) as the inde-

pendent ones, and wi'ite foi' each F. in the usual manner, its value,

^ It is seldom that an aiifrlc ('(luatioii has to !)(> written for a fi^tire greater

than a triangle, as an (jpen ([iiadrilateral i without a diagonal) is not rigid and

should be avoided.

* From sphcTical trigonometry.
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M-i-v, in which M is the observed value of the angle and v is its

correction to be obtained from the adjustment, we have for this

quadrilateral the following set of final angle equations, corre-

sponding to (59):

V2+ V3+ V4-\-V7-\-q2
= (105)

Vi+V5-hvQ^vs+q3 =

in which q is the error of closure of a triangle, positive when the

sum of the observed angles is too large. These closures may be

checked in the same manner as the spherical excesses, that is, the

closure for the whole figure must be the sum of the closures for

each pair of component triangles. Thus,

qa+qd = qb-\-qc (106)

91. Number of Angle Equations in a Figure. To determine

the number of independent angle equations in a given figure,

A-B-C-D-E, Fig. 11, we may proceed as follows: Start with

c

B ^^ / B

A

Fig. 9. Fig. 10 Fig. U.

Determination of the Number of Angle Equations in a Figure

two stations, A and B, connected by one line, as in Fig. 9. Add

the station C, with two lines to A and B, and one triangle is

obtained. Add station D and two lines, to A and B, and a second

triangle is formed, as in Fig. 10. Add the third line, from D to C,

and the quadrilateral is completed, making three independent

angle equations in all. If another station, E, be added, with

three lines to .4, C, and D, as in Fig. 11, two of these lines form a

new triangle, as before, and the third completes a (}iia(lrilatcral,

A-C-E-D, in which one triangle, A-C-D, formed a part of the

previous figure, A-B-C-D, and is therefore alread}' included in

the conditions. The third line from E thus adds but one new
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condition, making a total of five angle equations. If the line

BE were added, it would be the second diagonal in the quad-

rilateral A-B-C-E, of which two triangles are already included

in the figure, so that the third angle equation, only, for that quad-

rilateral would be added by this line.

We may generalize from this procedure and write a formula

for the number of independent angle equations in any figure.

Starting with three lines and three stations in the form of a tri-

angle, we have one condition. If we add one station and one line

to it, no new conditions are introduced, but each additional line

to that station gives one new condition, and the same is true of

further additions of stations and lines until the entire figure has

been drawn. Therefore, each station added to the initial triangle

adds as manA' conditions as there are lines, less one, running to

that station, so that the total number of conditions would be the

aggregate of these conditions together with the one for the initial

triangle, that is, the whole number of lines minus the whole

number of stations, plus one. But if any one of these lines be

unobserved at one end, one angle of the corresponding triangle

would be missing and that line would not count for a condition.

Also, if one station were entirely unoccupied, as Pan, in Fig. 5,

page 83, it could enter into no complete triangle and would have

to be omitted from the stations counted in determining the number

of angle equations. Finally, then, we may write the following

formula for the number of independent angle equations in a given

figure :

Number of Angle E(}uations = L'-,S"+ l (107)

in which L' is the numbcM' of /;/// lines in the figure and S' is the

number f)f occupied stdlions.

92. Side Equations. The ti-ianglcs of a figure may close

exactly to lS() + e, and the angles still be inconsistcMit with regard

to th(> closure of th(> whole figure wIkmi the lengths are computed.

To illustrate this, sujipose the triangles of Fig. (>, page 84, to be

plotted in the following oidei-. the angles of each having been

adjusted to a closure and \\\v local conditions satisfied. Plot

triangle (a) to any convtMiicMit scale, as in Fig. 12. using the given
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angles. Upon the side AB, construct triangle (b) with vertex

falling at d'. Upon BC, construct triangle (c) and its vertex

might fall at (/". Then if triangle (d) were plotted upon AC as a

base, its vertex might fall at d'", and the angle at d'" would still

equal the sum of d' and d" as required by the local condition at

station D. Thus, the lengths of the lines running to this station

would fail to check because they did not intersect at a single

point. The side equation for this figure, therefore, would require

1^
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liikewise, computing through the triangles (6) and (d),

CD=^AD'^^^^ =Ab'^^^^^^^^ (109)
sm F5 sin Vi sin F5

Equating these expressions for CD and cancehng the factor AB,

sin F3 sin Fi _sin F2 sin F4 mm
sin Fe sin Fg sin F7 sin F5

Multiplying both members of (110) by the reciprocal of the second

member, we obtain a statement of the side equation in the form

sin V\ sin F3 sin F5 sin F7 _ n in
sin V2 sin F4 sin Fe sin Fg

in which the numerator contains the odd-numbered angles and the

denominator, the even ones, which happens as a result of our num-

bering the two angles at each station in clockwise order, and which

is a useful check on the formation of the side equation. To

reduce this equation to the first degree, we take the logarithm of

each member and equate them, whence,

logsin Fi+logsin Fs+logsin Fs+logsin F7

logsin Fo logsin F4 logsin Fe logsin Fg^O (112)

Equations (111) and (112) are original condition equations which

state the requirement which must be satisfied by the adjusted

values of the angles, and correspond to the form shown in (56).

It remains to derive the simpler reduced condition which expresses

the relation between the corrections to the observed angles, so that

it may be combined with the angle equations (105) into one adjust-

ment having the same unknowns, namely, the r's. That is, for

each T' must be substituted its value, J/+r, and the equation

reduced to the linear form to coi-respond to (59), page 58.

If a given angle, M ,
be altcu'cnl by a small conxH'tion, v, (expressed

in seconds, the logarithmic sini^ of the ang]t> would ])e changed

by a corresponding amount, naiuc^ly, the nuni})er of seconds in v

multiplied into the difference for ()iu> scH'ond in that particular

logarithmic sine, as taken from Ihc^ k)garithmic tables with the

proper algebraic sign, positive^ if th(^ angle lie in the first (juadrant,

in which the sine iiici-eascs with inci'cwsing angl(\ and negative
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if in the second quadrant, where the sine decreases with increase

of angle. That is,

logsin (3/+y)=logsin F = logsin M -j-v {dl") (113)

For example, if M = 76 15' 14.5" and v=-4.1", logsin M =

9.9873797 with a difference for 1" of +5.1 in the seventh decimal

place. Then logsin (ilf +t;)
=

logsin 76 15' 10.4" = 9.9873797 -

4.1(+5.1) =9.9873776. Substituting for logsin V, in (112), its

value given in (113), namely, logsin M-\-(d l")v, and collecting

the logarithms into one constant term, we have,

-(del")ve+ {d-l")v7-{dsl")v8^(\ogsmMi

logsin 3/2+logsin .^/a logsin 3/4+ logsin il/s

logsin J/6+ logsin M7 -logsin Mg) = (114)

in which {dil") represents the difference for 1" in the logsine of

angle Mi, in the seventh place of decimals, assuming that seven-

place logarithms are used.^ Each of these differences for 1" is a

numerical coefficient for its v, and corresponds to a, b, c, etc., of

(59), page 58. Also, since the observations are carefully made,

the observed angles, M, will approximate closely to their adjusted

values, V, so that the algebraic sum of the logsines of the Jl/'s in

(114) will be, instead of zero as in (112), a sma.l error of closure, g,

expressed in units of the seventh decimal place, and equal to the

amount by which the sum of the positive logsines exceeds that of

the negative ones, in (114). The reduced form of the side equa-

tion becomes, therefore, if we assume it to be the fourth of the

condition equations so that its coefficients are f/'s (a, b, and c

being coefficients of the first three conditions respectively),

diVi d2V2-\-d:',r-4 d4V4:-\-d-)V-, d(]VG-{-d7V7 dsVs~^q4 = (115)

in which each d is the numerical difference for I" in the logsine of

the corresponding angle. Thus we see that the side ecjuation

' It will be convenient, generally, to use seven-jilace logarithms but to

take the sixth {ilace unit for (dl") and q, thus moving the decimal ])oint one

])lace to the left in these (luantities. If the tal)les show a diilercnee for 10"

to be +51, therefore, ('/I")
= +5.1 in the seventh place, or +0.51 in the sLxth

place.
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states that the corrections to the angles must be such that the

algebraic sum of the resulting corrections to their logsines will

equal q and the original side equation (111) be satisfied. Since

the coefficients and the constant term of (115) are expressed in the

same unit, in the seventh place, this equation is consistent with the

angle equations (105), as stating a linear relation between the f's.

94. A Shorter Form of the Side Equation for the quadrilateral

may be obtained by computing one of the adjacent sides, as BC,

from AB, instead of the opposite one, CD, as above. In Fig. 13,

Fig 13. Side Equation; Quadrilateral.

the dotted arrows show the two routes of the computation, from

which the two resulting values for BC must be eciuated:

sin Vz

and

whence,

BC^AB

BC^AB

sin Fg

sin (r;5+ T'4) sin T's

sin ]': sin (I's+ Vo)

sin F3 sin (T'n+F);) sin V~ = 1

(116)

(117)
sin (F3+ F-}) sin V(\ sin I's

and the rcHlucod side ecjuation Ix'coinos,

f/H?V, -'':',+ i(r:i+ r4)+r/54-r,(r5+ ',-,) -'/,;'.! + '/7r7-'/sr8+ r/4
= (118)

or, separating the various unknowns,

(f/3 (/3+ 4)i':i '/3+ 4?'.l +(/5+ (i''5+ (//o-r fi 'A;)''0

+ (/7?'r-'/srs+ ^y4
=

(119)
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in which ^3+4 represents the difference for 1" in the logsine of the

sum-angle, il/3+3/4, etc. Although this form is somewhat

shorter than (115) in that the angles at the station, B, lying be-

tween the sides AB and BC, do not appear, it is more troublesome

for the beginner. However, the fact that the angles at one sta-

tion are not concerned makes this the preferable form when one

of the stations of the figure was not completely occupied, in which

case the equation is expressed between the two exterior lines

adjacent to this station. Thus, in the above figure, station B
might have been unoccupied without affecting the form of equa-

tion (117).

95. Side Equation for a Central-point Figure. Let Fig. 14

c

Fig. 14. Side Equation; Contral-point Figure.

represent the general form of a central-point figure, and for the

sake of variety, suppose the central station to have been observed

from each of the others but not to have been occupied, as shown

by the lines l)eing })roken at that point, but that otluM'wise the

figure is (omplet(\ The side equation will ho written between

two of the lines which meet at the central point, and the dotted

arrows show the two routes of computation from the line AO to

DO through two series of triangles.

T^^> ^/-^^i" ^1 ^"^ ^'i ^^^ ^^^ </->^"^ ^2 sin T'lo sin Tio
IJ(J = A(J 7 "T .

-

-. ., -A(J -.
~

. -. . ~T-
sm I 4 sin I G sm I s sin \ n sm I

(.>
sm I 7

whence,
sin T'l sin T':{ sin T.-, sin V- sin 1'.. sin T'n

sin V2 sin 1^4 sin Vq sin Vs sin V\o sin T'l.)

= 1

(120)

(121)
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fhe reduced side equation follows directly, as in Art. 93:

diVi d2V2+ d3V3 d4V4-\-d5V5 d6VQ-\-d7V7

d8V8-\-d9Vi) dioVio^diiVn di2Vi2-\-q
= (122)

It will be seen that the odd-numbered angles occur in the

numerator of (121) and the even ones in the denominator, which

results, as in Art. 93, from the clockwise numbering of the two

angles at each occupied station. Since the angles at the central

station were not observed, and do not occur in the side equation,

it is not necessary to number them. By comparison, also, with

(111) of Art. 93, it is evident that the side equation for a central-

point figure having four sides and the stations A, B, C, D, and 0,

would be identical with (111) written for a complete quadrilateral

with diagonals.

96. Mechanical Statement of Side Equations. The similarity

among the side equations (111), (117), and (121), in the occurrence

of the odd-numbered angles in the numerators and the even ones

in the denominators, would indicate the possibility of writing

these equations by inspection instead of using this property merely

as a check. This may be done b\' the following mechanical method

for all ordinary figures of the quadrilateral or central-point form.

Notation, (a) The pole for a side equation is some station,

or other point, to which a line rims from every (other) station of

the figure for which the equation is to be written. It may be at

the intersection of the diagonals of a quadrilateral, although there

is no station there. The point selected as the pole will be indicated

by a S7nnll circle (h'awn around it. as in the following figures:

Fig. 15. Fk;. 10. Fig. 17.

Location of Pole for Sidi^ Equaiion.

(h) At each station of the figui'e, there will l)e three lines, one

of which goes to the p()l(> and ina\- bo calliMl the pole line. Of the
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other two, one will be the left-hand line and the other, the right-

hand line, as we look into the figure, from the station towards the

pole, (c) At each station, the left-hand angle is the angle between

the left-hand line and the pole line, and the right-hand angle is the

one between the right-hand line and the pole line. This nota-

tion is illustrated in the following diagrams in which I and r indi-

cate the left-hand and right-hand lines and L and R, the left-hand

and right-hand angles, respectively:

Fig. 18.

Pole

Fig. 19.

Loft-hand and Right-hand Angles.

QPole

Fig. 20.

The side equation, then, is written by placing the product of

the sines of the left-hand angles equal to that of the sines of the

right-hand angles, or by placing the former in the numerator and

the latter in the denominator of a fraction which is placed equal to

unity. The reduced form of the equation, corresponding to (115),

(119), and (122), may be written as the sum of the dv's for the

left-hand angles minus the dv's for the right-hand angles plus q

equals zero, or,

[c/v](for left-hand angles) [r/?;](for right-hand angles) -{-q
=

(123)

in which d is the difference for 1" in the logsine and q is the sum of

the logsines of the left-hand angles minus the sum of the logsines

of the right-hand angles.

It will be noted that the ang^.cs at the pole do not enter into

the side equation at all, so that the pole is situated at the inter-

section of the two lines' between which the equation would be

written according to the analytical method of the preceding articles.

Thus, equation (111) would correspond to a pole at the intersection

of the diagonals of Fig. 12, page 88; in Fig. 1.3, page 91, the pole

would be at station B for equation (117); and in Fig. 14, page 92,

the pole would be at the central station, 0.

It is now apparent, as stated in Arts. 93 and 9o, that the odd-
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numbered angles occurred on one side of the side equations and the

even ones on the other because the two angles at each exterior

station of the figures had been numbered clockwise so that the odd

ones were on the left and the even ones on the right of the pole

lines.

The selection of the pole may be governed by the following

principles.^ In a central-point figure, it must be at the central

station. If a station was not occupied, or not completely occupied,

the pole should be at that station. Sum-angles may be avoided

by placing the pole of a quadrilateral at the intersection of the

diagonals, which is simpler for the beginner although it introduces

two additional angles and logsines. The pole should not be placed

where the smallest angles occur, as these angles should enter into

the side equations with their larger coefficients.^

97. Number of Side Equations in a Figure. In order that

there may be two routes, through two series of triangles, between

two lines in a figure, there must be at least three triangles in the

figure, and therefore, four stations with three lines to each station.

In other words, the quadrilateral is the simplest figure for which

a side equation may be written. Similarly, a central-point figure,

without diagonals, can have but one side equation since there are

but two series of triangles through which one side maj' be com-

puted from another. The quadrilateral and the central-point

figure, therefore, furnish one side equation each, and are the ele-

mental figures for these equations.

A complete central-point figure has as many outer lines and

the same numl)er of inner ones as there are exterior stations, so

that the total number of lines will equal twice the total number of

stations less one, which is true, also, in a quadrilateral. Since

each of these figures yields one side equation, the formula may be

written,

Number of Side Equations = L-20S- 1) + 1 =L-2,S+3 (124)

in which L is the total number of lines, full or ])roken, and S is the

' See Wright and Ilayford's Adjiistiiient of Oljservalions.

- The logsiiic of a small angle varies rapidly witl) change of angle, so that

the diilerence for 1" is large.
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total number of stations whether occupied or not. Adding to

either figure one station with three Hues from it to stations of the

figure, adds another quadrilateral or central-point figure, and

therefore, another side equation, which corresponds to an increase

of one {L 2S) in the formula. Each additional line, without

increase of stations, makes possible the writing of one or more new
side equations, using that line, of which, however, only one can be

regarded as independent. Adding one station to a figure thus

adds as many side equations as there are lines from that station

to the figure, less two. For example, adding to Fig. 21 the station

A A

Fig. 21. Fig. 22.

Number of Side Equations in a Figure.

G with three lines to A, F, and E, adds one side equation which

could be written for the quadrilateral G-A-F-E or for the central-

point figure G-A-B-C-D-E, and if this latter had been the

original figure, the addition of the line AE would have formed the

quadrilateral A-F-E-G with its side equation. In each case the

new side equation must include; the added station or line.

98. Statement of All of the Conditions for a Figure Adjustment.

In the preceding articles, the three kinds of conditions, local,

angle, and side, which enter into the adjustment, have Ijcen

explained separatcl}'. The adjustment as a whole will now be con-

sidered.

Strictly, all of the conditions should ])e satisfied simultaneously

in one gc^ieral adjustment. The ln])()r of computation is greatly

reduced, how(>vei', by diminishing the number of conditions, and it
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is especially convenient to perform the local adjustments sepa-

rately and in advance of the figure adjustment, inasmuch as it is

good practice to arrange the observations so as to have but one

local condition at a station, involving all of the angles, as explained

in Art. 87. Therefore, we shall assume that the necessary local

adjustments have been made, as in Arts. 79 and 82, preparatory to

the figure adjustment. However, if the angles at any station of

the figure complete the horizon, it will be necessary to include in

the figure adjustment a local condition providing that the sum of

these angles shall remain 360, that is, that the algebraic sum of the

corrections to these angles must be zero. This is likely to be the

case at an interior station, such as F, in Fig. 22. Also, if a sum-

angle should be included among the conditions, as well as its

component angles, and with a separate number, a similar local

condition would be necessary to insure that the sum-angle would

remain equal to the sum of its components after adjustment;

but this may well be avoided by designating the sum-angle as the

sum of its components, as in Art. 94, instead of using a separate

symbol for it.^ In general, care must be taken that the prelim-

inary adjustment be not disturbed by the later one.

The selection of the angle and side equations for a given figure

or system must conform to the requirements that all the necessary

conditions be included, but no more, and that they be independent

of one another, so that no one of them could be obtained ])y com-

bining any of the others. If a dependent condition were included,

by mistake, it would be indicated during the solution of the normal

equations by a derived ociuation liaving all of its coefficients zero,

or nearly so, so that tlu^ corresponding correlate would be inde-

terminate. The necessaiy nuni])(>r of independent angle and side

ecjuations will \)e giv(>n by formulas (107) and (124), namely,

Number of Aii<;lc lMiuati()ns
= L'-N'+ 1 (107)

Number of Side l^cpiat ions =L 2N +3 (124)

in wliicli L and N are the total luiinboi's of lines and stations, and

1 'riics(> local coiulitions an> avoided in th(^ fi^ur(^ adjust iiH-ut by using
dircclid/ts instead of (ni(jlc.<. as will he shown later on.
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U is the number of full lines and S' is the number of occupied sta-

tions. (For a station to be considered as occupied, at least two

lines must be unbroken at that station.) The best method of

writing the angle and side equations so as to be certain of their

independence as well as their number, is to draw a sketch of the

system or figure to be adjusted, adding one station at a time, with

its lines to the previous stations, and writing the equations intro-

duced by that station and those lines. For each station so added,

there will be as many angle equations as new full lines, less one,

and as many side equations as new lines, less two. As has been

stated, small angles should be used in the side equations where

practicable, although it is best to use each but once. In angle

equations, on the contrary, they should be avoided.

For example, the equations for Fig. 22, page 96, will be written.

In this case, L=13, L'=12, S = S' = 7, and there are six angle

and two side equations. The complete horizon at F, moreover,

requires a local condition. Beginning with the line AB, station

F, with the two lines to A and B, forms a triangle with one angle

equation (A), as shown below\ Adding C with two lines to B and

F, gives one angle equation, (B), and similarly, adding D with two

lines to C and F gives (C). Now, with E are added three linos

to A, D, and F, so that two angle equations, (D) and (E), are

formed and one side equation (//), for the w^hole figure

A^B-C-D-E-F, with pole at F. With G are added two full lines

and one broken line, giving one angle equation, (F), for the tri-

angle G-A-E, and one side equation (7) which might well be

written for the quadrilateral G-A-F-E, with pole at G since the

line FG is broken at G. Thus we have six angle and two side

ef^uations as required by the formulas above. The local equa-

tion (G) for the station F must be added. To facilitate the

formation and solution of the normal equations, these eonditioii

eciuations are so arranged as to place the simpler ones first and the

more complex ones with larger coefficients, last. (See Art. 78,

page 71.) The angle equations, therefore, will usually precede

the side equations. For a central point figure, also, several angle

equations may be written in succession having no angles in com-

mon, with the result that many of the coefficients in the first normal
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equations will be zero, thus materially reducing the labor of solu-

tion. The above conditions are arranged as follows:

Angle: (A) F2 +Fii+ Fi9-(180+6a) =

(B) Fi +74 +7i4-(180+66) =

(C) 73 +76 +7i5-(180+6c)=0

(D) 75 +79 +7iG-(180+6,) =

(E) Vs +7i2+ 7i7-(180+e.)=0

(F) V7 +7io+7i3-(180+e;)=:0 (125)

Local: (G) 7i4+ 7i5+ 7i6+ 7i7+ 7i8+ 7i9-360 =

sin Vi sin 73 sin Vo sin 78 sin Vn .

Side: (//)
sin V2 sin 74 sin 76 sin 79 sin 7i2

/yx
sin V7 sin 7]7 sin (7i2+ 7i3) _..

sin (77+ 73) sin 7i3 sin 7i8

Substituting for each 7 its M-{-v, the M's being the observed values

of the angles, and computing the spherical excesses, the angle and

local equations are thrown into their reduced form as in (105), and

the reduced side equations are formed as in (115) and (119),

respectivel\^ The formation of the nine normal equations and

the remainder of the solution then follow as in the last chapter.

99. Adjustment of a Quadrilateral: Method of Angles.

To illustrate the foregoing principles, the following (juadrilateral

Beckuith

FiK. 23. Atljustmciit l)y Metliod of Angles.

will iK)w be adjusted in full. The final angles arc desired to hun-

(lr(Hltlis of a s(>('()nd. Weights are ecpial. Seven-place logarithms

will be used ])iit witli the unit tak(>n in \hc sixth placi^ foi' the side
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equation. The pole is taken at the intersection of the diagonals,

as indicated. The given angles are shown in the three triangles

which will be used in succession for the angle equations.

Given Angles

(A)

Beckwith (3) 26 42' 51 .8"

NorthBase (1) 64 43 42.3

North Base (2) 43 44 02.0

SouthBase (8) 44 49 27.4

03.5

a-0.05" 5=+3.45"

(B)

Walter (6) 28 17' 12.9"

NorthBase (1) 64 43 42.3

SouthBase (7) 42 09 40.3

SouthBase (8) 44 49 27.4

02.9

e, = 0.06" qh=+2.M"

(C)

Waher (5) 48 03' 10.3

Walter (6) 28 17 12.9

Beckwith (4) (il 29 53.9

SouthBase (7) 42 09 40.3

57.4

e,
= 0.08" (7.- -2.68"
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Correlates

+6.74

C^
+3 43-0.17

^3^6^^^^^^^
2.67 2.67

-1.12+-0.43-2.44 -3.13
B=

^ =^- = -1.043

A = -3.45-0.12+0+2.09 1.48 = -0.370

Test.s of Correl.\tes
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Computation of Triangles

The ultimate test of the adjustment occurs in the computation

of the lengths of the lines or sides of the triangles. If an error

were made in the original side equation, such as an erroneous

logsine or difference for \", or an error in adding the angles of a

triangle to obtain its error of closure, q, all of the subsequent

operations might check, to and including the tests of corrections.

The test of the side equation, using the adjusted angles and the

new logsines, checks the original logsines and differences for 1".

It remains to be seen in the computation of triangles whether or

not the adjusted angles
"

fill
"

each of the four triangles and at

the same time satisfy the side equation by giving the same results

for lengths which are computed in two triangles. The above

discrepancy of one in the last place of logarithms in the side equa-

tion test, would show, also, in the triangle computations, but is too

small to warrant further investigation. It would be corrected

arbitrarily so as to leave no inconsistency in the computed results.

(An example of the final triangle computations will be given at

the close of the adjustment of this quadrilateral by the ^Method of

Directions, which follows.)

100. Use of Directions instead of Angles. In the measure-

ment of angles with a direction instrument, as in primary triangu-

lation, the various signals are sighted independently and for each

pointing the horizontal circle is read, in a clockwise direction.

This is done in the direct and reversed positions of the instrument

and in various positions of the circle, and the mean of all of the

readings upon a certain signal is adopted as the direction to that

signal. The angle between any two signals is the direction of the

right-hand signal minus that of the left-hand one, and there is no

local adjustment. Even though the separate angles be measured

by reading directions in pairs, or by the method of repetitions, the

directions may be numbered, instead of the angles, and each angle

d(^<ignated by the difference of the two directions which hniit it,

the right-hand one minus the left. In Fig. 24, for example, angle

BAG would be designated by the symbols -(l) + (2), and CAE
would be represented by -(2) + (4). EAB would be -(4) + (l),



106 PRACTICAL LEAST SQUARES

and so always minus the left plus the right-hand direction, clock-

wise.

Fig. 24. Directions.

This method has certain advantages, especially in the adjust-

ment of the more complex systems, which render its use very

desirable, and it is deservedly popular among computers. One

of its strongest features lies in the fact that preliminary local

adjustments are not disturbed by later adjustments in which the

method of directions is used, so that no local condition for an

interior station would be necessary in a case such as that in Art.

97 and Fig. 22. Each direction is regarded as observed inde-

pendently, and the unknowns of the problem are the corrections

to the separate directions. The correction to an angle, therefore,

would be the correction to the right-hand direction minus that of

the left one, algebraically. There will be more directions, in a

given system, than angles, but this is not a serious objection

when the Method of Correlates is used. (In the Method of

Indirect Observations, any increase in the number of unknowns

produces a like increase in the normal equations but in the

Method of Correlates the number of normal equations is equal

to that of the conditions.)

The weights of the directions will be equal, in the general case,

but different weights may be assigned if certain signals were more

difficult to observe than others, owing, perhaps, to unsteady

atmospheric conditions or poor illumination. If it be desired to

use directions in the adjustment of angles of different weights, care

should be taken in giving weights to the corresponding directions

that the weights of adjacent angles be not seriously affected. If
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two adjacent directions were assigned small weights, and thereby

received large corrections, the intervening angle might receive a

small correction (the difference of the two large ones) and so defeat

the purpose of the computer. If two adjacent angles have small

weight, the intervening direction might be given a smaller weight

and thus affect both angles. However, if the angles have different

weights, rather than the directions, it may be best to adjust by
the ^Method of Angles explained above. In using directions,

therefore, we shall assume that angle weights are equal; if separate

directions have different weights, they may be treated exactly as

in the Method of Angles.

If directions be used in local adjustments, it is advisable to

use the ^lethod of Indirect Observations, as in Art. 82, since the

local conditions would be identities of the form,

-(1) +(2) -(2) + (3) -(3) +(4) -(4) +(1) -360 = (126)

Therefore, it will usually be preferable to use the Methods of Angles

and Correlates, illustrated in Art. 79, for the local adjustment.

101. Notation: Method of Directions. In numl^cring the

directions of a figure, one side may be regarded as the initial line,

as if fixed Ijy a previous adjustment, perhaps, and its numbers

omitted. In this case, it is well to place letters on the fixed line,

instead of numbers, to distinguish its directions, when writing the

equations, these lettered directions not to enter into the reduced

conditions, and to I'eceive no corrections. On the other hand, this

use of letters is not necessary, and numbers ma}^ be placed upon
all of the directions, if desired, without altering the method or

increasing the work to any considerable extent. Directions are

to be numbered clock\vis(>, invariably, at each station, so as to

avoid errors. Unobserved directions, shown by broken lines,

will not b(> numlxTcd.

102. Lists of Directions. Pi'cparatory to the adjustment, a

list of the dircH'tions at each station may be made from the given

data. The names of the observed signals are arranged in clock-

wise order, usually beginning with a prominent one which is given

the initial direction, OO' 00.0", although any direction may be

taken as the zero liiu\ If angles wvvv (jbserved. and adjusted
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locally, if necessary, the resulting angles are added in the proper

order so as to obtain the angle from the assumed initial direction

to each of the other signals or stations, which will be its direction

in the list. The angle from one station to another, clockwise,

will then be the direction of the latter minus that of the former.

If only two or three angles were observed at each station, it may
not be worth while to form these lists of directions, but each angle

may be given the proper designation as the difference between

two directions, and two angles added or subtracted, when neces-

sary, to obtain a third.

C s
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To state the reduced conditions, the direction letters, a and 6,

are omitted and the angle equations are written by replacing each

V by its V, and (180+e) by the closure error, q. The side

equations are more complicated owing to the combined subscripts.

For example,

logsin(-a+Fi5)=logsin(+ Fi5)=logsin {-\-Mi5)-\-d+i5Vi5 (128)

and

logsin (
- Fs+ F4)

-
logsin (

- F4+ F5)
=

logsin (-ikr3+iVf4)- logsin (-il/4+M5)

+ C?-3+ 4(-l'3+t'4)-rf-4+5(-i'4+ l'5)

=
logsin (-ilf3+ilf4)- logsin (-.4+3/5) -f/-3+4y3

+ (f/-3+ 4+ rf-4+5)t'4 r/-4+ 5?'5

in which fi-3+4 is the difference for 1" in the logsine of the angle

( Ms+Ah), etc. Applying these principles to the equations

(127), we obtain the reduced equations in the following form:

(A) V2^Vi5 V22+V23+qa =

(B) Vl+V2 Vi^Vo V23+ Vl8^gt>
=

(C) V3-\-Vi V7^V8-Vl8+ VlC)^qc
=

(D) t'G+ f? y 1 1+ t'l 2 i'l9+ 1'20+ gd
=

(E) Vio-\-VnVi5-\-ViQ V20-\-V22-\-qe
=

(F) -VQ-\-vio-vi3+ vi4-vi(i-\-Vi7+ qj
=

(129)

(G) -f/- 1 + 22^1+ (f/-] +2+ ^-2)^2 -f/-3+ 4?^3+ ('/-3+ 4+(/-4 + 5)?'4

f/_4+5r5 f/_0 + 7?'0+ (f/-G+ 7+ ^/-7+ 8)?'7

f^-T+ S^S *^- 10+1 l^'lf)+ (''/- 10+ 11+^/- 11 + 12)^11

d- 11+ 12i'l2+ {d+ 15 +<"/- 1 5+ 1 g) ?'l 5 f/- 1 5+ 1 G^'l G +^7 =

(//) (, d-0+ 10+ f/- 9+ 1 1) t'9+ f/- 9+ lO^'lO <"/- 0+ 1 1 1'l 1

d- 20+ 2 1 i'20+ (''''- 20+ 2 1+ ''Z- 2 1 + 22) t'2 1 ^/- 2 1 + 22?'22

(/- 1 5+ 17'-'15+ (''/- 1 5+ I 7 c/- 1 G+ 1 7) t'l 7 +''''- 1 G - 1 7^'] G +(?/!
=

Inspection of eciuations (127) shows that there are more

unknowns than in (125), and what is more important, that adjacent

aiiji'lc equations have unknowns in common so that l<>ss of iho
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product-coefficients in the normal equations would be zero in this

case than in the other. The diagonal coefficients (squares) are

larger, also, owing to the greater number of unknowns. These

are disadvantages which may offset the omission of the local

condition, in a central-point figure, so that the Method of Angles

might actually involve less work than the Method of Directions,

in such a case. A rearrangement of the above equations, how-

ever, would simplify the normal equations, to some extent, by

collecting the zero coefficients near the beginning. The following

order might be used: {B), (L), {F), (E), (C), (A), (H), (G).

104. Adjustment of a Quadrilateral: Method of Directions.

Beckuith

Walter

Fig. 2G. AdjiistmcMit of Quadrilateral; Method of Directions.

As an example of tlio use of directions, the (juadrilatcral of Art.

99 will be adjusted. A comparison of the two methods of solving

the same problem will b(! instructive. The* figin-e is shown in

Fig. 26 with the new notation. The number of angles being small,

it will not l)e necessary to write lists of directions, btit the separate

angles of the triangles will be represented by the proper directions,

instc^ad, and other angles may be obtained from them by addi-

tion or subtraction, the symbols being subjected to the same

operations. Thus, adding the two angles, (3) + (4) and
--

(d )-!-(")), w(^ ol)(a!n th(Mr sum as (3)4-('"))- The pole for

the sid( (Hjuation is tak(Mi at Sotith Base. The right-hand

angles happen to have Ixhmi written on the left side of the

('(juation, and vi('(> versa, which is equival(Mit to changing

all the signs in th(> (^luation without affcH'ting th(> i-esults.

The ('()nii)utati()n of the triangles is added in order to com-

plete tlie solut ioTi.
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(A)

Beckwith -
(3)+ (4) 26 42' 51 . 8'

N. Base -(a)+ (2) 108 27 44.3

S. Base -(10)+ (6) 44 49 27.4

= 0.05" ga=+3.45"

Walter -(7) + (8)

N. Base -() + (!)

S.Base -(9) + (6)

66
= 0.06"

(C)

Walter -(6)+ (8) 76

Beckwith -(4) + (5) 61

S.Base -(9) + (10) 42

e.
= 0.08" qc=-2J

03.5

28 17'
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Correlates

-4.08

115

-1.244+0.654-2.84
B = :

= -0.858

^ 0+1.244-1.056-3.45A= : =-0.815

Te.sts ov Correi.ati:.-;
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In this standard form of computation of the triangle sides, the

given side is written first, followed by the opposite station and the

other two in clockwise order around the triangle. The correc-

tions are applied to the given angles to obtain the adopted (spher-

ical) ones, from which the spherical excesses are deducted and the

plane angles (to be used in the logarithmic computation) are found.

The sum of these plane angles, of course, should be exactly 180.

The cologsine of the first angle is written below the log distance,

followed by the logsines of the other two angles. Covering the

fourth logarithm with a pencil or strip of paper, the first three are

added to obtain the sixth, and the fifth is then obtained as the sum

of the first, second, and fourth, by covering the third. In order

that the computed lengths may be consistent throughout, a certain

value is adopted for each distance and logarithm, and the neces-

sary modifications are made by the application of small correc-

tions as shown. It is a good plan to arrange the triangles in the

above form before beginning the adjustment of the figure. Then

the symbols and the observed angles (after local adjustment, if

any) are in convenient form for use, together with the spherical

excesses. After the adjustment, the corrections are inserted and

the form completed.

105. Adjustment of a Quadrilateral: Approximate Method.^

The angles of a quadrilateral may be made to satisfy the angle

equations exactly and the side equation very nearly, by an approx-

imate adjustment which, although not rigorous, may be sufficient

for subordinate triangulation or detached figures in which great

precision is not required. The weights of the angles are assumed

to be equal.

The two triangles formed by one diagonal are first closed by

correcting the four angles of each b}^ one-fourth of the closure-error

for the triangle. One of the other triangles is then closed by cor-

recting each of its four new angles by one-fourth of its closure-

error, which correction is also applied to the remaining four angles

(of the fourth triangle), with the opposite sign, so that all four

triangles are thus satisficnl exactly. Taking the pole for the side

1 Due to Prof. T. W. Wright.
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equation at the intersection of the diagonals, each of the eight new

angles is corrected by one-eighth of the error of closure of the log-

sines divided by the algebraic mean of the eight differences for

1", the angles on the right being corrected with the opposite sign

to those on the left, so as to bring the sums of their logsines closer

together. If the eight angles were equal, the side equation, also,

would be exactly satisfied by this method
;

in this case the figure

would be a square.

For example, let us adjust the quadrilateral in Fig. 23, page 99,

with the data and notation there given. (See next page.)

106. Adjustment to Conform to Work Previously Adjusted or

Fixed. Triangulation of a subordinate character is frequently

carried on in connection with a main scheme or net in order that a

number of points may be located from the main stations without

reoccupying them expressly for this purpose. In primary tri-

angulation, for instance, it is customary to read directions from the

stations upon prominent objects such as church-spires, which may
be used later by local surveyors for obtaining initial positions and

azimuths. Such points do not enter into the adjustment of the

main figures but are adjusted subsequently and usually separately,

upon the previously adjusted work as a basis. Also, secondary

or tertiary figures may be connected to or based upon primary

ones so as to require separate adjustment which will not disturb

the previous work. If the connection be to one fixed line^ only,

that line would be used as a base-line, and no condition woukl 1)0

introduced. But if a triangle be fixed, or two sides and the in-

cluded angle, the new conditions must be so written as not to dis-

turb the previous adjustment. The Alethod of Directions is

particularly convenient when fixed lines are involved, as the

dii'cctions may l)e omitted from those lines and they will not be

affected by the adjustment. The angles are assumed to have been

adjusted locally, in advance. The use of letters on the fixed lines,

instead of numbers, serves to identify them without giving them

the character of unknown directions, although an (>xp(M'i(>nced

computer usually omits the letters as well as the nunil)ers on the

fixed lines. If th(> Method of An<z;k>s were used, local conditions
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would have to be added. The following simple cases will be

considered. From the condition equations the solution proceeds

in the usual manner.

107. Two Sides and the Included Angle Fixed. Fig. 27. The

adjacent sides, A and B, are fixed in length and the angle between

them, also, must not be altered. If the missing diagonal had been

Fig. 27. Two Sides and Included Angle Fixed

observed, it would have to be considered as fixed, since the sides,

A and B, and the included angle, determine the triangle completely.

That case will be discussed later. The only new lines, then, are

the three w^hich run to C, forming the two triangles. According

to our rules, there are two angle equations, one for each triangle,

and no side equation. However, the fact that two lines are fixed

in length renders a condition necessary, which shall require the

angles to be so adjusted that when one fixed line is computed
from the other, the result will l^e equal to its known lengtli.

This condition is called a length equation. It has the same natun^

as a side equation, but involves two known lengths. The three

('([uations are:

(.4) -(6) + Fi-F2+ (r/)-F5-fFr,-(180+eJ = ()

(/i) -ri+ (r)-(a) + T^3-74+F5-(180+e,)=0 (1:^0)

sin i-a-^V-,) sin (-F5+ F6) _^^
sin (-r4+r5) sin(-r2+r/)

II is ol)vi()us that the angle (a+ !':{), for cxainplc, may l)e desig-
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nated by (+F3) since there is to be no correction to the direction

(a). The equations (130) may therefore be written,

(A) +7i-F2-F5+ F6-(180+6a) =

(B) -Fi+ F3-F4+F5-(180+6,)=0

Asin(+F3)sin(-F5+ F6)

(131)

(C) 5 sin (-F4+ F5) sin (-F2)
= 1.

To obtain the error of closure, q, for the length equation, the log-

arithm of the length A must be added and that of B subtracted, in

the series of logsines. As these lengths are fixed, they do not

appear in the reduced conditions, which have the form,

(A) +fl ^'2 t'S+t'O+^a^O

(B) -vi+ V3-V4+ V5+qt.
=

(132)

(C) d-2V2-\-d+3V3-\-d-4+ 5V4:(d-4^+ 5-hfJ-5+ Q)V5+ d-5 + 6VQ+qc =

108. Quadrilateral with One Fixed Triangle. Fig. 28. The

quadrilateral being complete would have one side and three angle

equations. The angle equation for the fixed triangle is satisfied

in advance, however, so that there remain but two angle equations,

and the side equation as independent conditions. Using the tri-

Fic. 2S. One Triangle Fixed

angles D-A-B and D-B (', and placing the pok^ at D for tiie side

o(iuation, we write the three conditions:
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{A) -(a)+ 7i-y2+(^/)-F4+F5-(180+6a)=0

{B) -(c)+ F2-F3+ (/)-F5-^Fg-(180+6,)=0

sin (
- g+Fi) sin (-C+F2) sin (-Fs+e ) _

(133)

sin {-h+ Vx) sin (-F2+^) sin (-F3+/)

After obtaining the constants, q, the lettered directions, a, h, c, d,

e, and/, would be omitted, as usual, in forming the reduced equa-

tions, although it is convenient to use them in the subscripts of

the side equation to distinguish between those angles which differ

only by the fixed angle at A, B, or C. Thus the reduced side

equation would be,

(C) {(l-a+ld-b+\)Vi-\-{d-c+2+d-2+ d)v2

-{d-s+e-d-3+f)v3-\-qc = (134)

109. Fixed Triangle or Polygon with Central Point Unoccupied.

Figs. 29 and 30. In this case there are no new triangles and,

therefore, no angle equations whatever. The pole for the single

side equation is placed at the central, unoccupied (or concluded^

station. If this station be outside of the triangle, the side equation

would be the same as (C) in (133) and (134), above, but if it be

inside the figure, the side equation has a characteristic synunetrj'

Fk;. 29. Fic. 30.

Fixed Tri;uiRl(^ or Polyfjon with Concluded Station

in that every numl)er('d dii'CM'tion occiu's in botli numerator and

denominator, and the algel)raic signs are positive in th(> ntmierator

and negative in the (kMiominator, or vice vei'sa. Thus, foi- I'^ig. 29.

tlie side (H^uation would l)e as follows, omitting the lettered direc-

tions which ai-e mmecessarv in this very simple case,

sin (+ ]',) sin (+ ]\') sin i+V:,]

sin f T'l) sin ( F2) sin
( ]':i)

= 1 (135)
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Similarly, for Fig. ,30, the side equation would be,

sin (+ 7i) sin (+ F2) sin (+ F3) sin (+ 74) s in (+ "^'5) _
sin (

-
Fi) sin (

-
V2) sin (

-
F3) sin (

-
V^) ^In (

-
F5)

^ '

This case, especially Fig. 29, occurs so frequently in the loca-

tion of subordinate stations that it may well receive special atten-

tion here. In its reduced form, equation (135) may be written,

(d+i+d-i>i+ ((i+2+C?-2)y2+ (^+3+C^-3)y3+g-0 (137)

in which rf+i is the difference for l'' in the logsine of angle {-\-M\),

(l-i is that difference for angle { Mi), etc. This equation has

the same form as (86) of Art. 80, page 73, so that ai = (d+i-\-d-i),

a2 = {d\.2-\-d-2), etc. Assuming equal weights, which will usuall}^

be the case, the correlate for the single equation will be, from (87),

A = ~
(138)

[aa\

and the corrections will follow from (88),

Q Q
vi = aiA =

ai-f r; V2 = a2A = a2-r r; etc. (139)
[aa] [aa]

It is easy, then, to arrange the logsines in positive and negative

columns, and to take their algebraic sum as q. The algebraic sum

of the differences for 1" corresponding to the directions (those in

the negative column having their signs changed) will be the a's,

and the sum of the squares of these a's is the denominator of the

factor, q/[aa], in (139). Each v is computed by multiplying its

a into this factor.

For example, let us adjust the following observed angles for

Fig. 29, the weights being (>(|ual. Each angle is followed l:)y its

logsine and the difference for 1" in that logsine, the left-hand

angles, in the left-hand colunm, being considered })ositivc. The

sphericid excess for the fixed triangle is 0.30".
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The side equation is satisfied, since the sums of the positive

and negative logsines are equal, namely, 9.0918108. Also, the

sum of all the angles remains unchanged, and each of the three

angles of the fixed triangle is the same as before the adjust-

ment, since each correction was applied both positively and

negatively. An ordinary slide-rule is sufficient for the arith-

metical work, and after the sum of the aa's is obtained, each v is

found at one setting of the rule. The above illustration of the

process is given in greater detail than is necessary when the

method is understood.

110. Adjustment of a System between Points of Control.

Large systems of triangulation, such as the primary work of the

U. S. Coast and Geodetic Survey, may extend over strips of coun-

try for hundreds of miles. In such great distances, errors of

various kinds are likely to have a cumulative effect which becomes

too great to be tolerated. It is necessary, therefore, to control,

or check, the triangulation at intervals which will depend upon
the precision of the observations, the points of control being

farthest apart in first-class, or primary systems. The lengths

are controlled by measured base-lines, the positions, by astro-

nomical observations for azimuth, latitude, and longitude, and

the elevations, by precise spirit leveling, although the astro-

nomical observations may really control all three elements

of a system, that is, its size, shape, and position. (See Art. 85,

page 80.)

In general, the controlling points for these different purjwscs

will not be coincident. The observations for azimuth may not

be made at the same stations as those for latitude or longitude,

Of at the base-line stations. To illustrate the character of the

coiiti'ol, how('\'('i-. it will 1)(> assuin(>(l foi- exainpl(> that a given sys-

tem, or net, starts at a certain line, ,1/i. Fig. 31, whose length

and azinuUh ar(^ known as w(>ll a.s the latitude, longitude, and ele-

^ati()n of on(> of its (muIs, and that it extends to anotlier line, CD,
which is fixed in the sain(> maniuM', in length, dii'ection, ])osition,

and elevation. This lin(\ CI), may hav(> \)vvn i'lxvd by original

o1)S(M-vations and nieasurcMuents, as if it were a detached or isolatcnl

line, or it nia\- be a line in a previously adjusted triangulation
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system which is so precise or so strong that it is not subject to

modification by the subsequent work.

Fig. 31. Triangulation System with Control

If the separate elemental figures, such as quadrilaterals, are

adjusted in advance, with local, side, and angle equations, and

the lengths and positions are computed from the initial side, AB,

through the system, the final line might fall at CD' instead of CD.

If, then, all the lines of the sj'stem were flexible except AB, and

CD' were picked up and forced to coincide with CD, it is easily

seen that all of the lines and angles would probably be distorted.

The adjustment, therefore, affects all of the angles in the net.

The Base-line, or Leyigth, Equation provides that the length of CD',

computed from AB, shall be equal to the fixed length, CD. This

condition is similar to the length equation (C) of Art. 107, page 121,

but must extend through the whole net. The Azimuth Equation

re(}uircs that CD' shall be parallel to CD. The Latitude Equation

states that the latitude of a point such as C shall be equal to the

fixed latitude of the corresponding point, C, and the Longitude

Equation expresses the same requirement for their longitudes.

It is evident that these conditions are independent that any

one or more of them could ])e satisfied without forcing the others

to be fulfilled. For example, the line CD' might have the same

l(>n^th as CD, and C might coincide with C, and still the azimuths

mi.^lit be diff(>rent. Of course, the amount of the discrepancy is

exaggerated in the figure.

In a I'igid adjustment, all of these conditions woukl be com-

bined with the local, side, and angle conditions and satisfied sinml-

taiieously. It is usually sufficient, and much more convenient,
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however, to perform the figure adjustments and then modify

them so as to effect the closure upon the controlling hne through

the above four conditions. In primary triangulation of the highest

grade, the rigid, complete adjustment may be required.

When an extensive system contains several points of control,

such as base-lines or astronomical stations, it is customary to

regard the net as subdivided at these points into sections, and to

adjust each section independently. This method has practical

advantages which outweigh its divergence from the ideal adjust-

ment of an entire system as a single problem.^

The special case sometimes occurs in which a detached net,

having its own base-line, but only approximate astronomical

position, is connected, after its figure adjustment, to a fixed

system through a single figure, such as a quadrilateral or central-

point figure. If the discrepancy in length between the two sys-

tems be small, it may be thrown entirely into the intervening figure,

which would have, therefore, two fines fixed in length, as shown in

Figs. 32 and 33. In addition to the usual angle and side equa-

tions, the figure would have a length equation such as (C) of Art.

107, page 121. It is assumed that the geographic positions for the

detached system are to be obtained, through this connection, from

the fixed one.-

Fig. 32. I.oii'rth iMiuation

1 For a thorougli treatment of the adjustment of large systems, and for

sperial methods apphcable to trianguhition in general, see Wright and Hay-
ford's Adjustment of Observations; Sjiccial Publication No. L'S of the V . S.

Coast and (leodetic Survey, by O. S. Adams; and .Jordan's \"eiinessungs-

kunde, Band L
-A method for the adjustment of triangulation by eorrectiiig tlie ])relim-

inary latitudes and longitudes of the stations is presented by Mr. .\darns ni

Special l'ul)lication Xo. 28 of the U. S. Coast and Ceodctic Su'Acy.
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111. Adjustment of Trigonometric Leveling. The adjust-

ment of the horizontal angles in triangulation is generally inde-

pendent of the vertical angles, which will be used to compute the

difference of elevation between the various stations. Although

Fig. 33. Length Equation

these vertical angles may be adjusted directly, it is usually easier

and at the same time satisfactory, to adjust the computed differ-

ences of elevation, and this is done by the method illustrated in

Art. 77, page 64. A long net may be divided into sections to facili-

tate the adjustment, and if a control point becomes available in

the form of a station whose elevation has been determined directly

through a line of precise levels, the entire net intervening between

the initial elevation and this final one may be adjusted to conform

to this total difference of elevation by a slight modification of the

partial adjustments without disturbing their conditions, as the

proportionate discrepancies will be very small in carefully executed

work.

112. Base-lines. The measurement of a base-line is carried

out in sections, and the total length is the sum of the sections. It is

customary to measure each section two or more times, in both

directions and under different conditions. The separate measures

of a section are then adjusted as direct observations, by taking

their mean or weighted mean. It is seldom that weights are

required, however, since additional measures are made if there is

too much discrepancy between vhe first two, and doubtful results

are subject to rejection in the field.



CHAPTER VII

EMPIRICAL FORMULAS

113. Empirical Formulas. Experimental investigations fre-

quently comprise the determination of the values of a certain

function corresponding to known, assigned, or observed values of

its independent variable. It is often desirable to express the

relation thus determined, between the function and the variable,

in the form of an equation. Should the observations be the same

in number as the unknown constants or coefficients of the equation,

a rigid solution of the problem would result, as explained in Art. 22-

But, as it is customary to make a larger number of observations in

order to obtain increased precision, the problem becomes one of

determining the equation which will best represent the entire

group of observations, thus involving an adjustment by the

Method of Least Squares. Such an expression, depending upon

experimental data, is known as an Empirical Formula.

114. Their Uses. Empirical formulas are sometimes called

interpolation formulas from the fact that one of their principal

uses is to facilitate the interpolation of values of the function

among the observations. The curve which represents the formula

is smooth and continuous and avoids the disci'epancies among the

various observations, so that interpolation is usually safe and

reasonable. However, th(M-e is generally a teridency to use the

formula beyond th(^ limits of the obsei-vations, that is, to extra-

polate along an extension of the curve. While this yields, in

many cases, very useful and inteivsting results, care must l)e taken

that such results l)e Tiot considered trustworthy except within

reasonable limits.

Sometimes it seems impossibU^ to deiive a th(H)i-(Mical relation

b(^twe(Mi two variables, while it is c^vident from the observations

that some conncH'tion does c^xisl. Here the em{)iri('al formula

may Ix^ the only oiu* avail;\bl(\

It is not essential that the inflation expi-(^ss(Hl by the function

131
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have any foundation in theory. It may be purely accidental, as

is the case in many statistical investigations. A formula may be

stated between the death-rate of a city and the time or season,

or between the depth of a pond and the distance from the shore.

However, the existence of a close relationship, such as cause and

effect, is sometimes indicated by an empirical formula, resulting

in the subsequent development of the rigid formula by theoretical

analysis. In this manner some well-known laws have been dis-

covered.

115. Nature of the Problem. Equations may be partially or

wholly empirical. For example, the form of the expression may be

developed theoretically and regarded as known, leaving only the

numerical constants and coefficients to be obtained empirically.

Or, nothing whatever may be known concerning the formula, in

which case it is necessary to assume a form for the equation and

then determine the constants by an adjustment of the observa-

tions. In any event, the problem is, to ascertain those constants

which will make the given expression, whether of previously known

or assumed form, represent the observations as nearly as possible.

Should there be uncertainty as between different forms which

could be assumed, or should the residuals resulting from a solution

be unsatisfactorily large, one or more other forms may be assumed

and the constants be determined for each of them, that one being

finally adopted for which the sum of the squares of the residuals

is the least.

116. The Form of the Equation may be known from theoretical

considerations, as when it is a special case of a group of expressions

the nature of which is known. But in the great majority of cases,

it must be obtained from the observations themselves. This is

conveniently done by plotting them as rectangular coordinates,

representing the values of the function, y, as ordinates, and those

of the independent variable, x, as abscissas, each point thus plotted

corresponding to one observation. A smooth curve is then

sketched so as to follow the plotted points as nearly as prac-

ticable. An inspection of this curve will generally throw it into

one of throe classes, namel.y: (1) a portion of a conic section,

such as a straight line or a parabola; (2) a periodic or wave-like
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curve; or (3) a curve which is non-hnear with respect to the

unknown coefficients, that is, one which involves their products,

squares, or higher powers, or functions.^

To assist in the selection of a suitable form, a number of curves,

with their equations, are shown in Appendix E. Apparent prop-

erties of the desired curve should be carefully noted, as positions

of axes, asymptotes, points of inflection, points of crossing of

axes, maxima and minima, regular or irregular periodicity, etc.,

so that the equation selected may be capable of representing these

features. In general, however, it is convenient to utilize an expres-

sion in the form of a series which can embrace all the curves in a

certain group. This is particularly useful in the first two of the

above classes of curves, and will now be illustrated.

117. Straight Lines and Parabolic Arcs. The simpler curves

vary from the straight line, through the forms which appear uni-

formly curved, to those in which the sharpness of curvature

increases or decreases continuously in one direction. It is possible

to represent any of these by a series of the form,

y = a-\-bx+ cx^-\-dx^+ ex-^-\- . . . (140)

The character of the curve will determine the number of terms to

be used in this equation. Thus, if a straight line be desired,

the first two terms would suffice, giving,

y
= a^bx (141)

If the curvature is slight, or if the curve straightens towards one

end, the parabolic form may be assumed,

y = a+ hx^cx^ (142)

Oi-, if it be desired to represent the ])l()tted points still nioic closeh',

one or more terms may ho added, the principle Ixniig that the

greater the number of terms used, the more nearly will the ivsult-

ing formula fit the observations. If an unnect^ssarily large num-

l)cr (jf terms is used, the coefficients of those which miglit be omitted

' It must be remembered that in the derivation of empirical formulas, the

variables, .r ;ind //, are not the unknowns as they are in the Adjustment of

Indirect ()l)servat ions. Chapter III. Here, the variables are the observed

((Uantities and the eoeffieients are the imknowns which are to be determined.

As will appear later, the methods of solution are analogous.
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will come out quite small or negligible, and a re-solution with the

simpler form may be advisable.

It should be noted that the straight line is a special case, and

that although the plotted points seem to lie very close to such a

line it is usually best to use the formula for a parabola and obtain

a curve which approximates closely to the straight line. This

parabolic form is of very general application for empirical formulas

because of its convenience and adaptability.

118. Periodic Functions. If the curve is composed of similar

elements which repeat themselves as x increases, the function is

evidently periodic, that is, the values of y corresponding to increas-

ing values of x will pass through similar cycles or periods. The

curve in many cases will have a wave-like form, and it may be

simple or very complex. The general formula to be used is a

Fourier series,

. 360 360
y = a-^o sm x-\-c cos xm m

, . 360 360
, , ,

-\-d sm 2a;+ e cos 2.r+ . . . (143)m m

in which a, h, c, etc., are the constants to be determined.^ By
using a sufficient number of terms, this equation may represent

any curve whatever, for finite values of the variables, but in

the case of periodic functions it is particularly useful. If the ele-

mentary parts of the curve are alike and not complicated, the

first three terms will be sufficient; otherwise, succeeding pairs

of terms should be added, involving the nmltiples of x. Unless a

complex formula is expected, it is well to sketch each wave in the

curv(^ so it will !)(> symmetrical about its middle ordinate. If the

total angk^ corix'sj^onding to a cycle should be LS0 instead of

360, this nuinh(M- should l)e substitut(>(l for the latter in the for-

mula.

Th(^ constant (iuantit>-, ni, is the nuinb(>r of units of x in one

cycl(> or period, and is assumed from an inspection of the curve

and the observations. For example, sui)pose the brightness of a

' For ail interesting ai)i)li('ati()n of harmonic analysis to this jiroblem, see

Brunt's Combination of Observations, Chai)ter XI
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variable star to be observed from day to day, and when plotted as

a function of the time to seem to have a period of about nine days.

Here, x would be the number of days elapsed since an assumed

epoch (such as the date of the first observation) and m would be

assumed as 9. Thus, x/m is an abstract number; 360a:/m is a

number of degrees; and 360 /m is a constant coefficient of x in

any single problem. Different values of m may be assumed, and

the problem solved for each, if deemed worth while, that one being

adopted for which the sum of the squares of the residuals is the

least. In determining the period, m, from the curve, it is well to

measure it at several places, if possible, and take the mean.

AVhen the empirical formula of this periodic type has been

determined, it may be transformed into a more convenient expres-

sion in the following manner: Let hq, ni, n^, Ni, N-z, etc., be

auxiliary quantities determined from the assumptions,

no = a
;

/; i sin A'l = 6
; ^2 sin A"^ = '/

;

??icosA^i = c; n2CosA^2 = c; etc. (l-l-i)

Substituting in (143), and combining, we have

/360 ^ \ /360 ^
\

, ,

7/
=

/(()+ /( 1 cos .r A 1 )+/;> cos 2.r A2)+ (145)
\ m / \ m J

which is shorter than (143). From (144),

h ,, h

n\^-: ^-, tanAi=-, etc.
sm A 1 c

119. Non-linear Forms. As stated in Art. 38, equations of

higher dogrco can be reduced to linear form, in general, by Taylor's

Theorem, and in the case of exponential equations by the use of

logarithms. Thus, it is not necessary to treat these higher degi-ee

expressions (^xcept by reducing to the linear form and then applying

th(> usual methods. These j^i'ocesses of i-(Hlu('tion will now be

(explained. They are ajjplieable, of (ours(\ to e(iuatioiis wliicli

ai'e non-linear as to the independent variable as well as to those

which are non-linear as to the eoc^ffieients.

120. Exponential Functions. I'(iuations in which the unknown

constant occurs as an exponent constitute a special ca^e tor I'ecluc-

tion to linear form which, owing to its simplicity-, will he discussed
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first. In brief, the method is to throw the equation into the

logarithmic form, by taking the logarithm of each member, and

the resulting function will be linear with respect to the desired

coefficient. Suppose the function to be of the form

2/
=

arc^ (145)

in which a and b are to be determined so as to fit all of the observa-

tions as well as possible. Taking the logarithm of each member,

log y = \og a-\-h log X (146)

which has the linear form

y'
= A-]-bx' (147)

where A and b are the unknown constants.

By plotting log x and log y as coordinates, or by using loga-

rithmic cross-section paper for plotting x and y, the above exponen-

tial formula would be represented by a straight line. Thus the

assumption of this form of equation can be easily checked.

Special attention must be given to the weights in this case of

exponential functions, for the weights of the reduced, linear equa-

tions will not be the same as before reduction to the linear form,

even though they were then equal.^ If the weights of the original

observations of yi, y2, ys, etc., are wi, W2, ws, etc., the correspond-

ing weights of the functions, log yi, log y2, log yn, etc., will be yi^wi,

y-i^wo, yii^ws, etc.- Or, if the original weights are equal, the

reduced equations will be weighted directly as the squares of the

corresponding observed values of y. If the empirical formula

1 This matter was first brought to the attention of the author several years

ago, bj- Mr. C. K. \'an Orstrand.
2 It will be shown in the next chapter (Art. 143) that the weights are in-

versely as the squares of the mean square errors, and that (Art. 152) the mean

square error of a function of ?/ is equal to the mean square error of y multiplied

by the derivative of the function with respect to //. Thus,

(I (log i/) 1

iog !/

=
;/ 7"~" = f2/- (l-47a)

dy y

and

"'iogj/
= "Vy' (1476)

the mean sfpiare errors being represented by e.
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follows the observations very closely, however, as is usually the

case, these weights will not have much effect. In fact, the errors

of observation may warrant neglecting them in most cases.

121. General Case of Reduction to Linear Form. A simple

example of an equation of the non-linear form with respect to

the coefficients would be the following:

2y
= 2+53a;+c.T2+r/'V+ . (148)

Thus, each observation equation would be a function of a, b, c, d,

etc., since x and y would be the observed numerical quantities,

so that if the observed values of the function, y, be represented

as usual by Mi, M2, Mz, . . . Mn, the observation equations

would have the form,
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approximate values, to be determined by this solution. The
observation equations may now be written,

/i(Ao+a', 5o+fo', Co+c', . . . )=Mi+yi

f2{Ao+a', Bo+h', Co+c', . . . )=M2+V2 (151)

/3(Ao+a', 5o+ &', Co+ c', . . . )=M;+Vi

the residuals being represented by fi, y2, vs, . . .

These functions will now be expanded by Taylor's Theorem.

The unknown corrections, a'
, h', c', . . . being small, it is per-

missible to neglect the terms involving their products and higher

powers. The constant terms, /i(Ao, -Bo, Co, . . .),f2(Ao, Bo, Co, . . .),

etc., will be combined with the corresponding Mi, M2, etc., and

represented hy l\, h, etc., thus,

MAo,Bo,Co, . . . )-Mi = h (152)

The observation equations will then become,

cIAq aBo clCo

1 .^-^^ df2 df2 ,

t2+ 7T-a'+;T^6'+-^77-c'+ . . . =V2 (lo3)
dAo dBo dCo

which are linear with regard to a', 1/
,

c'
,

. . . The differential

coefficients arc obtained by differentiating the left-hand members

of (149) with respect to a, b, c, etc., and then substituting for

these quantities their approximate values, Aq, Bo, Co, etc. If now

we let the differential coefficients be represented by ai, hi, Ci,

etc., with the subscripts of the corresponding equations, we obtain,

aia'+ 6i6'+ cic'+ . . . +/i=t'i

a2a'^b2l/+ C2c'-\- . . . +?2 = ?^'2 (154)

an(i'+ hJ)'-\-Cnc'-^ . . . +/ =
/'

which arc similar to (18), page 27. Normal ec}uations having boon

formed as in (21) or (22), tlioir solution in tlie usual manner results

in the dc^sired corrections, a', h'
,
c'

, etc., which applied to the

approximate values, yio, Bo, Co, etc., as in (150), give the most



EMPIRICAL FORMULAS 139

probable values, A, B, C, etc. From these, the desired non-

linear coefficients of the original equation are computed directly,

giving finally the empirical formula sought.

If the observations are of different weight, the general form of

normal equations, (21), would be used as in Indirect Observa-

tions, Chapter III.

122. Determination of the Constants. The plotted observa-

tions having been investigated and a suitable form selected for the

eciuation, reduced, if necessary, to the linear form as just explained,

it remains to form the observation equations and from them the

normal equations, the solution of which is to give the desired

constants for the empirical formula. In general, it is similar to

the case of Indirect Observations, and the methods of Chapter III

arc applicable. The function will be stated in the explicit form,

y^J{x), although, of course, these quantities may be reversed, if

desired, to fit the conditions, into xf{y), which form may some-

times be simpler than if fractional exponents were used.

The observation equations are formed, one for each observa-

tion, by substituting for x and y their observed values. The

processes of Arts. 48 and 49 may be utilized for the simplification

of the equations, and the normal eciuations will take the form

of (22) or (21) according as the weights are equal or unequal.

The solution of the normal et^uations will be carried out by the;

usual methods, and the resulting values of the unknowns, modified

as necessary, will furnish the constant term and coefficients of

the empirical formula.

123. Test of Empirical Formula. There are two methods of

determining how closely the formula corresponds to the observa-

tions, namely, ])y plotting the curve of the formula and by com-

})uting the residuals.

The residuals arc^ f()fin(Ml by substituting the observed values

of the varia1)le, .r, in tli(^ euipirical formula and computing the cor-

responding values of y. Subtracting from tliesc^ the observed

values of ?/, we obtain the residuals with the signs of corrections

to the observations. The sum of the sc^uares of th(>se i'(\si(luals

is the quantity which should be a mininunn if the empirical

formiila is the most probable one.

Having ploftcd the values of y, coinpu1(Ml as above from the
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formula, the need of other, intermediate values in order to accu-

rately define the curve may be seen at once and such values com-

puted and plotted and the curve drawn by means of a French

curve. If this be done on the sheet showing the original observa-

tions, the value of each residual is shown to scale by the vertical

distance from the corresponding observation up or down to the

curve, according as the residual is plus or minus, measured on its

ordinate. Inspection of these graphical residuals will determine

whether or not another form of curve should be assumed and the

work repeated in order to find a closer approximation to the obser-

vations. If this should be done, the sums of the squares of the

residuals in the two cases would be compared and that formula

adopted for which this sum is the smaller. In a case of great

importance, especially one that involves a large number of observa-

tions, several trials of this kind might be made in order to obtain

the best formula.

124. Remarks. The above method of deriving empirical

formulas is evidently closely analogous to the adjustment of

Indirect Observations, that is, observations of a function of several

quantities, and it must be borne in mind that in this method the

errors of observation are assumed to lie in the values of the func-

tion, y, and not in those of the variable, x. At least, the errors in x

are assumed to be negligible in comparison with those of tj}

A final word of caution must be added with regard to the use

of the empirical formula. In general, it is safe to use it within

the range of the observations, that is, in interpolation; but

only in very exceptional cases should it be depended upon for

extrapolation, outside of these limits. Duncan ^ cites the example

of the stress-strain curve, which is practically a straight line until

the clastic limit is reached, but which, at that point, suddenly

breaks into a sharp curve. An extrapolation from the straight

line would be greatly in error.

Again, it nuist be emphasizcnl that the form of the empirical

cfiuation is assumed at the outset and from considerations outside

' For an investigation of the case when x and y arc equally subject to error,

see Report of C. & G. Survey, 1890, page 687, or ^\'right's Adjustment of

Observations, Art. 106.

2 Practical Curve Tracing l)y R. II. Duncan.
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of the Method of Least Squares. From that point as a beginning,

this method determines the best values of the coefficients for

that form of equation, but unless a suitable form has been selected

the resulting empirical formula may be no better than a rough

guess. Therefore, great care should be exercised in choosing the

form of the equation.

When the observed data are few and widely scattered, it is

scarcely worth while to go to the trouble of a Least Squares adjust-

ment to establish an empirical formula. In such a case, it is

usually sufficient to sketch a smooth curve through the plotted

observations and to determine the constants of the curve by

scaling various elements from it, in connection with its known

properties. In particular is this method applicable to straight

lines and to those hyperbolic forms which appear as straight lines

when plotted on logarithmic paper.

125. Example : Straight Line. Let it be required to derive

a formula which shall fit the following observations as nearly as

possible, preference being given to a straight lino, if reasonable.

.r
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5.0 =

2.9 =

1.0 =

of the equation to be, y = A-\-Bx, A and B to be determined.

Substituting the observed data in this form and reversing the order

we obtain the equations,

- 5+^-14.0 =

+ 5+^-13.0 =

+ 5S+A-10.7 =

+ 9B-\-A- 8.0 = (155)

+ 14B+A-

+ 175+A-

+20jB+^

Considering these to have the form, aiA+ 6i5+/i =yi, to cor-

respond to equations (18), the normal equations take the form of

(22), and become

+9935+65A -263.8 =

+ 65B+ 7A- 54.6 = (156)

the solution of which gives A = +13.62, and 5= 0.63, so that

the required empirical formula is,

^=13. 62 -0.63a: (157)

Substituting the values of A and B in (155), with the original

values of X, the computed values, ?/', are obtained, and subtracting

from these the corresponding observed values, ij,
we find the resid-

uals V, which, for further reference, will be squared and added.
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The line is easily plotted from the points where it crosses the

axes, that is, where x = and where y = 0, which have been added

to the above table. It is shown in Fig. 34. The residuals are

indicated as the vertical distances of the observations from the

plotted line.

126. Example: Parabola. From the observations in the

preceding article, let us determine a curve instead of a straight

line, using the parabolic form,

y^A^Bx+Cx^ (158)

Substituting the observed values of x and y, and reversing the

order, we obtain the observation equations,

C- 5+^-14.0 =

C+ 5+^-13.0 =

25C+ 55+^-10.7 =

81C+ 95+A- 8.0 = (159)

196C+145++- 5.0 =

289C+175+A- 2.9 =

400C+205+.4- 1.0 =

In order to reduce the coefficients of the first two unknowns, we

l(>t C = \QOC, and B' = 105, as in Art. 49. Then we have,

.OIC- .15'+ .4- 14.0 =

.01C'+ .15'+.4-13.()

.25(:"+ .55'+ .! -10. 7

.Sir+ .95'+ .!- S.O (160)

1.9()r'+I.45'+ .l- 5.0

2.S9("+ 1.75'+ .4- 2.9

4.()()r"+ 2.()/r+ .l- 1.0
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The resulting normal equations are,

c
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127. Example: Exponential Curve. The following observa-

tions are plotted in Fig. 35, and an exponential curve seems reason-

able to assume. In order to investigate the equation more in

X
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these values as coordinates shows a distinct curve, in Fig. 36.

However, the differences in log y are seen to correspond quite

Log X

Fig. 36. Exponential Function; Logarithmic Plotting

closely with those in x itself, and this is verified b}' plotting x

and log y, in Fig. 37. Therefore, the desired equation will have

Log
1.5
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and carrying the numerical work to two places, only, we have,

Wt.

0.25+A-0.66 = 0.2

0.65+A-0.76 0.3

1.25+^-0.88 0.6

1.6B+A-0.98 0.9 (166)

2.05+A-1.06 1.3

2.45+^1-1.16 2.1

2.85+A-1.24 3.1

3.05+A-1.30 4.0

The weights of the original observations are assumed equal.

Those of log y, and the observation equations, will then be directly

as the squares of the ?/'s. In the table these have been divided by
100 to lessen numerical labor.

The normal equations, formed in accordance with (21), are,

+80 . 885+30 . 70A - 37 . 18 =

+30.705+12.50^-14.63 = (167)

and from their solution, 5= +0.22 and A = +0.63, so that the

empirical formula is,

log y = 0. 63+0. 22x (108)

or,

a; = 4. 55 log ?/- 2. 86 (169)

or,

7/
= 4. 27(10"-"^) (170)

Computing the values of log y' and from them those of y\

corresponding to the successive values of x, and forming the

residuals, we obtain tlie following table:

.(
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The curve is plotted in Fig. 35, and the straight Une, using log y,

in Fig. 37. The residuals of log y, in the column headed vi, are

practically negligible; those of y, called vo, are somewhat larger,

and increase numerically with x. This may seem surprising in

view of the increasing weight used, and in order to illustrate this

effect, the normal equations were formed a second time without

considering weights at all, and solved with the following equation

as a result :

log t/= +0.61+0. 23a; (171)

The residuals of log y are about the same as before, but those of

y are, respectively, 1, 0, 0, 0, +.3, 0, +.7, and 0, indicating

the diminishing weights. However, the curve follows the obser-

vations so closely that the weights have little effect upon the empir-

ical formula.

128. Example : Periodic Curve. The following set of observa-

tions is given for the purpose of determining the equation which

will best represent them. They are of equal weight.

X
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the waves occur in pairs, one large and the next smaller. The

cycle or period is completed in approximately 2.4 units of x, and

this value will be assumed for m in (143). Owing to the fact that

the waves in the curve are not equal, the first five terms of (143)

will be used, namely,
.

360 ^ 360
y = A-^B sm x-\-C cos x

. 360 ^ 360
-\-D sm 2x-\-E cos 2xm m (172)

which becomes, upon inserting the above value of m,

y^A^B sin 150.t +C cos lbOx

+D sin 300.r+7^ cos 300a; (173)

Substituting the various values of x and y, and looking up the

natural sines and cosines to two places, we obtain the observation

equations, which will be written, for convenience, in the reverse

order:

+0.87'+0.50Z)+0.97C+0.26fi+A-8.0 =

-0.87/i'+0.50i)+ 0.26C+0.97i?+A-0.8 =

-1.00Z)-0.71C+0.715+A =0

+ 1.00^ -l.OOC +.4-0.5 =

+ 1.00Z)-0.71C-0.715+A-4.5 =

-l.OOE -1.00B+ -4- 1.0 = (174)

-1.00/:)+0.7ir-0.71/i+A+2.0 =

+ 1 . OOE + 1 . OOC + .4 - 5 .0 =

+ 1.00/)+0.71C+0.717?+A-9.5 =
-

. oOE-0 . 87/)- . .5()f
'+ . S7/i+.4 -1.0 =

The normal (xiuatioiis. forincd in tlie usunl mainier, are,

/;
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the sub-diagonal terms being omitted for the abridged solution.

Solving these equations, the following values of the unknowns are

obtained :

A = +3.00, B=-\-2.24, C=+1.73, Z)=+3.93, ^=+0.09.

The empirical formula, therefore, will be,

^ = 3.00+2.24 sin 150a; + 1.73 cos loOa;

+3.93 sin 300.t+0.09 cos 300.t (17G)

or, expressed in the form mentioned at the close of Art. 118,

t/
= 3.00+ 2.83 cos (150a;-o2 19')

+3.93 cos (300a;-88 41') (177)

The curve is plotted in Fig. 38. For this purpose, a numljcr of

extra values of y were computed so as to determine the curve with

greater precision. It is evident that a larger number of obser-

vations would be desirable in the case of an equation as complicated

as this one. The curve conforms to the observations fairly well,

and it is doubtful that a recomputation with a different value of m
for the period would be worth while. It is useful to note in con-

nection with the plotting that the same value of y will correspond

to values of x which differ by multiples of m. Thus, for .r = 0.1

and 2.5, we have the same value of ij, namely, +7.32.

129. References. The reader is referred to the following works

in which useful information and methods concerning empirical

formulas will be found. The collections of examples given ])y

Weld and Bartlctt are worthy of note.

\Vuight: Adju.stinent of Observations.

Comstock: Method of Least Squares.

Meiiuim.\x: Method of Least Squares.

AVkld: Thc'ory of Errors and Least Squares.

B.\utlktt: Method of Least Squares.

Helmeiit: Auspcleic'hungsrechnmig,

Duxc.w: Practical Curve Tracing.

BiirxT: Combination of Observations.

LiPK.\: Graphical and Mechanical Oomi)utation.



CHAPTER VIII

PRECISION OF OBSERVATIONS AND RESULTS AND
COMBINATION OF COMPUTED QUANTITIES

130. Having considered the determination of the best values

of the unknown quantities to be obtained from given observations,

it remains to investigate the degree of confidence which may be

placed in the observations and the computed results, so that they

may be compared with the results of other observations of the

same quantities.

131. Precision. If two sets of direct observations of the same

kind be compared, and in the first the component quantities are

scattered over a wider range or are more discordant than in the

second, it is natural to conclude that the observations of the

first set were mads with less care or under less favorable cir-

cumstances than those of the second set. The latter are more

consistent and evidently more precise; their differences or dis-

ci'cpancios are smaller. Furthermore, even though the number

of oljservations in the two sets were equal, the mean of the second

set would be regarded as of greater reliability or weight than the

mean of the first set, merely l^ecause of the greater consistency, i.e.,

smaller discrepancies, among its original observations. Since

these smaller discrepancies correspond to smallci- I'csiduals from

the mean, it is evident that the precision of the mean is indicated

by the size of its ]-esiduals, being grc^ater as the residuals are smaller,

and ^i(( vci'sa.

132. Precision and Accuracy.' This ])reci>ion must not be

coufu.-cd witli the accurac\', that is. the correctness, of tlie results.

The latter is affected by systematic errors (\v\. .")). Thus, a

sei'ies of observations may be very closely grouped, showing a

'

.'<c(' .John-nn. I'heory (if llrrors ami Mctluid of Lca>t .SfjUarcs, (Jhaj). \'II,

for ail cxtcndcii trcatineiiT of tlii< -ulijcct.

l.jl
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high degree of precision, but each separate observation, and there-

fore, the mean, may be in error by a large amount due to some

influence which is unknown or not taken into account. Precision

has reference to the accidental errors of observations made under

constant conditions and indicates the care exercised by the observer,

the closeness with which the instrumental readings are made, and

the suitabilit}" of the method used. Discordant observations are

not precise; but precise determinations may or may not be

accurate.

133. Index of the Precision. It is easy to obtain an idea as

to the precision of the observations from an inspection of them

or of the residuals of their mean. But in the comparison of the

results of diiTerent sets of observations of the same quantities,

it is very convenient to have a numerical index from which the

precision of each set may be determined without actually inspecting

the observations themselves. Since this precision is indicated, in

general, by the size of the residuals, it is evident that the desired

index would logically be some function of these residuals. The

precision of a result will depend, also, upon the numljcr of obser-

vations from which it is obtained. Obviously, the larger the

series of observations, the greater should be the precision of their

mean as well as that of the typical single observation. Thus, we

might use the mean of the residuals, without regard to signs, or

the square root of the sum of their squares, and either of these

would give us some idea of the consistency of the observations,

this hypothetical I'csidual being smaller in the case of greater

precision.

From the very inception of the ]\Iethod of Least Squares, the

investigation of tlie precision was regarded as of considei-a])l('

iniportajice. Sevei'al ([uanlities have been iis(h1 to indicate it.

( lauss designated the (}uantity, h, in the Law of luTor, as a
" meas-

ure of prcM'ision.'" However, other indices have hcon more gen-

erally used, namely, certain selectcnl eri'ors, theoi'etically defined, as

the Mean Square Error, the ProJxihle Error, and the Average Error.

These will now be considered in oi'(l(>r.

134. The Quantity, h. in the Law of Error. If we consider two

sets of observations of the same (-luantit;', in;;(l-^ in th(> same man-
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ner, to be represented by the curves in Fig. 39, the area between

each curve and the axis of A will be unity, that is, the probability

of an error between the limits oo and +00. Then, the taller

the curve, i.e., the greater the p-intercept, the larger will be

the portion of the area immediately adjacent to the p-axis and the

more numerous the smaller errors will be in comparison with the

entire group; in other words, the greater will be the precision.

By inspection of the Law of Error,

h
V-

-h2A2

V71

h . h
it is seen that when A = 0, p^ =, so that the p-intercept is =

Vtt Vtt'

Therefore, Vtt being a constant, h may be regarded as an index of

the precision, with which it varies directly.

Fig. 39. Curves of Probability

135. The Mean Square Error (e) of an observation is defmed

as the square root of the mean of the squares of the errors in a

given series of observations.^ It will be represented by e or

m. s. e. To determine its relation to h of the previous article, we

proceed as follows:

According to thc> Law of Error, the probability of the occiu'renco

of an error. A, in a given set of ol^servations, is,

V-K^)=^e->>'-' (178)

1 The moan square error is sometimes referred to as the uiean error. This

introduces an ambiguity with the average error, or mean of the errors, and is

an unfortunate use of the term. Clerman writers call it der mittlere Feliler

but this involves no ambiguity as they designate the average error as der

(hireli.-ielinittliehe Feldcr.
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and the probability of an error between the hmits A and A-\-dA is,

-^e-^'^'dA (179)
Vtt

The number of these errors will be equal to their probability times

the total number of observations (or errors) in the set/ that is,

nh ,,,,
^e-^'^^'dA (180)Vx

and the sum of their squares will be,

^e-'''^'A^dA (181)

then the sum of the squares of all of the errors, between the limits

00 and + cc
,
^vill be,

nh r

and the mean of their squares, equal to e- by definition, is

nh r+ '^-

e2 =--^ e-""-^'A^dA (183)

^-^f'\-'"^'A^dA (184)
VttJ- '^

Substitutmg in (184) the value of the definite integral,^

1 Sec Appendix C.

2 This integral maj* be evaluated in the following manner (Bartlett):

The probability of an error between the limits co and + oo is unity (cer-

tainty), that is,

-^-. I
c-"'^'Ma = 1 (184o)

V 71

,-
,

e-'-^^A2</A (182)

or,

e-"'^>/A=--^ (184&)
h

Differentiating both members with respect to h, we obtain,

A-dAdh= '~dh (lS4c)
h-

hence,

For another solution, sec .Idi-dan. Ilamlbuch dor VtTmessungskunde, I, .ItU.
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(185)'

V^V2/iV"2/i2

Hence,

(186)

cr.

hV2

h = ;=, as stated in Art. 19.
eV2

The geometrical interpretation of the mean square error is

that it corresponds to the abscissa of the point of inflexion of

the Eri'or Curve. Differentiating (178) and placing the second

derivative equal to zero, we have,

2h^A

f'{A)=y-e-''^' (187)
Vtt

/"(A) =^c-^^^^+ -^e-"=^^ (188)
Vtt Vtt

2h^= - e- "'^\2h^A^
-

1)
=

(189)
Vtt

Therefore, for the point of inflexion,

2/rA--l = or, 2/;2a2=1 (190)

and

A = T'-^e, from (ISO) (191)
hV2

^ ^

which shows that the point of infl(>xion corresponds to tlie mean

scjuare error of an oljservation.

136. The Probable Error (r) of an o])servation in a given

series is the middk^ one of all the errors when they are an-anged

in numerical order, each Ix^ing written as inany tinu^s as it occurs.

As many of the errors are gn^iter than it as nvv less, and so the

])n)l)ability of an error greater than the j)i-()babl(^ error is e([ual to

that of an (M-ror less than it , namely, ()..">, since the total ]ii-()b;ibiiity

is unity. It is an even chanei^ that an ei'ror taken at I'andom

from the series will ])e gi-(>at(>r or k'ss than the pi'obable ei'ror.

This is not the most pmbnhle error in the series, for that would

];)e zero, to correspond to the maxinunn ordinate^ to the Error

Curve, and it is unforiunate tliat the nanu^ has com(^ to be quite
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generally used in this country. It is simply a quantity from which

the precision of the observations can be estimated or deter-

mined, in comparison with similar quantities referring to other

observations. A better name for it would be the middle error.

It is represented by the letter r.

The probability that the error of an observation will be numer-

ically less than the probable error is, by definition, ^. Then

from the law of Error,

h r+' 1

or changing the lower limit,

^j'.-VA
= i

(193)

It is not feasible to determine the value of r in terms of h directly

from this equation, so we make use of the following process :

In the Law of Error, let

t = hA, whence dA = ~.
h

h r^ 2 n
^\ e-"'''\l\ = --^\ e-'\lt (194:
Kja V TT Jo

Then we have for the proba])ility of an error less than A,

Vti

This expression is evaluated for various values of t, by expansio:i

into a series,^ and the results are tabulated with t as an argument.-

By interpolation in this table with the value of the probability

0.5, the corresponding value of t is found to be 0.4769, which i.

the value of t = li\ when A is the probable error, r. Thus,

/ir = 0.4769 (195,)

and
0.4769

r= (196)

Since the probability that an error will lie between certain

limits is represented by the area bounded by thc^ Error Curve,

the horizontal axis, and the ordinates at those limits; and since

1 Sec Appendix C, page 215.

2 See Table I, page 229.
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the entire area between the curve and the horizontal axis repre-

sents the probabiHty of an error between oo and + ^ ,
that is,

unity (certainty); it follows that the ordinate of the probable

error divides the area on either side of the vertical axis into two

equal parts corresponding to the probability, |.

137. The Average Error (7?) is the mean of all the errors in a

set without regard to signs. Since positive and negative errors

are equally likely to occur, the probability of a positive error

between A and A+dA will be one-half of that of any error between

those limits, that is, it will be equal to

h r^""
V I

e-^'-^V/A (197)
2V7rJ-x

The number of the positive errors will be their probability times

the total numlx^r of errors, n, namely,

^^
I

e-'^^^^rfA (198)
2V7rJ-=c

and their sum is,

nh r+"-^ e-^^'^''^d^. (199)

But the sum of the negative errors is numerically equal to that

of the positive ones, so that the total sum will he twice the above,

that is,

*'- ,"". -^=^=Ar/A, (200)
V7

nh n

or,

^'"" '

-^^'^'AdX (201)V

and the average of all of the errors is therefore,

<() that.

^f\^-'''^'Adl (202)
Vtt Jo

-^ r c'-"'^'(-2/i2A)r/A (203)

: .
J

r---^ (204)

-
(205)
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The ordinate of the average error passes through the center

of gravity of the area between the curve of error and the horizontal

axis on either side of the vertical axis. For, if Ao represent the

abscissa of the center of gravity, by considering vertical strips of

width dA and length

Vtt

and taking moments about the origin, we have.

~
re-'^^'dA^-^ Ce-"'^'AdA

ttJo 'Vtt.Jo
Ao4= I e-'"^'dA^-^\ e-'"^'AdA (206)

Vti

But since the total probability area is equal to unity, the area

on one side of the vertical axis is 1/2, that is

(207)

Hence,
2h C"^

Ao = -iL( e-'-'^'Af/A =77, from (202). (208)

138. Comparison of the Indices of Precision. From (186),

(196), and (205), we obtain directly,

eV2 '"

tjVtt

- = 1 . 4 142 6 = 2 . 09()6r = 1 . 7726r? (2 1 0)

e=1.4826r=1.2533r7
]

r = 0.07456 = 0.84587? \ (211)

r?
= 0.7979e=1.1829r J

Thus it is seen that the mean square error, the probable error,

and the average error are related b}- constant factoi-.'^. Therefore,

they may be used interchangeably in various formulas and math-

ematical investigations b,y simply providing for the numerical

factors.

In Fig. 40, these quantities are shown in their correct relative

positions and magnitudes. The abscissa' rcpi'o.sent the erroi-s
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and the ordinates their probabihties. It will be recalled that the

intercept on the vertical axis is - =.

Vtt

The quantity, h, is directly proportional to the precision.

However, it is inconvenient in practice and is not generally used.

The three representative errors, e, r, and rj, on the other hand,

are inversely proportional to the precision; the smaller these

errors, the more precise and consistent are the observations.

They are sometimes said to indicate the uncertainty, therefore,

instead of the precision. Each of the three errors occurs in a

Fig. 40. Relations between the Varioas Indices of Precision

certain relativi; position when all the errors in a set of obsei'vations

are arranged in the order of their numerical magnitude, as, for

example, the probable error occupies the middle of the series.

This feature is what one would naturally expect in an index of

the precision (Art. b38).

The average^ error, also, is not used in practice as an index,

although it would be a satisfactory one. It may be used, how-

ever, in the process of determining e and r.

Tlie mean scjuare eiTor and tlic pr()l)abl(> error are in common
use as indices of the precision. The former has l)een almost uni-

v(M'sally used by writers in German and othei- foixMgn languages, as

w(>ll as by some Americans, notably in the classic Adjustment of

( )t)S('rvati()ns, by Pi-ofessoi' T. W. Wi'ight, and by ( 'hauvenet,
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Newcomb, and Crandall. Its principal advantages lie in the facil-

ity of its theoretical derivation; in its priority (it was used by

Gauss); in its use by the Germans and French, who have made
the most numerous contributions to the subject of Least Squares ;i

and in its avoidance of the misnomer of the probable error which is

frequently a stumbling-block to the beginner.

The probable error is used by most American and British

writers. Its name is its greatest enemy, but there may be some

advantage in its mere reference to probability. The person who
does- not clearly understand its significance is apt to take it at its

face value and so interpret it. However, it is hoped that such

persons will learn what it means or leave it alone. It should be

understood simply as an index of the precision.

Whichever index is used, it is written after the quantity to

which it refers and separated from it by the sign, . This is

merely a convention and the sign is never to be used algebraically.

There is never any reason for increasing or diminishing a quantity

by the amount of its mean square error or probable error. A
better method of designating it would be to use instead of the sign,

,
the symbol for the mean square error (e or m. s. e.), or that

for the probable error (r or p. e.), as 7653.28 (
= 0.02). But

the use of the sign is well established as is also the term probable

error.

139. Precision of Direct Observations. We have seen how

the precision in a set of observations may be indicated by the mean

square error, the probable error, etc., and it is evident that if

we could know the true value of the observed quantity, and

therefore, the true errors. A, we could ascertain the numerical

value of the index of the precision dircctl}^ from those ei'rors, by

definition, as

e^ =
, r]

=
,
and r = the middle error. ^

n n

But as these true errors are unknown, it remains to determine the

precision index from the given observations or n^sidiuils. Know-

' Sec Appendix A.
^ The syuiVjol fur the .sum without reg;ir(l to signs is

[
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ing the relations between the three indices as stated in (211), it

will suffice to determine the mean square error in each case and

from it to express the probable error and the average error.

140. Precision of a Single Observation. Each observation

has its own individual error and when we refer to a
"
single obser-

vation
"

in this connection, we mean an observation such as those

in the set which is being discussed, not any single one of them,

but a hypothetical one which is never evaluated, but which is

typical of the entire set in so far as precision is concerned.

Using the notation of Chapter I, let M represent an observa-

tion of a directly observed quantity; v, its residual from the

arithmetic mean, xq; X, the true value of the observed quantity;

A, the true error of an observation; Ao, the true error of the

arithmetic mean; and n, the number of observations in the

series. Then, using subscripts to indicate the separate obser-

vations,

X = .To+Ao = il/i+Ai=ilf2+A2 . . . (212)

Vi^xo Mi, V2^xo M2 . . . (213)

Ai-xo+Ao-ii, A2 = a:,)+Ao-M2, . . . (214)

Ai=i'i+Ao, A2 = y2+Ao, . . . (215)

Squaring both members and adding the n resulting equations,

[A->[i'2]+2AoH+nAo2 (216)

From (8), [y]
=

0; and the unknown true error, Ao, of the mean is

assumed, for this demonstration, to be equal to the mean square

error of the moan, the value of which is determined in Art. 153

to bo (see Art. 141),

6

(217)

(218)

(219)
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Then, from (211),

r = 0.6745

7?
= 0. 7979a P^^ (221)\n 1

These three formulas are known as Bessel's Formulas and the

first two are in general use. In long series of observations,

however, it is more convenient to use Peters' Formulas, which

involve the sum of the residuals without regard to signs, [v,

instead of the sum of their squares. They may be derived as

follows :

From (217) and (218),

[A2] [,2]

n n1 (222)

k1 = "--[A2] (223)
n

and,

v,=J''-^Ai, V2 = J'^^A2, . . . (224)
\ n y n

Adding these n equations, neglecting the signs of v and A, wc have,

since, by definition, rj
=

[A/n,

whence,

!^[A =,J^, (225)

and from (211),

,
=-^^=^ (226)
vn(n 1)

W
e = 1 . 2533 =i z:^ (227)

V7i(n 1)

r = . 84o3-yJ:L= (228)
V

??,(?! 1)

An ayjiroximate value of the probable error of a single o})serva-

tion in a series of from 20 to 30 observations may l)c determined

by taking one-sixth of the rangc^ of the set, or one-third of the

largest residual. Fi'om the table of values of the I^aw of Error,
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it is found that the probability of an error three times as great

as the probable error is about 0.04, or 1 in 25.^ That is, in a

series of 25 observations, the maximum error is likely to be about

three times the probable error of a single observation. And,
since there are as many positive as negative errors, the total range

of the observations in an ordinary set of, say, from 20 to 30 obser-

vations, is likely to be about six times the probable error, or about

four times the mean square error of a single observation. Con-

versely, knowing the precision index, and the approximate number

of observations in the set, we can estimate the range. Frequently

this fact affords the most tangible idea as to the consistency of the

observations, especialh^ to the beginner, since, by doubling the

mean square error of a single observation he obtains an approximate

value of the maximum residual.

141. Precision of the Mean. The arithmetic mean being the

best value of the observed quantity obtainable from the given

direct observations (Arts. 14, 27), it is obvious that the precision

of the mean wall be greater than that of a single observation, and

also that the precision will increase with the nvmibcr of observa-

tions in the set. In Art. 153 it is shown that if e be the mean

square error of a single observation, and eo that of the mean of the

set of n observations,

60
=-^ (229)
Vn

which expresses the very important relation that the precision of

the mean increases directly as the srpiare root of the number of obser-

vations. In other words, to double the precision, that is, to divide eo

by two, it is necessary to make four times as many observations.^

'See Ai)i)en(li\ 1'', pajjo 231.

The probability of an error less tlian three times the probable error is

0.957, eorrespoiidiiifi to A r = 'A.(); th(>n the probability of an error greater

than this would l)e 1-0.9.57 =0.01.3.

- It must not be assumed that by increasing the number of observations

without limit, the precision can be indefinitely increased. There are always
infhuMices which make it extremely didicult, if not ((uite impossible, to ap-

proach c(>rtainty beyond a definite limit. In this connection, the reader is

rcf(>rre<l to th(> admirable tn^itment of tliis matter in ^^'right and Hayford's

Adjustment of Oliservations. Arts. 3S to 4l).
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This principle is used in determining the most economical or advis-

able number of observations to make in a certain program.

From (229) and the formulas of the preceding article, wc obtain

the following expressions for the three precision indices of the

mean, by dividing by y/n in each case;

Bessel's Formulas:

(230)

(231)

(232)1

= 0.7979

Peters' Formulas:
n(nl)

V

Vo
nv n 1

= 1.2533-

ro = . 8453

nVn1
[v

(233)

(234)

(235)
wvn 1

The values of the factors of [v~] and [v in these formulas are

tabulated for various values of n to facilitate; computation. Such

a table for (231) will be found in Appendix F, Table IV.

142. Example: Precision of the Mean. Let us consider the

prol)lein in Art. 28, consisting of 16 ol)servations. Here, w=16,

[v
=

5r), and [r-]
= 305, the unit being in the fifth place of decimals.

The results are as follows :
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143. Precision of the Weighted Mean. Since the weights are

merely relative quantities, as explained in Art. 31, we shall consider

them as reduced to integers. The weight of any observation will

then be regarded as the number of elemental observations of weight

unity of which that observation is the mean. The mean square

error, ei, of an observation of weight wi, then, will be that of an

observation of unit weight, nameW, e', divided by \/wi, from (229) :

e

Vwi Vw2
(236)

and

whence.

SiVwi= 2^^^= e3Vw3= ... = e' (237)

.2

(238)
er _W2

which states the fundamental principle that the weights are inversely

as the squares of the mean square (or probable) errors. Also, since

the weight of the weighted mean is, by the definition of weights,

[w], from (237) we have.
e

eo
= = (239)
V[w]

which corresponds to (229).

To find the expression for e', the mean square error of a single

observation of weight unity, we proceed as in the case of equal

weights, Art. 140. Beginning with equations (215) and using the

first one only, to illustrate the process,

Ai = ri+Ao, A2 = V2+Ao, ... (215)

Squaring,

Ai2 = yi2+2Ao^'i+Ao2 (240)

]\Iultiplying each ecjuation by its weight,

ivilr=wirr^2\)WiVr}-WiAo^ (241)

Since iri represents iho number of elemental observations of unit

weight which make up th<^ first actual observation of weight wi,

it will also be the num])er of the errors A], so that i/']Ai^' would be

the sum of the squai-cs of these elemental errors; also, by defini-

tion, this sum is equal to the num])er, ir\, times the corresponding

mean square error sciuanvl, and tlierefore,

wilr = wier=e'- from (236) (242)
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in which ei is the mean square error of an observation of weight wi.

Hence,
e''^ = wiVi^+2AoWiVi-\-wiAo^ (243)

Adding the n equations of this kind, and assuming as in Art. 140

that Ao = eo,

n e'2 = [^^y2j _^ 2Ao[wv]+ [w] eo^ (244)

But, from (12), [wv]
=

0,

Therefore,
=

[wv^]+ [w]eo^
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By analogy, the Peters' Formulas for weighted observations

may be written. They are,

[V îvv

VO-

Vn(n 1)

[Vwv

V[w]n{n 1)

(254)

(255)

e'=1.2533-i^ (256)
Vn{n-1)

eo
= 1 . 2533- LJ^= (257)

V[iv]n(n-1)

/ ^0.8453 L^!^ (258)
Vn(n 1)

ro = 0.8453
^

^^'''

(259)
V[w]n(n-1)

144. Example: Precision of the Weighted Mean. In the

problcMii of Art. 33, [ir]
=

ll, /)=4, [tt-r-] =4247, and the mean

square error of the weighted mean is, eo
= 0.11". The complete

result is,

a;o
= 73 18' 42.07"0.11"

145. Precision of Indirect Observations. The process of find-

ing the mean square errors of th(^ best values of the unknowns from

indirect o})servations is nuich more involved than in the case of

direct observations. Also, the precision is required in compar-

atively few cases in which engineers are concerned. The method

will b(> outlined, however, without developing the complete theory,

for which the reader is referred to the works ])y Jordan, and

Wright and Ilayford.

The determination of tli(^ ])i'ecision of the results from in-

direct observations is divided into two parts, namely, (a) the

computation of the relative weights of the adjusted values of

the unknowns. X. Y, Z. etc., and (h) the determination of the

mean s(^uai'f> (m-i-oi-, e', of an observation of weidit unity. Then
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the mean square errors of these unknowns are obtained from

the relation (237) :

Vwr:=

or,

eJ^Wx = ey^Wy
=

146. "Weights of the Unknowns. There are three methods of

determining the weights of the unknowns. We shall use the fol-

lowing one, which utilizes the principle of undetermined coeffi-

cients. In the normal equations (22), page 29, to find the weight

of X, replace the constant term of the X (i.e., first) equation, [al],

by 1, and the other constant terms by zeros. The solution of the

equations thus modified will give as the value of X, the reciprocal

of its weight, that is, 1/wx- Similarly, substituting 1 {or [hi] in

the second equation, and zeros for the other constant terms, and

solving the set of equations for F, we obtain l/wy. Thus, 1 is

substituted for each constant term in succession, the others being

replaced by zeros, and the equations are solved, in each case, for

the corresponding unknown, the resulting value of which is its 1 'w.

This process is tedious at best, but it can be simplified as follows.

It is evident that as the constant terms, only, are altered, the

preceding columns of the elimination in the solution of the normal

equations will be unchanged. Therefore, referring to the cciua-

tions (55) page 47, we may add as many columns as there are un-

knowns, between {I) and {sj, designating them as {x\), iy'z), (23),

etc., in which to write the new constant terms. These would be

included in the check-terms (.s') and carried through the elimina-

tion the same as other coefficients or constants. Then the weight

of each unknown would be determined by substituting ])ack in

the proper column until that unknown was ck^terminod, and

taking the reciprocal of its value. Of course it would be unneces-

sary to substitute farther in that particular column, as but o\w

weight is ol)taincd from (vich colunm. This arrangement of the

eciuations (00) would Ix',

(2()0)
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Since the last equation in the ehmination will have the quantity

1 as its absolute term in its added column, it follows that the

coefficient of the last unknown, in that equation, will always be its

own weight. The last added column, (23), in the above example,

may therefore be omitted.

If the original observations are of unequal weight, the same

process is followed, using (21) instead of (22) as the form for the

normal equations, and replacing the terms [wal], [wbl], etc., by

1, and zeros, as above.

147. Precision of an Observation of Weight Unity. Let the

number of unknowns be represented by m, the number of obser-

vations being n, as usual. Then the formulas for the mean

square and probable errors of an observation of unit weight, are,

\wv\

n in y n m

r' = 0.6745x/^'^ or 0. 6745aM^ (261)^ n m y n m

Liiroth's Formulas arc,

e' = 1 . 2533-J^^ or 1 . 2.533-J=
V ??. {n m )

V ?? (?i 7)i)

r^ = 0.8453 L^^^''' or 0.8453 JL= (262)
V7}{n ))i) 'Vn(n m)

If there is but one unknown, m= 1 and these formulas ])0('()nic those

of Bcssel and Peters for direct observations (Art. 140).

The usual method of determining the residuals is to substitute

the adjusted values of the unknowns ])aek into the obscM'vation

equations and obtain a residual for each ccjuation. IIo\v('\-(m-, the

sum of the squares of the resicUials or of the \vei,ulit(Ml ic.-^ichials,

that is, [v^] or [ivv^], may b(> obtaiiuMl more (visily, in most cases,

in the following manner, along with the solution of tlie normal

C(iuations. Form the term at the foot of th(> diagonal, namely,

[f\ or [ivP], and perform a cori'esponding step in the (elimination

as if there were more terms following it. The resulting sum in the
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Z-column will then be [v^] or [wv^], as the case may be. Also, it may
be obtained from the relation

and from,

[wv^]
=

[wal]x-\-[whl]y -\-[wcl]z-\-

[wv^]
=

[wvl]

-\-[wf] (263)

(264)

which latter requires that the separate v's be known.

148. Example: Precision of Indirect Observations. To illus-

trate the foregoing articles, the modified observation equations

(43), page 38, will be solved to determine the best values of the

unknowns and their mean square errors. To the normal equations

(44) are added the term [wf] and the columns (xi), {y2), and (23),

and the check terms are modified to include all of these.
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Unknowns

5.19

-3.43-0.10 -3.53= - = = 0.2ol^
13.52 13.52

-1.00+ 1.07+0.10 +0.17 , ^ ^.oX = = = +0 . 043
3.94 3.94

Residuals

Substituting in the observation equations (43) and determining

the i''s, we find directly, [wv-]^0.2S and [wvl]= 0.26, while the

evaluation of (263) gives [wv^]
= 0.2Q. From the above elimina-

tion, the first term of IV is [wv^]
= 0.29. The average value,

is therefore, .027.

Weights

23 = ^^7 and M.v = 5.2
o. 19

5.19

i/2
= and ii'v = 13 . 5^
13.52

"

5.19

-010
yi= = -0.007^

13.52

+ 1.00+ 0.23 1 ,

.^Xi= = and Wx = o.2
3.94 3.2

^NIe.v.x Sqiake Errors

Average value of [7''']
= 0.27; /i=9; //; = 3.

e' = .. flirl ^ ^ /().()475 = 0.22

e' 22
6:,
= -4=: =---^^-^ = 0.12
Vic. 1.8

22
e,
= --^ = O.OG

22
ey = ^^-^ = 0.10

2.3
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Results

X =+0.043d=0.12

y =-0.2610.06

/--0.4910.10

149. Precision of Conditioned Observations. In general, it is

necessary, as in the preceding case, to determine the precision of

an observation of weight unity and also the weight of each un-

known, from which the precision of the unknowns is obtained from

the usual relation that the mean square errors are inversely pro-

portional to the square roots of the weights, that is, from,

e/wx = ey~Wy
=

. . .
= e'2

If the conditioned observations are adjusted as indirect obser-

vations by the method stated in Art. 81, the precision of those

unknowns which are involved in the normal equations may be

determined by the methods just explained in Arts. 145 to 148.

Then by a second solution, ehminating a different set of unknowns,

the normal equations may be made to involve those which were

not included in the previous set, and their precision may be found

in the same manner. Obviously, this is a tedious method except

in cases of a few observations.

Since the number of unknowns which may thus be made inde-

pendent is the total number, m, minus the number of conditions,

m', the formula for the mean square error of a single observation

of weight unity may be derived direct^ from (261) and (262)

by substituting for m, m m'. Thus,

: ^ f) J- ^
y nm-\-7n > /; //; + ///

/ = 0.6745\/
''^~^ or 0.6745x/

^"^
, (265)^ n 7n-\-m ^ n ni-\-ni

But in most of the cases with which we are concerned each unknown

is directly observed so that n = m, when the above formulas become.

ivi'-

r' = 0.6745a/' -^ or 0.6745\r (266)
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in which m' represents the number of conditions. Liiroth's

Formulas (262) may be similarly modified by substituting m m'

for m; and when n = m, the denominators become \^nin' .

The residuals, v, are the corrections, v, to the observations, as

determined in the adjustment (Art. 73). As a check upon the

direct computation of [wv^], however, we may use the formula,

[^i;2^=-Aq,-Bq2-Cqz . . . (267)

A, B, C, . . . being the correlates, and qi, 92, ^3, . . . being the

absolute terms of the reduced condition equations (59) or the

normal equations (64). Or, in the solution of the normal equa-

tions, a step may be taken similar to the one described in Art. 147

for indirect observations. Here, however, zero is written for the

last term in the constant (q) column. The elimination process is

continued to include this term, and the resulting sum will be

[wv"^].

The method of correlates, however, will generally be used in

the adjustment. The weights of the adjusted values are not

determined directly, in this case, but the weight of a function

of these values is determined, and this function may be merely

unity times one of them. Examples of the functions of the

adjusted values for which the precision may be desii-ed are: A
side of a triangle or an unobserved line in a system of triangula-

tion, when computed from the adjusted angles; and a computed

difference of elevation in a lev(4 net, det(M-min(Hl from adjusted

values of observed difference's. The fmiction must not involve

more of the unknowns than can be made indc^pcndent by (elimina-

tion with the conditions, that is, not more than tii-^)/)'. The

method is as follows:^

Since any function can be I'cduced to the liii(\ai' form, this one

will be assumed to have that lorni.

in which 1^, \-2, 1':;. ;ii"e the adjusted values of ihe unknown-

(Art. 72), namely, Vi= }f]+r\. etc. If any of the t(>i-!n-; in (2()8)

are missing from the desired function, give to the cori'espoiKhng

' See Jordan. Handbuch tier W'rmo.-sunjrskundc, I5d. I, jiar. lii. or Wrigiit's

.\djustmont of Observations, page 229.
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coefficients, /, the value zero. Now, referring to the condition

equations (56) or (59) for the notation, and representing the

original weights of the observations by Wi, W2, Wz, . . ., we form

the terms, m'+ l in number.

/
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and the reciprocals of the weights of the observations are,

1/^6 = 2, and l/ws = l. Then /o=+l, and /8=+l, the other

/'s being zero. Referring to the condition equations (73), we find

^6 =
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Therefore,

and
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=1.91 (273)

-[wv-]= -0.0027

From (76), wc evaluate (267) and obtain,

[M;y2]=_o.ooi2+0.0018+0.0021 = +0.0027

which agrees with the above and with the value determined

directly from the table of corrections, page 69.

Then,
l\om,2] /n 0097

(274)
7n' M 3

and from (272) and (273) we have,

= 0.03

e. =-;l=^L = 0.02
Vw VI. 91

(275)

so that the best value of the difference of elevation from A to D,

from the given data, is, with its mean square error,

(F)
= -6.360.02 (276)

(6) As a variation of the above, let us determine the precision

of the adjusted difference of elevation, AF. The function is,

F'=Fo (277)

and from the data above,

1/wg = 2, /(3=+1, a6= 1, 6g= 1. and cg = 0.

so that
r^,/i r/i/i Vnfi r/ri

= +2.

The; only changes in the solution, therefore, are in the last two of the

/-terms. The result is

-=1.41 (278)

whence,

e.-'
=-4._ =

^-^
= ().02 (279)

In view of the statements at the close of Ai't. 149, it is evident

'oj
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from an inspection of the tabulated condition equations (73)

that the weight and mean square error of V2 will be the same as

those of Vq, since these two columns in the table are alike.

151. Precision of Computed Quantities. As a result of the

adjustment of observations, the adopted values of the unknowns

are likely to be used in the computation of other quantities which

may be expressed as functions of the unknowns. Having inves-

tigated the precision of the unknowns, it may be desired to ascertain

the effect which the uncertainties in these values would have

upon the quantities computed from them.

For example, suppose the diameter of a cylindrical bar of

steel is measured with micrometer calipers at various points, from

which the mean diameter and its probable error are obtained;

the cross-sectional area computed from this mean diameter would

have a resulting uncertainty. Also, if the bar were tested in a

tension machine, the breaking stress per square inch would be

uncertain to a corresponding degree as a result of the uncertainty

in the measured diameter and computed area.

Again, suppose one side and the adjacent angles of a triangle

have been measured independently, resulting in an adopted mean
and a mean square error for each. If another side be computed
from these data, it will have an uncertainty due to the discrep-

ancies among the original measures of the given side and angles,

that is, to the uncertainties of the given means.

It must be emphasized that the determination of the best values

of the computed quantities is not involved in this question. Hav-

ing adjusted the observations, the resulting adopted values are

the best ones, as far as our knowledge goes, and quantities com-

puted fi-oin them are also the best we can determine froui the

given data. We are now concerned only with the precision of the

coniput(>d quantities, not witli the determination of the ([uantities

themselves.

Our j)i-o])leni is to determine the mean square (or probable)

error of afundion. of indepc^ndent, adjusted quantities of which the

mean scjuare (or probable) errors ai'e given. It will be ('onv(>ni(Mit

to assume that each of these given, adjusted values is the mean of

a lari'-c iiuiuIxm- of obs(M'\-ations. and that th(> cofresnoiuliim- indices
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of precision were determined by the formulas of Art. 141, although,

of course, they might result from indirect observations.

The errors in a linear function of independently observed quan-
tities occur in accordance with the same Law of Error as those

of the quantities themselves.^ Thus, the errors in the mean of a

set of observations occur in accordance with the usual Law of

Error. Such means, therefore, may be treated as original obser-

vations, as far as the occurrence of errors goes, as long as they do

not involve the same original observations, in which case they

would no longer be independent.^

This subject is usually called the Propagation of Error. We
shall consider it as divided into two parts, the simple influence

of errors of one kind or character, and the compound effects of

errors of different kinds or resulting from different causes.

152. Simple Propagation of Error. Before attacking the gen-

eral case, a few special forms of functions will be considered in order

to illustrate the process of reasoning. Let F represent the func-

tion of the independent, adjusted quantities, x, y, . . . whose

mean square errors are ex, ey, . . . Let the original observations

of X be represented by Mi, M2, . .
.,

those of y by M'l, M'2, . .
.,

etc., and let the true errors of these observations be represented

respectively by Ai, A2, . .
., A'l, A'2, . .

.,
etc. We may assume

an equal number of observations for each quantity, for simplicity.

(a) Consider first the sum or difference of two quantities.

Then,
F =xy (280)

Taking the separate observations in pairs, the first of x with the

first of y, the second of x with the second of y, etc., each pair

gives a value of F, say Fi, F2, . . . Thus,

Fi=MiM'i

F2-M2:hM'2 (281)

^ For proof ( f this, see Wriglit and Ilayford, Adjustment of Olisorvations,

Art. 13.

- See Chauvenel par. 23, for treatment of tlie case of a function of functions.
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Now, if we add to each M its true error, A, the resulting value of

F must be corrected by its corresponding error, and,

i^i+A^, = (ilfi+Ai)(M'i+A'i)

/^2+A^,= (ilf2+A2)db(M'2+A'2) (282)

Subtracting (281) from (282), one by one, we have,

Af,
= AiA'i

Af.,
= A2A'2 (283)

Squaring each equation, adding, and dividing by their number, n,

M^[A2]^2[AAq^[A'2] ^2g^^
n n n n

But in a large number of observations, the positive and negative

errors occur with equal frequency, so that the sum of the products,

[AA'], would approximate to zero, certainly so in comparison to

[A2]+ [A'2], sothat,

l^.I^l+t^:!] (285)
n n n

or,

/ = 6.2+e/ (286)

Obviously, the above process would apply likewise to a similar

function consisting of any number of quantities connected by

j)lus and minus signs, so that for

F =.Ti/2 . . .

wc can write,

6/=e/+e/+6.2+ , , ^ (287)
and

6^ = Ve/+e/+e/+ . . . (288)

From the constant ratio of the })i-()babl(' error to the mean square

eri'or, it follows that

/V- = r,2+ /v-+ /%2+ . . . (289)

This jii'incipk^ is vei'v iinpoilant and often used. Note that

tli(> si^i'iis in (287) and (2S9) an^ all ])ositive. The uncertainty in

tlu^ sum of two or more (juantities is thei'cfore the samc^ as in their

(liffei'('n('(>.

{U) In 1h(> next case, \v\ F^a.r^hijzt . . . (290)
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in which x and y are adjusted values from observations, and a

and b are known constants. As in (282), we may write,

Fi+A^. = a(Mi+Ai)6(M'i+A'i)+ . . .

/^2+A^, = a(M2+A2)6(M'2+A'2)+ . . . (291)

whence, as in (283),

Afi
= aAi&A'i+ . , .

A^,
= aA26A'2+ . . . (292)

Squaring, adding, dividing by n, and omitting the products as

before, we have,

M^J^+^m+ . . . (293)
n n n

That is,

e/ = a2 6x2+&2e,2+ . . . (294)

or,

e^
= Va2 6x2+62 e,2+ . . . (295)

(c) Now we shall consider the general case in which F is amj
function of the quantities, x, y, z, etc.,

F=f{x,y,z, . . .) (296)

Since x, y, z, . . . are adjusted values, they may be assumed to

be nearly correct, so that their errors arc very small; let us rep-

resent them by differentials. Then, if A^- be the true error of F,

we have,

F+^J.=J{x+dx,y+dy,z+dz, . . .) (297)

Expanding this function by Taylor's Theorem, and omitting

terms which involve squares, products, and higher powers of the

differentials, we obtain,

F+^,=J{x,y,z, . . .)+%lx^-%hj-\-%h-\- . . . (298)
ox ay oz

whence, subtracting (290),

A,.
= ^r/a:+ ^r/7/+^f/2+ . . . (299)

9.T dy dz

This ccjuation has the same linear forin as (292), so that from (294)

we have directly,
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in which the partial derivatives of the function correspond to the

constants, a, b, c, etc., of (294).

Thus we may state the general Rule: Express the given func-

tion in literal form. Differentiate it partially with respect to each

quantity for which the mean square error is given. Substitute in

these derivatives the given quantities (without reference to their

mean square errors, of course). Substitute in (300) and obtain ep-.

153. Example: Precision of the Mean. We shall now apply

the foregoing principles to determine the mean square error, to,

of the mean of n observations, when the mean square error of a

single observation is e.

The expression for the mean is,

F^^^^'l+Ml+ . . . +M. (301)
n n n

where M\, M2, etc., represent independent direct measures or

observations of the unknown quantity. This function has the

form of (290) and a = b = c^ . . . =l/n. From (294), there-

fore, we have

eo^
= \e^+,e--h,e^+ . . to n terms (302)

that is.

6(r-M-J=^ (303)

eo= --;- (304)
Vn

which states the very important principle that the precision of the

mean varies directly as the square root of the number of observa-

tions. To double the precision, that is, to reduce the mean

square error of the mean to one-half its size, it is necessary to

have four times as many ol)servations.

154. Compound Propagation of Error. The uncertainty in a

computed quantity may result from several sources which are not of

the same nature, and it may be impossible to state th(> quantity as

a single function of all these sources of error. For example, the

measiu'cment of a line with a steel tape involves the uncertainty

in the length of the tape itself and also the errors in the process of

measurement. We cannot express the length of the line as a func-

tion of the length of the tape and the
"
process of measurement!"
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From (283) to (287), we can state the principle that when the

error in the computed quantity is the algebraic sum of independent

errors from different sources, the total mean square error of the

computed quantity will be the square root of the sum of the squares

of the separate mean square errors of that quantity due to the

various causes.

In any given case, therefore, we determine the mean square

error of the computed quantity or function resulting from each

source, separately, by the methods of Art. 152, and then take the

square root of the sum of their squares as the total mean square error.

We shall now illustrate this subject by a series of typical

examples.

155. Examples: Propagation of Error. (1) The following

measures of the diameter of a cylindrical test-piece of metal were

made by means of micrometer calipers. The piece was then

broken in a testing-machine at a load of 20,000 lbs. Find the unit

breaking stress and its mean square error due to the uncertainty

in the measured diameter, D.

Inches
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Differentiating (305) with respect to D,

^_ 80,000

dD 3.14

-
160,000

-2\ -160,000

I>3/~3. 14X0.6253

= -208,900
0.766

From (300),

6^ = 208,900X0.00012 = 25.

Thus, the unit breaking stress = 65,300 25 lbs. per square inch.

The uncertainty due to the variation among the measures of the

diameter is therefore neghgible when it is remembered that the

breaking load is seldom required within a range of a hundred

pounds.

(2) The length of a 50-meter tape is determined by comparison

with a 5-meter standard bar which is surrounded by chipped ice to

control its temperature. The length of the bar, as determined

from its standardization, is 5 = 5. 000060 0.000006 meters.

The following measures are made of the difference between the

length of the tape and ten lengths of the bar, the former being the

longer. It is required to find the length of the tape and its mean

square error due to the uncertainty in the length of the bar and

to the errors of measurement. The temperature is assumed con-

stant. The unit is in the sixth place of decimals, that is, a micron.

Interval (K)
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The function is,

Length of tape (L)
= 10 B-\-K (306)

= 50.000600+2549

= 50.003149 m.

This function corresponds to (290), so that, from (294),

6^2=100X62+739 = 3600+739 = 4339.

ez.
= 66

Therefore, Length of tape (L) = 50. 003 149 0.000066 m.

An important principle is illustrated here. The larger source

of error in the length of the tape is that due to the error in the

length of the bar, amounting to ten times as much as the other.

It would be useless, therefore, to increase the above number of

observations with the idea of increasing the precision in the

length of the tape, since this part of the total error is almost

negligible. On the other hand, the above set of observations

might be diminished considerably without seriously affecting the

result. For example, suppose there were but one-half as many
observations, namely, 4. Dividing the number of observations

by 2 increases the square of the mean square error twofold. Thus,

we should have 60^=1478, and 6^2 = 3600+1478 = 5078. Then,

ei = 71, which is very little larger than 66. It must be remembered

however, that the number of observations should be sufficiently

large to justify the assumption that errors of observation follow

the Law of Error.

(3)^ A comparison of the two following cases will be instruct-

ive, (a) A line 400 feet long is measured with a 100-foot tape

of which the mean square error is 0.004 foot. The resulting

mean square error in the length of the line will be 0.016 foot, since

L = 4T.

(6) The same line is divided into four 100-foot sections and

each section is measured with a different 100-foot tape of which

the mean s(|uare error is 0.004 in each case. The resulting mean

1 Adapted from Craiidall's Cieodpsy and Least Squares.



PRECISION OF OBSERVATIONS AND RESULTS 185

square error in the length of the hne will be V4(0 . 004) = . 008 foot,

since the function is, L = Ti+ T2+ 7'3+ T4.

In the first case (a), whatever the true error in the tape may be,

it is constant and its effect is cumulative. In (b), on the other

hand, the actual errors in the different tapes are not the same even

though their mean square errors happen to be equal, and in con-

sequence they are likely to be both positive and negative so as

to neutralize to some extent. Therefore, the resulting error in

the length of the line would be smaller than in the former case. It

is important that this principle be well understood.

(4) Let it be required to compute the length and mean square

error of the side, h, of the triangle, A-B-C, from the side, a, and

the angles, A and B, given with their mean square errors as follows :

a = 4268 . 344 . 008 meter,

A = 5637'42.4"0.6"

5 = 7026'54.3"0.3"
The function is,

b ='^'^ (307)sm A

from which we obtain, using the above data,

6 = 4816.349 m.

Differentiating (307) with respect to a, A, and B, in succession,

and reducing by means of (307),

9^ = :'^^ = ^ = 1.128
da sm A a

dh -a sin B cos A , , . ...^^=
. , ,

= cot .4 = 3172
dA sm-' .1

dh a cos B=
-.

= b cot y? = W 10
dB sin A

Subslituling in (300), and noting that it is necessary to nuilliply

e.i and e,i by sin 1" (
=

0.00000.")) in order to reduce them to
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abstract quantities so that each term may be expressed in the unit

of length, we have,

e,2=/^y,2_|_(^
cot A)HeA sin l")2+ (6 cot Bfies sin 1")^

= (1.128X0. 008)2+ (3172X0. 6X0. 000005)2

+ (1710X0.3X0.000005)2

=
(0 . 0090)2+ (0 . 0095)2+ (0 . 0026)2

= 0.00017801

and
= 0.013

whence,

6 = 4816. 349 0.013 meters.

(5) Find the mean square error in a single measurement of an

angle, direct and reversed, with a direction theodolite having

three microscopes. Each reading consists of the mean of the

three microscope readings corresponding to a pointing upon one

object, and a measure of the angle is the difference between the

readings upon the two objects limiting the angle. This process is

repeated in the reversed position of the instrument and the mean

is taken. Suppose the mean square error of a pointing of the

telescope upon an object to be, ep
= 0.04"; that of a reading of a

microscope to be, er = 0.00"; and that of a graduation-mark on

the circle to be, e^
= 0.03". The error in each microscope reading

will be the algebraic sum of the error of setting and reading the

microscope itself and that of the graduation, so that the moan

square error due to both causes will be v(er+e/). Then the

mean square error of the mean of the readings of the three micro-

scopes will be

V(er'+e-') \/(0.0045)e= --^--^ '= -^ ^=V0.0015
v/3 \'^3

The error in a reading upon one object will be made up of tlu^ (^rrors

due to all three causes, that is, to the a])ov(> c()m})ined error and

the error of a single pointing, or.

e = V(e,,-+ e,r)
= V (0 . 0015+ . OOK)) = v'() 00:5 1

Finally, tlu^ mc^an square error of the difference of the readings on
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the two objects, which is that of the direct measurement of the

angle, will be,

V(eo2+6o-) = Vo.0062

and that of the mean of the direct and reversed results will be

,,=^^^? = VOa31 =0.056"
V2

(6) A line 1000 feet long is measured eight times with a 100-

foot tape, and the mean square error of the mean of the eight

measures is found to be . 004 foot. If the mean square error of the

length of the tape (resulting from its standardization) is 0.001,

what is the mean square error of the line, due both to errors of

manipulation and error in the tape length?

The mean square error of the line due to the tape error is

10X0.001=0.010. Since the total error is the algebraic sum

of both kinds, the mean square error due to both causes will be the

square root of the sum of the squares of the separate mean square

errors, that is,

e^ = V{0 . 0042+0 . 010-) =0.011

COMBINATION OF COMPUTED QUANTITIES

156. Weights from Mean Square or Probable Errors. In

Art. 143, it was demonstrated that weights are invcr.sely as the

squares of the corresponding mean square or probaljle errors.

Thus it is possible to combine the results computed from different

observations of a certain c^uantity, using thorn as weighted obser-

vations, when the mean square errors of these results are known

so that their relative weights may l)e determined. For example,

a certain angle in a triangulation may have been measured several

times, with a resulting nuvui and moan square error. Subse-

quently, in another season, perhaps, another s(M-ios of measures of

the same angle may be made, giving a cHffenMit result and mean

square (>rror. By giving to each result a weight equal to the

reciprocal of the sc}uai'e of its mean scjuare error, th( weighted

mean of the two rosuhs may be taken as the best value of the angle

from all of the availa])le data.
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157. Limitations. It is obvious that this method assumes

that all of the original observations in the various groups are of the

same character, so that if they were known their mean could

reasonably be taken. The conditions under which they were

made should be similar, and especially is it assumed that constant

or systematic errors affect all of them in the same way.

On the other hand, it is seldom that these conditions are

fulfilled with any great degree of certainty. Frequently, nothing

at all is known about the observational methods or circum-

stances, except what is indicated by the mean square errors

as to the consistency of the original observations. Even in such

a case, however, it is probable that the weighted mean will be

as good as, or better than, any of the component results, so

that the method should not be discarded without careful con-

sideration.

Of especial importance in this connection, is the case in which

the observations resulting in one of the given values are known to

be of much greater precision than those which resulted in the other

value, without regard to their respective mean square errors.

For example, an angle might be measured with a direction theodo-

lite reading to a single second, and again by means of a transit

reading to half-minutes. Here, the judgment of the computer

may determine what weight, if anj^, shall be given to the transit

result in comparison with the other, in spite of the mean square

errors, provided, of course, the number of observations made,

with the theodolite is sufficient to reduce the effect of the

accidental errors. Should the two results be close together, how-

ever, the weights given by the mean square errors may still be

satisfactory.

When the results being compared are separated by a consider-

able interval in comparison with the given mean square errors,

the presence of systematic error may be indicated and should be

investigated. If the difference is not too great to be a reasonable

accidental error of observation, it may be considered safe to accept

the weights given by the mean square errors. But if the differ-

ence is too large to be thus considered, and the mean square errors

arc much smaller, there may be no reason for believing one of the
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values to be* nearer the truth than the other, so that the arith-

metic mean of them may be adopted as the best value. Here,

again, the judgment of the computer must determine the method of

adjustment.^

158. Example: Weighted Mean of Computed Quantities.

Three independent series of observations give the following results

for the value of an angle; what is the best or most probable value

of the angle from these data?

Means, (xo)
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whence, from (300),

1

27

1.3652_ 1.17^

272 272

l-l^- = 0.04

6.v2
=
74[(14X .06)2+ (5X .10)2+ (8X .08)2]

ex=^-
27

SO that the adjusted vahie is, 72 47' 43.50"0.04".



CHAPTER IX

CONCLUSION

161. Rejection of Observations. It is generally conceded

that an observer has the right to reject any observation, at the

time of making it, if he has reason to believe that he made a mis-

take in his setting or reading, or if the conditions were temporarily

so unfavorable as to indicate that the result was quite unreliable.

His attention may be drawn to the questionable observation

merely by its being discordant among the others of the series;

or he may question the observation as he makes it and mentally

decide to reject it if it proves to be very discordant. His power
is absolute but he is expected to exercise it with good judgment
and strict impartiality.

On the other hand, when the observations have been approved

by the observer and are turned over to the computer, or when

sufficient time has elapsed that the observer ceases to recall the

particular conditions under which each of the observations was

made, then the record must be regarded as inviolable, and must

not be changed without good reason,^ and this reason must be

evident from the records themselves.

If the observer has noted the unfavorable conditions and has

not indicated a resulting smallcM' weight for the corresponding

observation, the computer may feel justified in assigning such a

weight if tlu^ obsei'vation is ckvirly discordant. Ilow(>ver, if this

is necessary, it should have been dour by tlu> ()bs(M'V(n' in the field,

and the computer may wisely refi'ain from thus int(M'fering witli

th(> record unless with the consent of the obscM'ver himself, on

the gi'ound that this would haw been his action in the field.

'

It is a rifiid rule t hat an oriuiiial I'ccord sliotild nov(M' b(> crasotl or ol)S('ure(l.

Chanel's sliould he so made as to show ch'arly tliat they an> clian^os, with

date and initials of the coniputcM-. and so as to leave the oi-iy;inal data legible.

(ienerall>', the oi'iiiinal will he in jxaicil, and not(\-: and computations will l)u

in ink. Jted ink may well be nsed for annotations.

191
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The assignment of weights to various observations is closely

associated with the question of the rejection of observations, since

a weight of zero is equivalent to rejection, and a diminished weight

means a partial rejection.

162. Criteria for Rejection of Observations. While the author

is of the opinion that weighting and rejection should be based

upon judgment rather than mere discrepancies among the ob-

servations, many writers and experienced computers have advo-

cated the rejection of all observations which deviate more than

a certain amount from the mean of the set. The mathemat-

ical basis for determining this maximum deviation is known as a

Criterion for the Rejection of Observations. Several of these methods

have been devised,^ but the following has the merit of simplicity.

It being assumed that the observations conform to the Law
of Error, the number of errors, or residuals, greater than a certain

size, to be expected in the given set, will be found by using Table

III, Appendix F, as stated in Art. 175. The table shows that the

probability of an error less than four times the probable error of a

single observation is 0.99; that is, 99 out of 100 residuals should be

less than that amount and only one out of 100 should be greater.

Therefore, if a greater residual occurs in a set of, say, 20 to 30

observations, it might be rejected as indicating a mistake. Having

computed the probable error, r, of a single observation, for the

given set, any individual observation whose residual from the

mean is greater than or equal to 4r, would be rejected, according

to this assumption.

Evidenth', the adoption of a certain criterion is a matter of

estimation and preference. The above value, 4r, would be con-

sidered conservative by many computers who believe in any kind

of a numerical criterion; 'Ar is sometimes used. Even the novice

will immediately suggest that the unusually large error might

h(i])pcn to occur in the small series of observations. If but one

veiy large residual occurs in the set, there may be more reason

for n^jecting it than if it be accompanied by a correspondingly

large one of the opposite sign, since the pair would neutralize

each otlun', to some extent, in the mean.

'Sec ('h;iu\'('iH't
,
Practicul and Spherical Astronomy.
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163. Methods of Observing. One of the most important

uses of the Method of Least Squares Hes in the investigation of

methods of observing, with the idea of avoiding or ehminating

the effects of constant or systematic influences, of segregating the

sources of error which produce the greatest effect so that these

effects may be diminished, and of reducing the cost of securing

the desired degree of precision.
^

In Art. 154 it was shown how various sources of error combined

to affect the result; therefore, in arranging the observations, spe-

cial attention should be given to decreasing the errors which have

the greatest effect, since the final precision is dependent but little

upon the small errors. In reducing the errors from a certain

source, the design of the instrument and its support may require

study as well as the method of using it. Very important improve-

ments in instruments have resulted from the careful study of the

occurrence of the errors of observation.^

Constant and systematic errors may be due to the conditions

under which the observing is carried on. When such is the case,

it is desirable to so arrange the observing program that these con-

ditions will vary during the observations through a complete

cycle of changes, as far as practicable, in order that their effects

may neutralize one another, at least partially.

Finally, the matter of cost must be considered. This will

depend largely upon the number of the observations and their dis-

tribution during the day, after the instrumental equipment has

})een determined upon.

164. Precision Desired and Number of Observations. In

])lanning the obsc^rving ])rogi-ain, having a d(>finito end in view, it

is advisable to decide upon the degree of pi-ecision which is to be

sought in the result. This will ilepend to some extent upon the

insti'unuMits or apparatus available, but, with a given instrument

and an individual observer, the method of observing and the

number of ilie obstM-vations become of great imj)ortance in deter-

' For a more (wtcndod trcatinciit of this suliject. tli(^ r('a<lt>r is rc^fcrred to

Wright and Ilayford, Adjustment of Observations, ("ha!)ter IX.

-A notal)le iiistance of this was th(- (h-sigii of tlic Coast and (leodetic Survey
Precise Level in 1<)()(), l)y Mr. .1. F. Hayford, Chief <,f th(^ ( omputing Divi-

sion, and Mr. 11. Ci. I'iseher, Cliief of the Insiriiinent I)i\ is!o:i, U. S. C. i^ C!. 8.
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mining the precision. The observing program will frequently

take the form of a number of units, or parts, all of which are

alike with the exception of a change in the position of the instru-

ment, as in the case of horizontal angles measured with a direction

theodolite.

To attain the desired precision, then, the total number of obser-

vations must be considered. As a result of experience or experi-

ment,^ the precision (indicated by the mean square error, perhaps)

of each elementary observation is ascertained, and from these,

the precision of a unit observation. Then the number of observa-

tions necessary to obtain the desired precision in the result may be

computed from the relation that the precision of the mean varies

as the square root of the number of observations (Art. 141, page

163). That is, to double the precision (to divide the mean square

or probable error by two) four times as manj' observations must be

made. But how far can this process be continued? Is it possible

to reach any degree of precision by simply multiplying the observa-

tions?

165. Ultimate Limit of Precision and Accuracy. While in

theory the precision of the mean can be increased indefinitely by

increasing the number of observations, experience shows that a

limit is soon reached, beyond which it is not worth while to con-

tinue the observing; the theoretical increase in the precision as

indicated by the smaller probable error, for example, would

become quite misleading. Furthermore, after passing a certain

point, the number of observations would have to be enormously

increased in order to produce a very small decrease in the probable

error, so that this process would be very wasteful of time and

energy, and it is doubtful if the results would be much better.

After all, accuracy is desired rather than precision. The

observations are not made for the purpose of enjo\'ing the labor,

but in order to ascertain the truth as far as practicable. It is a

well-known fact that the mean of a small number of very consistcMit

observations, showmg a vcm'v small pro])able error, may be farther

' A theoretical discussion of the hinitations of the human eye in making

observations, antl lh(> increased j)ower resulting from jirojierly designed instru-

ments, will be found in Jordan, Ilandbuch der \'ermessungskunde, Band II,

45.
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from the truth than that of a larger number of observations which

vary over a considerable range. Cases can be cited in which a

value adopted as a result of many observations, by different

observers, extending over a long period of time, has been proved
to be incorrect by an amount greater than many times the prob-

able error. Of course, the conclusion is that we must not lose

sight of the fact that, however consistent the observations may be,

large systematic errors may be present and the observing methods

may not be such as to eliminate them, so that they directly affect

the results.

As to the limiting number of observations, then, we can safely

state that this should be large enough and so distributed as to

cover varying conditions as completely as practicable. Natu-

rally, it will be different in various kinds of work. However,

changes in the instrument and its supports are likely to take place

if the observations extend over too much time, so that it is gener-

ally advisable to observe as rapidly as is practicable without a

sacrifice of precision.

166. Indication of Systematic Errors. In order to discover

the presence of systematic errors, a careful study of the residuals

is essential. Unless the conditions causing these errors change

during the course of the observations, the errors fall into the class

of constant errors and will not be indicated at all by the discrep-

ancies or residuals. In this case, a different method of observing

might reveal them when the results of both methods were com-

pared.

By plotting the residuals in chronological order some regularity

or law may be rioted in their occurrence. Positive and negative

residuals may occur in separate groups or a curve drawn through
the i)lotted points may show a periodic character. Again, the

nunil)oi's of residuals of the various sizes may be plotted as in

Art. 17, to form a Curve of Error, and if the resulting curve

differs considerably at certain points from the theoretical form,

which may be ]:)lotted from Ta})l(> II or III in App(Mi(hx F, the

pres(Mice of syst(Mnati(' ei'rors may be indicated. Having thus

investigated the occun-(>nce of the residuals, it remains to seek

changes in the observing conditions which correspond to the



196 PRACTICAL LEAST SQUARES

variations in the residuals. The location of such changes should

serve to point out conditions responsible for part or all of the

systematic errors so detected.

167. Treatment of Discordant Observations. When the dis-

crepancies in a set of direct observations are unusually large,

the lack of precision will be indicated by a large probable error

or mean square error, and the mean remains as the best value

obtainable from the given measures. It sometimes happens,

however, that different sets of observations of the same quantity

will yield results which are so discordant as to indicate the pres-

ence of constant or systematic errors in one or both of the sets.

The problem may be further complicated by the fact that the

precisions of the results may be considerably different, so that if

their weighted mean were taken, as in Art. 156, it would give a

decided preference to one of them. The question arises as to

whether the results may not be so far apart as to make it advisable

to neglect their relative weights altogether and to take their

simple mean arbitrarily. This course is sometimes advocated.

Obviously, this is a matter of judgment rather than Least

Squares, and such action should be preceded by a careful investi-

gation of all the circumstances. However, it may be reasonably

contended that if such discordant results are to be used at all a

small difference in the adopted value would be of little moment

and the regular Least Squares process may well be followed

without considering the case as an exceptional one. Should

conditions or checks be found which would be satisfied much

more nearly by one of the results than by the other, the problem

is thereby altered and becomes one involving the assignment of

weights or perhaps the rejection of observations. The judgment

of the (!()mi)uter must be the determining factor.

168. Arbitrary Adjustments. The principles outlined in the

foregoing chaplcM's, especially in Chapters V and VI, will be found

of assistance in some problems where it may b(; deemed sufficient

to approximate to a rigid adjustment by assigning corrections to

the ()bs(M-ved (juantitios arbitrarily. While such a method can

hardly l)e defended in the hands of the comput(;r who is con-

versant with Least Squares, still it must be admitted that such a
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computer is the only one who could be expected to carry out an

arbitrary adjustment consistently and reasonably. The usual

difficulty arises in satisfying all of the necessary conditions at the

same time without a distribution of the corrections which is clearly

unreasonable.

In certain problems, however, a distribution of arbitrary cor-

rections may be of use in preparation for a rigid adjustment. The

method consists in applying to the observations such preliminary

corrections, resulting from a detailed study of the condition

equations, as will reduce the amounts of the final corrections.

This advance study requires a clear understanding of the field

conditions as well as the methods of adjustment, but when care-

fully carried out is likely to diminish the labor of the computation

and to improve the adjustment by reducing the numerical quan-

tities involved. The method is analogous to the assumption of

approximate values for the unknowns in the adjustment of indirect

observations, Chapter III.

169. Use and Abuse of Least Squares. In view of the crit-

icisms which are sometimes directed at the use of Least Squares

for the adjustment of observations, a few words on the subject

may not be out of place here. While it is unquestionably true

that the method is sometimes used in an unwarranted manner, the

real difficulty probably arises from the placing of erroneous inter-

pretations upon, or the drawing of unreasonable conclusions

from, the results of the adjustments.

A great deal of misunderstanding in the minds of persons

unfamiliar with the fundamental principles of the method has

resulted from the use of the term "
probable error," and such per-

sons are too apt to blame the method for the fruits of their misuse

of it. It is unfortunate that this term has come into use, since its

meaning in Least Squares is a technical one and not what would be

expected from the ordinary use of the word "
probable." Some

of this trouble, to say the least, would have been avoided by using

the
" mean square error."

A common criticism relates to the use of Least Squares in

connection with a very small number of observations, even as

small as two. The reply may well bo,
"
Whor(> is a bettor method?"
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The intelligent computer does not place the same reliance upon a

very small number of observations as upon a larger one, but having

only the small number he uses them as best he can. Hovv^ever, to

place great confidence in the precision of the mean of two observa-

tions is certainly questionable, although even that precision may be

very useful, in spite of its limitations, for purposes of comparison.

While investigations of the precision of observations and

results have been thus criticised, little or no objection has ever

been raised against the use of Least Squares for determining the

best values of the unknown quantities. Its advantages for this

purpose are evident even to those who are not familiar with its

details. It provides a method of adjustment which is consistent,

definite, and adaptable to the various kinds of problems and con-

ditions, and which conforms to the facts as to the occurrence of

errors of observation. Generally, also, it is simpler than an arbi-

trary adjustment; certainly it is more reliable.

170. Adjustments not Infallible. The beginner must not

make the error of assuming that the results of an adjustment

are correct. At the risk of repetition, this principle is emphasized,

that the results are but approximations to the true or correct

values, the best obtainable from the given observations. Should

the observations be affected by constant errors, the results will be

likewise affected, without regard to their precision, which is deter-

mined from the discrepancies among them.

Also, as has been pointed out, different adjustments of the

,same observations by slightly different methods, perhaps, may
yield results which are not exactly the same, owing to the fact

that different sets of numerical quantities are used. If the

computations are carried out to one decimal place more or less,

slight variations in the final values may similarly occiu-. But it

should be kept in mind that any one of these various adjustments

will probably satisfy the requirements of the pro})lem within the

uncertainties among the observations, so that any one of them

can safely be adopted.

171. Other Laws of Error. When applying the method of

Least Squares to a new class of problems, it becomes necessary to

investigate the occurrence of the errors, particularly when these
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are not actual errors of observation. It has been found by experi-

ment that the variations among many natural occurrences follow

the same law as the accidental errors of observation. Thus the

law is applied in studies of the growth of vegetables, and to the

occurrence of various characteristics among animals.

To illustrate errors which do not follow this law, we may
consider the errors in a table of logarithms. It is evident that

in a seven-place table, for example, the decimals following the

seventh place have been rejected when less than 5 in the eighth

place, while if the eighth place is greater than 5, the seventh place is

increased by unity. Therefore, instead of the three assumptions

upon which Least Squares is based (Art. 18), we have errors

occurring only between the limits 0.0 and 0.5, the unit being in the

last place of the logarithm, and in equal numbers without regard

to magnitude or sign. The probabilities of the occurrence of the

various errors between these limits would be equal, and the curve

of error would be a rectangle upon the axis of errors as a base and

limited by the ordinates at +0.5 and 0.5.

172. Review: Outline of Methods of Adjustment. In con-

clusion, a brief outline will be given covering the main classes

of problems which have been considered and the methods of solu-

tion.

Direct Observations of a Single Quantity.

AflJHstment. Take the mean or the weighted mean.

Indirect Observations.

Adjustment. "Write the observation equations and from them

the normal equations; the solution of the latter gives the unknown

quantities themselves or the corrections to their assumed approx-

imate values. The number of the observation equations will be

the same as that of the observations; the number of the normal

ecjuations will equal that of tlio unknown quantities, which must

always be less than that of the observations.

Conditioned Observations.

Adjusttneut. Write the condition equations in their general

form and tluMi in their simple form involving th(^ corrections.

From them form the normal ('(|ualions, the same in nunihcM- as the
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conditions. The solution of the normal equations gives a set of

factors, called correlates, one for each condition equation, from

which the desired corrections to the- observed quantities are deter-

mined.

Simple Propagation of Error.

Solution. Write the literal function whose mean square error

is desired. Differentiate it successively with respect to each of the

quantities for which mean square errors are given. Substitute

these partial derivatives and the given mean square errors in the

general equation of propagation of error to obtain the mean square

error of the function.

Compound Propagation of Error.

Solution. Find the mean square error of the function as above

for each of the different sources of error, and take the square root

of the sum of their squares.

Combination of Computed Quantities.

Adjustment. Give to each value a weight equal to the recip-

rocal of the square of its mean square error and take the weighted

mean as the best value of the quantity.

Empirical Formulas.

Solution. Plot the observations and sketch a smooth curve

through them. From this curve select the form of the desired

equation. Write an observation equation of the selected form for

each of the observations, reducing to the linear form if necessary.

Write normal equations and solve them as in Indirect Observations,

for the constants or coefficients of the formula.



APPENDIX A

HISTORY AND BIBLIOGRAPHY OF LEAST SQUARES

173. Historical Sketch.^ The principle of the arithmetic

mean is very old. But when the first indirect observations were

made, probably in astronomy, the necessity for adjustment became

apparent. Observation equations were written as early as 1748,

by Euler. In 1757 Simpson stated the axiom that positive and

negative errors occur with equal frequency, and in 1770 Lagrange

considered the occurrence of errors from the standpoint of the

theory of probability. Laplace, in 1774, in his
"
Mecanique

Celeste," further investigated the subject and laid the foundation

for the development of Least Squares.

It was not until the end of the 18th century, however, that

the Method of Least Squares was introduced. The first publi-

cation of the principle of least squares was by Legendre, in 1805,

in his
" Nouvclles methodes pour la determination des orbites

des cometes," and by him the name was given,
" Methode des

moindres quarres." Although there is no question as to the priority

of publication, it seems well established that Gauss had actually

developed and used the method itself since 1794, when he was a

student at the University of Gottingen. His first publication on

the subject, however, was not until 1809, in his classic work,
" Theoria motus corporum ccelestium." But Gauss deserves

more; credit than anyone else for the further development of the

Method of Least Squares, and as jMerriman states,^
" Few

liranches of science owe so large a pi'oportion of subject-matter to

the labors of one man."

The first publication of a theoretical derivation of the Law of

Error was made by Dr. R. Adrian, of Reading, Pa., in 1808, in

' For more dctiiiled information, the reader is referred to Jordan, Iland-

hueh der Vermessungskuiide, Hand I, KinleitiniK.
^ Merriman: Method of Least Squares.

201
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the
"
Analyst or Mathematical Museum," at Philadelphia.

Gauss published his in the next year, and various others have

followed.

174. Growth of the Literature. The development of the sub-

ject is indicated by the rate at which publications devoted to it

appeared. In 1877 Professor Merriman published an investiga-

tion 1 of the literature of Least Squares, as a result of which he

deduced some interesting statistics. The following data are

are based upon his work.

Prior to 1805, 22 titles were found. From that time on, aver-

aging by decades, the rate of publication increased steadily from

about two per year in 1810 to about ten per year in 1870. Alto-

gether, 408 titles were listed up to 1875. Of these, 153 were pub-

lished in German^', 78 in France, 56 in Great Britain, and 34 in

the United States, the remaining ones being scattered over eight

countries. The German language was used in 167 instances,

French in 110, and English in 90.

175. Bibliography. In addition to the paper by Merriman,
referred to above, Gore's Bibliography of Geodesy, in the Report

of the U. S. Coast and Geodetic Survey for 1887, will be found

ver}^ useful in an investigation of the literature of this subject,

although many important works have appeared since that time.

From the large number of books and parts of books devoted to

Least Squares and the Adjustment of Observations, the following

are selected for reference:

Wright: Adjustment of Observations. Van Xostrand, Xe-\v York, 1884.

This is the classic work in the English language on this subject. The

applications are principally geodetic. It has long been out of print, and

was succeeded by
Wright and Hayford: Adjustment of Observations. Van Xostrand, 1907.

Less comprehensive than the foregoing, but improved in many respects.

Mainly geodetic.

Jordan: Handl)uch der Vermessungskunde, I. Metzler, Stuttgart, 1910.

A very complete treatise, presented in a direct style which is easilj- read.

Most valuable for reference. Oeodetic.

Helmert: Ausgleichimgsrechnung. Teul)ner, Leipzig, 1907. Ooinprehen-
sive and scholarly, l)ut somewhat diflicult to read. The notation is un-

usual. Ocodetic and ))hysical.

1 Merriman: List of \\'ritings lielating to the Method of Least Squares,

published in the Transactions of the Connecticut Academy, Xew Haven, 1877.
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Koll: Methode der kleinsten Quadrate. Berlin, 1893. Extensive and

practical with many applications.

Czuber: Theorie der Beobachtungsfehier. Leipzig, 1891. Largely theo-

retical, with applications to life insurance and statistics.

Merriman: Method of Least Squares. Wiley, New York, 1913. Geodetic

applications but general in scope.

Comstock: Method of Least Squares. Ginn, Boston, 1895. Astronomical

and general.

Bartlett: Method of Least Squares. Boston, 1915. Contains an exten-

sive list of examples for solution.

Weld: Theory of Errors and Least Squares. Macmillan, New York, 191G.

General and practical with many exercises for solution.

Johxson: Theory of Errors and Method of Least Squares. Wiley, 1892.

General; strong in illuminating explanations.

Bruxt: Combination of Observations. Cambridge University Press, 1917.

Theoretical.

Chauve.net: Practical and Spherical Astronomy. Lippincott, Philadaiphia,

1896.

Crandall: Geodesy and Least Squares. Wiley, New York, 1907.

Adams: Application of Least Squares to the Adjustment of Triangula'.ion.

Special Publication No. 28, U. S. C. & G. Survey, 1915. A verv im-

portant contribution to this subject.



APPENDIX B

PRINCIPLES OF PROBABILITY

176. Definition. If an event can occur in a ways, and can

fail to occur in b ways, the probability of its occurrence will be

,
and that of its failure to occur will be

,
it being assumed

a-\-h a+b
that all the ways of occurrence or failure to occur are entirely

independent and equally likely. Thus, in one throw of a die, the

probability of a certain face lying upward is 1/6, and that of its

not being upward, that is, of any other face being upward, is 5/6.

The probability of throwing any face upward will be 6/6 = 1

in other words, certainty. Therefore, if the probability of the

occurrence of an event be p, then that of the failure of the event to

occur will be lp, provided it is certain that the event must either

occur or fail.

First Principle. The probability of the occurrence of an

event is therefore a proper fraction between the limits zero (impos-

sibility) and unity (certainty), and may be defined ^as the ratio

between the number of ways in which the event may occur and the

number of ways in which it may either occur or fail.

177. Two Sources of Probability. The probability of an

event may be based upon theory or experience. The above case

of throwing a die is an example of the theoretical basis. We know

without question how many faces the die has and, therefore^, the

number of ways in which a certain face can lie upwards. The

numbers involved are known absolutely. In the second case, on

the other hand, the number of ways in which the event can occur

is assumed as a result of experiment or experience. For example,

if an event has occurred a times and failed b times out of a large

number a-f6, of trials, we may say that the probability of its

occurrence, under the same conditions, is a/(a-\-b), as ])efore.

Thus we may also define the probability of an event as the ratio

201
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of the number of times it has occurred to the total number of

times it has occurred or failed; but the total number of cases, or

attempts, should be sufficiently large to justify their use as a basis

for generalization. To illustrate, suppose that statistics show

that in the long run the number of male children born is to that of

female children born as 21 to 20; then the probability that any
birth will be that of a male is 21/41.

178. Simple Probability. The above statements, relating to

the occurrence of a single event, illustrate simple probability.

The principle will be further amplified. Suppose a box to contain

w, white, h, black, and r red balls of the same weight and texture,

and that a single ball is drawn from the box at random. Then

the probability of drawing a ball of a certain color will be as follows :

White,

Black,

White or black,

Black or red,

w

w-\-h-{-r

b

w-{-h-\-r

w-\-h

w-\-h-\-r

6+r
w-\-b-]-r

White, black, or rod,
= 1

iv-\-b-i-r

Yellow,
^ =

w-\-b-\-r

Thus we may state the Second Principle. If the ways in

which a single event can occur independently can be grouped in

differ(>nt sots or series, and the probability of its oecurrenco in

each scnios bo known, the total probability of its oceurroiico in any

coinbination of the series will b(> the .s^(o/i of the ('()ri-(\sp()n(hng

si^parate probabilities. In the above example, a single Ijall can

be drawn from the white on(\s with a probability of

w
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or from the black ones with a probabihty of

b

then the probabihty of drawing either a white or a black ball will

be the sum of the two probabilities, namely, .

w-\-b-\-r

179. Compound Probability. Independent Events. Suppose

we have, in addition to the above box, a second one containing iv'

white, h' black, and r' red balls, and that we draw a ball from each

box. Each of the w-\-b-\-r possible draws from the first box may
occur in combination with each of the w'+ b'-\-7'' balls in the second

so that the total number of possible draws of two balls, one from

each box, wih be (w-\-b-\-r){w'+b'-{-r'). Also, each of the white

balls in the first box may be drawn with each of the white ones in

the second box, giving ww' possible pairs of white balls drawn

one from each box. Therefore the probability of drawing simul-

taneously, two balls of one color, one from each box, will be,

two white ball

rr'

Two red balls.

Two black balls,

(w+ b^r){iv'+ b'+ r')

bb'

As a result of this reasoning, we can state the Third Principle:

If two or more independent events are to occur simultaneously,

and the ]:)r()bability of the separate occurrence of each is known,

that of the simultaneous occurrence of all of them wiU be the

product of the separate prol)abilities.

180. Compound Probability. Dependent Events. The prol)-

ability of drawing a black and wliitc^ I'^ii'', one ball from each of the

two boxes, is an example in which th(> events aix^ (k^pendent. For,

if a white ball werc^ drawn fi'om the first box, a black one would

necessarily hiwv to l)e drawn fi'om the second box in orck^- to make

the pair, and vice v(M'sa, so that the pi'obabilit}" of th(> scm'oiuI evcuit

would 1)(^ (liffenMit in the case of the failure of the first one than in



PRINCIPLES OF PROBABILITY 207

its occurrence. Then the number of possible black and white

pairs, one ball from each box, would be, wb'-\-w'b, and the prob-

ability of drawing such a pair would be,

wh'-\-w'b

(w-\-b-\-r){w'-\-b'-\-r')

Here we have the occurrence of a compound event in two sets or

series, so that the total probability is the sum of the separate

(compound) probabilities.

Events are dependent when the probability of the occurrence of

one of them depends upon the occurrence, or failure to occur, of

another. By a careful analj-sis of each problem, it will usually be

easy to so arrange or combine the events as to render them inde-

pendent. In the foregoing example, the case of drawing a black

and white pair, one ball from each box, is clearly one of dependent

events, but if we require the probability of drawing a white ball

from the first box simultaneously with a black one from the second

box, the events are independent and, from the preceding article,

the probability would be,

U'b'

(it'+6+rj(ir'+ 6'+ r')

Also, the probability of drawing a black ball from the first box

and a white one; from the second, simultaneously, would be

iv^

But each of these events, while compound, is independent of the

other. They arc of thc^ same charactcM- and may be considered

as a single compound event occurring in two s(>ts or seri(>^, so tli;il

the total prol)ability of its occurrence in either mannei- will be, as

in Art. 178, the sum of the two s('parat(^ probabilities, that is,

ivb'^ u/b^

This is evident, also, fi'om \hv first priiicii^le, when we note that

the total niunber of bhick and whit(^ pairs is irh'^w'b, while the

total number of possible ])airs, of all colors, is

(-+ /;+ /)('+ //+ /')
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181. Number of Occurrences. It follows from the definition

of probability (Art. 176), that the number of times an event occurs

may be determined by multiplying the total number of possible

occurrences and failures, in other words, trials or attempts, by
the probability of the occurrence of the event. In Least Squares,

for example, the number of errors less than a certain amount to be

expected in a given series of observations will be equal to the

probabiHty of an error less than that amount multiplied into the

total number of observations in the set.



APPENDIX C

DERIVATION OF THE LAW OF ERROR

182. The Law of Error, that is, the equation of the Error Curve,

(Art. 19), has been derived in several ways by different writers

since the original demonstration by Dr. Adrian in 1808, published

at Philadelphia in the
''

Analyst." The most notable of these,

however, are the methods of Gauss (1809) and Hagen (1837).

The former of these two will now be explained.^

183. Assumptions. The Error Function. Gauss based his

derivation upon the assumption of the arithmetic mean as the most

probable value of a directly observed quantity when all of the

observations are made with the same care. Also, the occurrence

of the errors of observation is assumed to be in accordance with

the three axioms of Art. 18.

Since small errors are more numerous than large ones, and since

the probability of an error of a certain size is directly proportional

to the number of times that that error occurs in the given series of

observations, it is evident that the probability of an error is a

function of the error itself. Representing any error by A, the

probability of the occurrence of this error by Pa; and the prob-

abihty function by <?!)(A), we can write,

Pa = ^{A) (308)

Strictly speaking, consecutive errors will differ by small finite

amounts which are the least readings made with the given

instrument or by the method used. For example, the least reading

of a vernier on a circle may be 10", so that all the observations

might be made only to the nearest 10", and the errors themselves

' Soo Brunt's Combination of Observations, for tlio nietliods of Hagen,
Thomson and Tait, and luldington. Hagen's jjroof is given in many works

on Least Sciuares. Comstoek frankly assum(>s the Law of Error to be empir^

ical, wliich is a reasonable and practical method of attack.

209
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would differ by multiples of 10". So the ordinates to the error

curve, corresponding to the various errors, and the successive

points on the curve, would be separated by these intervals. How-

ever, as the precision of the observations increases, these ele-

mental differences decrease and so we may reasonably regard the

points as being so close together as to make the curve continuous.

Thus we may consider that the errors. A, var}^ continuously, and

that the function, 0(A), is a continuous one. The probability

of an error, A, is therefore equivalent to the probability of an error

between the limits, A and A+ riA.

The probability of the occurrence of an error between two

limits is the sum of the separate probabilities of all the possible

errors h'ing between those limits.^ If we regard each probability

as the ordinate to the error curve, corresponding to its particular

error, the sum of these successive ordinates, when the curve is a

continuous one, will constitute the area between the limiting

ordinates, the curve, and the axis of A. Then, the probability of

an error between A and A-\-dA would be represented by the area

of the infinitesimal vertical strip of length 0(A) and of width r/A,

that is, by the area 0(A)r/A. Therefore, the probability of the

occurrence of an error between the limits a and b would be

/
b

0(A)rfA

If the limits be extended so as to include all possible errors,

namely, between oo and + 20
,
the probability of the occurrence

of any error between these limits would be unity, that is, certainty,

and this can be stated,

0(A)</A = 1 (809)X
or, since th(^ area is symmetrical about the axis of probal)ility,

0(A)r/A=i (310)

1 S(H> Ai)i)('n(lix 15, Pi-inciples of Probability.

f:
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184. Derivation of the Law of Error. We shall consider the

general case of indirect observations, since direct observations

form but a special case under it. The observed quantity is a

function of the unknown quantities. Let there be n observations

and m unknowns, n being greater than m (Art. 22). The observa-

tion equations may be written,

/i(X, Y,Z, . . .)=Mi

/2(X, Y,Z, . . .)=M2 (311)

UX, Y,Z, . . .)^M,

Let Ai, A2, A3, . . . A, be the respective errors of Mi, M2, M3,
, . . Mn, and let the probability of the occurrence of Ai be

^(Ai), that of A2 be <?i)(A2), etc. Then the probability of the sim-

ultaneous occurrence of this series of errors will be the product

of their separate probabilities, or,

P = (/)(Ai)(/)(A2)0(A;O . . . 0(A) (312)

Taking the logarithm of each mem])er, this Ix'comes,

logP = log0(Ai)+l()g</>(A2)+ . . . +log0(A) (313)

The most probable series of errors will be those for which the

above probaljility is a maximum, which also will l)e the case when

log P is a maximum. This is the condition for the best or most

probable values of the unknowns. Therefore, the first (l(M'ivativ(>

of (313) must equal zero, and since the unknowns X, Y, Z, . .
.,

in

the case of indirect observations are independent, it follows that

the separate partial doi'ivatives of log P witii respect to these

unknowns must equal zero. Thus we o])tain,

(A 1 ) (IX cpiSo) (IX (^n)'IX

(314)
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Multiplying and dividing each fraction by the corresponding dA,

d(f)(Ai) dAi
,

d4>{A2) dA2 dcl>(A) dAn_Q
0(Ai)dAi dX 4>{A2)dA2 dX </>(A)dA dX

d(f)(Ai) dAi
,

f/0(A2) dA2, d4>(An) <iA_ .

(t>{Ai)dAi dY </)(A2)dA2 dY <p{A)dAn dY

Since the function, 0(A)dA, must be appHcable to any number

of unknowns, we shall make use of the case of one unknown,

directly observed, from which to determine the nature of the

function. Letting X represent the true value of the unknown,

and A the true error of the observation, M, we may write,

X-Mi=Ai

X-M2 = A2 (316)

X-Mn= An

Differentiating,

dM^dA2^dAz^ =^=1 C317)
dX dX dX

' ' '

dX ^ ^

Substituting in (315),

d<i>{Ai)
,

r/0(A2)
, ,

d(/)(A) = (318)
</.(Ai)dAi 0(A2)rfA2 </)(A)f/A

Multiplying and dividing each fraction by the corresponding A,

d(A.)
.^^+_MA^^^_^ ^ , ^ + <>'>'}^:\ A,.= (319)

Ai(/)(Ai)dAi A2</)(A2)r/A2
"

A</)(A)(/A

But it is assumed in direct observations that the mean is the best

or most probable vahu; of the observed (quantity, and that, as the

number of observations increases indefinitely, the mean approaches

the true value as a limit. So we may write,

^JU+M..+ ^ ^ . +M
n

or,

{X-My) + {X-M2)+ . . . +(X-3/)=0 (321)
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whence, from (316),

A1+A2+ . . . +An= (322)

Both (319) and (322) hold good as the number of observations is

increased one by one. But in order that this condition may exist,

it is necessary that the coefficients of the A's in (319) be equal and

constant, so that they may be cancelled from that equation.

Therefore, we may write, in general,

d(P(A)

or,

Integrating,

whence,^

A0(A)dA

d<f)(A)

= a constant, say k (323)

M (324)
0(A)dA

log</>(A)=pA2+fc' (325)

0(A)=e^*^V (326)

But one of the original assumptions was that small errors are

more numerous and more probable than large ones. Thus, as A

decreases, (^(A) must increase, which requires that k must always

be negative. To effect this, we replace k/2 b}^ the new constant,

h^. Then, replacing the constant factor, e^'
, by the constant, C,

we obtain the expression for the probability of an error, A,

<PiA)
= Ce-"'^' (327)

185. The Constant, C. It remains to determine the value of

the constant, C. Substituting (327) in (310),

f
Ce-"'^VA = (328)

Let t
= hA; then (U = hdA. Also, when A = 0, ^ = 0, and when

A = ^
,
t= 00 . Therefore w(> may wiite (328) as follows.

j

e-''^'hdA = ^ (329)

1 c is the base of Xapicrian logarithms.



214

But/

PRACTICAL LEAST SQUARES

/ e-''dt
V^

(330)

(331)

so that, from (330) and (;^31),

h _Vx
2C 2~

whence,
h

C = -

Vtt
(332)

Therefore, we have from (327) the final expression for the Law of

Error,

0(A) =4--^-"^^^ (333)
Vtt

1 This definite integral may be evaluated in various ways. The following

method is given by Bartlett:

From the assumption, t = hA, we have,

itegrals, only, arBut when definite integrals, only, are used.

Multiplying (334) and (335),

(:-"!-!:.[
c-"^^^+^'^kdAdh

2fl+A^)L Jo

1 r^ ds

-,-/,2(l+A2)(_2/),)(l+A2)(i/i

tan- 'A

Therefore,

i:

4

Vtt
e-"dt = -

(334)

(335)

(336)

(337)

(338)

(339)

(340)

(341)
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186. Expansion of Law of Error in Series. The Law of Error

may be expressed in the form of series for convenience in evaluating

it for various values of A.^

Using the quantity, t = hA, as an auxiliary variable, we can

state (333) as follows :

^(A)rfA
=
-^e-"'^'hdA

=^e-"dt (342)
Vtt Vtt

which is the probability of an error between A and A+c/A. The

probability of the occurrence of an error less than A will be that

of an error between the limits, A and +A, that is, since t
= hA,

+A r+A 1 r+t 9 r+t

p = <p(A)dA =-^\ e-'\lt =^\ e-'\H (343)
-A J- A VirJ-t VttJ

=;7?('-3Ti+5^-4 )
(^^'

or,

for use with small values of t,

for use with large values of t.

187. Tables of the Law of Error. From the above formulas,

tables have been computed with the argument t, giving the prob-

al)ility of an ci-ror less than A, in a given set of observations.

Tabk^ I, in Api)endix F, has been formed in this manner. To use

such a table, the mean square error of a single observation, (e),

is computed fi'om the residuals of tlie mean. Then i is obtained

from the assumed error, A, by means of the relation,

t
= }iA^ ^-^ (34())

eV2
siiic(>, from (209),

e\ 2

Finally, with / as an argmnenl, the tabular ])r()t)al)ilit >' is obtaiiUMJ.

' Sc(^ \\'njiht and HayfonK Art. 2iy Craiidall, Art. 114; dp ( 'hauvc-nct,

Vol. I, Art. ii:;.
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However, it is more convenient in many cases to express the

function in terms of A/ e or A/r directly, and this has been done in

Tables II and III, respectively, in Appendix F. The table gives

the probability of an error less than a certain fraction (A/e) of

the mean square error, or (A/r), of the probable error, of a single

observation. Thus, from Table II, the probability of an error less

than 0.4 of the mean square error is 0.3108, and the number of such

errors should be approximately 0.3108 times the number of obser-

vations, n, in the given series. Similarly, the number of errors

greater than 0.4 e would theoretically be, n(l 0.3108). By com-

paring these theoretical numbers of errors with those actually

counted in the given set, it is possible to ascertain how closely

the observations conform to the theory (Art. 20).



APPENDIX D

OUTLINE OF A SHORT COURSE OF INSTRUCTION

188. General Plan. While it is desirable to devote a three-

hour course for one semester to the study and practice of Least

Squares and the Adjustment of Observations, with civil engineer-

ing students, the author presents the following outline of a one-

hour course which he conducted at Cornell University when, owing

to the demands of other courses, this was all the time which the

student could devote to the subject. He regards such a course

as very much worth while and believes that the students obtained

a good general knowledge of the methods of adjusting observa-

tions together with considerable practice in the solution of

problems.

The course was given in 16 lessons, and in addition to the

fifty-minute lecture, the student was expected to work two hours

at home upon the text and the assigned problem. The problems

were handed in at the next lecture, with a penalty for failing to do

so. It was considered essential that the problem be solved while

the topic was fresh in the student's mind. The problems were

carefully examined by comparison with standards and returned

for correction, if necessary, or retained until the end of the term.

The work was required to be neatly done with the idea that the

set of examples would be kept for reference.^

The lectures had to be limited to the essential parts of the

subject, owing to the limited lime, and especial attention was

given to the solution of the pr()l)l(MU at hand. Sometimes two

lectures intervened ])etween problems, and in tlu> ('as(> of the double^

problem of the adjustment of a (luadrilateral a lecluix^ was omittcnl

in order to give the studcMit more time for {hv solution. The

1 The jnipcr known as
" Data SIkh'Is

"
was usod. It is SXlOj inclu\s and

ruled witli blue linos onc-fDUrtU inch apart ])arallcl to the slioi-t(>r (xlgo and

with periMMidicular r<'d lines I'orniin^ ten ecuial eohnnns. A blank margin is

left at the toj) and left-hand edges of the sheet.

217
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first lectures were devoted to a very careful consideration of the

occurrence of errors. Thence the order is indicated by the prob-

lems in the following list.

189. List of Problems. It was intended that each of the

ordinary problems would be of such length that the average

student could solve it in two hours, in connection with the accom-

panying text. The order here given may be varied, if desired, and

Nos. 9 and 10 may be combined. The inclusion of the topic of

index of precision and mean square error in the introductory lec-

tures will depend upon the preference of the instructor; it is not

necessary to introduce it until the propagation of error is to be

studied.

1. Simple and weighted means; precision and mean square

error.

2. Indirect observations; observation equations given; direct

solution for the unknowns.

3. Indirect observations; observation equations given; solu-

tion with approximate values of unknowns to find corrections to

those values.

4. Local adjustment of angles at a station.

5. Local adjustment; method of directions.

6. Adjustment of a level net.

7. Adjustment of a quadrilateral; method of angles.

8. Adjustment of a quadrilateral; method of directions.

(Problems 7 and 8 may be combined, using same data.)

9. Simple propagation of error.

10. Compound propagation of error.

11. Combination of results; weights from mean square errors.
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TYPICAL CURVES FOR REFERENCE
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PLATE I

y=A + B X

A = Intercept en Y-axis

B= Tangent of Slope, io X-axis,

tan

STRAIGHT LIKES

C.S Log X

NOTE .' Sec next paces for these curves

plotted by X and y
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4

PLATE 11

:Ci.5T-

20 1,0 CO
H (- H ^

100 X

PARABOLA
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PLATE III
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PLATE IV

PAIiAEOLAS
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PLATE V

i/ i

/
_->

FARABOLAS

-iO-
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PLATE VI
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PLATE VII
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PLATE VIII



APPENDIX F

TABLES

TABLE I

Values of i = = | e~'^dt
2 n

of p = =
I

e

(Arts. 136 and 187) Argument is t = h^.

I
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TABLE II

Values of p
2/i

fJo -"^^^iA in terms of

Probability of the occurrence of an error less than A.

= A
/ ,

that is, the mean square error of a single observation.
\ 71 1

(Art. 187, J). 215,)

A
e
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TABLE III

7- r^
ttJo

Values of p = 7= I e ''^^^dA in terms of

Probability of the occurrence of an error less than A.

r = 0.6745-
/

= the probable error of a single observation.
H 1

(Art. 187, p. 215)

A

r
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TABLE IV

Factors for Computing Probable Errors from Bessel's Formulas.

(Arts. 140 and 141)



INDEX

(Numbers refer to pages)

Abridged method of solving normal

equations, 41, 47

Abuse of least squares, 197

Accidental errors, 7, 9, 10

Accuracy and precision, 151, 194

Adjustment, angles {see triangula-

tion)

arbitrary, 196

base lines, 130

by parts, 54, 97, 130

levels, 55, 64, 74, 174

necessity for, 3

trigonometric leveling, 81, 130

triangulation, 80, 127

between base lines or points of

control, 119, 127

figure, 81, 96, 107, 108

local, 56, 71, 76

quadrilateral, method of angles,

99

method of directions. 111

approximate method, 118

Adjustments not infallible, 78, 198

Aids in computation, 30, 51

Angle equations, 84, 86

Angle measurement with theodoHtc,

example, 186

Approximate method of adjusting

([uadrilatcral. lis

Approximate values of unknowns, use

of, 19, 34

Ar! itrary adjustments, 196

Arithmetic mean, 9 (s(r Mean)

Average error, l.")2, l.")7. loS, 163, 166

Axioms or assmnptions, 11, 209

Azimuth equation. 128

B
Base lines, adjustment of, 130

Bessel's formulas for mean square and

probable errors, 162, 164,

166, 169

Best values of the unknowns, 15

Bibliography of least squares, 202

Blunders, 7

Central-point figure, 83

side equation for, 92

central point unoccupied, 123

Coefficients, equalization of, 35

Comparison of indices of precision,

158

Comparison of observations and

theory, 11

Compound propagation of error, 181

Computation tables and machines, 30

Computed quantities, combination of,

187

precision of, 177

weighted mean of, 189

Conditioned observations, 53

adjustment by method of inde-

pendent unknowns. 75

precision of, 172

special case of one condition only,

73

Conditions, 53

angle, 81, S4, 97, 108

arrangement of. 70

ecjuations, 57. 63

ind(>pendent. 55, (')'), 85, 97

latitude, longitude, and azimuth,
128

233
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Conditions, length, 121, 128

local, 56, 81, 97

number of, 55, 57, 65, 82, 86

side, 81, 97, 108

Constant errors, 5, 193

Control or check, arithmetic mean, 20

weighted mean, 24

correlates, 62

formation of normal equations, 29,

62

solution of normal equations, 46,

62

final values of the unknowns, 50, 63

Corrections, 3

computation of, 64

used instead of errors, 3

Correctness unattainable, 2

Correlates, 61

method of, 59, 71, 106

Course of instruction, 217

Criteria for rejection of observations,

192

Curve of error, 10

Curves of empirical formulas, 219

D
Dependent quantities, 53

Derived equations, 43, 46

Direct observations of one unknown,
17

adjustment of, 18

precision of, 160

Directions, 105

list of, 107

method of, 97, 107

Discordant observations, 196

Discrepancies among observations, 1,

8

indicate errors, 2, 8

Doolittle, method of elimination. 40

Elimination, methods of , 40

Emi)irical formulas, 131

straiglit lines, 133, 141, 221

parabolas, 133. 143, 221-225

hyperbolas, 141, 221. 223. 226

jjcriodic functions. 134, blX, 22S

Empirical formulas, non-linear forms,

135

exponential functions, 135, 145, 227

logarithmic functions, 227

reduction to linear form, 137

test of, 139

use of, 140

Equations, angle, 84, 86

azimuth, latitude, and longitude, 128

base line, 128

condition, 57

derived, 43

length, 121, 128

normal, 28

observation, 27

residual, 27

side, 87

mechanical statement of, 93

simultaneous, general, 38

Error, average, 152, 157, 158, 162,

166

curve of, 10

law of, 12, 209

tables, 229-231

mean square, 152, 153, 158, 161,

164, 166

probable, 152, 155. 162, 164, 166

proi)agation of, 177

Errors, accidental, 7

constant, 5, 193

instrumental, 6

occurrence, 4, 10, 11

personal, 6

systematic, 5, 193, 195

theoretical, 5

Excess, .spherical, 53, 85

Exponential fimctions, 135, 145

F

Factors, Bessel's, f(jr ])robablc errors,

232

correlates, 61

Figure adjustment, 82. 96

l)('t\v('(>n fixed jjoints of control, 127

lucthod of angles, 82, 96

method of directions, 107, 111

to conform to fixed or adjusted

work, 119
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Figures, classification of, 83

Fixed, or controlling, data, 119, 127

Formulas, Bessel's, 162, 164, 166, 169

empirical, 131

Liiroth's, 169

Peters', 162, 164, 167, 169

Function, general, 26

linear, 26, 137

observations of a, 26

of the unknowns, 26

reduction to linear form, 26, 89, 137

G
Gauss, method of elimination, 40

Geometric mean, 9

H
History of least squares, 201

Hyperbolas, 141, 221, 223, 226

I

Independent conditions, 55, 65, 85, 97

Independent observations, 54

Independent unknowns, method of,

75, 106

Index of precision, 152

Indirect observations, 26

method of, 75, 106

Instruction, short course of, 217

Instrumental errors, 6

Interpolation formulas, 131

I.

Latitude, longitude, and azimuth

eciuations, 128

Law (if error, 12, 209

expansion in scries, 215

others than that of least sciuarcs,

19S

tables (,f, 13, 162, 215, 229-231

test of, 12

Law of pi'o])apitioi\ of error, 177

Least sciuares, 13

axioms or assuniiitions of, 11. 209

cliissificatioii of ])!'ol)leii!S, 15

priiH'iple of, 11

two uses of, 15

use and at)us(^ of, 197

Length equation, 121. 128

Levels, adjustment of, 55, 64, 74

precision of, 174

Limit of accuracy and precision, 163,

194

liinear function, reduction to, 26,

89, 137

Literature of least squares, 202

Local adjustment, 56

method of correlates, 71

method of independent unkaowns,
76

Logarithmic curves, 227

Logarithmic plotting, 146

Liiroth's formulas for mean square
and probable errors, 169

M
Machines for computation, 30, 51

Mean, 18

arithmetic, 9, 19

control, 20

assumed as best value, 9, 18

geometric, 9

weighted, 22

control, 24

Mean square error, 152, 153

compared with probable error, 158

of a single observation, 161

of arithmetic mean, 164, 181

of weighted mean, 166

of a function, 177

Mechanical aids in comi)utation, 30,

31

Mechanical statement of side equa-

tions, 93

M(>thods of observing, 5, 193

Micron, S

Mistakes, 7, l2

X
Xou-linear functions and curves, 135

Normal equations, 2S

formation of. 2S. 30, 32

control, 29

nunil)(>r of. 2S

redundauT tei'ins. 44

solution of. 40
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Normal equations, solution of,

abridged method, 41, 47

control, 46

Number of angle equations, 86

conditions, 55

local conditions, 82

observations, 14, 163, 193

occurrences, determined from prob-

ability, 208

side equations, 95

O
Observation equations, 27

Observations, conditioned, 53

direct, 17

discordant, 196

indirect, 26

number of, 14, 163, 193

precision of, 151

superfluous, 55

weighted, 20

weighting of, 21

Observing, methods of, 5, 193

Occurrence of errors, 4, 10

One condition only, 73

Outline of methods of adjustment, 199

Parabolas, 133, 143, 221-225

Partial adjustments, 54, 97, 130

Periodic curves, 134, 148, 228

Personal errors, 6

Peters' formulas for mean square
and ])robable errors, 162,

164, 167, 169

Pole of the side ecjuation, 93

Polygon fixed, with central point

unoccupied, 123

Precision, 151

and accuracy, 151, 194

increased by additional observa-

tions, 3, 193

index of, 152

of direct observations, 160

of a single observation, 161

of arithmetic mean, 163, 181

of weighted mean, 165

of indirect observations, 167

Precision of an observation of weight

unity, 169

of conditioned observations, 172

of a difference of elevation, 174

of a function, 177

of computed quantities, 177, 189

Principle of least squares, 14, 23

Probability, principles of, 205

simple 205

compound, 206

Probable error, 152, 155

approximate value of, 162

compared with mean square error,

158

of a single observation, 162

of arithmetic mean, 164

of weighted mean, 166

table of Bessel's factoid, 232

Problems, classification of, 15

list of, for a short course, 218

Propagation of error, 177

simple, 178

compound, 181

Quadrilateral, 83

adjustment, method of angles, 99

method of directions, 111

approximate method, 118

defined, 83

one triangle fixed, 122

side equation for, 88, 91

two sides and included angle fixed,

121

R
Readings, 1, 17

combination of, 17

Reduced condition equations, 58

Reduction to linear form, 26, 89, 137

Redundant terms in normal e(iua-

tions, 44

Refinement of computations, 50

Rejection of observations, 191

Relation between mean square, prob-

able, and average errors,

158

Residual equations, 27
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Residuals, 10, 195

from the mean, 20

not the same as errors, 10

sum of squares is a mii.imum, 14,

23

S
Side equations, 81, 87

formation of, 88

mechanical formation of, 93

number of, 95

reduction to linear form, 89

Simple propagation of error, 178

Simultaneous equations, solution by
means of normal equations,

38

Single observation, precision of, 161

Spherical excess, 53, 85

Straight lines, 133, 141, 221

Systematic errors, 5, 193, 195

T
Tables, Bessel's factors, 232

probability of error, 229-231

for computation, 30

Tape compari'^on, example, 183

Tape measurements, examples, 184

Test of empirical formulas, 139

Test of the law of error, 12

Test-piece, example, 182

Time by star transits, example, 36

Triangle errors, example, 185

Triangles, computation of, 118

Triangulation, adjustment of, 80 (see

Adjustment)

Trigonometric levehng, 81

True errors, 3

U
Unknowns, approximate values of, 19,

34

final check of, 50

Use and abuse of least squares, 197

Use of empirical formulas, 140

W
Weighted mean, 22

of computed quantities, 189

of two quantities, 24

Weighted observations, 20

Weights, 20

basis for, 21, 54, 187

determination of, 21

from mean square or probable

errors, 187

of the unknowns, 168
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