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PREFACE
This book has been designed primarily to meet the requirements

of technical students and artisans as a practical text-book on

Mathematics. Teachers who do not combine instruction in Practical

Mathematics with Practical Geometry, and who have thus been

unable to adopt the Authors' existing text-books* in which the two

subjects aj-e combined, will, it is hoped, find this book adapted to

their requirements.

It is believed that the book will be found to contain all the

mathematics that the average technical student or practical man

requires to enable him to follow intelligently technical or scientific

subjects which he may have to study, and also to deal with practical

problems which he may encounter in connection with his trade or

profession. No previous knowledge of the subject is assumed, and

the work is intended to cover a two, or three, years' course of

instruction according to the capacity of the student.

The syllabus of the P>oard of Education •' Lower Stage" Examination

in Practical Mathematics has been taken as a guide, but in many
sections the book will be found to exceed the requirements of the

syllabus. Students studying for this examination should consult

the note facing p. 1 as to which parts of the book may be omitted

as regards the examination. The small section of the s^dlabus dealing

with Descriptive Geometry has been purposely omitted, as it is

more properly included in the companion volume by the Authors

on Practical Geometry and Graphics. Its exclusion from this

volume has. moreover, enabled the Authors to deal more fully with

Integration and applications to practical problems, thus rendering

the work more complete as a text-book and guide to the student

of Practical Mathematics.

* " Tractical Mathematics and Geometry," 3 part?. Lomlon, 1011-12.

288431'



vi PREFACE.

The practical application of principles discussed to problems met

with daily by engineers, biiilders, architects, surveyors, draughtsmen,

and others, has been made a prominent feature of the book. The

sections dealing with Rates of Increase, Differentiation, and Integra-

tion are intended to give the student an acquaintance with these

subjects sufficient to enable him to read advanced text-books on

sciences allied to his trade or profession, and to apply the calculus to

practical problems.

The needs of the student who has to work unaided by a teacher

have been carefully kept in view, and he should have no difficulty in

proceeding intelligently, if he will master each section before pro-

ceeding to the next, and also woik the exercises, which have been

carefully chosen and compiled so as to be of a graduated and

practical nature. The Exercises marked B. E. are taken from the

Board of Education Examination Papers in Practical Mathematics

and in Practical Geometry : those marked B. E. (2) being selected

from the old Stage 2 Examination.

The Authors cordially thank Mr. F. P. Johns who has read the

MSS. and proofs, and made many Aaluable suggestions, and also

the Publisher who has rendered every possible assistance in the

preparation of the work.

E. L. B.

F. C.

London.
Sept.. li»12.
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PRACTICAL MATHEMATICS.

CHAPTER I.

INTRODUCTION TO ALGEBRA.

1. In arithmetic wc deal principally witli the numbers
of tliin<i-s—for example, we speak of 50 bricks, or IH) miles,

or 25 horses ; in each case, the number denotes the quantity
of the particular thing we are speaking about, and the
particular thing is specified by writing its name in full.

In algebra we adopt a similar i)lan as regards quantity,

but we choose some symbol to represent the thing, and
hence we specify the thing by its representative symbol.

Thus, if we let the symbol x represent a brick, then bOx
represents 50 bricks ; similarly, if y represents a mile, then
30// represents 30 miles ; and if z represents a horse, then
2bz represents 25 horses. The number, which in reality

multiplies the symbol, is called a coefficient, and the

number and symbol taken together is called a term.
2. When we speak of one article, we usually omit the

coefficient 1. Thus, instead of Ix we should write x, if we
wished to represent, say, 1 brick.

The student must understand clearly that a symbol may
be used to represent anything we please. The same letter

may denote a certain thing in one problem and a different-

thing in a ditferent problem, but in any particular problem
one symbol is always retained for one thing and a different

symbol for a different thing. For example, in one problem
X may stand for the number of bricks per foot run in a wall,

whereas in a second problem x may stand for the pressure

in lbs. per square inch of the steam in a locomotive boiler.

The use of symbols is a sort of shorthand method of

expressing facts.

3. Sig^s of Operation. To indica'.e that one quantity

r.M. B



2 ]NTROr>UCTTON TO ATXiEBRA.

is equal to another we use the si.s^n = for ''^pqnals''' or "?>

equal toy Thus, ?> multiplied by 2 = ^>.

The operation of addition is denoted by the si^n +,
called the plm sign. Thus, 3 plus 5 is equal to 8, or 3

added to 5 is equal to 8, is written 3 + 5 = 8.

Similarly, if we use a symbol, say ;r, to denote a thing,

then ?>x + bx = 8r.

The operation of subtraction is denoted by the sign -
,

called the minus sign. Thus, 5 minus 3 equals 2, is written
5-3 = 2. Using symbols again we have 5a; - 3.r = 2x.

The operation of multiplication may be indicated in

several ways. The sign commonly used is x . Thus, 4
multiplied by 5 equals 20 is written 4 x 5 = 20. Four
times X multiplied by 3 equals 12a:; is written

4a; X 3 = 12x.

Another method of indicating the operation of multipli-

cation, used with symbols, is to place a dot between the

symbols. Thus, a multiplied by x may be written a . x.

This should not be used with figures, for a dot is used to

indicate the decimal point. See Art. 20.

Two or more letters written together with no sign

between them indicates that they are to be multiplied

together. Thus, a multiplied by h is written ai ; x multi-

plied by y multiplied by z is written xijz.

The quantity to be multiplied is called the multiplicand,

the quantity we multiply by is called the multiplier, and the

result is called the product.

The operation of division is indicated by the sign -f , or

by placing the quantity to be divided, called the dividend,

above the quantity by which it is to be divided, called the

divisor. Thus, 4 divided by 2 equals 2 is written 4-^2 = 2

4
or - = 2 ; 8.r divided by 2 equals ix is written 8.r -4- 2 =

O V.

4;r, or -— = 4.T. The result of dividing one quantity by

another is called the quotient In the above examples, 2 and
4a; are quotients.

4. If any arithmetical quantity, or an algebraic term, is

multiplied by an equal quantity or term it is said to be

squared, or raised to the second power.
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Thus, 3x3 = 3 squared.

,r X x = X squared.

Arithmetically we can rej^resent the value of 3 squared by a single

number, which is the product of 3 X 3, i.e., 1). In the case of an
algebraic symbol we cannot do this, so instead of writing x squared

as the product .r ..r, we write it as x^, which means that two equal

quantities .r have been multiplied together. The number 2, which
denotes that the symbol x has been multiplied by x, or squared, is

written above and slightly to the right of the symbol x, and it is

called an index.

This process is extended to cases in which more than two

equal arithmetical or algebraic quantities are multiplied

together.

Thus, 3 X 3 X 3 is called 3 cubed or 3 raised to the third power.
3 cubed may be written 3-^ or 27.

Similarly x X x X x = ,r cubed, or x raised to the third power. It

is written x^, the index 3 showing that three equal quantities x are

multiplied together.

Also 3x3x3x3 = 3 raised to the fourth power, which is written
3^ or 81. a* X ^ X .r X x = x raised to the fourth power, written x^

;

and so on.

An algebraic term consisting of a number and a symbol,

such as 'dx, can be raised to any power.

Thus, 3a? squared means 3 squared multiplied by x squared. This
= 3 X 3 X a; X a*, and it may be written 3^ . a-^. We should, however,
multiply out the square of 3 and we then get 3 x 3 x a?2 = 9a-2,

which is read as " nine x squared."
Similarly 3.r raised to the third power, or cubed, is 3 x 3 x 3 X

ar X a- X a" = 27a-''.

Also 3a? raised to the fourth power = 3 x 3 x 3 x 3 x
XXX X X X X = Six*.

The index corresponds to the power to which the symbol
is raised and also to the number of such symbols multiplied

together. Thus, the square or second power has an index 2,

the cube or third power an index 3, and so on. There is no
limit to the power to which a symbol may be raised.

The operation of raising quantities or terms to given
powers is called involution.
Any quantity or term raised to the ^rs/ power is repre-

sented by the quantity or term itself ; thus, x raised to the

first power written fully would be x^, but this has the same
value as x, hence x and x^ represent the same thing.

5. If a given number or algebraic term can be produced

B 2



4 INTRODUCTION TO ALGEBRA.

by multiplying' tog-ether two or more equal numbers or

algebraic terms, then each of the equal numbers or terms is

said to be a root of the given number or term. Thus,

9 = 3 X o; hence 3 is a root of 0. Again, :i^ = x x x x x -,

hence x is a root of x^.

The process of extracting roots of given quantities or

terms is denoted by the sign y placed in front of the

quantity or term to be operated upon. Thus, a/ 9 means the

root of 9. V~c means the root of x. Now we may require

the square root of, say, 9— that is, a number which multiplied

by an equal number will give 9 as product ; or we may
require the cube root, say, of 27—that is, a number which

multiplied by two equal numbers will give as product 27 ;

or we may require the fourth root, say, of 81—that is, a

number Avhich multiplied by three equal numbers will give

as product 81 ; and so on. In order to indicate which root

is required, a small index figure corresponding to the

required root is written before the root sign, thus :

—

^/l) moans the square or second root of 9, and since 3 X 3 =; 9,

this root is 3.

^27 means the cube or third root of 27. and since 3x3x3 = 27,

this root is 3.

i^/«i means the fourth root of 81, and since 3x3x3x3 = 81,

this root is 3.

It is usual to omit the index figure 2 for square root,

and to use the root sign only, thus, J[) and %/d each mean

the square root of 9.

The operation of extracting roots of quantities or terms

is called evolution.

G. Algebraic addition, multiplication, and divi-

sion. The chief difference hetween an algehraic (luanHtfj

and an arithnieiiccd quant ity is that tchereas in arith-

metic ice always deal with positive qmntities^ in atyelra a

quaniity may be positire or negative, and we must always

thinh of a quantity as haviny loth siyn and maynitude.

For example, suppose that a man has 50 pounds in gold and

.^0 shillings in silver, and, further, that he owes one man a debt of

20 pounds, and a second man a debt of 15 shillings. This states his

position arithmeticall}', and we could easily calculate how much he
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would liave left if lie paid his debts. Now, if we denote each pound
by J", and each shillin.i,' by //, then the man has .^)0./* and 50//. He owes
20j* to one man, and 15// to the other. We will now denote money
which the man possesses by a ])lussign. and monej' which he owes by
a minus sijjrn. + 50.r and + ."iO// then represents algebraically the

money he possesses ;
— 20.r and — I'yij represents the money he owes.

Suppose now that the man pays the debts ; he then has left 80 pounds
and 35 shillings, and he owes nothing. AVe represent this result as

follows : + 80.A' -}- 85// (since the jdus sign denotes money possessed),

and this result is called the alg-ebraic sum of the quantities given,

that is. the algebraic sum of -|- 5<».r -|- i*Oy — 20»e and — 15// is + 30ar

+ 35//:

Now take a case in which the debts exceed the money possessed.

A man has 20 pounds and he owes 80 pounds. If, as before, we call

each pound possessed + w and each pound owing — x, then an
algebraic statement of his position is + 20.? and — 80jr.

if he pays the debt as far as he is able to do so, it will be seen that

he pays away the whole 20 pounds and still owes 10 pounds. This is

represented algebraically as — lO-r, the minus sign indicating that
the result is 10 pounds still owing and not 10 pounds possessed.

Thus, the algebraic sum of + 20.r and — 80.» is seen to be — 10.r.

While the above illustration shows the difference between plus
and minus quantities, it must be borne in mind that it is only an
illuttraticn.

7. An algobraic sum is bj no means confined to similar

examples ; the chief point to be observed is tliat an
ahjehrak sum may result in a jjositive quantity, or a negative

quantity.

AVe can arrive at these results without reference to the

illustration given above.

/>. 1. Find the aJpehraic .sum of -f -'O.r, + -"'O//) " ^O.r, — 15//.

Arrange the x terms in one column and the // terms in a separate
column, and in each case take the sign with thc'tcrm.

We thus get -j- 50.? +50//
— 20,c ^ 15//

Now subtract the coefficient of the smaller term containing ir (that

is, 20) from that of the greater term (that is, 50), the difference is 30
;

we give to this result the same sign as that of the greater term, in

this case a -|- sign, and the result is thus written + 30.r.

Similarly, for the quantity containing //, we get -f 35//, and
hence the algebraic sum is -f- 30,r -f- 35//.

£,r. 2. Fi/ul tlie algehraie .sum of — 30.r and -\- 20.r,

Following the above rule we have — 30j;

-f 20.C

— 10,/-

The smaller terni 20.r subtracted from the greater term 30.r gives
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as difEerence 10a;, and since the greater term has the minus sign we
attach the minus sign to the result.

The student must bear in mind that in adding- and sub-

tracting algebraic terms, the symbols must not be left out

of the result. Thus -yOx - oi)x — 20./', 7iot 20, as is

comraouly written by beginners ; for, suppose x = 2, then
500.^ = 100 and dOx =^;0, and bOx - 30^ = 100 - 60
which = 40. Hence, to write bOx - ^Ox = 20 would be

incorrect.

Ux. Find the algehraic sum of the following terms : -f 12.r,

- 1.5//, + 4c, - 15.c,'+ 13y, - 7c, + Uy, - IS./-, + lie, + 8.i-, - 3c,

-4y.
First arrange the terms with their signs in columns as below,

placing the x terms, y terms, and c terms in separate columns
thus :

—

+ 12.C
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Applying; the algebraic method without the illustration, we arrive

at the same result.

Thus, adding together the .i" terms which have a i)lus sign we get
^+ 12.t; -{- Sx = -i- 2{)x

adiling those with a minus sign wc get
— 15.f — 18a; = — 33^

Subtract and attach sign e

total and we get
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(ihc has t'nc same value as ach ; if a = 2, Z* = ?>, c = 4, then ahc =
2 X 3 X 4, and ^/r/y =: 2 x 4 x 8, and in each case the product is 21.

Further examples of like terms are a^h'k^ and V^ca'^,

also ./2y2-3 {^11(1 7^2/-2,-:^,

Further examples of unlike terms are

rr'i-c and aW-^'c, also -v^if--^ and ,r-^//2-^

A simple tesfc as to whether two terms are, or are not,

alike in yalne, is to write each term out fully without

indices ; thus, by wn-itin^ a-h'^ ^% a x a x l x h x & it is

seen to be unlike d^r, which becomes axaxaxhxh.
Again, writing a-hh^ us a X a x b x b x c x c x c \t u
seen to be like or equal to a~c^b-, which becomes a x a x c

xcxcxbxb.
9. Every algebraic term is made up of a sign, a

coefficient, a symbol, and an index ; for example, in the

term — 3/- we have a sign — , a coefficient 3, a symbol .r,

and an index 2. This term is spoken of as " minus throe

X squared."

If the coefficient is ], it is omitted; thus, — x"- is really

— 1.1-, "minus one .r squared."

If the index is 1, it is omitted; thus, — ox is really

— 3.r\ " minus three x to the first power."

If the sign is plus, it is omitted when the term stands

alone, or when at the beginning of an expression ; thus,

?yx- is really + 3.^-, " plus three x squared."

It will thus be seen that when we write simply a symbol
X we really mean + 1-^^ "plus one x to the first power,"
but in accordance with the above statements the sign,

coefficient, and index are omitted.

AYhen we write —- x, we really mean — Lc^, " minus one
X to the first power." Here we omit the coefficient and
index, but not the sign.

Similarly, — .t- means — U-, the coefficient being
omitted ; also ~ 3,/" means — 3^-i, the index being omitted.

Thus, an expression which when written fully is

'V\'0uld in practice be written

* -^ 3.t' + -f^ - 2,/
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111 the following examples the algebraic sum of each

column of terms is shown separately on the right.

IC.v. 1. Find tlic ahjehvdlc man of

\'2u — i\h + B

— 5(1 + S/> — 1(»

Su — U -\- 7

Al''cbniic sum 10« — 2b

+ Km
— 'xt — l(i/y — lOc

+ 10a — 2b

F.r. 2. Find the alqehniic .svni of 7x — lOy + 12,-, — i,c -f Oy
. e-, — ^^.r -f 2// — \:.

— 4.r 4- r.y — 8,- + '•'^

— 8.r + 2// — 4r

Alcrcbraic sin - 2y

•— /.r

— lOy -f 12-

4- s// -12.-

2y

F.r. 3. i^///// ^//r algphraic sum of 2aW~ — 4^<2^^ — G//"7.2 -\- 7aVj^

and — ll/A/2.

— Ilrt2i3

Algebraic sum — 4a3J2 _ Sa^i^

— 4«8i2

+ 7r/2/y3

— 8aH»

Exorcises.

Find the algebraic sum of—
(1) 3a — 5h -f-

S./- — 1.-)// — Off + ll/> — 12;/ -^ \r>h + ITj™.

(2) 4.-^ — 7y — 12,- + ll./- + ir,y -I-
13,- — 14,/- + lOy.

(3) « + 4^' — ^ — 0/Z — 14« 4- ll/> 4- 7r/ — 7b -(- ]\r— Uu.
(4) a;2 4- 3y2 _ lo^ 4- 11// — 4.^2 + 2//^ — 15y 4- 7.r2— 3//2

— 14.r 4- 12y.

(5) yr/2 4-'2//2 _ r,r2 4- H^ 4- 12i — wi"^ 4- 3^2 — 5^^ 4- 7b 4- 8c2

4- 4a — 10/y 4- 11^2 _ 12//^ 4- 4^/2 _ 7^^ ^ g/^.

(6) a J 4- ./y — a 4- •^" 4" ^)fih -\- ^.ry — 7.v -\- 11a 4" 2./-//

— Cuib.

(7) «2j _|_ rt/.2 — \ab 4- 4«2/, -^ c,ab \- Ul^ — 8^2^ 4- Oah^

4- llaJ.

(8) _ ^2 4. ^2 4. ,,2^ + /,_yO ^ 3^2 _ 5,,2., 4. 0^2 4. 7^,^2

4- 8a2,r — 107^2,

(9) ->abc + 8^/Z/ 4- 11^/^ 4- 12/y^' — 4abc 4- Ih/i — Tjac 4- 8k-
— hahc 4- Gac — 8Jc 4" 4«i — 5atf — lObc -\- nbc.

(10) 12«2^,8 4_ 7a2^2 _|> y^^p _ 5^^2^2 4. 8^2.^.8 _ 20aV-3 — 2.u''^-a

— 8«.t'.
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Afiswers.

(1) _ 6rt — 96 -f 2o.» — 27 1/. (7) — 3a^ + lialj^ + ab.

(2) .V + I8i/ -\- z. (S) 2.r2 — 3//^ -^- 4rt2.,,. -f.

(3) — 25rt '+ 8* 4- 106- + d. Shf.
(4) 4.r2 4- 2?/2 _ 24.A- + 8//. (9) 23ab -{- lac + 2Z<c —
(5) 3rt2 _ 7Z,2 _^ 13^.2 _^ 3^ 3^^^^,.

+ lib. (10) 0.

(6) 9,t'y + lO^f — O./-.

10. Multiplication. Any algebraic term may be

multiplied by a number ; for example, 3.? multiplied by 3

will be equal to 3x + dx + 3x or = 9x.

As an illustration, if x represents 1 pound, then 3,r represents

3 pounds, and the product, when 3 pounds is multiplied by 3, is

9 pounds or 9.r. Similarly, 2*2 x 4 = 2x-^ + 2.v^ + 2.f2 -{- 2x^ =
8*2 ; 4*3 X 5 = 20*3 ; and so on.

An algebraic expression may be multiplied by a

number as illustrated by the following example : Multiply

3.C - 5?/ + 10^ by 5.

If we think of + 3.c as 3 pounds in pocket, - 5?/ as a

debt of 5 francs, and +10^ as 10 dollars in pocket, and

also that there are five persons whose financial positions

are so represented, then the total number of pounds

possessed by the five people is 5 x 3 = 15 pounds, or

+ 15x, the total debt in francs is 5 x 5 = 25 francs, or

- 25?/, and the total numl)er of dollars is 10 x 5 =
50 dollars, or + 50s ; hence the product is Vox — 2by + 50^.

It will be seen that this product is obtained by multiply-

ing the coefficient of each term in the expression by the

multiplier 5.

When a term consisting of a symbol with an index, such

as 2"^ is multiplied by a similar term, such as x-, the product

is obtained as follows :—
.7-3 = * x * X *, and *2 — ^ X £

;

hence x^ xx'^^xxxxxxxXx which = x^ by Art. 4.

If we call x^ the multiplicand and x'^ the multiplier, we
see that tJte sum of the indices of the multiplicand and
multiplier (viz., 3+2 = 5) gives the index of the product.

Thus, ^2 X ft-* - tt-l+2^fl6

wi4 X ;//. — m^ + 1 = m^ and so on.
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The product of a term consistiii*? of a coefficient, symbol,

and index, such as 5/', and a simihir term, such as 3^*^ is

equal to 5 x .i' x .r multiplied hy 3 x x x x x x, which is

ecjual to IT) x .c x x x x x x x x or lk)x^. Thus, the

coefficient 15 of tlie product is the product of the co-

efficients 5 and o of the multiplicand and multiplier, and
the symbol .r^ of the product is the product of the symbols

X- and x^ of the multiplicand and multiplier.

Similarly, 2.f2 X 30-4 = 6u^2 + -» = 6a?6

5a4 X 6a =30a^ + i = 30«^

3y3 X 4y2 = 12^3 + 2 = 12y^

AVe have still to investigate the rules for the sign of the

product. The following cases will occur :

—

(1.) Signs of multiplier and multiplicand both + (plus).

Fig. 1.

(2.) Signs of multiplier and multiplicand both —
(minus).

(3.) Signs of multiplier and multiplicand different, one

+ and the other —

.

A graphical illustration will serve for this investigation. Suppose

we are at a point O in a road AH, Fig. 1. Consider distances

measured to the right (towards B from 0) as positive, and distances

measured to the left (towards A from 0) as negative. Let us denote

a distance of two miles by a length x. Then if C and D are each

two miles from but in opposite directions, OC = -f ./', and OU =
— X. If we now walk towards B a distance equal to six miles, or

three times the distance x, we arrive at E ; hence OE = x -\- x -^ x ox

Zx. Similarly, a distance equal to three times the distance x towards

A is OF, a distance of three times — x, or — 3.r. Thus, the product

of + 3 and + a; is OE = + ^x, and the product of -j- 3 and — a: is

OF = — 3a?.

Now if we wish a person to walk six miles towards B, we can

indicate this distance as a distance = three times -\- x from or -f- 3

times a distance x from ; if we wish the person to walk a similar
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distance towards A from 0, we can indicate this distance as a distance
= three times — x from 0, or we could say walk a distance — 3 times
the distance x from O. In the latter case, a distance -|- ,r when
multijilied by — 3 gives a distance — 3.r ; thus multiplying by —

3

instead of -}- 3 changes the direction only, and does not change the
distance from 0. Hence a distance — 3 times — a? is opposite in

direction to + 3 times — x. We already know that + 3 times — x
is a distance OF from O ; hence — 3 times — .? is a distance equal to

OF from O, but opposite in direction, i.e., it is equal to OE, which
is -f 3./'. Thus, — 3 X — ^' = + 3,r.

If we collect these results we find that

(1.) + 3 multiplied by + ;? = + 3.r.

(2.) +3 „ „ -x=- ^x,

(3.) - 3 „ „ + X = - ^x.

(4.) - 3 „ „ ~.v= + 3x.

And from these results we deduce the following rules for

the sign of a product :

—

Bnle 1. Like signs ^ whelJier + or — , when multiplied

together, give + as the sign of the product, as in (1.) and
(4.) above.

Rule 2. Unlike signs give — as the sign of the productj

as in (2.) and (3.) above.

Ex. 1. -f-
0*"^ multiplied by — 3*'' = — 15a-° (as signs are unlike,

therefore product is minus ; coefficients are 5 and 3, therefore co-

efficient of product is 5 X 3 = 15 ; indices are 2 and 3, therefore

index of product is 2 -}- 3 == 5).

A\e. 2. —iixx 2,1-2 = — G.x-3

(written fully — Sx^ x 2x^ = — Gx^ + 2 ^ — G.t3).

Ex. 3. —XX 2*5 = — 2*6

(written fully — Li-i x + 2x'= = — 2a-i + s = — 2*^').

Ex. i. X"^ X X^ " x^

(wiltten fully + L/S x + Ix^ ^, a-^ + » === + *6).

Ex. 5. — x^ X — x^ ^ x^

(written fully — Ix^ x — l-r^ - x^+» = + ,/-6).

Ex. G. -f ,^.8 X — *3 ^ _ .^.G,

11. If the terms to be multiplied together do not contain

the same symbols, then we cannot add together the index
figures for the product.

We proceed as follows :—
The product of -f « and -{-his written ah, which, as we

have already seen, denotes a multiplied by h.

The product of + « and — h is written — ab, following

the rule for the sign of a product.
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If there are coefficients Tvith different symbols in tlie two
terms, we mnltijily to.ii^ether the coefficients and write down
all the symbols with their indices, thus :

—
2a X Hb = dab

— 2a X 8J = — (\ab

— 3«2 X 4/y2 = _ 12^2^2

If there nre one or more of the same symbols in each

term, and other different symbols, we multiply together the

coefficients, add the indices of the similar symbols, and
write down all other letters with their indices, thus :

—

— 2«2i3 ^ 3,^3^4 ^ _ (]a^h-\

which exam[)le written out fully is

— 2x3 = — G for cocfTicicnt of product,

a^ x a^ =^ a^ for product of a^ and <l^.

Then — 6 a*^ must be multiplied by i'^, and we get — Oa-'.//'^ and
this in turn is multiplied by c^, which gives — 6a'^i-Vi.

In the following examples, each term in the product is

shown worked out separately.

Ex. 1. Find the prod net f)/3^/2 _|. 5,, 7^ __ 6,-2 and 5a«.

3«a + :)ah — ()f2
|

.
I

f)ab X o«^ = -{- 2'Hi^h

\ha^ + 2-oaV} — 30tt\-2
1

__ Qc^ x oa^ = — 30«3f2

Rr. 2. Find the 2>roduct of a'^P — 2IA"^ + 3r3<Z2 — 2a^t'^d and
' -da-l-^r'.

aVj^ - 2lh-'' -f- 3r\Z2 _ 2a^c^-d

-I- laVj^ X — 3a2/,2^.3 = _ 3y4^.v3
— 2bk"' X — 3«2/,2^3 ^ _|_ 6a27,fV:8

+ 3r=^</2 X — 3«2,^2, 3 .^ _ 9,/2/,2^;fi^2

— 2a^bcH X — 3^/27,2,.3 = _|_ 6a4isr\/

ii>. 3. F/nd the product of x^ -\- 2.ry + ip-
and — 1.

,r'i + 2xy + y2 ]

'

- 1 ' + .^.2 X - 1 ^ - ./^

+ 2./V X — 1 = — 2.ry
— ^-2 — 2.ry — //2

I

. ,/? X - 1 - — v'
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Exercises.

Find the product of

—

(1) a -\- b — c and 3tf.

(2) iP -\- y — z and 2.v.

(8) ,v — y -{- ^ — b and — 3.7?.

li) a -\- b — c -{- .v — y and 2ab.

(5) a^.f' + b^i/ — c^z and ax^.

(6) a^'^x -\- cW^ii — a?cH and aPb.

(7) 8a + 9J — ilc and — 7«2.

(8) 5a2^, -f 6Z'26-2 _ 11«2^,2 and — ^a%'^c. .

(9) 6a;3^2^ + 5*2y2^3 _ ii;^.y^ and 4*2^3,-4,

(10) — a — b — c — X — y — z and — ^:a^xH^.

(11) _ ,r + y2 _ c2 -f- «Jc and — A^.r'^yza^b.

(12) a? squared plus 3?/ squared is multiplied by three times the

product of a squared, y cubed, and z. Write this statement down
algebraically and find the complete product.

(13) Write down algebraically and find the product of : The sum
of X squared and the cube of // multiplied by five times the product
of the square of a, the fourth power of i, the square of x, and the
square of y.

Answers.

(1) 3fl2 -f 3a* — %ac.
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the 84 dollars debt as - 84^. His yearly account is tlien

+ 504./; — 1)0// — 84^. Each month he should receive

one-twelfth of the 504 pounds, and should pay one-twelfth

of each debt, thus :—

•

504./' - 00// — 84.3; divided by 1 2 will be

42.r — 5// — Iz, and this represents his account

each month.
In this example it will be seen that the coefficient of each

term in the dividend is divided by the divisor to obtain the

coefficients of the terms in the quotient. The sign and the

symbol of each term remains the same in dividend and
quotient.

To divide a symbol having an index, such as x^, by a like

symbol having a different index, such as a;^, let us consider

X = '2. Then x^ = x -x x x x = 2 x 2 x 2 = ^.

Also X- = a; X a; = 2 X 2 = 4, and thus x^ -^ x'^ is =
XX XXX 2x2x2 8,., „

or = —-^ T^
— or = -, which = 2 or x.XXX 2x2 4

Now if we subtract the index of the divisor from that of

the dividend to get the index of the quotient we get ^ =

ic3-2 _ j.!^ which agrees with our former result. Hence,

to divitle one symltol by a like symbol we subtract the

indices.

Thus, «5 -4- «2 = «^-2 = a^

The rules for dividing a term, such as 15r^V^ by a term

having the same sign but a different coefficient and indices,

such as Za^x, are (1) for the coefficient of the quotient

divide the coefficient of the dividend by that of the divisor
;

(2) for the indices of the quotient subtract the index of each

symbol in the divisor from the index of the like symbol in

the dividend, thus :

—

1 .5 a'*
Yow'.v^ 4- ^a^x gives ^- = 5 as coefficient ; — = a^~^ = a^,

and — = -/''' -^ = »'2as the symbols ; hence -
.^

= .'jftV^.
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Rule for Signs in Division.

' Whe/i the signs of the dividend and divisor are alike^ tlie

si(jn of the quotient is + ; ivhen they are unlike, the sign of
the g^uotient is -

.

Thus, 'q—i.— = -f 5*
; _ - = -f 5^

This rule can be proved by multiplying quotient and divisor

together, and comparing the result with the dividend. The result

should be equal to the dividend.

The result of clividino- any symbol by a different symbol

for example, dividing h by x, we can only represent as -.

If there are symbols in the dividend which have no
corresponding symbol in the divisor, then such symbols
appear in the quotient unaltered.

Thus, 1^ ^ 3..^^.

6ac

If we have any symbol with an index in the dividend,

and a corresponding symbol and index in the divisor,

then these symbols, when divided, give as quotient 1 ; thus,

- = 1, just as- ^ 1.

^^
12./V.V ^ ,, . c ^

Hence -7—7— = ^a-h since - = 1.
iahc c

13. By the rtile for division of one term by another, we
can show that any quantity raised to the power zero is

equal to 1.

Since any qtiantity, say x-, divided by an equal quantity

is equal to 1, therefore :, = I.

Now by our rule for division we subtract the indices of
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dividend and divisor and take the difference as the index of

the quotient; thus, — = x-~'^ = a;^\ But we know that

X-
7=1, hence ./" 1.

The followinjj; examples ilhistrate tlie rules for division:—

•

v/2./;
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can be represented by a number, the numerical valuG

of the term or expression can be found by substituting for

each symbol its numerical value, carrying out the various

operations indicated by the signs, and finding the algebraic

sum of the numbers thus obtained. The following examples
illustrate the method :

—

I^Xi 1. Find the vahie of'^.ri/: when ,v^ 2, 1J
-^ 3, £ -=-- 4i

'6,rijz =5 3x2x3x 4

= 72.

Kc. 2. Find the raliie of \ax — ^tiuj ~{- otVi/ — Sa-^ + i/ wliell

a — 2, x ^ i, y ^ 5.

iax = 4 X 2 X 4 ^ 32 5^// ^ 5 x 4 X 5 ^ 100
8«?/ = 3 X 2 X 5 = ao 3e^'2 ^ 3 X 4 X 4 = 48

7/2 = 5 X 5 ^ 25

Hence the given expression becomes 32 — 30 + 100 — 48 + 25
= 157 - 78
= 79.

Ex.?,. Tf a £2 2, J s 3, c = 4, a? =s 5, y = 9, z^= lG,Jnd the

numerical value of 2ah -\- da^ -|" 4&c — 2,??/ + V y — 4/-'.

2aJ = 2 X 2 X 3 = 12
3^2 =3x2x2 = 12
4Z;c = 4 X 3 X 4 = 48
2a;y = 2 X 5 X 9 = 90

Jy = n/9 =3
Vi = i/ll =2

The given expression then becomes 12 + 12 -f 48 - 90 + •'^ "= 2

and this is equal to + 75 - 92, which again = - 17 ; hence the
numerical value of the given expression is - 17.

If the expression can be simplified before the numerical
values are substituted, this should be done.

For example, if we have an expression such as

we can simplify the expression to

3
and further to - ax -f 2x)/^lx^i/, by bringing like tei-nis together.

If now a = 2, x = 3, and y = 4, we get
'^

-
""

^
-~- + (2 X 3 X 4) - (4 X 33 X 4)

^ 24 — 432
33 — 432
— 399.
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Vind the numerical valuo. of

(1) Ha -h :^h ^Sc -^ l]d when n ^ 2, h ^ S, c ^ 4, d ^ 5.

(2) rui'^ -H 8^/-' -H or — 4r/^ when a ^ I, b =^ 4^ c ^ 0, d ^ 3.

(8) 12r2// _ 5ys-a _^ GaV^//'^ when rt = 2, .c = 4, // = 3, :r = 1.

(4) 10«VA/' — l2^/''«/A/"' + i2rf'7yi when rt ^ 1, J =^ 3, « = 0.

(5) — GaV — lhrV/2 -f- 12r?/A-» when « = — 1, & = — 2, c = 4.

(G) — 12flVV 4- 5^^ ,/.,/! + I2a''.ri/ when « =4, a? = — 2, ?/ = 3.

(7) 5«2^,3^-2 — 12«/ai- + 4^f.r2— lU,r^when« = — 2,h ^ 4,,r = 10;

(8) Find the numerical value of the product of x^ and i/'^ divided

by the product of .v and // when .r = — 4 and i/ = 6.

(9) Find the numerical value of ^— when x = 2, y = 4, and

c = 10.
-^

(10) Multiply ?>a^.r'^!i by — Sti.r^i/^z and divide the product by
— ^xhi'^y'^z and find the numerical value if a = 3, ,i- = — 2, and

// = 4.

(11) Find the numerical value of la — ^h -{- ICr — 15?/ —
5a + 7.r — 9J when « — 3, J = 4^ a^ = G, y = 9.

(12) Find tlie numerical value of aVj^ — k-^ + cd —a%'^c + a/^!'"'^

wlien rt = 4, Z/ = 3, 6' = 7, <^ = 0.

(13) ir/miJ iv ^/i6' value of iaH^ ~^a^x'^-\-Qfah.e, token a = 2,

?; =: — 3, ,?• == — 1.

(14) i^i?irZ the product of 2ah and — "i.v^aV^, and divide the result

by — C)ab,r, and Jind the numerical value If a ^ — 2, Z* = —
1,

./• = 3.

(15) If X = 2a and y = — Sb, Jind the value of 5./-2//8, a?id thfi

immerleal value ichen a = 2, b = — 5.

(16) Krpress algebraically fire times the square of x multiplied
by four times the cube of //, the product divided by the cube of x
multiplied by minus twice the square of y.

(17) Write out an e.rpres.sion for the sum of five times the jyroduct

of X squared and minus y, three times the cube of x, seven times the
]>roduct of minus a and b, and nine times the quotient of x squared
and minus x,

Amwcrs.

(1) 44. . (10) — 288.

(2) 191. (II) _9.>.
(3) 10809. (12) -3741.
(4) 972. (13) - 420.

(5) — 30:)2. (14) -G.
(G) — 25704. (15) 270,000.

(7) 841G0.
20./-V lOv

(8) - 144. (10) ::^, = ~
J.

(9) — 320.
(1 7) — 5.rV + 3,t-3 — lab — 9.f

C 2
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CHAPTER II.

INTRODUCTION TO VULGAR AND DECIMAL
FRACTIONS.

15. A numeral which expresses an exact number of units

is called a whole number or an integral number.
Thus, if the unit is 1 mile, then 5 miles and 10 miles are

respectively 5 times and 10 times the unit.

When the unit is divided into any number of equal parts,

and one or more parts (less than the number into which
it is divided) are taken, the

expression which represents

the number of parts taken is

called a fraction. Thus, if

we take a square a, b, c, d,

Fig. 2, as unit and divide

it into 25 squares as shown,
then each square represents

one-twenty-fifth of a unit, and
the shaded part will represent

nine-twenty-fifths of the unit.

These results are written re-

spectively -^\ and -^\, and each
is called a fraction. It will

be seen that a fraction is represented by two numbers
written one above the other and separated by a horizontal

line. The number below the line is that which states the

number of parts into which the unit is divided, and is called

the denominator. The number above the line states the

number of such parts taken, and is called the numerator.
16. Fractions written in this way, that is, with a nume-

rator and denominator, are called vulgar fractions. If

the denominator exceeds the numerator in magnitude, the

Fig.
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fraction is called a proper fraction. If the imiiierator

exceeds the denoiiiiiiator in magnitude, the fraction is called

an improper fraction, and it may be reduced to an intef^ral

or whole number and a proper fraction by dividinj^ the

numerator by the denominator, the quotient givinj]^ the
inteo^ral number, and the remainder divided by the denomi-
nator givino^ the proper fraction.

Thus I, ^, f, '\, are proper fractions,

V% V? %^i Vt*^ ^^^ improper fractions,

and the latter, when reduced to integral numbers and proper
fractions, become respectively 5|, 7^, 4f, 9yV» which are

called mixed numbers.
Instead of using a horizontal line to separate the nume-

rator and denominator, fractions may be written as follows

:

V2, '% V:.
Algebraic fractions are written in the same manner

as arithmetic fractions, and have precisely the same
meaning. Thus, if we divide the unit into x parts and
take three of such parts, the fraction representing this

result is written - or 3/.^. Again, if we divide the unit,

say, into 25 parts and take a number of such parts repre-

sented by 2/, then the fraction representing this result is

written 4 or /-,. Again, we may divide the unit into
2o / 2o.

X parts, and select a number of these parts represented by y ;

the fraction then becomes - or /
X I X.

Exercises.

(1) Write down as fractions— two-fifteenths, seven-eighths, eleven-
fifteenths.

(2) A square is divided into m parts, and 3, 5, .r, and y parts
respectively are taken. Write out each as a fraction.

(3) £50 is divided amongst ./• people. What fraction indicates the
amount that each receives I \i x = 10, find the amount received by
each.

17. A fraction is not altered in magnitude if we multiply
or divide both the numerator and denominator by any
number. Thus, | is the same magnitude as % or ^, which
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fractions are obtained by multiplying the numerator and
denominator of the fraction | by 2 or 3.

This result may be illustrated by taking a square ABCD,
Fig. 3, as unit. First divide it into three equal strips,

then the area AEFD represents the fraction |.

Now divide it into six equal strips, the area AEFD now
represents |. But the areas AEFD are equal in the two
figures ; thus we may conclude that | and -| are equal in

magnitude.

18. A fraction in which the numerator and denominator
cannot both be divided by a number greater than 1 is said

to be in its lowest terms. Thus, f is in its lowest terms,

E B A E B

F D ^. F C
Fig. 3.

whereas f is not, since 3 will divide both numerator and
denominator.

One number is said to be a factor or measure of another

number if it will divide the other number Avithout remainder.

Thus, 3 is a factor of G or 9, but not of 10.

A number which is exactly divisible by another number
is called a multiple of the latter number. Thus, G is a

multiple of 3, or 2, but not of 4 or 5.

A prime number is one which is only divisible, without

remainder, by itself and by unity. Thus, 11, 17, 13, 3, 2,

are prime numbers.

Two or more numbers may have a common factor or

measure. 12, 16, and 20 have a common factor or measure

2, and another common factor or measure 4.

19. A fraction cannot be said to be in its lowest terms if

its numerator and denominator have a common factor
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greater than 1. To rodiice a fraction to its lowest terms,

divide the luuiiorator and denominator by any common fiictor,

and repeat the process until the only common factor left

is 1.

To reduce jf^- to its lowest terms, we note that a

common factor is 3 ; hence, dividing, wc get -
,'V- ^

common factor of 85 and 158 is 17 ; hence, dividing, wc
get 1^. The only common factor of 5 and D is 1 ; hence,
-« is the fraction ||f reduced to its lowest terms.

A „,

Kv. 2. Reduce ^^^ to its lowest tcrius.

A common factor is 17, hence ^Yi = -h

^J.v. 1. lii-ducc l'^ to ita lowest trrni)^,

\. common factor is 3, henoc i^ =; |.

Exercises.

(1) Write down the following fractions :—one-ninth, two-fifteenths,

five-thirty-seconds, twelve-fifty-sevenths, and seven-hundrcdths.

(2) AVritc the following fractions as equivalent fractions with 32 as
denominator :

—

i i I, tV, h h H' and ^%
(3) Reduce the following fractions to their lowest terms :^

1(75' ?gfff» ^5^1' TSgJ' iZTlUS-

(4) Reduce the following improi)er fractions to mixei-l numbers :

—

H8.'J 54« *-Vi:i Ag,T5 Sll.9«
r > :? ) rr ; ra ' 3oi •

(5) A (Quantity represented by Ga^r^ is divide I into a number of

parts represented by 'Za^w. What is the cKprcssion represci ting each
part ?

A mioers,

(4) 16fl, 43^, 37o3-\, 452, 121%
(5) ?>ax.

20. Decimal fractions. A fraction in which the de-

nominator is some power of 10 is called a decimal fraction ;

thus, yV> too> toVoj ^^'g decimal fractions. If wc take a

number such as 383, the 3 on the right represents 3 units,

the middle 3 represents 30 units, and the 3 on the left

represents 300 units ; thus each figure has ten times the

value of the figure on the right of it. If we extend this

notation beyond the unit figure and use some sign to

indicate definitely the position of the unit figure, then each

figure to the riglit of the sign will represent a fraction of
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the unit, and the first figure will be ten times the value of

the second, the second ten times the third, and so on.

To indicate the division between the integral and
fractional figures a dot, (•) , called the decimal point, is used

and is placed immediately to the right of the unit figure ; thus

333-333 represents 300 + 30 + 3 + -^ + ^^ + y^Vo-
By comparing these values, it is seen that each 3 has ten

times the value of the 3 to the right of it, whether the 3

represents an integral number or a fractional one.

In a similar way, a quantity such as 364*7^J9 represents

300 + 60 + 4 +_ -/o + Tw + To'oo* and it is read as

three hundred and sixty-four point (or decimal) seven, four,

nine, not three hundred and sixty-four point seven hundred
and forty-nine.

21. A vulgar fraction or an improper fraction can be

converted into a decimal fraction if it is reduced to an
equivalent fraction with 10 or some power of 10 as

denominator, provided we have an integral number as

numerator.

Thus
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a cipher to tlie nuinerafcor we write down the decimal point

in the quotient, we j^^et O'd.

This process will be found to hold ii^ood for any fraction

whatever ; hence, to convert any vulyar fractwn into a

decimal fraction, divide the numerator as far as possibte Inj

the denominator ; when we can no tonijci' divide place the

decimal point in the qnotient and add ciphers to the numerator,

Contimie the division as far as necessary.

Ex. 1. foil vert ^ into a deciuKil fraction.

Divide 83 by 25. Quotient is 1 and remainder
is 8. Add a cipher to remainder, and put
decimal point in quotient, then 80 divided by 25

gives quotient 3 and remainder 5. Add another
cipher to remainder, then 50 divided by 25 gives

quotient 2 and no remainder, hence |? — 1"32.

E.t. 2. Convert ^ into a decimal fraction.

Pivide 1 by 40, As we cannot do this, put
decimal point in quotient and add a cipher to

dividend, which then becomes 10. Divide 10 by
40. This we cannot do. Put a cipher in

quotient, and add another cipher to dividend,

which now becomes 100. Divide 100 by 4 0.

Quotient is 2 and remainder 20. Add cipher

to remainder, then -^ is 5 and we have no
remainder, hence i-,

= 0*025.

25)33(1-32
25

80

50
50

40)100C025
_80.

200
200

Exercise.

Show that \ = 0-125, | = 0-25, | = 0*375, a = 0*5, | = 0-625,

I = 0'75, I = 0-875. Commit these results to memory.

23. In converting vulgar fractions into decimal fractions,

the following cases will occur :
—

(1) The numerator will divide by the denominator
without .remainder, if sufficient ciphers are added

—

for example, i = 01 25,
•'-\f-

^ 20'J-2.

(2) The decimal will not divide out so as to give no
remainder

—

for example, \} = 1-70588235294117, etc.

These decimals are called recurring decimals.

(3) The decimal will not divide out without remainder,



36 VULGAR AND DECIMAL FRACTIONS.

but a particular series of figures, commencing with the first

figure after the decimal point, will be repeated—

for example, } - 0-U2S57, 142857, U28o7, etc.

1 -. 0-333333, etc.

These decimals are called repeating decimals. The
figures which repeat are only written down once, with a

dot placed above the first and last of the repeating

figures.

Thus, i is written = 01-1285? ;
i - 0-;i,

instead of writing out the repeating figures several times as above.

(4) The decimal will not divide out, but certain figures

repeat, as in (3) above, although one or more figures

immediately following the decimal point do not repeat

—

for example,
?f^-"

= 209-733333, etc., written 209-73.

2^7*5 = 0-3329292929, etc., written 0-3320.

These decimals are called mixed repeating decimals.
24. A result similar to that shown at (2) above,

viz., -H- = 1-70588235294117, etc., is of no value for

practical purposes. We know that each figure to the right

of the decimal point represents a smaller fraction than the

one preceding it, hence all figures beyond the fourth or

fifth figures represent fractions so small that they may be

discarded. In the above case, the fifth figure 8 represents

To^^oo~o» the sixth figure 2 represents t.-ooo.-ooit' the seventh

figure 3 represents to.o^o.oo-o» ^^^ so on. To the nearest

five decimal places, the above value is 1'70588, for the sixth

figure is 2, and hence 1 '705882 is nearer to 1 '70588 than

to 1'70589 in value. To the nearestfour decimal ^Jlaces, the

value is 1'7059, for the fifth figure is 8, and 1-70588 is

nearer in value to 1'7059 than to r7058. In approxi-

mating these values, lo'e increase the last figure retained

hi/ 1 if the firstfigure discarded is equal to, or exceeds, 5.

In many cases in practice, decimal results are only of

any value to the first or second place ; we must be guided

by the accuracy required in the problem in hand.

Exercises.

(1) Express 374-296S in hundreds, tens, units, and frr.clions with

10, 100, etc., as denominator, as in Art. 20.
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(2) Reduce
I, {^, l^,

and ,\» to decimal fractions.

(3) Reduce ^1, jg, Sv, s%^ and ^^. to decimal fractions correct to

four significant figures.

(4) Reduce ^*,\^^, and ^ to decimal form.

(')) Reduce 3J, 4^, <»^, to ilecimal fractions.

(G) Find the decimal which represents yJ^^, §, J, and ^^.

(7) What fractional part of £1 is sixpence. Express this as a
decimal fraction.

(8) Express one inch as a decimal part of a fo jt, and also as a

decimal of a yard.

(9) A sum of &')0 is divided into 300 parts. What decimal parts

of £1 is each part ?

(10) There are ten centimetres in one decimetre and ton decimetres
in one metre. What fractional part of a metre is a centimetre and a
decimetre ?

(11) Express £18 17.^. 3^7. in pounds. (B. E. (2), lOOd.)

12) Express £0 17.s\ 9^/. as the decimal of a pound. (P.. E., 1900.)

"l.3) Express £45 7s. Sd. as pounds and a decimal of a pound.
(13. E., 1907.)

Answers.

(2) 0-375, 0-4375, 0-15625, (7) ^V,,
0-025.

0-171875. (S) 0-083, 0-02^

(3) 0-2407, 0-1538, 01111, (9) 0-1 (i.

0-3804, 00016. (10) 001, 0-1.

(4) 73-428571, 19-63, 12-148, (11)18-8625.

(.5) 3-2, 4-6, 6-375. (12) 0-8875.

(6) 0-013, 0-6, 0-i, 0-?14285. (13) 45-383.

25. The forms of decimals set out at (1) and (2), Art. 2o,

are converted into vulgar fractions by writing as numerator
the whole of the decimal part, and as denominator writing

the numeral 1 for the decimal point and a cipher for each
decimal figure.

Thus 0125 = -^^ = I
209-2 = 2mj% = 209^.

70588
1-70588 =

lnjrj;a(]o
= Hf approximately.

Note that when we convert a vulgar fraction, such as 1 J^, into a
recurring decimal fraction, and then select, say, live decimal figures

to represent this result, we do not get exactly back to IJf when wc
convert the decimal fraction into a vulgar fraction. This is due to

the fact that the five figures selected only represent approximately
the decimal equivalent of the vulgar fraction, hence when this

approximate decimal fraction is converted to a vulgar fraction we
only get approximately the original value.
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2G. Kepeatinj^ decimals, as in (3), Art. 23, are converted

into vulgar fractions by putting the repeating figures in the

numerator, and by putting a numeral 13 for each repeating

figure in the denominator.

3 1

Thus, 0-3 = - = ~.

27. Mixed repeating decimals, as in (4), Art. 23, are con-

verted into vulgar fractions, as follows :

—

The numerator is = (whole of decimal figures — non-

repeating figures).

The denominator has a numeral 9 for each repeating

figure, and a cipher for each non-repeating figure.

_ 329f) _ _82£
~ yyuo ~ 2475'

Also 209-73 = 209
^'\~^^ = 209 ^' = 209 ^.

90 90 I i)

_ 3146 •

15
•

Exercises.

(1) Convert 4625, 3-786, 00297, 0-435, 00002, 0025, and 0-75 to

vulgar fractions or mixed numbers.

(2) Convert 0628, 0-375, 0-285714, 0-6, 0-3694, to vulgar fractions.

(3) Find the value of 0-142857 of a guinea.

(4) Find the value of 0-3 of J2, and 0-6 of twelve shillings.

(5) Write 0-367294158 correct to four, five, six, seven, and eight

decimal figures.

Answers.

(2) ,WtT, Mh h h im-
(3) 3..

(4) 4 ; 8s.

(5) 0-3673, 0-36729, 0-367294, 03672942, 0-36729416.



CIJAPTEU 111.

MEASUREMENT OF LENGTH ; SUPERFICIAL
AND VOLUMETRIC MEASURE.

28. In order to measure the length of any line, straight

or curved, we must first select some definile length as a

standard to which we can compare the line we wish to

measure. Any definite length can be used as a standard of

measure, and such length, whether it be comparatively

great or small, must of necessity, so long as it is being used

as a standard of measure, be imittj (or one).

29. When we have a standard of linear measure, we
can apply it to any line, and see whether such line is less

than our measure, or, if greater, liow many times our

measure is contained in the line ; we can express by whole

or fractional numbers the length of the line in terms of the

standard unit.

The standard unit of linear measure in Britain is the

yard. The yard is divided into three equal parts, each of

which is called a foot. The foot is divided into twelve

equal parts called inches. The inch may be subdivided

into any number of equal parts. Particular names are also

given to certain magnitudes, each of which contains a

certain number of yards. In Table A, the linear measures
most commonly used in Britain are given.

Linear Measure.
Table A.

12 inches = 1 foot.

3 feet = 1 yard.
h\ yards = 1 pole.

40 poles = 1 furlong.

8 furlongs = 1 mile.

3 miles = 1 league.

Tulle B.
12 inches = 1 foot.

3 feet = 1 yard.

22 yards = 1 chain.

10 chains = 1 furlong.

8 furlongs = 1 mile.

3 miles =1 league.

30. There are other measures in use. In surveying, for

example, lengths are usually measured with a " Gunter's
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chain.^* This is a cliain 22 yards long which consists of

loo equal links, A chain ie thus equal to 4 pokSf and
10 chains = 1 furlong. Substituting chain for pole in

Table A above, ^ve obtain Table B.

31. In the Metric or l^rench system, the standard unit of

length is tlie Metre. By dividing, and multiplying tlie

hietre by lO, particular lengths are obtained, as shown in

the table below. Latin prefixes denote division of ths

metrCj Greek denote multiplication.

Metric Table Of Linear Measure.

10 millimetres (mm.)
10 centimetres (cm.)
10 decimetres (dcm.)
10 metres (m.)

10 dekametres (dkm.)
10 hektometres (likm.)

=s 1 centimetre (cm.)
=s 1 decimetre (dcm.)
s= 1 metre (m.)
= 1 dekametre (dkm.)
= 1 hektometre (hkm.)
= 1 kilometre (km.).

The following Table of Equivalents will be found
useful :

—
Linear Measures.

French. British.
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length may be converted into a number which will express

the same magnitude in terms of another unit,

E>r. 1. Find the number of yards^ and the monhcr i\f fed\ In ont

1 mile ?=• 8 fuilongSi

= (8 -^ -lofpolcsi
-= (8 X 40 X 5^) yards ^ 1?60 yardS:
^ (8 X 40 X 5i X 3) feet = 5280 feet;

Vominit these two reanlta to viemonj.

Ed'. 2. Convert 8 miles, oO yards, 2 /<??/', into feet.

8 miles = (8 x 5,280) feet ^- 42,240 feet.

50 yards =^150 feet.

Hence 8 miles 50 yards 2 feet = (42,240 + 150 -f- 2) feet.

= 42,392 feet.

E.r. 3. Eii:press in miles, yards, feet, and inches a length of
800,732 inches,

860,732 inches = ^^^ feet = 71,727 ft. 8 in.

71,727 feet ^ ~'~- yards = 23,909 yards.
o

23 OOQ
23,909 yards = ~;^^ miles = 13 miles 1,029 yards.

Hence 860,732 inches - 13 miles 1,029 yards feet 8 inches.
This could be done as follows :

—

12 inches =-- 1 foot.
|

12)860,732

1 ^^n^ ^^f
"

\
^^'?'

J

3)71,727 feet + 8 inches,
l,/60 yards ^ 1 mile.

1,760)23;909 yards + feet,

1

13 miles + 1,029 yards,
i.e., 860.732 inches = 13 miles 1,029 yards feet 8 inches.

Ejc. 4. What is the length in inches ofeach link in a Gunter's chain ?
1 chain = 22 yards = (22 x 36 inches) = 100 links,

-p , ,. , 22 X 36 . , 792. ^Each Imk =
^^

inches = r— inches.

. 23 . ,

7 — inches.
2o

Exercises.

(1) Find the number of feet in 5 furlongs 7 poles 3 yards, and
convert 763,947 inches into miles.

(2) How many chains are there in 5 miles ] Convert 75,000 links
into miles.

(3) A plot of land is 200 ft. long and 80 ft. wide. What is the cost
of fencing the plot on each side at 3.f. M. per linear yard .'

(4) A motor car travels 15 miles in an hour. What is its velocity
in kilometres per hour 1

(5) An aeroplane attains a height of 1,500 metres, ami a velocity of
65 kilometres per hour. Convert these values into British measures.
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(6) A train travels at 40 miles per hour. Wliat velocity is this in

feet per second I How long will the train take to travel 65 miles ?

(7) The winding-rope of a colliery weighs 25 lb. per yard, and the

cage weighs 6 tons. The shaft is 1,000 yards deep. Find the weight
on the rope at the winding-drum when the cage is at the bottom and
when it is -400 yards down.

(8) A train 300 ft. long, travelling at 60 miles per hour, passes

another train 350 ft. long travelling at. 40 miles per hour. How
long do they take to clear each other (a) when travelling in the same
direction; (b) in the opposite directions ?

(9) Convert 37,854 inches to yards, and 11,639 yards to miles.

(10) Convert 7 miles 37 yards 2 feet and 10 inches into inches.

(11) How many miles are there in 7,634 chains.

(12) Convert 3,769,418 inches to miles, yards, feet, and inches.

Answei's.

(1) 3,424^ ; 12 mis. 100 vds. 2 ft. 3 ins.

(2) 400 ; 9i.
(3) £32 13^. id.

(4) 24135.

(.5) 1.641 yds. ;
34-2.

(6) 58§ ; If hrs.

(7) 38,440 ; 23,440 lb.

(8) 22-16 sees. ;
4-43 sees.

(9) 1,0511 yds. ;
6-61 mis.

(10) 444,886 in.

(11) 95-4.

(12) 59 mis. 866 yds. ft. 2 in.

33. Superficial Measure. If we multiply together two
equal units of length, we get as product a unit of area which

B

Fig. 4.

is a square, the side of which is unit length. The area of

the square ABCD, Fig. 4, and its side AB are corresponding
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units of area and lonutli respectively. If the unit of

lenjrth is 1 in., the unit of area is called a sqiuire inch;

similarly, if the unit of lenji^th is a foot, a metre, a chain, or

a. mile, the corresponding unit of area is called a square foot,

a square metre, a square chain, or a square mile.

AVe frequently wish to compare two or more areas which
may be given in terms of different units, and to do this we
require to know the number of times one unit of area is

contained in another unit. Draw on squared paper a

square ABCD, Fig. 4, and make each side of the square

12 divisions in length. By counting the squares in the

area ABCL), we ascertain that there are 144 squares, each

having a side 1 division in length,

in the square which has a side 12

divisions in length. If we regard

each division as 1 in., then each

small square is 1 sq. in. ; also the

side AB is 12 in. or 1 ft., and the

area ABCD is 1 sq. ft. We thus

see that 1 sq. ft. contains 144 sq.

in. Similarly, we can show by
means of a square, Fig. 5, that

a square of side 1 yd. long, and
hence 1 sq. yd. in area, contains 9

squares each of side 1 ft. long ; hence 1 sq. yd. contains

9 sq. ft.

If w^e compare the results obtained above with our
Table A of linear measures (Art. 29), we find that the

number of square inches in a square foot is obtained by
squaring the number of inches in the linear foot ; and the

number of square feet in a square yard is obtained by
squaring the number of feet in the linear yard. And if we
square each of the numbers in the first column of the linear

table, a corresponding table of S(|uare measure is obtained,

thus :

—

Square Measure.
(12)''^ or 144 sq. inches = 1 sq. foot.

(3)2 or 9 sq. feet = 1 sq. yard.

C^i)2 or 3(J^ sq. yards == 1 sq. pole.

(320)2 or 102,400 sq. poles -Is;. "••''

I)

Fig.

Linear Measure.
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34. In square measure, we usually employ two units not

included in the aboTe Table, viz., the rood and the acre.

Now 40 sq. poles = 1 rood, and -i roods = 1 acre, hence by calcula-

tion we see that 640 acres = 1 sq. mile.

E,v. (1) Find the number of square yards in an acre, and (2) show
that there are 640 acres in a square mile.

(1)1 acre = 4 roods.

= (4 X 40) = 160 sq. poles.

= (160 X 80i) = 4,840 sq. yards.

(2) From above Table, I sq. mile = 102,400 sq. poles, hence as

there are 160 sq. poles in 1 acre, there are — ' --- = 640

acres in 1 sq. mile.

The relation between an acre and a square cliain is found

fls follows :—
22 yds. s 1 chain (linear),

hence (22)2 or 484 sq. yds. = 1 sq. chain.

But an acre ^ 4,840 sq. yds.

and 1 sq. chain sa 484 sq. yds.

hence 1 acre ~ 10 sq. chains.

Again, 100 links ^ 1 chain (linear),

hence 1 sq. chain = (100)^ or 10,000 sq. links,

and 1 acre ^ 100,000 sq. links.

The above results are tabulated below.

British Square Measure.

Table A.

144 sq. inches = 1 sq. foot.

9 sq. feet = 1 sq. yard.

30j sq. yards ^ 1 sq. pole.

40 sq. poles — 1 rood.

4 roods = 1 acre.

640 acres — 1 sq. mile.

Table B,

484 sq. yards = 1 sq. chain.

10 sq. chains = 1 acre.

1 sq. chain =1 0,000 sq.links.

100,000 sq. links = 1 acre.

85. In the metric system, units of area corresponding to

units of length are obtained by squaring the numbers in

the first column of the Table in Art. 31, as shown below.

Metric Square Measure.

100 sq. millimetres ^ 1 sq. centimetre.

100 sq. centimetres ^ 1 sq. decimetre.

100 sq. decimetres £= 1 sq. metre.

100 sq. metres = 1 sq. dekametre.

100 sq. dekametres ^ 1 sq. hektometre.

100 sq. hektometrcs = 1 sq. kilometre.
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The following tabic of equivalents will be found useful

!^.^

Square Measures.

British. French.
1 sq. inch = Gi~}\ sq. cms.

1 sq. foot = 9*29 sq. clems.

1 sq. mile = 2"o99 sq. kilos.

French. lirilish.

1 S(i. metre = 10-7G4 sq. feet or
1-190 sq. yards.

1 sq. kilo. = 0-3801 sq, miles.

oG. Area of a rectangle. AVc already know that to

find the area of a square we multiply together the lengtlis

of two sides, or the length and breadth of the square. liraw
on squared paper a rectangle ABCl), Fig. G, making the
length AB = 4 divisions, and the breadth BC =
3 divisions. There are twelve squares each having side
of one division in length in the

area ABCD, hence the area of the B

Fig. 0.

rectangle contains 12 unit

areas. The length (4 units)

of the rectangle multiplied by the

breadth (3 units) is also equal

to 12 units ; hence lo find the

area of a rectangle, nmJfipJ// ilie

length hg the Ireadth.

If a denote the length and h

the breadth of a rectangle, then the area A expressed in

symbols is A = ah.

If each linear division in Fig. G represents 1 in.,

the area is given in square inches ; if each division repre-
sents 1 ft., the area is in square feet, and so on. In
calculating areas, the student must not multiply one dimen-
sion, say length, mfeet,hy a second dimension, say breadth,
t7i inches. Both dimensioni^ must he in the same units, e.g.,

length in feet and breadth in feet, or length in inches and
breadth in inches.

37. To find the area of a parallelogram. Draw on
squared paper a parallelogram ABCD, Fig. 7, making the
length AB = 20 divisions, and the perpendicular
distance h between the parallel sides AB and CD (called

the height) = 10 divisions. Draw BE and AF perpendicular
to AB meeting CD in E and meeting CD produced in F.
Then by counting the divisions, we can ascertain that

D 2
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BE = AF and EC = FD, and thus the triangle BEC is

equal in area to the triangle AFD. If we remove the

triangle BEC and place it in the position AFD, we
see that the area of the parallelogram is equal to that of

the rectangle ABEF, which area is 20 x 10 = 200 units.

The length of the rectangle is the same as that of tlie

parallelogram, and the height h of the parallelogram is equal

to the breadth of the rectangle ; hence the area of a
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75 units is thus rqml l;o half tlie product of the base and

the heiglit. Hence tlie rule

Are.i of triant^le = i base x height,

or in symbols A = Ijth wliero A = area, h = base, and h — height.

Fig. 8.

Ex. A triangidar plate has a \6-/f. base an I t.s 12//*. Iilr/h. Find
its area.

Area = i base x heitht.

= i X ir> X 12.

= 96 sq. ft.

Exercises.

(1) Find the number of square inches in a plate 8 yds. long and
2 yds. wide.

(2) How many square yards anl square feet are there in

156,7.38 sq. in. ?

(3) Reduce 12 sq. yds., 2 sq. ft., 75 sq. in. to square inches.

(4) How many stone slabs 3 ft. by 2 ft. will be required for a
courtyard 15 yds. long and 12 yds. wide ?

(5) A rectangular plot of land is measured with a Gunter's chain
and found to be 52 chains 50 links long, and 25 chains wide. Find
its area in acres and square yards.

(6) Convert 10,000 sq. metres into square kilometres.

(7) A parallelogram is 25 ft. long and 15 ft. in height. Find its

area.

(8) A triangle is 20 ft. long and 12 ft. in height. Find its area.

(9) A room 15 ft. by 12 ft. is to be floored with boards 4a in.

wide. How many feet run will be required ?

(10) How many square yards of carpet are required for a room
25 ft. by 12 ft. if a border 1 ft. wide all round is not carpeted .'

(11) A rectangular plot of land i mile long and 400 ft. wide is to

be cut up into building plots, each having 40 ft. frontage and 200 ft.
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depth. How many such t)lots can be obtained and what is the vahio

of the plot of land at £4: per foot frontage /

(12) An acre of land is to be divided in the following portions :—

I, ^^, ^, and |. How many square yards does each portion contain,

and what fraction of an acre is left ?

Afiswe)'.<i.

(1) 7.776. (7) .375 sq. ft.

(2) 120 sq. yds, 8 sq. ft. GG sq. (8) 120 sq. ft.

in. (9) 480 ft.

(8) 15,915. (10) 25| sq. yds.

(4) 270. (11) 132 plots ; £21,120.

(5) 131 acres 1210 sq. yds. (12) 3,025. 907-5, 226-875, 605
;

(6) 0-01. g\ acre left.

o9. Volumetric or cubic measure. In measuring
the volume of a solid, whether it is bounded by plane or

curved surfaces, we have to determine the number of times

it contains a particular volume, which we call a unit of

volume. All units of volume are cubes the iiices of which
are squares of nnit area, and the edges corresponding units

of length. If each edge of a cube is 1 in. long, the volume
is a cubic inch ; similarly, a cube having an edge 1 ft. long

is a cubic foot, and one having an edge 1 yd. long is a

cubic yard.

Now suppose the cube ABCDEGrH shown in Fig. 9 has

each edge 1 ft. long. It is thus a cubic foot. We can
divide the edge DH into 12 equal parts each 1 in. long
and cut the cube into 12 slabs each 1 in. thick. Now
if we draw two sets of lines on the face ABCD of the top

slab 1 in. apart, one set being perpendicular to the other, as

shown, we divide the face into 144 squares each of area

1 sq. in., and by cutting the slab along these lines we
should divide it into 111: cubes each having an edge 1 in.

long, and hence = 1 cub. in. ; each slab thus contains

144 cub. in., and as there are 12 slabs in the

large cube, there are 144 x 12 = 1,728 cub. in. in

1 cub. ft.

Similarly, sve can show there are 27 cub. ft. in a

cubic yard.

Isometric paper'-' may be used to make sketches of cubes

and to verify the above statements.

* Isonietrio paper is ruled with three sets of parallel lines so ax'ranped as tg

divide the surface into equilateral triangles,
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We thus have fur our British table of cubic measure :—
1,728 cubic inches = 1 cubic fooL

27 cubic feet = 1 cubic yard.

Each quantity iu the first cohiran is seen to be (lie cube
of the corresponding quantity in the linear table. Thus,

12 inches = 1 foot and (12>'^ or 1,728 cubic inches — 1 (u')ic foot,

3 feet = 1 yard and (3)'' or 27 cubic feet = 1 cu >icyard'.

Fig. 9.

Similarly, in the metric system, units of cubic measure
are obtaiued by cubing the numbers in column one of the

linear measure table in Art. 31.

Metric System Cubic Measure.
1,000 cubic millimetres = 1 cubic centimetre.

1,000 cubic ceiitimetrcs ^ 1 cubic ducimetre.
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or

1,000 cubic decimetres = 1 cubic metre.

1,000 cubic metres — 1 cubic dekanietre.

1,000 cubic dekamet res = 1 cubic hektometre.
1,000 cubic hel:tometres = 1 cubic kilometre.

The following equivalents may be useful :

—

1 cubic inch = 16-387 cubic centimetres,

1 cubic centimetre = 0061 cubic inch.

40. Volume of a rectangular block. Consider a

slab of material 3 in. long, 2 in. wide, and 1 in. deep,

such as AJ^CDEFG, Fig. 10. This slab can be divided,

as shown, into six cubes each having edges 1 in. long.

Suppose now that three of the slabs are placed vertically

one upon the other, forming the block ABCDHKM.
Each of the three slabs contains 6 cub. in., hence the

complete block contains 3 x 6 or 18 cub. in. If we take

the area ABCD of one end of the block and multiply

this by the height AH (the area being in square inches and
the height in inches) we get :

—

Area ABCD x height AH (3 X 2 sq. in.) x (3 in.)

is cub. in.
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Tin's ag^rees with the result previously obtained ; hence
we conchule that the vohime of any rectanj^uhir block is

equal to the jiroduct of the area of the end face and the

height.

Symbolically, if V = volume, A = area of end face, and
h = height, then V = Ah.

Ex. 1. Find the weight of a rectangular block of sto?ie, 12 ft. long

5 ft. wide, and '^ft. deep, if each cubic foot weighs 145 lb.

Volume = 5 X 3 X 12
= 180 cub. ft.

Weight = 180 X ]4r>

= 2(5,100 lb.

Ev. 2. A storage room, is 25 ft. long, 15 ft. ivide, and \2ft. high.

How many cubic feet does it contain/
Capacity or volume = 15 x 12 x 25

= 4,5U0 cub. ft.

Exercises.

(1) Find the nimiber of cubic inches in 12 cub. yds. 2.3 cub. ft.

(2) A brickwork pier is 3 ft. square and 12 ft. high. Find the
number of cubic feet of brickwork it contains.

(3) A tank is 25 ft. long, 12 ft. wide, and 8 ft. deep. How many
cubic feet of water does it contain ? If 1 cub. ft. of water = 62^ lb.,

find the weight of water in the tank when full.

(4) A block of stone is 15 ft. by 12 ft. by 5 ft. What is its weight
if each cubic foot weighs 145 lb. 1

(5) Compute approximately the number of bricks in a wall 200 ft.

long, () ft. high, and lA bricks wide.

(<i) A storage room is .c ft. long, y ft, wide, and .: ft. high. Represent
its capacity symbolically.

(7) A reservoir is 50 ft. long, 30 ft. wide, and 8 ft. deep. Find what
weight of water it contains, and how many gallons it contains. Take
1 cub. ft. of water = G2^ lbs.

Ansrrers.

(1) .599010. (5) 19,200.

(2) 108. ((;) .ry-ciih. ft.

(3) 2,400 cub. ft.
;
150,00) lb. (7) 750.000 lb. ; 75,000 galls.

(4) 130,500 lb.



CHAPTER IV.

USE OF SQUARED PAPER.

41. Ifwc wish to fix definitely a point in space so thac

at any future time we can again find the exact point, we
must make certain measurements. Consider a small electric

lamp in a room, as shown in the sketch, Fig. 11 ; suppose

that this lamp is to be removed, and that the ceiling from

which the lamp hangs is to be renewed, so that the point

from which the wires are suspended will be obliterated. After

the renewal of the ceiling we wish to replace the lamp in

exactly the same position in the room.

Before removing the lamp we must measure (1) its distance

from the ceiling, say G ft. ; (2) its perpendicular distance

from the back wall, say 7 ft. ; (3) its perpendicular distance

from the side wall, say 5 ft. The lamp may now be removed,

and when we have to replace it, we first find the point on

the ceiling from which the lamp hangs by measuring 7 ft.

from the back wall and 5 ft. from the side wall. If we

now attach the lamp to this point by a wire G ft. long, the

lamp is back in its old position.

42. The student will see from this illustration that in

order to fix a point in sjjace we require to Icnoiv its distance from
each of three fixed planes (the two walls and the ceiling). If

we kncAV only two of these distances, say the two distances

from the walls, we could not again find the exact position

of the lamp, although we could readily find the point on

the ceiling from which the lamp hangs. Thus, t) fix the

position of apoint in aj)lane (the ceiling) ice require its distance

from each of two fixed lines in the plane (the two lines in

which the walls meet the ceiling).

43. Now consider a sheet of drawing-paper. We can fix

the position of any point thereon when we know its distance

from two edges of the paper, say the left-hand edge and thu
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bottom. Again, conBider a slieot of squared paper ruled

with squares of -i\)-iii. side. ]f we know that a point P is

80 divisions from the left OY, Fig. 12, and 40 divisions

above the bottom 0^, we can at once locate the position of

the point by counting 30 divisions horizontally along OX,

f^;..-rrr?4*^

; :¥":' '. '•"-'
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two mcnsnrcmonts 30 and 40 wliidi locate tlie point P nre

calkd co-crdinates. The point P is referred to as the

point whose co-ordinates are 30, 40, and this is denoted by

, the co-ordinate which is given first is always the
(30, 40)

distance measured horizontally or parallel to the axis

of reference OX, and that given second is the vertical

measurement parallel to the axis of reference OY.
The horizontal axis OX is often called the axis of x, and

ZQ

W 20 30.

Fig. 12.

the measurements parallel to this axis are called abscissae

or X co-ordinates. Similarly, the vertical axis is often called

the axis of tj, and the measurements parallel to this axis are

called ordinates or y co-oriUnates.

44. In the above example, we plotted a point P whose

co-ordinates are 30, 40, by taking each division on the

squared paper as unity, and measuring 30 divisions hori-

zontally and 40 divisions vertically. In this case, we were

simplylocating a definite point on the paper. Now suppose

the point P to be a point on a lawn which is CO ft. from one
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cd.ue and 40 ft. from auotlu'r cd,iz;e at vi^Ait angles. If wa
take each division on the s(|iiared paper as 1 ft., and the

two lines OX, OY to lepresent two ed<(es of tlie hiwn, we
have thus a scale plan of the lawn and the position of the

point P. Our scale is -^\ in. to 1 ft., and horizontal and
vertical measurements are both made to the same scale.*

Suppose that a drain passes under the lawn and we wish to make a
record of its position so tJiat we can find any point on the drain by
measurement from two e<lges of the lawn. We will take as an
example a lawn lOU ft. long and 00 ft. wide ; the rectangle ABCD,
Fig. 13, drawn on squared paper to a scale of Jq in. to 1 ft. repre-

sents a plan of the lawn. Measurements for locating the drain are

made from the two edges AB and BC of the lawn—for example, one
IX)int of the drain is 30 ft. from BC and 22 ft. from AB. A series of

corresponding measurements are given in the following table :

—

Distance from
AB .
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nlid hence we use the samo scale for both sets of measure-

meuts in making onr plan. It often happens in jjractice

that we require to make a record of two corresponding,^ sets

of measurements which differ very considerably in maf^ni-

tude. For example, suppose at equal horizontal distances

of a mile we measure the height above sea level of a

liigh road which passes over some liills. These heights

probably will not exceed 400 or 500 ft. ; hence to plot these

points on scpiared paper to scale w'e should require a very

long sheet it* we were plotting horizontally distances to

represent miles (each of which is 5,280 ft.), and vertically

proportional distances to represent, say, only 150 ft.

Now this difficulty is overcome by the i(se of diff'erent

scales along the tivo axes of reference. To take an actual

case, the distances of certain points on a road measured
horizontally from 0, and the heights of these points above

sea level are as shown in the following: table :

—

Distance from in miles
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the road above the sea varies from point to ])()iiit. Tiius,

two magnitudes are represented, one of whieh varies iu

Fig. U.

7 N\ 8
Miles

value according to the value of the other, but these magni-
tudes are of the same hind, that is, botli are distances, "one

1300 '01 '04-
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equared paper. Examples of siicli rclatol (jiianfcitlcs are

the number of bicycles or other articles made each year hy
any particular fii*m, or the hi^'hest shade temperature each

day, or the ]iei,i>-ht of the barometer at diirerent times, or

the maximum wind pressure each day, or the number ^f

hours of sunshine per day, and so on.

Each of these sets of magnitudes may l)e recorded on
squared paper. As an example, we will suppose that a

firm makes the number of bicycles each year shown in the

following table :

—

Yoar.
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require less space for the record, or, if necesgary, we can

use a ]aro;er scale than when we Imve to show^ the full lines.

An example of this kind, which is to be found in many
newspapers, is a temperature chart, showing the maximum

P.

80

70

60

50

40

30

20

10

M W Day.

Fig. 1G.

shade temperature each day, say for a week. The table

below gives the observed temperatures for a week :

—

Day.
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paper, as shown in Fig. IG, we find that all the poinds lie more
than 3 in., and less than 4 in., above OX, and the space
required for the record is thus 4 in. wide. By taking the line

50—X as the horizontal axis of reference, and considering that each
point on the horizontal axis represents a tem])erature of 50° instead

of 0°, we can plot all the points in a space of 1^ in. wide, and still

derive all the information required from the chart. Under these con-

ditions, we can dispense with that part of Fig. 16 which lies below
the line 50—X. In plotting the points, r.//., the point representing 76°,

we have 76 — 50 = 26 as the length to be set off above 50—X ; each

Time of
Observa-

tion.
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40. The liuc or curve which joins up a scries of j)lolkd

points is called a graph. Graphs are now extensively used

as they furnish a very ready and easy means of information

as compared with many coUimns of figures. All kinds of

statistics can be and are represented graphically. Among
others may be mentioned the variation in price of metals

or other raw material or manufactured articles, fluctuation

in trade, railway receipts and expenditure, and so on.

Whitaker's Almanack or any annual handbook of statistics

will give the necessary data for practice in plotting graphs.

In the following exercises, which should be carefully worked

by the student, statistics are given from Whitaker's

Almnnack of 1908. In those examples in which a probable

value for some later date is asked for, this value is obtained

by producing the curve or graph beyond the last plotted

point, care being taken to keep the direction of the graph

in accordance with that for the preceding two or three

points. Values obtained in this way are fairly reliable where

the plotted magnitudes are steadily increasing or sfeadih/

decreasing, but they must not be used to predict probable

future values of quantities which fluctuate rapidly. In

Exercise 2 (/), (h), (/') and Exercises 3 and 4, will be found

values of the former kind, in which the predicted value

may be relied upon, whereas in Exercise 1 a predicted valuo

would be unreliable.

Exercises.

The following reading?, excepting those in Ex. 5, are taken from

"Whitaker's Almanack. Make records of each set on squared paper.

(!) Data for May 12th to 18th inclusive, 1907.

Day. May.
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-r O ^

C-I i-H

-11 -:J< <M

^
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(3) The expectation of life at certain ages is shown in the
appended table. Plot on squared paper and find the probable
expectation of life of a man at the age of 45 and of a woman at the
age of 44.

Age
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(7) The Civil Service Estimates for expenditure for the years
fioin 18'J4-5 to 1907-8 are as follows :

—

Yt>ar.
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The graph showing the relationship between degrees of

lieat on a Fahrenheit scale and on a Centigrade scale is also

a straight line.

To obtain this graph, we know that for water
0° C. = 32° F. (Ereczing points)

and 100° C. = 212° F. (boiling points),

hence by plotting the points P (o, 32) and Q (100, 212), Fig. 19, we get the

required graph by joining PQ.
jtV. From this graph convert 50° C. into degrees F. 50° C. = 122° F.

reading length RS.
A\i: Convert 200° F. into degrees C. 200? F. = 93° C, reading

length TU.

Exercises.

The student should draw the following graphs and keep them for

reference in his work. They arc all straight lines, and can be found
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(:i) 1 litre of water •= Gr02o cub. in. Plot a graph showing
corresponding vahies of litres and cubic inclics,

(4) 1 radian = 57-3 degrees. Plot a graph showing corresponding

values of radians and degrees.

(5) 'Ihe circumference of a circle = 3141G limes the diameter.

^ w
JCC

2D0

.CO

Q

ixr

20 40 S '°

Fig. 19.

e^ /OO'c

Show this relationship by a graph which will read for all circles up
to 25 in. diameter.

(6) 33,000 ft.-lbs. (mechanical units of work) = 74G watts (elec-

trical units). Draw a graph for watts and ft.-lbs.

(7) 1 cub. ft. of water weighs 62-3 lb.

1 cub. in. of cast iron weighs 2G lb.

„ wrought iron weighs 028 lb.

„ steel „ 0-21> lb.

„ brass „ 301 lb.

„ aluminiam ,, 0002 lb.

„ copper „ 0-319 lb.

,. lead „ 0-414 lb.

„ gold ., 0G;» II).

„ silver „ 0-38 lb.

tin „ 0-27 lb.

In each of the above cases, draw a graph showing corresponding
weights and volumes.

(8) A knot (nautical mile) is G,080 ft. Plot a graph showing the

relation between miles and knots. What velocity in miles per hour
cojresponds to 27-5 knots per hour ?

(9) 1 mile = 80 chains, and 1 chain = 22 yds. Draw graphs for

miles and chains, and yards and chains. Convert 175 chains into m'.les,

U\i\ 85 yds. into chains.
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(10) 1 cub. ft. of air at 0° C. and 1 atmosphere pressure weighs
0-0807 lb. Draw a graph for conversion of weights and volumes of air.

(11) Atmospheric pressure averages about ll-7 lb. per square inch.

Draw a graph to convert lbs. per square inch into atmospheres, and
vice rersd.

(12) A head of 2S ft. of water, or a head of 2*03 in. of mercury,

gives a pressure of 1 lb. per square inch. Plot a graph to convert

T-

S[

w

Fig. 20.

pressure readings in lbs. per square inch into corresponding readings in

feet head of water or inches of mercury.

51. Squared paper may be used to show that in a right-

angled triangle the square constructed on the hypotenuse

(the side opposite to the right-angle) is equal in area to the

two squares on the two sides which contain the right-angle.

Thus, draw the triangle ABC, Fig. 20, and take ^ in.

divisions as units. Make AB = 3 units, BO = 4 units.

Draw a square on AB ; it contains 9 unit squares. Draw a

square on BC ; it contains 16 unit squares. Now setoff

AD = AC, and on AD construct a square. This square is
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equal in area to the square on AC, and it is found to

contain 25 unit squares. Thus, square on AC (25 units) =
square on AB (9 units) + square on BC (16 units).

52. Some problems are more readily solved by using

squared paper than in any other way. An example is as

follows: On a single-line railway, 20 miles lonf^, two trains

start at the same time, say noon, one from each end. The
train from the end A travels at 30 miles per hour, and that

from end B travels at 40 miles per hour. Each train is to

make one stop only, and the stations are at distances 3, 8,

1/2-40

Miles.

11, 14, and 17 miles from the end A. At what station

must the two trains pass if each is to complete the journey

in as short a time as possible ?

We set out on squared paper a length AB to represent the railway,

and mark off the stations to scale as shown in Fig, 21, in which ^ in.

represents 1 mile. Now take a vertical scale in which ^ in. represents

5 minutes, and take the line .AB as representing 12 o'clock. The train

from A would arrive at B in 40 minutes if it did not stop at all. Mark
off C to represent the time 12.40 (time of arrival at B) and join AC.
Now notice that the ordinate at each point representing a station

gives the time the train passes the station ; thus, at 12.6 the train from
A passes station 3 miles from A. at 12.16 it arrives at the station

8 miles from A, and so on. The train from B would arrive at A at

12.30 if it did not stop. Mark off D to represent 12.30 (to the samo
scale as that used for C) and join BD. Similarly, from BU we can find

the time the train p .sses each station ; thus it passes the second station
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from B at 12.9, and so on. The point E in which AC and BD inter-

sect gives the place and time at which the trains would meet, and
this is 8'5 miles from A and the time is 12.17. Now as there is a
station S miles from A, and the next is 1 1 miles from A, the train

from A should stop at the station 8 miles from A to allow the train

from B to pass. If there were two sets of rails, the trains would pass
at Ihe point 8-5 miles from A. The accuracy of this result can be
tested as follows :

—

Both trains leave at noon.
Train from A travels 1 mile in 2 min., and hence takes 8'5 x 2 or

1 7*0 min. to reach the meeting place.

Train from B travels 1 mile in 1^ min., and has to travel

(20 — 8-5) or 11-.5 miles. This takes (11-5 x 1"5) or 17-2.5 min.
Thus both trains have been travelling for 17 min. approximately
when they reach the meeting place.

In examples in which the two trains or other vehicles do not leave
at the same time, the points C and D (representing the times of

arrival) would be joined to two points found in a similar manner but
representing the times of departure. The remainder of the problem
is solved as above.

E:sercises.

(1) A single-line railway is 30 miles long, and two trains start, one
from each end. One travels at 30 miles per hour and starts from the
end A, and the other at 45 miles per hour and starts from B. Each
train is to stop once only. How far from the end A would they
meet? If the stations are at distances of 3, 8, 14, 18, and 24 miles
from A, at which station should the trains pass if each is to complete
its journey in as short a time as possible.

(2) Two motorists, A and B, start from London and Coventry
respectively. The distance is 91 miles. A can travel 25 miles per
hour and B at 20 miles per hour. They wish to dine together at
some town en route and to send an advance order to that effect.

How far must the town be from London, and in what time after

starting will they meet ?

(3) From Crewe to Euston is 158 miles. A non-stop train leaves
Crewe at 6.20 p.m. and arrives at Euston at 9.15 p.m. A non-stop
train leaves Euston at 5.30 p.m. and ariives at Crewe at 8.23 p.m.
How far from Crewe and at what time do these trains pass each
other, assuming that each train travels at a constant rate throughout
the journey ? What is the average speed of each train in miles per hour 1

Answers.

(1) 12 mis. from A; the station (3) 5G mis. from Crewe ; time of
14 mis. from A. passing 7.22 p m. ;

54-2 mis. per

(2) 50^ mis. ; 2 hrs. l|min, after hour; 548 mis. per hour,
starting:.
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CHAPTER V.

OPERATIONS AVITII VULGAR AND DECIMAL
FRACTIONS; CONTRACTED METHODS.

58, In Chapter II. we have discussed certain rules

relating to arithmetic and algebraic fractions, and we have

also discussed decimal fractions and the methods of con-

verting vulgar into decimal fractions and vice versa.

In the present chapter we shall deal with the operations

of multiplication, division, addition, and subtraction of frac-

tions, and with contracted methods of

multiplication and division of decimals.

54. Multiplication. A i'raction

may be multiplied by a whole number,

or a whole number may be multiplied by

a fraction, or a fraction may be multi-

plied by a second fraction. The method
of multiplying together whole numbers
and fractions is illustrated by the

following simple case :

—

Suppose a square abed, Fig. 22, is

divided into five parts as shown, and one of these parts is

selected ; we then have an area (shown shaded) which is i

of the whole square ; if we take three of these parts we have

-f of the whole square ; hence three times a fraction of 4-

is equal to a fraction f

.

This result would have been obtained if we had multiplied

the numerator of the fraction } by 3, and used the product

as the numerator of the product of ]; and 3.

The product 2x3 is equal to the product 3 X 2. In

the same way the product } x 3 is equal to the product

3 X i. In cacii case the result is j^. That this is true can

also be seen by drawing three squares each equal to abed

Fig. 22.
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and dividing each into five strips. If we now take one

strip from each square we have in all three strips, each of

which is 1 of the unit. The total is f of the unit

;

hence we conclude that the product of 3 x -} is equal to f.

If we divide a unit square ABCD, Fig. 23, into four

strips, each equal to the strip EBCF, shown shaded, then

each strip is I of the unit. Now divide each strip into

three parts, such as 1)G ; each one of these parts is i
of a strip, or i of ^ of the unit. But the whole
square is now divided into 12 of these smaller parts

;

thus each small part represents ~ o^ a unit, and hence the

product of ^ X i = j\. The numerator of the product

Fig. 23

is seen to be the product of the numerators of the separate

fractious, and the denominator of the product is the product

of the denominators of the separate fractions.

This process may be extended to any number of fractions.

For example, the product of11111. J . ^
-r X - X — X ,-7. =^=r77; since product of numerators
4 2 d lU 240) ^

product of denominators = 240
3 13

'^^^^ -8^5== 4-0

5 3 9 13o
^"'^ 7 "^

4 ^ il ^ aTs

1 and
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Any integral or whole number may he regarded as

a fraction in which the number itself forms the numerator,

and the number 1 forms the denominator.

3
Thus, 3 may be regarded as -

5 may be regarded as ^.

5 3 1 .")

The product of 5 x 3 then = - x - = -.

This method of regarding whole numbers is uscfid in

multiplication, division, addition, and subtraction, when we

are dealing with whole numbers and fractions.

1 7
Ux. Find the product of-, "^ and -.Ob

1 3 7 _ 21

5
"^ r "" S

" 40-

55. In multiplying together a series of fractions, it is

usual to divide any numerator and any denominator by any
number which can be seen to be a common factor, and to

replace the divided numbers by the quotients.

2 15 12
Thus, T ^ rrr ^ o,t ^^J ^^ treated as follows :

—

1 15 12
Divide 2 and 24 by 2 and we get - x -— x —

.

O 1 Z iiO

Now divide each number 12 by 12, and the numbers 15 and 30 by
15 and we get

1 X 1 X 1 which is =.
I'

In practice this would be done by cancelling out common factors
;

thus—
1 1 1

S XH >2. . . 1 1 1 1
-T7 X vx >< ^^ giving -- X - X - = -7-

3 >^^3 1 2 b

>?< 2

1

This result can be shown to be correct if we multiply

fractions together without any cancellation and then reduce

to lowest terms.
„, 2 15 12 360
^^'•'^'3- ^24^30 = 2-160-
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Since numerator and denominator each divide by ?>G0,

the fraction in its lowest terras is ~r.

AVhen the product of proper fractions and mixed numbers

is required, we reduce each mixed number to an improper

fraction and then follow the usual method.

7

Write 31 = ^!^; 2§=|; 4 =
J.
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57. Multiplication of decimals. AVlien two dccimiilH

or a whole niimbor and a decimal are to be multiplied

t()<i:etlier, the multiplication is performed exactly as in

multiplying numbers, the decimal points in the multiplier

and multiplicand being left out of account during the

multiplication.

To ascertain the position of the decimal point

product, consider first the product of two
fractions, say yV ^^^ -1%%. The product is

To

in the

vulgar

Now
and -jS^^^ = 0-35, and -iV^^ = 0-105,

hence the product of 0'3 and 0'35 must be 0'105. The
figures in the product are the product of 3 and 35, and we
have three decimal figures in the product ; in the multiplier

0-35 we have two decimal figures, and one in the multi-

plicand 0*3. Thus, the numder of decimal figures in ihe

product is equal to the sum of the nitmhers of decirnxlfigures

in the multiplier and midtiplicand.

E.f. Find the product of 2 ''61 and o'638.

5-038

2-31

5638
169U

11276

13-02378

There .are three decimal
figures in the multiplicand and
two in the multiplier ; hence wo
have five decimal figures in

the product. Count five figures

from the right-hand end, and
put in the decimal point

between the fifth and sixth

figures.

58. A convenient method of reducing a quantity repre-

sented by a decimal, when expressed in certain units, to

other smaller units, is illustrated in the following

examples :

—

Ki\ 1. Find in £,. s. d. the value of 0'?,'T) if S.'o.

0-375

20
pounds

17-5^^ shillings

12

O'O pence.

Hence 0*375 of £5 = £1 17.v. G<7.

P.M.

Multiplying by o we find 0-375

of £5 ^ 1*875 pounds.
Multiplying 0-875 by 20 we

find that b-S75 i)Ounds = 17 '5

shillings ; 05 shillings = 05 x
12 =^ pence.
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Ejl-. 2. JSxj)ress 35-625 yd.o. in yards, feet, and inches.

35-625 yds.

3

1-875 ft.

12

10-5^ in.

Hence 35-025 yds. = 35 yds.

1 ft. 10^ in.

0-625 yds. = 0-625 x 3 ft.

= 1-875 ft.

0*375 ft. = 0-875 x 12 in.

= lO-5HSLin.

= lOi in.

Exercises.

(1) What is the product of | x f x i^ x |4 x ^^^ ?

(2) Find the area of a metal plate which shall be three-quarters

the weight of a similar plate 5 ft. 6 in. long and 3 ft. 4 in. wide.

(3) AVhat fractional part of 10 in. is one-sixth of a foot ?

(4) Find the total value of 3^3 of £5, /_ of 32 shillings, and \ of

1 shilling.

(5) 23 pieces of timber each 4 ft. long are required. The timber is

obtainable in 14-ft. and 18^-ft. lengths. Which lengths give least waste?
Would you order all the same lengths, or would it be preferable to take
s .me of each length ?

(6) Find the total length of picture moulding required to cut
4 lengths of 10^ in., 6 lengths of 9^ in. , 2 lengths of 15| in., and 8 lengths
of 7| in.

(7) 24 pieces of timber each 4 ft. 6 in. long are required. The
timber is obtainable in 10-ft. and 15-ft. lengths. Which lengths are
preferable as giving the least amount of waste 1

(8) What is the product of 17-64 and 3-8, also of 0-00638 and
2-4807 ?

(9) Convert 1, |, and | into decimals, and find their product.

(10) What is the value of 0-75 of £5 ?

{ll) Find in decimal form the relation of 5 in. to 30 yds.

(12) Fifty railway rails each 30 ft. long are laid end to end and a
si.aceofO-25 in. is left between consecutive rails. Find the actual
length covered by the rails,

Amicers.

(1) 7V (7) Both 12 ft. waste.

(2) 13? sq. ft. (8) 67-032 ; 0-015826866.

(3) 1. (9) 001875.
(4) £2 4*-. id. (10) £3 \oH.

(5) 18i-ft. lengths
;

preferable (11) 0-00463.
5 lengths 18i ft. and 1 of 14 ft. (12) 1501 ft. and i in.

(6) 16 ft. 1| in.

59. Division of fractions. When we divide one
wliole number by another, we ascertain how many times the
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first number contains the second. For example, GO -4- 3 =
20, i.e., the number 60 contains the number 3 twenty times.

Now if we regard the numbers as fractions with 1 as

denominator, then GO = V ^^^^1 3 = f and we see that in

order to get the result 20, we invert the fraction f which is

the divisor, and multiply the fii-st fraction \" by the inverted

fraction, which is now

Thus^'x
1 20

•6 ^ i
or 20.

Now what is true for one fraction is true for all fractions
;

hence the rule to diride any quantity, whether a whole

numher or a fraction, Inj a fraction, invert the fraction

ichich is the divisor, and then

midtiply.

As an example, suppose 10 is

to be divided by ^. Here the

unit is 1, the number 10 repre-

sents 10 units, and the fraction

\ represents a half unit, and as

10 units is equal to 2U half-units,

the fraction \ is contained in 10

twenty times.

The same result would be

obtained by the above rule, for

10 -^ -^ = V" X f = 20.

Division can be illustrated graphically as follows :

—

Take a square ABCD, Fig. 24, as unit, then the figure

AGHCFE contains 3 units. Now divide each unit into

two parts ; each such part AKLD is a half-unit, and we see

that the whole figure contains 6 of these parts. Hence \ is

contained in 3 six times. By our rule t ^ a
=

i x \

= 6.

60. The result of dividing one proper fraction

another may be similarly illustrated. For example, }
is by our rule ^ x y = 2.

Thus, I of a unit should be contained twice in a half-unit.

If a square ABCD, Fig. 25, is a unit, then a half-unit is the

rectangle AEFD, and a quarter-unit is the square AEGH
shown shaded. It will be seen that in the half-unit AEFD

F 2

bj
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tbei'e are two areas each equal to the square AEGH, i.e.f

two quarter-units.

The figure will also illustrate that a fraction divided

by a whole number follows the same rule. If we divide a

half-unit AEFD by 2 we get a

quarter-unit AEGH". Thus, ^ -r

2 must — i.

By cur rule | -^ 2 = | x |
and this = ^.

The process may be extended

to any number of fractions, thus,

|xf-^Jxf ^ I
would be

written out as multiplication with

all the dividing fractions inverted

thus :

—

1 X i X 4 X i X i

Fig. 25. and this = |.

Algebraic fractions are divided

in the same manner as arithmetic fractions.

Ex. 1. Divide yif by y"

Invert the divisor and multiply :—

a"^ h_ ^ a^ _ J.

^ ^ ^8
"^

apy^
~ ah

for numerator and denominator will divide by aVy,

,7'a
a<8 ,r-2y yEx. 2. Simpiif!j ^ -f ^ X -Trf^ -r -^

To simplify an expression, we must carry out the various

operations denoted by the signs and, if a fraction, reduce it

to its lowest terms.

Inverting the dividing fractions, we get

-u-X
y' x^U aVj

a»b-^ ij
'

By cancellation these reduce to :—

1 ?/ .r 1 X7J

1 1 «^ 1 (lb

Gl. Division of decimals. When one decimal is to

be divided by another, the operation can be expressed in
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10 3

W '''^''''^ '^
111

fractional form ; thus, to divide O'S by O'OS may be

written —^. If each decimal is converted into a vulgar
U* Jo

fraction, this expression becomes :r- divided by jr- or

3

10^ _ 30 10

1)8 '^ 1)3 ^^ 31*

100

If we now convert — into a decimal fraction, we get
oi

0*32258 correct to five decimal places, and hence 0*3 divided

by 0-93 is equal to 0-32258.

We get the same result by mahmg the number of decimal

fiifures ill ihe dividend and divisor equal Inj adding ciphers,

then remove the decimal points in each, and convert thefraction

so obtained into a decimal.

Thus, ——, becomes j—-^, which becomes, after removal
O'Do O'Uo

, , , . , . , 30 10
01 the decimal points, ^tt; or^jr.

Jo o L

Mc. Dtnde 76-81 hy 8-937.

76-81
Writing? as a fraction

Making decimal figures

equal

8-937

76-840

8-937

. . , . . 7fi840
Removing ckcmial points -

^ ,_

Convert into decimal as shown
opposite.

8937)76840(8-5979, etc.

71496

53440
44685

87550
80433

71170
62559

86110
80433

5677

This is

Ex. 1. Dliule 36-947 hy 00004.
.

36-9470 _ 369470 I by multiplying numerator and

•0004 4 I

"'""

= 92367-5.

E,i\ 2. Divide 0-00064 hy 36-23.

denominator by 10,000.

This becomes
•00064

iib-23000

64

3023000
0-0000177, etc.

multiplying numerator and
denominator by 100,000.
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(6) A running record made in 190i is 5 miles in 24 mln. 33"; sec.

What is tlie average s{)eed in feet per minute ?

(7) Express the sum of money 45 pounds 7 shillings 8 pence in

pounds and d(!cimals of a pound, (B. E., 1907.)

(8) DecimnlizG £22 13.v. ^d. Multi[)ly by .5-273 and divide by
2-156. Give the answer in pounds, shillings and pence; correct to

the nearest penny. (B. E., 1909.)

(9) The pitch of a screw thread is the distance, measured parallel

to the axis of the screw, from the centre of one thread to the
centre of the next. If a screw has 12 threads to tlie inch, what is the

pitch ?

(10) If a screw thread has a pitch of gl in., how many threads are

there per inch ?

(11) A screw has a pitch of I in. How far does it travel in

six revolutions ?

(12) A square-threaded screw of j| in. pitch is screwed into a piece

of metal in which the tapped (screwed) hole is 3 in. long. How many-
revolutions does the screw make ?

(13) The screw of a railway carriage cou})ling has on one end a
right-hand thread, and on the other end a left-hand thread. The
pitch is

I
in. Find how far the carriages approach or recede from

each other for five turns of the screw.

A nsicers.

(1) 1724. (8) £22-676
; £55 9*\ 2d.

(2) 5502. (9) i in.

(3) 68-04. (10) 10|.

(4) 30-6. (11) fin.

(.5) 278-3. (12) 91.

(6) 1075. (13) 61 in.

(7) £45-38:3.

G3. Addition and subtraction of fractions.
Consider first the case of two fractions which have the

same denominator. Suppose a square ABCD, Y\^. 26, to

be divided into 25 equal squares as shown. The three

squares shaded at the corner A represent /g, and the six

squares shaded at the corner represent /^ of the whole
square. Now the total number of squares shaded is 9,

hence the shaded part represents -^^ of the whole square,

or in other words ^^ + 2V = /g. We have simply added
together the numerators of the separate fractions to obtain

the numerator of the fraction representing the sum.
Similar reasoning can be applied to subtraction. Con-

sider again the square ABCD. There are six small squares

shaded at the corner C, and there are 15 small squares



72 VULGAR AND DECIMAL FRACTIONS.

in the part ERCF of the square. Xow the part EBCF =^

14 aud the shaded squares represent ^j^. The nine unshaded
squares in the part EBCF represent the difference between

l^ and /Vj aii^ this is seen to be 3"^, hence H — ^\ =
-gV Here we have subtracted the numerators to get the

numerator of the difference.

G-i. In practice, we have to deal with fractions in which
the denominators are not all alike. By multiplying the

numerator and denominator of a fraction by any whole
number, we are able to change the denominator without

altering the value of the fraction. We can thus make all

the denominators alike, and
then add or subtract the

numerators.

Mn. 1. Add
I 4-1 + 1-

If we multiply the numerator and
denominator of ^ by 4 we get |.

Multiply numerator and deno-
minator of I by 2 and we get §.

The expression 5 + | + | may
now be written § + f + |, and as

we can now add the numerators
we get ^ or 2| as the result.

Kr. 2. Suhtract ^from |.

Convert f into |i by multiplying
numerator and denominator by 8.

Convert | into 3g by multiplying
numerator and denominator by 7.

We now have 1 — ?}. = \},.

Fig. 26.

65. A convenient method of finding a suitable number
for the common denominator of a series of fractions is to

cancel any denominator which is seen to be a factor of any
of the remaining denominators and then take the product

of the remaining denominators as the required number.

Thus, in i + ^ + i + i

the denominators are 3, 25, 5, 9. We can cancel 3 and 5,

for they are factors of 9 and 25 respectively ; we then take

25 X 9, or 225, as our common denominator, and we
must now write each fraction as an equivalent fraction

with 225. as denominator.

This is done by dividing 225 by the denominator of the
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fraction we wish to convert, and multiplying the result into

the numerator.

Thus - becomes^ for
—

' = 75, and 75 x 1 = 75.

() 54 225 ^ , .. ^. .

,

25 " 225 " "25- = ^' ""^^ '^ ^ ' = '^^•

i „ ^„f .45. ana 45x4 = 180.

The expression -3 +.7-+ 7 + q ^*^^^ becomes

225
"^

225 "^ 225
"^ 225 ~ 225

GO. To find the alg-ebraic sum of a series of fractions, we

proceed in a similar manner and finally find the algebraic

sum of the numerators of the converted fractions.

U.r. Find the value of - — - + '-—
-r-.Zoo 12

Each denominator is a factor of 21,

1 8 5 7 ,

hence,
2
~

8 "^
G
~ P becomes
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E,e. 3. Find the sum of

Make each denominator into .r^i/-^

The flactions then become

4-± + !:!!' 4- 2//
- 'ill

and the sum is

2.rV . 'l''^ ,

1.i'll + 8,/--^ 4- 2.;\//2 + 2.y4 -j.

2^2 2//-'

.r^y^

•"'11

In68. Addition and subtraction of decimals.
adding and subtracting decimals, it is only necessary to

arrange the decimal points beneath each other and then add
and subtract as with ordinary numbers. The decimal point
in the result is beneath that in the quantities to be added
or subtracted. The student will observe that much less

labour is required to add and subtract decimal fractions than
vulgar fractions.

Ex. Add together l-d'd + 43-58o -I- 0-00028 + 417.
Arrange as shown.

7-63

43-585

0-00628
417-0

468-22128

Subtract 76-842 from 97-31.

97-340

76-842

20-498

Subtract 48-34 from 51-2978.

51-2978
48-3400

2-9578

]\rake the number of figures

in the two decimal parts equal
by adding ciphers, thus 97 34 is

written as 97-340. These ciphers

need not, however, be actually

written down. They may be
added mentallv.

G9. When repeating and mixed repeating decimals are

to be added, the actual repeating figures should be written

down until the number of decimal places is at least equal to

those of the longest non-repeating decimal or, better still,

exceeds it by one or two places. The answer should be
given to the number of figures in the longest non-repeating
decimals unless otherwise stated.
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^r. Add 57-82, 0-00G394, B2r,;i, 42-496?.

57-82
[

000394

42-49»;7t;7<;7

42()-r)5649-l 97

Tlic (lottc<l line shows Iho
number of decimal figures re-

((iiircd in tlic answer.

As the seventh decimal figure is 9, the sixth is increased 1 ; hence
the sum is 426-656495 to six decimal places.

70. If it is required to arrarifT^e a series of vnl<!^ar frac-

tions ill order of mai;nitude, tliey must be reduced to

equivalent fractions with a common denominator. 'J'lieir

magnitudes may then be compared readily by means of the

numerators.

J?.r. Arrange in order of magnitude, with t/ie largest fraction fir-'<t,

thefolloicing fractions :
—

3 5 4 2 R ll 13
4' 6' 5' 3' 9" l-y 15"

Each denominator is a factor of 180,

Hence the equivalent fractions are
135 150 144 120 ]RO 165 156
180» 180' 180' 180' ISO' 1^0' 180'
3 5 4 2 8 11 13
4' 0» 5' 3' 9' 12' 15"

Taking the largest numerators first and arranging in order, we get
11 8 13 5 4 3 2
12' 9' 15' 0' 5' 4' a-

Decimal fractions may be similarly arranged. The
important figures are those immediately, following the

decimal point.

The following decimals are in order of magnitude.

0-t)87, 0-734, 0-429, 0-176, 0-0943, 0-00989.

Exercises.

(1) Find the total length represented by J + f
+ -7_ + ^ {^^

(2) A journey of 3,000 miles is performed in 6 days. 'The part

accomplished each day, for five days, is i, i, i,
s\, gV What part is

performed on the sixth day .'

(3) A plot of building land is divided into lengths of 60 ft., 80 ft.,

and 120 ft. A sum of £300 is spent on road making, and the length

of the road is 1,040 yds. What part of this cost should be paid by
each of three men who own respectively a 60-ft., 80-ft., and 120-ft.

plot /

(4) Reduce the following lengths to feet and decimal parts of a
foot, and find their sum correct to four decimal figures : 3 ft. 6 in.

;

7 ft. 8 in. 2 ft. 4i in. ; 11 ft. 7 in. ; 4 ft. 2 in.
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a 3 5aj 7
(5) Find the sum of -5 + -+ ^r + —4-

a^ a^.r 1

(6) Simplify -7 x —- ^ —-j-

(7) Find the algebraic sum of /„ + i
- I + w ^ i + 20-

(8) Simplify (3 of Q) + Q X if -r |§) - ik ©^ D'

(9) Find the value of O'OOOSG + 7 -002974 — 2-36427 + 00238.

(10) Fintl the sum of .-= + —., == ^+ -^-^.

A nswersi,

(1) m in. (6) a\r,

(2) sMo- ^ (7) lie.

(3) £5 1 o.^. .5^. ; i& 7 1 3.?. 1 Or/.

;

(8) 1^.
*n 10.9.9^7. (9) 4-641444.

(4) 29-2917 ft. .,^. «2y + j.r_^,r.y_«3y2_ ja^a + o

(5)
^^:?'^ + 3./-3 + .5.?-2 + 7 t^^^

-^—
a.2^2

- "

71. Significant figures. lu calculations, we may
meet with three kinds of numbers : {a) integral numbers.
e.fj,, 0,970 ; {!>) mixed numbers, e.g., 53'296

;
{(') fractional

numbers, e/j.^ 0-0027080. In each case, the first figure

reckoned from the left which exceeds zero is a significant

figure, and each succeeding figure, whether a cipher or not,

is a significant figure, provided there is to the right of it

any figure which exceeds zero, e.g., 0,970 has three signifi-

cant figures, 53'290 has five, and 0-0027080 has also five.

72. Approximate values. The results of calcula-

tions are often given approximately, instead of accurately,
the degree of accuracy depending upon the nature of the
calculation, e.g., if the horse-power of the engines of a ship
is computed accurately at 45,824 it would usually be suffi-

cient to g\\Q this result as 45,000, or, at any rate, as

45,800. The approximate value 45,800 is correct to three
significant figures, for there are three significant figures

which are accurate, while the two ciphers remaining are
only approximate. A result such as 8,040 could be repre-
sented approximately as 8,G40 or as 8,050, but, as the latter

number is nearer to the correct value than the former
(being 4 too large whereas tlie former is 6 too small), it is

the one adopted. Now 8,050 represents the result 8,040
approximately to three significant figures, but it is not correct

to three significant Jigures, since the third figure, 5, is not
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accurate/'' The number 3,040 written correct to three signifi-

cant figures would be written 3,040, whereas written approxi-

mately to the nearest three significant figures it would be

3,050. If a result is required, say, "to four significant

figures," it is understood that the result to the nearest four

significant figures is meant.

73. Contracted multiplication. It is not always

necessary to multiply out quantities fully. For all prac-

tical purposes we only require three or four significant

figures and all figures beyond these may be neglected.

By contracted multiplication, the labour of multiplying

out fully is somewhat reduced.

The process will be illustrated by an example.
Multi2)l>j U-0057869 hij 7-384.

By the ordinary method we
have

0-0057869
7-384

231476
462952

178607
405083

0-0427304696

By the contracted method We
have

•0057869 (Approximate
7-384 Value is—

,
-006 X 7 - -042.)

•040508S^

1736. \\
463^9^^
23'iVA

•04273\l

The ordinary method requires no description ; it is set down here
for comparison. In the contracted method, the multipliers are taken
in the reverse order, and it is advisable first to ascertain the
approximate value of the result. Thus, our approximate result is

•006 X 7 = -042. Then, multiplying 57,869 by 7, we have 405.083,
and, as our approximate result is -042, we put a cipher and also

a decimal point before the figure 4. As we have reversed the order
of the multipliers we step the figures one to the right instead of to the
left ; thus, when we multiply by 3 we have fully 173,607. Suppose
we wish to retain four significant figures in the product, we may in

multiplying discard all significant figures beyond the fifth, i.e., all

beyond the dotted line ; hence, we do not require the figures 0,7 on
the right of this second product, nor the figure 3 in the first product.
Now multiply by 8 and we have 462,952. We are to discard the

figures 9,5,2; hence we increase the 2 retained hy 1 and write down 463.

Now multiply by 4 and we have 231,476. We discard the figures

1,4,7,6, and, as the first figure discarded is 1, we do not increase the
3 b}' 1 ; hence we write down 23.

* Many people maintain that " correct to.»; significant figures "mieans " corrected
to," i.e., "to the nearest a; significant figures." This is not the plain meaning of the
words, but, if this reading is followed, the -'.th figure must be corrected when the
(af + l)th figure is 5 or exceeds y.



78 VULGAR AND DECIMAL FRACTIONS.

Adding, we get -042780, and, as we reijuire four significant figures,

we cancel the last figure. If the result is required correct to four

significant figures, we cancel the fifth significant figure whatever it may
be ; but if the result is required to the nearest four significant figures,

or simply '-to four significant figures," the fifth significant figure is

cancelled and the fourth is increased by 1 if the fifth is 5 or exceeds 5.

After a little practice, the student will not need to write down
the cancelled figures : they may be replaced by dots, as shown
below, but the discarded figures must be allowed for if the first one
(from the left) is equal to, or exceeds, 5, and the number carried

over must be the same as if no figures were discarded. Thus,

•0057869
7-384

-040508,3

1736 •

463 •

23

-04273\

Note.—If .r significant figures

are required, retain [x + 1) figuies

in working, and correct the result

to /• figures.

74. Contracted division.

(Approximate value is

•006 X 7 = -042.)

Four
quired,

40508.

significant figures re-

heiice retain five, viz..

When multii)lying by
have

X D

X 6

X 8

X 7

72.

48.

64.

56.

Add 7 = 55
Add 5 = 69
Add 6 = 62, and

allow 1 for the 9 cancelled
- 63.

8x5 = 40. Add 6 = 46.

The labour of dividino: one
numl)er by another may be considerably shortened by rejecting

one figure of the divisor at each step in the division. An
example will illustrate the method employed.

Divide 7-543 hy 2-579.

(Approximate value

2579)754.3(2-92:
"• 5158

Obtain the first figure 2 in the
quotient in the ordinary manner,
after making the number of
decimal places equal in dividend
and divisor. Then 2579 x 2 =
5158 and this, when subtracted
from 7543, gives 2385 as re-

mainder. Instead of adding a
cipher to 2385, as in the usual
method, cancel the right-hand
figure 9 in the divisor, or mark
it off with a . beneath to indicate

1 its cancellation, and put the
decimal point in quotient. Now

we have to divide 2385 by 257 and hence we obtain 9 in quotient
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Multiply 2.'")7 by 9, but add in the figure 8 wliich would be carrietl if

the whole of the divisor wore left. Thus, 257 x 9 ^ 2318, and
adding 8 we have 2821. 'J'he remainder is 64. Now cancel the 7 and
j)roceed as before. We have (25 x 2) + 1 = 51. Again subtract

and then cancel the figure 5. We now have (2 x 5) + 2 = 12, and
the result is 2-925.

If we divide out fully in the ordinary manner the above result

would be 2-9247, &c., hence this result is accurate to three significant

figures. Tlie fourth figure 5 is ajiproximate, ))ut as the fifth figure is

7, the result 2-925 is to the nearest four significant figures.

75. To find a quotient correct to four significant figures by
the contracted method, both the dividend and divisor must
first be written approximately to five significant figures

if they exceed this number, and, generally, if x significant

figures are required we first write dividend and divisor with

(*' + 1) significant figures.

V 7- ^ *i 7 .'05913x25-01^ - . .. , ^.
±jj'. luiia the raiue oj

v.^^j,,^. ,^-< tojour i^ifjmjicant pijureti

Approximate value

(03964)3

-06 X 25

•UUUU6

150000
25,000.

•05913
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1-479 147900

•U000G227 6-227
= 20,000 (approx.)

0227)147900(23751
'•' 12454

23800
18081

•4079
4359

320
311

6

3 Ans. requireJ 23,750.

Exercises.

Compute by contracted methods to four significant figures only,

and without using logarithms

—

(1) 8-102 X 35-14 and 254-3 ~ 0-09027 (B. E. 1903).

(2) 3-405 X 9-123 and 3-405 -j- 9-123 (B. E. 1904).

(3) 34-05 X 0-009123 and 3-405 -f 0-09123 (B. E. (2) 190 i).

(4) 12-39 X 5-024 and 5-024 -^ 12-39 (B. E. 1905).

(5) 0-01239 X 5-024 and 0-5024 ~ 0-01239 (B. E. (2) 1905).

(0) 3-214 X 0-7423 — 7-912 (B. E. 1900).

(7) 87-35 -^ (0-07508 x 3-501) (B. E. 1907).

(8) 9-325 X 2-050 and 9-325 -^ 2-050 (B. E. 1908).

(9) 9-325 X 0-02056 and 9-325 -f 0-02050 (B. E. (2) 1908).

(10) 2-573 X 16-81 and 15-81 -f 2-573 (B. E. 1909).

(11) 0-02351 X 63-02 and 6302 -f- 0-02351 (B. E. (2) 1909).

(12) 5-300 X 0-07032 ~ 73-15 (B. E. (2) 1910).

Anxwers.

(1) 284-7
; 2817.



CHAPTER VI.

DUODECIMALS.

70. Dnodecimals. In Chapter III. it is shown that when
we multiply one dimension in feet by a second dimension in

feet we get as the product square feet, and, similarly, when
we multiply inches by inches we get as the product square

inches. In the former case, we get an area expressed in

Fig. 27.

units, which are square feet, and in the latter case an area

expressed in units which are square inches.

If we multiply a dimension in feet by a second dimension

in inches, we get a product or an area expressed in units

which are rectangles 1 ft. long and 1 in. wide.

Let ABCD, Fig. 27, be a square of side 1 ft.

find AG be 1 in.

P.M.

Let AE be 1 in.
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Then the sqrare AP.CD is a unit of 1 ?q. ft. or (ft. x ft.) ; the

square AEHCr is a unit of 1 sq. in. or (in. x in.) ; and the rectangle

AEFD is a unit 1 ft. long and 1 in. wide or (ft. x in.).

We know that there are 144 sq. in. in 1 sq. ft. ; hence the square

ABCD contains 144 squares each equal to AEHG.

G
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The rectangle AEFG is 5 ft. by 2 ft. and thus contains 10 squares,

each 1 sq. ft. area.

The rectangle GDKF is 5 ft. long and 8 in. wide, and thus contains

5 rectangles, each 1 ft. by 8 in. Each of these rectangles contains

8 units 1 ft, by 1 in., thus rectangle GDKF contains 40 units 1 ft.

by I in.

Similarly, the rectangle EFHB contains 20 units 1 ft. by 1 in., fur

it is 2 ft. by 10 in.

The rectangle FKCH is 10 in. by 8 in., and thus contains 80

sq. in.

The total area thus contains :

—

10 sq. ft., (40 -f 20) units each 1 ft. by 1 in., and 80 sq. in.

Now 12 units 1 ft. by 1 in. are equal to 1 sq. ft., hence 60 such
units are equal to 5 sq. ft.

The area of the rectangle is thug (10 -\- 5) sq. ft. 80 sq. in., or

15 sq. ft. 80 sq. in,

78. In compufcing the superficial areas of floors, doors,

sheets of glass, etc., or the volumes of a number of baulks

of timber, etc., a method is used which dispenses with the

necessity for reducing all the dimensions to feet, or to

inches.

This method is known as the duodecimal system, and by
it we can find an area in square feet and square inches

when the dimensions are given in feet and inches, and
similarly we can find a volume in cubic feet and cubic

inches.

Consider the process which we unconsciously apply in ordinary
multiplication and addition, e.r/., when we multiply, say, 15o by 8,

we arrive at the product in the following manner :—8 x G = 48, we
divide by 10 and get quotient 4 and remainder 8, we put down the
remainder 8 in the product and carry 4. We next say .5x8 = 40,

add 4 = 44, and we again divide by 10, getting (luotient 4 and
remainder 4. We again write in the product the remainder 4 and
carry 4. We now say 1x8=8, add 4 = 12, and we write down 12,

getting as the complete product, 1248.

In the duodecimal system, we divide by 12 instead of by
10, hence the name " duodecimal."

The method will be illustrated by an example. Let us find the
area of the above rectangle. Fig. 28, which is 5 ft. 10 in. by 2 ft.

8 in.

First set down the multiplicand .5 ft. 10 in. and the multiplier
2 ft. 8 in. as in ordinary multiplication.

We set down the products in columns 1, 2, .3, as illustrated in
Art. 76, col. 1 at the left being (ft. x ft.), col. 2 (ft. x in.) and
col. 3 (in. X in.).

G 2
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First multiply by 2, and commence witli the right-hand end of

the multiplicand.

n ft.

2 ft.

10 ins.

8 ins.

Col. 1.
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This result is 12 sq. ft., 9 (^ths sq. ft.), 3 sq. in., 4 (^^jjths sq. in.)

6 (yijths sq. in.).

Keducing the 9 units to square inches, we have 108 sq. in., and
adding 3 we get 111 sq. in.

We have also (.^+ ttt) sq. in

48 + 6

144

.54 3

Hence area is 12 sq. ft. 111| sq. in.

Fig. 29.

80. Extending this system to volumes, we observe that

when we (1) multiply a square foot by a linear foot we get

a cubic foot, or (ft. x ft. x
ft.), Fig. 29.

(2) A square foot multi-

plied by a linear inch gives

a unit volume which is a

block 1 ft. square and 1 in.

thick, or (ft. x ft. x in.).

Such a block is -^ cub. ft.

and contains 144 cub. in.,

Fig. 30 (a).

(3) A square inch multi-

plied by a linear foot is a

rod of 1 in. square section, and 1 ft. long, or (in. x in. x ft.),

and contains 12 sq. in., Fig. 30 (b).

Fig. 30.
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(4) A square inch multiplied by a linear inch is

of 1 cub. in. or (in. x in. x in.), Fig. 80 (c).

a block

Arranorino- these units in columns as before, we have

Col. 1.
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liopcfil tliis process by multiplying by 9, and \vc have—

9 X 8 =: 72 (in. X in. x in.), -;- by 12 = G (juoticnt and
i-cmaindcr.

9 X G = .")!, add (; = CO (in. x in. x fL), 4- by 12 =
5 (luoticnt and remainder.

9 X 1.") = ir,, add 5 = 110 (in. x ft. x ft.), -^ by 12 = 11

(quotient and 8 remainder.

Adding we get 120 cnb. ft., (in. x ft. x ft.), 8 (in. x in.

x ft.), (in. X in. x in.),

llcducing the fi units to cubic inches we have x 144 = 8G4 cub. in.

.. 8 ,. ,. „ ., .. „ 8 X 12 = 9G „ „
Hence, volume is 120 cub. ft. 9G0 cub. in.

81. The volume may be similarly found when each length

has a fractional part of an inch. We then have to remember
that

(in. X in. x yUh in.) = -,Uh cub. in.

(in. X ^Uh in. x ^Mhin.) == -jijth cub. in.

(jUh in. x lUh in. X iVh in.) ^ -^=\-J.h cub. in.

Rr. Find volume of a llock 4 ft. 3^ i i. hij 2 ft. o-i in. hij

G ft. 7| in.

4 ft. 8i in. = 4 ft. .3 in. 3 (JJhs in.).

Similarly 2 ft. .5.i in. ^ 2 f, G ( ,, ).

ami G ft. 1% in. = G 7 9 ( „ ).

Multiplying hy duodecimal system.

4 ft. 3 in. 3 (^lylhs in.)

2 ft. 5 in. G (
"

„ )

6 G

9 4 3

2 17
10 (ft. X ft.) 5 (ft. X in.) 11 (in. X in.) 10 (in. x^^ in.) G d^ in. x j^n.)

G ft. 7 in. 9 (x>2ths in.)

02



88 DUODECIMALS

In the volume we thus have 69 cub. ft.,

(9 X 144) = 129Gcub.in.

(3 X 12) = 36 cub. in.

8 = 8 cub. in.

Total 1340 cub. in., and

^^cub.in. + i4icub.in. + ^ cub. in.

48 + 6 54 3 1 , .= — = = — — — cub. in.
1728 1728 9t> 32

Total volume is thus 69 cub. ft. 1340gL cub. in.

In the above example it will be seen that when we have the actual

figures of the result, viz.,

69 cub. ft. 9-3-8-0-4-6,
we reduce to cubic inches and fractions of a cubic inch as follows :

—

Multiply col. 2 by 144, col. 3 by 12, and add the two products to

col. 4 for cubic inches.

Divide col. 5 by 12, col. 6 by 144, col. 7 by 1,728, and add together

the three fractions thus obtained, to get the fractional part of a cubic

inch in the volume.

Exercises.

(1) Find the area of a rectangular plate 15 ft. 3i in. long and
10 ft. 7^ in. wide by the duodecimal method.

(2) Find the following areas :

—

{a) 3 ft. 4 in. by 2 ft. 7 in.

(J) 2 ft. 61 in. by 3 ft. 5| in.

(6') 11 ft. 8|in, by 4 ft. 7i in.

(d) 2 ft. 8i in. by 1 ft. 9 in.

(3) Find the following volumes :

—

(«) 2 ft. 7 in. by 3 ft. 8 in. by 10 ft. 3 in.

(b) 11 ft. 6 in. by 2 ft. 4 in. by 3 ft. 8 in.

(c) 4 ft. 8i in. by 2 ft. 4i in. by 5 ft. 6 in.

(d) 11 ft. 7| in. by 5 ft. 6^ in. by 8 ft. 3i in.

(4) A window has 20 panes, each 1 ft. 8 in. by 2 ft. 6 in. Find the
cost of glazing at 5d. per square foot.

(5) A tank is 3 ft. 4 in. long, 2 ft. 6 in. wide, and 5 ft. 3 in. deep.
What is the cost of lining the tank at 6^. per square foot super. ?

(6) A baulk of timber is 15 ft. long and of section 3 ft. 4 in. by
2 ft. 8 in. Find its volume.

(7) Calculate to the nearest penny the total cost of glass for the
following pictures, at 5d. per square foot :

—

(1) 3 ft. 3 in. by 1 ft. 8 in.

(2) 2 ft. 4 in. by 1 ft. 10 in.

(3) 20 in. by 16 in.

(8) Find the volume of a block of stone whose dimensions are
3 ft. 8i in., 2 ft. 6| in., and 1 ft. 9^ in.
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(9) Find the volume of a rectangular pillar of length 10 ft. (5 in.,

breadth 5 ft. 3 in., and height 35 ft. 8 in. If each cubic foot weighs

50 lb., find its weight.

(10) Find the volume of a rectangular heap of material 15 ft. 6| in.

long, and of sectional area 3 ft. 7i in. by 2 ft. 10{ in.

(11) .4 Iteap of .sfone.s is (ij)/)ro.fimately triaiigular in section haiing

a base i>ft. 6 ///. and height Aft. 3 in., and the heajj is 12 ft. 6 in. long.

What is the volume of the heap ?

(12) Arailicag cutting is of rectangular section^r) ft. ^ in., hy 12 ft.

6 in., and is 45^ yds. long. What volume of material was removed

to make the cutting ?

(13) A reservoir 50J yds. long, 45^ ft. ivide, and 8 ft. 9 in. deep is

full of water. How many cuh.ft., 4"c., of ivater does it contain ?

(14) A hollowi column 12 ft. 6 in. high lias an obiter section ^ft. 4 in.

hy 2 ft. 7. in., aiid an inner section 2 ft. 8 in. hy 1 ft.W in. What
volume of metal does it contain?

(15) A metal ca.^ting measures orer all 7 ft. 5 in. hg ^ft. 10 in. hg

2 ft. 7 in. In this casting are cut two .dots each running the xohole

length of the casting, one being 3 ft. 4 in. hy 7 in., the other 'Sft. by

1 ft. 4 in. A slot also runs acro.^is the casting being 2 ft. 7 in. long and
5 in. hg 3 in. What is the volume and iveight of the casting if each

cubic foot iveiyhs i60 lbs.

Answers.

(1) 102 sq. ft. 36| sq. in. (7) o.i.

(2) 8 sq. ft. 88 sq. in. ; 8 sq. ft. (8) 16 cub. ft. 142y|.i cub. in.

1213 sq. in. ; 54 sq. ft. 0^ sq. in.
; (9) 1,9(56 cub. ft. 216 cub. in.

;

4 sq. ft. 106i sq. in. 98.306^ lb.

(3) 97 cub. ft. 156 cub. in. ; 98 (10) 161 cub. ft. 26^^ cub. in.

cub. ft. 672 cub. in. ; 60 cub. ft. (11) 146 cub. ft. 162 cub. in.

l,664i cub. in.; 533 cub. ft. (12) 43,935 cub. ft. 1,620 cub. in.

1,34315 cub. in. (13) 54,344 cub. ft. 1,548 cub. in.

(4) £1 lis. 9d. (14) 60,315 cub. ft. 1,548 cub. in.

(5) £1 Us. 9U. (15) 29 cub. ft. 153 cub. in
;

(6) 133 cub. ft. 576 cub. in. 13,381 lbs.
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CHAPTER Yir.

ALGEBRAIC OPERATIONS; INDICES.

82. Use of brackets. AVhon it is required to group

trgether parts of an expression for any purpose, we use

brackets. The several forms of brackets in common use

are (),{},[] . A line placed over a series of terms has

the same cRect as enclosing the terms within brackets.

Thus, {a + I) and a -\- b mean the same thing.

The whole expression within brackets is treated exactly

as if it were a single term, until the brackets are removed.

Thus, if it is required to square the expression a -\- b, we
should write this {a + b)-. If we require to multiply

{a + h) by '2.c we can write it 2x x (« + b), or simply

2x{a + b), in just the same way that we write 2x multiplied

by a as 2xa.

88. AVe explained, in Chapter I., that an algebraic

symbol, say x, really represented + Ix'^, the + sign, the

coefficient 1, and the index 1 all being omitted. In the

same way, [a + b) really represents + l(a -\- by, the

corresponding parts being omitted. If we multiply an

expression by — 1, we change all the signs in such an

expression. Thus, a -\- h multiplied by — 1 = — a —b.
If then we Avrite a -]- b in brackets, thus {a -f b), and wc
multiply by — 1, this is written — l{a -\- b) or simply
— {a -h b). We know the product to be — a —b ; hence,

the brackets can only be removed from an expression which

has a — sign in front of the brackets by changing all the

signs within the brackets.

Thus, a — (b -\- c) is equivalent to a -- b — r, the

signs of b and c being changed from + to — when the

brackets are removed.
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Again, a + h multiplied by + 1 may be written

4- 1(^ + h) or simply {a + h). The product we know
to be a + f^

; bence, we can remove tlie brackets when
they are preceded by a + sign without making any
change.

84. AYhen we wish to multiply {a + h) by some
quantity, say 2,r, we may write this as 2x (a + b). Now
we know that the product of {a + b) and 2x is 2ax + 2/>.r,

by the ordinary rule for multiplication. Thus, 2x(a + b)

must = 2ax + 2bx, and hence the brackets may be

removed if we multiply every term in the brackets by the

quantity or term immediately preceding the brackets.

Similar reasoning can be applied to division, for we can

regard {a -]- b) -r 'dx as (a + l) x — , or simply
))X

— [a + //) ; we know bv the rules for division that the

result will be -—
- + ^-, which aojain is equivalent to

^x oX ^

multiplying each term in the brackets by ;--, or equiva-
'6x

lent to dividing each term by ox when the brackets arc

removed.

85. One set of brackets may enclose another set of

brackets, for example, ^a{2x — b{a-^h) — ^{b 4- c)].

In simplifying an expression such as this, first remove the

inner brackets
( ) ; we then get

M[2x — ha — hb — ob - oc).

Here note that we have multiplied {a + Z^) by — 5 and
(b + r) by — 3, and hence changed the signs. Now
remove the outer brackets

{ } by multiplying by Za and
we get

(jCIX — Iba- — Ibab — ^ab — 9rtr,

which finally becomes C)ax — Iba'^ — 24:ab — Oar.

8G. Root signs and signs for raising quantities to any
required power may be applied to expressions as a whole
when the expressions are enclosed within brackets. Thus
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the cube root of a -\- b — c can be written v^(a + b — c),

and as2:ain the fifth power of x — y can be written

{X - yf.
87. That two expressions are to be multiplied together,

can be expressed by enclosing each expression within

brackets and then writing them down together with no
sign between them ; thus, multiply ba + '2b by Sa — bb

can be written (ba + 2b)('3a — bb).

In Chapter I., we have dealt with the multiplication

of an expression by a single term. To multiply an
expression by any other expression, when either of them
contains any number of terms, we proceed as follows,

taking as an example the two expressions {ba + 2Z>) and

(3« - bb) :—

Multiply each term in the

first expression by each term in

the second expression, beginning
at the left-hand side. Thus,
3tt(5« + 2i) = 15«2 4- &ah.

Set this down as shown. Again
~ U(s>a + 2^/) = — 2oah — lOb"^.

Set down this expression beneath
the first, and place corresponding
terms below each other ; thus,

— 2oab is placed below 6ab. The
remaining terms are placed to

the right. Now add, and the

algebraic sum is the required

product,

A further example is shown below for reference ; each

step is indicated on the left.

I^x. Multqfly l-i'll — 10./'^

ba + 2&
3« - bb



ALGEBRAIC OPERATIONS.

88. There are several results to be obtained by multi-

plication which it is necessary to remember, as they are

often required.

(1) (a +h)(a + h)orCa + I>y-

By
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a + h

a - h
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The rectangle ABCD lias length {a + ^) f^nd breadth

(c + d) ; its area is thus = lengtli x breadth = {a + b)

X {(• + (1) = ^'/^ + Z'c + ad + Z^<f.

In Fig. ;51, the area ABCD = area AGEH + area

G15KE + area IIEFD + area EKCF = ac -{- he + ad + hd,

which agrees with the result arrived at by algebraic

multiplication.

A4

H t

d.
•WL

r
od

1

^ B

K

D F C
Fig. 32.

To show graphically that {a + h) {c — d) ~ ac

-\- he - hd.

ad

In Fig. 32, let, AG = a and GB - h. Then AB = {a + h).

„ AD = c and Dll = d. Then AH = (c - d).

Area of icctaiii^de AGFD = ac.

„ " HEFD = ad.

Hence ,, „ AGEH = {ac - ad).

Again, the area of rectangle OBCF = he

EKCF = hd
Hence „ „ GBKE = {he - hd).

But the rectangle ABKH = {a + h) [c - d)

= rectangle AGEH + rectangle GBKE
= {ac - ad) + {he - hd)

Hence {a + h) {c - d) — ac - ad + he — hd.

To show graphically that {a — h) (c — d) = ac - ad
— he -\- hd.

In Fig. 33, let AB = a and GB = h. Then AG = (a - h).

,. 4D = f and HD = r/. Then AH = (r " ^)-
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a=5^^^ZE^B

H

c-d

K

C
Fig. 33.

Area of rectangle AGEH = (« - 7v)(c - d)

ABCD = ao
HKCD = ad
GBCF = he

„ „ EKCF = hd
HEFD = (HKCD - EKCF) = {ad - hd)

GBKE = (GBCF - EKCF) = (7;^ - hd).

Now the area of rectangle AGEH = rectangle ABCD - rectangle

HEFD - rectangle EKCF - rectangle GBKE,
or

(« - i) (<? - d) == afl - (ad-?fd) - hd - (he - hd)\ changing signs

= ac — ad + hd — hd — be -\- hd \ when brackets

= ac — ad — he + hd ) are removed.

Exercises.

(1) Find the product of 2a + '^h and \a — oh.

(2) Multiply a2 + 2ah + h'^ X 2a — 3b.

(3) Multiply x^ + 6.V + 9 x 2,i? + 4.

(4) Multiply am + 3«3/;2 _|_ SaVj^ x 2rt2/, _ ^ah^.

(5) Multiply 10.C + 12./'.y — 15y x 2,r» + 3./'.y — 4y.

(6) Find the product of («2 + 2ah + 7y2) (^^ + J) (» — h).

(7) Write out the squares of (a + 27^1 (2a — 3/;), (— ^.r + <>y),

(_ 3,^. _ 2y), (2a + 3Jf)> and (2<v + 3rt/0.

(8) Represent graphically an area = (2.r + 3//) (3.c — 4y),

taking .r; as 1 in. and y as .^ in.

(9) Show graphically that (« + 2?))Qi — 2h) = «2 _ 4^2,

(10) Find the product of .^•2 + 2.ry + y^ j^j^^^^ .^. _ ^^_

(11) Multiply *3 — 3,/;2 + 11.» —'8 x .r^ + A.v + 5.

(12) Find the value of ir (R2 — r2) when R = 21, ?• == 20.

(1,3) Remove the brackets from {3«2 4. 2(a + ?*) — 3^1 + 2j) —
(« + 3h)].

(14) Simplify - [- .r2 - 2i-(y + -0 + 2.ry - 3.?(.r + 2//) -.

Sa-y {3-2(./- + //)}]
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(1) 8ft2 -f 2(ih — 157A (10) ,,.3 _ ,^,y2 + .,.2y _ ^^s,

(2) 2n^ + u'^h — \ah-i — 3h-\ (11) .r^ + ./-i + 4,r«' + 2i./-2 +
(3) 2.1-^ + 16.r2 + 42.r + 36. 28,/- — 40.

(4) 2a^// + 6aV,3 _ 3,^4^4 _ (|2) 128-80o6.
3«4/,5 _ 9^8j.s_ (13) 3^2 _ 7/^.

(o) 20.z'3 + 24./-3y + 3G./-2y2_ (14) Gx'^+ 15,ti/— G.v^t/— G.rf.
40^-// — 93.ry2 + eby^.

(6) a* + 2flSJ — 2«// — IK

(7) rt2 + 4aJ + 4?>2, 4rt2 _ I2tf J + 91^,

l(;./.2 _ 48.^.y + 36y2,
9./-2 + 12.?'?/ + 47/2, 4,^2 4. i2ah(- + Oh^-c^,

4.?'2//2 + 12?/ />.?•?/ + 9^/2^2.

90. Algebraic subtraction. The difference between
two positive terms is found by subtracting one term from
the other ; thus, if we subtract 15.? from 20x the difference

is Dx.''' Now if we had changed the sign of the term to be

subtracted from + to — and then found the algebraic sum
of the two terms, we should arrive at the same result, for

+ }5x becomes — Ibx and the algebraic sum of + 20x and
— lOeT is bx. This process holds good for an expression

which consists of a num-

S.V + 9y + lOz

o.r — 6y — 11^

3.x -(- 3y _ -

ber of terms; hence in

subtracting bx + 6y
+ 11 z from 8.7; + '>y

+ lOz we write down
the first expression with
the signs changed and
then add as shown.

Now suppose we have to subtract a negative term from

another term. The same rule should suffice ; hence to sub-

tract — ox from + bx we change the sign of — 3x to+ 3x

and add, and we thus get + Sx as the result of sul tracting

— Sx from bx.j Similarly, to subtract an expression in which

the sign of each term is negative from another expression,

we change all the signs in the expression to be subtracted

and then add the two expressions together.

This rule can he illustrated graphically. Take a sheet of

squared paper and draw four lines thereon, a = 30 divisions,

h = 20, c = 2bi d = 10, as shown in Fig. 34. We regard

* or must be added to 15.r to make 20.r.

t + 8f must be added to - 3.r to make

r.M.
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lines measured to the riglit as positive and lines measured to

the left as negative. In the upper line AB = a, and BC — hy

hence AC - {(t + l). The line DE = r, and EF (measured

to tiic left) = — d, hence the line 1)F = (6- — d).

Now suppose we require to find a line to represent {{a + h)

— (c — <'/)}. We set off AC = {a -f h) as shown in the

third line from the top in Fig. ;U, and we draw to the left

from C a line = {c — d), that is, a line = FD, hence the

line AD = {(a -]- b) — {r — d)}. By our rule given above

for subtraction we have, in subtracting c — d from a + b,

to change the signs of c and d and add to a -\- b. ^Ye thus

get as the difference a -{- b — c + d, which we can write

Fig. 34.

a -\- b -\- d — r. The line which represents this expression
bhould be equal to AD, since we have found above that AD
= {(a + b) — {c — d)}. To test this, draw AB, BC, CE,
= « + ^ -f rf, as shown in line four in Fig. 84, and set

back from E a line ED = — c, then a-\-b-^d — cm
represented by AD, and as the two lengths AD in the third
and fourth lines in the figure are equal, we conclude that the
rule for changing signs holds good for negative and positive

quantities.

Bj substituting numerical values for a, />, c, d, the result

is made clear. Thus the upper line AC = {a + b) =
(oO + 20) = 50 divisions on the squared paper. Line DF
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— (c — d) = (25 - 10) - 15 divisionp. The third line

AJ) = (a + h) ^ (c ^ d) =^ (50 - 15) = 35 divisioiiF,

and the fourth line -^ {a + /> 4- d) — c = (80 -f 20 + lo)
•^ 25 ^ 35 divisions also.

Uj: 1. Stiltmd 5.r + fiy - 11- from 2.v - ay ~ 10.-.

2./-— hii— 10-j!

Write down as for addition — 5j' —• (Jy^-ll^
with the signs of the expression —

—

^

to be subtracted changed, — 3^" — lly -f- z

Ex. 2. Slnqdify

-^ [3rt _ 2& ^ (— rt -f- 2J 4- 3c0 — {irt — {2a -}- /y)}].
Remove the brackets and chfvngc the signs when a — sign precedes

a bracket.

Removing () brackets — \jia — 2h + « — 2J ^ 3c — {4a — 2a — J}].

Removing
{ } brackets — [3<i — 2h -\- a — 2h — "^c -^ i:a -\. 2a -f *]

.

Removing
[ ] brackets — 'da -\- 2h — a •\- 2h \- ^o -\' ia — 2a — b.

Collecting like terms — 2a + 36 -f ^c.

Exercises.

(1) Subtract - Ix + \\y - \Qz from 3.^- + 2y + 5.-.

(2) Subtract 3,c + 2// from 5.x' — 3y + lOr.

(3) From ha + 3Z* subtract 2a •{ \h ~ 2c.

(4) Show graphically a line equal to 2a + 3J — (3c — 2il) when
a = 1 in., h ~ \ in., c = | in., ^ = 1^ in.

(5) A rectangle has length (./' + //) and breadth (2,r - y). Find
its area. A second rectangle has length {•v — y) and breadth {.i' — 2y).
Find its area, and subtract the second area from the first. Show
that your result is correct by putting .i- = 3 in. and y = 1 in.

(H) Simplify 5a + 3^* - 2(a + b).

(7) Simplify — {oa
-f-

4i — 2(3a
-f- 2b) -\- 2a{b + c) — 2^'(a — c)}.

(8) Simplify (2a + -db) (2a - U) - 4«2 ^ g/.a.

(9) Write down algebraically : .« x three times the product of
a -\- b into a — b^ and find the value when a' = 2, a = 3, Z> = 4.

(10) Write down algebraically the difference when three times the
sum of X and y is subtracted from the product of a squared and the
difference of the squares of .r and //.

An.nnevs.

(1) 10.r — 9y + lor. (6) 3a + K
(2) 2.V — hy + lOr. (7) a — 2ac — 2bc.

(3) 3a — J 4- 2c, (8) 0.

(4) 4i.
(9) 3.r(a 4- b)(a — b ;

— 42.

(5) a-2 + 4.ry — 3//2. (10) a2(.r2 _ y2) _ s^.^, _^ ,y)^

91. Division. We have dealt in Chapter I. with the

rules for dividing oue term by another, and also for dividing

H 2



4x^ + ^xy

6xy + 9?/2

Qxy + 92/2
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any given expression by a single term. The division of

one expression by another whatever number of terms the

two expressions may have is performed as shown by the

following example :

—

Fx. Divide ix"^ + 12^y + Of by (2.» + 3y).

Divide the first term
4.^2 of the dividend by
the first term 2.x of the

divisor, and the result

= 2a? is the first
2.C

term of the quotient.

Now multiply the whole
of the divisor by 2.v

and subtract from the

dividend. The remain-

der is Q.vy + 9y2.

Treat this as the dividend and repeat the operation until we get

no remainder ; thus, -^ = Si/ and 3y(2.r + 3y) = G.ry + 9?/2.

In most exercises usually set in algebra, the dividend

divides without remainder by the divisor. If in any case

we do get a remainder, it could be written as the numerator
of a fraction with the divisor as denominator and added to

the quotient, exactly as with ordinary arithmetic.

Cases often occur in which tlie terms in divisor and
dividend are not arranged in any particular order. In
such cases, it is first necessary to arrange both expressions

in the same order.

Thus, as an example, we may require to find the quotient of

13a3^>2 _|_ Jo _|_ 4^j4 _|_ 13^4J _|_ 5fl5 ^ ^aW ^2ah +h'^ + a^.

Arrange the two expressions in order with the highest powers of a

first, i.e., a', then fl^, and so on. We thus get

dividend = .5a» + \Sa^h + V^aW + 8^2^,3 _^ ^^l^ ^ yh^

divisor = «2 + 2ah + l"^.

Now divide, as shown below.

a2+ 2«&+ J2)5«5+ 1 3^4^,^ 1 3^3^,2+ 8«2?y3 _(- 4« J4 _[_ ^5(5^3 _[_ 3^2^+ 2fl ^2 _|_ J3

•Aa^h+ 6a3/>24.3a 2;>,3

2a3/>2 _j_ 5^2^,3+ 4rtJ4 _^ }^

2aW+U%^+2ah^
a%^+ 2aV+¥
a2^,3_^_2flJ4_,_J5
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The following are two examples in which minus signs occur :

—

ii>. 1. Divide (^2 - h^~) hij (« - Z*).

Note that in subtracting a^

rt2 _ ah

ab—h'^

ab from a^

a'

&2 we have
-&2

t2 — ah

+ ab — b'^

i.e., subtracting — ab from =
+ ab and subtracting from
— Z/2 ^ _ h'^.

Ex. 2. Divide (ft3 _ ^aV) + 'dab'^ - b^} hi/ (« - *).

a — l')a^ — Ha'^b + 3ab^ — b^a"-— 2ab + h'^

tf3_ a^

— 2a'^b + 'Sab^

— 2a% + 2ab'^

ab'^—.

h^

02. The following examples, which illustrate more
difficult cases of use of brackets and of finding; numerical

values of expressions, should be read carefully, particularly

those in which a symbol denotes a negative quantity.

Ex. 1. Smjylify the following expression and find its numerical
value when x = 2, y = — 3, a = 1, J = — 2, c = 4.

— 2[3^' + 2y (a + b)-Sx{b+c)-i {Tx - {x + y){-f-y) + 3 (.* + c)}]

First remove the brackets in steps, and we get

—

— 2[6x + 2a (/ + 2by — Sbx — Sex— 4{7.i; — (.r2 _ y2) _|. 3^ _|_ 3^,}

— 2['Sx + 2ay + 2% — Sbx — Sex —4:{7x — x^ + y^ + 'Sa + 3c}

— 2[Sx + 2ay + 2by — Sbx — 3cx — 28.C + ix'^ — If—Ua— 12o
— 6x — iay — iby + Gbx + 66'^? + 5Gx — Sx^ + 8//2 + 2ia + 24c

We can now find the numerical value by putting in the values

given for x, y, etc., thus :

—

— (6 X 2) — (4 X 1 X — 3) — (4x —2 x — 3) + (6 x — 2 x 2)

+

(6x4 x2) + (56 x2) — (8 x 4) +{8 x(— 3)2}+(24 x l) + (24 x 4)

= — 12 + 12 — 24 — 24 + 48 + 112 — 32 + 72 + 24 + %
= 364 — 92 = 272.

In the above example, the following points should be noted :

—

(1) — iay becomes — (4xlx— 3)=-(- 12), and this becomes
+ 12 when the brackets are removed.

(2) - 4/vy becomes - (4 x - 2 x - 3) - — (4 x 6) - - 24

since - 2 x - 3 = + 0.

(3) 8?/2 becomes 8 x (- 3)2 = 8 x 9 = 72, for - 3 x - 3 = + 9.



102 ALUElmAlC OPEllAttOKH.

Bit. 2. Shnpliftj the following expresmtn:—

1 «-!-// [ t a—h I
"^

1 .t'—y )' \ 'I.L—-6,j \

'

Each numerator can be written as the product of two expressions

consisting of two terms (Art. 88) ; thus, a^ + 2ab + b^ ^ {a + b)

{a + ^z) ; «2 _ J2 ^ (-^^ ^ ?^)(rt^ _ f,-)^ and so on.

The whole expression then becomes

^ (
ia-\-b)(a-{-b)

] _ i
(a-^bXa-b)

] f (.r^?/)r^--?/))

i (« + ^/) j ( ia—b) I i (a—y) )

•(2.r -3//X2.x--3y) )

(2.r-3y) j

•

We can simplify any fraction by dividing numerator and denominator

by any expression ; thus, - -^^ —
y_ \

becomes ^ {a + b) if

we divide numerator and denominator by (a + b) ; or simply cancel

out as in arithmetic.

The expression then simplifies to

{a + b}-{a + b} + {.V - y) - {2; - ^}
— a + b — a — b + ,v -^ y — 2x + 'dy, by removing brackets?

^ —x->r 2//.

E.C. 3. Find the numerical value of C^fliruCM^ ^ . V
2^ — 3y V y^

6x
J

iclien

First simplify to ^—~-^— ..
-^^ + a/ —

-

(2.f — 3?/) ^ yy

- 2^ + 3// + \7-.

No>T substitute numerical values and we get (—2^-9) + ^ Zli!

2\3 8

27

4-

Exercises.

(1) Divide ./-^ + 2./-y + y"^ by x -\- y, and x'^ - 2./'// + y^ by .f - y.
(2) Divide x^ — y^by x -j- y, and x^ — if hy x — y.

(3) Divide 3.z'5 + 18./-^ + 39.^8 + 27*3 - 12.c - 15 by .r^ + ix + 5.

(4) «8 + 3aH -f- Sab^ + i^ jg to be divided into (a + b) parts. Find
each part.

When « = 4, J = 2, « = 2, 2/ - - 2, c = 3, find the numerical
value of

(5) a,'8 + 3.2-V + 2.r//2 + 4 .rV« + 3-*-2//2 + 2xy - 12.
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(C) 4./
2 {2// — 8.ry + 2./-V — {Iri/Z —

2^-V>''^) + li-^V-}-

{')

('-' + 2.r,i + //2) (.r2 _ 7,2)

(./--^ - 4//2) (gg _ 2ah + Z>2)

(^^ + 2h) {a — hf.

(1) J- + y,-r —
I/.

(2) .r — //, .v" + .'•// f ^'.

(3) 3.r8 + (;./-2 — 8.

(4) a2 _^ 2a b + h'\

A nsivers.

(:.) - 22S.

(<;) 9088.

(7) 1.

(8) 0.

93. Square root. The square roots of certain numbers
or of simple algebraic terms can be ascertained by trial, or

can be seen at once ; thus,

__v/30 = G, for 6 X 6 = .90
;

Jia^b*=- 2ah%iov2al^ x 2al^ - hi^*
;

J{a^ 'f 2ab + b-^ ) ^ a -\- b, for {a + b) {a + b) = a^ + 2<<^' -f b'^ :

and soon. In many cases, however, we cannot readily find

the square root by inspection or trial.

A method of finding the square root of any number, say,

583, G96, is shown below :

—

First mark off pairs of figures

from the riglit thus, UG, 3G, 58.

Now take the nearest square
root of the first pair. This is 7.

Tut 7 in the result, and the

square of 7, i.e., 49, beneath 58,

and subtract, llemainder is 9.

Now bring down Ihe second
pair of figures 36. Double the

number in the result thus,

2 X 7 = 14. Place as shown
opposite to 93G.

93

58'36'9G(7C4

49

14 C
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Put 4 in result and also after 152. and we have 1524 x 4 = G09G.

104 )
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!)5. Terms with negative indices. The term - is
a

often written us cC^, i.e., a raised to the power miuus 1.

We can show that - is = a'^ as follows :

—

a
1 aax- =
a a

= 1

a X a-^ — a^ X a-^
= a^—1 (adding the indices)
= g"

= 1 (by Art. 13, foraO= 1).

In the first case, we multipl}^ a by - and get product 1.

In the second case, we multiply a by a'^ and get product 1, hence

we conclude that - and a-i are identical in value.
a

Similarly, we could show that -^ = «"-,—. = «~^ -;. = (i'">K•" a^ ' a^ '«»

E.i\ Find the inoduet of a^ x a-^.

By our rule for indices a^ x a~^ = a^-^

a

Notealsothati=I0-.;4=l,= 10-

96. Terms with fractional indices. The term Ja

is often written as a' or a raised to the power one -half.

This can be shown as follows :

—

Ja X fja — a

a^ X a- = a- - (by rule for indices)
— a^ ^ a.

Hence we conclude that Ja must be equal in value to a-.

2
Similarly, we can show that ija = u^. ^'a = a^, ^ija — u'k

Note that V^IU may be written lO^^-

v/Io „ „ 10*.

In accordance with Art. 05. we can also write

—

11
= a ' ^

1 _ J_
^^^^

l/l5
"

lOi

= 10-4
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If we have a term which is raised to some power, and
tlien some root of the term so raised is required, we Ciu

write this in two ways, e.g.^—
\/ ic^ moans extract the square root of the cube of a. If « = 1, then

ttS = G^, and ^«^ = vGl

_ =8.

Now 'v X may be written iv^ as shown above.

Let X = (rtS), then x^ = (o^)^ or «^, since we divide the index to
extract a root.

Thus \' a^ miij be written as «5, and similarly' 10^ means \ ''''^

or ^Tuu

97. The following examples illustrate how a literal

statement which expresses a series of operations, or the

relationship existing between two or more quantities, can

be written down algebraically.

Ex. \. To the square of x add the cuhe o/j, and diride the sum hi/

the dlfennce hcta-een x and the square of y ; extract the square root

of the quotient.

The square of x is .r-^, the cube of y is tj^ ; their sum is {x^ + y^).

The difference between x and the square of y is (x — y"^), and this

must divide the sum of x- and y'^^. The division is expressed by
(•?-^ + y3)

(./; - y^f
We must now extract the square root of this quotient, and this is

represented by

-.2 +_y3
I
i

r )

Ex. 2. 'The area of a triangle, ivhen the lenyths of the three sides

are hnown^ is found asfollows :—From half the sum of the three sides

subtract each side separately ; multiply toi/etlier the half sum and the

three remainders ; the square root of the jjroduct is the area.

Represent this statement algebra ically.

If we denote the area by A, the three sides respectively by a, b, c,

and the half sum of the sides by s, then
(.s' — «) = half su'u minus the side a.

is - h) =
„ „ „ b.

(« - ^0 = M M M C-

s {s - a) {s — b) {s - c) ~ product of half sum and three remain,lers.

A — \/ s (s — a) (^s — b) (^s — e).

Ex. 3. The horse power of a steam engine is given by twice the

2)roduct of the mean pressure of steam on the piston in lbs. yer sq, in..
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the leiujth of the droke in ft., the area of the inMon \n mj. hi., ami the

number of revolutions i)er minute, divided by 33,000. llepresent thin

staiemeut aJijebra icalli/.

Let P denote the mean pressure, L the stroke, A the area, and ^V

the number of revolutions per minute. Then if IIP denotes the

horse-power we have
77n_2xPx2/X^xA'

33,000

Exercises.

Find the square root of—
(1) r)S2169. lOOiKMiO, 3r)21>7, 483.

(2) 4637-8246, 369-02174.0 0023971.

(3) 9.r-2 + 12.^;y + 4^2^ ia^ - 16ab + WA i.r^ - Iri/ + i^^.

(4) a2 _|. iab - 2ao + U"^ - ibc + r-.

(^r)) Write down algebraically : Add twice the s juarc root of the

cube of .r to the product of y squared and the cube rout of z. Divide

by the sum of .jc and the square root of y. Add four and extract tha

square root of the whole. (B.E. 1903.)
'

(6) Write down algebraically : Square a, divide by the square of b,

add 1, extract the square root, multiply by ?o, divide by the square

of n. (B.E. 1904.)

(7) Write down algebraically : The principal P multiplied by 1 +

-^ twelve times. (B.E. 1906.)

(8) Write down algebraically : .r is multiplied by the fourth power
of y, and this product is subtracted from the square of ,r multiplied

by the cube of y ; the cube root of the square of this difference is

divided by the square root of the sum of x and y. (B.E. 1907.)

(9) Express algebraically : Multiply the cube root of the square of

a by b, add to this the cube root of a, multiplied V)y the cube root of

the fourth power of b, extract the cube root of the sum and divide by
the square root of the sum of the squares of a and b. (B.E. 1908.)

Answers.

(1) 763 ; 1000 i
190o2

;
21-93.

(i\ p { \ a.
'" Y^

(2) 68-1016 ; 19-209
;
0*0489. '^'^ ^ I

i -+^ ^-^\ -

(3) (3.r + 2y); {ia-ib); {\x-\ij).

(4) a + 2J - c. (8)
ff ^

(6)
2.r2 4^ y

h \\ (c + yy)*
+ 4 .

^+ >/'
) (9) ijr^ +.{a"^}, + «M}^

(^'>l'^'j



108

CHAPTER VIII.

SIMPLE EQUATIONS AND EVALUATION OF
FORMULA.

98. An equation is simply a statement that two quantities

are equal. It may be a simple arithmetic statement, such

as 6 + 3 = 9, or it may be an algebraic statement, such as

2aj + 5 = 11.

When we have a problem given by data in which there is

some unknown quantity, we denote the unknown quantity

by a symbol, and then from the given data write down an
equation from which the value of the unknown quantity

can be determined.

In the second example above, viz., 2a; + 5 = 11, the

symbol x denotes an unknown quantity, and the solving

of an algebraic equation of this type consists in finding a

numerical value for the symbol x. In this example, since

(2 X 3) + 5 = 11, ic must be equal to 3. The number 3,

which is the value of i\ is called the root of the equation.
In the equation x -\- y — 12, we have two unknown

quantities x and y, and we can find many numerical values

of X and y which wall satisfy the equation.

Thus, if X is 1 then // is 11, for 1 + 11 == 12
;

Agaiu, if ,/' is 2 then ij is 10, for 2 + 10 = 12
;

Again, if x is 6 then ij is 6, for 6 + 6 =12.

From this it will be seen that one equation is not

sufficient data for finding two unknown quantities.

If we are given two distinct equations, we can find

two unknown quantities. Two such equations are called

simultaneous equations.

When the unknown quantity in an equation is only raised

to the first power, the equation is called a simple equation,
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or an equation of the first degree—for example, x -\- ^ =
8. Here x is really x^.

When the unknown quantity is raised to the second

power, the equation is called a quadratic equation, or an

equation of the second degree—for example, x^ -\- 'Ax ^ 5

;

and when it is raised to the third power it is called a cubic

equation or an equation of the third degree—for example,

x^ + bx"- + Sx = 7. The degree of an equation is settled

by the term containing the highest power of the unknown
quantity.

99. All the rules for solving simple equations are covered

by one general rule, viz., that whatever we do to one side of

the equation^ we do not destroy the equality, provided ive do the

same to the other side.

Thus we may

—

(1) add the same number to both sides of the equation ;

(2) subtract the same number from both sides of the

equation

;

(3) multiply both sides by the same number or quantity
;

(-4) divide both sides by the same number or quantity
;

(5) raise both sides to the same power
;

(6) extract the same root of both sides ;

(7) change all the signs on both sides ; and so on.

Test these statements with an arithmetic equation—for example,

9 + 4 = 13.

(1) Add 2 to both sides, then 9 + 4 + 2 = 13 + 2, or both sides

= 15.

(2) Subtract 2 from both sides, then 9 + 4 - 2 = 13 - 2, or both

sides = 11.

(3) Multiply both sides by 3, then (9 + 4)3 = 13 x 3, or both

sides = 39.

(4) Divide both sides by 2, then ^^

—

-—- ^ ^r ov both sides = Q»-o.

2d 2i

(5) Square both sides, then (9 + 4)2 = 132, or both sides = 169.

(6) Take the square root of both sides, then ij(^ + •*) = \/l'^, or

both sides = 3*6 1.

(7) Change the signs, then - 9 - 4 = - 13, or both sides = - 13.

100. The proceFSof solving a simple equation consists

in getting the unknown quantity, say x, by itself on one side,

usually the left-hand side, of the equation, and all the

numerical quantities on the right-hand side. Provided
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that the sif>:n of the uuknown quantity is +, then the

algebraic sum of the quantities on the right-hand side is

the solution or root of the equation. If the sign of the

unknown quantity is — , we make it -f- by multiplying both

sides of the equation by - 1.

Thus, to solve .r -}-(•»=- 3./' -f 7.

We require to biing — 'S-r from the right to the left side. If we
aild 4- 3.^' to both sitles we get

a? + 6 + 3.r = - 3./' + 7 + ii.v

and this simplifies to .r + 6 + 3.p = 7

4,» + 6 = 7.

We now require to bring the 6 from the left to the right side.

Subtracting 6 from both sides we get

4.r + G - G = 7 - 6,

and this simplifies to 4./? = 7 — 6

4.» = 1

We now require to transpose the 4 from the left to the right side.

Dividing both sides by 4 we get

4# _ 1

4 " 4

which simplifies to .p ~ -7, hence \ is the root, or solution, of the

equation, for we now have + -v by itself on the left-hand side of the

equation.

We can test the result by putting ,i' = :j in the equation. The two
sides should then be equal ; thus,

«' + G = - 3.r- + 7

X + 6 = - (8 X i) + 7 =. (7 - I)
Gi = Gi

A similar test should be applied to all equations.

From the above example, the following facts are

observed :—
(1) A negative term on either side of the equation may

be transferred or transposed to the other side if we change
its sign from — to -f

.

Thus a?+6= -3a? + 7 becomes
a? + 6 -f 3,c = 7, the - 'd./- on the right

becoming + 3,r when transposed to the left.

(2) A positive term on either side of an equation may be

transposed to the opposite side if we change its sign from -|-

to -.
Thus 4i» + 6 = 7 becomes

4a; = 7 - 6, the + Gen the left becoming
- 6 when transposed to the right.
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(3) A quantity wliidi multiplies all the terms on one
side of an equation may be transposed to tlie other side if

it is made to divide all the terms on that side.

Thus 4./' = 1 becomes x =
^J,

for the multiplier 4 on the left

becomes a divisor 4 on the right.

Similarly, we can show that a quantity which divides all the

terms on one side of an equation may be transposed to the

other side if it is made to multiply all the terms on that side.

Take as an example —7.
— = 3.

If we multiply both sides by 2 we get

or (j- + 5) = 3 X 2.

Here the divisor 2 on the left becomes a multiplier 2 on the right.

The following examples illustrate the methods of solving

equations :

—

Ex. 1. Solve 3./- + 4 — 2.C = 5,c + 12.

Transposing hx . 3;C + 4 — 2^ — 5* = 12
Transposing 4 3-t' — 2x — 5,c = 12 — 4

Simplifying — 4.c = 8

8

4

- 2

Multiply both sides by — 1 , and hence a- = — 2

Transposing 4 — x ==

In an equation involving fractions, first eliminate the

denominators by multiplying both sides of the equation by
a multiple of all the denominators.

Ex.2. Solre ('i'l^l) ^ (5^ _^. 1)

Transposing 4 we get (jix + 2) = i(ox + 1)
= 20./- + 4

Transposing 20.? and 2. 3x — 20,/' =4—2
Simplifying — 17,r = 2

Transposing 1 7 and changing signs x =

^r. 3. Solve f 4- ^ - « . i!L
5 -t- ^ - t> + ^^.

Multiplying both sides by 10 2x + Bx = dO + x
Transposing x 2x + 5./' —x = 60
Simplifying 6.p = 60
Transposing 6 a? = 10
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(2.r + 3^
Er. 4. Solve f^,^ ^ 6) - f (4 - .r) = —p^ + 2.

This may be written ^—J^— - -^ = -—
Trr—^ +t

Multiplying both sides by 12 . 8(.r + 6) - 9(4 - .r) = (2.k + 3) + 24.

Simplifying 8^ + 48 - 36 + 9.^; = 2x + 3 + 24.

Transposing all terms containing a? to the left and all others to the

right—
S.V + 9.V - 2.r = 3 + 24 + 3G - 48.

Simplifying . lo.r = 15.

.r = 1.

E.. 5. Solre Ji^
+ A) + ^(- '

^) = 5.
{V + 3) i-v — 6)

Multiplying both sides by {.v + 3)(.r - 6) we get

(.^ + 3)(.^.-6)|^j + (^ + 3)(.. - 6) ^^^^ = o(.^ + 3)(.. - 6)

This simplifies to {.v - 6)(.r + 2) + 4(.r + 3)(.r — 5) = o{.r + 3)(.r- — 6)

Multiplying out the terms in brackets

—

jr-2 _ 4.P _ 12 + 4(.r-2 — 2.2? - 15) = oU-^ - 3.^ - 18)
,^••2 _ 4.P _ 12 + 4.^2 - 8a? - 60 = ox^ - 15.2- - 90

Simplifying and transposing terms we get

a- - la? + 4«2 - 8a? - 5a-2 + 15a? = -90 + 60 + 12
- ix - 8x + 15a? = - 18

Again simplifying . 3x — — 18
18

Transposing 3 a? = ~-

Hence a* = — 6.

101. In an equation of the type '7 — 'j, ^^'6 can multiply

successively by h and y, thus transposing b to the left side

and y to the right side of the equation.

bx
Multiplying by 1) we get — = a.

Multiplying by y we get hx = ay.

X ci

Thus we can wTite — = j ?l^ hx = ay^ or generally,

when each side of an equation consists of a single fraction,

we can multiply the numerator of each fraction by the

denominator of the other and write the products as equal
5

thus - ys^ T becomes xT) = ay.
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An example of such an equation is

(•'• + ^) c-^'
- y

)

By analogy to - = r written as ,rb = at/, we at once put

(.^ - 6) (.r- 3) -(./•+ ]0)(,i- + 4).

Multiplying out ../•"^ - *J.r + \S = x^ + 14.v + 40
Transposing .t-'^ - .i'^ — 9.r — 14.» = 40 — 18

ISiniplifying - 23^' = 22
22

111 some equations, it is advisable to simplify both

sides of the equation before commenciug to solve the

equation. The following is an example :

—

£.. o. Sohe ^^.-^^
- ^^^-^^ - ^;^,^

-
^^^rz-,f

Add together
^ Tajj * .i xi

the two frac- [{.v—1) (.r-3) -(.^-2)2 (.^~4) («-6)-(*-.o)2 H\dd together the

tions on left ciU) (!J.) ^ (J-5) C»-l» '^tS^
°"

of equation. ) [
"^ nguu

^2-4.r+ 3-(./2-4.r + 4) .^•2^10.r + 24~(.r2-10./' + 25)

(.r'^ - ou,-+ 1)) Cef^ - 1 1 .i-+ 3U)

This simpli-j .r^-4,r+ 3-^2_^.4,^_4 ^ g.2„io.^._^24-a-2+10.c-25

ties to
I

(.<-2 - 5,r + 6) ( ,r-^ - 11 ../• + 30

J

{.v^-r),v+ {i)
"

(,/••- -11.^-1-30)

This simpli-

fies to

We now have an equation of the type - = y in which ,r and a both

equal " 1, y - (-/-^ ~ 5.c + 6) and & - (.*- - ILr + 30).

Hence by analogy to icb — ay^ we can write

—

- IC-x-a - IL^f + 30) = - l(.t-2 - hx + G)

Multiplying out.- .i-^ + 11./; - 30 = - a-^ + 5.^• - 6

Transposing — x'^ -\- ,c- + ILt' — 5.r ~ — G + 30
Simplifying G,t' = 24

it- = 4.

^>. 6. ^t/Zr^ .f2 + 3.^ ^ 5.xa + 4.^^.

In this equation, every term contains x or ,v^ ; hence we divide both
sides by ,r and thus obtain an equation in which n^ does not occur.

The equation then becomes—
Dividing by ,c «• f 3 - 5,r + 4

Transposing terms x — r>x =4 — 3

Simplifying — ix ~ 1

Transpose 4 and change signs (v = — -f

P.Y. I
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Exercises.

Solve the following equations :
—

(1) X + i = 2,c - 2. (2) ,c + 3 - 5.C + 7 = 3.C - :

(3) 2,7- _ 7 = ./• - 1 + 3./' - 3.

(4) ^-2 + 3.f + 7x = - 5.A- - 2,r2 + 13.A'.

./• ,/• .r ,r 1 .r .r 3 _ ./• 2

<^"> H
- T ^ G + 8 + ^- ^^^> 2 - 5

-
4 - - I?,-

,_. ./' + 1 ,
•^' - 2 4 + ./• 2.r + 3.

<^'> --T + "T = -^ 1»-

rt — 3 4 + 2« _ 3^/ + 7 2'/ + 4

^^^ ~~^^ + lU ~ lo 30^ '

2 + ./' 3 + .r 7
(11) 0-— +

(12)

'6 - .c .r + 4 12 - ,f' - ,r--^

2.V ^ 3 2./' - 4 2./' - 6 2./- - 7

2.t' — 4 2.6' — 5 2,6- — / 2,f — b

Ansicers.

(1) 6. (4) - §. (7) If. (lU) - n
(2) 2. (5) -2-4. (8) 2. (11) - 1|.

(3) - 1-5. (6) 41. (9) 241. (12) 3.

102. Tn expressing data or given conditions of a problem
in the form of an equation, the symbol x is usually adopted

for the unknown quantity. Suppose we take x as a certain

number, then a number exceeding the given number by 3

would be represented hj(x+ 3) ; a number which is 3 less

than the given number would be represented by (x - 3)

;

a number equal to 5 times the given number is bx ; if we

divide the given number into 5 parts each part is y

and so on.

If we know that the distance between two railway

stations is 50 miles, and that a train travels at a rate of x
miles per hour from one station to the other, then the time

occupied by the train is — hours.
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Again, if the train travels 20 miles per hour and the

distance is x miles, then the time taken is ^ hours.

If a rectangular plate is x ft. long and // ft. wide, its

area will be xy sq. ft., and its perimeter is '2(x + y) ft.

The electric current O in amperes passing through a
circuit of resistance R ohms, with an electromotive force of

£ volts, is known to be equal to the electromotive force

divided by the resistance. Hence we can represent this

E
statement by 6' = -7;.

The kinetic energy of a weight W lb. moving with a
velocity of V ft. per second, is known from mechanics to be
equal to half the product of the weight multiplied by the

square of the velocity and divided by the acceleration due to

gravity.

If ^ = acceleration in feet per second per second, then

the kinetic energy is represented by i
.

Ex. 1. The space described or passed through by a falling body
is known from mechanics to be given by one-half the product of the
acceleration due to gravity and the square of the time in seconds
during which the body is falling. Express this algebraically, and find
the depth of a well if a stone dropped down it reaches the bottom in
9 sees.

Let s = space in feet, or depth of well in feet.

g = acceleration due to gravity in feet per second per second.
t = time in seconds.

Then from the given relation we write s = Iffi"^. The value of g is

usually taken as 32-2 ft. per second per second,

Hence, when ^ = 9

s = i X (32-2) X (9)-i

^ 32-2 X 81

2
= 1301-1 ft.

Ux. 2. If a train starts from a point distant a feet from a terminus,
and moves with an initial velocity K ft. per second, and an accelera-
tion of fit. per second per second, and is moving for a time t sees.,

then at the eml of the time, its distance from the terminus is e(jual to

the sum of (1) its distance at the time of starting
; (2) the produet of

the initial velocity and the time ; and (3) the pro(luct of half the
acceleration and the s<iuare of the time. Express this algebraically

I 2
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and find the distance when a = 12 ft., V = 20ft. per second,/ =^

30 ft. per second per second, and t = 25 sees.

JjCt's = distance at end of time t.

Then product of initial velocity and time = T7.

And the pioduct of half the acceleration and the square of the time

= iff'-
Hence from given data « = a + It + ^ftr

Putting in the numerical
1 ^. ^ .^ + (i X 30 x 25 X 25).

values for </, T,^ and /)
^ "^ j ^

\i j

= 12 + 500 -f 9375
= 9,887 ft.

1 02a. The following examples illustrate methods of solving problems

which involve simple equations :—
Ef. 1. If 15 he added to thej)roduct of o, and a certain 7iumher, the

sum is equal to 8 times the number. Find the number.

Let X = the number, then o,r ^- the product of 5 and the number,

and (5./' + 15) - the product with 15 added.

Also 8.r ^ 8 times the number.
Hence 5./' + 15 = 8./- from which .r ~ 5.

Er. 2. The length of a rectangular plate is 12 ft., and the area is

60 sq.ft. Find the width.

Let .r feet be the width.

Then 12 x a- =* area.

Thus 12.C = 60

^ ^ ^ =. 5 ft. width.

E.r. 3. A column 10 ft, square is to he built as high as possible, hit

the total iveight must not exceed 1,050 tons. Each cubic foot ojf the

material weighs 145 lb. What ivill be the safe height to build ?

The area of base of column =* 10 X 10 - 100 s'q. ft.

Let h = height of column in feet. Then 100 x h will be the

number of cubic feet ia the column. 100 x h x 145 - weight of

column in pounds.
Hence 100 x h X 145 = 1050 x 2240

_ 1Q5Q X 2240
"

100 X 145

^ lG2-2ft.

Bsercised.

(1) One foot-pound of work is done when a force of 1 lb. is exerted

through a distance of one foot. If a force of 50 lb. is exerted through

a distance of half a mile, how much work is done, and what would be

the horse power of a motor which did this amount of work every

half minute? One horse power = 33,000 ft.-lb. of work per

minute. _
(2) If ^ - 27r /v/i' find t when / =* 2'5 ft., tt = 3-1416, and

a = 3219. Also find I wlien t - 2.
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(3) F - ^tT. Calculate 7'^ when yu = 025 an<l ^V ^ 2r)0.

(4) 11 ^ 0__r_l_l'; YiwC, II when N = 2J/ and .Y == 200 lb.,

r s 2 X IT X 100.

("^) ^' =
g-^

('-2 - T -)• Fina A' when 11' = 50, T' = 25, and r = 30.

(()) 7',= Tyf<^^- f^alcnhifo d vvlicn T -^ 10 x 2210 x 21, and /
^ 9000.

(7) If F ^ FJ-^^ + I/-; if / -- /V'^ -^ 12; if 7;; = 3 x 10^

IT = 3-142, Z = (12, h = 2,t = 0-5, find F. (15. E. li)04.)

(8) From the formuLa, Young's modulus = l^''^'^ ^ ^^"^-'"-'^^
^^UlE^-

area x j

^'^t^^^^^" "^
( compression

J
find how much a column 15 ft. long will shorten under a load of
125 tons if Young's modulus 5= 12,500,000 lb. per sq. in. Area =
IT {l22_ (9-5)2}.

(9) 11' = - X ^ X /• X y. Find 71' when I -== 25 ft., h = 10 in.

<7 = 14 in., c ^ ^y^^ = ^'^^SO. (Note h, d, and I must be in inches.)

(10) d ^ 3 3 V'^^ Find d when // = 5 and N -^ 100.— v'^
7?//« 7/

(11) 7 ^ -^~ and /^ = —:;. • Fmd 7 and /.; when i? = 3 and

II = 10.

(12) 7i = ^ and /a - ^^^(
f.j

+ /•'^j- Calculate 7j and 73 when

B =. '6, II =. 10, and 7^ :=^ 7.

(13) If I ^'^^, find its value when D == 12 ft.

(14) Q = 0-G2.1
\/2i//<. Find Q when .1 = tt x ^ x ], ^7 = 322,

h s= 15.

(15) (^ ^ OGl x 1 7/7/ V2//7/. Find Q when 7? =. G, 77 ^ 3,
o

and fj ^ 32-2.

(IG) Simpson's rule for the area A of an irregular figure is

-1 =
I {(/'I + h,) + 4(//2 + 1u + /'«) + 2(7/3 + // )}

vherc hi, Ji^, etc., are the lengths of ordinates drawn across the
figure at equal distances x. Calculate the area when x = 0-75 in.,

and
7/1 = 3-6 in. 7/4 = 7-8 in. 7/, = 3-4 in.

/'2 = 4-7 „ 7/5 - 11-4 .,

/'3 = 5-0
., 7/6 = 7-2

;,

Also, plot such an area on squared paper, find its mean or average
height, and hence find the area, Compare the two results.
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(17) Simpson's rule for the volume Uof a prismoid is

V =
I {^1 + 4 (^2 +A, + Ac;) + 2(^3 + ^5) + ^7}

where Ai, A^-, ete., are sectional areas at equal distances .r.

Find V when .r = 2 ft.

Ai = HVS sq. ft. Ai = 86-7 sq. ft. Ac, - 28-3 sq. ft.

A2 = 29-5 „ ^5 = :^2-U „ A-j = U-9 „

7I3 = 31-6 „

Plot A and ,v on squared paper, find' the average value of A, and
hence calculate the volume. Compare the two results obtained.

(18) F • If ir = 50, 7? = 3, N == 150, tt = 31416,

and g = 322, find F.

(19) Divide 12-56 into two parts, one of which is 3^ times the

other. (B.E. 1909.)

(20) A rectangular garden has one side 28 yds. longer than the
other ; if the smaller side were increased by 40 yds. and the greater

diminished by 34 yds., the area would remain unaltered. What are

the lengths of the sides ? (B.E. 1907.)

(21) Some men agree to pay equally for the use of a boat, and each
pays 15 pence. If there had been two more men in the party, each
would have paid 10 pence. How many men were there, and how
much was the hire of the boat ? (B.E. 1905.)

(22) If «, J, and c represent the lengths of the three sides of a
triangle, and if s — \{a -{- h -\- c), the area of the triangle is given by
the formula :—Area =

y'^i-v - a)(.s- - ^)(.s- - c). Calculate the area
of a triangle which has sides 12, 10, and 8 ft. long.

(23) Write down algebraically :—Square », divide by the square of
h, add 1, extract the square root, multiply by lu, divide by the square
of n. (B.E. 1904.)

(24) The ages of a man and his wife added together amount to
72-36 years ; 15 years ago the man's age was 2-3 times that of his

wife ; what are their ages now 1 (B.E. 1904.)

Answers.

(1) 132,000 ft.-lb.

;

8 HP. (14) 3-78.

(2) 1-75 sec. ; 3-26 ft. (15) 101-73.

(3) 62-5 lb. (16) 30-1.

(4) 1-904. (17) 359-1.

(5) 2135. (18) 1,149.

(6) 6f. (19) 2-79
;
9-77.

(7) 401-2. (20) 40; 68.

(8) 0-024 in. (21) 4 men ; 5 shillings.

(9) 7273-6. (22) 39-7.

^'^) l'^-
ro-x-, '^ 1-^ Tr-

ill) 1,000: 5-77. (2'"^) ^ V «^ + * •

(12) 250; 1,720. (24) 44-52
;
27-84.

(13) 2034-72.
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CHAPTER IX.

GEOMETRICAL DEFINITIONS AND FUNDA-
MENTAL CONSTRUCTIONS AND PROBLEMS.

103. A geometrical point has position but not magni-

tude. In making drawings, it is best represented by two

fine lines drawn across each other, thus X."

A geometrical line lias length but not breadth. AH
lines should^ Ihcrcfore, he as thin as is consistent ivith

distinctness.

Ffg. 35.

Lines may l)c either straight or curvccl.

Intersecting lines are lines which cross each other.

The plane is a perfectly sti-aight or flat surface and one

on which a straight-edge will lie evenly, no matter how
placed.

* In the diagrams illustrating this hook, many particular points are represented
by small circles or round dots. This device is employed to make such points
conspicuous and more easily located by the reader.
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Plane curves are curves wliicli lie wholly in one plane,

such, for example, as any curve traced on a perfectly true

draAvin^i^ ])oar(l. See a, b, c, Fii;. lio.

A circle is a plane %ure bounded by a curved line called

the circumference, every point of which is equally distant

from a jK>int within callecl the centre. The circnmrerenc3

is sometimes referred to as the circle when no icferencc is

being made to the space enclosed.

Fig. 36

A radius is a straight line drawn from the centre to the

circumference.

A diameter is a straight line drawn through the centre,

and terminated both ways by the circumference.

Thus, in Fig. 3(1, is the centre of tlic circle ; OA, OB,
OC, are radii ; AOB is a diameter. From the definition of

a circle, it is evident that all the radii of the same circle

are equal ; and all diameters arc equal, and each double

the radius.

An arc of a circle is any part of the circumference, as liC.

A chord is the straight line which joins any two points

in the circumference, as DE. A chord divides a circle into

two parts, each of which is called a segment,
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A sector of a circle is tlie sjiacc enclosed by an arc

and two radii drawn from tlie centre of the circle to the

extremities of the arc.

lol. Locus. E\ery line mav be considered as the path

B
Fig. 37.

traced ])y a moving point. Thus the hne AB, Fig. 37,

traced by a pencil point moving from A to B, marks every

^^FLEA^^

-->

Fig. 38.

position occupied l)y the point, and is called a locns ; (he
moving point is said to generate its locus.

Constant Direction. Jf a point situated at A, Fig. :>7,

move in a straight line to a new position B, it moves all the

time in the same direction, ^iz., along the straight line AB
towards B : and thus the direction of motion of the point

is constant. Hence, a strainhf line /.s fhe lonis of a ^winf the

diredio!} of iclvkh is constant.
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105. Angles. Suppose a straight wire OA, Fig. 38,

secured to a drawing-board at l)y a pin joint so that it

can rotate about the point 0. Let OA represent the initial

position and direction of the wire. When the wire has turned
into tlie position Oa'^, its direction is Oa^.

The hne Oa^ is said to ])e inr/med at an angle to OA, and
the inchnation of one line (Oa^) to the other (OA) is called,

in general terms, the angle aH)k. The two lines which form
an angle are called the arms of the angle, and the pc^int

in which the two arms meet is called the angular point,

or vertex.

It must be clearly understood that an angle denotes the

inclination, or slope, of one line to another line, but has
nothing to do with the length of any line. The size of an
angle depends solely on the difference in the directions of

its arms.

If the rotating wire makes a complete turn, the point A
will describe a circle and return to the starting point. When
it has moved through half a complete turn into the position

Oa^, then rt^O, OA are in the same straight line, and divide the

circle traced by A into two equal parts. When the wire has

made one-quarter of a turn, taking up the position Or/-, it

makes equal angles with OA and Oa'-^, in which case the lines

are said to be square or perpendicular to each other, and
each of the equal angles is called a right-angle.

If the rotating wire OAbe supposed to describe a complete
turn in 860 equal stages, the circle will be divided into 360
equal parts, and if lines were drawn marking these different

positions the angle between adjacent lines would l^e constant

and equal to one-three hundred and sixtieth part of a complete
turn. One-three hundred and sixtieth part of a complete turn

is called a degree. The degree is symbolized l)y a small

circle placed as an index, thus °.

Since there are 360" in a complete turn, it follows that

a right-angle contains 00°
; one-half of a right-angle, 45°

;

one-third of a right-angle, 30°
; and tAvo-thirds of a right-

angle, 60°.

Mathematicians divide the degree into sixty equal parts

called minutes, symbolized by one dash, thus '

; and the

minute is again subdivided into sixty equal parts called
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seconds, symbolized by two dashes, tims ". In Practical

Geometry and Practical Mathematics, it is better to divide

the degree into tenths and hnndredths. An<i^les of 90°, 60°,

45°, and 30°, are extensively used, and these are the angles

to which ordinary set-sqnares are made.
An Acute Angle is an angle less than a right-angle.

An Obtuse Angle is an angle greater than a right-angle.

A Reflex Angle is an angle greater than two right-angles
;

it is sometimes called a re-entrant angle.

B

Fig. 39.

The complement of an angle is the difference between
the angle and a right-angle.

The supplement of an angle is the difference between the

angle and two right-angles.

A straight line which intersects two or more lines and
makes a right-angle with each is called a common
perpendicular. (8ee Fig. 31).)

100. Parallel lines are lines

direction.

Parallel straight lines. If

Fig. 39, in a straight line there are drawn straight lines AM,
BN, each making the same angle with AB, these two lines

which have the same

from two points A, B,
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have the same direction and are, therefore, parallel. Any
two or more parallel lines, whether straight or curved, possess

two characteristic properties, viz. :—
(a) A straiiiht line perpendiadar to a given line is petycn-

dicidar to all lines icMch'are parallel to the given line.

(b) The distance apart of two parallel lines is constant

throiir/hont their entire length, such distance being always

measured along common perpendiculars,

107. Measuring straight lines. In measuring straight

lines, always apply the scale (z>., measure) direct to the

line, taking care that one end of the line coincides with ono

of the unit division marks on the scale. If the line is not

exactly measured by inches and tenths of an inch (which

Fig. 40.

may be the smallest graduation on the scale), fractions of

the smallest graduation can be measured visually. After a

little practice, such fractions as |, ^, |, |, etc., of a xV'*'-
division are easily estimated at siglit.

Measuring curved lines. The lengths of circular

arcs and many other curves may be determined arithme-

tically by formuUc, and graphically by constructions deduced
from certain properties which the curves are known to

possess. The draughtsman, however, has frequently to

measure curves about which he knows nothing beyond what
the curves reveal, and often a tedious analy.sis leads no
nearer to accuracy than can be attained nmch more quickly

by approximations which are easily understood without a

knowledge of pure mathematics.

108. Practical method of measuring any plane

curv§f Coiisidcj- the circular arc AB, Fig. 40. Maik
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.1 luiinbcr of points r, d, e, on the arc and join tlioni up by tlie

chords Ac, a/, de, eV>. The Icni^th of the curve is i^reater

tlian the combined lengths of tlie chords. If more points in

the curve are taken, the cliords will be more numerous and
will ai)proach more nearly to the curve, and if it were

possililc to t:ike points in the curve indefinitely near to each

other, the chain of chords would become indefmitely near

to the curve ; in fact, the two would coincide. Now similar

reasoning may be applied to the irregular curve AB,
Fig. 41, or to any curve. It is possible, therefore, to obtain

a near approximation to the exact length of any curve by

finding the length of a chain of chords taken of such lengths

Fig. 41.

as the ciltvatui^e of the line and the importance of exactitude

render necessary.

Ex. Measure the hntjth of the irregular curve A 15,

Fig. 41.

Draw a straight line on a strip of stout tracing-paper*

]\Iark a point a on the line and place the tracing-paper over

the curve AB with the point a exactly over the end A.

Insert the pricker at A, and rotate the tracing-paper so as

to bring a portion of the straight line from a into the closest

possible agreement with the curve at that end. Now hold

the tracing-paper quite still and transfer the pricker to a

point p—which marks the end of the segment from A in

agreement with the straight line—and repeat the operation

of turning the tracing-paper so as to bring a further portion

of the straight line into agreement with the curve at ].n.
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Then transfer the pricker to /, and continue until the wiiole

line has been measured.
.

The leii<4h of the curve is then shown at A/". This

Fig. 42.

method, if applied with care and judgment, will give very

good results. In selecting each step along the curve, atten-

tion must be paid to the curvature of the line at the

particular part being measured. AVhere the curvature is

sharp it is necessary to take short steps ; but where the
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curve is flat, as between A77, en, much longer steps can be

taken without increasing the error to an appreciable extent.

Exercise.—Describe a circle, radius 1 in., and measure its circum-

ference by the method just explained.

The length of thiscirciiiiifereuce is known to be G? in.

How near to this is the result you obtain ?

109. Vertical lines and horizontal lines. Fig. 42

is a sketch showing three strings, with weights attached,

suspended from points in a flat level ceiling. We know
from experience that these strings hang in vertical lines.

.^-•iP_\ I \oi\

!
J K ^ \ '

''^

\

t
:

'0 ^-^'M/
"'K qM ^

" -»

^

-ft-"

Fig. 43.

and all have the same direction. Hence, all vertical lines

are 2MralIel straight lines.

A perfectly level line is called a horizontal line. The
sketch, Fig. 42, shows two parallel straight lines, two
concentric circles, and a sinuous curve, all of which lie on
the surface of the flat level ceiling. "We gather from this

diagram that horizontal lines may be either straight or

curved, and, further, may be parallel or non-parallel.

110. Experiment. Fig. 43. Draw two parallel lines

mm, nn, and draw any straight line LL across the parallels.

Make a tracing of the lines mm, and LL, and by rotating

this tracing, flrst about the point P, and secondly about

the point Q, show that the angles which are marked by the



1^8 la^^DAMES^tAL CO.V.sfuUOTiONS A^D t^llOCLtlMM.

same Crock letters arc equal. In this way we obtain, by

the method of superposition, a proof of the followine^ :

—

Theorem. If a ahaujlit line crosses two 'pardllel straiijld

lines ^ it makes (1) the (titernote angles equal ; (2) the exterior

avf/le equal to the inferior opposite amjte on the same side of

the line.

Fig. 44.

111. Experiment. Y\g. -41 Place a GO^ set-square

with its long side against the T-square, as at enm^ and
draw lines along the edges em and mn. Move the set-

square along the T-square to a new position e'm'n'. Then
since en and e'n have the same direction, and the set-

square remains unaltered in form, therefore em' is parallel

to em^ and m'n is parallel to mn. Hence the following :

—

Theorem. If any fujure move in a plane so that one line

in if has ahrai/s the same direrHon, then all lines of the figure

remain parallel to their ori;final directions.

112. Experiment. Fig. 45. Draw a straight line MN,
and place a set-square on the line, as at abc. Make a

tracing of the set-square and the line MN in that position.

Rotate the tracing through any angle about any point P,

into a new position as a'b'c'. Prick througli the corners

a\h\c\ and join them up, making a drawing of the set-

square in the new position. Make a tracing of the angle

between MN and a'l/ and apply this tracing over all the

angles marked 0. Observe that all these angles are equal

to one another.

From this experiment we conclude that the theorem in

Art. Ill may be extended as follows :

—

Theorem. If any fujure he moved in its plane so tJiat a

line in it makes an ancjle </> with its original direction, then
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c// lines in ihe figure also maJcc (he an<jk </> ivilli Iheir on'i/inal

directions.

Fig. 43.

113. Experiment. No Figure. Describe a circle, and
dr.iw a diameter AB.
On a piece of tracing-paper draw two straight lines 0.7,

Ob, perpendicular to eacli other. Place this tracing over
the circle with the meeting point (0) of the two lines on
the circumference of the circle. Insert a pricker at the
point 0, and rotate the tracing until the line Oa passes

throngli A. Then observe that Ob passes through the

opposite end B of the diameter AB. Repeat the experi-

ment, placing in different positions on the circumference,

and observe that when Oa passes through A, then 0^
passes through B.

In this way we verify (he following :

—

Theorem. AU anfjles in a semicircle are equal to one
another, and are rvjld-ancjtes.

114. Experiment. Fig. 4G. ])raw a straight line ER
(use the T-square in drawing ER). Place the 45° set-

square against the T-square and draw from points E, R
lines which intersect in i. Next, use the G0° set-square,

and draw from the same points (E, R) lines which intersect

in pairs at o and v. Observe that the points o, v lie on the

line through i perpendicular to ER. This perpendicular
intersects ER in n. Measure En, nVv and verifv that

E7^ = ??R.

P.M. K
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Take the compasses, and with any point p in on as

centre, describe a circle of radius p^. This circle passes

through R. Rei)eat the test by describing a circle having

q for centre, and radius ^E. Hence,

The perpendicular bisector of a sirnigJd line- is the locus oj

points eqvidistcuit from the ends of the line, and conversely.

115. Experiment. No Figure. Describe any circular arc

AB ; draw the chord AB and find the perpendicular bisector

Fig. 46.

of this chord as explained in the last experiment. This
bisecting line intersects the arc in a point M. Verify by
measurements that the chords MA, MB are equal, and
also that the arcs MA, MB are equal.

IIG. Two or more parallel straight lines are sometimes
called a system of parallels. Any straight line which
intersects a system of parallels is called a transversal.
Experiment. Fig. 47. On a straight line OH mark

off a number of equal distances 1, 2, 3, 4, 5, Draw through
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H and the divisions 1, 2, 3, 4, 5 parallel straight lines,

making any convenient angle with OH. Through any

Fig. 47.

point in OH draw transversals, as Oh, Oh', Oh". Verify
by measurements the following :

—

Theorem. Any straight line dratvn across a system of
equidistant parallels is divided t)y the parallels into a number
of equal parts.

This principle is extensively used in the solution of

problems. See Art. 117.

Exercises.

L Make a drawing to a reduced scale of a 60° set-squnre, and
letter the corners a, &, <?, as in Fig. 45. Rotate the figure about the
corner c until ca is perpendicular to its original direction. By
measurement, verify that cb and ah are each perpendicular to their
original directions.

2. Draw a system of seven parallel lines I" apart, and draw a
transversal ah across and perpendicular to them. Find the position
of two lines ac, ad, on opposite sides of ah, such that equal distances
of I" are cut from them by the parallels, and show that the two lines

ac, ad are equally inclined to ah.

3. Mark a point a on your paper, and on a line he, 5" long, ag
diameter, construct a semicircle to pass through a. Measure ah, ac,
and show that, in one case, ah and ac may be, respectively, 4" and
3" long.

K 2
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^117. Problem. Fig. 48. Divide Ihe gicen s/rair/ht line

CD i/do a numher—say five—of equal parts.

Through the ends 0, I) of the hne draw parallels Qo,

J)r (making use of ihe most convenient angle on yonr set-

squares). Place the zero (d) point of a scale on one of the

parallels (Co in the clingrams) and turn the scale nntil the

unit division which corresponds to the given number of

parts required—5 in this case—falls on the other parallel.

Mark the positions of the division marks 1, 2, 3, 4 direct

from the scale either with a pencil or pricker. Then draw

through these points parallels to Co, !)>', which determhie

by their intersection with CD the required points of

division.

Fia ts.

Exercises.

(1). Make a trncing of the curved part of Fi,;2:. 133 (pajre 2:)1), and

employ the method of Art. 117 to divide the figure iu to ten equal

parts.

(2). Draw any curved figure you i)lcaso, making its greatest length

7" and its greatest width 2|". Divide it crosswise into nine equal

parts, and lengthwise into seven equal parts.
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CHAPTER X.

ANGLES, MEASUREMENT AXD
CONSTRUCTIOX OF.

118. In measuring angles, any magnitude wliicli lias

ahrays ike same irt/ue may be employed as the unit. 'J'iic

unit employed in coiistnictive gcometrtj is the degree, which
is the angle subtended at the centre of the circle hj o.w-

thrce-hundred-and-sixiietlt jarf of fhe circiiniferencc, and i^

therefore always the same (sec Art. 105). The magnitude
of an angle is therefore given by the nmnber of dtgrccs

contained in the angle.

119. Another unit of angular measure is the rijJil-anijle.

This has always a fixed value, viz., 90°, and the magnitude of

any angle may be expressed in terms of the vnit rlijJil-anijJe.

If the number of degrees in an angle be given, or deter-

minable, it is only necessary to divide that number by 90
in order to obtain a measure of the angle in terms of the

unil right-angle. The quotient miy, or may not, be a whole
number, but it can be obtained correct to any desired

number of decimal places.

Ex. Express in terms of the unit r'njht-cnujle (a) an angle of
7G-5°, (b) an angle of Wi''.

(a) '-^'- = 0-85 right^anglc.

(b) lil! = 1-25 ri-hl-an-lcs.

120. Certaiu angles can be readily constructed by menus
of intersecting arcs. Thus, an angle of 45° is obtained by
fwit setting out an angle of 90° and then bisecting

this angle. Again, if the angle of 45^ is bisected, we obtain

angles of 22^°.
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Ex. To construct an angle of 60°. Fig. 49.

With the point as centre, and any radius, describe an arc inter-
secting OA in N. With N as centre and the same radius describe an

Fig. 49.

arc intersecting the previously drawn arc in B. Join OB, then AOB
is the required angle of 60°. (This construction is due to an important
fact, viz.: The chord of 60° is equal to the radius of circle. See
Art. 142.)

If the angle AOB be bisected we obtain angles of 30°.

Fig. 50.

121. In practical drawing, we never use a geometrical

construction to obtain a result which can be obtained more
easily by mechanical means. Thus, angles of 90°, 60°, 45°,
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30° are drawn direct by using the usual set- squares ; and by

arranging these same tools as shown in Fig. 50, angles of

75°, 105°, and 15° may be drawn.

122. In setting out and measuring angles generally, we
use a proti-actor.

A protractor is a scale of degrees ; it is usually either

semicircular or oblong in form. !See Figs. 51 and 52. In all

protractors, lines representing the degrees radiate from a

point on, or near to, the base, which is distinguished by a
"^

or some other conspicuous mark.

On good quality protractors, the degrees are numbered in

Fig. 51.

both directions, giving to each division two numbers ; this

enables the user to I'ead off degrees either from left to right

or vice verm.

123. How to use a protractor :

—

(a) to measure a given angle.

(b) to set out a given angle at a jjiven point.

(a) To measure the given angle NOP, Fig. 52.

Place the base of the protractor along the arm NO with

the centre of the protractor at the angular point 0.

The number of degrees in the angle NOP is then indicated

by the figures on the protractor at the point where OP
crosses the outer edge. In the diagram, OP crosses at the
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double rcadinf^ 45, 135. As the angle NOP is less than a

rig-lit-angle, tlie first of these numbers—viz., 45—indicates

the number of degrees between ON and OP, and therefore

the angle NOP is 45°.

{h) Fig. 52. To draw from a point in a (jiveii slraifjlil

line ON, a line inclined at G5" lo ON.
Place the base of the protractor on the line NO with the

centre of the protractor at the point 0. Mark a point

on the drawing corresponding to the G5th division on the

protractor reading from N iu the direciion of the arrow,

and draw a line from through this point. This line wiU

be inclined to NO at G5°

124. In the two examples above, we have measured to a

number of whole degrees and on most protractors the d( gi-ec

is the smallest measure shown ; but we have frequently to

treat of angles containing some fraction of the degree,

such as 0-5° or 0-2°, and a very close approximation of

these parts of the degree can be guessed, or determined

visiialli/, after a little practice.

Some protractors are wholly unreliable, and many others,

even among the higher-priced instruments, have the first

degree division inaccurately marked.

125. A method of testing the protractor is as follows:

Draw two lines at right-angles to each other and
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DiCetiiig in a point 0. Insert the pricker at and
l)lace the centre of tlie protractor against the needle,

and observe whether there is ahvays a diCFerence of

90° between the readings of the protractor when it

is lotated abont the point into various positions.

Any vniintion is evidence of error in tlie scale. AVhen the

fust dcijrcc division only is inaccurate, this division may be

dispensed witli by ])hu'ing the hnc () — 10° over an arm of

the angle. If this (xpcdient be employed, the mngnitude of

an angle will be 10" less than the number shown on the

scale.

Fig. 53.

12G. Problem. Fig. 53. At a poinl o in a line ob set

out an an(jJe eqval to a (jiven angle AOB.
By far the best wny to copy an angle is to })lace a piece

of tracing-pjiper over the figure and mark the position of

the angular point and a point on each arm of the angle.

Then tiansfer the tracing to the desired position, prick

through the points, and join up.

The problem may also be done as follows : Make point

the centre of an arc of convenient radius cutting OB, OA
in B, A. With centre o, and radius OB or OA, describe au
arc cutting oh in h'. With centre V, and radius BA,
describe an arc cutting the arc previously drawn in a.

Join ao.

127. Points of the compass. On the compass there

are four cardinal points, viz., North, East, Houlh, and
West, and a number of intermediate points at regular

intervals. The directions North, East, South, and AVesfc

arc indicated in Fig. 54 by ON, OE, OS, and OAV
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respectively, which form 4 rt Z' at the point 0. The direc-

tion of any intermediate point we may denote l)y specifyinij^

the angle which tliat direction makes with the direction of

either cardinal ])oint. Thns, the direction E.N.E. is com-
pletely c^iven as 22^° N.E. (read " North of East ") ; or as

G7F E.N. (read "East of North").

NNW

WNW

WSW

ENE

ESE

This notation is convenient where we wish to indicate

several directions.

Ex. A road runs due Kovth from, a place Kto a place B
; from

B to a place C its directum is 32° East of North. At C its direction
is again changed hy an anticlockwise turn of 48°. What angle does
the direction of the road from C make with the direction AB ; and
what ivith the direction dne East?
Draw a line AN, Fig. .55, representing the direction due North.
Draw AE _£ to AN repri senting the direction due East.

From any point B in AN draw BC making 32° with AN and to the
right. From any point C in this line draw CO making 48° with BC
and to the left, and let this line extend in both directions so as to

intersect AN in and AE in 0. Then a and </> are the angles
which CO makes with the directions AN and AE respectively.

For angle a we have 48° - 32° =16°.
For angle <^ we have 90° - 32° + 48° = 106°.

Ev. A surveyor is mahing a map on which he wishes to locate two
inaccessible objects H and K situated towards the North, lie lays
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ojf a base line DE, 20 chains lo/tf/, (joinf/ due East. When stationed at

i), lie measures the angles EDK, KDH, hy vieans of a se.vtant, and
puds thevi to he 51° and 55°. Wltcn stationed at E the angles DEH
and HEK measure 48° and 02°.

Plot the 2>oints D, E, H, K to a settle oJ'H in. to the mile. Measure
the distance and direction of HK. (B.E. 1904.)

Fig. 56. Draw tlie base line DE 2 in. long. Draw Dk making

Fig. 55.

the given angle 51° with DE. Draw Dh making the given angle
55° with Dk. Draw EH making the given angle 48° with DE and
produce to meet D/t in H. Draw EK making the given angle G2°

with HE and produce to meet Dk in K. Then H and K mark the

l)Osition of the two objects. Draw through H a parallel to DE and
measure HK and the angle (p. HK measures 4*75 in. = 47'5 chains

;

<f)
measures 15°. Hence K is 47"5 chains from H in direction

E. 15° N.

128. The positions of places or fixed objccU relatively to

one another are conveniently j^iven by sj)ecifying the

distance of each place or object from some fixed point, and
the magnitude of the angle Avhich the line drawn from the

fixed point to the place or object makes with a fixed

direction.'''

* If the fixed direction be regarded as an axis of reference, and tlie fixed point
as the origin, and if the distance be denoted by r and the angle by 0, the measure-
ments r, 9 locate the point, and are called the polar or r, d co-ordinates of the
point. See also Art.
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Thus, for example, in Fh^. oO, llie position of the place K relatively

to H is completely defined as 47-') chains in direction E. 15° N.
Similarly, the position of K relatively to D may be given as DK
distance in direction E. 51° N.

120. In pi'acticc, it is nsiial to take the fixed direction or

direction of reference dne East, and instead of wiitin<(

-2/ns='/4Mi7e 4

Fig. 56.

HK = 47 '5 chains in direction E. 15° N.
we write HK. = 47-oi5^ chains,

the direction of reference being nnders^ood to be due
East, the first numbers indicating tlie distance, and the

smaller numbers, >Yritten as a subscript, indicating the

angle which the direction of the object makes with the

direction of reference.

130. Angles when measured in an anticlockwise direction

are considered positive ; when measured in the opposite,
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or clockwise direction, they are cousidcrcd negative. Tims

the position of K is given as :

—

IIK = 47r»,-o cliains, or UK = ^To^o^sc cliaiiis.

Note carefnlly that tlie minus si//?i is (jiven lo Iho aiKjJe

measure only ; tlie distance is positive in Loth cases.

From the above ilhistration, we see that wiien a diiection

is given by a positive angle the same direction may be

expressed as a minus angle by subtracting the number of

N
^- X —\
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Mf'a.mve and calculate how viurJi, C is to the Eiut of K^ and how
vnich to the North of A. (B. E. 1J)05.)

Draw lines of reference AE, AN, Fig. 57, at right-angles. Draw
A.B 8-:i5 cm. long, and making the given angle 27° with AE. Draw
BC 6-24 cm. long and making 110° with the direction East. From G
draw X and

//
perpendicular to AN and AE.

By measuieraent x — S'B cm. .
•

. C is 5-3 chains East of A.

By measurement y = 9'7 cm. nearly .
•

. C is nearly 9*7 chains

North of A.

*By calculation :
—

a; = AD = AO - DO = AO - MB
= (AB cos. 27°) - (BC cos. 70°)

-= (S-.35 X 0-891) - (6-24 x 0-342)

= 5 '306 chains

y = CD = CM + MD = CM + BO
= (BC sin. 70°) + (AB sin. 27°)

= (6-24 X 0-9397) + (8-35 x 0-454)

= 9 '65 chains.

Exercises.

(1) A ship S is observed from a station to be at a distance of

3*2 miles in the direction 16° northwards of East ; after \ hour
it has moved to the position S' distant 5*6 miles from 0, in the

direction 23° N, of E. Plot the points O, S, !S' to the scale of 1 in.

to 1 mile. Measure the magnitude and direction of SS', the change
of position of the ship. What is the average velocity of the ship

during this time? (B.E. 1904.) Ans. 2-45 miles E. 22° N.

;

9-8 miles per hour.

(2) The following are the field notes of the survey of a triangular

plot of ground ABC. Bearing means the direction from one station

to the next succeeding station, and N.31|° W. indicates the direction

31^° West of North :

StatJom. Bearings. Distances.

A N. 31i°W. 10 chains.

B N. 62-1° E. 8-25 chains.

C

riot the survey to a scale of 1 cm. to 1 chain. Find and measure the

bearing and distance from C to A. What is the enclosed area in

s(juare chains? (B.E. 1908.) Am. 12-65 chains W. 79° S. ;
82-25

square chains.

(3) Two steamers leave a pierhead together, one going in a direction
22*^ N. of E. at the rate of 8 miles an hour, the other going in a
direction 10*^ South of East at the rate of 11 miles an hour. How far

are the ships apart 1 \ hours after the start ? Atis. 9 miles.

(4) At a point A in a straiglit road which runs due North, a road

branches off in the direction N.W. Find the distance apart of two
places, one being 7 miles on the main road North of A ; the other

being on the branch road 3^ miles from A. Ans. 5*3 miles.

This calculation may be deferred until Chap. XL has been read.
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CHAPTER XL

RATIO AND PROPORTION.

131. In order to specify the mag-uitudes of quantities, we
choose some quantity as the nnit, and then specify the

magnitude of any particular quantity by saying that it

contains a certain number of units.

The magnitude may be represented by a whole number,
or by a fractional number. For example, if we take as unit

a length of 1 in., then, as 1 yd. contains 36 in., the magni-
tude of 1 yd., when expressed in inches, is 36 ; or again, if

1 lb. is the unit, then the magni-
tude of 1 cwt. expressed in lbs.

is 112. If 1 ft. is the unit, then

1 in. expressed in feet is yV, or

0-083 of a unit.

To compare magnitudes, it is

necessary that (a) the magnitudes
must be of the same kind

;
(b) they

must be expressed in the same
units. "VYe cannot compare lbs.

and inches, for they are not

quantities of the same kind, and again we cannot compare

a length in inches with a length in yards without first

making the units alike, i.e., we must either reduce the yards

to inches or the inches to yards.

If we have two like magnitudes reduced to the same units,

we can then say how many times one magnitude is contained

in the other ; the number expressing this, whether it is a

whole number or a fraction, is called a ratio.

(1) A ratio may be expressed as a single whole number,

e.g., the ratio of 36 in. to 6 in. is 6.
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(2) A ratio may be expressed as a fractional number, e.g.,

the ratio of 1 cwt. to 1 ton is ^V-

(?>) A ratio may be expressed as a decimal fraction, e.g.,

the ratio of one side of a triangle ?j in. long to a

second side 5 in. long is f or O'O.

(4) A ratio may be written in fractional form, thus | may
be read as the ratio of 3 to 5.

(5) A ratio may be written with two dots separating the

terms, thus, 3 : 5 means the ratio of 3 to 5.

It will assist the student very considerably if he remembers

that when a ratio is expressed by a single integral, fractional,

or decimal number, the number 1 is the second term of the

ratio, but is not written down. Thus, the ratio of 3G to G is

the ratio C to 1 or simply G.

Algebraic ratios are written in either of tlie forms indicated

at (4) and (5) above ; thus, the ratio of x to y may be written

X
- or a; : y.

Ed-. 1. Find the ratio of 1 }jd. to 50 cm., Icing giccn that 1 in. =
2"54 cm.

Here we have 1 yd. = 36 in.

50
50 cm. = r^, = 1969 in.

Hence ratio is -'^. or 36 : 19-69 or 183.

E.v. 2. The sides of a right-angled triangle ABC, Fig. 58, are

re.sjjectirely A 15 = 3 in., BC := 4 in., AC = 5 in. Find the ratio of

AB to AC.'BC /(' AC, a)id AB to BC.

T. .
AB , 06

^^^- AC - ^ = r = ''

Katio '^ = i=^ = 0-8
AC 1

AB 0-75
Ratio 777, = I = T' ~ ^"''^•

132. The ratios found in the above example will be the

same whatever the lengths of the sides of the triangles, pro-

vided the angles remain the same. This statement can be

tested by drawing any triangle having a right-angle B,

Fig. 5i), and angles C and A respectively, equal to those
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in the above trianirle ABC. Then if we measnie the sides

of the triangles ABC, DEC, FGC we find :—

Katio
AC
RC

ratio
IJC

EC

ratio
FC
FC
GC

Katio -.;-, = ratio -prn = ratio .,.,AC Ijyy r L>-

Ratio -^ = 4.:^ =^-=^
DF.

EC cc

We can carry this process further. Draw IIK per-

pendicular to CH. We now have the right-angle at H, and
by measurement we can show that

AB



1-1^ iLVTio AND pr.oi'ou'rio.v.

If we change the riolit-augle from B to A, bufc keep tliC

angle C the same, we do not alter any of the ratios.

prrpeiidicnlar ^.^^ base

liypoteiiuse
'0) (2)

..j-^ perpendicular

hypotenuse

AVlien the ratio of two quantities is always equal to the

same number, the ratio is said to be constant.

Hypotenuse

FiCx. GO.

ir,3. The ratios of the sides of a right-angled triangle are

of the greatest importance ia mathematics, and are called

trigonometrical ratios.

Every angle has six definite

trigonometrical ratios.

Take any angle C, Fig. Gl,

bounded by two lines, and
consider the six trigono-

metrical ratios for that angle.

From any point A in either

of the lines hounding the

angle, draw AB perpendicular to the other line. We now
Ijave a triangle ABO with a right-angle at B. (Suppose

your 00° set-sqnaro to be this triangle, and that the angle A
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is(jO°;) The side AC opposite to the ri^i,^lit-anglc is tlir»

hypotenuse (the lougesfc side of the set-square), the side AIJ

opposite to the given angle C is the perj)endicalnr (l.he

shortest side of the set-square), and the remaining side BC u
the base.

The ratio
Perpcndiculnr (AC)
hypotenuse (AC)

The ratio ^^ Gi9
hypotenuse (AC)

The ratio
P-n>^"<^i<^"l-^r(AB)

The ratio

The ratio

The ratio

base

base

(BC)

(BC)

perpendicular (AB)

hypotenuse _ (AC)

base (BC)

hypotenuse (AC)

is called the sine of the angle (J.

is called the cosin§ of the angle d;

is called the tangrent of the angle C.

is called the cotangent of the angle Ci

is called the secant of the angle C,

is called the Cosecant of the angle Ci
perpendicular (AB)

These six ratios are abl)reViatC(l

to sin. C, cos, C, km> C, cof, C, sec. C,
cosec. C ; and their numerical value

depends ojilt/ upon the angle C.
Every angle has a definite value for

its sin., COS., etc., and tables are pre-

pared from which these values ca.i

be found.

The trigonometrical ratios for certal'i

angles can be readily ascertained. Consi.ler
your 45^ set-square, shown in Fig. G>. The

angle C ^ 45®, the angle A = 45°, and hence AB = BC. If we cail
AB and AC each 1, then

since AC2 = AB" + BC^
AC = \/aH^ + BC2.

AC = v^l + 1 = a/^.

1, base = ], hypotenuse = J'i.

Fig. G2.

Hence perpendicular

and sin. 45 3= ---^,

cos. i.) s —p;.

tan. 45 1.

cot, 45 = !• ^

sec, 45 = s/i.

cosec, 45 = \^2.

Similarly for the trigonometrical ratios of angles of G0° and 30°, we
first draw an equilateral triangle ACD, Fig, G3. Each angle is G0° ;

L 2
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if we bisect the angle C by CB drawn perpendicular to AD we get

a triangle ACB in which the angle BCA
angle B = 90°. This triangle is

exactly like your 00° set-square.

]f each side of the equilateral

triangle = 2, then, since B bisects

AD, AB = 1 ; and since AC2 =
CB'-^ + AB2, hence
CB2 = AC2 — AB2

CB = yxc^

30°, angle A = 00°
; and

- AB2

For an angle of 60°, we have

sin. 60°

tan. 60°

sec. 60°

v/3,

cos. 00° =

cot. 60° =

cosec. 60° =

For an angle of 30°, we have :

—

sin. 30° = i, cos. 30° =

cot. 30°

^, tan. 30° =

2

Js, sec. 30° = -Jr.,

J
^/B'

cosec. 30°

All the above ratios can be Avorked out to decimal quantities.

As an example :

—

cos.30° =^ =i^ = 0-866.

134. In any right-angled triangle, as ABC, Fig. 02,

right-angled at B, the angles C and A are complementai-y,

i.e., C 4- A = 90°.

A ^ • • n A^
And since sin. (J = vn

COS. A = AB
AC

Therefore the sine of an angle is equal to the cosine of the

complementary angle.

Again, tan. C = ^
. .A AB

cot. A ==
g^.
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Therpforc Vie fangcTit of an angle is equal to the cotangent

of the complemcniarg angle.

Consequently, if we set out, as in Table 3, Appendix, the

values of the sines and tangents of angles from 0° to 45°, these

values will also be the cosines and cotangents of angles

from 90° to 45°.

In Table 8, Appendix, we have in col. 1 degrees from 0° to 45°,

and in col. 10 degrees from 90*^ to 45°, as shown in the extract
below.

Angle.
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135. The trigonometrical table is very useful iu calcula-

tion, particularly in calculating distances or heights which
arc found inconvenient to measure directly.

Ex. We wish to know the height of a church tower, or a cliflF, or

hill, etc. Measure a distance AB, Fig. 64, say 300 ft. from the

foot of the tower. At the point B we take a box with a hinged lid

and holding the box horizontally we open the lid until looking along

Fig. 64.

it we just see the top C of the tower. Now measure the angle the lid

makes with the box. Suppose this to be 43°.

We now have ^ = tan. 43°.

We know AB = 300 ft., and from the table we find tan. 43° ^
AC 0-9825

09325, hence ^^ s - . -

or AC = 300 X 0-9325

= 279-75 ft.

The point B is at the level of the observer's eye.

Suppose this is 5 ft. 3 in. above the gi-ound.

lleuce height of tower = (AC + 5-25) ft.

= 279-75 -f 5-25 ft.

= 285 ft. high.

13G. Each trigonometrical ratio is a measure of one side

of a right-angled triangle in terms of another side, and all

these ratios are interdependent, their values depending on
the magnitude of the angle ; thus, when the magnitude

of the anoxic is fixed, th§ vj^jues of all the ratios £^r^
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fixed. Conversely, if tlie value of citlicr ratio be given,

then cacli of tlie other ratios has, at the same time, been

(Icfinitely fixed ; and the magnitude of the angle also

fixed. It is therefore a determinate problem to coiistrncb

an Jingle when given the value of one of the above ratio?.

The solution of this problem involves the drawing of a

right-ani^led triangle.

Ex. The sine of an angle (0^) is 0-39
;
construct the angle.

^ ^
perpendicular'

^
.

^ ^^^^^^^^^^^ ^ | sin^ e x hypotenuse
hypotenuse ^

|
0-39 x hypotenuse.

Draw a straight line A^*, Fig. 65, 10 units—say centimetre^— jo

*-3-9 units

10 units

Fig. go.

length. Take apjint B on A^, such that AB = Sj^jj cm. (the unit
being 1 cm.).

At B draw a perpendicular to A<^. With centre A and radius Ac
describe an arc meeting the perpendicular from B in C. Join CA.

Then 4^ = sin. a = f^ = 0-39. .-. ACB is the required angle.AC 10 1 ^

Ux. 2. The cosine of an angle (JSP) is 0-6
; construct the angle.

Cos. B = ^-^^ .-. base = {''''• ^ ^ j^ypotenuse.

hypotenuse (Ob x hypotenuse.

Draw a straight line Ac, Fig. 06, 10 (units) cm. in length. Take a
point B on Ac such that AB = 6 cm. At B draw a perpendicular

fp 4^, With centre A and rr4iws A^ describe ^n arc meeting X]]^
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Then ^ = COS. e =-^= 0-G.AU lU
perpendicular from B in C. Join CA
.*. BAG is the required angle.

Ux. 3. 27ie tangent of an angle (eP) is 0-42
; constmet the angle.

Tot, a I>erpendicular "
' (tan. x base"

^^°' ^ = h^e .-.perpendicular = ^^.^^ ^ ^^^^

Fig. G6.

Draw AC, Fig. 67, 10 (units) cm. in length. At A draw AB perpen-
dicular to AC ; and make AB = 4i cm. Draw BC. Then ACB is

the required angle.

lOunits

Fig. G7.

137. In problems similar to the three precedino^, anofles

may be plotted direct from a protractor, if we have a table

of values similar to Table 3, Appendix. Thus, being
given sin. 0° = 0*39, we search the trigonometrical table
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for tlic incjisure in degrees of the angle whose sine is 0-?>^.

Tliis we find is 2;), liencc (he required angle is 2o°, and can

be drawn as explained on p. loO.

Similarly, being given cos. = Q-G, reference to the

table shows = 37°.
^

Again, given tan. 6 = 0-42, the table shows 6 = 23 .

138. Graphical representation of the change in

magnitude of the sin., cos., and tan. of an angle from

;.o::::::::::::::::g
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and ftf? »vc cannot represent infinity by any finite ov»lin;ito,

we adopt the convention of making the cnrve parallel to

the vertical line through the point at which x = 90° to

represent that the value of the tangent becomes infinite for

an angle of 90°.

From these curves we can read off values of the sin., cos., and
tan. of angles. Thus tan. 45° == 1, and so on. Similar curves

can be constructed for the cot., sec, and cosec. of an angle.

Exercises.

(1) What are the ratios of 5 to G, 4 to 25, 3 to 17, a,'« to s^, 5 lb. to

i ton, 1^ ft. to f mile, 25 cm. to 3^ yds., 25 sq. ft. to an acre,

800 cub. in. to 1 cub, yd., and 11 gallons to 100 litres. (See p. 100.)

(2) State exactly what we mean by the sin., cos., and tan. of an

angle. Wiitedownthe valueof sin. GO, cos. 30,andtan.45. (B.E. 1907.)

(3) In a triangle ABC, C being a right-angle AB is 14-85 in. and

AC is 8-32 in. Compute the angle A in degrees, using your tables.

(B.E. 1903.)

(4) ABC is a triangle, C being a right-angle. The side BC is

12-4 ft. and the angle A is G5° ; tind the other sides and angle, using

the tables. (B.E. (2) 1005.)

(5) Write down the values of the sine, cosine, and tangent of 37".

Explain, from the definitions, why sin. 37°
-f- cos. 37° = tan. 37°. Try

by division if this is so. (B.E. (2)"l905.)

(G) The altitude of a tower observed from a point distant 150 ft.

horizontally from its foot is 2G° ; find its height. (B.E. 1905.)

(7) In a right-angled triangle ABC, C being the right-angle, the

side AC is 20 in., the nngle BAC is 55° ; find the side BC and the

area of the triangle. (B.E. 1909.)

(8) A rectangular plate is 10 ft. long and the diagonal makes an

angle of 35° with this side ; find the length of the short side, and the

area.

(9) A force F of 100 lb. acts at an angle 9 = 75° to the horizontal.

Its vertical component is F sin. and its horizontal component is

F cos. 6. (!alculate the values of the components.

(10) A person walking along a straight road sees a house in a

direction at right-angles to the road at the point A, and a mile further

on at B he sees it at an angle of 60° with the road ; find the distance

of the house from the points A and B.

(11) If sin. (A — B) = sin. A COS. B — cos. A sin. B. Calculate this

when A = 75° and B = 12°. (B.E. 1909.)

(12) Plot on squared paper a curve from which the value of the

cot. of any angle from 0° to 90° may be obtained, using your tables.

Kepeat this for a sec. curve and a cosec. curve given that sec. A =

and cosec. A = -. Read from these curves the values of
COS. A sm. A
9pt, 55", sec. 70°, and cosec. 35^,
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(13) The area of cross -section of a prism is 92-30 sq. in. ; what is

the area of a section making an angle of 25° with the cross-section ?

(The cross-section is the smallest section.) (B.E. (2) 1904.)

(14) There is a district in which the surface of the ground may Idc

regarded as a sloping plane ; its actual area ig 3-240 sq. miles ; it is

shown on the map as an area of 2*875 sq. miles ; at what angle is it

inclined to the horizontal ?

There is a straight line 20'17 ft. long which makes an angle of
52° with the horizontal plane ; what is the length of its projection on
the horizontal plane ? (B.E. 1904.)

(15) ABC is a triangle, C being a right-angle. The side AB is

15-34 in., the side BC is 10-15 in. AVhat is the length of AC?
Express the angles A and B in degrees. What is the area of the

triangle in square inches ? (B.E. 1904.)

Ansiveri.

(1) 0-85
;

0-16
;

0-176 ; a-
; (8) 7-002

;
70-02.

0-00446 ; 0-00038 ;
0-08

;
0*00057

; (9) 96-59
;
25-88.

0-40; 0-5. (10) 1-732; 2.

(2) 0-866; 1. (11) 0891.

(3) 56°. (13) 101-9.

(4) 25°; 5-78; 13-68. (14) 28°; 12-418,

(6) 73-15. (15) 41°; 49°; 11 5; 58-4.

(7) 28-562 ; 285-62.

139. Important ratios connected -with the circle
and angles. The lenglh of the circumference of the circJe.

Draw two straight lines. Take a centimetre as a unit,

and make AB on one line equal 7 units, i.e., 7 cm.
Take ^ in. as a unit, and make CD on the other line equal

7 units, i.e.y 7 x ^ in. = 1| in. Describe circles on
diameters AH, CD, and by the method of Art. 108 care-

fully measiu'e the circumference of each. The length of

circumference of the circle on i\-B will be found approxi-

22
mately 22 cm., i.e., -^ x AB.

The length of circumference of circle CD will be found
99

approximately 5^ ins., i.e., ^ x CD. Thus, in each

case the circumference is approximately 3| times the diameter.

The student may draw other circles, and by careful

measurements satisfy himself that the circumference of a

pjrcle is always approximately 3| times its diameter.
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. lenirth of circumference . ,,

Hence, the rat.o "lenpTirdlauKSU^ '^ ^'"^ '^"'"^ '"'

all circles, and it is nniversally denoted bj the letter tt (pi).

22
The value of tin's ratio we have mven above as ^. This

is the simplest approximate value of tt; the exact value

cannot be stated by any number. Mo!'e nearly the ralio

is 3-141 502, etc., so that ^" is too large. The error, how-

ever, is only about of the value.
' ^ 2^00

99
For graphical work, the value ^ may be used. In

arithmetical work, the number 3-1416 is usually taken.

In this book tt is taken as 3-1416. Whence we have :

—

(1) length of circumference of circle = tt x diameter
= 27r X radius = 2 x 3-1416 x r (where r =
radius of circle)

;

(2) semicircumference = tt x r
;

(3) ^ of circumference = i x "l-rrr
;

and generally where n equals any number,

(4) — of circumference = - x ^-n-r,

n n '

Ex. 1. In order to ascertain the diameter at the hase of a elreular

ehlmney shafts a i^teel tape measure is folded around the chinrney at.

the hase lerel. The tape shows the circuniference of the shaft to be

39ft. 7 in. What is Its diameter ^

Here we have tt x diameter = circumference = 39 'uS ft.

r .
39-58

,^
.-. diameter =.,-——.ft.

.i'lilu

= 12-5 ft. - 12 ft. G in.

A'.r. 2. 77ie diameter of a hieycle icheel is 22^ in. How far does the

bicycle travel in one rerolntlon of the wheel '.^

i^Note.—In one revolution the wheel measures its circumference
along the. track.)

Circumference — tt x 22-5 in.

= 3-UlG X 22-5 in.

= 70-r)8()in.

.•. Bicj'cle travels 5 ft. 107 in. during one revolution of the wlieel

140. The length of the circumference of a circle may
be determined graphically by the folloAving construction:—
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Fig. 00. Draw a diameter BCA ; aud a tann^ent to

tlie circle at A. Diaw CO making 30° with BA iiieetin<^^

the tangent in 0. IMake OD = 3/' (r being the radius of

circle). Join Bl). Then we liave:

—

BD2 = P.A- + Al)2
= r>A2 + (OD - OAp
= (2/-)^ + Qii- - I- t!Ui. :K))-, for OA - AC tan. 30"^.

= r\\ + 5-SG9)
= 9-8G9 ?-2.

Hence BD = 3-1415 x r ; it is therefore an exceedingly

Fig. 09.

near approximation to the correct value irr. Hence,
2BD = 2-771' — length of circumference of circle. And
|BD = length of a quadrant.

141. Chords of angles. Fig. 70. On a straight

line OM mark a point A such that OA = 10 units (any
unit). With centre and radius OA describe an arc.

AVith centre A aud radius equal 4 units, say, describe an
arc intersecting the previously drawn arc in a. Draw
Oa and the straight line «A. Then the chord ka is called

the chord of the angle A0« ; it is said to subtend that

anule.' . ^ ...



158 iiATio AND riiopontloM.

„ , ,. lonofth of chord . Aa 4 .,
,

For the ratio p we have - - - —, or Ol.
radius OA 10

Now take any points NM on OA and describe arcs from

centre 0, to pass through these points intersecting the

radial Oa ia n and nu Draw the chords M^/i, N/i. Let Q^

denote the angle between the raduils 0^1, Oni, th.n, tae

ratio— is the same for the three arcs centred in 0.
8C0

, _ . lensth of arc . . . ,, ,

.-. (i.) Ratio —r—

—

-r
—

' is the same in all the
^ '' radiLis 01 arc

circles.

,.. , ^ ,. length of chord of angle . . • „
(ii.) Ratio —'——

y. ^ -=^- IS the same m all
^ ' radius oi arc

the circles.

Whence,

f^ /. sArcN/? Arc Mm Arc Art
^ ^.from (..)-5j^- = - y-j^- - ~^p -constant;

... ClmrdNji Chord M)n Chord A«
from

(".)—U^T~ = —oir" " "'IZr"""0.U
s O'J: constuat.

142. The value of the ratio -^|^LL Jcpend^ solely on tlid
radius ^ ^

magnitude of the angle at 0. For, in an angle less than
MO;w, the chord in the arc through W. is less than M/;i

whilst the radius OM remains the same \ consequently, the
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latio —-— IS less
iJllllUS

lian
Mm

Again, in an angle greater

than MOw^, the cbord is greater than Mm, and therefore the

...
. .1 M??i

ratio IS c^reater than —
If a semicircle, diameter OB, were divided info 180 eqnal

parts, and lities drawn from an extremity of the diameter,

to each division on the arc, snch lines wonld be rhords of

angles advancing by single degrees from 1" to 180°.

If all these chords were set oti' along a straight line from the

eame fixed point 0, snch line would be a scale of chords.

75 CO 45

Fig. 71.

In Fig. 71, we sh.ow how to construct a scjie of chords.

Draw a straight line BO, and on it describe a semicircle,

centre A. Mark off degrees on the circular arc, making use

of a protractor. Intervals of 5° are shown on the diagram.

AVith centre describe arcs bringing the degree points on

the semicircle down on to diameter BO, and number the

divisions from towards B. Then OB is a scale of chorda

a Ivancing in steps of 5° from 0° to 180°.

From the figure, it is evident thafc^

(i.) In an aii'^lc of G0\ ^—r^- = 1 (unity).

(ii.) In an angle greater than G0°, — .^- is nrcater than unity.
^ ^ o to radius '' •'

clioi',1
(iii.) In an angle L-ss tlian G0°

liidma
is less than unity,



IGO RATIO AND PROPORTION.

The student, when using a scale of chords, must remember
that the chords are chords of a circle having radius equal to

—60 on the scale.

A scale of chords is engi-aved on many of the boxwood
nnd other scale lules sold by mathematical instrument

makers. It is distinguished by the mark " Cho."
A scale of chords may be used—
{a) To measure a given angle.

{b) To set out a given angle.

(V/) Fig. 72. Let MON be the angle we are required to measure.
Take the distance —GO from your scale of chords in a pair of

compasses, and with centre describe an arc intersecting OM, ON

Fig. 72.

(pioduccd if necessar}^) in A, A' respectively. Apply your scale to

the chord AA', placing the zero point (0) exactly to the point A.
Then the number of degrees in the angle MON is indicated by the

reading (43) on the scale at the point A'. Therefore the angle MON
is 43°

{li) From a point 0, Fig. 72, in a line OM, set out an angle of 55°.

Make OA on OM = —60 from your scale of chords. With
centre O and radius OA describe an arc ; with centre A and radius
0^55 (taken from the scale) describe an arc intersecting the arc
previously drawn in P. Draw OP. Then ]\IOP is the required angle
of 55°.

148. In Table 3, Appendix, is gi ven the numerical value of

the ratio —-?^ for angles advancing by single degrees from
radius

o ^ o o
^

1° to 90°. This Table may be used in measuring angles.
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Ex. 1. Let it he rrqu'ired to measiire tJie ijlreti atujlr liAC, Fig. 73.

Select some convtnient unit, and with the centre A and radius =
10 units describe an arc inlersecting^ AC, AB (produced if necessary)

in E and F respectively. Measure the chord FE, employing the

Fig. 73.

same unit as used for the radius AF. Suppose this done, and we fin I

chord EF = G-2 units. Then ratio^ "" ^^ = 0'^-- Hence the

numerical value of the ratio is 0-G2. Consulting the table, we find the

Fig. 74.

number nearest to 0-62 is 0-618, which is opposite the degree nu'ub r

36. Therefore the nearest measure in whole degrees of the angle BAC
is 36°.

We now give an example showing how an angle may bo constructed

P.M. JI
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without the aiil of a properly constructed scale of chonh^ or refercLCS

to a table of chords.

Ex.2. Fig. 74, 'J'lie chord of angle is 0-7
; construct the angle.

Draw a straight line OM, and take a point B on OM such that
OB = 10 cm. (any unit). With centre and radius OB describe an
arc; with centre B and radius equal 7 units in OB (0*7 bcinir the
given ratio) describe an arc intersecting the arc from B in N. Draw
ON. Then MON is the required angle.

Exercises.

(1) The driving wheel of a locomotive is 7'5 ft. in diameter, and it

TTialies 250 revolutions per minute. Find the speed of the locomotive
in miles per hour.

(2) A piece of metal 8 in. diameter is being turned in a lathe,

the spindle of which makes 2':t i evolutions per minute. Find the
npesd of cutting the metal. If it is desired to turn a 2-in. piece

of metal at the same cutting speed, how many revolutions must the
spindle make per minute ?

(3) A shunt-coil in an electric arc lamp is 8 in. long, and the
diameter of the tube upon which the wire is wound is f in. The
wire with its insulating-covering is ^^f in. in diameter, and there are 20
layers to be wound upon the tube. What length of wire is wound
upon the tube, and what is the diameter of the outer layer ?

(-1) In a bicycle the pedal makes 1 revolution while the wheel
makes a greater number, say, .v. The gear of the bicycle is the
product (c X diameter of driving wheel. If a bicycle has a 2S-iji.

wheel, and its gear is 84, what is the value of ,r ? In a 3-speed
gear for this bicycle, the gears provitled are 70, 1)8, and 12G. What
is the value of ,v in each case ?

(5) The pitch circle of a spur wheel having 80 teeth is 12-73 in.

diameter. Find the pitch of the teeth.

((i) A pinion having 12 teeth of | in. pitch is to gear with a
wheel having SO teeth. Find the diameter of the pitch circle of the
wheel.

(7) A wheel is 3-45 ft. in diameter ; it makes 1,020 revolutions
rolling alono- a road; \\hat is the distance passed over? (B. E.
1906.)

(8) In working this question employ a decimal scale of ^ in.

to 1 unit.

Draw a circular arc, radius 10 units, centre 0. Mark a chord AB
Ol this arc, 3-47 units long, an I draw the radii OA, OB. Measure
the angle AOB in degrees.

From B draw a perpendicular BM on OA, and at A draw a tangent
to meet OB produced in N. IMeasure carefully BM and AN (on the
above unit scale), and calculate the sine and the tangent of the angle
AOB.

Give the correct values of the angle, the sine and the tangent, taken
diicctly from the examination tables supplied. (B. E. 1900.)
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An.swci'ft.

(n 6G-94. (4) 3; 2'5
;

3-5; 4-5.

(2) 19-085 ft. per min. ;
37-.") revs. (5) 0-5.

(3) 488 yds. 2 ft. 1 in. ; 2-75 in. (G) 1909.

dia. (7) 2-09 mls»

1-44. Proportion. When four qitanliiies are co related

that the ratio of t/te first two quantities 'is equal to the ratio of

tJie second two quantities^ the four quantities are said to form
a proportion.

As an example, consider two rods, of equal sectional area

but of different lengths, made of similar material. If the

first rod is 1 yd. long-, and the second rod 5 yds. long, then

the ratio of the lengths of the rods is^. If each rod weighs

1 lb. per foot of length, the first rod weighs 3 lb., and the

second rod weighs 15 lb., and the ratio of their weights

is yV 01' i-

Hence, the ratio of the lengths of the rods is equal to the

ratio of the weights of the rods, and so the four qaantitie>!,

\iz., the two lengths and the two weights, form a proportion.

This is expressed mathematically as follows :

—

. Lentrlh of first rod ,p . . Weight of fir^it rod

^ ' ' Length ol: second rod " ^
''

' Weiglit of second rod

\ 3
or - = - .

o lo

It may also be expressed as follows :—

I. IL
(Length of 1st rod) : (Length of 2nd rod) : :

IIL IV.

(Weight of 1st rod) : (Weight of 2nd rod).

The sign : ; means the same as = (equals).

The first and fourth terms of the proportion are called the

extremes, and the second and third terms are called the means.

When four magnitudes form a proportion, the
product of the extremes — the product of the
means. This may be tested as follows :

3
The ratio y is equal to the ratio ,V ,

3 -i

Hence, 3 : 5 : : 9 : 1 5 or V- = -V ,

15 '

M 2
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and 3 and 15 are the first and fourth terms, or extremes
;

5 and 9 are the second and third terms or means.

Product of extremes o X 15 = 45

Product of means 5 x 9 = 45.

Expressed al<^ebraically

—

(I X
Suppose the ratio j- is given = ratio -

.

Then a, I, x, y form a proportion, and ay — hx.

From this equation, we can find any one term of a

proportion if we are given the other three terms ; thus, given

uX
I), X and y, then, since «// = bx, a =^ —.

Ex. 1. In ))ierhanics it is shoicn tliat the stroujtli of a beam is

jn-()j}(»'tional to tJw tv'ulth of the heam. A heant 5 i/i. wide carries a
tiiti.ri Ilium load if '^ tons ; tvhiit load icill a similar heain as regards

length and depth, hut 7^ in. loidc^ earrg /

Width of Isf heam Maxiinnm load of 1st boam
Wg 1i3*vg ~ =^

WuiLli oi 2ir1 beam Maximum load of 2nd beam'

If y tons is the maximum load for the second beam, then
5 in. H tons

rb in. 7/ Ions

5 X y = 3 X 75
8 X 7r. 22-0

y — z = —z— = 4-5 tons.
o

145. AVe liave seen in Art. 139 that an arc of a circle

whose length is -th part of the whole ch'cumference =
I X 2irr (wliere r = radius).

Now, such an arc wiH subtend at the centre of the circle

an angle =
I
x oGO^.

Hence, the length of a circular arc is proportional to

the angle subtended by that arc at the centre of the

circle.

Ex. 2. In a circle ift. diametf ,/'^ the length of the arc which
subtends an angle of 135°.

The circumference of the circle = -Itt ft.

The angle subtended by the whole circun;tereuce = 300".

Lenfjth of arc 13.")°

IlCJliC .-

I iC ng ih of circumference 3UU*^
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Let the length of the arc be denoted by a ft.

a _ 185

Air
~

HGT)'
Then

4 X
a = X 18"

H«;u
1-7121 ft.

140. The length of an arc AB may be found grapliically.

At an extremity T>, Fig. 75, draw BT tangent to the arc ; diaw
the chord AB and produce to S such that BS = ^AB^. With S as

centre, and radius = SA, describe an arc meeting the tangent

Fig. 75.

from B in T.

arcAB.
Then BT is very nearly ejual to the length of the

When the given arc is greater than a qnadrant, first find

7rr, />., the length of the semicircnniference ; then find tlie

length of a segment, which together with the given arc

equals a semicircle, and subtract this len2:th from td',

147. We already know that the magnitudes of angles may
be measured in units called degrees. If we choose as a unit

the angle subtended at the centre of a circle by an arceqnal
in length to the radius, such an angle or unit is called a

radian, and the magnitude of an angle expressed in radians

is called the circular meastire of the angle.
The comparison between the magnitudes of angles, when
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expressed in degrees, and when expressed in radians, is an

example in proportion.

J?.r, 1. Find the nvmher of derjrecs in one radian.

Consider a oomplete cirole. The angle subtended by the circumfer-

ence is sec. Now, since the circumference is equal to 2ir times the

radius, there will be 2v arcs in the circumference, each equal to tho

radius, and hence if the extremities of each arc equal in length to tho

radius be joined to the centre of the circle we should have 2Tr angles,

each of which would be 1 radian. It follows that 360 degrees is eiuai

to 27r radians, hence the number of degrees in one radian is —r- =*

^„ „ , ,
300 degrees number of degrees in a radian

5r3 degrees nearly, or p — =^—
t^

.

2-K radians one radian

148. The area of a sector of a circle is proportional to the

angle of the sector, whether expressed in degrees or radians.

See Art. 222.

Ex. A circle is S-ft. radiiis. Find (1) the area, of a sector having

an angle of 140 degrees, and (3) the area of a second sector having an
angle of 2'o radians.

Area of sector _ Angle of sector

Area of circle ~ Angle of circle*

(1) Area of sector _ H0°
-TT X 3 X 3 ~ mf'

. ~ , TT X 9 X 140
Area of sector ~ ^ —-.

3(3U

= 10-905G sq. ft.

Area of sector _ 2-o radians

^ ^
TT X 3 X 3 2ir radians'

2-0X^x3x3/
Area of sector = ^ ^

= i X (3)2 X 2-5 i

= ll-2:>sq. ft.

A general expression may be obtained for the area of a

sector of a circle when the radius is known, and also the

anjzle of the sector in radians.

Thus, let (p = angle in radians, and r = radius of circle

area of sector _ angle of sector

'^ area of circle
~ angle of circle*

Area of sector ^
TT/'^ 2ir

'

Area of sector 2^

= ^(radius)- X (angle in radians).
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Exercises.

X 7
(1) If —= --, find the value of ij when .v = 21.

(2) Fintl a fourth proportional to 7 : 9 : : 12 : .

(3) If the ratio ^ = 0-6, find the value of x when y is 30.

(4) The extension of a steel bar is proportional to the load carried
by the bar. A load of 2 tons causes the bar to stretch 1 in. ; what
extension will be produced by a load of 4 tons 5 cwt. ? If the original

length of the bar is 10 ft., and the ratio
extension

original length
strain, find the strain in the bar for each of the above loads

is called tho

Fig. TG.

(o) A circular arc is I'Sl? in. long, and the radius is 12 in. AViiat

is the angle subtended by the arc at the centre in radians and iu

degrees 1 (B.E. 1907.)

(6) A beam 5 in. wide carries a load of 3 tons ; what load is carried

by a similar beam 8 in. wide if the load is proportional to the width ?

(7) Find the area of a sector of a circle 6 in. diameter, if the angle

of the sector is 200 degrees. AVhnt is this angle in radians ?

(1) 4S.

(2) ms.

(3) 18.

Answers.

\^ J "K "'• ' 121) ' 900'

(5) 0-401
; 23.

(G) 4-8 tons.

(7) 15-7; 3- 19,
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149. Problems of proportion cnn be solved graphically by

constructions based on an impo"tant property of parallel

lines.

Experiment. Fig. 76. Draw any straio;ht line through a point 0,
and mark ofip along same, OR = O'o in. ; RS = 0-25 in. ; ST = 1-0 in.

;

TW = 0-75 in. Draw through these points a series of lines parallel

to each other and inclined at any convenient angle to OW.

A 5 c 5 n
Fig. 77,

From draw any straight line as Ow across the parallels, intersecting
same in r, ,?, t, lo.

Then the triangles ORr, OS,«f, OT^, OWw are equiangular. They
are al>^o similar.

i.e., Or = 2rs = ^xt = %fw,

or, Or : rs : d : tio = OR : RS : ST : TW,
also, Rr :^s:Tt : Ww = OR : OS : OT : OW.

Verify the above statements by measurements.
Mark any other point as Q, from which draw two or more slraight

lines across the system of parallels. And verify that the paralfels
divide all transversals in the ratio, OR : RS : ST : TW.

U^r. To dicide a given straight line AB into three 2>arts at C and
D sucf^i that

AC : CD : DB = 3 : 5 : 7.
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From A, Fig. 77, diaw nny convenient line AF, and mark off

along AF 15 ccfual parts (always take the sum of the given numbers
in this case 3 + .5 + 7 = 15). Join B—15, and draw ||s through the :}rd

and 8th divisions (counting from A) intersecting AF> in (' and D.

Then the given line is divided as required at C and D.

For, evidently AC : CD : DB = 3:5:7.
Krerclte. Determine a given fractional length, say \, of a given

straight line AB. (Divide Ali at D such that AD : AB = 5 : 8.)

Ex. The three lines (A. B, C) represent the three terms A, B, C, of

the projfortion A : B : : C : X. Deternnne X.
Draw any two intersecting lines as OM, ON, Fig. 78. Set off

Fig. 78.

along OM from the given lengths of A and C. Set off along ON
from O the given length of B. Join ah, and draw rN

||
ah meeting

ONinN.
Then, since tlieAs are similar A : B : : C : ON

.•. ON is the required term X.

150. A pnr.'icnlar case of proportion occurs Tvhen Uie

rccond and third terms (or the means), are equal in

magnitude. For example, ^vhen the ratio

A . B
pris equal to the ratio

-p

Then A : B : : B : C
and A X C = B'^ or B = Va X C.

The magnitude B is (tailed a mean proportional to the

maernit^df^s A and 0.
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Tlic magnitude C is called a tliird pi'oportional to A
and B.

Jf we are given two terms of the three, we can determine

the third from the equation A x G = B^, e.r/., given A and
B^

B, then since A x C = B^ we have C = -r-.
' A
An example occurs in fmdinc,' the length .r of the side of a square

which shall be erinal in area to that of a given rectangle, say, one
having sides IG in, and 4 in. long respectively.

'J'hen since 16x4 = area of rectangle, and
X X x = a- is area of square, we have

Gt = «3

or .r = 8.

151. In a right-angled triangle, if a perpendicular be

drawn from the right-angle on to the hypotenuse, it can be

Fig. 79.

shown that, the perpendicular divides the fignre into two
triangles similar to the original and to each other.

From this proposition some usefid foots can be deduced.
I.ct ABC, Fig. 70, be a triangle having a right-angle at B.
LetBDbc thcjf on AC.

Then (i.) ^ = ^ or DB2 = AD . DCDB DC
i.e., DB is a mean proportional between AD and DC.

i.e., AB is a mean proportional between AD and AC.

("•) TO
= "^' ''^^ = ^^ -^c

i.e., BC is a mean proportional between DC and AC.
(iv.) Since, AB^ = AD . AC, and BC^ = DC . AC

AB2 + BC2 =p AC (AD + DC) ^ AC'
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»./-., if isquai'GS be constructed on the hypotenuse, and the two sides

of a right-anglcil ti jangle, th-J square on the hypotenuse is equal to
the sum of the S(]uares on the two sides.

We have thus availabio some useful constructions.

Fig. so.

El'. To find a mean projmrt'umal (b) to two given straight

lines a and c, i.e.. find a line b, sueh that t = ~
.bo

First method. Make AB, AC, Fig. 80, on a straight line equal to
a and c respectively. Draw a semicircle on diameter AB. Dra-?/

Fig. si.

CO perpendicular to AB to meet the semicircle in O. Draw AO. then
triangles AOB, AGO are right-angled at and C respectively, and
have a common angle at A. The triangles, therefore, are similar
,AB AO ,^

and j^ =
jjj

•'• AO is the required mean proportional.

Sccofid method. Set off a, e, Fig. 81, on opposite sides of A on a
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straight line. On BC describe a semicircle and draw AO perpendiculai
to BC, meeting the semicircle in O. Then AO is the required mean
proportional ; for in the right-angled triangles BAO, OAC,

angle AOB = 90° - angle AOC = angle AGO
;

.•. As BAO, OAC are similar,

, AB AO
and — = —^.

AO AC
152, To Jind [graphically) a t/iii-d pfopordontl to two girenliyia

a and b, i.e., to find a line c mch that a : b : : b : c.

Make OA, OB', Fig. 82, on a straight line OM, equal to the given

Fia 82.

lines a and h. Draw any line ON, and make OB on this line equal
OB'. Join AB, and draw B'N

;|
AB. Then ON is the line required,

T- ^t, ^T,' ^
AO OB'

For, OB = OB , and — = .

UB ON
153. If in the above figure we take OA = 1, we have

1 X ON = OB . OB', and since OB = OB'
.-. ON = 0B2.

Hence the construction may be employed to raise a line of given
length, or a given number, to any poirer.

K7\ To find (graphically) the raluca of{\.) (1-7)2 .

(;, )
(1-7)3

Draw two intersecting lines Al>, AC, Fig. S'A. Select sonic con-
venient unit—say A in.—and make AK on AC = 1-7 units. Make
AD on AB = 1 unit. Join DE ; make Ac on AB = AE ; draw
eF

II
DE. Then

AF AE
Since

Ae AD or AF X AD = AE x Ae ; and AD = 1 wc

AF X I = AE X Ae
.-. AF = AE2

- (1-7)3.
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By repeating the construction, any power of the given
length AE may be determined.

Thus, AG = AE3.

Pleasure and check by calculation.

15 4. Percentages. Anotlier particular case of pro-

portion occurs when the fourth term in the pro})ortion is

100, and we reipiire to find the third term, the first and
second terms being given. The third term, when found,

is called a percentage. We can express any ratio as a

percentage if we Avrite the ratio as a fraction and then
convert it into an equivalent fraction with 100 as the

denominator. The numerator of tlie second fraction is the

number which denotes the percentage.

Ex. 1. Ill a atearn e/ufine, the indicated horse power is 540, but it

is knoicn that GO lior.se poaer is lost in overcoming friction., etc., in the

engine. What percentage of the hor.se power is used for useful icorh ?

Total liorse ])ower — 540
Lost horse power = 00

Hence useful horse power 480

rp,, ,. 480 ^, , ., .. useful horse power
The ratio ^ thus represents the ratio p-; • • NVe

o40 total horse power
require to know what number (say x) has the same ratio to 100 that
480 has to 540.

^ 480 X
^^^^^540 = 100

or. = ^iL^O^ 88-89.
640
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The number 88*89 represents the percentage horse power that i9

used for useful work.
E.V. 2. A man in 2>urchasing done slabs, knows that 5 per cent, are

V7i/itfor vse. If he requires to use 950, how many must he purchase?
Out of 100 slabs he can only use 95. Hence, for each 95 wanted

he purchases 100.

Then, if .c = number to be purchased,

95^ _ 950 _ 100 X 950

100 ~ X ^^ ^ ^ 95
= 1 ,000 slabs.

E^r. 3. The correct value of a certain quantity is 56*5, hut hy
measurement it isfound to he 56'48. ^yl^at is the i^ercentage error in

the measured ralue ?

Correct value = 50-5

Measured value = 56"-18

Hence, error = 0*02 too small.

We now reqiiire to find the quantity, say .v, which has the same
ratio to 100, that 0*02 (the error) bears to 5(J-5 (the correct value!.

0-02 X.

Hence -~—r-~ ^ TTTr.
ob y 100

100 X 0-02
^ ~ "^^T^56 o

= 0-035 per cent, too low.

Bx. 4. A mixture consists of 25 ^w?f* sand, S5 parts cement, an
120 parts ivater. What is the percentage composition of the m ixture ?

Total number of parts is 25 + 35 + 120 := 180.

Hence,
f^o

~
lOO ' 180 ~ 100 ' 180 lOO

where x, x , and x" represent respectively the percentage of sand,

cement, and water.

X = 13-9, x' = 66-7, x" = 19-1

Es:ercises.

(1) A steam engine has an efficiency of 75 percent. If the engine
develops an indicated horse power of 3,000, what horse power is

available for external work ?

(2) A pulley-block lifting-tackle has an efficiency of 45 per cent.

Neglecting friction, etc., it is calculated that a load of ^ ton should
be lifted by a certain pull on the lifting-chain. What load will

actually be lifted ?

(3) In a piece of coal there was found to be 11*30 lb. of carbon,
0-92 lb. of hydrogen, 0*84 lb. of oxj^gen, 0"5G lb. of nitrogen, 0*71 lb.

of ash. There being nothing else, state the percentage composition of

the coal. (B.E. 1905.)

(4) On board a ship there were 1,312 men, 514 women, and 132
children. State these as percentages of the total number of persons.

(B.E. 1900.)
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(.)) Two men measure a rectangular box ; one finds its length,

breadth, antl depth in inches to be 8o+, 5-17, and 3"19. The other

fimls them to be 8-.")0, 5-12, and 8-16, Calculate the volume in each

case. What is the mean of the two ? What is the percentage

difference of cither from the mean ? (B.E. (2) 1906.)

(0) When x and y are small, we may take -. as being very

nearly c jual to 1 + .r — //. What is the error in this when x = 0"02

and 7/ =- 0'03 ? (B.K. 19(J(J.)

(7) When .r is small, we may take (I + .7')'' as being nearly equal to

1 + //./'. AVhat is the percentage error in this when x = 001 and
w - 2? (B.E. 1907.)

(8) If J) is the pressure in a thin pipe of outside diameter d and
thickness t, the greatest tensile stress being/, then t ~ jnl -^ {p + 2/).

A formula not qiiite so correct is t' = jnl -^ 2/. Calculate from both
formulas the thickness of a pipe such that/ = 4,000, d = 8, y^ = 500.

What is the percentage error .' (B.E. 1909.)

(9) A lump of alloy contains 34 1 lb. of copper, 0-97 lb. of zinc,

0-31 lb. of lead, and 0'2t) lb. of other material. What are the per-

centages of copper, zinc, and lead in the allo^^ 'I (B.E. 1909.)

(10) Find the chord of 45°, when the radius is 2 in.

(11) Take from the tables the chord and tangent of 22". Construct
an angle of 22° by using the value of the chord, and a second angle of
22° by using the tangent. Verify the results b}^ measuring the two
angles with your protractor, writing down to the first decimal, what
each angle measures. (B.E. 1907.)

Amwers.

(1) 2,250. (5) 139-184
;

1-2 per cent.

(2) 504. (6) 00003 too small.

(3) 78-85
; G-42 ; 5-8G ; 3'907 : (7) 0-0098.

4-95. (8) f ;
i

;
6-25 too great.

(4) 07; 20-3; GL (9) GS-88 ; 19-59; G-2G.
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CHAPTER XII.

LOGARITHMS.

155. Logarithms are used to simplify calculation. By
their use, the process of multiplication is reduced to addition

;

division is reduced to subtraction ; involution, or the raisino^

of numbers to given powers, becomes multiplication ; and
evokition, or the extraction of roots, becomes division. In
ordinary arithmetic processes for involution and evolution,

we are limited to j^owers or roots represented by integral

numbers ; but, by using logarithms, we can raise a number
to any power, or extract any root, whether integral or

fractional. Thus, by using logarithms w^e can find the

value of 7 raised to the power 1-743, or w^e can find the

value of ^'/i/8G*49, just as readily as we can find the

value of V or ^80-49.

The contraction " log. " is usually written for the word
" logarithm."

15C. Definition. The logarithm of a number to any
given base is the index of the powder to which the base

must be raised to give the number.

Suppose we take the number 10 as a base ; we Lave 1,000 = 10-\

The index 3 gives the power to which we must raise the base 10 to

make the number 1,000, and, by the above definition of a log., we
can also say that 3 is the log. of 1,000 to the base 10.

As a general statement, if a denote the base, and N a
,

number such that ^^ = N ('/.6'., a raised to the power
X = N), then, by the above definition, log. N to the base

a — X. This is written log^ N = a?, the base being

written as a suffix to the word log. Any number could be

used as the base of a system of logarithms, and further, the
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same nuiiibor may be the logarithm of two different numbers
if the bases are different, thus

38 =» 27; 53 ^ 125;
hence log., 27 s= 3 or log. 27 to base 3 =: 3

and logs 125 == 3 or log. 125 to base 5 = 3

Common logarithms are calculated to the base 10, and,
when common logarithms arc being spoken of, the b; se is

omitted, thus log.jo i,000 c^ 3 may be written simply
log. 1,000 = 3.

Ev, 1, Find t/ie loga, of 01 to hi/sc^ 8, 4, and 2 resi)eoticelij.

82 =, 61 hence logg 61 = 2.

43 ^ 61 „ log4 61 == 3.

2« ^ 61 „ logs 61 =s 6.

Lo. 2. Find the loj.-i. of 100, 1,000, ayid 1,000,000 to the ha.e 10.

103 = 100 hence log. 100 =2.
103 :^ 1^000 „ log. 1,000 ^ 3.

106 = 1,000,000 „ log. 1,000,000 = 0.

(^^otfi. In this example, the base is omittel after the wor.l log.,

as the base is that of common logarithms.)

157. "We shall now confine our attention to common
logarithms ; hence when a log. is indicated it must bo

understood that the base is 10, unless otherwise stated.

From Art. 13, we know that aP = 1. li a = 10, then

W - 1,

Since lO'^ = 1,
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A logarithm thus consists of two parts, viz. :

—

(a) An integral part, which is called the characteristic.

(b) A decimal part, which is called the mantissa.

In the logarithm of 55 given above, the characteristic

is 1 and the mantissa 0*7404.

158. The Table 1, in Appendix, is the log. Table

commonly used by students, the logs, being given to four

decimal figures. It must be understood, however, that the

decimal figures beyond the fourth have been omitted, the

fourth figure being raised by 1 if the fifth figure is equal to,

or greater than, 5. Thus, if the log. of a number to five

decimal places is 2-76370, then in a four-figure table the

log. is given as 2-7638, whereas, if the five-figure log. is

2-76372, the four-figure log. is 2-7637.

If we write each log. as consisting of an integral part and

a decimal part, then since

10" = 1, log. 1 = 0-0000

101 ^ 10, log. 10 = 1-0000

102 = 100, log. 100 = 2-0000

103 = ],000, log. 1,000 = 3-0000

10^ = 10,000, log. 10,000 = 4-0000, and so on.

From this table, we can see that the characteristic of the log.

of any numbers between 10 and 100 is 1 ; that for any number
between 100 and 1,000 is 2 ; and that for any number between

1,000 and 10,000 is 3, and so on : or we can say that the

characteristic is one less than the number of figures in

the integral part of the number, and is positive. The
integral part of a number is the part on the left of the

decimal point ; hence we get the following rule :

—

The characteristic of the log. of a number greater

than 1 is positive and less by one than the number
of figures to the left of the decimal point.

Ea-. The characteristic of 100 is 2 ; of lOG'TS is 2 ; r»/"7G3-9 is 2
;

of 74-28 is 1 ; and of 7-634 is 0.

150. The mantissa is found from the log. tables as set out

in Art. 160. It is independent of the position of the decimal

point in the number. The decimal point only affects the
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characteristic, and after the characteristic has been ascer-

tained, the decimal point may be left out of account, thus,

The Iog;. of 8,038 is 3*.)3(U, for the characteristic is 3 (according to

rule). The mantissa is 9304. Log. 8(;3-8 = 2-l)3(;i ; log. 86-38 =
l'93tl-l ; log. 8-638 = 0-9364, the mantissa being the same for each,

but the characteristic different.

100. To find the mantissa from the Table, consider the

extract from the Table shown below.

Difference columns.
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with 15 of tlic first column is G. Adding* the G to 18J:7 we
get 1847 + G = 1853, and this is the require.1 mantissa,

^Yhich, l^eing a decimal, is written •1853. The characteristic

of the log. of 153*2 is 2, according to our rule, hence log.

153*2 = 2*1853. In the above extract from the Table, the

arrows indicate the process to be followed.

Ex. 1. Find the logs, of 7,896, 789-6, 78-96, and 7-896.

Log. 7,896 has characteristics. For mantissa, find 78 in col. 1,

read along line 78 and under col. 9, and we find 8971 ; along same
line and in difference col. 6 ^YC find 3, and since 8971 + 3 = 8974,

hence, log. 7,89r, = 3-8974.

By similar reasoning, log. 789*6 = 2-8974

,. \log. 78-96 .- 1-8974

, log. 7-896 = 0-8974.

E.T. 2. Find the lor/, of 2,001.

Characteristic = 3.

(Road line 20, col. 0) = 3.010

Mantissa ^ .3012 3 C^lii^^rcnce col. 1) = __2

( 3,012

hence, log. 2,001 = 3-3012.

Wlicn the log. of a number containing less than four figures is

re luired, we can make it up to four by adding a decimal point and
ciphers. Thus 70 may be written as 70-00

; 3 may be written 3-000
;

and 2-3 as 2-300.

K/'. 3. Find logs, of 7 atid 9.

Writing 7 and 9 as 7-000 and 9-000 respectively, we have, for log. 7,

characteristic = 0, mantissa for 7,000 — -8451,

hence, log. 7 = 0-8451,

similarly, log. 9 = 0-9512.

When we have five figures in the number whose log. we require, we
take the nearest four figures. Hence, if the fifth figure is equal to

or greater than 5, increase the fourth by 1 ; if not equal to 5, the fifth

figure may be cancelled.

Thus for log. 86738, read log. 86740, which is 4-9382.

For log. 76-293, read log. 76-29, which is 1-8825.

IGl. When we know the log. of a certain number, we
require some ready means of ascertaining the number cor-

responding to it, and for this purpose we make use of the

table of antilogarithms, Table 2, Appendix, which is

drawn up on a similar plan to that of the table of logarithms.

An example will make the method clear. Suppose we are

given 2*7694: as the log. of a number and we require to

know the number. Take the mantissa part only '7694,
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and in col. 1 of the table of antilogs. find "70, read along this

line to col. (the third figure in mantissa), and here \vc find

5,875 ; read on along the same line to difference col. 4

(the fourth figure in mantissa), and here we find figure 5.

Add 5875 + 5 and we get 5,880 as the figures of the number
having -7094 for log. mantissa. We now require to fix the

position of the decimal point. Since the characteristic is

2, the number must have three figures in the integral part,

hence tlie required number is 588'0 or 588.

To check this result, find the log. of 588 from the table of

logs. This is found to be 2-7094.

It is seen from the above that the mantissa only is used

to ascertain the actual figures in the number, while the

characteristic is used to fix the position of the decimal point.

Conversely, in finding the log. of a number, the mantissa

depends only upon the actual figures, and the characteristic

only upon the position of the decimal point.

It often happens that when wc read the number corresponding
to a given log. from the antilog. table, and then check this result by
reading the log. of the number so found from the log. table, that the
fourth figure in the mantissa of the second log. does not agree with
that in the given log. For example, find the number whose log. is

0-7853. Heading from the antilog. table, we find the numbei- to be
6-099. Kovv read the log. of G-099 from the log, table and we find

that it is 0-7852. The reason for this apparent discrepancy will be
clear if we remember that the logarithms of any numbeis as found
from the tables are corrected to four figures of decimals, and that the
decimal figures beyond the fourth are omitted, the fourth figure being
increased by 1 if the fifth be equal to or greater than 5.

1(52. By using logs., the process of multiplication

is reduced to addition.

If a and Z/ represent two quantities, then their product is ah^ and
by above statement

log. ah ^ log. a + log. h.

In order to test this statement, let a = 95, i = 5, then ah =4 75

and hence log. 4.75 should equal log. 95 -|- log. 5.

F.om log. table
|

>««; % Z ^^
Die sum = 2-0707

and from log, table log. 4:75 is seen to be 2-0707.
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]f we repeat this test by taking a series of values of a and h, we
shall find that log. ah always ^ log. a + log. h ; hence the state-

ment is assumed to be correct.

Hence if we liave to muHipUj iogetlter a series of numhers^

we ialce the logs, of each of ike mimbers, add them together^ and
the sum gives the log. of the prodnct. The product can then

be ascertained from the table of antilogs.

E.V. 1. Find thejiroduct ^j/ 47-96 x 3-43 x 2-704.

Log. of product = log. 47-1)0 + log, 3-43 + log. 2-704

= 1-0808 + 0-5353 + 0-4415

= 2-0576.

From table of antilogs., we find that this is the log. of 454-5
; hence

product is 454-5.

1G3. By using logs., the process of division is

reduced to subtraction.

Let a and h represent two quantities, then -j is their quotient, and

by above statement log. y = log. a — log. h.

In order to test this statement, let a = 5,275 and b = 25, then

T- =^ 211, and hence log. 211 should equal log. 5,275 — log. 25.

T? 1 ^ n ( log- 5,275 = 3-7222
From log. table

I j^|_ '25 = 1-3979

the difference = 2-3243

and from log. table log. 211 is seen to be 2-3243.

By repeating the test for various values of a and b, we can show
that this statement is correct.

Hence fo divide one mimler hg another, suldract tJie log.

of the divisor from the log. of the dividend, the dijfercnee is

the log. of the quotient. The quotient is then found from
the table of antilogs.

Kr. Divide 78-90 by 7-589.

Log. of quotient = log. 78-96 - log. 7-589

= 1-8974 - 0-88 J2

- 1-0172.

From table of antilogs. this is seen to be the log. of 10-4
; hence the

quotient is 10-4.

Ex. Find the value of
43-09 X 52-7 7 x 3^849

5-703 X 49-38^2^67*

In examples such as these, find the sum of the logs, of all numbers
in the numerator, and the sum of the logs, of all numbeis in the

denominator ; subtract the latter sum from the former for the log. of
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the result, since product of numerators must be divided by
i
roduct of

denominators.

log. 43<)9 - 1-6404 log. 5-7()3 = 07606
log. 52-77 = 1-7224 log. 49-38 = 16935
log. 3-849 = 0-5853 log. 2-7<;7 = 0-4420

3-9481 2-8961

3-9481

2-8961

Difference = 1*0520

and this is log. of 11 -27,

Hence result is 11'27.

Ex. The horse power of a steam engine is given by the formula

Tj,, 2xPxLxAxN, ,-
H-r = where r = mean pressure in

33,UUU
^

pounds per sq. inch, L = length of stroke in feet, A = area of

piston in sq. inches, and N == number of revolutions per minute. If

P = 116-5, L - 1-5, A = 95-8, N = 150, find the H-P, using logs, for

the calculation.

p _ 2 X 116-5 X 1-5 X 95-8 X 150"
33,000

log. H-P = log. 2 + log. 116-5 + log. 1-5 + log. 95-8 + log. 150 -
log. 33,000

= 0-3010 + 2-0664 + 0-1761 + 1-9814 + 2-1761 - 4-5185

- 2-1825.

From antilog. table, the corresponding number is 152-3
; hence, the

horse-power is 152-3.

1G4. The two rules given above for multiplication and
division respectively by using logs, follow at once from a

consideration of the rules for dealing with indices in

algebra.

In algebra, a-'^ x x^ = a/>, since we add the indices 2 + 3 for the

index 5 of the product.

Similarly, 102 x 10^ = 10^ or

100 x 1,000 = 100,000.

But by definition, the log. of 100 = 2 and the log. of 1,000 = .S.

Further, the log. of 100,000 = 5, and this is seen to ba the sum of

the logs, of 100 and 1,000.

As a further illustration,

25 X 50 = 1,2.50

log. 25 = 1-3979, log. 50 = 1-6990, and
log. 1,250 = 3-0969,

hence 25 = 101-39T9, 50 = lui-6J9J,and 1,250 = liao^-*.
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Tims 25 X *0 ^ 1 ,2n0 may be written
IQip-r-o X 101-6990 ^ lo-cono^

and this is seen to agree with the rules for indices.

Similarl}^ for division.

In algebra, -^ = .r, since we subtract the inJices 3-2 for the

index 1 of the quotient.

By definition, log. 1,000 = 3, log. 100 = P. and log. 10 = 1. and the
log. of 10 is seen to be log. 1,000 - 1. g. 100.

/ s a further illustration,

•1^ -

no = IQi-ccoo^ 25 = 10- '-0'^, 2 = 10" 3010^

hence -^ = 2 may be written
2')

1 01-6990

101-3D79
^^

'

and this is seen to agree with the rules for indices, subject, of course,
to the fourth decimal figure differing by 1 from the value of log. 2 as
given in the tables.

1G5. So far, we have cnly dealt with the logs, of numbers
[greater than 1, and we have found that the" characteristic

of the log. of such numbers is positive. Considering
numbers less than 1 ; for example, such numbers as O'00G798,

we know from Art. 95 that ^=^-1 4 =a-^ctc.

Similarly, -,L=io-i,^L^_i,,iO- etc.

As 10" = 1, hence, log. 1 = OtOOO

also 10-1 = ~ = O'l. Iicnce, log. 0-1 = — lOCOO

10-2 = _.^ = 0-01, hence, log. 0-01 = — 2-0000

10 - 8 = r--3 = 0-001, hence, log. O'OOl = — 3-0000
10^

10-*
10 ^ •» = -— = 0-0001, hence, log. 0-0001 = — 1-COOO
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The characteristic of all numbers less than 1 is

thus negative, and is one greater than the number
of ciphers between the decimal point and the first

significant figure; tlms, when the decimal point imme-
diately precedes the first significant figure, as in 0*1, the

log. is — 1 ; when there is one cipher immediately after the

decimal point, as in O'Ul, the log. is — 2, and so on.

KKi. Tb.e mantissa of a log. is always positive, but the
characteristic may be positive or negative. If, then,

as in the number 'OOGyUS we have a negative characteristic

— 3, and a positive mantissa '8324, we cannot write the

log. of •0067U8 as - 3-8324, for that would imply that the

whole quantity 3*8324: was negative, whereas, only the 3 is

negative, the quantity -8324: being positive. If written

fully, the log. of O-OOGTDB is (— 3-0000 + 0*8324). In
order to indicate that only the characteristic is negative, the

minus sign is always written above and not in front of, the

characteristic. Thus, log.
•0067J)8

is written 3^8324.

log. 0-1 = roooo
log. 0-001 = 3'0000.

In reading the mantissa fur a number less than 1, we
proceed as before, omitting the decimal point and also the

ciphers immediately following it. Thus, the mantissa for

•000798 corresponds to that for 6,798. The student should

check this from the tables.

1G7. Summarizing, we now see that :—

(1) The characteristic of 1 is 0.

(2) The characteristic of all numbers greater than 1 is

positive, and one less than the number of figures to the

left of the decimal point.

(3) The characteristic of all numbers less than 1 is

negati-vc and one greater than the number of ciphers

between the decimal point and the first significant figure.

(4) The mantissa is always positive and is quite indepen-

dent of the decimal point and also independent of the ciphers

immediately following the decimal point.
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Examples to be checked by student. First find the logs, of the

given numbers, then take the logs, and find the corresponding

numbers from antilog. table.

log. -06729 = 2-8280.

log. -000729 = 3-8280.

log. -0006729 = 4-8280.

log. 5760 = 3-7604.

log. 576 = 2-7604.

log. 0-00385 = 3-5855.

4-8 iol (read as -00070).

Find t/tejfroduct of OOOQi'J x 73-28 x 000237.

Log. of product - log. 0-00649 + log. 73-28 + log. 0-00237

„ „ „ = 3-8122 + 1-8650 + 3-3747

= 3-0519.

log. 67,290 = 4-8280.

log. 6729 = 3-8280.

log. 672-9 = 2-8280.

log. 67-29 =: 1-8280.

log. 6-729 = 0-8280.

log. 0-6729= 1-8280.

log. o-ooo;

Note. Sum of mantissas
2-0519

Algebraic sum of

characteristics = 5-0000

Hence nett sum 3-0519

From antilog. table, the corre-

sponding number is found to be
1,127, and as the characteristic is

3, -we must have two ciphers

immediately after the decimal
point.

Hence, product is 0001127.

.0-006395
Ex. 2. Find the ralue of ,,,,-, -..r,

log. 0-006395 = 3-8058

log. 0-07538 = 2-8773.

To obtain the difference of these logs., we must treat the

characteristics and mantissas quite separately, thus :

—

3 + 0-8058

2 + 0-8773

Difference l + 1-9285

Note 2)-3 -
(

= - 3 + 2

= - 1;
also the 1 to be carried when
subtracting -8773 from '8058 is

Hence, log. of quotient = 5-9285. put down as T.

From the table of antilogs. 2-9285 is seen to be the log. of 0-08482.

Hence, «^1^=0.0S«..

Exercises.

7-39 X 4-27 X 981 x3-76 X 4-218 x 33-71

(1) Calculate
^.^.^ ^ ^.^^^ ^ ^-.^^ (L) ^.^^ x 5-4 x 37 x e

86-97 X 4-382 x 5-764 6-83 x 0-0627 x 3-291

(1) 8-281.

(3) 6-613.

4-113 X 27-86 X 2-9

Afi-^wers.

(2) 54-76.

(4) 5694.

0-00436 X 0-021 x 2-703
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1G8. By using logs., the process of involution is

reduced to multiplication.

Let a represent a given quantity.

Then «" represents the (juantity a raised to the power n.

And log. «" = n log. a.

In order to test this statement,

Let a = \') and oi = 2.

Then a" = I.52 = 225,

hence log. 2'2h should equal 2 x log. 15.

From log. table, log. 15 ^ M7G1 ; hence 2 x log. 15 = 2-3522.

And also from table log. 225 — 2 "3522.

By repeating the test with various values of a and /t, we can show
that the statement is correct.

Ejc, 1. Find the value <;/(2(;-3y)i ^

Log. (26-39)1^ = 1-5 X log. 26-39
= 1-5 X 1-4215

= 21322,
hence, from antilog. table (2G-39)i-^ = 135*6.

E.V. 2. Find the value </ (0-00374)3

Log. (O-00374)3 - 3 X \og. 0-00374

= 3 X 3-5729

= 3 (- 3-0000 + 0-5729)
= (_- 9-0000 + 1-7187)

= 8-7187 (treating characteristics separately)
hence, from antilog. table (0 00374)=* = 0-00000005232.

Note.—A fraction raised to a power is less in value than the
original fraction.

ir.I). By using logs., the process of evolution is

reduced to division.

Let a represent a given (quantity.

Then v^a represents the wth root of a.

and log. iy« = — log. a.

In order to test this statement
let a = 225 and « = 2

then '^^= v^225 = 15.

hence log. 15 should equal \ log. 225.

From table log. 15 = 1-1761

log. 225 = 2-3522, aad hence \ log. 12'^ = VVlQi,
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By repeating this test wit'i various values of a and ?/, we can show
that the statement is correct.

Ex. 1. Find the v due of^tj io-H'J.

Log. ^'^n^ =
y . X log. 7G-39

1-5

hence, from antilog. table ^^7G-8'J = 1 8-08

E.V. 2. Find the ralue (/ ^U'UOTySo.

1-8859 _ _,
1-2573.

Log. ^0-007985 = ^ X log. 0-007985

_ 8-902.S

= 1-3008

hence, from antilog. table v^O -1)07^85 = 0-1990

Note.—Any root cf a fraction is greater than the original fraction.

170. The rules given above for involution and evolution

by using logs, also follow from the algebraic rules for dealing

with indices.

By algebra (^^p — ^,^0^ since for index of powers wc multiply index 2

of quantity by index 3, representing the required power.

Also (100)3 = 1,000,000;

Or (102)3 = 10''', which = 1,000,000.

But log. 100 = 2, and log. 1,000,000 = 6, and since 2 x 3 = 6, it

is seen that log. of a quantity raised to any power = log. of quantity
tself X index representing the required power.

Similarly, ^ /^ ^ as ^ ft2 t^y i-^ieg ^f indices.

^1,000,000 = 100

IJW^ = 100

But log. 1,000,000 - 6, and log. 100 = 2, and i log. 1,000.000 = ^ = 2,

hence, the log. of the root of any quantity is equal to the log. of the

quantity divided by the index representing the root.

Some miscellaneous examples will now be given, and diffi-

culties which arise in working with logs, will be explained

as they occur.
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0-494 X 0-0028(; x (V

139

u-ooiy? X 3-4y

Sum of logs, of numerator = 4-1)128

Sum of logs, of denominator ~ 3-8373

Difference = 1-0755

log. 0-494 = T-r.9.S7

log. 0-00286 = 3-45(U
log. 0-579 = 1-7627

4-9128

log. 0-00197 = 3-2J45
log. 3-49 = 0-5128

3-8373

hence, from antilogs. value required is 0119.
Xote.—In subtracting characteristics, treat them alcrcbraically ; thus

- 4 - (- 3) - - 4 + 3 = - 1.

L,v. 2. Ecnluate
0-U0831 X 4-61 X 00478

log. 5-31

log. 0-364

log. 7-62

0-7251

1-5611

0-8820

1-1682

log. 0-00831 = 3-9196

log. 4-61 = 0-6637

log. 00478 - 2-6794

32627

Slim of logs, of numerator . 1-1682

Sum of logs, of denominator . 3-2627

Difference , 3-9055

Hence, from antilogs. value = 8044.

Kofe.—Again treat characteristics algebraically, thus + 1 - (- 3)

= +1+3 = 4.

We thus get 4-1682

E.i\ 3. Ecaluate

0-2627 - 3-9055.

63-2 X V :^642

log. 63-2 = 1-8007*

^log. 3642 = 0-7123

Sum = 2-5130

4-37 X (96-36)3'

log. 4-37 = 0-6405
3-7 X log. 90-36 = 7-3404

7-9809

Sum of logs, of numci-ators 2-5130

Sum of logs, of denominators 7-9809

Difference 6-5.321

From antilogs. value is 0-000003405.

E.r. 4. Find the ralur of Jo-\)12

Log. V^ = \^-'''
2 '
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Remembering that the mantissa is positive and the characteristic is

negative, we are now in a difficulty as to dividing by 2. What we
. .

- 1-0000 + 0-9877 _ . ^, . , ,

really require is ^ . This would give a number less

than 1 for characteristic if divided out. To overcome the difficulty

add — 1 to characteristic and + 1 to mantissa. The whole value is

.u ^. 1. 1 1 ^
- 2-O000 + 1-9877 . ^, . .

thereby unaltered, and we now get
, and this is

equal to 1-9938, which is the log. we require.

From antilogs. the value is 0-9858.

Rule. la every case of extracting a root of a quantity

less than 1 by using logs., add to the negative characteristic

a negative quantity sufficient to make the index of the root,

divide the characteristic without remainder, and add a

corresponding positive quantity to the mantissa to equalize

the value.

Thus, ^"(yWd = ;^log. 0-763

= t-8825

3

By adding 2 and + 2 to
|

= 5 + 2-8825

characteristic and mantissa i 3

respectively
|

= T-9608

Hence, from antilogs. the value = 0-9137,

Ex. 5. Find the value of *yo-00867.

Log. ^yoousti / = 1 log. -0086

7

3-9380
( 4 + 1-9380

)
= -^—

\
'^ ^ =. 2-9690

From antilogs. value = 0-09311.

Ex.(J. Eralimte (0-of-^K

Log. (0-5)>'-25 = 0-25 X log. 0-5.

= 0-25 X 1-6990.

= 0-25 (- 1-0000 + 0-6990).

= (- 0-25 + 0-1747).]

= - 00753.

We now have a negative mantissa. The mantissa, how-
ever, must always be positive. In order to make this

negative mantissa into a positive one, add + 1 to the

mantissa and — 1 to the characteristic. We thus get-

{(T + (1-000 - 0-0753)} = 1-0247 as the required log.

Hence, value is 0-8409.
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Ex. 6 may be checked as follows

(0.5)0-25 ^ (^0-5)^.

Taking ^ as a power, we have

—

Log. (0-5)i = I log. 0-5
_

= 1-6990 _ ^-i + 30990)

= 1-9247

Hence, as overleaf, value = 0-8409.

Rule. In every case of a negative mantissa, make it

positive by adding + 1 to the mantissa, and by taking 1

as a characteristic to equalize the value.

171. A system of logs, called Napierian or hyperbolic logs.,

calculated to a base denoted by tlie letter e, of the value

2-7183 to four decimal places, is in use. A log. in this

system is written log.g N = it- where N = e"", according to

the definition of a logarithm.

Common logs, (calculated to the base 10) may be converted

into Napierian logs, by multiplying by 2-3026.

Ex. Find log.e 76-37.

log.io 76-37 = 1-8829

log.e 76-37 = 2-3026 x log.jo 76-37

- 2-3026 X 1-8829

= 4-3356.

172. By takiug numbers from 1 to 100 as abscissae, and
the logs, of the numbers as ordinates, we can draw a graph
from which the log. of a number may be found, and also

which shows how the log. varies with the number. In the

table below, x is a number and y the log. of the number.

X



192 LOGARITHMS.

Exercises (a).

Xote.— E.rcrc'isioa 2 to 15, IS, and 22, pttijea IIG, 117, and US, will

he found suitaldc for practice in hnjarithnm. The answers obtained hij

logs, may dijfer slightly from those given on p. 118.

(1) Find the product 'd-^(S2_x_0-002'd& x 2-78i. Ans. 003182.

(2) Eralnate 7384 x ^4-782 -4- 36-97. Ans. 0-43G8.

(3) EcaUiate 11-76 x tt x 3-761 x 2-87 X e. Ans. 1084.

(4) Find the value of (« - 21)) 3c -^ 2 (« - 3^)2 when a = 51-6,

= 11-29, X = 00637. Ans. 02295.& = 7-

(5) Evalnate

(6) Ecalvate

7-29 X (3-621)2 X \/4-36

2-821 X 0-0297

.5 10 a;"2 cos 6 ,

ichen w =

A)is. 2380.

3 a //•' tan
4-29, = 55°, (b = 0-4887 radians.

= 12-71

llfiJSiM^
/O 20 30 40 50 60 10 60 30 100

Natural numbers.
Fig. 84.

Exercises (b).

(1) Given the values of logs. 2, 3, 5, and 7, make out a log. table for

the logs, of numbers from 1 to 10.

(2) Calculate yo~9T3(r; ^'u-VlloU
; ^0 01758; y 2^'83

;

(7-64)2-8; ^o-OU867.

(3) Calculate
.53-89 X 4/'^-U7629 x (3'761)3

2-597 X ^0-00638 x (07689)2
5

'

(4) Evaluate {0-oGf-''.

0-36 X (4-2.S)^" X v^76-41

<^-'> ^^^^^^^^^^
^00364 X (5-27)^ _

7-3 X 0-00641 X (0-58)2 X v 036
(6) Find the value of §-21 x 0-0003625 x (2-38)^
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(7) The ratio of the tension N in the ti^ht side of a driving belt to

the tension M in the slaek side is given by -vv =(^

where /x = coefficient of friction between belt and pulley and Q is the

angle of lap in radians. Take value of c as 2-72. Calculate the value
N

of -—-when u = 0-25 and = 2-5. If N = 250 lb., find M.

(8) At speeds greater than the velocity of sound, the air resistance

to the motion of a projectile of the usual shape of weight w lb.,

diameter d inches, is such that when the speed diminishes from \\ ft.

per second to r, if t is the time in seconds and s is the space passed
over in feet,

s = 7000 I loge ^
If I'l is 2000, find s and t when v = 1500 for a projectile of 12 lb.

whose diameter is 3 in. (B.E. 1903.)

(9) Find the value of ^ - ^3 - ^3 loge ^^ + h (l - ^\ if f^ =

.458, ^3 = 373, and h = 796 - 0-695 ^1.

[Convert common logs, into Napierian logs, by multiplyino' by
2-3026.] (B.E. 1903.)

i J
^

J

(10) It has been found that if P is the horse power wasted in air

friction when a disc d feet diameter is revolving at n revolutions per

minute P = cd n ". If P is O'l when d =^ i and n = 500, find the
constant c. Now find P when d is 9 and w is 400. (B.E. 1904.)

(11) Write down the values of cos. 35°, tan. 52°, sin.-i 0-4226, log

14-36, log 14-36.

[Note. Sin. "~ « means the angle whose sin. is ^.] (B.E. 1905.)

2
(12) If y = - + 5 logio r — 2*70, find the values of y when .» has

the values 2, 2*5, 3. Plot the values of y and x on squared paper, and
draw the probable curve in which these points lie. State approximately
what value of -v would cause y to be 0. (B.E. 1905.)

(13) Using the tables, find the number of which 0-2 is the Napierian
logarithm.

If ex = 1 + -v + |-^ + p + '^^•'

calculate e^ when .r; = 0-2, to three decimal places.

After how many terms are more of them useless in this case where
we only need three decimal places ?

(Note that |_5^ means 1x2x3x4x5.) (B.E. (2) 1905.)

P M. O
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(14) UjJi ^113 = jf2 r2^•^^ and if - be called r. If p^ - 6, find r

if pi = loO. (B.E. 1905.)

(15) Given A = p(l +-^) '^nd A when F = 200, r = 4, and

n = 12. (B.E. 1906.)

(16) If pu i-o^^o ^ 479^ find j^ when u is 3-25. (B.E. 1906.)

(17) Itpu 1-06*8 = 479, find u when ^; is 120. (B.E. (2) 1906.)

(18) A disc varies in thickness so that when running at a certain

speed the radial and hoop stresses may be the same and constant

everywhere. The thickness n- at the radius r is such that

«/-2 ^ log. '--

.

If a is 0-04 and a'l is 0-3 find /• for the following values of .r, 0-2,

0*1, 0-05, and draw a section of the disc. The logarithms are common
logarithms. (B.E. 1908.)

(19) If ,r?/2» = 350, find x if y is 12. (B.E. 1909.)

(20) If y - 2-5 log. ,v + ^^- 6-35.

Find y for a number of values of .v between 15 and 20, and repre-

sent these on squared paper. For what value ot x is y — 01 Use

common logarithms. (B.E. 1909.)

(21) Plot the following values of p and ?^, and then plot log. ^;

against log. v. Note the second graph is a straight line.

2>
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CHAPTER xnr.

SQUARED PAPER.

173. We are already familiar, from Cliapter IV. aud from
subsequent examples, with the use of squared paper for

plofcting points and curves, and for representing graphically

the relationship between quantities. We have also seen

from Chapter VIII. that the relationship between quantities

may be represented by an algebraic equation. In the

present chapter, we shall show that the graphic and algebraic

representations agree one with the other, and we shall also

show, in many cases, how the one representation may be

derived from the other.

Reverting to the plotting of a point we found that we
required to know its distance from each of two fixed axes of

reference OX, OY. So long as these fixed axes are at, or

near, the left-hand and bottom edges of the paper these two
distances would definitely fix the point. Suppose, however,

that we take the two axes as shown in Fig. 85 along the

two centre lines of the paper, and that we require a point

20 divisions from the horizontal axis and 30 divisions

from the vertical axis. Each of the four points P, Q, R, S
will agree with these two dimensions. There is thus an
ambiguity as to which of the four points is the one

required.

In order to remove this ambiguity, we call those distances

measured upwards from the horizontal axis, and those

measured to the riuht of the vertical a.ri^. positive; while

those measured downwards from the horizontal axis and
those measured to the left of the vertical axis are nerjative.

All distances arc measured from one or other of the two

2



196 SQUARED TAPER.

axes, which are now lettered XOX' and YOY', thus dividing

the paper into four quadrants, called the 1st, 2nd, 3rd, and
4tli quadrants respectively as shown in Fig. 85.

Tile distances or co-ordinates of P are thus + 30, + 20.

Q
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before proceOfling furtTicr with this chapter, and the result of each

example should be particularly noted :

—

SiYS
i<r^

tO

m
iP

Fig.

Fx. 1. Plot the points (5, 7), (- 5, 7), (- 5, - 7), (n, - 7),

and find the area enclosed by the four lines joining the points

X'

Q
nt

Y'

Fig. 87.

Ux. 2. Plot the points (5, 2), (5, 4), (5, 6), (5, - 2), (5, - 4),

(5, — 6), and note that they all lie on a line parallel to, and distant

5 units from, YOY'.
Ux. 3. Plot the points (- fi, 3), (- 4, 3), (-2, 3), (0, .3), (2, 3),

(6, 3), and note that they all lie on a line parallel to, and distant

3 units from, XOX'.
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Ex. 4. Plot the points (0, 2), (0, 4), (0, - 2), (0, - 4), also the

points (3, 0), (1, 0), (- 2, 0), (- 4, 0), and note that all these points

lie on one or other of the two axes of leference.

Ex. 5. Plot the points (4, 4), (2, 2),(0, 0), (- 2, _ 2). (- 4, - 4),

and note that all these points lie on a line passing through the origin

and inclined at 45° to the axis XOX'.
Ex. G. Plot the points (4, 0), (2, 3-o), (0, 4), (- 2, 3-5), (- 4, 0),

(— 2, — 3-5), (0, — 4), (2, — 3-5), and note that a circle with centre

at the origin and radius equal to 4 units practically passes through
all these points.

Ex. 7. Plot the points (4, 0), (2, 2-6). (0, 3), (- 2. 2-6), (- 4, 0),

C_ 2, - 2-6), (0, - 3), (2, - 2-6). Observe that all the plotted

points lie on a closed curve, called an ellipse.

Ex. 8. Plot the points (1, 16), (2, 8), (4, 4), (8, 2), (16, 1), and
draw a curve through the points. Now take any points on the

curve and draw from each point lines parallel to the axes of reference

to meet the axes, thus forming a series of rectangles. Show that the

areas of all these rectangles are equal.

It will be observed in working the above examples that it

is possible to select a series of points so that, when plotted,

they lie along a straight line wliich may, or may not, pass

through the origin, or may be parallel to either axis, and
further that such points may lie along a circle, or an ellipse,

or along a curve (such as that given by Ex. 8) called a

rectangular hyperbola.

174. Graphical method of solving a simple equa-
tion. If we take aiiy simple equation ivliatever and ])iace

all the terms (whether they contain the unknown quantity

or not) on one side of the equation, then the other side of

the equation is = 0.

Thus, a? - 5 = 3.7? -|- 2.

Transposing x we get — ^ — 'ix — x -\- 1.

Transposing — 5 {i.e., \

add 5 to each side) >— 5 + 5 = 3.r — .'P + 2 + 5

we get
j

or = 2.r + 7.

Now put ?/ in place of 0, and we get ?/ = 2a; + 7. If in

this equation we put x = 0, 1, 2, 3, 4, etc., we can calculate

a series of corresponding values of y.

Thus, when a? = 0, y = 2x + 7

= (2 X 0) + 7
= + 7

Again, when x = I, y = (2 x 1) + 7

-2 + 7

= 9.
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Repeating this process we get the Table shown below :

—

X
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If in the equation ?/ = 2^ + 7, we put x = 3|, then
'y = (- ^ X 2) + 7

= - 7 + 7

= 0.

Thus, the vahie of a; which malces the value of ?/ = corresponds
to the value of x wliich is the solution of the equation, and hence the
above rule for solving simple equations graphically.

JEx. Solve 5,» + 10 = i\x + 22 graphicalli/.

We have 5^- - 3"^? + 10 - 22 = 0,

or 2a; - 12 = 0.

Put?/ = 2x - 12.

Our Table is now :

—

X
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X'

m
G

E-

\^

i

m

B

simple equation whatever and plot it on squared paper, as set

out in the above Arts., we f^et a (;raph which is a sfraifjlit

line. This graph is called the graph of the equation.
As the value of y depends upon that of x. y is said to be a

function of x, and thegi-aph

is often called the graph of

the function.

As we give to x any value

we choose in calculating the

table of corresponding values

of X and y from which we
finally plot the graph, the

quantity x is called the inde-

pendent variable, whereas,

since the value of y depends
upon that chosen for x, the

quantity 7/ is called the depen-
dent variable.

170. General equation of
a straight line. Consider

the equation x — 5 = 3^7

+ 2, used in Art. 174. We
transformed this equation to

= 2a; -h 7, and then put

y = 2x -^ 1, Now if we do
this with a number of simple

equations, we shall find that

the coefficient of x (in this

example 2), may be any
number whatever, integral or

fractional, and further it may
be + or — . Similarly, the

number added (in this example

7) may have any magni-
tude and may be -f or —

.

These two numbers are called

constants, and are denoted respectively by m and c.

Hence, the equation in its most general form may be

written y = ± mx ± r, which reads "«/ is equal to plus or

minus mx plus or minus c," and means that y may equal

(1) H- mx + c, or (2) — mx -f c, or (3) -\- mx — f, or

Fig. 90.
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(4) ~ mx - c. This is the general equation of a straight

line, and will represent all straight lines. The equation of
any parfimla?' straight line is found when we know the
numerical value and sign of both tn and c.

Thus, when vi and c are both positive we have y ~ 2x +7.
„ „ „ „ „ negative „ y = - 2x - 7.

„ „ m is positive and c negative we have y = 2ji; — 7.

„ „ m is negative and c positive „ 1/ = — 2,i? + 7.

If we calculate a table for each line, as in Art. J 74, and plot on
squared paper, we get the four lines AB, CD, EF, GH, Fig. 90, and
we observe the following facts :

—

(1) When »i. is + (lines AB and EF) the line is inclined to OX at
an angle less than 90°.

(2) When vi is - (lines CD and GH) the inclination exceetls 90°.

(3) When c is + (lines AB and GH) the line cuts the axis YOY'
above O, and when negative (lines CD and EF) it cuts below 0.

Bj giving to jn and c in the general equation ]/= ± mx ± c

various values, we can write down a seiies of equations, and
we will now do so to illustrate further the various forms the
lines or graphs take with certain particular values of m and c.

E.i\ 1. Plot the graplts of the equations (1) y = a;
; (2) 7/ = ;c + 3

;

;3) y = X -'6.

The Tables are as
follows :

—

(1)

X
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In Fig. 91, AB is graph (1), CD graph (2), and EF graph (3).

203

The student will note from this example that when in = + 1 and
c = 0, then y = a-, and the graph passes through the origin and is

inclined at 45°.

When in = -}- 1 and r = + 3, then y = x -\- ^, and the graph is

still inclined at 45°, but it cuts the axis of y at the point + 3.

When w/ = + 1 and c = — 3, then y = x — 3, and the graph is

still inclined at 45°, but it cuts the axis of y at the point y = — '6.

The distance from the origin to the point at wliich a h'ne

cuts either axis is called the intercept of the line on that

axis.

Thus, the intercept of line AB on each axis is 0.

„ „ „ CD on axis of y is + 3.

EF „ yis- 3.

,, ,, „ CD „ X IS — 3.

EF „ a- is + 3.

Also note, the intercept on the axis of ?/ is the value of y when x =
0, and the intercept on the axis of x is the value of x when y = 0.

Ux. 2. Plot the graphs of the equations: (1) y = 2x -{- 1
;

(2) y = Sx + 1; {'d)y = ix + 1.

The Tables are :—

(0

(2)

(3)

X
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Ex. 3. Plot the grajyhs of (I) y = I'^x + 4
; (2) y = - '2x -j- 4.

Tables are :

—

(1)

X
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177. We have now demonstrated that every simple equa-

tion may be written in the form y = ± mx ± c, and also

that every such equation corresponds to a graph which is a

6traio:ht line. The converse of this is true, viz., every
graph which is a straight line corresponds to some
simple or linear equation of the form y = ± mx ± c,

and we shall now show how tJie equalion is to be found luhen

the rjraph is given.

Consider first a particular case. In Ex. 3 of Art. 17G

above we plotted two graphs from their given equations.

See Fig. 93. Graph (1) corresponds to the equation

y = I'bx + 4. The general equation for any straight-line

graph is ?/ = ± mx ± c. In this particular graph, m is

+ 1"5, and c is -\- 4. If we read off the intercept, on the

axis of y, we find that this is -f 4, and apparently corre-

sponds to c in the general equation. Again, if we select

any two points, as A and B, on the graph, and take the

length AB as the hypotenuse of a right-angled triangle ABC,
we find that BC = 3 divisions, and AC = 4-5 divisions, and

hence that
AC
BC

4-5 ^ „

~3 = ^''- This value apparently corre-

sponds to m. If we repeat this investigation for graph (2)
we again find the intercept

on the axis of ?/ = 4, and
the value of m, taking the

right-angled triangle OPQ
formed by the axis OX and

OY, is
OP
OQ y = 2, but as

this graph is inclined at a

greater angle than 90° to

the axis XOX', we must take

the negative value for tn,

hence m = — 2. Fig. 95.

Now take a general case.

We know that the co-ordinates of every point on the given
line will satisfy the equation y = ± mx ± c. Suppose we
take the co-ordinates of the point P, Fig. 95, as x andy; the

ordinate 2/ is the length PR, and the abscissa a; is the length PT.
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The intercept on the axis of Y is OS. AVe require to find

the vahics off and m in the general equation?/ = ± mx±c,
which represents any line, to make it into a particular equa-

tion for the particular line AB. As the line is inclined at

less than 20^ to XOX', we take m as +. If we put 2; = in

the equation,

y = mx + c, ^YC get

y = ± c

hence ij = ± c

The value of y when a; = is the intercept OS ; hence the

value of c is the intercept OS of the given line on the axis of

Y, and for the line AB this is + c.

Again, to find the value of m, we now have the equation
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the coefficient of x corresponds to the vahie m, while the

constant c corresponds to the intercept on the axis of //.

Ex. Find the equation of each of the given lines AL, CP, EU,
Fiff. 96.

(1) For line AL.
Form of equation is

y = ± mx ± c.

n = intercept on axis

OY = — 3.

. LM 7m = ratio rr-rr = -^t-z —MN 3o
2, and is +.
Hence equation of AL

is y = 2.C — 3.

(2) For line CP.
Form of equation is y

— ± mx ± c.

c = intercept on axis

OY = 0.

PQ _ .^_
KQ ~ 5 -

0-7. and is +.
Hence equation of CP

is y = Q'lx.

(3) For line EU.
Form of equation is y =
c = intercept on axis OY

ST 5
m = ratio i^pr = -j- = 1'25, and is negative (since angle ESX

between OX and the line EU exceeds 90°).

Hence equation of EU is y = — 1*25 a? + 10.

178. In the preceding^ examples in this chapter, we have

plotted graphs in which the same scale is used for the

ordinates and abscissae. Now, in practice, as we already

know from Chapter IV., the co-ordinates of points to be

plotted may differ very considerably in magnitude, and hence

we often adopt a different scale for ordinates from that used

for abscissas. As an example, consider a series of values

of X and ij as shown in the following Table :

—

ratio

X
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In this case, our greatest abscissa or x value is onlj O'G,

whereas the corresponding ordinate or y value is 65. In

order to get all the points within an ordinary sheet of

squared paper, we adopt the scales shown in Fig. 97, in

which fur values of a; each inch division is taken as 0*1, and

for values of ij each inch division is 20.

The equation to a graph in ivhkh different scales are used is.

40

20

M

0-1 0-2 0-3 04 0-5 0-6

Fig. 97.

as defore, of the form y = ± mx ± c, and also the value of c is

the intercept on the axis OY, and the value of m is the ratio

T M
=;r-r.. but we must observe that the value of c is the magnitude
MN'
represented by the intercept on the scale adopted along OY,

i.e., 5 (not 2'5, since each division = 2 units along OY).

Similarly, in finding the value of m, the value of LM must

be the magnitude represented by a length LM on the scale

marked along OY,and the value ofMN must be the magnitude

represented by a length MN on the scale marked along OX.

Thus, LM = 10 divisions = 20 units on scale along OY.

MN = 20 = 0-2 OX.

Hence =r|^ — -^ = 100, and this value is the value of m.

The equation is thus ?/ = 100a; + 5.
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170. When corrcspondiiip^ values of two variable

quantities are obtained experimentally, the data obtained

will not be free from error. When these correspond! no^

values are plotted on squared paper, the graph is obtained

by drawing a line or curve to lie as evenly as possible

among the points, passing through some, and leaving the

others some on one side and some on the other side of the

graph. With a little practice the student will readily

determine which line or curve lies best within the plotted

points. These graphs are extensively used in laboratory

and workshop experiments.

By plotting on squared paper data obtained experi-

mentally, we not only obtain a graphical illustration of the

way in which one quantity varies relatively to another, but

we are also enabled (1) to correct errors in our experimental

observations, (2) to ascertain approximately values within

the range of our experiment which we have not actually

observed, and (3) to predict approximately values which lie

outside the range of our experiment. As an example, the

force P in pounds necessary to lift a weight IF in pounds
with an experimental screw-jack is tabulated below, and the

corresponding graph is shown in Fig. 98.

Plb.
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The intercept c on the vertical axis is positive, and
AB 1*42

corresponds to 0*4 lb., and m = Tw-i = -^ = 0*047 and

is positive. Hence the equation of the graph, or the Law
of the Machine, is /* = 0*047 W + 0-4.

From this equation we can calculate values of P and W
corresponding respectively to given values of W and P

10 20 30 40 50 60 10 ? 80\N
Fig. 98.

which lie outside the range of the graph—for example, we
can find the force which will lift half a ton, or the load

Jilted l)y a force of 15 lb.

Where W = h ton or 1,120 lb., substitute this value for IF and we
net

"" P = 0047 W + 0-4

= (0 0-! 7 X 1120) + 0-4

= 52-(i4 + 0-4

= 53-04 lb.

This force lifts I ton.

When P = \o lb., substitute this value for P and we get
15 = 0047 W + 0-4

1^^^=1F.
0-047

310-G = ir, hence a force of 15 lb. lifts 310-6 lb.
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Values of P and W which do lie within the range of the

graph may be obtained directly from the graph, or they

may be calculated from the equation ; thus, the force required

to lift 70 lb. is shown graphically by RS which = 3-G9 lb.,

and the load lifted by a force of 2'7 lb. is shown graphically

by TU which = 49 lb. By calculation, if we put W =
1)0 lb. in the equation we get P = (0'047 X 70) + 0*4 =
3-09 lb., and also by putting P = 27 we get 2-7 =
(0-047 X W) + 0-4 from which W = 49 lb.

S:

iA^

B
10

Fir. 99.

15 20 y

ISO. Two variable quantities may be related in such a
manner that when corresponding values are plotted on
squared paper, the graph obtained by joining the points is

not a straight h"ne. The methods adopted for finding the
equations of such graphs are discussed in Chap. XXIIT.,
but a value of one variable corresponding to a given value
of the other variable can ahvays be obtained (within the
limits of the curve) by direct measurement from the graph.

As an example, plot the following values of x and y and
find the value of ?/ when x = Ih \

—

X



212 SQUARED PAPER.

From curve, Fig. 99, it is seen that when 0^-15,
f/ = AB = 2-CG.

As an exercise, the student should plot a curve from which the

cube roots of numbers
and the cube roots as or
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wide, per minute, and the lieij^ht of the surface of the water

(head of water) above the weir were found experimentally :

—

Head of water in

ram.
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Exercises (a).

Each of the following exercises is to be solved by plotting on squared
paper.

(1) Plot points whose co-ordinates are respectively (+ 2, + 3), (+ 2,

— 3), (
— 2, —3), (

— 2, + 3), and find the area of the figure obtained by
joining the four points. Give the area in number of squares enclosed.

(2) Find the equation of the line joining the two points whose co-
ordinates aie - 2, 1 and 6, 7.

(3) By experiment and subsequent plotting upon squared paper,
the law of a sciew-jack is found to be i^ = ^1^1^+ 3-5

; P being the
lifting force and irthe load lifted in lbs. Plot the probable graph repre-
sented by the above law. Find also the load lifted when P = 20 lb.

(4) Plot the following values of 7^ and IT. They relate to a lifting

appliance.

P (force in lbs.) .
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(0) In a centrifugal pump experiment, the relation between the
motor horse-power and the number of lbs. of water delivered per
minute was found to be as follows :

—

M.H.P.
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Load in

lbs.



SQUARED PAPER. 217

(1 7) Plot the following values, which were obtained experinientalij',

and find the twisting-moment required for a rod 0275 in. in dian)etcr:

Diameter of rod in

inches .
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(22) A scries of soundings taken across a river channel is given by the

foUowinof table, x feet lacing distance from one shore, and y feet the

corresponding depth. Draw the section. Finditsarea. (B.E. 1904.)

X

y
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the vertical draught of the ship is h ft. When the drantrlit changes

from 17o to 18o ft., what is the increased displacement of the vej^sel

in cubic feet? (B.E. 190().)

G020

18

6660

21

8250

(27) X and t are the distance in miles and the time in hours of a

train from a railway station. Plot on squared paper. Describe why-

it is that ihcslope of the curve shows the speed ; where, approximately,

is the speed greatest and where is it least 1 (B.E. 1906.)

X
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minute and head in inches. Determine also the discharge in gallons

per hour when the head is 5^ inches. (B.E. 1907.)

(31) '1 he following values of x and y are thought probably to

fulfil the law ?/ = a -\- hx. Try if this is so. Find the most pro-

bable values of a and I. What is the probable error of each value

oiy? (B.E. 1907.)

X
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If z is 10, express v in terms of x alone. Now take various

values of x (say from 0-5 to 2) and calculate v. Plot v and ./• on
scjuared paper. For what value of x is r a maximum 1 (B.E. 11)07.)

(37) The population of a country (in millions) in 1880 was 29-S
;

in 1890 it was 331 ; in 1900 it was 37-2. What was the piobable

|X)pulation in 1894 ? What was the average rate of increase in the

population yer year from 1880 to 1890 1 What was this average rate

from 1890 to 1900 ? (B.E. 1908.)

(38) If A is the number of days after the birth of a baby, and xo is

the observed weight of the baby in pounds ; show the relation of

xo to d on squared paper. What was the average rate of increase in

weight (pounds per day) during the first 50 days ? (B.E. 1909.)

d
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What is the volume of the tree in cubic inches and in cubic feet, its

total length being KJO in. ? (B.E. 1909.)

(43) A man finds that if he uses x horses, his daily expenditure in

pounds is

7-3
0-3,f +

and find what value of x
(B.E. 1909.)

1 + a;

Calculate this for various values of x
makes his daily expenditure a minimum.

(44) The following numbers give v the speed of a train in miles per
hour at the time t hours since leaving a railway station. In each
interval of time, what is the distance passed over by the train ? At
each of the times tabulated what is «, the distance from the station ?

Tabulate your answers.

v
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Atimoers (a).

(1) 24. (23) 8-5.

(2) y = 0-75^ + 2-5. (24) 510.

(3) 1237-5 lb. (25) 8-3.

(4) 8-6 lb. (2«) o,r.r,o cub. ft.

(.5) F^ ^R + 2. (27) 0-25
; 0()5.

(6) 25. (28) 15-91 mis.

(7) 5 ; G-5 in. (29) 1-345,

(8) (U-5. (30) 423.

(9) 274 1b. (31) 20; 15-4.

(10) 339; 55. (32) 1 74,498 cub. ft.

(11) 0-34 in. (33) 22.

(12) 0-43 in. (34) 1,3.50 ; 1,700.

(13) 2-7 in. (35) 2 ; 4 ; 23 ; 39

(15) 10-5; 8-4. (36) v = 30.^ - 11.^2. i-sq.

(16) 0-18. (37) .34-7; 0-33; 0-41.

(17) 16. (38) 0-172 lb.

(18) 17. (39) §; - 0-6; 4-075; 2-27.

(19) (0-8, 1-65) ; 58°, 145°; 87°. (41) 0-1138
;
12-45.

(20) 304 sq. in. ; 2266 sq. in.

;

(42) 20,448 cub. in.

32,857 cub. in. (43) 4.

(21) 16-53; 17-98. (45) 3-66 sq. chains.

(22) 756 sq. ft.

Exercises (b).

The following exercises may he deferred until Chap. XXII. has

heen read.

(1) A strai</7it line j)a!ises throiiglt a point whose co-ordinates are

(4, 3), and m'ahes an angle of 35° luith the axis of x. Calculate the

value of c and find also the value of m in the equation y = ± vix ± c

for this line. Verify your result hg plotting. Ans. c = 0-2
; m = U-7.

(2) A straight lifiejJ^isses through the points whose co-ordinates are,

resppctii-elg, (*2, 7) and (6, 10). S/inw that the value of in in the equation

for this line is 0-75, and find the value if e. Ans. 5-5.

(3) The bending moment at any point di.^tant x feet from, the free

end ofa cantilever is -^ a;^, when w is the load in lbs. 2^0' foot run of

the cantilever. Plot a curve from ichich the lending moment 31 at any
point of a cantilever 12 ft. long can he determined, if to = 20 lbs.

(4) An archacro.^s a roadway is shaped to the form of a semi-ellipse

whose major axis is 100 ft. (the span of the arch) anil minor axis is

60 ft. (the rise being thus 30 ft.^ The equation for this ellipse is

x^ ?/2-—— + — = 1, when the origin is at the centre of the ellipse. Find

by calculation, and by plotting, the height of the arch above apoint 10 ft.

from the centre of the road. Ans. 27'i8 ft.
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CHAPTER X[V.

PLANE RECTILINEAR FIGURES.

181. Definitions and properties. Plane figures

bounded by straight lines are called rectilinear figures.

The lines which bound the figure are called sides. If the

figure has 3 sides, it is called a triangle ; if 4, a quadri-
lateral ; if more than 4, it is called a polygon.

Particular names are given to polygons according to the

number of their sides : f^;pentagon has 5 sides, a hexagon G,

Fig. 101.

a heptagon 7, an octagon 8, a nonagon 9, a decagon 10,

etc.

The sum of the sides or length of outline of a figure u
called the perimeter.
A line joining any two non-consecutive corners of a

rectilinear figure is called a diagonal.
In order to refer definitely to a particular figure or part

of a figure, we denote each angular point or vertex by a

distinct letter, and call the figure by these letters ; thus,

the triangle in Fig. 101, we call ihe triangle ABC ; and the

])olygon we refer to as the Jigiire DEFGU.
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Greek lelters nre sometimes used to represent angles ;

thus, the angle EDH may be denoted by f3 (beta). Some-
times tlie angle is repi'escntcd by the letter attached to

the angular point ; thus, the angle A would mean the

angle BAG.
Jf any side, say AB, in the triangle, Fig. 102, be pro-

dnced, this line and the adjacent side BC form two angles

at \\ ; one (B) an inferior angle, and one ((f)) an exterior

{ingle. When the term anfjie is applied to a figure, an
internal angle is always understood, in the absence of any
statement to the contrary.

If every angle in a figure is less than 180°, it is called

a convex figure. If all the angles are equal to one
another, it is said to be ecjuiangular. If all the sides are

iMG. 1U2.

equal in length, it is called equilateral. A figure having

all its sides equal and all its angles equal is called a regular

figure.

Begnlar figures have a definite centre 0, equidistant from

the corners and sides, so that (a) all the angular points of

a regular figure lie on the circumference of a circle centred

in 6 ;
(b) a circle centred in and touching one side

touches every side of the figure.

182. Experiment. Draw any triangle ABO, Fig. 103,

and extend each side, as shown in the diagram. Denote

the exterior angles by a, y3, (/>. From any point 0, draw

Ob parallel to the side AB ; draw Oc parallel to the

side BC ; draw Oa parallel to the side CA. Then
angle bOc = a ; angle cOa — /3 ; angle aOb = <}).

And since the sum of the angles bOr, rOa, aOb is oGu^,

.-. a + /? + c/. - r>GO^
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Now draw any convex polygon, as DEFGH, Fig. 104.

Extend each side as above described and denote the exterior

ano-lcs by a, /?, 7, 6, (t>. From any point 0, draw Oe parallel

to Uie side I)E ; draw 0/" parallel to the side EF ; . . and

0^ parallel to the side HI). Then, the angles which are

marked by the same letters in Fig. 141 are equal to one

another, and the simi of ihe exterior angles is equal to the

snm of the angles about the point 0, viz., 3G0^, and the

same is true of Fig. 104

Hence the Theorem. The sum of the exterior angles of

any convex rectilinear figure is 300°, ur 4 right-angles.

Fig. 103. Fig. 104.

H we denote the interior angles of the triangle, Fig. 103,

by A, B, C, we have

—

A + (/) = 2 right-angles ; B + a = 2 right-angles
;

C + /? = 2 right-angles
;

and, by addition,

A 4-B + O + + a + y8 = C right-angles.

Again, if the interior angles of the polygon in Fig. 101

be denoted by I), E, F, G, H, we have

1) -f <^ = 2 right- angles ; E -f a = 2 right-angles;

F -f ^ = 2 right-angles, etc.

;

and, by addition,

3) + E -f F + G + H -f (^ -f a -f ^ + y -f ^ =
10 rlrrht-aiifrles.
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Comparing these results we find : The sum of the interior

and exterior (uu/tes of any rectUincar figure is = twice as

many rigJit-anytes as tlie figure Jus sides.

x\ncl, since the exterior angles always ecjual 4 right-angles,

we have : (a) The interior angtes ofa convex rectilinear figure

of n sides = (2n — 4) right-angles, (b) 'The sum of the

interior angles of a triangle is 2 right-angles.

In Fig. 105, we show how this last important theorem
may be verified by folding paper.

Draw any triangle ABC and bisect AC, CB in E and F Join EF
and draw perpendiculars EM, FN on to AB. Cut out the triangle

M H N B

Fig. 105.

ABC, and fold the corner ECF along EF, bringing C on to AB
in H. Fold the corners EAM, FBN along EM, FN ; then A and B
should coincide with H, and AE and BF should coincide with HE
and HF.

When we have two figures, as, for example, the triangles

ABC, ahc, Fig. lOG, or the polygons UEFGH defgh,

which we know are alike in some respects, and we wish to

compare them, we call the points which are denoted by the
same letters corresiwnding points. Lines which join two
points in one figure and the corresponding points in the
other figure we call corresponding lines. Thus, for example
in the triangles ; AB, ah ; BC, be ; and in the polygons;
I)E, de ; DF, df are corresponding lines. The angles between
corresponding lines in the two figures are corresponding angles.
U any two figures, as, for example, the triangles or poly-

gons in Fig. 106, have their corresponding angles ecjuai,

i.e., A = <2, B = &, C = c, and D = r/, E = e, . .

II = hy the figures are equiangular.

Q 2
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(Ifc must be noticed that in this case wc are not com-

paring one angle with anoihcr aiujle in the same fi(jure ^ but

with an angle in another Jijure. Tlie angles in the same
figure may, or may 7iot, be equal.)

If two or more equiangular figures are such that every

line in one figure is equal in length to the corresponding

line in the other figure, the figures are alike in all respects,

and are said to be congruent. Congruent figures can

always be superposed one on the other so as to make the

two wholly coincide ; and the pi'actical test of congruency
in plane figures is to make a tracing of one figure and

Fig. 106.

place this tracing over the other figure and see whether all

lines on the tracing coincide \Yith corresponding lines on

the figure beneath.

183. Similar figures. Wlien two or more figures

have the angles in one figure equal to the corresponding

angles in the other, and corresponding lines in the figures

are proportionals, the figures are called similar figures.

The triangles ABC, abc, Fig. 100, and the polygons

DEPGH, de///h, are examples of simitar figures. In

each pair of figures, corresponding angles are equal, and,

in the triangles, linear dimensions are in the ratio f. lu

the polygons, the ratio is f. Test this statement by
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mca«^urinof tlic nnglcs and sides of cacb pair of figures.

You will find

—

T^C _ CA _ 3

/a7 ^ aa - 2

'^f
"

Tii 0"' '"^ /-'- i

'

'J'liis constant ratio is called tlie ratio of similitude

of the t'AO triani^lcs (or polygons).

AB
ab

and —r
ae

Feet angle

Fig. 107.

Ciiv^cs, sqnnrc?, and eqiiiangnlar triangles arc always

j-imilar liguris, because in these figures corresponding lines

are in a constant ratio. But rectilinear figures of more
than three sides may be equiangular without having sides

in a constant ratio, e.fj., the square and the rectaiigle,

Fig. 107.

Also, two figures may have sides in a constant ratio

without being equiangular, e.g., the square and the

rhombus, Fig. 107.

Exercises.

(1) In a triarifjlc ABC, the exterior angle at A h douhle that at B
while the exterior angle at C is 150*^. What are the exterior ayigles at

A and B^ and the three interior angles':' Ans. 140°; 70°; 40°;

110°; 30"^.

(2) Six lines radiate from a point ; the angles between them are,

respectively, 60, 40, 20, 70, 50, and 6 degree.^. What is the value of Q?
A six-sided jjolggon has sides parallel to the six radial lines. What
are the values of the six interior angles of the polygon ? Ans. 6 = 1 20°.

(3) What is the magnitude of each of the interior angles of a regular
pentagon, heptagon, nonagon, arid decagon? Ans. 108"^; 1280°;
140°; 144°.

(4) You are required to set out two conseciitire .'tides or.lg of a
regular octagon of 25 ft. side. How would you proceed to do this 7
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CHAPTER XY.

rJGHT-ANGLED TRIANGLE.

184. A triangle has 3 sides and 3 angles; tliese are called

elcmmts of tlie figure. Tiius a triangle has C elements.

When two sides of a triangle are of equal length, the

triangle is called isosceles. In an isosceles triangle, the

unequal side is called the liase. In other forms, any side

may be called the base. If we call one side the base, the

YiQ. 108.

angles adjacent to that side are called liase angles, and only
the angle opposite to the base is called the vertex.

The perpendicular distance of the vertex of a triangle

from the base line is called the Jteigld or aliilude. Thus, in

Fig. 108, Qh is the height of each of the triangles on the

base AB.
If A denotes the angle between a side AC and the base

line AB, we have

—

Height Qh = AC X sin. A.

18o. A triangle having one side perpendicular to another
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side is called a right-angled triangle. The side opposite

the right-angle is called the hypotenuse. The sides

forming the right-angle are sometimes called legs ; either of

these sides may he called the hase.

Experiment. Draw any triangle, and by carefully

measuring the 3 sides and angles

verify the following

—

Theorem. The shorted side of a
triangle is opposite the smallest angle.

Hence, we see

—

{a) in an equilateral

triangle, the three angles are equal
;

(b) in an isosceles triangle, the angles

opposite to the equal sides are equal.

If a side AB, Fig. 100, of a triangle

ABC be produced, the adjacent inteiior and exterior angles

at B, when added together = 2 right-angles. And, since

the 3 interior angles together = 2 right angles (Art. 182)
we have angle B + angle <^ = angle B + angle C +
angle A. Subtracting common angle B, angle <^ = angle

C + angle A, i.e., An exterior angle of a triangle is

Fig. 109.

Fig. 110.

equal to the sum of the two interior and opposite angles.

In a right-angled triangle, the angles adjacent to the

hgpotenuse are complementarg.

18fi. We have learned from experiment, kxi. 113, that

any right-angled triangle has its right-angle on the circum-
ference of the circle drawn on the hypotenuse as diameter.

It follows, therefore, that when we know the hypotenuse of

a triangle we also know the locus of the right angle.
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Cunslruct riijlil-cuiglcd iriangks liaving given the following

dala:—
(i.) Fi,^'. 11(). Gircn the I/g/io/ennse a and Us distance h

from the opposile angle A, sag 8*5 in. and 1*5 in.

Draw side liC of £^ivcn len_o-tb a = 3*5 iu. Describe a circle

on diameter I3C. Draw mm parallel to, and at the e,iven

distance h above, BC, interseclini^ the semicircle in two
points A and A'. Join AB, AC, or A'B, A'C. There are

thus two solutions in this case. For limitations, see note to

problem, ArL 199.

(ii.) No Figure. Given the two sides including the right-

angle, sag h and c, ?> in. and 7 in.

J)i'aw AC, AB at right-aiioles and equal to the given
lengths, ^iz., 3 in. ; 7 iu. Join

BC.
(iii.) Given one side b and the

hgpoteniise a, sag 3 in. and 4^ in.

In this case, we may draw the

hypotenuse of given leni^th <?,

describe a senn'circlo on same and
cut off a chord of given length, h.

The drawing of the semicircle is,

liowever, unneccssaiy if we use the

following method :

—

Fig. 111. Draw AC of given

length h = o in. Frcct a per-

pendicular at A. "With C as centre

and radius of lengths = 4-5 in. describe an arc intersecting

the perpendicular from A in B. Join BC.
(iv.) No Figure. Given the hgpoicnuse a and one adjacent

angle, sag 5 in. and 57°.

J)raw side BC of given length a = 5 in. At C set out

the given angle 57°. From B draw BA pei'pcndicular on

to the line fi"om C.

187. All light-angled triangles possess the following

im)perty :—
If squares he constructed on ecudi of the three sides, the

square on the hgpotemise is equal to the sum of the squares

on the other two sides.

This is a very useful theorem. In Fi.o:< 112, we show how
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tlic square on tlie liypotcimsc maybe divided and rearranged

to form the squares on the oilier two sides.

J)ra\v any triangle ABO with a right-an'ile at A. Di'aw

squaies on each of tlie 3 sides of the triangle. Through
the mid-points of tlic sides of the square on the liypoleuusc

draw parallels to the sides of the triangle, ^.<?., S^f, QA; parallel

to BA ; IV, lih parallel to AC. Through the centre of the

square on long side AC draw qv parallel to BD, rs parallel

to BO. Make a tracing of DSrP, and by superposing this

F.G. 112.

tracing show that each of the figures lettered Y arc equal,

and that the figures lettered X are equal.

If we denote the two legs of the right-angled triangle by
h and c, and the hypotenuse by a, the theoi-em miy be

expressed thus :

—

Ci" = L^ + c^; or P = a- - c"" ; or 6^ ^ ct" - V\

These equations enable us to determine the length of

cither side when the other two sides are given.

Ex. 1. Ghcn & = 3 in., c = 4 in. Tlicn

a .-= VI) + 10

= a/23
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Jix.

Ex;

2. Given a

b

3. Given a

c

= 9 in., c =

= 5"Go7.

= 5 in., h ^

= 4 in.

7 in. Then

3 in.

188. In the practical work of building and snrve}M*iig,

right-angles have frequently to be set out, and it is an
advantage to have all three slides of the triangle whole

numbers, so that the foot, or the U?iJc, will serve to measure

Fig. ns.

the figure. In example 1 above, we have a useful series,

viz., 3, 4, 5, wiiich can be used to set out a right-angle.

Mark off from B, Fig. 113, along a straight line AB the

point F 4 ft.; place at B one end of a rod 3 ft. long, and at

F one end of a rod 5 ft. long ; the other ends of the rods

will meet in S, a point in the perpendicular from B.

There are other sets of three integers which form the

sides of right-angled triangles, but in many of these two of

the dimensions are almost equal, whilst the third is very

much smaller, and consequently are not so convenient in

practice as the series 3, 4, 5. If larger numbers are
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desired, it is only necessary to multiply each number by

fome other number ; we then obtain a new series as

convenient and well-proportioned as the first set.

Thus, multii)ly by 2 and wc have sides O . 8.10
,/ •> „ „ •) . 12 . ]a

4 ]•> 10 20

and so on.

189. Practical applications. Fiff. 114 is a dimensifl»ed alietch

of a jwrtion of a hipped roof ; the span of the roof, ami the height

of the ridge above the level of sKpporfing walls are given hy figures

;

the slope of the end jiortion is given in degrees. Determine («) the

length of the common raftersfor the main roof and the hevels to whieli

they mud he cut to make them fit against the ridge at top, and

Fig. 114.

the top of supporting vail at the bottom (i.e., the length of the

hypotenuse of the triangle having OA, OP for legs, and the angles at

P a7id A)
;

(J) the length of the rafter BP
;
(c) the length of the hip

rafter CP.

(1) Graphical method. Select a convenient scale and construct

the right-angled triangle POA, making PO = the given length

7 ft. 4 in., and OA = ^ of 2S ft. = 14 ft. by problem 186 (ii.).

Then measure the hypotenuse and the angles it makes with the

sides OP, OA.
To find the length of BP. construct the right-angled triangle having

one side = PO and the angle OPB = (90 — 40) = 50°.

To find the length of the hip CP, first find the length of 00.
which can be determined as the hypotenuse of a right-angled

triangle having legs respectively equal to AO, BO. With OC and
OP known, the length of CP is found in the manner explained

in Art. 183 (ii.").
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(2) By calculation.
A?

LP =

cr

"
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10. d-

pymmetiical about the centre line (shown dotted). The shkiII eireles

iiidicate the positions of pin joints connecting different bars in the

framework. The bars ah, he are e(iual in length, t^et out this truss

to scale and measure the length of each bar from centre to centre of

the [)ins. Also calculate the length of

each bar, making use of the iigured data

given on the diagram.
Answt'v. ah = he = 8*65ft. ; da = dc

= 8-8 ft.; hd = 105 ft.

(4) Fig. 116 shows the centre lines of

a system of raking shores supporting a

wail BCD. The heights of the needles

BCD against which the heads of the

shores abut are shown b}' figures, and the

position of the foot of each shore on
the sole-piece AA is also given by figures.

What length timbers are required for

the three shores S, S^, S2 ?

Atmver. IG ft. 3 in. ; 26 ft. in. ; 35 ft.

I

4 cr, N \
\|

4 in.

;
""jo \ \ V

/J
l^et out the shores above to scale and

l\
I / /\\dL^^25'' measure the bevels to which the head

and foot of each shore must be cut to fit

the wall and sole-piece AA.
(5) A tower stands on a rock : a man

on the sea at 100 yds. from Ihe foot

of the rock finds the angle of elevation

; he then rows 100 yds. further off and
Find the heights of

Fig. 116.

of the foot of the tower lo'^

finds the elevation of the top of the tower 15°.

the rock and of the tower.

The term ang-le of elevation is applied to the angle through
which a horizontal line level with the spectator's eye must be rotated

upwards to come into line with the elevated oVjject.

Ansiver. 26 yds. 2 ft. 3 in. ; 53 yds. 1 ft. 6 in.

(6) At the top of a mountain, the angle of depression of the peak
of a neighbouring mountain is 5^

; if the difference of the heights of

the two peaks be known to be 500 ft., find the distance from the

centre of the base of one mountain to that of the other. Scale ^ in.

= 500 ft.

The term ang-le of depression is a[)i)lied to the angle through
which a horizontal line level with the spectator's eye must be rotated

downwards to come into line with the object bdow.
Amicvr. 5,715 ft.
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CHAPTER XVI.

CONSTRUCTION OF TRIANGLES FROM GIVEN
DATA.

100. A triangle can in general be drawn, to satisfy three

geometrical conditions. The given conditions, or data, must
comprise three i?idependent elements.

Only two angles of a triangle can be chosen arbitrarily,

since the three andes added together 180°. If we are

Fig. 117.

asked to draw a triangle ABC having given angle A = 46°
;

angle B — 6i° ; angle C = 70°, this problem is possible,

because 46° + 64° + 70° = 180°. But we find vre can

draw innumerable triangles having angles of the given
magnitude, and some other condition is necessary to make
the problem defiuite.
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S)nietinies the <,^i veil data is suffieient to fix the size of

the figiu-e and the position of one side, and yet not wholly

lix its position, consequently more

than one figure can be found.

Fig. 117 is an example of this

type.

Again, three independent mag-
nitudes chosen arbitrarily may,

and sometimes do, constitute a

problem to which two or more
solutions can be given. Such
problems are called ambiguous.

Examples of this type will be

Fig. 118. found in problems 195 and 199.

We will now consider some

of the conditions which suffice to determine a triangle.

We denote the sides of the triangle by a small italic letter

corresponding to the capital letter denoting the angle

opposite. Thus, a denotes the side BC which is opposite

the angle A. And the three sides of a triangle ABC are

denoted by the letters a, h, c.

Experiment. Fig. 117. Draw any triangle ABC, With
centres A and C describe circles through the corner B.

These circles intersect in a second point B' ; and evidently

AB' = AB, CB' = CB, i.e., the triangles AB'C, ABO are

congruent. We learn from this diagram two things, viz.,

(i.) a triangle is given in ^luignitude ivhen its three sides are

given; (ii.) how to construct a triangle luhen its three sides

(ire given.

191. Problem. Fig. 118. Construct a A ivhen fjlven a, b, c, say 4 zw.,

2*8 in., 3-2 in. Draw one side, say, AB, of given length c = 3-2 in.

With centre A, and radius b = 2*8 in., describe an arc. With
centre B and radius « = 4 in. describe an arc cutting the arc

previously drawn in C. Join CA, CB.
The above problem is always possible if the sum of any two sides is

greater than the third side.

192. Problem. To copy a given triangle in a new position. This

may be done as explained in tlie last problem, but a much better way
is to lay a piece of tracing-])aper over the triangle, and marlc on this

tracing-paper the positions of the corners of the triangle ; then lay the

tracing in the desired position and prick through the corners, and join

up the points thus found. Adopt this method for copying any
rectilinear figure.
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11)3. If we mavx tlie positions of the three corneis of

a triaiii^le ABC on a piece of tracing-paper, as explained in

the last piohlcm, and join AB, AC, we sec that these two
sides completely fix the size of the ti'ian^i^le. From this we
conchide that a triangle is given in magnitude if two sides

and the inchulcd angle are given. It is also evident that

one side and two angles suffice to fix the magnitude of

a triangle. When two sides and an angle opposite one

side are given the triangle is determined, except when the

given angle is opposite the smaller of the given sides, in

which case two triangles can be drawn.

To illustrate these cases, we show in the following problems

low to construct triann:les from given data :

—

Fig. 119.

l'J4. Problem. Fig. 119. Given two sides a, h anJ the inclmlcd
anjrlc C. Let a = ?, in., h = 4-2 in., C = 55°.

braw side BC of given length a = 3 in. From C draw side CA of

given length l = 42 in., and making C° = 55° with BC. Join BA.

195. Problem. Fig. 120. Given two sides a, h and an angle B
opposite one side. Let </, ft, B = 2-5 in., 2-2 in., 45° respectively.

Draw side BC of given length a — 25 in. X^'roiu B draw a straight
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line makin.c: I^° = 4")'^ with CB. With C as centre and radius = //

(2*2 in.) describe a circle. In the dia'^rani the ciicle intersects the
line from B in two points ; either point may be taken us vertex A

;

and there are thus two solutions.

If side 1) be reduced so that the circle centre C only touches the line

from B, there will be but one solution. And if h be further reduced,

the line from B will have no point in common with the circle, and in

this event the problem is impossible.

Fig. 121.

OKserve, also, that when a is less than V the circle of radius h

intersects the line from B in one point only on the same side of 1>C.

and there is but one solution.

196. Problem. Fii^. 121, Given one side a and the two adjacent

angles B, C. Let a, B, C = 3 in., 50°, G5° respectively.

P.M. ^
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"0° respectively.

Draw side BC of given length a = 3 in. From E, C draw lino

making the given angles B°, C° with DC intersecting in A.

197. Problem. Fig. 122. Given one side a, the opposite angle A
and one adjacent angle C Let n, A,G = 2-5 in., .00°

In this case, since the three angles B + C + A. =
.-. angle B= 180 - (A + C)

= 180 - (50° + 70°)

= (;o°.

With the angle A known, the

problem is rednced to that im-

mediately preceding.

Or, proceed as follows :

—

Draw side BC of given length

a = 2"5 in. From C draw CS
making C° = TO'' with BC. From
any point S in this line draw Sli

making A° = 50° with CS. Draw
BA II RS meeting CS in the point A.

198. Problem. Fig. 128. Given
the base a, one base angle C and
the height //. Let a, C, h =
2-5 in., 42°, T? in. respectively.

Draw base BC of given length

a = 2*5 in. From C draw CA
making C = 42° with BC. Draw
a ))arallel to BC at given distance h = 1

CA in A. Join AB.

B R
Fig. 122.

above same, meeting

Draw base BC of given length a

a circle on BC to contain the given

Draw a line parallel to, and at the

EC.

199. Problem. Fig. 124. Given
the base a, the angle opposite A,

and the height It. Let a, A,

and /< = 2-5 in., 70', 17 in.

respectively.

It is shown in Art. 215 that the

locus of the vertex A is a segment
of the circle which stands on the

given base a and contains the

given angle A. It has also a
second locus ])arallel to the base

at the given distance h above the

base.

These two loci may intersect

in two points, in one point, or

not at all.

= 2-5 in. Describe a segment of

angle A = 70'^ by i.ioblem 220.

given distance It = 17 in., r.bove,
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In the diagram, this line cuts the circle in two points A, A' , either of

whicli may be taken as the vertex of the required triangle.

Had the line been tangent to the circle there would have been but

Fig. 124.

one solution, i.e., the triangle rt'BC, which is iwscrh'.'i. Again, if the
two loci have no point in common, there is evidently no solution.

200. Experiment. Fig. 125. Draw any straight line and on it

take four points A', D, C, A"'^. With centre B, and radius BA^ desciiba

^^-4
Fig. ri.j

a circle. With (-enti'e C, and radius CA^. describe a circle meeting
the circle centre B in A. Join AB, AC. Then the perimeter of the

triangle ABC is equal to A^A^. We have thus available a construc-

tion for drawing a triangle when given its peiimeter and the ratio of

its sides.

^ .„. 12.';. The perimeter of a triangle is 5-5 in. ; the

sides c, a, h are in the ratio of 3 : -1 : 5. Lay off on a straight line the

Problem. Fi
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perimeter A^A^ of given length ~ '>:> in. Divide AiA- at B and C
in the given ratio (see Art. H'J), and complete as above.

Exercises.

(1) A triangle has sides respectively 3, 5, and G in. long. Construct
the triangle, measure each angle in degrees, find the length of the
perpendicular falling on the longest side, and calculate the area.

(^Ans. Angles 29°,' 56°, 95°
;
perp., 2-5 in. ; area, 7-5 sq. in.)

(2) Construct a triangle having base 2 in. long, height If in., and
one base angle 75°. Measure and write down the lengths of the other
twosides, and calculate the area. Atis. 2-32 in. ; I-82in. : l-7osq.in.

(3) Draw a triangle ABC, base AB = 3 in., AC = 2-5 in., BC =
2-75 in. Measure the height of the triangle and calculate its area

;

also measure the angle ABC and take out its sine fiom the tables.

Calculate the area of the triangle making use of the formula,
area = i AB . AC sin. BAC.

Find the mean of the tivo an.swera.

(4) In any triangle, if A, B, C, be the angles, and a, J, c the
opposite sides, then,

fl2 4. 12 _ ,,2

cos. C = ^r—.
2ab

Calculate cos. C when a = 6 cm., & = 5 cm., c ~ \ cm.
Now verify the formula (and your answer) by construction,

measurement, and, if you like, the use of the tal)les. (B.E. 1910.)

(5) A person, 6 ft. high, walking along a road with the sun directly

behind him, observes that at a })lace where the road is level his shadow
measures 7^ ft., and at a place where the road has an upward gradient,

his shadow measures 5^ ft. What Is the angle which the sun's rays

make with the horizontal 1 What is the inclination of the road ?

(B.E. 1910.)

iAns. 38°, 40' ; 24° 32'.)

Exercises to Chap. XVIII.

(1) A steam engine piston is 20 in. diameter, and the rod is 2 in.

diameter. The steam pressure on this side of the piston is 200 lb.

per square inch. Find the total pressure on the piston. Ans.

62,203 lb.

(2) The area of a circle is 100 sq. in. What is its diameter ? (B.E.

1909.) Ann. 11-3 in.

(3) A circular path has an outer diameter of 50 ft. and an inner

diameter of 40 ft. Find the cost of laying it at one shilling per square

foot. Find also the cost of fencing it on both sides at live shillings

per yard. Ans. Cost of laying the path, £35 ^. \Qd. Cost of

fencing, £23 lis. M.
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CUAFTER XVI r.

RECTILINEAR FIGURES OF MORE THAN
THREE SIDES.

201. Quadrilaterals. Any fissure enclosed hy four

straight lines is called a quadrilateral.

A quadrilateral in which two sides only are parallel is called

a trapezium.
A qnadrilateral having pairs of adjacent sides equal is

palled a kite,

A qnadrilateral having its opposite sides parallel is a

parallelograir.

It is evident from Expt. Art. 110, that the opposite angles

Fig. 12(;.

in a parallelogram are equal, and any two consecutive angles

are supplementary. Hence, if one angle in a iiaralleJogram

is a rigkt-angle, then everg angle is a righf-angJe.

If the angles in a quadrilateral are right-angles, the fignre

is a rectangle.

If all sides of a rectangle are eqnal, the figure is a square.
A parallelogram having all sides equal, but not rectangular,

is called a rhombus.
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Some Properties of Parallelograms.

Experiment. Fig. 127. Draw any parallelogram ABCD. Draw
a diagonal DB. Then, because AP> = CD and AD = CC, and the
angles at A, C arc ccitial, the triangles DAI*, BCD are congruent.

This may be veritied with tracing-paper. Diaw the diagonal AC,
and satisfy yourself that this line also divides the parallelogram into
two equal i>arts. The two diagonals meet in 0. Verify also that
the two diagonals aie bisected in O, and that the triangles AOB
COD are congruent; also AOD, COB are congruent. Next, throuch
0, draw XX', YY', respectively, parallel to AD, AB. Show that XX',
YY', divide ABCD into four parallelograms exactly alike. Also verify
the following statements : The triangles YAO, Y'CO, X'OA, XOC are
congruent, also YDO, Y'BO, XOD, X'OB are congruent.

Draw any 7-honihns, a rectangle, a square, and apply the tests

described above. Also verify

—

(1) In a 7'hufnbus, and a square, the diagonals arc at right-angles

and each diagonal is an axis of symmetry.

(2) A circle can be inscribed in a rJionthus.

(3) The four corners of a rectangle are on the circumference of a
circle which has its centre in the meeting point of diagonals, i.e., a
rectangle can be inscribed in a circle.

(4) A square can be inscribed and circumscribed by circles centered

in the meeting point of diagonals.

202. The area of a rhombus may be found, if the

lengths of the diagonals are known.
In a rhombus, the diagonals bisect each other at riglit-

fingles. See Fig. 128.

Ilencc the area of rhombus ABCD = sum of areas of triangles ABD
and CBD.
Area of triangle ABD = pD x AE (since AE is V to BD).
Similarly, area of tnangle BCD = ^BD x CIj).
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Ilcnco area of rhombus = (UH) x AE) 4- (^CD x CE)
= il51)(AE + CE)
= ^BD X AC

or, avca of rhoinlms — | product of dlagomils.
Krercise. The diagonals of a

parallelogram arc res[)c'ctivoly 4 and a
8 in. long, and one side is 1| in. long. '*

Construct the figurcand find its area.

Ans. 5 sq. in.

203. Area of a trapezium
ABCD, Fig. 129. Divide it L>

into two triangles ABD, DCB,
bj drawing a diagonal BD.
The height of eacli triangle =

trapezium.

Fig. 129.

li — heii^jht of the

Area of triangle DCB = \ DC x //.

Area of triangle ABD = h AB x //.

Then total area of trapezium = (.U)C x h) + (-iAB x //).

= -^(DC+AIi)//.
= ^sum of parallel sides x perpcn-

diciilar distance between them-

Ex. In a trapezium, the. parallel sides are 10 and 8 ft. long

respectively, and they are h ft. apart. Find Its area.

Area = \ sum of parallel sides x perpendicular distance between
them.

= y X 5.

= 45 sq. ft.

204. Consider the regular polygon ABCDEFG, Fig. 130.

If we join the angular points to the centre of the figure,

these lines divide the angle at the centre into a nuniber

of equal parts. Consequently, the angle between the linos

radiating to consecutive corners of the polygon is equal

to —' , where n = the number of sides. In our example,
n

3r,0
the angle AOB ^ -~ :^ 51-428^

Now we know from Art. 182 that the exterior angle of

any regular polygon of n sides is equal to ^— , and there-

fore the angle subtended at the centre by the side of d,
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rco-nlar polyp^on is equal io each of the exterior angles

of the polygon.

205. Tlie area of «/?// polygon is found by dividing the

figure into a luunber of triangle?, finding the area of each

tiiangle separately, and adding all the areas together.

In the case of a regular ])olygon of ?i sides, we can find

the centre of the figure and join to each corner. We have

then a number {n) of triangles all equal in area, and the

area of the polygon ~ the area of on-j triangle x n.

Ex. To find tlie area of the regular ]n)hjgon AV>CT)Yj¥0. F'trj. 130.

Determine (0) the centre of the polygon. Join OB, OA, etc.

Then the area of polygon = 7 x area of A OAB.

The area of a regular hexagon can be shown to be equal

to 2-598 X (length of side)-.

Examples.

(1) A room is IT^ ft. long, '[2ft. ivlde, and 9 ft. h'lgli. It has a door

6 ft. high and 8 ft. 6 hi. wide, and a tviudow 8 ft. long and 4: ft. 6 in.

high. Find the cost of distempering the ivalls at Id. per square foot

;

also cost of papering the walls icith paper 27 in. wide at Is. (Sd. per
dozen yards. Find also the length of carpet 1ft. icide, tvhich iconld

~be necessary to cover the fioor.

The area to be distempered is the area of' the four walls le^s the

«>area of door and window.
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200. Area of any c^uaclrilateral ABCD, Fig. 131.

Divide it into two triangles by drawing* the diagonal BC,
and draw from the corners A, D tlie perpendiculars AE,
DF. Then

Area of triangle ABC = ^BC x AR
„ ., ., BCD == iW X FI)

Total area of quadrilateral = (^BCx AE) + Kf'^CxFD)
= iBC (AE + FD)

== i diagonal x sum of perpendiculars from opposite

coi'ners upon the diagonal.

Fig. 131.

E.r. In a qnadrilatcral, the diagonal is 12 ft. long, and the lengths

of perpendiculars from the opposite corners of the parallelogram u|)ou

this diagonal are 5 ft, and 8 ft. respectively. Find the area.

Area ^ ^ diagonal x sum of perpendiculars
= J X 12 X (5 + 8)
= 6x13
= 78 S(i. ft.

207. To find approximately the area of a plane
figure bounded by any curve.*
As an example, take Fig. lo3, which is a reproduction of

an actual indicator diagram for a steam engine.

Draw two parallel lines HN, HM touching the curve, and
draw the line ini perpendicular to HN and HM. Divide

HII into a convenient number of equal parts (in the diagram

10 diyisious are shown). Through these points of division

* See also Chap. XX.
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draw lines pnrallul lo UN", tlins dividinii; tlie area into 10

strips each of width h = i\^nir. (The intercepts of these

parallels are conveniently referred to as ordinates of the

lignre.)

Now tlie area of a strip of Ihc figure between two con-

secutive ordinates is npproxiinafcely eipial to the distance

between the ordinates multiplied by the length of an ordinate

placed midway between them ; thus, the area of the strip

between the ordinates 8 and is approximately h x //g.

Uence, if //i, //g. y^, . - . are the mid-ordinates of the various

strips, the total area is equal to {(//i x h) -\- {//^ x ?t) +
il/s X A) + etc,}. And since, in this example, A ^ tV^HI,

we have, total ai'ca - yV (l/i + I/2 -h !/s -\- Vi + I/^ + ^g

+ y? + 2/8 -h 2/9 + ;'/io)iiiJ- I'lie area is thus equal to a

rectungle on base IJlt and having* height equal to the

average height of the mid-ordinates of all the strips.

Where the curvature is sharp, as in the strips at the ends
of Fig. 133 we can replace the curves by a straight line

which will, to the best of our judgment, cut from, and add
to, the strip portions equal in area. Such a line is shown in

vv ; it is called an equalising line. The area of the trape-

zoid is then taken as equivalent to the actual strip, and tho

mid-ordinate terminates on the line vv as shown.

208. The weights of two or more sheets of cardboard,

zinc, or other material of uniform thickness, are, provided

the composition of the material is also uniform throughout,

proportional to the size of the sheets, This fact may bo
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utilized to determine npproximately tlic area of any jilane

figure. Cut the figure out of cardljoard, sbcot-zinc or other

available material, and compare its weight \\ith the weight

of a known unit of area of the same material.

Exercises.

Note. Jlie diagrams used in the following exercises should he

re-drawn to twice their lineal dimensions.

(1) What measurements would you make in order to find the area

of a quadrilateral and a trapezium 1 The side of a hexagon is 5 in.

Find its area. Ans. 65 sq. in.

(2) ABODE are the corners of an irregular pentagonal piece of

ground. The side AB is 200 chains long,' BO 300, CD 400, DE 450,

and EA 200, whilst the angles ABC, BCD, ODE r*EA, and EAB are
90°, 100°, 120°, 110° and 120° respectively. Make a drawing of the
ground, using a scale of 1 in. to 100 chains.

(3) The plan of a hall is given (Q. 3), scale ^ in, to 10 ft.;

L is the platform and K the body of the hall. Find the area of K in

square feet. Calculate the seating accommodation of K, 30 per cent,

of its area being occupied by passages, and allowing one person to

every 4 sq, ft. of the remainder. (B,E. 11)04.)

(4) A trench is dug of the shape and size shown in Q, 4. 1 he
scale of the figure being 1 cm. to 1 ft. Find the cross-sectional area
of the trench in square feet.

The material expands 10 per cent, in bulk, and is piled alongside
the trench in an embankment of triangular section with its sides

sloping at 45°. Draw this embankment to scale. State its height.

(B.E. 190').)

(5) Substitute Q. 5 for Q. 3 in Exercise 3, then solve the
problem.

(6) The diagram Q. 6 gives the dimensions of a plot of level land.

Draw this figure to a scale of | in. to 1 ft. Measure the lengths ( f

the two diagonals infect. Determine the area of the plot in square
yards. (B.E. 1910,)

(7) The sides of a pentagon ABODE have the following lengths :

AB = IJ in., BO - l|in,, CD = 1| in., DE = If in., EA = 2 in,,

and the diagonals AC and CE are 2 J in, and 2^ in, respectively.

Construct the figure, and write down the length of the diagonal BD.
(8) Make a tracing of Fig. 133, and find tlie area of the diagram

in square inches. What is the average height? If the indicator

spring used for this diagram requires 80 Ih. to compress it so that

the marking pencil mores one inch, what is the mean pressure through-
out the stroke? If the .stroke Hfl of the engine from which this

diagram is taken is 18 in.., and the cylinder is 10 in. diameter, what
is the horse-power ivhen the engine makes 150 revolutions per minute?
{Refer to the example on p. 183.)

Ans. Area, 1-212 sq. in. ; height, 0-373 in.
;
pressure, 29-84 lb.

;

h.-p., 31-94.
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CHAPTER xYirr.

THE CIRCLE.

CHORD AND TANGENT PROPERTIES AND
CONSTRUCTIONS.

209. Ill this chapter, onr attention will be confined to

circles, find problems directly connected with circles.

The perpendicLilar lisector vv of any chord AB of iJie

circle. Fig. 131, is the locus of cdl iioiiits equidistant from A

Fig. 131.

ctndB (Art. 114) ; a?id consequently passes through the centra

of every circle which contains AB. This property provides

a solution of the followino- :—



510. Problem. Determine the centre of a circle to pass

ihronfjh anij three given non- cotincur points A, B, P, Fig. 134.

Join Ali, BP ;uk1 draw the pei])eiidicnliir bisectors vv,

mm of the two lines. Then the line rv is tlie locns of all

points equidistant from A and B ; and the line mm is the

locus of points equidistant from B and P. Therefore the

point in which the lines rv and mm intersect, is a point

e(inidistant from the three points A, B, P, and is the centre

of the required circle.

211. V\cr, 105 shows a circle centre C, a diameter I)D',

and a line TT which passes through 1) and is perpendicular
to CD. The line TT is said to be tangent to the circle

at D ; D is called the point of contact. DC, the

perpendicular from the point of contact D, is called a
normal.

Atl normals of a circle pass through tlie ceiitre of the circle.

This property is characteristic of the circle, and thus, t/ie

tangent at mg point D on the circumference of a circle is

fcrjjendicul.u to the radius DU.
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212. Experiment. Y'l^. 1?.G. Describe any circle and
draw any chord as xx. Draw cv a perpendicular on to the

chord XX from c. AVith c as centre and radius cv describe

a circle. ]\Take a tracing of the chord xx and the line cv.

Insert a pricker at c and rotate the tracing about this point.

Observe

—

(a) Both ends of tlie line xx fall always on the circum-

ference of the larger circle, or, in other words, xx is always

a chord of the lariic circle.

Fig. 13G.

(b) XX is ahvays tangent to the smaller circle at the

point V. Hence

—

Theorem. Equal chords m a circle are equidistant from
the centre of the circle.

213. On a straight line, Fig. 137, mark points A and B
4 in. apart. With A as centre, and radius E, equal to

2-| in., describe the circle S. With B as centre, and radius r

equal to 2 in., describe a ciicle Z. The circles S, Z intersect

in two points L, M, and tico only. Join LM ; then LM is a

chord ol* both circles and perpendicular to AB, Art. 210.

Hence, the common chord of tico circles is pei'pendicular to th&

line joining tJicir centres, and is bisected in that line: also,?/'

more than two circles have a common chord, all the centres lie
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on the same sirahjht Iwe. If tlie radius r of the circle, centre

B, be increased repeatedly, the common chord will ^etlon^rer

and longer until it coincides with the diameter J)D of the

circle S; but aftei- that position is reached, the chord gets

shorter and shorter until it coincides with the point Q.
Again, if the original value of r be reduced, the common
chord gets shorter and shorter until it coincides with the

point 0. There is thus a maximum and a minimum value

Fig. 137.

of r between which limits the two circles always intersect

in two finite points, and tivo only.

Maximum r = AB -)- R
Minimum r = AB — U.

In each limiting case, the two circles have a common
point represented in the former case by Q ; and in the latter

bv 0. These common points lie in the respective tangents

QT, oT. Hence, where r is a maximum, QT is tangent to

both circles at tlie point Q. Similarly, where r is a minimum,
oT is tangent to both circles at the points?.

P.M. S
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214. Parallel circles. Parallel lines have been defined

(Art. lOG) as lines which have the same direction.

A circle, or indeed any curve, may be defined as the locus

of a point which continitally changes its direction.

Fig. 138.

Let a point P, Fig. 13S, turn about a fixed point as

centre into a new position Q, generating the circular arc

PQ. The moving point P is constrained to remain at a fixed

distance from the fixed point C,

and therefore at any instant it

can move in one direction only,

viz., at right-angles to the

radius. Thus, when the gene-

rant is at P its direction is

along the tangent PT ; when at
pi, its direction is along P^T^;

and when at Q, along QT^.

(It will be understood that

the moving point P occupies

any particular position in its

path, as P\ for a period of time

infinitely small, and therefore

the tangent P^T^ indicates the direction of the moving

point only for an infinitely small period at the particular

instant when the point occupies the position Pi.)

Consider two concentric circles AE, BR, centre 0,

Fi"-. 131). Draw^ OB which is normal to both curves.

Fia. 139.
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Imagine tlie circles as generated by points A and B rotating

about the fixed point ; then the corresponding points

A and B have the same direction, viz., along the parallel

tangents AL, BT. Now, let OR be drawn from the common
centre 0, terminating at R on the larger circle, and crossing

the smaller circle in E. Then OR is normal to the two

circles at the respective points R and E, and consequently

the two circles have the same direction at those points, from

which we conclude that circles which have a common centre,

have (a) always the same direction, and are parallel curves ;

(b) either circle is the locus of points in the plane of the

circles at a fixed distance from the other ; inside or outside

as the case may be.

Angle Properties of Circles.

215. Experiment. Fig. 140. Draw any circle centre C and any

chord PQ. Take any point B on the smaller arc and join to the

extremities of the chord PQ. Let PB, QB respectively extend to

Fig. 140.

T, T'. Denote the angle PBQ by (p, and the adjacent angle by a.

Now make a tracing of the chord PQ and the lines PBT, QBT' ; move
the tracing and place B in a new position b on the arc PQ ;

insert a

S 2
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pricker at the point h to secure the tracing at that point, and rotate

the tracing so as to make the line T'BQ pass through the fixed point Q
on the drawing ; then observe, that TBP ontlie trachuj jyasses throufjh

theJixcdjwintF. Repeat this operation, taking dillerent positions on

the arc PQ, and observe that no matter what point on the arc be

taken, the angle formed by lines drawn from the point to the

extremities of the fixed chord PQ is always the same and equal

to ((>.

Suppose the tracing to move with the line T'BQ always passing

through Q, and TBP always passing through P. As B moves from its

initial position towards the fixed point P, it traces out the circular

arc BP. When the moving point arrives at P, the line BQ on the

tracing falls along the fixed chord PQ.

Let B continue moving beyond P ; then the segment BT of the

moving line PBT will be passing always through the fixed point P,

and at°the instant when the moving point is at Jg, the angle PZ'gQ is

equal to the angle TPQ, i.e., a =- 180 - <p. Apply the tracing in

several positions, placing the point B on the tracing always on the

larger circular arc PQ, the line T'BQ always passing through Q : and

observe that BT passes always through the fixed point P. You have

thus verified the following important theorems.

Theorem 1. The angles in the same segment of a circle

are constant.

Theorem 2. The opposite angtes of any quadrilateral

inscribed in a circle are swpplementary.

It will be observed that the smaller segment contains the

larger angle, and therefore if the two segments are equal

the included angles are equal, each being a right-angle.

Now, when the chord divides a circle into two equal

segments, that chord is a diameter of the circle. Hence,

Theorem 3. The angle in a semicircle is a right-

angle.

Theorem 4. The angle in a segment greater than a semi-

circle is less than a right-angle.

Theorem 5. The angle in a segment less than a semi-

circle is greater than a right-angle.

When the tracing in Fig. 140 occupies its initial

position with the point B over the point B on the drawing,

PB, BQ are chords of the circle, PB being the longer of the

two. As the point B moves towards P, the chord BQ
increases, and the chord BP decreases continually, until

when B arrives at P, BQ lies along PQ ; and the line PBT
on the tracing is tangent at P. This experiment verifies an
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important Theorem. If at an exlremify of a chord of a

circle a taufient of the circle he drawn^ the auf/ks ivhich Ihe

chord makes with the tangent are equal to the angles in the

alternate segments. Thus, the small angle a is the angle in

the larger segment Vhfl, and the larger angle <p is the angle

in the smaller segment PJ>Q.

216. Theorem. The angle lohicJi an arc of a circle

subtends at the centre is double the angle it subtends at any
point on the circumference. For, let /3 and <^, Fig. 141, be

the angles subtended by the

arc PBQ at the centre and
circumference respectively.
Then the triangle CPQ is

isosceles and the angles

marked a are equal.

Let the perpendicular from

C on the chord PQ meet PQ
in 0, and the tangent from P
in T. Then the right-angled

triangles CPO, CTP, PTO are

similar, and the angles which
are similarly marked in the

diagram are equal.

The angle TPQ = <p

Art. 215
.-. The angle PCO = <P

but „ „ PCO -
-J/3

.-. „ „ Q = 2<p. Fig. HI.

217. Fig. 142 shows a mechanical device used to draw
a circular arc by continuous motion. PQ is the clear width
between the supports of a segmental arch ; B is the highest

point in the curve measured above the chord line PQ ; and
P, Q are points in the curve. The point B is equidistant

from P and Q. AVe desire to draw the circular arc through
the three points P, B, Q.

Let a light wooden triangle be made having two straight

edges, and shaped to the angle PBQ. Round nails, or

other suitable guiding-pins, are driven into the drawing-
board at points P, Q. The triangle is placed in position
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against these pins and given a sliding motion, the sides of

the triangle being kept constantly against the pins ; a

pencil is held close to the apex of the moving tool, and
thus traces out the required circular arc through P B Q.
An important line in arch problems is the fiormal at the

extremity of the arc ; this is obtained by placing a square

on the triangle when it occupies the limiting position shown
in the diagram.

The curve we have just dealt with forms the soffit line

Fig. 142.

of the arch, and in general another curve parallel to this

one has to be drawn to form the outer curve or extrados

of the arch.

The triangle already used will serve to draw the outer

curve, or, indeed, any number of arcs parallel to the first.

For, consider the parallel arc pbq ; then the sectors CPQ,
Cpq are similar, and the angles PBQ, jjhq are equal.*

The distance between the supports indicated in Fig. 142

by PQ is called the span of the arch ; the height of

the mid-point B above the chord line PQ is called the rise.

218. In actual work, the span and rise of the arch

are nearly always given by the designer. The draughts-

* The centre C is not shown in the diagram.
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man, when preparing a full-size drawing, prefers to

calculate the length of the radius from these known values.

A formula for this purpose may be deduced as follows :

—

Fig. U•^. Let S = PO = i the span = 1 ft. 9 in.

„ V = OB = the rise = 9 in.

and i^ = BC = the radius.

Let the perpendicular from C on to PB meet same in E.

Fig. 143.

Then the triangles POB, CEB are similar and right-angled

at and E respectively.

Whence

But

OB : BP : : EB : BC
BC = BP . EB

By substitution,

hence, BC =

OB.
EB = iPB

;

PB- 0P2 OBa

M =

R =

20B
S' + T"2

2V '

2P + 9^

2x9

20B

= 2 ft. 5 in.

219. Theorem. Iffrom a?ri/ fixedpoint two straight lines

be drawn intersecting the circle in two ^joints, tlie product of the

segme7its of one line shall equal the product of the segments of
the other, and equal the square on the tangentfrom the point

ivhen the point is without the circle.



lSn4 THE CHICLE.

(1) Let the fixed point P, Fig. 144, be within the circle,

and let the two lines be the chords AB, CD.

By Problem 151, find PF a mean proportional to AP and
PB, and similarly find PG a mean proportional to CP and
PD. Then AP.PB = PF^ and CP.PD = PG2, and by
measurement it can be seen that PF = PG.

(2) Let the fixed point P, Fig. 145, be outside the circle,

and let the two lines be PBA and PDO so that the segments
are now AP, PB and CP, PD.

By Problem 151, find PF a mean proportional to AP an<l

PB, and also PG a mean proportional to CP and PD.
Then by measurement show that PF = PG = PE, when
PE is a tangent to the circle from the point P.

220. Problem. Fig. i46. On a given line PQ as chord, construct

X segment of a circle which shall contain a given angle, say 55°.

At one end of the chord as P. draw PT making the given angle 55°
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With QP. Then PT touches the required circle at P, and its centre
lies on the perpendicular from P. The centre also lies on the
perpendicular bisector of PQ (Art. 210). It is therefore at C, where
the two loci intersect.

Fig. 146.

221. Area of circle expressed in terms of its radius.
In Fig. 147 {a), the circle centre is divided into 12 equal
sectors.

In Fig. 147 {h), these sectors are arranged in a form some-
what resembling a parallelogi-am. Now, suppose the circle

Fig. 147.

divided into 24equal parts, separated as before described and
arranged as in Fig. 147(^). The Yarious circular arcs, being
now more numerous, consequently approach more nearly to

If this process of division is continueda straight line.
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until ilie number of sectors becomes greater than any assign-

able number, the arc of each sector will not differ from a

str.iiglit line by an assignable magnitude, and the sectors, if

aiTanged ns in Fig. 147 (b), would form a rectangle having for

length, J)B = semi-circumference of circle ; and for breadth,

r = radius of circle. Hence

Area of circle = / x irr.

= Tr/\

Ex. What icould he the cod of ijaving a circular courtyard the

diameter of ivhich is 33 yds., at 5s. jJer sqttare yard I''

Area of yard = irr'^ sq. yds.

= 3-1416 X (16-5)2

= 3-1416 X 272-25 = 855-3 sq. yds.

.'. Cost = £^^ = £213 14.s\ Gd.
4

222. Area of a sector of a circle. If a circle be
divided into two or more sectors, the areas of the sectors will

be proportional to the lengths of their arcs ; and, since the

angles at the centre of a circle are proportional to the arcs

on wliich they stand, it follows that the area of a sector of a

circle is proportional to tlie anyle ofllie sec tor^ ivhether expressed

indefirces or radians. (An example is worked out on p. 1G6.)

The area of a segment AOB, Fig. 148a, of a circle

is equal to the difference between the area of the sector

AOBO and the area of triangle ABC.
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223. To find the area of an annnlns, or the space

included between two concentric circles. (Fi<^^ 148b.)

Fig. U8b

Let R =

A =
Then. A — irK^

radius of the outer circle ABC.
„ „ inner „ DEF.

the area of the annulus.

7r?-2 (or area of larger circle area of smaller

circle.

= 7r(R2 - 7-2)

= 7r(R + r)(R — 70
= T X (sum of radii) X (difference of radii).

Ex. Surronnclinfi the circular base of a monument 24: ft. in diameter
i.<i a path 12 ft. ivide. \Muit xvonld he the cost of constructing this path
if each yard super, cost \2s. 6rf, ?

Making use of above formula
A = 7r(R + 70(R — ^0
= 3-1416 X (24 + 12) X (24 - 12) sq. ft.

31416 X 36 X 12 - ,_^^ ,= ^ sq. yds. = lo0"8 sq. yds.

As each yard super, costs 12.?. 6<^., or £|, the cost of path
= £(150-8 X I) = £94 5^. Od.

224. The sectorial area of the annulus lying between the

parallel arcs BC, EF may be shown to be equal to

(C + o)h

2
where C = length of outer arc BC, c = length

ol inner arc EF, and h = distance DA between them.

A'ofe.—Exercises for this Chapter are on p. 244.



2Cd

CHAPTER XTX.

SURFACES AND VOLUMES OF SOLIDS.

225. Any geometrical figure that has length, breadth,

and thickness is called a solid.

In Fig. 149, we have a sketch of a figure bounded entirely

by planes, viz., the square DBFI, and the triangks ABD,
ADF, AFI, AID. This figure is called a pyramid. The
square is called the base. The triangles which meet in A

Fig. 149.

are called sldcfi or faces. The bouudaries of the faces are

edges. The poiut (A) in which all the sloping edges inter-

sect is called the ajiex. The line AO joining the apex to

the centre of the base is called the axis.

A pyramid may have any polygon for base. If the base

is a triangle, it is called a triangidar pyramid ; if a square,

it is called a square pyramid ; if a pentagon, it is called a

pentagonal pyramid, and so on.
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A pyramid is said to be right, or oblique, according? as

its axis is, or is not, perpendicular to the base. See Fig. 1-41),

(a) and (h).

When the base of a 7-ig/it pyramid is a ref/idar polygon
the figure is called a regular pyramid ; and all the sloping

faces are congruent triangles.

226. If we regard a circle as a regular polygon of

innumerable sides which have no finite length and imagine
lines drawn from the apex A, in Fig. 150, to points on the

circumlerence of the circle centre 0, and close together, we

Fig. 150.

obtain a figure having a sloping surface which is not made
up of a number of triangles, but which is one regular curved

surface upon which no straight lines can be drawn except

from the apex to points on the circular base. This figure

is called a cone.

A cone is said to be rUjlii or oblique according as its axis

is, or is not, perpendicular to the base. See Fig. 150, {a)

and {h).

Another conception of the right cone. Fig. 150 {a). Let
one side OA of a set-square occupy a fixed position, and let

the set-square revoh^e on this line as an axis through a

complete turn. Then the side OB describes a circle in a
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plane perpendicular to the line OA. The locus of B is the

circumference of the circle, and the hypotenuse BA
j^enerates the surface of the cone, which has OA for axis and

the circle centre 0, radius OB, for base.

227. If parallel lines of equal length be drawn from each

corner of the square DBFI, Fig. 151, and the extremities

of these lines be joined in proper order, we obtain a figure

bounded entirely by planes, viz., the two parallel squares

DBFI, DBFI, and four parallelograms DBBD ; BFFB
;

FIIF ; IDDI. This figure is called a prism. The squares
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228. Tf the sides of the polygonal base of a prism be
contimially increased in number, and reduced in length,

then finally tlie plane faces disappear and are replaced by a

regular curved surface on which there are no straight lines

except those joining corresponding points on the periphery

of the two ends of the solid, i.e., parallel to the axis of the

prism. See Fig. 152. This figure is called a cylinder.

When the base is a circle and the axis is perpendicular to

the base, the cylinder is called a rigid circular cylinder.



272 SURFACES OF SOLIDS.

models will serve, they will be of great assistance to the

student and save him much mental labour when engaged on

anj problem connected with the particular solids.



SURFACES OF SOLTDS. 273

Tf a in. is the length of tlie edge of the cube, then the

area of eacli face = a- in. And hence

the snperficial area of cube = ^ufi sq. in,

231. Right prism. Tlie, mqm-ficial arm of any r'ujld

}7i'ism is equal to the area of the tioo ends added to the

rectangles ichkhform the faces or sides of the prism. There

are as munij rectangular faces as there are sides to the

polf/ffonal base.

The diHUTam, Fig. 154, if cut half through along the

dotted line, and folded, will make a hexagonal prism.

Fig. 155.

232. Right cylinder. The stiperficicd area is equal to

the area of the two circles forming the ends added to that

of the curved surface.

Suppose we have a short length of a round iron bar
or other cylindrical object, placed on end, as in Fig. 15.5.

Wrap a strip of paper tightly round the object and insert a

pricker where the paper overlaps. AVhen this paper is

unfolded, the distnnce between the two pin-holes is the

circumference of the circle which forms the base of the

cylinder. If we take a strip of pnper of width equal to the

height of the cylinder and length equal to the distanca

P.M, T
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between tlie two pin-boles in tbe clingram,\ve g'eta rectiinojle

liaviii^i; sides respectively e([ual to tbe beigbt of tbe cylinder,

and tbe circumference of tbe circular base. Tbis rectan_i>-le,

if applied to tbe curved surface of tbe cylinder, will be found

to cover it exactly. Hence for a cylinder of diameter d in.,

and beigbt h in.,

Area of each end = -^d"^ sq. in.

Area of curved surface = circumference of cylinder x height

= ird . li . sq. in.

,'. Superficial area = — + -t" + '^^'''

= ird {'^ + /<
)
sq. m.

Ex. Find the cost of paintbuj the exterior of a closed

cylhidr'ical tank which h 10 ft. In diameter., and 15 ft high at

l^d. jfcr sq.ft.

Area of c.ch end = f^ X IO2J sq. ft.

Area cf curved surface = (tt x 10 x 15) sq. ft.

Superficial area = 2 Q x 100
j + (tt + 150)

= 628 sq. ft.

Or, using above formula :
—

Superficial area = ird r^+ h\ = -„ x 10 (5 + 15) = 628 sq. ft.

l-o X 628
Cost = ~^- — = £3 18.s\ Gd.

233. Micrometer screw caliper. Fig. 156 shows a common
form of micrometer gauge used in making exact measurements
of the thickness of metal plates, the diameter of wire, and other

objects. The spindle c is attached to the thimble E, and is threaded

to fit a screw on the inside of the hollow cylindrical sleeve D, which
forms part of the frame A. As the thiml^lc is turned between the

thumb and finger, the s()indle revolves with it, moving through the

threaded sleeve approaching or receding from the anvil B, according

to the direction in which the thimble is being revolved.

In order to allow of the distance between tlie anvil and the end of

the spindle being read off with facility, scales are engraved on the

sleeve D of the frame and on the bevelled edge of the thimble. These

scales are not the same on all micrometers. Some tools are graduated

to measure millimetres and fractions of the millimetre. The tool

shown in Fig. 156 is made to measure thousandths of an inch. The
pitch of the screw-threads on the spindle is j\y in. One complete
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revolution of the spindle therefore moves it along the sleeve ^ (or
0-025) of an inch. The sleeve is marked with lines .^^ inch apart so
that each division on the sleeve corresponds to one complete turn of
the spindle and represents a movement of the spindle equal to
0"025 in. Each fourth line, representing ^ (or O'l) of an inch,
is longer than the others. The z.ero (0) mark on the sleeve coincides
with the position of the edge of the bevel on the thimble when the
micrometer is closed. Hence, when the anvil and spindle are in
contact no part of the scale on the sleeve D is visible. Backward
rotation of the spindle through one complete revolution brings
the edge of the thimble to the first line on the sleeve reading from
0. Further rotation through one more complete revolution brings
the edge of the thimble to the second line from o, thus exposing
to view two of the scale divisions on the sleeve ; and so on. And,
since every part of the spindle and thimble recede equally from the
anvil F), tfte dldunee hetioeen the anvil and spindle is always eq^ual to

the visible lortion of the scale on the sleeve.

Fig. 156.

The bevelled edge of the thimble is marked with a line —
, which

coincides with the scalar line on the sleeve when the micrometer
is closed, and is divided into twenty-five equal parts ; every fifth

division line being numbered 5, 10, etc. Rotating the thimble from
one of these marks to the next moves the spindle along the sleeve

^ of 0-025 in., or onr-thousandth of an inch. A rotation of two
divisions moves the spindle two-thousandths of an inch and so on.
Rotation through a complete revolution corresoonds to a lateral
movement of 0-025 (or 5L) of an inch. The fraction of a complete
revolution through which the spindle has been rotated, is indicated
by the particular mark on the thimble scale coinciding with, or
nearest to, the long scale line on the sleeve. Hence, to read the
micrometer we have the rule : Multiply the number of divisions
visible on the sleeve scale by 25, and add the number of divisions on
the thimble scale, counting from to the line which coincides with
the scale line on the sleeve.

Ux. The object being measured in Fig. 156 is seen to be twelve
divisions of the sleeve scale and a fraction of the next division,

i.e., (12 X 0-025 in.) + a fraction of 0-025 in.

T 2
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The scale line on the sleeve coincides with the third mark from
on the thimble scale, hence the measure of the fraction above is ^,

or three-thousandths of an inch.

The object measures (12 x 0-025 in.) + 0-003

= 0-303 in.

Fig. 157.

23 i. Right pyramid. The sujwrfidalarm ofanypyramid
is ohiained by addiny the area of the base to that of the

frianyular faces. There are as many of these triangles as

there are sides to the polygonal base.

The diagram, Fig. 157, if cut and folded along the dotted

lines will form a right penta-

gonal pyramid.

235. Circular cone. If a

piece of paper be wrapped,

without crumpling or tearing,

round tlie curved surface of a

cone (Fig. 158), and cut with a

knife along the edge of the

base and the line AB, and then

folded out, the paper will be a

sector of a circle (Fig. 159) of

radius AB equal to the slant

height of the cone, and the

length of the arc BD will be

equal to the circumference of

the base of the cone.
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If we know the [icrpendicular lieii:;lit A, and radius of

base r ; then since an,ii:le AOB is a right-angle, the slant

hci-lit AB = Vr^ + h\
'n\Q arc BD = iVr.

mi 1 7^*T. • T ]cn,^th of arc 27r/'
llic anf^le UAH in radians = p = --rT>'° radius AB
If / = AB, we have

—

Area of sector = |(radius)^ X (angle in radians). See p. 106.

-2^ X
^

Kr. Find superjichil area if a cone of radius of base /• = 3 in.,

and slant lieight I = b in.

(Superlicial area = area of base + area of curved surface.)

= 7r/-2 + irrl.

= Kr(r + I) sq. in.

= 7r3(3 + 5).

= 2l7r sq. in. = 75*3G.sq. in.

Note. — The ancrle

DAB, Yvr, 15!), of the
developed surface of a

cone IS —— radians, or

(3(i0" X f )
decrees

when r = radius of

base and I = slant

height AB of the cone.

JiCt Q denote the base
angle of the cone. Then

J-
— cos 0, hence the

angle DAB = Sf.rr cos

degi-ees. Thus, if = 60%
cos = ^, and the angle
DAB for a cone hav-
ing a base angle 60° =
300° X h = 180°. Fig. 15J).

236. Volumes of solids. Expressions for the volumes

of some geometrical sohds are j>iven below;

—

A cube, length of edge a ft.

M)//iiiie = area of one face x height

hence F = a^ ^ a = a^ cub. ft.
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A square prism, height h ft., edge of base a ft.

Yolnme = area of base X height

hence V = aVi cub. ft.

A triangrular prism, height h ft., sides of base a, b, and c ft.

YoluDw = area of base x It

hence F = { slK^-^aXs - A)(.s- - c) x // } cub. ft.

a -\. h -\-

where s = .

A hexagronal prism, height h ft., sides of base a ft.

Volume — area of base x h
hence V =^ 2-h\)^aVt cub. ft.

A circular cylinder, radius of circle /• ft., height h ft.

Yoluiue — area of circular section x li

hence F = iri'^h cub. ft.

237. To find the volume of a hollow lochj we may find the

volume as if the bod_y were a solid one, tlien find the volume

of a solid which Avoiild just fill the void in the hollow body,

and subtract the latter volume from the former. The result

is the required volume.
Ex. A cylindrical hollow column has an outer diameter D in., and

an inner diameter d in,, and is li in. high. Find an expression for its

volume.

Sectional area — ~ D'^ —rd'^.
•i -±

= ^ (Z;2 - ^2) ^ :^^D - dXD + d).

Volume = - (Z> - d^{D + d)h cub. in.

If, in the above example, D = 12 in., ^ = 10 in., and h = 10 ft.,

find the weight of the column if each cubic inch weighs 0"3 lb.

Volume ='^{D - d){D + d)V2 h cub. in. (note, h is given in feet)

, ,. ,. TT X 2 X 22 X 12 x 10 , .

substituting = cub. m.

TT X 2 X 22 X 12 X 10 X 0-3 „
weight = 7 lb.

= 1243--1-1 lb.

238. To find a rule for the volume of a pyramid, con-

struct a cube ABCFGHK on the base AliCD of the

pyramid in Fig. IGO, and snjipose the point E to be at the

exact centre of the cube. The cube would contain six ri.izht

square pyramids similar to x\BCDE. The volume of the



VOLUMES OF SOLIDS. 279

cube is a^ cub. in. if AB = a in. lonpf ; hence the volume of

each pyramid is ABCE — — cub. in. The area of the

base of each pyramid is n^ sq. in., and since E is in the

centre of the cube, the length of -the axis or the height of

each pyramid is -^ in. If we multiply the area of the

base {a- sq. in.) by one-third of the height f ^ X
-J,

we get

a- X -^or — which agrees

with the volume of the

pyramid as found above.

The rule for finding the

volume of a i-iijramid may
thus be stated : muJtiphj the

area of the base of the

pyramid ty one-third of the

height and the j^^'oduct is

the volume.

239. It must be noted that

the height in every case must
be measured perpendicular

to the base of the pyramid.

In a right pyramid, the height

is equal to the length of the axis, but in an oblique pyramid

this is not so.

Ex. Let r = radius of base of a cone in inches.

h = perpendicular height AO in inches.

Then volume = area of base x - height

V,
cub. in.

If the cone is 4 ft. high and has a base of radius 3 ft.

Volume = 9x4 = 37-68 cub. ft.

240. The formula for volumes of prisms given in Art. 230

will become the volumes of corresponding pyramids if each
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is divided by o. For example, volume of a square pyramid
side of base a aud height h is ^a^h.

4
241. The voUime of a sphere of radius r = -iri^ cub. in.

The superficial area of a sphere of radius r = A-n-r'^ sq. in.

These results should be remembered. See also Art. 2J9

aud Chap. XXVIII.

Ex. \. Show that the volume of a sphere is equal to two-thirds of
the volume of the circumscrihing cyUnder.

Let r — radius of sphere
Then r = radius of base of circumscribiDg C3'lin ler

and 2r = height of cylinder, since each end just touches the

sphere at opposite ends of a diameter.

4
3^

Volume of cylinder = area of base x height
= 7r/-2 X 2r
= 27r;-3

±.rs
Eatio Volume of sphere _ 3 _ ^ _ 2

A'olume of cylinder 2irr^ 6 3

Ex. 2. Show that the sitpei'Jicial area of a sphere is equal to that

of the curved surface of the circumscrihlng cylinder.

Let r = radius of sphere
Then r = radius of cylinder, and 2r = height.

Superficial area of sphere = Jtt/^.

Area of curved surface of cylinder = length of circumference of

base X height, 2irr x 2r = ^irr^.

Ex. 3. A cylinder, a sphere., and a cone., are of equal diameter,

and the height of cone ayid ci/linder = diameter of sphere. Show that

the volumes of cylinder, .sphere, and, cone are in the ratio ofS, 2, 1.

Let r = radius of sphere, cone, and cylinder.

Then height of cone and cylinder = 2r.
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242. If a ring be cut across radially and opened out iuto

a straight piece, it becomes a prism of length equal to the

length of the mean circumference of the ring.

The volume of a ring of any section is thus equal to the

sectional area multiplied by the circumference of a circle of

radius equal to the mean radius of the ring.

Fig. 161. Let r = inner radius of a ring of rectangular

Bection.

Let R = outer radius of the ring and t = thickness.

Then mean radius = —:^

—

R + r

Area of section = (R — r)t

Hence volume = (R - r)/ x 27r

= (R-r)/ X 7r(R + r).

The superficial area of a ring

is equal to the perimeter of any
radial section multiplied by the

length of the mean circumfer-

ence. The perimeter of a section

of the ring in Fig. 161 =
2 (R - r) + 2/^.

Length of mean circumfer-

ence = 7r(R+r).

Hence superficial area

= 7r(R + ^') X 2 {(R - r) +

Logarithms should be used wherever
possible for solving examples in men-
suration. Two such examples aie shown
below :

—

-tr ^r^
Ex. 1. Find the volvme and sujjei'- rlG. 161.

/icial area of the rim of a fy-wheel of

circular section, the outer diameter being \2 ft. and the radius

section of the rim 6 in.

= ^±-
2

if the

Mean radius of rim 5-5 ft.

Mean circumference of rim = 2ir radius = 2 x tt x 5-5 = llr
Area of section of rim = tt x (Oo)2 s^j. ft.

Volume = TT X (0-5)2 ^ 1 Itt cub. ft. - ir^ x (0o)2 x 11
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Log. volume = 2 log. tt + 2 log. 0*5 + log. 11

= (2 X 0-4972) + (2 X I-G'JDU) + LOIU = 14338
Hence volume = 27'15 cub. ft.

Perimeter of section of rim = (tt x 1) ft.

Superficial area of rim = (tt x 1) x IItt

= Il7r2

Log. superficial area = log. 11+2 log. tt

= l-'o-lH +(2 X 0-4972)

= 2-0358

Hence supeificial area = 108 -(3 sq. ft.

E.7'. 2 Find the weight of a holloiu cast-iron hall of outer diameter
\o ft. and, inner diameter 12 ft., if each cnhic inch loeighs 0-2G lb.

Weight of 1 cub. ft. of cast iron = (0-2G x 1728) lb.

4
Volume of sphere = -7r(15)3 — 4,r(12)-^

= i^(153_i23)

= rTT X 1647 cub. ft.

Weight of sphere = ^^r x 1647 x 0-26 x 1728

Log. of weight = log. 4 + log. tt + log. 1647 + log. 0-26+ log, 1728
- log. 3

= 0-6021 + 0-4972 + 3-2166 + 1-4150 + 3-2375

- 0-4771

= 6-4913

Weight = 3,099,000 lb.

Exercises.

(1) A reservoir is 50 ft. long, 30 ft. wide, and 8 ft. deep, and it is

filled with water. What weight of water does it contain ? How many
gallons does it contain ? 1 c. ft. = 62-3 lbs.

(2) A swimming bath is 30 yds. long and 12 yds. wide, and its

depth varies gradually from 7 ft. at one end to 3 ft. at the other.

How many gallons and how many tons of water does it contain ?

(3) A column is 5 ft. diameter and 12 ft. high. Find its super-

ficial area (both ends included) and its weight if each cubic foot

weighs 100 lb.

(4) Find the superficial area, volume, and weight of a hexagonal

pyramid of height 10 ft., the side of hexagon being 3 ft. long. Each
cubic inch of the material weighs 0-26 lb. The length of the line

joining the centre of the base line of each triangular face to the apex
must be found graphically.

(5) Find the volume of a cone 15 ft. high, the base having a

diameter 3 ft. 6 in. Use logs.

(6) The base of a cone is a circle of 3-25 in. diameter. The vertical

height is 5-24 in. It is made of cast iron, which weighs 0-26 lb. per

cubic inch. What is the weight of the cone ? (B.E. 1909.)
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(7) A vessel is shaped like the frustum of a cone, the circular base

Is 10 in. diameter, the top is .5 in. diameter, the vertical axial height

is 8 in. By drawing, find the axial height to the imaginary vertex of

the cone. If x is the height of the surface of a liquid from tiie bottom,

plot a curve, to any scales you })lease, showing for any value of ./ the

area of the horizontal section there. Three points of the curve will

be enough to find. (B.E. 1905.)

(8) A hexagonal bar of 3 in. side and 1 ft. long has a circular hole

1 1 in. diameter boi'cd through it longitudinally. Find its weight if

eacli cubic inch weighs 0-2G lb.

(D) A hollow cylindrical column is 50 ft. high, outer diameter is

5 ft. and inner diameter 3 ft. Find its weight if each cubic inch
weighs 0-26 lb. Find the cost of painting it externally and internally

at \(l. per square foot.

(10) A hollow iron column is 12 in. external diameter, and the

metal is IJ in. thick. It carries a load of 125 tons. Find the com-
pressive stress, I.e., the load upon each scjuare inch of sectional area
of the column.

(11) A brass tube, 8 ft. long, has an outside diameter 3 in,, inside

2"8 in. What is the volume of the brass in cubic inches ? If a
cubic inch of brass weighs 0'3 lb., what is the weight of the tube ?

(B.E. 1905.)

(12) A sphere of stone is 3 ft. in diameter, the weight of the stone
per cubic foot is 120 lb. ; what is the weight of the sphere 1 (B.E.

1907.)

(13) A circle is 3 in. diameter, its centre is 4 in. from a line in its

plane. The circle revolves about the line as an axis and so generates
a ring. Find the volume of the ring, also its surface area. (B.E.
1905.)

Ansiccrs.

(1) 747,600 lb. ; 74,700 galls. (9) 282,400 lb. ; £2 12.?. 4^.

(2) 450-5 tons ; 100,926 gnlls. (10) 296 tons per square inch.

(3) 227-6 sq. ft. ; 23,562 lb. (11) 87*48 cub. in. ; 26-24 lb.

(5) 48-11 cub. ft. (12) 1,696 lb.

(6) 3w67 lb. (13) 177-7 cub. in.; 236-9 sq.

(8) 67-44 lb. in.
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CHAPTER XX.

MENSURATION OF IRREGULAR FIGURES, Etc.

CENTRE OF GRAVITY; CURVATURE.

213. Iti the present cliaptei' will be given some further

nsefiil rules in mensuration ; the mensuration of irregular

figures and solids, and of solids of revohition
;

practical

methods of estimating volumes ; methods of finding

centres of gravity ; some useful problems

dealing with loci ; involutes and

evolutes ; and curvature.

Area of a Triangle. Fig. 162.

When the l)ase and height are given,

the ana, as explained in Art. 38,

is = 1 X base x height, or | hh.

As the height h = c x sin. A, the fig. 162.

area = ^l>c sin. A, or generally, area

= I product of two sides and the sine of included angle

(as b, c, A).

When the three sides are given, the area is found from

the formula.

Area = V s {s — a) {s — b) {s — c), in which

s = -, or half the sum of the three sides.

Ex. Find the area of a trutngle having sides 12, 10,

atid S/L
(.« - ft) = (15 - 12)'= 3

_ 12 + 10 + 8 _ (.s- - 5) = (15 - 10) = 5

2 ~ ^^'
(.s- - c) = (15 - 8) = 7.

.'. Area = ^15x3x0X7"= VTv76~= 39-7 sq. ft.

244. Area of an Irregular Figure. One method of

finding the area of an irregular figure is to divide the

figure into a number of strips of equal width, and regard

each strip as a rectangle whose width is equal to the width

of the strip, and whose length is equal to the central ordi-

nate of the strip. Tliis method has already been dealt with

in Art. 207, when finding the area of an indicator diagram.
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yz Ya

Another method is to draw the irre2:nlar figure upon

squared paper to scale, and count the nun)l)er of squares

enclosed. The area of each square depends upon the scaks

adopted. Part of a square may be neglected, if less than

half the, area of a square, and counted as a whole square

if it exceeds the half.

A further method involves for its proof the area of a

trapezoid, or trapezium, and is known in its application

as the trapezoidal rule.

The area of a trapezium is

shown in Art. 2G2 to be

equal to half the sum of

the parallel sides x per-

Vs \y& y? pendicular distance between

the sides.

Let the figure ABCD
(Fig. 163) represent a plot

Fig. 1G3. of land bounded by straight

roads at right-angles on the

sides AB, BC, and let CD be parallel to AB, and AD an
irregular boundary.

To find the area, divide it into any number n of strips of

equal width h, and measure the lengths of the ordinates ?/i,

2/2, etc. In Fig. 163, n = 6, and we have (a + 1) or 7

ordinates. Each strip can be regarded as a trapezoid.

The area of the strip ABEF is ^ ivi + yAh.

y.

BEG
y4

The area of the strip FEGH is ^ U
The whole area is

^3

J"

-V'

(yi + 1/2) + (i/-2 + 2/3) + (^3 + 2/4) + . .
. Oh + 2/t)|

{ 2/1 + 2 ^-^ + 2 //3 + 2 y, + 2 y, + 2 y/o + 1/,]

= ^|^^-±^y. + ?/3 + //. + //, + ye}

=
1
2 sum of first and last ordinates + sum of intermediate



2Sr, MENSURATION OF IlUiEOL'LAR FIGURES, Etc.

ordinates 1 multiplied by the distance between consecutive

area
ordinates. The mean height or ordinate = —j-,

245. Simpson's Rule for finding Areaof an Irregular

Figure. Divide the area into an even number of strips
;

then, referrino- to Fig. IGo,

Area ^\[y, + Vt^- ^ {ih + 2/4 + ^g) + ^ (2/3 + V^) }

or in words : Add together

thetirst and last ordinates,

four times the sum of the

even ordinates, and twice

the sum of the odd ordi-

nates (omitting the first Yia. 16

K

and last). Multiply the

sum by one-third of the distance between consecutive

ordinates, and the product gives the area.

When the tirst and last ordinates are zero, as in Fig. 104,

the area is
^ |

4 (7/2 + ^4 + y,) + 2 {ij, + ^5) }
•

246. Volume of an Irregular Solid. Any of the above

rules for irregular areas can be applied to volumes, if we

measure the sectional areas at equidistant points, say h apart,

and substitute "area" for "ordinate" in each rule.

Denoting the sectional areas by Ai, A2, A3, etc., then

Simpson's Rule gives

Volume = II
A, -f A7 + 4 (A., + A, + A^) -f 2 (A3 -f A,)

|

when the volume is divided into six parts. As an example,

the volume of a tree trunk could be estimated by measuring

the girth at, say, seven equidistant points, treating each

section as a circle, and thus estimating the area of each

section.

When ordinates of areas, or sectional areas of volumes,

are given at points which are not equidistant, the ordinates,

or sectional areas, should be plotted on squared paper, and

a graph drawn through the plotted points. The ordinates

orsectional areas at equidistant points can then be measured

from the graph.
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SiiiiiliiHy, we can estimate the volume of an irrcf^'nlar heap

of material, or a girder of variable section, l)y making
measurements from which the sectional area at various

points can be determined.

The capacity of a trench, cutting, reservoir, riverbed, etc.,

can also be found if we ascertain the sectional areas at

various points, and apply the given rules. AVhen the

method of counting squares, or the mid-ordinate rule is to

be used, the ordinates of the figure represent to scale the

areas at the points chosen.

If three sections only are taken, Simpson's Rule becomes

7 (This is often

Volume = -
{ A. + A, + 4 A,

I

. -^^'^^
MULA.)

^, ^. . volume volume
The average section

3 X 2 A (

length 2 h

Ai + A3 + 4 A).

= -
I

first section + last section + 4 central section 1

247. As an example of each of the above methods, the
following exercise will be worked :

—

X is the distance in chaim measured alo)ui a straight line 09 from,
the point 0, the rabies of y are offsets or distances in chains measured
at rUjJit-anyles to 09 to the border of a fold. Draw the shape of this
border. Find the area in square chains between the first and last offset,

and the stra'igltt line and border. Notice that tJie intermls in x are
not equal. (B. E., 1908.)

X
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found to be 0-4 chain when the area is cliviiled into nine equal strips

Hence area = width x average ordinate.

= 9 X 04 sq. chains.

= 3-G sq. chains.

(3.) r.y the Trapezoidal rule, dividing the area into nine equal

strips we have 10 oulinates, and h = 1 chain.

Area = 1 (

^'""^

t
^'"^ + 0-35 + 0-34 + 0-46 + 0-44 + 0-42 + 039

+ 3G + 0-41

= 3-fi95 sq. chains.

(4.) By Simpson's Rule, dividing the area into 12 strips each of

0123456789
chains
FiCr. 165.

7.5 chain wide, we have 13 ordinatcs. (The twelve divisions are

shown by a line 'at the top of Fi;jr. 32:>.)
^ ., . ^ o- x

()-7o
I

0-53 + 0-52 + 4 (0-41 + 0-37 + 0-i5 + 0-41 + 03/
)

Area = -^ \ _^ q 44) + 2 (027 + 0-46 + 0-43 + 0-39 + 35) )

= 0-25 X 14-65

= 3-06 sq. chains.

248. Centra of Gravity.* If a solid body, say a thin

plate of irreo'ular shape as shown in Fig. IGG, be suspended

from any point A, it will come to rest in some ueiinite

position. Let AC be a vertical line drawn on the plate

through A in this position. Suspend the plate from any

other'i^oint B, and let BD be the vertical line then

drawn through B. These lines AC, BD intersect in a

* See also Chapter XXVIIT.
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point 0. if wc suspend the plate from any other point,

and draw a vertical line throiig-h tl:e point of snspen-

_ sion, tliis line will also pass through ().

X^f \ 'I'll*-' lK)int is called the centre of
^ gravity of the plate. if .we take an

jrrei^iilar solid body, other than a thin

plate, e.//., a piece of stone, we cannot
lind the position of the centre of gravity

by the experimental method set out

Fic. liiG. above, for the vertical lines pass through
the material and hence cannot be seen

;

nevertheless, they intersect in

the point which is the centre

of gravity.

It is shown, in works en
Mechanics, that the following

method locates the position of

the centre of gi-avity. The
method is here described ns

npplied to an irregular area,

e.r/., a thin plate A, Fig. 1G7.

Draw two lines OX, OY, at Fm. 1G7.

right-angles, and each touching

the boundary line of the plato. Divide the plate into

a number of strips of small width ?j, parallel to one line,

say OX.
Find the area of each strip, say, cii, a.^ a^, etc.

The centre line of area ch is distant — from OX.

o !/ OX, etc.

Then if ij bo the distance of the centre of gravity from
OX, and the total area be A)

A . y =. (., X ^) + („, X «/) + („3 X iL^/) + , , . („, X 1|?)

I
Sum of products of each area into the distance of its \

centre from (»X |"

ory =

P.M.

Total Area
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1 a-By dividin<.^ the plate into a number of strips of widtl

parallel to OY, we can find in a similar manner the distance

X of the centre of gravity from OY. The intersection of

the two lines gives tlie position of the centre of gravity, and

hence x, y are the co-ordinates of the centre of gravity,

with OX, OY as axes of reference.

For a solid body other than a thin plate, we take three

planes of reference which intersect in lines OX, OY, OZ,

mutually perpendicular, as in Art. 41 ; divide the solid into

small slices parallel to each plane in turn, and calculate, as

Fig. 168.

above, the distances x, J/, z, of the centre of gravity from

each plane. These distances are the co-ordinates of the

centre of gravity with OX, OY, and OZ as the three axes of

reference.

If an area is symmetrical about any axis, the centre of

gravity lies in that axis, hence, only S or ?/ need be deter-

mined, for we can take OX or OY parallel to the axis of

symmetry.

IJx. Find the centre of (/rari/i/ of a si'mu-irenhir dira of radius r.

Fig. 168. Tiie semicircle is symi'iictii<-al about AA ;
hence the centre

of gravity lies in AA, and we take OV parallel to AA. We require

y, or the distance of the centre of gravity from OX.
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Divide into four strips, by lines BC, DE, FG.
Then by counting S(iuares, area Ui = IDS sciuares.

„ rt2 = 181 squares.

,, ^/3 — 151 squares.

,, <?! — DO squares.

The centres of the areas ai,tf.2. <^tc., are 2-."), 7-5, 12-5, and 17-5 squj r js

respectively from OX ; the whole area = G28 S(|uares.

Hence
(108 X 2-.-0 + (isi X 7-r.) + (ir. j X i2-.'0 + (w X i7-r>)

y
- "

G2U
^ 8"59 squares from OX.

We Lave taken r == 20 squares, hence
Q. "

(I

/7 = '—^^r = 0-42'J ;• from the diameter OX.

If we take more strips than four, we obtain a more accu-

rate result. The correct value of y, and a useful form in

4 r
which to remember it, is

~-
, wliich = 0*4244 r.

o 7r

Table of Centres of Gravity.

If an area is symmetrical about two axes, the centre of

gravity is at the intersection of the axes, e.g.—
In a circle it is at the centre. .

Ellipse, at the intersection of the major and minor axes.

Parallelogram, at the intersection of the axes.

The centres of gravity of other areas, etc., are as follows :

—

Isosceles triangle . . . ^ height from base.

Any triangle . . . .at intersection of medians.

^ . . , 4 radius
Semicircular area . . . — ., or 0*4244 radius

6 TT

fi'om diameter.

Segment of parabola // = 4: ax . | height from base.

^ . . , . diameter ^
Semicircular Avire . . . from centre.

249. A solid of revolution is the solid traced out by

any curve revolving about an axis in the same plane as the

curve

—

e.g., if we rotate a semicircle about the diameter we
trace out a sphere.

U 2
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Guldiu's Theorems. (1) The area of a sui-face

traced out by the revolution of a curve (includiiii^ a
straiglit hne or lines) about an axis in its own ])lanc is

equal to the product of the perimeter of the curve, and
the length of the path of its centre of gravity during the

revolution.

(2) The volume generated by the revolution of a curve
about an axis in its own plane is equal to the product of

the area enclosed by the curve and the length of the path of

its centre of gravity during

the revolution.

The results of the followin":

examples shoiiltl be compared
with the results obtained in

Chap. XIX.
(1) Circle of radius r. A

circle is generated by a line rota-

tin sr about an axis at one end.

— h

o o

FIG. 1G9.

The path of C. of G. is 2 tt
.^
= irr.

/. Area — ?• x irr — in'^.

(2) Cylinder 6f radius r, height h. Fiij:. IGO.

Voluvie. The rectangle [li x r) is the area which, rotating about

00, generates a cylinder of radius ;• and height h.

V
Centre of gravity is — from 00.

Tn one revolution, C. of G. moves a distance of

f2 7r X ^VorTrr.

»'. Volume of cylinder = Area x Path of C.G.
=s In- X irr.

= Tzr^h,

Supcrjicial Area. A line h distant r from 00 generates the curved

Surface.

.-. Area of curved suiface ^ h x 2 nr ^ 2 irr/i.

The circular ends are each generated by line r.

2 irr
.-. Each end has area r x —-— ^ nr^.

Total surface = 2 tt/-^ (two ends) + 2 ir7'h (curved surface).

(3) Ring of circular section. Fig. 1 70.

Outer diameter of ring D.

Sectional area of diameter d,
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Volume. Gencvated by rotation of circular

area, shown shaded, about 00.

Area of section — d'^.

C. G.= (.§
-

f)
f, om 00.

rathofC.G. = 2ir^^^
.^

'^^ ^ 7r(D - d). O
Hence volume d^ X TT (D - ^0

d).

Siq)evficial Area. Generated by revolution of

circumference of the circular section about 00.
Length of circumference — ird.

Path of C.G. = TT (D - d).

Hence superficial area = trd x it {T> — d).

- TT'^d ( I) ~ d).

(i) Area of curved surface of cone.

Let height — /^ and radius of base - r.

The curved surface is generated by
line AO rotating about 00.

V
The centre of gravity C is - from 00.

r
Longthof pathof C.G. = 2 tt -- = -kv.

-0

Fix. 171.

-rr

\1
Length of AO = Z = v'/^ + li^.

Curved surface = I X "ti".

= TTj-I, or irr V /^ + 't^'

(.5) Sphere. Fig. 172.

A sphere is generated by the revolution of

a semicircle about a diameter.

Volume = area of semicircle x pathof C.G.

== 1 tt; 2 X 2 TT . OG

Tr;2 2 7r.4r

h —
Fig. 17L

(-=^)LZ
Fig. 172.

Siq)evjiclal area, generated by the semicircular arc rotating about
diameter.

Length of arc = vr.

2r
Position of C.G. = —from diameter.

Path of C.G. =:2 7r = 4 r.

Superficial area == tt;- x 4 ?• ^ 4 7r/'2.
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2 ;")(). The Theorems of Guldin are useful for finding

the position of the centre of gravity of curves and
areas ; fcliu^, for u semicircuhir wire we have length of

wire = Try if r is the radius. The surface traced out by
the wire rotating about the diameter we know to be a

spherical surface whose area = 4 -n-r-. Let the distance

OG (Fig. 170) of the Centre of Gravity from the diameter

be X. Then length of path of C.G. = 2 irJc.

By Guldin's Theorem

—

(irea) 4 -rrr- — -n-r (length of wiro) x 2 tt.^,

or
4 7rr2 2r„ ,.= -—^ = — from diameter.

A semicircular area generates a sphere of volume - -rrr^,

o

when rotated about its diameter.

The area of semicircle = - ttv-.

Let X = distance of C.G. from diameter.

Tlien length of path of C.G. = 2 ttx and

- TT/-* = 2 ttX X , Try",
o ^

4 7rr3 4,.
X = --—7-T = T7~ ii'om diameter.

O -n-T" O TT

25L Estimating Volume by Weighing in Water.
If the material of a body is heavier, bulk for bulk, than water,

we may ascertain the volume by weighing, for a body loses

weight upon immersion in water by an amount equal to the

weight of the water displaced. Hence if the body weighs

X lbs. in nir, and x^^ lbs. in water, its volume is v.^..^
^ cu. ft.

for 1 cu. ft. of water weighs 62-3 lbs.

The density of a "body or substance is the mass of unit

volume. The unit employed is always specified, e.g., cast-

iron weighs 0-2G lbs. per cubic inch.

We can thus find the weight of any body if wc know its

volume and density for

Weight = volume x density.
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The specific gravity of a body (ArL 2G8) is often called

Uie relative density. It states the ratio

wei<;-ht of friven volume of bodv , .^ .. ^—
^^-rz
—

I- i i i r^ ; the specific Cfrfivity of
weight or equal volume oi water ' r & ^

water is thus taken as unity. Hence, the weight of a body
may be determined when we know the volume and the

specific gravity or relative density for

Weio-ht- j'^olun^einl (Specific gravity or

cu. ft. f
"^

1 Relative density f
^ ^-"^^^s.

(The factor G2-3 is the weight of a cu. ft. of water.)

252. A curve can be built up of circular arcs closely

approximating to any plane curve.

Fig. 173.

Ex. Fig. 173. Given a curve xvy
;^

determine three

centres from which a curve closelij resembling the given curve
can be described.

Select any three points x, ?/, s in the curve, and not too far

apart. Find the centre o of the circle that can be drawn
through the points ;r, «, .9. Select some point v in the curve
and draw the jj bisector of sv meeting so prolonged in o'.

Draw the jr bisector of vy meeting vo' prolonged in o".

A line formed of arc xs described from o, arc sv described
from o\ and arc vy described from o", will lie close to the
given curve xvy.

The greater the number of centres employed, the nearer
will the new line lie to the original.
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Loci,

250. Til i-nodcrn p:oomctry, a curve is considered as made
rip of an infiiiiLc iiumbcr of points placed in order along- the

curve.

Any one of these elemental points is indefinitely near to

the next consecutive point.

A rirjlit line drawn through two consecutive points in a

curve is called a tangent.
An illustration may help to make this definition clear.

Let a lino P/ (Fig. 17^) intersect the curve SS in points K
and P. Imagine the point A
to move along the curve toward

the fixed point P, and the line

to pass always through P. The
moving line changes position

continually as the point A
approaches the fixed point P,

and ultimately, when A coin-

cides with P, the line P/ lies in

the tangent PT.
254. Lines tangent, or nor-

mal, to most of the mathematical

curves met Avith in the constructive arts can be drawn

jroni known properties of the curve. If the known data is

insufficient to provide a direct solution of the problem, a

locus may be u:ed.

Problem. Throiijh a fucrd iwint P draw a tangent

to a [liven curve mn.

First Case. Fig. 175 (a). Tlie point P is on the curve.

With centre P and any radius describe a circular arc EF.

DraAV PR intersecting the cuive in r and the arc EF in li.

Make RN on PR produced ^ Pr. Through a second point

o\ on the cuive draw Yr^ meeting the arc EF in Rj. ]\Iako

RiNi = Pfi. Draw lines from P through other points on

the curve, one of Avhich, n, is situated on the right of P. Set

off along these lines, measured from the arc EF, lengths

equal to the respective chords of the curve mn, and to the

right or left of the arc EF according as the line intersects

mn on the right or left of P.

Fig. 174.

Thus in the Fig,i^Q = Vn,
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Dm^Y n fnir line tliixngli (lie points N, Nj . . . Q, wliich

intersects the iiic EF in (1. Tlie point (I is in the tangent

of P.

For, imatrino NP to rotate about tlic fixed point V in the curve, and
let FN, PNi. V/> represent different positions of the movinj; line.

Then the eurve NNiGQ is the locus of points wliieh are in the moving
line, and at a distance from the circle EF equal to that of P from the
second and variable point /• in which the line intersects the curve,
and on the left or right of the arc, according as NP cuts the curve
on the left or right of P. Consequently the point G where the locus

NNiGQ crosses EF corresponds to that position of the moving line

where it does not cut the curve on cither side of P. Hence, GP is

tangent at P.

Second Case. Fig. 175 (b). Let G he tlie given ]iolnl not on
the curve.

Place a pencil point on G, slide a straight edge against

the pencil, and rotate so as to bring the edge as near as

Fig. 175.

the eye can judge in contact Avith the curve. Draw a line

along the edge ; tliis is the required tangent. The point of

contact P may be fonnd thus : Draw parallels to the tangent

meeting the curve in aa^ hh, cc ; bisect aa in o, hh in o^, cc in

0.^. Draw a fair line through o, o^, o.,, and produce it to

meet the curve in P, which is the point of contact of tho

tangent from G.

For, the curve ooio^ is the locus of the mid-poinfs of chords
parallel to the tangent, and P marks the position where the gradually
Bhortening chord is reduced to two consecutive points in the curve.

255. Problem. Fig. 176. To draw a normal of a curve
SS to i)ass throiujh a fixed jioint,
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If a taDgect

Firnt Case. Let Q be the point, and not on the curve

With Q as centre describe circular arcs iatersectino: the

curve ill 88, VV, UU. Bisect "these

arcs (or their chords) in o, Oi, o^. Draw
a fair hue through these points and
produce to meet the curve SS in P,

which is a point in the normal from

Q ; for, the circle centre Q and radius

QP passes through P and not through

any other point in the curve 88.

Second Case. If it is required to

draw a normal from a point situcde on

the curve, determine first the tangent of the point (Art. 254),

and draw a perpendicular thereto.

25G. Involute and Evolute.
PE roll, without sliding, along

the fixed curve OOg, any fixed

point P in the tangent has a

f7^/^/7e locus P, Pi . . P3, which
is called an involute of the

fixed curve. The fixed curve

is called the evolute of P,

8ince each point in the roll-

ing tangent has a definite locus,

there may be any number of

Involutes of a given curve.

257. Problem. Given afixed
curve 0, Oi . . O2 and a fixed
point P, draw an involute of the

curve to jwss through P.

First Method. Draw PE
tangent to the curve and determine the point of contact
0.'" Draw OP on a piece of tracing-paper. Insert a pricker

Rt and rotate the tracing through a small angle, then prick

through the new position of P. Transfer the pricker to the

new point of contact Oi, and further rotate the tracing and
prick through P. Continue in this way until the line on the

* Employ the construction of Art. 254 if knowledge of the evolute provides no
easier method.

Fig. 177.
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traciiiii^ mcnsnros itself along tlie curve . . O2. A fair line

dniwii frceliiind (or aided by French curves) t}iroii_tz:li the

different positions occupied hj P is the required involute.

Second Method. To draw the invotufe htj continuous motion.

Determine the point of contact of thetan<^ent from V as

before. Insert pins close together aloni( the curve . . O2,

or cut a templet to fit the curve. Fasten a flexible and
"inextensible thread to the drawing-board at 0. Make this

thread taut in the direction OP and attach a pencil to the

thread at P. If this pencil be moved in an anti-clockwise

direction, the thread, if kept taut, is wrapped against the

curve . . O.2, and the pencil traces the involute

P, Pi • .
P3.

258. If we consider the curves P . . P3, Q . . Q3, Fig. 177,

as the paths of definite points P, Q in the tangent PE as it

rolls along the fixed curve . . O2, we see that the direction

of the curves at corresponding points—Pg, Q2—must be the

same as that of the generating points P, Q when they occupy
those particular positions.

Now clearly at any particular instant the generating

points P and Q can move in one direction only, viz., at

right-angles to the direction of EP at the particular instant.

Thus the curves PP3, QQ3 have the same direction and are

consequently parallel. From this we conclude that atl

invotutes derivedfrom a fixed evotute are parallel lines,

259. Since the rolling tangent of the evotute is always

normal to the involute, the evolute may be defined as the

locus of the intersection of normals at consecutive points in

a curve. As there can be but one such line for any particular

curve, it follows that anij

plane curve has a definite

evohde, and one only.

260. In Fig. 178, APQR
is the involute of the triangle

ABC. This curve consists of

three circular arcs : AP, centre

B, radius BA ; PQ, centre C,

radius CP = CB -f BA,
and QR, centre A, radius

AQ = AC -^ CB + BA, or



300 CURVATURE.

the pcrimcmclcr ofilic triniigle. The invohile of any recti-

linear figure is made up of taiigeutial arcs, and conversely, every

curve comprised of arcs of circles has a rectilinear evolute.

2G1. Curvature.'' The curvature of aline is its deviation

from a sbraiglit line. The curvature of a circle is the sameafc

every point, and in older that the curvatures of different circles

may be compared, curvature is measured by the I'ociprocal of

the radius of the circle, i.e,, by— where r is the radius. Ifc

follows that, of two circles that wluch has the greater radius

has the smaller curvature.

The curvature of curves other than circles is not constant,

but varies continually.

The amount of curvature

at any point is equal to

that of the circle which
passes through the point

and has the most intimate

contact with the curve at

that point. In Art. 253,

we have seen that any
plane curve and its tan-

gent have two consecutive

points in common. Con-

sider now the curve APB,
Fig. 179, and its tan-

gent PT. Clcai ly any circle having centre on the normal PO
and passing through P is tangent to the curve x\B, and has

two coiii-ecutive points in common with the curve AB. An
infinite number of sncli circles can exist; there must,

however, exist one cii'cle which has closer agreement with

the curve AB at P than any other circle can possil)ly have.

This ]\articnlar circle is considered as passing through the

point P and two other points one on cither side of, and
infinitely close to, P. This circle is said to osculate the

curve at P, and is called the osculatory circle^t and its

* See also Art. 375.

t In a curve of varying cnrvatiiro, the curvature at a point on one side of a
given point P is, in (jeneral, greater than at P, whilst at a point on the opposite
siile of P the curvature is less than at P. Hence the csculatory circle of a point
P always crosses the curve at P unless the curvature is equal on both sides of the
point, in which case there is a cusp in the evolute at the centre of curvature of

the J oint. Examples of this type occur at the ends of the axis of a conic.
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Clirvature is equal to tliat of tlie curve at tlie point P. Tiie

centre and ladiusof the osculatory circle are respectively tlic

centre of curvature, and radius of curvature of the

curve at tlie point 1*.

Since the osculatory circle of a point V passes lln'oni!;]!

three consecutive points in the curve, it follows that its

centre innst he at the nieetini,^ point of normals drawn from

points consecutive at V ; hut, the locus of all sucii points is

the evolute of the curve, hence the centre of curvature of any
point in a pLinc curve must lie on the evolute of the curve.

To find the locus of centres of curvature of any-

plane curve. In the case of a known mathematical curve,

an algebraic expression for the radius of curvature at definite

points can, in general, be found by analysis. These expres-

sions may often be interpreted giaphically. When a curve

is given and nothing is known of its properties, its evolute

may be found by drawing normals iit difl'erent points, and
then drawing the envelope of these normals. The evolute is

the locus required.

To determine tlic centre of curvature at a given
point on a curve. J)raw from the point a tangent to the

evolute and find its point of contact which is the required

centre.

It is stated above that the curvature of a curve at any
point is equal to that of the circle which osculates the

curve at that point,

and tliat the oscula-

tory circle is the

circle passing thiou :h

the point, and two
othei* points, one on

either side of, and ,

infinitely close to, the / vJ

point. Let P, Fig. Pk,. iso.

180, be a point on a

curve, and let R and Q he two points close to P, and on either

side of P. Let be the centre cf a circle which parses

through R, P, and Q, and hes practically along the curve

from R to Q. Then if r is the rad'us of the circle, -^ is the
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curvative of the circle. Noav draw tangents to the circle at

K and Q, and let 6 l)e the angle hetwecQ these tangents. The
angle QOR will also = 6. The tangent at E gives the

direction of the circle at R, and that at Q gives the direction

at Q (Art. 214); hence the angle gives the change in

direction of the circle from R to Q. The angle 6

4- length of arc RQ gives the change in direction |)er nnit

length of the arc, or the average change in direction from
R to Q. lint the length of the arc RQ is rO, as the angle B

is usually given in radians. Hence

average change _ change in directiou ^ _e_ ^ 1^

in direction ~~ length of curve rO r
'

which is the curvature of the circle. The curvature of a

circle being constant, the change in direction per unit length

is also constant, but for any other curve the curvature is not

constant, and hence the change in direction per unit length

is not constant. The average change in direction of a

, , , obanere in dirpcrion i ,, •

curve IS, however, taken as — —
, and this

length ot curve

quantity is also called the average or mean curvature of

the curve, for it gives the reciprocal of the radius, or the

curvature, of a circle which would be tangential to the curve

at each end of the length of curve under consideration, and
hence would have the same direction as the curve at its eni
points, and a constant change of dire ;tion between the two
points.

If a railway runs due north to a point A, and then curves fjom
A to another point B, and then runs cast, and if A and B
measured along the curve are 2 miles apart, the direction has

changed 90° or — radians in 2 miles. The average change in

direction per mile between A and B is -,^ -r- 2 or— radians per mile.

Hence-- or 0-7854 is the reciprocal of the radius of a circular arc

joining A and B, or if r miles is the radius of the curve, — = 0-7854:

and r = —^,^t- = 1-273 miles. The average curvature is — or
0-7bo4 r

0-7854. The units for the angle and the distance should always be
stated.
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Exorcise. A railway train changes in direction 15*^ in a distance of

300 ft. ; what is the average curvature of the line? The curvature
of a circular are means the reciprocal of the radius. (B. E. I'Jll.)

Am. -00087 radians per ft.

Exercises.

(1) State Simpson's rule. An area is divided into ten equal parts

by eleven equidistant parallel lines 0-2 in. apart, llie first and last

touching the boundary curve ; the lengths of these lines or ordinates

or breadths are, in inclies :

—

0, 1-24, 2-37, 4-10, 5-28, 4-76, 4G0, 4-.36, 2-45, 1-62, 0. Find the aiea
in square inches. (B.E. (2) 1905.) Ans. 6-25 sq. ins.

(2) In the following Table, A is the area in square feet of the

horizontal section of a ship at the level of the surface of the water
when the vertical draught of the ship is h ft. When the draught
changes from 17-5 to 18-5 ft., what is the increased displacement of

the vessel in cubic feet ? (B.E. (2) 190(3.)

/t, A ; 15, 6020 ; 18, 6(560 ; 21, 8250. Ans. 6660 cu. ft.

(3) The sections of the two ends of a barrel are each 12-35 square
feet ; the middle section is 14-6 square feet ; the axial length of the
barrel is 5 ft., what is its volume ? (B.E. (2) 1910.) Ans. 69-25 cu. ft.

(4) X being distance in feet across a river measuring from one
side, and y the depth of water in feet, the following measurements
were made :

—

X
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CHAPTER XXr.

VARIATION.

^(j'2. Many quantities are related to each other in such

a manner that any change in the magnitude of one
quantity produces a change in the magnitude of the otlier.

For example, consider a pavement of given width. The
area of the pavement "will depend upon its length. If

the width is 6 ft., then the area of a length of 300 ft. of

such a pavement would he 1800 sq. ft., whereas if we take

a length of GOO ft. of the pavement we get an area of

3600 sq. ft., and so on. The area is said to vary with

the length.

Now take the case of a square of given length of side,

say 6 ft. ; its area is 30 sq. ft. If we make the side 12 ft.

long, we make the area 144 sq. ft., and again we say the

area varies with the length of tlie side.

Again, take a cnbical block of stone, say of length of side

2 ft. Its volume is 8 cub. ft. If we now make the length

of each side of the block 4 ft., we make the volume
G4 cub. ft. Here also the volume varies with the length of

the side.

From the three examples set out above, it will be noted

that the cliange in the magnitude of the second quantity is

not ahvai/s p'oporlioiial to the change in that of the lirst

quantity.

In the fiist example, when we double the length of the

pavement, we double the area. In this kind of variation,

the change in the magnitude of the second quantity (area)

is proportional to the change in that of the first (length),

and the second quantity is said to vary directly as

the first.

Put into general terms, we may gny that one quantity y
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varies directly as a second quantity x, when any change in

tlie magnitude of f/ produces a proportional change in the

magnitude of x. (The word change inchides an increase or

a decrease.)

In the second of the above exami)les, when we double the

length of the side of tlie square, we make the area four
times as large^/.^., increasing the side from G to 12 ft.

increases the area from 3G to 144 sq. ft. The ratio of the

144
areas -—7- or 4 is] equal to the square of the ratio of the

12
lengths -7- or 2. When this is the case, the quantity y is

said to vary directly as the square of the quantity x.

In the third example, when we douhJe the length of the

side of the cube, we make the volume eight times as great.

ex
The ratio of the volumes —- or 8 is the cube of the ratio of

the lengths ~ or 2. In this case, the quantity y is said to

vary directly as the cube of the quantity x.

I'he same kind of reasoning may be extended to the 4th,

5th, or any power oi x.

In all cases of direct variation, it will be noted that

increasing one quantity increases the other, and decreasing

one quantity decreases the other. If we take y and x as th(^

two quantities before change, and y^ and x^ as the quantities

after the change, then

(1) If // varies directly as .v, we have ^— = —

.

y "^

(2) ,, „ „ as the square of .z', we have -=— = (")•

(8) ,, ,, ;, as the cube of .r, we hxve — ~ { ) .

From these equations, we can determine any one of the

four quantities, provided the other three are given.

Ex. It is known that the strength of a beam varies directly as the

square of the depth.

A beam of given length and width and in. deep carries a maximum
load of tons. What load will a beam of the same width and length,

but 12 in. deep, carry 1

P.M. X
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Maximum load varies direclly as square oE doijlli. Ilcnce

]\Iaximum load of second l)cam /dej)th of second lu-aiiK i^

MaVimuurioatl of lirst beam " \ depth of tirst beam /

Let .r = maximum load of second beam, then

5 ^(j^

]2\2Q
==5x4
= 20 tons.

The statement ?/ varies as x is written y ^ x, the
symbol a being used to denote "varies as."

2G3. Certain quatitities are so related tlifit an increase in

one produces a decrease in the other, and vice versa. For
example, if a beam 10 ft. long carries a maximum load of

10 tons, it is known that a beam 20 ft. long but otherwise

similar to the first beam will only carry 5 tons. Here the

two related quantities concerned are the length of, and the

maximum load carried by, the beam, and we see that if we
double one we TiaJve the other. This kind of variation is

called inverse variation, and the maximum load is said

to vary inversely as the length of the beam.

Putting this statement into general terms, one qunntify y
is said to vary inversely as a second quantity t. when any
increase in the magnitude of y produces a corresponding

decrease in the magnitude of .i-, and vice vtrsd.

As a further example, we may take the case of a series of

rectangles all of the same area, say 30 sq. ft., but of diffei-ent

lengths and breadths. If we choose any magnitude less than

o(S for the length, then we can ascertain at once the breadth

by dividing the area by the length.

Thus_, we can take

length X brendlh = area.

12 X 3 = 3(5

9 X 4 =36
G X G = 30

18 X 2 = 30
and generally y x x — 30, ^^ here?/ = ]en.2;lh

and iv = breadth.

AVhen the breadth is o, the length is 12 ; if we double the

breadth, i.e., make it G, we halve the length, i.e., make it G
j

hence the breadth is inversely proportional to the length.
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From the above figures it will be observed that tlic length

]^_
breadth

is always equal to .-

,^/ .-r- X area, thus

12 = ^ X 3G

18 := - X 3G and generally

y =
J,

X 38

and again, the ratio of the lengths

12 (wx sg)
-IS equal to jj—^ wLich simplifies

(jx36)

. 2 X 36 2 , . , ,

to Ti
—-n-. or T, an I is seen to be
o X Ob 3

the inverse ratio of the breadths.

Now if we put y = 12, 7/1 = 18, .r = 3, x^ = 2, then we

get as a general statement -^-^ = - , and this proportion
y X

expresses generally the condition when one quantity y varies

inversely as another quantity x.

2(54. The statement that y varies inversely as x is written

V \xj x^
X -, hence ",= }y\ - —

As in direct variation, we can determine any one of the

four magnitudes ?/, 2/\ ^\ ^\ provided the other three are

given.

We mny note here in passing that when one quantity y
varies inversely as another quantity ^, the product xy is

always a constant quantity. This can be tested by referring

to the example above, where the length x breadth = aiea

of rectangle, the latter quantity always being equal to 36,

which is a constant quantity.

A further example will make this inverse variation clear.

The pressure of steam in an engine cylinder varies inversely as the

volume. If a volume of DO cub, in. is at a pressure of 100 lb.

X 2
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per square inch, what will be the pressure per square inch when the

volume increases to 75 cub. in. /

Let p = original pressure, and j'^ =^ new pressure.

,, V = original volume, and t^ — new volume.

Then 2) cc
1

V

\

J'' 1
100 75

r 5U

50 X 100 rr- n ^v.
jA = — = 66-6 lb. per sq. in.

265. When we were discussing direct variation, we dealt

with cases in which y varied directly as x, or as x'^, x^, and
so on. In the above articles, we have dealt with the case in

which y varies inversely as x, and examples are numerous

in which i/ varies inversely as the square of x, or as the

cube of a;, and so on.

Thus, y may a -

1
y may a -

y ^^7 <^
;^'

etc.

When y a ^^, it will be seen that, if we double x

we reduce y to one-quarter of its original value or

]—. X oricrinal value [ ; if we make x three times its

value, we reduce?/ to one-ninth or -.—, x original value I.

As an example, the deflection of a beam under a given load is

inversely proportional to the square of the depth. If a given beam
carrying a certain load is 5 in. deep and has a deflection at the centre

(due to the load) of 2 in., what deflection will be produced by the saniQ

load if the depth be 8 in. ?

Let X and .v^ = depths of beams.

,, y and y^ = deflections of beams,
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'J'lieu since ij a .,

IL ^ I''
^'

1 = ^11
v/i (5)2

. 2 X 25 ^^ _,, .

y' = —^- -= Ovb in.

26(>. AVlieii IJ varies inversely as the cube of x, or

y oc ^, it will be seen that, if we double x we nuike y =

one-eighth of its original value, or f -^ x original value )•

As an example, suppose we have a certain compressible material in

such a state of compression that the weight of a cube having each siJe

5f)0
2 in. long is 560 lb. The weight of each cubic inch is then -— —

o

70 lb., since we have S cub. in. of the material. If we now increase

500
each side of the cube to 3 in., the weight per cubic inch is -^-^i,-

=

20ff lb., and we see that the weight per cubic inch of the material is

inversely proportional to the cube of the length of the side (the total

weight remaining constant), for if so, the ratios ;

—

1

Weight per cubic inch for 2-in. f^ide. viz.. 70 lb. (2)'''

Weight per cubic inch for 3-in. side, viz., 20|^lb.

(3)3
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In an example, say y varies as x^ ; if we m^ike a: = 2 it

does not follow that y will be = 4. // may have any
magnitude, say 20, when x has the value 2.

Then we can say y oc x-

and ?/ = 20 when ^ = 2.

If now we make x = 4, then y must equal

so, for -^-^

,„a,i^i^^^^80.

We now know tluit

y v. ;i^

y = 20 when .7" = 2 and
y ^ 80 when x = 1

?/ — 20 when ,v2 = 4 and
y = 80 when x^ ^ 16.

m , y
20

' 80 - . ., T 1 fIhc ratio -— = -r = tt = o, for all corresponding values of ?/

and

1/
.'. — = 5 for all magnitudes of y and x,

and hence y = 5.^-2.

This equation expresses the exact relation between y and

X, i.e., it states that whatever value we give to x, then, if wc
square that value and multiply by 5, the product is y. The
figure 5 is called a constant.

7o oliaiii an exact relation heticeen x and y, tee must
always determine the value of the constant. If we kuow
any two corresponding values of x and y, and if we know
how X and y are related, we can find this constant.

In the above example, let K = the constant.

Then y gc ,?•-

y = X.2
20

20 = A'(2)2andA'= ~~ ^ ^•

In a similar manner, we can always replace the statement

V ^ -i^
; Ta ;

3^, etc., by

2/- A'^a; A'. ^^; A'..7^etc.,
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and from tlie two given values of y and x determine the

value of Jv.

Kr. Tlio pressure of a ^as vuiies inversely as the voliuiic. When
tlie volume is 20 cub. in. the pressure is 50 Ih. per stpiarc inch. Find

the exact relation between pressure an<l volume.

Let /) = pressure and r — volume.

Then p X -

A'= 50 X 20 -^ 1,000

and hence /^ == 1,000 x — is the exact relation

required. If, now, we arc given any value of ^^ or r, we can find the

corrcs[)onding value of v or j)>

2G8. The following miscellaneous examples ^Yill illustrate

the various principles of ratio, proportion, and variation.

Mr. 1. The specific gravity of a substance is the ratio between

the weight of a given volume of the substance and that of an equal

volume of water.

If the specitic gravity of oak is 0'93, find the weight of an oak

beam 20 ft. long 1 ft. tleep and 8 in. wide, given that a cubic foot of

water weighs 62*3 lb.

S 40
Volume of beam ^ ('20 X 1 x ~ '\ = - cub. ft.

Weight of . cub. ft. of water = (j X G2-3J

Weight of TT cub. ft. of oak „ ,...
o _ O'l'o

Weight of -rr cub. ft. of water
t>

Weight of oak -
| t,- X 023 K O'Ds} lb. ^ 772o2 lb.

Mc. 2. In a map drawn to a scale of 2 in. to a mile, an island

covers an area of 7 S ][. in. Find the area covered by the samo islan I

when the scale is 5 in. to a mile.

Areas are proportional to the squares of corresponding lengths.

Area of island on large scale map _ /Scale of Jai^e map\'*

Area of island on small scale map \8cale of small map/
Area of island on hirge scale map _ / 5 \2

7 X o X o 1 To
.'. Area of island on large scale map = —^

^— = ^—

=

° ^ 2x2 dt

= 43'75 s(i. in,

lb.
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Ex. 3. Two spheres have radii of 8 and 2 in. resi)ective]y. Find
the ratio of their volumes.
Volumes are i)roportional to cubes of corresponding lengths.

Volume of large sphere /8\^
Volume of small sphere ~

\ 2 /

^ 8x8x8
2x2x2"

Ratio of volumes = 64 : 1.

Ea\ 4. The velocity of a moving body is the space described in
unit time. The time taken to describe a given space is inversely
proportional to the velocity. Find the ratio between the velocities
of two moving bodies A and B which take respectively 5 and 15 sec.
to travel a given distance.

Let v^ and r^ be velocities resi)ectively of A and i?, and t ^^ and t j,

be times.

\

""a fj
^'a ^b 15

'b - 1 ^•B t^ 5 ^4
B

Ex. 5. The pressure per square inch on a hydraulic ram is

inversely proportional to the square of the diameter, if the total load
on the ram is constant.

If a load supported by a hydraulic ram of 10 in. diameter gives a
]iressure per square inch of 50 lb., find the pressure per square inch
on a 3-in. ram which supports an equal load.

Pressure per square inch on 10-in. ram _
Pressure per square inch on 3-in. ram "

Pressure per square inch on 3-in. ram =

(fo)^

50 X 102

82

^ 5000

9

= 455^ lb. per sq. inch.
E,v. C. A standard bedm 20 ft. long, 6 in. wide, and 10 in. deep,

carries a safe load of 8 tons. Find the safe load carried by the
following beams of the same shape and material :—

(1) Beam 20 ft. long, 12 in. wide, 10 in. deei),

(2) Beam 20 ft. long, (5 in. wi<le, 20 in. deep,

(3) Beam 40 ft, long, in. wide, 10 in. ileep,

given that the safe load varies directly as the width, directly as the
square of the de[)th, 5i,nd inversely as the length of the beam.

Width of stfindard beam (f) in.) 8 tons
Beam 1.

Width ot beam 1 (12 in.) x tons*

12 X 8
.•. 'I- = — -.— = IG tons.

b
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I
Depth of standard beam (10 in.)} -i 8 tons

I
DepTii ot beam 2 (20 in.)} 2 ~ u- tons

20 X 20 X 8

^-10x10 -'^2t^"^-

Beam 3.
Length of standard beam (20 ft.) / 8

(
I TV ^

VLenglh ot beam 3 (10 ft.)/

20 x 8 ,
^X = —7 = i tons.

Ml'. 7. A quantity y varies inversely as thj cube of a quantity .v

and when y is 56, a; is 2. Find the exact relation between // and a-.

1

y = K —^ where A' is a constant

A' = 56 X 8 = 448.

Thus.
II
= 448 . — is the exact relation required.

E.V. 8. y oc x"^ and y = 40 when ,f = 2, and 7/ = 5,000 when
a* = 10. Find the exact relation between y and x.

y = Aj-'* where K is a constant

40 = A'2« (Equation 1)

5000 - A'10« (Equation 2)
5000 _ low ^

• lo" 2^'
"" '*"

125 = 5".

But 53 = 125
.-. u = 3.

From Equation 1

—

40 -- A'2»

40 ^ K^"^ since // = 3

« = A-
8
.-. A^ - 5.

Exact relation is // = 5.r^.

To fiud ?/ generally, in cases where its value cannot be

nscertained by inspection, e.g., in the above case in which

125 = 5".

Take logs, of both sides of equation, hence
log. 125 = n log. 5.

. ^ log. 125 ^ 2-00r>9 ^
~

log. 5 u-oyjo
~
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Ejc. 9. The ah.-iohde jnrssure 2^ Ih. ycr sq. in., and the vulume U

cub. ft. of saturated deani are such that j^ Qc u'^. When p = 10,

n = 37-87, a)id irhcn p = 50, u ^- 8 352. Find the exact relation

between j) and u.

j> = KiO^ where /iTis a constant

10 = /t 37-87" (Equation 1)

50 = K 8-352" (Equation 2)

10 /37-87

50 \ 8-352,

Taking legs. log. 10 - log. 50 - n (log. 37-87 ~ log. S-352).

log. 10 - log. 50 _ 1 - 1-6900
^' ~

log. 37-87 - log. 8-352 ~ 1-5783 - 0-9218

= -««?:» =-10017.
0-(j5(jo

From Equation 1. 10 = K. 37'87'i-0'-'^7

.-. K -^ 10 -^ 37-87 'i-o'^^i'^ = 10 X 37-871 0'^'

- 479.

ILmicc i)
«i-0647 = 479 is the relation required.

Exercises.

(1) The deflection of a leant is (Virectlij prnpoii tonal to the load and
to the cube if the sjntn, Inremely proportional to the ividth and to the

cube of the depth. E-cj^ress this alaebraleally.

If a beam of 15 ft. span, 3 in. wide, and 1 in. deep has a deflection

of -^ in. under a certain load, what deliection will the same load

produce in a be?.m of 20 ft. span, 4 in. wide, and G in. deep ?

(2) lite strength of a beam varies directly as the breadth, directly

as the square of the depth., and inversely as the length.

A beam is 16 ft. long, 6 in. broad, and 8 in. deep. A second beam is

7 in. broad and 9 in. deep. Find the length of the second beam if

the two are to be of equal strength.

(3) Compare the strengths of two beams each loaded at the centre

and each of rectangular section 6 in. by 3 in., the first beam having
the longer side vertical and of 20 ft. span, the second having the

shorter side vertical and of 10 ft. span.

(4) A beam 20 ft. long, 5 in. wide, and 10 in. deep carries a load of

2 tons at tlie centre. What load will be carried if the width and
depth are doubled /

(5) A test bar 1 in. x 1 in. x 20 in. breaks under a load of

350 lb. Under what load will a beam 6 in. wide x 10 in. deep X
20 ft. long break ?

(6) Compare the strengths and the weights of two shafts, one
12 in. diameter and solid, and the other 12 in. diameter with a 6 in.

hole through it, given that the strengths are as D^ : tt— ?
T)

being external diameter and d internal diameter.

(7) The volumes of spheres are proportional to the cubes of tie



VARIATION. 'Mr>

diameters. Compare the volumes of three s[)heres whose rcspcetivc

dinineters are 37G, 4"S*J, ami G-71 ft.

(8) The eU'clrical resistance of copper wire is proi)orti(mal to its

length clivitled by its cross section. Show that tiie lesistance of a

pound of wire of circular section all in one length is inversely

proportional to the fourth power of the diameter of the wiie. (B.K.

11)08.)

00 The value of a ruhj' is said to be })roj)ortional to the 1^ jwwer
of its weight. If one ruby is exactly of the same shape as anothei-,

but of 2-20 times its linear dimensions, of how many times the value

is it ^ (B.E. 1!)04.)

(10) If u is usefulness of flywheels, u y. fF'h~, if d is the linear size

(say diameter) and n the speed. We assume all flywheels to be
similar in shape. I wish to have the usefulness 100 times as great,

the speed being trebled ; what is the ratio of the new diameter to the

old one ? (B.E. 1905.)

(11) There are two maps, one to the scale of 2 in. to the mile, the

other to the scale of 5 in. to the mile. The area of an estate on the

first map is r46 sq. in. ; what is the area of this estate on the second
map 1 (B.E. 190G.)

(12) The horse power of the engines of a ship being proportional to

the cube of the speed ; if the horse power is 2,000 at a speed of

10 knots, what is the power when the speed is 15 knots? (B.E.

1906.)

(13) If y varies as the square root of -r, and if y is 5 when «r is 3,

state the true formula connecting x and y. What is y if a- is 9 !

(B.E. 1907.)

(14) If y is proportional to the square root of .r, aiid if y is 3"5

uhen «• is 4. express y in terms of -r. What is y when a- is 25 ?

(B.E. 1908.)

(15) The electrical resistance of a wire is 11 a Ija^ where I is

length and d is diameter ; its -weight VV a Id^. Show that the
resistance of a wire U ex Wjd*. If a pound of wire of diameter
d = O'OIJ in. has a resistance of 0*25 ohms, what is the resistance of

a pound of wire of the same material, the diameter being O'Ol in. !

(B.E. 1907.)

An^iiccrs.

(1) 0053 in. (9) 34-74.

(2) 23 ft. 7J in. (10) 1(;19.

(3) Equal strength. (11) 0091 sq. in.

(4) If) tons. (12) G750. _
(5) 17,500 lb.

(13) 2-88 v.r; 8-'M.
(G) 100 : 93-75 strengths ; 100 : ), .( .

-' — c^-^ ^ . , , ° ' (li) >/ ^ \- ib y .f ; bun.
75 weights

(7) 531G : IIG-: : 302-1.
(15) 324 ohms.
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CHAPTER XXII.

SIMULTANEOUS SIMPLE EQUATIONS.
QUADRATIC AND OTHER EQUATIONS.

2G1). We can find two unknown qaautities if we are given

two distinct and separate equations in which the unknown
quantities occur. Thus, if a; and y are unknown quantities,

and if we know that

3.r + All = 18 ; and also that
5./' + Cry = 28

;

then we have two equations, and the required values of a^

and y must satisfy each equation simultaneously.

There are two algebraic methods of solving such

equations :

—

(1) By elimination.

(2) By substitution.

270. The method of elimination consists in multiplying

each equation by a number which will make either the x
terms or the y terms equal. We can then subtract or add
the two equations, and the equal terms will cancel out or

become eliminated. We thus derive one simple equation

from which the value of the other unknown quantity can be

found. Thus, in the above example

—

3,x" + 4y/ = 18 (Equation 1)
bx + 6y = 28 ( „ 2).

Ill order to make the x terms equal,

Multiply Eq. 1 by 5. 1 5.r + 20// = <H» (Kquatioii 3)

„ Eq. 2 by 3. 15.^ + \^y = 81 ( „ J)

Now subtract
)

Eq. 4 from Eq. 3
j

-U - <>

11 = 3.

To find -/', substitute this value for ij in either of the equations 1

or 2.

Taking Ei\. 1, we have 3.^' + 4// == 18.

Pulting y = 3, we have %x + (4 x 3) = 18
3^' = 18-12

=
X - 2.
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Thus, ./• = 2 and // = 3 are the values which satisfy both
equations.

This result can be tested by putting .c = 2 and y = 3 in both
equations.

271. By the method of substitution we find from
either equation the vahie of one unknown quantity in terms
of the other, and then substitute this value in the other

equation. We thus get a simple equation from which we
con determine one unknown quantity.

Thus, 3,c + iij = 18 (Equation 1)

5.» + 6// = 28 ( „ 2).

From Equation 1, 3.r = 18 — 4,y

hence, .v — ^ —^^^

—

~
6

Substitute this value for .r in Equation 2, and we get
5,r + 6y = 28

Multiply both sides bv 3. 5(18 - 4?/) + ISy = 8-t

SimpliVin?. 90 - 20y + 1-^y = 8-1

- 20 y + 18y = 84 - 90
- 2// = - G

As before, put this value for f/ in Equation 1 or 2 and we get
J' — 2.

272. When the x and y terms are not on the left-hand

side of the equation, they must be transposed before we
beo^in to solve the equations.

Thus, the equations 5x = 45 - 6y
4y = - 7x + 41

are first rearranged to 5./? + 6>/ = 45 (Equation 1)
7.C + 4i/

= 41 ( „ 2)
Mu'.tiply Eq. 1 by 7. 35a; + 42// = 315 ( „ 3)

„ „ 2 by 5. 35.C + 20.y = 205 ( „ 4)
Subtract Eq. 4 from Eq. 3 22y = 110

hence y = 5.

By substituting this value for y in Equation 1, we find

5.V + 6y = 45

5.r + 30 = 45

5.V = 15

hence x == 3.

273. If the two equations have fractional x and y terms
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it is advisable first to multiply each by a number wliieli will

eliminate the denominators of the fractions.

Thu?, — + - - = 5 (E(|Uutioii 1)

Multiply Eq. 1 by 20. 4.v + 5// = 100( „ 3)

„ 2 by 6. 3a? + 2// = 51 ( ., 4)
Now eliminate .r by

—

Multiplying Eq. 8 by 3, 12.z?+ 15y = 300 ( „ 3)

and Eq. 4 by 4. 12.r- + 8y = 216 ( „ 6)

Subtract Eq. 6 from Eq. 5. 7y = 84
hence y = 12

Substitute this valuo for
//

ill Eq. 3. 4.^ + 5// = 100

4.Z' + GO = 100

i.v = 40
hence « = 10

274. There arc many problems which require the nse of

two simultaneous equations for their solution, and some
examples follow which illustrate methods of writing down
algebraically the dnta of the problem.

If we have two numbers, one of which exceeds the other
by 4, and if « is the greater and y the smaller number, we
c:in represent this statement algebraically hj x — y =^ ^.

If one number is one-sixth of the other, then x = r., or
b

again, if one niunbcr is less by 5 than 7 times the other, we
liave X = 7// — .j or 7// — a:; = 5.

If X pounds are to be divided amongst y people, then each
X

will receive — pounds.
y/-

If two trains are travelling at x and y miles per hour
respectively, then their times in travelling 100 miles will bo
100 ,100,
-^ and -— hours respectively.

UP lb. is tlie force applied to a lifting-appliance to lift

a weight W lb., and if P is always greater by 5 lb. than
one-twentieth of IF, this is represented algebraically b^



5y =- (is .,



320 SIMULTANEOUS SIMPLE EQUATIONS.

Ev. 4. In a jmlley-hloch Uftlng-taclde a force of lii lb. will lift a

load of 100 lb., ami a force of 35 lb. ivill lift a load of 300 lb. If

the force {P lb.) and the load (W lb.) are related bjj an equation of

theform P = in \V + A', find the ralnea of m and K.

Here we can write down from the given data two simultaneous

equations from which m and A' can be found.

We have P = m W + K
15 = m 100 + a: (Equation 1)

35 = m 300 + A' ( „ 2)

Subtract Eq. 1 from Eq. 2. 20 ^ m 200

20
hence 7-7^ = '^

2u0

1—— = m.
10

Put this value for m in Eq. 1, and we have
15 = mlOO + A'

15 = (I^X100) + A^

15 = 10 + AT

15 - 10 = a:

5 = A'

thus, m — -— and .K = o.

The equation P = m W + K becomes
p =:: _i_lf^ -I- 5, and this is called the " Law of the

MacMne " (see p. 210).

Mr. 5. One-third of a certain number e.vceeds 5 times a second,

number by ^2, and the second number is less hy 21 than one-sixth of

the p'rst number. Find the numbers.

Let X = large number, and y = smaller number.

Then ^ = one-third of larger number.

And since one-third the larger number exceeds 5 times the smalh.r

number by 1.2,

IT = 5^ -f 12 (Equation 1).

Also, since the smaller number is less by 21 than one-sixth of the

larger number,

y = -^- 21 (Equation 2)

Hence from Eq. 1 | -5//- 12 ( „ 3)

and from Eq. 2, - '

-f y = -
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Multiply Eq.2by 0. - .r f f.y = - 12G (10<iu:itio:i (')

Add Kqs. ;-) :iiul 0. - \)i'/ = - W)
- 110

lieiico 7/ =: —-- = 10.

Tut this valiic fur y in L>[. '>, ami \vc got
,/• - ir,y = HC,

a- - 150 = 80
a- = 1 SC).

IJciK'C Ihc two nniubers arc 1?() and 10.

275. SimnltaneoTis equations may be solved gra-
phically by plottino- on squared paper. If we lirst arrange

each equation with the y term by itself on the left-hand side,

and the reniainiu^- teinis on the right, we can then make ont

a table of correspond in j^: values of x and // for each equation,

as explained in Art. 174.

As an example, to solve graphically

(u. + <j" = 3// ' (E'|. 1)

4?/ = - 12.r 4- 40(E'i. 2)

wo fiivt arrange each equation to have tj by itself (n\ the left liand

Bide. Thus, G.f + i) = 3y becomes 3y = Cht; + 'J, and dividing by 3

becomes // = 2.r + 3 (E.p 3).

Also by dividing by i, the equation 4y = — 12.v + 40

becomes //
= — 3^- + 10 (Eq. 4).

We now I'lot y =^ 2,v + 3, and y =^ - 'Sx -\- 10 on squared paper.

The Tables are :—

For // = 2.r + 3

and craph AO.
Fi'>-. 181.

Fnrv = -3.M-10
and LM-nph CD.

Fig. IMI.

rrA.

X
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The two graphs intersect at P, and the co-ordinates of

P are x = 1*4, y = 5-8.

Solving the two equations algebraically, we also find that

X = 1-4 and y = 5*8
; hence two simultaneous equations are

solved graphically by plotting their graphs on squared paper,

and reading from the graphs the co-ordinates of the point of

intersection. The x co-ordinate is the value of x, and the y co-

ordinate is the value of ?/, which satisfies the two equations.

This result is to be expected, for, the co-ordinates of every

point on the graph AB must fit the equation y == 2x + 3, and

also the co-ordinates of every point on the graph CD must

fit the equation y = — 3a? + 10. Now the co-ordinates of

the point of intersection must fit both equations, for this

point is on both graphs. We know that the values of

X and y which give the solution of the two equations must

also satisfy both equations, hence the co-ordinates of the

point of intersection are the values of x and y which satisfy

both equations.

270. If two quantities are connected by a linear law,

the law may be found by solving two simultaneous equations,

if two sets of corresponding values of the quantities are known.
Thus, as an example we may take temperature on a Centigrade and

on a Falirenheit scale.

If we put i^for degrees Fahrenheit,

6' for degrees Centigrade,

and let vi and X be constants to be found from solving two simul-

taneous equations, we know that

F ^ mC+ A'.

Now when F = 2\2° C ^ 1U0° (Boiling point)

also when i^= 32° r= 0° (Freezing point),

We thus have F = mC -^ K
212 = 'wlOO + K (Equation 1)
32 = inO ^ K ( „ 2).

Subtract Eq. 1 from Eq. 2. 180 = m 100,

180
hence in — -^^

9

From Equation 1 we have, substituting this value for w,
212 = (? X lOO) -1- K
212 = 180 + K
K =- 2(2 - 180

= M.
Hence F ^ \C \- 32. or

degrees Fahrenheit = (| X degrees Centigrade) + 32,
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Exercises.

(1) Solve 3.P + 4y = 18 (2) Solve 15^ + lOy = 35

5y - X =- 13. Ga? - 11 y = - 16.

(3) Solve i.c + III = 5 (4) Solve 2x + lOy - .3-74

ix + ii/
= 8-5. bx - y = 0-25.

(5) Two cjuantities arc connected by a law y = mx + c. When
ar = 1, y = 11, and when x = — I, y = 1. Find the values of m
and c, and the value of y when x is 30.

((i) If ap[)les cost scvenpence per dozen and pears ninepence, a
man would pa}' 142 pence for the fruit he intends to buy ; whereas,

if apples cost eightpence per dozen and pears tenpence, he would pay
160 pence : how many apples and pears does he intend to buy ?

(B.E. 1908.)

(7) The total cost C of a ship per hour (including interest and
depreciation on capital, wages, coal, etc.) is 6' = « + ^•'^^ where s is

the speed in knots (or nautical miles per hour).

When 5 is 10, 6*13 found to be 520 pounds.
When s is 15, C is found to be 7-375 pounds.

Calculate a and b. What is C when .9 is 1 2 ? (B.E. 1 905.)

(8) ?/ = ax"^ + bx^. When x = 1, y is i-'S, and when .c = 2, y is

30 ; fiiid a and b. What is y when x is 1-5 ? (B.E. 1906.)

(9) If F = 27r2^y2 and A = ijr^xy, and if F = 210 and A = 170,

find X and y. (B.E. 1907.)

(10) Find two numbers such that if four times the first be added
to two and a half times the second the sum is 17'3, and if three times

the second be subtracted from twice the first the difference is r2.
(B.E. 1903.)

Answe?'s.

(1) ^ = 2, y =: 3. (6) 120 apples, 96 pears.

(2) a- = 1, y = 2. (7) 4-3
; 00009; 5-8552.

(3) X = i,y = 8. (8) M ;
3-2.

(4) X = 12, y = 0-35. (9) 1-5
; 2-81.

(.5) ni ^ 5,c ^ 6; 156. (10) 3229 ;
1-753.

277. Quadratic and cubic equations. An equation

in which there is only one unknown quantity, and in which
the highest power of the unknown quantity is the second
power, is called a quadratic equation, e.ff., x^ + 2x —3 = 0.

Here the unknown (piantity is x, and the highest power of

the unknown quantity is a^. If in this ecjuation we put
X = 1, we get 1 + 2 — 3 = 0, and heuce the value a; = i

is a solution of the equation. Again, if we put x=— 3,

we get 9 — G — 3 = 0, and heuce — 3 is also a solution.

There are thus two values of ;c which SMcisfy the equation,

viz., x = 1 and x = — 3, and eacii of these values is called

y 2
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a root of the quadratic. The process of solving a

quadratic eqaatioii consists in finding these two roots, and

we may state liere that every quadratic equation has
two roots; the roots may bo unequal, or equal, in value,

or they may be imaginary quantities, such as ^^ — 1.

Wc shall limit ourselves in this chapter to a simple alc^rebraic

method, and to a graphical method, of solvini,' a quadratic e piation
;

the latter method will also be found applicable to cubic equations
(/.^., equations in which the unknown quantity is raised to the third

))0wer, e.ff., x^ + Sv^ + 2.r- + 1 = 0), and also to equations containing

the fourth power, or any higher power of the unknown quantity.

Other algebraic and graphical methods of solution will be discussed

in Chapter XXIII.

278. In Art. 88, we gave a rule to obtain the square of

an expression consisting of two terms, thus :
—

(x + sy = x" + Ca; + 'J

[x + 4)' = x" 4- 8.C + IG, and so on.

If we inspect the form of the square, we see that the term

which does not contain either x or x^ is the square of half

the coefficient of the term containing x, provided that the

coefficient of the term containing x^ is 1 and is +. Thus,

in x'^ +0^ + 9 the coefficient of x is G. One-half

of this coefficient is 3, and 3"^ or 1) is the term not con-

tainiiio- x or a'^ Similarly, for x'^ -\- S.i- + !<>. One-

half of 8 - 4 and 4^ = io.

An expression containing an x^ term with a coefficient

+ 1, and an x term with any coefficient + or — (such, for

example, as x^ + 8.r), may be made into the square of an

expression containing x and a numerical term equal to half

the coefficient of x in the oi'iginal expression (such, for

example, as x -\- 4), by adding to it a term e<pial to the

square of half the coefficient of tiie original a^ term. Thus,

x'^ + ^x can be made into the square of {x + 4) if we add

to it IG, for ^2 + 8a; + IG = (x + 4)-. Similarly,

x" + Ix can be made into the square of {x + {) by adding

V for x' + Ix -f- V = {x + |j'.

270. In one method of solving a quadratic equation, we
first arrange the x- and x terms on the left-hand side of

the equation, and the remaining term, not containing x' or

X, on the right-hand eide. Now if the coefficient of x^ is —
and is greater than 1, we can make it into + 1 by dividing
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both sides of the equation by tliis cocfllcicnt and cliaiigijig'

tiic sij^ns. Thus,
— ox"^ — 15^ = 18 would become

x^ ^ ^x = — G, if we divide by 3 and change th3

signs.

We now have on the left an expression which can be

made into the square of (x + '-) by adding to it (y or ^-,

and to iireserve the equaUttj of the two sides of the eqiialion

we must also add -"' to the ria'htdiand side.

We now get
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A'^. 1. Solce 8a;2 - 2^ - 15 = 0.

The steps are numbered to be read with tlie above summary.
Step 1. 8.»2 _ 2j:' = 15

4.

5.
, U \

In this example, both roots arc real quantities, and they are unequal
in magnitude.
Ex. 2. Solve a-2 _ f,.?. + 9 = 0.

Step 1. a-2_ G.?- = — 9

„ 3. a;2 _ 6.^ ^ 9 ^ _ 9 + 9

=
„ 4. a- — 3 = +
„ 5. a- = 3 + or 3 — both of which = 3.

In this example both roots are equal.

Ex. 3. Solce a,-2 - 6^* + H = 0.

Step 1. x'^ — (>x = —n
„ 3. a;-2 — 6a? + 9 = — 11 + 9

_ 2

„ 4. a- — 3 = ± J^2

^^or ;^• = 3 — J— 2.

In this example, both roots are imnginary, for we cannot find a
quantity to represent the square root of — 2.

281. Graphical solution of a quadratic equation.
In solving such equations gi-apliically, we write all the

terms on one side of the equation and put y on the other side,

e.g., 8ir^ — 2x = 15 would be written y = Sx"^ — 2x — 15.

Now give to a: a series of values both + and — ,and
calculate corresponding values of y, and then i)lot the x and //

values on squared paper. The graph may

—

(1) Cut the axis of x twice
;

(2) Touch the axis of x
;

(3) Lie entirely above the axis.
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The first case corresponds to two real roots, as ia Ex. I

above, and the x co-ordinates of the two points in which
the curve crosses tlie axis give tlic two roots, just as in the
case of the grapliical sohition of a simple eqnntion, Art. 174.

The second case corresponds to two equal roots, as in

Fig. 182.

Ex. 2 above, the equal roots bein_2,- given by the x co-

ordinate of the point at which the curve touches the axis

of iC.

The third case corresponds to two imaginary roots, which

cannot be found graphically.

Examples 1 and 2 above are solved graphically in Fig. 182,

and the graph for Ex. 3 is also shown. The co-ordinates

of the plotted points are shown in the Tables below.

Graph ^
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Graph
DEF.

Graph
LMN.

V
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(•.) a-3 - r,a-3 _ 2.r + 24 = 0.

(0) riotthej,Ma|.hof y = j'-^ - 3 l.r + 2-73. Tnkc ,r -= 1,1-2, 1-3,

elc, to 2-2. Find the values of .r wliieh ninke ?/ =- 0. (BE. I'.tor..)

(7) If y = ./•» - lo./'-^ + lO./' - 3:., iiiid // f(jr a mitnber of values
of J- between 1 and 2. and iTprcscnt these on S(juared paper to as l.irtre

a seale as your paper will allow. You need not show the whole of '^r,

as YOU need no values less than 1. For what value of x is y = /

(B.E. 11)08.)

(S) A cast-iron flywheel rim (weighing 0-2(> lb. per cub. in.) weij:lis

13700 lb. The rim is rectangular in section, the thickness radially

Fig. 183.

is X, the size the other v;ay is IT)./*. The inside radius of the rim is

1-I.7-. Find the actual sizes. (B.E. 11)03.)

(D) The sum of the areas of two squares is 92-14 sq. in., and the sum
of their sides is 13 in. Find these sides. (B.E. (2) 11)04.)

(10) If y = 2.f + ~ ;
for various values of x calculate y, plot on

squared paper; state approximately the value of x which causes y
to be of us smallest value. (BE. 11)04.)

Answ/!7-s.

(1) - 4 or + 3. (G) 1-3; 2-1.

(2) 3. (7) 1-2.

(3) 1-5 or - .?. (8) 7-124
; 11-398

; 99-7 in.
{i) 2, - 2. (9) 8-45. 4-05.

(o) 3, 4, and - 2. (10) 0-87.
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CHAPTER XXTTT.

FACTORS; BINOMIAL THEOREM;
MISCELLANEOUS EQUATIONS AND GRAPHS

;

DETERMINATION OF LAWS; POLAR CO-
ORDINATES : APPROXIMATIONS.

281. Factors. Many algel)raic expressions are the

result of multiplying together two or more simple

expressions, e.q.,

(.y; + 4) X {.t -3) = x^ ^ x ~ V2.

The two expressions (a: + 4) and (.c — 3) are called the

factors of the expression x- -\- x — Vl^ and the process of

factorizing any given expression consists in finding the two

or more simple expressions of which the given expression is

the product.

285. If every term in an expression is divisible by any

quantity, then that quantity is a factor of the expression,

thus 5 a;^ + 10 a?- — 15 a; = 5 a; (a;- -f 2 a; — 3), and the

first step in factorizing must be the separation of any such

common quantity from every term in the expression.

28G. Algebraic expressions are frequently of some standard

form or type which is readily recognised as the product of

certain factors.

Ex. (a + h) (a + h) = a^ + 2 «/> + /y2.

(rt - h)la - b) ^ d^ - 2 ab + l'^.

In each of the above products, the first term is the square

of ay the third term is the square of l>, and the second term

is twice the product of a and b. The square of any expression

consisting of two terms is of this form (Art. 88). The +
sign before the third term h- indicates that the signs in the

factors are alike, and the sign before the second term 2 ah

indicates whether the signs are + or — . Hence, any
expression consisting of three terms, comprising two symbols

squared (as a- and Ir) and a term which is twice the product

of the two symbols (as 2 «/>), can be factorizecl, the factors

being the square root of the first term plus or minus the
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square root of tlie third term, according as tlie sign before

tlie second term is + or —

.

AV. The fa(;tors of

a!2 + 6 .r + 9 are (.r -f 3) (a; + 3), and of

4 n^ - \2ab -{-U JP- arc (2 « - 3 Z») (2 a - 3 i).

Again {a + /^) (f-? — V) = a- — Ir. Here the product is

the difterence of two scjuares, viz., a- and li\ and the factors

are respectively the sum of the two terms {a + ^), and tlie

difference of the two terms (jt — b). Hence, any expression

comi:)rising the difference of two squares can be factorized.

Ex. The factors of
,,.2 _ ij'i. ^YQ (,p + ?/) (x — y), and of

16 a2'_ 9 /,2 are (*4 « + 3 h) (4 a - 3 ?*).

287. If we multiply together any two expressions con-

sisting of two terms in which the same symbols are used,

and inspect the product, we shall find rules which are available

for factorizing the products.

Ee. (1) (a + 5 h} (a + 3 h) = r/2 + 8 ah + 15 h^.

(2) (a - 5 b) (a - 3 ^z) - rt2 _ 8 ah + 15 h^.

(3) (a - 5 h) (a + 3 h) = a'^ - 2 ah - 15 l^.

(4) {a + 5 h) la - 3 h) = ^^ + 2 ah - 15 /-^.

CaHiug + a the first term in each fact or, and -\- b h or — 3 b

the second term, we note that in the product

(1) The first term is the product of the first terms of the

factors.

(2) The third term is the product of the second terms of

the factors.

(3) The symbol of the second term is the product of the

symbols of the two terms in either factor, while the co-

efficient of the second term is the algebraic sum of the

co-efficients of the second terms of the factors.

Thus, in (3) above, the product of first terms is a x a — a"^.

The product of second terms is — 5 Z* x 3 /y = — 15 Z/^.

The product of second term symbols is ah, and the co-efficient

is 3 - 5 = - 2.

(4) Where a + sign precedes the third term in an
expression, tiie sign between the terms in each of the factors

is the same as the sign preceding the second term of the

expression. See Examples (1) and (2) above.
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(5) Wlicii a minus sign precedes the tliirJ ttrin, the signs

between the terms in ilic factors aic nnlike, and the sign

preceding tlie second term in the prodnct gives the sign of

the factor having the larger co-ethcient for the second term.

Thus in (3) above, the sign of the term — 2 ah denotes that 5 /y is —
and 3 h is + in the factors.

Similarly in (4), the sign of the term + 2 ah denotes that 5 i is +
and that 3 Z* is — in the factors.

To factorizc any expression of tlie type (1), (2), (o),

or (4) above, we proceed by trial and error to discover Lhu

factors.

As examjjles, factori/.c

(1) -^'^ + -ry - 12 '>/.

We require two co-efficients for y such that their prodnct is - 42
and their sura + 1. As we have a — sign before the third term, and
a + sign before the second, the eo-efficients are unlike in sign and the
greater is +. Try — 3 and + 14. Their product is — 42, but their

sum is + 11- They are not the required co-efficients. Again try — G

and -f- 7. Their product is — 42, and their sum is -h 1, hence they
are the required co-efficients. The require! factors are thus
(.e - 6 ?/) (.r + 7 y).

(2) Factors of a^ - a,r - 6 a' are (.r - 3 ^) (.r + 2 ^0-

(3) ., ,,
///2 — 8 mn + 15 )i- are (vi — 5 n) (/// — 3 n).

(4) ;, „ ./2 + 10 ,r -f 21 arc (.r + 7) (./• + 3).

288. The above rules apply for the case in which the co-

efficient of the first term in each factor is not nnity if we
substitute therein ''^ cross-iiroducls^' for ''co-efficients of
the second term.''

Thus (7 ic + 2 //) (2 ^- - v/) = 11 a-2 _ 3 .r,j - 2 ,/-.

The " cross products " are —
and + 14.

Tljcir algebraic sum is - 3.

+ 7\ /1+ 2

+

Thn«, in factorizing ]4 x- — 3 x/j — 2 //-, the — sign in

the term — 2 y- indicates that the signs of the factors are

nnlike ; the sign of the term — 3 xi/ indicates that the

greater " cross-product " is negative. The co-efficients of x
are two factors of 14 both + ; the co-efficients of y are two
factors of 2, one + and the othei- — ; the algebraic sum of

the cross-products must be — 3. From these conditions we
must find by trial and error the factors. They are

(7x + 2?j){2x - y).
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Ej-. Fartorhe :^C^a''- ~ ."iS ah ^ 18 h^.*

'J'lic sii,Mis of the fuctors are unlike, for we have a — sign l)eforc IS l'^.

The greater cross-i>ro(hict is -, lor we have a — sign before 58 ah.

Their sum is — HS.

Try faetors 11^ and \ a for ."(W/^ and - h and 3 h for -\^h\

Cross-products are )< = 12 - 21 = 18.

AVe require, however, — 58 for the sum ; hence tlicse faetors are
unsuitable.

Kepeat the process with 14 a and 4 a, and G // and — 3 h.

This gives — 42and 24, witli sum = — 18.

Tiy again with 8 a and 7 «, and 2 Z* and - I) h. The cross-products
are — 72 and +14, and the sum is — 58. This is the required sum,
hence the factors are (8 a + 2 />) (7 « - 9 h~), or 2 {\a + Z/) (Ja - t)Z/).

289. A general method of factorizing]: any expression of

the form ax^ -\- Ix -\- c, for example H x- i- IG a? + 6,* con-

f^ists in tindinu;- an equivalent expression in the form of the

difference of two siitiares. This can he done as follows :

—

(1) Make the co-efficient g/ ,2 a_ 2x + '^\

of ic^ = 1 hy placing- \
* U

the given co-efficient

(8) outside a bracket.

(2) Add and subtract the r/ \ / qx ^

square of luilf the »
,

{'' + ^ ^ + ') ^ (' '
j) j

co-efficient of x {i.e.,

square of 1).

(3) AVrite as the difference „ i ( ,. i^ A2 ^ (lY '

of two squares.
''

( \ / \ ^ / )

(4) Factorize as the sum « ( f^. + ^ + }\ L + i _\\\
anddinerenceor two ( \ 2/ \ 2/ )

terms and simplify.

.2(.+|)x4(.+ >)

= (2 ./' + :{) (4 X + 2)
= 2 i2x + 3) (2 X + 1),

or..ain,.{(„.
, ^ (^ !) j

^ > (. ^ |) X 2 („ , >)

- (4^ + 0)(2a^ + 1)

= 2 (2 a; + 3) (2 .r + 1).

The coimiion factor 2 iiinv bu reinoveil (iist.
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Ex. Fadorlze ,7-2 - 3-25 x + 1-56. (B. E., 191 1 .)

Following the above rules, we have (1) x'^ — 3-25 a? + 1-56.

(2) Add and subtract {^.2 _ 3-25 x + (1-625)2} _ {(1-625)2 _ 1-5g}
square of half

^ y J } k\ j j

co-efficient of x,

i.e., (1-625)2.

(3) Write as differ- (x - 1-625)2 _ (104)2.
ence of two
squares.

(4) Factorize as the Ir^ _ 1-025) + 1-04} {(x - 1-625) - 1-04}.
sum and differ- ^ ^ ' j iv J j

ence of two
terms.

^ (x - 0-585) (x - 2-665).

This result should be checked by mullipljing together the two
factors obtained.

290. A convenient method of finding the factors of an
expression snch as that in the above example is to plot on
squared paper the graph 7/ = x- — 3-25 x + 1'56. (Art. 281.)
This graph cuts the axis of x in two points, whose abscissae,

with the signs changed, correspond to the second term in

each factor. Thus, the graph y ^ x- — 3*25 a; + 1-5G cuts

the axis of x at points + 0-585 and -f 2-6G5. The factors

are thus {x - 0-585) {x - 2-6G5).

200a. In addition to the results given in the preceding
Arts., the following should be remembered in connexion with
factors.

{a - I) (a^ + ah + /y^) ^=(^3 _ ^,3)^

{a + h) (d^ - ah + Ir) = {a^ + />'),

(a + h)'-^ ^a^ -\-'d a% + 3 ah- + //^

{a - hf = ^3 _ ;.^ ^2^ ^ 3 fii,2 _ p^

Any expression of the form of one of the expressions on
the right above can be factorized into factors corresponding
to those on the left.

291. Binomial Theorem. A binomial is an algebraic

expression consisting of two terms, e.g., (,r + a) or {x — a).

By repeated multiplication we find that

(x + ^0^ = -T^ + 4 x^a + 6 x-a- + ^ ^(i^ + a\
(x -\- ay = x'^ + 3 x~a + 3 ax- + a'^,

{x + ay = X- -\- 2 xa -\- a\
and, similarly, for other powers.
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From these results we note that

(1) AVheii the power is 2, we have 3 terms,

„ „ 3, „ „ 4 terms,

„ „ 4, „ „ 5 terms,

and if tlie power is u, „ „ (/i + ]) terms.

(2) The sum of the indices in each term is constant and
equal to the index of the power to which the Ijinomial is to

be raised, provided tlie indices of x and a are each unity.

(3) The powers of x are in descendinf^ order, e.g.,

/v»4 /7»3 /T»2 7»

(4) The powers of a are in ascendiuj,^ order, e.g.,

a, «-, a^, a"^.

(5) The co-efficients of terms at equal distances from the

ends of the expression arc alike, provided the co-efficients of

X and a are unity, e.g., the second term from each end of

the first result above has co-efficient 4. The co-efficients

follow a law which is indicated in the general expression

below.

It can be shown that

n (n — \)
(x -f af = X" + nx'' -^ .a -\ —^—

' •
^" ~^

- ci- +

n (n — 1) (w — 2) „ „ ^—

^

1^-^ '.x^'-Kd^ ^ . . . nxa;' - ' + a'\

where "fiictorial 3 " or [£ = 3 x 2 x 1, and

^ = 2 X l,etc.,

provided that n is a positive integral or fractional number,
x and a being either positive or negative, and either integral
or fractional.* From this general expression we can Avrite

down at once the result of raising any binomial to a given
power /z. This process is called "''^^/;rt;?^/my."

Ur. Expand Q.v + ay. Here n = 5.

Cx + ay +

+

+
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xii the case in wliich the si<^n is negative, e.g., (x — of,
regard {— a) as the second term. Simihirly, in a case

such as (o X — -i ay\ regard (-f 8 x) as tlie ecjniva-

lent of X, and {-~\(t) as the equivalent of a in the general

expression.

Ex. E.rpan:l(2 x - ^ aj^

(2^-3 a/ = (2 xy + 3 (2 x? (- 3 a) + L^ (2 a-) (- 3a,a

+ (- 3^)3
= 8 .i- _ 30 ^.2

. a -I- 51 a? . a3 _ 27 a^.

Any expression of the form given above can be factorizod

as (ic + ay\ or the product of n factors each ~ {x -\- a).

292. Quadratic equations involving only oue unknown
quantity may (in addition to the general method of solution

given in Arts. 277—280) be solved by factorizing.

Ex. 1. Solve x'^-x = 6.

Write this as a,-2 - a; - 6 = 0.

Factoriziiv:? {x - 3) (_x + 2) = 0.

The product (.r - 3) {x + 2) can only = if {x - 3) = 0, or ,r = 3
;

or if {x + 2) = 0, or ,/- =- - 2.

Ilciice, the roots of the e luition are x — 3, x — — 2.

Ex. 2. Solve (Sx"^ + 17 x = - 12.

Write as G «2 + 17 a> + 12 = 0.

Factorizing (3 x + 4) (2 x + 3) = 0.

Hence (3 x + i) = 0, or 3 x - - 4, and x = - 1-33,

or, (2 .7? -J- 3) = 0, or 2 x ^ - 3, and .r = — \\i.

The roots are x — — 1*33 and a' = — lo.

203. Graphical Solution of a Quadratic Equation.
In Art. 281, one graphical method of solving the quadratic

equation d) x- — 2 x = lb is given ; the graph y— ^x- —2x
— 15 is plotted, and the roots of the equation are shown
to be the values of x for the points in which the graph cuts

the axis of x. A further, and in some cases a more
convenient, graphical solution is as follows :

—

The eq nation S x- — 2 x = lb may be written 8 x- -- 2 x

+ 15. If we plot a grapli y — S x' we have tiie parnbola

AOP> (Fig. isl). If we plot the graph y, = 2x + 15, we
liave a straight line CD. At the points of intersection of

the straight line and parabola, we have // = f/i, i.e., the

ordinate CE or 1)F ivr the line ^ the ordinate OE or DE
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for the parabola. Hence, S x- =^ 2 x -\- lb for the values

of X coiTespocding to the points of intcrsecLion, and as

the roots of the equation are the values of x which make
8 x^ = 2 a; + 15, tlie absoissa3, or x values, for the points

C and D e^ive the required roots of the equation. From
Fig. 184, these values are seen to be x = 1-5 or — 1-25,

which values agree with those found in Art. 281 and shown
in Fig. 182.

If the roots are equal, as in the equation x- ~ C)X -{- \) = 0,

Fig. ISl. Fig. 185.

solved graphically in Art. 281, the line CD (Fig. 185), or

y = 6 a; — 9, will be tangential to the parabola A013, or

y = X-, at the point G at which x = 3, which value gives

the root of the equation. Again, if the roots are iinaginaiy,

as in the equation a;^ — G rr -+- 11 = of Art. 281, the line

and parabola will not intersect. The line EF, ovfj = Gx -\- 11,

is shown in Fig. 185, and it is seen that it docs not touch

the parabola AOB.
294. Cubic equations, and cqrations of higher de<:ree,

may be similarly solved. As an exanqjle, the cubic equation

P.M. Z
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X" - 7x' '\- 4x -\- 12 = 0, solved graphically in Art. 282^

may also be solved by ])lottin,i? the graphs (1) ij == x'\ (2) y
= 7a;-2 - 4ic — 12. These graphs will intersect in three

points corresponding to the three real roots of the crpiation.

The student should plot these grnphs as an exercise, :ind note

thnt the points of intersection are x = — 1, x = 2,a; = G,

which are the three roots of the ecpiation.

2'J5. In cases in which two untnown quantities aie to

be found, we rc(|uiie two equ.itious, called simultaneous

m-:

pinJiffl^

l:^&

pit HP

II

fflfiiwiji m?fflttrrrr |;i1
Fig. 18G.

equations (Arts. 98, 2G0). The method of solving such

cipiations when the unknown quantities are of higher power

than the first consists in finding, from the given data, the

sum and difference of the two unknown quantities, e.g.^

(x + y) and [x - y). We can then find x and y respec-

tively, l)y adding and subtracting these two equations.

Sucli equations can also be solved graphically by plotting

the corresponding graphs, the points of intersection giving,

by their co-ordinates, the values of x and y, which are the

roots of the equations (Art. 275). In each of the following

examples, the graphical solutions are given with the algebraic

solution.
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il-. 1. Sol re X +
a*

AJtjchruic Solution.

«? + ?/= 7 (1)
x,j - I<» (2)

S(iiiarc (1)
x'^ + 2 ary + if = 4!)

Multi))ly (2) ix'ij = 40
by 4.

Siibtmcf. a2 - 2 xy + //^ = 1)

Kxtract sq. root, x — y =^ +3
We now have a* 4- '/ = 7

a- - y = ± 3

.•. adding 2 a? == 10 or 4

a* = 5 or 2

From (1) y = 2 or 5.

A\rcrcise. Solve x — y = 3

xy = 10.

TV* 'if'.—In the graphical solu-

tion, both parts CU and EF
of the graph xy = 10 will he.

require i. The dotted line Fll

(Fig. ISO) isthcgrai)h x - y ^ 'A.

The roo.'s of the equations aic

X ^ o or — 2, y = 2 or — 5. The
[loiiits of intersection are F, H.

JJ.r.'2. Solcc. X — y = 1.

a-2 + y/2 ^ 2:

y = l.

y = 10.

Uraphical Solution.

The graph x + y = 7 is a

straight line. Written in the

form //
= ± mx ± <;, it is y =

- .X- + 7. In Fig. ISC), the graph
is AT..

Tlie graph xy ==10 is the

rectangular hyperbola CIJ. For
jiegative valncis of a?, we have a
graj)]! EF in the thiid quadiant,

as corresponding values of y are

negative. As tlie line AB does

not enter the third qujulrant, this

part of the graph xy = 10 is not rc-

(juired. Theco-onliuatesof G and
H arc the roots of the equations.

jVgcbru/c Solutio/i.

X -y= 1 (I)

x^ + //2 = 25 (2)
Sjuare (1)

u"^ - 2xy -\-i/ ^ 1 (3)
Subtract (3) from (2)

2a-y = 24 (1)
Add (4) to (2)

a-2 + 2xy + ?/2 ^ 49

Extract sq. root, a* + // = ±7
Wo now have x — y =^ i

^ + // = +7
Adding 2x = S or - G

a- = 4 or - 3

From (1) y ^ 3 or — 4.

Exercise. Solve x -\- y ~ 1

a-2 + y2 ^ 2."j.

Note.—The line x + y = 7

intersects the circle x~ + y'^ == 2.")

in points a; = 4, y = 3 an 1 a? = 3,

y = i. It is not sliowu iu Fig. 1S7.

Fig. 1S7.

Grnpkical Sjlution.

The graph a; — y = 1 i^ the

straight line AB (Fig. 1S7).

The graph a--^ + y2 ^ 2.5 is a
circle, centre at O, and radius
= 5. The CO ordinatcs of the

points of intersection C, D of the

line and circle give the roots of

the equation. At C, x = 4, y = 3,

and at D, a* = - 3, y = - 4.

z 2
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Ex. 3. Solre + </

X + y

Ahjfhraic Solutioti.

ay^ + 'f = 2S(1)
ar + 7/ = 4 (2)

Square (2)
x^ + 2 xij + 7/2 ^ iG(3)

-i-(l)by(2)
x^ - XIJ -\- ij"^ = 7

Subtnicting 3 xi/ = 1)

.'. ixi/ = \2

Subtract from (3)
a-2 - 2x1/ + i/ = 4

Extract sq. root x — y — ±2
We now have a; + y = 4

a? - ;//
= +2

Adding 2 a? = 6 or 2

a; = 3 or 1

From (2) ?/ = 1 or 3.

Exercise. Solve a^ — y'^ = 2G
X -y = 2

Note. The graph x^ — v/^ = 26
is similar to the graph AB, but
inverted relatively to OX.

Ans. a? = 3 or — I

7/ = 1 or - 3.

- 28.

= 4.

Gvapkical Solvtion.

To i)lot the graph x'^ + t/i = 2S,

we have y = v^^ — a;^

From this we deduce the follow-

ing facts, which the student should
verify.

When X = 0, ?/ = ^Ys -^ 3*030

„ x = l,y = 'ii

„ a; = 2, 7/ = 2-71

„ X = 3, 7/ = 1

,. a? = 3-036, 7/ = 0.

For negative values of x, y is +
and is greater than 3-036, and
increases as x increases lu

magnitude.
For positive vahies of x greater

than 3-036, y is negative ami in-

creases as X increases. The graph
is shown at A, B (Fig. 188). The
graph X + ?/ = 4 is the line CD.
The co-ordinates of tlie points of

intersection E, F are the roots ol

the eo nations.

Fig. 183
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Ex. 4. Solve

Algebraic Sohdion.

sc^ + 7,2 ^ 25 (1)
xy = 12 (2)

Multiply (2) by 2. 2 xy = 24 (3)

Add (1) and (vi)

a;-^ + 2 a*// + v/-^ 49

Subtract (3) from (1)
a;2 - 2 ar// + //2 = 1

Extract sq. root

of each x + y = +7
X — y = + 1

Adding. 2.2?=+7+l=«
or - 7 - 1 = - 8

or + 7 - 1 = r,

or - 7 + 1 = -
.-. a; = 4, - 4, 3,01- - :}

From (2), y = 3, — 3, 4, or - 4.

Exercise. Solve x^ — y^ = 1^>

xt/ = 15.

Note. The graph x"^ - if- ^ IG

comprises four branches, each
similar in form to CD and EF
and lying one in each quad-

rant.

a,2 + y^ = 25.

xy = 12.

Grajyhical Solution.

The graph a.-2 + ?/2 ^ 25 is a

circle AB (Fig. 18'j), centre at

origin O, and radius = -^^25 = 5.

The graph xy = 12 is the

rectangular hyperbola CD, or

EF, for negative values of x give

negative values of ?/.

The points of intersection are

marked 1, 2, 3, 4.

The co-ordinates of (1) are

a? = 4, 7/ = 3.

The co-ordinates of (2) are

X = — 4, y = — 3.

The co-ordinates of (3) are

a? = 3, v/ =c 4.

The co-ordinates of (4) are

X = — 3, y = — 4.

Fig. 189.
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290. Problems which involve quadratic equations are

frequently met with. The following- examples illustrate

methods of solving such problems.

Ex. 1. A n'ctangula)' 2'lot of land haa an area of 12,000 sq.ft. and
the length of the diagonal is 20S'Sft. Find the length and heeadth of
the plot.

\i X ^ IcngUi and y - breadth of plot in ft.

Then xy = area in sq. ft.

and \^ W^'-\- ?/2 _ length of diagonal.

We have -\/a;2 + y2 = 208-8 ft.

(1) a;2 + ^^ — 43600 (correct to 3 significant figures)

(2) xy = 12000

(3) 2 xy = 24000
Add (1) and (3) .>2 + 2 a-^/ + 2^^ = 676(0.
Subtiact (3) from (1) x^ - 2 xy + y^ = 19G0O.

,•. X -\- y — ± 260 (Negative signs may be)
X — y = +140 (neglected in this problem./

Adding 2x ^ 400
X = 200 ft. length.

7/ = 60 ft. breadth.

Ex. 2. Two ouhieal blocks of stone together contain 370 eft ,
and

their eomhlned hdght Is \^)ft. Find the length of the side of each cube,

Let X ft. be side of one cube, and y ft. that of the other
Then
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We now have a- + y = 10-5

X — y — ± 1-5.

Adding .'. 2 a- = 12 or 9.

J- = 6 or 4-5,

From (I) y ~ 4-rj or (5.

Hence, the sides required arc (5 ft. and 4 ft. G ins.

Ex. 4. Tlie huse of a frianf/Ie cvcccds half the heiyhl hij 'iff. The
area Is 8S sq.ft. Find the ho.^e and lic'ifiht.

Let
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N fl

Ex. Theforimda — — i^ relates to dnring-'belts. "E is the tension

in the tight side, and M that in the slack side. 6 is the angle of lap

of the belt on the pnUeg in radians, p. the co-efficient of friction

hetiveen the belt and pn'lleg, and e = 2T2. If N ^ 2o0 lb., M =
133-8 Z/y., fx = 0-25, fnd 6.

(Comparing this example with the type of equation given above

N
\vc find =^ a,k ^ I. fid = a", and n --= e.)
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wbcllier a is positive or iieo-ative. If n = ], we liave the
straight line y = ar, and if// = - l,weliave y = ax-'^, or

y = -, or xy = <7, which is a i-cctangular liypei-bola.

(Art. 173.)

I^n is integral and even, the grapli is symmetrical abont

Fig. 100.

the axis of //, as AB (Fig. 190), which is the graph y = 0*5 x-,

or CD, which is the graph y = — O'b x^.

If n is integral and odd, e.y.^ V = ^ 2^^ tbe graph is of
the form EF, for y is negative when x is negative. The
graph y = - ^ x^ is the graph EF inverted with respect
to the axis of x.

When n is fractional (and either greater or less than 1),

it is not nsual to deal with values of x which are negative.
In all practical applications of this kind, x would be
positi\'e.
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When n ~ i,
e.f/., ?j = ± 2 a?', we have ?/- = 4 x, or

X = i^-. The value of x will be + whether y is + or —

,

lieiice this grapli, shown at AB(Fig. 101), is symmetrical
about the axis of x.

When n = ^, cr/., y = 2x\, we have if = 8x, and y will

be + or — according as x is + or — . "J'his graph is

shown at EOF (Fig. 1!)1) ; it touches the axis of y at the
origin.

If, in the preceding case, the value of a were negative,

Fig. 191.

^•^•» y ^ - 2 x^, the graph EOF (Fig. 101), would be

inverted with respect to the axis of //.

When n is negative, and either integral or fractional, wo
shall deal only with positive values of x.

(1) Let?i = — 2, e.rj., y = 0-5 x--, or y =
;

.

2 x-^

(2) Let n = — \, e.g., y = h x'l,

or y = In each case, when x = 0^ y is infipile,
^ y ip
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nnd when x is infinite, y = 0, For all -|- vnUics of x, y
is -h, and as x iucicasos // decrcnscs. The gianli (1) is

shown at AH (Fig. 11)2), and (2) at CD.

(8) Let n = ~ ?>, cjj,, y =- O'ox '^

_ 1

" 2x^

(4) U't ?i = - ^, r.^., y = 0-5 x -3-

]— tTT — •

^ V a;

The graphs for (3) and (4) are EF and GH (Fig. 103)

:^^ag^ I
Fig. 192. Fig. 193.

respectively, and the same remarks apply as to the graphs

for cases (1) and (2).

.300. Practical Example. When saturated s! cam expands in an

engine cylinder, in such a way that heat neither enters nor leaves the

cylinder\luring the expansion, the steam is said to expand ad'ia-

hatically. If the absohite pressure j) in lbs. per sq. in. and volume

n in c'. ft. of 1 lb. of steam at each point of the expansion be

measured, it is found that 7; and u are connected by the law
^;,,^i-0Gic ^ 479. This may be written

p= iZi^orw = 479 1^-1 ^iGir..

Comparing with ?/ = ax"", we have y = p, x = i(, a = 479, and

n ^ -1-0G40. By giving top any sjrics of values, we can calculate
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corrcspotuliiig values of u and plot on squared paper. The graph is

shown in Fig. 11)4.

log. V

log. 2^

37-87
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To ascertain the values of a and // from the graph of a given set of

readings, we will refer to Fig. l'.(.'), and assume that tlie ordinates are

values of log. y and abscissa) values of log. ./. The ei|uation of tlie line

CD is of the form y — — »>-v + <', or, as \vc {)lot logs, of ij and ,/,',

log. // — — m, . log. ii' -{- r (1)

The law is //
^ a.c"^ and by taking logs, wo get

log. ?/ = vUog. a; + log- fl^ (-0
(()m|)aring (1) and (2) above, we see that n corres[ionds to (— w),

and (' to log. a.

Hut in the graph, (— w/) is tlie slope of the line, and c is the inter-

cept on the axis of //. Tlie slope thus gives the value of u in the law,

and the intercept gives the log. of the constant a, from which the

actual value of a can be found.
In Fig. 195, the intercept OC = 2-G8U3. This is log. a, hence a =

47'J.

Again, the slope )i is ^„ and is negative,

,
OC 2-6803 ,^^...

"^^^
OU = -

2^5Tr7 = - '-''"'

Hence, fi = - 1-06 16, and the law is // = 479 x - ^o**'*^-

or
'

ya;i'^«-'« = 479.

The values of ci and /tcan also be found by taking two corresponding
values of log. y and log. x from the gra[)h CD (Fig. 195), as follows:—
When log.?/ = 1, log. X - 1-5783.

When log.'// = 1-7782, log. x = 0-8472.

From log. y ~ it . log. x + log. «, we have by substitution

1 = (,i x^ 1-5783) + log. a
1-7782 = (Vi X 0-8472) + log. a.

Subtracting - 0-7782 = « x 0-7311
- 0-7782

^ _
, ,

•• ^^ 0-7311= -l-^^^^-

To (ind log. <i, substitute the calculated value for n in

1-7782 = ()i X 0-8472) + log. a.

Then 1-7782 =
(
- 1-0G44 x 0-8472) + log../.

= - 0-9018 + log. «.-

.-. 1-7782 + 0-9018 = log. a
2-6800 = log. a

from which a — 479.

801 . Equation of a Straight Line in Various Forms.
The cquntioii of a stniig'ht line in the foi'iii // = + m.r + r

(Art. 177) is called the tangent form of the eqnation, for

the constant i)i <j^ive.s the slope of the line, and is e([nal to

the tan. of the ans>;le of inclination of the line to the axis

of X, measured anti-clockwise, when the scales for y and x

are ecjnal.
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'J'lic equation of ii line may be obtained in otlier fornis.

(1) Equaiion of a line passing Uiroiijk lira points ivlios^

CO ordinalcs arc resjieciivehj Xy, y, ; .T2, 1/2. Fi<^. IDG.

Let A be tlic point x^, //i,

V) be tbe point x.^, y.^,

find C be any point bavin^i;- co-ordinates x, y.

The triiingles ABF, ACE arc si mi hi'*.

CE _ AE
•*•

liF " AK*
But CE - V - Vi. AE =:= x - x,

BE ^'y,-
/A, AF =. x,- x,

. y - ?/i ^x - X, .

" y^-Vi x.,-x,
is tlic equation of the line pat-sing througli tlic given points.

F.r. Let the co-ovilinatc? of the pnufs 1)2 A = 3, 4 ; C =
TIkh y = 4, 7/2 =^ 7, a^i = 8, -Ts = 5. aiul wc have

7/ - 4 _ /' - 3

7 - 4 ~ 5 - 3'

y - 4 ^ g- - 3

3 :i

This can be transf(>rmcd to the tangent form,

lor 2 (y - 4) = 3 (ar - 3)
2 y - S -z 3 a? - <)

2 y = 3 a; - 1

y = 15 a? — 0*5.
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(2) Equalio:i of a line irliidt nils ojl' intcrrcpls c, h

rci^]€c1ire!tj fnm ihe cfxes of y and ,r. Fig. 11)7.

Lot the co-ordinates of any point 1) ou the line ])c ic, y.

^''^•^
A(3 = no-

But DE = //, AO - c, EB - {h - x), BO = b.

y (h — x) . ^, . ,

• •
'". —

1
'^ ^'^^ required C(|uatioii.

Si:ii|t

both sides ]ty he,

yh — he — xc

find iv-arrangc -|- -
//

1 . {^)

(Tliis cqiialion can also be deduced from Equation (1) l.y

substituting r, o for t/i, x^ and c, i for 7/2, ^j-)

//

The line AB (Fig. 197) is tlic line ^ + ^ = 1.

002. We often obtain experimentally a series of coi re-

sponding vahies of two related quantities, s iv, x and y, and
by plotting npon squared

paper we can oblain a

corresponding grapli. If

this graph is a straight

^
lino, the determination of

TV'^T^^flf "f""""""""^"~~""
its equation presents no

lPv-F-iT^;i I M M Ml M ITi M 1

1

III clifficulty. If the graph
is not a straight line, the

determination of the equa-

tion is not usually an easy

matter.

It may happen that if

we plot values other than

corresponding values of y
and X we can obtain

a straight line, e.y., in

Art. 300 we have seen

that when the quantities

are connected l)y an equation of the form ;//
= ax'^ we get

a straight line by plotting values of log. y and log. x, and from
this line we can determine the values of a and ji. The selec-

tion of values which w^ill give a straight line requires a certain

Fig. 107.
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amount of practice. If// aud a; are coiiiu.cted bj an equation

such as // = « + bx^, we get a straiglit line by plotting values

of y aud values of x^.

E.V. 1. The following corresponding raluea ofx and y were measured.

There viiiy he errors of ohserration. Test if there is a jjrohahle law

y = a -\- hx"^, ani, if this is tJte case, what are the probable values of

a and h.

X
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X
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I

If tcslcil by putting x — i, we calculate y = 50'31, which agrees

with tbe observed value of y.

303. The following suggestions, in addition to the

examples already given, may prove of use in selecting suit-

able quantities to give a straight line when plotted.

(1) ]f y = axy + b, plot values of y and of {xy).

(2) If y =-^ + h,

(3) If 7/2 = 4 ax,

(4) If 7/2= vx^ + f,

(.j) W X = a?/,

{[')) U X — a<v,

{7)Ux ^'^ + h,

(8) If y = cui\

y and of -.
•^ x
y'^ and x.

y- and x-.

log. X and log. y.

log. X and of y.

. 1
X and -

.

y
loLT. // and X.

(9) If r^ = Z/^^ (l ±~^ „ „ y'^ and x^

Fig. 200.

2 4 6 8
Fig. 201.

i^^

304. Tlie Circle. Fig. 200. If we take the centre of

a circle as the origin, and two diameters mutually perpen-
dicular as axes of x and y, then if the co-ordinates of any
point A on the circle are x and y/, we have OA^ = a;^ + y'-.

But OA is constant ; call it a.

'V\\Q. equation of a circle is thus x- -\- y^ = a?-,

Ex. a;2 + ?/2 ^ 16 is the circle, Fig. 200, of radius v^l^or 4.
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If the centre of the circle is at a point whose co-ordinates

are li, k (Fig. 201), and if the co-ordinates of any point A
ou the circle are a;, y, then

AC = AE - CE
= AE - BD

Similarly BC = (a; - //), and {x - hf + (//
- A")^' = ^2,

where a is the radius AB of the circle. (AB- = BC- -f CA-.)
This simplifies to

X^ + if - 2hx ~ ^hj -\- 7i2 + /(;2 = ^2 (1)^

The general form of the equation to a circle is usually

given as ^-^ + v/2 _^ 2 ^ic + 2/-/ + c = (2).

By comparing (1) with (2), it will be seen that ^ = — h,

or h = — g. Similarly k = — /, and c = h- -\- /j^ — a^.

The co-ordinates of the centre in the general equation

are thus — g, — f, and the radius is a = ^g^ +/2 — c.

Eli. The equatioti of a circle is x^ + y"^ — & x — i y — ^ ^ 0.

£ind its radius, and the co-ordinates of the centre.

The general equatioa is x^ -\- y^ -\- 2 gx -[• 2 fij -\- c = 0.

Our equatiou is x"^ -\- y"^ — >c, x — ii y — 'd = 0.

Hence 2^= — 6, ^= — 3

2/ = - 4, /• = - 2, and ^ = - 3.

= 4.

.-. The co-orJinates of the centre are — g, — /, or 3, 2, and the
radius is 4.

Examples of this kind may also be solved by making the

left hand side of the equation into the sum of two squares
of the form {x — hf and (// — ky, thus

a;2_^2/2-Cic — 4?/-3 = may be written
(a;2- 6 a;) + {y^ - 4:y) = 3.

Make the expressions in brackets into complete squares.

(^- - 6 o; + 9) + 0/2 _ 4// + 4) = 8 + 9 + 4
(^-3)2 + 0/ -2)'= IG

(9 + 4 is added to the right side to balance that added to left.)

By comparison with the equation [x — hy + (y — ky = «2^

it is readily seen that the co-ordinates of the centre are

3, 2, and the radius 4. This method is equivalent to shifting

the axes of reference so that the origin is at the centre of

the circle. All ordinatcs then become (y — k), and abscissse

A A 2
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(x — li), for tlic axis OY moves a distance h uiDwards, and
OX moves a distance h to the right.

305. Polar Co-ordinates. Kefer toFij^. 240. The polar

co-ordinates of any point P are (1) its dislance O'? from a
fixed point 0, called the pole or orvjin

; (2) the angle

(XOP in Fig. 240) ndiich OP inaJces with a fixed line OX
(called the initial line) passing- throngh the origin. The
distance OP is called the radius vector, and is usually

denoted by r. The angle is always measured counter-

clockwise. Hence the j)ol^i* co-ordinates of a point are

often called the " r^ co-ordinates." (See Art. 128.)

Any equation of a curve in rectangular co-ordinate? may
be readily transformed into one in polar co-ordinates, if

the initial line and axis of x coincide, by substituting
7'

. cos. for X and r . sin. for if.

Thus, the equation of a circle in rectangular co-orJinates is

(,r — //)2 + (y — /.;)2= tt2 when the radius is a, and the centre is at a
point h, h. For a circle of radius a, with centre on the axis of ij, we
have h—o, and A' = fl. Its equation is thus (x — oy + (y — ay— a"^, in

rectangular co-ordinates. By writing x = j' . cos. 6 and y = r . sin. 6 we
have the corresponding equation in polar co-ordinates, (?• . cos. Oy +
(r.sin.d- ay = a^. This simplifies to r^. (cos.^a -f- sin.^ d) = 2r.a. sin. 0.

7-2 = 2r.«.sin. 6

;• = 2 a sin. 6,

which is the polar equation of a circle of radius a.

Select any value for a, and calculate r for values of 6 from 0° to 180°,

and plot the resulting curve, thus satisfying yourself that it is a circle

of radius a.

306. Approximations. AYhen x and y are small, the

product of (1 -i- x) {I -\- y) may be taken as 1 -f a; + y
instead of 1 + cc -f y -f- xij^ Avhich is obtained by multi-

plying out fully. The term xij which is neglected is called

a small quantity of the second order, since it is the product

of two small quantities. As an example, if a; = 0"02 and

y = 0-003, then xy is O'OOOOG and is negligible.

This approximation may be extended to the prodr.ct of

three or more factors having small second terms. 'J'hus if

X, ?/, and z are small, (1 + a-) (1 -f ?/) (1 -|- 0) is taken as

1 -f a; -f y -f s, all the terms neglected being small.

Ex. Find the product of 1-006 x 1-024 x 1-037.

^ Let a? = 0-006, y = 0-024, z = 0-037.

Then the terms are (1 4- ic), (1 -f 2/)' ^^'^^ (^ + ~) ^^^ the product
isl-i-a;4-y-fc=l + 0-006 + 0-021 + U-U37 = 1-U67.
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If a?, y, and z are equal, we get (1 + ;r) (1 + y) (1 + £•) =
(1 + ^) (1 + ^') (1 + •^) == 1 + -^ + ^ + ^ ^ 1 + 2 ^
or (I + xf = 1 4- 3 a?.

Similarly {\ -\- xY = \ -\- \ x^ and generally (1 + a:)" =
1 4- nx, whether a? be + or — and integral or fractional.

Ex. (1) I'ind an approximate value for

(I -^x)

(1 + 7/)« (1 + .-)•

This can be written {1 + a*) (1 + y)~'' (^

The value of (1 + t/)-^ is 1 + (- 3 y) =
„ (1 + ,-)-! is 1 + (~ c) =

hence, approximate value is 1 + ;? — 3 y -

Let X = 002, y = 003, - = 0-04.

Then ——-^^^^^ = 1 + 0-02 - 3 (0-03)
(1-03)8 (l-OJj

= 1 + 0-03

= 0-89.

09

+ -)-* (Art. 95).

1 - 3y,
1 -^-,

- 004

004

(2) Find an approximate value of
V1-U03'

(lOOr

^ 1

2 (Art. 96),

tan. B, and the

This may be written 1 x (1-C03)

,3)- 2 =. (I + 0-003)

0003
~2^

= 0-9985.

When B is small we can take sin,

angle Q in radians as equal.
From the Trig. Table it will be seen that for an angle of 2°,

sin. 2° = 0-0349,

tan. 2° = 0-0349,

and 2° = 0-0349

radians.

From Fig. 202,

. , AB
sni. e = j~-,

UA

tan. e =
^^^

if AD is J.- to OA.

^(radians) = —jzy^ •

AYhen (9 is small, AB,
AC, and AD are approxi-
mately equal in length.

Fig. 202.
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307. Evaluation of Formulae. A complex-looking
formula is easy to evaluate if numerical values of the

quantities are given. Such symbols as sin. a, cos. a, tun. a,

log. a, etc., merely direct the student to refer to certain tables.

Certain conventions are used in formulae with which
the student should be familiar. Some have already been
explained. The following are collected for reference.

(1) 520,440 may be written as 5-204 x 10^ for 5-204

when multiplied by 100,000 is 520,400. Similarly, any
numerical quantity may be written as 10** X a quantity

, . , . sriven quantity,
which IS = ^

^^
^

The index n may be + or —

.

Fi*904 ^v^OX
Thus 0-005204 = ?^ = "^^ = 5-204 x lO'^

(2) Logs, calculated to the base e are written as log.^ x
where x is the number whose log. is required.

log., 500 = (log.io'500) X 2-3026.

(3) Sin. " 1 n means the angle whose sine is n. Similarly

for cos. - 1 w, tan. ~ ^ w, etc.

(4) [4_ or 4 ! means " factorial four," and is

= 4x3x2x1.
(5) In terms such as sin. {nt + g), the value of (?^/ + g)

when calculated usually gives the angle in radians, and not
in degrees, unless otherwise stated.

(6) When an angle is given, say as <^, and in the same
formula either sin. </>, cos. </>, etc., is used, <^ must be taken
to be in radians.

The following examples illustrate methods of calculation.
Ex. 1. If X = a

(<f)
— sin. <^) and y = a {\ — cos. ^), fnd x and y

when a is 10 and <p = 5061 radians. (B. E., 1905.)
From the Trig. Table it will be seen that 0-5061 radians = 29°.

Hence x = a{<p — sin. <^)

= 10 (0-5061 - sin. 29°)

= 10 (0-5061 - 0-4848)
= 10 X 0-0213

= 0-213.

y =^ a (I — cos. (p)

= 10(1 - cos. 29°)

= 10(1 - 0-S746)
= 10 X 0-1254
= 1-254.
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Ex. 2. If X is in radians,
2*3 ^,5

/J.7

Sin. X ^ X — -T-\ + T-- - I a 1 etc.

\1 [l \1
Find sin. x correct to four significant Jigures* whenx = 3. IT iint

is the angle in degrees ? (B.E., 190i.

3i„.. = 0-3 - 'e^' + ^ij^, -
, , rr . ..

etc,
3x2 5x4x.^x2 7x()X 5x4x3x2'

0-3 X 0-3 X 0-3 ^ Q.()Q4,^
3x2

0-3 X 0-3 x 0-3 X 0-3 X 0-3
= 0-00002.5x4x3x2

_ We need not calculate any further, as we only require four signifi-

cant figures, hence we can neglect 0-00002.

.-. sin. a; = 0-3 - 0-0045,

= 0-2955.

The angle in degrees and min. is found by interpolation (Art. 343)

from the Trig. Table to be 17° 12'.

Ex. 3. There are two formulae for calculating <p ;

(1) (p = log.e ^r^rr, which is approximate, and

(2) <p =1-0.565 log-e,-^^ + ^ X 10-"^ (^~ - 503 A + 0-0902

which is correct. If t = Q -\- 273 and 6 = 57, fnd the tivo answer
and the jyerccntage error in vshig the approximate formula,

(B.E., 1904.)

,
57 + 273 , 3.30

(1) <^ = ^'^^^e^y3- = log.^
3.30

= 2-.30261og.io||3

= 2-3026 (log. 330 - log. 273)
= 2-3026 (2-5185 - 2-4362)
= 0-1895.

(2) ^ = l-0.-,G51og, '1±^+ 9 X lO-r ( (-5I+?!?)?
27.i ' ( 2

- 503(57 + 273
j
+00902.

Wehavelog.^ , —'- = 0-1895 from (1) above.

1-0565 X 0-1895 = 0-200207 correct to six places of decimals.

9 X 10-7
I

^'^Q

^
^^^ - 503 X 330

I

=
l^^ I

54450 - 165990
|

9 X (- 111540)

10'

1003860

107
0-100386.

* To ensure a correct answer to the required number of significant figures, all

tenns which have less thantlie s;'.me number of zeros after the decimal points mu.st
be included.
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C-1003f6 + 0-01)02Hence (p = 0-200207
= 0-19.

The correct value is O-IO.

The approx. value is 0'1895.

The difference is 0-0U05 too small.

Hence percentage error is -^—_!i—-~»_ = 020 ° (oo small

Exercises,

(1) The difference of .r and ?/ is 3-14
; the sum of ^2 and ?,2 jg 140

;

find ,r and ?/. (B.E. (2) 1908.)'

(2) What arethe factors of i£-2-8-92.r + 18-37 ? (B.E. (2) 1908.)

(3) li y == a^-i-^s + ^.i^-^ ; if ^/ = 6-3 when a- ^ 1. and if y == 1-33

when X = 2, find <i and b. (B.E. (2) 1908.) -

(4) If - = e^^ and if ^ = 0-25, = 3, find 5. It is known that
y y

z--y = 1000, find x and y. (B.E. (2) 1908.)

(5) The following: quantities measured in a laboratory are thought
to follow the law y = ah^x^ Try if this is so, and, if so,'^find the most
probable vajucsof a and h. There are errors of observation.

X
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It is thought there is a law like P = am. Try if this is so, and state

the most probable value of n. (B.E. (2) 11)10.)

(8) If .r//i»" = 25. If X = i, find y. (B.E. (2) 1907.)

(9) L Ijeing length in feet and H the height in feet of still water
level above the sill of a thin-edged rectangular notch for measuring
water, Q being cubic feet per second flowing ; it is known that Q =

A notch of length 10 ft. was experimented with. When PI was
0-51, Q was found to be 5-82, and when H was 0-98, Q was found
to be 82-10. What are the values of a and h I What is Q when H
is 1-21 ? (B.E. (2) 1907.)

(10) The following numbers are authentic ; t seconds is the record

time of a trotting (in harness) race of in miles :
—

•

in
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YKCTORS.

80S. In Mafliomalics, Meclianics, [iTicl Physics we have to

deal with two distinct types of quantities. When we speak
of 50 shiUings, meaning a snni of money, we have fully

specined the (juantity we are spenking of, for we have specified

the kind of quantity, viz., money, and we have specified the

amount or magnitude of the quantity, viz., 50 shillings.

If we move a body from any point to another point, say

50 ft. away, we say that the body has had a displacement

of 50 ft. ; here we have stated the kind of quantity, viz.,

displacement, and also the amonnt, viz., 50 ft. ; but, before

we can specify the point to which the body has been moved,
we still require to state a further characteristic, viz., in what
direction the displacement has been made. A quantity such

as a displacement, then, is not fully specified until we know
quantity, kind, and direction.

Quantities which are fully specified by kind and amount
only and are independent of direction are called Scalar
Quantities ; examples are numbers, length, mass, time,

tempej-ature, etc.

Quantities which have a definite direction, and hence are

fully specified only by kind, amount, and direction, are

called Vector Quantities"-- ; examples are forces, displace-

ments, velocities, accelerations, momentum, etc.

309. Both scalar and vector quantities can be represented

geometrically by a line drawn to scale. The length of the

line, in terms of the unit employed for the scale, represents

in each case the amount of the quantity. If we are dealing

with a scalar quantity, we may draw the line in any direc-

tion on the paper. If we are dealing with a vector quantity,

we cannot draw the line in any direction we please, because

ihe vectoi' quantity has direction as well as magnitude, and

Vector quantities are often referred to simply as vectois.



VECTORS. 303

honce we must draw the line on the paper parallel to the

given direction of the vector quantity.

Thus, a line 1 in. long drawn anywhere, e.q.^ OA (Fii^, 20:?), will

represent 50 shillings money ; if our scale is 1 in. = 50 shillings,

but it will only represent, to the same scale

a displacement of 50 ft., provided the dis- ^ /'^
placement is along the direction OA, ix.^ Y
45° to the horizontal reference line OX.

When a vector, e.fj,, a displacement

is represented by a line, eitlier drawn
on paper, or specified in space, we are

still in doubt as to whether displace- ^Wr. 203.

ment is from to A or from A to 0,

i.e.y we require to know which way alon^^ the given direction

line the displacement takes place. This is usually called the

sense of the vector quantity, and it is denoted by an
arrow-head placed anywhere on the direction line. Other
terms used for sense are ort and clinure.

310. Summarizing, we can represent fully a vector

quantity by a line if

(1) The length represents to scale the amount of the

quantity.

(2) The direction of the line corresponds to that of the

vector quantity.

(3) The sense, ort, or clinure is shown on the line.

311. Some vector quantities require not only direction to

be specified, but also their actual position on the ]myer, or in

space, e.g., a force is not completely specified until we know
its magnitude, direction, sense, «^7^r/ a point through which its

dir€ctio7i passes. A force is thus a particular kind of vector

quantity, for it has a definite position as well as direction,

and hence it is called a localized vector or a rotor.

312. A vector quantity may be specified numerically if we
adopt a fixed line of reference and specify (he angle, measui-cd

anti-clockwise, between the reference line and the direction

of the vector quantity. The line of reference is usually

taken as horizontal.

Let r units be the magnitude of the vector, and let be
the angle its direction makes with the horizontal reference

line OX (Fig. 204). Then the vector is specified numerically
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as the vector Tq, the symbol r dcnotiiif^ the mag-nitude, and

the siifhx 6 ihe direction with the

fixed reference line. The sense is

understood as being away from 0.

The displacement OA (Fig. 203),

would be written as a displacement

Fig. 204. 50^-0.

Similarly, to specify numerically a

rotor or localized vector, we adopt a fixed line of reference,

usually horizontal, and a fixed point in that line (Fig.

205). Then, a rotor of magnitude

r and inclination 6 and passing:
^"

through a point distant x from

measured along OX is written as

^Te. The distance x is called an

intercept, and is + or — accord-

ing as it is to be measured to the

right or left of 0. As an example, a force of 50 lbs. whose

direction is inclined at 30° to the horizontal, and which passi^s

through a point 5 ft. from 0, would be written as the

force

^tILJ^

Fig. 205.

r = 40 lbs.

Fig. 207.

Ex. liejyi'cacnt fjrajj/iicaUy and nvmcrically the folloiclng redoi's—
(1) A velocity of 25 ft. per second in a direction North-east.

(2) Three forces («) 50 lbs. acting North-east, (J/) 30 lbs. acting

North-west, and (c) 25 lbs. acting 20° South of East and passing

through points 3, 5, and 8 ft. respectively from 0.

Numerically.

25 .<,. 50 30 20
^^) 45° '^"^ 3 45° ^5 135° ^8 310°'

Grajjliically, in Figs. 206 and 207.
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313. Consider a vector, say a displacement A3 (Fig. 2()H).

If we divide it into three equal parts, OA^, A1A2, A.2A3,

and consider each of these parts separately as a displace-

ment, then the displacement OAg may be regarded as the sum
of three separate displacements, OAj + A^Aa + A^^s.

Similarly, the sum of any number of parallel vectors of

the same sense is a single vector, parallel to each of, and
having the same sense as, the separate vectors, but having a

magnitude equal to the sum of the magnitudes ( f the separate

vectors. The vector sum is itself a vector joining the

beginning of the first vector to the end of the last vector

when all the vectors arc pi iced end to end. If we regai'd

Fig. 208. Fm. 209.

the separate vectors as a series of steps--- to be taken in order,

then the vector sum is a single step equal in effect to the

sum of the separate steps.

314. Now consider vectors which are not parallel, and
consider each vector as a step. Ifwe have two vectors, say

displacements OA and AB (Fig. 209), then by taking the

step OA we arrive at A, and by a further step AB we
arrive at B ; a single step OB, equivalent to the two separate

steps, Avould be the step OB.
The vector OB is the vector sum of OA and AB, and

may be defined as that vector which is obtained by placing

the separate vectors end to end, with the beginning of the

second in contact with the end of the first, and then joining

the beginning of the first to the end of the second.

The vector OB = vector OA + vector AB.

Due to 0. Henrici.
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This rule for the sum of two non-parallel vectors will be clear if

we consider a swimmer crossing a wide river in which the streanx

is tiowing at a certain velocity, say, 3 miles per hour. Let us
assume that the swimmer can swim 2 miles per hour in still water,

and that he heads straight across the stream. The swimmer's
direction is AB (Fig. 210), and that of the stream is BC. Let AD
be J mile. Then in ^ hour the swimmer would be at D, if swim-
ming in still water. But, in the same time, the stream has carried

him I mile or a distance DE down the stream ; hence, at the end of

I hour the swimmer is actually at E. If AB is 1 mile, the swimmer
-would arrive at B, in still water, in ^ hour, but the stream carries him
1^ miles, or a distance BC, hence his actual position is C. If we plot

his position in this way for different intervals of time, and join up all

= 2 mis. per hr.

Fig. 210.

points as E, C, etc., we find the actual path of the swimmer to be
AGr. Now find the path by the rule above for the sum of two
vectors, one a displacement of 2 miles, and the second a displace-

ment of 3 miles—perpendicular to the first. The vector sum has

the direction AC.
Again, as the vector AF is the swimmer's velocity in still water in

miles per hour, and as the vector FG is the velocity of the stream in

miles per hour, the resultant velocity (Art. 316) is given in magnitude
and direction by the vector AG.

Since AF = 2 and FG = 3, .-. AG = A/T+d
— \/ 1 3 miles per hour.

This result means that the actual velocity of the swimmer, relatively

to the bed of the stream, or as seen by a person standing on the bank,

is a/ 13, or 3*6, miles per hour in the direction AG.
Similarly, the sum of any number of vectors is the

vector obtained by placing the end of the first vector in con-

tMct with the beginning of the second, the end of the second

in contact with the b ginning of the third, and so ou, and
then joining the beginning of the first to the end of the last.
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+ I'.c -I- CD ^- im:.

Thus, in lM\^ 401
Vector OK = OA + A I'. + I'.C -|- CD +

fur OB = OA + A 15.

OC = OB + BC = OA + AB + BC.
OD = OC 4- CD = OA + AB + BC + CD.
OE = OD + DE = OA + AB + BC + CD +

3G7

DE.

• 315. It does not matter in what order we take the vectois,

we obtain the same vector for the siiin.

Thus, in the above example, Fit/. 211, shows that

OE - OA + AB + BC + CD + DE,
and Fig. 212 shows that OE is also the sum, say, of

OA + BC + AB + DE + CD.

The above statement agrees with tlie corresponding

algebraic law that

« + & + c + <r^ + e = say (<:i + <? + ^ + ^ + d),

or, the order is immaterial in addition.
olG. The vector sum of a series of vectors is called the

resultant, and the two or more vectors which collectively

give the vector sum or resultant are called components.
AVemay require to find the resultant of a given series of

vector.s, or we may be given a single vector and be required

to find its components in any given directions.

The latter operation isc.illed resolving the given vector
in the given directions.

Ex. I. A shij) steers due North at 10 miles per hour, and is vioviitg

in a current which travels East at 3 miles per hour. What is the actual
velocity and direction of the ship ?

ON, Fig. 213, represents the direction in which the ship steers
;

OE the direction of the current. Then OP is the actual direction of
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the ship. The direction OP is determined by drawin,;^ the Vector

diagram. The vector on is 10 units long and parallel to ON, the

vector oe is placed at the end of

the vector on^ and is 3 units long

and parallel to OE. The vector

sum is then op, and by measure-
ment this is 10-i units long. The
actual direction of the ship is OP
parallel to o/;, and the actual

velocity is 10-4 miles per hour.

This result can be found by
calculation, for on is JJ to oe^

hence

1" = 10 mis. 1 er hr

Fig. 213.
op V102 + 32 = ^100

10-44 miles per hour.

3-3333. ThisThe angle EOP is an angle whose tangent is ^ =

angle is found from the Trig. Table to be 73-3 degrees.

Ex. II. A swimmer icishcs to cross a stream 880 yards icide, ivhich

isjioicing at the rate of ?> viiles per hour. He Iteads straifiht across the

stream, and can swim 2 miles in 1 hour in still loater. At ichat point

will he land ; ivhat will he his actual velocity and path, and how long

10 ill he take to cross?

Let OA, Fig. 214, be the direction across the stream, and OB the

direction in which the stream flows. In the vector diagram, m = 2

and is parallel to OA, o& = 3 and is parallel to OB ; then oc gives the

velocity and OC the direction o f the swimmer.

oc = v'4 + y = Vl3
= 30 miles per hour.

The angle BOC = angle whose
tangent is f or 0-0666, i.e., 33-0°.

If OA = 1 mile (880 yards),

I mile, and 00==

miles = 0-9 miles. The

thcn_ OB
\/]3

4

swimmer thus lands f mile down
stream and relatively to the bed
of the stream he swims 0-9 miles.

He has to swim the equivalent of

\ mile in still water, and he can
swim 2 miles per hour. Hence
the time taken is ^ hour. We

get the same result if we find the time taken to swim the path 00
at the velocity oc, for

OC = -— miles. Velocity oc = VITmiles per hour.

1" = 4 mis, per hr.

Fig. 214.

Hence time to swim OC ^ Vi.{ Vi3 = \ hour.
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Ex. III. A Cifclist trareh due South at 12 miles per hour, and the
wind, actually blowsfrom the South-ivest at 5 viiles 2^<^'' hour. What i-v

the apparent velocity and direction of the ivind to th^ cyclist?

If a cyclist travels 12 miles per hour due South in a calm atmosphere,
he will experience a wind resi-tance due to his own motion equivalent
to that of a wind having a velocity of 12 miles per hour due North.
Hence the cyclist in this example really experiences the resultant of
two winds, one blowing due North at 12 miles per hour, and represented
by ON, Fig. 215, and the other blowing from South-west to North-
east at 3 miles per hour and represented by OP.
The vector diagram is thus on = 12 parallel to ON

op =5 „ „ OP.
The vector sum is oq = 15-93 mis. per hr.

The direction OQ is 13° East of North.
*To calculate the magnitude and direction Kj

of OQ, we have '^

Angle between on and op = 135°.

Oq-i = (y/i)2 + (opy - 2 (on) (op)

cos, 135°.

= 122 + 52 - (2 X 12 X 5 X - COS.

45°).

= 144 + 25 + (120 X 0-7071).

= 144 + 25 -f-
84-9.

= 253-9.

oq = 15-9.3. ^
The angle NOQ is given by 1" = 16 mis. per hr.

sin. NOQ 5^_ FiG. 215.

sin. 135 ~ 15-93*

.-. Sin. NOQ = 0-2219,

and .'. angle NOQ = 13° (correct to the nearest degree).

Ex. IV. An aeroplane is travelling 30° North of East at a velocity

of 50 miles per hour. What are tJie components of this velocity in tlie

directions North and East?
Let on, oe, op. Fig. 216, be the vector diagram. We know that op,

drawn parallel to OP must = 50. We require to find two vectors

on and oe parallel respectively to

ON and OE, which will give op as

their vector sum. Hence from the

ends of op draw on, oe to intersect

as shown. Then on = 25 is the

northerly component and oe = 433
is the easterly component.
To calculate on and oe we have
Angle NOP = 60°.

Hence oe = op x sin. 60°.

= 50 X 0-866.

= 43-3 mis. per hr. y-^ g-
on = op COS. 60. ^ t

= 50 X 0-5. V = 40 mis. per hr.

= 25 mis. per hr. Yia. 216.

* This calculation may be deferred until Chap. XXXV. has been read.

f.ll. B B

oe
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317. To determine the difference of two vector

quantities.

Let us consider, first, two parallel vectors, say, displace-

ments. One body is moved 50 ft. from a given point in

the direction OA to the point A, Fig. 217. A second body

is moved 30 ft. in the direction OA to B. The difference

between the two displacements, or vectors, OA and OB is a

displacement or vector BA, or that vector (BA) which must

be added to the vector (OB) to be subtracted, in order to

A
/

/:

V
/A

Fig. 217. Fig. 218.

make the vector sum (OB + BA) equal to the given vector

(OA).
Similarly, when OA and OB, Fig. 218, are not parallel.

The difference between the vectors Ok. and OB is the vector

BA, which is the vector to be added to the vector OB to

make the sum = OA. Hence, to find the difference between

any two vector quantities OA, OB, set out the two vectors

from a common point and join the ends B and A of the

two vectors. This gives the vector BA, which must be added

to the vector OB to give OA as the vector sum.

[The student should note that the vector BA = OA — OB, whereas

the vector AB would = OB - OA for OB + BA = OA and OA +
AB = OB.]

If we again consider the illustration of the swimmer in a

stream (Art. 314), the difference between the vector AG
(resultant velocity) and the vector AF (velocity of the

swimmer) is the vector FG (or velocity of stream) necessary

to make the path AG.
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Ex. I. Two sh'ipa at sea are tmvelUng respectively 25 knots j^f^f ko2cr

JS'orth-rast and 2U knots East, and tlieir j^osifions are such tJuif tliey are

apjiroacJiing eac/t oilier. What is their velocity of approach ?

The directions of the ships arc shown at E. and N, E., Fig. 219.

The vector diagram is

ne = 25 and parallel to N.E.
e = 20 and parallel to E.

The vector a = 17-8 is the vector

difference of the two given velocities

and hence gives the velocity with
which the ships approach each other.

Note.—The student will get

a better idea of this kind of

problem bj asstiming that the

ships are traYellin,i>- in the

same direction at different speeds, sny 25 and 20 knots.

Their velocity of approach is 5 knots, or the vector which
added to the velocity 20 gives the vector 25. The two steps

20 and 5 make up the single step 25. Similarly, in Fig. 219,
the two steps 6 = 20 and a ~ 17*8 make up the single step

ne = 25. Hence a is the velocity and direction of approach.

If the ships do not ultimately collide, there is a certain time

at which they are at a minimum distance apart ; after that

they separate with a velocity equal to their velocity of

approach.

1" = 20 knots.

Fig. 219.

Ex. II. A jet of icater travels at a velocity of 50 ft. i)er second in a
direction AB, Firj. 220, and inqnnr/es njmn'an i7iclined jflafe B ivhic/t

has a velocity of '20ft.i)er second in the direction BC. Find the velocity

of the icater relatirely to the plate.,

assuming that the ;]et impinges upon
the plate without shock.

The water is travelli-^g faster than
the plate and hence is approach-
ing the plate and will ultimately
impinge upon and run along it. The
velocity of the water relatively to
the plate is the velocity at which
the water approaches the plate. The
vector sum of the velocity of the
water relative to the plate and
the actual velocity of the plate
must = the velocity

||
AB.

1" = 50 f.s.

Fig. 220.

Hence,
This is r in vector diacrram and

find the vector difference of velocities
||
AB and

|| BC.
33-5 ft. per second.

B B 2
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318. Rotors. A Tector quantity whicli must occupy a

definite position has already been referred to (Art. 311) as a

localized vector or a rotor, and a force has been given as an
example of a rotor quantity.

The line representing a vector quantity other than a rotor

may be moved anywhere parallel to itself. The line repre-

senting a rotor quantity

A • g must not be moved except
> along its own direction,

^ ^
—. e.g., a displacement of 50 ft.O U jj^ ^ direction West to East

_, , , ^Y rn^y ^^e represented by the

O F G H ^'^^ ^^ (^'g- 2-1)' or by

j,j^ 221
^^' 0^' ^y ^"y 1'^^ parallel

to AB or CD, whereas a

force of 50 lbs. acting from West to East and passing through

may only be represented by OF or FG- or GH, or some
segment along the line OX. We shall now confine our

attention to those rotors which are forces and we shall use

the term "force" instead of the more general term "rotor

quantity." It must be remembered, however, that the various

rules for finding the vector sum and vector difference of a

series of forces apply equally to other rotor quantities.

Fig. 222 (a). FiG. 222 (b).

319. A series of forces which act in the same plane are

called co-planar forces.

A series of forces which act at the same point are called

concurrent forces, whether they are co-planar or not.

We shall deal only with co-planar forces, and consider

(1) Concurrent co-planar forces, Fig. 222 (a).

(2) Non-concurrent co-planar forces. Fig. 222 (b).

320. Concurrent Forces. If a number of forces act at

a point, it can be shown experimentally that a single force,
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acting at the same point, will produce equilibrium, i.e., will

prevent motion of the point due to the acting forces.

Take a drawing-board and four small pulleys, as shown in Fig. 223.

To a small ring attach five strings, and pass four of the strings over

the four pulleys, allowing the fiftli string to hang freely. Now place

weights, ^ay of 3, 7, 5, and 4-75 lbs., on the strings, and by pulling on
the fifth string in various directions, note that the small ring may be

made to assume different positions. The magnitude of the force or

j)ull in each string is equal to the weight attached to the end. The
directions of the various forces exerted on the ring are indicated by
the part of the string between the ring and the pulley over which the

Fig. 223.

string passes, and each force or pull passes through the centre of the

ring. The sense of each force or pull is away from the ring.

By pulling the fifth string vertically, move the ring to some definite

position on the board, and secure it there by an ordinary pin. (If the

pin is removed, the position of the ring will alter.) Now add to the

fifth string a weight just suflScient to retain the ring in its position

when tl.e pin is removed. This weight or pull in the fifth string is a
single fc rce which balances the four forces 3, 4-75, 5, and 7 lbs. and it

is called the " equilibrant " of the four forces. It also acts away
from th ring.

AVe c n determine the magnitude, direction, and sense of this equili-

brant by means of a vector diagram, or as it is called in the case of

forces, a force polygron.
From any point draw a vector equal and parallel to the force 3,

from the end of the vector 3 draw a second vector equal and parallel

to the force 7, and in turn vectors equal and parallel to the forces

5, 4-75. Now join tlie end of the vector 4'75 to beginning of vector 3.
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This vector gives the magnitude and direction of the cquilibrant, and
in the present example it is vertical and equal to 10 G lbs.

If the fifth string be now passed over a pulley, as shown in dotted
lines, and a weight attached to its end, the i)osition of the ring, and
hence the directions of all pulls, will alter. Now draw a second force

polygon as before, and note th.at the resultant vector is again equal to,

and parallel to, the puil in the fifth string.

^y^i conclude from the above experiment that, when a
series of forces act at a point and are in equilibrium
(i.e., the point does not move under the action of the
forces) they can be represented in magnitude and
direction by the sides of a closed polygon called the
polygon of forces ^

We can regard any one of the series of forces as the

cquilibrant of the remainder

of the series, since each

force may be regarded as

balancing the remainder.

Again (as in a "tug of

^var," a pull along a rope

in one direction will balance

an exactly equal puU in

the opposite direction), it

will be seen that the four forces or pulls 3, 7, 5, 4*75 lbs.

(Fig. 223) are equal in effect to a single vertical pull upwards

of 10'6 lbs., for this pull would just balance the eqnilibrant

pull of lO'G lbs. downwards. The single force which is equal

in effect to a series of forces is called the resultant force,

and the separate forces of the series are called component
forces. It will be also seen that the closing line of the force

polygon gives the magnitude and direction of the resultant,

while the sense of the resultant is opposite to that of the

eqnilibrant.

o21. Notation.—It is usual in drawing force diagrams to

denote each force by two letters placed on opposite sides of

the force ; thus the four forces shown in Fig. 224 would be

called the forces AB, BC, CD, DA.
When we draw the force diagram, we letter the ends of the

vector which is drawn parallel to the force AB as ah, that

parallel to BO as be, and so on, the capital letters denoting

the forces in the one dingram, often called the position

FiU. 224.
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diagram, and the corresponding small letters dLnotiiig the
Acctors in the vector diagram.
Ex. I. Fonr.^ of 'y, 7, 1<», (/>id 4 Ib.-i. act at a point 0. Find a sinr/le

force {resultant) ichich lias the same eject at the jJoint 0, and a force
(eqnUihrant^ to hahince the four giren forces:

Let the forces 5, 7, 10, and 4 be denoted, as shown in the
position diagram, Fig. 225, by letters A 15, BC, CD, DE.
Draw the vector diagram
ahcde. Then the vector ae

gives the vector sum of the

given forces, and hence is

the resultant force. This
resultant force is shown in

dotted lines in the position

diagram and it acts at 0.

If we reverse the sense, we
have the vector ea, which
is the equilibrant, and which would also act at 0.

322. Fig. 22G. If we have only three forces acting at a
given point and they are in equilibrium, the vector diagram

becomes a closed triangle, hence

^
yj^ the following theorem, known as

\ r^ y^ X I the triangle of forces.

If three concurrent co - ph.ncir

forces ccm be rejjresented in magni-
tude and direction hj the sides

of a tricingte, the forces are in

equdibrium.

323. Parallelogram of
Forces.—The residtant or equUibrant of two concurrent

forces is given in magnitude and direction by the diagonal
ofaparattelogram, the sides of which
are equal and parallel respiectivelg

to the given forces.

Thus if OA, OB, Fig. 227, represent to
scale two forces acting at 0, their resul-
tant is given in magnitude and direction
by the diagonal OC, and the equilibrant
would be CO ; for if we draw the usual
vector diagram to the same scale we have
oa = OA, oh = OB = AC, and hence oc =
OC.

Fig. 226.

Fig. 227.
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Tin's coiistniction is convenient, as it may be readily

revcised to find the components of a given force. Thus,

let or, Fig. 228, be a given force. To find components
acting horizontally and vertically.

Set out OC to scale and draw OB and
OA respectively horizontal and vertical.

Diavv CA parallel to OB and CB parallel

toOA.
Then OA and OB represent to scale two

forces which have OC for their resultant

and hence are the horizontal and vertical

components of the force OC.
By calculation OB = OC cos. 6 ; OA =

BC = OC sin. e.

Fig. 228.

324. The resultant or equilibrant of any number offorces

acting al a point can be found by repeated applications of

Fig. 229.

the parallelogram of forces,

forces, OA, OB, and 00.
OD = OA + OB
OE = OD + OC

= OA + 0B +
Fig. 229 (b) shows the vector

diagram drawn to the same scale,

and it will be seen that it gives the

same result {pe = OE).

The resultant of two concurrent

forces OA, OB, Fig. 230, can be cal-

culated if the angle 6 between

the forces is known.

Fig. 229 (a) shows three

OC.
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OB = AC aiifl angle DAC = AOB =
01) = OA + AD

= OA + AC • COS. 6

= OA + OB • COS. 6

also, DC = AC sin. (9 = OB sin. 6
.-. 0C2 = (OA + OB ' COS. ey- + (ob • sin, oy

OG = V (OA + OB • COS. Oy + (OB • sin. 6^
825. The resultant or equilibrant of a number of forces

acting at a point can be calculated by resolving all thefoixes

1" = 20 lbs.

Fig. 233.

horizontally and vertically, finding a single horizontal force

equal to all the horizontal components, a single vertical for< e

equal to all the vertical components, and finally the resultant

of the two forces thus found.

Ux. Let tlie given forces he OF, OG, OH, OK, = respectively
to 15, 15, 20, and 8 lbs., an shoioi in the diagravt, Fig. 231.
The horizontal components are

15 • cos. 15 + 15 cos. 60 + 20 cos. 120 + 8 cos. 205.
= (15 X 0-966) + (15 X 0-5) + (20 x - 5) + (8 x - 0-006;}).

The single horizontal force is thus
= 14-49 + 7-5 - 10 - 7-25

= 4-74 lbs. Call this OA.
The vertical components are

15 sin. 15 + 15 sin. GO + 20 sin. 120 + 8 sin. 205
= (15 x 0-2588) + (15 X 0-866) + (20 x 0-866) + (8 x - 04226).
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The single vcrlioiil force is thus
3-8S2 + 12-y9 + 17-32 - 3-38

= 30-812 lbs. Call this OB.
The resultant of the two single forces is (Fig. 232)

00 = a/(Oa7T70B)2 = v/ (4-74)2 + (30-812/ = 31 34 lbs.

The direction d which 00 makes with OX is such that'

00
~sin. (f =

00 31-34
= 0-9832,

hence 9 = 79-o degrees.
The result agi-ees with that found by tlie vector diagram shown in

Fig. 233.

PI (PvC)

c

Fig. 234.

to be equal to P

Q^

32G. Non-concurrent Forces.—If a bar ^r, Fig. 234, be
pivoted to a pin at 0, and weights P and Q be appfied at the

points a and c respectively, the bar would tend to rotate

about in a clockwise direction.

This tendency to rotate can be

exactly counteracted by an upward
pull at any point of the bar to the

right of 0, the amount of the upward
pull depending upon the distance

from at which it is applied.

At some point h between a and
c the upward pull would be found

+ Q, and experimentally it can be shown
that the distance Ob is such that (P + Q)x od = (F x oa)

+ (Q X oc).

The product of any force and its perpendicular distance

from any point is called its moment about the point ; it

gives a measure of the tendency of the force to produce

rotation at the point. The above statement thus shows thiit

the position of the equilibrant of a series of parallel forces is

such that the moment of the equilibrant is equal to the sum
of the moments of the separate forces about any point in the

same plane as the forces.

It must be noted that the equilibrant is equal in magni-
tude to the vector sum of the separate forces, in this case

(P + Q), but is opposite in sense. Alihougli we could

prevent rotation at by a less or greater force than (P + Q)
if applied respectively to the right or left of />, we could not

prevent motion of the bar oc parallel to itself, if the pivot
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at were free to move, unless the upward pull (? + Q)
were just equal to the sum of the downward pulls P and Q.

A scries of parallel forces sucli as P, Q, and (P + Q) will

be in eciuilibrium if

(^0 There is no tendency of the bar oc to move parallel to

ilscif either upwards or downwards.

{[)) There is no tendency of the bar or to rotate about 0,
or any other point in the same plane as the forces.

327. The equilibrant or resultant of any scries of parallel

forces can be found graphically, and also the point at which
it must act, as in the following example.

1" = 1:0 lbs.

Fio. 23.3.

Take three forces, AB, BC, CD, Fig. 235, equal respectively

to 7, 5, and 8 lbs. The force polygon is alcda. A single

force da — 20 lbs. is the equilibrant.

AVe now require to find a point through which the
equilibrant passes.

Choose any point 0, called the pole of the vector diagram, and join
oa, oh, oc^od. Between the forces AB, EC in the position diagram
draw a line parallel iooh^ which joins the pole to the point between
the lines ah, he in the vector diagram. Similarly, draw between forces
BC and CD a line parallel to oc. Fiom the end of uc draw ml parallel
to od in the vector diagram, and from the beginning of oh draw oa
parallel to oa. The point X in which these lines intersect is a point
through which the resultant or the equilibrant passes.
AVe can satisfy ourselves that this construction does give a point

through which the resultant or the equilibrant passes, by choosing any
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])oint, say H, and drawing through H a line perpendicular to tlie

forces. Measure the distance fiom II to each force and ascertain

whether the moment of the resultant is equal to the sum of the moments
of the separate forces, thus

—

Moment of AB = (7 x 1) )

g^^^ ^ ^ + 20 + 48

CD = (8 x6) (

- ""

Moment of resultant = (20 x 3-75) = 75.

The diagram ahcda is the force or vector polygon, and the diagram

drawn between the forces AB, BC, CD. and the equilibrant in the

})ositiou diagram is called the link or funicular polygon.

A l.Cj'Di", B

Fig. 236.

It will be noticed that the forces bein"^ in cqiiilibrinin, both

these diap-ams are closed. These are the necessary con-

ditions for the equilibrium of a system of co-planar
non-concurrent forces. They are utilized in solving

various problems.

Ex. A heam 20 ft. long carr'tes loads of o. 12. and 10 civta. at paints

7, 11, a7id l^ft. front tlie left hand end. Find, the magnitude of each

S2{j)]>orting force, a.^ftvvring that they art vertically vpicard-f.

Let AC, CD, DB, Fig. 236, be the three loads, and BE and EA the

supporting forces in the position diagram. The force polygon is

acdha ; we know that the two supporting forces together must be

equal to (5 + 12 + 10)cwts. ; and we have to find the magnitude of
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each. Take any pole 0, and draw oa, o(J, od, oh. Commence from any
point on the supporting force EA and draw between the forces in the
jiQsition diagram lines parallel to oa, oc, od, oh of ,the vector diagram.
We thus obtain four sides of a link polygon. As the whole system
of forces must be in cquilil)iium (for the beam does not move) the
link pol}'gon must close. Hence draw oe, the closing line from the
force EA to the force BE. From 0, the pole, draw a line (shown
dotted) parallel to this closing line ye. This line intersects the line

acdb in e, and determines the magnitude of each of the supporting
forces, for the force BE is given by he, and the force EA by ca. Thus
BE == 15-85 cwts., EA = IMS cwts.

This result can be checked by calculation. The moment of the
force EB about the end A must be equal to the sum of the moments
of forces AC, CD, and DB.
Thus EB
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In Fig. 237, the forces arc A?., ?.C, CD. The force polygon is

ahcda. The resultant is ad^ the cquilibrant is da.

The link polygon is begun on the force AB. The two lines oT), oc are

first drawn, then oa.,od intersecting at X, which gives a point through
which the resultant or equilibrant passes.

This construction can be shown to be correct by resolving each of

the three forces AB, BC, CD, and the resultant, in any two directi(ms

perpendicular to each other, say horizontally and vertically ; the

component of the resultant in each direction would be found equal

to the sum of the three components of the separate forces in that

direction. Also, by taking moments about any point such as H, the

moment of the resultant is found to be equal to the sum of the
moments of the separate forces.

h g
Fro. 238.

E.r. Forcca of 5, 8, an:l 10 Ihs. act as shown at AD, BC, CD,
Fig. 238.

The resultant is 19-5 lbs. and acts through X, found by a fo:cc

polygon and a link polygon, as shown.
The vertical component of AT* = ae,

„ ,,
of r.C = he (note force BC is vertical),

,, „ of C I^ = C;j,

and of resultant = a/i,

and a'l -- ae -[- cV -\- eg.
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Similarly, the horizontal component of the rc-ultant is - hJ =
horizontal components of AB, BO, and CD.
Kote horizontal component of ah is 4- eb.

,, „ of ho is as force BC is vertical.

„ „ of cd is ~ gd, as it acts to the left.

The algebraic sum is — /id.

'J'aking moments about H we note that each force tends to produce
clockwise rotation about If, hence we can regard all moments as

having the same sign. In measuring distances of each force from
II, yY' has been taken as unit.

The moment of force AB about H ^ ( 5 x 8) = 40.

„ BC „ ^ ( 8 X 15) = 120.

CD „ =.(10x14)^140.
The sum of these is 300 units.

The moment of the resultant about H =? (19-5 x 15-4)

^ 300.

If we reverse the sense of the resultant, we have the equilibrant.

The sum of the moments of the throe forces and of the equilibrant

about H is then zero, and the algebraic sum of the horizontal and
vertical components of the forces and equilibrant is zero.

Exercises.

(1) An aeroplane steers due North with a velocity of 50 miles

per hour, and is blown by the wind in a direction 25° North of East
at 10 miles per hour. In what direction and at what actual speed
does the aeroplane travel ?

(2) A balloon rises vertically with a velocity of 40 miles per hour,

and is blown due South at 15 miles per hour. What is the inclination

to the horizontal of the path taken by the balloon ?

(3) The wind is blowing due North with a velocity of 10 miles per
hour, and an aviator, who can travel 50 miles per hour in a calm
atmosphere, wishes to reach a town situated 20" North of East. In
what direction should he steer ?

(4) A man wishes to swim across a river 300 yards wide, in which
the stream is running at 15 yards per minute. He can swim 45 yards
in a minute. At what point will he land if he swims in a direction at
right angles to the flow of the stream ? If he wishes to land at a
point directly opposite to his starting-point, in what direction must he
swim and how long will he be in crossing ?

(5) A ship steams North at a speed of 20 knots per hour, but the
current is taking the ship East at the speed of 4 knots per hour. How
far is the ship from its starting-point in 2^ hours, and what is the
direction ?

(G) A smooth board is inclined at 30° to the horizontal, and a metal
roller rests on the board, being supported in position by a spring
balance which exerts a pull in a direction inclined at 50° to the
horizontal. If the balance indicates a pull of 20 lbs., what is the
weight of the roller ?

(7) A picture weighing 50 lbs. is supported by a wire passing over
a peg which is 5 ft. above the line of attachment of the wire to the
picture. The points of attachment are 3 ft. apart. What is the
tension in the picture wire ?
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(8) In a steam engine, Ihe piston is 20 in. diameter, and the menn
steam pressure is 50 lbs. per square inch. The crossiiead is guided
between two parallel guide bars. The connecting-rod is 6 ft. long,

and the crank is 1 ft. long. What is the stress in the connecting-rod,
the pressure on the lower guide-bar, and the force on the crank-pin
tangential to the crank-pin circle when the crank has rotated 35°

clockwise from the inner dead centre ?

(9) Taking the data in the previous example, plot a curve showing
how the turning-force on the crank-pin varies as the crank makes a
complete revolution. What is the maximum turning-force ? Show that

the upper guide-bar for the crosshead has no pressure upon it during
one half revolution of the crank from the inner dead centre, and that
the lower guide-rod has no pressure upon it for the other half

revolution.

(10) A ship is steering North-east with a speed of 15 knots, and a
torpedo, travelling 30 knots, in a direction 10° East of North, is fired

from a second ship. What is the velocity, in magnitude and direction,

at which the torpedo approaches the first ship. If the torpedo hits the

ship 3 minutes after it is fired, how far apart were the ships at the
time of firing, and what was the bearing of the first ship relatively

to the second ?

(11) An aeroplane is in flight during a steady wind which blows at

20 miles per hour from the South. It is propelled relatively to the
wind at a speed of 40 miles per hour. In what direction must the
pilot apparently steer in order that his actual course shall be due
West ? At what speed will he travel West ? (B.E. 1910.)

(12) A steamer is moving at 20 ft. per second towards the East

;

the passengers notice that the smoke from the funnel streams off

apparently towards the South with a speed of 10 ft. per second. What
is the real speed of the wind, and what is its direction ? (B.E. 1910.)

V (13) There is a triangular roof truss ABC ; AC is horizontal and
10 ft. long. The angle BCA is 2.5°, and BAC is 55°; there is a
vertical load of 5 tons at B. What are the compressive forces in

BA and BC ? What are the vertical supporting forces at A and C ?

(B.E. 1910.)

(14) The radial speed of the water in the wheel of a centrifugal

pump is 6 ft. per second. The vanes are directed backwards at an angle

of 35° to the rim. What is the real velocity of the water relatively

to the vanes ? What is the component of this which is tangential to

the rim? (B.E. 1910.)

(15) The weight of a span of telegraph wire is 12-7 lbs. At one

end the wire makes an angle of 5° and at the other an angle of 7°

with the horizontal. What are the pulling forces at these ends ?

(B.E. 1909.)

(16) The positions of two points A and B in a horizontal plane,

referred to an origin O, are defined by the vectors OA = ^'^p, OB = 2"ggo,

angles being measured anti-clockwise from the East. Choose an origin

O, mark the Eastward direction, and plot the points A and B. If C
is the middle point of AB, verify that \ (^'\rp -f 2"ggo), the vector mean

of OA and OB, is equal to the vector OC. Measure the length and
direction of OC. (B.E. 1909.)

For further examplos, see p. 416. Answers are on p. 493.
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CHAPTER XXV.

TRIGONOMETRY AND APPLICATIONS.

Trigonometry.

329. Plane Trigonomdrij in its Avidesfc sense comprises
all algebraical investii^ations relating to plane angles, whether
they form elements of a triangle or not. In its restricted

sense, it comprises investigations of the relations existing

between the elements (sides and angles) of triangles. By the

nse of trigonometry, we can calculate three of the six

elements of a triangle if we are given the remaining three,

one at least of the given elements being a side. This is

called solving a triangle. In practice, e.g.^ surveying,

civil and mechanical engineering, and building, trigonometry

is especially useful. The present chapter is devoted to a

consideration of the principles of trigonometry as applied

to the solution of plane triangles of any shape, and to the

application of trigonometry to many practical problems.

330. We have already discussed, in Chap. XL, the

six trigonometrical ratios of an angle less than 00^, and
have utilized them in connexion with certain problems
involving rigM-anglcd triangles. We frequently meet with

angles which exceed 90°. Triangles can be constructed

with one angle greater than 90° and less than 180°. Again,

if we are considering the angle turned through by the

crank of an engine, say from the inner dead centre, we can
have any angle between 0° and 3G0°, the latter comprising a

complete revolution.

33L Any angle can be considered as generated by a

straight wire OP (Fig. 239), secured by a pin at so that it

can rotate about that point. We require some convention

to specify the direction in which the wire is to rotate, ^.e.,

whether clockwise or counter-clockwise. The convention

P.M. c c
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^ P

Sin. XOP

usually adopted is to consider counter-clockwise rotation

as +, and clockwise rotation as — .

Thus, if the initial position of the wire is OX (Fig. 230), and Ihc

new position OP (the wire having
rotated counter-clockwise) the angle

XOP is +, whereas if tlie new position

is OP' and the wire has rotated clock-

wise, the angle XOP' would be - . The
reflex angle XOP' would, however,
be +. In the following pages, all

angles are to be regarded as + unless

otherwise stated.

332, Now let the wire rotate to

a new position OP (Fig. 240), so

that the angle XOP is less than
90'^. Then, by drawing PM per-

pendicular to OX, we have a

right-angled triangle POM from which we can determine
the trigonometrical ratios for the angle XOP, exactly as in

Chap. XL We have

OP tW^^W = ^ Tan.XOP =
^-^j

Cot. XOP = gj Sec. XOP = ^^ Cosec. XOP = g.
If we consider the initial position OX of the wire as the

axis of X, and the point as the origin, and draw YOYjj;
to XOX' to represent the axis of y, the co-ordinates of the
point P for any position in which the anH:le XOP is less than
90° are x, y ; for OM = .?, PM = y. If we denote OP by

r, we see that sin. XOP = K cos. XOP = ^-, tan. XOP = ',

r r X

cot. XOP = '^,
sec. XOP = -, cosec. XOP = -^

.

y ^ V
The rectangular co-ordinates of the point P, and the

distance r of P from the origin, thus furnish a ready means
of defining the six trigonometrical ratios of an angle less

than 90°. They also furnish a means of defining the six

ratios for an angle of any magnitude whatever, the usual
convention being followed as to the signs of the co-ordinates,

i.e.^ a; is -f when measured to theright,and — when measured
to the left of YOY' ; similarly ?/ is + when measured above,
and — when measured below, XOX' (Art. 173).
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The following- table shows the six trigonometi'ical ratios

for aii.t^des from 0° to 300°, with the signs for y and ,r. The
length OP, or y, is always regarded as +, and the student is

again reminded that the angle XOP, in each case, is measured

counter-clockwise.

o M

W_o\ 1^^
'

(0).
KIG. 2J0.

Tii:-:ononietrical

Uatiu.
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From the above Table, or from Fig. 241, we can compile

a table which gives the sign of any trigonometrical ratio for

any angle, e.g.,

For anofles less than 90°, tan.XOP = •", which is +• (Art. 12)
a'

For anarles between 90° & 180°, tan. XOP which is

For angles between 180° & 270°, tan. XOP = —^, which is +

.

For angles between 270° k 360° tan.XOP = ^^, which is -
.

Ratio.
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The following Table ^ives the values of the ratios for

angles 0°, 90°, 180°, 270°, 360° found as iu the above
example.

Angle.



390 TRIGONOMETRY AND APPLICATIONS.

equal to tlie numerical value for the same ratio for each of

the three angles XOP', XOP'^ XOP^. Hence, when we are

given the numerical value of a trigonometrical ratio, e.g.,

the cosine, of any angle, we can find four angles having that

numerical value for cosine. One of the four angles is

less than 99°, one between 1)0° and 180°, one between 180°

and 270°, and one between 270° and 3G0°. Two are + and
two are — for any ratio ; hence, if we are given also the

sign of the ratio (/.^., + or — ), we can find two angles less

than 300° to satisfy this. We can only decide which of the

two angles is the one required from other conditions of the

problem, e.g., if we are solving a triangle, an angle greater

than 180° Avould not be admissible.

Soi. In the Trigonometrical Tables, we are only given the

values of the ratios for angles from 0° to 90°, and they are

all + ; hence, when we are given any particular ratio,
and we are required to find the corresponding angle, we

first find the angle less than
90° havins^ the s^iven numerical

vahie for its ratio ; let this angle

be 6. Now refer to Fig. 'll'l,

and let the an^le XOP be 6.

The angles XOP', XOP2,XOP3
have the same numerical value

for any ratio as the angle XOP.
But the ano-les XOP, P'OM,
M0P2 and P^OM are all equal,

and have the value B. Hence

FIG. 243. angles XOP', XOP^ XOP^
are respectively (180° - 0),

(180° + 0), (300° - 0). We must now decide which two of

these angles have the required sign. This may be done from
Table 2 of Art. 332, and Fig. 2iL Finally, we decide which
of the two angles having the required sign and numerical

value is the one for the problem we are solving.

Ex. 1. Find two angles less than 360° having 0-2oSSfo?- their sine.

From the Table of sines, we find sin. 15" = 0-2588. In Fig. 243,

an,£rleX0P = 15«.

The angles XOP, XOP', XOP^, XOPs all have the same numerical
value for sine, as the triangles POM, P'OM, P^qm, P^OM are
congruent.
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AnL'icXOP' = (ISC' - 1.*)) = Ifi.V^aud sign is +.
Antric X0r2 = (1,S(.°+ ir>) = 11)5° and si<j;n is -.

Anjrle XOr-' = (3(10° - 15) = 3^5° and si<,m is -.
The two angles rcciuircd are thus 15° and 1(55°.

Fx. 2. Find the aftf/le 6 in a triavglc for lohich cos. = — 0r'0G3.

From the Table ot" cosines, we iind cos. 25° = OiX.IOS. Let XOP
(Fitr. 243) be 25°. Then angles XOP', XOP^^ XOP^ are respectively
155°, 205°, 335°. The cosines of angles XOl" and XOP'-^ are negative.

Hence cos. 155° = - UJ)0G3, also cos. 205° = - 0-rUG3. But an
angle of 205° cannot be found in a triangle.

.', the rc(iuircd angle is 155°.

oob. The variation in numerical value and sign of tlic

Bin., COS., or tau. of an augle from 0° to oG0° is shown in the

following graphs. The numerical values for angles up to

90° are read from the Trig. Tables, and the signs and
numerical values for other augles are found according to

the precedirg rules. In Fig. 244, OAB is a sin. curve,
ODE is a COS. curve ; Fig. 245 shows a tan. curve. At
00° and 270°, the tan. is x , hence, the curve becomes
parallel to the ordinate at those points.

Fig. 214.

Ang'e.
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Fig. 215.

Relations between the Trigonometrical Ratios.

33G. The difference between an angle and 90° is called

the comphnmit of the anijle.

The difference between an angle and 180° is called the

supplement of the angle.

The sin., tan., and sec. of any angle B are equal
respectively to the cos.,

cot., and cosec. of the
complement OFM. (^ +
OPM = 90°.)

Fig. 24G Ta). Fig. 2-lG (b).
'

^ I'M ^^^^^ PM
S111.0 =

^^. COS. OPM - ^
. n I'M ^,,^ PM
tan..=^-,j cot. OPM ^^^
sec.0 = ,^—, cosec. OPM = -r^^OM OM

{Xote.—For cos., cot., and cosec. of angle OPM, the origin is at P,

and PM corresponds to the axis of a\)

sin. 6
837. Tan. = n ^o^ 3,ny angle 0. Kofer l?o

COS. U

Fig. 240 (a).

. ^ PM , ^^ OM
sm. = .. p and cos. = jrp.

&\n.O PM OM PM ,. , . ,

7, = ynr ^ 7Vn = 7vu» which IS tan. 0.
COS. OP OP OM'

Similarly cot. — cos. ^ -^ sin. ^.

(a)
M P

^^^ M

Fig. 240.
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This result may be tested by using the Trigonometrical Tables. Let

sin. d = 0-5736
sin. 35° 0-5736 „ ^,,,-^

COS. a = 0-8102 ^^_^., = ^-=. 0-.002.

tan. e = 0-7002.

888. Sin.- + cos.^ = 1, for any angle 0.

The index 2 in sin.^ or cos.^ $ indicates that tlie ratio

sin. or cos. is raised to the second power. Sin.^ 9 is

read as ^^ Kinc squared ^." Refer to Fig. 247.

PM ...o ^ _ OM
sin. '- OP

sin '^ - ^^^^
bin. a — /Qp\2

sin.2 + cos.'^ 6>

COS. t

COS.2 ^

Fig. 247.

Since M is a right-angle,

(0M)2 + (PM)2 - (0P)2

OP
(OM]^

(0P)=^'

(PM)2 (0M)2
(OP)-^ "^ (OP)^*
(PM)'^ + (0M)2

(OP)'^

_(0PJ2
~ (opy^'

= 1.

This result may be tested by considering the actual values of the
sin. and cos. of a given angle, thus, let 6 — 60'^.

sin. 60 - ^ COS. 60 = 1 (Art. 133)

sin.2 60 = f ; cos.2 «0 = |
sin.2 60 + C0S.2 60 = f + i

Then

cosece- (2) COS. e

. (5) sec. 6

(l)sin.

U)cosec,0= .^
sin. $

Refer to Fiir. 240 and Ta])le 1 of Art. 332.
Let angle XOP = 0. Then in any cohimn of the Table

we see

- 1.

sec.c> ^ ^
cot.^

.• (G) cot-O^J"'
COS. (9 ^

^ tan.^

?/
Sin. 6^ =- ; cosec. ^ = -

, which is 1

Similarly, cot. ^ = '

; tan. ^= -
, which is 1 h- - *

y
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Tlie whole of the relations (1) to (6) above can be similarly

shown. The relations (5) and (0) above are useful when the

values of sec. 6 or cosec. are required, for, in the Trigo-

nometrical Tables, values of sec. and cosec. are omitted
;

hence, when we require, say, sec. 35°, we read cos. 35° from

the Tables and take sec. 35° = ^~j^o =
^j:^[^,

= 1-2208.

339. From the preceding relations we can readily deduce

other relations, thus

(1) 8in.2^ + cos.2^ ^ 1

sin.- ^ = 1 — COS.- (transposing cos.^ 9)

(2) .-. sin. = + V 1 - cos.^ 0.

(3) COS. ^ = + V' 1 — sin.- (transposing sin. ^O-

If we divide across by sin.- $, we get

sm.^ cos^ 1

sm.2^ "^sin.2^ sm.2^*

^4) ;. 1 + COt.^ = COSec.^ 0, f^nil by dividing by cos.2 we get

(5) tan.2 ^ + 1 = sec.2 6.

Ex. Given the value of the sin. of any angle Ici^i than 90° deduce

the values of the other trigonometrical ratios.

Let sin. A = O'o

(By 3 above) cos. A = V 1 - sin.'-J A

./^_^ =0-8G6
2 2

sin. A 5 A --'-

1

(Hy Art, 337) la,.. A = ^^^-^ - ^:^^ = 0-.,,4

(By Art. 338) cot. A = -^ ^^ = .J^Tl
= ^"'^-^

(By Art. 338) sec. A = j^ = ^J^i = ''"'

(ByArt.388)coscc.A=--i^= ~ - i-

Sec. A and cosec. A could also be found from (4) and (5) above.

These results may be checked from the Trigonometrical Table
;
as

the angle having 0'5 for sin. is 30**.
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Solving Triangles.

340. A triangle is said to be completely solved when we
know the maicuitudcs of its six elements, viz., three angles

and three sides. In Chap. XVf., it is shown that we
can construct, and hence solve, a triangle when we are

given three elements, one at least being a side, and
geometrical constructions are given for the various cases

that may arise. The student should read again the chapter

referred to before proceeding, as it will assist him con-

siderably in understanding the following trigonometrical

solutions.

The four cases that may arise are :
—

(1) Given two angles and any side (see Art. 190).

(2) Given two sides and the angle between them (see

Art. 194).

(o) Given the three sides (see Art. 191).

(4) Given two sides and an angle opposite to one of

them (see Art. 195).

341. Certain formula}, or relations between the sides and
the trigonometrical ratios of the angles of a triangle are

necessary for each of the above cases, and these formnUe
will be deduced as required.

A

Fig. 248.

In any triangle, the sides are proportional to the
sines of the opposite angles.

Adopting the usual notation (Art. 190) of denoting the

length of any side of a triangle by a small letter, say b,

corresponding to the capital letter, say B, used for the

opposite angle we have

—
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In Fig. 248 (a),

AD = c sin. B, also AD — h sin. C.

.-. c sin. B = & sin. C,

c h
or -;

7^ = —. Ty
Sin, C sin. r>

Again BE = c sin. A, also BE = a sin. C.

.-, c sin. A — a sin. C.

r a
or -.—-, = -.—

-.

.

sin. C sin. A
c h

But -.—77 = -.—r.
(shown above),

sin. C sin. Bah c_

sin. A sin. B sin. C
or the sides a, h, c, are jJfoportional to the sines of the opposite angles

A, B, C.

In Fig. 248 (b),

Sin. ACD = sin. BCA, which is angle C.

Hence AD = c sin. B,

AD = J sin. ACD = Jsin. C,

and as before -^-~,, = ——, .

sin, G sin. B
Similarly, by drawing the perpendicular BE we have

c a

and

sin. C sin. A
a h G

sin. A sin.B sin. C
In Fig. 248 (c), the angle C is a right-angle. .-. sin. C = 1.

By defkiition, sin. A = ; sin. B = —

.

6* c

r> ., , , sin. A a sin.B h , -^1,1By the above rule -^—-, = -
;

- . = -, and as sm. C = 1, the
sill. C c sin. C c

rule also applies to right-angled triangles.

This relation between the sides and sines of angles of a

triangle is very important and should be remembered. lb

is utilized for solving any triangle when the given data
agree with Case I. above.

Case I. Ex. Two ohscrvers at points B and C 300 ft. apart
observe an aeroplane A (/« the same vertical plane as B and C) at an
amjle of 5o°/ro>n B and G(J° front C. Find the actual distance of the
aeroplane front B and C and also the angle BAG.

In Fig. 249, angle A = 180° - (B + C), for the three angles of a
triangle together = 180°, .-. A := 65°,

We now know angles A, B, C and side a.
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To find h, we ha
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This formula is used for solving all triangles in which the

given data agree with cases (2) and (3).

Case II. Ex. A ship leaves a pier-head and steams due Xorth for
three miles. It then steams North-east for Jive miles. What is then

its distance and its direction from the j^i^^'-head ?

In all examples agreeing with Case II., the given angle must be
called angle A.

In Fig. 251, ^ = BA drawn due North ^ 3.

t = AC drawn North-east = 5.

Angle A = 135° (as North-east is 45° East of North).

To find l)C or a, we have
= i2 + t-2 - 2 he COS. A
= 25 + 9-(2x5x3x
= 25 + 9 - (2 X 5 X 3 X
= 25 + 9 + (30 X 0'7U71)

= 31 + 21-213

= 55-213.

COS. 135°)

- COS. 45°)

(Note change of si^n.)

.-. a = a/55-213

— 7-43 miles.

Either of the angles B and C can be fjund from the formulas

(1) sin. B =— sin. A.
^ ^ a

(2) sin. C = - sin. A.
a

(Note, h, e, a and angle A are known.)
As we require the angle B, we have

sin. B = - sin. A
a

_ 5 X sin. 135^

7-43

5 X 0-7071

7-43

= 0-4758

Hence, the angle B is that angle

which has 0*4758 for sine. From
the Tables, we see that

sin. 28° = 0-4G05

sin. 20° = 0-4848.

The angle B mast therefore lie between these two values.

If we require a result to the nearest degree, we must
now decide whether our angle B is nearer in value to

28° than it is to 20°. This can be done as follows.*

* The method enij^loyed )iPre and in .Art. 343 a.s.sumes that for differences le.s.s

than 1^ in angle.s the difference in the .sin., cos., etc., is proportional to the diff'erence

in the angle, although, .strictly, this is not .^0.
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The difTcreucc in yalne between sin. 20° and sin. 28° is

(0-4848 - 0-461)5) = 0-01;);3. The difference between sin. ?>

and sin. 28° is (0-4758 - 0-4G95) = 0-0063. Now 0-0063 is

less than —^-^ or -0076, hence, we conclude that angle B is

less than 28*5°, and in giving a result to the nearest

degree we should give angle B as 28°.

The ship is thus 7-43 miles from the pier-head in a

direction 28° East of North.

The angle C, if required = 180°- (A + B)
= 180°- (135 + 28)
= 17°.

343. To find an angle corresponding to a given

trigonometrical ratio to the nearest minute {i.e., one-

sixtieth part of a degree), we require more elaborate

Tables than those given in Appendix I. We can,

liowever, find such angles to a fair degree of accuracy

from these Tables by interpolation, as iu the following

example.

Fi/id the cnuile B if sin. B = 04740.
'

sin.2"!)o = 0--1818 sin. B = 04758.
sin. 28° ^ 0-4(il)5 siii. 28° = 0^4095

00153 0-00li3'

For 1°, or 60 min., above 28° wc have a diflfercnce in the value of

tha sine of 00153, and we rec^uire to know how many minutes will

give a diflerence of O-OOHS.

Let X — required number of minutes, then

X 000fi3

GO 00153

60 X 00063
0-0153

The angle is thus 28° 25'.

= 2o min.

It must be remembered that the sine and tangent of an
angle increase in value with the angle from 0° to iJO°, hence
an angle corresponding to a given tangent is also found as

above ; whereas a cosine decreases in value as the angle

increases from 0° to 9o°. Hence, to find an angle corre-

sponding to a given cosine, we must subtract the pro-

portional difference in minutes from the larger of the
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two angles in degrees between which the required angle

is seen to lie. An illustration occurs in the following

example.

344. Case III. Ex. An aviator wishes to make a triangular

circuit of three towm A, B, ayid C. The toicm C aiid B are shown on

a map to he 15 miles apart ; from B fo A is 11-5, ajul from AtoG is

8-5 miles. The direction CB is 45° Fast of JS'orth, and A is partly

North and ]}artly West of C. Find the directions to he taken injiying

round the triangle CAB in the order named.
We must first find the three angles

I of the triangle CAB, Fig. 252.

I We have, from Art. 342,

a'i = 12^ (P. _ 2 he COS. A,

hich may be written

COS. A =
&2 +

2 be

In our example,
h = 8-5, c = ll-.5,« = 1.5,

(8-5)2 + (11-5)2- (15)2,
.-. cos. A ==

2 X 8-5 X 11-

72-25 + 132-25 - 22.-

195-5

Fig. 2.52.

= - -^6 _ 0-1049.

The minus sign indicates that the
angle A is greater than 90°, and as
it is an angle of a triangle it must
also be less than 180°.

From the Tables we have

cos. 83° = 0-1219

cos. 84° = 0-1045

00174

cos. A° --

COS. 84"^:

0-1049

0-1045

0-0004*

For 60 min. less than 84° we have a difference in cosine of 0-0074

how many minutes less will correspond to a difference of 00004 ?

Let X = the number of min.

Then
X
60

0-0004

0-0174

60 X 0-0004

0-0174

1 min.

The angle having for cosine 0-1049 is thus 1 min. less than 84°, or
83^ 59'.

The angle having for cos. - 0-1049 is thus (180° - 8.3° 59') = 96° 1'^

Hence angle A is 96° 1'.
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To fmd angle 1>, we have -.—,- = -; -,°
sin. B sin. A

. ^ h . . 8-5 X sin. 96° 1'

or sin. 13 = - sin. A
a 15

5 X sin. 83° 59

15

8-5 X 0-9944

15
= 0-5635

B = 34° 18'

-'

I for sin. A = sin. (180° - A) I

Sin. 83° 59' = sin. 83° + ^ of

difference between sin. 83°

and sin. 84°.

0-9925 +
(ro

X "'">)

= 0-9925 + 0-0019

== 0-9944.

To tind anele C, we have C = 180^ - (A + B).

= 180°- (96° 1' + 34° 18').

-49^41'.

The direction CA thus makes (45° + 49^-- 41') or 94° 41' with CE,
Dt it is 4° 41' West of North.
The angle CAE ^ (90° - 4° 41') = 85^ 19'.

.-. Direction AB is (96'=' 1' - 85° 21') = 10^ 40' North of

East.

The direction BC is (49° 41' - 4° 41') - 45^ West of South.

This example has been worked out fully to the nearest

minute as an exercise in this method. Generally, it will be

sufficient to take the angles C,.A, and B, respectively, as 50,

9G, and 34 degrees. The directions then become CA = 5°

W. of N., AB = 11° N. of E., BC = 45° W. of S.

Note.—In order to avoid mistakes in solving a
triangle when the three sides are gplven and -when

^2 _|. ^2 _ ^2
using the formula cos. A = --—^-^ , the side a

should be taken as the longest side of the triangle.
This ensures the discovery of an angle greater than
90° if there is such an angle in the triangle.

345. Case IV. Given two sides and an angle opposite to

one of them.

Two types may occur^ for the side opposite to the given
angle may be (1) greater than, (2) less than, the other given
side.

P.M. DD
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Given the aii_u-le B and sides h, c (Fi<^. 25;^).

In dmwinc: this trian,u:le ireometricully, set out AB = c.

Draw BC inclined at the <riven an^^He B to AB. With centre

A and radius = i^nven side f, draw an arc cutting BC in

points C and Cj.

If C and C\ lie on opposite sides of B, as in Fis:. 253 (a),

only one triangle ABC satisfies the given conditions, for

the trianirle ABCi Avould not have the required angle

at B.

If C and Ci lie on the same side of B, as in Fig. 253 (b),

then both triangles ABC and ABCi satisfy the gi\en con-

ditions.

In order that it may Ije possible to construct a triangle at

c B Ci — ^G
(b)

all, AC or !> must be equal to, or greater than, the per-

pendicular from A to BC, which is = AB sin. B or c sin. B.

If it = c sin. B, we have a riglit-angled triangle with the

right-angle at C. If AC = AB, we have an isosceles triangle,

and Ci coincides with B.

- Ex. In a wall crane^ thejib AB is 12 ft. long and is inclined at 40°

to the icall.
, A tie rod S'oft. long is to he used and this may he attached

to the loall in either of two j'oints C, Ci, vertically above B. Find the

distance of each point above B and the inclination of tlie tie to the jih

and to the icall in each caxe^ the inclinations to be to the nearest

degree.

The diagram is shown in Fig. 254 (a). The given data is AB, AC
or ACi, and angle B. We require to know the lengths BCi, BC, the
angles BCiA, BACi, and the angles BCA, BAC. This is equivalent to



TRIGONOMETRY AXD APPLICATIONS. 40.'}

solving: the two triangles lU'iA, BCA. and Fii^. 254 (a) is similar lo

Fiii. 253 (b).

iiy ^treometrv. we have angle liCA = CCjA (for AC ^ AC'i).

Henee angles RCA ami I>CiA are supplementary angles.

To find angle RCA, or angle C, we have

c h

sin. C bin. R*

c sin. B

12 X sin. 40

S-5

_ 12 X 0-(U28

8 5

= 00075.
Angle C = G5".

Angle RC'iA or Ci = 18o-^ - C.

^ 1S0° - 65°.

= 115°.

In triangle RCA, angle RAC = 18(,° - (40° + 65°).

= 75°.

Also in triangle BCjA, angle RAC: = 1-"^"" - (^0° + 115°)

To find lengths BC and RCi, we have

a h /ysin.A

sin. A s:n. R sin. R

For length RC, A = 75°.

For length RCi, A - 25°.

1) D 2
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For BC \vc have a ~

For BC, we have a =

8-5 X sin. 75

sin. 4U
8-5 X 0-9659

0-6428

12-77 ft.

8-5 X sin. 25

sin. 40
8-5 X 0-4226

results best

Fig. 255.

0-6428

- 5-59 ft.

exhibited in the diagram, Fig;. 254 (b),

which is a dimensioned sketch of the crane.

The same formulie arc used when there

is only one triangle. An example of this

kind, to be worked by the student, is as

follows :
—

Two points B and C (Fig. 255) on a
proposed railway on opposite sides of a
piece of wet marsh land are to be con-

nected by a bridge BC. A base line BA
is measured = 300 ft., the angle B is 65°,

and the length AC is found to be 400 ft.

Calculate the length of the brids"e.

A71S. 420 ft.

Applications of Trigonometry.

8i6. To find the length of each memler in a roof truss.

Fig. 25G.

Given span /, height h, pitch of member AF, i.e., angle

CAF, height m, and also that AD=sDE = EB.

By symmetry, angle BAG a angle BCA,
angle ABF ^ angle CBK.

The angle BAC can be calculated, for tan. BAC =

The length AB is given by ^~ - sin. BAC

thus, AB =

We now find AD ^ DE = EB =

sin. BAC
AB
3

•

=s h cosec. BAC.

The length AF is given l^y-rir ~ ^^^* CAF,

or AF
sin. CAF

—-^ - m noscc. CAF.
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The angle DAF = (angle BAG -angle CAF).
Hence, in the triangle DAF, we now know the sides AD, AF and

the included angle DAF.
By Art. 395 (Case II.) we have

DF2 = DA2 + AF2 - 2 DA . AF cos. DAF,
from which we find the length DF.
The ande ADF is next found from

DF
sin. DAF

or sin. ADF

^F_
sin. ADF
AF sin. DAF

Fig, 256.

[Note.—This angle will probably exceed 90", henoe select angle

from second quadrant having the given value.]

The angle EDF = (180° - angle ADF).
In the triangle DEF, we now know DE, DF, and the included

angle, hence
EF2 = ED2 + DF2 - 2 ED . DF cos. EDF,

from which we find EF.
The length FK ^ Z - AF cos. CAF -^ KC cos. KCA.
The height of triangle BFK = (// - 7?0»

hence, tan. BFK - ^ ^ ^ ^

JFK ^

from which we find the angle BFK.

sin. BFK,Then ^^^^^

or BF = (h

sin. BFK

TT '

vi) coscc. BFK.

The lengths of BG, Gil, IIC, CK, HK, GK, BK arc found by
symmetry.

In this example, the student will do well to take an actual case,

and follow the given steps. Thus let Z = 60 ft., It = 14 ft.,

angle CAF = 9°, and m - 3 ft.
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347. Steam Engine Mechanism. 'J'o find iha fiislon

or cross/iead displacfmpnt corresponding to any iJisiHon of
tJie crank. Fig. 257.

Let r = length of cnink.

f) r = length of coiiiiectiiig-rod.

= uiio^le turned throuo'h by crank from tlic inner

dead centre.

r denote llie piston. A the crosshcad.

D the inner dead centre.

When the crank-pin B is at D, the crosshead A is at its greatest

distance from 0, and this = 6 r, for OA then = OB + BA.
In any other position OB of the crank, the crosshead is distnnt

OA = OC + CA from 0,
But OC = r cos. d, which is - when 6 is between 90'^ and 270°.

CA = BA COS. BAG or 5 r cos. P.AC.

Fig. 257.

Hence, as tlic crosshcad lias travelled a dis'ance = (i) / — OA)
towards O, the crosshead displacement is = 6 r — OA

which is = (> /• — (/• cos. + .5 r cos. BAG).
The piston displacement is giv^en by the same formula.
The angle BAG may be found from

Sin. BAG = ttt = -T .BA .o /•

Note, that when 6 is between 00° and 270°, ^.z;., when the crank-

pin is below AO, the value cos. d is negative, hence r cos. 6 is negative,

and (/• cos. + .5 /• cos. BAG) is less than BA cos. BAG or 5 /• cos. J?AG.
To fed thi^ foniinln. Let = 1S0°. We see from the figure

that the piston has then moved 2 r from its initial position.

The formula gives (5 r — (?

e - 180°

Hence, r cos. 6 = r cos. 180° =

5 /• cos. BAG = 5 r cos. d =

and displacement =

which agrees with the above result.

cos. e + 5 r COS. BAG)
BAG - 0°.

/• X (-1) = - r.

5 ?• X 1 = o i\

{] ?• — (— /• -f o /•)

2r,
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r,18. Simple Harmonic Motion. Pig. 258 (a). If

a point I* moves iiiiiforiiily round a circle, the projecticn Q,
or R, on a diameter of tlie circle is said to move with a

simple harmonic motion. It will be seen thnt Q, or R,

moves backwards and forwards alon^^ the diameter. The
centre of the circle is tbe mean position of Q or R. The
distance OQ, or OR, gives the displacement from the mean
position 0. liCt 6 = angle tnrned through by OP.

Then OQ'=:OPcos. 6.

OR = PQ = OP sin. 0.

The angle tnrned through by OP in one second measured
in radians is called the angular velocity of OP and is usually

denoted ])y m. The angle turned through in / seconds will

then be w/ radians, and the displacement of Q after t seconds

is OP cos. (o/, while the displacement of R is OP sin. w/.

T1

B

(b)

FiCx. 258.

To calculate these displacements, the value ud in radiars

must V)e converted into degrees.

A practical embodiment occurs in the mechanism of a

donkey pump, or of a small slotting or shaping machine,

shown diagrammatically in Fig. 2.')8 (b). The crank r carries a

block which works in a slotted link A guided so as to recipro-

cate parallel to OB as the crank rotates. The cutting-tool,

or the pump piston, is carried by, or connected to, the

slotted link.

If 6 is the angle l)etwTen OA and OB, then r cos. 6 gives

the displacement of the tool, etc., from the mean position,

and r (I — cos. 0) gives the displacement from either extreme

position.
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349. Length of Belts.

(I ) Cnmcd Belt. Fi^-. 259. Let the diameters of the pulleys be

respectively D, d, and the distance between the centres OOj of the

pulleys be c. As the part BC is tangential to both pulleys, the

radii BO, COi are parallel, and the angles BOA, DOiC are equal in

magnitude. Let each angle =
(| + ^) radians. EOi is parallel

to BC, and the angle EOi is also = 0.
, , ,

The length ABCD is equal to half the length of the belt.

.•.| length of belt = AB + BC + CD,

AB = ^ (;-+«),

BC = EOi = ^ COS. 0^,

Fig. 259.

, ., . . n EO OB + BE
The angle e in degrees is such that sm. 0° = ^ = —^ •

2 ^ 2 _ D + rt^

C COS. 0° +

2 <? COS.

f('-)

.-. Whole belt = 2 (AB + BC + CD)

= (D + d)
(J

+ ^) +

(2.) Open Belt. Fig. 2G0.

For an open belt, angle AEB = f- + 0j radians,

angle COiD = (- - e\ radians,

aul t^s CO; is perpendicular to EOj, the angle EOiO is =

2c

\

)
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CD = ^(I->

iu degrees is given by sin. 6° ^ —

Fig. 2G'\

J loneth of belt = AB + BC + CD,
Whole belt = 2 (AB + BC + CD)

D
( I

+ ) + 2 ^ eos. e" + d(^~-e^-{2 c eos.

s= (D + f/) ^ + 2 r COS. r + (D - (1) d.

Note.—In these two examples, the an2:le should be

taken in radians wherever it occurs, except Avlieie it is

written as 6°, e.q., cos. $°.

350. Hefraction of Light. It is sliown in works on
Light that a luminous ray is propagated in a straight line

through the el her, or through any homogeneous medium,
such as glass.

The velocity of light depends on the medium through

which it is passing ; its velocity through good quality glass

is about two-thirds of its velocity through the air.

Light changes its direction when it passes obUquely from
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one mcdinin to aiiotlicr ; this change in direction is called

refraction.

If 80, Fig. 201, indicates a ray of lLg])t falling on a plane
sheet of glass at 0, and OD is the path of the raj through
the glass ; Dl> the direction of the ray after it emerges from
the glass; and OG, DE respectively are normal to the

Fig. 261. Fia. 2G2.

Fig. 2G4.

surfaces ^OI and NX ; then SO is called the incident ray;

OD is called the rpfrncfed ray ; DT> is called the emergent

ray ; the angle SOCt (•/) is called the angle o{ incidence; the

angle DO// (r) is called the angle of refraction; the angle

BDE (?•') is called the angle o[ emenjencp. It can he shown
that

sin. i sin.r' _ velocity of light in air

sin. r
~~

sin.i'
~

velocity of light in glass
\.
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The al)ove ratio X is called the index of refraction, or

refractive index, and sin. i = A. siii. r.

Problem. Y'\^. 2(»2. A luni'niom ray R falls at on the sk?'-

facc IMiM "/ a plate of glaaa, with parallel faces. Trace the path of

the raij throiujh the (jlass and show its direction after it emerges

from the (/lass, having given the angle of incidenee (f) = •'>0°, refractice

index — l-'io.

With centre Oand any radius OD describe a circle : with centre

and radius 00 = r5o OD describe a second circle. From E, the

point in which the incident ray intersects the smaller circle, draw
EB j5 to MM. Draw liOA, which is the path of the ray through

the glass.

For sin. i = |^ sin. 7- = ^^ phis may be cal-

EU BO J culated also, for

1 ^ -,^n -nrr
'^^ - si"- ^'

i
Sin. 50° = 1-55

but EG = BH. .-. 177- -. • .:„ ,.EO sin.r ^ sm. ?.

To find the direction which the ray takes on leaving the glass,

draw AR'
||
RO.

Problem. Fig. 263 is a section through a 2yicce of glass, the out-

side face of lohich is plane, whilst prisms are cut on the inside. RO
indicates a ray of liglit falling on the glass at O. Determine the
j)ath. of the ray after it leaves the glass ; having given the refractive

index of t h e g lass = 1*53.

With as centre describe two circles ss, SS the ratio of their

radii being equal to the refractive index. Draw EB jj MM meeting
the arc SS in B. Draw BO and produce to meet 2^2^ in D. This is the
path of the ray in the glass. Draw BT perpendicular to the face jjp
of the prism, meeting the smaller circle in T. Draw DR' |1 TO. Then
DR' is the path of the emergent ray.

Problem.. Fig. 2Gt. Having given a surface lAW upomohich an
incident ray UO falls, determine the angle between this surface and a
surface ivhich icill refract the ray in a direction j^arallcl to that of
the given arrow, having given the refractive index = 1-53.

From centre O descrilje two circles the ratio of who.se radii are equal
to the given index 1-53. Draw EB jf MM. Draw OT || to the
direction indicated by the arrow, meeting the smaller circle in T.

Join BT and draw OF £ BT. OF is parallel to the refracting
surface required.

851. Reflection of Liglit. When a ray of light meets
a highly polished surface, part of the light is reflected accord-

ing to the following laws :—
1. The anrjle of reflection is equal to the angle of incidence.

2. The incident and the reflected rays are in one plane,

tvhich is perpendicular to the reflecting surface.

If an object is held in front of a plane mirror, it appears
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behind the mirror at a distance equal Lo the distance of tho

object in front of the reflecting surface ; this reflection of

the object is called an image.
When an. object is placed between two plane mirrors, it is

reflected in both mirrors. The imas^e of an object in a

plane mi'Tor is determined geometrically by aid of the fore

going principle which applied to a point becomes — . The
image ofapoi/it is on the 2)erpendlcular from the point o:i to

the mirror and at a distance behind the mirror equal to that

of the point in front.

Problem. Fig. 265. A ray of light from P /.s- reflected to Q after
impinging successively on ah and ac. Show tlie jJatJt of the ray.

(13. E. 1892.)

Draw Vp j^ah and make oj) = yP. Draw Q^ ^ ac and make
oq =()Q. Joiny;, q meeting ab in n and ac in m. Join P/i, nm, ?wQ, which
is the path of the ray.
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Exercises.

(1) Solve the followiiiG^ tiiaii titles, usin^ logs for the calculations :
—

(1) Side a = 10 ft., an.desB, C = 75°, (50°.

(2) Sides a, />, c = 0. 10, 7 ft. respectively.

(8) Sides a, h = 45, 87 ft., angle C = 50°.

(4) Sides a, h = 10, ft., angle A = 45°.

(5) Sides «, Z* — 8, 10 ft., angle A = 45°, (Ambiguous case. Two
solutions.)

(2) Calculate the len^tli of each member in the truss shown in

Fig. 267.

(3) Write down the values of sin. 207°. cos. 1 23°, tan. 325°. (B.E.,1 DOS.)

(4) Write down the values of sin. 52°, cos. 140°, tan. 220°, cos. 340°.

sin. 340°. (B. E., 1909.)

(5) The lengths of a degree of latitude and longitude, in centimetres,

in latitude I are

—

(1111-317 - 5-688 COS. I) lO^and
(1111-164 cos. I - -950 COS. 3 Z) 10^.

The length of a sea mile (or 6082 ft.) is 185-380 cm.
What are the lengths of a minute of latitude and of a minute of

longitude in sea miles in the latitude 52° .* (B. E., 1910.)

(6) In a derrick crane (Fig. 268), the post AB is 30 ft. high, and two
stays EB, DB are employed. The points
E and D are distant 14 ft. from A, and q
the angle EAD is 115°. Find the lengths D
of each stay, the distance between E and
D, and the length and inclination to the
horizontal of a stay joining the point B
to the centre of the line ED.

(7) If y = 2 sin. A + 3 cos. A - 3-55, take A as 20°, 23°, 26°, etc.,

finding in each case the value of //. Plot y and A on squared paper.

For what value of A is ?/ just 0.' (B. E., 1907.)

(8) If sin. (A - B) = sin. A cos. B - cos. A sin. B. Calculate this

when A - 75° and B = 12°. (B. E., 1909.)

(9) In the equation .
'

,
= -—^„ you are given A = 41°,

^ ' ^
sin. A sin. B' •'

B = 72°, a = 7-6 cm. Determine h by graphical construction and
verify vour answer by numerical calculation, using the Tables.

(B. E.,"l909.)
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(10) If .r = tan. 6 -=- tan. (0 + cp) where (p is always 1U°, find .i- when d

lias the values 80°, 40°, 50°, G0°, and plot the values of a- and of d

on squared paper. About what value of 6 seems to give the largest

valueof .r.' (15. K., 11)08.)

(11) From the opposite ends of a sliip 500 ft. long, a distant sliip is

sighted at angles S8° and 8'J° respectively with the centre line of the
ship. Find tlu' distance a^jart of the two sliips.

(12) A gun situated at a point A is to b(» directed u[)on an invisible

targi't C on the opi)Osite side of a hill to that of tlje gun. It is

desired to know the horizontal distance between gun and target.

An observer at a point B can see both the gun and the target. The
distance AB is 500 ft., the angle ABC is 55°, and by means of a range-
tinder the distance BC is found to be 1,500 feet. Find the range AC
and the angle which the centre line of tlie gun must make with AB.

(18) A crane ABC is mounted on a platform 50 ft. high. The height
AB of the crane post is 20 ft., the length of the jib is 80 ft., and the
tie BC-is made up of steel ropes passing round two pulleys so arranged
that the tie may be shortened, thus varying the inclination of the jib

AC to the post AB. If this inclination must not fall below 30°, what
is the greatest height to which the crane can lift an object, and what is

the length and inclination of the tie to the horizontal in this position .'

(14) The span of a roof is 30 ft., the lengths of the rafters on one
side are 20 ft., and on the other side 15 ft. Find the pitch of each side

of the roof, and the height of the ridge above tlie supporting walls.

(15) A road AC runs East and West. A point B is distant ^ mile
North-east of A. What is the shortest distance from B to the road /

How many paths each 750 yards long can be made from B to end on
the road, and how many paths 1,000 yards long ? What is the angle
batween AB and each path .' Make a scale drawing of the roads and
the point B.

(H3) A searchlight A illuminates an area included between two
lines AB, AC inclined at 55°. Two ships li, C are 1 mile apart and
are equidistant from A. What is the smallest distance of each ship

from A if both shi})S are to be visil)le at the same time ?

(17) Two ])ulleys are respectively 8 ft. and 1 ft. diameter, and their

centres are 10 ft. apart. Fintl the length of a crossed belt and the
lingth of an open belt to connect them, and the angle of lap on each
pulley in radians.

(18) In a steam engine mechanism, the crank is 18 ins. long and
the connecting-rod is 8 ft. long. Find the distance travelled by the
piston when the crank has turned through 55° from the inner dead
centre, and also the obliquity of the connecting-rod.

(19) A point P moves round a vertical circle centre 0, at a uniform
angular velocity, and Q is the projection of the point on a horizontal
straight line at any instant. OP is 8 ft. long. Assuming that P and Q
commence from the same point, what angle has OP turned through
when Q has travelled 5 ft. ? If the line OP has an angular velocity of
ij radians per second, how far is Q from the centre after one minute ?

(20) A mountain railway has a gradient of 1 in 5 for a :|^ mile, a gradient
•uf 1 in 4 for the next ^ mile, a gradient of 1 in 8 for the next ^ mile,
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a gradient of 1 in 3 for the next 300 yards, and a final gradient of 1

in 2|. If the vertical height of the terminus above the starting point

is 088 yards, find length of last section, and inclination of line joining

terminus to starting point.

Miscellaneous Escercises.

Ex. 1.

Ex 2.

(1) Water enters a turbine wheel with a velocity V of 60 ft. per

second along the given line BA ; what are the components u and v of

this velocity, radially and tangentially, that is, in the directions CA
and DA ? Adopt a scale of J in. to 10 ft. per second.

Measure the angle BAC with your protractor, and by using the

tables, verify your answers by numerical calculation. (B.E. 1909.)

(2) In a laboratory experiment on a jib crane, the angle B
between tie and jib, and the angle A between jib and cord a,re

measured, and the pull P and thrust T in the tie and jib are regist^reu

by spring balances. If W were 21 lbs., and if the angles B and A
measured 25° and 32°, what would you expect P and T to be ? Adopt
a force scale of 1 in. to 20 lbs. (B.E. 1905.)

(3) Draw to scale a line AE 20 ft. long horizontal, and on thiij

construct a polygon ABCDE, such that AB-5, BE = 18, BC-^,
CE = 13, CD = 8, DE = 7 ft. At the point B a force of 50 lbs. acts

inclined at 30° to the left of the vertical through B ; at C a vertical

force of 100 lbs. acts, and at D a force of 80 lbs. inclined at 2u° toi^> •

right of the vertical through D. A supporting force acts vertically

at E, and a second supporting force acts at the point A. Find th

magnitude of the force at E and the magnitude and direction of tl

force at A.
Hint : Commence link polygon at A.

Answers, are on p. 493.



CHAPTER XXVr.

RATES OF INCREASE.

352. If two quantities, say y and x, are so related that

the vahie of ij depends upon that of x, then y is said to be a

function of x ; thus, if y = ((x- + Ox + c, y is said to be

a function of x. The oeneral method of indicating that y
is a function of x is y = f (x), which is read as " y is a
function of x." (Art. 175.) If we plot correspondinf]:

values of // and a; on squared paper, a j^^raph is obtained

from which corresponding values of y and x, not already

calcuJaied, can be ascertained. From this graph we can

also ascertain the increase (or decrease) in value of y
corresponding to any increase in the value of x. In the

present chapter, we discuss the ratio of the increase (or

decrease) in the value of y to the corresponding increase in

value of X, and particularly the vahic whicli this ratio

assumes when the amount of increase in the value of x is

made indefinitely small.

As an actual example, consider a railway train. If we
time the train over a measured distance, say 5 miles, and
find that it travels this distance in 5 minutes, we say that
" the train travels at the rate of 1 mile per minute." If

we time the train over shorter distances, say of 1 mile

each, we may find that the train travels exactly 1 mile in

each minute of the five, or we may probably find that it

travels in the following manner—it may travel 0'75 mile in

the first minute, 0*85 mile in the second, 1*05 miles in the

third, 1"25 miles in the fourth, and 1"! miles in the fifth,

t'.ius travelling 5 miles in 5 minutes. In the former

case, WG say that the train travels at a uniform rate of 1

mile per minute, Avhile in the latter case we are only

entitled to say that its average rate for 5 minutes is

1 mile per minute. Generally, Avhen a rate is being

P.M. E E
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spoken of in everyday language, it is an average rate that is

meant, but the student must now begin to tliink of the

strict meaning of the term " rate "
; he must also think of

it as applied to quantities other than distance travelled and
time taken, and he nuist also remember that rates may be

rates of increrne or raies of decrease.

353. liCt us now consider more carefully the term
" uniform rate.^' If we time ihe train over each \ mile,

and find that it travels each one in \ minute, and then

time it over each \ mile and find that it travels each one in \
minute, and so on, gradually nuiking

the timed distances smaller and smaller,

and if, finally, we bike any distance,

long or short, and find that the dis-

tance in mile-3 divided by the time

taken in minutes gives as the result a

constant quantity, then we have a

strictly correct case of a uniform rate

of increase. In our example, taking

the distances as 5, 0*5, 0'25 miles,

and the corresponding times as 5, 0*5, 0'25 minutes, we
have

«
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is not drawn to scale.) The distance travelled in time OT, or

'

3"2b minutes, is represented by QT = 3*2r) miles. 'J'his

exceeds the distance PR (travelled in time OR or 3 minutes)
by an amount QS, or 0-25 mile, hence

QS _ QS _ increase in distance _ ()-2') mile

UT ~ PS inciease in time ~ ^V'lb minute
= rate of increase. It is usual to denote an abscissa, such
as OR, by x, and a small increase in this value as Sx (read
" delta X "). The ordinate PR corresponding to x is denoted
by 2/, and the increase QS in // corresponding to the increase

c> . ^ i. 1 \ ^ riM increase in ?/ 8// . ,,
8^:; in a; IS denoted by dy. I hen ^ - = —' is the

increase ni x dx

rate of increase of y with respect to x. The
student must note that 8// or Sx is not to be regarded as

(8 X y) or (8 x x), but as one quantity, meaning a very

small increase in the value of?/, or a very small increase in

the value of x ; hence, we cannot cancel out the symbols 8

in the ratio ^ as would at first sight appear possible.

We can thus see that if the value of J^ reckoned for
8x

any value of 8a:; is a constant ratio, we have a uniform rate

of increase of ij with respect to x. This is true when y
and X denote, respectively, any two related quantities. If

they denote, respectively, distance and time, then J^ is

velocitij ; if 1/ denotes velocity and x time, then v-
ox

would denote rate of increase of velocity with respect to
time, which is called acceleration.

354. Ta the preceding example, it will also be seen that for

any value of x the value of g- for the small interval of

time immediately following x is constant, and it will be
found that, in all cases in which the graph obtained by
plotting corresponding values of y and a; is a straight

. 8;/ .

line, the ratio -— is constant.

E E 2
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Ki'. Let the graph AB, Fig. 270, be y = 3 « -f 4. It is not
drawn to scale in the Fig,, as 5y and 5,c arc made sufficiently large

to he visible.

Take x - 2, then ?, == (3 x 2) + 4 - 10

or OR ^ 2, PR = 10.

Increase x by O'l. Then Zx = O'l ;

OT = a' + Zx
; QT ^ V + 5y ; and

QT - (3 X OT) + 4

.-. y -\. Sij =^ 'S(x + S./') + 4

- (3 X 2-1) + 4

- 10-3.

The increase 5ij thus

0-3

0-3, and

Sv = 3.

Repeat this process, taking a; = 1, 3, 5, etc., and take 5,r = 0-1, or

0*2, etc. In each case, it will be found that -'- = 3, or the rale of
dx

increase of y relative to x is constant.

355. AVI J en the graph obtained by plotting corresponding
Yalnes of x and ij is a curve, it ayIU be found that, in

general, a different value of j- is obtained for each Yahie

of X, and, further, that for any particular valne of x

the valne of ^ varies

according to the magni-
tude of the increase Sx

in the value of x. Con-
sider a graph such as

that shown in Fig. 2 71.

From the point to the

point C, the ordinates

increase slowly in
comparison with the — |^ _ r-r^ I I I I

increase of the ah- v-/| '

'

^ p ^ X
scissffi ; from C to E
the increase is more
rapid, and from E to II still more rapid. Again, if

we take Oe as x, and ef as S.r, then ^ = frr, and if we
oX Hjic

Y
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take 0^ a? x, and eh as 8./', tlicii

11/ ,.,
-..-, which r.itio

lb will thus belias clearly a much greater value than

evident that, when ?/ and x are so related that the graph is

a cnrve, we do not get a constant rate of increase.

C.)nsider a concrete example, viz., that of a stone fallin;^ from a

height nnder the action of gravity. It is shown, in works on

ysK
150

100

50

idir

SrfiSffi

^

HI

tT

I 2
Fig. 272.

3 X

Mechanics, that the relation between the distance // in feet through

which the stone has fallen, and the time x in seconds during which
it has been falling, is y = 16 ^2. riotting this graph (Fig. 272) we
obtain a parabola.

yft.
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The value !l! = ^!H15 = 32-l(i.
Ou; OOl

Now let a? = 2
; 2/ = 16 X 22 = 64.

Increase a? by O'Ol so that 5a; = O-Ql.

Then • y + Sy = 16 (a; + Sj')^

= 16(2-(il)2 '

= 64-6410.

rri 1
5y 6416 ^, _The value -^ = — = 6116.
S.e 0-01

If we repeat the calculation for a? = 3 we find that

5// 0-9616

5a; u-ul
= 96-16.

It is evident that we obtain a different value of ^ for each value
8.C

of X taken ; hence, the rate of increase of y relative to x (or the

velocity of the falling stone) is not constant. It appears to be
gradually increasing in value as x, or the distance fallen, increases.

Next, consider how the value of -^ varies when the increase S.c is
5a?

varied^ the value of x remaining constant. Let x — 2, then

j.= 16 a2 = 6t.

J Let 5/' = 0-01, then a- + 5a; = 2-01.

2/ + 5y = 16 (a- + 5a-)2

= 16 (2-01)2

= 61-6416,

hence.
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wonder wliat parti uuhir value for Bx must be taken

in calculating the rate of increase for any particular

value of X. Now, if tlie increase Sx is a finite

amount, the corresponding increase in y divided by the

increase Bx gi\-es the areraf/e rate of increase during the

interval hx, and not the actual rate of increase for any

particular value of x. We require, however, the actual

rate of incrense for a particular value of x, and not

the average rate for an interval hx ; hence, we must
reduce the interval Bx indefinitely, i.e., we must make hx

so small as to be practically negligible. The above

results show that, as 8x is made smaller and smaller, the

value ^ approaches nearer and nearer to the value 64, and,

by making the value of hx sufficiently small, we can bring

the value tt- as near to 64 as we please ; for we can, in this
bx -^

way, make the decimal fraction added to 64 as small as we

please. This value (61, in this example), to which ^
approaches as Bx is made smaller and smaller, is called the

limiting value of ^ , and this limiting value is also the

rate of increase of y with respect to x when the interval

Zx is so small as to be neglii;ible, and hence gives the

actual rate of increase for the particular value of x.

The student will readily see that a value of -j-, such

as 6i-00()()00016, obtained when Bx is O-QOOOOOOOl, is

not i-eally diffei'ent from the value 64.

356. AVhen Bx is made so small that it is negligible

it is usual to write dx, instead of Bx, for this very

small quantity. 4 he corresponding increase in y is

written as dy, and t:he ratio W- is new written as

dy Bii

, , which renresents the limiting value of ^ when ox
dx' " " Bx

is made indefinitely small. The symbols dy and dx mu^t

each be regarded as one symbol, not (// x y) or {d x x)
;
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hcDce the symbols d must not be cancelled in the ratio —
In the case of the falling stone, when ?/ = IG a?^, we have seen

: 2, the value ^- approaches the value G4that when
hx

ill!

as hx decreases ; herxe the valu3 of 7- when a? = 2 is G4,

or, at the end of 2 seconds the falling stone has a velocity

of 64 ft. per second.

357. The geometrical meaning of the value which j-

assumes when Ix is made very small is seen from Fig. 273.

Let the co-orJinates of any point P on the graph AB he

X and y ; then OR = .r ; PR = y. Let R8 = hx.\ QT = 8//.

Then ^^ -~- ^.,^. Produce the chord OP to cut the axis
8.C Pi

OX in LT. Then T;q-, = ^t| (similar triangles) and .•. ^ =

08
^TTy, which is tan 0, where is the inclination of the chord

PQ to the axis OX.
If we make RS, or8j7, smaller and smaller, as shown in the

enlarged Fi^„ the point Q approaches P and ultimately is



KATES OF IXCREASK. 42:

SO near to P as to be practically coincident witli it. Tlic chord
PQ then becomes shorter and shorter, and becomes more
and more nearly parallel to the tan^i^ent to the curve at P.

The sides QT, PT of tiie trianf^le also become shorter and
shorter. When the points P and Q are so close too-ether as

to be practically coincident, the chord ]^Q has the same
direction as the tangent PC to the curve at P. The ratio

T)m> or X-;, must now be written as ; (for Sx is indefinitely

QT
small), and the ratio ivp for the very small triangle QPT

which we obtain when P and Q are very close together doe?5

not differ appreciably from the s'ope of the tangent PC.

Hence, the ratio y^ for any point P on a curve is the slope

of the tangent to the curve at that point. Tiie slope of the
curve at any point is regarded as the same as the slope of

the tangent at that point.

858. A tangent may be drawn at any point on a curve

whose equation is known by calculating" the value of — for
^ -^ ^ ax

the point, as this valne gives the slope of the tangent. An
cxam[)le will be found in Art. oG3.

o59, So far we have only considered

cases in which an increase in x pro-
>,

duces an increase in //. There are,

howevei*, many cases in which an
increase in x produces a decrease in

y, as in the graph shown in Fig. 274.

In this case, when x increases from
OT to 08 (i.e. by Sx), ?/ decreases

l»y an amount Pli or 8//, hence,

g— = .TTj , and Avlien Ex is made

very small so that P and Q practically coincide, we get

-7- = slope of tangent to graph at P. It is usual to

denote a small increase in a; or y by a positive (+) sign, and

Sy

T̂ S
Fig. 27i.
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a smnlldecrense by a ne<^ati\e ( — ) sin^n. Thns in Fig. 274,

PR or Si/ is nec^ative, RQ or 8x is pos'tive, iience

Bx

PR J . ,. , (If/ .

,
jy.. and IS nes^ative, and .".

-f- is netcative.+ RQ ^^
c/x °

3G0. Fig. 275. It dees not matter whether we ascertain

the valne of -~ for any point

P on a curve by taking the

small interval St' as an increase

or f.s a decrease in the value of x

at the point P ; as we get the

same value either wav. thus

'Sf/ + QR
if PR = Sx.

if PR' = Sx,

3//

Sx + PR'

Sji ^ ±Q^
Sx +PR',

and if S.v is indefinitely small, -^ becomes j- and is the

PT
slope of the tangent PS, i.e., rj^.

Again, if — PRg = ^'^, ^1/ = — Q>T\-^

and ^ = - Q^H. _ Q.R.

If PR.c Sx,
8//

Sx =~FK; = TK3' ''"'^ """"J'.

when 8-r is indefinitely small, ^ becomes -^ and is the slope
OX liX

PT
of the tanc^ent PS, i.e., 77^-,.o ' TS

fJ'i
As a numerical example, calculate the value of -r^, ^0^ ^'^^ curve ?/

= 3.^2 when x = 3, (1) by taking + values of 5.r, (2) by taking -
values of 5.r.

y = 3j--2, hence, when x = 3, ?/ = 27.

(1) Let S.f = 0-2
; then y + hij = 30-72 and |^ = ^ = 18-6

„ S.C = 0-1 ; then y + Sy =^ 28-83 an-: -^ = 1^ = is-3

5.r

30-72 and

28-83 an-:

005 ; then y + Sy = 27-91 and

U-i

0-91
18-2
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(2) Let 5.f - -0-2
; then y - h,j = 23-52 and ^ = _'^.^ = 17-4

5.r -01; then // - Zii = 25-23 and — -77

„ 5.f = -0-05
; then y - 5// = 2G- 1 1 and

5y

5.C

u-1

0-89

0- 05

5?/

= 17-7

= 17

Fig. 27G.

From the above results, it will be seen that we can make ^_ approach

as nearly as we please to the value 18, whether we make h.c + or —
;

hence, we conclude that when x — 3, the value of ~ is 18.
ax

361. The slope of a curve at any point has already been

defined as the slope of the

tangent to tlie curve at that Y

point. As the tangent, or

slope, represents also the

rate of increase of the ordi-

nate (//) with resj)ect to the

abscissa (x), the variation

in the rate of increase is

indicatedby the variation ^
in slope of the tangent.
In Fig. 27 G, the graph FG has

various slopes at different points, e.g., at A the tangent is

vertical and -^ is iufiuite. At B and C the tangent is

horizontal and -— = 0, hence at a maximum or minimum

value (Art. 283) the rate of increase of // with respect to x is

zero. At F the tangent is such that y- is negative. At

D and G the tangent is such that -j^ is positive, and as the

slope is steeper at G than at T), tlie rate of increase is greater

at G than at 1).

362. The ratio ~ is called the differential co-efficient

of y with respect to x. The process of finding this value

is called differentiating; and the Differential Calculus

is concerned chiefly with finding this value when y is any
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^iven faiictio!! o^x. A complete discussion of the DifTerential

(Jaknilijs is beyond tlie scope of tlie ])rescnt book ; the follow-

ing method of differentiation from first principles will,

however, be readily understood.

50

20

IQ

i
"a ffl

mn

Q
It

?. 3 4

Fig. 277.

liCt y = x'^he tlie .e:rap]i shown in Fig. 277.
Take OT = x ; VT =^ y ; TS = 8x\ QR = 8y.

The co-ordinates of P are thus x, //.

The co-ordinates of Q are {x + Sx), (// + 8//), and, as

both points P and Q are on the graph,
.-. 7/ = a'2. . . . Eq. 1.

(!/ + ^!/) = {-^ + ^-^-y

= x' -{-'2x- &r -f {Bx)\ E(|. 2.

Subtract Eq. 1 fioni E.|. 2. Sf/ = 2 X • 8x + (^x)-.

r 8// __ 2x • Sx {Bx)~

H- by 5x to find latii) / J ^-^ ^-^ ^-^
•^

5./-
I

[ = 2 j; + Sx-.

Now mal<c Sx so small a

=— then becomes -.
5j' (i.c

dx
= 2 a:-.

This result shows that when y

2 X at any point on the graph, x being the abscissa of the

X-, the value oi 7- =
'

clx
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point. As the value -j- for any point is the slope of the

tangent to the graph at that point, it follows that at a poitit

at which a: — 2 the tangent has a slope 2 x' = 4. At the

point X = o, the slope is 2 ^- = G, and so on. These state-

ments can be tested geometrically, as shown in Fig. 278,

which represents the graph y = a;- and the tangents at the

points X — ^ and x — Z.

dy
It can be shown that if y = x'\ the value of ,— = nx" \

whether n is + or — , or integral or fractional.

Ex. When y = .ri2, '-^ = 12 x^^ for n = 12.
dx

3G;3. If we are dealing with related quantities which are

denoted by symbols other than y and x^ c.y., if we denote

space by S and time by T, we write ^ for the ratio of a

small increase in space to the corresponding increase in time,

and '7^-, for the value of this ratio wlien the interval 8T is so

small as to be negligilde.

Ex. The space, S In fe^t panned through h)/ a body in T seconds is

S = 10 T -1- 8 12. //'T = 2, find S. Now i/T = 2 + t,Jind the new
S. The extra space {new S — old S) divided hij t is evidently the

average velocity in the short interval of time t ; icrite out ivhat is its

Value. Now imagine t to he smaller and smaller without limit, ivhat is

the velocity ? (Board of Education, 11)07.)

Velocity is rate of increase of space with respect to time, or tlie

value ^„.

S =^ 10 T + 8 T2.

When T =s 2, S - (10 X 2) + (8 x \')

= 52 ft., or "olds."
When T *^ 2 + f, 8 - 10 (2 + + 8 (2 + 02

^ 20 + 10 ^ + 32 + 32 ^ + 8 /2

- (52 -h 42 iJ + 8 ^2) ft., or " new S."
Extra space = (new S - old S)

^ (52 + 42 ^ + 8 ^2) _ 52
^ 42 i + 8 ^2^

\'2 t + 8/2
Averagro V6locity in interval t = '— =- (42 + 8 ft. per

second.
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When t becomes smaller and smaller without limit, the velocity is

42 + (8 X 0) = 42 ft. per second.

10 T + 8 T-, as shown in Fig. 279.
'. Imagine the blank triangle to be

Plot the graph S

At the point P, T =

a set-square, tlie inclined side having a slope 42. This side

is parallel to tlie tangent at P, for
d'\l

42, when T = 2,

and the slope of the curve (or tangent to the curve) at the

point at which T = 2 is 42.

Exercises.

(1) The space S in feet passed through by a body in T seconds is

S = 10 T2. If T = 3, find S. Now take T = 3 + ^, find the new S.

The extra space (new S — old S) divided by ^, is evidently the average

velocity in the short interval t ; write out its value. Now imagine t

to become smaller and smaller without limit ; what is the velocity ?

(B.E., 1908.)

(2) The space S ft. passed through by a body in the time t seconds is

S = 12 ^2. When ^ - 2, find .9. When t = 2-1 find s. When ^-2-01

find s. Wheni^ = 2 001 find s. In each case find the speed in the

interval after t — 2. What is the speed at the time^ = 2 ?

(B.E., 1909.)

(3) A body has moved through the distance s ft. in the time t

seconds, and it is known that .v = W^ when Z' is a constant. Find the



IIATKS OF INCREASK. 431

distance wlien t is 4. Find the distance when the time is 4 + 5/,

What is tlie averacfe s|>eed durin<< the interval 5^. As 5/ is imagined
to be smaller and smaller, what dues the average speed become ?

(B.E.(2), I'JOG.)

(4) The following Table records the heights in inches of a girl A
(born Jannary, 181)0), and a boy B (born Ma}', 181)4). Plot these

records. The intervals of time may be taken as exactly four months.

Year.
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What is the whole volume from « = to a? = 145 ? At a; = 50, if a

cross-section slice of small thickness d-c has the volume 5r, find —
ox

(C.E. (2), 1903.)

(8) The following numbers give .v ft. the distance of a sliding

piece measured along its path from a certain point to the place where
it is at the time t seconds ; what (approximately) is its acceleration

at all the tabulated times except the first and last ? Show in a curve
how the acceleration depends upon t. (B.E. (2), 1908.)

X
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CHAPTER xxvn.

DIFFERENTIATION.

364. The method of differentiation from first principles

described in the preceding chapter will now be applied to

several examples which occur frequently in integration.

Ec. 1. y — a;", icJien Ji is negative, or ic/tefi n infractional.

(1) y = .^-1 or -

Subtracting (1) from (2). 5y
^ ^ ~^'^'

~ by S.r.

Si/ _ - S.g _ -1 ^ -1
5x ~ x(x+ 5xJ5x

~ x(x+ Sxj ~ x'^-\-.rS,c

dy _ _ J^,
dx ~ ^2

*

-.. .*
(1) y = \/x or ./

2

(2) // + 5// = (.c + 5,r)2

Subtracting (I) from (2). §// = (a- + 5.p)2 - .r^

Multiply by
{x + 5.c)^ + .r^ .-?? + S.r - x

{x + 5^^^ + .x-^' (x + hxy +hx^
hx

~ by S.C.

(a; + 5.^)^ + .1^

5y _ 1

^''
Or + Sx)^ + a-2

^ - 1 1

dx Jx + \/iC 2 .^j;

Both these examples follow the rule y = ./"'; tt ^ //^-''-^

P.M. F F
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F.r. 2. (1) y =
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3()(). Constants.

^^t snv ?» if is o]oar fhui
dx

(1) If y = constant, say ?>, it is clear that t, = 0, for y

being constant, -t-., wliicli is the rate of increase of y with

respect to j\ must be zero.

(2) If y = ?/7.r-, wliere m is a constant, tlien

y ^ Sy ^ m {.r + hif,

(Subtrac-ing and -j- by 5-0 ^ = ^ ... . ^.:

b'K ^x

hx

= 2 ;??^ + m, i^hx)

and .-. ,- = 2 mx.
dx

When // = j:-, we have y-; = 2x, lience the constant w

multiplies the value of -;- for the variable i-. It can be

shown that this rnle holds good generally, hence j-^ {mx'')

= m • -77^". We thus differentiate as if the constant

were not present, and multiply the result by the
constant.

(:-3) If y = ^" + r, where r is a constant, we have
i^'/ ^' / «\ ,

^^ / \ .,.^— = -j—[-i^
) + T' y) (differentiatins? a sum)

dx dx dx

= 77 (•''") + (by (1) above).

Geometrically this is equivalent to saying that the addition

of a constant moves the graph upwards or dow^nwards rela-

tively to the axis of x, but does not affect the slope at any
particular point on the graph. This should be tested by
plotting graphs, e.y., y = x-

; y = x- + o : y = x- - 3, &c.

Fxercises.
Differentiate (1) x^ + ./• -\- 3. (2) sin. ./- - r^ 4. (.S) 3.r^~ + 2x

- sin. X. (4) a.i"* + Z>,/2 + ex - d. (.'>) 2 «,?• + 3 sin. ./• + 2 e^.

A n.sirers.

(1) 2 a? + 1. (2) COS. X - e^. (3) G .r + 2 - co3. a?.

(4) 3 ax'^ + 2 ix + c. (5) 2 ^? + 3 cos. x + 2 e^.

F F 2
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367. e'. Definition and differentiation. If we find

the sum, to any number of terms, of a series of terms follow-

iDg the law

l+-r-[ + T^ + -n} + T-^-h. . . . &c., we obtain a

number which is usually denoted by the letter e. When 9

terms are taken the value is 2-7183, and this is the value of e

adopted in practical work.

Text-books on algebra prove that, e being defined as

1 + -p +
J.J

+ -7-3 + T^ &c. . . . , then

e^ = I ^ X -{-^+^ +-^+ . . . &c. This is called
Li LI Li

the exponential series.

If y = t^, then to find .^ we have

= + l+.r+-j4+-j|+ . . . to

= ea; (by definition of e*).

Thus, when y — e^ \ -r- = e^. This result is very important.

368. Log.e X. This term is frequently used in works on
the calculus without the suffix e. It is advisable to add the

suffix in all cases, thus denoting that it is the log. of x in the

Naperian system of logs, (see Art. 171).

If y = log.^ ,r, then to find -j~ we have

e ^ X (by definition of a log.)

^•'' -^ V- y- oi

rf
,

1

Exercises.

Differentiate (1) e^ + log.^ .r. (2) sin. x -\- e^ — log.g x.

Answers. (1) e^ + 1 /a-. (2) cos. x + e* - 1 /«•.
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860. Differentiation of a Product.

(1) liCt y = uv.

(2) Then // + 8// == (// + hi) (/' + h^)

= vr + u . Sr + /' . Sti + 8/- . 8//.

Subtracting. 8// = ?< . 8/' + r . 8/^ + Sr . Su

8// Sr
, I , o X 8/^

0^ bx ox

du dv
,

du

f^y ^fy
^

^fj,
(since 5u ultimately vanie^hes).

Heiicc the rule :—The differential coefBLcient of a
product of two factors is equal to the product of the
first factor and the differential coeflB.cient of the
second plus the product of the second factor and
the differential coefficient of the first.

Ex. 1. y = x^ .sin. .r

^ = a-2 . —(sin. ^0 + sin. ./ . -- (./•2)

= .1-2 . COS. X + 2 X . sin. ./•

= X (x . COS. X + 2 sin. .?•).

Ex. 2. y ^ e^. log., x

-J- = i-^, - _|_ log g X. C^
ax X

= c^(^- + \og,x^.

Exercises on Art. 369.

nifferentiate (1) e=c
. sin. ,/'. (2) x'^ . log.^ ;/'. (3) a-i- (./-^ - h),

(4) a/It. sin../-. (5) -.e":. (<») (f?^ - 3) sin. .<•.

Am. i\) (^ (cos. X + sin. .?•)• (2) ./' (1 + log.g 2 ,r).

(3) 4 tfa3 _ ^^ j_ (^4^ y',j. _ COS. ./• +-•''- i • sin. -r.

(5) f* (
— - .2- "

j. (G) (r-"' - 3) COS. X + r-^ .sin. .r.

Exercises on Art. 370.

n-.fferentiate m -'—. (2) ,-f^. TO,-^^^^.
^ ' COS. X (2 X + 6) (^'-^ + it-*^

(4) —JL^'^, (5) sec .T. (G) coscc. x.
^ ' ix + a) ^

^

J/M\ (1)
2 .ycos.y + a-^ sin.a; ^2) - (2ff + 6)

4.7-2+ 12 a' + y
- sin. x(r^ -{- x^) + cos. x.((^ -\- 2x) a - x

^^ (e-+'xV • ^^ 2jx{,c + a/
(o) sec. X . tan. x. (6) — cosec. -r . cut. x.
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870. Differentiation of a Quotient.

(I) L.ty = ^.

(.)Ti-, + a, =^t
^ ?/. + Bu n

bubtractincr. o// = ;—^^

r (/• + M
_ VK. + 2; . Su — ur — n . 8r~

r(^'-f 8r)

_ r . Sn — H . 8r

J ,

— ~^ (rSr. ultimately vanishes.)

Hence the rule :

—

From the product ofthe denominator
and D.C. of numerator subtract the product of the
numerator and D.C. of denominator, and divide by
the denominator squared.

..3

El. 1. y =~»
•^ sin. a.-

d d

^/•x- siii>.^
~

siu.2,«.

2>. 2. To differentiate tan..V ivlilch —
'—^. (Art. 337)•^
cue. ^' ^ ^

-^ bj 5./-.

^ , , ^ /sin. .7\
-7- (tan. a-) - —-( )

COS. .r . -7— (sin. j^) — sin. .r .;- (cos. r)
1

• «

CUS.2 X
~

c. s.2 x
^

sec.2 .r

.

(See Art. 339)
COS."'^ w

,,..,, ^/ ., . d /cos. ./-X

Sinnlarly -—(cot. .r) = -j-l ~. | = -
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;^7l. Differentiation of a function of a function.

Suppose y is a function of ?/, (say // = ?/-^), and that u is a

function of .r, (say \i = j? + 2), and that we require the

value -^^. If we increase 11 by a small increment 8//, we
dx

have a corresponding increase %a in the vahie of v, and an

increase la in the vahie of u is accompanied by a corresponding

increase hr, in tlie vahie of x.

r = J^ ' ^, and this identity holds good however

small S//, Su, and Sr may be. AVhen the increments are

made indefinitely small, the identity becomes

^ = 4^/ . ^, It must be observed that, in the final form,
ax a a a x
this is not a mere algebraic expression, l)ut a statement

connecting three operations, viz. : that when // = f{u) and

u = Y (./j, then the rate of increase of // with respect to x

is equal to the product of the rate of increase of y with

respect to u and the rate of increase of u with respect to x.

In the above example, n = -r^ + 2, ~ -- 3-/2, y = u^, LI = 'lii^.

hence ,

ax

^ '1 {^.i^ + 2)^ . 3 ./-^
. (putting u = ^ + 2)

^ .5 .
./'^

. (.x-3 + 2)'^

E.t. 1. If //
= e^-S find 'f^.

Let u = /^/•, then y = f'".

hence

dx (la

ff\l _ .., 7 7..

^,r. 2. y = €\x\J',L-,fi.iul
^
-'11^,^

Let ?t ^ sin. j-, then y = «'

^:^=5^*ana4"- = ^sin.a'-cos.a'.
rf<^ dv d.xi

Ilcnce, -- (sin.'' .f) = 5 ?/^ , cos. ic = 5 sin.^ ;/• cos. a?.
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JSx. 3. ij = \^a^ - :,\ pnd '^'J/j^

Let n = ^/2 _ .,2^ then //
== v^-

^y - o 1 du d ^ „
-/- ^ i^ u - and — =

, (^/2 - ,/2j ^ _ 2 ,r.du ^ d.v dx ^ ^

Hence, ~- {<fi - a.'^f- = i^ ~ ^- (_ 2.r)

[XoTE.—
1/ = y/ ci.^ - /.^ 'S tlie equation of circle, hence—: -^=^ gives the slope

of the tangent at any point x. When x = a. cos. 45^ = —^
^ the tangent is inclined

at 135°, and ^ = _ "/ ^,- ^ "^ ^
_ ^ _ j^ ^^^j^ich agrees with tan. 135^.]

SiiEilarly (by calling the expression in brackets ?/)

y = {a.x -^V) ; -^ = an (ax + h)

y = sin. {ax) ;
-j- = a. cos. ax

y = sin. (ax -j- h) ;

-~ ^ a . cos. {ax + />)

^ ^^ ^ ^ ' dx {ax + b)

Exercises.

Dijerenftate (1) (2 a- + .3)3
; sin. 5 .r ; sin. (2 .r + 4).

(2) Log.e (2 af + 4) ; ^T^^^; 3 / ,/2 _ ,,.2V "

(3) (.r2 + 2)t; e-2a:; (^:. + a)3.

(4) Cos. (3 a- - Q); tan. (2 .r - 3) ; cot. (5 x + 4).

(0) Tan. 2 x ; log.g «.r
;

{a^ ^ 2 x) . sin.'-* .r.

(6) Differentiate with respect to t, a . sin. (7t'^ + a) ; h . cos. (/r?' + a).

(7) If y = 3 sin. 2 n, show that ^^ = 6 cos. 2 w.

(1) 6 (2 .?• + 3)2 ; r, cos. n a- ; 2 cos. (2 ./• + 4).

(2) _1_. -'^'^ -2x
^• + ^' 2V/ 4--...3'3(^._,,.2/

(3) 3 .r (,i-2 4- 2)2 ;
- 2 e - sx . 3 ^x (^x ^. «)2.

(4) - 3 sin. (3 .r-6)
; 2 sec.2 (2 d'-3) ; -5 cosec.2(5 x + 4).

(5) 2 sec.2 2a?;-.;
| (,/2 ^ 2 x) cos. .r + sin. x \ 2 sin. x.

X (
J

(6) aw cos. (toi^ + a) ; -h . w . sin. (?f^ + a).
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?>~'2. Geometrical application of the differential

coefficient. If // = /" (/), wa have already shown

(Chap. XXVI.) that ^ .

gives the slope of the eiirve at any

point, i.p., s^lyQs tlic value tan. 0, where is the inclination of

:ho iivis OX.the tanirent to the axis OX.

(U
tan. 0.

In V\ir. 280, PS is the

tangent to the graph y = (fi)

at the point P. PR is the

normal. The length SQ is

called the snb-tangent ; and

QR the sub-normal. The
angle QPR also - 6. Let

OQ = ^, PQ = 7/.

The lengths of PS, PR, QS,

QR can be expressed in terms

of jc, 1/, and y- (for the point P).

(1) TangentPS = PQ.cosec.^ -PQ. J\+cotJ6{Art.339)

PQ
tail. e.

(
\il.r/

J
(,

hi
dx

+ 1

(2) Normal PR = PQ . sec. =PQ ^tHn.^^+l

(8) Snb-tangent QS = PQ . cot. 6 =-^^ =

dx

{\) Sub-normal QR = PQ . tan. //•

dji

dx'

Ex. 1. In the jxirahola if- — \ax^ .s/ioir that the s'uli-normal ix

co.'idttnt.

dx ^

— 2a, and is thus constant.

Sub- normal



U'2 DIFFERENTIATION.

Kr. 2, A aeini-eUiptlc arch has a span of iOft. and a rise of \Oft.
Find the distance of the foot (f the normal at the point x = 10 from the
centre of the ellipse.

.72 y^ -J,

Equation of ellipse is 72 + /2 = ^ •'• y ^ -^(^^ - ^'^j'^-

d-c a a V(^2 _ j,i^h /
Sub-nor

" d-c a
"

7/2

X.
a-

when ,r = 10; sab-normal = - ^^^ ^ ^^
= - 2h ft.,

20 X 20 ^ '

hence distance required ~ (10 -
2J) = 7^ ft.

S7o. Successive differentiation ; notation.

If ,/ = f (,r), say ?/ - ^.r^ then |^ = O/l

If we differentiate this result, we liave ~r^ .(9^-) = 18.f.

If we again differentiate, we have -t^_ (18./) = 18.

-7- is the differential coefficient of ?/, or the 1st derivative.

j-_ (9/-) is called the 2nd derivative, and is written ---V,.

d (Pi/— (18.r) is called the ord derivative, and is written V3,

and, generally, if y = / (./) the first operation of differentiating

y is written -f;, differentiating this result, or the second

d-ii
differentiation is wiitten -j-,, and so on, the ?ith. differcntia-

. , . . ^/"//

tion beuig written -r^.

E.r. A moving body starts from a point distant k ft. from a datnm
point along a line o-z\ and moves along the line in such a way that its

distance s from in any time t. seconds is given hy s =^ ut -{• \gt^ 4" ^m

u and g heiyig constaiits. Find the velocity and acceleration.

Velocity = Rate of increase of space = y
r . . dv d ds /72.,

Acceleration = Rate of increase of velocity = 77 —
77

• 77
"^

772*
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Hou-c 'j^^^ («^ + i i/i'' + ^O = " + !/i (vckcity)

'dV'
^

It
^^^ + ^''^ " •'^

(acceleration).

It is thus seen that // in the given foriDula is acceleration, and n is

initial velocity of botly. v ^ u -\- gt is velocity after t seconds.

n

374. Maxima and minima. In Art. 283, a maximum
value of // in a continuous grapli y = / W, is defined as a

value greater thau any neighbouring values on either side of

it, and a minimum value as one less than ueinlihourinfi values

on either side. Appljing; this definition to the graph shown
in Fig. 281, it will be seen that there are maxima at A, C, and

E, and minima at B and D, and it must be observed that

there may be more than one maximum or minimum value.

The value of f- at any point on a graph gives the slope of

the tangent at that point (Art. 361) ; at a maximum or

minimum value the tangent is pai'allel to OX, hence y; = 0.

As X increases, yv changes sign from + to — at a maximum

value (as at A), and it changes from — to -f at a minimum
value (as at B), or it may be said that at a maximum value

the curve lies below the tangent, and at a minimum value it

lies above. We can thus ascertain values of x for which y is a

maximum or minimum by finding -r for \)
= J (of), equating

-T- ^ 0, and finding the values of x which satisfy the result-

ing equation. By taking values of x a little smaller and a

little larger than the determined values, we can find whether
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-j- changes from + to — or from — to +,uiid hence whether

the vahie is a maximum or a minimum. If the angle of

incUnation of the tangent at any point on the graph to the

axis OX be denoted by </>, then ~ -= tan. </> and -7^ (tan. (/>),

or—-^, gives the rate of increase of ^ or (an. with respect

to X. Now, if the incUnation is changing from + through

zero value to — as .r increases as at A, the rate of increase of

tan. <^ or -f must be negative, hence y^ will, in general, be

negative at a maximum value, and conversely, if, as at B, the

inclination is changing from — through zero value to + as x

increases, the rate of increase of T7 or tan. r/) must be positive,

hence -7-^ will, in general, be positive for a minimum value.

We can thus decide whether the value of x, which makes

fly
-7-, = is a maximum or a minimum by substituting the

value of x thus found in the expression for —^, and noting

whether the result is — or +. This rule fails when -T72 =

dy
for the same value of x, for which -j^ = 0. In such cases,

dx '

the former must ])e adopted.

1 .5

Kr. y = - -r^ — T -i"^ + 6 ./' + 1. Find values of ,v for which y /.v a

ina,riiiiuni or a minimum.

~ = .1-2 _ 5 ./. _|_ (5. Yo\ -^ = 0, we must have x = 3 (jr 2.
iijc dx

dx- dx^

Put ,r = 2 and^^. = - 1.
dx^

Hence ./ = 3 is a minimum, and .r = 2 a maximum value for y.

Check by plotting a graph for y.



DIFFERENTIATION. 445

375. Curvature ; radius of curvature. It has been
explained in Art. 261 that tlie avera<2:e curvature for a small

length PQ of an arc is the change in direction of the

tangent from P to Q -^ length of arc PQ. To find the

curvature at any point P, we require the limiting value of

chancre in direction of tan2:ent ., ^^_ . ^ , , ,— or, if PQ IS OS and the change
lensfth ot arc

cie

in direction of the tangent is ZB, we require the value of -r

In Fig. 282, consider a very small arc PQ. Let the co-ordinates of

P and Q be x. y. and (.r + 5./')? (Z/ + ^U) respectively. Let arc

P Q = ns.

PQ is small and does not
from a

Then(5.v)2 = (5</2) + (5.^)2 . ^
and

'^'' - \ ("^yY ^\) ^ 1
^^^er appreciably

rv ~
I ydTc) ^ ) [ straight line.

Let d be the inclination of the tangent at P, and (0 + 50) the
inclination of the tangent at Q to OX. The tangent changes in

direction hQ for an arc 5.f, and r = 5-9 -i- 50, where r — radius of

curvatuie for PQ.

In the limit r — —
de

de

d.s'

Fig. 282.

A general expression for - in terms of ./• and y will involve ,' and

du:^'
As is a function of s, tan. 6, which

dy,

dx
is also a function of s.
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dy
tan. e =~~.

a<v

Differentiate each side
\ 'If. a\ _, ^ ('hL\

with respect to s, \ "^. ^^^^"- ^^ ~
7s' V/.r/

^Z r70 _ d (dii\ d.r (Function of

re
^'^''- ^^ '^y "

dJ- ytr) T. ^v function.)

„ de d:^t/ dw

d.-i d.v' a-s .

. do ^72 y 1

V 1 + tan. 25 . -p = -ro-T~'^
dit du^ ds

d.i

I A^'/V^i I ^i

(^)
+ 1

Exercises.

Art. 372. (1) In a parabola ^2 — 4^/j.^ show that the subtangent for

any point P (ir, y) is — 2x, and hence that OQ — OS
in Fig. 280.

(2) Show that the sub-normal to a velocity-space curve
represents acceleration, and that, if acceleration is

constant, the velocity-space curve is a parabola.

Art. 873. (3) A point moves according to the law .? = a . sin. (icf -f a),

where ,c is the displacement at time t, and w and a
are constants. Show that the velocity is r = aio

cos. (ivt + a) and that the acceleration is — ic^x.

(Such motion is simple harmonic motion.)
*

Art. 374. (4) Find the maximum and minimum values for (1) ?/ =
sin. d between U and 27r radians, also for (2) y =
^.,3+l,2_

6.r + 4.

An.^. (1) I ;
~. (2) - 3 ; 2.

(5) Show that a square is the rectangular figure of greatest

area for a given perimeter.

(6) Show that the rectangular figure of greatest perimeter
that can be inscribed in a circle is a square.

(7) Show that the rectangle of greatest area that can be
inscribed in a parabola y^ = 4^,^.^ bounded by th(j

2
ordinate .r = c. is of width - •.
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(8) Show that the greatest cylinder tliat can be inscribed

in a sphere has a radius ^ / r • ''> where r is radius

of sphere, and that the ratio of volumes of cylinder

and s[)here is U-5773.

Art. 375. (!)) Show that the curvature of a circle is constant.

(10) Find an expression for the radius of curvature of the

curve y = 3.|2 4. 2j\ and the numerical value of this

at the origin,

i )
'^

Ans. 1 + (fi.r + 2> - ^ G; 1-87.

Miscellaneous Exercises.

(1) Differentiate ,l^ + sin. ,r - V^*', also l/,i- - x^ + cos. x.

1 _ 1 _9
Ans. 8 j2 + cos. X - ~x 2

;
- X -^ - 3 .r2 - sin. x.

2d

(2) lis^i ut + -^/^2 V, show that
^Jl

= {li ^ft~)~t (2 u + ft).

(3) If J- = . a . sin. (wt + o) find —^, and differentiate your result

again Avith respect to t. Express the second result in terms of

w and x. Aiis. — ic^x.

(4) If y = 2 X -^ c^ + sin. x, find j-^. Ans. c^ -sin, x.

(.*)) U y ^ COS. X, find —^. Jws. sin. x.

(0) If ?/ = ?r'3 + 3 ?/^2 _|_ 2 rt^ + 2 ^, show that yf = 0.
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CHAPTER XXVIir.

INTEGRATION

376. An idea of what is meant bj integration will be

obtained by considering the method of finding an area

bounded on one side by a curve, the equation of which is

known, and on the other sides by the axis OX and two

ordinates respectively. Let OA (Fig. 283) be the graph

y = 3x--, and suppose we require the area ABC D. Consider

a small strip EFGH of the area. Let OE be denoted by x

and EH by y, then, since y = ?>x^-, EF = 3 (OE)"-. Increase

OE by a small element EH, and denote EH ])y Sx. Then HG
is (y + Sy), and again (y + Sy) - 3 (a; + Sx)- or HG =
3 • (OH)-. If we regard the strip EFGH as a trapezium, the

area will be |y + fy + Sy) ,- • Sx or ( y + - • Sy
j

' Sx.

This value is in excess of, or is less than,

the true area EFGH according as the

curve FG is concave upwards (as

shown), or concave downwards, and
it will represent the true area when
FG is a straight hue, and consequently

the mid-ordinate is ( ^ + .7 ^^

)

The smaller we make the distance EH
or 8.r, the nearer will the arc FG
approach a straight line, and con-

sequently the more accurately will

Sx represent the true area of the strip.(y + I Sy)

Note.— Exercises for this Chapter are on pp. 4SS, 4S'.", and 490.
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I>y inakini,^ ^,(.- ami coiHCMiiieHtly 8y iiulefitnkily small,

Hfxl writiiii^ St/ and Sx sks iff/ and (fx respectively, the area

of the resnltinj]: narrow strip heeonie? accurately

The sec jiid teini ^
' dy ' d^ involves the product of two

indefinitely small quantities, and hence is neglitrible in com-
parison with 1/

• ilr, so that we may now^ reij:ard the area of each

small strip as y ' dx. Tiie whole area bounded by the curve

will be the sum of the aieas of an infinite number of these

strips, i.e., the sum of an infinite number of products y ' dx.

The sign used to denote the sum of an infinite number of such

small quanlities is an elongated S, thus , hence the area

bounded by the curve is written as K/ * dx, and is read as

*' the integral y ' dx.'' But y ^ ox^, and therefore the

area = 3.c- ' dx. To be of any practical use, this expres-

sion must be evaluated.

Let us now consider the steps necessary for the evaluation

of ox- • dx. Obviously we cannot divide the area mechani-

cally into an infinite number of strips, find the area of each,

and add together the results, but we may be able to discover

some known value which is also = 'dx'^ • dx, and if such a

value cm hs found. We conclude that it is the area bounded

by the curve y = Sj:*-.

Refer to the rule for differentiating x'\ When y - x\

we have -^ =a nx"''^, hence, when y = x^, we have -^
~"

ax ax
8^2. This equation may be written dy - djc- • dx, meaning

P.M. G G
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that a sn.all element of ?/, viz., dy is = tlie product of ;V-,

and tlie corresponding- small element of .r, viz., dx. The snm
of an infinite number of small elements dy, is written as

J
• dy, and similarly the snm of an infinite minihcr c»f small

products o.r^ • dx is written as ?^- ' dx. If a quantity y

1)8 divided into an infinite nnrcher of small elements each

= dy, then ' dy,ov the sum of an infinite number of these

small elements, must be y.

Hence ' dy =- y, and since - dy — ox- • dx,

it follows that y — 3 • .r2 • dx.

But y — x'^, hence x'^ = ox- • dx^ that is, the quantity

(if^) which, when differentiated with respect to x, gives the

quantity appearing between the sign I and dx (in this case

3^-^) is the required integral. The area bounded by the

curve y = 3it- is thus a;^, and by an inspection of Fig. 283,

it will be seen that the numerical value of such area must
depend upon the positions of the last and first ordinates BA,
])C, and consequently upon the final and initial values OB,
00, of X. The value x'^ represents the area between the

curve, the axis OX, and an ordinate corresponding to any
value of X. If 00 ^ a, and OB = />, then the area ODC
= a^ and the area OAB = b^, and hence the area ABCI),
which = (area OAB — area OOD), must = li^ — a^.

Again, if OB - 20 and CO = 10, the area ABC!) =
(>03 _ ]0-^) = 7,000 units.
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:-i77. Tlie ireiieral value of an intep-al, siicli as .r^ above, is

called an indefinite integral. The two limits, as OC and
OB above, between wliich the area lies, and hence betwxHMi

which inteirratic^n is reijuired,- are indicated by writins^ their

values at the lower and uj)per ends of the intei^Tal sign

thup, ?jx~ • (Ir means that the inte^^ration is to be per-

formed from 9c = a to X = h, and as we have already seen,

this result, called the definite integral, is obtained by first

findinfr the indefinite inte_<rral, then substituting^ the two values

of X, between which integration is required, and iinally sub-

tracting from the expression containing the U}){)er value

that containing the lower value.

Repeating the above process when 1/ is any continuous
function of x, say y = f (r), we can show that the area of any

strip bounded by the graph y = J'(x) isf {x) • dx, and that

r

the whole area is f{x) ilx. We next find a value, say 2,

which, when differentiated Avith respect to x, gives f{x), and

z is the indefinite integral for the area. The actual area is

found by putting in the two limits between which integration

is required, and subtracting.

378. It will thus be seen that the process of integrat'on

is one of summation of a series of small elements which follow

some delinite law, and further that integration is the inverse

operation to differentiation, and consists in solving the

problem :—Given the value of ~j\ find y. It will also be

observed that an integral can only be found for expressions

which result from differentiating some other expression
;

hence, many of the rules for integrating are derived from the

corresponding rules for differentiating, and one of the first

things to be done is to make a standard list of differentia-

tions to ])e used as a guide in the inverse operation of

G 2



4o2 lNTEGRATI()>r.

;}71). Additive constant of integration. If we
difftTeiitiate y -= .r^ -(- c, where c is any constant, we have

— = 3x-, for the differential coofficient of an additive
dx
constant is zero (Art. 36G). In tlie process of integrating

3./-, in wldcli we have to find what valne of y will, when
differentiated, give 3jj^, we may have an innumerable nnmber
of expressions for the indefinite integral, i.e., y = x^ -\- c is

the indefinite integral, and c may have any value. The
constant c is called " the constant of integration," and
should, strictly, always be added when writing down an

indefinite integral. The value of c will, in any particular

problem, be determined from the conditions gixen, as in the

following example.

Ex. A hodij falUng freely due to gravity has an acceleration

g = 32 (/((. per sec.) per sec. Find its velocity v at thi' end of
t seconds, if its initial velocity is 20 ft. per sec.

Acceleration g = rate of increase of velocity

Hence ^~ — q — 32
at '

dc - 32 . ^/^

dv = 32 dt

dj-

dc

^XoU,- 4 32 ^ s 32,
at

Lence
\
32 • dt - 32 ^]

.-. V ^ 32 .t -i- constant.

To find the value of tho constant, we have v ^ 20 when ^ = 0.

Hence, 20 ^- (32 X 0) + constant, thus the value of the constant is 20.
Hence, v =3 32 • ^ + 20 is the velocity required.

In the case of a definite integral, the constant of integra-
tion will vanish wliju the integration is performed between
hmits, thus the integral of x^ . djc between the limits a and b is

^
. <lx = - x-^ -^ c (indefinite integral)



380. Simple problems in iulcgratiou bhould be tested b^

differentiating, thus

1
H , dx = -_- .1.3 4- c (by rule for W^)

d n
Differentiating ( r-^^ + *"

)
^'^'^ ^^''^^^

T< (
~'^'

) "^
/ <

^''^ = 7 •
-"^-^^ +

Exercise.

V that Tr^ . rAr = ^./^ ; f^'^ •
'^'^ = s^"'"^'Show
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8^
'. ^ule for a constant as a multiplier, pj/., I ky\

r^ + const.

dr.

Let // = .7^, then y- = 3.r- and ?,.v~dx --

But I y-. dx = -x^ 4- const., lience 3./-. c/.r = 3 ./-. ('/,r.

Generally, if // = r", y-_

u-i r

?7.r , and I A/i; . dx

But

)ience

rt'./'

1 + 1
= -X'

n
u - 1 r n ~\

nx . dx = n I x .dx.

A coihsfant as a multiplier may llius he placed oulside the

integral sir/n, and will muUiply the integral of the varinhle,

thus k.x^'.dx — k I x'^.dx = ——^ .z" + ^ + constant.
J J « + 1

3H2. Rnle for a snm or difference of terms. The
differential coefficient of a sum or difference of terms is equal

to the sum or difference of the differential coefficients of the

separate terms. By inversion, the inte^jral of a Bum or

difference of terms will be the sum or difference of the

integrals of the separate terms.

Thus A ( ./•' + ./•'' + ^-2 + A = f- .H -^ JL.<b -^ !L .r^ + i. .r

a.r \ ) dx d.f d-c d.r

licnce I (4

i x^ + 3 .1' + 2 r + 1

x'^ + a J 2 + 2 ;tr + 1). dx-

+

4 u-^ dx- + Js,,.

2 x: dx7 -\- \ I . dx
I

= 4 . 1 .r-i + 3 . 1 ./.=' + 2 . 1 ,^-2 + .r + const.

= x-^ + ,i-3 + ,r2 _|_ ,y. _|_ const.

ind I B.<3. r/.r
; 2 sin. x . dx ; I

ns. 3-/'"*
;

— 2 COS. X ; 4t.*.

//u/ (.1^ + 2./2 + .r) . <7.r
; (2.,

(1) I

Alls. 3-/'"*
; — 2 COS. .r

;

(2) Fi7id (.1^ + 2./2 + .r) . dx

Ana \x* -^/Ix^ + i.?2
;

4f«^ . </.r.

/2 + sin. ,r) r/,*-.

COS. X.
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88?». Many expressions can })e simplified, or written in

an equivalent form, before integ:ration, thus simplifjinp: tlie

work.

J,r. 1. P 7
"~

. ...

J
•^' + "

Heiice
l';-^

• ^''' =- \(f - a) . d.,' = I
(.,. _ ,,)2 + const,

or = I ./• . d.v - a I dw

1 o= - •'- — ff-i' + const.

...... \<^±^.,u.

(j. 4- 9,2 ,,.2 ^ 4,,. _,_ 4 •?'
, o ,

2 .Q. ,.„ . ^__L = -^ = _ + 2 + _ . (8implifjin£-.)

Hence
|--l=.,...^f.,....,...|.„...f^^

,r.^.\

= ^ .^2 + 2 ,r + 2 log. .r + contt.

Z'.r. 3. (./• + 2) (./' + 3) (I.r. Multiply out, then the problem

becomes U-r^ + 5./' + G) ..r = - ./•' + [-* ./^ -f Gj" + const.

384. A notation commonly used when a definite integral

is to be found is to enclose the indefinite integral in square
brackets with the limits placed after the right-hand bracket
prior to performing the subtraction, as follows :

—

P(.r^ + 3.r + 2) rLr = ["^ .H + ^ -/^ + 2.]'^

- 5 (i^ - ^z") + I
(/'2 - a^j + 2{h - a).

Exercisss,

(1) Find
I
f^- .df; (.r - ./,) (r + a) d.r.

Ans. ^.2 + at + const.
;

^.t-^ — a^r + const.ns. ^. 2 + «< + const.
;

ri r 90T

(2) Find (.72 + r/..r- + h) dw
;

I cos. 6

A lis. 18§ + da + 2i
;

1.
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'.\h:}. Integration by substitution. Many inte«rials

are foiuvl l>y a ineLliod of isiilistituLiuii, 11 lust rated bj the

ibll()\vin<^ cxarni>le.s.

Kv. 1. Ft nd
I
sin. a.r . dt

a.r, 11

\s,\[\.ax .(Ix- — I sin. ?/ . du

d7/ , d/f.
J

Let ?/ ^ a-r, then ^ // and - d-c,

d.i! a

Substituting,

J '*

'l 1
= cos.u .

= COS. ax.
a a

Thus, \Yhcn a ~ 2 \vc have I sin. 2x .dx = - tt cos. 2 x. Siniihulv,

I
COS. ax . dx =^ - sin. ax ; I >in

I CO?. ((IX -f

Ex. 2. Find \(2x + 3) J . rf^

Let M = (2 J- + 3), the

Sulstitutlng ((2x+^)^.dx^ U'<i

. (ax 4- h) Jx = --; COS. (a^ + //), and

I CO?, (ax + h) ==;7sin. (ax + h).

Let w = C2j- + 3), then ^ --. 2 and — = dx.
dx 'Z

1 3 ^ -"^ ^

2 4 ^

3 ^

Fx. 3. Lto
. ^^.

= /^r, t:

J
'•

J

= « . s

Let ?t = A'.r, then -^ ^ u and -y- = nx

Bubstilutini:, \,h£ dx -^ — i^m uu ^ — . fu
/i

1

Fx. 4. I Va2 - ^2 . dx

dx
Let X = a . sin. 0, then -r- = a . cos. 0, and dx = a . cos. . r/fl

\'a2 - ./2
.
^^- =

I
>'tf2 1^1 _ sin. 20; . ^ . cos. $ dQ. (Substituting.)



INTEGRATION. 457

co>. . a . COS. . tlO. (Ste Ait. 330,)-1-

^0.r/fl .= ."1(1 f COS. 20). <le.

(Appendix I.)

+ T, s'n-

If the limit., of w are o and r?, the corresponding limits for Q are ^/

and 90° or ^ radians (for sin. = and sin. 90° = 1), and tlien we

IT

have p\^«2_^¥. fij, ^"^V Q ^ 1
^^^ 2d 1 ^ ^ Tl".

This integral is required when finding the area of a circle.

38G. Integration of rational fractions. In tins

method, the fraction to ))e intei^rated is uritten as the

alsrehraic sum of two or more 2)artial fractions/'"- i.e., a

number of fractions, called partinl fractions, are first found

having; denominators of lower dimensions than the c^iven

fraction and whose algebraic sum is ^ the given fraction,

Ex. Find -2
T)'

^^•^•

To resolve -, into partial fractions, proceed ns follows :

-j_ ^—'- (factorizing denominator)

.-. 1 == A (.r + 3) + B (,c - 3) (equating numerators).

Put ./' = 3, then A = -
; also put x -. -^ 3, then B s; - —

1 ^ 1_ =. _1— - ^ __
^^ •

.r^ ~ \) G {X - Jj {^x -f 3)
•

1 hus . dx ^ — - --
I

—r,.

= -^rl0Sei'f- -3)-llog., (j^ + 3)

1 , .r - 3_ — log.. .

G ""x-^'S

* For a di.sfussinn of pavliiil fractions, text-books on aljjebra .should be
consulted. The example liere given is typical of those met with in integra-

tion.
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387. Integration by parts. This method consists in
invertinjT: the forninhi—

dx

(Ix

(la
V . -J- ' d'V.

ax

I^>- •• \., .ex .dr.

Put .;r = u and -7 ^ c^, then i: = c.^ and-r-
iLv dx

hence, substituting: in above formula,

r
. 1 . <1x

Ex. 2.1. lo?. .'
. (J-i' Regard this as I lop. x .\ . dx.

\x • €^ . dx = X . e^ — \(

^ xtx - (''.

Ex. 2.1. loo:^ ./
. dx . Regard this as I log^

dr , „ , du d
and

hence, substituti

Put loff X — u and y- = 1, then r — x and -j— = -— lojr^.r° dx dx dj- ^^

ing, I log,, X . dx — (l(^gg x')- X —
l-^' • ^ .

X . loge X — X.

It will be observed that this method depends upon recog-

T.izin,2^ one of the two factors of the product to be integrated

as the differential co(fficient of some known quantity, and
further that its utility depends upon the integral in the

resulting expression being easier to lind than the original

integral.

388. Change of variable. If y = /(?/) and (u) = f(x),

di/ dii du ^^„
we iiave 7- = ~7~

• t" (Art. 0/ 1).
dx da dx ^ '

The corresponding formula fur integration is
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liencc, if the expression to be integrated is a product of a

function (say of ?/), and-y-., we may write it as /(//) du,

which may be mucli easier to find. Tlie following examples

il ustrate the j r* cess.

A'.. 1 1 ^iii-''^ -t' • COS. .V . dx. Let n = sin. .r, then —^ — co.>.j'and

{sin.2 X . COS. .r . dx becomes | 7t2 —_ . r/j; = I ^<2 ^,^

J
'^-^

J

w-i = TTSin.'' X

d . .,

or, since y^ . sin. .r = cos. x, we may write

I
sin.2 ,/• . COS-. X . ^Ar as i sin. 2 x . ^— (sin. x) . dx ^ I sin.2 ,r d (sin. r)

f d.r_

7^ sin.2,r : (compare with I -t^ . rf.c =
._^

-r^).

f dx
Ex. 2

X . «,/• = ,y

hence, substituti
{X . dx

,
1 r r/w

-^Yj2-:r^) ^^^^°^«^
2

J
^. (2 - u)

= 4
J
IT + 4

J
2 - «

= 4 log, w - ^ loge (2 - u)

1 ,7-2

1 ^^^^'^ (2^:^^)
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CHAPTER XX [X.-

SOME APPLICxVTlONS OF INTEGPtATIOX.

3S0. To find an area bounded by a curve the

equation of which is known. This was explained fully

in Art. 37 G. If 2/ = /'W is the equation of the curve, then

the indefinite integral for the area is f{x).dx, and the actual

area, if the limits or extreme ordinates are x ^ a and x = b

is Jyx),dx.

^ a

E.V. 1. To jriul the area of a parabola //2 = \a.r, and Its relatlun to

the area of the elrcnmserihing reeta/iglc (Fig. 284)

Area AOB 1'

£
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A'/'. 2. Find the area of a jfaraholu ij'^ — ,v ic/ien x — IG.

P^i ' 284. Let OA = 10, then AB = ^/l^i = 4

Area = :r rectangle EBCD

2 2:a\
^ 5 X IG X 8 . ^ = SJ^

^.r. li. yirm rf a circle of radius >•. Fig. 28;"i.

Consider any strip of radius .r and witlth S./-. The length of its

mean eiicumfcrencc is 2tt I -r -\- 7, 1, and its area is 27r I •/' + tt I"-^'-

If we make each stri[) indefinitely narrow, the area is 2it{ ,/
\ ,^ d,r yJj-

or 2Tr./' . d.r, neglecting the term 2Tr . .jd-c . dx.

The sum of all stiips froi

ladius to radius /•

Fig. 285.
. •. Area = tt/

'^.

Another method is to take the equation of the circle as -/'-^ + 2/" = '^

or y — ^ r"^ — .v^.

Area of a) fr Cr
, \

quadrant ' -
| // . r/.r - I

('"^ - .i""^/ • d-i-^—nr^ (see Art. 38:>).

of circle j

.-. Area of whole circle = 4X7 •"'/^ = t^''^-

Ev. 4. J./-i'a of an elUpse hacbuj a.ves 2a, 2h, Fig. 286

The equation of an ellipse is ^ + r^ = 1 ,j =~(jc^-^y^}

Area

y

of a quadrant ) f^ ^ ^ T'^^^, ^ ^^ ^,^
ot clhpse

j J^-^
a \ ^

''

^ -'

. , TTaH^cc Art. 38:.).
<t 4 ^ ^

4
^'?*-

Fig. 28G.
•. whole area :=: 4 . irah — ifa h,
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J'Jr. i). Ai'ea hounded hij the curir p r = constant. Fig. 287.

This curve is a rectano^ular hyperbola and is that for a sas expand-
ing: accordiiif^ to the hxw pressure x volume = constant. The product
p .

8'- gives the woik done by a gas at pressure/; when volume increaKos
by 5r.

])v — k li — constant.

Area J) . dc (indefinite integral)

Aiei from II \i

1'
--- // is

\ i>
. dr

\
'i-

Fig. 2S7.

r A' log. r + r

/.' (log. h - log. a)

h
h log.;^

Note that li = product of p and r for anv point on the graph

V
if the graph is given, and thnt I 7; . dr gives the work done in cxpand-

J rt

ingfrom volume a to volume //.

E.v. G. Area hounded hij the euriv pv'^ = Ji or p = li .

*~"

Area —
I 7; . dc (indefinite integral)

1

If the limits are r

= '•--„ + .

a and v = h.

r^O' -"-"-")•
This exam[)le is of importance for finding the work done per lb.

of steam, when used saturated, during adiabatic expansion. For
adiabatic expansion 7;

yi -11646 — 479 (gee p. 347), where p = pressure
in lbs. per sq. in., v = volume in c ft. of 1 lb. of steam. Hence, if

1 lb. of steam occupying a volume a {c ft.) expands to h (c ft.), the
work done is

479l-
0C4G . ,1^.

47) / \
I h -0 0646 _ ^ -0 0646 I ff

o-o(;4t; V /
lbs.
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Kj. 7. Simpson's Rule for (letenniiunQ: the urea of an

irreirular fii^nre (or volume of an irrei^ular solid) has already

been given on p. 28G. It is derived as follows :

—

Fip. 288. Divide the area into an ereyi number of strips of widtli li,

and i>ounded by ordinates //i, 7/2, etc., and consider die area AH(l) of

two strips. It is assuiMe<l that (he curve DC is pai't of a ptirahohi

having as its equation y ^ « -\r h,r + v.i'^, Takini^; the a\is OY
coincident with //a, for the ordinate ijo,, we have x = f>, and hence

y-i = (I, For //.(. wc have ./- ---- It and //;;
= a -\- hh + eh-, and for 7/1

weliave .v = — /< and //i
= a hh + rV/'^. From Ihese tiirce enna-

tions, we derive

V^ =
ill + hh + ch- ] Ad. ling and transposing we get

i/i = 'th
- ^>'> + c^>-i ) in + y^ -- 2?/2 = 2c'//2.

Area ABCD

c



iCA M)M\L APl'LIOATlONS OK INtKOHATIOK.

:31)(). Volumes of solids of revolution (Art. :i4!l) may
be found l>y integration, if the ecjuation of the generating

curve be known.

Let // = /W be the equation of the curve AOB, Fig. 281),

wliich rotates about its axis OX to geneiate a solid. Con-

sider tlie soUd as made up of a number of circular disks of

radius y and thickness Sr. Then,

Ml

/

area of each disk

Yolumeof each disk

volume of solid

n

Fig. 289.

= 77 //•-
. Br

r
= Try- . (Ix
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Eje. 3. Volume of a xpliere of radiux r, Fig. 291.

A sphere is generated by a semicircle rotating about a diameter.
The volume of any disk = vy^ 8r.

But y3 =^ ,2 _ a,2 for a circle (.see Art. 304).

.•• Volume 7r //^.d.T = tt I (/^ - .i'^) du-^ and

since the limits are from A to B, i.e., from - r to -{- r,

•
. Volume of sphere = tt

|
(/ 2 _ ,2-2) d^.

f+
r r + r

d.r- - TT \ .x^.dx

2 irr^ - l 7rr«

= 1-
391. Centre of gravity. The centre of gravity of an area,

and of a mass, has already ])een explained in Art. 248, and
also an approximate method of finding its position. If we
regard a mass as made up of a large number of elements w?i,

W2» etc., and consider the pull of gravity on each of the

various elements as a force proportional to the magnitude of

eachelemenl, we have a series of parallel forces, the resultant

of which is equal to 2 {m) (read sigma m, meaning the sum
of nil, '"2, etc.). By referring to Art. 327, it will be seen

that the moment of the resultant of a series of non-concur-

rent forces about any point is ecjual to the sum of the

moments of the separate foice?. The point at which the

resultant pull of gravity acts is the position of the centre of

gravity. To find this point, consider an area AOB, Fig. 292,

symmetrical about the axis OX and bounded by a graph

y = y W- Divide it into a series of strips of width 8x, and

consider one of these s' rips.

Area of strip = 2^/ .Sx

Moment of force on this strip about OY -^ 2 1/ .x . 6x

,M. H H
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Total moiiK'nt - i'// . J'.'h: = 'l /{') .
«*'

•

^^'•.

Tlie i-c.sulUiiit force oii the whole area = - / (') • ^^-'^ ^^'^

if X be the distance of the centre of icravily alonp: ^OX

from 0, the moment of the resultant force about OY =

X X 2 / (.r) dx.

- total moment
~

rcsultan:: forcj

f (.r) X . (Ir

fi.c)<h
Fig. 292.

"When the area is not symmetrical about an axis OX, as

in Fig. 21)3, it is necessary to find separately the distance

of the centre of i^ravity from OX and from OY, thus

locatin.c: the position.

If the curve has equation // = /*(*), the distance of the

centre of gravity from OY is given by the above formula.

To find the distance from OX, consider strips parallel

to OX.
Area of e icli strip — r . 8y

Moment about OX = x .y . hy .\
Total moment = I x .y . dy.

JiCt !j be distance of C.G from OX.

xy dy

Then y =^"—, In evaluating
"^ twtai area

y '

J

Fig. 293.

;•
. y . (hj, we

must write x as a function of y, c.y., if the curve is

// = ,. then /:" - - and x^ [-V
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Kv. 1. y'o find the centre of (jrac'itij of any triangle, Fi\r. 2'.>4.

Divide the triany^le AI3C' into stni)s KF of width "Sx- and length y
parallel to the base AB. Let axis OY coiucide with the base.

a It
y = —- a {\^y similar triangle?.)

The area of each strip EF thus = ^-- — ^ a . 5.r.

The moment of each strip about the base =
^

The total moment
|

of triangle
j
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Ex. 3. Find the distance of C.G. of a semicirclefrom the diameter

Fig. 296.

1 1 (,.2_ ^1^

of
I

(r2 - .r2)2 X . dx

kV-

^ dx \

Note.—The value of I (r2 - .r2)2 x. (7i;niay be found by evaluating the moment

for area OAB about OA, thus, each strip = y. 8x in area, and its centre of gravity

V If
from OA = „ ; hence, moment of each strip is ^^ y2 . fix.

whole moment I -2 1/2 . rfx - 2 I (r2 - x2) dx

Jo Jo

1 ^ 1

= 2-^=^-6

r3.

The moment about OB must have the same value. Fig. 296.

392. The position of the centre of gravity of a solid of

revolution is found by regnrding the solid as composed of

small circular disks. Regard the mass of each disk as equal

to its volume, i.e., assume the density is 1.

Fig. 297. Let y —f(^x)he the equation of the generating curve.

A disk distant .v from o has a radius y =y'(,r), and hence volume =

ir
j
/X^) p 5.r. The moment of this disk about Y is tt {/(.?) }

2. x . 5a-,

and the sura of such moments from to h is

{fi.r-)\Kx.d,e

I
Let X be distance of C.G. from 0.

The whole volume is 1 a- -! /(,/•) ! 2
. ^,;c

Hence
Fig. 297.
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JUx.l. A cone, Fiff.29^.
Equation of generator is y = m.r.

Volume of each disk = irfS-r = ir (iiLry . 5.r.

Moment about OY = ir {ma-y . .v . 8^.

I IT . w"- . a^ . tlx

4 _ _
/d from apex of cone. FiG. 298,

Ex. 2. A paraboloid of recolution generated hij

jnirabola y^ — \ax,from x = o to x = //, FUj. 2'.)!).

Volume of each disk tt//'^. S./' = tt. 4a.?'S./'.

Moment of each di.sk about OY = 4 irax'^ . Zx.

\ttjl x'^ . dx

4ira X . d.i

iir.i.}_.ft^

47rtt-/<2

from apex.

£x. 3. A solid hemisjjhere. To Jind distance of C.G. from, the

base. Fig. 300.

A hemisphere is generated by quadrant AOB of a circle rotating

about OB. Equation of curve AB is x"^ -^ y"^ = r^.

Volume of each disk Try2 . 5^. = -n- (r^ - x^) . ^x.

Moment of each disk about Y = tt (/"^ - x'^) x . 5x-

dxI TT
(/-a _ .y2^ rp

.

I

TT (/^ _ a-^) dx

1 7-2
. ,r . dx — ir I z^ . dx Fig. 300.

ir>^

Volume of sphere = - vr^

...2 i ,.2
'2 i''_ -a-i) _..L3,

•3

2 »

3

from base.
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The cantre of gravity of a circular arc AD, Fig. 801,

is found as follows.

Take as axis OX the; iniddle radius of the arc, and the centre of the

circle as the origin.

Let angle XOA be o. Consider any small element of the arc, such
as CU, and let angle XOC be 6 radians, and angle DOC be 56.

The length CD = r.SO
The moment of CD about an axis OY perpendicular 1o OX and

in the same plane as the arc is

r.Sd X OE = r 50 X r . cos. 9

= 7-2 cos. e . Sd.

Sum of moments for whole arc AC is

'+ a

7
'^

. cos. . do

— 7-2

I
sin a - sin. ( - a)

|

Ir- sin. a

Let iC be distance of CO. from 0.

sum of moments 2 r^.sin. a
Then x

leno-th of arc zra
?"sin. a

DNote. —For .1 semicircular arc, a = 1, liencc X
IT -I

The above result may be utilised in finding the C.G. of a
circular sector, AOB, Fig. 302.

Let the radius of sector be r and angle 2 a

radians. Consider the sector as made up of

small sectors OCD, each of which can be

regarded as a triangle. The centre of gravity

2
of each is then-: /• from o, and if we regard each

sector as a particle placed at its centre of

2
gravity, we get an arc of radius -/'. The

centre of gravity of sector will coincide with

that of the arc, which we know from tlie

above

radius of arc X sin. a

Hence C.G. of sector = -

/ "
?•

j
sin. a

2 r sin a
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303. Moment of inertia. If a particle of mass M
(FiiT. 803), is at a distatiw ,*• from a line 00, then the ])roduct

of M and x' is called the "moment of inertia" (usnally

denoted by I) of M about the

axis 00. ]f a number of sei)arate

particles or elements ?;/,, m.i.vh,^, etc.,

arc at distances ^i, ^2, -^'h, Gtc, re-

spectively from 00, then

I = m^x^- + iih^r.^ -\- m.^.r.^- -\- etc.

If the elements form part of a

continuous surface or boJy, ojj., an
area or a solid body, then if ea'^li

element of area is 8A, and of mass
8M, aii'l its distance from 00 = :c,

I = 2 . 8A . .r- for an area

I = 2 . 8Ar . a,-^ for a misp.

Af
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Ex. 1. Find 1 for a rectangle of breadth h and depth h wh.en axis

passes (1) through the centre of gravity (2) coincides ivith the base,

(3) is at a distance k from the centre of gravity and jmrallel to the

base, Fig. 304.

(1) About axis OiOi passing tlirough centre of gravity,

h

1=1 b .x^ . d.r, taking OjOi as axis of //.

h

2
1:

= l^/t3.
12

(2) About the base O2O2 wliich is taken as

axis of y.

ft^y
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Ex. 2. Find I for a triangle about (1) an axis 00 through the apex
and jHirallel to the haxe : (2) about t/te base; (3) about an axis through
the centre of graril g, Fig. 305.

We ha

Each clement of area = y • Sr = 7 ^ • 5.*'

and I for each element of area = , x . ,l^ . Si
h

.
•

. for whole triangle I =- I -r^ . dx.

h\h^J'^
h \ 4

(2) If 00 coincides with the base, then,

Fig. 3():

taking base as axis of reference we have I ^—^,
~

\ )
and

] ''

(3) To find I for a triangle when axis passes through the centre of

, ^ bh^
gravity, apply the rule of Art. 394 and show that 1 = —

.

Ex. 3. To find I for a square ah.mt a diagonal^ treat (IH the sum of I

for two triangles about their bases.

Let a = side of square ; then diagonal = a J'l, and e ich triangle

has height ~a J2=-^-, then I = 2{-'j2.a. (-4f) i = ^•

Ex. 4. To find I for a circulaur area about an axis 2>assing through
the centre 2fcrj)e7idicular to the 2^lci'ne of the area.

Consider the circle divided into concentric

rings of width Sr and radius r, Fig. 306.

Area of each ring = ^irr . 5r.

I for each ring = 2ir/-^. 5r.

and .
•

. I for whole area :

[ 2irr' . rZ/

27r . -r R^
4

jrR^

2 '

Fig. 306.

If D = diameter of circle, ^ = 2
^"^^

32
•
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Ex. 5. To find I for a cyllmler of masts M Ihx. per cuhia inch ahout
the longitudinal axis ichcn culinder has radius r" and height A",

Fig. 307.

Divide into concentric lioUow cylinders or rin^i^R.

Volume of each ring = 2fl-;' . // . 8r.

Mass of each ring = 2Trrh . M . 5r.

1 for each ring = 2irhMr^ . Sr.

^ ttR^ hU ,^

analosry to Fx. 4)

7rK2//M
.K2

Fia. 3(1

= Mass of cylin-

der X - I''^-

Fx. 6. Find I for a cone ahout its axis, Fig. 308.

Ptcgard the cone as made up of circular disks, each of radius y. and

such that y = f (jr) = j x.

Volume of each disk

= TTifyx ~ TT—r-rBr.
Ir

Regarding each disk as a cylinder,

I for each disk

. . I for whole cone

ni'
S./-

rri^ .H n.r

2//>

Trr-" x^

2h^

dx

xr%
10

•

Fx. 7. Find I for a hollow cylinder about its axis, e.g., a fy-whcel
rim of outer radius R, inner radius r, and thichness t, and of
rectangular section, Fig. 309.

Treat as the difference of two cylinders,

2
For outer cylinder I =

lor inner cylinder I = —;

—

For fly-wheel rim I (U^-H).
Fig. 30J.
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395. Theorem. The moment of inertia of an area about

an axis ])C'rpen(licnlar to its plane is e(iual to the sum of the

moments of inertia about two rectangular axes in the plane

which axes intersect in the perpendicular axis ; thus

Consider any element of area SA, Fig. 310,

distant a- from OX, y from OY, and • from
the origin.

Then I about OY = SA.,i2

I about OX = 8A . i/

and I about an axis through = 5A . z^.

But r2 = (j;2 + y'l)

.'. SA . ?2 - 5A (.;2 + ^2)

= 5A ,/2 + 5A y".

i.e., I about jj axis through := I about

OY + T about UX.

This rule is useful for finding I for a circle about its diameter.

From p. 47.S, Ex. 4, we have I for circle about J^ axis through its

centre - '^. Let I be moment of inertia about diameter OiOi

and r.2 about 02*^2. Fig. 811.

Then Ti = T.^ and Ti + T^

Fia. 310.

7rTl_i

2

Or since R

Hence Ii

D

T
-^'

J2 — ^T^

II = h

, if D = diameter,

Tr/DY_ ^

If I is the moment of inertia for an area A about any

axis, and I = A/:-, tlie quantity k is culled the radius of

gyration f^r the area about that axis. Similarly for a

mass M, if I = MZ:-, the quantity Ic is the radius of gyrat'on

of the mass.

39 G. Pressure on an area immersed in a liquid.

The intensity of pressure at any point in a li(|ui(l is equal to

the weight of unit volume of the liquid x depth, e.fj., a

cubic foot of water weighs 02 '3 lbs., hence the pressure per
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square foot at a depth of 100 ft. is the weight of 100 cub. ft.

of water = 6,280 lbs. If a surface acted upon by the Uquid

is lioriz(^ntal, the pressure at every point is the same, and

hence the total pressure = intensity of pressure x area of

surface. As liquid pressure is normal to the surface

immersed, and is transmitted equally in all directions, it

follows that the pressure intensity on any surface not

horizontal will not be uniform, but will vary with the depth

of each part below the free surface of the liquid.

The total pressure on any surface is found as
follows ;

—

Consider a surface ABCD, Fig. 312, immersctl with its upper edge at

a depth h feet below the free surface, and its lower edge at a de{)th

(Jb -\- a) feet. Divide the surface into strips of width Zx with edges

parallel to the free surface. A strip at depth x has an area y . 5x (if

y represents an ordinate of the areaatdeptli x), and if wis the weight
per unit volume of the liquid, the intensity of pressure on this strip

is to . X. The whole pressure on strip is intensity x area, and thus =
tvx . y . Sx. Summing up all such pressures for the whole area we

{h + a

wxy . dx . as the total pressure. If the immersed surface is

h
rh + a

bounded by a curve y = J{x), then total pressure is I w . ,/•
-fi^') • d^-

Jh

Ex. 1. A rectangle of breadth h and length a with upper surface
at depth h.

Ji + a

Total pressure = \ w . x .b . dx - wh\ x x'^

- Iwb [A2 + 2ah + a--h^]

= -w .ah. (2/i + a)

= w .ab .ih -\- -\.

The above result shows, for the case of a rectangle, that the

area (ah) x pressure at depth of centre of gravity of area

j
?/^ (/i + ^) [gives the total pressure on the surface, or that

the average pressure is that at the centre of gravity.
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This can be shown to be true generally, for, referring to Fig, 312, the

total pressure = | w. x . y . dx ; the whole area is =
|

y.dx, and

the depth x of the centre oE gravity of the area below the free surface

dx

is given by x

\
le (

I'

Intensity of pressure at C.G. gravity is wx.

dx

Hence
X press

u

, whole area 1

ire at C.G. =
J

y.dx X
y. .dx

= u; ly . a* . dx, w

X m;

hich

Fig. 312.

agrees with the above formula for the total

pressure. (The limits will be the same for area,

total pressure, and centre of gravity, and hence
are omitted.)

Ex. 2. Find the total pressure on an isosceles triangle having

base fl, height //, immersed in icater with its plane vertical arid its ajfcx

in the surface of the liquid.

Take the origin at the apex, and axis OX, Fig. 313, along the

a
median of the triangle. Then y ^ —x. (Similar triangles.)

» c L . • « ^ 2a ^ ax .l.v
Area of each strip = 2y .hx — rrr^ • S./^- =
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Er. 3. .1 vcsirmir has sides indiiwd at 30^ tothfi vertical, and has

vertical ends, and is 2^\ft. deep and 100.//. iride at the free surface of

the liquid. Find the pressure on each end icalL

Fig. 3U. Taking
e|uatiou of side AB i

c = 50 and m

.-. y = r>0 ,- .r.

Consider a strip at dc| th

Area is // . Sj*

Pressure is

G2-3 X -r X

OA
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h

171)

i-
TiC ullniit of fDVC'AS - whok' i)iX'S8Uie uii awn. A —

|
"' • y • -f . d-i

_ C"
IIciicc J- X

I
IV . 1/ .'J' . (1-r — municnt of re ul';uit,

. ij .
./-^

. (Iw

and .
•

.
.1-,. - J"

I
W . // . X . (he.

J a

If the a:ca immersed is bounded by a curve y =/{.>'') tbcn
rb

w I fC-^O •
^''

• ^^'^' ^ ^^^ ^^^^ about intersection
— J ^ of its plane with free surface.

Area X depth of C.G.

„.J/(.-)

d.i

and if the area is symmetrical about a line pcrpeiidiculai-jo the inter-

section, the centre of i)resmre lies in this line at a depth c.

h

Fig. 315. Fig. 31G.

I'j-c. 1. Find the poa'dlon of the centre of i)reHi<uve on a rectangular
plate of breadth a and lengtli ti if the upper edge u at a depth h below
the surface, the jdafic (f the reciangle being vertical. Fig. 316.
Area of each strip = a .Sc

;
pressure = a,i' . Sx ; moment about

surface = ««' . 8.c. Tut (^b + //) = k, then limits are h and k.

ffc rl n^
ax-^.dx -,^3 1(7,3 _ 7,3)

..»v. ., - J^ = i£ :iA =
'^

£.,.... Q..]; |c.-.)

If the upper edj^c is in the free surfac:;, then h ^ o and /.• = b and

- 3 2
^ = ',— = .7 />.
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Ex. 2. A triaiigle with apex in surjace of liquid. Fig. 317.

Let side OA have equation y = in.v. If base

of triangle is 2/», then j- and y

Each strip has area 2y . Sr =
Pressure on strip = 2in.r^

moment about OY = 2jn.v^ . S,c
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2 X fi2v

^^J^ ^ 3 / _ V^^ 4V3/

2 X 62-3

^ (133,333 - 23,010) ^ 110.323
~ (IU,UUU - 1,540) ~ ~8,4GO
= 13 ft. from along OX.

398. A useful theorem for cases in which the upper ecli^e

of the area is below the surface of the liquid is :

—

the depth
of the centre of gravity multiplied by the differenc3
between the depths of the centre of gravity and
centre of pressure is a constant.

Proof, Let \, Y\^. 320, be the area, m the depth of centre of

gravity, and n the depth of centre of pressure. Take moments
about a line parallel to the surface of liquid, and through
the centre of gravity.

The whole pressure on area = A m iv (Art. 396).

Total moment = A m iv {n — m).

Consider a strip of length k, width hx, and distant x from
axis through C.G.

Pressure on strip = h . Sx . w (m + x)

Moment about O.G. = h .hx .lu . (m -f x) x

Total moment = lew {m -{- x) x . dx

- Jcicm
I

X . dx -\- htc . | x"^ . dx

— wm

[
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But hx .dx = moment of whole area about C.G. and

lis = 0, also hx'^ .dx = \this = 0, also Icx'^ .dx = \ for area about an axis thi'oufrh

C.G. Hence, the whole expression on the right-hand side

is constant and .'. m (n — m) is constant, and = t' "" moment

of inertia of area about C.G. -^ area, or = the square of the

radius of gyration for the area about an axis through the

C.G.

In any example, the value of the constant is determined by

finding —
, or by finding 77i {n — m) when the upper edge of

the area is in the surface of the liquid, as follows :

—

For a triangle having base I) and height /?, the value

I-f-Ais -4--^ — = —y^^» or taking the apex in surface
8() 2 lb

2
of liquid, the depth m of C.G. is -h, and the depth n of

o

C.P. is -h. Hence m [ii - m) = h (h - h) = hi^
4 o \4 o / lo

To find C.P. if the apex is d ft. below the surface, we

liave 771 = ld-{- -/n , and if we call (r — w) = x,

then

711 . :r =
:

1 h^ 1

,. . :r = U^

18 m 18

("+?)
Thus C.G. is below C.P. by the distance .r, and knowing

X the distance of C.P. below surface is obtained.
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A few examples will now be given to illustrate the use of
integration in solving problems generally.

399. If the pull in the tight side of a dnvitig-helt is Ti Ihs. and
that in the slack side Tg lbs

, the angle of lap ',f the belt on the
pulley e radians, and

fj.
the coefficient of friction between the belt and

vullet/, show that^ = ^^. Fig. 321

.

Consider a small length a b of the pulley. The belt on this element
of the pulley is kept in equilibrium by forces T, (T + ST), and R, where
R lbs. = reaction of pulley on belt. A triangle of forces for T, (T + 5T),
and R is shown in the Fig., the angle between T and (T + ST) being
= that between normals to the pulley at a and Z>, say a radians.

Since a is small, we may write R = Ta.

The friction between belt and pulley = R^ = Ta/j. or, when the
belt is about to slip on the pulley,

{(T + ST) - T)} = ST - Tafx

ST

ndT

If we now make o indefinitely small, and write it = de, ST becomes

^T and we have -yp- = fi.dO.

As the angle of lap is 6, we must sum up all the products fxdO

between limits o and d radians, and also the quantities -=- from

T2 to Ti,
.Ti

hence

I I 2

c

•'T2
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400. lorsion of a shaft. To find an expression for the twisting

moment on a shaft. Fig. 322,

Consider first a tube of length Z, fixed at one end and acted upon
by a turning couple at the other end. Let a line AB turn to ABi
through an angle cp radians. The shearing stress q {i.e., the force

shearing the tube per unit area) produced in the tube is proportional

to the stiain <p, and q — C(p, where C is a constant called the Modulus
of Rigidity for the material of the tube. If t is the thickness and r

the mean radius of the tube, the total twisting moment T = q x 2irrt

or (force x area) = T. At a distance I from the fixed end, a point B
moves to B^, and if is the centre of the section of the tube a radial

line originally at ob moves to oh^ through an angle i radians.

/^^ Iq

r ?C

A solid shaft may be considered as made up of a number of tubes,

each of radius r and thickness 5r. If q is the stress on each tube,

the torsional force = q .2'rrr.8r, and the tAvisting moment about the

centre is

Then hl^

have /

and W = BBi = ?(/>. Thus Z<^ = ri, and as <p =

q . 2 TT/ 2
, 5/* or (force x ?•)•

.2ir/^.dr where II — outer

The total twisting moment is

radius of shaft. Now q is a

Fig. 322.

variable depending upon r, but as

l, and Care constant^-^ and as i,

Cr

for my section of the shaft, <- must

be a constant, say 7i, then q
Substituting for q we have

kr.

T = 2 "]?'"- '^'-[r'X
2-rrJi

l^Qtf== the sliear stress at the surface of the shaft, i.e., at a radius

B, then-^, = //, and substituting for A- we have T = '—-^
=-^^^ f^^

where D = diameter of shaft. For a hollow shaft, having an inner

radius Ei and outer radius B2, the integration is performed from
«2

r = El to ?• = E and then T = 2irh r\dr = '^{ R2 - Rj) , and when

^^^
is substituted for k, T =.^— (ll^ - rJ) =-^^i;^(d! - d\)

where Di and D2 are respectively the inner ard outer diamstera of

the shaft.
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401. To find the dejicctioii at any jx int of a cantilever loaded at

the end.
1 d'^ij ( /^/'/\2 ) i

The curvature of any arc is given by — ^ -j-^ -^ 1 + I yy I

(Art. 375), In the case of loaded beams and cantilevers, the detiec-

tion is small and hence the curvature is small, so that if y is the

deflection at a distance .rfrom one end, -.- - will be small, and \ A\ will
d.r ' \ d.v J

ba nc2rlit2:ible. We may thus take-r. =-r^for beams and cantilevers.
''

li d.L--^

1 j\I

It can also be shown that - r = -7, where R is the radius of curvature
It El

of the bent beam, M the bending moment, I the moment of inertia

of the sectional area about an axis through the centre of gravity of

the section, and Vi the value of Young's Modulus of Elasticity for the

material of the beam.
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(2> y = - Irf(^-^ - -2'^) ^^ = - M \ V'-' - 1'' +

When X = o, y = o (i.e., no deflection at fixed end of beam)
.'. constant = o.

W ( 1 „ 1

const.

.-. deflection y = t^ I ^^a-^— vr-r^ I

At the free end of the beam, the deflection is a maximum.
W ( 1

KI ( 2

W P

Here a; = I and .: y = -
^^ {

^^' " "^ ^'

}

3 El •

The — sign indicates that y is a distance b^low the axis OX, i.e.,

the free end of the beam is bent downwards.

402. A beam supported at each end and loaded with iv lb.s. per foot
run. Fig. 324.

In this case, M at any point distant ,v from o is '.fij^LzJll:^.

Hence ^^'^ - ^ ^
'^^''' ~ ^^''''

'^

^^"""^^
d.c^

""
EI

(
2

j

dl/ 1 ( 1CI,T^ tV.T^ )

-r — "TTT —IT ~ ~rr- 4- const.
d,r El ( 4 6

)

To find constant, we have-V; = o when x =-(/.^., the tangent to

the bent beam is horizontal at the centre).

1 ( ?/'Z^ ivil^

Hence o = -^-.X -r^~ Ts" + "^o"^*^- (substituting in Eq. 1)

=
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403. Similarly for a cantilever carrying w lbs. per foot run and

of length Z, we have M = — —— -'
at anoint distant .r from theo » 2

fixed end, and .*. y = -
,

"
> or - -—j^., at the free end ;

for a beam
8 EI 8 EI

of length I, having a load W at the centre, we have M = — at a point

W l^
distant ar from one end, and .'. y = — ,,

,

.

404. To find the time taken to empty a tank or reservoir^ or to lower

the lerel by a giren amount.

Let the original level be h feet above the discharge orifice ; sectional

area of reservoir be A sq. ft. ; and area of outlet a sq. ft. The co-

etticient of discharge may be written as m.

Then when head is A feet, velocity of discharge is ^J2gli per s«c.

hence quantity Q discharged in time 5^ seconds is (wj .a. J2 yh t) c. ft.

The fall in head S/t in time ht is—

g;^ ^ m a J 2 gh . U (for A . U = quantity

A discharged.)

A . 5k
-' 5^ = 7=—rf

•

in a ^ 2 y . sj n

For the head to fall to o, we must integrate from o to /<, then time

and t = 1 • —^-dh

J
in .a. V 2 g h^

L III • (i • \/ 2 g - 2 + i J
^

9, A JT
ni .a . V 2g

f-
A 1 ,,

If the head is to fall by (h - h{) ft. then t = ]== ' -J'
^'^

2 A
J h - J /lA seconds.

m .a. sj 2g

From the above result, it is readily seen that the time to empty the

tank is double that required to run off the same volume if the head is;

, ,
A/i AV^A

kept constant, since the latter time is = ,— -
= 7^== sees.m a ^2 yh m a V 2 -/
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Exercises for Chaps. 28 and 29.

Arts. .376 (1) Plot carefully the graph i/ = 9,r from .r = tcr = 2*.

to 384. Divide the enclosed area into 25 equal strips ; call

the width of each strip Sar. Find the area of each
strip, (1) treating it as a rectangle of length = the
left-hand ordinate, (2) equal to the light-hand
ordinate. Adding the areas of the strips we have
two values for whole area : (^1) obviously too laige,

(2) too small.

Again, find the area (^3) taking each rectangle of

length = its raid-ordinate (4) by Simpson's rule.

Compare yoMx results.

Now find the area by integrating 21 3 V x . dw.

Afis. Correct value, 500 units.

(2) Initial velocity of a body is 12 ft. per sec, and
acceleration is 15 ft. (per sec.) per sec. Find
velocity after ^ sees. A/i.s. ] 5^^+12,

Evaluate I a;^'^: dr ; V x . d.r
; ^- \

~~ '

f 2.^0 56
. ,/,e ;

r 5^.3
, ,if. . (aC^.df; I 'Sh^ . du

;

I
d'.

1 2 ii 1 12 o ffi/3

Ahs. -.f" ; .,
.1-'^

;
-

11 '3 ' x ' -zjL^' l-5ti '4 ' a

o 2 _
«° ; - ^^.

lo

(4)
j

(a'+ 4:,2.r7.r;
|

(3.^•2+ 2.r-l) ^.r ; f (22' + .3^H4^S) ,,/^.

AnS. (^_rf-H4./2_^16u'V (^•3+ ,^2_,^). (^2_^^8^^4),

I

(i5 -f 3) (2 - ^2) . ,u, ,

1 .?-'' 3 r
Alls. ^,i-2 + aj- ;

—- 4. 1- + O./- + 9 log. X
;

4a. log.c -x- + S«.^• ; -
^

^4 _ ^3 _|_ ^2 _j_ g^,
4
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I sii!. 3/" . (Ix
; I CCS. 'ix . d,i- : I sin. (U' . n^

I'
OS. e . (.e.

1

1

-1//.S'. ~ COS. .W ; -.-sin. .J-r ;
- cos. a.r

]

3 3 a,

aiu.ie.

(7) j
sin. (2.r'+ 4) (J,v

; j
cos. (3.r + 2) fJ,r

;

J
cos. (7ix + ^) fLr.

s\v..(:20^c).(Jd;

Ans. -- i cos.(2.r+ 4) ; isin. (3,t'+ 2) ;
- i cos. (-0 + ^)

ii 3 Z

1 BiQ. (j « + ().

• 1."^ ,ie.(S) \(2.r + 4)4 (/.<; (.2( + 3) rf< ; <

Art. 38G. (0)

. 1 , .r - 2 1 .r + 2 1 1 ,r - 2
^«,v. log.e -—- ; log.e ~—-r. ;

- log.e ——i;-

(10) log.e
2 .< — J

,7" +

ShowthatJ.^:5-rT^7-:^

and that J,-q-^r^.=
- log.

Art. 387. (11) L8.t^.r7.r; Lr .6«*. ^/.f ; 2 1^-. log.e a-.rf.r.

(12)
I

.r . sin. .-7'
. f7*2 ',\ic , cos. a:* . <7.^'.

An8. sin. ^i• - a;', cos. a* ; cos. .t f ir.sin. w,
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Art. 388. (1 3) I sin.^ x . cos. x . dx ; I sin. x . cos. x .dx ; I log.e x . dx.

Ans. _ sin.4 ic ; _ sin.2./-
; - (log.,. x\

f sin, a.
_ ^;_^.

r^in^
^^^^,

f_tan^^_^._

J
1 + COS. X

J
cos.'^ X

I
cos.^ j;

^«5. - log.e (1 + COS. .r) ; ;
- _ sec.3 x.

3 cos.-^ X 3

Art. 38t). (15) Find tbe area bounded by the curve pv = 26,220, when
the hmits are v = 3*4 and 10*2 c. ft.

; j^ is then lbs.

per sq. ft. Ans. 28,8 1().

(16) If a gas at pressure 7; lbs. per sq. ft. and volume ?-.c. ft.

expands according to some given law, then
li-'^'

gives the work done in ft.-lbs., if the gas expands
from a volume r^ to a volume r^- For isothermal
expansion, the law is pc — hi, and for adiabatic

expansion, the law is jyo^ = Z'.2, where 7 is the ratio

of the two specific heats for the gas, and Tii and hi
are different constants. A well-known law in

Physics \Q I— ^ h where T is absolute temperature

of the gas and Tt a constant. Show that for a pound
of air at volume Vi and temperature Tj expanding
adiabatically to volume r^ and temperature T2 the

work done is = ^^ ^~
, ,

and that for isothermal
(7 -

expansion the work done is — jh^'x log.*- Ki where
R - v2/ra.

Art. 390. (17) A ])arabola y- ^ %x rotates about its axis. Find the
volume swept out if the last ordinate is x ^ 20.

Ajis. o,654-9.

(18) An ellipse having major and minor axes = 2^7, 2h
respectively rotates about the major axis. Show
that the volume (called a prolate spheroid) generated

is - 7ri%, and that, if it rotates about the minor
o

axis, the volume (called an oblate spheroid) is

Art. 391. (19) Find the C.G. of a parabola 1/ = 9^-, if the apex is 8 ft.

from the base, and also of a triangle having sides

8, 10, and 12 ft., regarding the longest side as the

base. Ans. (1) 4-8 from ; 2-2 ft. _£ from base.

Art. 392. (20) Find C.G. of curve ij = sin. x between limits and tt

radians. ^,,, ^^3 ^ ^_
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A curve jry = i rotates about the axis of x. The
limiting values of .r are 1 and 12. Find the C.G.
of the soh'd generated.

AnJt. X = 1-62 .-. C.G. is 0G2 from base of solid.

(21) Find C.G. for Ihe circular arc and sector which
subtends an angle of 50° and has radius 12 ft.

Am. 10-5 and 7 ft. from 0.

Art. 398. (22) Find I for a rod of circular section of radius r,

length Z, and density m, about an axis coincident
with one end of the rod, and jr to the longitudinal

axis. . IT m r"^ P
Ans. •

(23) In a beam of I section, the flanges are 8" x 3" and the
web is 9" x 2". Find the value of T about the
neutral axis, and also about the base of tlie section.

Ans. 1,885-5 ; 2,238.

(24) A hollow shaft has an inner diameter of 10" and an
outer diameter of 14". Find I for the section of the

shaft about the axis of rotation. A?is. 2,789-7.

Arts. 396 (25) Find the whole pressure and the centre of pressure on
to 398. a rectangular sluice gate of depth 6 ft. and breadth

4 ft. if the upper edge is 12 ft. below the free surface

of water. Ann. 22,428 lbs. ; 2-4 ins. below centre.

(2G) A tank has a semicircular cross section and vertical end
faces. The diameter of the semicircle is 12 ft. If

it is full of water, what is the pressure on each end
face ? Am. 8,979 lbs.

(27) An elliptical disk is immersed in water with its major
axis horizontal and at a depth of 20 ft. below the

surface. The semi-axes are 4 and 3 ft. long respec-

tively. Find the total pressure on the disk and the

depth of the centre of pressure.

Afis. 20-5 tons ;
1-35" below centre of ellipse.

(28) A submerged pier has a rectangular base 20 ft. by
12 ft., and at the surface of the water has a rectangular
section 20 ft. by 8 ft., the pier being 12 ft. high.

Find the total pressure on each face of the pier, and
the depth of the centre of pressure on each end face.

Ans. 40-6 tons ;
20-03 tons ;

8-4 ft.

Arts. 399 (29) A driving belt passes round § of a pulley and the ratio

to 403. T1/T2 =^ 2. What is the coefficient of friction /*
.'

Afis. 0-19.

(30) lf/= 9,000 lbs. per sq. ins., what diameter d of soli<l

shaft will transmit a torque of 5 ft.-tous, and what

is the equivalent hollow shaft if Dj = - Dg ?

Ans. d = 4-236"
; Dg = 5-45"

; Di = 2-73".
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Arts. 401 (31) Calculate the rnaximum deflection in a beam 20 ft.

to 403. lonj:^ and Id" x 4" section su|)j)orted at eacli end,

and carrying a load of .">(» lbs. per foot. Take E =
29 X 10^ lbs. per sq. in. Ans. 0-112 in.

(32) Find the deflection at the free end of a cantilever

12 ft. long carrying 40 lbs. per foot, and having a

section 6" x 3". E as in question above.

Am. 1-37 ins.

Art. 404. (33) Find the time taken to lower the level by 9 ft. in a

reservoir having an area of 3,000 sq. ft., the original

depth being 25 ft., and the discharge orifice being

6 sq. ft. Iq area. Take m as 0-62. ^Am. 201-6 sees.

IMiscel- (34) A cable of length I ft. and weighing w\hs. per ft.

laneous. hangs vertically, and is wound on a drum. Show
that the work done in winding the cable completely

on the drum is = - ivP ft. -lbs.

(3.')) A rod of length I has a uniform section a. but its

density varies as the distance from one end. Find
an expression for the weight of the red, the position

of the C.G., and also its moment of inertia about
the lighter end. (Take the density at any point

as m:v, where -r = distance from, lighter end.)

Ans. "^12./^ J. ^/4.
J 6 -k
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Answers.

Pages 383 and 384.

(1) 5.5 mis. per hr. ;
81° N. of E. (2) 70°. (3) C^ N. of E.

(4) 300 yds. down stream ;
19-5^

; 7\ mins,

(5) 51 sea miles ;
78^ 41' N. of E. (G) 38 lbs. (7) 2G lbs.

(8) 15,900 lbs. ; 1,500 lbs. ; 10,450 lbs.

(10) 19-5 knots ;
17° W. of N. ;

0-975 knots ;
17° W. of N.

(U) 3(;° S. of W. ; 34-5 mis. per hr. (12) 22-5 f.s. ; 27° \V. of S.

(13) 4-75
;
3-7

;
3-375

; 1-G25 tons. (14) 10-4G ; S'Q f.s,
; (15) CO 6 ;

GO-9 lbs.

Pages 414 and 415.

(1) (1) 45°; 13-G6 ft. ; 1225 ft.

(2) 100^ 17'
; 3G° 11'

; 43° 22'.

(3) 35-4 ft. ; 7G° 54'
;
53° 6'.

(4) 13-3 ft. ;
2.5° G' ; 109° 54'.

(5) G2° 7'
;
72° 53'

;
10-8 ft. or 117° 53'

;
17° 7'

;
3-3 ft.

(2) Lower triangles, 8-5 ft. ; 10 ft. ; 4 ft. Upper triangles, 4 ft.

;

8-5 ft. ;
8-6 ft. Horizontal member, 9G ft.

(3) - 0-4540 ; - 0-544G ;
- 0-7002.

(4) 0-788
;
- 0-76G ;

0-8391
; 09397 ;

- 0-342.

(5) 995-6
;
615-8 sea miles.

(G) EB = BD = 33 ft. ; ED = 23-6 ft. ; central stay, 30-9 ft. ; 7G°.

(7) 23-G°. (8)0-8909. (9)11-02. (10)40°. (11) 9.912 ft.

(12) AC = 1,281 ft. ;
73° 36'. (13) 77 ft. ;

16-1 ft. ; LG°.

(14) 26°
; 36°

;
8-77 ft. (15) G22 yds. ; two ; one ;

96-5°
;
79°

;
11°.

(16) l,90Gyds. (17) 26-7 ft.; 26-38 ft. ; 3-56 radians; for open
belt, 3-35 radians and 293 radians.

(18) 0-74 ft. ;
9°. (19) 132^

; 093 ft. (20) 300 yds. ; 13° 14'.

Miscellaneous, p. 416.

(1) 10-4 ; 59-1 f.s. (2) 29 lbs. ; 46 lbs.

(3) 122 lbs. at E ; 98 lbs. at A inclined 88° to horizontal.

Pages 430, 431, and 432.

(I) 60 + 10 ^ ; 60 f.s. (2) 48 f.s. (3) 8 b.

(6) a - 1-24
; b = 1-123; w = 1-85; ^ = 3-7.

(7) 34,000c. ins.; |-^' = 300. (9) 240 + 12 ;;/ ; 240 f.s.

(10) 0-046 hr. per day ; Feb.—Mar. ; 0069 hrs. per djy.

(II) 0-042 f.s. ; 0-42f.s.s.
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The following trigonometrical formulse will be found useful :—
(1) Addition Formulae, giving the trigonometrical ratios for the

sum, and difference, of two angles, in terms of the ratios for the

separate anglf s.

I. sin. (A + B~) = sin. A . cos. B + cos. A . sin. B.
II. COS. (A + B) = cos. A . cos. B — sin. A . sin B.

Proof.

Let angle NOC = A and angle DOC = B, then angle NOD =
(A + B). Take any point P in OD, and draw PK £ OC ; PH and
KG are £ OM, and PF and KE j^ ON. Angle PKG = PLO -
(1)0° - A;.

OH = OG + GH, also OH = PF and OG = KE.
OP .sin. (A + B) = OK sin. A + PK . sin. (90 - A).

= (OP . cos. B) sin. A + (OP. sin. B) . cos. A.
(Art. 134.)

-H by OP. sin. (A + B) =^ sin. A . cos. B + cos. A . sin. B.

Again OF = OE - EF.
OP . cos. (A + B) = OK . cos. A - PK . cos. (90 - A).

= (OP . cos, B) cos. A - OP . sin. B . sin. A.

(Art. 134.)
-^ by OP. cos. (A + B) = cos. A cos. B - sin. A, sin. B.

For example, sin. 75° = sin. (45° + 30°) = sin. 45 cos. 30 + cos. 45

sin. 30.

cos. 75 = cos. (45°+ 30°) = cos. 45 . cos. 30 -sin. 45 .

sin. 30.
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III. sin. (A - B) ^ sin. A . cos. B - cos. A . sin. B.

IV. COS. (A - B) = cos. A . cos. B + sin. A . sin. B.

Angle NOi) now = (A - B). PK is drawn from any point in

OD jr to OC. Antrle HPK = OLK = (90° - A).
bH = OC - GH.

OP . sin. (A - B) = OK sin. A - PK sin. (90 - A).
= (OP . COS. B) sin. A -

- OP and write )

(^P «i°- B) sin. (90 - A).

sin. (90 - A) > sin. (A - B) = sin. A cos. B - cos. A sin. B.
= cos. A. )

Again OF = OE + EF.
OP. cos. (A - B) = OK . cos. A + PK . cos. (90 - A).

= (OP . COS. B) COS. A + OP . sin. B . sin A.
4- by OP . COS. (A - B) = cos. A cos. B + sin. A . sin. B.

For example,
sin. 15° = sin. (45 - 30) = sin. 45 cos. 80 - cos. 45 sin. 30.

COS. 15 = COS. (45 - 30) = cos. 45 cos. 30 + sin. 45 . sin. 30.

Corresponding formuUe for tan. (A + B) and tan. (A — B) are
derived from the above formuljB as follows :—

. . -p. _ sin. (A + B) sin. A . cos. B + cos. A . sin. B.
tan. (A + 15; - ^^^^ ^ ^^

-f- numerator and denominator )

A . COS. B Iby COS.

cu.s. A COS. li — sin.
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VIII. .-. COS. 2 A = COS.- A - sin.2 A.

1 , .1 * i ^ 1 , » N — tan. A 4- tan. A.
and, tan. 2 A = tan. (A -f A) ~ ^

IX. .-. tan . 2A

1 - tan. A . tau. A.
tan. A
tan. -^ A.

By writing an angle A as I 1- -|- i- V we derive

anX. sin. A = sin. ( ^ • o^ )
= 2 sia. ^ • co£

. A . o A
XI. COS. A =1 COS." n sin.- g-

A
2 tan.

2

XII. tan A=-"— -:;A
i — tan -

rt"

A / A A\
From XI., we derive cos. A = 1 —2 sin.2---, / for cos.^— =i _sii].2_L

J

or COS. A = 2 C03.2—- - 1
,
(for sin.2— = 1 - cos.^— ]

2 ' V 2 -^ J
From formulfB I. to IV., we obtain useful formula}, as follow? : —

(1) sin. (A + B) = sin. A cos, B -f cos. A . sin i .

(2) sin. (A — B) = sin, A cos. B — cos. A . siii. B.

Adding (1) and (2).

(3) sin. (A + B) + sin. (A - B) = 2 sin. A . cos. B.

Subtracting (2) from (1).

(4) sin. (A + B) - sin. (A - B) = 2 cos. A . sin. B.

Now put (A + B) = C and (A - B) - D. then A ^ ^—+J.^ and

B=:^J^
2

Substitute these values in (3) and (4). and we obtain

XIII. sin. C + sin. D = 2 sin. ^ \- cos.
^ ~ ^ (from 3) ).

XIV. sin. C - sin. D = 2 cos.^ - sin. ^~~^ (from (4) ).
2 2

Again, (5) cos. (A + B) = cos A . cos. B — sin. A . sin. P..

(6) cos. (A — B) = COS. A . cos. B + sin. A . sin. B.

Adding (5) and (6).

(7) COS. (A + B) + COS. (A - B) = 2 cos. A . cos, B.

Subtracting (6) from (5).

(8) cos. (A + B) - co.^. (A - B) = - 2 sin. A . sin. B
Substituting:

XV. cos. C + cos. D = 2 C03. ^^ cos. —— (from (7) ).

2 2

XVI. cos. C-C03. D = -2 sin. ^^^ sin. ^^ (from (8)).
2 2
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MFSCELTiANROUS EXERCISES.

CHAPTKR XX.
(1) A |)iooo of land lins one straiijflit e<l<i:c 12 cliains long, and a

curved edge given by end ordinates of 3 and 2 cliains respectively and
C(]uidistant intermediate ordinates of 5, 7, 1), (>, and -i chains. Find
the area.

Answer. 68G-sq. chains.

(2) A rectangular plate 3 ft. by 2 ft. has a hole punched out of

elliptical shape with major and minor axes respectively 6 and 4 ins.

The major axis is parallel to ami midway between the long sides of

the plate. The centre of the ellipse is 9 ins. from the centre of the
plate. Find the position of the centre of gravity of the remainder.
Answer. 0-2 in. from centre.

CHAPTER XXIIl.

(8) The area of the square on the diagonal of a rectangle is

25 sq. ft. and the area of the rectangle is 12 sq. ft. What are the

lengths of the sides ?

Amnier. 4 ; 3 ft.

(4) The sides of a right-angled triangle are in the ratio of 5 to 2,

and the area of the square on the hypotenuse is 145 sq. ft. Find the
length of each side of the triangle.

AuMver. 4-47
; 1M7 ft.

(5) If y = a -\- bx^l'^, and if y = 1-62 when x = 1, and y -^ 5-32

when X = i, find a and h.

An.nver. 1-0915 ;
0-5205.

(6) If y = ax^l^ - bx^l^, and if y = 5-82 when x = 0-51, and if

y = 32-10' when x = 0-98, find a and'h. (B.E., 1907.)

Answer, a = - 0-26
; ?/ = - 34-04.

(7) Because of centrifugal force due to want of balance of a

wheel, the stress ?/ in a certain shaft when rotating n times per

second is ?/ = , ^ ^^—„• What is the critical speed of the shaft
'' 1 - 0-012 >,2

'

(/.e., the speed for which y becomes indefinitely great) ? (B.E., 1907.)

Answer. 9-1 revs, per sec.

CHAPTER XXIV.
(8) A steel cable 460 ft. long connects two points which are 450 ft.

apart and the same height above sea level. A trolley loaded to 1 ton

passes along the cable. Find the stress in the cable when the trolley

is at the centre.

Answer. 2*75 tons.

P.M. K K
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(D) Five forces of 10, 15, 20, 18, and 11 lbs. respectively act at a

point, and the ani^les between the forces are 30% 40°, 80°, and 120°.

Find the magnitude and direction of the resultant.

An.nvcr. 2575 lbs. ;
50° with force 10.

(10) In a small crane the jib is 20 ft. long, the tie-rod 12 ft., and
the vertical post 14 ft. A weight of 2 tons is supported by the

crane, the rope passing down the jib. Find the stress in the jib

and tic.

Answer. 4-9 tons ;
1-9 tons.

(11) In a direct-acting steam engine, the connecting-rod is equal

in length to four times the crank, and has turned through 4 5° clock-

wise from its inner dead centre. A force of 12,200 lbs. acts on the

piston. Find graphically the thrust in the connecting-rod, and also

the force acting upon the crosshead slide bar. (B.E., 1905.)

Amicer. 12,400 lbs. ; 1,0()2 lbs.

(12) In the previous example, determine the force tangential to the

crank-pin circle centre 0, for angles of 0°, 30°, 60°, . . . 180° from the

inner dead centre. Mark oft" to scale, along the crank, distances

measured from O proportional to the tangential force for tlie position

of the crank. Join the points thus obtained by a fair curve. Verify

that the radius vector of this curve, in any position, gives the

tangential force for the same position of the crank.

(13) Draw any co-planar system of live non-concurrent forces;

state what conditions are necessary for this system to be in

equilibrium. Illustrate your answer by actually drawing the neces-

sary diagrams for a beam supported at each end and carrying thiee

loads at intermediate points.

(14) A cyclist travels due south at 12 miles per hour and the wind
actaally blows from the south-east at 5 miles per hour. AVhat is the

apparent velocity and direction of the wind to the cyclist ?

Amwer. 16 m.p.h. 13° N. of E.

(15) A cyclist travels due south at a certain speed. The wind
blows from the N.W. at 5 miles per hour. At what s[)eed must the

cyclist travel (a) if the apparent direction of the wind is to be from
the W.

;
(b) it from the S.W. .' What is the apparent velocity of the

wind in each case ?

Answer, (a) 3-5
;
(b) 7 m.p.h. "Wind, 35 ; 5 m.p.h.

(16) In a hailstorm, the particles of hail travel vertically at a
velocity of 50 miles per hour, and a railway train passes through the

storm at 60 miles per hour due West. What is the appaient velocity

and direction of the i)articles of hail to the passengers in the train ?

Answer. 77 m.p.h. 41° to horizontal.

CHAPTER XXV.

(17) A hill summit subtends an angle of 60° at a point A and an
angle of 35° at B, A and B being in the same horizontal plane and
700 ft. apart. What is the height of the hill ?

An-^wer. 823 ft.

(18) A triangle ABC has sides c =3 5 ins. and angles A and
respectively 35° and 40°. Find the sides a, J, and the area.

Answer. 4*46 ins. ;
7*51 ins. ;

10*74 sq. ins.
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(III) Is it possible to construct a triangle having A = 50% a = 15,

h ^ 20, Give reasons for your answer.

(20) Tliree towns AliC arc so situated tliat the distance from A to B
is 12 miles, 15 to C 18 miles, and C to A 1 1 miles. If P>C is due east,

lind the bearing of A relatively to B and C, and the area enclosed by

the trian^le Allc.

Ama-cr. A is 51° N. of E. from B and 138 N. of E. from C. Area

84 sq. miles.

(21) If a, h and c are the three sides of a triangle, and s ^

^ (ji j^ ]j j^ c) it can be shown that sin. -^ =^ \J
-^'

"^,;
— ^ ^"^^

that COS. .- = \J —^,—— . Find angle A when « 3= 6, /> ^^ 5, c = 3

A)Wcor. A :- 9(;° G'.

(22) At two points A and B on a river bank h ml. apart, a point

C on the opposite bank is seen at angles of 50° and 75'' respectively.

Find the width of the river.

An.swrr. 71)5 yds.

(23) An observer at a point A sees a balloon at an elevation of GG^,

and a second observer at B sees it at an elevation of 75^. A, B, and
balloon are in the same vertical plane. Make a diagram showing
two possible positions for B, and tind the distance of B from A in

each position.

Amsiccr. IGl ft., 429 ft.

(24) Two houses A and B arc situated on a straight road running
E. and W. From a point C on a parallel road, one mile from fiiet

road, the angles are 75° to A and G5° to B. Find the distances AC,
BC. and AB.
Aimccr. 1823, 1942, 1293 yds.

(25) A rectangular reservoir ABCD has one short side A B GO ft. lotig

and accessible, and the remaining sides are inaccessible. A point E
at right-angles to the centre of the long side AD is seen from A at
an angle of GO*^, and from B at an angle of 30°. Find the length of

the reservoir, and the perpendicular distance of E from the side

AD.
A mice r. 1039 ft. ; 30 ft.

KK2
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EXAMINATION PAPER.

BOARD OF EDUCATION.

PRACTICAL MATHEMATICS.

LOWER EXAMINATION (1912).

1. The four parts (a), (h), (r),aiid (/I) must all l)e answered

to get full marks :

—

(ff) AVithout using logarithms compute by contracted

methods

3-207 X 0-01342 -- 9-415.

(h) Using logarithms compute the square root of

()2-41 X 0-1352 -^ 2-41C.

(r) State the values of the sine, cosine, and tangent of

230°.

(d) State the value of the Napierian logarithm of

13520.

2. The tliree parts (a), {h), and (') mu>t all he answered

to get full marks :

—

(a) A hollow circular cylinder of cast iron is 10 inche=?

long and 3 inches inside diameter ; what is the

outside d ameter if the cylinder weighs 30 lb. ?

[One cn])ic inch of cast iron weighs 0'26 lb.]

(b) A HC is a right-angled triangle, C being the right

angle. If AC is 4 inches and the angle A is

40°, find BC and the area of the triangle.

(V) If X is 1-201, find i(f^ + ^-^).

3. The three parts {a), {h) and (r) must all be answered

to get full marks :

—

(a) The sum of ,r and // is 5-17 and the sum of their

squares is 14-25, tind v and //.

(//) What is the area of the curved surface of a right

cone if its base is 3 inches in d-ameter and
vertical heiirht 5 inches r
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{<•) There are two perfectly similar statues of marble ;

the hei,u:ht of one is 2*l;> times the hei.i^ht of the

other ; the smaller Aveighs 20 lbs. What is the

weij^ht of the other ?

4. If // = .^2 _ g.gc).^. _^ 1-95^ for values of x from to 3,

plot sufficient points of the curve on squared paper to show
for what values of x, // is 0. What are these values of ^ ?

5. When the pointer of a planimeter is guided once round
the boundary line of a plane figure, the reading of the

instrnment R is such that the area A is CR, where C is

some constant.

If R is 22*48 for a circle of 8 inch radius, what is C, the

area being required in square inches ? On applying the

instrument now to an indicator diagram, R is found to l)e

3'77, what is the nrea ? The length of the diagram being
4*11 inches, what is its average breadth ?

G. A disc whose outside radius is Tq and inside radius rj

is rotating ; the radial stress P and the hoop stress Q, at

any radius r, are

P =
/-o^ + r,2 - r-2 - ^'

Q = ro' + r-^ + '""^^ - -538 r\

If /'o
= 10, i\ = 4, write out the expressions for P and Q.

Now calculate the values of P and Q for the following v.ihies

of /• :— 4, G, 8, 10, and show^ them in two curves.

7. The insulation resistance R of a piece of submarine
cable is being measured ; it has been charged and the volt-

age ?• is diminishing accordnig to the law

where h is some constnnt, / is the time in seconds ; K is

known to be ()'8 x lO-'-.

If V is noted to be 30 and in 15 seconds afterwards it is

noted to be 2G-43, find R.

8. X and y are as tabulated. It is known that

u = 5// + 10 — :•^ ux
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find u approximately in the middle of each interval. Show
y and u as two curves, x being abscissa :

—

X



APPENDIX III,

'Ihc following TuMea are those aupplied to cnndiditea at cxamlnatiom
conducted by the Board of Education.

EXAMINATION TABLES.

USEFUL CONSTANTS.

1 inch = 25*4 millimetres.

1 gallon = -IGOt cubic foot = 10 lb. of water at G2° F.

1 knot = G080 feet per hoiir = 1 Nautical mile per hour.
Weight of 1 lb. in London = 445,000 cl3'nes.

One pound avoirdupois = 70OO grains = 453'G grammes.
1 cubic foot of water weighs G2-3 lb.

1 cubic foot of air at 0° C. and 1 atmosphere, weighs "0807 lb.

1 cubic foot of hydrogen at 0° C. and 1 atmosplicjc, weighs
•00.550 lb.

1 foot-pound = 1'35G2 x lO^ergs.

1 horse-power-hour = 33,000 x GO foot-pounds.

1 electrical unit = 1 ,000 watt-hours.

Joule's equivalent to suit Kcsnaulf.s II, is

{ J,;!,

f^-.'^;;

I ,'

^^^^ ^_
1 horse-power = 33,000 foot-pounds per minute = 74G watts.

Volts X amperes = watts.

I atmosphere = 14-7 lb. per square inch = 2,11G lb. per square
fool = 7G0 mm. of mercury = 10^ dynes per square centimetre nearly.

A column of water 2*3 ft. high corresponds to a pressure of 1 lb,

per square inch.

Absolute temp., t = eP C. -\- 273° or 0° F- + 4G0°.

llegnnult's II = GOGo + -305 0° C. = 1,082 -J-
-305 0" P.

I, M 10646 ^ 479_

log. ,0/^ = 6-1007 - ^ -
f;

where log. ,oB = 3-1812, log. ,oC. = 5 0882.

p is in pounds per square inch, t is absolute temperature
Centigrade, u is the volume in cubic feet per pound of

steam.

ir = 3-1416.

One radian = 57*3 degrees.

To convert common into Napierian logarithms, multiply by 2-3026,

The base of the Napierian logarithms is e = 2-7183.

The value of ^ at London = 32 '182 ft. per second per second,
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INDEX.

Abscissae, 44.

acceleration, definition of, 419.

algebra, intioduction to, 1.

algebraic division, 14, 99.

,, expression, 7.

., multiplication, 10, 92,

94.

,, subtraction, 97.

„ sum, 5.

angle corresponding to given
trig, ratio, 389.

angle in semicircle, 129.

angle of depression, 287.

„ ,, elevation, 237.

angles, acute, 123.

„ chords of, l.>7.

,, circular measure of, 165.

,, construction of, 136. 151,

160.

,, in a segment, 261.

,, measurement of, 122, 133.

„ negative, 141.

,, obtuse, 123.

„ positive, 140.

,, le-entrant, 123.

„ reflex, 123.

„ right, 122.

,. tables of sines, &c., 508.

angular velocity, 407.

annulus, area of, 2(j7.

antilogarithms, 180.

Table of, 506.

approximate values, 76.

approximations, 356.

arc, 120.

area of curve pr = /c, 462.

„ „ „ 7'''' = 1i, 462,

average rate, 417.

average section, 287.

averages, 49.

Barometric Chart, 51.

belts, formulas for, 483.

„ length of, 408, 409.

binomial theorem, 334.

brackets, use of, 90.

Calculus, 417—492.
centre of gravity, definition, 288,

465.

„ „ findingbyGul-
din's theorems,

294.

„ „ finding by in-

teg ration,
465—470.

centre of pressure, 478.

centres of curvature of any plain

curve, locus of, 301.

centres of gravity, table, 291.

chord, 120.

chords, scale of, 159.

circle, 120.

„ angle properties, 259—265.

,, area of, 265, 461.

,, circumference of. 120, 156.

,, construction, 255.

,, equations of, 354.

circular sector, area of, 166, 266.

„ segment, area of, 266.

clinure, 363.

coefticient, 1.

common factor, 22.

,, perpendicular, 123.

compass, 137.

complement of an angle, 123.
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components of vectors, 3(17, 370.

concurrent forces, 372.

congruent, 228.

constant tlirection, 121.

,, of integration, 452.

contour map, 47.

contracted division, 78.

„ multiplication, 77.

convex figure, 225.

co-ordinates, 44.

,,
polar, 350.

., signs of, 11)6.

co-planar forces, 372.

cosine curve, 153, 3;>1.

cubic equations, lO'J, 323.

,, „ gra])hic solution

of, 328, 337.

curvature, 3<)0, 445.

,, average, 302.

„ centre of, 3ol.

„ mean, 302.

,, radius of, 301, 445.

curves, approximating to b}^

circular arcs, 295.

Decimal Fractions, 23.

decimals, addition of, 7-1.

„ conversion to vulgar
fractions, 27.

„ division of, 08.

„ multiplication of, 05.

,, subtraction of, 71.

dcllection of beams, 485.

degree, 122, 133.

denominator, 20.

density, 294.

diagonal, 224.

diagram, force, 374.

,, })09ition, 375.

diameter, 120.

flifferential co-efficient, 427.

differentiating, 427, 433—442.

,,
constants, 435.

,, differences, 434.

6^ 436.

„ function of a

function, 439.

„ geometrical ap-

plication of,

441.

ditferentiating, log^ -r. 43(5.

,,
products, 437.

„ quotients, 43.S.

,,
successive, 412.

„ sums of terms,

43 1.

distances, calculating, 150.

duodecimals, 81.

Elimination, 310.

ellipse, area of, 401.

,, axes of, 561.

„ centre of, 561.

„ circumference of, 500,

emptying reservoir, time of. 487.

equation, linear, 2(io, 205, 322.

equation of, circle, 354.

„ ellipse, 401.

,, parabola, 400.

,, straight line, 351.

equations, forms of, 343— 349.

simple, 108, 198.

equiangular figures, 225.

equilateral figures, 225.

equilibrant, 373.

equilibrium of forces, conditions

for, 380.

estimating areas and volumes, use

of squared paper in,

280.

,, volume or capacity of

trench, cutting, reservoir, river-

bed, c^c, 287.

evaluation of formukc, 114, 358 —
300.

cvolutes, 298.

evolution, 4.

expanding given expressions, 335.

expression, algebraic, 7.

Factor, 22, 330.

factorial, 335.

factorizing, methods of, 330—33 1,

force diagram notation, 374.

„ polygon, 373.

formulae, evaluation of. 358—300.

fractions, addition of, 71.

,, algebraic, 21.

,, arranging in order of

magnitude, 75.
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fractions, conversion to decimals,

24.

,, division of, 0(1.

,, improper, 21.

,, multi[)licatioii of, Gl.

proper, 21.

„ subtraction of, 71.

vulgar, 20.

function, 201. 417.

funicular polygon, 880.

Graph, 52, 20 1.

graphs of given equations, deter-

mining forms of, 344— 34(5.

gravity, centre of, 2SS. 204, 4(>5.

Guldin's theorems, 2D2.

Gunter's chain, 29.

Harmonic Motion, Sim ple, 407.

Ireights, calculating, 150.

horizontal lines, 127.

Index, 3.

indices, fractional, 105.

,, negative, 105.

inertia, moment of, 471—475.

integral, definite, 461.

,,
iiitlefinite, 451.

,,
number, 20.

sign, 449.

integrating, applications of, 4G0
—487.

,,
by parts, 458.

„ by change of vari-

able, 458.

,,
by substitution, 45G.

„ constant of, 452.

„ constant multiplier,

454.

„ difference of terms,

454.

„ general idea of, 448.

,, rational fractions,

457.

,, sums of terms, 454.

intercept, 203.

„ form of linear equation,
351.

intercepts of line, 351.

interpolation, 398.

intersecting lines. 119.

involute, 298.

,, of rectilinear fignre,

300.

,, of triangle, 299.

involution, 3.

irregular figure, area of, 284.

5)
polygon, area of, 248.

„ ,, volume of,

28(;.

,, solid, volume of, 28G.

isosceles triangle, 230.

Kite, 245
knot, 57.

" Law of the Machine,"' 210,
320.

limiting value, 423.

limits, '451.

linear law, 200, 205, 322.

„ measure, table of, 29, 30.

link polygon, 380.

localized vector, 363.

j
locus, 120, 29G.

{

logaiithms, 177.

I

„ characteristic, 173.
'

„ mantissa, 178.

„ operations with, 180
—191.

log. curve, 192.

lowest terms of fraction, 22.

Maximum Values, 828, 427,
443.

mean proportional, 1G9.

measuring curved line, 124.

,, straight line, 124,

metre, 30.

micrometer screw caliper, 274,
mid-ordinate rule for areas, 287,
minimum values, 328, 427, 443.

minute, 122.

mixed numbers, 21.

moment of inertia, 471—475.

moments, 378.

multiple, 22.

Non-concurrent Forces, 378,
normal, 255.
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normal to any curve, 297, 441.

numerator, 20.

numerical values, 17.

Ordinates, 44.

origin, 43.

ort, 3(j;}.

osculatory circle, 300.

Parabola, Area of, 460.

parallel circles, 258.

lines, 123.

parallelogram, 245.

„ area of, 35.

,, of forces, 375.

,,
properties of, 240.

percentages, 173.

})eriraeter, 224.

plane, 119.

,, curves, 120.

,, figure, area of, 251, 284.

,, trigonometry, 385, 494.

plotting a point, 43.

polar co-ordinates, 356.

polygon, 224.

,, area of, 248.

position diagram (rotors), 375.

pressure, centre of, 478.

,, on immersed area, 475.

prime number, 22.

prismoidal f(>rmula, 287.

product, rule for signs, 12.

proportion, 163.

protractor, 135.

,,
how to use, 135,

,,
testing of, 136,

Quadratic Equations. 109,

323, 336.

quadratic equations, graphical

solution of, 326, 336.

quadratic equation?, simul-

taneous, 338—343.
quadrilaterals, 224, 245.

„ area of, 250.

quotient, rule for signs, 16.

Radian, 165.

radius, 120.

vector, 356.

rates of increase, 417.
ratio, 143.

,, of similitude, 229.

ratios, trigonometrical, 146, 384.

rectangle, area of, 35.

„ „ duodecimal
system, 82.

rectilinear figures, 224.
recurring decimals, 25.

reference, axes of, 43.

reflection of light, 410.

refraction of light, laws of, 409.
refractive index, 409.

relations between trigonometrical
ratios, 392, 494.

J

relative density, 295.

repeating decimals, 26.

resolving vectors, 367.

resultant, 36 7, 374.

rhombus, 245.

,, area of, 245.

right-angled triangle, 231—236.

roof truss, calculations of lengths
of members, 404, 405.

roots, square, cube, etc., 4.

„ extraction of, 103, 340.

rotation, sign of, 448.

rotors, 363, 372.

Scalar Quantities, 363.

second, 123,

sector, 120.

„ of circle, area of, 266.

sectorial area of annulus, 267.

segment, 120.

,, area of, 2 '1 6.

significant figures, 76.

signs of operation, 1.

similar figures, 228.

simple equations, gi'aphical solu-

tion of, 198.

simple harmonic motion, 407.

simpMfying exi)res-;ions. 101.

Simpson's rule for areas, 192
(Ex. 16),

286, 4ti3.

„ „ „ volumes,
193 (Ex, 17),

286. 463.
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simultaneous equations, graphical

solution of, 321.

simullaneous simple
31G.

equations.

358.sin. - 1/^ meaning of,

sine curve, 153, 391.

slope of curve, 425.

slope of line, 2UG.

solid of revolution, 291, 464.

solving triangles, 3S5, 31)5—404.

specific gravity, 295, 311.

square of algebraic expression,

93.

square root, 103.

squared-paper solutions of pro-

blems, 59.

statistics, plotting, 52—55.

steam engine mechanism, 4<»6.

straight line, equations of, 349

—

351.

straight-line graph, 199.

straight-line graph,obtaining sug-

gested quantities to plot, 354.

sub-normal, 441.

substitution, 317.

sub-tangent, 441.

superficial measure, 32.

supplement of an angle, 123.

surface of cone, 276, 293.

„ „ cube, 272.

„ cylinder, 273, 292.

., ,,
prism, 273.

„ „ pyramid. 276.

„ ring, 281', 292.

„ „ solids, 271.

„ „ sphere, 293.

surveying, measures used in, 29.

symbol, 1.

T7iBLE, centres of gravity, 291.

,, of integrals, 453.

,, logarithms, 5(t4.

„ solution of triangles, 413.

„ suggested data for plot-

ting to obtain straight-

line graph, 354.

„ trigonometrical ratios,

389, 508.

tangent, 255, 296.

ERADKURY; AONKW, & CO, LP
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tangent curve, 153, 392.

,, form of linear equation,
349.

,, to any curve, 296, 441.

temperature chart, 50.

term, algebraic, 1,

third proportional, 170.

torsion of shaft, 484.

transversal, 130.

trapezium, 245,

„ area of, 246, 284,

trapezoidal rule for areas, 285.

triangle, 224.

„ area of, 36, 181,

193 (Ex. 22),

„ of forces, 375.

trigonometrical ratios, 146, 147,

387.

Uniform Rate, 417.

Variables, 201.

variation, direct, 304,

„ inverse, 306.

vector difference, 370.

„ sum, 365.

„ quantities, 363.

„ „ specifying, 364.

velocity, definition of, 419.

of approach, 371.

vertical and horizontal lines, 127.
volume, estimating, by weighing

in water, 294.

„ of cone, 464.

„ „ pyramid, 278,

„ „ rectangular block, 40.

„ ring, 281, 292.

„ solids, 268, 277.

„ sphere, 280, 293, 465,
volupies by duodecimal method,

85.

„ of solids of revolution,

292.

volumetric measure, 38.

Weights of Materials, 57.

I

x° = 1, proof of 16.
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B. T, Batsford, 94 High Holborn, London

A Comprehensive Classified CataJogiie will he sent post free
on application.

Seventh Edition, Revised and Greatly Enlarged.

BUILDING CONSTRUCTION AND DRAWING.
A Text-bodk on the Principles and Details of Modern Construc-
tion, for the use of Students and Practical Men. By Charles F.

Mitchell, Lecturer on P>uilding Construction at the Pol3'technic

Institute, London, assisted by George A. Mitchell, A.Pi.T.B.A.

Part 1.—First Stage, or Elementary Course. Containing
470 pages of Text, witli 1,100 Illustrations. Crown 8vo, cloth, 3.?.

"A model of clearness and compression, well written and admirably illustrated,

and ought to be in the hands of every student of building construction."—T/te
Builder.

" Tlie new edition is a very great improvement on former editions. Jlany new
illustrations ar^ added, and the text has been revised and considerably enlarged.
It is undoubtedly the best work a student can obtain on elementary construction."— Tlie Luilder's Journal.

Seventh Edition, Revised and Enlarged.

BUILDING CONSTRUCTION. A Text-book on the
Principles and Details of Modern Construction, for the use of

Students and Practical Men. By Charles F. Mitchell,
assisted by George A. Mitchell. Part II.

—

Advanced and
Honours Courses. Containing 900 pages of Text, with 8oo
Illustrations, fully dimensioned, many being full-page or double
plates, with constructional details. Crown 8vo, cloth, iis.

"Mr. Mitchell's two books form unquestionably the best guide to all the
mechanical part of arcliitectiire which any student can obtain at the present
moment. In fact, so far as it is possible for any one to compile a satisfactory
treatise on building construction, Mr. Mitchell has i)erformed the task as well as
it can be ijerformed."

—

The Builder.

BRICKWORK AND MASONRY. A Practical Text-book
for Students and those engaged in the Jjesign and Execution of

Structures in Brick and Stone. By Charles F. Mitchell and
George A. Mitchell. Being a thoroughly revised and re-

modelled version of the chapters on these subjects fiom the
Authors' '-Elementary'' and "Advanced Building Construction."'

Second Edition, revised and enlarged. Containing TjOO pages, with
over 600 Illustrations. Crown 8vo, cloth. 7.<.-. iid. net.

" This is a most valuable work. It is not a treatise, as the term is generally
understood, but a comftendium of useful information admirably collated and well
illustrated, and as such has a distinct sphere of usefulness."— J7ie Builder.



THE CONSTRUCTION OF A HOUSE. Bein- the
study of Building Construction presented by means of 40 Plates
containing Plans, Elevations, Sections, and Detail Drawings, with
Descriptive Text, of a Design for a Country House, together with
Motor House and ChauflPeur's Lodge. By Charles Gourlay,
B.Sc, A.R.I.B.A., Professor of Architecture and Building Con-
struction in the Glasgow and West of Scotland Technical College.

Pioyal 4to (size 12i ins. by 9 J ins.), in portfolio, Gs. net, or bound
in clotli, ().s'. Gr7. net.
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which I'eqiiive a knowledge of a complete building, such as tlio Final Examination of
the Royal Institute of British Architects, the Society of Architects' Examination.
the Examinations of the Education Department in ]5uilding Construction, and
(.th.-rs.

BUILDING MATERIALS: Their Nature, Proper-
ties, and Manufacture. With chai)ters on Geology,
Chemistry, and Physics. By G. A. T. Middleton, A.R.I.B.A.,
Author of *' Stresses and Thrusts," &c. With 20O Hlustrations
and 12 full-])age Photographic Plates. Large 8vo, cloth. ]0.s\ net.
"The author has collected his materials with rare diligence, and has handled

them with workmanlike skill and .judgment; and it would be by no means sur-
prising to find ' i^Ilddleton on Materials ' becoming as popular and as authoritative
as ' Leaning on Quantities.' "

—

The Buihiinq World.

THE PRINCIPLES OF STRUCTURAL
Mechanics. A Practical E.xplanation of the Construction
and Ai)plication of Formulae and Rules in ordinary use for Deter-
mining the Strength and Stability of Structures, for the use of

Architects, Draughtsmen, Engineers, and Builders. By Percy J.

"VVai.dram, F.S.I.. Lecturer on Structural Mechanics in the
Architcctuial School, Central School of Arts and Crafts, London.
Containing 870 pages with 200 clearly drawn diagrams. 8vo,

cloth. 7,«f. iWl. net.

THE ELEMENTARY PRINCIPLES OF GRAPHIC
Statics, specially prepared for Technical Students, and par-

ticularly for those entering for the Examinations of the Board of

Education in Building Construction, Machine Constiuction and
Drawing, and Applied Mechanics. By Edward Hardy. Second
Edition, revised and enlarged. With 232 Illustrations. Crown 8vo,

cloth, 3.^f. net.

STRESSES AND THRUSTS. A Text-bo,k on their

Determination in Constructional Work, with Examples of the

Design of Girders and Roofs. By G. A. T. Middlktox. A.R.LB.A.
Thiid E(h'tion. revised and enlarged. With 17<) Illustrations.

8vo, cloth, is. CuJ. net.

REINFORCED CONCRETE, Theory and Practice.
By Frederick Rings, Architect and Consulting Engineei.

200 pages with 200 Illustrations, together with a detached Ready
Reckoner (of celluloid) for the Designing and Checking of Slabs

and Beams. Crown 8vo, cloth. 7s. t)^/. net.
" Mr. Rings ha^ kept practical considerations well to the front throughout

his book, and stej) by step, in a clear manner, arrives at the formuhe by working-

out actual exami)U's. We cordially recommend .Mr. Rings' book to .students of
architecture."

—

The Carpoitcr and Builder.



MODERN PRACTICAL CARPENTRY. By George
Kllis, Author of •• Modern I'ractical Joinery,"' 6cc. Containing a

full tlescription of the methods of Constructing and Erecting

Roofs, Floors, Partitions, Scaffolding, Shoiing, Centering, Stands
and Stages, kc, with simple methods of finding the Bevels in Roofs,

Setting out Domes, &c. : the Uses of the Steel Square. 450 pages,

with 1,100 Illustrations. Large 8vo, cloth, 12s. Od. net.

" A handsome and substantial volnine. The project has been well carried out.

It excels nearly all in its completeness."

—

The Carpenter and Builder.

MODERN PRACTICAL JOINERY. A Guide to the

rre[)aratiou of all kinds of House Joinery, Bank, Office, Church,
Museum and Shop-fittings, Air-tight Cases, and Shaped Work,
including a full description of Tools, Workshop Piactice and
Fittings, also Fixing. Foreman's Work, (fcc, i:c. By George
Ellis. Third Edition, revise! and enlarged, with Chapters on
Joinery Machines and Machine Shop Practice. 500 pages, with
1,200 illustrations. Large 8vo, cloth, \ox. net.

" Excellent as the original work was, the new edition is a considerable improve-
ment upon it. The book now forms a complete guide to the joiner s craft—far

and awav tlie most valuaV)le work on the subject that has been produced in

England!"— T/(e lUustrati-d Carpenter and Builder.

THE CONDUCT OF BUILDING WORK AND
the Duties of a Clerk of Works. A Handy Guide to

the Superintendence of Building Operations. By J. Leaning,
Author ('f -'Quantity Surveying," c^c. Second Edition, revised.

Small Svo, cloth, 2.^.*6^7, net.'

" This most admirable little volume should be read by all those who have
charge of building operations. ... It deals in a concise form with many of the
important points arising during the erection of a building."

—

The British Architect.

THE QUANTITY STUDENT'S ASSISTANT. A
Handbook of Practical Isotes and Memoranda for tliose learning
to take off Quantities. By George Stephenson, Author of
" Estimating," '• Kepairs," kc. Crown Svo, Ss. 6(/. net.

HOW TO ESTIMATE: being the Analysis of
Builders' Prices. By John T. Rea, F.S.L, Surveyor.
With ty[)ical examples in each trade, and a large amount of
useful information for the guidance of Estimators, including
thousands of i)rices. Fourth Edition, revised and enlarged.
Large Svo, cloth, 7s. Gd. net.

ESTIMATING: A Method of Pricing Builders'
Quantities for Competitive Work. By Geokgh
Stephenson. Showing how to prepare, icitlnmt the vse of a
Price Booli. the Estimates of the Work to be done in the various
Trades throughout a large A'illa Residence. Sixth Edition.
Crown Svo, cloth, \s. 6d. net.

REPAIRS: How to Measure and Value them. A
Handbook for the use of Builders, Decorators, &c. By George
Stephenson. Author of '• Estin^iating." Fourth Edition, the
prices carefully revised. Crown Svo, cloth, 3.<f. net.



CLARKE'S TABLES AND MEMORANDA FOR
Plumbers, Builders, Sanitary Engineers, &c. i>y

J. WiMGHT Clarke, M.U.S.J. Fifth Edition, revised and
enlarged. With many new Tables and a Section of Electrical

Memoranda. H30 pages, small pocket size, leather, la. 6d. net, or

in neat celluloid case, lettered in gold, 6d. extra,

PRACTICAL SCIENCE FOR PLUMBERS AND
Technical Students. By J. Wright Clarke. Treatir.g

of riiysics, Metals, Hydraulics, Heat, Temperature, kc.. and their

application to the problems of practical work. With about 200

Illustrations. Large 8vo, cloth, 5.?, net.

PUMPS : Their Principles and Construction. By J.

Wright Clarke. With 7;) Illustrations. Second Edition,

thoroughly revise!, 8vo, cloth, B.v. Od. net.

HYDRAULIC RAMS: Tlieir Principles and Con-
struction. By J. Wright Clarke. Second Edition, revised

and enlargeil, with 41 Hlustrations. 8vo, cloth, .3.?. net.

GASFITTING. ^ Practical Handbook relating to the Distri-

bution of Gas in Service Pipes, the Use of Coal Gas, and the best

Means of Economizing Gas from Main to Burner. By Walter
Graftox, Member of the Institution of Gas Engineers. Second
Edition, considerably enlarged. With 163 Illustrations. Large*

8vo, cloth, 7.s\ 6d. net.

A MANUAL OF TECHNICAL PLUMBING AND
Sanitary Science. By S. barlow Bennett, M.R.San. Inst..

Lecturer on Sanitat-y Engineering, and Instructor in Practical

Plumbing to the Durham County Council. Third Edition, revised

and enlarged. Containing 3(>0 pages, with 400 clearly drawn
diagrams and photographs. Royal 8vo. cloth, is. (kl. net.

THE DRAINAGE OF TOWN AND COUNTRY
Houses. A Practical Account of Modei-n Sanitary Ariange-

ments and Fittings for the Use of Architects, Builders, Sanitary

Inspectors, and Students. By G. A. T. MiDDLETON, A.R.I.B.A,

New and enlarged edition. With over 100 Illustrations. Large

8vo, cloth, 4s. 6d. net.

SMALL WATER SUPPLIES. A Practical Treatise on

the Methods of Collecting, Storing and Conveying Water for

Domestic Use in large Country Mansions, Estates and Small

Villages and Farms, By F. Noel Taylor. C.E., M.I.Mun.E.

With'l2fi Illustrations from diagrams and photographs. Crown
8vo, cloth, 6x. net.

WATERWORKS DISTRIBUTION. A Practical Guide

to the Laying Out of Systems of distributing Mains for the Supply

of Water to Cities and Towns. By J. A. Mc Pherson, M.Inst.C.E.

With 122 Illustrations, and a Large Chart (29" x 20") of an

Example District. Second Edition, revised and enlarged. Crown
8vo, cloth, ().s-. net.

B. T. Batsford 94 High Holborn London
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